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Abstract 
 
 
Human embryonic stem (ES) cells are derived from the inner cell mass of blastocyst stage 

embryos.  Once explanted and culture in vitro, human ES cells retain their pluripotent potential 

(i.e capacity to differentiate into all somatic cells) and acquire the ability to self-renew 

indefinitely.  These two properties of human ES cells make them an invaluable resource for 

developmental biology, cell replacement therapies, drug development and toxicology 

screening.  However, it has been widely reported that human ES cells frequently acquire 

karyotypic changes throughout culture in vitro, termed ‘culture-adaptation’.  These changes 

occur sporadically in cultures but appear to be more common in high passage cell lines.  The 

changes also appear to be non-random, frequently involving the gain of chromosomes 1, 12, 

17 and 20 suggesting that these chromosomes harbour genes that provide the cells with a 

selective advantage.  These karyotypic abnormalities are also commonly found in human 

embryonal carcinoma cells and primary human tumours, a concern for the potential use of 

human ES cells in therapeutic applications. 

 

A recent large-scale study by the International Stem Cell Initiative identified a small copy 

number variant (CNV) on chromosomal region 20q11.21, which was amplified in >20% of 125 

karyotypically normal human ES cell lines.  Here we show that the high prevalence of 20q11.21 

amplification in human ES cells can be attributed to a strong selective advantage provided by 

BCL-XL.  Cell lines containing the CNV show increased protection against apoptosis resulting in 

increased population growth rates allowing variant cells to rapidly out-compete normal diploid 

cells.  Cell lines containing the 20q11.21 amplification also show altered differentiation 

patterns and increased survival of polyploidy. We also describe a method for the rapid 

detection of the 20q11.21 amplification in human ES cell cultures which is sensitive, cost-

effective and applicable for stem cell laboratories worldwide.    
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1. General Introduction 

 

1.1. Research leading to the derivation of human embryonic stem cells 

 

The human ES cell field has grown rapidly since their initial derivation in 1998.  Human ES cells 

are isolated from the inner cell mass (ICM) of pre-implantation blastocyst stage embryos[1].  

The ICM gives rise to the embryo proper, contributing to all three germ layers, ectoderm, 

mesoderm and endoderm.  Once explanted and cultured in vitro human ES cells retain the 

potential to differentiate into all somatic cell types and acquire the ability to self-renew 

indefinitely making them a valuable resource for developmental biology, cell replacement 

therapies, drug development and toxicology screening[2].  It is essential to explore the 

research leading up to the derivation of the first human ES cell lines to fully appreciate the 

potential for future applications.   

 

1.1.1. Mouse embryonal carcinoma cells 

 

In 1954, Stevens discovered increased incidences of testicular teratocarcinoma formation in 

strain 129 mice, tumours that were uncommon in many other mice strains[3].  

Teratocarcinomas are malignant tumours that are composed of randomly differentiated tissue 

of all three germ layers and are distinct from teratomas in that they also contain embryonal 

carcinoma (EC) cells.  In 1964, Kleinsmith and Pierce[4] identified EC cells as the cancer stem 

cells of teratocarcinomas by injecting a single EC cell into syngeneic 129 mice, which resultedin 

the formation of a new teratocarcinoma.  This experiment confirmed the hypothesis that the 

range of differentiated adult tissue present in teratocarcinomas arises from undifferentiated 

stem cells that have the capacity to self-renew and differentiate[5].  Since their discovery EC 
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cells were cultured in vivo by the serial transplant of ascites fluid intraperitoneally into mice, 

which resulted in a combination of solid peritoneal teratocarcinomas and ascites fluid.  The 

ascites fluid contained a number of embryoid bodies (EBs), spherical structures resembling 

early mouse embryos in that they contained a core of EC cells surrounded by a layer of 

epithelial cells[6].  In 1967, Finch and Ephrussi[7] established the first mouse EC cell lines that 

could be cultured in vitro.  EBs from ascites fluid were isolated, dissociated into single cells 

then plated onto a feeder layer of mitotically inactivated mouse fibroblasts (MEFs).  The 

resulting outgrowth was homogenous in appearance and produced teratocarcinomas when 

injected into syngeneic 129 strain mice.  In the absence of a feeder layer of MEFs the EC cells 

could not be maintained indefinitely suggesting an essential role for MEFs in EC cell culture.  It 

is worth noting that shortly after, Gardner[8] demonstrated that the injection of the ICM into 

developing blastocysts resulted in the generation of chimeric mice, highlighting a pivotal role 

of the ICM cells in embryonic development.  In 1970, Kahan and Ephrussi[9] generated clonal 

EC cell lines from teratocarcinomas derived from strain 129 mice.  The isolated EC cell lines 

could be cultured in vitro in serum-containing medium on MEFs.  The EC cells maintained an 

undifferentiated state with little spontaneous differentiation.  Following subsequent passages 

in vitro, the EC cells remained in an undifferentiated state and each of the clonal EC cell lines 

was able to generate teratocarcinomas when injected into immunodeficient mice, 

demonstrating the extensive self-renewal and pluripotent potential of EC cells following 

culture in vitro.   

 

Three years later, Karen Artzt[10] provided the first evidence of a link between EC cells and the 

early mouse embryo.  The study showed that anti-serum derived by injecting hyper-immunized 

mice with the F9 EC cell line produced an anti-serum that reacted with a number of 

undifferentiated EC cell lines but not their differentiated derivatives or other adult mouse 

tissue.  Strikingly, the F9 anti-serum also reacted with very early mouse embryos, suggesting 
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that the pluripotent potential of EC cells may be mirroring that of early embryogenesis.  The 

full potential of EC cells was realised by work carried out by Brinster[11], who injected EC cells 

into developing mouse blastocysts, resulting in the generation of chimeric mice.  This 

experiment demonstrated that EC cells and cells of the ICM were similar in their 

developmental potential.  The similarities between EC cells and cells of the ICM led to the 

realisation that EC cells could be used as a model to study early embryonic development in 

vitro.  EC cells could be isolated and cultured in vitro to provide large amounts of material for 

analysis.  This provided a valuable tool, as the study of early embryonic development in vivo 

was limited due to small sample sizes and inaccessibility of embryos following implantation 

into the uterine wall.   

 

In 1975, Martin and Evans[12] demonstrated the first in vitro differentiation of EC cells 

through the formation of EBs.  EC cells were plated onto gelatine-coated dishes, which helped 

the attachment of EC cells in the absence of a MEF feeder-layer and promoted the growth of 

tightly packed spherical EBs.  The EBs resembled those found in ascites fluid and when cultured 

appeared to undergo early embryonic development.  As the EBs grew larger the outer cells 

differentiated into a layer of endoderm enveloping the EC cells.  This was reminiscent of the 

blastocyst stage in mouse embryonic development, where the ICM cells are separated from 

the blastocoel cavity by a layer of endodermal cells.  Following these results, Strickland and 

Mahdavl[13] successfully induced the differentiation of EC cells into endodermal cells.  The 

serine protease plasminogen activator was found to be secreted by endodermal cells in early 

embryogenesis and endoderm cells derived from EC cells.  In normal cultures of EC cells, 

plasminogen activator is present only at low levels, which increased slightly when cultures 

became over-confluent or in cultures with more differentiated cells.  Strickland and Mahdavl 

induced differentiation of EC cells towards an endodermal lineage using low concentrations of 

retinoic acid, which was added to culture medium that would have otherwise maintained EC 



- 4 - 
 

cells in an undifferentiated state.  EC cells rapidly differentiated in the presence of retinoic 

acid, increasing the production and secretion of plasminogen activator reminiscent of 

endodermal differentiation.  In the same year Solter and Knowles[14] isolated a monoclonal 

antibody from the F9 anti-serum, this antibody named ‘stage-specific embryonic antigen 1’ 

(SSEA1) reacted with a range of mouse EC cell lines but not their differentiated derivatives or 

other differentiated adult tissue.  The SSEA1 antibody also reacted with the 8-cell stage mouse 

embryo and cells within the inner cell mass, again confirming the similarities between EC cells 

and the early mouse embryo. 

 

1.1.2. Mouse embryonic stem cells 

 

Despite earlier attempts to isolate pluripotent cells from mouse embryos, in 1981, Evans and 

Kaufman [15] explanted developing mouse blastocysts and allowed them to attach to tissue-

culture treated Petri dishes.  The blastocysts were grown for four days resulting in the out-

growth and differentiation of the trophoblast into giant trophectoderm cells.  The ICM formed 

structures similar to egg-cylinders which were picked and dissociated into single cells.  The 

cells were then grown on MEFs in serum-containing medium.  Initial experiments showed that 

the isolated ICM cells were morphologically similar to EC cells and displayed multipotent 

differentiation following EB formation.  As the blastocysts used in the experiments were 

isolated from strain 129 mice in which teratocarcinomas are common, Evans and Kaufman 

distinguished through karyotype analysis that the pluripotent cells isolated were of embryonic 

origin and not contamination of EC cells.  The derived cell lines contained both male (40XY) 

and female (40XX) normal karyotypes, which set them apart from EC cells as the EC cells grown 

within the laboratory were karyotypically abnormal and none of the lines contained a Y 

chromosome.  Later that year Gail Martin [16] coined the term ‘embryonic stem’ (ES) cell, 

showing that isolated ICM cells were similar in morphology to EC cells, expressed the 
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embryonic antigen SSEA1 and were able to form teratocarcinomas when injected into 

syngeneic strain 129 mice.  Following this discovery, Bradley and co-workers [17] generated 

chimeric mice from male mouse ES cell lines.  The injection of ES cells into developing mouse 

embryos yielded high proportions of chimeric offspring (>50%).  The group also reported that 

the injected cells chimerized not only somatic cells but also the gametes of male mice, 

demonstrating the first germ-line chimeras.  This discovery revolutionised experimental 

mammalian genetics.  ES cells grown in vitro could be genetically manipulated using insertional 

mutagenesis using retroviral vectors [18] or gene-specific targeting using homologous 

recombination [19, 20].  The variant ES cells could then be reintroduced into the ICM to 

generate germ-line chimeras therefore providing genetically distinct mice to study 

embryogenesis and development.  Since their derivation mouse ES cells have been well 

characterised and remain to this day one of the most powerful tools to study mammalian 

genetics. 

 

The similarities between mouse EC and ES cells led to the notion that EC cells were the 

malignant equivalent of ES cells.  In the embryo, it is essential that ES cell proliferation and 

differentiation is carefully regulated in order for embryogenesis to occur without error.  

Without this careful regulation in the adult, EC cells resembling cells of the ICM mimic 

embryogenesis in adult tissue to disastrous effects.   

 

1.1.3. Human embryonal carcinoma cells 

 

Teratocarcinomas are also commonly found in humans and are one of the most common types 

of tumour found in young adult males [21].  Despite continuing advances in cell culture 

systems and rapid progress in the mouse, human EC cell lines were not established in vitro 

until 1975.  Fogh and Trempe[22] reported the derivation of a number of human tumour cell 
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lines from various sources including but not limited to kidney, bladder and testes.  TERA-1 and 

TERA-2 were the first EC cell lines established from human testicular cancers, although it was 

not clear at the time that these cells were indeed EC cells.  In 1978, Jewett[23] injected TERA-1 

and TERA-2 into nude mice, which resulted in the generation of teratocarcinomas showing that 

the tumorigenic properties of human EC cells paralleled that of mouse EC cells.  Jewett noted 

that the human EC cell lines were highly aneuploid (i.e. had an abnormal number of 

chromosomes) and that the teratocarcinomas generated were poorly differentiated.  

Following the success of Fogh and Trempe, a number of cell lines were established from 

human testicular teratocarcinomas.  Andrews[24] and colleagues conducted a comparative 

study of eight testicular tumour cell lines.  The cellular morphology of the different EC cell lines 

was variable, with five of the cell lines containing varying proportions of small round cells 

typical of mouse EC cells.  Of these five cell lines, two produced tumours resembling 

embryonal carcinoma when injected into immunodeficient mice.  Of the three cell lines that 

did not contain cells with EC-like morphology, only one generated a tumour when injected into 

an immunodeficient mouse.  The tumour did not display the hallmark characteristics of 

embryonal carcinoma suggesting that the cell line may be derived from another malignant cell 

type within the testicular tumour.  The study noted that human EC cells unlike their mouse 

counter-parts differentiated into trophoblast cells suggesting that human EC cells may 

represent a pre-blastocyst stage cell type in development.  Human EC cells also were negative 

for SSEA1, a marker of mouse EC and ICM cells.  Instead SSEA1 appeared to mark the 

differentiated derivatives of human EC cells.  In 1982, Andrews and co-workers[25] found that 

a number of human EC cell lines expressed the cell surface antigen SSEA3, a marker found to 

be present on the cleavage stage mouse embryos but not present at the blastocyst stage or on 

mouse EC cell lines.  The study concluded that undifferentiated human EC cells existed in a 

SSEA3+/SSEA1- state.  This discovery helped to identify pluripotent human EC cells from their 

differentiated derivatives.  In 1984, Andrews[26, 27] showed extensive differentiation of a 
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clonal EC cell line derived from TERA-2 (NTERA2) following culture with retinoic acid.  Evidence 

of in vitro differentiation of human EC cells prior to this point was limited, despite the TERA-2 

cell line displaying well differentiated tumours when injected into immunodeficient mice[28].  

This provided a tool to study the differentiation of human pluripotent cells in vitro.   

 

In subsequent years, human EC cells were characterised further, revealing differences in 

surface between EC cell lines derived from mouse and human teratocarcinomas.  Human EC 

cells expressed a range of distinguishing cell surface markers including the globoseries 

glycogen antigens SSEA3 and SSEA4, the high molecular mass proteoglycan antigens, TRA-1-60 

and TRA-1-81 and protein antigens Thy1 and MHC class 1 [21].  These markers were present on 

undifferentiated human EC cells but not their differentiated derivatives.  These surface 

antigens were not expressed by undifferentiated mouse EC/ES cells, which expressed the 

surface antigen SSEA1.   

 

1.2. The derivation of human embryonic stem cells 

 

Following the derivation of mouse ES cells, many groups set out to derive ES cell lines from 

different species including rabbit[29], pig[30] and sheep[31].  Although the derivation of 

pluripotent cells from a number of different species constituted considerable progress in the 

stem cell field, the results were somewhat controversial and translating the findings to human 

was difficult due to significant differences in embryonic development.  It was not until 1995 

that Thomson and co-workers[32] derived ES cells from the rhesus monkey providing a more 

relevant tool for studying primate development being more closely related to humans than 

other mammals.  The cells derived by Thomson showed remarkable resemblance to human EC 

cells in terms of morphology, cell surface marker staining and differentiation in vivo/vitro.  It 

was therefore unsurprising that when Thomson derived the first human ES cell lines in 1998[1], 
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they also closely resembled human EC cells and were distinctly different to mouse ES/EC cells.  

The morphology of human ES cells was similar to rhesus monkey ES cells in that they formed 

flat colonies with well-defined edges, whereas mouse ES cells tended to form tightly-packed, 

rounded colonies with irregular borders.  Human ES cells also expressed the same 

characteristic cell surface antigens as undifferentiated human EC cells including SSEA3, SSEA4, 

TRA-1-60 and TRA-1-81.  Human ES cells, like human  

EC cells did not stain for SSEA1, a marker of undifferentiated mouse EC/ES cells but showed 

increased expression upon differentiation consistent with human EC cell data[25]. 

 

Thomson and colleagues[1] also noted that human ES cells could be grown on MEFs in the 

absence of added leukaemia inhibitory factor (LIF) to culture medium to maintain an 

undifferentiated state.  This highlighted possible differences between the signalling pathways 

governing mouse and human ES cells, as mouse ES cells could be maintained in serum free 

conditions with added LIF whereas human ES cells did not seem to be dependent on LIF.  In the 

absence of feeders, human ES cells underwent rapid differentiation even if the medium was 

supplemented with LIF.  This highlighted that the maintenance of mouse and human ES cells 

was governed by different pathways as LIF was essential to maintain mouse ES cells in vitro[33] 

and negated the need for co-culture with MEFs when grown on gelatin[34].  Although human 

ES cells displayed notable differences from their mouse equivalents, they appeared to share 

similar developmental potential.  When injected into immunodeficient mice, human ES cells 

formed tumours consisting of all three primary germ layers, evidence of neural epithelium 

(ectoderm), bone and cartilage (mesoderm) and gut epithelium (endoderm) were present.  

Human ES cells also differentiated spontaneously in vitro either through removal of the MEF 

feeder-layer or growing cells to confluence.  In the latter case, human chorionic gonadotropin 

was detected in culture medium indicating the presence of trophoblast differentiation 

consistent with the notion that human ES cells represent an earlier developmental stage than 
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mouse ES cells in which trophoblast differentiation is rare.  However, more recently there has 

been wide debate as to whether human ES cells are equivalent to later stages of 

development[35] (see Section 1.3). 

 

1.3. Comparing human and mouse embryonic stem cells 

 

As there were marked differences between human and mouse EC cells, there were also 

differences between human and mouse ES cells.  During the early years of ES cell culture both 

mouse and human ES cells were derived and grown in the presence of a feeder layer of MEFs, 

which helped to maintain pluripotency, increase plating efficiencies and promote growth of ES 

cells.  The cells were cultured in serum-containing medium, with mouse ES cells requiring the 

addition of LIF and bone morphogenic protein (BMP) to maintain pluripotency and human ES 

cells relying on the addition of Activin A and basic fibroblast growth factor (bFGF).  The 

dependence on different growth factors underpins different extrinsic signaling pathways to 

maintain pluripotency in human and mouse ES cells (see Section 1.5). The removal of LIF from 

mouse ES cell medium induces widespread differentiation so too does the removal of 

Activin/Nodal signaling in human ES cells.  Mouse ES cells can be passaged as single cells 

whereas human ES cells show mass cell death and differentiation upon dissociation to single 

cells.  Human and mouse ES cells also display different morphologies in culture, where human 

ES cells form flat, round colonies with well-defined edges, mouse ES cells tend to form tightly 

packed, rounded colonies.  The differences observed between both the morphology and 

signaling pathways governing pluripotency have led to human ES cells being more closely 

compared to mouse epiblast stem cells (EpiSCs).  Brons and colleagues[35] demonstrated in 

2007 that isolating cells from the epiblast layer of post-implantation rodent embryos more 

closely resembled human ES cells.  Mouse EpiSCs displayed human ES cell-like colony 

morphology and could only be derived and maintained in medium containing Activin A and 
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FGF2.  Removal of activin/nodal signaling resulted in differentiation of EpiSCs characteristic of 

human ES cells.  The EpiSCs could also be differentiated in vitro into cells comprising the three 

germ layers via the aggregation of EBs. Also injection of EpiSCs into the testes capsule of 

immunodeficient mice led to the generation of teratomas consisting of a wide variety of 

tissues.  Interestingly the injection of EpiSCs into blastocyst resulted in poor chimera 

generation suggesting that EpiSCs lack the totipotent capacity of mouse ES cells derived from 

the ICM.  Whether human ES cells are able to form chimeras is unknown and will remain so for 

ethical and moral reasons. 

 

1.4. Induced pluripotent stem cells 

 

The derivation of induced pluripotent stem cells (iPS) built upon previous work dating back to 

the 1950s.  Somatic cell nuclear transfer (SCNT) was first established in the 1950s by King and 

Briggs[36, 37] demonstrating that the transfer of nuclei from somatic cells into enucleated frog 

oocytes resulted in the generation of cloned offspring.  This work alluded to two important 

points, firstly that the differentiation of pluripotent cells was a result of reversible epigenetic 

changes that occur within the cell rather than irreversible genetic changes.  The second 

important point was that the genetic material in somatic cells still retained the potential of 

totipotency.  Subsequent cell fusion hybrid experiments by Miller and Ruddle[38, 39] showed 

that the fusion of EC cells with somatic cells resulted in cells with EC properties showing that 

the pluripotent state prevailed over the somatic cell lineage. 

 

Another important milestone was the identification of lineage-specific transcription factors. 

Transcription factors help to regulate the expression of cell type-specific genes as well as 

suppressing genes from other lineages.  In 1987, Davis and colleagues[40] showed that the 

over-expression of the transcription factor myoD in fibroblasts induced the formation of 
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myofibers showing that the expression transcription factors alone could influence cell 

behaviour.  This work was followed by Graf and co-workers[41], who showed that cells could 

be transdifferentiated from B and T cells into functional macrophages via the over-expression 

of C/EBPα, a myeloid transcription factor.  More recently, insulin producing pancreatic β cells 

have been generated from pancreatic exocrine cells by over-expressing MafA, Pdx1 and 

Ngn3[42].  Transdifferentiation is not restricted to cells within the same lineage as it has been 

shown that fibroblasts (mesoderm origin) have been successfully converted to functional 

neurons (ectoderm origin) using the transcription factors Ascl1, Brn2 and Myt1l[43]. 

 

Previous work led to the realisation that pluripotency could be induced in somatic cells by 

introducing pluripotency associated transcription factors.  In 2006 Yamanaka and 

Takahashi[44] derived the first iPS cell lines from mouse embryonic and adult fibroblasts.  

Using a method later termed ‘reprogramming’ they introduced key genes that were deemed to 

have pivotal roles in regulating the pluripotent state using retroviral vectors.  They found that 

four genes (Oct3/4, Sox2, c-Myc and Klf4) were sufficient to revert fibroblasts back to an ES-

like state.  The iPS cell lines generated had ES cell like morphology, growth characteristics, 

expressed ES cell markers and produced teratomas with cells pertaining the three germ 

layers[44].  Since 2006, the iPS cell field has developed rapidly with the generation of the first 

human iPS cells in 2007 using the same combination of transcription factors[45] or substituting 

C-MYC and KLF4 with NANOG and LIN28[46].  This breakthrough had huge implications in 

regenerative medicine, the ability to generate patient-specific ES cell lines from somatic cells 

could potentially overcome limitations in donor availability and immunologic barriers.   

 

More recently the methods to derive iPS cells have moved away from viral vectors due to 

obvious clinical concerns over the random integration into the genome.  It has also been 

shown that the transfected transcription factors are not silenced once reprogrammed again 
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highlighting concerns for their use in therapies.  The transfection of fibroblasts using modified 

mRNA has been successfully used to generate iPS cell lines free from integrating viral vectors 

and offers a safer and more controlled alternative to viral integration [47]. 

 

1.5. The extrinsic signaling pathways regulating embryonic stem cells 

 

LIF signaling is essential in the maintenance of self-renewal and pluripotency in mouse ES cells.  

Supplementing serum-containing medium with LIF negates the need for mouse ES cell co-

culture with MEFs, supporting feeder-free growth [34].  Mouse ES cells cannot be derived from 

LIF-null ICM cells [48] highlighting the requirement for LIF in mouse ES cell derivation.  The 

culture of mouse ES cells in medium without supplemented LIF results in the down-regulation 

of pluripotency related genes and cultures rapidly differentiate.  Interestingly LIF is not 

required in early mouse development in vivo as LIF-null mice develop normally into adulthood.  

However, female mice despite being fertile are unable to undergo blastocyst implantation into 

the uterus [49] a characteristic that can be rescued by transplanting the blastocyst into wild-

type female mice [50].  LIF is a member of the interleukin 6 (IL6) family of cytokines.  The LIF 

signaling pathway is activated by the binding of LIF to a heterodimeric receptor consisting of 

the LIF receptor (LIFRβ) and glycoprotein 130 (gp130).  The activation of gp130 activates a 

number of downstream pathways which regulate self-renewal, survival and differentiation of 

ES cells.  The binding of LIF to its receptor results in the activation of receptor-associated Janus 

kinases (JAKs) which mediate the phosphorylation of the tyrosine 705 residue on STAT3 (signal 

transducers and activators of transcription 3).  The active STAT3 molecules then form 

homodimers and translocate to the nucleus where they bind specific DNA sequences to 

regulate expression of target genes.  The direct targets of STAT3 include GA-binding protein 

(GABP), a transcription factor that positively regulates the expression of Oct3/4.  Knock-down 

of GABP in mouse ES cells results in Oct3/4 down-regulation and differentiation [51].  The 



- 13 - 
 

reprogramming factor krüppel-like factor 4 (KLF4) has also been shown to be regulated by 

STAT3, KLF4 is a co-factor of Oct3/4 and Sox2 [52].  Inhibition of STAT3 activation through 

modification of tyrosine 705 results in the loss of self-renewal and leads to the differentiation 

of ES cells [53].  The binding of LIF also mediates the mitogen-activated protein kinase (MAPK) 

pathway.  The SHP-2 tyrosine phosphatase molecule binds to the active gp130 and forms a 

complex with Gab1 (GRB2-associated binding protein 1) which leads to the activation of 

ERK1/2 [54].  Perturbation of the MAPK signaling pathway through chemical inhibition of MEK, 

an upstream component in the activation of ERK results in enhanced growth of mouse ES cells.  

ERK signaling is therefore an important regulator in the balance between self-renewal and 

differentiation in mouse ES cells.  Finally, LIF also activates the PI3K (phosphatidylinositol-3 

phosphate kinase) pathway which regulates a number of cellular processes including cell cycle, 

proliferation and apoptosis [55].  In mouse ES cells, chemical inhibition of the PI3K pathway in 

the presence of LIF results in differentiation and loss of self-renewal.  This response to the loss 

of PI3K signaling can be explained by increased ERK activity in the presence of LIF resulting in 

the differentiation of ES cells [56]. 

 

The pathways regulating self-renewal and pluripotency in human ES cells differ from those 

required for the maintenance of mouse ES cells.  Human ES cells are dependent on 

transforming growth factor-β (TGF-β) signaling to maintain self-renewal and pluripotency.  The 

TGF-β pathway can be divided into the TGF-β/activin/Nodal and the BMP/GDF (growth 

differentiation factor) pathways based on the structural similarity of ligands and the different 

responses that they elicit [57].  It has been shown that the two pathways regulate different 

aspects of stem cell culture.  The TGF-β/activin/Nodal pathway is important in the regulation 

of self-renewal and pluripotency whereas the activation of the BMP/GDF pathway leads to 

differentiation.  TGF-β signalling is activated through binding of TGF-β ligands to type I and II 

receptor serine/threonine kinases.  The activation of type I receptors leads to the binding and 
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subsequent phosphorylation of receptor-regulated SMAD (R-SMAD) proteins 1, 2, 3, 5 and 8.  

The R-SMADs bind the co-mediator SMAD4 and are then transported to the nucleus where 

they regulate transcription of specific target genes.  The TGF-β/activin/Nodal pathway signals 

through the binding of ligands to the type I receptors ALK-4, -5 and -7 and subsequent 

activation of SMAD2/3 [58].  Inhibition of TGF-β/activin/Nodal signalling leads to the loss of 

POU5F1 (Oct3/4) and NANOG expression in human ES cells, highlighting the importance in the 

maintenance of pluripotency and self-renewal [59].  The BMP/GDF pathway signals through 

the type I receptors ALK-1, -2, -3 and -6 and subsequent activation of SMAD1, 5 and 8.  The 

levels of SMAD1/5 are low in undifferentiated human ES cells but upon differentiation the 

levels increase [59].  Inhibition of BMP signalling (and therefore SMAD1/5) through the BMP-

inhibitor noggin can support self-renewal of human ES cells in MEF conditioned media in 

feeder-free conditions [60]. 

 

1.6. Culture-adaptation of human embryonic stem cells 

 

It has been widely reported that upon prolonged culture in vitro human ES cells often become 

karyotypically abnormal, a common characteristic of human EC cells.  These changes occur 

sporadically throughout culture but tend to become more frequent at later passage.  The 

changes also appear to be non-random, frequently involving the duplication of chromosomes 

1, 12, 17 and 20[61-66].  Although the gain of genomic material is the most common, changes 

can involve gains, inversions and deletions of whole or partial chromosomes.  At present the 

mechanism(s) behind karyotypic change remain relatively unknown and it is therefore difficult 

to alter culture conditions to try and alleviate genetic instability.  It has been suggested that 

errors in DNA replication and abnormal segregation of sister chromatids at mitosis may play a 

role in genetic instability[67].  It has been shown that human ES cells, unlike somatic cells, do 

not activate key S-phase checkpoint pathways in response to DNA replication stress.  Human 
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ES cells cultured in the presence of thymidine, an inhibitor that slows DNA replication by 

starving cells of dCTP, results in increased apoptosis.  This response to DNA replication stress 

may be a protection mechanism to maintain the genomic integrity of the population[68].  As 

mentioned above, human EC cell lines are often aneuploid, which commonly includes the 

amplification of 12p and 17q.  These two amplifications have also been observed in a number 

of human cancers including breast and ovarian cancer[69, 70].  The similarity between 

karyotypic abnormalities between human ES cells, EC cells and primary tumours suggests a 

common intrinsic mechanism that results in a tumourigenic phenotype rather than a response 

to culture conditions.  Karyotypic changes are also observed in mouse ES cells, notably 

duplications of chromosomes 8 and 11 are observed during culture.  Interestingly the mouse 

chromosome 11 shows strong homology to the human chromosome 17 suggesting mouse ES 

cells are equally vulnerable to culture-adaptation [71]. 

 

The appearance of genetic change relies on two events, mutation and selection: firstly the cell 

must acquire a genetic change and as a result the change must provide the cell with a selective 

advantage over ‘normal’ cells.  When looked at in their simplest form, human ES cells can 

follow one of three paths; self-renewal to produce two undifferentiated daughter cells, 

differentiate to produce specialised adult cells or undergo cell death.  When looked at in this 

basic way it is easy to see how selection of particular variants occurs in a population of human 

ES cells (Figure 1).  If a cell acquires a genetic change which increases its tendency to 

differentiate, makes it more susceptible to death or renders a cell unable to self-renew the 

cells would be quickly lost from a stem cell population throughout subsequent passages.  

However, a genetic change that inhibits differentiation to one or more lineages, increases cell 

survival or increases a cells capacity to self-renew would provide a selective advantage over 

diploid cells.  This may be the reason why the genetic changes observed in human ES cells are 

seemingly non-random with genes on the most commonly gained chromosome contributing to 
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a selective advantage in one or more ways.  This may also be the reason why gains of other 

chromosomes such as chromosome 4 are not observed in human ES cells, making such gains 

deleterious to cells.  The acquisition of karyotypic abnormalities is often coupled with 

decreased population doubling times and increased cloning efficiencies in human ES cells, 

suggesting that abnormal cells are selected throughout culture [72].  Olariu et al modelled this 

selective advantage in human ES cell culture by mixing 99% karyotypically normal cells with 1% 

abnormal cells exhibiting different cytogenetic changes.  The study showed that the abnormal 

cells out-compete the diploid cells, taking over the culture between 20-40 passages[73]. 

 

The derivation and subsequent passage of human ES cells places them under considerable 

selection pressures.  It is not known if the subsequent out-growth of ES cells from the ICM 

contains all ICM cells or just those cells that are capable of growth in vitro. The freeze/thawing 

of human ES cells places the cells under considerable stress, many of the cells die upon 

thawing, which may help variants with increased cell survival to out-compete normal cells.  

Also, culture conditions for the maintenance of human ES cells are not optimal; it is not 

uncommon for human ES cell cultures to spontaneously differentiate or undergo mass cell 

death following passage.  Barbaric and co-workers[74] have described certain ‘bottle-necks’ in 

human ES cell culture that allow variant cells with increased growth rates to over-take diploid 

cultures.  For example, karyotypically normal human ES cells undergo mass cell death following 

re-plating showing reduced motility to culture-adapted cells.  This means that during 

subsequent passaging of human ES cells will constantly select for variant cells with increased 

growth capacities.  It has also been shown that populations of human ES cells appear to be 

heterogeneous in terms of gene expression levels.  Single human ES cells sorted for SSEA3 

show huge heterogeneity not only for lineage specific markers but also for the pluripotency 

markers OCT4 and NANOG[75].  This heterogeneity has led to the theory that within a 

population of stem cells, there may exist subsets of cells that are lineage-primed and upon 
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differentiation will favour one lineage over others.  The extent to which these subsets can 

fluctuate between different states has yet to be determined.  Developing new techniques for 

stem cell culture may help to alleviate the bottle-necks allowing culture-adapted cells to over-

take human ES cell cultures. 

 

Karyotypic change has also been implicated in restricting differentiation patterns of 

pluripotent cells. Many human EC cells appear to have restricted differentiation towards 

certain lineages with some EC cell lines becoming nullipotent throughout prolonged passage 

[25].  Culture-adapted human ES cells also appear to have altered differentiation patterns 

when compared to their diploid counterparts.  Fazeli and co-workers[76] demonstrated this 

through spontaneous differentiation via the formation of EBs.  The differentiation of two 

unrelated, diploid human ES cell lines (H7 and Shef3) showed similar differentiation patterns as 

determined by qRT-PCR.  The diploid cell lines expressed lineage-specific genes from all three 

germ layers and down-regulated the pluripotency marker POU5F1.  The same experiment was 

carried out on two culture-adapted cell lines; a sub-clone of the H7 cell line (H7.s6: 

amplification of 17q) and a late-passage H14 (gain of whole chromosome 17).  The two 

karyotypically abnormal cell lines exhibited reduced differentiation capacity particularly with 

respect to endodermal markers.  Interestingly principal component analysis of qRT-PCR data 

showed that although the diploid H7 and Shef3 cell lines were isolated in different labs by 

different techniques and that they were also of opposite genders, the expression patterns 

clustered closely.  This was not the case for the H7 cell lines, although H7.s6 is a sub-line of the 

H7 cell line and share the same genetic background, isolation technique and maintenance they 

did not cluster together in their differentiation pattern.  Instead the two culture-adapted cell 

lines clustered closer together potentially highlighting that karyotypic changes can effect stem 

cell growth through reduced differentiation capacity[76]. 
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The International Stem Cell Initiative (ISCI) was established to characterise and compare 

different human ES and iPS cell lines on a global scale to better understand the potential for 

their eventual use in medicine.  The second phase (ISCI2)[66] focussed on characterising the 

common genetic changes observed in human pluripotent stem cells.  The study was based on 

125 human ES cell lines and 11 human iPS cell lines from 38 laboratories worldwide.  This 

sample range included human ES cell lines from a diverse ethnic and genetic background.  The 

cell lines were analysed at two passage levels (early and late passage) to determine whether 

the cell line remained normal, picked up a change throughout culture or remained abnormal at 

late passage.  Of the 125 human ES cell lines, 83 (66%) maintained a normal karyotype showing 

that following derivation, human ES cells are commonly diploid and maintain a normal 

karyotype throughout culture. 

 

The remaining 42 cell lines were found to harbour at least one karyotypic change in early or 

late passage.  The study showed that cells at late passage were more likely to acquire 

karyotypic changes than those at early passage implying that changes occur following culture 

and not a result of cells being abnormal upon derivation.  The changes observed were 

consistent with those reported in the literature, notably gains of chromosomes 1, 12, 17 and 

20.  Unfortunately, a whole chromosome gain offers low resolution when trying to identify the 

gene(s) responsible for providing a selective advantage.  The genomic DNA of all karyotypically 

normal cell lines was analysed using SNP-arrays to try and detect any small structural variants 

that routine karyotyping could not detect.  This analysis highlighted a small copy number 

variant (CNV) on chromosome 20, which was common in 22 karyotypically normal cell lines.  

No CNVs were detected on any of the other commonly amplified chromosomes.  Of the 22 cell 

lines identified with the 20q11.21 amplification in 17 instances the CNV was present only in 

the late passage cell line, the remaining 5 cell lines showed amplification both in the early and 
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late passages.  In no instance was the CNV found in only the early passage cell line, this 

demonstrated that the 20q11.21 gain manifests during culture and persists throughout 

passage, as it is not lost once duplicated. 

 

The 20q11.21 amplification was present in different cell lines at varying lengths (0.6Mb to 

2.5Mb).  However, all cell lines contained a minimal amplicon spanning roughly 0.6Mb.  The 

minimal amplicon contains 13 coding genes, of which only three are expressed in 

undifferentiated human ES cells, HM13, ID1 and BCL2L1.  The presence of a minimal amplicon 

suggests that one of the three candidate genes, once over-expressed confers a selective 

advantage over other diploid cells.  

 

Here we describe the effects of 20q11.21 amplification on human ES cell culture, investigate 

the genes and mechanisms responsible for its high prevalence in human ES cell lines and its 

implications in future applications of human ES cells. 
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2. Methods 

 

2.1. Matrigel coating 

 

Tissue-culture treated vessels were coated with Matrigel (BD Biosciences: 354234) diluted 1:40 

in DMEM/F12 (Sigma) for 1 hour at room temperature.  Flasks/plates were then stored at 4°C 

until used. 

 

2.2. Human embryonic stem cell culture 

 

Human ES cells were grown on matrigel-coated T12.5 tissue-culture treated flasks (Falcon) 

supplemented with mTeSR (Stem Cell Technologies) at 37°C under a humidified atmosphere of 

5% CO₂.  Cultures were passaged every 4 to 6 days at a ratio of 1:3 or 1:4. Colonies were picked 

under the microscope (4X objective) using a fine tip pastette (Alpha Laboratories) following a 5 

minute digestion at 37°C with collagenase type IV (Invitrogen). The cell suspension was then 

added to a new matrigel-coated flask containing mTeSR. 

 

2.3. Embryonal carcinoma cell culture 

 

EC cells were grown on T25 tissue-culture treated flasks in DMEM/F12 media supplemented 

with 10% fetal bovine serum (FBS) (Hyclone) at 37°C under a humidified atmosphere of 5% 

CO₂.  Cultures were passaged every 4-6 days at a ratio of 1:3-1:5 following a 5 minute digestion 

with 0.25% trypsin-EDTA at 37°C. 
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2.4. Freezing of human embryonic stem cells 

 

Human ES cells were digested with collagenase (type IV) for 5 minutes at 37°C, 5% CO2.  The 

collagenase was aspirated and fresh mTeSR was added to the cells.  The cells were then 

detached from the surface of the tissue culture vessel using a fine tip pastette, taking care not 

to break colonies into small chunks.  The suspension was then centrifuged for 3 minutes at 

1000rpm and supernatant aspirated.  The cell pellet was then resuspended gently in freeze 

medium containing 60% hESC medium, 30% KOSR and 10% DMSO.  The suspension was then 

added to 1.5ml cryovials and placed into a Mr Frosty freezing vessel at -80°C for 24 hours.  The 

vials were then transferred to liquid nitrogen for storage. 

 

2.5. Thawing of human embryonic stem cells 

 

2ml of fresh mTeSR was added to matrigel-coated T12.5 tissue culture-treated flasks and 

placed at 37°C, 5% CO2 for 30 minutes.  10mls of hESC medium was added to a 15ml falcon 

tube and placed into a 37°C water bath for 10 minutes.  Cryovials were removed from liquid 

nitrogen and partly submerged into a 37°C water bath until the cell pellet was partially 

defrosted.  The pellet was then transferred to the 15ml falcon tube containing hESC medium 

using a 5ml strippette.  The suspension was then centrifuged for 3 minutes at 1000rpm.  The 

supernatant was aspirated and the cell pellet was tapped gently to loosen, 1ml of mTeSR from 

the pre-warmed flask was then used to resuspend the cells pellet, which was then added to 

the T12.5 flask.  The cells were then placed back into the incubator at 37°C, 5% CO2 and left for 

24 hours. 
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2.6. Single cell dissociation 

 

Cells were washed with sterile PBS and incubated at 37°C for 5-7 minutes in either 0.25% 

trypsin-EDTA (Sigma), TrypLE (GIBCO) or Accutase (Stem Cell Technologies), cells were 

dissociated by tapping flask sharply with palm of hand.  Dissociation agent was then 

inactivated by mixing 1:2 with appropriate serum containing media.  Cells were pelleted by 

centrifugation at 1200rpm for 3 minutes using a Heraeus Megafuge 1.0R centrifuge and 

supernatant aspirated to remove dissociation agent.  Cells were then resuspended in 

appropriate media. 

 

2.7. Cell counting 

 

The live cell number counts of single cell human ES cells were determined by mixing 15uL of 

cell suspension at a 1:1 ratio with 0.4% Trypan Blue (Sigma).  10uL of the mix was added to an 

improved neubauer haemocytometer (Hawksley) and the 4 corner grids counted.  The 

concentration of the cell suspension and total cell number were determined using the 

following calculations. 

 

Concentration (Cells/mL) = (Number of Cells ÷ Number of Grids Counted) × 20,000* 

 

Total Cell Number = Concentration (Cells/mL) × Volume of Suspension (mL) 

 

*Cells were multiplied by 20,000 to account for a 2 times dilution by mixing cells 1:1 with 

Trypan Blue. 
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2.8. RNA extraction 

 

2.8.1. Harvesting cells 

 

2.8.1.1. Extraction of RNA from cells in monolayer 

 

Cells were washed with sterile PBS and 600µL of Trizol (Life Technologies) was added directly 

into culture vessel. The Trizol was evenly dispersed by rocking flask from side to side for 

approximately 2 minutes until the sample became viscous.  The suspension was then scraped 

into a corner using a sterile 25cm cell scraper (Fisher Scientific) and placed into 15ml falcon 

tube (STARLAB).  The sample was vortexed to achieve a homogenous suspension. RNA samples 

were stored at -20°C if not processed immediately (frozen samples were thawed on ice before 

proceeding). 

 

2.8.1.2. Extraction of RNA from cells in suspension 

 

Cells in suspension were pelleted by centrifugation at 1000rpm for 3 minutes in a 15mL falcon 

tube and supernatant aspirated.  The cells were resuspended thoroughly by flicking the tube 

and 600uL of Trizol was added.  Samples were the vortexed to mix and stored as above. 

 

2.8.2. Isolating total RNA 

 

200µL of chloroform (Sigma) was added to the Trizol suspension and mixed thoroughly by 

vortexing until milky pink. Mixture was then transferred to a 1.5mL Eppendorf tube and left to 

stand for 10 minutes at room temperature. The sample was centrifuged at 14,000rpm for 30 

minutes at 4°C to achieve phase separation. The upper aqueous layer was extracted and 
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placed into a sterile 1.5mL Eppendorf tube and an equal volume plus 50uL of 100% ethanol 

was added and mixed by vortexing. 

 

The sample was then processed using the RNA Clean-Up and Concentration Kit (NORGEN) to 

isolate Total RNA. 

 

2.9. RNA to cDNA reverse transcription 

 

Total RNA was reverse transcribed to make cDNA using the High Capacity RNA-to-cDNA Kit 

(Life Technologies). 

 

2.10. Quantitative-PCR on cDNA samples 

 

cDNA samples were quantified using a UV/Vis spectrophotometer (Geneflow: 

Nanophotometer P330) and diluted to 5ng/µL using ddH₂O.  A master mix was made on ice 

consisting of 5µL Taqman Fast Universal Master Mix (Life Technologies), 0.2µL Primer Mix 

(containing 5µM sense-antisense oligos), 0.1µL Roche Probe (Roche UPL) and 2.7µL ddH₂O per 

reaction (for oligonucleotide sequences see Table 1).  8µL master mix and 2µL of gDNA 

(5ng/µL) was added to each well of either a Fast 96- or 384-well PCR plate (Life Technologies) 

and spun briefly.  The plate was then analysed using a 7900HT Fast Real-Time PCR System 

(Applied Biosystems) using the following steps, HOLD at 50°C for 5 minutes, HOLD at 95°C for 

10 minutes then 45 cycles of 95°C for 15 seconds and 60°C for 1 minute.  Data was then 

analysed using the ΔΔCt method[77]. 
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2.11. Immunodetection of protein 

 

2.11.1. Harvesting protein 

 

Cells were washed once with PBS and aspirated thoroughly to minimise dilution of buffer, the 

flask was then placed on ice.  300µL of ice cold RIPA buffer (50mM Tris-Cl pH7.7, 150mM NaCl, 

1% NP40, 0.25% sodium deoxycholate, 0.1% SDS, 1x final concentration complete protease 

inhibitor) was added to the cells.  The cells were then scraped from the surface of the flask 

using a 25cm cell scraper and placed into a labelled 1.5mL eppendorf tube. The sample was 

incubated on ice for 20 minutes before sonification (10% Amplitude, 2 seconds, 3 repeats).  

The sample was then spun at 14,000rpm for 20 miutes at 4°C and supernatant placed into a 

clean 1.5mL Eppendorf tube on ice. 

 

2.11.2. Sample fractionation 

 

10µg of protein sample was added to a 1.5mL eppendorf tube on ice, the volume was adjusted 

to 10µL using ddH₂O and 2.5uL of Loading Buffer was added. The sample was then incubated 

at 100°C for 10 minutes and then run on a 4–15% Mini-PROTEAN TGX Gel (BIO-RAD) alongside 

a BenchMark Pre-Stained Protein Ladder (Invitrogen).  The gel was run for 15 minutes at 85V 

and then increased to 110V for 1 hour. 

 

2.11.3. Visualising protein 

 

The gel was then electroblotted onto 0.2µM polyvinylidene difluoride membrane using a 

Trans-blot Turbo Transfer System.  The membrane was placed in 5% milk in TBST (50mM Tris, 

150mM NaCl, 0.05% Tween 20, pH 7.6) for one hour. The membrane was then placed into a 
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50mL falcon tube containing 5% Milk in TBST and primary antibody. The tube was incubated 

overnight at 4°C on a tube roller (Bibby Scientific).  The membrane was washed 3 times in TBST 

for 10 minutes at room temperature on a rotating plate.  The membrane was then placed into 

a 50mL falcon tube containing 5% Milk in TBST and secondary antibody added. The membrane 

was incubated for 1 hour at 4°C on a tube roller and then washed 3 times in TBST.  The HRP 

was detected using SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) and 

visualised with CL-XPosure Clear Blue X-Ray Film (Thermo Scientific). 

 

2.12. gDNA Extraction 

 

Cells were washed once with sterile PBS and harvested using 0.25% trypsin-EDTA.  The trypsin 

was inactivated by adding 10% FBS in sterile PBS at a ratio of 1:3 respectively.  The cells were 

centrifuged at 1000rpm for 3 minutes and supernatant aspirated.  The cell pellet was then 

resuspended in 200µL of PBS and added to a 1.5mL Eppendorf tube containing 20µL of 

Proteinase A. The sample was then processed using the DNA Blood & Tissue Kit (QIAGEN: 

69504). The optional incubation step at 56°C for 10 minutes was carried out. 

 

2.13. CNV Detection by Genomic DNA qPCR 

 

Relative copy number was determined using oligonucleotide pairs designed to introns of genes 

spanning the 20q11.21 region, in combination with the Universal Probe Library (Roche) (See 

Table 2).  Genomic DNA samples were quantified using a UV/Vis spectrophotometer 

(Geneflow: Nanophotometer P330) and diluted to 5ng/µL using ddH₂O.  A master mix was 

made on ice consisting of 5µL Taqman Fast Universal Master Mix (Life Technologies: 4352042), 

0.2µL Primer Mix (containing 5uM sense-antisense), 0.1µL Roche Probe and 2.7µL ddH₂O per 

reaction.  8µL master mix and 2µL of gDNA (5ng/µL) was added to each well of either a 96- or 
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384-well PCR plate and spun briefly.  The plate was then analysed using a 7900HT Fast Real-

Time PCR System (Applied Biosystems).  The reaction was held at 50°C for 5 minutes then 95°C 

for 10 minutes then 45 cycles of 95°C for 15 seconds then 60°C for 1 minute.  Data was then 

analysed using the ΔΔCt method (Livak and Schmittgen, 2001). 

 

2.14. mRNA-sequencing 

 

43 million mapped, strad-specific 50 base reads from H1 ESCs were generated on the SOLiD3 

platform (Applied Biosystems). BCL2L1 had 92.31 RPKM in the undifferentiated human ES cells. 

 

2.15. Karyotyping 

 

Analysis was performed by a Health Professionals Council registered Clinical Scientist in a 

Clinical Pathology Accredited laboratory. 

 

2.15.1. Sample preparation 

 

Cells were incubated at 37°C for 4-6 hours in mTeSR containing 0.06ug/mL Colcemid (GIBCO: 

15212-012).  The cells were then dissociated using 0.25% Trypsin-EDTA and spun at 1200rpm 

for 3 minutes in a 50mL falcon tube.  The supernatant was then carefully decanted and cells 

resuspended by tapping flask sharply.  8mLs of hypotonic solution (37.5mM potassium 

chloride, 7.8mM trisodium citrate in dH₂O) was added dropwise whilst gently vortexing and 

then placed at 37°C for 20 minutes.  The cells were then spun at 1200rpm for 5 minutes, 

supernatant was decanted and cells resuspended thoroughly by flicking.  The cells were then 

fixed by adding 5mLs of ice cold methanol: acetic acid (3:1) dropwise whilst gently vortexing 
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and placed on ice for 20 minutes.  The sample was then spun at 1500rpm for 10 minutes and 

fixation step repeated.  The sample was then stored at -20°C until processed. 

 

2.15.2. Preparation of slides 

 

Slides were washed in acetone using a Pasteur pipette and excess acetone removed by dipping 

slides in dH₂O using tweezers.  The slides were then placed on a 40°C heating plate until dry 

and then dipped into ice cold 40% methanol. The excess was drained off by placing edge on 

absorbent paper and then placed on 40°C heating plate until dry (slides could be stored in 

100% ethanol until used for metaphase spread).  Sample was dropped from approximately 

45cm using a 1mL pipette (2-3 drops per slide) onto slides placed at a 45° angle and dried on a 

40°C heating plate. 

 

2.15.3. G-banding 

 

The slides were treated with trypsin for 25 seconds and then stained with 4:1 Gurr’s 

Buffer/Leishmann’s stain (Sigma) for 2 minutes.  The slides were scanned, metaphases 

captured and analysed using a Cytovision GSL-120 (Leica Microsystems) image analysis system.  

A minimum of 5 metaphase spreads were analysed and a further 15 counted and scored.   

 

2.16. Fluorescence in situ hybridisation (FISH) 

 

The BCL2L1 FISH probe was a spectrum orange fluorescently labelled BAC (RP5-857M17, 

almost 100kb) provided by BlueGnome (Illumina), and covers the genes BCL2L1, COX4I2 and 

the 3’ end of ID1. For 20p telomere detection, the Vysis (Abbott Molecular) probes TelVysion 

20p telomere (spectrum green), were used. 
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Probe and slides were denatured together at 72°C for 2 minutes in a PTC-200 DNA Engine 

(Peltier Thermal Cycler, MJ Research) and incubated at 37°C for 16 hours for hybridisation. 

Slides were washed in 0.4x sodium citrate (Abbott Molecular) with 0.3% Tween 20 (Sigma) and 

2x sodium citrate with 0.1% Tween 20. Coverslips were mounted on the slides in 20uL, 

Vectashield Mounting Medium with DAPI (Vector Laboratories). One hundered interphase cells 

were analysed on an Olympus BX51 fluorescent microscope. 

 

2.17. Flow-cytometry analysis of surface markers 

 

Cells were washed once with sterile PBS and harvested using accutase.  Cells were 

resuspended in wash buffer and spun at 1000rpm for 3 minutes.  The supernatant was 

aspirated and cells resuspended at 1x107/mL in wash buffer. 100uL of sample was added to a 

5mL FACS tube and primary antibody was added (see Table 3). The sample was incubated at 

37°C for 30 minutes in the dark, occasionally flicking to mix.  Cells were washed once with 

4mLs of wash buffer and spun at 1000rpm for 3 minutes.  Supernatant was decanted and cells 

resuspended in 100uL of wash buffer containing secondary antibody.  The sample was 

incubated at 37°C for 30 minutes in the dark, occasionally flicking to mix.  The sample was then 

washed twice with 4mLs of wash buffer and spinning at 1500rpm for 5 minutes. Supernatant 

was decanted and sample resuspended in 300uL PBS and analysed on flow cytometer (BD 

Biosciences: FACSCalibur). 
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Table showing the concentrations of antibodies used for flow-cytometry
staining and the respective secondary antibodies used.

Table 3. Primary and secondary antibodies used throughout
the study

Primary Antibody Supplier Concentration Secondary Antibody Concentration

P3X Kohler and Milstein 1:10
Dylight 488 -conjugated

Goat anti-Mouse
1:10 0

TRA-1-85 Andrews 1:10
Dylight 488 -conjugated

Goat anti-Mouse
1:10 0

TRA-1-81 Andrews 1:10
Dylight 488 -conjugated

Goat anti-Mouse
1:10 0

SSEA3 Shevinsky 1:10
Dylight 488 -conjugated

Goat anti-Mouse
1:10 0

Oct3/4 (POU5F1) Cell Signa ling (C52 G3) 1:10 0
Dylight 594 -conjugated

Donkey anti-Rabbit
1:10 0

SOX17 R&D (AF1924 ) 1:10 0
Dylight 649 -conjugated

Donkey anti-Goat
1:10 0



- 34 - 
 

2.18. Apoptosis assay 

 

Cells were washed once with sterile PBS and harvested using accutase.  Cells were 

resuspended in mTeSR and seeded into 4 matrigel-coated flasks at a density of 1x105/cm² (for 

3, 6, 12 and 24 hour time points).  Remaining sample was fixed at room temperature in the 

dark using 4% PFA and stored in at 4°C until processed.  3, 6, 12 and 24 hour time points were 

harvested following accutase treatment, fixed and stored as above.  Apoptotic cells were 

processed using the Annexin V-FITC Apoptosis Detection Kit (abcam: ab14085) and analysed by 

flow cytometry (BD Biosciences: FACSCalibur). 

 

2.19. Cell-cycle analysis 

 

Cell cycle distribution was determined using the Click-iT EdU Alexa Fluor 647 Flow Cytometry 

Assay Kit (Life Technologies).  Cultures ~50% confluence were incubated in mTeSR containing 

EdU for 45 minutes, harvested using accutase and then processed as per manufacturer’s 

instructions.  Samples were analysed by flow cytometry (BD Biosciences: BD LSRII Fllow 

Cytometer). 

 

2.20. Generation of stable over-expressing cell lines 

 

2.20.1. Constructs 

 

BCL-XL, ID1 and HM13 expression constructs driven by the CAG promoter were prepared as 

follows: Full-length coding regions were amplified from hESC cDNA using oligonucliotides 

containing restriction endonuclease sites at the 5´ and 3´ends of the PCR product (see Table 4). 

BCL-XL PCR product was cloned into the vector pCAG:GFP:IRES:Puro [78, 79] following 
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XhoI/NotI digestion, which excised and replaced the GFP element. ID1 PCR product was cloned 

into the vector pCAG:GFP:IRES:Hygro following BamHI/NotI digestion, which excised and 

replaced the GFP element. HM13 PCR product was cloned in the vector pCAG:MCS:IRES:Hygro 

following EcoRI/NheI digestion. pCAG:MCS:IRES:Hygro was derived by excising the GFP 

fragment from pCAG:MCS:IRES:Hygro through BamHI/NotI  digestion and replacing it with a 

multiple cloning site. The cloning site was prepared by annealing the following 

oligonucleotides: 

 

GATCCGAATTCATCGATAAGCTTCCCGGGCTAGCTGCAGC 

GGCCGCTGCAGCTAGCCCGGGAAGCTTATCGATGAATTCG 

 

This resulted in complimentary BamHI and NotI ends. For generation of GFP expressing cells, 

the pCAG:GFP:IRES:Hygro vector was used. 

 

2.20.2. Nucleofection 

 

Transfections were performed using the Amaxa Human Stem Cell Nucleofector Kit 1 (Lonza). A 

T12.5 matrigel-coated culture flask containing mTeSR supplemented with Rock inhibitor was 

incubated at 37°C at 5% CO₂ for 1 hour.  Cells to be transfected were washed once with sterile 

PBS and harvested using accutase.  The cells were pelleted by centrifugation and resuspended 

at 8x106/mL in transfection master mix (82uL Solution 1, 18uL supplement).  100uL of cell 

suspension was then added to 5ug of plasmid DNA and placed in cuvette.  The cuvette was 

then placed into a Nucleofector II device (Lonza) and pre-set program B-016 was applied. The 

cell suspension was washed from the cuvette with 1mL of media from incubated T12.5 flask 

and placed back into humidified incubator at 37°C, 5% CO₂. 
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Note: The ACGT sequence preceding the restriction site (red) enables
endonuclease docking. The sequence following the restriction site is
template specific to the gene of interest.

Table 4. Primers used to amplify cDNA for generation of
over-expressing cell lines
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2.21. Teratoma formation 

 

Cells were washed once with sterile PBS and harvested following accutase treatment.  The cells 

were counted, pelleted by centrifugation at 100rpm for 3 minutes and resuspended at 

3.3x107/mL in 1:3 Matrigel: DMEM/F12 mix (sample kept on ice until injected).  300uL of cell 

suspension (~1x107 cells) was then injected subcutaneously at the inguinal region of NSG mice 

(Courtesy of Len Shultz, Jackson Laboratory).  Injections were performed with approval of the 

Institutional Animal Care and Use Committee (Biological Resource Centre, Singapore). Mice 

were euthanized 4 weeks post-injection by raising CO₂ levels. The tumours were excised from 

surrounding tissue, weighed and fixed in 4% PFA overnight.  The tumour was then paraffin-

embedded, sectioned and stained with hematoxylin and eosin. 

 

2.22. Time-lapse imaging 

 

2.22.1. Time-lapse imaging for Sections 3.2.5 and 4.2.1 

 

Cell division times were determined by seeding cells (following accutase treatment) at 1x104 

cells/cm2 on matrigel-coated 6-well plates supplemented with mTeSR and allowed to adhere 

for 1 hour at 37°C, 5% CO2.  The plates were then transferred to an Olympus IX600 microscope 

with fitted incubation chamber set to 37°C, 5% CO2.  Cells were imaged every 10 minutes for 

72 hours and image stacks were assembled and analysed using FUJI (ImageJ). 

 

2.22.2. Time-lapse imaging for Sections 6.2.1 and 6.2.2 

 

ESI-035 and ESI-035-CNV were transfected with the pCAG:H2B-RFP:PURO plasmid using 

microporation.  The plasmid over-expresses a histone H2B:RFP (red fluorescent protein) fusion 
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protein which enables the visualisation of DNA in real-time.  Cells were passaged as clumps at 

a split ratio of 1:3 into matrigel-coated 35mm IBIDI dishes containing mTeSR.  Time-lapse 

movies were generated by imaging cells every minute for two hours using an incubated Nikon 

TiE inverted fluorescence microscope fitted with an sCMOS camera using a 100X oil objective 

lens. 

 

2.23. Definitive endoderm differentiation and staining 

 

A matrigel-coated 6-well plate was fed with mTeSR supplemented with Rock inhibitor and 

placed at 37°C, 5%CO2 for 1 hour.  Undifferentiated human ES cells were seeded (following 

accutase treatment) at a density of 6x105/well and placed into 37°C humidified incubator at 5% 

CO2 overnight.  Excess cells were pelleted by centrifugation and resuspended in 600uL of trizol 

to isolate RNA (day 0 time-point).  The mTeSR was replaced 24 hours post-seeding with 3mL 

endoderm basal media (RPMI 1640, 1X B-27 Supplement, 1X Non-essential Amino Acids, 1X 

Glutamax (GIBCO)) supplemented with 100ng/mL activin A, 50ng/mL BMP4 and 100ng/mL 

bFGF (R&D Systems) and placed back at 37°C, 5% CO₂.  Media was replaced at day 3 to 

endoderm basal media supplemented with 100ng/mL activin A and placed back at 37°C, 5% 

CO₂. 

 

Following five days culture cells were washed once with sterile PBS and 4% PFA was added to 

cells and incubated at room temperature in the dark for 15 minutes.  Cells were washed with 

wash buffer (PBS containing 5%FBS) and then incubated at room temperature for 1 hour in 

internalisation buffer (5% FBS, 0.1% Triton X-100 in PBS).  The internalisation buffer was then 

removed and cells were then incubated at room temperature for 1 hour with POU5F1 (Cell 

Signaling) primary antibody at a 1:100 dilution.  The cells were then washed three times with 

wash buffer and incubated at room temperature for 1 hour in wash buffer containing 
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secondary antibody. This was then repeated with SOX17 (R&D) primary and secondary 

antibodies (see Table 3).  The cells were counter stained with Hoechst 33342. 

 

2.24. Cell competition assay 

 

A HES3 normal (non-CNV) GFP reporter cell line was generated by transfecting cells with 

pCAG:GFP:IRES:Hygro plasmid DNA using nucleofection.  The GFP expressing HES3 cells were 

then mixed at a 9:1 ratio with HES3-CNV, HES3-HM13, HES3-ID1 and HES3-BCL-XL over-

expressing cell lines following accutase treatment.  A sample of the mix was kept for analysis 

and 1.2x105 cells/cm² were seeded on matrigel-coated tissue-culture treated T12.5 flasks 

containing mTeSR.  Cells were passaged every 4 days using accutase, a sample of the cell 

suspension was taken for flow cytometry analysis (BD FACSCalibur) and the remaining cells 

split at a ratio of 1:3. 

 

2.25. Stable inducible-shRNAi clones 

 

H1 CNV cells were used to generate an inducible BCL-XL knockdown cell line following the 

procedures detailed previously [80]. The pSUPERIOR (Oligoengine) vector was used to 

construct a hairpin expression system to target BCL-XL. Annealed oligonucleotide pairs were:  

 

GATCCGGAGATGCAGGTATTGGTGTTCAAGAGACACCAATACCTGCATCTCCCTTTTTC and 

TCGAGAAAAAGGGAGATGCAGGTATTGGTGTCTCTTGAACACCAATACCTGCATCTCCG 

 

Cells in which knockdown was desired were treated with 100 ng/ml doxycycline (Sigma) three 

days prior to experimental setup. 
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2.26. BCL-XL inhibition 

 

Cells were harvested following accutase treatment and plated at a density of 1x104 cells/cm² 

on matrigel-coated tissue-culture treated 6-well plates in mTeSR.  The cells were cultured for 

5-7 days in the absence or presecnce of ABT-263 (Selleckchem) at 50, 100, 250 and 1000mM 

concentrations.  Cell were fixed for 20 minutes in ice-cold 100% methanol and stained for 3-4 

hours with Giemsa stain. 

 

2.27. Embryoid body formation 

 

2.27.1. Plate set-up 

 

For each cell line four 96-well plates were prepared, one for each of the four conditions 

(neutral, ectoderm, mesoderm and endoderm).  3.5mLs of APEL medium was added to four 

15mL falcon tubes containing differing amounts of growth factors and inhibitors (see Table 5). 

Once the solutions had been made, the inner 60-wells of each plate were filled with 50uL of 

growth factor medium (2X), the remaining outer 36-wells were filled with 100uL of PBS to 

avoid evaporation.  Once the plates were made they were placed at 37°C at 5% CO2 until ready 

to use. 

 

2.27.2. Harvesting and plating Cells 

 

Media was aspirated from 70-80% confluent hESC cultures and 0.5mL of TrypLE was added.  

The cells were then incubated at 37°C for 2 minutes and flasks were tapped sharply 3-5 times 

to dissociate differentiated cells.  Cells were aspirated and a further 0.5mL of TrypLE was 

added to the flask.  The cells were incubated at 37°C for 2 minutes.  The flask was tapped 
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sharply to dissociate all other cells and 3mLs of mTeSR was used to inactivate the TrypLE.  Cells 

were counted using the method described in section 2.7 were then spun at 1000rpm for 3 

minutes and the supernatant extracted.  The cells were then resuspended at 8.4x105 in APEL 

medium containing genatmycin (1:500). 50uL of cell suspension (3000 cells) was added to each 

well and the plates spun at 1000rpm for 3 minutes to aggregate cells at the bottom of the well.  

The plates were then placed in the incubator and left to grow for 10 days. 
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Table 5.  Growth factors used to differenti ate human ES cells
via the formation of EBs

The growth factors and their concentrations added to the diff erent EB
conditions, neutral, ectoder, mesoderm and endoderm.
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3. Amplification of 20q11.21 Provides a Selective Advantage in Human ES Cells. 

 

3.1.  Introduction 

 

Human ES cells often acquire extra copies of chromosomal material; these karyotypic changes 

most frequently involve the gains of chromosomes 1, 12, 17 and 20.  These changes have been 

shown to provide variant cells with a selective advantage over diploid cells[73].  Interestingly, 

the commonly gained chromosomes often present as smaller amplifications notably 1q, 12p 

and 17q are more frequently observed than 1p, 12q and 17p.  This suggests that smaller 

amplifications of genetic material may contain the gene(s) responsible for causing such an 

advantage.  The ISCI study[66] used high-resolution molecular karyotyping to try and identify 

small structural variants that may be driving culture-adaptation.  No copy number variants 

(CNVs) were observed on chromosomal regions 1q, 12p or 17q suggesting that whole or partial 

chromosome gains are required to provide a selective advantage.  However, a small CNV on 

chromosome 20 (20q11.21) was identified as a possible driver of culture-adaptation.  

Amplification of 20q11.21 has been identified as a hotspot for copy number variation in human 

ES cells[81-84] and is widely reported in a number of human cancers[85-88].  The mechanism 

behind the selection of 20q11.21 in human ES cells is unknown and there are no reports of the 

growth rates of cells containing the amplification.  There have been hypothesised roles for ID1, 

BCL2L1 and TPX2 in driving the selection of 20q11.21 in vitro and in vivo[82].  The minimal 

amplicon determined by SNP-array does not contain TPX2 and was therefore dismissed as a 

candidate driving the selection of 20q11.21 although is still within most 20q11.21 

amplifications observed in human ES cells.  The minimal amplicon spans approximately 60Kb 

and contains 13 coding genes, of which, only three are expressed in undifferentiated human ES 

cells: 
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HM13 

The HM13 gene encodes a signal peptide peptidase, localised to the endoplasmic reticulum 

and catalyses intra-membrane proteolysis releasing signal peptides into the cytosol.  The role 

of HM13 in human ES cells has not been investigated and is an unlikely candidate driving 

selection of the 20q11.21 locus.  However, it has been shown to influence anchorage 

independent growth of SW480 cells [89].  

 

ID1 

ID (inhibitor of differentiation or DNA binding) proteins are dominant negative antagonists of 

basic helix-loop-helix (bHLH) transcription factors, forming heterodimers and inhibiting their 

DNA binding capacity.  The structure of ID proteins is similar to other bHLH proteins, 

containing a helix-loop-helix domain but lacking the DNA binding domain of bHLH transcription 

factors.  Increased levels of ID1 in human cancers are often correlated with aggressive tumours 

and poor prognosis[90].  The over-expression of ID1 in hepatocellular carcinomas has been 

shown to promote cell survival through activation of the NF-Κβ signalling pathway[91] and 

induce cell proliferation through inactivation of the p16INK4a/RB signaling pathway[92].  The 

increased expression of ID1 could also have an effect on the differentiation on human ES cells 

as it has been shown to have a high binding affinity to MYOD and NEUROD, markers of 

mesoderm and ectoderm respectively[90]. 

 

BCL2L1 

BCL2L1 is also a strong candidate gene that could be driving selection of 20q11.21, the gene 

encodes two isoforms, BCL-XL (long isoform) and BCL-XS (short isoform).  The two isoforms 

elicit anti- and pro-apoptotic functions respectively.  In human ES cells the dominant isoform is 

BCL-XL (Figure 2).  BCL-XL has been implied in a number of human cancers[93-95].  BCL2L1 

amplification has been shown to increase the survival of colorectal cancer cells (CRCs) and 
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inhibition of BCL2L1 in CRC cells results in decreased cell viability and inhibited anchorage-

independent growth [96].   

 

The high prevalence of 20q11.21 amplification in human ES cell cultures suggests that it 

provides a selective growth advantage over diploid cells.  To assess the growth rates of human 

ES cells harbouring the 20q11.21 gain, four independent human ES cell lines containing the 

CNV were obtained.  The cell lines were also obtained at earlier passages to represent diploid 

cells with which to compare the effect of 20q11.21 amplification on the growth of human ES 

cell cultures. 
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Using mRNA-Seq the intron spanning reads of BCL-XL (red bar) and BCL-XS
(blue bar) were measured in the undifferenti ated H1 human ES cell line.
Data shows that BCL-XL is the dominant isoform expressed with 47 reads
compared to BCL-XS which only displayed 7 reads. mRNA-Seq data was mapped
to Ref-Seq.

Figure 2.  BCL-XL is the dominant isoform expressed in human
embryonic stem cells
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3.2. Results 

 

3.2.1. Varying lengths of 20q11.21 duplications in human ES cell lines   

 

To study the effect that amplification of chromosomal region 20q11.21 has on the culture of 

human ES cells, four different cell lines were obtained, HES3[97], H1[1], ESI-035[98] and 

Shef5[99].  These cell lines were chosen based on SNP array data showing the presence of 

20q11.21 amplification at late passage[66].  Each cell line was obtained in early and late 

passage, representing a ‘control’ and ‘CNV’ cell line respectively.  Upon receipt, the cell lines 

were expanded, karyotyped and frozen to create working reference banks.  The cell line banks 

were analysed for the absence/presence of the 20q11.21 CNV using genomic DNA based qRT-

PCR and fluorescence in situ hybridization (FISH).  Each of the cell lines received had a normal 

diploid karyotype with the exception of Shef5-CNV in which one of the X chromosomes was 

absent.  qRT-PCR indicated the presence of the 20q11.21 amplification in all four CNV lines 

(Figure 3A) which was confirmed by FISH analysis for the BCL2L1 locus (Supplementary Figures 

1-4).  However, the control HES3 and H1 cells received were found to display a degree of 

mosaicism for the 20q11.21 amplification, likely highlighting the high propensity of cells to 

acquire the amplification during culture.  The dosage of 20q11.21 in control cells was lower 

than that found in the CNV cell lines obtained (average 20q11.21 loci: HES3 control 2.2, HES3-

CNV 3.5 and H1 control 2.5 and H1-CNV 4.2).  The mosaicism observed in CNV cell lines could 

indicate the potential for CNV cells to acquire multiple 20q11.21 duplications throughout 

culture.  The 20q11.21 amplification was also present at varying lengths (Figure 3B).  The HES3 

CNV contained the longest amplification of around 1.5Mb whereas the H1 (1.1Mb), ESI-035 

(0.8Mb) and Shef5 (0.7Mb) contained the amplification at shorter lengths.  All CNV cell lines 

contained the minimal amplicon identified in the ISCI project [66].  The closest cell line to 

resemble the minimal amplicon was the Shef5-CNV cell line.   



- 48 - 
 

 

(A) Genomic qRT-PCR assay using primer/probe pairs designed to intronic
regions of genes spanning the 20q11.21 locus (black bars) determines the
amplicon length and copy number. Genomic positions relate to USCS human
genome assembly version hg19{Kent, 2002 #236}. CT values are normalised
against RELL1 (first white bar). RELL1 is located on chromosome 4 and displays
a low incidence of genomic instability in hESCs. Two additional controls
(white bars) confirm the suitability of the first control. All CNV cell lines were
normalised against their control counter-parts.

Figure 3.  Quantitati ve-PCR detects the presence of CNV 20q11.21
in Shef5, ESI-035, H1 and HES3 human embryonic stem cell lines
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3.2.2. Generation of Over-expression Cell Lines 

 

To analyse the affect that increased dosages of HM13, ID1 and BCL-XL had on human ES cell 

culture, over-expression cell lines for each candidate gene were generated.  All over-

expression vectors were derived from either pCAG:GFP:IRES:PURO or pCAG:GFP:IRES:HYGRO 

plasmids (Figure 4A).  The expression of green fluorescent protein (GFP) is driven by a CAG 

(CMV early enhancer/chicken β-actin) promoter, the CAG promoter simultaneously drives the 

expression of puromycin/hygromycin through the presence of an internal ribosomal entry site 

(IRES) located between the GFP and antibiotic resistance sequences.  These vectors have 

previously shown strong, sustained expression in human ES cells [79, 80].  The 

pCAG:GFP:IRES:HYGRO vector was used to generate a HES3 control GFP-expressing cell line.  

To generate HM13, ID1 and BCL-XL over-expressing lines the GFP element was removed by 

restriction digest with BamHI and NotI and a multiple cloning site (MCS) was inserted to make 

pCAG:MCS:IRES:PURO and pCAG:MCS:IRES:HYGRO (Figure 4B).  The MCS was created by 

annealing the sequences GATCCGAATTCATCGATAAGCTTCCCGGGCTAGCTGCAGC and 

GGCCGCTGCAGCTAGCCCGGGAAGCTTATCGATGAATTCG, which results in complimentary 

BamHI and NotI ends for correct orientation into the pCAG vector. 

 

Each candidate gene was PCR amplified from ESI-035 control cDNA using primers with 

attached restriction sites (see Table 4).  The products of HM13, ID1 and BCL-XL were inserted 

into the MCS of either the PURO or HYGRO vector depending on the suitability of restriction 

sites.   The vectors were then transfected into HES3 and ESI-035 control lines using 

nucleofection (see Section 2.20).  Stable transfectants were selected using the appropriate 

antibiotic and expanded to make working cell banks. 
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The ESI-035 over-expression cell lines were analysed for the characteristic human ES cell 

surface markers TRA-1-60 and SSEA3 using flow cytometry (Figure 5).  All over-expressing cell 

lines showed similar expression of the stem cell markers compared with control and CNV-

containing cells, demonstrating that the cells derived maintained an ES cell phenotype and 

that the introduction of HM13, ID1 and BCL-XL did not affect the stem cell population through 

increased differentiation. 
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Figure 4.  Plasmids used in the generation of GFP-reporter cell
lines and cell lines over-expressing HM13, ID1 and BCL-XL

Ampicilin
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(A) The pCAG:GFP:IRES:PURO/HYGRO vector was used to generate GFP-reporter
cell lines. The expression of green fluorescent protein (GFP) is driven via the
CMV early enhancer/chicken β-actin promoter (pCAG).  Antibiotic resistance to
puromycin or hygromicin is also expressed simultaneously though the presence
of an internal ribosomal entry site (IRES) to allow the selection of stable transfectants.
(B) The pCAG:MCS:IRES:PURO/HYGRO was used to generate cell lines
over-expressing the three candidate genes.  cDNA for HM13, ID1 and BCL-XL
was inserted into the multiple cloning site using compatable restriction sites.
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Figure 5.  Over-expression of HM13, ID1 and BCL-XL does not affect
human embryonic stem cell markers

Over-expression of HM13 (orange bar), ID1 (purple bar) and BCL-XL ( red bar)
in human ES cells does not affect the expression levels of human ES cell markers
(A) TRA-1-60 or (B) SSEA3.  The levels are comparable with control (white bar) and
CNV (black bar).  Graphs show data for the over-expression cell lines generated
from ESI-035 Control cells.
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3.2.3. CNV Cell Lines Exhibit Increased Population Doubling Times 

 

To determine whether there was a difference in the growth rates between control and CNV 

containing cell lines, the population doubling time of each cell line was measured.  Cells were 

plated on Matrigel in mTeSR at varying cell densities (2x104, 4x104 and 8x104 cells/cm²) 

representing clonal (sub-optimal) to routine passaging (optimal) densities.  Cells were cultured 

for four days and the total cell counts measured.  Figure 6 shows the final density of cells 

(cells/cm2) following four days culture.  In all four cell lines, CNV containing cells displayed 

decreased population doubling times when compared with their control counterparts.  This 

increase in population growth rates was observed at all three plating densities.  The population 

doubling rate was determined by taking the total number of cells following four days culture 

and dividing by the initial number of cells seeded.  At the lowest plating density (2x104 

cells/cm2) all control cell lines were unable to surpass the original seeding density with an 

average population doubling rate of 0.5 over four days.  This is in stark contrast to the CNV cell 

lines, which displayed an average population doubling rate of 4.7 at the lowest seeding 

density.  This trend was also observed in the two other seeding densities, at 4x104 cells/cm² 

the control cells displayed an average population doubling rate of 1.1 compared to the CNV 

average of 5.9.  At the highest seeding density of 8x104 cells/cm² the population doubling rate 

of control cells was higher than the initial seeding density following four days growth at an 

average rate of 2.0.  The average of CNV cell lines was again much higher than that observed in 

control cell lines with an average rate of 6.1.  This increase in growth rate was also observed in 

cells over-expressing BCL-XL mimicking that of the CNV cells with population growth rates of 

6.3, 5.6 and 6.6 for the lowest to highest seeding densities respectively.  Both HM13 and ID1 

over-expressing cell lines also displayed higher population doubling rates than the average 
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control cell lines.  However, the rates were similar to the rates observed in the ESI-035 control 

cell line from which the over-expressing cell lines were derived. 

 

3.2.4.  Increased Growth Rates of CNV Cells Rapidly Out Compete Control Cells 

 

The increase in population doubling rates in CNV cells indicated that amplification of 20q11.21 

provides a growth advantage in human ES cells.  To model the effect this has on the population 

dynamics in culture, cell mixing experiments were performed.  The HES3 control cell line was 

transfected with the pCAG:GFP:IRES:PURO vector to generate a stable reporter line with which 

to monitor the proportions of cells within a mixed population (see section 3.2.2).  The HES3-

GFP line was mixed with test cell lines, HES3 control (parent line, no-GFP), HES3-CNV, HES3-

HM13, HES3-ID1 and HES3-BCL-XL at a ratio of 9:1.  Cells were cultured for 10 passages and the 

levels of GFP expressing cells measured using flow-cytometry (Figure 7).  The HES3-GFP was 

mixed with the HES3 control cell line to determine that the random integration of the GFP 

vector had no effect on the growth of the cell line.  The HES3-CNV and HES3-BCL-XL cell line 

rapidly out-competed the HES3-GFP cell line within ten passages. This was not observed in 

HES3 control, HES3-HM13 and HES3-ID1 cell lines, which maintained the levels of GFP-

expressing cells at the initial seed ratio of 9:1.   
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Figure 6.  CNV-containing cell lines display increased population
doubling rates when compared to control cell lines

A

B

C

Cell densities (cells/cm2) following four days culture aft er seeding at (A) 8x104,
(B) 4x104 and (C) 2x104 cells/cm2.  CNV cell lines (black circles) display increased
population doubling times when compared with control (white circles) cell lines.
This increase is mimicked by over-expression of BCL-XL (red circle) but not HM13
(orange circle) or ID1 (purple circle).  Errors bars represent SEM from three
biological replicates. Asterisks represent statisti cal significance by two-tailed
t-tests: p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***).
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Figure 7.  Increased growth rates of CNV-containing cells
rapidly out-compete diploid cells

Cell competition assay using the HES3 cell line.  The HES3-GFP-Control cell line
was mixed at a 9:1 ratio with HES3-Control (parental line, no-GFP) (blue line),
HES3-CNV (black line) and the over-expressing cell lines, HES3-HM13 (orange line),
HES3-ID1 (purple line) and HES3-BCL-XL (red line).  The cells were then passaged
at a 1:3 split ratio for ten passages and the percentage of GFP analysed using
flow-cytometry.  The HES3-CNV and HES3-BCL-XL cell lines rapidly out-competed
the HES3-GFP-Control cell line within ten passages.  Errors bars represent SEM
from three biological replicates.
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3.2.5. Control and CNV Cells Display Similar Cell Cycle Distribution and Cell Cycle 

Times 

 

To determine the mechanism behind the increased growth rates of CNV containing cell lines 

the cell cycle distribution between control and CNV cell lines were analysed (Figure 8).  All cell 

lines showed high proportions of S-phase cells, with equal G1 and G2/M populations.  The 

Shef5 and ESI-035 cell lines exhibited similar cell cycle distribution between control and CNV 

lines but the CNV lines appeared to contain slightly less cells in S-phase when compared with 

the control cells (ns).  The HES3-CNV and H1-CNV cell lines showed significantly lower 

populations of S-Phase cells and increased G0/1 populations than their control counterparts.  

This effect was also observed in ESI-035 cells over-expressing BCL-XL, again highlighting 

similarities between CNV and BCL-XL over-expressing cell lines. No significant difference was 

observed in the G2/M populations in any of the four cell lines. 

 

Actual cell doubling times were determined using time-lapse imaging (Figure 9), cells were 

plated at 1x104 cells/cm2 and imaged at 10 minute intervals.  Cellular divisions were monitored 

manually and cell cycle times were calculated.  The range of division times observed were 

extremely variable (7-44 hours), however, the average division times between control and CNV 

lines were almost identical between individual cell lines, with the exception of the H1 pair.  The 

H1-CNV cell line displayed faster division times.  However, this was not of statistical 

significance and can be explained by very uniform division times in CNV compared with the H1-

control, which displayed a wider distribution of cell cycle times.  Individual cell lines also 

showed a degree of variation in their division times, with Shef5 having slightly slower cell 

cycling times.  The average division times between control and CNV-containing cell lines were 

19.5 and 18.5 hours respectively.  However, when these times are compared with the cell 



- 59 - 
 

division times calculated from population doubling experiments in Section 3.2.3 (138 and 35 

hours respectively) there was a marked difference. 

 

3.2.6.  RNA Expression in Control and CNV Cell Lines 

 

The duplication of chromosomal region 20q11.21 in CNV cell lines increases the amount of 

template DNA available for gene expression.  To determine the effect this increase in DNA 

copy number had on gene expression in undifferentiated human ES cells, quantitative RT-PCR 

(qRT-PCR) was used to analyse the expression levels of the three candidate genes in the 

20q11.21 region (Figure 10).  Total RNA was extracted from 70-80% confluent human ES cell 

cultures under normal growth conditions.  The gene expression levels of POU5F1, TPX2 and 

DNMT3B were also analysed; TPX2 resides just outside the minimal amplicon but all four CNV-

cell lines within the study contained the amplification of TPX2.  DNMT3B is approximately 1MB 

distal (from the centromere) of the minimal amplicon and is only present in the HES3-CNV line.  

The dCT values relative to GAPDH, are displayed in Figure 10.  The HES3-CNV cell line had 

slightly higher expression of HM13, ID1 and BCL-XL (ns) as displayed by lower dCT values.  The 

HES3-CNV cell line also showed increased gene expression of TPX2 and DMNT3B which also 

reside on the 20q11.21 amplification in the HES3-CNV cell line.  The levels of POU5F1 were also 

higher in the CNV cell line than in the HES3 control cells.  Gene expression levels in the H1 cell 

lines showed no significant difference between control and CNV cells.  Both HM13 and BCL-XL 

appear to be upregulated in CNV cells whereas POU5F1, HM13 and TPX2 show similar levels.  

DNMT3B, which is absent in the H1-CNV shows similar mRNA levels between control and CNV 

cell lines.  The Shef5 control and CNV cell lines displayed no significant difference in the gene 

expression levels of HM13, ID1, BCL-XL or TPX2.  However, there was a significant difference in 

the expression levels of POU5F1 (p=0.0031) and DNMT3B (p=0.0210).  The ESI-035-CNV cell 

line showed increased expression of POU5F1 (ns), HM13 (ns), ID1 (p=0.0013) and TPX2 
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(p=0.0027). The expression levels of BCL-XL remained similar between control and CNV lines 

and DNMT3B showed increased expression in the control cell line (ns).  The differences in 

mRNA expression between cell lines may represent cell line specific expression patterns.  

However, the differences between control and CNV cell lines within a given cell line imply that 

the presence of CNV20q11.21 effects the expression patterns of genes contained within the 

amplicon.  Control cells over-expressing BCL-XL mirrored the growth rates of CNV-containing 

cells, although qRT-PCR data does not show significantly increased BCL-XL mRNA levels. 

 

3.2.7. Increased BCL-XL Protein Levels in 20q11.21 CNV-containing Cell Lines 

 

The mRNA levels of BCL-XL were not increased consistently in all CNV-containing cell lines.  

Western-blotting was used to analyse the levels of BCL-XL in the four human ES cell lines to 

determine if the increase in DNA copy number effected the level of BCL-XL protein.  Protein 

was harvested from 70-80% confluent cultures that had been grown for three to four days on 

matrigel-coated culture vessels in mTeSR.  BCL-XL protein levels were higher in all CNV cell 

lines when compared with their control counter-parts (Figure 11).  There was no significant 

difference in the levels of BCL-XL mRNA, suggesting that BCL-XL may be stabilised by post-

translational modification.  Consistent with RNA-seq data, the short isoform of BCL2L1 (BCL-XS) 

was not detected using western-blot confirming that BCL-XL is the dominant isoform in human 

ES cells.  There was slight variation in BCL-XL levels between the different cell lines, the H1 and 

HES3 control cell lines showed higher BCL-XL levels than the Shef5 and ESI-035 control lines.  

This can be explained by the mosaicism of the 20q11.21 amplification in the HES3 and H1 cell 

lines. 
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  Figure 10.  Inter- and intra-cell line differences in mRNA
gene-expression
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qRT-PCR comparing the gene expression levels of each control (white bars)
and CNV (black bars) cell line used in the study.  All genes analysed are found
on chromosomal region 20q11.21 with the exception of POU5F1, which is an
marker of pluripotency.  dCT values are relative to the reference gene
GAPDH and error bars represent SEM from three biological replicates.
Asterisks represent statisti cal significance by two-tailed t-tests: p ≤ 0.05 (*),
p ≤ 0.01 (**).
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Figure 11.  CNV-containing cell lines display increased
BCL-XL protein levels

Western blot analysis on whole cell lysates show that BCL-XL protein levels are
elevated in CNV and BCL-XL (BCL) over-expressing cells when compared to Control
cells (Con).  A universal BCL-X antibody detected the presence of BCL-XL protein but
not BCL-XS confirming that the anti-apo ptotic form of BCL2L1 is the dominant
isoform expressed in undifferenti ated human ES cells.  Beta-actin was used as a
loading control.
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3.3. Discussion 

 

The prevalence of 20q11.21 amplification in human ES cell lines can be attributed to the 

significant growth advantage that it provides.  Cell lines containing the CNV consistently 

showed increased population doubling rates when compared with their diploid counterparts.  

This increase in growth rate can be mimicked by over-expression of BCL-XL in control cells, 

making BCL-XL a strong candidate driving the selection of 20q11.21 amplification in human ES 

cultures.  The over-expression of HM13 and ID1 in control cells does not affect the growth 

rates of the cells. 

 

Of the four cell lines obtained, two contained the CNV in a proportion of cells at early passage 

potentially highlighting the propensity for human ES cells to acquire the 20q11.21 

amplification. HES3, which had an average of 2.2 copies per cell and H1 which had an average 

of 2.5.  The corresponding CNV lines contained further amplification of 20q11.21 at 3.5 and 4.2 

respectively. Interestingly, the HES3 and H1-CNV cell lines exhibited the highest growth rates 

possibly a result of increased CNV 20q11.21 gain.  The cell lines obtained showed similar 

lengths to those found in the ISCI study and all contained the minimal amplicon.  The length of 

CNV varies slightly between the cell lines obtained encompassing more genes with increasing 

length.  This is interesting as CNV cell lines with larger amplicon lengths (HES3, H1) exhibited 

increased growth rates.  This could be a result of other genes having an effect further along the 

CNV. 

 

The population doubling times show that cell lines containing the 20q11.21 amplification have 

an increased growth capacity when compared with control lines.  This characteristic is 

mimicked by the ESI-035-BCL-XL over-expressing cell line but not HM13 or ID1 suggesting that 
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BCL-XL is providing the growth advantage in CNV-containing cells.  All cell lines showed 

variation in population doubling times both between different control cell lines and between 

CNV cell lines.  HES3 control and ESI-035 control cell lines showed similar population doubling 

times in the highest seeding density, however at lower densities the HES3-control seemed less 

dependent on seeding density whereas the ESI-035 showed decreased population doubling 

times. This may be due to the HES3-control cell line having the CNV in a proportion of cells, 

which would explain slightly higher growth rates.  Overall the CNV cell lines seem less 

dependent on initial seed densities with the exception of the Shef5-CNV cell line.  The 

differences in the cell lines could be caused by both the mosaicism found within the cell lines 

and also the length of the CNV.  At the highest seeding density which is most representative of 

normal passaging densities the CNV cell lines exhibit an average cell division time of 35 hours 

when compared to the average control cell lines of 138 hours.  The selective advantage 

afforded by the amplification of 20q11.21 is extremely high, even at normal passaging levels 

and therefore would out-compete control cells rapidly in a small number of passages. 

 

The mixing experiment was conducted to model the selective advantage of the CNV cells 

throughout culture in vitro.  A GFP-expressing cell line was generated from the HES3-control 

cell line using the pCAG:GFP:IRES:HYGRO to create a stable line which could be detected using 

flow-cytometry.  The HES3-GFP cell line was mixed with the parent HES3-control cell line at a 

ratio of 9:1, this was carried out as a control for non-random integration of the over-

expression plasmid into the genome.  The levels of green: non-green remained at the initial 

seeded levels over ten passages showing that integration of GFP into the HES3-control line was 

neither advantageous nor deleterious to the HES3-control cell line.  The initial seed ratios 

remained the same when HES3-GFP was mixed with HM13 and ID1 over-expressing cells again 

showing that they are unlikely candidates providing the growth advantage in the 20q11.21 

amplicon especially in undifferentiated conditions.  The HES3-CNV and HES3-BCLXL cell lines 
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rapidly out-competed the HES3-GFP cell line within ten passages making BCLXL the likely 

candidate driving selection of the CNV. 

 

The cell cycle distribution was analysed to see if the CNV cells contained more cells in S-phase 

as you would expect from a cell line that was dividing quicker.  The opposite was observed in 

the CNV cell lines, CNV cells appeared to contain more cells in G0/1 phase than S-phase.  G2/M 

was similar in both the control and CNV lines.  There was some variation between control cell 

lines with HES3 and ESI-035 having slightly elevated G0/1 when compared with the other two 

control cell lines, this may be an effect of having a proportion of cells containing the CNV in the 

HES3-control.  Schmitt and co-workers[100] discovered that BCL-XL has a role in regulating the 

G2/M checkpoint of the cell cycle, which is distinct from its role in apoptosis. CDK1 activation 

requires association with cyclin-B1 and the phosphorylation of the threonine-161 residue, 

once active; CDK1 mediates the progression from G2 to Metaphase transition. The study found 

that BCL-XL co-localises and binds with CDK1 following DNA damage.  BCL-XL binds through a 

flexible loop domain located between the 41st and 60th amino acids.  Deletion of this region 

does not impede the anti-apoptotic function of BCL-XL but hinders its ability to bind CDK1.   

 

Becker and colleagues showed that the cell cycle times of human ES cell are relatively short, 

[101].  When measured using time-lapse imaging the cell division times could be determined 

accurately. Cells were seeded as single cells, which made it easier to track individual cells.  The 

cells were imaged every 10 minutes and cell division times were determined by measuring the 

time between cells undergoing cytokinesis.  The data shows that cell cycle times can vary quite 

dramatically from 7-44 hours, this was more apparent in the Shef5 and ESI-035 cell lines.  The 

Shef5-control and –CNV cell lines had identical cell division times of 23 hours which is slightly 

longer than the average of all control cell lines which at 19.5 hours.  The only cell line that 

displayed faster cell division times in cell containing the CNV than its corresponding control 
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line was the H1 cell line.  The average division times were significantly lower in the late 

passage (15.5 hours) than the control cell line a characteristic which can be explained by lower 

variation in cell division times.  The H1 cell lines also showed tighter clustering of cell division 

times with the majority of divisions occurring between 12-24 hours.  The ESI-035-control and -

CNV cell lines also displayed similar average cell division times which was mimicked by ESI-035 

over expression cell lines, ESI-035-control cells over-expressing HM13 and BCL-XL showed 

slightly slower division times which suggests the cells are not dividing faster and therefore 

population doubling cannot be explained by CNV cells dividing faster.   

 

The four cell lines obtained in this study displayed differences both between early and late 

passage of the same cell line and also between different cell lines.  Differences were observed 

in the gene expression levels of the pluripotency gene POU5F1 as well as genes contained 

within the 20q11.21 amplification, which could explain differences observed in the growth 

rates of the different cell lines.  The expression of RNA was highly variable both between cell 

lines and between genes in the same cell line.  Different cell lines expressed the three 

candidate genes at differing levels, the HES3, Shef5 and ESI-035 cell lines showed high ID1 

expression (dCT=1-2) and similar levels of HM13 and BCL-XL (dCT=4). The inverse was observed 

in the H1 cell line with higher HM13 and BCL-XL expression (dCT=2) and lower ID1 (dCT=4).  

This variability is possibly a result of taking RNA at different states of growth and with varying 

levels of differentiation within the culture.  That being said the levels appear to be relatively 

stable with very small standard deviation between biological replicates.  With the exception of 

the Shef5, the CNV cell lines appear to have increased POU5F1 expression when compared 

with their control counterparts, this could indicate that the CNV containing cells are more 

likely to remain undifferentiated and less likely to spontaneously differentiate.  Other ‘culture-

adapted’ cell lines also exhibit this trait [63] reiterating the notion that adaptation favours 

genetic changes that positively affect a stem cells ability to retain a stem cell phenotype. 
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Interestingly, in an undifferentiated state the levels of BCL-XL mRNA are not significantly 

higher in CNV-containing cell lines when compared to their control counter-parts.  Increased 

expression of mRNA was observed in only two out of four CNV cell lines (HES3 and H1).  

However, the protein levels of BCL-XL in CNV-containing cells are consistently higher in all 

CNV-containing cell lines.  This difference in BCL-XL mRNA and protein levels was also noted in 

colorectal cancers.  Colorectal cancers often present amplification of chromosomal region 20q 

[102] and increased BCL-XL levels contribute to reduced apoptosis, development of metastasis 

and poor response to chemotherapy [103].  Sillars-Hardebol and co-workers showed that the 

levels of BCL-XL mRNA were not significantly higher in colorectal cancers containing a 20q gain 

compared with colorectal cancers that did not have the amplification.  In contrast, the BCL-XL 

protein levels were elevated in all colorectal cancers that contained the 20q amplification 

compared with those that did not [96].  This relationship between mRNA and protein levels in 

CNV-containing human ES cell lines and colorectal cancer suggests a common neoplastic 

mechanism.  The increased protein levels of BCL-XL in CNV-containing cell lines suggests that 

BCL-XL protein may be regulated post-transcriptionally.  The post-transcriptional regulation of 

BCL-XL is poorly understood. That being said a number of miRNAs have been predicted to 

regulate BCL-XL expression including miR-663, miR-296, miR-1289-1 and miR-298. 
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4. BCL-XL Drives 20q11.21 CNV Selection Through Increased Protection Against Stress 

Induced Apoptosis 

 

4.1.  Introduction 

 

Of the three candidate genes located in the minimal amplicon of 20q11.21, BCL-XL is most 

likely the one responsible for the selective advantage of CNV-containing cells.  Chapter 3.2.1 

shows that CNV containing cells have a marked increase in growth rates which can be 

mimicked by over-expressing BCL-XL in control cell lines.  The difference in growth rates 

observed is not a result of faster cell cycling times or increased cells undergoing mitosis.  The 

four cell lines show very similar division times both between different human ES cell lines and 

between control and CNV cells within those cell lines.  The cell cycle distribution however 

showed slight differences between control and CNV cell lines.  CNV-containing cells show 

decreased populations of cells in S-phase, which is striking, as one would expect that cultures 

growing faster would contain more cells in S-phase.  However, these subtle differences do not 

explain the marked difference in growth rate between control and CNV-containing cell lines.  

The selective advantage is therefore working on a different aspect of stem cell behaviour.  The 

obvious place to start with BCL-XL being an anti-apoptotic gene is the survival of CNV-

containing cells. 

 

Intrinsic (or mitochondrial) apoptosis is initiated as a response to intracellular stimuli including 

but not limited to DNA damage, oxidative stress and increased cytoplasmic Ca2+ [104].  In 

normal circumstances lethal signals are counter-balanced by pro-survival proteins which help 

to sequester and translocate death signals away from the mitochondria.  When the balance is 

disrupted and pro-apoptotic signals accumulate, the mitochondrial outer membrane becomes 

permeabilized resulting in dissipation of mitochondrial functions and release of cytotoxic 
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proteins into the cytoplasm [105].  This process is largely regulated by the B-cell lymphoma 2 

(BCL-2) family of proteins, which contain members with both pro-apoptotic and pro-survival 

functions.  The BCL2 family members interact to maintain the balance between survival and 

death, and can be separated into subfamilies based on the structural differences in their BCL-2 

homology (BH) domains [106].  The anti-apoptotic subfamily comprises of BCL-2, the long 

isoform of BCL-2-like 1 (BCL-XL), BCL-2 related gene A1 (A1), myeloid cell leukemia 1 (MCL-1) 

and BCL-W, each containing four BH domains (BH1-4).  The anti-apoptotic BCL-2 members 

localize mainly to the outer mitochondrial membrane (OMM) but are also present on the 

membrane of endoplasmic reticulum and in the cytosol.  The pro-apoptotic subfamily can 

further be divided into two groups, the effector proteins, BCL-2-associated X protein (BAX) and 

BCL-2 antagonist or killer protein (BAK) and BH3-only proteins.  The effector protein members 

contain three distinct BH domains (BH1-3) lacking the BH4 domain and are essential for 

inducing permeabilization of the OMM [107].  The effector proteins form homo-oligomeric 

pores, which allow the release of cytochrome c and other apoptogenic molecules.  Anti-

apoptotic members act by sequestering BAX/BAK and translocating them away from the OMM 

[108].  The third subfamily, the BH3-only proteins such as BCL2-like protein 11 (BIM, also 

known as BOD), BCL2 antagonist of cell death (BAD) and BCL2 modifying factor (BMF) are pro-

apoptotic proteins that inhibit the anti-apoptotic functions of BCL2 and other apoptotic 

members through direct binding.  Once BH3-only members bind anti-apoptotic members, the 

effector proteins are de-repressed and able to induce apoptosis through OMM 

permeabilization [106]. 

 

The BCL2L1 gene encodes two splice variants, BCL-XS and BCL-XL which exhibit pro-apoptotic 

and anti-apoptotic functions respectively[109].  In undifferentiated human ES cells BCL-XL is 

the dominant isoform (Figure 2).  The main role of BCL-XL is to promote cell survival via the 

translocation of BAX away from mitochondrial membrane and into the cytosol[108].  BCL-XL 
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also promotes cell survival through direct inhibition of p53[110].  This regulatory network 

between anti-apoptotic BCL2 family members and their targets creates a delicate balance, 

which is poised to undergo rapid apoptosis should pro-apoptotic signals increase through 

cellular stresses.  It is therefore not surprising that increased levels of BCL-XL in human ES cells 

following the amplification of 20q11.21 would increase the survival of CNV-containing cells.    

 

Using time-lapse analysis to accurately measure the time between cell divisions raised two 

intriguing points, firstly that there were more divisions occurring in the CNV-containing cells 

and secondly, that many of the control cells were dying before dividing or their progeny were 

dying before their second cell division resulting in fewer events in control cells compared to 

CNV-containing cells.  
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4.2. Results  

 

4.2.1. Increased Protection to Stress Induced Apoptosis of CNV Containing Cells 

 

The difference in cell cycle times determined by population doubling and time-lapse can be 

explained by increased cell death in control cell lines during culture.  Individual cell fates were 

mapped using time-lapse imaging following single cell plating (Supplementary Movies 1-8).  

Cells were scored on one of five outcomes: 1. Following plating the cell dies before division, 2. 

The cell divides and both daughter cells die within the first 24 hours of plating, 3. The cell 

neither dies nor divides, 4. The cell divides and one of the daughter cell survives the first 24 

hours, 5. The cell divides and both daughter cells divide.  Five cells were picked at random 

from 20 fields to generate a true representation of each cell line (100 events).  Using this 

scoring system, there were marked differences both between different cell lines and between 

control and CNV within a given cell line (Figure 12).  With the exception of the HES3-CNV cell 

line the highest proportion of cells died within the first 24 hours without dividing.  The HES3 

cell line showed the greatest difference between control and CNV cell lines. More than half 

(58%) of control cells died within the first 24 hours without making a division, of the 32% cells 

that survived to make a division, only 18% of divisions contained at least one surviving 

progeny.  This highlights the stress that single human ES cells are subjected to during re-

plating.  In stark contrast, only 26% of cells died without dividing, less than half seen in the 

HES3-control cell line.  Out of the 70% of cells that survived to make a cell division, 64% of 

events had at least one surviving daughter cell, twice as many as its control cell line.  The other 

cell lines followed a similar trend, on average, 70% of all control cells died without making a 

cell division compared with 41% of CNV cells.  An average of 24% of control cells survived to 

make a cell division with only 11% of events producing at least one surviving daughter cell.  

When compared to CNV cells, in which 50% of cells divided and 37% of events showed at least 
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one surviving progeny.  These results demonstrate the high survival rate of cell lines containing 

the CNV.  With over three times as many successful cell divisions with surviving daughter cells 

it is easy to see how the CNV-containing cells out-compete diploid cells so rapidly. 

 

To explore this finding further, the levels of apoptosis were monitored following single cell 

passage of human ES cells (Figure 13).  The four different cell lines were dissociated to single 

cells and seeded at 1x105 cells/cm2, this density was chosen as it represented a routine 

passaging density of a 1:3 split ratio.  The levels of cleaved caspase3 (active form and marker 

of early apoptosis) were measured using flow-cytometry over the first 24 hours following 

seeding.  At the zero hour time point there was little difference between the control and CNV 

lines that displayed on average 5% and 3% apoptosis respectively.  Increased apoptosis was 

detected in control cells as early as 3 hours post-seeding.  At this point 13% of cells were 

undergoing apoptosis whereas only 7% of CNV cells were positive for cleaved caspase3.  This 

trend continued with increasing time, at 12 hours post-seeding, 52% of control cells were 

positive for cleaved caspase3.  In contrast, only 25% of CNV cells were apoptotic.  This again 

highlights the increased survival of CNV cells following cellular stress.  The final time-point of 

24 hours saw 62% of control cells undergoing apoptosis, more than half of the initial seeding 

density.  Only 33% of CNV cells were positive for cleaved caspase3, a third of the culture.  

There were differences observed between the different cell lines, of the four CNV cell lines, 

HES3 showed the least apoptosis after 24 hours followed by H1, Shef5 and ESI-035 showed 

similar levels at 24 hours.  Of the four control cell lines, HES3 showed the least apoptosis after 

24 hours, followed by H1 and Shef5 cell lines, which displayed similar levels of caspase3.  The 

ESI-035-control cell line contained the most apoptotic cells, this was also observed in the ESI-

035-HM13 and ESI-035-ID1, which contained very similar levels of apoptotic cells after 24 

hours.  The ESI-035-BCL-XL cell line contained very little apoptotic cells, with only 4% of cells 

positive at 24 hours.  
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4.2.2. Chemical Inhibition and Inducible Knock-Down of Bcl-xL 

 

The increased growth capacity of CNV-containing cells can be attributed to the pro-survival 

properties of BCL-XL.  The previous experiment showed that CNV-containing cells are more 

robust than their control counter-parts, particularly when seeded as single cells.  Chemical 

inhibition and knock-down studies were conducted to further investigate the effect BCL-XL had 

on the survival of CNV containing cell lines.  The small molecule ABT-263 is a Bad-like BH3 

mimetic that inhibits the function of BCL-XL, BCL-2 and BCL-W.  ABT-263 has a higher affinity 

for BCL-XL (<=0.5nM Ki) compared with BCL-2 and BCL-W (<=1nM Ki).  Each cell line was plated 

at clonal densities (1x104 cells/cm²) on matrigel-coated plates in mTeSR.  The mTeSR was 

supplemented with varying levels of ABT-263 (50nM, 100mM, 250mM and 1000mM).  Control 

and CNV cell lines were also plated without the presence of ABT-263.  The cells were cultured 

for 5-7 days in the presence of the inhibitor. 

 

The difference in clonogenicity between control and CNV cell lines in the absence of ABT-263 

was striking, the CNV containing cell lines were almost confluent whereas the wells containing 

control cells had very few colonies (Figure 14).  These results are consistent with the 

population doubling rates observed in section 3.2.3, at the lowest seed density of 2x104 

cells/cm² the HES3-CNV cell line displayed the highest population doubling rates followed by 

the H1, ESI-035 and Shef5 CNV cell lines.  The control cells also followed a similar trend to the 

results from section 3.1.5 with all cell lines displaying very low population growth rates.  Upon 

treatment with ABT-263 the cloning efficiency of CNV containing cell lines could be lowered 

with increasing concentrations of the inhibitor.  The CNV cell lines displayed similar cloning 

efficiencies to the control cell lines at approximately 250nM ABT-263. 
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To verify this result, an inducible BCL-XL knock-down cell line was generated using the Tet 

Repressor (TetR) pSUPERIOR system (Figure 15A). The system utilises two plasmids, one 

containing the TetR gene driven by the expression of the CAG promoter.  The TetR protein 

contains an N-terminus SV40 nuclear localisation signal (nls) promoting the import of TetR into 

the nucleus.  The second plasmid contains the short-hairpin RNA interference (shRNAi) 

sequence that is driven by a modified H1 promoter.  The H1 promoter contains a TetO2 (TO) 

sequence that is silenced by binding of TetR protein homodimers that bind with high affinity.  

When the two plasmids are co-transfected into human ES cells grown in the absence of 

doxycycline, the shRNAi expression is suppressed by the over-expression of TetR.  When 

doxycycline is added to the culture medium the molecules bind TetR protein causing a 

conformational change that inhibits the binding of TetR to the TO element.  This results in the 

de-repression of the H1 promoter and subsequent expression of the shRNAi. 

 

The H1-CNV cell line was used to create the inducible knock-down of BCL-XL.  The 

TetRnls.pCAG plasmid was transfected into the cells via nucleofection.  Stable transfectants 

were selected using puromycin and the clone with the highest TetR protein levels was 

selected.  The cell line was then transfected with the pSUPERIOR.BCL-XLshRNAi construct also 

using nucleofection.  Stable lines were generated using neomycin which is expressed 

independently of the silenced H1 promoter.  100ng/mL of doxycycline was sufficient to 

decrease the protein levels in H1-CNV cells to control levels (Figure 15B).  The H1-CNV cell line 

was cultured in mTeSR supplemented with 100ng/mL doxycycline for 96 hours to reduce the 

levels of BCL-XL to control levels.  The cells were then dissociated to single cells and plated at 

8x104 cells/cm2 in matrigel-coated 6-well plates.  This density represented the highest density 

used in population doubling experiments (Section 3.2.3).  The cells were then cultured for 96 

hours in the presence of doxycycline (100ng/mL) and final cell density was determined (Figure 

15C).  H1-CNV cells that had not been treated with doxycycline showed similar growth rates to 
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those observed in the population doubling experiment (Section 3.2.3).  In the presence of 

doxycycline the population-doubling rate of H1-CNV cells was drastically reduced, comparable 

to that observed in H1 control cell line.  This result confirmed BCL-XL as the main candidate 

driving the selection of CNV cells. 

 

4.2.3. ROCK Inhibitor Alleviates The Selective Pressure of CNV 20q11.21 

 

The ESI-035, ESI-035-CNV and ESI-035-BCL-XL cell lines were seeded at 2x104 cells/cm2 in the 

presence or absence of ROCK inhibitor (Y-27632).  The media was changed at 24 hours post-

seeding and cultured for five days (Supplementary Movies 9-14).  Total cell counts were 

measured and the number population doublings calculated (Figure 16).  Control cells were 

unable to make a population doubling in the absence of ROCK inhibitor consistent with results 

in section 3.2.3.  The CNV and BCL-XL over-expressing cell lines displayed increased growth 

rates with population doublings of 2.3 and 2.5 respectively.  The addition of ROCK inhibitor for 

the first 24 hours of cell seeding increased the population growth rates of the Control cell line 

to that observed in CNV and BCL-XL (3.8, 4.4 and 4.3 respectively). 
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cells reduces cloning efficiency similar to control cell lines

The cloning efficiency of CNV-containing cell lines could be reduced using

Control (green rimmed well) and CNV (red rimmed wells) cell lines were seeded
at 1x104 cells/cm2 and cultured for 5-7 days in the presence/absence of ABT-263.

ABT-263 the CNV-containing cell lines exhibited cloning efficiencies similar to
control cells.
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Figure 15.  Inducible knock-down of BCL-XL reduces
growth rates of CNV-containing cells

BCL-XL expression levels. Tet Repressor (TetR) – pSUPERIOR system, takes advantage

TetR by direct binding therefore allowing the expression of BCL-XL-shRNAi.
Knock-down can then be achieved by removing doxycycline {Zafarana, 2009 #107}.
(B) Western blot analysis of BCL-XL using whole cell lysates prepared from the
H1-CNV-BCL-XL-shRNAi cell line in the absence (Dox-) and presence (Dox+) of

2) of the H1-CNV-BCL-XL-shRNAi

at 8x104 cells/cm2.  Cells cultured in the presence of doxycycline displayed
significantly reduced cell numbers compared to those not treated.  Errors bars

significance by two-tailed t-tests: p ≤ 0.01 (**).
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4.3. Discussion 

 

The high prevalence of increased 20q11.21 DNA copy number in human ES cell lines can be 

explained by the huge selective advantage that the CNV provides.  This selective advantage can 

be attributed to BCL-XL, which increases the cells resistance to apoptosis following cellular 

stress.  Increased BCL-XL activity through increased copy number or positive regulation has 

been implicated in a number of human cancers. Being a potent inhibitor of apoptosis, BCL-XL 

increases the survival of malignant cells and promotes metastasis [111-115].  Nguyen and co-

workers also demonstrated the selective effect that increased BCL-XL expression has on 

human ES cell cultures.  The group showed that BCL-XL is important for survival of human ES 

cells following loss of cell-cell contact [116].  Upon dissociation to single cells the RhoA/ROCK 

(Rho-associated protein kinase) pathway is disturbed resulting in phosphorylation of RhoA and 

ultimately cell death via apoptosis [117].  The anti-apoptotic properties of BCL-XL inhibit 

apoptosis by sequestering pro-apoptotic signals in the cytosol and translocating them away 

from the mitochondrial membrane.  Hence increased BCL-XL levels in CNV-containing cells will 

decrease the sensitivity of cells to RhoA/ROCK mediated apoptosis. 

 

Following single cell dissociation and re-plating, CNV-containing cells exhibit increased survival, 

which helps the culture to re-establish faster than control cell lines.  When plated as single 

cells, the majority of control cells die within the first 24 hours without making a cell division.  

Of the small percentage of cells that survive to make a cell division, the majority of cases result 

in the death of both daughter cells.  There were a very small percentage of cells that survived 

the first 24 hours of plating and divided with at least one daughter cell surviving.  In stark 

contrast, the CNV cell lines showed reduced numbers of cells dying within the first 24 hours 

without making a division when compared with control cells.  Of the cells that survived to 

make a cell division, there was a higher proportion of cases in which at least one daughter cell 
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survived.  This data is consistent with Barbaric and colleagues[74], the group found that upon 

single cell plating of human ES cells there existed bottle-necks in the culture of normal, diploid 

cells that were overcome in karyotypically abnormal, culture-adapted cells.  Firstly, upon 

plating culture-adapted cells were more likely to survive than normal cells.  Secondly, of the 

cells that survived plating, a lower proportion of normal cells re-entered the cell cycle 

compared with culture-adapted cells.  Both of these bottlenecks highlight the shortfalls in 

human ES cell culture conditions and can explain the speed at which abnormal cells take over 

human ES cell cultures.  These two bottlenecks can be alleviated via the addition of ROCK 

inhibitor (γ-27632), which reduces apoptosis following single cell dissociation and increases 

cloning efficiencies of human ES cells [118].  Barbaric and co-workers found that addition of 

ROCK inhibitor increased the survival of normal cells but had no effect on the survival of 

culture-adapted cells following single cell plating[74].  Results from section 4.2.3 show similar 

findings although CNV and BCL-XL over-expressing cells also show increased growth rates in 

the presence of ROCK inhibitor suggesting that other karyotypic changes (notably 12p and 17q) 

may provide a selective advantage via different mechanisms. 

 

These findings show that BCL-XL increases the survival of cells containing the 20q11.21 

amplification through increased protection against caspase-mediated apoptosis.  It is therefore 

important to monitor human ES cells for amplification of 20q11.21 and specifically BCL2L1, 

particularly if they are to be used in toxicology screens. 
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5. The Effect Of 20q11.21 Amplification On Differentiation 

 

5.1. Introduction 

 

Efficient differentiation of human pluripotent stem cells into all three primary germ layers is 

essential for their eventual use in cell replacement therapies.  Understanding the early stages 

of lineage specification is fundamental to developing directed differentiation protocols into 

terminally differentiated, functional cells.  Human ES cell populations are highly 

heterogeneous, even for markers of the undifferentiated phenotype.  Human ES cells can 

express different levels of SSEA3 and POU5F1 in culture, which may suggest they are in 

different states of differentiation or just fluctuate between high and low expression[75, 119, 

120].  The dynamics of this phenomenon are not fully understood but may be integral to 

understanding differentiation in human ES cells.  This heterogeneity may also be a result of 

non-optimal culture conditions, culture methods that create homogeneous populations of 

human ES cells may be better for routine culture and to increase the efficiencies of current 

directed differentiation methodologies.  There has been much debate as to the mechanisms 

behind directed differentiation.  It seems possible that once induced to differentiate towards a 

specific lineage (i.e directed differentiation) all human ES cells will behave similarly and 

progress down a particular path regardless of their initial expression patterns.  It has been 

suggested that inducing differentiation may not be directed at all but rather results from 

selection of those cells that are able to make a specific lineage.  This may be the case in terms 

of endoderm differentiation where there is increased cell death upon induction[121, 122].  

 

To investigate the mechanisms behind differentiation, the CNV and BCL-XL over-expressing cell 

lines offer interesting tools to address the question of whether directed differentiation is truly 

directing cell towards a particular lineage or merely selecting those cells that are able to 
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progress towards a particular lineage.  The hypotheses are either: 1) addition of an inducer 

causes cells to differentiate towards a specific lineage (directed differentiation) or 2) the cells 

spontaneously differentiate along many different lineages with the addition of an inducer but 

rather kills cells that have not proceeded towards a particular lineage (selected differentiation) 

(Figure 17).  If the first hypothesis were true, one would expect the anti-apoptotic properties 

of BCL-XL would have no influence on the outcome of differentiation.  If the second hypothesis 

were true, then blocking apoptosis would affect the pattern of differentiation, either allowing 

the differentiation of other lineages or retention of undifferentiated cells.  These two 

hypotheses may not be mutually exclusive and could potentially converge.  The differentiation 

of cells containing the 20q11.21 amplification has not yet been investigated; there may be 

other genes present in the amplicon that affect the differentiation of human ES cells. 
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Figure 17  Model showing the possible mechanisms
behind directed differentiat ion

It has been widely debated whether directed differentiat ion is truly di recting all
cells towards a particular lineage or whether specific culture conditions select
those cells that are able to differenti ate towards a particular lineage. (A) Directed
differentiat ion: the h eterogeneity of human ES cell cultures is irrelevant, during
the early stages of differentiat ion ES cells are able to fluctu ate between diff erent
sub-states and progress to make specific lineages.  Cell death is spontaneous and
unrelated to culture-conditions.  (B) Selecting cells capable of specific lineages: the
heterogeneity of human ES cell cultures represents cells capable of different
lineages, in the early stages of differentiat ion cultu re conditions select for those
cells capable of a specific lineage.  Increased cell death is a result of selection,
cells unable to make a specific lineage are removed from the culture.
(C) Increased survival in culture-adapted cells: if differentiat ion is a result of
selection, the increased survival of culture-adapted cells could permit the
differentiat ion of other linea ges despite culture conditions.

Directed Differentiat i on of Human ES Cells

Heterogeneous
stem cell

population

Early stages of lineage
specific diff erentiat i on

Despite heterogeneity all
cells are capable of

differentiat i on

Late stages of lineage
specific diff erentiat i on

Cell death occurs
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differentiat i on conditi ons
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Early stages of lineage
specific diff erentiat i on

Late stages of lineage
specific diff erentiat i on

Cell death occurs in subsets
of cells due to

differentiat i on conditi ons

Only cells able to make
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differentiat i on

Selection of Lineage Primed Cells in Directed Diff erentiat i on
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stem cell
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(Culture-adapted)

Early stages of lineage
specific diff erentiat i on
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Selected Differentiat i on:Ef f ect of Increased Survival
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5.2. Results 

 

5.2.1. Spontaneous and Directed Differentiation via Formation of Embryoid Bodies 

 

Three cell lines, ESI-035 control, ESI-035-CNV and ESI-035-BCL-XL were differentiated via the 

formation of embryoid bodies.  The cell lines were subjected to four conditions.  Neutral 

conditions used only APEL media with no other growth factors or inhibitors.  This condition 

permits spontaneous differentiation into all three germ layers.  The three remaining conditions 

contained additional growth factors and inhibitors to direct differentiation into the three 

primary germ layers.  Ectoderm media contained of APEL supplemented with bFGF 

(100ng/mL), DMH-1 (1uM) a BMP inhibitor that promotes neurogenesis in human ES cells and 

SB431542 (10uM) a small molecule that blocks differentiation towards mesendoderm lineages 

by disrupting TGF-β/activin/nodal signal transduction [123] [124].  Mesoderm differentiation 

conditions contain APEL supplemented with Activin A (20ng/mL) and BMP4 (20ng/mL). 

Differentiation towards endoderm is achieved by supplementing APEL with Activin A 

(100ng/mL) and BMP4 (1ng/mL).  Mesoderm and endoderm conditions contain identical 

components however at differing concentrations, higher Activin A and low BMP4 

concentrations are required for endoderm specification whereas the reverse is needed for 

mesoderm differentiation.  EBs were cultured for ten days, images were taken from four wells 

selected at random and RNA was extracted by pooling all EBs from the same condition. 

 

The three cell lines formed EBs for all four differentiation conditions following aggregation in 

96-well U-bottom wells (Figure 18, Table 6).  Under neutral conditions the control cell line 

formed cystic EBs that were on average 899±87nm in size with evidence of cell death 

surrounding the EBs.  The CNV cell line generated very uniform, non-cystic EBs that were 

morphologically different to the control EBs, the EBs were dense and smaller than control EBs 
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(648±20nm) with minimal cell death.  The BCL-XL cells formed highly irregular, cystic EBs under 

neutral conditions, although morphologically similar to control than CNV EBs, the EBs were 

much larger than both control and CNV (1308±142nm).  Under ectoderm differentiation 

conditions both control and CNV formed similar EBs, EBs were tightly packed, spherical in 

shape, similar in size (660±23nm and 694±20nm respectively) and minimal cell death was 

observed.  The BCL-XL over-expressing cell line formed similar EBs, but the cells were not as 

tightly packed and were slightly irregular when compared to the almost perfect spherical 

shape observed in control and CNV cell lines.  The EBs were also slightly larger than control and 

CNV cells with an average size of 762±109nm.  The differentiation of the control cells towards 

a mesodermal lineage resulted in increased cell death when compared with neutral and 

ectoderm conditions, EBs appeared small (466±38nm) and cystic.  CNV cells produced slightly 

larger mesoderm EBs (785±20nm) when compared with control cells although cell death was 

also observed.  EBs also appeared slightly cystic but cells appeared more tightly packed than 

control cells.  BCL-XL over-expressing cells produced large (1115±104nm) cystic EBs in 

mesoderm conditions with little cell death.  EBs were very irregular in shape with regions of 

cystic and tightly packed cells.  The differentiation towards endoderm in control cells also 

yielded very small, spherical EBs (398±59nm) with evidence of increased cell death. The CNV 

cells produced very uniform EBs under endoderm conditions resembling those seen under 

neutral and ectoderm conditions, EBs appeared spherical with small nodules.  EBs were larger 

than those seen in the control cell line with an average of 671±20nm with minimal cell death 

observed.  BCL-XL again produced the largest EBs under endoderm conditions averaging 

830±109nm.  EBs were irregular in shape, containing cystic and dense regions resembling 

those observed under neutral and mesoderm conditions. 
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Figure 18.  Differentiat ion of human emb ryonic stem cells
via the formation of embryoid bodies

Four representative images of day 10 EBs formed from (A) ESI-035, (B) ESI-035-CNV
and (C) ESI-035-BCL-XL.  The EBs were subjected to four culture conditions:
(i) neutral- allowing the spontaneous differentiat ion towards multiple lineages,
(ii) ectoderm, (iii) mesoderm and (iv) endoderm.  Scale bars = 1000μm.

A

B

C
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Table 6.  The sizes and descriptions of EBs formed from
ESI-035 Control, CNV and BCL-XL over-expression cell lines

The table shows the average sizes of EBs formed from ESI-035 Control,
CNV and BCL-XL over-expressing cell lines and a description of their
morphology.
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This data suggests that the presence of the 20q11.21 CNV or the over-expression of BCL-XL 

does influence the pattern of differentiation of human ES cells.  The greater size of the EBs 

derived from the CNV and BCL-XL over-expressing cells suggests that these differences in part 

might be due to the anti-apoptotic effects of BCL-XL. 

 

Total RNA was harvested from EBs following 10 days of differentiation, the RNA was analysed 

using qPCR to further assess the differentiation of the three cell lines (Figure 19).  The ddCT 

values were colour-coded based on expression level, green representing the highest 

expression and red representing low expression.  In the undifferentiated condition as one 

would expect OCT4 is expressed at a high level, similar to that of GAPDH (reference gene).  

Under neutral conditions the control line expressed increased levels of mesoderm and 

endoderm markers but not ectoderm.  In contrast the CNV showed increased expression of 

mesoderm and ectoderm markers with the BCL-XL over-expressing cell line showing slightly 

increased expression of all three germ layers.  As the neutral condition contains only APEL 

medium and no added growth factors the cells are induced to differentiate spontaneously.  

This being the case one would expect all three lineages to be present.  Under directed 

differentiation conditions towards ectoderm, the pluripotency gene OCT4 is down-regulated.  

This was observed in all cell lines and seemed most prominent in the BCL-XL and CNV cell lines 

indicating that all cell lines were differentiating.  The endoderm markers SOX17 and GATA6 

were also down-regulated under ectoderm conditions.  A slight increase in the levels of 

mesoderm markers PECAM and CD34 was also observed in the control and CNV cell lines but 

not the BCL-XL over-expressing cell line.  As one would expect the neural marker PAX6 was 

highly expressed in all cell lines following ectoderm differentiation.  Surprisingly the expression 

levels of COL1A1, a marker of bone and skin remained unchanged or down-regulated in 

ectoderm conditions.  Under mesoderm conditions, the control cell line showed increased 

expression of all three lineages, possibly highlighting the fact that there is cross-over of the 
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signalling pathways involved in lineage specification.  This was not observed in CNV or BCL-XL 

cell lines, GATA6 showed increased expression but not SOX17, which remained at similar levels 

to undifferentiated cells.  The levels of mesoderm markers PECAM and CD34 were slightly 

higher than undifferentiated cells but were not as high as control cells which expressed almost 

100-fold and 200-fold more than undifferentiated cells respectively (CNV: 4-fold and 5-fold, 

BCL-XL: 9-fold and 10-fold respectively). The CNV cell line also showed increased expression of 

COL1A1 but not PAX6 under endoderm conditions, the reverse was observed in the BCL-XL 

over-expressing cell line.  The control line under endoderm conditions did not down-regulate 

OCT4 but showed increased expression of SOX17 and GATA6, the mesoderm marker PECAM 

was also up-regulated along with the ectoderm markers PAX6 and COL1A1.  This may highlight 

the need of supporting cells to efficiently differentiate towards certain lineages.  In contrast 

the CNV and BCL-XL cell lines showed down-regulation of the endoderm markers and similar 

levels of mesoderm markers to undifferentiated cells.  Up-regulation of PAX6 was also 

observed in CNV and BCL-XL cells under endoderm conditions.  COL1A1 expression was slightly 

higher in CNV cells but not BCL-XL cells, which showed lower expression. 

 

The larger size of EBs in CNV and BCL-XL over-expressing cells suggests that apoptosis plays a 

part in the ability of cells to differentiate into particular lineages, notably endoderm.  For 

example, EBs formed from ESI-035 control cells under endoderm conditions showed increased 

cell death but increased expression of SOX17 and GATA6 compared with CNV and BCL-XL over-

expressing cells.  EBs formed from these cell lines displayed minimal cell death but did not 

express the endoderm markers SOX17 or GATA6.  This could be a result of inner cells not 

receiving stimulus from the added growth factors and cell death is necessary for endoderm to 

develop. 
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Figure 19.  mRNA gene expression in EBs formed from
ESI-035 Control, CNV and BCL-XL over-expressing cell lines

ESI-035 Control, CNV and BCL-XL over-expressing cell lines display different
lineage-specific gene expression patt erns when induced to diff erent i ate
(i) spontaneously or directed towards (ii) ectoderm, (iii) mesoderm and
(iv) endoderm. CT values of POU5F1 (pluripotency), PAX6 and COL1A1 (ectoderm),
PECAM and CD34 (mesoderm) and SOX17 and GATA6 (endoderm) were normalised
to the reference gene GAPDH.  The values displayed are ddCT values, calculated by
subtracting the dCT values of undiff erent i ated samples from diff erent i ated samples.
The values are colour coded based on the level of expression (red-green,
low-high expression).

POU5F1 PAX6 COL1A1 PECAM CD34 SOX17 GATA6

Control 0.14 0.19 1.20 -1.47 -1.47 -3.00 -1.78

CNV 0.30 -3.24 -3.35 -2.14 -2.37 0.15 -0.33

BCL-XL 1.36 -4.07 2.92 -0.48 -0.64 -1.15 -0.52

Neutral

POU5F1 PAX6 COL1A1 PECAM CD34 SOX17 GATA6

Control 4.23 -3.86 2.28 -1.30 -1.60 9.99 5.81

CNV 6.21 -8.24 -0.26 -3.01 -2.41 11.23 7.82

BCL-XL 8.78 -5.28 4.03 0.99 0.00 10.77 7.94

Ectoderm

POU5F1 PAX6 COL1A1 PECAM CD34 SOX17 GATA6

Control 1.87 -2.61 -3.24 -6.56 -7.78 -3.41 -4.74

CNV -0.48 0.05 -3.27 -2.24 -2.35 0.37 -1.25

BCL-XL 0.75 -3.91 0.43 -3.17 -3.40 -1.41 -2.01

Mesoderm

POU5F1 PAX6 COL1A1 PECAM CD34 SOX17 GATA6

Control -0.29 -2.30 -0.89 -4.18 0.75 -4.64 -4.17

CNV -0.71 -1.95 -1.42 -0.99 -0.30 1.54 1.58

BCL-XL 0.24 -3.45 2.76 0.99 1.95 1.63 1.99

Endoderm
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5.2.2. Directed Monolayer Differentiation Towards Definitive Endoderm 

 

ESI-035 control, ESI-035-CNV and ESI-035-BCL-XL were also subjected to directed 

differentiation towards definitive endoderm.  Cells were seeded at 3x104 cells/well in 24-well 

plates coated with matrigel in mTeSR containing Y-27632 (1:1000) and left to attach for 24 

hours.  The mTeSR was aspirated and cells were washed once with sterile PBS (1X).  The cells 

were then fed with endoderm inducing medium (see Section 2.24) for five days.  The cells lines 

displayed similarities and differences in their differentiation in terms of morphological changes 

(Figure 20) (Supplementary Movies 15-17).  Within the first 6 hours all cell lines maintained ES 

cell-like colony morphology, with increased evidence of cell death in the control cell line when 

compared with the ESI-035 CNV and ESI-BCL-XL cell lines.  The cell lines continued to display 

compact colony morphology until 24 hours.  After 24 hours the cells started to disperse into 

gaps between colonies with evidence of increased proliferation in the ESI-035 CNV and BCL-XL 

over-expressing cell lines. 

 

The cells were stained at day five for the pluripotency marker POU5F1, the definitive 

endoderm marker SOX17 and counter-stained with Hoechst 33342 to stain DNA (Figure 21).  

Using the IN-Cell Analyzer 2000 the number of positive cells per field was generated (Table 7).  

Control cells displayed the lowest cell density following five days treatment with an average of 

827±79 cells/field.  Of the cells surviving after five days 15±8% were positive for POU5F1 and 

56±10% stained positive for SOX17.  In contrast, there were more surviving cells in the ESI-035 

CNV cell line, with an average of 1061±46 cells/field.  There were less POU5F1 (11±4%) and 

SOX17 (46±8%) when compared with the Control cell line.  The BCL-XL over-expressing cells 

showed the highest final density with an average of 793±91 cells/field.  The number of cells 

staining for POU5F1 and SOX17 were also higher than both Control and CNV cells with an 

average of 27±9% and 68±8% respectively.  These results demonstrate that although there are 
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subtle differences between control and CNV cells with respect to endoderm differentiation, 

the CNV cells can make endoderm just as efficiently.  Whether there are other lineages present 

in the culture would need further investigation.  This result also disproves the hypothesis that 

directed differentiation is selecting cells that are more inclined to make a certain lineage and 

will undergo cell death in other conditions.  This is highlighted by the BCL-XL over-expressing 

cells, which show increased cell numbers following five days differentiation but also contain 

the highest proportion of SOX17 positive cells. 
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The table shows the average number of cells per field (40 fields) that stained
for Hoechst 33342 (DNA), POU5F1 (pluripotency marker) and SOX17
(endoderm marker).  Other represtent the percentage of cells that were
negative for either POU5F1 or SOX17 indicatin th at they are not stem cells or
definitive endoderm respectively.

Table 7. Summary of definitive endoderm diff erenti at ion
in ESI-035 Control, CNV and BCL-XL over-expressing cell lines

ESI-035
Control

ESI-035
CNV

ESI-035
BCL-XL

Total Cell
Number

827±79 1061±46 1158±63

Number of
POU5F1+ Cells

125±68 (15±8%) 118±41 (11±4%) 323±109 (27±9%)

Number of
SOX17+ Cells

466±81 (56±10%) 489±89 (46±8%) 793±91 (68±8%)

Other (%) 29% 43% 5%
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5.3. Discussion 

 

The ability to differentiate human ES cells into specific cell types is key to their eventual use in 

cell replacement therapies.  It has not been widely investigated whether all human ES cell lines 

have the same capacity of differentiation and it has been shown that even in populations of 

cells there is heterogeneity even with respect to the pluripotency gene POU5F1[75, 119, 120].  

It has also been shown that culture-adaptation leads to altered differentiation patterns. For 

example, Fazelli and co-workers[76] found that culture-adapted human ES cells exhibited 

different differentiation potential when compared with their normal counter-parts.  This 

highlighted that cells with decreased differentiation potential could be driving selection of 

variant human ES cells.  It is also possible that certain chromosomes that drive culture-

adaptation of human ES cells through increased proliferation or survival may contain other 

‘hitch-hiker’ genes.  These genes may reduce a cells tendency to differentiate, increasing the 

selective advantage of the acquired chromosome or restrict the differentiation towards 

particular lineages.  For example, cells differentiating towards endoderm have been shown to 

produce and release BMPs, potentially inducing differentiation of adjacent cells. 

 

EBs have been used extensively to demonstrate the developmental potential of pluripotent 

cells.  Using this method the ESI-035 control, CNV and BCL-XL cell lines displayed differences 

both when induced to differentiate spontaneously and towards individual germ layers.  Under 

neutral conditions the control cell line formed irregular EBs that expressed mesendodermal 

but no ectodermal markers.  The CNV produced very uniform spherical EBs, similar to those 

observed in the CNV under ectoderm and endoderm conditions and in the control line under 

ectoderm conditions.  The EBs expressed high levels of ectodermal and low levels of 

mesodermal markers.  In the BCL-XL cell line, neutral EBs looked highly irregular with both 

dense and cystic patches, similar to those observed in BCL-XL EBs under mesoderm and 
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endoderm conditions.  The EBs expressed high levels of ectodermal and low levels of 

mesendoderm markers.  In neutral conditions the CNV and BCL-XL cells were more similar than 

the control lines in expression patterns.  Where the control cell line appeared to favour a 

mesendodermal lineage, the CNV and BCL-XL cell lines showed high expression of PAX6, a 

marker of neural differentiation. 

 

Under ectoderm conditions, all cell lines behaved similarly, the morphology of EBs was almost 

identical between control and CNV EBs.  EBs formed were spherical and dense, BCL-XL EBs 

were not as uniform as control or CNV lines and were not as tightly packed.  The expression 

patterns of all three lines were also similar with low levels of mesendoderm markers and very 

high levels of PAX6 but not COL1A1. 

 

Differentiation towards mesoderm was more variable between the cell lines, in the control, 

the EBs were small in size and cystic with evidence of cell death.  The EBs formed from control 

cells expressed markers of all three lineages.  The CNV cell line formed larger EBs than the 

control (average: 785±20nm and 466±38nm respectively), cell death was also observed.  The 

CNV EBs expressed low levels of mesendoderm markers and increased COL1A1 expression, 

PAX6 was unchanged in CNV cells.  The EBs formed from BCL-XL over-expressing cells under 

mesoderm conditions were larger than both the control and CNV, were very irregular in shape 

and showed dense and cystic patches.  The EBs showed increased expression of all markers 

with the exception of COL1A1.  The cell lines showed similar expression of lineage markers 

with a few marked differences.  The control and BCL-XL cell lines seemed to have similar 

expression although BCL-XL EBs did not up-regulate COL1A1. The CNV was more distinct from 

the control and BCL-XL cells in that the EBs did not express the definitive endoderm marker 

SOX17 and also did not up-regulate PAX6. 
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Finally, differentiation towards endoderm also showed variation between the cell lines.  EBs 

formed in control cell lines were very small with evidence of mass cell death.  The control cell 

line up-regulated the endoderm markers SOX17 and GATA6 and showed a slight increase in 

PECAM, PAX6 and COL1A1 expression.  The CNV produced slightly larger EBs that looked 

similar to those formed in the neutral and ectoderm conditions.  Surprisingly the CNV EBs 

exhibited down-regulation of the endoderm markers unlike the control cell line, the mesoderm 

markers remained unchanged.  There was increased expression of the ectodermal markers 

PAX6 and COL1A1.  The BCL-XL over-expression cell line again formed irregular shaped EBs that 

appeared both dense and cystic.  Mesendoderm markers were again down-regulated unlike 

the control cell line.  The only marker up-regulated in the BCL-XL EBs was PAX6.  These findings 

imply that the CNV may alter the differentiation patterns of human ES cells, some, but not all 

of the differences between the control and CNV lines are mimicked by over-expressing BCL-XL.  

This suggests that BCL-XL itself may have an effect on the differentiation of human ES cells as 

well as other genes contained within the CNV. 

 

Interestingly, the changes in differentiation patterns of culture-adapted human ES cells have 

only been reported in cell lines containing whole chromosome gains, making potential 

candidates difficult to identify[76].  The 20q11.21 CNV is small, containing a smaller pool of 

genes, the results show that CNV cells show altered differentiation patterns following EB 

formation and to a lesser extent in monolayer differentiation.  This effect cannot be attributed 

completely to the increased survival of cells through BCL-XL protection.  The CNV and BCL-XL 

over-expressing cell lines show similarities in their differentiation, the BCL-XL cell line is more 

akin to the control cells suggesting another gene within the CNV is influencing differentiation. 

 

In conclusion, directed differentiation seems to be directing cells towards a particular lineage 

rather than selecting for lineage-primed cells within a heterogeneous population of stem cells.  
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This is highlighted by the BCL-XL over-expressing cells, which display increased cell survival 

over control cells particularly when differentiated under endoderm conditions both in EBs and 

monolayer.  Although BCL-XL over-expressing cell lines appear to be unable to differentiate 

towards endoderm in EBs they readily differentiate under monolayer conditions, suggesting 

the differences observed between EB and monolayer is a result of inadequate signaling in EB 

formation (being tightly packed with only outer cells being subject to growth factors). 

 

The CNV-containing cell line showed similar differentiation patterns to the BCL-XL over-

expressing cell line possibly due to the increased survival properties of BCL-XL.  When 

differentiated towards endoderm in monolayer conditions the CNV-containing cell line 

displayed subtle differences when compared with control cells.  There were increased cell 

numbers surviving at the end of differentiation but did not show increased SOX17 positive 

cells, which was observed in the BCL-XL over-expressing cell line.  This could be the effect of 

other genes within the 20q11.21 amplicon that effect the differentiation of human ES cells. 
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6. Investigating the role of 20q11.21 CNV in genomic instability of human embryonic stem 

cells  

 

6.1. Introduction 

 

It has been well established that human ES cells acquire non-random genetic changes 

throughout culture in vitro.  However, the mechanism(s) behind the gain of chromosomal 

material in human ES cells remain elusive. Broadly, genetic changes in human ES cells can be 

catagorised as follows: (i) numerical aneuploidies – the gain (trisomy) or loss (monosomy) of 

individual chromosomes, (ii) structural aneuploidies – genetically unbalanced structural 

rearrangements, including derivative chromosomes from translocations, (iii) point mutations 

and (iv) epigenetic changes.   Numerical and structural aneuploidies represent the majority of 

reported genomic changes in human ES cells.  For example, structural aneuploidies were the 

most common type of chromosome abnormality observed in the ISCI project[66], accounting 

for 29 of the 73 (39.7%) individual chromosome abnormalities identified.  The second most 

common abberation was trisomy, which occurred in 27 out of 73 (36.9%) individual 

chomosome abnormalities identified.   

 

One can draw predictions on the origin of chromosomal abnormalities based on the most 

commonly gained chromosomes and how they are observed.  Chromosomes 1 and 17 often 

appear as a result of unbalanced translocations with other chromosomes, intra-chromosomal 

duplication as well as trisomy and isochromosome formation[65, 66].  This suggests that 

structural rearrangements are a product of non-homologous recombination or errors in DNA 

repair mechanisms.  The gain of chromosome 12 is most commonly observed as a whole 

chromosome gain or as an isochromosome suggesting errors in sister chromatid separation 
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during mitosis.  However, it remains unclear whether human ES cells are prone to erroneous 

mitoses. 

 

A key surveillance mechanism responsible for ensuring the correct alignment and segregation 

of sister chromatids during mitosis is the spindle-assembly checkpoint (SAC).  The SAC 

components are highly conserved throughout evolution and consist of the mitotic-arrest 

deficient (MAD) genes, MAD1, MAD2 and MAD3 (BUBR1 in humans), and the budding 

uninhibited by benzimidazole (BUB) genes, BUB1 and BUB3[125].  These proteins localise at 

the kinetochores at metaphase, and accumulate to high levels on those unattached to 

microtubules.  Once the kinetochore is attached to the spindle, SAC proteins are displaced and 

degraded by proteolysis.  The cell is unable to progress to anaphase until all kinetochores are 

attached and under equal tension to opposite poles.  Li and Nicklas[126] showed by 

micromanipulation of chromosomes that just one unattached kinetochore was sufficient to 

delay the onset of anaphase.  Once all chromatids are attached to the microtubules and 

aligned at the spindle equator the irreversible metaphase to anaphase transition is initiated.  

The final separation of sister chromatids is catalysed by separase, a cysteine protease that is 

activated by the anaphase-promoting complex (APC).  The APC is activated by the binding of an 

APC-activator such as Cdc20 or Cdh1, creating specific complexes (APCCdc20 and APCCdh1).  

APCCdc20 is responsible for the activation of separase, which hydrolyses cohesin resulting in the 

separation of sister chromatids[125].  The activity of APC is controlled by sequestering 

activator proteins, at prophase Emi1 binds and inhibits Cdc20.  In prometaphase, Cdc20 is 

sequestered by SAC proteins MAD2 and BUBR1[127].  SAC related proteins are expressed at 

high levels in cancer cells, possibly linked to increased proliferation of these cells and 

misregulation of SAC proteins has been linked with aneuploidy [128].  For example, it has been 

shown that over-expression or knock-down of MAD2 and BUB1 results in premature sister 

chromosome separation, chromosomal bridging and failure to undergo cytokinesis[129].  
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Mantel and colleagues[130] reported that although the SAC is fully functional in human ES 

cells, they fail to prevent polyploidy through re-replication when treated with microtubule 

poisons.  Human somatic cells undergo caspase-mediated apoptosis following prolonged 

mitotic block showing a coupling of SAC and apoptosis.  This SAC-apoptosis coupling seems to 

be absent in human ES cells that showed a high tolerance for abnormal mitotic divisions.  The 

study concluded that the SAC is uncoupled from apoptosis in human ES cells and becomes 

coupled during early commitment to differentiation. 

 

Another key player in regulating the bi-orientation of chromosomes at the spindle equator is 

Aurora B.  The Aurora Kinase family are a group of serine/threonine protein kinases and 

consist of three members, A, B and C, which have different roles in cell division[131].  The 

three members exhibit strong homology, their catalytic domains share 67-76% similarity in 

their amino acid sequences.  Despite this sequence similarity, Aurora A and B have very 

different roles in mitosis[132].  In metaphase Aurora A localises on microtubules close to the 

spindle poles.  Using Aurora A-null mouse embryonic fibroblasts, Cowley and colleagues 

showed that Aurora A it is essential for bipolar spindle formation.  Cells deficient of Aurora A 

displayed delayed mitotic entry and formed a monopolar spindle.  The cells failed to undergo 

metaphase, anaphase or telophase and instead exited the cell cycle without undergoing 

cytokinesis and often initiated mitotic arrest [133].  At prometaphase Aurora B localises at the 

centromere where it functions to attach the centromere to the mitotic spindle.  Aurora B along 

with INCENP (Inner Centromere Protein) and BIRC5 (also known as Survivin) form the 

chromosomal passenger complex (CPC).  The CPC regulates key mitotic events including 

correction of chromosome-microtubule attachment errors, activation of the SAC and 

regulation of cytokinesis[134]. INCENP and Survivin are required for Aurora B localisation and 

in turn Aurora B is required for the correct bi-orientation of sister chromatids.  Disruption of 

Aurora B results in defects in chromosomal alignment and failure to undergo cytokinesis[131].  
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Aurora C is the least studied of the family and is thought to have a similar role to Aurora B.  

Aurora C has been shown to regulate the correct chromosome segregation during meiosis of 

mammalian oocytes[135]. 

 

The increased levels of Aurora kinases in many human cancers (breast, ovarian, colon and 

pancreatic) have been linked with increased genomic instability and proliferation.  This link has 

led to the development of Aurora kinase inhibitors to be used in anticancer therapy either as a 

monothearpy or to increase the efficacy of other treatments such as chemotherapy and 

ionising radiation[136].  AZD1152 is one such small molecule that is rapidly converted into the 

active form AZD1152-HQPA (AZD1152-hydroxyquinazoline pyrazol anilide) following 

administration.  AZD1152 is a potent and specific inhibitor of AURORA B (Ki= 1,369nM) being 

50-fold more selective than for AURORA C (Ki=17nM) and 1000-fold more selective than for 

AURORA A (Ki=0.36nM)[137].  AZD1152 has been shown to cause gross aneuploidy, cell cycle 

disregulation and increased apoptosis in pancreatic and colon cancer cells[136].  The effect of 

AZD1152 on human ES cells has not been studied and could provide a method of forcing 

abberant mitoses in human ES cells to study the effect that increased survival of CNV 20q11.21 

cells has on acquire further mutations. 

 

Dumitru and co-workers[138] reported that human ES cells are primed to undergo rapid 

apoptosis following DNA damage.  The study found that activated BAX localises at the trans 

Golgi network and in response to DNA damage rapidly translocates to mitochondria to initiate 

apoptosis.  This effect may be an in vivo fall back mechanism employed to stop the potentially 

devastating effects of abnormal ES cells progressing through embryogenesis.  The increase of 

BCL-XL in CNV cells may hinder this regulation mechanism by inhibiting BAX initiating apoptosis 

and may allow abnormal cells to survive and proliferate.  Minn and colleagues[139] also 

showed that BCL-XL over-expression in mouse polymphocytic cells increased the occurrence of 
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tetraploidy throughout culture. The study also showed that following mitotic spindle damage 

BCL-XL over-expressing cells were able to progress through the cell cycle whereas control cells 

underwent mass cell death.  The gain of CNV 20q11.21 in human ES cells increases a cells 

protection against apoptosis, if aneuploid cells are removed from human ES cell cultures via 

apoptosis, increased CNV protection may result in further karyotypic changes. 

 

The increased genomic instability observed in human ES cells is a major concern for their 

eventual use in cell replacement therapies.  The abnormalities observed point towards errors 

in mitosis as a likely mechanism behind aneuploidy.  The frequency of abnormal mitotic events 

has not been investigated in human ES cells, insight could provide clues as to the origin of the 

karyotypic abnormalities.  The increased survival observed in cells containing the CNV 

20q11.21 may also provide a platform for further genetic changes, if the cells are unable to 

undergo apoptosis following erroneous mitoses aneuploid cells may escape safety mechanisms 

protecting the genomic integrity of human ES cells. 
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6.2. Results 

 

6.2.1. Human ES Cells Are Prone To Erroneous Mitoses 

 

Karyotypically normal human ES cell line (ESI-035) and its culture-adapted counterpart 

harbouring chromosome 20q CNV (ESI-035-CNV) were transfected with histone H2B:RFP (red 

fluorescent protein) fusion protein to enable the visualisation of mitotic chromosomes and 

interphase chromatin in real-time.  Metaphase to anaphase transition time was determined as 

previously described by Meraldi and colleagues [140].  The time taken for mitotic cells to 

undergo nuclear envelope breakdown (NEBD) to the complete segregation of sister chromatids 

was measured.  The first indication of NEBD was set to T=0 and three landmark mitotic events 

were determined, prometaphase was determined from NEBD to correct alignment of 

chromotids at the spindle equator (metaphase), the initiation of chromosome segregation 

(anaphase I) to the complete separation of the two sister chromatids at the cell poles 

(anaphase II).  This is summarised in Figure 22 (Supplementary Movie 18) demonstrating a 

normal metaphase to anaphase transition.  White arrows indicate chromosomal material that 

has not aligned on the spindle equator.  This analysis was applied to both control and CNV cell 

lines.  Control cells exhibited increased variability and slightly longer metaphase to anaphase 

transition times compared with CNV cells.  Control cells took on average 29.0±10.3 minutes 

from NEBD to complete segregation of chromatids at anaphase II compared to CNV cells, that 

lasted on average 22.0±4.5 minutes.  This decreased metaphase to anaphase transition times 

can be explained by faster prometaphase, metaphase and anaphase times in CNV cells.  

Control cells exhibited slightly longer prometaphase times, lasting on average 14.9±4.5 

minutes compared to CNV times of 13.4±4.3 minutes.  Control cells also displayed longer 

metaphase times, lasting on average 9.8±8.1 minutes, which was slightly longer and more 

variable than CNV cells (5.0±3.1 minutes).  The time taken to complete anaphase was also 
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slightly longer and more variable in control cells (4.3±1.2 minutes) compared with CNV cells 

(3.6±3.7 minutes).   

 

The cells were also analysed for abnormal chromosome segregation (Figure 23).  In 21 out of 

73 events (29%) the control cells showed evidence of abnormal mitoses, where lagging 

chromosomes or chromosomal bridges were observed (Figure 24) (Supplementary Movies 19-

23).  These events were decreased in CNV cells with only 10 events out of 73 (14%). However, 

there were an increased number of mitotic events with evidence of micronuclei in CNV cells (6 

out of 73) than control cells (2 out of 73).  There were also six incidences of daughter cells 

dying shortly after mitosis in control cells; there was no obvious abnormality in two of these 

events, although in the remaining cases, one died during metaphase without initiating 

anaphase and the reamaining three events were preceded by a noticeable abnormality in 

chromosome segregation. The CNV cells showed only one case of daughter cell death following 

mitosis, this event was not preceded by any noticeable abnormality in its division.  This high 

proportion of erroneous mitoses in control cells could underpin the high frequency of 

chromosomal abnormalities in human ES cells.  The fact that CNV cells display less abnormal 

divisions may suggest that genes within the amplified region may help to stabilise genetic 

instability. 
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6.2.2. Aurora Kinase Inhibition Causes Polyploidy in Human ES Cells 

 

To explore the hypothesis that CNV cells would be more likely to survive abnormal 

chromosomal segregation, abberant mitoses were induced by culturing the cells in the 

presence of AZD1152.  ESI-035 control, CNV and BCL-XL over-expressing cells were cultured in 

mTeSR containing either DMSO or 100nM AZD1152 for 24 hours.  Following treatment the 

cells were live-stained with Hoechst 34442 and analysed using flow-cytometry (Figure 25A).  

Cells cultured in the presence of DMSO displayed normal cell cycle profiles with peaks 

representing G1 and G2/M and intermediates representing cells in S-phase.  ESI-035 control 

and CNV cell lines displayed similar cell cycle profiles with BCL-XL over-expressing cells 

displaying slightly larger G2/M populations.  However, upon AZD1152 treatment cells 

displayed grossly abnormal cell cycle profiles.  Both control and CNV cell lines displayed sub G1 

peaks characteristic of apoptotic cells.  This population was absent in BCL-XL over-expressing 

cells demonstrating their increased survival.  G1 populations were greatly diminished in all 

three cell lines, instead large G2/M populations were observed.  A large peak of cells 

representing an 8N population was detected in all cell lines, this population was largest in the 

CNV cell line.  ESI-035 control and BCL-XL over-expressing cells displayed similar DNA profiles 

following AZD1152 treatment with low 2N, tight 4N and a large 8N population. The ESI-035 

CNV cell line displayed a low 2N population, smaller 4N population and larger 8N population. 

 

To confirm this result, ESI-035 control and CNV H2B:RFP reporter cell lines  were seeded as 

described in Section 3.2.3 and grown for two days in mTeSR.  The cells were then subjected to 

100nM of AZD1152 inhibitor.  Cells were imaged every ten minutes for 24 hours and time-

lapse movies were analysed.  Both the ESI-035 control and CNV cells showed grossly abnormal 

cell division following culture in AZD1152.  Cells appeared to be unable to organise proper 

chromosomal alignment, undergo proper chromosomal segregation at anaphase or initiate 
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cytokinesis.  Instead cells appeared to exit the cell cycle at prometaphase resulting in cells 

becoming polyploid either 4N or 8N (Figure 25B).  This progression through cell cycle 

checkpoints leads to increased DNA content. 

 

6.2.3. Amplification of 20q11.21 Decreases Sensitivity To Aurora Kinase Inhibition 

 

The ESI-035 control, CNV and BCL-XL overexpressing cell lines were seeded at 5.5x104 cells/cm2 

in 6-well plates coated with matrigel supplemented with Y-27632 and left to attach for 24 

hours.  Cells were washed once with PBS (1X) and mTeSR containing 100nM AZD1152 was 

added to wells.  Cells were harvested at 0, 6, 12, 24 and 48 hours following inhibition.  The 0 

hour time point indicates the levels of apoptosis in unperturbed cells before addition of 

AZD1152 inhibitor.  One well was washed following 24 hours inhibition, washed once and fed 

with mTeSR without AZD1152 inhibitor in order to ‘release’ cells so that they are able to 

undergo mitosis. 

 

Control cells show increased apoptosis upon AZD1152 treatment over 48 hours.  Cells appear 

to initiate apoptotic pathways between 12 and 24 hours with only 20% of healthy cells present 

at 48 hours.  The cells can be rescued by removing the inhibitor at 24 hours and culturing in 

mTeSR.  This increases the amount of healthy cells at 48 hours and lower cells undergoing 

apoptosis.  In contrast the ESI-035-CNV cell line shows protection to the aurora kinase 

inhibitor, there are three times as many healthy cells than control cell lines.  The CNV cells also 

show lower apoptotic cells following release from the inhibitor.  Cells over-expressing BCL-XL 

showed no signs of undergoing apoptosis in response to AZD1152 treatment. 
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6.3. Discussion 

 

The cell cycle times as determined by time-lapse microscopy in Section 3.2.5 showed that the 

difference between the ESI-035 control and CNV cell lines were very similar (19.5 and 18.5 

hours respectively).  Interestingly the metaphase to anaphase transition times were 

significantly different (p= <0.0001) with the control cell line displaying times of 29±10.3 

minutes and the CNV cell line displaying faster and more uniform times of 22±4.5 minutes.  

The increased variability in transition times was observed in the time taken for control cells to 

initiate chromosomal segregation following proper alignment of sister chromatids at the 

spindle equator.  The control cells took on average 9.8±8.1 minutes to progress from 

metaphase to initiation of anaphase whereas the CNV-containing cells took 5.0±3.1 minutes.  

Prolonged metaphase is observed in cells that have undergone significant DNA damage, 

Mikhailov and colleagues[141] showed that by inducing DNA breaks in late prophase cells 

delayed the metaphase to anaphase transition in human cells.  This delay was not a result of 

ATM-kinase mediated DNA damage checkpoint but due to defective kinetochore attachment 

via a MAD-2 dependent mechanism.  The difference in the number of cells delayed in 

metaphase between control and CNV cells could highlight one of two possible explanations; 

either the control cells are more susceptible to DNA damage than CNV cells or that CNV cells 

are able to over-ride checkpoints and progress from metaphase to anaphase without being 

delayed.  Prolonged metaphase transition has also been suggested to precede abnormal 

chromosome segregation Much of the heterogeneity in metaphase timings is a result some 

cells taking longer than others to correctly organise chromosomes at the spindle equator[140].  

 

The control cells displayed increased incidents of abnormal divisions with 29% (21 out of 73) of 

anaphase events containing a lagging chromosome (16 events) or a chromosomal bridge (5 

events).  This was in stark contrast to the CNV cells in which only 13% of divisions were found 
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to be abnormal.  There were greatly reduced numbers of lagging chromosomes (6 events) and 

fewer chromosomal bridges (3 events) observed.  A single event of unipolar division was 

observed in the CNV cells, an event that was not observed in the control cell line.  There was 

also more dividing cells that contained evidence of micronuclei in CNV cells (6 events) 

compared with control cells (2 events).  The decreased number of abnormal divisions in CNV 

cells could highlight one of two possibilities, CNV cells are somehow more controlled in terms 

of chromosomal segregation or are more efficient at initiating anaphase. 

 

The increased incidents of abnormal divisions in control cells may underpin the frequent gain 

of chromosomal material in human ES cells.  It has not been addressed whether all 

chromosomes are equally susceptible to abnormal segregation, or that the frequent gain of 

specific chromosomes is a result of their tendency to lag or bridge.  Just under a third of cell 

divisions analysed displayed a noticeable abnormality, whether these cells die later will need 

to be addressed.  The limitation in investigating this notion is the resolution needed to identify 

these events, the cells were imaged every minute at 100X in order to capture these events, 

which limits the time that the cells can be imaged due to photo-bleaching and photo-toxicity.  

It is striking that CNV-containing cells showed decreased numbers of abnormal divisions 

suggesting that the CNV may somehow stabilise the genetic integrity of the cells so that it is 

less likely to acquire further changes once the cells have acquired the 20q11.21 CNV.  

However, there were also decreased incidents of daughter cells dying following abnormal 

divisions.  This observation may be a result of the limited time that the cells were imaged after 

the events were observed, more cells may die later. 

 

Aurora Kinase inhibitor was used to promote polyploidy in human ES cells.  The control and 

CNV cell lines showed evidence of polyploidy through two cell divisions producing 4N and 8N 

cells respectively.  The control and BCL-XL over-expressing cell lines displayed similar DNA 
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profiles, they displayed small 2N (G0/1) population, with tight 4N (G2/M) population and a 

large 8N population.  The DNA profile of the CNV cell line following AZD1152 treatment was 

slightly different.  The CNV also contained a small 2N population, but displayed a smaller 4N 

and larger 8N peak suggesting that another gene within the CNV could be affecting the cells.  

This DNA profile was assessed 24 hours following AZD1152 treatment, apoptosis assays show 

that over half of the control cells had died within the first 24 hours. Longer treatment showed 

further apoptosis down to 70% of cells.  Removing the inhibitor after 24 hours and replacing 

with fresh mTeSR, the cells stabilised at 50% apoptosis.  The CNV cells showed reduced 

sensitivity to AZD1152 treatment where only 25% of cells were undergoing apoptosis following 

24 hours.  This supports the notion that CNV cells are more likely to survive aneuploidy.  

Interestingly when cells were sorted based on a cells DNA profile using FACS, under DMSO 

conditions the CNV cells displayed increased cloning efficiency based on their cell number 

when sorted at 2N and 4N.  Sorting cells after AZD1152 treatment reduced the number of cells 

following 4 days growth when compared with cells treated with DMSO indicating that the cells 

are not proliferating as fast as normal.   

 

In conclusion, we have shown that human ES cells are prone to chromosome segregation 

errors.  These abnormal events appear to be more abundant in the ESI-035 Control cell line 

than in the ESI-035 CNV cell line.  This may suggest that other genes on the 20q11.21 

amplification may help to control these events in CNV-containing cells.  Although there were 

increased abnormal events in the control cell line, more of these events resulted in cell death 

of daughter cells shortly after division, this was not observed in CNV-containing cells.  This 

observation was limited as time-lapse movies were relatively short (2-4 hours) and would 

require further investigation.  Whether the rates of abnormal mitoses events are the same in 

all human ES cell lines is unknown but could be investigated using H2B-RFP reporter lines.  The 

CNV-containing cell line was more robust when treated with AURORA KINASE B inhibitor, 
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which induced polyploidy in human ES cells.  This could suggest that the CNV-containing cells 

are more likely to survive abnormal mitoses events and could lead to further genomic changes. 
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7. Developing Detection Methods for CNV 20q11.21 

 

7.1. Introduction 

 

It has been widely reported that human ES cells can acquire karyotypic changes throughout 

culture in vitro, which raises safety concerns for their potential use in regenerative 

medicine[61, 65, 66].  The fact that many human cancers also acquire similar karyotypic 

changes exacerbates this concern[142].  It is therefore imperative that karyotypic changes are 

further investigated to better understand how human ES cells are affected and to develop 

methodologies to detect, monitor and manage genomic instability.   

 

Another commonly used method for analysing the genetic integrity of human ES cell lines is 

the g-banding of metaphase spreads. Cells are arrested in metaphase by exposing them to 

spindle poisons, such as colcemid, and this is then followed by preparation of chromosome 

spreads on slides and staining to visualise chromosome banding pattern.  G-banding allows 

examination of the entire complement of cells’ chromosomes in a single assay, but it cannot 

readily detect duplications or deletions smaller than 5 Mb. The limited resolution of g-banding 

is particularly concerning given the recent observations that CNV 20q11.21 is a particularly 

frequent mutation in human ES cells[66, 81-84].  Due to the size of the 20q11.21 amplification 

(0.6Mb to 2.5Mb) it falls below the detection limit of g-banding.  An alternative method that 

does allow detection of small duplications and deletions is Fluorescence in-situ hybridisation 

(FISH).   

 

FISH can be used for a variety of different applications to visualise DNA and RNA.  FISH is 

routinely used as a diagnostic screen by cytogenetics for the detection of DNA copy numbers 

to predict genetic disorders or disease prognosis[143].  Sequence-specific probes tagged with 
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fluorescent dyes are hybridised to targeted regions on DNA allowing the number of copies to 

be measured.  As with g-banding there are limitations to FISH, for example, where g-banding 

can be used to analyse the whole genome, FISH focuses on smaller regions of interest on 

particular chromosomes.  Both g-banding and FISH usually require sending samples to 

experienced cytogeneticists, particularly to identify some of the more complicated 

rearrangements observed in human ES cells. Such labour-intensive and expensive methods are 

limiting the frequency of assessing genetic stability of human ES cells during routine 

maintenance. Hence, there is a need for quick, cost-effective assays that could be employed in 

common laboratory practice for regular screening of human ES cells.  Quantitative-PCR (qRT-

PCR) offers an alternative method for detecting karyotypic changes[144, 145].  The use of qRT-

PCR to detect changes in DNA copy number is still relatively new but offers many advantages 

such as detection of multiple loci in single experiments, simple assay design, fast turnaround 

and low cost compared to other methodologies.   

 

The Roche Universal Probe Library (UPL) was used to develop assays for the detection of 

20q11.21 amplification (Figure 27).  The UPL utilises 165 short hydrolysis probes (8-9 

nucleotides) which are labelled with a fluorescein amidite (FAM) dye at the 5’ end and a dark 

quencher dye at the 3’ end.  The dark quencher molecule absorbs the fluorescent light emitted 

from FAM when in close proximity therefore fluorescence is not detected until the FAM 

molecule and dark quencher are separated.  As the temperature rises during the polymerase 

chain reaction, double stranded DNA is denatured resulting in single strands.  The temperature 

is then decreased in the annealing stage and the hydrolysis probe and primer sequences bind 

complimentary sequences.  The DNA polymerase associates with the primers and initiates 

strand synthesis in a 5’-3’ direction, the exonuclease activity of DNA polymerase removes the 

nucleotides of the hydrolysis probe thereby releasing the FAM dye where the fluorescence can 

be detected.  The hybridisation probes take advantage of locked nucleic acids, which increase 
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specificity through higher melting temperatures.  The probes bind sequence specific regions 

along the genome, the short lengths ensure maximum coverage of a number of species 

including but not limited to human, mouse, rat and zebrafish.  The specificity comes from the 

pairing with designed primers, which will amplify the regions flanking the probe. 

 

The aim was to develop a qRT-PCR method to detect the presence of CNV 20q11.21 in human 

ES cells that was sensitive and both time and cost-effective. 
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7.2. Results 

 

7.2.1.  Primer and Assay Design for qPCR of CNV 20q11.21 

 

Primers were designed to intronic regions of 10 genes spanning the 20q11.21 region. This 

would allow the length of CNV to be determined as well as the average number of copies in a 

population.  Figure 28 shows the location of primers and where they are situated along the 

CNV.  To allow normalisation, primers were also designed for reference genes, which were 

chosen on chromosomes that are not commonly amplified in human ES cells. The chosen 

reference genes were two genes from chromosome 4 (RELL1- 4p14 and EPHA5-4q13.1) and 

one from chromosome 14 (RPPH1- 14q11.2).   

 

The genomic sequences of target genes were obtained from the UCSC Genome Browser 

website (https://genome.ucsc.edu).  Intronic regions were then analysed using the Roche 

Universal Probe Library Assay Design Center 

(http://lifescience.roche.com/shop/en/us/overviews/brand/universal-probe-library) for 

suitable primer-probe pairs.  The software returns a number of primer-probe sets, which are 

ranked in order of their overall score, based on amplicon length and in silico PCR.  The primers 

from each set were analysed using the National Center for Biotechnology Information (NCBI) 

Primer Blast software (http://www.ncbi.nlm.nih.gov/tools/primer-blast) to check for unspecific 

targets or primer homo/heterodimers.  Two primer-probe sets for each gene were obtained 

and tested on known samples.  The primer-probes used are shown in Table 2. 

 

  

https://genome.ucsc.edu/
http://www.ncbi.nlm.nih.gov/tools/primer-blast
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7.2.2. Detection of CNV 20q11.21 In Human ES Cells Using qRT-PCR 

 

To test the ability of the designed assay to detect CNV 20q11.21, genomic DNA was prepared 

from the four test cell line pairs (Control and CNV-containing cell lines from Shef5, ESI-035, H1 

and HES3), which were previously shown to contain the CNV by FISH.  These cell lines also 

contained the varying lengths of the CNV as determined by SNP-array[66]. The CT values of 

genes spanning the 20q11.21 locus were normalised to CT values of the reference gene RELL1 

to obtain ΔCT (dCT) values.  The dCT values of CNV-containing cell lines were then normalised 

to their control counter-parts to generate ΔΔCT values (ddCT).  Copy number was then 

calculated using the 2-ddCT method.  Thus, the qPCR method was able to detect the CNV in all of 

the four cell lines. Moreover, by using the primers for ten genes spanning the CNV, this assay 

showed the varying lengths of CNV. For example, the Shef5 CNV cell line was found to contain 

an amplicon length of ~0.7Mb whereas the HES3 CNV was found to contain an amplicon length 

of ~1.5Mb (Figure 3A).  These amplicon lengths are consistent with those found by the 

ISCI[66], which were found to be 0.8Mb and 1.7Mb respectively.  Once, the assay was 

validated on the four control cell lines known to have an amplification off CNV, it was then 

used to test the presence of the CNV in a number of cell lines grown in the lab (Figure 29). 

 

The Shef6 cell line was subjected to the assay and initially did not show amplification of the 

CNV (Figure 30A).  Given the potential low sensitivity of the qPCR method in detecting 

mosaicism in culture, the Shef6 cell line was cloned by single cell deposition in 96 well plates to 

obtain clonal control cell lines that could be used as a reference for normalising test samples.  

Six clones were screened to check for absence of the CNV, but in the process one clone 

containing the CNV was found (Figure 30 B-C).  Subsequently, Shef6 clones with (Shef6-CNV) 

and without the CNV (Shef6 Control) were grown out and kept as reference samples. 
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7.2.3. Assay Sensitivity 

 

To determine the sensitivity of the assay in detecting the gain of CNV20q11.21 in mosaic 

human ES cell cultures cell-mixing experiments were performed.  For this, the clonal Shef6 cell 

lines with or without the CNV gain were used (see section 7.2.2).  The two cell lines were 

dissociated to single cells using TrypLE and total cell counts determined.  The cells were then 

mixed at known ratios of Shef6 CNV within the Shef6 Control cells: 0.01%, 0.1%, 0.5%, 1%, 5%, 

10%, 20%, 40%, 80% and 100%.  Each sample was then split into two tubes, one of which was 

used for FISH and the other one for gDNA preparation.  The results of the triplicate 

experiments were consistent, showing that qPCR successfully detected the presence of 

mosaicism in samples of where the variant cells were present at 20% or more (Figure 31Ai-Ci). 

In comparison, the detectable limit of FISH was much lower than qPCR, with the detection limit 

as low as 5-10% (Figure 31 Aii-Cii). 

 

7.3. qRT-PCR can be used to detect other common genetic mutations 

 

Culture-adaptation is often associated with non-random gains of chromosomal material, the 

gain of partial or whole chromosomes 1, 12, 17 and 20 are frequently observed in human ES 

cell cultures.  To detect amplification of these regions, a primer-probe pair was designed to the 

long (q) arm and short (p) arm of each chromosome on a region that was most commonly 

amplified (see Table 2).  This allowed the distinction between whole and partial gains of 

chromosomal material.  Figure 32A shows the positions of each primer-probe pair along with 

the reported gains of each chromosome.  Two genes, RELL1 (4p) and EPHA5 (4q) were chosen 

as reference genes due to the apparent genomic stability of chromosome 4, where there have 

been no reported gains or losses in the literature and would provide a more stable reference 

with which to normalise target sequences.  The genes NANOG (12p) and MDM2 (12q) were 
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chosen to detect changes on chromosome 12, genes COPS3 (17p) and BIRC5 (17q) were 

chosen for the detection of chromosome 17 amplifications, and the gene BCL2L1 was chosen 

to detect the presence of 20q11.21 amplification. 

 

7.3.1. Analysing Human ES Cell Lines for Karyotypic Changes 

 

Six human ES cell lines were tested for common karyotypic changes using qRT-PCR (Figure 

32B).  The H7 normal (H7.s14) and culture-adapted (H7.s6), the H14 normal (H14.s9) and 

culture-adapted (H14.BJ1) and two iPS clones generated using mRNA reprogramming (MIFF1 

and MIFF3).  The early passage H7.s14 cell line showed no amplification of any of the regions 

tested but the later passage sub-line H7.s6 showed a single amplification (3 copies) of both 

BCL2L1 and BIRC5 situated on 20q11.21 and 17q25.3 respectively.  The early passage H14.s9 

cell line displayed amplification of COPS3 (4 copies) and loss of EPHA5 (1 copy) situated on 

17p11.2 and 4q13.1 respectively.  These abnormalities were also observed in the culture-

adapted H14 sub-line (H14.BJ1) suggesting that these abnormalities were present at derivation 

or occurred early in culture.  The H14.BJ1 also showed amplification of NANOG (3 copies), 

MDM2 (4 copies), BIRC5 (3 copies) and BCL2L1 (4 copies) located on 12p13.31, 12q15, 17q25.3 

and 20q11.21 respectively.  The iPS cell lines MIFF1 and MIFF3 also showed increased copy 

number of COPS3 (4 copies) possibly suggesting an abnormality in the original transfected 

population of fibroblasts.  MIFF3 also displayed amplification of BCL2L1 (3 copies). 
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7.4. Discussion 

 

The results show that qRT-PCR can be used as a method for the rapid and sensitive detection 

of karyotypic changes in human ES cells.  There are a few advantages and disadvantages of 

using qRT-PCR or FISH in detecting aberrations in human ES cells.  FISH is more sensitive than 

qPCR, with FISH being able to detect down to 5-10% in mosaic cultures and qRT-PCR down to 

20%.  However, using FISH to detect the 20q11.21 is not without problems, with the signal 

being within such close proximity they can sometimes present as a single signal making it only 

distinguishable by signal intensity.  FISH would otherwise be more sensitive at detecting whole 

chromosome gains where distinct signals are separated.  One advantage of using qRT-PCR is 

the rapid turn around of samples making the lower sensitivity not overly disadvantageous as 

steps can be taken to avoid compromising results/cell lines.  The cell line could be thawed at 

an earlier passage or cloned to remove CNV cells from the culture.  Cells in culture can be 

harvested, the genomic DNA extracted and qRT-PCR performed in the same day.  FISH has a 

turn around of approximately two weeks, although urgent samples can be obtained within 3-5 

days depending on the facilities case load and availability of relevant probes.  This could 

potentially be disadvantageous, as we have shown that the 20q11.21 can rapidly overtake the 

culture.  qRT-PCR is also much cheaper, the cost of running one sample for one region, for 

example BCL2L1, the qRT-PCR would need to run three primer-probe pairs, the reference 

genes EPHA5, RELL1 and the test region BCL2L1.  Two reference samples would also need to be 

run in parallel to normalise data to control and check against a known CNV cell line sample.  

The cost would be ~£8 with the cost of extra samples ~£2.  Using a full 384-well plate would 

cost ~£114 but could analyse 8 samples for up to 16 regions which is cheaper than analysing 

BCL2L1 copy number in just one sample using FISH, which would cost approximately £158. 
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The adaptability of qRT-PCR also offers advantages, as the assay can be designed to any region 

on the human genome.  Thus, primer/probe pairs could be designed to a number of different 

regions to detect amplifications/deletions of multiple regions in a single assay.  The caveat 

with both qRT-PCR and FISH is the small regions that are analysed, they do not cover the whole 

genome.  However, due to the non-random karyotypic changes observed in human ES cells it 

may be possible to design a panel of primer/probe pairs that cover the majority of common 

changes.  Specific genes could be used that are predicted to provide selective advantages, for 

example, NANOG is a strong candidate for the selection of chromosome 12 due its role in 

maintaining pluripotency in human ES cells.  MDM2 is a negative regulator of the p53 pathway, 

it has been shown to bind p53 where it functions as a E3 ubiquitin ligase targeting p53 for 

degredation[146].  Increased MDM2 expression would therefore inhibit the apoptotic and cell 

cycle arrest functions of p53[147].  COPS3 amplification has been observed in osteosarcomas, 

the amplification of COPS3 coupled with mutations of p53 lead to metastasis and poor 

prognosis[148].  siRNA knock-down of COPS3 has been shown to reduce the proliferation and 

survival of lung cancer cells[149].  BIRC5 (Survivin) is a potent inhibitor of apoptosis and has 

been shown to be upregulated in a number of human cancers[150].  Increased BIRC5 

expression is also observed in teratomas formed from human ES cells[151].  BIRC5 also has a 

role in mitosis, regulating the G1-S phase transition and if disrupted leads to polyploidy and 

caspase-mediated apoptosis[152]. 

 

The qRT-PCR offers advantages over other methods of detecting karyotypic changes.  G-

banding has the advantage of analysing the whole genome but lacks the resolution of other 

techniques not being able to detect <5Mb making the detection of small variants difficult (i.e. 

CNV 20q11.21).  Both G-banding and FISH often require an experienced cytogeneticist as well 

as FISH being expensive and limiting in the number of regions that can be analysed.  Another 

method of detecting changes has been proposed called ‘e-karyotyping’[153], which offers 
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similar advantages as the qRT-PCR assay on genomic DNA.  One caveat to this technique is that 

amplified regions do not always show increased levels of mRNA (Figure 10).  For example, 

HES3 and H1 CNV cell lines displayed increased BCL-XL expression whereas in ESI-035 and 

Shef5 CNV cell lines the levels were similar to those observed in their respective control 

counter-parts. 

 

Culture-adapted human ES cells rapidly out-compete normal cells in culture making early 

detection of abnormalities essential[73]. The accessibility, cost and turn around times of qRT-

PCR for the detection of common chromosomal abnormalities make it an ideal method for 

routinely screening human ES cell lines.  Multiple cell lines could be screened on a 

weekly/monthly basis to monitor human ES cell lines for abnormalities and can be applied to 

any stem cell laboratory world-wide. 
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8. General Discussion 

 

8.1. The amplification of 20q11.21 provides a strong selective advantage in human ES 

cells 

 

Our results show that human ES cell lines containing the 20q11.21 amplification display 

increased growth rates and rapidly out-compete normal diploid cells.  This increased growth 

capacity can explain the high prevalence of 20q11.21 amplification in different human ES cell 

lines.  The fact that this amplification is observed in a number of different human ES cell lines 

from various laboratories rules out the possibility that the 20q11.21 is a result of specific 

genetic backgrounds or culture systems.  It is interesting that many human cancers also show 

amplification of 20q11.21 suggesting a common intrinsic mechanism behind 20q11.21 gain. 

This could be a result of increased proliferation and faster cell cycle times compared with 

somatic cells.  However, human ES cells appear to be especially susceptible to 20q11.21 gain 

with two of the four cell lines (HES3 and H1) showing mosaic amplification of the 20q11.21 

region at early and late passage (Supplementary Figure 1).  For example, FISH analysis of the 

HES3 control cell line showed that 80% of cells were diploid but contained an underlying 

population (20%) of cells with 3 copies of the 20q11.21 locus.  The later passage HES3 CNV cell 

line showed further amplification of the 20q11.21 locus with 62% of cells with 3 copies, 28% of 

cells with 4 copies and 10% of cells with 5 copies.  This could highlight the tendency of human 

ES cells to acquire 20q11.21 gains or that once a cell line has acquired 20q11.21 amplification it 

is prone to further amplification.  The four cell lines obtained in the study also displayed 

varying lengths of 20q11.21 amplification consistent with previous studies[66, 116].  Our 

results suggest that the length of 20q11.21 amplification could confer varying levels of 

selective advantage. For example, the HES3 CNV cell line contained the largest 20q11.21 

amplicon showed the highest population growth rates whereas the Shef5 CNV contained the 
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shortest amplicon and showed reduced growth rates.  This observation suggests that other 

genes along the 20q11.21 amplification could also be providing smaller selective advantages, 

which increase population growth or contain positive regulators of BCL2L1 increasing 

expression or stability of mRNA/protein. 

 

The prevalence of 20q11.21 amplification paired with the strong selective advantage that it 

confers make the early detection of the amplification paramount so that appropriate steps can 

be taken to avoid compromising data or the transplant of potentially malignant cells.  The 

frequent amplification of 20q in a number of cancers underlines this issue, particularly if cells 

are to be used for therapeutic applications or toxicology screens. 

 

8.2. The increased growth rates of human ES cells containing the 20q11.21 amplification 

can be attributed to the anti-apoptotic effects of BCL-XL 

 

The increased growth rates of human ES cell lines containing the 20q11.21 amplification can 

be attributed to BCL-XL.  Over-expression of BCL-XL, the dominant isoform of BCL2L1 in 

undifferentiated human ES cells, increases the growth rates of cell lines that do not contain the 

20q11.21 amplification to levels comparable with cell lines that show amplification (Figure 6).  

The increased growth rates were shown to be an effect of increased protection against 

apoptosis, rather than increased proliferation.  This is consistent with BCL-XL being an anti-

apoptotic gene.  CNV-containing cells display reduced cell death following plating at low 

densities and survive to make successful cell divisions (Figure 12).  Barbaric and colleagues[74] 

showed that certain bottle-necks exist in human ES cell culture, one of which is the survival of 

cells following re-plating.  Our results show that the plating of control cells, even at high 

density is very in efficient and population growth rates are low (Figure 6).  This is the bottle-

neck that allows the CNV-containing cell lines to over-take the culture rapidly due to their 
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increased survival properties particularly within the first 24 hours of seeding (Figure 12).  The 

effects of the 20q11.21 CNV can be reduced either by the chemical inhibition (protein) or 

knock-down of BCL-XL (mRNA), which show decreased cloning efficiencies (Figure 14) and 

reduced growth rates (Figure 15) respectively.  Although these results confirm that BCL-XL is 

the main gene driving selection of the 20q11.21 amplification they are not practical methods 

for removing CNV cells from human ES cultures.  This being said, our results show that the 

main bottle-neck during re-plating of human ES cells can be alleviated using ROCK inhibitor 

when seeding cells (Figure 16).  The presence of ROCK inhibitor for the first 24 hours of re-

plating drastically increases the growth rates of control cells similar CNV-containing cells. 

 

In the case of 20q11.21 amplification, the gene driving selection and the mechanism behind 

the growth advantage were less troublesome to investigate than other common chromosomal 

changes.  The relatively small amplicon provided only a handful of candidate genes driving 

20q11.21 selection.  The gene(s) driving the selection of larger chromosomal changes such as 

chromosomes 1, 12 and 17 are more difficult to identify due to the number of possible 

candidates.  Identifying the mechanisms behind selection could narrow down the potential list 

of candidates but selection will more than likely be provided by more than one gene, which 

could reside on different regions along the genome. 

 

8.3. Amplification of 20q11.21 alters the differentiation of human ES cells 

 

The potential uses of human ES cells or their differentiated derivatives in therapeutic 

applications rely on understanding the mechanisms behind stem cell behaviour.  Two areas 

that need to be addressed are, firstly, understanding the mechanisms behind lineage 

specification when human ES cells differentiate, to successfully generate functional adult cell 

types of different cell lineages.  The second is understanding the mechanisms behind culture-
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adaptation and the frequent gain of chromosomal material.  It could be that certain genetic 

changes are in fact irrelevant in therapeutic applications. However, the similarities in 

karyotypic changes between ES cells, EC cells and primary tumours suggest that the changes 

share a common neoplastic mechanism.  These two points are also intertwined, as karyotypic 

changes have been shown to alter differentiation patterns in human ES cells and could disrupt 

the mechanisms behind differentiation[76]. 

 

Our results show that the CNV-containing cell line displays altered differentiation patterns 

compared to control cells when induced to differentiate via the formation of EBs.  This is 

particularly evident when induced to differentiate towards mesoderm and endodermal 

lineages (Figure 19).  This altered pattern of differentiation was also observed in control cells 

over-expressing BCL-XL suggesting that either differentiation is affected by the increased 

survival of cells through BCL-XL or that BCL-XL is directly influencing differentiation.  Our 

results suggest that the latter hypothesis is true, as the EBs formed from CNV and BCL-XL over-

expressing cell lines under mesoderm and endoderm conditions are much larger than control 

cells (Figure 18, Table 6).  This is supported by results showing that BCL-XL over-expressing 

cells successfully differentiate towards a definitive endoderm lineage using a monolayer 

system (Figure 21).  Interestingly, in this instance the CNV-containing cells do not closely 

mirror the phenotype of BCL-XL over-expressing cells.  The CNV-containing cells show 

increased cell numbers compared with control cells but do not display increased endoderm 

differentiation determined by SOX17 positive cells.  This observation suggests that there could 

be other genes on 20q11.21 that can affect the differentiation of human ES cells. 
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8.4. Human ES cells are prone to erroneous mitoses 

 

The mechanisms behind the frequent and non-random karyotypic changes that occur in 

human ES cells are poorly understood.  Evidence suggests that errors in chromosomal 

segregation at anaphase could be behind some of the abnormalities observed, particularly in 

cases where the gain of whole chromosomes or isochromosomes is observed[67].  Our results 

show that errors in chromosomal segregation at anaphase are a frequent event in human ES 

cells (Figures 23 and 24).  Using live-cell time-lapse imaging the erroneous mitotic events could 

be observed in real time.  The control cell line displayed a high proportion (29%) of abnormal 

chromosomal segregation events showing that human ES cells are particularly susceptible to 

erroneous mitoses.  Whether this is similar in all human ES cell lines remains to be addressed 

but would explain the frequency of which karyotypic abnormalities are observed.  It is still 

unknown whether certain chromosomes are particularly susceptible to lag or bridge, which 

could explain the non-random nature of cytogenetic changes.  Interestingy, CNV-containing 

cells displayed reduced variability in metaphase to anaphase transition times and fewer events 

of abnormal chromosome segregation (14%) than control cells.  This potentially highlights that 

gene(s) within the 20q11.21 amplification somehow regulate the later stages of mitosis.  TPX2 

is a candidate as it has been shown to…  Although this suggests that CNV-containing cells are 

less prone to erroneous mitoses, they were also more likely to survive these abnormal events, 

with 0 out of 10 dying following abnormal division compared to 4 out of 21 in control cells.  

Whether this observation is limited by the length of time-lapse movies will need to be 

addressed, it may be that more of the control and CNV-containing cells die later in the cell 

cycle or that CNV-containing cells are protected against abnormal divisions.  Longer time-lapse 

movies would have to be generated to determine this hypothesis. 
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AZD1152, an inhibitor of AURORA KINASE B was used to investigate the survival of control and 

CNV cells following abnormal mitosis.  Using live-cell time-lapse imaging, we showed that 

AZD1152 induces polyploidy in human ES cells, generating cells with 4N and 8N DNA content 

(Figure 25).  We also monitored the levels of apoptosis following treatment of AZD1152 in 

control, CNV and BCL-XL over-expressing cells.  Results showed that CNV and BCL-XL were less 

susceptible to apoptosis in the presence of AZD1152 suggesting that they are more likely to 

survive abnormal divisions (Figure 26).  To investigate this further we propose isolating 

different populations of cells based on DNA content using live cell staining and sorting for 

Hoechst 33342 and generating time-lapse movies to monitor the behaviour of abnormal cells. 

 

The caveat of using AZD1152 is that it promotes polyploidy, an event that was not observed in 

our study of mitotic divisions.  Further investigation using the spindle poison nocodazole would 

provide a more accurate representation of the events occurring in human ES cell cultures.  

[154].  Nocodazole arrests cells at G2/M, occasionally cells can escape this block and initiate 

anaphase and cytokinesis in an event termed ‘mitotic slippage’ [155].  This event can result in 

abnormal chromosome segregation and promote aneuploidy more closely mirroring events 

observed in Chapter 6. 

 

8.5. Detection of common karyotypic changes by qRT-PCR 

 

The amplification of 20q11.21 in human ES cells provides cells with an increased growth 

advantage.  We have shown that CNV-containing cells rapidly out-compete their control 

counterparts within ten passages (Figure 7).  This makes the early detection of 20q11.21 

amplification of paramount importance.  We have devised a quick, cost-effective and sensitive 

method for the detection of 20q11.21 using qRT-PCR.  The assay can also be adapted to detect 

other commonly affected regions on other chromosomes (for instance chromosomes 1, 12 and 
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17).  The qRT-PCR method offers advantages over other methods including, time-scale, cost, 

availability and adaptability.  Results can be obtained on the same day as the sample is 

harvested making identification of abnormalities almost immediate.  For the price of analysing 

one sample using FISH, qRT-PCR can analyse multiple samples in parallel whilst looking at a 

number of different chromosomal regions.  The method also requires minimal 

equipment/reagents and in transferrable to any lab worldwide.  Finally the assay is adaptable, 

primer/probe sets are simple to design and can be targeted to almost every region on the 

human genome. 

 

9. Concluding Remarks 

 

We have shown that the frequent amplification of 20q11.21 in human ES cells is a result of 

their increased growth rates conferred by BCL-XL.  Cells containing the 20q11.21 CNV show 

increased protection against apoptosis and rapidly out-compete diploid cells.  The CNV may 

also affect the differentiation patterns of human ES cells and make them more susceptible to 

acquiring further genomic changes.  This data together with the presence of 20q11.21 

amplification in EC cells and primary tumours warrant the monitoring for 20q11.21 

amplification in human ES cell cultures.  We have devised a simple and quick method that can 

be applied in laboratories worldwide to detect the 20q11.21 amplification.  This method can 

also be used to detect other genomic changes in human ES cells. 
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