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Abstract  

 

An experimental set up was designed and commissioned for the steam reforming of 

biodiesel.  The performance of the reactor was evaluated by varying molar 

steam/carbon ratio in the feed (S/C) , temperature, residence time, catalyst and 

biodiesel characteristics, at constant input of 1.50 10
-5 

mol of C/s.  The effect of 

temperature was examined in the range of 600-800°C with S/C from 2 to 3. The 

weight hourly space velocity (a measure of inverse residence time in the reformer) was 

varied from 3.52 to 2.85 h
-1

.  The experimental results were compared with their 

chemical equilibrium counterparts in order to determine the efficiency of the 

processes. The process outputs were measured using a micro-gas chromatograph and 

material balances were performed to determine the parameters such as H2 yield, 

biodiesel and steam conversions, and selectivity to carbon gases such as CO, CO2, 

CH4, C2H4, C2H6, C3H6 and C3H8. An elemental carbon balance was performed taking 

into account the carbon converted to C-containing gases, C deposited on the catalyst 

and C present in the condensate.  

 

Commercial Ni on alumina supported catalysts and in house prepared Ni catalysts 

were used for the steam reforming evaluation.  Nickel catalysts supported on two 

different kinds Ce/Zr supports (Zr rich and Ce rich) were formulated in house.  The Ce 

rich catalyst supports were prepared by sol gel synthesis employing tamarind seed 

polysaccharide as a gelling agent. The Zr support was provided by a commercial 

manufacturer. The Ni was loaded on the supports by impregnation using nitrate salts. 

Three kinds of biodiesels i.e. commercial, palm and in house prepared biodiesel were 

used for hydrogen production. The in house made biodiesel was prepared by acid-base 

transesterification of waste cooking oil obtained from a local fish and chip shop.  

 

It was found that among the three types of biodiesels tested, commercial biodiesel 

exhibited higher biodiesel and water conversion resulting in higher H2 yield.  The 
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highest hydrogen yield and biodiesel conversion was found in the temperature range 

of 650-700°C with S/C of 3. The optimum residence time to achieve high biodiesel 

and steam conversion was 3.18 h
-1

.  The selectivity to the main carbon containing 

gases (CO, CO2 and CH4) and to H2 was very close to its chemical equilibrium value 

for all the catalysts.  The commercial Ni/Al2O3 and Zr-rich Ce/Zr supported Ni 

catalyst were effective for steam reforming and should lower carbon formation as 

compared to the Ni supported on Ce rich Ce/Zr support. The highest YH2 of 27.8 wt% 

of biodiesel, i.e. 96% of the chemical equilibrium value, was measured for the Ni/Ce-

Zr catalyst using commercial biodiesel. Biodiesel and steam conversions of 96% and 

41.3% were responsible for providing such high H2 yield.  The catalyst also exhibited 

very high H2 selectivity (99%). Among the carbon CO2 selectivity was highest 63.6% 

followed by CO which 33% and finally CH4 which was a mere 2.1%. Using the 

catalyst Ni/Ce-Zr, a C balance closure within 2.5% was obtained which corresponded 

to a carbon deposition of 1.25% of the carbon feed.  

 

 
H2 production using autothermal reforming was attempted, i.e. where a source of 

oxygen, here in the form of air, is introduced in the biodiesel/steam feed to encourage 

exothermic partial oxidation reactions intended to neutralise the heat demand in the 

reformer. The experimental set up designed indicated that further optimisation would 

be required for this process due to large amount of carbon forming at the reactor inlet, 

in addition to the carbon deposited on the catalyst surface, significantly affecting the 

process efficiency. Despite this, conditions 12% close to autothermality, as reflected in 

the ratio of enthalpy balance on the isothermal reactor at 650 °C to the total enthalpy 

output, were obtained for the condition S/C of 2 for O2/C of 0.38 and WHSV of 3.23 

h
-1 

on the Ni/Ca-Al catalyst, this corresponded to a YH2 that was 69.2 % of the 

chemical equilibrium value. 
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Introduction

1. Global warming and energy crises 

Greenhouse gases such as water vapour and carbon dioxide plays a very vital role in 

regulating the heat emitted by Earth, in order to keep its surface warm and sustain life. 

Water vapour causes about 36–70% of global warming; with  CO2  9–26%; CH4 4–9%; 

and ozone 3–7% [1]. The absence of GHG’s would have resulted in much colder Earth (-

6
o
C) and life would have been completely different. This natural phenomenon helps to 

raise the temperature of Earth surface by 20
o
C, which would have maintained the average 

surface temperature to 14
o
C [2]. This delicate balance has been disturbed due to human 

activities, resulting in average temperature rise Earth’s climate (global warming).  

 

Figure 1.1 shows the changes in Earth’s temperature and its relation to CO2 emissions 

since last 1000 years. There is a consensus that increased land and fossil fuel usage has 

resulted in warming of the world, due to increased CO2 emissions [3, 4] in the last 200 

years. Global temperature are estimated to rise from 1.1 to 6.4
o
C over 21

st
 century [5] on 

top of 0.6
o
C  rise observed in the last century [3]. The increased amount of CO2 due to 

anthropogenic sources is believed to be one of the main cause of global warming [6]. The 

Intergovernmental Panel on Climate Control (IPCC) performed a detailed and rigorous 

study on climate change and reported that global warming is, to a high degree of 

certainty, caused mainly as a result of human activities after industrial revolution. Since 

the industrial revolution, atmospheric concentration of CO2 is reported to have increase 

by 31% as compared to the values observed prior to it [7]. Fossil fuel fired conventional 

power plants used for electricity production are considered as the main source of CO2 

emissions in the world. Sector wise distribution of CO2 emissions is shown in Figure 1.2. 

The energy sector comprising of power plants and transportation emit 64% of the CO2 

emissions. Fossil fuels such as coal and natural gas are predominantly used in these 

power plants. The use of liquid fuels is mainly associated with the industrial and 
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transportation sectors. In some countries having non-uniform power generation and 

distribution grids, liquid fuels are also used in small scale power generation. 

 

 

Figure 1.1: CO2 emissions and temperature changes in last 1000 years [4]. 

 

The rise in carbon dioxide emissions is a result of several factors, i.e. increase in world 

population, increased industrialization and global trade, increased land use and 

deforestation. The increased population and industrialization of the world has caused 

enormous increase in energy demand, which could be linked to rise in CO2 emissions. A 

56% rise in world’s energy consumption is predicted by the Energy Information 

Administration (EIA).  According to the EIA, energy consumption will rise from 

552×10
15

 kJ in 2010 to 664 and 865×10
15

 kJ by 2020 and 2040 respectively. There is a 

wide variation in energy consumption of OECD and non OECD countries. The variation 

in the energy consumption is governed by various factors such as economic and 

population growth. Non OECD countries like China and India are the two fastest growing 

economies for the last 2 decades growing at a rate of 7.4 and 6% in the first quarter of 

2014. 
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Figure 1.2: Worldwide  CO2 emissions, 2011 [8]. 

The increased economic and population growth in these non OECD countries has resulted 

in steep rise in energy consumption. On the other hand, OECD countries such as US are 

matured energy consumers as a result of slower economic growth and negligible or no 

population growth.  

According to the latest statistics released by British Petroleum (BP) in January 2014, 

global CO2 emissions are predicted to reach 45×10
12

 tonnes by 2035 (Figure 1.3).  In the 

Figure 1.3, the dotted line represents the emission path required to restrict the global CO2 

concentration to 450 ppm, which would maintain a rise of 2
o
C. The IEA predicts that 

such rise would lead to the catastrophic 6
o
C increase in the atmosphere’s global 

temperature. EIA’s prediction matches with BP’s and according to them the major 

contributor to global CO2 rise will come from non-OECD countries, due to strong 

economic growth and reliance on fossil fuels [9]. The non OECD share to CO2 emissions 

is predicted to exceed OECD’s by 127% by 2040. China alone will be  responsible for 

one quarter of the increase in CO2 emissions (3.6×10
12

 tonnes), which would bring its 

emissions to 6.7×10
12

 tonnes by 2030 [3]. Regional emissions per capita in China are 

expected to rise from 3 to 10 tonnes of CO2 by end of 2035. In India the emissions per 

Industry 
21% 

Transport 
22% 

Electricity and 
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42% 

Residential 
6% 

Other 
9% 
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capita are expected to increase from 1 to 3 tonnes of CO2 by end of 2035. On the other 

hand per capita emissions in EU and US are expected to decrease by 2035.  

 

 

                  Figure 1.3: Carbon dioxide emissions prediction for 2035 [10].  

1.1 Effects of global warming 

The increased emissions could cause catastrophic effects on life. Figure 1.4 shows the 

potential effects of global warming on the environment Climate change will result in, rise 

in number of very hot days and heat waves, rising sea levels, more frequent intense 

precipitation events, and also increase in hurricane intensity. Developing countries will 

be affected more by climate change as compared to developed countries. As climate in 

many developing countries is already warm as compared to developed countries, 

increased temperature would result in increased frequency of famines, floods and disease 

outbreaks.  

 

Increased flood risks by 2080 are reported to affect 80 million people, with 60 likely to 

be among the poorest parts of South East Asia [3]. Considering Bangladesh, which is 

situated on the junction of three big rivers of the subcontinent (Ganges, Brahmaputra and 
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Meghna); as a result of increased temperature, monsoon precipitation has increased 

resulting in two catastrophic and exceptional floods during the period 1980–1999. The 

1998 flood submerged 70% of the country and was reported to affect about 31 million 

people in 52 out of the 64 districts. An estimated 2.4 million houses were completely or 

partially destroyed [11]. The frequency of such devastating floods is predicted to increase 

in the future.  

 

In an opposite scenario, climate change will result in regional scarcity of water and 

frequent occurrence of famines and droughts.  Average seasonal rainfall during the period 

of 1901 to 2010 over India has reduced by 10% compared to its long period average, 

resulting in 17% of the years to be drought years [12].  Over 1 billion people are 

predicted to be affected by fresh water poverty in West Asia and North Africa as a result 

of global warming by 2030 [13]. 

 

The shortage or excess rain will have dire consequences on agriculture dependent 

countries, by affecting crop yields and food prices.  A 3.5°C rise in temperature with 7% 

precipitation increase is predicted to result in 30-40% yield loss in India resulting in 7-

17% revenue loss, by the end of 21
st
 century [14]. As a result of wet or dry conditions, 

soil moisture content and growing seasons would be affected, reducing the productivity 

of crops. Increased temperature might be beneficial for some crops but might have 

adverse effects on others [15]. Plants could grow faster as a result of increased 

temperature but the higher rate of maturation may alter crop rotation cycles, affecting 

feasibility and profitability. Faster growth may create smaller plants, because soil may 

not be able to supply water or nutrients at the required rates, thereby reducing grain, 

forage, fruit, or fiber production. Similarly pollination of plants would be affected by 

high temperatures altering the yield, or increasing the risk of failure [16]. The effects on 

agriculture could lead to severe food shortages and price fluctuations, affecting billions 

across the globe. 
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Figure 1.4: Effects of global warming [17]. 
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The bulk of population is concentrated along or near coastal areas of the world. Coastal 

zones account 60% of the global population with one third of cities that have over 1 

million inhabitants [18].  In US, alone 8 million people live in coastal areas [19], while in 

China 60% of the population reside in coastal provinces [20]. Rising sea level due to 

climate change would have serious effects on the coastal areas of the world. Sea level is 

predicted to rise by 20 cm to 2 m by end of 21
st
 century [21]. The magnitude, frequency 

and duration of flooding during storms will be increased as a result of rise in sea level. 

Storm surge caused by high winds bring water inland during storms and hurricanes. As a 

result of elevated sea level these surges can reach farther inland damaging homes and 

infrastructure. Increased sea level would also submerge low lying coastal areas, 

drastically affecting populations. Inland intrusion of salt water due to the rising sea level 

will affect the salinity of coastal fresh water [22]. Coastal wetlands comprise of salt 

marshes, mangroves and intertidal areas, which are affected by increased sea level. 

Global wetlands are lost at the rate of 1% every year. These areas have number of 

important functions such as flood protection, waste assimilation, nursery areas for 

fisheries and nature conservation. Therefore, wetland loss will ultimately have significant 

high human cost [23].  

 

Disappearance of Earth’s ice cover is one of the outcomes of the global change in surface 

temperature. The ice cover helps to reflect large part of sun’s heat back into space, 

preventing overheating of the planet. Loss of ice cover will not only affect the 

temperature around the world, but could result in rising sea level; causing regional 

flooding, damaged ecosystems and habitats, endangering human and animal life on the 

planet.  Effect of climate change on ice melts around the globe is listed in the Table 1.1. 

 

East Antarctic, West Antarctic, and Greenland ice sheets combined contain 

approximately 70 m of sea-level equivalence. They have serious potential to affect global 

climate by altering the ocean circulating patterns.  The increased volume of water due to 

the ice melts will significantly affect global sea level [24]. Large amount of fresh water 

could be dumped into North Atlantic as a result of melting of arctic ice, disrupting the 
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ocean currents that enable warm Gulf stream in the north [25]. This could affect parts of 

EU and eastern US. 

 

Shrinkage of the mountain glaciers have already affected 500 million people in Northern 

India, who rely on the glacial-fed Indus and Ganges rivers for irrigation and drinking. 

Shrinkage and retreating of glaciers is increasing the size and number of glacial lakes 

[26]. The melting of the glaciers have increased river run off, reducing the future 

availability of fresh water. Counting formation, merging, and expansion of glacial lakes 

to the stage of glacial outburst floods, 32 records of such events have been recorded in 

Nepal, Tibet Autonomous Region of China and Bhutan [27]. These could affect other 

parts of the world which rely on glacial fed rivers for the supply of fresh water. 

 

Approximately 3344×10
9
 tons of organic carbon is contained within the permafrost 

worldwide [28]. Climate change can accelerate the degradation of the organic carbon by 

permafrost thawing, resulting in substantial amount of CH4, release in the atmosphere, 

which will accelerate global warming of the planet. 

 

It can be summarised that climate change would have irreversible changes to our planet. 

It would not only affect human beings but animal and plant life too. In addition to the 

obvious pollution issues, current energy production and consumption patterns would have 

economic and environmental repercussions. 
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 Table 1.1 :Effects of global warming on ice melts around the world [29].    

Name Location Measured loss 

Arctic sea ice Arctic ocean 

Has shrunk by 6 percent since 

1978, with a 14% loss of 

thicker, year-round ice. Has 

thinned by 40% in less than 30 

years. 

Greenland ice sheet Greenland 

Ice has thinned by more than a 

meter a year on its southern and 

eastern edges since 1993. 

Columbia, Glacier 

 

Alaska, United States 

 

Has retreated nearly 13 

kilometres since 1982. In 1999, 

retreat rate increased from 25 to 

35 m/day. 

Tien Shan Mountains Central Asia 

Twenty-two percent of glacial 

ice volume has disappeared in 

the past 40 years. 

 

Antarctic Sea Ice 

 

         Southern Ocean 

Ice to the west of the Antarctic 

Peninsula decreased by some 20 

% between 1973 and 1993, and 

continues to decline. 

Pine Island Glacier West Antarctica 

Grounding line (where glacier 

hits ocean and floats) retreated 

1.2 km/y between 1992 and 

1996. Ice thinned at a rate of 3.5 

m/yr. 

Dokriani Bamak Glacier 

 

Himalayas, India 

Retreated by 20 meters in 1998, 

compared with an average 

retreat of 16.5 m over the 

previous 5 years. 
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1.2 Energy from fossil fuels 

 

The majority of world’s energy requirement is fulfilled by means of burning non-

renewable fossil fuels such as coal, oil and natural gas. Burning of these fossil fuels has 

created serious environmental degradation and ecological disturbance (caused by climate 

change and global warming). Global energy generation scenario is shown in Figure 1.5.  

Fossil fuel resources usage comprises of 87% of the total energy consumed today, while 

other sources of energy i.e. hydro, nuclear and renewable sources of energy comprise the 

rest 13%.  

 

Coal accounts for the 28% of world’s energy consumption. Coal is the primary means of 

generating power in most of the countries.  World coal consumption increases on an 

average by 1.3 and 1.9% per year from 2010 to 2100 in OECD and non OECD countries 

respectively.  Since 2000 to 2010 world coal consumption has increased by 59% mainly 

due to increased energy demand, by flourishing Chinese economy. In China, coal 

supplies 74% of the total energy usage [30]. Based on projections, China would consume 

57% of the world’s coal consumption by 2025. 

 

Although major coal usage in China is associated with power generation, a substantial 

amount is also used in the production of pig iron and crude steel. In 2012, 717 and 658 

million tonnes of crude steel and pig iron were produced [31]. These amounts of steel and 

pig iron manufacture would consume huge amount of the coal mined in China.  

 

 In addition to China and US, India is currently the third largest consumer of coal in the 

world. The power sector was the largest consumer of coal in India. In 2010 about 68% of 

the country coal produced was used in power generation, while the rest was used in 

industrial sector in production of iron and steel, and cement production [32]. 
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       Figure 1.5: Global energy scenario[33]. 

 

In order to meet the growing demand of steel and cement to support growth, the Indian 

government plans to expand its steel production and cement production capacities. In 

2012 approximately 78 million tonnes of steel was produced in India.  An expansion 

from estimated 72.5 million tonnes in March 2014 to 304 million by 2020 has been 

planned [32, 34]. Likewise, India plans to double cement production capacity by 2020, 

increasing from 330 to 550 million tonnes [35]. As a result of these expansions, 

considerable amount of coal would be utilised.  Other countries i.e. Indonesia, Taiwan, 

Malaysia, Thailand, and Vietnam are the major consumers of coal in non OECD 

countries in Asia. 

 

Coal usage in OECD countries such as America and Europe is predicted to decline in the 

near future [32], but many European power generators have started using cheaper coal 

instead of natural gas [36]. On the other hand, coal usage from countries such as America 

has declined due to exploitation of shale gas. The affected economic condition in Europe 

has adversely affected the incentives provided to reduce carbon emissions. According to 

Oil  
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Fabio Marchetti, head of government affairs in Brussels for the Italian energy 

company ENI, power plants operating on natural gas are going to be dismantled by 2015 

and replaced by coal fired power plants. Other countries such as Australia, New Zealand, 

Latin American and African countries will continue to increase the use of coal in the 

future. The predicted enormous usage of coal in the growing economies such as China 

and India will be affected by government policies, infrastructure modernisation and 

development, availability and procurement of coal for power plants etc. 

 

In addition to coal, natural gas is the second major fossil fuel used in power generation. 

As compared to coal, natural gas is a lot cleaner and is preferred by power companies, as 

a result of its low carbon intensity and lower capital investments for new plants.  The 

natural gas is the fastest rising fossil fuel in the world. The consumption of natural gas 

will increase from 3.2×10
12 

in 2010 to 5.2×10
12 

cubic meters in 2040 [37]. Figure 1.7 

shows the natural gas consumption in 2012 [38]. In this Figure, non OECD European 

countries are counted in Eurasia and similarly OECD Asian countries are classed in Asia 

and Oceania. America was the biggest consumer of natural gas, followed by Asia and 

Oceania, Eurasia and Europe. 
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Figure 1.6: Dry natural gas consumption worldwide in 2012.  

 

Natural gas consumption is projected to rise from 0.7 to 0.83×10
12

  and 0.52 to 0.7× 10
12

 

cubic meters from 2012 to 2040 [37], in America and Europe respectively. Apart from 

these countries Eurasia will also show an increased demand in natural consumption, 

increasing from 0.6 to 0.84 trillion cubic meters from 2012 to 2040 [37].  Among all the 

Eurasian countries Russia was the biggest consumer about 70% in 2012 [38]. The rate of 

consumption would rise moderately compared to others.  

 

In the Asian countries China and Japan were the major natural gas consumers in 2012, 

accounting for 21 and 19.5% respectively of the Asian consumption [38].  Recent 

disasters in Japan have resulted in closures of many nuclear reactors resulting in 

increased natural gas consumption for power generation. On the other hand, natural gas 

usage in China will increase to meet the demands of the growing economy and reduce 

pollution due to heavy coal use.  Among all the countries, the highest increase in natural 

gas consumption will be seen in China. Natural gas consumption will increase from 

0.15×10
12

  cubic meters to 0.5×10
12

  cubic meters and decreasing to 0.35 by 2040 [37].  
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In Middle East, the consumption will increase by 0.3×10
12

 cubic meters from 2012 to 

2040 [37, 38].  Like China, natural gas consumption in Africa will increase significantly, 

increasing from 0.12 to 0.24×10
12

 cubic meters from 2012 to 2040 [37, 38]. Growth in 

consumption of Central and South American countries would not be significant, 

increasing from 0.15 in 2012 to 0.17 by 2040 [37, 38]. Among the central and South 

American countries, Argentina, Brazil and Venezuela were the major consumers of 

natural gas [38].  

 

Natural gas and coal are the fossil fuels which are associated mainly with power 

generation. The largest use of fossil fuels is in the transportation sector.  America is the 

largest consumer of liquid fuels in the OECD countries. The slower economic growth 

along with stagnant or lower population growth would decline the use of liquid fuels in 

OECD countries. The share of non OECD countries to growth of liquid fuel consumption 

is largest. More than 70% growth in liquid fuel demand from 2010 to 2040 will be as a 

result of non OECD countries. Non OECD countries i.e. China and India are the major 

consumers of liquid fuels in the non OECD countries as result of strong economic growth 

and population increase. The Chinese consumption of liquid fuels is twice that of India’s 

and will supersede America’s consumption by 2035 [39]. In addition to China and India, 

increase in population and per capita income growth in the Middle East will also 

influence the consumption of liquid fuels. The higher consumption of liquids in the 

chemical sector will play a role in the consumption of liquids [39].   

 

EIA has developed two scenarios to predict crude oil’s price up to 2040 (Figure 1.8). 

Low oil prices case was formulated assuming low oil prices and liquid fuel demand, 

taking into account cheaper non OPEC liquid fuel supply. On the other hand, high price 

considers higher economic world economic growth and use of less abundant and costlier 

non OPEC liquid fuel supply. These cases took into account the following factors for 

predicting the prices. 

1. The economics of petroleum liquids supply from non-OPEC countries  
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2. OPEC investment and production decisions 

3. The economics of other non-petroleum liquids supply  

4. World demand for petroleum and other liquids 

 

 
Figure 1.7: Predicted world oil prices in dollars per barrel [39]. 

 

As per the high oil price scenario, the price of crude oil is predicted to increase from 

96$/barrel in 2013 to 237$/barrel in 2040. This can be reflected in increased consumption 

by growing economies of China and India. The scarcity of oil reserves in these countries 

makes them heavily reliant on oil imports from OPEC countries [40]. The Indian crude 

oil consumption is estimated to double from 2012 to 2040. EIA estimates that Chinese 

consumption will exhibit highest growth in demand from 2010 to 2040 (10 million 

barrels/ day) [39, 41]. India would be the second largest consumer predicting a growth of 

5 million barrels/day from 2010 to 2040 [40, 42]. At the current rate of oil consumption, 
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based on conservative estimates, crude oil production in non OPEC countries is estimated 

to peak from 2020 and will decline after that.   

 

It is can be summarised that fossil fuels are being consumed at much higher rates than 

being produced especially crude oil. It is estimated that world crude oil reserves will 

vanish at the rate of 4 billion tons a year, and at the rate of current consumption crude oil 

reserves will be exhausted by 2050 [43].  Although coal reserves are predicted to be 

available up to 2081 [44], usage of coal associated with power generation is a highly 

polluting affair and results in high level of CO2 production. It is also a source of other 

highly toxic pollutants such as Hg, trace metals and nitrogen and sulphur oxides etc. 

Similarly coal production and processing has severe direct and indirect environmental 

effects. These reasons have promoted reduction of coal usage for power generation in 

many countries [45]. The increased natural gas production could be useful in filling the 

gap but these would only provide some breathing space up till 2060 [43]. Consequently a 

global energy crisis has forced the world in search of alternative energy sources.  
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1.3 Renewable and alternative energy 

 

Energy crises and climate change has resulted in the exploration of various alternative 

energy sources. Renewable energy technologies make use of various natural phenomena 

to generate usable energy. Solar, wind, flowing water (hydro), plant growth (biomass), 

gravitational force (tidal) and geothermal are used to produce energy.  These energy 

resources have a gained potential and could easily dominate the equivalent fossil energy 

resources. Despite many challenges, R&D in this field has progressed in the last few 

decades. Some of these resources are governed by factors such as accessibility, 

intermittent nature, and regional variations giving rise to technical and economical along 

with institutional challenges.  

1.3.1 Solar energy 

 

Solar energy can be applied on large scale in the countries with abundant sunshine for 

most of the part of the year.  Presence of cloudy skies in countries such as UK restricts 

the use due to lower efficiency. It also requires large amount of land for capturing energy 

and the energy produced has to be stored for future use requiring large scale 

infrastructure. The cost of the cells used in the collectors is expensive. The energy 

produced has to be used in the same location where generated, restricting its distribution.   

1.3.2  Wind 

 

Generation location is also an important factor in case of wind energy. The areas having 

sufficient wind strength to rotate the wind turbine are less, which restrict their application 

to hilly and coastal areas of any countries.  Countries with large flat ground and smaller 

coastline cannot make large use of wind energy. Power quality is affected by speed 

fluctuations due to air movement as a result of several climatological phenomena. The 
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intermittent power generation may lead to imbalance power demand, leading to adverse 

voltage variations [46]. Wind mill may also adversely affect wildlife and are known to be 

quite noisy, which again impairs their installations near residential areas.  

1.3.3 Tidal 

They can only be located in the countries with large coastline and availability of suitable 

generating sites. Like wind energy, tidal power generation will be affected by 

climatological factors such as high and low tide. Power could be generated only during 

high tide which accounts only for certain part of the day. This means, these forms of 

energy have to be associated with some form of energy storage installation for successful 

applications. Tidal energy output is patchy and variable, increase in variable generation 

increases the cyclic operation of the tidal generators, which would increase in wear and 

tear on the machines shortening of the life span of the units [47]. Substantial upfront 

investment is required for the construction of tidal energy infrastructure [48]. Recent 

research has shown that harnessing tidal energy may also affect residual and transitional 

oceanic currents over vast distances, indirectly affecting sediment transport rates, 

pollutant dispersion and nutrient concentrations, thus affecting marine environment [49].  

1.3.4  Geothermal 

 

Like solar, tidal and wind energy, geothermal energy is also restricted on the basis of site 

location. As this form of energy is not widely used, it lacks the availability of 

infrastructure and staff for the installation of these plants. It also has high initial cost of 

installation affecting the cost of power produced. The location of the sites can also affect 

the construction and exploitation of the energy source. Toxic and harmful gases can be 

released from geothermal sites. Lastly energy generated cannot be transported due to the 

location of the sites. 
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1.3.5 Biomass 

 

Biomass as a renewable energy source, is derived from biological material obtained from 

living organism i.e. plants or plant derived materials. The European Commission 

specified that there are large varieties of biomass available such as by-products, 

agricultural, forestry residue, related industries, as well as the non-fossil, biodegradable 

parts of industry and municipal solid waste (MSW) [50]. Biomass and biomass energy 

systems are suggested to become one of the important contributors to sustainable energy 

systems and sustainable development in developed as well as developing countries in 

near future [51].  Table 1.2 shows biomass resources categorised based on their origin.  

 

Biomass can be the most suitable form of renewable energy source among the various 

renewable sources due to its various advantages. Biomass can be produced abundantly in 

most part of the world. Continuous supply can be assured based on constant production. 

It is important to note that the annual production may vary, depending on the type of 

biomass grown. It is relatively cheaper to produce and some types of the biomass 

obtained as by-products are almost free. According to the European Environmental 

Agency (EEA), 13% of the total energy consumption by 2020, would be provided by 

biomass [52]. 

 

Biomass can also be directly used in the existing power generating infrastructure. 

Specially grown energy crops and other kinds of biomass can be co-fired with coal to 

generate electricity. The net energy available from biomass combustion ranges from 

about 8 MJ/kg for green wood, to 20 MJ/kg for dry plant matter to 55 MJ/kg for CH4, as 

compared to 27 MJ/kg for coal [53]. Biomass contains fewer amounts of sulphur and 

nitrogen in comparison to coal, which in turns reduces the formation of toxic and GHG 

such as SO2 and NOx. 
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Table 1.2: Biomass resources categorised base on their origin [54]. 

Categories Source Representative material 

 

 

 

 

 

Productive 

Terrestrial 

Carbohydrate 

Starch 

Cellulose 

Hydrocarbon 

Grease 

 

 

Sugar cane, corn, sweet sorghum 

Maize, cassava and sweet potato 

Tropical grasses, poplar and sycamore 

Eucalyptus, green coral 

Sunflower, rapeseed, palm and other oil 

producing plants 

Aquatic 

Fresh water 

Ocean 

Micro-organisms 

 

Water hyacinth 

Large Kelp 

Green algae and photosynthetic bacteria 

 

 

 

 

 

 

Unused biomass 

Agriculture, forestry and fishery 

residues   

Animal husbandry 

 

Forestry 

 

 

Wheat straw, rice straw and husk 

Vegetable and processing residues 

Animal manure 

Farm residues 

Secondary forest 

Woodland remnants 

Crippled materials in plants 

Waste  

Fisheries 

Municipal waste 

Garbage 

 

Jettisoned  and dead fish 

Municipal pulp sludge and sewage 

Family garbage 
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In addition to this, biomass contains less amount of ash and higher amount of volatile 

matter and fixed carbon in comparison to coal. As result biomass can be ignited and 

gasified or oxidised easily [55]. It also contains oxygen which is non-existent in coal. 

These properties result in effective combustion of biomass compared to coal.  But the 

higher content of oxygen also reduces the calorific value of biomass. The cost of 

electricity generated using biomass is often competitive with fossil fuel based power.  

Figure 1.9 shows the cost effectiveness of electricity generated from various renewable 

sources. In this Figure, large coloured bars represent the typical levelised cost of 

electricity (LCOE) range by technology and the coloured horizontal lines the weighted 

average LCOE by country/region if enough individual project data are available. In the 

case of biomass, electricity can be produced very cheaply, with prices ranging from USD 

0.06/kWh and 0.02/kWh in OCED and developing countries respectively. But the cost 

will depend on onsite availability of low cost biomass feedstocks.  

 

The use of biomass could augment and complement the current shortage of fossil fuel. It 

will also help reduce atmospheric concentration of CO2, as CO2 produced from biomass 

can be counter balanced by the amount absorbed during its growth. Cultivation and 

burning of Miscanthus (an energy crop) was predicted to reduce 9% of the total European 

carbon emissions in 1990 [56]. The use of waste biomass will also help mitigate the CH4 

generated from decaying organic matter.  By making use of the sugar cane bagasse for 

electricity production, more than 100 % reduction in GHG emissions compared to 

gasoline/diesel, was reported with sugar cane ethanol [57].  

 

Biomass can be converted from one form to another. For e.g. agricultural residue such as 

wheat straw or rice straw can be converted to biogas a mixture of (CH4 and CO2). This in 

turn could help reduce landfills and increase availability of land for other uses. Likewise 

liquid fuels such as biodiesel and bio ethanol can also be produced from sugar containing 

biomass [58, 59] by fermentation processes. Next generation biofuels such as butanol can 

also be produced from these biomass sources [60]. Complex fuels such as bio-oil can also 

be generated by pyrolysis of biomass [61]. 
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Figure 1.8: LCOE and weighted averages for renewable generation technologies, 2012 [62]. 

 

 Use of non-food based biomass known as energy crops, can help utilise unused land. 

Energy crops can be grown in arid or highly erosive land, preventing the utilisation of 

fertile land allocated for food production [55, 63]. Switch grass is one of the herbaceous 

perennial energy crops which can be utilised in power generation. This kind of crops 

offer variety of advantages such as sustainable agriculture as a result of crop 

diversification, reduction in soil erosion [64] and lastly they also help in improving 

quality of water [65].  Non-food oil crops such as jatropha, tobacco, karanja, rice bran, 

rubber seed, and Mahua along with many others can be used in production of oil which 

could be converted to biofuel [43]. The bio residue left behind after oil extraction could 

be used as animal feed or could be used for the generation of biogas [66, 67].  
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The wide variety of biomass available can meet the requirements of the different 

conversion processes such as combustion, gasification, pyrolysis, fermentation or 

mechanical extraction of oils. Fuel wood, forestry residues, bagasse and MSW can be 

directly used in conventional power plants for generating electricity via combustion. 

Wood is also preferred for pyrolysis and gasification processes for the production of 

liquid (bio oil) and gaseous fuels (bio syn gas). Energy crops such as switch grass are 

mainly grown with the intention of utilisation in ethanol production via fermentation for 

blending with gasoline.  Sugar cane is also grown for ethanol production using the same 

processes. Soya bean, rapeseed corn, palm and canola are grown for oil extraction for 

production of biodiesel. Agricultural residues, municipal solid waste (MSW), and animal 

waste are preferred feedstocks for anaerobic digestion to produce biogas. 

 

In addition to the above advantages, biomass will play an important role in rural 

development by developing an integrated sustainable and flexible system of food, energy 

and employment, mainly in developing countries such as India. In rural India, fire wood 

and chips have been the main source of energy for cooking [68]. To promote biomass use 

in other aspects of  day-to-day life, several projects were implemented for utilisation of 

biomass for energy production [69]. For e.g. animal dung was used for generating biogas 

a clean fuel for domestic and water heating in Tunkur district, Karnataka, India. 

Production of non-edible oils such as Pongamia seed oil was collected and used for 

generating power for illumination and pumping drinking and irrigation water in 

Kaggenahalli and surrounding villages, Karnataka, India. Biogas generation and 

utilisation for electricity production for pumping drinking water were implemented in 

few villages in the Hassan district, Karnataka, India. A Biomass gasifier running on wood 

chips for generating electricity for pumping household water was installed in the Tunkur 

district. Use of biogas as a cooking fuel is very popular in rural China and 

4.54 × 10
5
 household-sized biogas digesters,  5 medium and large scale biogas projects 

were installed in the Gansu province of China alone, with  87% of the facilities 

operational and well maintained up till 2012 [70]. These programs have helped improve 

the energy independence of the rural population and improved the quality of life in these 

parts of the world. 
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Price and availability of renewable resources would be an important factor in selections 

of the source. Global application of certain forms of renewable energy is restricted due 

specific requirements. Renewable energy sources such as wind, tidal, geothermal are 

often located in remote locations which hamper their ability to transfer the energy from 

the generation to the utilisation locations. Also, the energy generation from sources such 

as wind, solar and tidal are governed by metrological conditions resulting in intermittent 

power production. Considering only on availability basis, biomass is far abundant 

anywhere in the world than other sources. One can say that the power generated using 

wind, tidal or solar is free, but the infrastructure cost is higher. Cost of biomass is 

relatively very cheap and is almost free. Biomass can be used in the existing power 

generation infrastructure, giving it an advantage over others.  

 

Biomass energy can be converted from one form to another and it is easily adapted to end 

use application. For example, solid biomass can be adopted for power generation, or can 

be converted to gases which can also be used for power generation or can be fed to gas 

grids for domestic applications. Liquid biofuels such as ethanol, butanol and biodiesel are 

produced from biomass and are used as transportation fuels. It can be concluded, that 

biomass is a versatile renewable energy source with significant potential for securing 

independence from a fossil based economy.  
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1.4 Hydrogen energy and fuel cells 

 

As seen above, the energy demand of the world is going to increase. The highest 

requirement of energy demand would be in the form of electricity. Generation of clean 

and sustainable power is the major concern for today’s world, as the current methods of 

power generation i.e. combustion of fossil fuels is unsustainable and highly polluting. H2 

as an energy carrier has been widely researched over the world for power generation and 

propulsion applications. \ 

1.4.1 Fuel cells 

 

One of the widely studied methods of utilisation of H2 is fuel cells [71, 72]. Technically, 

fuel cells can be described as electrochemical energy conversion devices that convert H2 

and O2 into H2O and in the process produce electricity [73].  Their mode of operation is 

similar to that of a battery. Unlike a battery, a fuel cell does not store energy and instead 

converts chemical energy to electrical energy, without  an intermediate conversion steps 

into heat and then mechanical power, which is required in combustion technologies [74].  

Construction of a polymer electrolyte fuel cell is shown in Figure 1.10. 

 

A fuel cell consists of an anode, cathode and an electrolyte. The electrolyte is in intimate 

contact with the porous anode and cathode. Fuel which is H2 or a mixture of H2 rich gas 

is introduced at the anode surface, and oxidant is fed at cathode. They react 

electrochemically in the three-phase-boundary region established at the gas-electrolyte-

electrode interface. In a proton exchange membrane fuel cell (PEMFC), H2 gas splits at 

the anode to form two positively charged protons by releasing two negative electrons, the 

protons travels to the cathode through the electrolyte and react with oxygen to form 

water, and completing the circuit. 
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There are 5 basic types of fuel cells under investigations, classified on the basis of the 

type of electrolyte used.  Table 1.3 and 1.4 summarises the construction and operation 

parameters of different types of fuel cells. 

 

 

Figure 1.9: Schematic representation of a polymer electrolyte membrane fuel cell [75]. 

 

Efficiency exhibited by fuel cells is twice that observed in internal combustion engines 

and turbines, making them one of the promising energy conversion devices  [76]. They 

can be used in association with other devices such as turbines further increasing their 

efficiency up to ~70% [77]. PEMFC and solid oxide fuel cells (SOFC) are the two most 

promising fuel cells. The PEMFC has a polymer based electrolyte such Nafion which 

provides excellent resistance to gas crossover. The PEMFC’s low operating temperature 

allows rapid start-up and, with the absence of corrosive cell constituents, the use of the 

exotic materials required in other fuel cell types, both in stack construction and in the 

BoP (Balance of plant) is not required [72]. Another advantage compared to alkaline fuel 

cell (AFC), molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) 
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includes significantly reduced corrosion problems due to the limited operating 

temperature and the use of a solid electrolyte.  

 

The other big advantage of PEMFC over other fuel cells is its size, weight and compact 

nature, making it ideal in the cases where size is key parameter for the application. The 

high power density of these fuel cells makes them ideal for applications in laptops, 

automotive power, computers and mobile phones.   In recent years some of the major 

drawbacks such as life of the fuel cell and cost of the power generated have been 

resolved, but further cost improvements are necessary in order to compete with the 

commercialised internal combustion technologies [78]. One of the key aspects of 

PEMFC, which need addressing, is its tolerance to impurities in fuel and oxidant, as these 

affect the performance and expedite degradation.  PEMFC fuel cells are extremely 

vulnerable to CO in the fuel, which poisons the platinum catalysts.  

 

On the other hand, SOFC’s are versatile fuel cells with high electrical efficiency of 55% 

[79]. As a result of their high operating temperatures, SOFCs can be effectively 

combined with other new energy technologies such as micro turbines to enable the 

development of electricity generation products with ~70% efficiency [77]. They can also 

be used in combined heat and power systems (CHP) to provide electricity and heat for 

applications in cold areas of the world. SOFCs are made from commonly available 

ceramic materials and have no moving parts or corrosive liquid electrolytes. Therefore 

they should lead to highly reliable electricity generation systems which require low 

maintenance [71, 79-81]. The manufacturing process for SOFCs is based on well-known 

equipment that is widely available and well proven in the manufacture of electronic 

ceramic components. SOFCs do not require expensive catalysts for their operation, and 

they can operate directly on CH4 or natural gas, which avoids expensive and difficult fuel 

reforming to generate pure H2. 
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  Table 1.3: Construction and operation summary of various fuel cells [82]. 

FC PEMFC AFC PAFC MCFC SOFC 

Electrolyte 

Hydrated 

Polymeric Ion 

Exchange 

Membranes. 

Mobilized or 

immobilised 

KOH in 

asbestos 

matrix. 

Immobilised 

liquid 

    H3PO4 in SiC. 

Immobilised 

liquid  

molten  

carbonate 

in 

LiAlO2 

Ceramics 

Electrodes Carbon 
Transition 

metals 
Carbon 

Nickel and 

Nickel Oxide 

Perovskite 

and 

perovskite / 

metal cermet 

Catalyst Platinum Platinum Platinum 
Electrode 

Material 

Electrode 

Material 

  Interconnect 
Carbon or 

Metal 
Metal Graphite 

Stainless 

steel 

or Nickel 

Nickel, 

ceramic, or 

steel 

Operating 

Temp 
40 – 80°C 65°C – 220 °C 205°C 650°C 600-1000°C 

Charge 

Carrier 
H

+
 OH

-
 H

+
 CO3

=
 O

=
 

External 

reformer 

use 

 

Yes Yes Yes 

No, 

for some 

fuels 

No, for some 

fuels and 

cell designs 

External 

shift 

conversion 

 

Yes, plus 

purification 

to 

remove 

CO traces 

Yes, plus 

purification 

to remove 

CO& CO2 

Yes No No 

 Prime cell 

     components 

Carbon 

Based 

Carbon 

based 

Graphite 

based 

Stainless 

Based 
Ceramic 

Water 

   management 
Evaporative Evaporative Evaporative Gaseous 

Product 

Gaseous 

Product 

Product 

heat 

    management 

Process Gas + 

Liquid 

Cooling 

Medium 

Process Gas + 

Electrolyte 

Circulation 

Process Gas + 

Electrolyte 

Circulation 

Internal 

Reforming + 

Process Gas 

Internal 

Reforming + 

Process Gas 

 

Where, FC- fuel cell, PEMFC- Polymer electrolyte membrane fuel cell, AFC- Alkaline 

fuel cell, PAFC- Phosphoric acid fuel cell, MCFC- Molten carbonates fuel cell, Temp-

Temperature and SOFC- Solid oxide fuel cell. 
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Table 1.4: Performance of comparison of various fuel cells [71, 83].  

FC PMFC AFC PAFC MCFC SOFC 

SO 1-250 KW 10-100 KW 50KW-

1MW 1KW-1MW 1 KW-3MW 

Eff  

Elc 

53-58%
 

25-35% 
60% 32-38% 45-47% 35-43% 

Appl 

BPW,   

PPW  

and TP 

Military and  

space 
DG, 

Electric 

utility, 

large DG 

 

MPW, 

electric 

utility 

& large scale 

DG 

Adv 

Solid 

Electrolyte 

reduces 

corrosion. 

quick start 

Cathode 

reactions 

are 

faster. 

Higher 

performance 

Increased 

tolerance to 

impurities in 

H2. 

Higher 

overall 

efficiency 

with CHP’s 

 

High efficiency, 

fuel 

flexibility, 

can use 

variety of 

catalysts, 

suitable 

for CHP’s. 

High 

efficiency, 

fuel &catalyst 

flexibility, 

solid electrolyte 

reduces electrolyte 

management 

problems, 

suitable 

for CHP’s 

hybrid GT cycle 

 

 

 

Disadv 

Requires 

expensive 

catalyst, 

highly 

sensitive to 

impurities 

in fuel, 

low 

Temp  

waste 

heat not 

suitable 

for CHP’s 

Expensive 

removal 

of CO2 

from 

air & fuel 

is 

required 

to 

prevent  

electrolyte 

degradation. 

Requires 

expensive 

catalyst, 

low current 

&power 

produced, 

large size 

& weight. 

Temp speeds 

corrosion & 

break 

down of cell 

components, complex 

electrolyte 

mgmt & 

slow start up. 

Temp 

speeds 

corrosion & 

break 

down of 

 cell components, 

slow start up 

& brittleness 

of ceramic 

electrolyte 

with cycling. 

 

Where, Adv- Advantages, Appl- Applications, BPW- Backup power CHP- Combined 

heat and power, DG- Distributed generation, Disadv- Disadvantages, Eff- Efficiency, 

Elc-Electrical, FC- Fuel cell, PPW- Portable power, Temp- Temperature, TP- 

Transportation and SO- System output. 
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The high operation temperature of the SOFC also has its drawbacks. There are thermal 

expansion mismatches among materials, and sealing between cells is difficult in the flat 

plate configurations. The high operating temperature places severe constraints on 

materials selection and results in difficult fabrication processes. However, the 

commercialisation of SOFCs has not been fully demonstrated due to its initial cost of 

fabrication, degradation in reliability and durability during its prolonged operation. All 

these problems have originated from the high temperature operation of the SOFCs, which 

is higher than 900°C. Recent R&D has tended to focus on reduced-temperature SOFCs 

because of their cost advantages (since they use low cost metallic interconnect plates) and 

their thermal cycle abilities [84].  

 

1.4.2 Hydrogen energy road map 

 

Figure 1.11 shows the European H2 energy road map for 2050. The road map is a 

program for bridging the technological gaps in different areas of H2 energy which 

includes production, storage, transportation and delivery, applications, safety. Following 

are the key challenges which need to be tackled for successful implementation of H2 

economy. 

 Reducing cost of production to conventional fuels such as gasoline. 

 Generation of renewable and sustainable CO2 free H2. 

 Construction of efficient, reliable and nationally linked H2 delivery and refuelling 

infrastructure.  

 Development of feasible H2 storage for automotive and stationary applications. 

 Considerable decrease in cost and significant increase in life of fuel cells. 

 

The use and handling of pure H2 for fuel cell application is risky, due to the formation of 

explosive mixtures of H2 and air which can cause serious damage especially during 
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accidents. Further H2 has to be liquefied and stored at high pressures which also 

introduce another risk factor. H2 is a fuel that has a high gravimetric energy density but 

also a low volumetric energy density, in both gaseous and liquid states. As a result to 

store same energy content, larger tanks are required for H2 as compared to other fuels. 

Tank size has been a problem for car integration. This storage technique requires a high 

amount of energy and is therefore a source of considerable environmental impact. New 

storage methods such as metal hydrides are being explored; they are currently limited by 

the weight of the system.  According to US department of Energy, both cryogenic and 

high-pressure H2 storage options can meet the mid-term targets [85]. Safer, efficient, 

compact systems, with low weights are needed for automotive as well as stationary 

applications. Along with fuelling stations, H2 delivery and distribution network 

(including H2 pipelines) will need to be developed for the successful implementation of a 

H2 economy to replace the current fossil fuel based economy.  

 

Currently most of the H2 produced comes from fossil fuels such as natural gas, oil and 

coal. The processes are energy intensive and consume large amount of energy producing 

CO2 as a by-product. H2 production technologies from fossil fuels (steam reforming, 

partial oxidation, and gasification) are mature and widely used, although some of them 

need to be optimised for large-scale production from the point of view of energy 

efficiency, environmental impact, safety and above all, costs. The release of CO2 can be 

managed by use of carbon capture and storage (CCS), which involves storing of CO2 in 

depleted natural gas and oil wells or in geological formations. However the CCS 

technology is not commercial proven yet and there are too many unknowns. These 

technologies need to be connected to the production infrastructure in order to reduce the 

environmental impacts. New processes such as electrolysis, photo-electrolysis, high- 

temperature decomposition and photo-biological water splitting are being evaluated.  

Production of H2 and pure carbon via high temperature pyrolysis of hydrocarbons, 

biomass and municipal sewage waste are also under investigations. Fossil fuel generated 

H2 would be the primary source of H2 up to 2020 [85]. The new technologies which are 

in development stages could become available during the transitory phase. H2 based on 
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renewable resources will become commercially viable in the long run and will replace the 

fossil generated H2 (natural gas or coal). 

 

 

 

Figure 1.10: European H2 energy road map [85]. 
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1.4.3 Hydrogen properties and safety 

 

The element H2 is abundantly available in the nature and is a building block of the 

universe.  Following are some of the advantages of H2 gas as a fuel. 

 H2 is the lightest element occurring in nature, the H2 molecule contains a large 

amount of energy in its chemical bond. 

  Combustion of H2 generates pure water and no harmful greenhouse gases such as 

CO2. 

 It can be generated from both renewable (solar, wind, geothermal and biomass) 

and non-renewable sources (coal, natural gas and nuclear).  

 H2 gas is nontoxic, which cannot be said in case of other fuels such as gasoline or 

coal. Table 1.5 shows some properties of H2 gas in comparison to other fuels. 

 

Properties of H2 are crucial in determining its usage in the H2 economy. The boiling point 

of H2 is -252.7°C. Being in gaseous form no energy can be lost in vaporisation, if it is 

utilised in internal combustion engines. Lowest specific heat among the fuels, suggest 

comparatively less amount of energy would be required if preheating operations are 

involved in the power generation processes. Heat of combustion for H2 was highest 

compared to other fuels, and is clean only producing H2O. One might assume that H2 

would be a dangerous fuel compared to conventional ones such as gasoline. It can be seen 

that gasoline and alcohols such as ethanol would ignite quicker than H2. H2 is stable and 

coexists harmlessly with free oxygen (O2) until an input of energy drives the exothermic 

reaction that forms H2O [86]. It is much lighter than other fuels as a result of its low 

density, dispersing very quickly, which could prevent formation of explosive mixtures in 

ventilated areas. It also has very low radiative energy in comparison to CH4 and as a 

result, at fixed distance away from H2 fires, temperature will be lower indicating cooler 

region as compared to that at the centre [87]. Nevertheless care must be taken while 

handling and using H2. 
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Table 1.5: Properties of H2 and some other fossil fuels [72]. 

Properties H2 CH4 NH3 CH3OH C2H5OH Gasoline 

Molecular weight 

kg/kmol 
2.01 16.04 17.03 32.04 46.07 114.2 

Freezing point 

(°C) 
-259.2 -182.5 -77.7 -98.8 -114.1 -56.8 

Boiling point (°C) -252.7 -161.5 -33.4 64.7 78.3 125.7 

Enthalpy of 

combustion at 

25
o
C (MJ/kg) 

141.80 55.50 22.5 22.7 29.7 47.30 

Heat of 

vaporisation 

(kJ/kg) 

445.6 510 1371 1129 839.3 368.1 

Liquid density 

(kg/m
3
) 

77 425 674 786 789      702 

Specific heat at 

STP (kJ kg
-1

 K
-1

) 
  14..3 2.22 2.2 2.56 2.72 2.22 

Flammability limit 

in air (%) 
4-77 4-16 5-28 6-36 4-10 1-6 

Autoignition 

temperature (°C) 
571 632 651 464 423 220 
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2. Use of vegetable oil as diesel fuel 

 

This section examines the use of edible and non-edible vegetable oils and their blends as 

a diesel engine fuel.   

 

CH3 O

O

CH3 O

O

CH3 O

O

 

 

Figure 2.1: Molecular structure of triglyceride molecule. 

 

Figure 2.1 shows a molecular structure of triglyceride molecule. A triglyceride (TG) is 

also known as a triacylglycerol (TAG), or triacylglyceride. It is an ester derived using a 

glycerol backbone (C3H8O3) and three fatty acids. The free fatty acids can be saturated or 

unsaturated types. In saturated free fatty acids, H atoms are bonded with C atoms in all 

the available places, while unsaturated free fatty acids have smaller amount of H atoms as 

a result of (C=C) double bonds reducing the position where H atoms can bond with C 

atoms. Other C hydrogen bonds such as =CH-CH=, -CH2-CH2- exist in unsaturated free 

fatty acids. Depending on the source of the triglycerides, animal or vegetable the fatty 

acid composition vary accordingly as shown in Table 2.1.  

 



Hydrogen production by steam reforming of biodiesel 

36 

 

The use of vegetable oil as fuel is known to man since end of 18
th

 century. Peanut oil was 

used for the first time in Augsburg, Germany on August 10, 1893 by Rudolf Diesel to 

power a 10 feet iron cylinder with a flywheel at its base [88].  In the year 1900 Rudolph 

Diesel won the highest prize at the world fair held in Paris for his Diesel Engine running 

on peanut oil.  In the 1920s diesel engine manufacturers modified their engines to run on 

petroleum diesel rather than vegetable oil due to the lower viscosity of the former as well 

as higher availability and cheaper cost. 

 

Vegetable oil received importance as an emergency fuel during World War II. Countries 

such as Brazil curtailed the export of cotton seed oil in order to substitute petroleum 

based diesel [89]. China produced kerosene and gasoline by cracking of Tung oil to be 

used as fuel [90]. Similarly use of vegetable oil as a substitute diesel fuel was 

investigated in India during World War II, but it suffered the same fate when the scarcity 

of the cheaper diesel fuel decreased [89]. Similar attempts to explore the utilization of 

vegetable oil as diesel fuel were made by Argentina, France, Italy, Japan and Portugal 

during World War II. Rising prices of petroleum fuels and fuel shortage during the war in 

United States of America led to investigation of cotton seed and corn oil and its diesel 

blends  to be used as diesel fuel (Ohio State University, (Columbus, USA) [89]. The 

history of investigation of vegetable oil and other origin oils such as fish oil, cotton seed 

oil and tallow as diesel fuel has been clearly described in “The Biodiesel Handbook” 

[90]. According to the authors, in most of the investigations reported, environmental 

concern was not the primary objective, since no emission studies were conducted. The 

major focus of the research was investigation of these oils as diesel fuel substitute.  

Similarly the effects of use of these oils on the life and long term performance were not 

documented. Jones and Peterson [91] documented literature on use of unmodified 

vegetable oil as a diesel fuel extender from 1942 to 2000. The authors concluded that 

short term evaluations of substitution of diesel with any percentage of vegetable oil were 

successful, but long term evaluations of blends with higher amount of vegetable oil in the 

blends led to engine damage or created maintenance problems. 
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2.1 Demerits of vegetable oil as fuel 

In recent years energy security and environmental concerns have become a driving force 

to promote the utilization of vegetable oil- based diesel fuels. As mentioned above raw 

vegetable and other oils have been shown to work as a fuel for diesel engines since 

historic times, they exhibit various disadvantages. Raw or refined vegetable oil, or 

recycled greases have significantly different composition and their properties making 

them acceptable for use in modern diesel engines. Raw vegetable oil and fats have higher 

viscosity, and lower volatility fats have been shown to cause problems in a number of 

areas [92]. Higher viscosity and lower volatility have shown to reduce the brake thermal 

efficiency of vegetable oil fuelled engine compared to diesel engine resulting in higher 

HC and CO emissions [93, 94].  The other draw backs are listed below 

 piston ring sticking 

 injector and combustion chamber deposits. 

 fuel system deposits.  

 reduced power 

 reduced fuel economy and increased exhaust emissions.  

 

Use of unprocessed oils or fats as neat fuels or blending stock lead to excessive fuel 

condensation and corresponding dilution of the engine’s lubricating oil that may result in 

sludge formation [95]. Any or all of these conditions may result in reduced engine life, 

increased maintenance costs, or catastrophic engine failure. The significantly higher 

viscosity of raw vegetable oils (27 - 54 mm
2
/s) compared to petroleum diesel fuel (2.6 

mm
2
/s) has shown to alter fuel injector spray patterns and spray duration, adds stress on 

fuel injection systems, and results in incomplete combustion and high dilution of the 

engine lubricating oil [96]. Changes in the fuel injector spray patterns, duration, etc. 

results in poor engine performance and high emissions levels, caused by ineffective 

combustion processes. Fuel dilution of engine lubricating oil increases as a result of 

incomplete combustion leading to sludge development [97, 98]. Nwafor et al. [99, 100] 

reported that low cetane number of vegetable oil resulted in knocking in diesel engine at 
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low load and cylinder temperature. Undesirable deposits on pistons, piston rings, fuel 

injectors, valves occur as result of polymerization of glycerides in raw vegetable oils and 

animal fats during the combustion processes [95, 101, 102]. Table 2.2 summaries the 

effects of vegetable oil utilization in a diesel engine.  It can be clearly seen that non 

modified or raw vegetable oil seriously affect the performance of diesel engine in both 

long and short term use. 
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                  Table 2.1: Fatty acid composition (wt %) observed in edible, non-edible oils and animal fat [103-105]. 

Fatty acid (wt %) 

 

Name 

C8:0 C10:0 C12:0 C14:0 C16:0 C18:0 C18:1 C18:2 C18:3 C20:0 C22:0 C22:1 C24:0 

             

Beef tallow 0 0.1 0.1 3.3 25.2 19.2 48.9 2.7 0.5 - - - - 

Butter fat 5.5 3 3.6 11.6 33.4 11.4 27.8 3.1 0.6     

Canola 0 0 0 0.1 3.9 3.1 60.2 21.1 11.1 0.5    

Coconut 8.3 6 46.7 18.3 9.2 2.9 6.9 1.7      

Corn     9.9 3.1 29.1 56.8 1.1     

Cotton seed    0.8 22.9 3.1 18.5 54.2 0.5     

Grape seed     8 4 15 73      

H.O safflower    0.34 5.46 1.75 79.36 12.86  0.23    

Jatropha     14.6 6.8 38.6 36 0.2 0.2 3.6   

Karanja     11.65 7.50 57.32 16.64   1.35 4.45 1.09 

Lard  0.1 0.1 1.4 25.5 15.8 47.1 8.9 1.1     

Linseed     4.92 2.41 19.7 18.03 54.94     

Mahua    0.14  21.36 18.97 38.98 19.47 0.16     

Neem     0.26 15 20.6 43.9 17.9 0.4 1.6 0.3  0.3 

Olive       19.7 18.03 54     

Palm 0.1 0.1 0.9 1.3 43.9 4.9 39 9.5 0.5     

Rapeseed     2.7 2.8 21.9 13.1 8.6 50.9    

Soybean   0.1 10.3  4.7 22.5 54.1 8.3     

Sunola     3 4.4 88.2 4.3 0.1     
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Table 2.2: Long term and short term problems associated with use of vegetable oil as a diesel engine 

fuel [95]. 

 

 

  

                                      Sr No Problem Nature Probable cause 

1 Cold weather starting Short term 
High viscosity, low flash point 

and low cetane number 

2 Plugging and gumming of filter, lines 

and injectors 
Short term 

Natural gums (phosphatides) in 

vegetable oil. Ash. 

3 Engine Knocking 
 

Short term 

Very low cetane of some oils. 

Improper injection timing. 

4 
Coking of injectors and C deposits on 

piston and head of engine 
Long term 

High viscosity of vegetable oil, 

incomplete combustion of fuel. 

Poor combustion at part load. 

5 Excessive engine wear Long term 

Possibly free fatty acids in 

vegetable oil. Dilution of 

engine lubricating oil due to 

blow-by of vegetable oil. 

6 
Failure of engine lubricating oil due to 

polymerization 
Long term 

Collection of poly-unsaturated 

vegetable oil blow-by in crank-

case to the point where 

polymerization occurs. 
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3. Biodiesel: An alternative diesel fuel 

As discussed in the previous chapter, the use of vegetable oil as diesel fuel is restricted by 

the viscosity of the oil or its blends. Several attempts to lower the viscosity by increasing 

the temperature of the vegetable oil [99] or its blends have been investigated widely [106-

109].  Some of the investigations reported negative effect of the preheating of the oils. 

According to Agarwal and Rajamanoharan [107] preheated and cold Karanja oil showed 

similar CO emissions, smoke opacity and hydrocarbon emissions.  Blends with 

concentration of 50 (v/v) % could be used directly with or without preheating, but CO, 

hydrocarbon and smoke emissions were shown to be higher for these blends, questioning 

their use as blends. 

 

A different approach to reduce the viscosity of the vegetable oil for use in diesel engine 

was proposed in  1937 by G. Chavanne [110] from the University of Brussels who 

patented a process called transesterification of vegetable oil. The inventor used ethanol 

(C2H5OH) in order to separate the fatty acids from the glycerol backbone by replacing it 

with shorter chain linear alcohols. The term biodiesel was used for the first time then to 

define the products obtained from the process.  Biodiesel i.e. fatty acid methyl esters 

(FAME) are defined as monoalkyl esters of fatty acids.  

 

In 1977, the first patent for industrial process of biodiesel manufacture was applied by 

Expedito Parente, a Brazilian scientist, with research on biodiesel production from 

sunflower oil commencing in 1979 [89, 111]. The first pilot plant was established by 

Gaskoks in 1987, with first manufacturing plant in 1989. Since then several industrial 

scale biodiesel manufacturing plants were established worldwide depending on the type 

of oil feedstock, with soybean in America, canola in Canada, rapeseed oil in Europe and 

UK and palm oil in Malaysia.   
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In recent years, energy security and environmental concerns have become a driving force 

in promoting the utilization of vegetable oil based diesel fuels. Laws and policies have 

been passed in various countries e.g. The Clean Air Act Amendments of 1990, United 

States and the Energy Policy Act of 1992. United States requires the use of alternative 

fuels for regulated truck and bus fleets [112]. Similarly Amendments to Energy Policy 

Act in 1998 provided credits for biodiesel use (also in blends with conventional diesel 

fuel). Likewise a directive was passed by European Union (EU) known as “Biofuels 

Directive” in the year 2003 to promote the use of biofuels to replace 5.75% of all the 

fossil fuel usage (petrol and diesel) by 2010. The energy taxation directive, 2003 allowed 

the EU state to offer tax exemption for use of biofuels in order to reduce the difference in 

cost between the fossil and biofuels [112].  Similarly the EU Climate and Energy 

Package adopted in 2008 also known as “Climate and Energy Package or 20-20-20 

targets” was intended to replace 10% of consumption of petrol and diesel by bio fuels by 

2020 [112]. According to Diop et al.[57], world production of biodiesel will increase 

from 21750 thousand tonnes per year in 2011 to 39150 thousand tonnes by 2020 (Figure 

3.1) assuming continuous and adequate supply. The EU would remain the largest 

producer of biodiesel, followed by United States, Argentina, Malaysia and Indonesia. 

Table 3.1 shows biodiesel production in EU in thousand tonnes from 2009-2011.  It can 

be seen that Germany was the largest producer followed by France, Spain and Italy.  
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Table 3.1: EU biodiesel production from 2009-2011. Units: thousand tonnes [113]. 

  

Year 2009 2010 2011 

Germany 2539 2861 2800 

France 1959 1910 1559 

Spain 859 925 604 

Italy 737 706 479 

Belgium 416 435 472 

Poland 332 370 370 

Netherlands 323 368 363 

Austria 310 289 287 

Portugal 250 289 226 

Finland 233 288 225 

Denmark/Sweden 220 246 225 

Czech Republic 164 181 218 

Hungary 137 149 154 

UK 133 145 150 

Slovakia 101 88 103 

Lithuania 98 85 101 

Romania 77 70 79 

Latvia 44 43 78 

Greece 29 33 56 

Bulgaria 25 30 26 

Ireland  24 28 26 

Slovenia 17 22 6 

Cyprus 9 6 0 

Estonia 9 3 0 

Malta 1 0 0 

Luxemburg 

Total 

0 

9046 

0 

9570 

0 

8607 
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Figure 3.1: Global biodiesel projection by 2020 [57].  

 

 

3.1 Advantages of biodiesel 

 

The advantages of using biodiesel as a diesel engine fuel are listed below [114-116]. 

1. Provides a domestic and renewable energy supply. 

2. Bio-diesel does not affect GHG emissions, due to balance as a result of balance 

between the amount of CO2 emissions and the amount of CO2 absorbed by the 

vegetable oil plants. 

3. Biodiesel usage in diesel engine improves engine efficiency. 

4. Biodiesel can be directly used in diesel engines without any modifications. 

5. The physical properties of biodiesel are much closer to diesel compared to 

vegetable oil. The viscosity of the biodiesel is much lower than vegetable oil and 

comparable to diesel. Biodiesel higher cetane number compared to diesel or 

vegetable oil (Table 3.3). 
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6. Biodiesel can act as a lubricant and helps in preventing premature engine wear 

and failure. All diesel engine use fuel injection pumps and fuel injectors. These 

consists moving parts, which undergo wear and corrosion due to metal-to-metal 

contact as a result of lower lubricity of diesel fuel. Higher lubricity of biodiesel 

reduces wears and prolongs engine life. 

7. Hydrocarbon fuels typically form a layer of deposits on the inside of tanks, hoses, 

etc. Bio-diesel blends loosen these deposits. It also reduces carbon deposits on 

injectors.  

8. Bio-diesel contains no sulphur hence does not produce toxic sulphur dioxide. 

9. It does not require new infrastructure of refuelling stations. 

10. Biodiesel is safe to store, due to its high flash point. 

11. The emissions of polyaromatic hydrocarbons and nitro-polyaromatic hydrocarbon 

compounds are substantially lower with bio-diesel compared to conventional 

diesel fuel [111].  

12. It can be used with heavy duty applications. It can work in conjunction with any 

new vehicle program (i.e. CNG, new and existing vehicles).  

13. When ethyl esters are used as fuel the advantage of totally recyclable CO2 cycle is 

obtained since C2H5OH can be completely of vegetable origin. 

14. Biodiesel results in lower soot and PM formation. 

 

Tables 3.2 and 3.3 summarise few physical properties of biodiesel i.e. methyl esters of 

the various edible and non-edible vegetable oils respectively.  As seen in the tables the 

calorific values of methyl esters i.e. biodiesel are comparable to those of vegetable oil 

and diesel. The viscosity and cetane number of methyl esters is higher than their 

respective oils but have much lower viscosity. Similarly the density of biodiesel i.e. esters 

is lower than virgin oils but is comparable with that of diesel. 

 

Biodiesel consists of shorter chain compounds compared to vegetable oils.  Depending on 

the type of oil edible or non-edible, the composition of the biodiesel varies accordingly. 

Table 3.4 shows the chemical structure of common fatty acid methyl esters. The 
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feedstock nature and composition of the oils used for biodiesel production differs from 

location to location depending on geographical locations.  There are more than 350 

varieties of oil-producing crops from canola, peanut, safflower, soybean, sunflower and 

rapeseed. Non edible oils such as Calophyllum inophyllum, Moringa oleifera, Sterculia 

foetida, Madhuca indica (Mahua), Croton megalocarpus and Pongamia pinnata have 

become popular worldwide as a result reduce food competition and biodiesel cost 

reduction. It is very important for biodiesel feedstock to be as cheap as possible in order 

to reduce the cost of biodiesel production, in order to compare with relatively cheaper 

diesel. Typical composition of various oils based on edible, non-edible oils and animal fat 

are included in Table 2.1.  

 

Table 3.2: Physical properties of edible vegetable oils [105, 117, 118]. 

Fuel 
Calorific vale 

(kJ/kg) 

Density 

(kg/m
3
 ) 

Viscosity (mm
2
/s) Cetane number 

Olive oil 37,000(lower) 925 32 39 

Olive oil methyl 

ester 
37,200(lower) 888 4.70 61 

Peanut oil 39,900 888 22.72 41.8 

Peanut oil methyl 

ester 
40,100 848.5 4.42 53.9 

Rapeseed oil 37,620 914 39.2 37.6 

Rapeseed oil 

methyl ester  
37,625 882.2 4.63 54.1 

Soybean oil 37,000 925 33 38 

Soybean oil methyl 

ester 
39,760 872 4.29 37 

Sunflower oil 39,575 918 58.5 37.1 

Sunflower oil 

methyl ester 
40,000 878 4.70 45.5 

Safflower oil 39,519 914.4 31.3 41.3 

Safflower oil 

methyl ester 
40,155 883.8 4.10 51.8 
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Table 3.3: Physical properties of non-edible vegetable oil [43, 104, 119]. 

Fuel 
Calorific value 

(kJ/kg) 

Density 

(kg/m
3
 ) 

Viscosity (mm
2
/s) Cetane number 

Canola oil 39,360 914 78.2 37.6 

Canola oil methyl 

ester  
39,975 881.5 4.40 54.8 

Coconut oil 38,680 920.6 28.5 37 

Coconut oil methyl 

ester 
38,100 8745 4.07 59 

Cotton seed oil 39,648 912 50.1 48.1 

Cotton seed oil methyl 

ester 
40,580 874 4.70 45.5 

Corn oil 39,500 915 46.3 37.6 

Corn oil methyl ester 40,190 882.2 4.32 52.5 

Diesel 43,350 815 4.3 47 

Jatropha oil 39,584 910 38 42.5 

Jatropha oil methyl 

ester 
39,594 884 4.12 57 

Soybean oil 39,623 914 65.4 38.0 

Line seed oil 39,307 894.5 26 34.5 

Line seed oil methyl 

ester 
40,759 890 4.3 48 

Mahua oil 30,248 918 16.9 45 

Mahua oil methyl 

ester 
35,880 874.5 5.06 56.09 

Neem oil 35,125 928 30.0 47 

Neem oil methyl ester 39,960 876.2 4.72 54.2 
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Table 3.4: Chemical structures of common methyl esters. 

Name of  methyl 

ester 
Chemical name CAS number Structure 

Chemical 

formula 

Caprylic Decanoic  111-11-5 9:0 C9H18O2 

Capric Octanoic 110-42-9 11:0 C11H22O2 

Lauric Dodecanoic       29972-79-0 13:0 C13H26O2 

Myristic Tetradecanoic 124-10-7 15:0 C15H30O2 

Palmitic Hexadecanoic 112-39-0 17:0 C17H34O2 

Palmitoleic 9-Hexadecenoic 1120-25-8 17:1 C17H32O2 

Stearic Octadecanoic 112-61-8 19:0 C19H38O2 

Oleic cis-9-Octadecenoic 112-62-9 19:1 C19H36O2 

Linoleic 
cis-9,cis-12-

Octadecadienoic 
68605-14-1 19:2 C19H34O2 

Linolenic 
cis-9,cis-12,cis-15-

Octadecatrienic 18.3 
112-63-0 19:3 C19H32O2 

Arachidic Eicosanoic 1120-28-1 21:0 C21H42O2 

Gadoleic 9-Eicosenoic  29204-02 21:1 C21H40O2 

Erucic 13-Docosenoic  1120-34-9 23:1 C23H44O2 

Lignoceric Tetracosanoic 2442-49-1 25:0 C25H50O2 

 

3.1.1 Carbon monoxide emissions 

 

Unlike vegetable oil use of biodiesel or its blends in diesel engine has a positive effect on 

reduction of (CO) emissions. Reasons for CO emission reduction arising from 

substitution of biodiesel with conventional biodiesel were given by Lapuerta et al. [115] 

 The oxygen content of the fuel enhances a complete combustion of the fuel, thus 

lowering CO emissions. 

 The increased cetane number of biodiesel blends lowers the probability of fuel-

rich zones formation, which is usually related to CO emissions, as a result of 

incomplete combustion of fuel. Higher cetane and oxygen content of the fuels 

lowers CO formation. 

 Advanced injection and combustion when using biodiesel may also justify the 

lower CO emission with this fuel.  
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3.1.2 Hydrocarbon emissions 

 

One of the main advantages of using biodiesel or its blends over pure vegetable oils is 

reduction of hydrocarbon emissions.  Significant reductions in hydrocarbon emissions 

were reported by several authors Dhar and Agarwal [120], Dhar et al. [121] , Jindal et 

al.[122], Kalligeros et al. [123], Misra and Murthy[124],  Shi et al [125]. and Sahoo et al 

[109]. Dhar and Agarwal [120, 121] reported that hydrocarbon emissions from Karanja 

biodiesel-diesel blends at lower engine loads were higher, but the amount of emissions 

decreased with increasing engine load.  At lower engine loads the emissions from the 

higher biodiesel blends were comparable to diesel. Following reasons were provided for 

reduction in hydrocarbons at lower and higher engine loads. 

The reduction in hydrocarbons by the use of biodiesel-diesel blends as compared to diesel 

at lower engine loads was shown to be the result of the following factors. 

1. Reduction in over-mixing at lower engine loads due to poor biodiesel volatility. 

2. Reduction in stoichiometric air requirement owing to oxygen from biodiesel, 

which enhances diffusion combustion and also increases heat release/gas 

temperature as compared to pure diesel. 

At higher engine loads, hydrocarbon emissions are caused by deficiency of oxygen in 

fuel rich zones, presence of oxygen from biodiesel molecules helps in reduction of 

emissions. Reductions in hydrocarbon emissions were shown to vary with biodiesel 

concentration, with lower biodiesel showing highest change in the emissions. Reductions 

from (7 to 56%) and (4 to 33% ) were observed 10 and 20% Neem biodiesel-diesel 

blends [121].  

3.1.3 Particulate Matter emissions 

One of the important advantages of biodiesel is reduction in particulate matter (PM) 

emissions, responsible for serious health effects such as asthma, lung cancer and serious 
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respiratory disorders.  This section examines the effects of biodiesel on PM reduction and 

various factors affecting the emissions will be assessed. According to Kumar et al. [105] 

higher cetane number of biodiesel resulting in shorter ignition delay and longer 

combustion duration were responsible in lowering PM emissions.  Another reason for 

reduction in PM was provided by Lapuerta et al. [126], increase in oxygen content of 

biodiesel promoted oxidation of local fuel rich zones, reducing PM emissions.  According 

to Agarwal et al. [127] fuels having higher oxygen content (30-40%) due to the presence 

of biodiesel were shown to produce drastic decrease in PM emissions. Reduction in PM 

emissions particularly soot was not merely by replacement of diesel but can be due to 

discouragement of soot formation or promotion of soot oxidation. Further pyrolytic 

reactions in fuel rich regions in the cylinder are suppressed and oxidation reactions due to 

the oxygen content from biodiesel are promoted reducing soot formation. In essence the 

excess oxygen (from fuel) is supplied for the combustion reaction in contrast to the 

oxygen from air, which has no hand to play for the excess oxygen.  

The reasons for reduction of PM were compiled by Lapuerta et al. [115]  are as follows.
 

1. Oxygen content of the biodiesel promoting more complete combustion of the fuel 

even in fuel rich regions of the combustion chamber. The oxidation promotion of 

the formed soot due to the oxygen content of the fuel. 

2. The lowering the stoichiometric air requirement in the case of biodiesel 

combustion reduces the probability of fuel-rich region formation in the non-

uniform fuel/air mixture, thus affecting soot formation. 

3. Absence of soot forming aromatics in biodiesel fuels compared to diesel. 

4. Formation of oxidation susceptible soot particles with use of biodiesel in 

comparison to diesel soot particles. 

5. Absence of sulphur content of biodiesel prevents the formation of sulphates which 

is significantly higher in diesel PM. Similarly it prevents the adsorption of 

hydrocarbons on the soot surface by preventing the scrubbing effect activation of 

sulphur. This effect is known to increase PM emissions.   



Hydrogen production by steam reforming of biodiesel 

51 

 

6. Lower probability of soot and tar production from difficult to vaporize heavy 

hydrocarbon being absent as a result of lower final boiling point, despite its higher 

average distillation temperature. 

 

Summarising, biodiesel is a renewable fuel and has significant advantages as diesel fuel 

substitute. These advantages are discussed in detail in section 3.1. Apart from them the 

biggest benefit of biodiesel usage is reduction in emissions of CO, hydrocarbons, 

particulate matter and smoke. The disadvantage of biodiesel is increased NOx formation. 

Absence of sulphur in biodiesel eliminates the emissions of sulphur dioxide with 100% 

biodiesel usage while it reduces them with use of biodiesel-diesel blends. The reduction 

of these emissions is a result of molecular oxygen of the fuel, resulting in complete 

combustion of the fuel even in fuel rich zones formed in the engine. The fuel rich zones 

are known to result in incomplete combustion increasing CO emissions from the engine. 

Similarly the molecular oxygen are shown to reduce soot formation considerably thus 

affecting particulate matter emissions drastically.  This was also thought to be the reason 

for reduction in smoke and hydrocarbon formation.  

 

3.1.4 Effect of biodiesel type on engine emissions 

The reduction of emissions is dependent on biodiesel composition which affects 

combustion processes. Biodiesel obtained from various sources such as vegetable or 

animal sources, depending on the climatic conditions and geography of the region in 

which the oil bearing plants are grown. The animal sources of triglyceride will depend on 

the nature of livestock reared in the region for meat production. The source of oil or 

animal fat used for biodiesel production hence will vary according to the source of raw 

material.  Higher amount of unsaturated components such as linoleic (C18:2) and 

linolenic (C18:3) fatty acid esters in biodiesel lower the cetane number resulting in 

inefficient combustion [105, 128]. On the other hand increase in saturated fatty acid 

methyl esters such as palmitic (C16:0) and stearic acid (C18:0) improve cetane number 

and combustion of biodiesel. Level of unsaturation is the most important parameter that 
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determines the cetane number of the biodiesel, presence of long chain saturated ester is 

sufficient to provide high cetane number [129].  As biodiesel is made of C, H, O, the ratio 

of C/H may vary depending the degree of unsaturation in the source of triglyceride used 

to produce biodiesel.  The oxygen content of biodiesel varies between 10-12 wt%, 

affecting the calorific value of the fuel.  Calorific value of biodiesel increases with the 

chain length. Increasing chain length of compounds had insignificant effect on the 

NOx and PM exhaust emissions, while significant effect was exerted on HC and CO 

emissions, the latter being reduced with decreasing chain length [130]. Increase in 

unsaturation was shown to increase NOx emissions.  Increase in the double bonds within 

fatty acid methyl ester, increased PM emissions. Unsaturated fatty acid methyl ester were 

shown to produce soot forming precursors such as ethylene and ethyne by thermal 

decomposition [131].  The composition of biodiesel (saturated or unsaturated) also affect 

other properties such as viscosity and density which are responsible to affect combustion 

processes directly by affecting fuel atomization in the combustion chamber in turn 

affecting the emissions.  It also affects cold flow properties, oxidation stability which in 

turn affects the quality of biodiesel. Further type of engine used in the investigation is a 

very important factor that would influence the performance of biodiesel or its blends. 

 

 In addition to the chemical composition of biodiesel, factors such as blend concentration, 

engine parameters such as load, speed, exhaust temperature, engine duty, engine tuning, 

and type of diesel affect the emissions.  Also type of instruments and techniques used to 

study the performance of biodiesel and its diesel blends significantly affect the results 

obtained. The main question of food or fuel would still persist with use of edible oil crops 

for biodiesel production. Use of non-edible oils, animal fat or other sources of oil such as 

algae could be influential to solve the dilemma by providing cheaper source of feedstock 

for biodiesel production. 
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3.2 Hydrogen production from biodiesel 

Biodiesel is produced by transesterification of vegetable oil or animal fat using methanol 

(CH3OH) or ethanol (C2H5OH) over an alkali catalyst. The schematic of chemo- or bio-

catalyzed synthesis of biodiesel by methanolysis of triolein (glyceryl trioleate) is shown 

in Figure 3.2. As seen previously, biodiesel has several advantages in terms of engine 

operation, performance and emissions over vegetable oil. It is already commercialised as 

alternative diesel fuel.  Furthermore, production of biodiesel will increase from 122 

billion litres in 2014 to 180 billion litres in 2021 assuring  a steady supply for the future 

[57].  All these factors have promoted research in H2 production from biodiesel. Use of 

biodiesel leads to a CO2 reduction of 2.2kg for every litre of displaced fossil fuel [111]. 

Higher volumetric energy density of biodiesel in comparison to other liquid fuels such as 

ethanol would suggest lower amount of fuel required to generate same amount of energy.  

 

 

Figure 3.2: Schematic illustration of the chemo- or bio-catalyzed synthesis of biodiesel by 

methanolysis of triolein (glyceryl trioleate). 

 

Better handling properties of biodiesel (flash point, corrosion test, auto ignition 

temperature, material of construction of storage tanks and low viscosity) compared to 
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vegetable oils and diesel could justify the use of biodiesel as a feedstock for H2 

production. Waste cooking oil contains high amount of free fatty acids (FFA), 

responsible for initiating cracking reactions at the reforming temperatures leading to 

carbon formation and catalyst deactivation [132].  FFA acids are formed due to hemolytic 

and hydrolytic reactions which occur in vegetable oil. If triglycerides containing saturated 

fatty acids are heated at high temperature (180°C) in the absence of oxygen, they produce 

a series of normal alkanes, alkenes, lower fatty acids, symmetric ketones, oxopropyl 

esters, CO, and CO2. The steam produced during food preparation can cause hydrolysis 

of triglycerides resulting in the formation of FFA, glycerol (C3H8O3) and monoglycerides 

[133].  During the biodiesel production process, most of the FFA content is removed by 

acid treatment to prevent soap formation and reduction of methyl ester yields. This would 

help reduce carbon formation from FFA during the H2 production processes. 

 

Life cycle assessment of biodiesel production using transesterification of waste cooking 

oil was reported to have a low C footprint, promoting the use of biodiesel as a H2 carrier 

[134] as compared to vegetable oorwaste oil. According to Xuan et al [135], as biodiesel 

consists of shorter C chains in comparison to original oils. As a result it would be easier 

to convert to H2 as compared to the original oils.  The utilisation of biodiesel for H2 

production or fuel cell usage is relatively new [136-138] and few catalytic investigations 

have been reported [139, 140].  Direct utilisation of biodiesel formulations in solid oxide 

fuel cells (SOFC) using Ni/YSZ anodes was reported by Nahar and Kendall [141]. 

Higher power generation using biodiesel fuelled SOFC over Ni/ScCZ anode was reported 

by Tuyen et al [142] in comparison to waste cooking oil fuelled SOFC using CeO2-Rh 

anodes by Zhou et al [143]. 

 

H2 production via CSR of biodiesel using NiAl2O4/Al2O3-YSZ catalyst was investigated 

by Abatzoglou et al. [144]. The authors examined the CSR performance at 700°C and 

S/C of 1.9-2.4. A 100% conversion of biodiesel was reported at GHSV of 5500 cm
3
/g cat 

h which decreased to 88% with increase in gas hourly space velocity (GHSV) to 8700 

cm
3
/g cat h at constant S/C of 1.9. H2 production via CSR of biodiesel derived from palm 
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oil was investigated by Shiratori et al. [140].  A 12 wt% Ni catalyst supported on paper 

based support was prepared using a dual polyelectrolyte retention system and a 

subsequent on-paper synthesis. In the synthesis of the catalyst a ceramic fiber suspension 

containing catalyst powders were mixed with Al sols. This mixture was poured in pulp 

suspension and hand sheets with grammage of 4 to 5 g/m
2
 were prepared. The sheets 

were pressed at 350 kPa for 5 min and dried at 100°C for 30 min followed by calcination 

at 350°C for 3 h to remove the organic compounds. The performance of the catalyst was 

evaluated at S/C of 3.5 at 800 °C and GHSV of 3900 h
-1

.  Catalyst supports containing 

YSZ and Al fibre in addition to inorganic binders such as Zr or Al sols deactivated after 8 

h of operation in a 20 h test.  Severe C formation was detected on catalyst containing Al 

sol as binder.  In order to improve the performance bimetallic catalyst containing 4 wt% 

MgO was prepared and the support was also modified by using different binders such as 

Ce.  The best performance in terms of H2 composition and conversion was observed over 

Ni-MgO/ (YSZ+Al) fibre + Ce sol, which exhibited stable performance for about 50 h.   

 

Apart from these few catalytic investigations, conceptual investigations of biodiesel 

based fuel processor was investigated by Sgroi et al. [145], Specchia et al. [146] and 

Kraaij et al. [136]  who proposed various methods for developing a fuel processor based 

on biodiesel. Simulations were carried out, and autothermal reforming (ATR) was 

selected as the best option in developing a fuel processor for the fuel cell.  Similarly 

Martin and Wörner [137] showed that the ATR concept with heat integration was 

competitive with the SR concept with heat integration in terms of fuel processing 

efficiency and overall system efficiency. ATR has been reported to increase H2 yield by 

increasing C3H8O3 conversion [147]. In ATR reaction mode, the heating is done directly 

by using oxidation reactions. Once the reaction is initiated with effective amount of heat, 

the reaction is self sustaining from the reaction products.  The thermodynamics ATR of 

biodiesel using  Gibbs free minimisation method with water-biodiesel molar feed ratio 

(WBFR) between 3 to 12, oxygen-biodiesel molar feed ratio (OXBFR) from 0-4.8 and 

reaction temperature from 300-800
o
C was examined by Nahar [138]. From the results 

WBFR≥9 and OXBFR=4.8 are the best conditions to operate the ATR reformer at SOFC 



Hydrogen production by steam reforming of biodiesel 

56 

 

temperature (800 
o
C).  A 68.80 and 91.66% H2 and CO yields with 54.14 and 39.2% 

molar composition respectively was predicted. Increasing WBFR to 12 increased the 

yield of H2 to 78.17%. Further the simulations revealed transesterification contributed to 

increase in H2 and CH4 formation. Alkane selectivity decreased with increase in C 

number while coke formation increased with C number. Alkene and alkane selectivity 

were found to be lower under ATR as compared to SR conditions. 

 

Although simulations reported ATR to be one of the best option to produce H2 from 

biodiesel, successful catalytic investigation were not found in the literature at the time of 

this review. Ospinal-Jimenez and Colucci  [148, 149]
 
 carried out ATR of biodiesel and 

C3H8O3 on Pt and Rh based catalysts, with only Pt based catalyst resulting in  H2 

production above  500 °C. The experiments were performed using O2/C of 0.18-0.6 and 

S/C ratio of 2-6 at 371-571 
o
C. A maximum of 25% (g of H2/g of biodiesel) yield was 

obtained using an S/C 3.5 and O2/C ratio of 0.6 at 482
o
C.  The major problem associated 

with the process was the formation of coke and much less yield of H2. Heavy organic 

solvents below 4500 ppm were detected in the condensate. The solvents consisted of 

hexane, benzene, heptane, toluene, isooctane, o-xylene, m-xylene and p-xylene. In 

another ATR reforming investigation performed by Lin et al. [139] using S/C of 0.6 and 

O/C of 1.47 at 900°C, the authors showed that incomplete vaporisation of biodiesel led to 

higher C formation by self pyrolysis before entering the reformer during ATR of 

biodiesel. Catalytic partial oxidation (CPO) of biodiesel using Rh/γ-Al2O3 and Rh-

substituted pyrochlore catalyst was examined by Siefert et al. [150]. CPO experiments 

were performed at 900 °C with O2/C of 1.2 and GHSV of 25000 cm
3
g

-1
cat h

-1 
for 100 h. 

The reformed gas contained 37 mol % H2, 34 mol % N2, 23.0 mol % CO, 6 mol % CO2, 

0.038 mol % Ar, 0.09 mol % CH4, and <0.0001 mol % higher hydrocarbons.    

 

From the literature examined it can be seen that H2 production from biodiesel is relatively 

new and only few successful investigations have been reported. SR was shown to be the 

most effective process among the three i.e. SR, CPO and ATR processes examined. The 

amount of H2 produced by SR was highest compared to the other two processes, as would 
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be expected from the stoichiometry of the reaction, and can be carried out at lower 

temperatures as compared to CPO and ATR reforming.  

 

3.3 Hydrogen production processes 

 

In 1926,  the first CSR plant was built to convert natural gas into a mixture  H2 and CO 

(synthesis gas) for  NH3 production [151].  Since the SR process was then adopted 

worldwide to produce H2 from natural gas, naphtha and heavy oil for utilisation in 

refineries and NH3 based fertilisers. In refinery H2 is used in hydrotreating and 

hydrocracking process to convert the impure heavier petroleum fractions such as vacuum 

distillates into clean gasoline or middle distillates [152, 153], where impurities include S, 

N, Ni and V metals in the crude. H2 is also the most costly reagent in the manufacture of 

CH3OH [154], NH3 [155] and Fisher Tropsch process [156].  

 

Figure 3.3 shows a schematic of CH4 steam reforming (SMR) process. The process in 

performed in a minimum of three main stages i.e. reforming, water gas shift and 

purification.  The first two may consist of more stages, e.g. pre-reforming (the conversion 

of the higher hydrocarbon gases in the feedstock to CH4) and primary reforming (CO and 

H2 production from CH4), in NH3 production, secondary reforming is used too, and then 

high temperature and low temperature water gas shift. When performing small scale SR 

for research purposes on unconventional feedstocks such as biodiesel, primary reforming 

of the received feedstock is the most challenging.  In the primary reforming stage the 

hydrocarbon feedstock is reacted with steam to produce synthesis gas. Here we use CH4 

as an example, as it is the most common SR feedstock which makes SMR currently the 

single largest producer of H2 in the world. As CH4 is a very stable molecule, severe 

temperature and pressure conditions are required for the reaction. Temperature typically 

over 800 
o
C and pressure between 15-30 bars is required for converting it to H2, CO, CO2 

and H2O by the following reaction (R-3.1).  The reaction is performed in tubular reactors 
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called reformers on Ni based catalyst with H2O/CH4 ratio typically between 2 to 5. Alkali 

metals are used in the catalyst to accelerate coke removal. Excess steam is used to 

prevent thermal cracking and coke formation. When naphtha is used as the feedstock, 

conditions are very similar but the catalyst is modified to prevent coking from 

decomposition of the higher hydrocarbons. The SR reaction is strongly endothermic, and 

reactor designs in SR industrial plants are typically limited by heat transfer, rather than 

by reaction kinetics [157].  

cat

m n 2 2 , 298K

n
C H +mH O mCO+(m+ )H  ΔH 0

2
f

   (3.1) 

The excess steam and CO produced in the reformer are reacted with steam in shift 

reactors to produce H2 and CO2 by R-3.2. The water gas shift reaction (WGS) is 

performed at two different temperatures i.e. high temperature water gas shift (400-300°C) 

and low temperature water gas shift (300-200°C).  The heat removed while lowering the 

temperature of the reformate gas to the WGS temperatures is utilised in preheating of the 

feed or generate steam for the reforming reaction. A chromium based catalyst is used for 

high temperature WGS in comparison to copper based for to temperature WGS 

2 2 2

cat

, 298KO  ΔH -41.2. kJ/mol CO+H CO +H COf
   (3.2) 

Finally the gas leaving the WGS reactors can be sent to the purification step which most 

commonly consists of pressure swing adsorber (PSA) although other methods are also 

used. The PSA process removes trace impurities such as CO, CO2 N2, CH4, and H2O to 

deliver high purity H2. In a different type of purification step the H2 rich gas leaving the 

shift reactors is feed to amine scrubbing/stripping columns where most of the CO2 is 

removed and the other impurities such as CO is removed in the methanation reaction 

(reverse R-3.1) and finally H2 gas leaves the methanator. The choice of the purification 

method will depend on the end use and the desired purity of H2.  
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Figure 3.3: Schematic of the SMR process [158]. 

 

Although the SR process is highly efficient it has numerous disadvantages. The SR is a 

highly endothermic reaction and requires burning large amount of fossil fuels to supply 

the heat required to maintain the reaction. This generates large amount of CO2 and can 

cause uneven heating of the reformer tubes leading to hot spots and reduced reformer life. 

The uneven heating could also result in formation of C leading to catalyst deactivation. 

 

3.3.1 Partial oxidation 

As SR is an energy consuming process, extensive work has been done on an alternative 

process for H2 production. Partial oxidation (POX) is a process where O2 is used to react 

with hydrocarbons to produce H2 and CO. In POX (R-3.3), using CH4 as a feedstock, an 

O2/CH4 molar ratio of 0.5 is used to produce H2/CO of 2.  The POX reaction is 

exothermic, making it desirable as compared to SR. If higher O2/C is fed, the combustion 

reaction (R-3.4) occurs, resulting in the formation of CO2 and H2O instead of the desired 

CO and H2. WGS also occurs in POX producing H2 and CO2 from the syngas product via 
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(R-3.2). POX is faster than SR and requires smaller reactors and, according to [151], 

higher productivity. The major limitation of POX is carrying out the reaction under 

flammable and explosive environments. Hot spots can develop, affecting the life of the 

catalyst [159]. Under oxidation environments, gas phase reactions lead to the formation 

of C on catalyst surface [160]. The POX systems have high energy consumption and less 

suitable H2/N2-ratios in the produced synthesis gas to be used in NH3 production and the 

energy in the PSA purge gas cannot be fully recovered. The application of POX to 

produce H2 from alcohols would lead to lower efficiency due to the oxidation of alcohols 

forming CO2 and H2O. Lower conversion and selectivity is reported in POX of alcohols 

such as CH3OH on monometallic catalyst [161]. 

m n 2 2 , 298K

m n
C H + O mCO+ H  ΔH 0

2 2
f   (3.3) 

m n 2 2 2 , 298KC H +(m+ )O mCO +( )H O ΔH 0
4 2

f

n n
   (3.4) 

 

3.3.2 Autothermal reforming 

Although SR provides higher efficiency and reformates quality, the reaction is highly 

endothermic and requires an external heat source to supply the heat for the reaction.  

ATR is a combination of (SR) and (POX) in a single reactor and is overall a slightly 

exothermic reaction [157]. Reaction (R-3.5) shows a typical reaction occurring in an 

ATR reformer.   

m n 2 2 2 f, 298K

m m m n
C H + H O+ O mCO+( + )H  ΔH  -/=0

2 4 2 2
  (3.5) 

The process was developed by Haldor Topsoe in 1950s [151]. It has been increasingly 

accepted as the most appropriate processes for the future fuel cell vehicles and is also 

used in chemical processes [162, 163]. The heat generated by the reaction can be 

controlled directly by adjusting the proportions of fuel and air/O2 in the feed. In 

comparison to SR, POX and ATR processes have the merits of fast start-up times because 

of the exothermic nature of the oxidation reaction and lower rate of side reactions and 
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fewer by-products. The main characteristics of ATR are a low energy requirement (due to 

the complementary SR and POX reactions), low energy consumption, high gas space 

velocity (GHSV; at least one order of magnitude greater than traditional SR), and a preset 

H2/CO ratio regulated by inlet reactant ratios and CO2 recycling [164]. ATR is considered 

to be one of the most attractive options for the on-board reforming of complex 

hydrocarbons such as kerosene and diesel [165, 166]. The ATR reaction is more selective 

to CO2 than CO making it compatible with PEMFC’s for automotive applications [162, 

167]. 

 

In spite of all these advantages the technology has not be commercialised yet and further 

research has to be carried out for successful application. The ATR process produces 

lower H2 yield as compared to SR but higher than POX. When using air as the oxidant, 

the inert N2 dilutes the products obtained from the reformer. As ATR incorporates POX 

reaction, both the processes require an expensive and complex oxygen separation unit in 

order to feed pure oxygen to the reactor in order to prevent product gas dilution with N2. 

The use of pure O2 means formation of explosive environments is possible leading to 

explosions. 

3.3.3 Conclusion 

Table 3.5 shows the comparison of various reforming technologies.  In all the three 

processes, SR is quite successful and has been widely used in H2 production.  Highest H2 

yield is obtained in SR as compared to POX and ATR processes. For e.g., maximum H2 

yield from SMR is 4 mol/mol of CH4 (or 50 wt% of CH4) with a max purity of 80 vol%, 

compared to 3 mol/mol (or 37.5 wt%), with a max H2 purity of 75 vol% from POX of 

CH4. 

 

The process has been widely researched for H2 production from oxygenated hydrocarbon 

such as DME or CH3OH which has to be reformed at much lower temperature (>180°) 

[168, 169] and  > 500°C for other hydrocarbons such as C2H5OH [170, 171].  Higher and 
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much more complex oxygenated hydrocarbon such as sunflower oil [172], rapeseed oil 

[173] and waste cooking oil [174] are also converted to H2 using SR processes.   

 

In order to improve the thermal efficiency of the SR, new processes such as chemical 

looping reforming (CLR) and sorption enhanced SR have been developed. The 

Autothermal Cyclic Reforming (ACR) process was developed by Kumar et al [175], 

which is operated in three-step cycle that involves SR of fuel on Ni catalyst (reforming), 

oxidation Ni catalyst (air regeneration) to heat the reactor and the reduction of the 

catalyst to its original state (fuel regeneration). The process has several advantages as it 

incorporates SR over ATR and requires less energy compared to conventional SR. It has 

higher efficiency due to lower internal heat generation by fuel oxidation. High purity H2 

is obtained due to the absence of N2 in the product gas. The C formed on the catalyst 

surface is burnt during the regeneration step, generating the heat required for the 

endothermic SR process. The process is already proved to work with complex 

hydrocarbons such as waste cooking oil [174].  

 

Table 3.5: Comparison of reforming technologies [176]. 

Technology Advantages Disadvantages 

SR 

Most extensive industrial application. 

Oxygen not required. 

Lowest process temperature. 

Best H2/CO ratio for H2 production. 

Highest atmospheric emissions. 

POX 

Decreased desulfurization requirement 

No catalyst required. 

Low CH4 slip. 

Very high processing 

temperatures. 

Low H2/CO ratio. 

Soot formation/handling adds 

process complexity. Higher risk 

of explosion, requires O2 for 

undiluted syngas 

ATR 
Lower process temperature than POX 

Low CH4 slip. 

Limited commercial experience. 

Requires O2 for undiluted 

syngas. 
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3.4 Hydrogen production catalysts 

Generically a catalyst is defined as a material that has the ability to increase the rate of a 

chemical reaction without altering its overall Gibbs energy change. The catalyst is not a 

reactant or product, but is an intermediate that undergoes a cycle. In a heterogeneous 

catalytic system where the catalyst exits in a different phase than reactants or products, it 

may form intermediates, but according to definition it should not interfere in a chemical 

reaction.  The most important parameter to be considered during a catalyst selection is the 

activity of the catalyst.  The ability of the catalyst to convert reactants into products is 

defined as catalyst activity. The second most important parameter to be considered is the 

selectivity of the catalyst.  Selectivity defines the ability of the catalyst to produce desired 

products over undesired products. In addition to these two factors, ‘life’ is another most 

important factor to be considered during catalyst selection. The life of the catalyst is 

defined as the time for which decent activity and selectivity is maintained. 

 

A SR catalyst must be able to promote the SR reaction and suppress or minimise other 

side reactions such as C deposition or the methanation reaction.  The catalyst should be 

active for WGS reaction which would help to reduce CO and increase H2 selectivity.  

Prior to SR reaction, the catalyst has to be reduced in order to catalyse the reaction 

between the fuel and steam via SR and WGS reaction. Hence the catalyst should have 

complete reduction ability in order to exhibit high SR and WGS activity.  The catalyst 

should have sufficient mechanical strength and should be able to withstand high 

temperature (~800 °C) and pressure for industrial utilisation. 

 

The catalysts used for H2 can be divided into two types: non-precious metal (typically Ni) 

and precious metals from Group VIII elements (typically Pt or Rh based). Due to severe 

mass and heat transfer limitations, conventional steam reformers are limited to an 

effectiveness factor for the catalyst which is typically less than 5%. The effectiveness 

factor is the measure of how far the reactant diffuses into a catalyst pellet before reacting. 

As a result kinetics and catalyst activity are not the limiting factor for conventional steam 
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reformers, so cheaper Ni catalyst are universally used [176]. The spent Ni catalyst can be 

recycled and reused easily as compared to noble metals. 

3.4.1 Nickel catalysts 

 

Traditionally SMR reforming catalysts are usually deposited on ceramic or metallic 

monoliths, based on Ni / NiO or cobalt compositions on foams, or other structured inert 

supports. Depending on the refractory Al2O3 or supports such as magnesium Al2O3 spinel  

are promoted with alkali or alkali-earth metals to facilitate  C removal [177]. The Ni 

based catalysts are widely investigated for H2 production from liquid or gaseous 

hydrocarbons, oxygenated or not.  The applications of Ni based catalysts in SMR process 

was reviewed by Giannakeas et al. [178]. The author examined use of various 

formulations for SMR and reported that Ni-Co based catalysts as one of the promising 

candidate for SMR and chemical looping steam reforming (CLR) of CH4.   

 

The focus of this section is to review the use of Ni catalyst for CSR of oxygenated 

hydrocarbons. CSR of four different types of oils rapeseed oil, soybean, corn oil and 

sunflower oil using commercial Ni catalyst and a hydrotalcite precursor based Ni (HT) 

catalyst was investigated by Marquevich et al. [173]. The experiments were performed in 

an isothermal fixed-bed tubular reactor at steam-to-carbon (S/C) ratios of 9, 6, and 3 and 

temperatures between 500 and 630 °C and high space velocities of 0.76-1.90 mol C/ (gcat 

h). H2 productions were from 0.3 to 7.5 mol H2/ (gNi h) depending on the operating 

conditions. The HT catalyst, which was prepared from a hydrotalcite-such as precursor, 

seemed promising for CSR of vegetable oils because of its very high activity per gram of 

catalyst. The performance of the catalyst at same temperature and S/C ratio was 

independent on the type of vegetable oil. The HT catalyst had almost 10 times more 

catalytic activity than the commercial catalysts [132, 172, 179].  CSR of waste cooking 

oil using Ni based catalyst supplied by United Catalysts was examined by French and 

Czernik [180]. At 750 ˚C the highest conversion of 96% was achieved with 70% of the 

stoichiometric H2 yield potential for 16 hours of operation.   
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CLR of waste cooking oil was studied by Pimenidou et al. [174] using a packed bed 

reactor with a Ni/Al2O3 catalyst. The S/C of 4 and temperatures between 600 and 700 
o
C 

yielded the best results. Six cycles at two weighted hourly space velocities (WHSV of 

2.64 and 5.28 h
−1

) yielded high (>0.74) and low (<0.2) oil conversion respectively. 

WHSV of 2.64 h
-1

 exhibited conversions close to thermodynamic evaluations.  Pimenidou 

et al. [181] performed sorption enhanced CLR of waste cooking oil with S/C of 4 at 600 

°C. Higher fuel and steam conversion were reported in the presence of the sorbent 

dolomite than without it. Initially, the dolomite carbonation was very high (100%), and 

98% H2 purity was obtained, but the carbonation decreased to around 56% with a H2 

purity of 95% respectively in the following cycles. Reduction of the Ni catalyst occurred 

along with CSR, WGS and carbonation, with H2 produced continuously under fuel–steam 

feeds. Catalyst and CO2-sorbent regeneration was reported, and a long period of 

autothermal operation within each cycle was demonstrated. 

 

Ni supported on various supports for CSR of C2H5OH (CSRE) has been widely 

investigated by several research groups. Alberton et al. [182] studied the CSRE over Ni 

supported Al2O3 catalyst at 600 °C and S/C of 1.5.  The effect of type of Al2O3 on the 

CSRE was examined. A catalyst supported on α-Al2O3 showed lower catalytic activity in 

comparison with catalyst supported on γ-Al2O3 due to lower dispersion of Ni particles.  

Chen et al. [183] performed CSR of C3H8O3 over CRG-LHR Johnson Matthey catalyst 

containing  NiO, Cr2O3, MgO and amorphous silica.  The experiments were performed in 

the temperature range 400-600 °C, with S/C of 3 and reactant/inert gas of 1/4. The 

highest H2 yield of 88.57% with C3H8O3 conversion over >96% were reported at 580 °C 

with the above conditions. H2 selectivity was shown to increase with temperature; 

reaching 100% at ~580 °C. 

 

The process of sorption enhanced steam reforming (SESR) has been investigated with 

pure C3H8O3 and crude C3H8O3 as the feedstock. In this process, a high temperature solid 
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CO2 sorbent is introduced within the reformer to modify equilibrium conditions through 

the in situ removal of the CO2 gas, resulting in higher H2 yields and purity. Dou et al. 

[184, 185] reported complete conversion and 68% H2 purity for crude C3H8O3 in 

comparison with 65 vol% for pure C3H8O3 at 600 °C over 18 wt% NiO/Al2O3 catalyst 

with S/C of 3 in CSR of C3H8O3 without CO2 removal. But in the presence of the CO2-

sorbent calcined dolomite the H2 purity increased to 90 and 94 vol% for crude and pure 

C3H8O3 respectively through the effects of CO2 in situ capture [183].  Likewise complete 

conversion and higher H2 purity of 99% with S/C of 3 with 25%-Ni-15%-Co/ HT type 

catalyst was reported by He et al [186].  

 

Hu and Lu [187] investigated the CSR of CH3COOH (CSRA) for H2 production over 20 

wt% transition metals (Ni, Co, Fe or Cu) supported on Al2O3 catalyst. Ni/Al2O3 and 

Co/Al2O3 were reported to have high activity in comparison with Fe/Al2O3 and Cu/Al2O3, 

in SRA, The difference in catalytic activity was attributed to the cracking activity of the 

metals toward the C–C and C–H bonds of acetic acid. The experiments were carried out 

in the temperature range of 300-800°C with S/A of 15, liquid hourly space velocity 

LHSV = 8.3 h
− 1 

and 1 atm. The Ni/Al2O3 exhibited a more stable activity than the 

Co/Al2O3 catalyst. 

 

It can be seen from above that Ni based catalysts can widely be applied for different H2 

production processes based on CSR. They can be applied for CSR of a variety of simple 

and complex oxygenated hydrocarbons from C2H5OH to vegetable oil. These catalysts 

can work at various S/C ratio, temperature, Ni loading and residence time successfully. 

The main disadvantage of using Ni based catalyst is the formation of C on the catalyst 

surface.  Several methods are suggested to minimise C formation.  One of the few 

methods adapted to decrease C formation is the use of bimetallic catalysts or using 

modified support.  
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3.4.2 Ceria as catalyst support 

 

CeO2 based materials have recently received a lot of attention in a wide range of 

applications.  CeO2 plays an important role in two of the most important commercial 

catalytic processes: three-way catalysis (TWC) in the automotive industry and fluid 

catalytic cracking (FCC) [188] in refinery operations. Other applications include diesel 

soot oxidation [189], oxidation of volatile organic wastes [190] and fuel cell technology 

[191, 192]. In all these applications the unique features are responsible for making CeO2 

a promising material for use either as a support or as an active catalyst.  

 

The most important property of a CeO2 based material is its oxygen storage capacity 

(OSC) by means of redox shift between Ce
3+

 and Ce
4+

 under not only oxidizing but also 

reduction environments [193].  The OSC ability of CeO2 helps reduce the formation of C, 

during H2 production, CH4 oxidation, CH4 decomposition, and ethylene dehydrogenation. 

Further, Ni supported CeO2 based catalysts have exhibited self-decoking capability by 

promoting C gasification reaction by oxygen species supplemented from the lattice 

oxygen [194]. It is also well known to promote metal activity and dispersion, resulting in 

investigations of various catalytic formulations for a wide range of reactions. 

 

CeO2 is widely investigated material as catalyst support for H2 production from various 

non oxygenated and oxygenated hydrocarbons. Several investigation involving CSR and 

ATR of various liquid [192, 195-197] and gaseous hydrocarbons [198-200] using CeO2 

based catalyst have been reported. Similarly H2 production of oxygenates such as 

CH3OH, C2H5OH, C3H8O3 and propanol using CeO2 based catalysts have been 

investigated [170, 171, 201-203]. However, CeO2 lacks thermal stability and is known to 

sinter at temperature above 800 
o
C [204], leading to catalyst deactivation [205, 206]. At 

high temperature the specific surface area of CeO2 decreases drastically which in turn 

affects the crucial redox properties i.e. OSC of the material [207]. It was reported that the 

of rate of O
-2

 depends on the surface area of CeO2 as a result the reduction in surface area 
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affects O
-2

 release thus affecting the redox properties of CeO2. Similarly reduction of 

surface area reduces the redox sites by affecting the OSC of the material [208]. CeO2 has 

weakly bound oxygen species (Frenkel type oxygen defects) in the bulk of the material 

rather than to the surface, these weakly bound oxygen species undergo fast exchange with 

the environment and provide OSC. The defects are shown to disappear due to high 

temperature treatment affecting the OSC of the material [209]. 

 

The OSC of pure CeO2 is unsatisfactory for practical applications. The CeO2 crystal 

consists of eight oxygen cations coordinated at a corner of cube, each anion being 

tetrahedrally coordinated by four cations. This makes its structure more stable and 

prevents the conversion of Ce
4+

 to Ce
3+

 under reducing conditions.  Metal decoration has 

been observed for metal catalysts supported on reducible oxides [210]. Degradation of 

catalytic activity is also caused by decreases in metal surface area of the supported 

catalysts [211]. 

 

H2 production via SR is endothermic and has to be carried out at high temperature i.e. 

800 
o
C for CH4 feedstock or higher, resulting in decrease in surface area by ~ 30% with 

operation for 10 h [205]. Similarly the increase in the temperature of the CeO2 supported 

catalyst in case of exothermic reactions such as PO would result in sintering of the CeO2 

and affecting the activity of the catalyst.  Improvement of the thermal properties of CeO2 

and retention of active surface area at high temperature is thus necessary to exploit the 

redox property of CeO2 for H2 production applications via high temperature processes.  

 

Substitution of CeO2 with metal/metal oxide into the CeO2 lattice forms composite 

oxides. It can easily form solid solutions with elements belonging to the transition-metal 

series. Ionic mobility is modified by replacement of Ce ions by different cations of 

varying size and/or charge resulting in the formation of a defective fluorite structured 

solid solution. Transition and non transition metal ions such as Al
3+

, Si
4+

, Ti
4+

,
 
and Zr

4+
 

are introduced into the CeO2 cubic structure [153-157] to counteract these drawbacks. 
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This modification of CeO2 lattice confers properties such as resistance to sintering and 

high catalytic activity according to [207]. Incorporation of Zr increases the specific 

surface area, OSC, redox property, thermal stability and catalytic activity of CeO2 for 

variety of reactions from oxidation to H2 production [33-35]. The doped support also 

affects the dispersion of metals. Further addition of Zr to CeO2 also helps in mitigating 

the formation of C during various H2 production processes [212]. 

 

The incorporation of Zr
4+

 or Hf
4+

 into the CeO2 lattice was found to facilitate an increase 

in the formation of smaller particle sizes. Addition of Zr was found to increase the 

support metal interactions between the support and the metal. The presence of Zr 

increased the oxygen mobility in the CeO2  lattice and the process of vacancy formation 

was promoted [213-215].  As a result the increased oxygen mobility helps in reducing 

carbon deposits formed at the metal and support interface and prevent carbon build up on 

the catalyst surface, keeping the metal surface clean for reforming reactions. Dong et 

al.[216] and Roh et al.[217] found that mobile oxygen species formed in the Ce-ZrO2 

supported catalyst via a redox cycle enhanced decoking activity resulting higher SMR 

and ATRM activity. Figure 3.4 shows mechanism of CH4 conversion in SMR and ATRM 

using Ni/Ce-ZrO2 catalyst. Formations of composite layers of material were thought to be 

the reason for high activity. The composite was made of three different layers with top 

layer consisting of free Ni species followed by second layer of strongly interacted Ni and 

Ce–ZrO2 forming –Ce–Zr–Ox, finally the last layer of Ce–ZrO2 support. The participation 

of the lattice oxygen was supplemented by the presence of O2 molecules.   
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Figure 3.4: Schematics synthesis gas production over Ni/Ce-ZrO2 catalyst. 

In case of Pt supported on Ce-ZrO2 mixed oxide, Pt sites and the Ce–Pt located at the 

interface interact, and transfer of electrons from the metal oxide to the noble metal 

occurs. This results in the lowering of effective activation energy, necessary for the 

formation of oxygen vacancies, resulting in high oxidation activity [218, 219]. The 

reduction of the CeO2 due to addition of Zr is then no longer confined to the surface but 

extends deep into the bulk [220, 221].  During the reductive treatment transfer of Ce
4+

 to 

the support surface takes place, resulting in the formation of Ce-rich phase on the surface 

while the phenomenon is reversed when atmosphere was switched to an oxidative 

atmosphere [218]. 

 

3.4.3 Bimetallic catalyst 

 

In order to overcome the problem of C deposition in H2 production catalyst and to 

enhance the catalytic performance, addition of other metals such as Mg, La, Cr, and Co 

has been widely investigated. The investigation of Ni-Co based catalyst for H2 from 
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oxygenated hydrocarbons such as C2H5OH, C3H8O3, CH3COOH and gaseous 

hydrocarbons such as CH4, biogas was compiled and reviewed by Giannakeas et al. [178]. 

The author attributed the positive effect of Co addition to the chemical synergism between 

the Ni and Co metals. Furthermore significantly lower temperature of reduction is needed in 

comparison with that of the monometallic systems.   In a different approach to reduce C 

formation use of bimetallic  catalyst using alkali metals such as K and Sn [222] and Bi 

[223] to the catalyst have been investigated. Addition of K or Ca to alumina neutralizes 

acidic sites of Al2O3 and reducing the possibility of coke formation suppressing cracking 

and polymerization reactions [224]. Carbon gasification reaction is enhanced by addition 

of K and Ca affecting C deposited on the catalyst surface  [225]. It also increases the 

adsorption of steam on the catalyst surface [226] affecting SR reaction. According to 

Trimm [222] carbide formation is an essential intermediate route to coke formation, 

formed by interaction of 2p carbon electrons with 3d Ni electrons. Addition of penta-

valent p metals (such as Ge, Sn and Pb or As, Sb or Bi) interacts with Ni3d electrons, 

thereby reducing the chance of NiC formation in turn affecting carbon formation. 

Pengpanich et al [227] found addition of Sn to NiO disrupted the active site ensembles 

responsible for coking. Solubility of carbon in Ni particles responsible for NiC formation 

is also reduced by addition of Sn to Ni catalyst.  

 

Espinal et al. [228] investigated the use of K to Co hydrotalcite with molar composition 

(Co: Mg: Al) of 1:2:1 in CSR of bioethanol. Addition of K was responsible for 

neutralising the number and strength of the acid sites resulting in stable long-term 

experiments, with very little amount of C formation. The authors reported that formation 

of ((Co, Mg) O) during the reaction was the active complex formed due to K addition 

responsible for the high activity of the catalyst. The addition of K to Co/Ce-Zr had a 

positive effect on the activity of catalyst in ATR of C2H5OH.  The conversion of C2H5OH 

increased from 46 to 98% with addition of K to the catalyst. The effect of oxidation 

treatment over CoRhK/Ce-Zr catalyst was also studied by the authors. In comparison to 

CoK/Ce-Zr catalyst, CoRhK/Ce-Zr catalyst regained its catalytic activity after oxidation 

and the catalyst produced H2 at low temperature of 320°C. In CSRA, Iwasa et al. [229] 
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reported that addition of K to Ni/ Smectite had the best effect among Li, Na, K, and Rh or 

Cs dopants. The addition of 1 wt% K increased reduction of Ni species incorporated in 

the smectite, yielding more metallic Ni species than undoped Ni/Smectite sample thus 

giving high activity for the K-modified Ni/Smectite catalyst. In case of complex 

hydrocarbons such as kerosene, addition of K to the catalyst increased the conversion of 

kerosene and H2 produced Yu et al. [230] Although K addition, increased CH4 selectivity 

as a result of reduced CH4 decomposition, during the CSR reaction.   

 

3.5 Research Rationale 

The use of FAME as a diesel engine fuel has been widely investigated due to its many 

advantages over vegetable oil as a transport fuel.  Analysis of the “Well to Wheel” CO2 

emissions of biodiesel have reported a reduction between 50 to 80% in comparison to 

those of petroleum diesel. The recent boom in H2 energy technology has resulted in 

several investigations of H2 production from various hydrocarbons and oxygenated 

hydrocarbons such as ethanol, butanol vegetable oil and bio-oil. On the other hand, H2 

production from biodiesel is very new and only few successful investigations have been 

reported.  

 

There are several advantages of using biodiesel as a H2 carrier. One of the important 

advantage of using biodiesel as H2 carrier is its renewable nature. First of all, the process 

for making biodiesel from vegetable / waste cooking oil and animal fat is well-known and 

a commercialised process. Use of biodiesel as hydrogen carrier would result in lower 

GHG emissions, since the CO2 generated during H2 production would be used by plants 

grown to produce oil for biodiesel. If ethyl esters are used for H2 production, advantage 

of totally recyclable CO2 cycle can be obtained since ethanol can be produced from 

biomass. Biodiesel production is predicted to increase from 21750 thousand tonnes per 

year in 2011 to 39150 by 2020. As a result, assured and continuous supply of biodiesel 

would be available for H2 production. Biodiesel contains 11-12 wt % H2. For e.g. steam 
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reforming of ethanol will produce 13 wt % of hydrogen from ethanol, which is 

considerably less in comparison to steam reforming of methyl oleate producing 23 wt % 

of methyl oleate.  Biodiesel contains lower oxygen (11 wt %) which is considerably 

lower than ethanol (35 wt %) or bio-oil (65 wt %). The presence of oxygen would affect 

hydrogen production lowering hydrogen yield.  

 

 Biodiesel has shorter carbon chain length compared to vegetable oil making it easier to 

convert to H2 and is expected to form relatively lower amount of carbon. Waste cooking 

oil contains free fatty acids formed as a result of cooking or frying processes. These free 

fatty acids are responsible for formation of aromatics which are known precursors for 

carbon formation during hydrogen production processes. The free fatly acids are removed 

during biodiesel production in turn affecting the life of catalyst during hydrogen 

production. Similarly biodiesel lacks aromatics present in diesel again responsible for 

carbon formation during hydrogen production. Similarly other catalyst poisons like 

sulphur, chlorine, phosphorus and calcium are absent in biodiesel, increasing catalyst life. 

Biodiesel is non-toxic, biodegradable, handling and storage are much safer than 

conventional petroleum diesel fuel due to high flash point. Biodiesel has higher energy 

density ~40 MJ/kg in comparison to 29.7 and 15-19 MJ/kg for ethanol and bio-oil 

respectively.  As a result of high energy density, lower amount of biodiesel would be 

required to be combusted in hydrogen production process such as autothermal reforming 

to generate the internal heat required to drive the process. Other advantages like higher 

lubricity and lower viscosity would be useful for injectors and pumps used in hydrogen 

production processes. Absence of compounds like sulphur would prevent the formation 

of SO2 in hydrogen production processes like autothermal and chemical looping 

reforming. Biodiesel produced from waste cooking oil is cheaper as cost of waste 

cooking oil is almost free. As of today the cost of biodiesel on a petrol station is £ 1/l in 

comparison to 1.3£/l for diesel. The hydrogen produced from this type of biodiesel would 

cheaper as compared to hydrogen produced from diesel. New sources of oil i.e. non 

edible oils like Jatropha, Karanja or algae are being investigated widely to reduce the cost 

of biodiesel and in turn reduce the cost of H2 produced. 
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3.6 Aim and Objective 

The aim of this research project is to investigate hydrogen production from biodiesel via 

steam and autothermal reforming. To accomplish this aim, the following objectives are 

drawn. 

 Design and commission an experimental set up for hydrogen production via steam 

and autothermal reforming of biodiesel.   

The important tasks involved to fulfil this objective were design and 

building of vaporisers for biodiesel and water.  

 Building a frame for the installation of the vaporisers and the reactor. 

 Selection of PID controllers and building of the controller unit for 

mounting the PID controller and the necessary electronics.  

 Pipe work for connecting the vaporisers and the reactor.  

  Installing and commissioning of micro-GC for the analysis of the 

products coming out of the reactor. Building a condenser for cooling the 

reactor gases and separating the condensed vapours from the gases. 

 Preparation of an effective H2 production catalyst exhibiting high H2 yield, 

biodiesel and steam conversion.  

 Examining the effect of catalyst preparation methods and types via catalyst 

characterisation techniques for catalyst selection.  

 Testing the prepared and commercial catalyst in the reactor. Performing mass 

balance calculations for determining H2 yield, biodiesel and steam conversions in 

addition to H2 selectivity along with selectivities of carbon gases. Comparison of 

experimental results with equilibrium counter parts to determine the process 

efficiency. 

Optimisation of operating parameters such as biodiesel preheating to maximize H2 

yield, biodiesel and steam conversion.  
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 Determine the optimum reactor temperature in order to maximize H2 

production.  

  Determining the effect of S/C and WHSV on H2 yield in addition to 

biodiesel and steam conversion. 

To analyse the effect of biodiesel types on the performance of the steam 

reforming process.  

Characterisation of used steam reforming catalyst and calculation of overall 

system efficiency by calculating the carbon balance of the process.  

 The characterisation work would involve XRD of the used catalyst to 

determine the sintering of the catalyst.  

 Similarly examining the surface area of the used catalyst to access signs of 

surface area reduction.   

Examining autothermal reforming of biodiesel using the optimised parameters 

such as S/C ratio, WHSV, vaporiser temperatures and reactor temperature 

obtained from steam reforming experiments.  

 The examination of O2/C, S/C and WHSV on the performance of 

autothermal reforming process.  

 Evaluation of process performance and efficiency by performing mass and 

energy balances.  

 Comparing the experimental results with equilibrium results to determine 

process efficiency.   

 The determination of autothermal conditions will be achieved using 

energy balance calculations. Determination on of overall system efficiency 

calculation using carbon balance of the process. 
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4. Methodology experimental methods and materials 

This chapter describes the construction and building of the experimental set up. The 

problems associated with it and the solutions implemented to resolve the problems. This 

chapter also explains the preparation of biodiesel and catalyst used in the experiments 

and it also describes the various methods used for characterisation of the same.   

4.1 Reactor design and experimental setup building 

 

The reactor systems used for the experiments were designed and built at the Energy 

Research Institute, University of Leeds.  They were a replica of an existing larger rig. 

Initially the reactor was placed at the top to provide an up flow arrangement.  The setup 

had to be modified a few times due to the condensation of vapours and steam during the 

experiments. The rig consisted of two vaporisers, reactor, pumps, mass flow controllers, 

condenser and micro gas chromatograph for the analysis of the products.  The vaporisers 

consisted of 180 mm long aluminium and stainless steel solid cylinders, heated with 

cartridge heaters supplied by Elmatic Cardiff, UK.  The cylinders were provided with two 

¼ " od stainless tubes in which actual vapourisation of biodiesel and water occurred by 

indirect heating. Due to absence of holding mechanism as a result of the size of the 

vapouriser tube inert material could not filled in the tubes. In the first of the setups, the 

vapourisers were mounted on aluminium plate connected to the frame as shown in Figure 

4.1. 

 

A ½ " od SS 310 tube was used as a reactor. The tube placed in an electric furnace (Elite 

thermal systems, UK). A special controller unit was built comprising of two limit based 

controllers (Watlow Ez zone) used to control the cartridge heaters.  A Eurotherm 

controller present with the furnace was used for its control. The schematic of the rig with 

an up flow arrangement with reactor at the side is shown in the Figure 4.2.  
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           Figure 4.1: Schematic of vaporiser assembly. 

 

  

Dual junction thermocouples supplied by TC direct, UK were placed in either 

vapourisation tubes to measure the temperature and provide a signal for the controllers 

(Watlow EZ-zone) controlling the power provided to the heaters. First junction of the 

dual junction thermocouples was connected to the controllers while the second junction 

was connected to a temperature logger (TC08, PicoTech).  The vaporisers were fed with 

biodiesel and water by means of two syringe pumps (NE-1000) supplied by New era, Ltd, 

using 25 ml SGE gas tight glass syringes.  Mass flow controllers supplied by MKS 
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instruments, UK were used to meter N2 and air flow for SR and ATR experiments.  A 

separate mass flow controller was used to control the flowrate of 5 vol% H2/N2 used for 

the reduction of the catalyst.  The third mass flow controller used for the metering of 5 

vol% H2/N2 mixture during catalyst reduction is not shown in the Figure 4.2. 
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Figure 4.2: Schematic of up flow reactor with reactor at the side. In the Figure the first vapouriser on 

the left hand side was used for biodiesel. 

 

The hot vapours from the vapourisers were mixed with N2 below the reactor in a 

Swagelok cross provided with a thermocouple as shown in Figure 4.3. This thermocouple 

was known as the reactor inlet thermocouple.  A second thermocouple was provided in 

the reactor bed. Both the thermocouples were connected to the pico-logger for recording 

the temperature. Both vaporisers and the furnace were insulated with super wool and 

aluminium foil (Figure 4.2) to minimise the heat loss and hence reduce the energy 

requirement of the system; the controller associated with each vaporiser was checked and 

tuned to the experimental specifications. A series of steam reforming experiments were 

performed by setting both the vaporisers at 365°C and reactor temperature of 600°C.  

Various different flow rates of biodiesel and steam and N2 were tried. 

 

 

 Figure 4.3: Schematic of up flow reactor inlet. 
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The condensation of hot biodiesel vapours and steam with cold N2 resulted in unsteady 

reactor operation, resulting in low amounts or no products.  In order to improve the 

reactor operation and minimise the condensation of reactants, it was decided to move the 

reactor at the top of the frame, in line with the vaporisers, and preheat the N2 by making 

use of the heat from the heated vaporisers.  The two N2 preheating coils were made from 

1/8" od copper tubing and were placed on the vaporisers surfaces as shown in the Figure 

4.4.   

 

The modified reactor setup with the reactor placed on the top of the vaporisers is shown 

in the Figure 4.5. In the figure the first vaporiser on the left hand side was used for 

biodiesel. As a result of insulation the N2 preheating coils placed on the vaporisers 

(Figure 4.4) are not visible in this figure. In the modified set up the pipe length from the 

vaporisers to the reactor was reduced in order to prevent the condensation of the biodiesel 

vapours and steam. A non return valve (check valves Figure 4.6) was used to prevent the 

flow of the N2 towards the vaporiser and divert it directly in the reactor (Figure 4.6). 

 

 
Figure 4.4: Schematic of the copper coil used for N2 preheating. 
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 As the vapour pressure of the steam and biodiesel was smaller than the cracking pressure 

of the check valve. The valve remained partially opened resulting in only small amount 

of vapours being carried in the reactor to achieve stable operation.  The condensed 

vapours collected in the pipe and after a while created back pressure on the biodiesel 

pump, resulting in the pushing the syringe backwards causing spillage of biodiesel on the 

pump body and the experiments had to be stopped. The copper coils also were oxidised 

due to constant use. In order to prevent the entire condensation problem, the position of 

the reactor was changed a third and final time from up flow to down flow. Figure 4.7 

shows a process and instrumentation diagram for down flow reactor system. Figure 4.8 

shows the down flow reactor arrangement with stainless steel preheating coils. The coils 

were made from ¼" od stainless steel tubing by Swagelok, UK. The coils were made 

from 180 mm long ¼" od stainless steel tubing coiled to fit on the vaporisers. The 

biodiesel vaporiser was placed at the top of the reactor with water vaporiser to the left of 

it as shown in Figure 4.8, to facilitate direct injection of the biodiesel vapours into the 

reactor and prevent condensation.   
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Figure 4.5: Modified reactor setup with up flow reactor at the top. In the Figure the first Vapouriser 

on the left hand side was used for biodiesel. 
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Figure 4.6: Schematic of valve assembly used in the modified reactor. 

 

The biodiesel and water vaporisers were connected via ¼" od stainless steel tubing.  

During an experiment the biodiesel and water vaporisers were set to the desired 

temperature using the Watlow (Ez zone PM controller) and reactor. The desired biodiesel 

and water flowrates were maintained by means of the syringe pumps. Reactor 

temperature was set by the Eurotherm controller. The hot vapours were mixed with 

preheated N2 in Swagelok cross provided with a thermocouple as shown in Figure 4.7.  
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Figure 4.7: Process and instrumentation diagram of the down flow experimental set up. In the figure 

the green lines represents signal connections and the black are the processes connections.
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Figure 4.8: Schematic of un-insulated down flow reactor. 

 

The flowrate of N2 was controlled by mass flow controllers (MKS Instruments, UK) 

shown in the Figure 4.8. The arrangement of mass flow controllers had to be modified 

slightly from the previous arrangements. The three mass flow controllers were mounted 

on a stand and were placed near the controller box shown in the Figure 4.9.  This mixture 

of vapour, steam and N2 passed through the reactor maintained at the desired 

temperature. The condensed vapours and unreacted steam passed through the condenser 
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and were collected in the gas/ liquid separator connected to the condenser. The condenser 

was a double pipe type, in which the gases and the vapours flowed in the inner pipe and 

water was circulated in the annulus between the inner and the outer pipe. Cold water at 

1°C was circulated by means of a chiller connected to the condenser.  The condensed 

vapours and unreacted steam was collected and removed from the bottom of the gas-

liquid separator (Figure 4.10). The product gases (H2, CO, CO2, CH4, C-2 to C-3 

hydrocarbons and N2) leave the gas liquid separator and were passed through a silica gel 

trap to remove the moisture. The gases were finally transferred to an online gas 

chromatograph for composition analysis (Figure 4.10). 

 

 
Figure 4.9: Arrangement of mass flow controllers and schematic of the controller box. 

 



Hydrogen production by steam reforming of biodiesel 

87 

 

The vaporisers were insulated with super wool insulation material (Good fellows, UK) in 

order to prevent the heat loss from the preheating coils. To maintain the steam 

temperature in the tubing connecting the biodiesel vaporiser and the water vaporiser, a 

heating tape was provided as shown in Figure 4.11. The initial investigation, performed 

in the absence of the heating tape still revealed steam condensation in the tubing 

connecting both the vaporisers, which created back pressure on the water syringe pump. 

The heating tape was provided by the engine research group. 

 

 

 

Figure 4.10: Condenser and gas drying schematic connected to the micro gas chromatograph. 
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.  

Figure 4.11: Insulated vaporisers and heating tape arrangement. 

4.2 Gas chromatograph 

 

The most important part of the experimental setup was the micro gas chromatograph 

(micro GC). Figure 4.12 shows the micro gas chromatograph (CP 4900) supplied by 

Varian Instruments, UK.  The instrument was connected to a silica gel trap as shown in 

the Figure 4.10. The gas chromatograph was equipped with two thermal conductivity 

(TCD) detectors and two columns.  Molecular sieve 5A plot and Pora Plot Q columns 

were provided with the gas chromatograph for the analysis of H2 and carbon gases.  The 

molecular sieve 5A (column 1) was 10 m long column with 0.32 mm id and was used for 

the analysis of H2, O2, N2, CH4 and CO. The Pora Plot Q (column 2) was used to detect 

CO2, C2H4, C2H6, C3H6 and C3H8.  In addition to these gases, column 2 also detected 

CH4.  Two pre columns were provided for both the columns to prevent unwanted 

condensate or moisture entering the columns.  Column 1 was operated with a back flush 

of 13 s, which prevented CO2 from entering the column.  The presence of CO2 disrupts 

stable column operation as it entered the pores of the molecular sieve column affecting 



Hydrogen production by steam reforming of biodiesel 

89 

 

the column performance. The poisoned column had to be regenerated by heating to 

180°C. This operation required a long time due to oven temperature limitation.  In order 

to prevent this from happening, column 1 was always operated with back flush option.  

The columns were conditioned after every experiment by heating to 180°C to get rid of 

the moisture, which might enter the columns. Although the silica gel trap removed most 

of the moisture before the gas from the reactor was sampled by the gas chromatograph.  

 

The run time for the gas chromatograph was about 2.5 min which is much faster than 

conventional gas chromatographs and therefore was more suited to the dynamic 

processes investigated. The column temperatures were set to 100°C at 100 kpa pressure. 

It was equipped with a pump which withdrew gas sample from the silica gel trap. The 

pump had a sampling time of 20’s.  The inlet sample line to the gas chromatograph was 

maintained at 45°C. The Galaxie data acquisition software was provided by the 

manufacturer to set the column conditions and other essential parameters for the 

instrument.  An external standard method was used for the analysis of the products. The 

instrument was calibrated with various gas mixtures of different concentration to obtain a 

good calibration curve for all the gases (Appendix A). 

 

 

Figure 4.12: Micro gas chromatograph used for gas analysis. 
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4.3 Biodiesel and catalyst preparation 

This section describes the preparation of biodiesel and catalysts used in the study.  It also 

explains the various techniques used to characterise biodiesel and the catalysts.  

 

4.3.1 Biodiesel preparation 

Three different kinds of biodiesels i.e. commercial, palm and in-house prepared biodiesel 

were used in this study. The commercial biodiesel was provided by the engine research 

group, Energy Research Institute, University of Leeds which was procured from a petrol 

station in Huddersfield, UK. Likewise palm oil based biodiesel was procured from the 

crystallisation science and engineering research group, Institute of Particle Science and 

Engineering, University of Leeds. 

 

In house biodiesel was prepared using the method described in [231]. Waste cooking oil 

was collected from a local restaurant and was converted to biodiesel using acid-base 

transesterification processes due to the presence of high amount of free fatty acid in the 

waste cooking oil. Waste cooking oil was esterified using different concentration of 

sulphuric acid (1.5 to 3% w/w) at 65 
o
C with methanol/oil ratio of 3/7 (v/v). The 

esterified mixture was transesterified using KOH (1.5, 2 and 3% w/w) in methanol 

(methanol/oil ratio 3/7(v/v)).  The acid-base transesterification was performed in a 500 

cm
3
 three neck flask fitted with a condenser and a thermometer as shown in Figure 4.12. 

The condenser was fitted with a condenser to condense methanol vapours formed during 

the processes. The waste cooking oil was filtered to remove insoluble impurities and was 

heated to 100° C for 15 min to remove the moisture.   

 

A 250 g of waste cooking coil was measured and its volume was recorded. The waste 

cooking oil was heated to 65°C in a beaker on a hot plate and was poured in the three 
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neck flask as shown in Figure 4.12.  Sulphuric acid was dissolved in methanol and was 

heated to 50 °C to prevent boiling. This mixture was the added to the hot oil in the three 

neck flask and was vigorously stirred for 3 h at 400 rpm by means of magnetic bar placed 

in the three neck flask.  The esterified oil was cooled and was allowed to settle overnight 

and subjected to the base catalysed transesterification process using KOH as catalyst.  

The esterified oil was measured and the volume was recorded. It was heated to 50 °C on a 

hot plate and was poured in a clean three neck flask.  Potassium hydroxide (1.5, 2 and 3 

% w/w) was dissolved in methanol (methanol/oil ratio of 3/7 (v/v)) which was also 

heated to 50 °C and mixed with the hot oil. This mixture was stirred for 3 h at 50 °C with 

constant stirring.  The transesterfied oil was cooled over night and was separated in a 

separating funnel where the heavier glycerol layer was separated from the lighter methyl 

ester (biodiesel).  The biodiesel was washed with water to remove unreacted methanol 

and glycerol.  

 

 

 Figure 4.13: Acid- base catalysed transesterification set up. 

 

Glycerol  

Biodiesel 

(methyl 

ester) 
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4.3.2 Biodiesel characterisation 

 

Biodiesel samples were subjected to elemental analysis (C/H/N/O), Thermogravimetric 

analysis (TGA), composition analysis (gas chromatography), acid value, and free fatty 

acid determination. 

 

4.3.2.1 Elemental Analysis 

 

The biodiesel samples were characterised using various techniques.  Biodiesel samples 

were subjected to elemental analysis to determine the composition of C/H/N/S by means 

of a Thermo Flash EA 1112 series CE instrument.  Biodiesel samples of 3 mg were 

placed in thin tin capsules and the capsules were folded to avoid air entrapment. The 

folded capsules were placed in the autosampler of the analyser which were further 

combusted in the reactor chamber with excess oxygen at 1800°C. The elemental C, H, N 

and S were converted to CO2, H2O, nitrogen oxides and SO2. These gases were detected 

by a TCD detector and compared with standard to determine the percentage of C, H, N 

and S. An oat meal with BBOT (2, 5-Bis (5-tert-butyl-2-benzoxazolyl) thiophene was 

used as standard for the analysis. The oxygen content of the samples was determined by 

difference. It is important to note that biodiesel samples did not contain any N and S. 

 

4.3.2.2 Thermogravimetric analysis (TGA) 

 

A Stanton Redcroft TGH-1000 instrument was used to perform a proximate analysis of 

the biodiesel samples.  This instrument makes use of horizontal differential balance to 

measure weight change of the sample with respect to time and temperature under 

isothermal conditions. The experiments were performed using 5 biodiesel samples (1.5, 2 

and 3 wt% biodiesel, commercial biodiesel, and palm oil biodiesel), in order to compare 
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the volatile, carbon residue and ash content weight percentages.  For every experiment 

180 mg of sample was used. The samples were placed in the TGA and were subjected to 

the following heating program. 

 

 5 °C/min from ambient to 400 °C with 50ml/min of nitrogen. 

 25 °C/min from 400 °C to 900 °C with 50ml/min of nitrogen. 

 Held at 900 °C for 10 minutes with 50ml/min of air. 

 

The data obtained from the TGA was used to determine the wt% of the volatile, carbon 

residue and ash. The volatile percentage is given by the main mass loss around 200-

500°C. The carbon residue is determined by the weight at which air is added to the 

system which is at 900°C.  The ash content was the weight remaining at the end of the 

analysis as this material cannot be burnt thus remains in the pan. The weight (initial 

minus final for volatiles) given by the equipment in comparison to the initial weight was 

used to produce the percentage data.  

 

4.3.2.3 Composition analysis   

 

The composition analysis of the biodiesel samples were provided by crystallisation 

science and engineering research group, Institute of Particle Science and Engineering, 

University of Leeds.  Clarus 500, Perkin Elmer fitted with flame ionisation detector, 

using a 100 m long, 0.25 mm i.d. and 0.25 μm film thicknesses, fused silica column 

(SUPELCO SP
TM

 2380).  The biodiesel sample was diluted in toluene before performing 

the analysis. 
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4.3.2.4 Acid value and free fatty acid determination 

 

The acid value of the biodiesel and the waste cooking oil samples was determined using 

EN 14104 which is comparable to ASTM-D974.  A 0.1 M solution of KOH in ethanol 

was prepared by dissolving 3.5 g KOH in 500 ml ethanol.  Biodiesel or oil sample (10 g) 

was dissolved in toluene. This solution was titrated against 0.1 M alcoholic KOH using 

phenolphthalein as an indicator. The alcoholic KOH solution was placed in a micro 

burette and added drop wise to the oil-toluene mixture, with constant stirring. The end 

point was color change from light yellow to light pink that lasted at least for 15 s.  The 

following Eqs 4.1 and 4.2 were used to determine the acid value and free fatty acid 

content. 

 

56.1
Acid value =

V c

m

 
                                                                                                (4.1) 

  

282.46
Free fatty acid as % of oleic acid=

V c

m

 

                                                        
(4.2) 

 

In the above Eqs, V is the volume, in ml of standard KOH solution used, c is the 

concentration of the KOH solution in moles/lit and m is the mass of the sample (biodiesel 

or vegetable oil) in g. Finally 56.1 and 282.46 are the molar mass of KOH and C18H34O2. 

 

4.3.2.5 Bomb calorimetry  

 

Bomb calorimetry was performed on the 5 biodiesel samples using a Parr Instruments 

model-6200 bomb calorimeter to determine the gross calorific value of the samples. The 

biodiesel samples were placed in a metallic bomb as shown in Figure 4.13 which was 
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pressurised to 3 bars in pure O2 environment. The bomb was placed exactly 2 L of water 

and the sample was lit by a fuse. The rise in temperature of the water was correlated to 

the energy released by sample combustion which in turn provides the gross calorific 

value (GCV) of the sample. During the tests test sample sometimes did not ignite as a 

result biodiesel samples had to be spiked with kerosene or silicon tape to ensure ignition 

propagation to sample and achieve complete combustion.  The calorific value of the spike 

is subtracted from the total to get the actual calorific value of the biodiesel sample. 

 

 

Figure 4.14:  Parr instruments bomb calorimeter 

 

4.3.3 Catalyst preparation 

 

Nickel based catalyst were used in this investigation. Two commercial catalysts i.e. Ni 

supported on Al2O3 and Ni supported on calcium aluminate were tested in addition to in-

house prepared catalysts. An 18 wt% Ni supported on α-Al2O3 was supplied by Johnson 

Matthey, Plc. On the other hand the 15 wt% Ni supported on calcium aluminate was 

provided by TST, Ltd. These two catalysts i.e. 18 wt % NiO supported on α-Al2O3 and 15 

wt% supported on calcium aluminate will hence forth be referred as Ni/Al and Ni/Ca-Al. 

The difference between fresh and used will be pointed out by use NiO for fresh and Ni 

Bomb Calorimeter 
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for used e.g. NiO/Al will represent fresh 18 wt% NiO supported on α-Al2O3 and Ni/Al 

would be the used. This terminology will be used for rest of the catalysts as well. Figure 

4.14 shows the commercial NiO/Ca-Al and NiO/Al catalysts supplied by TST, Ltd and 

Johnson matthey, Plc.  

 

The 18 wt% Ni supported on α-Al2O3 was doped with K to obtain K doped catalyst. The 

commercial pellets (27.63 g) obtained from the manufacturer were soaked in a solution of 

KNO3 in water (20 wt%) for 3h. The pellets were dried over night at 120°C in an oven 

and calcined in a furnace. The calcined pellets were weighed again (28.091 g). The 

loading of K was calculated to be 1.67 wt%. The K doped catalyst will be referred as Ni-

K/Al throughout the thesis. The fresh catalyst would be NiO-K2O/Al and used would be 

Ni-K/Al. 

 

Figure 4.15: Commercial NiO/Ca-Al (a) and NiO/Al (b) catalysts. 

 

The Ni-Co-Ce/γ-Al2O3 was prepared by Giannakeas et al.[178]. The Catalyst was 

prepared by wet impregnation of γ-Al2O3 stabilised by calcining at 600°C.  The active 

metals Ni, Co and Ce were introduced by appropriate nitrate salts to give 6 wt% Ni, 3 wt 

% Co, and 5 wt% of Ce.  This catalyst hence forth in the thesis will be referred to 

NiCoCe/Al. In case of fresh catalyst it will be referred as NiOCoOCeO/Al and used will 

stated by NiCoCe/Al. 

a 
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Nickel impregnated catalysts were prepared using two different supports. One support 

was Ce rich support prepared in the lab, while the other was Zr rich support supplied by 

MEL Chemicals, UK. 

 

4.3.3.1 Preparation Ni supported on Zr rich supports 

 

A 17 wt% cerium doped zirconia oxide (Ce0.12Zr0.88O2) and hydroxide supplied by MEL 

chemicals, UK were utilised in catalyst preparation. The hydroxide material was calcined 

and converted to oxide and was used in the preparation of the catalysts.  This material 

was calcined at 600 °C for 6 h.  Thus the oxide support obtained from the hydroxide 

hence forth will be referred as in house calcined Ce-Zr support and the oxide support 

provided by the manufacturer will be referred as pre calcined Ce-Zr support (Figure 

4.15). The in house calcined support was used to prepare catalyst by two different 

methods i.e. wet impregnation and dry impregnation methods.   

 

 

Figure 4.16: Ce-Zr support supplied by MEL chemicals, UK. 
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In wet impregnation method 6g of in house calcined Ce-Zr support was impregnated with 

different amounts of precursor to obtain 10, 20 and 30 wt% NiO loading, using 

Ni2NiO6.6H2O as Ni precursor. In case of 10 wt% NiO loading, 2.33 g of Ni2NiO6.6H2O 

was dissolved in 50 cm
3
 of distilled water and in house calcined Ce-Zr was added to it 

and stirred continuously for 3 h using a magnetic needle on a hot plate without heating.  

The impregnated material was drilled in an oven at 120 °C to remove the water and the 

dried powder was calcined at 600 °C for 6 h in a furnace. Exact same procedure was 

adopted to prepare other catalysts with 20 and 30 wt% NiO loadings.  

 

In the dry impregnation method, the calculated amount of nitrate salt was added to 50 

cm
3
 water which was slowly added to the catalyst support via a burette. Once a paste was 

formed the addition was stopped and the material was dried over a hot plate to evaporate 

the water; this procedure was repeated until all the solution had been added and the 

material was dry. The solid was then calcined using the same methodology (600 °C for 6 

hours).   

 

It was found that the wet impregnation method produced smaller Ni crystallite size. The 

surface area of the pre calcined material, supplied by MEL chemicals was higher as 

compared to the in house calcined support. As a result the precalcined support and wet 

impregnation method was used in the preparation of the catalyst.  In preparation of 10 

wt% NiO supported on pre calcined Ce-Zr, 30 g of Ce-Zr support was used.  The 

precursor Ni2NiO6.6H2O (11.64 g) was dissolved in 50 cm
3
 distilled water and the 

support was added and continuously stirred for 3 h. The impregnated material dried at 

120 °C and calcined at 600 °C for 6 h.  In addition to this two other catalysts with 2 wt% 

K2O and SnO were also prepared using the same method. The dopants were 

simultaneously impregnated over the precalcined Ce-Zr support.  In order to obtain K 

doped Ni catalyst, 1.28 g of KNO3 and 11.36 g Ni2NiO6.6H2O were dissolved in same 

amount of water and the impregnation of the precalcined support was achieved. In the 

case of the Sn doped Ni catalyst, 0.23 g of SnC2O4 and 11.36 g Ni2NiO6.6H2O were used 

in the preparation.  The NiO catalysts prepared using wet impregnation of precalcined 
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Ce-Zr support are represent in Figure 4.16. The fresh 10 wt% NiO supported on pre 

calcined Ce-Zr will be referred as NiO/Ce-Zr and other two with 10% Ni O and 2% 

dopants will be reported using NiO-K2O/Ce-Zr, NiO-SnO/Ce-Zr.  The used catalyst 

would be referred as Ni/Ce-Zr, Ni-K/Ce-Zr and Ni-Sn/Ce-Zr.  This terminology will be 

used in rest of the thesis. 

 

 

Figure 4.17: Nickel catalysts (NiO/Ce-Zr (a), NiO-K2O/Ce-Zr (b) and NiO-SnO/Ce-Zr (c)) prepared 

by wet impregnation of pre calcined Ce-Zr support. 

 

4.3.3.2 Preparation Ni supported on Ce-rich supports 

The zirconia doped ceria (Ce-Zr) support was prepared in the laboratory, University of 

Leeds using a sol-gel method. Tamarind seed polysaccharide TSP (Xyloglucan) was used 

as a gelling agent. A stock solution of 3.5% (w/v) was prepared by dissolving 7 g of TSP 
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in 200 ml deionised water. The stock solution was heated on a hot plate at 65 °C under 

continuous stirring to obtain a viscous solution.   

 

As the solution obtained was very viscous the use of magnetic stirrer present with the hot 

plate became difficult resulting in non homogeneity which was observed during initial 

trials. A skin formed on top surface where full mixing had occured, however the 

underneath of the solution was unhomogeneous and had not mixed completely. As a 

result an electrical mixer, mounted on a clamp was used to produce uniform mixing. A 

temperature probe was also placed within the solution to  measure the bath  solution and 

control the hot plate  temperature.  

 

At the same time on a separate hot plate catalyst precursors i.e. cerium ammonium nitrate 

and zirconyl oxy-nitrate with (Ce/Zr) molar ratio of 3/1 were mixed in alcohol. It was 

found that TSP does not form a gel with water, rather it forms gels with alcoholic 

solutions. Hence the precursors were dissolved in different alcohols. Three different 

alcohols such as methanol, ethanol, propanol and sugar were examined. In each 

experiment 5 g of cerium ammonium nitrate and 0.0702 g zirconyl oxy-nitrate was used.  

The amount of alcohol was varied from 10 and 17 wt% of the water used.  The 

precursors, once mixed, were then added to the stock solution. The total solution was 

mixed once more using the electrical mixer at a temperature of ~45 °C for approximately 

one hour or until the solution had become a viscous gel (Figure 4.17).  As temperature 

controlled hot plate was unavailable it was difficult to maintain the temperature of the 

solution to exact 45 °C.  The obtained gels were dried using atmospheric and freeze 

drying.  The dried gels were calcined at 600 °C for 6 h in a furnace.  Alumina doped ceria 

(Ce-Al) was prepared using same method. Cerium ammonium (5g) nitrate and aluminium 

nitrate were dissolved in ethanol with Ce/Al molar ratio 3/1. The dissolved precursors 

were added to viscous TSP water solution and gel was obtained.  The gel was freeze 

dried and calcined at 600 °C for 6 h. In order to differentiate and avoid confusion the Ce-

Zr support prepared by sol gel synthesis will be referred as Ce-Zr-3/1. 
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Wet impregnation method was used to impregnate the Ce-Zr-3/1 and Ce-Al-3/1 supports 

to prepare 10 wt% NiO supported on Ce-Zr-3/1 and Ce-Al supports.  To achieve this 4 g 

of each support and 1.55 g of Ni2NiO6.6H2O were used.  The Ni2NiO6.6H2O was 

dissolved in 30 cm
3
 water and the support was added to it and mixed thoroughly for 3 h.  

The impregnated support was dried at 120°C overnight in an oven and calcined at 600 °C 

for 6 h to obtain the catalyst.  The 10 wt% NiO supported on sol gel synthesized Ce-Zr 

support will hence forth be referred as Ni/Ce-Zr-(3/1) to distinguish it from other Ce-Zr 

catalysts prepared from commercial support discussed in the previous section. Similarly 

Ni supported on Ce-Al-3/1 catalyst will be referred as Ni/Ce-Al. In case of fresh it would 

be NiO/Ce-Al and with used it would be refereed by Ni/Ce-Al. Similarly terminiolgy will 

apply to Ni/Ce-Zr-3/1. 

 

 

Figure 4.18: Viscous gel obtained during sol gel synthesis of Ce-Zr (3/1) support. 
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4.3.4 Catalyst characterisation 

 

The catalyst were characterised using X ray diffraction, specific surface area (BET), 

elemental analysis (C/H/N) and thermo gravimetric- Fourier transform infra red 

spectroscopy (TGA-FTIR). The presence of carbon in the condensate from the catalytic 

experiments was determined using Total organic carbon (TOC) analysis.  

 

4.3.4.1 Surface area analysis (BET) 

 

Adsorption is a surface phenomenon where a density of fluid in contact with solid 

increase. When a gas molecule strikes a solid surface, it can collide in two different ways 

i.e. elastically and in-elastically. During elastic collision no energy is exchanged as a 

result the gas molecule is reflected back to gas phase, unaffecting the system.  In inelastic 

collision the gas molecule lacks energy to overcome the surface potential and sticks to the 

surface for a while before returning to the gas phase. The inelastic collisions lead to 

adsorption. Wan der Waals forces govern physical adsorption of gases on solid surface.  

The process of physical adsorption takes place when a gas is contact with solid and 

pressures and temperature conditions are manipulated so that the gas reaches it 

condensation point [232].  This is performed in a closed vessel where a solid is exposed 

to condensed gas usually N2 and the pressure of the system is increased gradually. This 

causes the gas to condense in the large pores of the solid, until all the pore volume of the 

solid is filled with the condensate and the surface is saturated.  The system pressure is 

then reduced so that the liquid boils and returns back to gas. This results in the formation 

of two separate operations in the processes known as adsorption and desorption [232].   

 

Adsorption and desorption equilibria are represented by isothermal plots that show the 

volume of gas adsorbed onto the solid as a function of the relative pressure (P/P0). The 
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relative pressure is the equilibrium pressure (P) of the gas in contact with the liquid over 

the saturated vapour pressure of the gas at the process temperature.  The adsorption and 

desorption isotherms are never identical since they are governed by different controlling 

processes. This results in the formation of a hysteresis loop.  These hysteresis loops are 

very useful to predict the geometry of the pores in the material.  The adsorption 

desorption isotherms helps us identify the nature of the solid. IUPAC has classified the 

isotherms in 6 types to determine the pore size and nature of the solid.  

 

Figure 4.18 shows 6 different kinds of isotherms classified by IUPAC [233]. Type 1 

isotherms indicate pores of 2 nm or smaller associated with micropores solids. Non-

porous i.e. macroporous solids having pores excess of 50 nm exhibit type 2 isotherm. 

Type 4 isotherms are exhibited by mesoporous solids having pore radius 2-50 nm.  Type 

3 and 5 isotherms are rare. An example of type 3 isotherms is adsorption of water vapour 

on non porous carbons. In this type of isotherms the adsorbent-adsorbate interactions are 

reported to be weaker as compared to adsorbate-adsorbate. Type 5 isotherms are related 

to type 3. In this type of isotherm the adsorbent-adsorbate interaction is weaker but is 

obtained with certain types of porous adsorbents. Type 6 isotherms indicative of 

multilayer adsorption on non-porous surfaces, e.g. argon or krypton on graphitised carbon 

black at liquid nitrogen temperatures.  Type 6 indicates groups of adsorption sites that are 

homogeneous in regards to energy. 
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Figure 4.19: IUPAC classification of gas physical adsorption isotherms [233].  

 

As a result of different controlling processes the adsorption and desorption isotherms are 

rarely if ever identical. This results in formation of a loop on the isothermal plot known 

as a hysteresis loop.  In order to explain the relationship between the absorbed volume of 

gas and relative pressure, P/P0 various models have been developed. The most commonly 

used model is Brunauer-Emmett-Teller (BET) model.  

The surface area of all the catalysts was evaluated was measured using Brunauer-

Emmett-Teller (BET) method.  This method is widely used to determine the specific 

surface area and porosity.  The method relies on the physical adsorption of inert gases 

line N2 on the surface of the material.  The model makes use of the following Eq. 

 

0 0

1 1

( ) m m

P C P

V P P V C V C P


 


                                                                                           (4.3) 
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In the above Eq 4.3, Vm is the monolayer adsorbed gas quantity and P and Po are the 

equilibrium and saturation pressures. The model uses the following assumptions. 

Adsorption occurs on well defined pores and only one molecule adsorbs per site. The 

surface is assumed to be homogeneous and all the sites have same energy. The solid 

surface is assumed to be completely covered with gas molecule and the gas molecule is 

considered to be small enough to achieve this. The adsorbed molecules do not interact 

with each other. The gas and solid do not interact beyond a monolayer. The BET model is 

a mathematical technique that calculates specific surface area (SSA) of the material or 

catalyst. SSA is defined as surface area per unit mass of the material. The model can be 

used for meso and macroporous solids. The model Eq is valid when P/Po values are in 

the range of 0.05 and 0.35 i.e. 0.05<P/Po<0.35 [234]. A graph of I/ (V [Po-P]-1) is 

plotted against P/Po.  The slope of the graph yields α and β is obtained as an intercept. 

The quantity of Vm is calculated using following formula  

Vm=1/ (α+β) and C is ratio of α/β [235] 

2010m
BET

M

NAV
S

mV



                                                                                                           (4.4) 

 

The Eq 4.4 is used to determine the BET surface area where N is Avogadro’s number, A 

is the area occupied by an absorbed gas molecule, m is the mass of the solid analysed and 

VM is the molar volume of adsorbate. 

 

The study of pore structure especially pore radius is very important especially in 

hysteresis loop.  The pore properties of mesoporous solids are widely studied using 

Barrett, Joyner and Halenda (BJH) model. The small pore size of the mesoporous 

material results in the formation of a highly curved meniscus in the adsorption of the 

liquid on to the solid. As a result the liquid vapour pressure drops below the saturated 

vapour pressure Po which results in formation of a hysteresis loop during adsorption and 

desorption of gas [235]. This phenomenon is termed as capillary condensation.   The 

formation of the hysteresis loop and capillary condensation modelling helps us to 

determine the pore size distribution, cumulative pore volume and specific surface area of 
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the catalyst. The condensation phenomenon is explained by means of Kelvin Eq 4.5 

[236].  

0 ( )p

P f Vcos
ln

P RT r t

 



                                                                                                          (4.5) 

In the above Eq, f is a form factor (depending on the meniscus), γ is the surface 

temperature of the adsorbate at temperature T, V is the molar volume of the liquid 

condensate, θ is the angle of contact equal to 0, R is the true gas constant rp is the radius 

of the pore and t is the film thickness. The film thickness t of the adsorbate is calculated 

using the Eq 4.6. 
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The Kelvin Eq 4.5 tries to predict the pressure at which adsorbate will spontaneously 

condense and evaporate in cylindrical pores of given size. This will only happen if there 

is an existing film of gas is adsorbed on the solid [237].  The BJH model uses a modified 

Kelvin Eq (4.6) and the statistical thickness (t curve).  The Eq 4.6 is used to determine the 

change in pore volume and surface area by applying pore geometric pore models. Pore 

size distribution is also provided by the model by plotting change in pore volume with 

respect to change in pore radius against pore radius. Cumulative pore volume and the 

specific surface are also obtained from this model.  

 

The shapes of the hysteresis loop present in the isotherm help us to identify the geometry 

of the pores in the mesoporous material.  IUPAC has classified the hysteresis loops into 

four different types (Figure 4.18). Type H1 suggest tubular pores at both end with various 

cross sections and slightly widened parts; termed ink bottle and trough shaped pores. 

Type H2 also suggest ink bottle shaped pores but can also propose or voids between close 

packed particles [235]. The H2 type adsorption hysteresis can occur due to 

interconnectivity of pores. In such systems the pore sizes and pore shapes are not well 

defined or they are irregular. The sharp steep of the desorption isotherms indicates the 

existence of interconnectivity among the pores [238]. Type H3 hysteresis is associated 
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with plate such as particles which give rise to slit shaped pores, while H3 type are 

associated with narrow slit pores. 

 

A Quanta-chrome Instruments NOVA 2200e Surface Area and Pore Size analyser 

(Figure 4.19) was utilised in order to perform the surface area and isotherm analysis of 

the support and the catalysts.  The instrument was provided with a degassing (left had 

side) and physical adsorption (right hand side) section.  The instrument was used for the 

analysis of both fresh and used catalysts. The samples were vacuum degassed at 300°C 

for 3 h in order to eliminate gases such as CO2 or moisture adsorbed on to the solid 

catalysts. The instrument was operated in batch manner to determine the amount of gas 

adsorbed.  Volumetric technique was used by the instrument which relied on pressure 

sensors in a container with known volume to determine the adsorbed quantities.   

 

 

Figure 4.20: Quanta-chrome Instruments NOVA 2200e Surface Area and Pore Size Analyser 

 

Cylindrical glass tubes were used to perform the analysis. The tubes were initially 

weighed and the sample was added in the tubes and the actual mass of the sample was 

determined by subtracting the weight of the tube from the total (tube + sample).  The 
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samples were degassed for 3 h; the tubes were cooled and weighed again to determine the 

loss in weight after degassing. This final mass was used to perform the analysis. The 

cooled tubes were then connected to the analysis section (right side of the instrument). 

The samples were left overnight for isotherm analysis.  

 

4.3.4.2 X ray powder diffraction (XRD) 

 

X-ray diffraction is widely used technique to study the crystallographic structure of the 

catalysts.  In this method the sample is exposed to an electron beam that is accelerated 

across a high voltage field. The electrons of the atoms from the sample deflect some of 

the photons from the incident beam away from the original vector.  This results in the 

formation of deflected X-rays which are measured during the experiments. The presence 

of different atoms and molecules in the sample interfere with one another resulting in the 

intensity distribution.   

 

The term 'powder' really means that the crystalline domains are randomly oriented in the 

sample. Therefore when the 2-D diffraction pattern is recorded, it shows concentric rings 

of scattering peaks corresponding to the various d spacings in the crystal lattice [239]. 

The positions and the intensities of the peaks are used for identifying the underlying 

structure (or phase) of the material. For e.g. graphite, will exhibit different diffraction 

lines as compared to diamond, even though they consist of carbon atom. This phase 

identification is important because the material properties are highly dependent on 

structure (just think of graphite and diamond) [239, 240]. 

 

The Brucker D8 instrument by means of Cu Kα radiation was used to perform the X-ray 

diffraction studies.  The samples were scanned with a steep size of 0.108°/s and the range 

of 2θ was set at 20-100°. The obtained diffraction patterns of the samples were compared 
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with the known standard diffraction patterns to identify phases present in the material. 

Phase analysis based on the XRD data was obtained using the X'Pert High Score Plus 

software. Rietveld refinement was used to measure the phase compositions of NiO, Al2O3 

and Ce-Zr as well as the crystallite sizes (Scherrer Eq accounting for peak broadening by 

instrument and strain) [240]. The Scherrer Eq is given by Eq 4.7. 

c

kλ
d =

βcosθ
                                                                                                                      (4.7) 

Where K is a dimensionless shape factor with typical values about 0.9, λ is the wave 

length of the X-rays, θ is the Bragg diffraction angle and β is full width at half-maximum. 

 

4.3.4.3 Elemental analysis 

 

The amount of carbon deposited on the catalyst surface was determined using elemental 

analysis by means Thermo Flash EA 1112 series CE instrument.  For each analysis 

duplicate samples (17 mg) each of used catalysts were analysed. The samples were 

placed in thin tin capsules and the capsules were folded to avoid air entrapment. The 

folded capsules were placed in the autosampler of the analyser which were further 

combusted in the reactor chamber with excess oxygen at 1800°C, to obtain C, H in the 

form of CO2 and H2O detected by the TCD detector of the instrument. 

 

4.3.4.4  TGA-FTIR and TOC analysis 

 

In order to obtain an idea about the type of carbon present on the catalyst surface TGA-

FTIR analysis was performed. Temperature programmed oxidation (TPO) of the catalyst 

was performed in a Stanton-Redcroft TGA connected to a FTIR (Nicolet iS10, Thermo 

scientific). During each test 100 mg of used catalyst was placed in the sampling pan of 
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the TGA and the temperature was increased from ambient to 900°C at the rate of 

10°C/min in 50 cm
3
/min air. The FTIR spectral scanning was repeated every 30 s, 

scanning from 4000 to 500 cm
-1

to determine the gaseous products formed during the 

experiment.  

 

The organic carbon of the condensate collected after the experiment was analysed using a 

Hach-Lange IL550 analyser.  The samples were diluted 10 times before performing the 

analysis, 1 cm
3
 of the condensate was placed in 10 cm

3
 centrifuge tube and was diluted 

up to the mark using deionised water. 

4.3.4.5 Scanning Electron Microscopy analysis (SEM) and Energy Dispersive 

X-ray (EDX) 

 

SEM uses an electron microscope equipped with a high-energy beam of electrons for 

generating images. This beam is bombarded on the sample, after striking the sample 

surface they produce different signals which are detected by the detector resulting in the 

formation of an image. This technique is used to study the sample topography along with 

topology. The SEM is coupled with an energy-dispersive X-ray (EDX) source which is 

used for chemical characterisation of the sample.  The EDX technique uses the principle 

of exciting electrons of sample using X-rays. At normal or ground state the atoms of the 

sample contain electrons which are bound to the nucleons. The bombarded X-ray beam 

excites the electron in the inner shell of atom. The excited electron is ejected from the 

shell creating an electron hole. This hole is filled with another electron from higher 

energy shell. This difference in energy between higher and lower energy shells releases 

some form of X- rays. This X rays are characteristics of the difference of energy of the 

shells and the atomic structure of the emitted electron, elemental composition can be 

determined using this principle. The SEM-EDX analysis was performed to observe the 

dispersion of the active metals i.e. Ni, K and Sn on the catalyst surface. It was also used 

to observe carbon formation on the catalyst surface. 
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A Hitachi SU8230 (Figure 4.20) was used for the SEM analysis. The EDX analysis of the 

samples was performed using an INCA 350 EDX system fitted with an 80 mm
2
 X-Max 

SDD detector, Oxford Instruments. The chemical characterisation of all the samples was 

conducted by using INCA and Aztec software supplied by Oxford Instruments. The 

samples were prepared a day before the analysis. The samples were suspended in 

methanol and were placed on the stubs (Figure 4.21). The methanol was evaporated and 

the sample was decontaminated in an ozone treatment chamber (Figure 4.22) to remove 

unwanted hydrocarbons from the sample. The treated sample was stored in vacuum in the 

same chamber prior to analysis.   

 

 

 

Figure 4.21: Hitachi SU8230 cold finger SEM. 
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Figure 4.22: SEM sample stubs. 

 

 

 

Figure 4.23: Ozone decontaminator for Hitachi SU8230 SEM. 
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5. Characterisation of biodiesel and catalysts 

5.1 Biodiesel Characterisation 

 

The characterisation of biodiesel was performed to determine the ester content to be used 

for the equilibrium analysis of the experiments. The elemental analysis of biodiesel was 

to be used to set the flows of biodiesel and H2O for the CSR experiments. Similarly the 

presence of fatty acid affecting the biodiesel performance during the CSR experiments 

would also be determined in biodiesel characterisation, useful for equilibrium analysis.  

Likewise, the free fatty acid and proximate analysis is used to determine the quality of 

biodiesel used for the experiments. 

 

  The gas chromatograph composition of the different biodiesel used in this study is 

shown in the Table 5.1. It can be seen from the table that biodiesel samples mainly 

consisted of methyl oleate, methyl linoleate and methyl palmitate.  The three different 

biodiesel samples prepared using different amount of KOH (1.5, 2 and 3 wt%) showed 

very similar ester compositions. Highest composition of methyl oleate was found in the 

commercial biodiesel sample as compared to the other two. The in house prepared 

biodiesel exhibited the highest amount of methyl linoleate. As compared to commercial 

and in house prepared biodiesels, palm oil biodiesel showed the highest amount of methyl 

palmitate. In all the biodiesel samples, smaller chain methyl esters (C13-15) were 

negligible and so were higher methyl esters (C20-C25). The in house prepared biodiesel 

composition were comparable to literature Hoekman et al. [241] and Wang et al. [242] 

which both show biodiesel to contain ~≥40 wt% oleate, ~≥30 wt% linoleate and ~≥15 

wt% palmitate. 
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Table 5.1: Gas chromatograph composition of three different biodiesels. 

Biodiesel Commercial In-house Palm 

Methyl laurate 

(C13(0)) 
0.09 0.00 0.21 

Methyl myristate 

(C15(0)) 
0.33 0.27 1.06 

Methyl palmitate 

(C17(0)) 
16.86 15.07 40.19 

Methyl 

palmitoleate 

(C17(1)) 

0.34 0.10 0.11 

Methyl stearate 

(C19(0)) 
3.88 2.98 4.03 

Methyl oleate 

(C19(1)) 
51.34 42.62 42.81 

Methyl linoleate 

(C19(2)) 
21.29 32.24 10.56 

Methyl linolenate 

(C19(3)) 
1.69 3.93 0.00 

Methyl arachidate 

(C20(0)) 
0.56 0.43 0.29 

Methyl gadoleate 

(C21(1)) 
0.90 0.96 0.00 

Methyl behenate 

(C23(0)) 
0.16 0.16 0.00 

Methyl erucate 

(C23(1)) 
0.43 0 0 

Methyl lignocerate 

(C25(0)) 
0.16 0.13 0.00 

Unknown 1.96 1.17 0.74 

 

 

The elemental and the proximate analysis of all the biodiesel used in this study are shown 

in Table 5.2. In this (Table 5.2), 1.5, 2 and 3 wt% represents the amount of KOH used to 

prepare the biodiesel. These results show that the majority of the biodiesels are made up 

from carbon, accounting for around three quarters on a weight basis. H2 is the next largest 

represented element accounting for around 13%, followed closely by oxygen accounting 

for around 9-12%. Among all the biodiesel samples, 2 wt% biodiesel showed the highest 
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carbon content while commercial biodiesel showed highest H2 content.  The oxygen 

content was highest in the 1.5 wt% biodiesel.  The proximate analysis of all the biodiesel 

samples suggests that all the biodiesel samples analysed contain ≥99.5% volatiles which 

evaporates around 190°C (Figure 5.1). As a result formation of carbon residue and ash 

content are minimal.  This is beneficial for the H2 production process as 99% of the 

sample will convert to vapours in the vaporiser, with little amount of ash and carbon 

residue formation. 

 

Table 5.2: Elemental and proximate analysis of 5 biodiesel samples. 

 

 

wt (%) 

Commercial 

biodiesel 

In-house-1.5 

wt % 
In-house-2wt 

% 

In-house-3wt 

% 

Palm biodiesel 

 

C 75.35 74.10 76.42 74.60 75.90 

H 13.53 12.97 12.44 12.87 12.41 

O 11.10 12.92 11.12 12.52 11.67 

Volatile 99.63 99.91 99.92 99.65 99.88 

Carbon 

residues 
0.28 0.02 0.03 0.13 0.015 

Ash 0.1 0.07 0.05 0.22 0.108 

 

The ash content and the ultimate analysis of the samples obtained from elemental 

analysis of the biodiesel samples can be used to calculate the gross calorific value (GCV) 

by using the Eq 5.1 provided by Channiwalla & Parikh [243].  

 

0.3491C  1.1783H  0.1005S  0.1034O  0.0151N  0.0211A           (5.1) 

 

These values were compared with the one obtained from bomb calorimetry.  Table 5.3 

compares the calculated and the experimental GCV of commercial and in house prepared 

biodiesel, obtained by bomb calorimetry. The calculated values were slightly higher as 

compared to the observed values. 
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Figure 5.1: TGA analysis of the biodiesel samples. 

 

Table 5.3: Comparison of calculated and experimental GCV of commercial and in house prepared 

biodiesel. 

Biodiesel Gross calorific value (MJ/kg) 

 Calculated Observed 

Commercial 45.81 41.08 

In house-1.5 wt % 44.69 40.23 

In house-2 wt % 44.95 41.31 

In house-3 wt % 44.76 40.09 

Palm  44.71 40.16 

 

 

In addition to these properties, the acid value and presence of free fatty acid detection is 

also important to determine the quality of the biodiesel.  Free fatty acid boils at higher 

temperatures and may affect the vaporisation process of biodiesel. Similarly free fatty 

acids are longer chain compounds and would affect the H2 production resulting from 

higher carbon formation. Table 5.4 shows the free fatty acid and acid values of 

commercial and in house prepared biodiesel.  All the biodiesel samples showed FFA 
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composition comparable to both ASTM D974-664 and EN14104.  In all the biodiesel 

samples tested, in house 1.5 wt % biodiesel showed the lowest acid value as a result 

lowest free FFA content, in comparison in house 3 wt% biodiesel had the highest acid 

value and thus FFA content.  The waste cooking oil used to prepare the biodiesel samples 

exhibited the highest higher acid value as a result highest free FFA content.  

 

Table 5.4: Free fatty acid and acid values of commercial and in house prepared biodiesel. 

Biodiesel Free fatty acid (%) Acid value mg KOH/g 

Commercial 0.461 0.925 

In house -1.5 wt % 0.381 0.757 

In house -2 wt % 0.508 1.01 

In house -3 wt % 2.965 5.89 

Palm 0.392 0.781 

Waste cooking oil 10.22 20.89 

 

5.2  Catalyst Characterisation 

5.2.1 Surface area analysis 

The surface area of the fresh Al2O3 and Ce-Zr catalysts is provided in the Table 5.5. As 

seen in the Table the NiO-CoO-CeO/Al exhibits highest surface area followed by Ce-Zr 

and Ca-Al supported catalysts. Lowest surface area was shown by NiO/Al and NiO-

K2O/Al catalysts. The pre calcined Ce-Zr support supplied by the manufacturer showed 

higher surface area as compared to the in house calcined Ce-Zr support. The surface area 

of the pre calcined Ce-Zr support was 30% higher than the in house calcined support, 

suggesting that the in house calcination processes was not homogenous compared to the 

calcination processes employed by the company. The difference between the surface area 

values obtained from BET and BJH are far smaller when using the adsorption isotherm 

than when using the desorption isotherm. The pore size and pore volume of the pre 

calcined support was slightly smaller than the in-house calcined support. The catalyst 

prepared using dry impregnation method exhibited higher surface area as compared to the 

wet impregnation method. Increasing the loading of NiO showed to decrease the surface 
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area of the catalysts in both the methods.  The decrease in BET surface area is associated 

with increase in NiO content observed in X-ray diffraction experiments. 

 

Table 5.5: Surface area of fresh commercial and Ce-Zr catalysts. 

Catalyst 
BET 

(m
2
/g) 

BJH surface 

area (m
2
/g) 

Pore size 

(nm) 

Pore 

volume 

cc/g 

In-house calcined  Ce-Zr 60.35 60.32 6.03 0.18 

Pre calcined Ce-Zr 90.43 101.46 4.73 0.22 

Catalyst prepared using in-house calcined Ce-Zr 

10wt%-NiO/Ce-Zr-wet 55.89 59.70 4.69 0.13 

20wt%-NiO/Ce-Zr-wet 53.96 58.37 4.79 0.13 

30wt%-NiO/Ce-Zr-wet 48.76 53.97 4.47 0.12 

10wt%-NiO/Ce-Zr-dry 60.45 66.59 4.47 0.14 

20wt%-NiO/Ce-Zr-dry 56.53 61.65 4.47 0.14 

Catalyst prepared using pre calcined Ce-Zr 

NiO/Ce-Zr 79.61 88.78 3.58 0.18 

NiO-SnO/Ce-Zr 61.12 63.96 4.68 0.16 

NiO-K2O/Ce-Zr 48.38 60.88 6.08 0.19 

Commercial catalysts 

NiO/Al 05.31 - - - 

NiO-K2O/Al 02.27 - - - 

NiO/Ca-Al 33.59 - - - 

NiO-CoO-CeO/Al 106.38    

 

The pore volume of the catalyst decreased with increase in Ni loading in the wet 

impregnation method, while it remained unaffected in the dry impregnation method.  This 

could be explained by the extensive restructuring of the catalysts surface as suggested by 

Haber et al [244]. As a result of loading NiO on to the support results in partial deposition 

of NiO in the pores reducing the pore volume of the catalyst. The catalysts prepared using 

the pre calcined Ce-Zr support was higher in surface area than catalyst obtained using the 

in house calcined Ce-Zr support. The NiO/Ce-Zr catalyst showed the highest surface area 

followed by NiO-SnO/Ce-Zr and finally NiO-K2O/Ce-Zr. The pore volume and the pore 

size of the catalyst containing the dopants were higher as compared to bare Ni catalyst.  

Impregnation of 1 wt% Rh on 13 wt% CeO2 doped ZrO2 supplied by the same 
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manufacturer, calcined under similar conditions showed much smaller surface area (44 

m
2
/g) [245]. According to the authors there was no significant change before 

impregnation and after impregnation of Rh on the support. 

 

 

 

Figure 5.2: N2 adsorption-desorption isotherms of NiO/Ce-Zr catalyst prepared by wet impregnation 

method using in-house calcined support. 
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Figure 5.3: N2 adsorption-desorption isotherms of NiO/Ce-Zr catalyst prepared by dry impregnation 

method using in-house calcined support. 

 

 
Figure 5.4: N2 adsorption-desorption isotherms of NiO/Ce-Zr catalyst prepared by wet impregnation 

method using pre calcined Ce-Zr support. 
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The N2 adsorption-desorption isotherms for the wet and dry impregnated in-house 

calcined Ce-Zr is shown in Figure 5.2 and 5.3 respectively. The isotherms obtained using 

in-house calcined and pre calcined Ce-Zr is very similar. Figure 5.4 shows the N2 

adsorption-desorption isotherms of Ni catalyst prepared using pre-calcined Ce-Zr 

support. The isotherm can be attributed to type IV and exhibits type H1 hysteresis, which 

presents the typical characteristic of capillary condensation in mesopores (between 2 and 

40nm) and contains either ink bottle or trough shaped pores [235]. Chen et al. [246] and 

Raju et al. [247] reported similar observations in the case of alumina and silica modified 

ceria-zirconia oxides. In the case of surfactant assisted preparation of 5wt% 

Ni/Ce0.6Zr0.4O2 catalyst, Sukonket et al. [248] reported the existence of type IV isotherm 

exhibiting H2 hysteresis.  Ni supported on ceria-zirconia support prepared using improved 

evaporation induced self assemble strategy by Xu et al. [249] reported the presence of 

type IV isotherm exhibiting H1 hysteresis, implying the presence of cylindrical pores.  

 

Figure 5.5: Pore-size distribution of NiO/Ce-Zr catalysts prepared using wet impregnation of in 

house calcined Ce-Zr support. 
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The pore size distribution of the wet impregnated in house and pre calcined Ce-Zr are 

shown in Figure 5.5 and 5.6 respectively. The distribution of pore were very close for the 

three catalysts prepared by wet impregnation of the in- house calcined Ce-Zr. Similar 

observation can also be made with the catalysts prepared using the pre calcined Ce-Zr 

support. 

 

 

Figure 5.6: Pore-size distribution of NiO/Ce-Zr catalysts prepared using wet impregnation of pre 

calcined Ce-Zr support. 

 

Table 5.6 shows the surface area of Ce-Zr-3/1 supports prepared by sol gel synthesis 

using various alcohols and TSP as a gelling agent.  Among the alcohols, support prepared 

using 10 wt% methanol showed the highest surface area. It was found that atmospheric 

drying was not uniform and some of the polysaccharide was burnt. As a result freeze 

drying of the sample was implemented using ethanol for gel production.  In order to 

prevent the utilisation of fossil based alcohols ethanol was selected for the investigation. 

It can be seen that freeze drying helps maintain the integrity of the gel and help increase 

the surface area of the support. Similarly increasing the alcohol content and freeze drying 

the sample was very beneficial to increase the surface area of the Ce-Zr-3/1 support. 
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Highest surface area of 118.21 m
2
/g, was recorded for Ce-Zr-3/1 with 17 wt% ethanol 

using freeze drying. On the other hand Ce-Al-3/1 support exhibited much smaller area as 

compared to Ce-Zr-3/1 support.  The Ce-Zr-3/1 support exhibited large surface area 

reduction during the impregnation of Ni on the support. The catalyst surface area 

prepared using Ce-Zr-3/1 support was 39.64 m
2
/g.  Comparatively the surface area of the 

NiO/Ce-Al catalyst was around 30.69 m
2
/g.  

 

Table 5.6: Surface area of fresh Ce-Zr-3/1 supports prepared by sol gel synthesis and catalyst 

prepared by impregnation method using Ni salts.  

Alcohol 

 

Drying Support 

Alcohol 

content wt 

% 

BET Surface 

area m
2
/g 

BJH surface 

area m
2
/g 

Methanol Atmospheric Ce-Zr-3/1 10 40.84 - 

Ethanol Atmospheric Ce-Zr-3/1 10 36.58 - 

Propanol Atmospheric Ce-Zr-3/1 10 39.60 - 

Sugar Atmospheric Ce-Zr-3/1 10 22.16 - 

Ethanol Freeze Ce-Zr- 3/1 10 45.27 - 

Ethanol Freeze Ce-Zr-3/1 17 118.21 - 

Ethanol Freeze Ce-Al-3/1 17 35.03 46.54 

Ethanol Freeze NiO/ Ce-Zr-(3/1)
a
 17 39.64 50.91 

Ethanol Freeze NiO/ Ce-Al
a
 17 30.69 31.78 

a- The NiO loading for the catalyst was 10 wt %. 

 

Figure 5.7 shows N2 adsorption-desorption isotherms of NiO/Ca-Al catalyst prepared 

using wet impregnation of sol gel synthesised support. Both the catalysts NiO/Ca-Al and 

NiO/Ce-Zr-3/1 exhibited type III isotherm with H3 hysteresis curve with suggest the 

presence of plate-such as particles giving rise to slit-like pores [233]. As seen from 

Figures 5.8 and 5.9 the pore size distributions of NiO/Ce-Al and NiO/Ce-Zr-3/1 catalysts. 

The pore size distribution of these catalysts was very different as compared to the ones 

prepared using pre calcined and in house calcined supports. The distribution pore-size 
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obtained with the NiO/Ce-Al catalyst was the worst among all the catalysts.  This 

suggests presence of non uniform pore structure resulting in uneven capillary 

condensation in the pores.   

 

Figure 5.7: N2 adsorption-desorption isotherms of NiO/Ce-Al catalyst prepared by wet impregnation 

method using pre calcined support. 

 

 
Figure 5.8: Pore-size distribution of NiO/Ce-Al catalyst prepared using wet impregnation of Ce-Al 

support prepared using sol gel synthesis. 
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Figure 5.9:Pore-size distribution of Ni/Ce-Zr-3/1 catalyst, prepared by wet impregnation of Ce-Zr -

3/1, support obtained using sol gel synthesis. 

 

5.2.2 X-ray diffraction analysis 

 
Figure 5.10: X-ray diffraction of NiO/Ce-Zr catalysts prepared using wet impregnation method using 

in house calcined Ce-Zr support. In the Figure (+) represents the Ce-Zr and (o) represents NiO. 
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The X-ray diffraction patterns for the NiO catalysts prepared by wet and dry 

impregnation methods employing in house calcined Ce-Zr support are shown in the 

Figure 5.10 and 5.11 respectively. Figure 5.12 shows the X-ray diffraction patterns of the 

in house and pre calcined Ce-Zr supports. The Figure 5.12 also includes the X-ray 

diffraction patterns of the NiO; NiO-K2O and NiO-SnO catalysts prepared using wet 

impregnation of the pre calcined Ce-Zr support.  The peaks observed at 29, 35, 49, 59, 81 

and 94
o
 respectively, with highest intensity peak observed at around 29

o 
are attributed to 

diffraction peaks for Ce-Zr oxide. A cubic crystal system with tetragonal crystalline 

structure was observed. Absence of peaks responsible for pure ZrO2 at 51
o
 (220) and 61

o
 

(311) suggest the existence of a homogenous solid solution of Ce-Zr and complete 

incorporation of Zr in cerium crystal structure. Since both supports i.e. pre and in house 

calcined support (Figure 5.12) yielded identical data, inferring that both the supports 

consisted of the same components i.e. Ce-Zr mix oxide, and that the in house calcination 

of the cerium-zirconium hydroxide resulted in the complete formation of Ce-Zr mix 

oxide. 

 

 

Figure 5.11:X-ray diffraction of NiO/Ce-Zr catalysts prepared using dry impregnation method using 

in house calcined Ce-Zr support. In the figure (+) represents the Ce-Zr and (o) represents NiO. 
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Figure 5.12: X-ray diffraction of NiO/Ce-Zr catalysts prepared using wet impregnation method 

employing pre-calcined Ce-Zr support. In the Figure (+) represents the Ce-Zr and (o) represents 

NiO. 

 

The 2θ values of 37, 43 62-63, 75 and 79
o
 shown in Figure 5.11, 5.12 and 5.13 are 

attributed to the diffraction of NiO in the sample [250]. Highest intensity NiO peaks were 

obtained at similar 2θ angle in both the preparation methods. Increasing loading increased 

the NiO intensity in all the catalyst samples. The intensity of the NiO on the support 

changes and first doubles and then triples as the loading increases from 10 to 20 wt% and 

then to 30 wt%.  

 

The Rietveld refinement summary of the NiO catalysts prepared using wet and dry 

impregnation methods on the in house calcined Ce-Zr is shown in Table 5.7. The 

difference between the desired and calculated loading increased with % loading. This 

difference reaches maxima at 30 wt% loading in both the methods, which suggests a 

decrease in the loading effectiveness. This could be as a result of NiO coating the outer 

surface of the Ce-Zr support rather than entering the pores of the support thus reducing 

the impregnation level [244].   
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Table 5.7: Rietveld refinement results of the catalysts prepared using in house calcined Ce-Zr 

support. 

Loading wt % Wet impregnation Dry impregnation 

 Ce-Zr (wt%) NiO (wt%) Ce-Zr (wt%) NiO (wt%) 

10 90.70 9.30 90.50 9.50 

20 79.60 20.40 81 19 

30 71.70 28.30 74 26 

 

 

The Rietveld refinement results of the catalysts prepared using pre calcined Ce-Zr 

support also showed results similar to that obtained using in house calcined Ce-Zr 

support. Table 5.8 shows the Rietveld refinement results of the catalysts prepared using 

pre calcined Ce-Zr support.  The goodness of fit for all the catalysts mentioned in the 

Tables 5.7 and 5.8 was around 2 which suggest a very good match with the reference 

patterns. As a result the crystallite sizes obtained for the catalysts would be accurate. 

 

Table 5.8: Rietveld refinement results of the catalysts prepared using pre calcined Ce-Zr support. 

Catalyst Ce-Zr (wt%) NiO (wt%) 

NiO/Ce-Zr 90.50 9.50 

NiO-SnO/Ce-Zr 90.25 9.75 

NiO-K2O/Ce-Zr 90.13 9.87 

 

 

The peaks attributed to K2O and SnO were not observed in the diffractogram (Figure 

5.12) suggesting fine dispersion of the dopants on the pre calcined Ce-Zr and hence they 

were not detected by XRD. Pengpanich et al., 2008 [227]  reported similar results in case 

of Ni-Sn/Ce0.75Zr0.25O2 catalysts utilised in partial oxidation of iso-octane. The existence 

of peaks attributable to single-phase Ni3Sn, Ni3Sn2 and Ni3Sn4 were also not detected in 

Ni-Sn/Ce0.12Zr0.88O2 catalysts [227]. 
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The Ce-Zr and NiO crystallite sizes obtained from Rietveld refinement of the catalysts 

prepared by wet and dry impregnated in house Ce-Zr are shown in Table 5.9. The crystal 

size of Ce-Zr remained constant irrespective of the type of the impregnation processes 

employed. In contrast, the crystal size of NiO in the catalyst varied depending on loading 

and impregnation method. In the dry impregnation method, the NiO crystallite size 

increased linearly with the NiO loading. However, in the wet impregnation method, the 

NiO crystal size increased until 30 wt% loading, whereupon it decreased. This could be 

as a result of the surface coating effect explained previously. The increase in NiO particle 

size can lead to an increased plugging of the support pores, which causes a decrease of 

the accessible pore area for the reactant gas, in turn affecting the catalytic activity. 

 

Table 5.9: Comparison of crystallite sizes obtained using wet and dry impregnation methods 

employing in house calcined Ce-Zr support. 

Loading wt % Wet impregnation Dry impregnation 

 Ce-Zr (nm) NiO (nm) Ce-Zr (nm) NiO (nm) 

10 11.41 15.59 11.63 23.98 

20 11.33 37.28 11.37 32.40 

30 11.33 33.90 11.68 36.84 

 

 

Table 5.10: Crystallite sizes of NiO catalysts prepared using wet impregnation of the pre calcined Ce-

Zr support. 

Catalyst Ce-Zr (nm) NiO (nm) 

NiO/Ce-Zr 11.92 13.59 

NiO-SnO/Ce-Zr 11.38 13.74 

NiO-K2O/Ce-Zr 12.19 13.54 

 

 

Table 5.10 compares the NiO and Ce-Zr crystallite sizes obtained from the Rietveld 

refinement of the NiO/Ce-Zr catalysts prepared using pre calcined Ce-Zr support. It can 

be seen from Tables 5.9 and 5.10, the NiO crystallite size obtained in wet impregnated 
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pre calcined Ce-Zr is smaller than the in house calcined Ce-Zr. In the three catalysts NiO-

K2O/Ce-Zr was slightly higher than NiO/Ce-Zr and NiO-SnO/Ce-Zr catalysts. Similarly, 

the crystallite size for Ce-Zr in NiO-K2O/Ce-Zr was slightly higher as compared to the 

other two.  The addition of dopants induced some micro strain in NiO.  At similar NiO 

loading (10 wt%) according to Dantas et al. [251] NiO crystallite sizes lie in the range of 

15-50 nm when using Ce-Zr support. The smaller NiO crystallite results in better NiO 

reduction kinetics which would in turn affect the performance of the catalyst. 

 

Figure 5.13 shows the X ray diffraction patterns for fresh NiO/Al and NiO-K2O/Al 

catalysts. The 2θ values of 25, 35-37, 43 and 52-57
o
 are attributed to Al2O3 in the catalyst 

with highest intensity peak occurring at 43
o
. The addition of K to fresh NiO/Al catalyst 

was shown to reduce significantly NiO crystallite size (from 48 to 35 nm). Higher micro 

strain was observed in case of the NiO-K2O/Al catalyst in comparison to the bare NiO/Al 

catalyst. Like NiO-K2O/Ce-Zr catalyst, no peaks for K2O were observed in the NiO-

K2O/Al catalyst. In dry reforming of propane using Mo-Ni/γ-Al2O3 catalyst, Siahvashi 

and Adensia, 2013[252] reported that K2O was finely dispersed over Mo-Ni/γ-Al2O3 

catalyst and could not be detected by XRD. The Rietveld refinement allowed deriving the 

values 17.7 and 18 wt% for NiO content for the NiO/Al and NiO- K2O/Al catalysts 

respectively.  

 

The X-ray diffraction of Ce-Zr-3/1 prepared using different alcohol and sugar is shown in 

Figure 5.14. Absence of ZrO2 peaks in all the samples suggested the formation of a 

homogenous solid solution in all the three samples. The Ce-Zr-3/1 support prepared using 

sugar showed the highest crystallite size of 12.79 nm. The CeZr-3/1 using propanol 

reduced the crystallite size to 8.8 nm.  
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Figure 5.13: X-ray diffraction of NiO/Al and NiO-K2O/Al catalysts. In the figure (*) represents the 

Al2O3 support and (o) represents NiO. 

 

 
Figure 5.14: X-ray diffraction of Ce-Zr-3/1 prepared by sol-gel synthesis employing TSP as a gelling 

agent using 10 wt% alcohol and 10 wt% sugar in the preparation. 
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The X-ray diffraction pattern for Ce-Zr-3/1 and Ce-Al-3/1 supports prepared using 17 

wt% ethanol and tamarind seed polysaccharide (TSP) as gelling agent is shown in Figure 

5.15.  No peaks of responsible for Al2O3 were detected which suggests the incorporation 

of Al2O3 in CeO2. It is well known that the radius of Al
3+

 (0.057 nm) is much smaller 

than that of Ce
4+

 (0.097 nm), so incorporation of Al
3+

 ions into the ceria lattice inevitably 

leads to the shrinkage of the lattice [253].  The introduction of Zr and Al into the Ce 

lattice reduced the lattice parameters as shown in the Table 5.11. This shows that a solid 

solution between CeO2, ZrO2 and Al2O3 was formed in Ce-Zr-3/1 and Ce-Al-3/1 

supports. The crystallite sizes for the Ce-Zr-3/1 support were larger than Ce-Al-3/1. Sun 

et al.[253] reported similar results in the preparation of Ce-Al mix oxide by citric acid 

combustion method. The crystallite size decreased from 24 nm with CeO2 to 9 nm with 

Ce-Al-3/1 oxide. The XRD pattern for the NiO/Ce-Zr-3/1 is shown in the Figure 5.16. 

Like other catalysts NiO/Al and NiO/Ce-Zr, the NiO peaks are observed at 2θ values of 

37, 43, 63 and 79°, while Ce-Zr-3/1 peaks were observed at same 2θ as shown in Figure 

5.15. The NiO crystallite size obtained with this catalyst was 21.21 nm which was higher 

than the other Ce-Zr based catalysts. 

 

Unlike NiO/Al, NiO/Ce-Zr and NiO/Ce-Zr-3/1 catalyst the NiO/Ca-Al catalyst was 

unable to be refined due to the presence of large amount of amorphous material and 

complex pattern making it very difficult to refine. Figure 5.17 shows the XRD pattern for 

the NiO/Ca-Al catalysts. Likewise the XRD pattern for NiO-CeO-CoO/Al contained 

large amount of amorphous material making it difficult to perform Rietveld refinement. 

The sizes of size of CeO and CoO oxide were reported to be 9.64 and 15.8 nm, which 

were determined by Giannakeas et al. [178]. 
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Figure 5.15: X-ray diffraction of Ce-Zr-3/1 and Ce-Al-3/1 prepared by sol-gel synthesis using 17 wt 

% ethanol in sol gel synthesis employing TSP and gelling agent. 

 

 

Table 5.11: Properties of Ce-Zr- 3/1 and Ce-Al-3/1 mix oxides. 

Sample Lattice parameter (nm) Crystallite size( nm) 

CeO2 0.54146 10 

Ce-Zr-3/1
a
 0.53869 10.85 

Ce-Zr-3/1
b
 0.53857 8.8 

Ce-Zr-3/1
c
 0.53790 12.7 

Ce-Zr-3/1
d
 0.53718 7.65 

Ce-Al-3/1
d
 0.54092 4.18 

a- The support was prepared using 10 wt% ethanol and 3 wt% TSP. 

b- The support was prepared using 10 wt% sugar and 3 wt% TSP. 

c- The support was prepared using 10 wt% propanol and 3 wt% TSP. 

d- The supports were prepared using 17 wt% ethanol and 3 wt% TSP. 
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Figure 5.16: X-ray diffraction of NiO/Ce-Zr-3/1 prepared by sol-gel synthesis using 17 wt% ethanol 

in sol gel synthesis employing TSP and gelling agent. In the Figure (+) represents the Ce-Zr-3/1 

support and (o) represents NiO. 

 

 

 
Figure 5.17: X-ray diffraction pattern of NiO/Ca-Al catalyst. In the Figure (+) represents the Ce-Zr-

3/1 support and (o) represents NiO. In the Figure (×) Ca-Al, (*) represents Al2O3 and (o) represents 

NiO. 
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5.2.3 Scanning Electron Microscopy analysis (SEM) and Energy Dispersive 

X-ray (EDX) 

Figure 5.18, 5.19 and 5.20 shows the SEM Images of NiO/Ce-Zr, NiO-SnO/Ce-Zr and 

NiO-K2O/Ce-Zr catalyst. 

 

 

 

Figure 5.18: A SEM image of NIO/Ce-Zr prepared using wet impregnation of pre calcined Ce-Zr 

support with 50 K mag. 

 

It can be seen from the Figures (5.18, 5.19 and 5.20) the morphology of the all the 

catalysts looks similar, although the presence different size particles can be seen in all the 

catalysts. In comparison to NiO/Ce-Zr, NiO-SnO/Ce-Zr and NiO-K2O/Ce-Zr show the 

presence of slightly bigger particles.  The elemental mapping of the NiO/Ce-Zr catalyst is 

shown in the Figures 5.21. It can be seen that Ni distributed uniformly over the catalyst 

surface. The elemental distribution of the NiO-SnO/Ce-Zr and NiO-K2O/Ce-Zr showed 

that the dopants such as Sn and K along with Ni are uniformly distributed (Figure 5.22 

and 5.23). 
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Figure 5.19 A SEM image of NiO-SnO/Ce-Zr prepared using wet impregnation of  

pre-calcined Ce-Zr support with 50 K mag. 

 

 

 

 

 
 
Figure 5.20 A SEM image of NiO-K2O/Ce-Zr prepared using wet impregnation of pre calcined Ce-Zr 

support with 50 K mag. 
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Figure 5.21: Elemental dispersion of the NiO/Ce-Zr prepared by wet impregnation of the precalcined 

Ce-Zr support. 
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Figure 5.22: Elemental dispersion of the NiO-SnO /Ce-Zr prepared by wet impregnation of the 

precalcined Ce-Zr support. 
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Figure 5.23: Elemental dispersion of the NiO-K2O/Ce-Zr prepared by wet impregnation of the 

precalcined Ce-Zr support 
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6. Steam reforming of biodiesel 

 

This evaluation was performed to determine the feasibility of H2 production from 

biodiesel using CSR process.  The experiments performed are divided into four series. In 

the first instance, effect of temperature on the processes performance was evaluated. For 

this part of the experiments, steam/carbon (S/C) molar ratio and weight hourly space 

velocity (WHSV) was kept constant and the reactor temperature was varied from 600-

800
o
C. Commercial catalysts (Ni/Al) and (Ni/Ca-Al) were utilised for this part of the 

experiments. The biodiesel and water vaporisers were set to 365 and 170
o
C respectively. 

In the second series of experiments, the effect of biodiesel vaporiser temperature on the 

processes was examined. Water vaporiser temperature, WHSV, reactor temperature, and 

S/C ratio were kept constant at 170°C, 3.52h
-1

, 650°C and 3 respectively for these 

experiments.  

 

In the third series of experiments, the effect of WHSV on the performance of Ni/Ca-Al 

was evaluated using optimum reactor and vaporiser temperatures from series 1 and 2. 

Using the results of optimum residence time (WHSV) and reactor temperature, the effect 

of various catalysts and different biodiesel feedstocks on the CSR processes was 

explored. Various catalyst supports and i.e. ceria-zirconia, calcium aluminate and 

alumina on the process were investigated. Biodiesels from various origins i.e. palm oil, 

commercial, and prepared in house were used in these experiments. Finally the effect of 

molar steam to carbon ratio (S/C) on the performance of the Ni/Ca-Al catalyst was 

evaluated at a given WHSV and reactor temperature.  

 

6.1 Reactions involved 

Various reactions such as steam reforming (SR), water gas shift (WGS), decomposition 

(D), methanation (METH), carbon gasification (GS) and Boudouard reaction (BD) are 
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involved in SR processes. SR of oxygenated hydrocarbons such as acetic acid, ethanol, 

glycerol, and waste cooking oil and biodiesel is given by reaction (R-6.1). This reaction 

is an endothermic reaction and as such is feasible at high temperatures, depending up on 

the type of fuel which is steam reformed. For e.g. methanol CSR is carried out at lower 

temperatures i.e. 250-350°C. Ethanol CSR is performed in the temperature range of  500-

600°C [254], while in case of glycerol, temperature above 600°C is preferred for SR 

reaction [255]. The oxygenated hydrocarbons react with steam over metallic catalysts to 

produce H2, CO, CO2, CH4 and C. Other hydrocarbons such as C2H4, C2H6, C3H6 and 

C4H8 are also formed as a result of complex reactions such as dehydration, 

dehydrogenation etc. 

 

n m k 2 2 , 298K

m
C H O + (n-k) H O nCO n k H  ΔH 0

2

Cat

f

       
 

 (6.1) 

WGS (R-6.2) occurs simultaneously with SR reaction consuming the CO produced and 

making H2 and CO2 in the process.  

2 2 2 , 298K   CO H O CO H  ΔH -41.2 kJ/mol CO
cat

f
    (6.2) 

The overall SR reaction (R-6.3) which is a combination of R-6.1 and R-6.2 is given by 

following reaction.  

n m k 2 2 2 , 298K

m
C H O + (2n-k) H O nCO 2n k H  ΔH 0

2

cat

f

       
 

 (6.3) 

Side reactions such as thermal decomposition of oxygenated hydrocarbons (R-6.4) take 

place along with the SR reaction (R-6.1) leading to the formation of carbon on the 

catalyst surface affecting the catalyst performance.  

 n m k 2 , 298K

m
 C H O n k C H kCO ΔH 0

2

cat

f

 
     

 
 (6.4) 

In the above reactions n, m and k are the molar numbers of carbon, H2 and oxygen atoms 

in the oxygenated hydrocarbon (biodiesel) of elemental formula CnHmOk (moisture free 

basis).  
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Other reactions which affect the H2 yield and performance of the catalyst are given by 

(R-6.5) to (R-6.7). 

2 4 2 , 298K  CO 3H CH  H O ΔH 206.2 kJ/mol CO
cat

f
     (6.5) 

METH reaction (R-6.5) competes with SR reaction (R-6.1) consuming H2 and affecting 

H2 yield. Temperature plays an important role in governing the extent of this reaction. 

METH reaction (forward R-6.5) is dominant at low temperature up to 400°C, consuming 

H2 and CO producing CH4 and H2O. Above 600°C, reverse R-6.5 i.e. steam methane 

reforming (SMR) is promoted, consuming CH4 and H2O and producing H2 and CO. 

 

In addition to the above reactions, (R-6.6) and (R-6.7) reactions are the important 

reactions which occur at high temperatures and are responsible for carbon removal from 

catalyst surface, affecting the life and the performance of the catalyst.  

2 2 , 298K C H O CO H  ΔH 131.3 kJ/mol C
cat

f
    (6.6) 

2 , 298K 22CO CO C ΔH 172.5 kJ/mol CO
cat

f
     (6.7) 

 

6.2 Experimental procedure 

As different types of catalysts were used in the evaluations, different procedures were 

adopted for loading the catalysts. In case of the commercial catalysts i.e. Ni/Al and 

Ni/Ca-Al were crushed from bigger pellets (5 mm diameter) and then sieved to obtain 

particle size of 0.85-2mm diameter.  This size was chosen to prevent pressure drop in the 

system. For each evaluation 2.0506 g of catalyst was used. The catalysts were 

sandwiched in two quartz wool plugs of 4 μm size and were placed in the reactor for the 

evaluation. The powder catalysts were mixed with quartz sand of 150-200 m size to 

make up 2.0506 g of reactor load. After every run the experimental set up was flushed 

overnight with nitrogen in order to remove the biodiesel vapours and steam and collect 

them in the gas liquid separation part of the condenser. 
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An experiment was performed in a day consisted of 4 main stages. The first stage 

involved reactor cleaning and unloading the used catalyst from the previous experiment. 

All the pipes and connections were thoroughly cleaned with acetone to remove 

condensed biodiesel. In second stage the reactor containing fresh catalyst was attached to 

the setup and all the pipes along with the connections were leak tested. The third stage 

consisted of reducing fresh catalyst with 5 vol % H2/N2 mixture (200 cm
3
/min). Once the 

fresh catalyst was loaded in the reactor, the reactor temperature was increased to the 

desired set point by turning on the furnace under flowing N2 (200 cm
3
/min). Upon 

reaching the set point indicated by reactor bed thermocouple, the N2 flow was switched 

off and the H2/N2 flow was turned on.  The completion of the catalyst reduction was 

shown by a return to steady state H2 concentration (5% H2) measured by gas 

chromatograph.  Finally in the last stage the experimental set up was then flushed with 

pure N2 to remove the H2 used during reduction, and the vaporisers were turned on. Once 

the vaporisers reached the set point, the heating tape was turned on. Both these steps are 

performed using high N2 flowrate in order to remove any unreacted biodiesel vapours 

from previous experiments. The flowrate of N2 was then lowered to the desired value 

depending on the experiment and the syringe pumps were turned on. The flow rate of N2 

was set in the range 30-50 cm
3
/min (STP), depending on the WHSV value chosen for the 

experiment. In the experiments performed using commercial biodiesel, biodiesel flowrate 

was set to 0.978 cm
3
/h which gave a carbon input flowrate of 1.50 10

-5
 mol/s. The water 

flow rate was varied from 1.95 to 2.92 cm
3
/h to obtain the desired S/C of 2 and 3 

respectively. The flow rates of other biodiesel feedstocks examined were adjusted 

according to the elemental analysis and the density of the biodiesel to get the desired S/C.  

6.3 Process outputs and elemental balances 

The process performance was measured in terms of fuel and steam conversion (Xbiod and 

XH2O), H2 yield (YH2,) and H2 yield efficiency (YH2, eff), selectivity to carbon containing 

products (SC-i) and to H2 containing products (SH-i) using Eqs 6.8-6.28, respectively. In 

these Eqs, n is a molar flow rate, and y represents a dry gas mol fraction in the products, 
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dn/dt is a rate of accumulation of a species, e.g. dnc/dt denotes an accumulation of moles 

of carbon element over the dt period of time. Similarly dnH,HC/dt denotes a rate of 

accumulation of moles of H2 from hydrocarbons products other than those already listed. 

Biodiesel conversion was calculated using Eq 6.8. 

biod, in biod, out

biod

biod, in

n -n
X = ×100

n

 
  
 

                                                                                       (6.8) 

Applying carbon balance  

 c
biod, in out, dry i,C biod, out

dn
n n n y n n

dt
                 (6.9) 

In the above Eq  

  2 4 2 4 2 6

3 6 3 8

.

CO CO CH C H C H

out, dry i,C out, dry

C H C H

y y y 2 y 2 y
n y n

3 y 3 y

       
    

    
  (6.10) 

Rearranging the above Eq and substituting for  out, dry ,i Cn y   we get  

2 4 2 4 2 6

3 6 3 8

.

CO CO CH C H C Hout, dry c
biod, in biod, out

C H C H

y y y 2 y 2 yn dn
n n

+3 y 3 yn dt

      
           

 (6.11) 

In order to calculate biodiesel conversion, the term 
dt

dnc  is set to zero, as this term 

represents the carbon in the condensate and formed on the catalyst surface, which has to 

measured separately by other techniques i.e. elemental (CHN) and  total organic carbon 

(TOC) analysis of the used catalyst and collected condensate. Xbiod is therefore 

interpreted as ‘biodiesel conversion to CO, CO2, and C1-C3 gases’.  

Inserting the biod, in biod, outn n value in the Eq 6.8 we arrive at the following expression. 

2 4 2 4 2 6

3 6 3 8

.

out, dry CO CO CH C H C H

C H C H

biod

biod, in

n (y y y 2 y 2 y

3 y 3 y )
X 100

n n

 
       

   
  

 
 
 
 

 (6.12) 
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Steam conversion is obtained using the Eq 6.13.  

2 2

2

2

H O,in H O,out

H O

H O,in

n n
X 100

n

 
  
 
 

                                                                                    (6.13) 

Applying hydrogen balance, Eq 6.14 

2

2

biod, in H O, in biod, out out, dry i, H

H,HC

H O, out

m n 2 n m n n ( y )

dn
2 n

dt

                  

    


                           (6.14) 

Rearranging the Eq 6.14 we get Eq 6.15. 

2 2

H,HC

H O, in H O, out biod, out biod, in

out, dry i,H

dn
2 n n m n m n

dt

n ( y )

 
                 

 

  

    (6.15) 

In the Eq 6.16,  out, dry i,Hn y    is substituted by the following term. 

  2 4 2 4 2 6

3 6 3 8

.

H CH C H C H

out, dry i out, dry,H
C H C H

2×y +4×y +4×y +6×y
n × y =n × 

+6×y +8×y

 
 
  

  (6.16) 

Finally the following expression (Eq 6.17) is derived by substituting   
2 2H O, in H O, out(n n )  

in Eq 6.13 and setting H,HCdn

dt
 to 0. This simplification may introduce a small error in the 

calculated value of water conversion only if the condensates are shown to contain 

significant amounts of organic H2. It will be shown later in the results section that this 

amount was negligible based on the full carbon balance. 

2 4 2 4 2 6

3 6 3 8

2

2

.
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C H C H biod, in biod

H O

H O, in

n (2 y 4 y 4 y 6 y

6 y 8 y ) 0.5m (n X )
X 100

n

 
         

     
  
 
 
 
 

         (6.17) 

Dry gas molar flowrate 
out, dryn is calculated using nitrogen balance. 
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     
2 2biod, in N , in out, dry N , out biod, outj×n + 2×n = n × 2×y + j×n         

   (6.18) 

Where j is the elemental N in biodiesel, which is here is set to 0 due to its negligible 

contribution to the nitrogen balance. 

Rearranging the Eq 6.18 we get 

2, in

2, out

N

out, dry

N

n
n

y

 
  
  

                                                                                                          (6.19) 

In the above Eqs biod, inn  
2H O, inn are the molar flow rates of biodiesel and water fed to the 

reactor, 
dryout n  is the molar flow rate of dry gases leaving the reactor and yi is the mol 

fraction of i in the dry gas output. All the flowrates of biodiesel, water and dry gases are 

in mol/s. Molar flow rate of biodiesel and water are calculated using Eq 6.20 and 6.21, 

where ρ is kg/m
3
 , 

.

V  is the volumetric flowrate in m
3
/s and W denotes a molar mass in 

kg/mol, relevant to biodiesel  and water respectively. 

biod, in biod, in biod, in

biod, in
biodbiod

m ρ V
n mol/s 

W W

  
    
   

                                                        (6.20) 

2 2 2

2

2 2

H O, in H O, in H O, in

H O, in

H O H O

m ρ ×V
n = = mol /s 

W W

   
   
      

                                                               (6.21) 

H2 yield was calculated using Eq 6.22. 

2 2

2

H H out, dry

H

biod biod, in

W y
Y (wt%) 100

W

n

n

  
    

                                                                       (6.22) 

 

Eq 6.22 can also be applied to determine CH4 yield,  

Selectivities for the H2 (SH-H2) and carbon containing gases (SC) were determined by 

using the following Eqs. Eq 6.23 and 6.24 provide selectivity to H2 (SH-H2) and to CH4 

(SH-CH4) with respect to H2 containing gases.   
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  
       

 (6.24) 

Selectivity of CO (SC-CO) and CO2 (SC-CO2) with respect to carbon containing gases is 

given below. 

2 4 2 4 2 6 3 6 3 8

CO
C CO .
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  (6.25) 
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  (6.26) 

  

Efficiencies of the process are defined with the following Eqs.  

Fuel reforming efficiency is given by Eq 6.27. 

H , out 22
H

biod, in biod

n LHV
Reforming (eff %) 100

n LHV

 
    

 (6.27) 

In the above LHV refers to the lower heating values of H2 and biodiesel in kJ/mol. The 

LHV for H2 is 24.0 kJ/mol. A singe value of 37.5 kJ/mol was used for the LHV of 

biodiesel despite the small differences in C, H and O content due to the different 

feedstocks investigated in this work. H2 and biodiesel molar flowrates in the Eq are 

represented by 
2H

n and biod, inn  respectively. 

H2 yield and steam conversion efficiencies are defined as the ratio of H2 yield or steam 

conversion obtained during the experiment to that predicted by chemical equilibrium. 

2

2

2

H exp

H

H eq

(Y )
Y (eff %) 100

(Y )

 
  
 
 

                                                                                   (6.28) 
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(X )
H O conv (eff %) 100

(X )

 
  
 
 

                                                                       (6.29) 

The balances took into account the input data (CHN, flowrate of biodiesel, water and 

carrier gas). The outputs i.e. the composition of all the gases i.e. CO, CO2, N2, H2, CH4, 

C2H4, C2H6, C3H6 and C3H8 in the product were obtained from the gas chromatograph.  

The mole fractions of these output products were calculated in the elemental balances.  

 

6.4 Results and discussions 

6.4.1 Thermodynamics of biodiesel steam reforming 

 

Chemical equilibrium with application (CEA) software provided by NASA was used for 

this purpose. The software relied on minimisation of Gibbs free energy in order to get the 

equilibrium outputs. Nine input compounds from methyl laurate (C13) to methyl 

arachidate (C20) were considered along with steam and nitrogen as an inert gas. The 

actual composition of these nine compounds in biodiesel was obtained using GC. Solid 

carbon was not considered as potential product due to the variable properties of carbon 

formed on the catalyst during the experiments.  Temperature range of 200-900°C at an 

increment of 50°C was chosen for the evaluation and S/C ratio was varied from 1 to 3 

respectively. The equilibrium analysis showed that H2, CO, CO2, CH4, H2O and 

insignificant amount of NH3 can be formed. 

 

The effect of temperature and S/C on YH2 and (SH-CH4), in SR of commercial biodiesel at 

the experimental conditions is represented in Figure 6.1.  Figure 6.2 and 6.3 shows the 

selectivities to various carbon containing products obtained by SR of commercial 

biodiesel. SR of biodiesel (R-6.1) would occur in sequence with WGS (R-6.2) and 

METH reaction (R-6.5). In the lower temperature range (200-400°C), high (SH-CH4) 

irrespective of the S/C ratio is observed which would affect very significantly the YH2.   
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Figure 6.1: Effect of temperature on equilibrium H2 yield (YH2) and CH4 (SC-CH4) selectivity in steam 

reforming of commercial biodiesel at different S/C ratios, and 1 atm. 

 

This could be the result of METH (R-6.5) reaction. It was considered that eliminating 

CH4 from the potential equilibrium products would not be justified since in practice, Ni 

catalysts are active in both SR and METH reactions. WGS reaction (R-6.2) is also active 

in this temperature region, which could explain the presence of some amount of H2 

(lower yield) in this temperature range.  
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Figure 6.2: Effect of temperature on equilibrium selectivity to CO (SC-CO) and CO2 (SC-CO2) in SR of 

commercial biodiesel at different S/C ratios, and 1atm. 

 

It can be seen from Figure 6.2 and 6.3 that in the lower temperature range, CH4 and CO2 

dominate the product distribution in the carbon containing products, supporting the 

theory of high METH activity (R-6.5) and some WGS (R-6.2) activity. Negligible (SC-

CO) irrespective of S/C can further strengthen the argument.  Increasing temperature from 

200 to 400
o
C shows a shift in product distribution of carbon containing gases. This could 

suggest a shift from METH reaction (R-6.5) towards SR (R-6.1) and the WGS reaction 

(R-6.2) , revealed by slight increase in YH2 (Figure 6.1) along with (SC-CO2) and decrease 

in (SC-CH4, Figure 6.3). Above 400°C, increase in SR of biodiesel could be promoted with 

the other two reactions (R-6.2 and R-.6.5).  This is evident by slightly increased YH2 

(Figure 6.2) and (SC-CO). The steep rise in YH2 and (SC-CO) above 500°C can be explained 

by the pronounced SR of biodiesel (R-6.1) and CH4 (SMR reverse R-6.5).  Both these 

reactions are endothermic in nature and increase in temperature shifts the equilibrium 

towards product side exhibited by increase in YH2 and (SC-CO). Significant reduction in 

CH4 selectivities (SH-CH4) and (SC-CH4) show that high temperatures (700-900°C), favour 

SR (R-6.1 and reverse R-6.5) producing H2 and CO. 
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Figure 6.3: Effect of temperature on equilibrium selectivity to CH4 ((SC-CH4) in SR of commercial 

biodiesel at different S/C ratios, and 1atm. 

 

Although at these high temperatures (SC-CO) also increases due to shift in equilibrium to 

reverse water shift reaction (reverse R-6.2) towards the reactants consuming H2 and CO2 

thus affecting YH2 (Figure 6.1). 

 

The shallow dip in YH2 at higher temperature and steep rise at lower temperatures can be 

explained by strong endothermic nature of SR reactions (biodiesel (R-6.1) and CH4 

(reverse R-6.5)) over weak exothermic WGS reaction (R-6.2). In addition to temperature, 

S/C plays an important role in SR reactions. According to Le Chatelier’s principle 

increasing S/C ratio increases YH2. The YH2 peaked at different temperatures when S/C 

ratio was varied.  At the lowest S/C of 1, YH2 increased all the way up till 900°C. The 

peak yield temperature reduced to 750 and 700°C for S/C of 2 and 3 respectively. This 

could be as a result of stronger effect of S/C on SR reactions (R-6.1 and (reverse R-6.5) 

as compared to WGS (R-6.2).  

 



Hydrogen production by steam reforming of biodiesel 

152 

 

Increasing S/C ratio promotes SR (R-6.1) increasing H2 yield.  Likewise SMR (reverse 

R-6.5), also increases with rise S/C ratio affecting YH2 above 500°C.  Increased S/C 

below 500°C, promoted WGS reaction as seen by decreased CO (SC-CO) and increased 

CO2 (SC-CO2)  selectivities (Figure 6.2).  Thus increased S/C ratio has a positive impact on 

YH2 and reduces formation of by products such as CH4. Higher S/C ratio in practice 

would require larger reactor volumes to accommodate the high steam flowrates. It would 

also mean higher cost of steam generation and would increase volume of recycled water 

in the plant. 

 

6.4.2 Effect of temperature 

The effect of temperature on CSR of biodiesel was studied using commercial biodiesel in 

the temperature range of 600-800°C using the commercial Ni/Al catalyst is shown in 

Figure 6.4. 

 

The  CSR evaluations were performed using biodiesel liquid flow rate of 0.978 ml/h (20 

ºC) and liquid water flow of 2.92 ml/h (20 ºC) with nitrogen gas flow rate of 50 ml/min 

(STP), using 365 and 170 
o
C vaporiser temperatures for biodiesel and water respectively. 

The biodiesel flow rate accounted for a carbon feed rate of 1.50 10
-5

 mol /s
 
for all the 

experiments, which is used to perform the carbon balance as shown in Table 6.1.   
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 Figure 6.4: Effect of temperature on CSR of commercial biodiesel at S/C of 3 and WHSV of 3.52 h
-1 

using 365 and 170°C biodiesel and water vaporiser temperatures. 

 

In order to check reproducibility of the experiments each experiment was performed 

twice, and the best one among the two in terms of stability of conversion biodiesel and 

water was chosen for further analysis i.e. to perform carbon balance and other 

characterisation work. The experiments were performed for duration of 7200 s. Table 6.1 

lists the molar carbon balance consisting of gas (‘C in gases’) and volatiles products (‘C 

in the condensate’), as well as carbon deposited as coke on the catalyst (‘C on catalyst’).  

It is important to note that the term coke carbon carried the largest uncertainties, as it 

relied on samples taken from the catalyst bed, the difficulty residing in collecting thin 

layers of carbonaceous residue deposited on other parts of the reactor and seeping 

through the sample lines. Further as the catalysts were supported on quartz wool, some 

amount of carbon was deposited on the top layer of the quartz wool, which was not 

analysed.  The used catalyst pellets were crushed before they were subjected to elemental 

analysis for detection of coke carbon on the catalyst surface, some carbon would have 

been lost during the crushing processes.  All these reasons could explain why the carbon 

balance was in some cases within 12-13 mol% of the carbon feed. Another explanation 
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for the unaccounted carbon would be the presence of carbon containing compounds 

(carbon number >5) which were not measured by gas chromatograph. 

 

 The effect of temperature on YH2 and (SH-H2) is shown in Figure 6.5, and the selectivity 

to various carbon containing products in the gas phase is shown in Figure 6.6. The 

reproducibility of the experiments was checked by performing the experiments a second 

time. The selectivity to any given gas was in all cases very close to the corresponding 

equilibrium value.  It is unlikely that SR (R-6.1) is involved directly in the reaction of 

steam with these very long molecules to produce CO and H2. Instead, it is expected that 

the FAMEs first break up into smaller fragments under thermal and catalytic effects 

(catalytic cracking) and that the smaller fragments then undergo SR, similarly to what 

Marquevich et al [173] proposed for vegetable oil feedstock. Conversion of biodiesel to 

gas phase carbon products increased from 78% at 600 °C to 92% at 700 °C, and upon 

further temperature increase, it decreased slightly, with similar observations made for 

steam conversion (28% to 33%) (Figure 6.4).   

 

 

Figure 6.5: Effect of temperature on H2 yield  (YH2) and selectivity (SH-H2) in CSR of commercial 

biodiesel using same conditions as Figure 6.4 
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Figure 6.6: Effect of temperature of selectivities on carbon products (SC) in CSR of commercial 

biodiesel using same conditions as Figure 6.4. 

 

Marquevich et al. [132, 173] reported smaller fuel conversion (54%) in CSR of sunflower 

oil over commercial (ICI 46-1) catalyst at S/C of 3 and 650 
o
C.  But when using 

hydrotalcite-like (HT) based catalyst with Ni
2+

/Al
3+

 of 2, they obtained their largest fuel 

conversion (72%).  At 600°C, Xbiod (Figure 6.4) was lowest compared to other 

temperatures. This was as a result of higher carbon formation due to the decomposition 

reaction (R-6.4), which accounted for the 16% of the total carbon measured in the output 

(Table 6.1). For this run, 6 mol% of the carbon feed was unaccounted for, which could 

have been formed by thermal decomposition reaction (R-6.4) in some other parts of the 

parts of the reactor or could be contained in the quartz wool.  Lower XH2O of 28.6% 

resulting in a steam conversion efficiency of 62% of the equilibrium value (Figure 6.5) 

would support the interpretation.  The argument was strengthened by the presence of 

small amount of alkenes such as C2H4, which is a known soot precursor [256]  detected in 

the product gases.   
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At 650 °C, the amount of unaccounted carbon was high (13.2%), which suggested that 

the decomposition occurred in other parts of the reactor rather than on the catalyst surface 

(4% of total C-products, Table 6.1).  This was likely due to the reverse Boudouard 

reaction (R-.6), shown by reduced carbon formation on catalyst (Table 6.1) in addition to 

(SC-CO2) and increased (SC-CO) (Figure 6.6).  Similarly steam conversion efficiency 

(Figure 6.5) increased only by 3% which can backs the hypothesis. A YH2 of 21.1 wt% 

(YH2 (eff) of 77%) and 21.6 wt% (YH2 (eff) of 77.5%) were measured at 600 and 650
o
C 

(Figure 6.5).  Reforming efficiency of the system was also unaffected significantly since 

there was no appreciable change in the YH2.  

 

At 700 
o
C, biodiesel Xbiod and XH2O increased (Figure 6.4) under combined effects of 

increase in SR (R-6.1), SMR (reverse R-6.5), and TD (R-6.4). The carbon balance for 

700 °C was near zero, while carbon in the condensates was negligible; indicating the 

products were gases CO, CO2, CH4 and carbonaceous residue on the catalyst (7% of total 

C products). This implied the fuel conversion was now overwhelmingly consisting of 

catalytic reactions (R-6.1, reverse (R-6.5) and (R-6.4)) as seen by increased YH2 (Figure 

6.5) along with (SH-H2) and (SC-CO) (Figure 6.6) supporting the hypothesis.  Highest 

biodiesel and steam conversions (XH2O) of 92.3 and 36.3% at 700 
o
C resulted in the 

highest yield and YH2 (eff)) (87.2%, Figure 6.5).  At similar S/C of 2.5 and 700 
o
C with 

WHSV of 1.967 h
-1

, Pimenidou et al [174] reported lower fuel (although this was waste 

cooking oil) and steam conversions i.e. 86.3% and 35.7%, respectively. Figure 6.7 shows 

the changes in biodiesel and steam conversion with respect to time at 700°C. Initially the 

values oscillate substantially. One of the reasons for this could be the smaller flowrates of 

biodiesel and water. As the flowrates of the biodiesel (0.978 cm
3
/h) and water (2.92 

cm
3
/h) used are smaller and size of the vapourisation (1/4’’) is bigger, it takes ~1800 s to 

generate enough vapours to assure continues flow over the catalyst bed to achieve steady 

state.  The average Xbiod and XH2O values were selected from the point where steady 

readings of H2 produced were observed (2250 s). The slandered deviation was quite small 

for both the Xbiod and XH2O. A deviation of 6.2 and 2.3 % was observed for Xbiod and 

XH2O. 
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Finally at 800
o
C, both Xbiod and XH2O decreased (Figure 6.4), decreasing YH2 (Figure 6.5) 

and increasing (SC-CO) at the expense of CO2 (Figure 6.6).  This was expected from 

equilibrium trend, as the reverse WGS reaction (reverse R-6.2) limited the conversions to 

H2.  However, YH2 (eff) also decreased significantly between 700 and 800 °C from 87.2% 

to 80.6% (Figure 6.5), suggesting conditions moving further away from equilibrium. The 

(SH-H2) at all the temperatures examined was above 95% at all the temperature examined 

which showed very small amount of other H2 consuming gases.  The (SC-CH4) in the 

carbon containing gases (Figure 6.6) decreased with increase in temperature following 

equilibrium trends which were adverse to the METH reaction (R-6.5) and favourable to 

steam methane reforming (reverse R-6.5). The unaccounted carbon for this run was 12% 

and catalyst surface was 2%.  The reduction in C on catalyst was as result of higher 

reforming temperature reducing C due to (R-6.6). 

 

 

Figure 6.7: Biodiesel (Xbiod) and steam (XH2O ) conversions during CSR using same conditions as 

Figure 6.4. 
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Table 6.1: Molar carbon balance of CSR of commercial biodiesel using Ni/Al catalyst at S/C of 3 at 

WHSV of 3.52h
-1

 and 170°C as water vaporiser temperature. The balance based on total input mol of 

C (=1.08 ×10
-1

) over duration of experiment (7200 s) minus mol C converted to gases, volatiles in the 

condensate and deposited on catalyst. 

 

React 

 

Vap 

 

1-

(Cout/

Cin) 

C on catal C in cond C in gases 

T(°C) T (°C) % mol 
% C 

out 
mol 

% C 

out 
mol 

% C 

out 

    600 365 6.32 

 

1.6510
-2

 

 

16.32 7.27×10
-4

 0.07 8.46×10
-2

 83.60 

 

650 

 

365 13.23 4.0310
-3

 4.30 1.9110
-4

 0.20 8.9510
-2

 95.48 

700 365 0.35 7.5810
-2

 7.04 3.6210
-5

 0.03 1.0010
-1

 92.92 

800 365 11.97 1.6710
-3

 1.75 3.3110
-3

 0.03 9.3410
-2

 98.20 

650 220 15.60 6.1910
-3

 10.19 5.1410
-5

 0.08 5.4510
-2

 89.72 

650 190 14.25 7.1110
-3

 7.68 4.3310
-5

 0.04 8.5410
-2

 92.26 

 

From the investigation it can be concluded that CSR of biodiesel is temperature 

dependent like other hydrocarbons and the performance of the system using Ni/Al 

catalyst peaked at 700 °C resulting in highest Xbiod and XH2O, resulting in highest H2 

yield, which was predicted by thermodynamic equilibrium calculations. The selectivity to 

any given gas i.e. H2 (SH), CO, CO2 and CH4 (SC) was close to the value predicted at 
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equilibrium. Carbon balance for this particular temperature exhibited almost complete 

closure, which meant all the carbon entering the reactor was accounted for in the gas 

products and accumulated on the catalyst. 

 

6.4.3 Effect of biodiesel preheating 

 

Table 6.2 shows the effect of biodiesel preheating temperatures on CSR of commercial 

biodiesel at S/C of 3 using WHSV of 3.52 h
-1 

with
 
1.50 10

-5
 mol /s carbon molar feed 

flowrate. The reactor temperature was set to at 650 °C rand 170 °C as reactor and water 

vaporiser temperatures. The carbon balance for these runs is provided in Table 6.1. Lin et 

al. [257] showed that biodiesel is stable up to 275 °C and thermal decomposition starts at 

275 °C and above.  According to these authors, thermal decomposition of biodiesel 

involves isomerisation, polymerisation (Diels-Alder reaction) and pyrolysis reactions 

which occur in the temperature range of 275-400 °C, 300-425 °C and >350 °C.  

 

Table 6.2: Effect of biodiesel preheating temperatures on CSR of biodiesel using Ni/Al catalyst at 650 

°C, WHSV of 3.52 h
-1

 and S/C of 3. Water vaporiser was set to 170 °C. 

Vaporiser 

T (°C) 
Xbiod XH2O 

Reforming 

eff (%) 

H2O conv eff 

(%) 
YH2 (wt %) 

YH2 eff (%) 

190 79.46 31.74 71.25 67.03 22.30 74.97 

220 75.72 30.65 68.57 64.71 21.46 72.15 

365 82.3 30.04 67.82 63.42 21.23 71.36 

 

 

It is possible that at higher vaporiser temperature i.e. 365 °C, biodiesel decomposed and 

the products were steam reformed producing H2, CO, CO2, CH4, C2H4 and C2H6. 

Lowering the vaporiser temperature reduced the Xbiod, which means a higher amount of 
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longer chain compounds entered the reactor, which would have broken down on the 

surface of catalyst, forming smaller compounds that were steam reformed to produce H2, 

CO, CO2, and CH4. As the vaporiser tubes were made of stainless steel it could have 

some catalytic effect on the decomposition of biodiesel at higher temperature (365 °C) 

resulting in Xbiod due to thermal decomposition. Lower reforming and steam conversion 

efficiency could support the interpretation. Relatively higher reforming and steam 

conversion efficiencies suggest better SR activity with lower vaporiser (190 °C) 

temperature than higher (365 °C).  As higher amount of intact biodiesel entered the 

reactor at lower vaporiser temperature, higher amount of carbon formation resulted.  For 

190 °C vapouriser temperature, 8% of the carbon feed ended up on the catalyst, while 

14.3% was unaccounted carbon (Table 6.1). The unaccounted carbon could be present on 

the quartz wool. The carbon content of the condensate was negligible as compared to that 

of the gas and the carbon deposited on the catalyst. Carbon content of the condensate at 

365 °C, although very small, was higher as compared to 190 °C, which suggested that at 

this vaporiser temperature more liquid products are formed by pyrolysis of biodiesel.  

 

The better performance of the catalyst in terms of H2 obtained at 190 °C and in order to 

prevent the thermal decomposition of biodiesel in the vaporiser, resulted in this 

temperature being chosen for the biodiesel vaporiser. TGA experiments also showed that 

at 190 °C, biodiesel vaporisation just begins. 

 

6.4.4 Effect of catalyst 

 

SR processes depend greatly on the type of catalyst used for the processes. Some 

catalysts have higher surface area, which results in higher activity compared to catalysts 

with lower surface area. The presence of dopants in the catalysts can also affect the 

activity positively as well negatively. The presence of elements such as Ca affects the 

activity of the catalyst by reducing carbon formation and maintaining the activity of the 
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catalyst. Ceria based catalysts are also helpful in reducing carbon formation and exhibit 

higher WGS activity. This section of results and discussion explores the effect of various 

Ni based catalysts on CSR of commercial biodiesel.  

 

The performance evaluation of the catalysts was performed at constant WHSV (i.e. 

residence time) and S/C.  The biodiesel flowrate to the reactor was kept constant at 0.978 

cm
3
/h and the steam flowrate was maintained at 2.92 cm

3
/h, which provided an S/C of 3. 

These conditions corresponded to a carbon input flowrate of 1.50 10
-5

 mol/s while the 

N2 flowrate was set to 40 cm
3
/min to obtain a constant WHSV of 3.18 h

-1
.  

 

Figure 6.8 represents Xbiod and XH2O conversions in CSR of commercial biodiesel at 

constant S/C of 3 and WHSV of 3.18 h
-1

.
 
The reactor temperature was set to 650 

o
C. The 

molar carbon balance for these set of experiments is provided in Table 6.3. The previous 

experiments on the effect of temperature showed that 700 °C was found to be the 

optimum temperature in terms of YH2 and with highest Xbiod and XH2O. The (SC-CO) at this 

temperature was higher, inferring limitation of WGS activity. Similarly as some of the 

catalysts tested were powders, these might undergo sintering due to high reactor 

temperatures. For this reason the catalysts were compared at 650 °C. The biodiesel and 

water vaporisers were set to 190 and 170 °C respectively.  

6.4.4.1 Alumina supported catalysts 

Figure 6.8 represents the performance of alumina supported Ni catalysts in CSR of 

commercial at constant S/C of 3, with 650 °C as reactor temperature and WHSV of 3.18 

h
-1

. The biodiesel and water vaporisers were set to 190 and 170 °C. Table 6.3 shows the 

molar carbon balance for these experiments performed over 7200s with a carbon input of 

1.08×10
-1

 mol.  Biodiesel (Xbiod) and steam (XH2O) conversions with the commercial 

Ni/Al and Ni/K-Al catalysts were lower as compared to Ni/Ca-Al and NiCoCe/Al 

catalysts. The Ni/Ca-Al catalyst exhibited highest Xbiod of 96.0% followed by NiCoCe/Al 

which showed 90.4% conversion. Steam conversions (XH2O) of 37.8 and 34.9% were 
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observed for Ni/Ca-Al and NiCoCe/Al respectively compared to the equilibrium value of 

47%.  

6.4.4.2 Alumina supported catalyst 

 

 Figure 6.8: Performance of various alumina supported Ni catalysts in CSR of commercial biodiesel 

at 650 °C and constant S/C of 3 and WHSV of 3.18 h
-1 

with biodiesel and water vaporisers set to 190 

and 170 °C. 

 

Steam conversions (XH2O) for Ni/Al and Ni/K-Al were very similar, but Xbiod for Ni/Al 

catalyst was higher compared to Ni/K-Al catalyst, which infers that thermal 

decomposition of biodiesel was higher over alumina support of the Ni/Al catalyst (Figure 

6.8).  Although the carbon content in the condensates was insignificant as compared to 

the carbon conversion in gas phase and on the catalyst surface, Ni/Al catalyst exhibited 

higher organic carbon as compared to the Ni/K-Al catalyst (Table 6.3).  According to 

Marquevich et al.[173], the acidic nature of alumina support can cause cracking of 

oxygenated hydrocarbons affecting the SR performance. The presence of K could have 

modified the acidic sites of alumina, resulting in lower TD.  Addition of K increases 

steam adsorption on catalyst surface, which means steam covers the surface, restricting 
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the fragments of biodiesel broken by Ni to be adsorbed and steam reformed [228, 258]. 

Addition of K alters the hydrocarbon dissociative chemisorptions in SMR i.e. there is a 

decrease in CHx (a) fragments formed on the Ni surface from the increase of interactions 

with water vapour resulting lower activity and coke formation[259]. The carbon content 

on the surface of Ni-K/Al catalyst was relatively lower compared to the Ni/Al catalyst. 

Approximately 4.2 and 3.63% of the total carbon in the products was found on the 

surface of the Ni/Al and Ni/K-Al catalysts. The unaccounted carbon for these runs was 

higher, suggesting formation carbon in other places of the reactor or quartz wool surface 

(Table 6.3).  

 

From the two catalysts that yielded higher Xbiod, i.e. Ni/Ca-Al and NiCoCe/Al, the latter 

exhibited higher carbon formation on its surface. A 4.8% of the output carbon was found 

on NiCoCe/Al as compared to 3.5% on Ni/Ca-Al (Table 6.3).  This could explain why the 

Xbiod was lower for the NiCoCe/Al catalyst as compared to Ni/Ca-Al.  Similarly XH2O 

over NiCoCe/Al was lower than Ni/Ca-Al, suggesting lower SR activity (R-6.1). Among 

all the catalysts, the highest amount of carbon in the condensate was found for 

NiCoCe/Al, which suggests this catalyst was more active in the biodiesel decomposition 

reaction.  For these two catalysts (Ni/Ca-Al and NiCoCe/Al) only 0.5 and 5% of the 

carbon feed was unaccounted (Table 6.3). Vagia and Lemonidou [260] reported high 

catalytic activity in CSR of acetic acid over 5 wt% Ni/12CaO-7Al2O3. They reported that 

Ni was distributed at the boundaries of the grains facilitating a high degree of dispersion. 

Further, the smaller crystallites of Ni over the support contributed to the difference in 

dispersion and caused high reforming activity.  The presence of Ca in the case of calcium 

aluminate based catalyst had an influence on the performance of the catalyst. Addition of 

Ca to 10% Ni/Al2O3 was shown to improve the performance of the catalyst in CSR of 

ethanol Choong et al [261]. Formation of less crystalline carbon was observed in Ca 

modified catalysts which was more easily gasified (R-6) during the CSR reaction.  

Addition of Ca decreased the acidity of the Al2O3 and increased the adsorption of steam 

while providing the Ni catalyst the proximity and abundance of adsorbed OH groups 

affecting the performance of the catalyst [261].  
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Higher conversion of Xbiod and XH2O in Ni/Ca-Al resulted in highest YH2 from enhanced 

SR reaction (R-6.1). A YH2 of 27.0 wt% was observed for Ni/Ca-Al, which resulted in 

YH2 (eff) close to 93% (Figure 6.9).  Steam conversion (XH2O) and reforming efficiencies 

for this catalyst were also highest due to higher biodiesel and steam conversion.  A steam 

conversion efficiency of 79.5% was seen with reforming efficiency of 86.3% (Figure 

6.8). Lowest YH2 of 22.8 wt% was exhibited by Ni/K-Al, which resulted in YH2 (eff) of 

78.9% (Figure 6.9).  Reforming efficiency of 72.5% and steam conversion efficiency of 

68.3% was recorded for Ni/K-Al (Figure 6.8). 

 

Figure 6.9 represents yield (YH2) and (SH-H2) to H2  in addition selectivity to carbon gases 

(SC) in CSR of commercial biodiesel at S/C of 3, WHSV of 3.18 h
-1

 for various alumina 

supported catalysts.  Selectivity to any given gas was very close to its equilibrium value. 

The (SH-H2), for all the catalysts was close to 100%.  The (SC-CO) and (SC-CO2) was in the 

range of 38.7 to 42.4% and 55.8 to 58.5% respectively. The (SC-CO) in case of Ni/K-Al 

was slightly lower than others, due to slight improvement WGS reaction (R-6.2).  Ni/K-

Al also showed highest (SC-CH4) as compared to the other catalysts. Addition of K 

disrupts the CH4 activation sites of the catalyst which would reduce SMR reaction 

(reverse R-6.5) increasing (SC-CH4). 
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 Figure 6.9: Yield of H2 (YH2) and selectivity (SH-H2) for H2 with selectivities of carbon gases in CSR of 

commercial biodiesel over alumina supported catalysts, at same conditions as Figure 6.8. 

 

6.4.4.3 Ceria-zirconia supported catalysts 

Effect of ceria based Ni catalysts on (Xbiod and steam XH2O in CSR of commercial 

biodiesel, at 650 °C using S/C of 3 and constant WHSV of 3.18 h
-1

 is shown in Figure 

6.10. The molar carbon balance for these set of experiments performed over 7200s with 

the carbon input of 1.08×10
-1

 mole is shown in Table 6.3. The vaporiser temperatures 

were set to 190 and 170 °C for biodiesel and water respectively.  In the case of Ce-Zr 

supported catalyst, the presence of Ce resulted in higher conversion and WGS activity 

[262]. Addition of Ce is well known to promote metal activity and dispersion, resulting 

high catalytic activity.  Similarly the presence of Ce increases adsorption of steam 

thereby promoting XH2O. Higher (SC-CO2) and XH2O during the CSR reaction suggested 

higher WGS reaction (R-6.2) activity. It was reported that CeOx enhances the dissociation 

of H2O and accelerates the reaction of steam with adsorbed species on the Ni surface near 

the boundary area between metal and support, thus decreasing the carbon deposition 

(Table 6.3) and promoting the stability of the catalyst during reforming [216]. Ni/Ce-Zr-
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1.5g showed the highest biodiesel and steam conversions compared to the others (Ni-

K/Ce-Zr, Ni-Sn/Ce-Zr and Ni/Ce-Al). Biodiesel conversion (Xbiod) of 96.1% with 41.3% 

XH2O were observed with this catalyst, which resulted in 86.9 and 88.9% steam 

conversion and reforming efficiency respectively. For this catalyst 1.3% of the carbon fed 

was detected on the catalyst surface. 

 

 Decreasing the amount of catalyst resulted in reduction in Xbiod and XH2O with Ni/Ce-Zr-

1g catalyst. Biodiesel (Xbiod) and steam (XH2O) conversion reduced to 90.2% and 33.3% 

with the use of Ni/Ce-Zr-1g. It is obvious that increasing the amount of sand in the bed, 

with reduction in catalyst mass, resulted in lower activity. Comparing the carbon 

formation on catalyst surface, use of 1 g catalyst showed slightly higher carbon formation 

(Table 6.3). The unaccounted carbon for Ni/Ce-Zr-1g and Ni/Ce-Zr-1.5 g were 7 and 2.5 

% of the carbon fed respectively (Table 6.3) which suggests that the CSR process was 

very efficient. The unaccounted carbon could be present in the sand and over the quartz 

wool.  

 

In case of Ni-K/Ce-Zr Ni-Sn/Ce-Zr catalysts, biodiesel and steam conversions (XH2O) 

decreased, suggesting lower activity towards SR reaction (R-6.1). The reason for reduced 

activity for these catalysts differs from one another.The Ni-K/Ce-Zr catalyst showed 

reduced activity due to the presence of higher carbon on catalyst surface (Table 6.3).  It 

was hoped that addition of K would reduce carbon formation, but this ability of the 

catalyst is dependent on the position and amount of K on the catalyst surface. According 

to Borowiecki et al. [263] location of K on the catalyst plays an important role in 

resistance of K containing catalyst to carbon formation. A part of K is in an intimate 

contact with Ni, whereas the other part is distributed over the support. In catalyst where 

K–Ni interaction dominates, K promoted catalyst exhibits lower resistance to carbon 

formation. A Xbiod of 90.0% and XH2O of 38.1% were exhibited by the Ni-K/Ce-Zr 

catalyst.  A 6% of the carbon measured in the output was observed over the catalyst 

surface (Table 6.3), with 4% of the carbon fed was unaccounted. 
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Reduction in the catalytic activity of Ni-Sn/Ce-Zr compared to Ni/Ce-Zr, could be as a 

result of surface coverage of active Ni sites by Sn [227]. Similar behaviour was reported 

by Nikolla et al. [264] in SMR using S/C of 0.5 at 800 
o
C using Ni/YSZ catalyst. 

Addition of Sn was reported to increase the stability of the catalyst but was shown to 

reduce activity; a 25% decrease in the activity was reported with 5 wt% Sn doped 

Ni/YSZ catalyst. Formation of relatively higher amount of carbon (Table 6.3) on the 

surface of Ni-Sn/Ce-Zr compared to Ni/Ce-Zr could be one of the reasons for lower 

activity of the catalyst, resulting from formation of alkenes [256]. A 3% of the measured 

carbon in the output was detected on the catalyst surface of the Ni-Sn/Ce-Zr catalyst, 

with 7% unaccounted carbon. Biodiesel (Xbiod) and steam (XH2O) conversions of 90.0% 

and 39.4% were recorded with Ni-Sn/Ce-Zr catalyst. 

 

Lowest conversions Xbiod and XH2O were observed with the Ni/Ce-Al catalyst. Biodiesel 

conversion (Xbiod) of 75.9% with XH2O of 30.4% was seen with this catalyst.  The reason 

for low catalytic activity was the high amount of carbon formation on the catalyst 

surface. From the total output carbon, 18% was observed over the catalyst surface thus 

significantly affecting the performance of the catalyst. The unaccounted carbon was 8% 

of the carbon feed, which suggest most of the carbon was formed over the catalyst 

surface. As a result of poor biodiesel and steam conversions (XH2O), 75.5 and 64.1% 

reforming and steam conversion efficiencies were obtained for the catalyst. 

 

The selectivity (SH-H2) and YH2 with the selectivities of carbon gases (SC) for Ce-Zr 

catalysts are shown in Figure 6.11.  The highest YH2 of 27.8 wt% was obtained with 

Ni/Ce-Zr-1.5 g catalyst, which resulted in an YH2 (eff) of 93.5% (Figure 6.11). It 

decreased to 23.7 wt% with 79.0% YH2 (eff) for Ni/Ce-Zr-1 g catalyst. H2 yields of 26.2 

and 25.7 wt% were found for the Ni-K/Ce-Zr and Ni-Sn/Ce-Zr catalysts. Among all the 

catalysts, the lowest yield was found for the Ni/Ce-Al catalyst (20.9 wt%), hence low YH2 

(eff)of 70.9%. The (SH-H2) was above 97% for all the catalysts. The (SC-CO) in Ni/Ce-Zr-1 
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g catalyst was higher compared to Ni/Ce-Zr-1.5 g, as a result of limited WGS reaction 

(R-6.2) due to lower amount of catalyst. This behaviour was also observed with Ni/Ce-Al 

catalyst. Ni-Sn/Ce-Zr catalyst, exhibited highest (SC-CO2) among all the catalyst. On the 

other hand (SC-CH4) was highest with Ni/Ce-Zr-1 g catalyst The (SC-CH4) was highest for 1 

g catalysts. Ni/Ce-Zr-1g showed highest SC-CH4 (5.7%) from all the catalyst. But 

increasing the mass of catalyst to 1.5 g reduced (SC-CH4) to 2.1%, which suggest higher 

SMR activity (reverse R-6.5) with 1.5 g catalyst. 

 

 

 Figure 6.10: Performance of various ceria based Ni catalysts in CSR of commercial biodiesel at 650 

°C and constant S/C of 3 and WHSV of 3.18 h
-1 

with biodiesel and water vaporisers were set to 190 

and 170 °C.  In this Figure, 1.5 and 1g of catalysts were mixed with appropriate amount of quartz 

sand to make 2.0506 g catalyst bed. 
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 Figure 6.11: Yield (YH2) and selectivity (SH-H2) to H 2 with selectivity to carbon gases in CSR of 

commercial biodiesel over Ce-Zr supported catalysts, at same conditions as Figure 6.10. 
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Table 6.3: Molar carbon balance of CSR of commercial biodiesel using alumina and Ce-Zr supported 

catalysts at S/C of 3 at WHSV of 3.18 h
-1

. The biodiesel and water vaporiser were set to 190 and 170 

°C. The balance is based on total input mol of C  (=1.08 ×10
-1

) over duration of experiment (7200 s) 

minus mol C converted to gases, volatiles in the condensate and deposited on catalyst.  Superscript 

(a) - sand addition. 

 

Catal 
1-

(Cout/Cin) 
C on catal C in cond C in gases 

 % mol 
% C 

out 
mol 

% C 

out 
mol % C out 

Ni/Al 10.56 
4.04×

10
-3

 
4.18 

7.70×

10
-5

 
0.07 

9.24×

10
-2

 
95.73 

Ni/K-Al 15.70 
3.31

10
-3

 
3.63 

5.49

10
-5

 
0.06 

8.77

10
-2

 
96.30 

Ni/Ca-Al 0.46 
3.75

10
-3

 
3.49 

2.50

10
-5

 
0.02 

1.00

10
-1

 
96.48 

NiCoCe/Al 4.9 
4.90

10
-3

 
4.77 

1.91

10
-4

 
0.18 

9.75

10
-2

 
95.04 

Ni/Ce-Zr-1g
a
 7.10 

2.77

10
-3

 
2.76 

1.25

10
-4

 
0.12 

9.74

10
-2

 
97.10 

Ni/Ce-Zr-1.5g
a
 2.40 

1.36

10
-3

 
1.29 

2.60

10
-4

 
0.24 

1.03

10
-1

 
98.46 

Ni-K/Ce-Zr-1.5g
a
 3.86 

6.55

10
-3 

6.31 
4.33

10
-5

 
0.04 

9.72

10
-2

 
93.63 

Ni-Sn/Ce-Zr-1.5g
a
 7.06 

3.05

10
-3 

3.04 
1.47

10
-4

 
0.14 

9.71

10
-2

 
96.80 

Ni/Ce-Al-1g
a
 7.68 

1.77

10
-2 

17.77 
5.52

10
-5

 
0.05 

8.19

10
-2

 
82.17 
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6.4.5 Effect of WHSV 

 

The effect of WHSV on the CSR of commercial biodiesel was performed using Ni/Ca-Al 

catalyst at 650 °C and constant S/C of 3. Biodiesel and water flowrates were kept 

constant at 0.978 cm
3
/h (1.50 10

-5
 mol /s carbon molar feed flowrate) and 2.92 cm

3
/h.  

The WHSV values were adjusted to 2.85, 3.18 and 3.52 h
-1

 by altering N2 flowrate from 

30 to 50 cm
3
/min. Biodiesel and water vaporisers were set at 190 and 170 °C. Figure 6.12 

illustrates the effect of WHSV on CSR of commercial biodiesel at constant S/C and 

reactor temperature of 650 °C. The molar carbon balances of these experiments are 

provided in Table 6.4 over 7200s with a carbon input of 1.08×10
-1

 mol. 

 

 

Figure 6.12: Effect of WHSV on the performance of Ni/Ca-Al catalyst in CSR of commercial 

biodiesel at 650 °C and S/C of 3. In this investigation biodiesel and water vaporisers were set to 190 

and 170 °C respectively. 
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Increase in WHSV increased the amount of carbon in the condensate as observed by TOC 

analysis (Table 6.4) which could suggest increased pyrolysis of biodiesel. Similarly 

increasing the WHSV increased the amount of carbon deposited on the catalyst surface.  

At WHSV of 3.52 h
-1

, 6% of the carbon output was found on the catalyst surface. This 

decreased to 2.8% with reduction in WHSV to 2.85 h
-1

.  This suggests that lower WHSV 

increases carbon steam gasification leading to net lower carbon deposition.  Maximum 

conversions of both biodiesel and steam and therefore YH2 (27 wt%, Figure 6.12) were 

observed at 3.18 h
-1

, with very good mass balance closure (Table 6.4).   Reforming and 

steam conversion efficiencies of 86.9 and 80.35% were observed for this WHSV value. 

Figure 6.13 represents selectivity (SH-H2) and yield for H2 (YH2) with the selectivities to 

CO, CO2 and CH4 (SC).  At all the WHSV values, H2 selectivities (SH-H2) values were 

above 98%, with 99.4 % at WHSV of 3.18 h
-1

. The (SC-CO) was shown to increase with 

WHSV value, in contrast to (SC-CO2) which remained similar at all the WHSV values. 

The (SC-CH4) was negligible as compared to the other gases, with WHSV of 3.18 h
-1

 

showing the least. 

 

 

 Figure 6.13: Effect of WHSV on yield (YH2) and selectivity  (SH-H2) to H2 with selectivities of carbon 

gases in CSR of commercial biodiesel over Ni/Ca-Al catalyst, at 650 °C and constant S/C of 3. 



Hydrogen production by steam reforming of biodiesel 

173 

 

6.4.6 Effect of biodiesel 

 

Effect of biodiesel types (commercial, palm and in-house biodiesel ) on the performance 

of the CSR was examined using Ni/Ca-Al catalyst at constant S/C of 3 and 650 °C with 

WHSV of 3.18 h
-1

 is shown in Figure 6.14 with molar carbon balance for the experiments 

are provided in Table 6.4. The biodiesel flows was adjusted to maintain a carbon molar 

feed flowrate of 1.50 10
-5

 mol /s.  The steam flowrate was also adjusted to provide S/C 

ratio of 3. The WHSV for these experiments was 3.18 h
-1

.   

 

 

 Figure 6.14: Effect of biodiesel origin on CSR process using Ni/Ca-Al catalyst at 650 °C and constant 

S/C of 3 with constant WHSV of 3.18 h
-1

. The biodiesel and water vaporisers were set to 190 and 170 

°C. In this Figure 1.5 and 2 wt% represents the amount of KOH catalyst used for biodiesel 

preparation. 

 

Highest Xbiod and XH2O were observed with commercial biodiesel compared to other 

biodiesels examined.  Biodiesel conversion (Xbiod) with commercial biodiesel was 96% as 

compared to 86.5, 88.5 and 80.7% with palm, in-house 1.5 wt% and 2 wt%.  Lower 

conversion in  CSR of palm oil biodiesel was reported by Shiratori et al [140] using S/C 
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of 3.5 at 800 
o
C with GHSV of 3900 h

-1
 over a Ni/YSZ+Al2O3 based paper catalyst. 

Highest XH2O was recorded with commercial biodiesel. The decreasing order of XH2O was 

commercial biodiesel > palm > in-house -1.5 wt% and finally in-house -2 wt%.  

Commercial biodiesel also exhibited the lowest carbon formation on the catalyst surface 

as compared to other biodiesel. Commercial biodiesel showed 3.5% of the output carbon 

on the catalyst surface.  For palm, in-house 1.5 wt% and 2 wt% biodiesels, carbon 

formation was 4.5, 5.5 and 6.5% of the carbon output.  As a result of higher Xbiod and 

relatively lower amount of carbon deposited on the catalyst surface, commercial biodiesel 

showed the best result in terms of carbon balance (Table 6.4).  Only 0.5% of the carbon 

fed was unaccounted as compared to 13% with in-house- 2wt% biodiesel (Table 6.4). 

The reforming and steam conversion efficiency for commercial biodiesel reached the 

maxima of 86.9 and 80.3% (Figure 6.13) due to the above reasons. 

 

The (SH-H2) and (YH2) in addition to carbon containing gases (SC) are shown in Figure 

6.15. Highest Xbiod and XH2O conversions resulted in highest in YH2 with commercial 

biodiesel (Figure 6.14). According to Shotipruk et al [265] higher H2 production can be 

produced from palmitic acid and oleic acid using S/C of 3 at 900 
o
C, since commercial 

biodiesel has higher amount of these esters one could assume that this could be one of the 

factors affecting YH2 in the CSR of the biodiesels examined. The yield of H2 decreased 

from commercial biodiesel to in-house-2wt% biodiesel. This resulted in in-house-2wt% 

biodiesel showing the poorest YH2 (eff) value of 74.0% (Figure 6.15) which suggested 

deviation from equilibrium conditions with this biodiesel.  The (SH-H2) was above 98% 

for all the biodiesels.  Palm biodiesel exhibited the highest (SC-CO) among all the 

biodiesels. In contrast, in-house-2wt% biodiesel recorded the highest (SC-CO2). In-house-

1.5 wt% biodiesel was responsible for highest (SC-CH4) among the rest. 
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 Figure 6.15: Effect of biodiesel origin on yield (YH2) and selectivity (SH-H2) to H2 with selectivity to 

carbon gases (SC) in CSR process over Ni/Ca-Al catalyst, at same conditions as Figure 6.14. 

 

6.4.7 Effect of molar S/C ratio 

 

The effect of S/C on the performance of CSR process was investigated using Ni/Ca-Al. 

Biodiesel flowrate was kept constant at 0.978 cm
3
/h in order to maintain same molar 

carbon feed of 1.50 10
-5

 mol/s. Water flowrate was adjusted from 1.95 and 2.92 cm
3
/h 

to achieve  S/C ratios of 2 and 3 respectively.  In order to maintain the WHSV of 3.18 h
-1

, 

the flow of N2 was varied in from 40 to 54 cm
3
/h.  

 

Figure 6.16 represents the effect of S/C on CSR of commercial biodiesel at 650 °C and 

WHSV of 3.18 h
-1

 over Ni/Ca-Al catalyst. Molar carbon balance is provided in Table 6.4. 

Biodiesel conversion (Xbiod) increased with S/C, while XH2O decreased slightly.  The 

decrease in XH2O would be due to the presence of excess steam due to higher S/C ratio. 

Steam low excess conditions (S/C=2) could have resulted in the formation of 

carbonaceous deposits (Table 6.4) which would have reacted with steam resulting in 
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higher steam conversion XH2O) [174].  A 7% of the carbon in the products was found on 

the catalyst surface with 7% unaccounted carbon at S/C of 2. Increasing the S/C reduced 

the carbon deposition by half, 3.5% of the output carbon was detected on the catalyst 

surface. The improved performance with higher S/C is as a result of lower carbon 

deposition resulting in improved SR reaction (R-6.1).  Higher reforming and steam 

conversion efficiencies support this claim.  In contrast to our results, higher temperature 

was required to obtain similar conversions in CSR of waste cooking oil [174]. At similar 

S/C of 2.5 and WHSV of 1.967 h
-1

, waste cooking oil and XH2O reached 86.3 and 35.7% 

at 700 °C over Ni/Al catalyst. Higher S/C of 4 was required to achieve 99.9% for waste 

cooking oil as compared to 96.0% at S/C of 3 for biodiesel. This could suggest that 

biodiesel would be easy to steam reform even at higher WHSV values. 

 

 

 Figure 6.16: Effect of molar S/C on CSR process using Ni/Ca-Al catalyst at 650 °C and constant 

WHSV of 3.18 h
-1

. The biodiesel and water vaporisers were set to 190 and 170 °C.  

 

The yield of H2 was lower at S/C of 2 compared to yield obtained at S/C of 3. A 21.9 

wt% of YH2 with (YH2 (eff)) of 80.3% was observed at S/C of 2. Figure 6.17 represents 

yield (YH2) and (SH-H2) to H2 in addition to selectivities to carbon containing gases i.e. 
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CO, CO2 and CH4 (SC). At higher S/C, higher WGS activity (R-6.2) was observed thus 

increasing YH2. Lower CO and higher (SC-CO2) were observed at S/C of 3, supports the 

interpretation. Similarly lower (SC-CH4) under steam rich condition suggests higher SMR 

activity (reverse R-6.5). The (SH-H2) in case of S/C of 2 was slightly lower than that 

observed at S/C of 3.  

 

 

 

 Figure 6.17: Effect of S/C on yield (YH2) and selectivity (SH-H2) to H2 with selectivity to carbon gases 

(SC) in CSR process over Ni/Ca-Al catalyst, at same conditions as Figure 6.16. 
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 Table 6.4: Molar carbon balance of CSR experiments using Ni/Ca-Al catalyst. The biodiesel and 

water vaporiser were set to 190 and 170 °C. The balance is based on total input mol of C (=1.08 ×10
-1

) 

over duration of experiment (7200 s) minus mol C converted to gases, volatiles in the condensate and 

deposited on catalyst. 

Biodiesel 
1-

(Cout/Cin) 
C on catal C in cond C in gases 

 % mol 
% C 

out 
mol 

% C 

out 
mol % C out 

Commercial
a
 07.12 

6.04×

10
-3

 
06.02 

2.10×

10
-4

 
00.21 

9.40×

10
-2

 
93.76 

Commercial
b
 00.46 

3.75

10
-3

 
03.49 

2.50

10
-5

 
00.02 

1.03

10
-1

 
96.48 

Commercial
c
 11.64 

2.70

10
-3

 
02.83 

1.50

10
-5

 
00.01 

9.26

10
-2

 
97.14 

Commercial
d
 07.24 

7.13

10
-3

 
07.12 

0.00

10
-5

 
00.00 

9.30

10
-2

 
92.87 

Palm
b
 09.21 

4.55

10
-3

 
04.64 

3.74

10
-5

 
00.03 

9.34

10
-2

 
95.31 

In-house1.5 wt %
b
 06.42 

5.46

10
-3

 
05.40 

4.65

10
-5

 
00.04 

9.54

10
-2

 
94.54 

In-house 2 wt %
b
 13.56 

6.19

10
-3 

06.63 
2.84

10
-5

 
00.03 

8.71

10
-2

 
93.33 

 

a- The performance was evaluated at S/C of 3 and WHSV of 3.52h
-1

. 

b-  The performance was evaluated at S/C of 3 and WHSV of 3.18h
-1

. 

c-  The performance was evaluated at S/C of 3 and WHSV of 2.85h
-1

. 

d- The performance was evaluated at S/C of 2 and WHSV of 3.18h
-1

. 
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6.5 Catalyst Characterisation 

The used catalyst was characterised using BET, XRD, SEM and TGA-FTIR.   

6.5.1 Surface area 

 

 Table 6.5: The BET results of used Al2O3 supported catalysts used in CSR of biodiesel at S/C of 3.  

The water vaporiser temperature for these experiments was set to 170°C. 

Catalyst BET  React Vapr WHSV 

 (m
2
/g) °C °C h

-1
 

Ni/Al
a
 - 600 365 3.52 

Ni/Al
a
 3.83 650 365 3.52 

Ni/Al
a
 4.77 700 365 3.52 

Ni/Al
a
 2.21 800 365 3.52 

Ni/Al
a
 3.39 650 190 3.18 

Ni-K/Al
a
 2.02 650 190 3.18 

NiCoCe/Al
a
 83.11 650 190 3.18 

Ni/Ca-Al
a
 19.09 650 190 3.52 

Ni/Ca-Al
a
 22.25 650 190 3.18 

Ni/Ca-Al
a
 20.31 650 190 2.85 

Ni/Ca-Al
b
 22.52 650 190 3.18 

Ni/Ca-Al
c
 21.13 650 190 3.18 

Ni/Ca-Al
d
 20.30 650 190 3.18 

Ni/Ca-Al
e
 17.50 650 190 3.18 

a- The catalysts were examined using commercial biodiesel. 

b- The catalyst was examined using S/C of 2. 

c- The catalyst was examined using inhouse-1.5 wt % biodiesel. 

d- The catalyst was examined using inhouse-2 wt % biodiesel. 

e- The catalyst was examined using palm biodiesel. 

 

Table 6.5 summarises the BET surface area of the used Al2O3 supported catalyst tested in 

CSR of biodiesel at S/C of 3. The surface area of the Ni/Al catalyst decreased with 

increase in reactor temperature (first 5 rows). The BET surface area of investigation CSR 

of commercial biodiesel at 600 °C is not reported. The sample produced large amount of 
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liquid on the analysis tube in spite of degassing for 24 h which was very difficult to be 

removed, hindering the analysis. The surface area of the catalyst at 650 °C, decreased by 

~33% compared to the fresh NiO/Al catalyst. The most significant decrease in surface 

area was observed at 800 °C. The surface area decreased by 61.3% as compared to the 

fresh NiO/Al catalyst. The decrease in catalyst surface area at 700 °C was smaller than 

650°C:  ~17.5% compared to fresh Ni/Al, which was half the surface area loss observed 

at 650 °C. The decrease in surface area is as a result of sintering of the catalyst. In 

comparison to the Ni/Al, Ni-K/Al showed hardly any decrease in the surface area of the 

catalyst. The surface decreased only by ~2.64% in comparison to the NiO-K2O/Al 

catalyst. In case of Ni/Ca-Al catalysts using commercial biodiesel, the smallest decrease 

in surface area was observed at WHSV of 3.18 h
-1

, which accounted for a decrease of ~33 

% compared to the fresh NiO/Ca-Al. In spite of lowering the S/C to 2, the decrease in 

surface area was very similar.  In all the different biodiesels examined, palm biodiesel 

showed the highest decrease in surface area with the Ni/Ca-Al catalyst. A ~48% 

reduction in BET surface area was recorded with the Ni/Ca-Al catalyst in CSR of palm 

oil biodiesel. The surface area of used Ce-Zr catalyst in CSR of commercial biodiesel at 

650 °C is shown in Table 6.6. Figure 6.18 and 6.19 shows the N2 adsorption-desorption 

isotherms along with BJH pore size and pore volume distribution for the used Ni catalysts 

supported on pre calcined Ce-Zr support. The used catalyst also exhibited the same type 

IV isotherm with type H1 hysteresis with different size pores. In the three catalysts 

supported on the pre calcined Ce-Zr support, Ni-K/Ce-Zr catalysts showed the highest 

decrease in BET surface area.  A ~45.5% decrease in BET surface area as compared to 

the fresh NiO-K2O/Ce-Zr was observed. On the other hand, the smallest surface area loss 

was shown by the Ni-Sn/Ce-Zr catalyst, which accounted for ~17.3% in comparison to 

the fresh NiO-SnO/Ce-Zr catalyst. Similarly the pore radius of the Ce-Zr catalyst 

increased after the treatment in the reactor.  The pore radius almost doubled in case of 

used Ni-K/Ce-Zr as compared to the fresh catalyst.  In comparison to the fresh catalysts, 

the pore radii of the Ni/Ce-Zr and Ni-Sn/Ce-Zr catalysts, increased by 1.3 and 1.7%. 
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Table 6.6: Surface area results of Ce-Zr supported catalysts used in CSR of commercial biodiesel at 

S/C of 3 at 650 °C.  The biodiesel and water vaporiser temperature for these experiments was set to 

190 and 170 °C. 

Catalyst BET  
BJH surface 

area  
Pore size  

Pore 

volume 

 

 (m
2
/g) (m

2
/g) (nm) cm

3
/g 

Catalyst prepared using pre calcined Ce-Zr 

Ni/Ce-Zr 48.33 60.49 6.04 0.19 

Ni-Sn/Ce-Zr 50.53 59.66 6.06 0.21 

Ni-K/Ce-Zr 22.08 31.69 11.41 0.11 

Ni/Ce-Zr-3/1 35.61 43.41 0.62 0.11 

Ni/Ce-Al 25.55 33.31 1.20 0.10 

  

 

 

Figure 6.18: N2 adsorption-desorption isotherms of used Ni catalysts supported on the pre calcined 

Ce-Zr support. The performance of the catalyst was examined at 650 °C and S/C of 3 with WHSV of 

3.18 h
-1

. The vaporiser temperatures for biodiesel and water were set to 190 and 170 °C. 
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Figure 6.19: Pore-size distribution of used Ni/Ce-Zr catalysts prepared with wet impregnation of pre 

calcined Ce-Zr support. The performance of the catalyst was examined at 650 °C and S/C of 3 with 

WHSV of 3.18 h
-1

. The vaporiser temperatures for biodiesel and water were set to 190 and 170 °C 

respectively. 

 

In the case of the Ni/Ce-Zr-3/1 and Ni/Ce-Al catalysts, BET surface areas decreased by 

~10.2 and 16.8% with the pore radii increasing to 0.62 and 1.20 respectively. The surface 

area reduction in case of NiCoCe/Al catalyst was 22%. 

 

6.5.2 X-ray diffraction analysis 

 

Figures 6.20 and 6.21 shows the XRD spectra for the used Al2O3 and Ce-Zr supported 

catalysts, respectively. Peaks attributed to Ni were observed at 2θ values of 44, 51, 76 

and 91°, with highest intensity displayed at 44
o
. No peaks pertaining to NiO were 

observed in any of the catalysts, indicating effective reduction during the H2 flow pre-
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treatment and no deactivation of the catalyst by re-oxidation during their use. Phase 

composition and crystal sizes for the used Ni/Al catalysts are included in Table 6.7. The 

average Ni content of the used Al2O3-supported catalyst was around 13.8 wt% compared 

to the expected value of 14.5 wt% calculated from fully reducing the 17.7 wt% NiO of 

the fresh, oxidised catalyst. This would suggest that a small amount of Ni may have 

corroded from the catalyst and was carried out of the reactor into the condensate similarly 

to [266]. The Ni crystallite sizes of the Al2O3-supported catalyst increased slightly with 

temperature as expected by sintering of Ni (from 31 at 600 °C to 38 nm at 800 ºC in 

Table 6.7).  

 

After use, Ni-K and Ni-Sn catalyst exhibited higher Ni content as compared to the 

undoped Ni/Ce-Zr catalyst. The Ni content in Ni-Sn/Ce-Zr catalyst was 9.2 wt% in 

comparison to 6.2 and 8.6 wt% in Ni/Ce-Zr and Ni-K/Ce-Zr catalyst.  The Ni crystallite 

size of the used Ni-K/Ce-Zr catalyst was higher as compared to Ni/Ce-Zr and Ni-Sn/Ce-

Zr catalysts.  

 

Figure 6.20: X ray diffraction patterns of used Ni catalysts supported on Ce -Zr (pre-calcined) 

supports.  Ni peaks are marked with (×) and Ce-Zr supports are marked by (+). 
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Figure 6.21: X ray diffraction patterns of used Ni/Al and Ni-K/Al catalysts.  Ni peaks are marked 

with (×) and Al2O3 supports are marked by (*). 

 

 Table 6.7: Rietveld refinement results of the used Al2O3 and Ce-Zr (pre calcined) supported 

catalysts. 

Catalyst React Vap WHSV Ni  Support 

Ni 

Cryst. size  

  °C °C h
-1

 wt. % wt. % nm 

Ni/Al 600 365 3.52 13.8 86.2 30.91 

Ni/Al 650 365 3.52 13.8 86.2 34.91 

Ni/Al 700 365 3.52 13.9 86.1 31.87 

Ni/Al 800 365 3.52 13.7 86.3 38.13 

Ni/Al 650 190 3.18 13.7 86.3 31.06 

Ni-K/Al 650 190 3.18 15.7 84.3 37.79 

Ni/Ce-Zr 650 190 3.18 6.62 93.38 12.72 

Ni-K/Ce-Zr 650 190 3.18 8.64 91.35 16.94 

Ni-Sn/Ce-

Zr 
650 190 3.18 9.26 90.73 11.79 
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6.5.3 TGA-FTIR and SEM analysis 

The TPO of the Ni/Al catalyst examined in the CSR of commercial biodiesel at constant 

S/C of 3 and WHSV of 3.52h
-1

 in the temperature range of 600-800 °C, is shown in the 

Figure 6.22.  The vaporiser temperature of biodiesel and water for these experiments 

were set to 365 and 170°C. As seen in the Figure 6.22, there are two CO2 emission peaks 

obtained from the TGA-FTIR analysis. The TGA-FTIR analysis was performed from 25 

to 900°C at a temperature rate of 10°/C/min in 50 cm
3
/min air flow. Normally the 

combustion temperature of the carbon deposits depends on the nature and deposition 

sites.   It is assumed that the CO2 peak observed at lower temperature i.e. around 330-350 

°C is associated with the carbon deposited over the active metals while the higher 

temperature CO2 peak is associated with carbon deposited on the catalyst support [266, 

267]. It was reported that the low temperature CO2 peak is associated with oxidation of 

surface metal carbides [268]. The high temperature peak is as a result of oxidation of 

graphite carbon in the form of filaments and nanotubes [269]. 

 

 At 600 °C, the intensity of CO2 was highest which decreased with temperature to 650 °C 

and up on further increase it increased to 700-800°C. This was explained as a result of 

Boudouard reaction (R-6.7), affecting accordingly the (SC-CO) and to CO2 (SC-CO2) 

(Figure 6.6). In this temperature range 650-800 °C, the intensity of CO2 was highest for 

the second peak which suggests that most of the carbon formed was present on the 

catalyst support. 

 

The TPO of the pre calcined Ce-Zr supported Ni catalysts examined in the CSR of 

commercial biodiesel at constant S/C of 3 and 650°C with WHSV of 3.18 h
-1

 is shown in 

the Figure 6.23.  The vaporiser temperature of biodiesel and water were set to 190 and 

170°C respectively. It can be seen from the Figure 6.23, that two forms of carbon were 

observed with Ni/Ce-Zr and Ni-K/Ce-Zr catalysts, in comparison to only one form 

observed over Ni-Sn/Ce-Zr catalyst and Ni/Ca-Al (Figure 6.24). 
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Figure 6.22: The TPO of Ni/Al catalyst examined in CSR of commercial biodiesel using constant S/C 

of 3 and WHSV of 3.52 h
-1

 in the temperature range of 600-800°C. The vaporiser temperature of 

biodiesel and water were set to 365 and 170°C respectively. 

 

The intensity of CO2 peak observed at lower temperature with Ni/Ce-Zr was higher as 

compared to Ni-K/Ce-Zr, which suggests that higher carbon formation over the metallic 

Ni as compared to the support. According to Li et al. presence of smaller Ni crystallite 

sizes in a catalyst help to reduce graphite carbon formation on the catalyst surface [270]. 

The low temperature CO2 peak shifts towards lower temperature i.e. 255°C with Ni-

K/Ce-Zr which could suggest that the addition of K to the catalyst is useful in oxidation 

of C. The addition of K lowers the activation energy of the oxidation process and shifts 

the spontaneous oxidation temperatures to lower values [271].  In comparison to Ni/Ce-
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Zr catalyst, the intensity of the high temperature CO2 peak was higher over Ni-K/Ce-Zr 

catalyst, suggesting higher carbon formation over the support. This was supported by 

SEM-EDX analysis. 

 

 

Figure 6.23: The TPO of pre calcined Ce-Zr catalysts examined in CSR of commercial biodiesel at 

constant S/C of 3 and WHSV of 3.18 h
-1

 with 650 °C. The vaporiser temperature of biodiesel and 

water were set to 190 and 170 °C respectively. 
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Figure 6.24: The TPO of Ni/Ca-Al catalyst examined in CSR of commercial biodiesel at constant S/C 

of 3 and WHSV of 3.18 h
-1

 at 650 °C. The vaporiser temperature of biodiesel and water were set to 

190 and 170 °C respectively. 

. 

 

Figure 6.25: The SEM image used Ni-K/Ce-Zr catalyst at 8.00 K mag. The catalyst was used in CSR 

of commercial biodiesel using S/C of 3 and 650 °C and WHSV of 3.18 h
-1

. 
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Figure 6.26: The SEM image used Ni-K/Ce-Zr catalyst at 90.00 K mag. The catalyst was used in CSR 

of commercial biodiesel using S/C of 3 and 650 °C and WHSV of 3.18 h
-1

. 

 

Figure 6.25 and 6.26 shows a SEM image of used Ni-K/Ce-Zr catalyst tested in CSR of 

commercial biodiesel at S/C of 3 and 650 °C with WHSV of 3.18 h
-1

. It can be seen from 

the Figures that large amount of carbon was present over the catalyst surface. The 

presence of carbon nano tubes was observed as shown in the Figure 6.26. Carbon 

formation was concentrated in some areas although other areas were also covered with 

carbon. An EDX mapping of the used catalyst is shown in the Figure 6.27.  The EDX 

spectrum of the catalyst surface shows the highest C intensity in both the spectrums. The 

SEM-EDX results were corroborated with TGA-FTIR results.  The highest intensity of 

CO2 observed in TGA-FTIR (Figure 6.23) and carbon balance (Table 6.3) of the catalyst 

supports the SEM-EDX results. There are also clusters observed in the Figures 6.25, 6.29 

and 6.30 which could be as a result of sintering of Ni crystallites. The increase in Ni 

crystallite size and decrease in surface area observed during XRD and BET 

measurements of the used Ni-K/Ce-Zr catalyst (Table 6.6 and Table 6.7) also support this 

analysis. 
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Figure 6.27: The EDX mapping of the used Ni-K/Ce-Zr catalyst tested in CSR of commercial 

biodiesel using S/C of 3 at 650°C and WHSV of 3.18h
-1

. 

 

 

Figure 6.28: The EDX spectra of the used Ni-K/Ce-Zr catalyst tested in CSR of commercial biodiesel 

at S/C of 3 at 650 °C and WHSV of 3.18 h
-1

. 

Spectrum 6 Spectrum 7 
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Figure 6.29: The EDX mapping of the SEM image shown in the Figure 6.25 using the same 

conditions as Figure 6.27. 
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Figure 6.30: Elemental distribution of the (Figure 6.27) which represents used Ni-K/Ce-Zr catalyst 

tested using same conditions as Figure 6.27. 
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Figure 6.31: The SEM image used Ni/Ce-Zr catalyst at 11 K mag using upper detector. The catalyst 

was tested in CSR of commercial biodiesel using S/C of 3 at 650 °C and WHSV of 3.18 h
-1

. 

 

 

Figure 6.32: The SEM image used Ni/Ce-Zr catalyst at 15 K mag using secondary lower detector. 

The conditions were same as Figure 6.31. 
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Figure 6.33: The EDX elemental mapping of the SEM image shown in Figure 6.31. 

 

 

Figure 6.34: The EDX elemental mapping of the SEM image shown in Figure 6.32. 
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The SEM image of the used Ni/Ce-Zr catalyst tested in CSR of commercial biodiesel 

with S/C of 3 at 650 °C with WHSV of 3.18 h
-1

 is shown in the Figure 6.31 and 6.32. It 

can be seen from the Figure that the amount of carbon deposited on the catalyst surface 

was much less as compared to Ni/-K/Ce-Zr catalyst. The formation of the carbon on the 

catalyst is evenly distributed (Figure 6.33 and 6.34).  The smaller intensity of CO2 

observed in TGA-FTIR (Figure 6.23) and carbon balance (Table 6.3) results for the 

catalyst supports the SEM-EDX results. On the other hand clusters of Ni were observed 

over the catalyst which shows signs of sintering of Ni crystallites (Figure 6.34). Figure 

6.35 shows EDX spectra of the used Ni/Ce-Zr catalyst and the elemental distribution of 

the used Ni/Ce-Zr catalyst is shown in the Figure 6.36. The EDX spectra revealed the 

presence of the Ni clusters; high Ni intensity (Figure 6.35) supports the result. The 

reduction in BET surface area, observed with Ni/Ce-Zr catalyst also showed sintering of 

the catalyst (Table 6.6).  

 

 

Figure 6.35: The EDX spectra of the used Ni/Ce-Zr catalyst tested in CSR of commercial biodiesel at 

S/C of 3 using 650 °C and WHSV of 3.18 h
-1

. 
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Like Ni/Ce-Zr catalyst, carbon formation over Ni-Sn/Ce-Zr was uniformly distributed 

over the catalyst surface as shown in the Figure 6.37.  Figure 6.23 shows that only one 

form of carbon was formed with Ni-Sn/Ce-Zr catalyst. The distribution of carbon seen 

from the elemental distribution was uniform over the catalyst surface (Figure 6.39).  The 

existence of Ni sintering in this catalyst could be smaller in this catalyst as compared to 

the other two catalysts. This can be seen in the elemental distribution for the catalyst and 

Ni in the Figures 6.40 and 6.41. The reduction in surface area as a result of sintering was 

lowest for this catalyst in comparison to the other two Ni/Ce-Zr and Ni-K/Ce-Zr catalyst. 

Thus combining the BET and SEM-EDX results, one can say that this catalyst suffers 

less sintering for both the support and Ni. 
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Figure 6.36: Elemental distribution for the used Ni-/Ce-Zr catalyst using same conditions as Figure 

6.30. 
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Figure 6.37: The SEM image of used Ni-Sn/Ce-Zr catalyst at 11 K mag. The catalyst was tested for 

CSR of commercial biodiesel using S/C of 3 at 650 °C and WHSV of 3.18 h
-1

. 

 

 

 
 

Figure 6.38: The EDX elemental mapping of the SEM image shown in Figure 6.37. 
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Figure 6.39: Elemental distribution for the used Ni-Sn/Ce-Zr catalyst using same conditions as 

Figure 6.38. 
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Figure 6.40: Elemental distribution for the used Ni-Sn/Ce-Zr catalyst using same conditions as 

Figure 6.37.  In the figure (A) is elemental mapping of the catalyst and (B) is the Ni mapping for the 

catalyst. 

 

 

A 

B 
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Figure 6.41: The EDX spectra of the used Ni-Sn/Ce-Zr catalyst tested in CSR of commercial biodiesel 

using S/C of 3 at 650 °C and WHSV of 3.18 h
-1

 

 

 

 

6.6 Conclusion 

The experimental results show that biodiesel can be converted to H2 rich gas efficiently. 

The optimum temperature for H2 production by CSR of biodiesel is in the range of 650-

700 °C which was also predicted by equilibrium. The optimum biodiesel vaporiser 

temperature was found to be 190 °C.  Molar S/C ratio played an important role to 

determine the right conditions to perform the experiments, with S/C of 3 showing the best 

performance.  It was found that WHSV of 3.18 h
-1

 provided the best results. The four 

different biodiesels examined showed that the commercial biodiesel exhibited the highest 

YH2 and Xbiod. Both the catalysts, commercial and in house prepared catalyst i.e. Ni/Ce-Zr 

and Ni/Ca-Al provided the best performance in terms of H2 yield, along with Xbiod and 

XH2O. In comparison to Ni/Ce-Zr, Ni-Ce-Zr-3/1 catalyst was ineffective and showed very 
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high carbon formation about 25.7% of the carbon feed was observed on the catalyst 

making it very difficult to operate the reactor and calculate the conversion as a result the 

experimental results were not shown above for this particular catalyst. 

 

Surface area analysis of the used catalysts indicated that the Ni/Ca-Al, Ni/Ce-Zr and Ni-

K/Ce-Zr catalysts were prone to higher sintering as compared to the other Ni/Al and Ni-

K/Al catalysts. The SEM-EDX analysis showed the presence of Ni sintering in the Ni/Ce-

Zr, Ni-K/Ce-Zr and Ni-Sn/Ce-Zr catalysts. The TPO results performed using TGA-FTIR 

showed that two forms of carbon were deposited on the Ni/Al, Ni/Ce-Zr and Ni-K/Ce-Zr 

catalysts. On the other hand Ni-Sn/Ce-Zr and Ni/Ca-Al showed the presence of only one 

form of carbon. 
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7. Autothermal reforming 

 

The ATR of biodiesel was examined by Specchia et al [146] and the authors reported the 

conditions to run an ATR reformer. The authors reported that S/C of 2-2.5 and O2/C of 

0.39-0.41 were good starting conditions to operate an ATR reformer. As a result the ATR 

experiments were performed using similar conditions. From the CSR experiments Ni/Ca-

Al catalyst was an effective catalyst exhibiting highest biodiesel and water conversion 

thus highest H2 yield.  The experiments were performed at two S/C of 2-3, O2/C of 0.3 -

0.38 and WHSV of 3.23-2.54 h
-1

 using commercial biodiesel. As this catalyst showed 

highest conversion at 650°C this temperature was selected for the investigation. The 

experiments were performed using same input carbon molar flowrate as the CSR 

experiment. In the experiments performed, biodiesel flowrate was set to 0.978 cm
3
/h 

which gave a carbon input flowrate of 1.50 10
-5

 mol/s. The water flow rate was varied 

from 1.95 to 2.92 cm
3
/h to obtain the desired S/C of 2 and 3 respectively. In comparison 

to CSR, O2 was used in the experiment.  As use of pure O2 was not allowed for the 

experiments, air was used. In order to adjust the WHSV, N2 was used in addition with air. 

The air flowrates of 26 and 40 cm
3
/min were used to obtain an O2/C ratio of 0.3 and 0.38.  

 

7.1 Experimental procedure and reactions involved 

 

In addition to the reactions involved in SR discussed in 6.1, catalytic partial (CPO) and 

complete oxidation (CPO) happen in the ATR processes. Reaction 7.1 and 7.2 show the 

partial and complete oxidation reactions. 

 
n m k 2 2 , 298K

n-k
C H O + O nCO + H   ΔH 0

2 2
f

m
   (7.1)  

n m k 2 2 2 , 298K

m k m
 C H O + n+ O nCO + H O  ΔH 0

4 2 2
f

 
   

 
 (7.2) 
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Other oxidation reactions like oxidation of CO, H2 and C takes in ATR processes.   

2 2 , 298K

1
 CO+ O CO  ΔH =-283.6 kJ/mol

2
f  (7.3) 

2 2 2 , 298K

1
H + O H O ΔH =-241.6 kJ/mol

2
f

  (7.4) 

   
, 298K2 ΔH =-1

1
C+ O CO 10.5 kJ l

2
/mof  (7.5) 

, 2982 K2 ΔH =-395.6kJ/molC+O CO  f                                                                     (7.6) 

For measuring the performance of ATR same Eqs i.e. (6.12, 6.17 and 6.22) used in CSR 

were used to determine the conversion of biodiesel (Xbiod), steam (XH2O) and hydrogen 

yield (YH2). The oxygen conversion is determined using the following Eq 7.7. The 

selectivities of carbon gases were calculated in similar fashion as the CSR using Eqs 

6.24-26. The selectivity for H2 (SH-H2) was calculated using Eq 7.8, which contains 

addition H2O term in addition to the others. The efficiency of the process was measured 

by comparing the experimental results to the equilibrium predictions. 

 

2 2

2

2

O , in O , out

O

O , in

n -n
X = ×100

n

 
 
 
 

                                                                                             (7.7) 

2

2

2 4 2 4 2 6 3 6 3 8 2

H

H H .

H CH C H C H C H C H H O

y
S 100

y +y +y +y +y +y +y


 
  
  
 

 (7.8) 

 

The reaction contribution of the reactions was also calculated. Let the moles of biodiesel 

reacted by POX (R-7.1), CSR (R-6.3), COX (R-7.2) and TD(R-6.4) be POXn , CSRn , COXn

and TDn .  
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Applying mass balance we get  

outCO POX TDn ( n n )n k                                                                                               (7.9)  

out2
POX TD CSRn (n n ) ( 2 ) n

2 2
H

m m
n k                                                                    (7.10) 

out2
CSR COXn (n n )CO n                                                                                                (7.11)

Cs TDn =(n-k)×n                                                                                                               (7.12) 

Solving for POXn , CSRn , COXn and TDn we get 

Cs
TD

n
n =  mol/s

n-k

 
 
 

                                                                                                        (7.13) 

2CO out

COX CSR

n
n = -n mol/s

n

 
 
 

                                                                                         (7.14) 

2H ,out POX TD

CSR

n - 0.5m×(n +n )
n mol/s

m
( +2n-k)

2

 
 

  
 
 

    (7.15) 

CO out TD
POX

n -k×n
n = mol/s

n

 
 
 

 (7.16) 

POX
POX

TD POX CSR COX

n
n (%)= ×100

n +n +n +n

 
 
 

 (7.17) 

 

In the above equations n, m and k are the elemental composition of C, H and O of 

biodiesel respectively. 

 

It is important to note that the C balance for ATR runs had an additional term which 

involved char collected from the reactor inlet.. Figure 7.1 shows the char formed in 
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reactor inlet in the ATR experiments. Also O2 conversion for all the experiments was 

100%. 

 

 

 

 

  

Figure 7.1: Char formed in the reactor inlet during ATR experiments.   

7.2 Results and discussion 

Figure 7.2 shows the performance of Ni/Ca-Al catalyst in attempted ATR of commercial 

biodiesel at 650 °C with 190 and 170 °C as vaporiser temperatures. The Xbiod was highest 

at S/C of 3 and O2/C of 0.38 at WHSV of 3.23 h
-1

.  The molar carbon balance for these 

set of experiments is provided in Table 7.1 performed over 7200s with the carbon input 

of 1.08×10
-1

 mol. Biodiesel conversion (Xbiod) of 84.03% was observed at these 

conditions. In CSR, with same conditions Xbiod of 96.04% was observed. As compared to 

CSR, under attempted ATR conditions, XH2O was drastically affected. The XH2O 

decreased from 37.8 to 13.1% when the ATR equilibrium value was in excess of 25%.  

At the same O2/C and WHSV value, decreasing the S/C had a negative effect on the 

Char 
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Xbiod. At S/C of 2, biodiesel conversion decreased to 75.8%. On the other hand the 

change in steam conversion was mere 0.43% at this S/C. 

 

 

Figure 7.2:  Performance Ni/Ca-Al catalyst in ATR of commercial biodiesel at 650°C with biodiesel 

and water vaporisers set to 190 and 170°C respectively. In the Figure 3-3.23-0.38 represents the 

experimental conditions. The first value represents S/C, the second value shows the WHSV (h
-1

) and 

the last value is O2/C. 

 

 

In both these experiments, carbon formation on the catalyst surface was minimal: 2.8 and 

2.3% of the carbon output was deposited on the catalyst surface (Table 7.1).  On the other 

hand the carbon deposited at the reactor inlet was higher with S/C of 2 compared to S/C 

of 3.  At S/C of 3, 10.8% carbon was formed in the reactor inlet which increased to 

19.3% with reduction in S/C to 2.  Similarly at S/C of 2, decreasing WHSV to 2.54 h
-1

 

reduced the Xbiod to 73.5% but water conversion slightly increased to 15.6%.  Lowering 

O2/C to 0.3 at S/C of 2 and WHSV of 3.23 h
-1

 had no significant effect on Xbiod, while 

XH2O increased from 12.7 to 22.0%. This could be as a result of lowering O2/C ratio. 

 



Hydrogen production by steam reforming of biodiesel 

208 

 

The highest YH2 was observed at S/C of 3 and O2/C of 0.38, with a value of 16.13 wt % 

obtained with YH2 eff of 70.8% (Figure 7.3). Figure 7.3 shows the YH2 and (SH-H2) along 

with carbon gas selectivities (SC) in ATR of commercial biodiesel using Ni/Ca-Al 

catalyst using 190 and 170°C biodiesel and water vaporiser temperatures respectively. 

 

 
 

Figure 7.3: Yield (YH2) and selectivity for H2 (SH-H2)  with selectivity’s of carbon gases (Sc) in ATR of 

commercial biodiesel over Ni/Ca-Al catalyst at 650°C with biodiesel and water vaporisers set to 190 

and 170°C respectively. In the Figure 3-3.23-0.38 represents the experimental conditions. The first 

value represents S/C, the second value shows the WHSV (h
-1

) and the last value is O2/C. 

 

The selectivity to all the gases were close to their corresponding equilibrium values 

(Figure 7.3). As compared to CSR the (SH-H2) was significantly reduced. Similarly (SC-

CO) is reduced and (SC-CO2) increased in comparison to CSR. This could be as result of 

biodiesel oxidation via (R-7.2). 

 

Figure 7.4 shows the contribution of various reactions i.e. TD, POX, CSR and COX 

occurring in the ATR of commercial biodiesel, using 190 and 170 °C as the biodiesel and 

water vaporiser temperature over Ni/Ca-Al catalyst.  The highest contribution of CSR (R-
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6.3) was observed at S/C of 3 and constant O2/C of 0.38 and WHSV of 3.23 h
-1

.  At these 

conditions CSR (R-6.3) contributed 32% and the other two reactions POX (R-7.1) and 

COX (R-7.2) contributed to 24 and 27%.  Among the four reactions the contribution of 

TD (R-6.4) was lowest about 18 %.  The higher CSR (R-6.3) contribution resulted in 

higher Xbiod and XH2O conversions resulting in higher (YH2) (Figure 7.2 and 7.3). 

Lowering the S/C to 2 at the same O2/C and WHSV was unfavourable as it reduced the 

contribution of the desired CSR (R-6.3) by 10 % and POX (R-7.1) by 1.2 %, with 

increasing  contribution of the undesired TD (R-6.4) by 7.2% resulting in  lower Xbiod 

(Figure 7,2)  ultimately lowering (YH2) (Figure 7.3). The reduced S/C ratio marginally 

affected contributions of COX (R-7.2) increasing by 2.6 %. The higher steam conversion 

and reforming efficiencies (Figure 7.2) with S/C of 3 and O2/C of 0.38 corroborates the 

interpretation of the results. The amount of carbon formed on the catalyst surface for 

these two runs were similar but the carbon formed in the reactor inlet was higher with 

S/C of 2 as result of higher TD (R-6.4) contribution of 25.2%.  

 

The reduction of O2/C from 0.38 to 0.3 at S/C of 2 and same WHSV of 3.23 h
-1 

lowered 

the contribution of COX (R-7.2) by 12 % and increased POX (R-7.1) by 13 %.  At these 

conditions of O2/C of 0.3 with S/C of 2, CSR (R-6.3) contribution increased by 5% and 

TD (R-6.4) decreased by 6%. As a result YH2 increased from 14.1 to 15.2 wt % when 

O2/C was lowered from 0.38 to 0.3.  

 

At the same S/C of 2 and O2/C ratio of 0.38, decreasing the WHSV to 2.54 h
-1

 had no 

significant effect on the reaction contributions.  The contributions of POX (R-7.1) and 

COX (R-7.2) increased by 3 and 1 %, but TD (R-6.4) decreased by 2.5 %.  Even though 

the contributions of POX and CSR (R-6.3) increased, the reduced Xbiod and XH2O 

conversions (Figure 7.2) were responsible for the lower YH2. This also reflected by the 

decreased fuel and steam conversion efficiencies which are a supporting evidence for the 

interpretation.  
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Figure 7.4: Reaction contribution in ATR of commercial biodiesel over Ni/Ca-Al catalyst at 650°C 

with biodiesel and water vaporisers set to 190 and 170°C respectively. In the Figure 3-3.23-0.38 

represents the experimental conditions. The first value represents S/C, the second value shows the 

WHSV (h
-1

) and the last value is O2/C. 
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Table 7.1: Molar carbon balance of ATR of commercial biodiesel using Ni/Ca-Al catalyst. The 

biodiesel and water vaporiser were set to 190 and 170°C. The balance is based on total input mol of C 

(=1.08 ×10
-1

) over duration of experiment (7200 s) minus mol C converted to gases, volatiles in the 

condensate, deposited on catalyst and carbon formed in the reactor. 

  C on catal C in cond Char -reactor C in gases 

 

O2/C 

1-

Cin/Cout 
mol 

% C 

out 
mol 

% C 

out 
mol 

% C 

out 
mol % C out 

0.38
a
 2.62 

2.89

10
-3

 
02.75 

1.73

10
-4

 
00.16 

1.13×

10
-2

 
10.78 

9.07

10
-2

 
86.29 

0.38
b
 3.24 

2.37

10
-3

 
02.26 

9.66

10
-5

 
00.09 

2.01×

10
-2

 
19.30 

8.18

10
-2

 
78.32 

0.38
c
 9.00 

1.35

10
-3

 
01.38 

5.93

10
-5

 
00.06 

1.75×

10
-2

 
17.83 

7.93

10
-1

 
80.71 

0.3
b
 10.32 

2.58×

10
-3

 
02.66 

3.53×

10
-5

 
00.03 

1.27×

10
-2

 

 

13.15 

 

8.14×

10
-2

 
84.13 

a- The experiment was performed using S/C of 3 with WHSV of 3.23 h
-1

.  

b- The experiment was performed using S/C of 2 with WHSV of 3.23 h
-1

.  

c- The experiment was performed using S/C of 2 with WHSV of 2.54 h
-1

. 

            

7.3 Energy Balance: 

In order to determine if autothermal conditions are achieved an energy balance was 

performed assuming isothermal conditions. The enthalpy of component i is calculated 

using Eq 7.18 from CEA thermodynamic analysis software using NASA coefficients. 

The values of the the coefficients a1-b1 is provided in Appendix E. The magnitude of the 

balance (ΔHEC, for enthalpy change of reaction) was expressed in % of the total output 

enthalpy given by following Eq 7.19.  

  

2 3 4
-2 -1i 1

1 2 3 4 5 6 7

H bT T T T
=-a T +a T lnT+a +a +a +a +a +

RT 2 3 4 5 T
 (7.18) 
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H H
ΔH 100

H

p r

EC

p

 
   
 

 


                                                                                    (7.19) 

 

The enthalpies of reactants and products in the inlet and outlet are shown in Tables 7.2 

and 7.3, at isothermal conditions of 650°C and atmospheric pressures. In both inlets and 

outlet enthalpies, enthalpy term of H2O completely dominates all the others (reactants 

and products). In the inlet the enthalpy of H2O and biodiesel were negative while the 

other reactants O2 and N2 were positive.   

 

Table 7.2: Enthalpies of inlet reactants, calculated at isothermal conditions of 650 °C and 1 atm. In 

the Table 3-3.23-0.38 represents the experimental conditions. The first value represents S/C, the 

second value shows the WHSV (h
-1

) and the last value is O2/C. The enthalpy calculation was 

performed for duration of 7200 s. 

Conditions 3-3.23-0.38 2-3.23-0.38 2-2.54-0.38 2-3.23-0.3 

Enthalpy J % J % J % J % 

Biod -9.62×10
2
 1.4 -9.62×10

2
 2.2 -9.62×10

2
 2.2 -9.62×10

2
 2.2 

H2O -7.09×10
4
 104.1 -4.73×10

4
 109.5 -4.73×10

4
 109.5 -4.73×10

4
 109.7 

O2 8.25×10
2
 -1.2 8.25×10

2
 -1.9 8.25×10

2
 -1.9 6.60×10

2
 -1.5 

N2 2.94×10
3
 -4.3 4.24×10

3
 -9.8 4.24×10

2
 -9.8 4.49×10

3
 -10.4 
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Table 7.3: Enthalpies of outlet products, calculated at isothermal conditions of 650 °C and 1 atm. In 

the Table 3-3.23-0.38 represents the experimental conditions. The first value represents S/C, the 

second value shows the WHSV (h
-1

) and the last value is O2/C. The enthalpy calculation was 

performed for duration of 7200 s. 

Conditions 3-3.23-0.38 2-3.23-0.38 2-2.54-0.38 2-3.23-0.3 

Enthalpy J % J % J % J % 

H2O -6.16×10
3
 76 -3.99×10

4
 72.0 -4.13×10

4
 74.0 -3.71×10

4
 75.4 

CO2 -2.25×10
4
 27.8 -1.97×10

4
 35.6 -1.83×10

4
 32.9 -1.57×10

4
 32.0 

CO -2.54×10
3
 3.1 -2.44×10

3
 4.4 -2.56×10

3
 4.6 -3.42×10

3
 6.9 

CH4 -4.14×10
1
 0.1 -3.35×10

1
 0.1 -2.87×10

1
 0.1 -2.73×10

1
 0.1 

C 1.51×10
2
 -0.2 2.37×10

2
 -0.4 1.99×10

2
 -0.4 1.61×10

2
 -0.3 

H2 2.52×10
3
 -3.1 2.19×10

3
 -4 2.03×10

3
 -3.6 2.42×10

3
 -4.9 

N2 2.94×10
3
 -3.6 4.24×10

3
 -7.6 4.24×10

3
 -7.6 4.49×10

3
 -9.1 

 

Likewise in the outlet the enthalpies of H2O, CO and CO2 were negative while those of 

N2, H2 and C were positive.  The enthalpies of CH4 and C terms were negligible as 

compared to the other products H2, CO, CO2 and N2. This phenomenon was evident in all 

the experimental conditions of varying S/C, O2/C and WHSV values.  The overall 

balance for all the runs (total output enthalpy-total input enthalpy) was negative, 

demonstrating exothermic conditions in the isothermal reactor.  At constant O2/C of 0.38 

and WHSV of 3.23 h
-1

, increasing S/C from 2 to 3: in agreement with both total input and 

output enthalpies dominated by the H2O enthalpy term, changing the S/C from 2 to 3 

increased significantly (in absolute values) the total input and output flow terms. The 

balance over the isothermal reactor was almost constant, as expressed by ~ (-13) kJ 
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(Figure 7.5) over the 7200 s of the experiment. However expressed in terms of relative 

energy flows, the difference between input and output appeared to reduce. With 

autothermality expressed by ΔHEC of zero, a reduction from 22.1% to 16.0% (Figure 7.5) 

in this parameter reflected conditions getting closer to autothermality from the 

exothermal side. This is explained by equilibrium conditions shifted towards reactions 

that utilise steam, such as SR (R-6.1) and WGS (R-6.2), where SR is significantly more 

endothermic than the mildly exothermic WGS (R-6.2) (Figure 7.4).  

 

Decreasing O2/C from 0.38 to 0.3 at constant S/C of 3 and WHSV of 3.23 h
-1

, did not 

affect the total input enthalpy, as the O2 term is a negligible contributor to the inflow of 

energy compared to the overwhelming effect of steam. Varying the O2/C affects the 

output enthalpy flow, via the effects on the CO and CO2 products.  Decreasing O2/C 

hinders the COX (R-7.2), and shifts the equilibrium towards the less exothermic POX (R-

7.1) (Figure 7.4). With CO2 being a dominant term in the output enthalpy, a lower yield 

of CO2 product and higher yield of CO reduces overall the total output enthalpy and 

brings the conditions closer to autothermality. This is reflected in the large drop in ΔHEC 

from 22.1% to 12.7% (Figure 7.5). The condition O2/C of 0.3 for S/C of 2 at WHSV of 

3.23h
-1

 represented the closest to autothermal conditions for this set of runs.  

 

Changing the WHSV by varying the catalyst mass in the reactor would have the effect of 

reducing the time available for homogeneous reactions in the reactor and for 

heterogeneous reactions on the catalyst bed. Accordingly, lowering the WHSV 

corresponded to higher reaction times and could have created conditions closer to 

chemical equilibrium. However, it was found here that the energy balance was hardly 

affected by the variation of WHSV from 3.23 to 2.54 h
-1

 at constant S/C of 2 and O2/C of 

0.38, by increasing the catalyst mass from 2 g to 2.6 g. It is ventured that the reactor as 

close to chemical equilibrium for 2g of catalyst as permitted by the set up and conditions 

used, and that adding catalyst volume did not change that. 
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Figure 7.5:  Enthalpy balance of the ATR reforming experiments. 

7.4 Conclusion 

Although the attempted ATR experiments were successful in demonstrating the 

simultaneous occurrence and respective contributions of the desired reactions of POX, 

steam reforming and complete oxidation, which form the backbone of autothermal 

reforming, the reactor designed did not appear to convert the biodiesel to the same 

efficient degree as was measured during the previous CSR experiments.  A different 

approach must be adapted to feeding the reactants, and recommendations on this issue are 

made in the Future Work section. The main problem associated with the attempted ATR 

experiments was excessive formation of carbon in the reactor inlet, affecting the 

conversion of biodiesel to produce high yield of H2 gas. 
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8. Conclusion and future work 

An experimental set-up was designed and successfully evaluated for H2 production from 

biodiesel. An up flow reactor arrangement was difficult to operate as a result of 

condensation occurring due to the mixing of cold N2 carrier gas and hot biodiesel vapours 

and steam. The use of N2 preheating coils placed on the vaporisers in addition to 

changing the configuration to down flow proved to be the right option for the prevention 

of condensation of the biodiesel and steam vapours and correct operation of the system.  

In order to evaluate the performance of the reactor set-up, a micro gas chromatograph 

was installed and an analysis method was developed and successfully tested. The 

designed set up was very effective for steam reforming while autothermal reforming 

indicated further optimization was required.  Effects of molar steam to carbon ratio in the 

feed (S/C), temperature, weight hourly space velocity (WHSV, i.e. an inverse measure of 

residence time in the reformer), catalyst and biodiesel characteristics on the steam 

reforming outputs were examined at constant carbon input of 1.50 10
-5 

mol
 
of C/s.  The 

optimum temperature conditions to convert biodiesel to H2 were found to be in the 

temperature range 600-700°C, with 190 and 170°C as biodiesel and water vaporiser 

temperatures respectively. The performance of the process was examined in terms of H2 

yield, as well as Xbiod and XH2O and selectivity to products. The experimental values were 

compared with the equilibrium values to determine the efficiency of the system and allow 

comparisons between catalysts and operating conditions. 

 

The catalysts examined in this study were prepared by impregnation of commercial Ce-Zr 

support and of supports prepared by sol gel synthesis.  The commercial Ce-Zr was 

supplied MEL Chemicals, UK.  The manufacturer supplied the support in the form of 

hydroxide and oxide. The hydroxide was calcined in the laboratory to form oxide and 

was used to prepare the catalyst using two methods (wet and dry impregnation) with 

different Ni loading.  It was found that smaller Ni crystallite sizes and higher surface area 

with good pore size distribution was exhibited by catalysts prepared with the wet 

impregnation method. As a result, this method was used in catalyst preparations. Further 
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the oxide pre calcined by the manufacturer had higher surface area thus it was chosen for 

the preparation of the catalysts Ni/Ce-Zr, N-K/Ce-Zr and Ni-Sn/Ce-Zr. Tamarind seed 

polysaccharide was used for the first time as a gelling agent in sol gel synthesis for the 

preparation of catalyst supports (Ce-Zr-3/1 and Ce-Al-3/1).  As the polysaccharide is 

stable up to 100°C and can work in high ph this would assist in good gel formation. The 

formation of nanoparticles using green approach can be achieved.  The higher chain 

length of the polysaccharide resulted in formation of nano crystals. 

 

Three different kinds of biodiesel (commercial, palm and in house) were used to evaluate 

the characteristics of biodiesel on the process.  It was found that commercial biodiesel 

exhibited the best performance in terms of reactants conversion and YH2 over the Ni/Ca-

Al catalyst among the three biodiesels tested and was thus used for evaluating the other 

catalysts.  

 

The performance of the in house prepared Ni catalysts was compared with the 

commercial (Ni/Al) catalyst provided by Johnson Matthey, Plc and the Ni/Ca-Al catalyst 

provided by TST, Ltd. For Ni/Al catalysts, highest YH2 of 26.3 wt% of the biodiesel feed 

was obtained with YH2 (eff) of 87.2% (i.e. % of the chemical equilibrium value) at 700 
o
C 

and S/C of 3 at WHSV of 3.52 h
-1

.  A biodiesel conversion of 92% with 36.3% steam 

conversion was obtained for the catalyst, representing 84% and 77% of the chemical 

equilibrium values respectively.  On the other hand Ni/Ca-Al and Ni/Ce-Zr supported 

catalysts exhibited the best performance at lower temperature (650 
o
C) and WHSV of 

3.18 h
-1

 at S/C of 3. A YH2 of 27.0 wt% (93.3% of equilibrium), was seen with the Ni/Ca-

Al catalyst as a result of high biodiesel and steam conversions of 96% and 37.5%.  On the 

other hand, Ni/Ce-Zr was responsible for slightly higher YH2 of 27.9 wt%, equivalent to 

96% of the equilibrium value, caused by the highest steam conversion among all the 

catalysts examined. The Ni/Ca-Al and the Ni/Ce-Zr catalysts exhibited a fuel reforming 

efficiencies as expressed by the ratio of H2 to biodiesel calorific values of 86.4 and 

88.9%.  
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The addition of dopants such as K and Sn had a negative effect on the catalytic activity of 

the Ni/Ce-Zr catalyst, especially Ni-K/Ce-Zr which showed higher C deposition on the 

catalyst surface and exhibited lower reforming activity as a result. The Ni catalysts 

prepared using sol gel made supports (Ce-Zr-3/1 and Ce-Al-3/1) were ineffective 

compared to the ones prepared using commercial Ce-Zr support supplied by MEL 

chemicals, UK. The catalysts prepared using sol gel syntheses were prone to carbon 

deposition and exhibited low surface area along with uneven pore structure, affecting 

their activity and catalyst performance. On the other hand the catalyst prepared using 

commercial Ce-Zr support had high surface area and had a uniform pore structure thus 

providing good catalytic activity.   

  

In comparison to steam reforming, H2 production via autothermal reforming was not as 

successful.  A hydrogen yield of 16.1 wt%, i.e. just 70.8% of equilibrium was achieved at 

S/C of 3 and molar oxygen to carbon ratio (O2/C) of 0.38 with WHSV of 3.23 h
-1

 at 650 

°C, resulting from Xbiod and XH2O  of just 84.0 and 13.1%, respectively. Enthalpy 

balances on the reformer for the experiments performed at 650 °C for the constant run 

durations of 7200 s showed that the enthalpy balance (Hr) for all the runs (total output 

enthalpy minus total input enthalpy) was negative, demonstrating exothermic conditions 

in the isothermal reactor.  The negative enthalpy term of H2O (steam) dominated over all 

the other reactants input enthalpy terms (biodiesel, O2, N2). In the total output enthalpy, 

the enthalpies of H2O, CO2, CH4 and CO were negative while those of N2, O2, C and 

biodiesel, were positive, with, again the steam term dominating over all the others. The 

magnitude of the balance ΔHEC showed that lower S/C of 2, resulted in conditions getting 

closer to autothermality from the exothermal side. The ΔHEC value reducing from 22% to 

16% of the total output enthalpy when lowering S/C from 3 to 2 at constant O2/C of 0.38 

and WHSV of 3.23 h
-1

 supported this interpretation.  Likewise lowering the O2/C from 

0.38 to 0.3 at constant at S/C of 2 and WHSV of 3.23 h
-1

 also had a significant effect on 

ΔHEC, suggesting conditions moving closer to autothermality, supported by reduced ΔHEC 

value  from 22.1% to 12.7%.  At 650 °C, the condition O2/C of 0.3 for S/C of 2 at WHSV 

of 3.23 h
-1

 represented the closest to autothermal conditions for the experiments.  
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Future work  

 

It can be seen from this evaluation that H2 can be successfully produced from biodiesel 

via steam reforming. The long term evaluation of the process has to be carried out to 

determine the stability of the catalyst in terms of activity and carbon deposition. The 

reasons responsible for carbon formation should be investigated to improve the stability 

and activity of the catalyst. The forms of carbon formed during hydrogen production 

must be investigated. This would help in selection or modification of catalyst to resist or 

minimise carbon formation.  Further characterisation of catalyst using chemisorptions 

should be performed in order to determine the active sites of the catalyst in order to have 

a clear idea of the performance of the catalyst. Evaluation of the catalyst in kinetic regime 

rather than the thermodynamic regime should be performed in order to have a clear 

picture on the activity of the catalysts. The optimisation of particle size to eliminate 

internal diffusion limitation must be determined. In order eliminate the effects of 

thermodynamic regime; experiments must be performed in lower temperature range from 

500-600°C.  

 

 The formation of liquid products during the hydrogen production processes has to be 

examined to determine their effect on the overall performance of the process. The 

presence of certain compounds in the liquid products like aromatics responsible for 

carbon formation, would give an idea of the reaction mechanisms involved and steps 

leading to the formation of the carbon precursors. The factors responsible for formation 

of the carbon precursors must be indentified and steps to avoid them should be 

investigated. For e.g. the effect of reactor temperature steam/carbon ration, residence 

time and catalyst support on the formation of carbon precursors like aromatics or 

ethylene should be investigated. The investigation of these conditions would help in 

selection of operating conditions for hydrogen production from biodiesel. 
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The effects of wall on the reactor on the performance of process have been examined. 

The stainless steel contains Ni and other elements such Cr which would catalyse some 

reactions during hydrogen production. Likewise the presence of sand used in the reactor 

would also affect reactions like decomposition during hydrogen production. As a result 

both these important aspects need to be examined under the chosen operating conditions. 

 

The influence of biodiesel type on hydrogen production is not fully understood. In order 

to investigate the effect of biodiesel type on H2 production, use of biodiesel derived from 

animal fat such as beef tallow or non edible oil derived biodiesel i.e. Jatropha could be 

evaluated. Further the hydrogen production from model compounds like methyl palmitate 

or linoleate etc should be studied.  The percentage of the methyl esters vary depending on 

the source of biodiesel. The examination of H2 production from model compounds would 

provide clues to the variation in performance of biodiesel in steam reforming processes. 

Likewise this could also provide an insight into the reasons for carbon formation during 

the process. Similarly, biodiesel production using algae oil has been investigated widely 

in recent times and algal biodiesel could also be investigated for steam reforming.   The 

use of algae-derived biodiesel could be essential in resolving the problems of using edible 

oil for biodiesel production and competition between food and non-food crops.  The use 

of sinter resistant Ni catalyst containing Ce-Zr needs to be developed for long term H2 

production from biodiesel.  

 

It is known that steam reforming is an energy consuming process, in order to minimize 

energy expenditure of H2 production autothermal reforming must be optimised and 

further evaluated. Different flow arrangements of reactants and oxidant for autothermal 

reforming may improve the processes effectiveness and increase H2 yield while reducing 

carbon formation. Other processes such as chemical looping and sorption enhanced steam 

reforming could be evaluated for H2 production from biodiesel.  These processes are 

energy efficient and improve H2 yield, when low H2 yield is a drawback of conventional 

autothermal reforming.    
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10. Appendices 

10.1. Appendix A: Gas chromatograph calibration 

 

The gas chromatograph used an external standard method to determine the reactor outlet 

gas composition. The different gas mixtures were used for the calibration of the gas 

chromatograph. The calibration gas mixture was connected to the gas chromatograph and 

samples were injected in the columns via the sampling pump. The calibration point was 

taken when the area of the sampling gases was constant and there was no residual O2  

From air left in the gas sampling tube. 

 

 
 

Figure 10.1: Channel 1, N2 calibration for the GC. 
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Figure 10.2: Channel 1, H2 calibration for the GC. 

 

 
Figure 10.3: Channel 1, CO calibration for the GC. 
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Figure 10.4: Channel 1, CO2 calibration for the GC. 

 
Figure 10.5: Channel 2, O2 calibration for the GC. 
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Figure 10.6 Channel 2, CH4 calibration for the GC. 

 
Figure 10.7 Channel 2, C2H4 calibration for the GC. 
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Figure 10.8: Channel 2, C2H6 calibration for the GC. 

 

 

Figure 10.9: Channel 2, C3H6 calibration for the GC. 
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Figure 10.10: Channel 2, C3H8 calibration for the GC. 
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10.2. Appendix B: Equilibrium  calculations 

 

The input and output data of thermodynamic output is given below considering an 

example of SR of commercial biodiesel using  S/C of 3 and WHSV of 3.18h
-1

. The inlet 

biodiesel composition was used to calculate inlet mole fractions. Due to unavailability of 

the thermodynamic data of some of the methyl esters, the biodiesel composition obtained 

from gas chromatograph was regularised to 100% before calculating the mole fractions.  

 

 Table 10.1: Inlet molar composition used for equilibrium calculations for SR of commercial 

biodiesel at S/C of 3 and WHSV of 3.18
 
h

-1
. 

 

 Inlet 

Compound mole fraction 

C13H26O2 1.262865E-05 

C17H32O2 4.738665E-05 

C17H34O2 2.424214E-03 

C19H38O2 5.625648E-04 

C15H30O2 4.741212E-05 

C19H36O2 7.240017E-03 

C19H34O2 2.917506E-03 

C21H42O2 8.128071E-05 

C19H32O2 2.251192E-04 

H2O 7.547660E-01 

N2 2.307359E-01 

Ar 1.000000E-03 

 

 

 

 



Hydrogen production by steam reforming of biodiesel 

244 

 

 

 

Table 10.2: Outlet molar composition used for equilibrium calculations for SR of commercial 

biodiesel at S/C of 3 and WHSV of 3.18
 
h

-1
. 

 

T H2 CO CO2 H2O N2 Ar NH3 CH4 

200 5.38E-

03 

2.63E-

06 

6.55E-

02 

5.65E-

01 

2.08E-

01 

9.01E-

04 

1.15E-

04 

1.56E-

01 

250 1.52E-

02 

2.05E-

05 

6.76E-

02 

5.57E-

01 

2.07E-

01 

8.96E-

04 

1.62E-

04 

1.52E-

01 

300 3.54E-

02 

1.15E-

04 

7.20E-

02 

5.41E-

01 

2.05E-

01 

8.87E-

04 

2.07E-

04 

1.46E-

01 

350 7.00E-

02 

5.09E-

04 

7.92E-

02 

5.14E-

01 

2.01E-

01 

8.72E-

04 

2.40E-

04 

1.34E-

01 

400 1.21E-

01 

1.85E-

03 

8.92E-

02 

4.75E-

01 

1.96E-

01 

8.48E-

04 

2.53E-

04 

1.17E-

01 

450 1.85E-

01 

5.68E-

03 

1.00E-

01 

4.25E-

01 

1.88E-

01 

8.17E-

04 

2.46E-

04 

9.47E-

02 

500 2.56E-

01 

1.46E-

02 

1.09E-

01 

3.71E-

01 

1.80E-

01 

7.81E-

04 

2.21E-

04 

6.84E-

02 

550 3.23E-

01 

3.07E-

02 

1.11E-

01 

3.22E-

01 

1.71E-

01 

7.44E-

04 

1.84E-

04 

4.10E-

02 

600 3.72E-

01 

5.12E-

02 

1.05E-

01 

2.88E-

01 

1.64E-

01 

7.12E-

04 

1.42E-

04 

1.81E-

02 

650 3.94E-

01 

6.80E-

02 

9.69E-

02 

2.75E-

01 

1.60E-

01 

6.95E-

04 

1.01E-

04 

5.59E-

03 

700 3.95E-

01 

7.89E-

02 

8.87E-

02 

2.76E-

01 

1.59E-

01 

6.89E-

04 

7.05E-

05 

1.46E-

03 

750 3.91E-

01 

8.68E-

02 

8.15E-

02 

2.81E-

01 

1.59E-

01 

6.88E-

04 

4.96E-

05 

3.90E-

04 

800 3.85E-

01 

9.33E-

02 

7.52E-

02 

2.87E-

01 

1.59E-

01 

6.87E-

04 

3.58E-

05 

1.15E-

04 

850 3.80E-

01 

9.89E-

02 

6.97E-

02 

2.92E-

01 

1.59E-

01 

6.87E-

04 

2.66E-

05 

3.71E-

05 

900 3.75E-

01 

1.04E-

01 

6.47E-

02 

2.97E-

01 

1.59E-

01 

6.87E-

04 

2.02E-

05 

1.31E-

05 
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Table 10.3: Equilibrium mass balance calculations of SR of commercial biodiesel at S/C 3 and 

WHSV of 3.18 h
-1

. 

Temp 
Outlet 

moles 
XH2O Y H2 SH-H2 SC-CO SC-CO2 SC-CH4 

200 112.12391 16.41430 0.30691 3.27793 0.00120 29.89656 70.10224 

250 112.67509 17.15141 0.87246 8.91584 0.00940 30.99280 68.99780 

300 113.83002 18.68056 2.05229 19.23812 0.05326 33.25098 66.69576 

350 115.89024 21.35138 4.13624 33.83797 0.23883 37.15232 62.60885 

400 119.09834 25.37872 7.32996 50.21282 0.89228 42.84619 56.26153 

450 123.57839 30.66658 11.66294 65.57913 2.83514 49.77632 47.38854 

500 129.32900 36.67768 16.92468 78.43991 7.62519 56.36320 36.01161 

550 135.97334 42.37626 22.52406 88.40622 16.88578 60.24829 22.86593 

600 142.13034 46.32586 27.19984 95.17511 29.47420 59.85109 10.67471 

650 145.79461 47.56141 29.55354 98.52479 40.27812 56.29619 3.42570 

700 147.07290 46.94381 29.96988 99.61176 47.16576 51.92997 0.90427 

750 147.41162 45.78648 29.69660 99.89460 51.95138 47.80605 0.24257 

800 147.50296 44.60377 29.28724 99.96864 55.82201 44.10686 0.07112 

850 147.52620 43.52197 28.88213 99.98972 59.15533 40.82168 0.02299 

900 147.53865 42.55155 28.51329 99.99631 62.07979 37.91207 0.00814 

 

 

Sample calculations performed at 650°C provides  following results 

Applying N2 balance (6.18) outlet moles are calculated assuming 100 moles as basis. 

 

Molar flowrate of gases leaving is  

 

(23.03)
Outlet moles= 145.75

0.1582
                                                                                   (10.1) 
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Steam conversion calculated using Eq 6.13 is given below. 

2H O

75.47 39.57
X 100=47.56 %

75.47

 
  
 

                                                                      (10.2) 

The H2 yield was caudated using Eq 6.22. 

 

2H

2.02 0.396 145.75
Y (wt%) 100= 29.55%

394.93

  
  
 

 (10.3) 

The selectivities of H2 and other carbon containing gases calculated using 6.23 and 6.25-

26 is given below 

2H H

0.396
S 100 =98.52 %

0.396 0.005


 
  

 
                     (10.4) 

C-CO

0.069
S = ×100 =40.28%

0.069+0.097+0.005

 
 
 

 (10.5) 

2C-CO

0.097
S = ×100 =56.29%

0.069+0.097+0.005

 
 
 

 (10.6) 

 
4C-CH

0.005
S = ×100 =3.42%

0.069+0.097+0.005

 
 
 

 (10.7) 
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10.3. Appendix C: Carbon balance calculation 

 

Carbon balance is shown below considering an e.g. Ni/Ce-Zr catalyst 

Input molar flowrate of carbon 1.5×10
-5

 mol/s considering 7200 s experiment the inlet 

mole of carbon is calculated to 1.5×10
-5

 mol/s ×7200 s = 1 1.0798 10 mol.  The biodiesel 

conversion was 96.09 hence C leaving the reactor with the gases is given by  

1 1C leaving the reactor with gases =1.08 10 0.9609 1.0376 10 mol                    (10.8) 

The amount of C in the condensate was 781.34 mg/lit and the amount of condensate 

collected was 4 ml hence the amount of C in the condensate would be  

-4781.35 4 1
C in the condensate = × × =2.6023×10  mol

1000 1000 12

 
 
 

 (10.9) 

The amount of C deposited on the catalyst obtained from elemental analysis is 0.79 wt % 

The total amount of C on the catalyst surface is 

10.079 2.0506
C on catalyst surface 1.3596 10 mol

1 0.079 12

 
    

 
 (10.10) 

The total output C=( C in gas+C on cat+C in condensate)  (10.11) 

1 3 4

1

The total output C (1.0376 10 1.3596 10 2.6023 10 )

1.0538 10 mol

  



      


 (10.12) 

1 1

1

1.0798 10 1.0538 10
Unacounted C (% feed) = 100 2.40

1.0798 10

 



   
  

 
 (10.13) 

 
-4

1

2.6023×10  
C in gas (%)= 100 98.46

1.0538 10

 
  

 
 (10.14) 

1

1

1.3596 10
C on catalyst (%)= 100 1.29

1.0538 10





 
  

 
                (10.15) 
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-4

1

2.6023×10
 C in condensate (%)= 100 0.24

1.0538 10

 
  

 
 (10.16) 
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10.4. Appendix D: Vaporiser details 

 

Figure 10.11: Engineering drawing of the vaporisers. 
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Table 10.4: Flowrates used for vaporizer design. 

Mass flow  of biod kg/h Molar flow of biod 

kmol/h 

Molar flow of water 

kmol/h
a
 

Molar flow of  N2 

kmol/h 

5.4000E-03 1.82432E-05 1.0399E-03 1.22543E-05 

6.0000E-03 2.02703E-05 1.1554E-03 1.22543E-05 

1.2000E-02 4.05405E-05 2.3108E-03 1.22543E-05 

a- Based on S/C of 3. 

 

Energy required to heat water from 25 to 100°C. 

2

373.
2 3

1

298

Δa+ΔbT+ΔcT ΔdT
H O

Q n dT                                                                         (10.17)  

Table 10.5: Specific heat constants for water and enthalpy calculation. 

Δa  Δb  Δc  Δd  Q1 kJ/h 

9.1315E+01 -3.9399E-02 -2.0910E-04 5.2982E-07 7.2056E+00 

9.1388E+01 -3.9454E-02 -2.0929E-04 5.3030E-07 8.0033E+00 

9.1719E+01 -3.9701E-02 -2.1016E-04 5.3248E-07 1.5980E+01 

 

Energy required to heat steam from 100 to 400°C. 

2

673.
2 3 4

2

373

Δa+ΔbT+ΔcT ΔdT ΔeT
H O

Q n dT                                                    (10.18) 

 

Table 10.6: Specific heat constants for steam and enthalpy calculation. 

Δa  Δb  Δc  Δd  Δe  Q2 kJ/h 

3.3872E+01 -8.2350E-03 2.9028E-05 -1.6262E-08 3.6486E-09 1.0900E+02 

3.3878E+01 -8.2532E-03 2.9115E-05 -1.6416E-08 3.6530E-09 1.2138E+02 

3.3905E+01 -8.3354E-03 2.9508E-05 -1.7117E-08 3.6729E-09 2.4520E+02 

 

Energy required for phase change at 100°C 

 

2Q =nλ where λ is 39.5kJ/mol  (10.19) 
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Table 10.7:  Enthalpy calculation for phase change. 

Molar flow of 

water kmol/h
a
 

λ  

kJ/kmol 
Q3 kJ/h 

Q=Q1+Q2+Q3 

kJ/h 
Q W LMTD  A m

2
 

1.0399E-03 39500 4.1075E+01 1.5728E+02 4.3688E+01 410 2.1269E-03 

1.1554E-03 39500 4.5639E+01 1.7502E+02 4.8616E+01 410 2.3668E-03 

2.3108E-03 39500 9.1277E+01 3.5246E+02 9.7905E+01 410 4.7663E-03 

 

LMTDQ=UA  (10.20) 

 

A n do l     (10.21) 

 

 In the above equation U is assumed to be 50 W/m
2
K. Assuming n=1 and do is ¼ inch 

which is 0.00635 m as result  

 

Table 10.8: Area and length calculation for the vaporizer. 

A  m
2
  l m l cm 

2.1269E-03 1.0660E-01 1.0660E+01 

2.3668E-03 1.1863E-01 1.1863E+01 

4.7663E-03 2.3889E-01 2.3889E+01 

 

 

Based on fabrication limitations a vaporiser length of 180 mm was chosen with a 

vapourisation tube of ¼ ‘’ od.  The vapouriser was designed taking into account high 

flowrates of biodiesel and steam, but easily could be used for smaller flowrates. Two 

vaporisers were fabricated using the same dimensions one was used for biodiesel and the 

other was used for steam. 
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10.5. Appendix E: Energy balance coefficients  

 

Table 10.9: NASA coefficients for reactants used in energy balance calculations. 

Compou

nds 
a1 a2 a3 a4 a5 a6 a7 b1 

C13H26O2 
0.00000

0E+00 

0.000000

E+00 

-

1.754888

E+00 

1.61438

6E-01 

-

1.075599

E-04 

3.70402

5E-08 

-

5.233795

E-12 

-

8.301120

E+04 

C15H30O2 
0.00000

0E+00 

0.000000

E+00 

-

2.836721

E+00 

1.88432

6E-01 

-

1.267065

E-04 

4.39090

9E-08 

-

6.225764

E-12 

-

8.569414

E+04 

C17H32O2 
0.00000

0E+00 

0.000000

E+00 

-

3.029283

E+00 

2.02466

6E-01 

-

1.342311

E-04 

4.58873

0E-08 

-

6.431215

E-12 

-

7.628389

E+04 

C17H34O2 
0.00000

0E+00 

0.000000

E+00 

-

3.681177

E+00 

2.14276

8E-01 

-

1.452972

E-04 

5.09002

5E-08 

-

7.292151

E-12 

-

9.167280

E+04 

C19H32O2 
0.00000

0E+00 

0.000000

E+00 

-

3.89465

8E+00 

2.17532

7E-01 

-

1.50062

2E-04 

5.38064

4E-08 

-

7.91313

3E-12 

-

5.03525

1E+04 

C19H34O2 
0.00000

0E+00 

0.000000

E+00 

-

3.96765

6E+00 

2.22996

7E-01 

-

1.51188

7E-04 

5.30381

7E-08 

-

7.62072

0E-12 

-

6.59102

5E+04 

C19H36O2 
0.00000

0E+00 

0.000000

E+00 

-

4.132870

E+00 

2.29449

1E-01 

-

1.556226

E-04 

5.51139

2E-08 

-

8.047574

E-12 

-

8.176242

E+04 

C19H38O2 
0.00000

0E+00 

0.000000

E+00 

-

4.669568

E+00 

2.41604

3E-01 

-

1.660651

E-04 

5.91905

2E-08 

-

8.637092

E-12 

-

9.720475

E+04 

C21H42O2 
0.00000

0E+00 

0.000000

E+00 

-

4.72516

2E+00 

2.63307

3E-01 

-

1.77231

1E-04 

6.12879

3E-08 

-

8.64119

7E-12 

-

1.02787

7E+05 

H2O 
-

3.94796

1E+04 

5.755731

E+02 

9.31782

7E-01 

7.22271

3E-03 

-

7.34255

7E-06 

4.95504

3E-09 

-

1.33693

3E-12 

-

3.30397

4E+04 

N2 
-

3.42556

3E+04 

4.847001

E+02 

1.11901

1E+00 

4.29388

9E-03 

-

6.83630

1E-07 

-

2.02337

3E-09 

1.03904

0E-12 

-

3.39145

5E+03 

O2 
2.21037

1E+04 

-

3.818462

E+02 

6.08273

8E+00 

-

8.53091

4E-03 

1.38464

6E-05 

-

9.62579

4E-09 

2.51970

6E-12 

7.10846

1E+02 
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Table 10.10: NASA coefficients for products used in energy balance calculations. 

Compou

nds 
a1 a2 a3 a4 a5 a6 a7 b1 

H2 
4.07832

3E+04 

-

8.009186

E+02 

8.21470

2E+00 

-

1.26971

4E-02 

1.75360

5E-05 

-

1.20286

0E-08 

3.36809

3E-12 

2.68248

5E+03 

CO 
1.48904

5E+04 

-

2.922286

E+02 

5.72452

7E+00 

-

8.17623

5E-03 

1.45690

3E-05 

-

1.08774

6E-08 

3.02794

2E-12 

-

1.30313

2E+04 

CO2 
4.94365

1E+04 

-

6.264116

E+02 

5.30172

5E+00 

2.50381

4E-03 

-

2.12730

9E-07 

-

7.68998

9E-10 

2.84967

8E-13 

-

4.52819

8E+04 

CH4 

-

1.76685

1E+05 

2.786181

E+03 

-

1.20257

8E+01 

3.91761

9E-02 

-

3.61905

4E-05 

2.02685

3E-08 

-

4.97670

5E-12 

-

2.33131

4E+04 

C 
1.13285

7E+05 

-

1.980422

E+03 

1.36538

4E+01 

-

4.63609

6E-02 

1.02133

3E-04 

-

1.08289

3E-07 

4.47225

9E-11 

8.94386

0E+03 
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10.6. Appendix F: Plug flow calculations 

 

The schematic of the reactor used in the experiments is shown in the Figure 10.13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.12: Schematic of the reactor used in the experiments. 

 

 

1.27 cm 

 13 cm 

 24 cm 

   0.55 cm 
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The mass of the Ni/Ce-Zr catalyst used in an experiment is 2.0506 ×10
-3 

kg. The ρcat and 

ρsand are 5680 kg/m
3
 and 2640 kg/m

3
.  

The density of ρmix is 4164 kg/m
3
.  The density of the bed is given by  

b mρ =ρ (1- )  (10.22) 

 

In the above equation ϕ is the void fraction and considered to be 0.3. 

3

bρ =4164(1-0.3)=2914 kg/m                                                                                      (10.23)                      

 

Diameter of the reactor (d) is 1.27×10
-2

 m and the dp is 5×10
-6 

m. The ratio of d/dp is 

given by 

2

6

1.27 10
2540

5 10p

d

d





 
  

 
 (10.24) 

p

10 (plug flow)
d

d
  (10.25) 

Similarly the volume of the bed used is  

3
7 32.0506 10

7.035 10
2914

b
b

b

m
V m




   

      
  

 (10.26) 

2

4
b b bV d l


    (10.27) 

In the above equation lb is the length of the bed and db is the diameter of the bed which is 

same as the diameter of the reactor. 

  -7
-3

2 -2 2

4 4 7.035 10
5.556 10

(1.27 10 )

b

b

V
l m

d 

   
    

   
 (10.28) 

3

6

5.556 10
1111.3

5 10

b

b

l

d





 
  

 
 (10.29) 

b

b

l
50 (plug flow)

d
                     (10.30) 


