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Abstract 

The aim of this thesis is to provide guidance and information that will assist forensic 

speech scientists, and phoneticians generally, in making more accurate formant 

measurements, using commonly available speech analysis tools. Formant measurements 

are an important speech feature that are often examined in forensic casework, and are 

used widely in many other areas within the field of phonetics. However, the 

performance of software currently used by analysts has not been subject to detailed 

investigation. This thesis reports on a series of experiments that examine the influence 

that the analysis tools, analysis settings and speakers have on formant measurements. 

The influence of these three factors was assessed by examining formant measurement 

errors and their behaviour. This was done using both synthetic and real speech. The 

synthetic speech was generated with known formant values so that the measurement 

errors could be calculated precisely. To investigate the influence of different speakers 

on measurement performance, synthetic speakers were created with different third 

formant structures and with different glottal source signals. These speakers’ synthetic 

vowels were analysed using Praat’s normal formant measuring tool across a range of 

LPC orders. 

The real speech was from a subset of 186 speakers from the TIMIT corpus. The 

measurements from these speakers were compared with a set of hand-corrected 

reference formant values to establish the performance of four measurement tools across 

a range of analysis parameters and measurement strategies. 

The analysis of the measurement errors explored the relationships between the analysis 

tools, the analysis parameters and the speakers, and also examined how the errors varied 

over the vowel space. LPC order was found to have the greatest influence on the 

magnitude of the errors and their overall behaviour was closely associated with the 

underlying measurement process used by the tools. The performance of the formant 

trackers tended to be better than the simple Praat measuring tool, and allowing the LPC 

order to vary across tokens improved the performance for all tools. The performance 

was found to differ across speakers, and for each real speaker, the best performance was 

obtained when the measurements were made with a range of LPC orders, rather than 

being restricted to just one. 

The most significant guidance that arises from the results is that analysts should have an 

understanding of the basis of LPC analysis and know how it is applied to obtain formant 

measurements in the software that they use. They should also understand the influence 

of LPC order and the other analysis parameters concerning formant tracking. This will 

enable them to select the most appropriate settings and avoid making unreliable 

measurements. 
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Chapter 1 Introduction 

The research presented in this thesis is motivated by the limited amount of practical 

guidance concerning the measurement of formants that is currently available within the 

field of forensic speech science. The goal of the thesis is to contribute to this guidance 

by providing empirically motivated advice and information to assist speech scientists, 

especially those working in forensic applications, when making and interpreting 

formant measurements. This guidance is derived from the results of a series of 

experiments that examine the influence of different software tools, analysis settings and 

speech material on formant measurement errors. 

This chapter introduces what formants are, how they are measured and how they are 

used in forensic casework. 

1.1 Formants 

Before discussing what formants are and how they are measured, this chapter begins 

with a conceptual description of the source-filter model of speech production. This 

model is helpful in understanding the nature of formants and their measurement. It also 

forms the basis of the speech synthesis method employed in Chapter 4 and Chapter 5. 

1.1.1 Source-Filter Model of Speech Production 

A useful tool for the study of speech sounds and their production is the source-filter 

model of speech production. It can be encapsulated in the simple statement that a 

‘speech wave is the response of the vocal tract filter systems to one or more sound 

sources’ (Fant 1960, p15). The implication is that speech sounds can be specified in 

terms of two components, a sound source and a filter response. 

Vocalic sounds are often conceptualised in terms of a simple source-filter model, a 

representation of which is shown in Figure 1.1. In this model the sound source is the 

vocal folds, which produce sound by modulating airflow from the lungs as the folds 

open and close in a quasi-periodic manner. The sound produced by the vocal folds is 

often represented by a periodic amplitude waveform, shown in the top left of Figure 1.1, 

which has a pulse structure. An important property of this sound is its period (T0), 

which is a measure of the time between pulses in the waveform. The inverse of the 
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period is the fundamental frequency (F0) of the sound, i.e. the number of pulses within a 

second if measured in the unit Hertz. 

A second important property of this source sound is that it is complex, meaning that it is 

composed of many frequencies. It is harmonic in nature, so the different frequencies, 

known as harmonics, are multiples of the fundamental frequency. The relative 

amplitudes of the fundamental and harmonics define the spectral characteristics of the 

source sound, which are influenced by factors such as vocal effort, fundamental 

frequency and the type of phonation. A spectral representation of a vocal fold sound is 

displayed in the bottom left of Figure 1.1 where the harmonics are the equally spaced 

vertical lines with decreasing amplitude. 

The second part of the model, the filter, represents the resonant properties of the 

supralaryngeal vocal tract. The vocal tract is an acoustic space which shapes the 

frequency spectrum of the sound from the vocal folds as it passes through it. In the 

bottom centre of Figure 1.1 an example frequency response of the vocal tract is shown. 

The configuration of the vocal tract, in terms of tongue position, jaw height, lip 

rounding etc. alters the size and shape of the tract, which determines its resonance 

characteristics and therefore its frequency response. The frequency response is often 

characterised by the resonant frequencies which can be specified in terms of the centre 

frequency of the peak and the width of the peak, known as the bandwidth. The 

bandwidths of the peaks are governed by damping within the tract. 

The resonant frequencies are those where the vocal tract allows sounds to interact more 

easily with the acoustic space and as a consequence the amplitude of these frequencies 

within the radiated speech sound is greater than others. The outcome of filtering the 

vocal fold sound source with the vocal tract response is represented in the spectrum of 

the radiated speech sound on the bottom right of Figure 1.1. The radiated amplitude 

waveform is shown above it. The radiated sound is still composed of the fundamental 

frequency and its harmonics, but their relative amplitudes, and therefore the spectral 

content, have been shaped by the filtering effect of the vocal tract. The influence of the 

resonant frequencies on the radiated speech sound is clearly visible as the global peaks 

within the radiated sound’s frequency spectrum. 
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Figure 1.1 A conceptual representation of the source-filter model of speech 

production showing time-amplitude and frequency representations of the pulse-

like glottal source on the left, the frequency response of the vocal tract in the 

centre and on the right the time-amplitude and frequency representations of the 

radiated speech sound resulting from the filtering of the glottal sound source by 

the vocal tract. 

In this model the sound source and the filter are assumed to be independent. The 

resonant frequencies of the vocal tract and the fundamental frequency of the source with 

its associated harmonics are not related, but are free to vary independently of one 

another. It is possible for one of the harmonics to coincide with a resonant frequency, 

but such an occurrence would usually be by chance and is not a requirement or function 

of the speech production process. 

The model of vocalic speech production described above is presented at a conceptual 

level rather than in mathematical terms. However, comprehensive descriptions of 

mathematical implementations of this model and comparisons with measurements from 

real speech data are presented in Fant (1960) and Stevens (1998), for example. These 

works also consider the modelling of consonantal sounds as well as more complex 

vocalic models such nasalised vowels where the nasal cavity is acoustically coupled to 

the oral cavity. 
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1.1.2 Definition of Formants 

The preceding description of the source-filter model for the production of vocalic 

sounds introduced two important interrelated concepts. These are the resonant 

frequencies of the vocal tract and the spectral peaks in the radiated speech sound 

resulting from the filtering effect of the vocal tract. Whilst they are conceptually 

distinct, one being an acoustic property of the vocal tract and the other being a property 

of the radiated sound, the term ‘formant’ is often used to refer to both. 

Whilst Fant (1960, p. 20) defines formants as the ‘spectral peaks of the sound spectrum’ 

he also notes that the two concepts ‘should be held apart but in most instances 

resonance frequency and formant frequency may be used synonymously’. Conversely, 

Fry (1979, p. 76) states that ‘formants are strictly the resonant frequencies of the driven 

system’ (i.e. the vocal tract), ‘but since a formant must give rise to a peak in the 

spectrum of the sound produced, the term formant is quite commonly applied to the 

frequency at which this peak occurs’. Johnson (1997, p. 84) is in agreement with Fry 

that ‘the resonant frequencies of the vocal tract are also called formants’, whereas Clark 

and Yallop (1995, p. 246) state that such a definition is ‘technically imprecise’ and that 

‘formants are a consequence of resonance, not resonance itself’. 

These varying definitions show that there is no consensus on the precise use of the term 

formant. Perhaps what is most important is that where the distinction between the two 

definitions is relevant then it is made clear which meaning is intended by the use of the 

term. Alternatively, more verbose terminology or descriptions may be used where the 

use of the word formant could be confusing.  

One aspect of formants where there is no disagreement is in the numbering convention 

used to describe the different resonances or spectral peaks. The resonance or peak with 

the lowest frequency is called the first formant (F1), the second lowest is the second 

formant (F2) and so on. 

1.2 Measuring Formants 

It is apparent from the source-filter model of speech production that determining the 

frequency of spectral peaks in a vocalic sound will yield information about the 

resonance characteristics and the configuration of the vocal tract that produced the 

sound. Measuring the frequency of the spectral peaks is inherently difficult due to the 
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spacing of the harmonics produced by the vocal fold source. Information about the 

shape of the spectrum only exists at the frequencies of the harmonics, and the overall 

shape, as well as the frequency of the peaks, must be inferred from this limited data. 

Given this inherent limitation the term ‘formant estimate’ might be more appropriate 

than ‘formant measurement’, but the latter will be used in this thesis for the sake of 

convention. 

A number of measurement methods exist, and the necessary tools are nowadays readily 

available to analysts in free speech analysis software such as Praat (Boersma 2001) and 

WaveSurfer (Sjölander and Beskow 2006a). The following sections introduce three of 

the most common methods, including LPC analysis, which is the technique used in this 

thesis. 

It is worth noting that methods also exist to derive or measure directly the resonant 

frequencies of the vocal tract rather than the spectral peaks of the speech signal. 

However, they either involve specialist medical imaging techniques, such as x-rays 

(Fant 1960) or MRI (Clément et al 2007), or specifically developed equipment such as 

that described in Epps et al (1997). These techniques are valuable research tools and 

have the potential to increase understanding of speech acoustics but they are not readily 

available to the majority of phoneticians and speech scientists, nor can they be 

employed for forensic casework. 

1.2.1 Frequency Spectra 

The simplest method of examining the frequency content of a sound is to generate a 

frequency spectrum. This is usually done by Fourier analysis, which deconstructs a 

time-amplitude representation of a signal into its constituent frequency components. 

Within computer software this is performed by the Fast Fourier Transform (FFT). The 

analysis can be performed on either a short section of the signal, a single analysis frame, 

or an average can be obtained over a longer time period. In order to accurately represent 

the frequency content of a signal and be able to measure precisely the frequency of 

features within it, a high resolution spectrum is required. Figure 1.2 shows such a 

spectrum for a 0.05 second section of the vowel /i:/ in the word ‘he’ spoken by the 

author. 
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Figure 1.2 High resolution FFT spectrum of a 0.05 section of the vowel /i:/ in the 

word ‘he’ spoken by the author. 

Figure 1.2 shows the harmonic structure of the vowel sound, where the left most peak in 

the spectrum represents the fundamental frequency, at approximately 100 Hz, and  the 

other peaks are the harmonics, at approximately 100 Hz intervals. The variation in 

amplitude of the harmonics is also apparent. The normal way to measure the frequency 

of a feature in a spectral display is to place a cursor on the feature and read off its 

frequency value. This method is straightforward for determining the frequency of the 

fundamental and the harmonics since the peaks are reasonably well defined in the plot 

and a cursor can easily be aligned with them. However, the formants, i.e. the broader 

spectral peaks caused by the resonant frequencies of the vocal tract, are more 

problematic to measure since their location can only be inferred from the relative 

amplitudes of the harmonics. 

One way of displaying the overall spectral shape rather than the constituent harmonics 

is to smooth the spectrum. This can be accomplished a number of ways including using 

a very short frame length of the order of 5 milliseconds. A smoothed spectrum of the 

same section of the /i:/ vowel spoken by the author is shown in Figure 1.3 with the 

peaks corresponding to the first five formants marked.   
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Figure 1.3 Smoothed FFT spectrum of the vowel /i:/ with the formants F1 to F5 

marked. 

In the smoothed spectrum the overall spectral shape and the locations of the peaks are 

now clearly visible. Measuring the frequency of the peaks, i.e. the formants, is now 

possible. However, this method has a number of limitations. Perhaps the most 

significant is that the extent of the smoothing can affect both the location and the 

appearance of peaks in the spectrum. If the smoothing is not sufficient then the 

harmonic peaks will still be visible, but if the smoothing is too great then definition will 

be lost and spectral peaks that are close together could merge. A further limitation of 

frequency spectra is that they only represent a point in time or an average over time and 

thus they cannot display the dynamic nature of speech. It is possible to plot a series of 

spectra across a number of analysis frames, in what is known as a cascade or waterfall 

plot, but these are not ideal for taking measurements from and they are often not 

available in commonly used software. Notwithstanding the limitations of spectra, they 

are often used in conjunction with spectrograms and LPC analysis to either check 

measurements made using one of the other methods or where the interpretation of the 

results from another method is problematic.  

F1 

F2 

F3 F4 
F5 
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1.2.2 Spectrograms 

Spectrograms are perhaps the most common method of visualising the frequency 

structure of speech. They are a series of frequency spectra over a period of time in 

which amplitude is represented by a varying colour scale, usually a greyscale, with 

higher amplitudes being darker shades of grey. Frequency is represented on the vertical 

axis, rather than the horizontal axis as is common for individual spectra, and time is 

represented on the horizontal axis. Since spectrograms are a series of spectra the same 

issues of resolution and smoothing occur. Figure 1.4 shows a spectrogram of the same 

/i:/ vowel in the word ‘he’ generated with a relatively long analysis frame (0.05 

seconds), which produces what is known as a narrow-band spectrogram. Like the high 

resolution spectrum, the harmonic structure of the vowel is visible as the regularly 

spaced horizontal bars, especially at the lower frequencies. Again, the frequency of 

features within the spectrogram can be measured by placing a cursor at its location and 

reading off the frequency position of the cursor. Whilst this is easy to accomplish for 

harmonic features, narrow-band spectrograms are not suitable for measuring formants. 

The regions corresponding to the spectral peaks in the signal can be seen as the areas 

where several harmonics are darker but attempting to locate the frequency of the peak is 

problematic. 

 
Figure 1.4 Narrow-band spectrogram of the vowel /i:/ in the word ‘he’. 
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The solution to visualising the spectral peaks caused by the resonant frequencies of the 

vocal tract is again to use smoothing, which is normally achieved by using short 

duration analysis frames of the order of 5 milliseconds. The resulting spectrograms are 

often referred to as broad-band spectrograms and an example showing the same /i:/ 

vowel is in Figure 1.5 with the first five formants marked. The effective smoothing has 

resulted in the individual harmonics no longer being visible, and the spectral peaks can 

now be seen as the wider dark horizontal bars. The frequency of the peaks is measured 

by placing a cursor in the visible centre of each horizontal bar at a representative timing. 

 
Figure 1.5 Broad-band spectrogram of the vowel /i:/ in the word ‘he’ with the 

formants F1 to F5 marked. 

Spectrograms, like frequency spectra, also suffer from limitations caused by smoothing. 

The apparent location of peaks can be altered and closely space peaks can become 

merged as the degree of smoothing increases. Partial merging can be seen in Figure 1.5 

where there is not clear separation between F3 and F4. Further discussion of the 

generation of spectrograms and other factors that can influence their appearance and 

interpretation can be found in Kent and Read (2002) and Howard (1998, 2002), among 

many others. 

F5 

F4 

F3 

F2 

F1 



36 

1.2.3 LPC 

Frequency spectra and spectrograms are both convenient methods of visualising the 

frequency content of speech, and making measurements from them is relatively 

straightforward. However, taking measurements is essentially a manual process which 

is time consuming. Also, the smoothing required to make the spectral peaks visible 

introduces problems which are mentioned above. An alternative method of determining 

the frequency of spectral peaks which can overcome these issues is linear predictive 

coding (LPC) or linear prediction (LP) analysis. 

LPC analysis of speech is fundamentally different from the spectral analysis methods 

described above, which produce frequency spectra from time-amplitude waveforms by 

means of the Fourier transform. LPC analysis considers the speech signal as the output 

of a source-filter speech production model and it determines the parameters for the 

model that result in the best estimate of the speech signal. Information about the speech 

signal, such as formant frequencies, is then derived from the model parameters. This 

method of analysing speech originates from the development of techniques to encode 

speech signals so they could be transmitted over low bit rate channels. Rather than 

transmitting the original speech signal, the parameter values of the model are sent, and 

the speech signal is reconstructed at the receiving end of the transmission channel (see 

Atal 2006 for a historical overview of linear predictive speech coding). 

The basic principle of linear prediction is that the value of an individual sample of a 

digitised speech signal can be predicted from a weighted combination of previous 

sample values. Linear predictive coding takes advantage of the redundancy of the 

speech signal, i.e. within short time periods the signal is relatively stable, it repeats and 

is predictable. This means that the weighting values only need to be changed about 

every 10 milliseconds to produce intelligible speech. This results in a significant saving 

in terms of data as the weighting values are transmitted rather than the digitised speech 

signal. The analysis or encoding process involves finding a set of weights, normally 

referred to as coefficients, for each short segment of speech which minimises the 

difference, known as the error, between the original signal and the predicted signal (see 

Makhoul 1975 for the mathematical derivation of this approach). 

The linear prediction coefficients also have an interpretation in the frequency domain, 

which is exploited for measuring formants. The coefficients define a digital filter which 
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represents the filtering effect of the vocal tract. By examining the frequency 

characteristics of this digital filter it is possible to obtain information about the 

frequency response of the vocal tract that produced the speech and, most importantly, 

derive formant frequency measurements. 

There are two ways in which formant values can be obtained. The first method involves 

generating an LPC spectrum, which is essentially the frequency response of the filter 

defined by the coefficients. The peaks in the LPC spectrum, which correspond to the 

resonant frequencies of the modelled vocal tract, can either be measured by hand or a 

peak-picking algorithm can be employed to automatically locate the frequencies of the 

peaks.  The second and most common method employed in readily available speech 

analysis software is the root solving approach. This method involves mathematically 

determining the frequency and bandwidth of the individual components, known as the 

poles, which contribute to the overall frequency response of the filter (see Atal and 

Hanauer 1971, Makhoul and Wolf 1972, and Markel and Gray 1976 for the theoretical 

and practical mathematical implementations of these approaches and discussions of the 

application of linear prediction to speech analysis and formant measurements).  

Figure 1.6 shows an LPC spectrum generated for a 50 millisecond analysis frame of the 

same /i:/ vowel analysed in the previous sections overlaid on an FFT spectrum. The 

broad peaks in the LPC spectrum corresponding to the formants are clearly visible and 

their alignment with the less well defined peaks in the FFT spectrum can be seen. The 

frequency of the peaks can be measured easily by placing a cursor on such a display and 

reading off the corresponding frequency value.  
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Figure 1.6 LPC spectrum of a 50 ms frame from the vowel /i:/ generated with an 

LPC order of 12, overlaid on an FFT spectrum with the formants F1 to F5 

marked. 

The shape of the LPC spectrum is the combined influence of the individual poles that 

define the digital filter obtained from the LPC analysis. In a typical configuration, most 

of the poles correspond to resonances in the vocal tract, whilst the remainder contribute 

to the overall slope and shape of the spectrum. Figure 1.7 shows the frequency 

responses of the individual poles that make up the overall LPC spectrum in Figure 1.6. 

The poles corresponding to the formants are labelled from F1 to F5 and are shown with 

solid lines, whilst the remaining pole, which contributes to the overall shape, is 

represented by the dashed line. 

F1 

F2 
F3 F4 

F5 
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Figure 1.7 Frequency responses of the individual poles that contribute to the LPC 

spectrum in Figure 1.6. The responses of the poles that relate to the formants are 

labelled from F1 to F5 and the remaining pole that contributes to the overall 

spectral shape is shown as a dashed line. 

The frequency values corresponding to each of the poles do not need to be measured 

manually via a cursor as they are automatically derived in the software from the LPC 

analysis by means of a root-solving algorithm. These values can then easily be logged 

or displayed. LPC analysis is often conducted over a series of analysis frames and the 

resulting pole frequencies can be overlaid on a spectrogram, as shown in Figure 1.8. 

This allows the alignment of the pole frequencies with the spectral peaks to be checked 

easily. In this particular example the pole frequencies align well with the centres of the 

formants visible in the spectrogram, suggesting that the values are relatively accurate. 
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Figure 1.8 Broad-band spectrogram of the /i:/ vowel with overlaid LPC formant 

values from the Praat software with an LPC order of 10, every 6.25 ms. 

Similarly to the spectral approaches discussed earlier, LPC analysis requires a number 

of parameters to be specified which can significantly alter the outcome of the analysis. 

The most important of these parameters is the LPC order, which specifies the number of 

coefficients in the linear prediction model. The number of poles obtained from the LPC 

coefficients is not fixed and can vary between analysis frames. The number of poles that 

contribute to the LPC spectrum is usually around half the LPC order. The influence of 

the LPC order on the LPC spectrum is demonstrated in Figure 1.9, which shows 13 LPC 

spectra generated for the same section of the /i:/ vowel with the LPC order increasing 

from 6 to 30 in steps of two. Odd numbered LPC orders can be specified but were not 

used in this example. The amplitude of each successive LPC spectrum has been reduced 

by 10 dB so that the structure of each one is visible. 
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Figure 1.9 LPC spectra of /i:/ vowel with increasing LPC order from 6 to 30 in 

steps of two. The spectrum from each subsequent LPC order has its amplitude 

reduced by 10 dB so that the detail of each spectrum can be seen. 

The change in the structure of the LPC spectra is apparent as the LPC order increases. 

At the lowest order of 6 there are only three peaks, whereas the FFT spectra in Figure 

1.4 and Figure 1.5 show five peaks. At this low LPC order the model cannot adequately 

represent the spectrum of the signal. The same is true for LPC orders 8 and 10 which 

only have four peaks. At LPC order 12, which is also shown in Figure 1.6, the spectrum 

has five peaks which correspond well with those in the FFT spectra. As the LPC order 

increases beyond 12 and more poles are influencing the resulting spectra, a second peak 

appears in the LPC spectra around the region of the true F1 and the peak of F3 becomes 

increasingly broad. Smaller features and changes in the shape of peaks are also apparent 

as additional poles associated with the finer detail of the spectrum influence the LPC 

spectra. If the LPC order is increased enough then the peaks will eventually correspond 

to the harmonic frequencies of the vocal fold sound source. It is apparent from the 

figure above that there are a range of LPC orders that produce an acceptable estimate of 

the spectrum and pole frequencies that correspond to formants in the speech signal. The 

influence of different LPC orders on resulting formant frequency measurements is a 

central issue investigated in this thesis. 
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An important factor that is associated with LPC order is the frequency range over which 

the analysis is performed. This parameter is often specified in speech analysis software 

as a ‘maximum analysis frequency’ or ‘maximum formant frequency’. It determines the 

sample rate of the speech signal that is subject to LPC analysis. In most speech analysis 

software the speech signal is resampled at a pre-processing stage of the LPC analysis, 

and the original signal will remain unchanged. The frequency range is important 

because as it increases one expects, up to a point, to observe more resonance peaks in 

the spectrum. Therefore the LPC order must be increased so that the model can 

represent the additional spectral peaks. Figure 1.10 shows the effect on the LPC 

spectrum of maintaining a constant LPC order of 12 whilst altering the maximum 

analysis frequency from 2 kHz to 8 kHz in steps of 1 kHz. Again, the amplitudes of 

successive spectra have been reduced by 10 dB so each one is visible and the maximum 

analysis frequency is also indicated by a label and a short vertical line. 

 
Figure 1.10 LPC spectra of /i:/ generated at LPC order 12 with increasing upper 

analysis frequency from 2 kHz to 8 kHz in 1 kHz steps. The spectrum from each 

subsequent upper analysis frequency has its amplitude reduced by 10 dB so that 

the detail of each spectrum can be seen. 

In each spectrum in Figure 1.10 there are either four or five peaks since this is 

influenced by the LPC order, which remains constant at 12. However, as the maximum 

analysis frequency changes the location of the LPC spectral peaks and the features 

2 kHz 

3 kHz 

4 kHz 

5 kHz 

6 kHz 

7 kHz 8 kHz 



43 

within the spectrum of the speech signal that they are associated with changes. In the 

speech spectrum there is only one resonant peak corresponding to F1 which occurs 

below 2 kHz. When the maximum analysis frequency is 2 kHz two peaks are present in 

the region of F1 and two further peaks occur above 1 kHz where there are no broad 

peaks in the speech spectrum. At 3 kHz the peaks of the true F2 and F3 are now 

represented, but F1 still has a double peak and an extra peak lies between F1 and F2. 

The LPC spectra at the maximum analysis frequencies of 4 kHz and 5 kHz are 

reasonable estimates of the speech spectrum, but at higher frequencies the fit becomes 

worse and peaks corresponding to the formants are lost, as there are insufficient poles to 

model the greater frequency range of the speech signal. Figure 1.10 further 

demonstrates that in order to obtain a good estimate of the speech spectrum both the 

LPC order and maximum analysis frequency must be appropriate. 

The essentially automated nature of measuring formants using LPC analysis makes it an 

attractive method, but it must be used with care. The apparent ease with which 

measurements can be obtained may lead analysts to be overly reliant and trusting of the 

results without checking or questioning them. However, the likelihood of unreliable 

measurements being accepted can be reduced through visual comparison of results with 

spectrograms, and through the application of knowledge about where formants should 

occur for a particular category of vowel. Many speech analysis programs also employ 

post-processing techniques to the LPC analysis results in an attempt to provide only the 

pole frequency values associated with formants, rather than those of spurious peaks or 

the global spectral shape. Such techniques use information about the nature of formants, 

such as their tendency to have narrow bandwidths and not vary significantly from one 

analysis frame to the next. These post processing techniques are normally employed in 

tools called ‘formant trackers’ as they track the formant values across a number of 

analysis frames. Again, the results from formant trackers are often overlaid on 

spectrograms so their accuracy can be assessed. The behaviour of three formant trackers 

is examined in Chapter 7 and further details of their operation and the analysis 

parameters available is given in Section 7.2. 

LPC formant analysis is also limited by the fact that it is based on a simplified model of 

speech production which does not account for all aspects of the speech production 

process, e.g. interactions between the glottal source and the vocal tract or nasalisation of 

vowels. Whilst the approach may be sufficient for deriving formant measurements for 
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many vocalic speech sounds, it cannot be expected to perform well when the model 

cannot adequately represent the speech signal.  

1.3 Use of Formants in Forensic Speech Science 

Forensic speech science, also known as forensic phonetics, is concerned with answering 

questions related to speech, usually in recordings, for legal proceedings (an overview of 

the field is provided by Jessen 2008). The most common question concerns whether 

speakers on two different recordings could be the same person (forensic speaker 

comparison). Another common issue is to determine what was said in a recording. 

Formant measurements are often used to assist in answering both questions. How this is 

done is considered in detail in Sections 1.3.2 and 1.3.3. In many respects measuring 

formants for a forensic analysis is not dissimilar to undertaking the task in other areas of 

phonetics, however, the characteristics of the recordings that are encountered can make 

it more problematic. The recordings are often of poor quality with a restricted frequency 

range, they are often of limited duration, the analyst has no control over the 

circumstances in which they are made and there is normally no opportunity to make a 

better recording. The measurements and subsequent analysis is generally limited to the 

first three formants due to the restricted frequency range of the signals and in some 

instances only the second formant may be measured with any reliability. Some material 

is so poor that formants cannot be measured at all. 

Before discussing how formants are used in forensic speech science, sources of 

variation in formants are introduced as some types of variation provide the basis for 

using formants in forensic speech science, whilst others highlight the need for caution 

when making and interpreting measurements. 

1.3.1 Variation of Formants 

The primary source of variation in formants is caused by changes in the vocal tract in 

order to produce different vowel sounds, which tend to result in broadly characteristic 

formant patterns. However, the relationships between articulatory configurations and 

formant frequencies are complex (see Fant 1960, Lindblom and Sundberg 1971, and 

Stevens 1998). The most common simplification relates an articulatory description in 

terms of the highest point of the tongue in the front-back and low-high dimensions in 

the oral cavity with the first two formants. The first formant correlates with the 

articulatory dimension of vowel height, with low or open vowels having high F1 values 
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and high or close vowels associated with low F1 values. The second formant is related 

to the front-back dimension of vowels with front vowels tending to have high F2 values 

and back vowels low F2 values. This approach leads to different vowels being 

represented by their characteristic F1 and F2 values and these measurements are often 

displayed on scatter plots with F1 on an inverted vertical axis and F2 on an inverted 

horizontal axis so that they align with the standard IPA vowel quadrilateral. The fact 

that characteristic F1 and F2 values are associated with different vowel categories 

makes them useful for differentiating and identifying different speech sounds and 

assisting in interpreting the words spoken in a recording. 

It has been known for many years that the same vowel produced by different people will 

have different formant frequencies (Peterson and Barney 1952). This is in part due to 

physiology, with large differences caused by the variation in vocal tract lengths across 

men, women and children. However, studies of identical twins, who are assumed to 

have essentially identical physiology, show that there are differences between pairs of 

twins (Nolan and Oh 1996, Loakes 2006). Therefore, some of the differences between 

people are a consequence of learned individual behaviour. It is these differences, both 

physiological and learned, that makes formants an attractive parameter for helping to 

assess whether two speech samples could have originated from the same speaker.  

However, there are many other sources of variation that can influence formant 

measurements and make their interpretation less than straightforward. Many forensic 

tasks, including those discussed below, involve comparing multiple instances of the 

same speech sound both within and across recordings. Aside from the fact that two 

productions of the same speech sound will never be identical, factors such as situational 

differences, speaking style, voice quality and health can all result in variations in 

formant frequencies in recordings from different occasions. Even instances of the same 

vowel in different phonetic environments will be influenced by the surrounding sounds 

resulting in co-articulatory effects that can alter formant frequencies (Hillenbrand et al 

2001). 

The sources of variation mentioned so far are associated with the speech production 

process, and they influence the radiated sound pressure waves from the vocal tract. For 

these speech sounds to be analysed they must be captured by a microphone, perhaps 

transmitted and then recorded. Each of these processes will to some extent modify, 
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shape or limit the frequency content of the speech signal that is ultimately stored and 

reproduced when played back and analysed. Section 2.1.3 discusses several research 

studies, mainly from the forensic perspective, which investigate the effects of these 

technical sources of variation. 

The final source of variation is the measurement process itself. Section 1.2 highlighted 

the inherent difficulty in measuring formants, as the spectral peaks must be inferred 

either by smoothing the spectrum or modelling the speech signal. The differences 

between narrow-band and broad-band spectra and spectrograms, and the effect of 

altering the LPC order on the LPC spectra, illustrate how the measurement method and 

analysis settings can influence the appearance of formants and ultimately their measured 

values. Decisions must be made by the analyst including which measurement method to 

employ, what analysis settings to use, where in time the measurements are made, as 

well as whether to accept or reject the measurements. The measurement process is an 

interaction between the analysis tools and the analyst, who must use their knowledge 

and skills to obtain accurate measurements. These sources of variation are discussed in 

greater detail in Sections 2.1.1 and 2.1.2. Variation in formant measurements caused by 

altering analysis parameters and the analysis approach is a central issue which is 

examined in this thesis. 

1.3.2 Speaker Comparison 

The task of forensic speaker comparison usually involves comparing a recording of the 

known voice of a suspect with an unknown voice in a recording associated with a crime 

in order to assess the similarity of the voices and provide an opinion about the potential 

identity of the criminal. The sources of criminal recordings include CCTV footage of 

robberies, covert recordings of drug dealers, threatening voicemail messages and 

telephone calls to the emergency services, and the reference recordings, in the UK, are 

usually of police interviews. A number of different methodologies are employed around 

the world with no particular consensus amongst forensic practitioners (Gold and French 

2011). The general types of analyses used can be considered as falling into one of three 

classes - auditory phonetic analysis, acoustic phonetic analysis and analysis by 

automatic systems. The usual approach of an analyst or laboratory could involve only 

applying one class of analysis, a combination of two analyses or all three. The most 

common approach adopted at present by those questioned in the survey reported by 
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Gold and French (2011) is the combined auditory and acoustic phonetic method (see 

further Foulkes and French 2012). 

The combined auditory and acoustic phonetic approach utilises the componentiality of 

speech. Numerous aspects of the material, including voice quality, vowel and consonant 

realisations, pitch and rhythm are typically examined in a given case. Features are 

analysed in both the known and the criminal recordings and the results are compared. 

Similarities and differences will always be found across the recordings for the reasons 

discussed in Section 1.3.1, even when analysing two recordings of the same speaker. 

The analyst must interpret the results in light of their knowledge and experience in order 

to arrive at a conclusion. 

Within this approach there are generally no rigidly prescribed methodologies that are 

followed. The features that are examined are often determined by their presence in the 

material and their relevance, which is determined on a case by case basis. However, the 

recent survey of forensic speech scientists reported by Gold and French (2011) showed 

that 97% of the 36 analysts questioned made some form of vowel formant 

measurements. Data was collected on what aspect of formants were examined. This 

revealed that 94% examined centre frequencies of monophthongs, 71% examined 

formant trajectories of diphthongs, 45% considered vowel consonant or consonant 

vowel transitions, 35% measured formant bandwidths and 13% examined formant 

densities. Unfortunately no data was gathered on how the measurements were made or 

how the values were then analysed and compared, but it is clear from these results that 

formants are used in casework on a very regular basis. Results from the survey showed 

that vowel formants were considered by practitioners to be the joint second most useful 

feature for discriminating speakers (along with dialect/accent variants, and after voice 

quality). It was noted, however, that one respondent did state that they found vowel 

formant analysis ‘rarely insightful’. 

1.3.2.1 Monophthongs 

The centre frequencies of front stressed monophthongs are perhaps the most commonly 

analysed vowels in speaker comparison analysis due to the relative ease with which they 

can be measured. Front vowels are often easier to measure as their formants are usually 

better spaced and suffer less from mergers. Stressed vowels are selected as they do not 

suffer from centralisation and their greater amplitude also makes spectrographic 
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interpretation easier. The measurements are often made or logged manually either from 

LPC derived values overlaid on a spectrogram or directly from the spectrogram. 

Measurements may also be made from smoothed FFT spectra or LPC spectra. Usually 

measurements will be taken from a single representative analysis frame around the 

temporal centre of the vowel or averages will be calculated over a number of central 

frames. The measured values will then be logged, either manually or automatically, and 

the time location and vowel category will also be recorded. The number of 

measurements made will often be governed by the quality and duration of the material, 

especially in the case of the questioned sample. 

The subsequent analysis of the measurements may involve calculating mean values for 

each vowel category and plotting individual values or other representative measures on 

F1~F2 vowel space plots. There are no simple thresholds or metrics for assessing the 

results in order to reach a conclusion of identity. The same is true for the other 

parameters considered as part of a comparison, and analysts must assess the findings in 

light of their experience and knowledge about sources of variation of the individual 

parameters which are applicable to a specific case. Whilst mathematical approaches for 

evaluating the results are available, their wider adoption in the field has not yet 

occurred. These methods are introduced in Section 1.3.2.4. 

1.3.2.2 Diphthongs & Formant Dynamics 

The motivation for examining the dynamic behaviour of formants, usually for 

diphthongs, stems from the proposition that the movement of the articulators and 

changes of the vocal tract between phonetic targets will encode speaker specific 

information since a speaker has some freedom in choosing the route between them. 

Research studies have supported this position (McDougall 2005) and have shown 

improved identification rates using diphthong trajectories compared with monopthong 

centre frequencies (Greisbach et al 1995). The measurement process involves obtaining 

a series of formant values across the duration of a diphthong, which lends itself to the 

use of LPC analysis, particularly a tool that incorporates formant tracking. The 

subsequent analysis may simply involve plotting comparable formant contours over 

time or on an F1~F2 vowel space plot. The comparison methods used in research 

studies have tended to be objective in order to allow a decision to be made on identity or 

non-identity so that the performance of the approach can be evaluated and compared 

with other methods. One approach involves normalising for time and taking five equally 
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spaced measures along the trajectory, and averaging over multiple instances of the same 

vowel for each speaker (Greisbach et al 1995). Euclidian distances are then calculated 

and summed for the five measures between each test speaker and each speaker in the 

reference set. Identity is assigned to the reference speaker with the smallest summed 

distance from the test speaker. More complex approaches use polynomials to 

parameterise the formant trajectories, and the coefficients of the polynomial are then 

compared using discriminant analysis rather than the measured formant frequencies 

(McDougall 2005). If mathematical approaches to evaluating the measurements are 

applied in casework, the results still require interpretation by the analyst in light of the 

outcomes of other analyses in reaching a final conclusion. 

1.3.2.3 Long Term Formant Distributions 

Another approach that aims to capture more information from the speech signal than 

simply measuring centre frequencies of monopthongs is the generation and analysis of 

long term formant distributions (LTFDs). The approach was initially proposed by Nolan 

and Grigoras (2005) and involves measuring formants across all vocalic segments of a 

recording. Distributions are then obtained for each formant. The demarcation of vocalic 

segments and subsequent measuring of formants may be undertaken manually or the 

process can be entirely automated (French et al 2012). One advantage of the LTFD 

method is that it is not necessary to categorise each vocalic segment, and therefore the 

technique can in principle be used on languages which the analyst is not familiar with. 

In Nolan and Grigoras (2005) the distributions from a number of samples were 

compared visually in order to reach a conclusion on speaker identity when the technique 

was applied to an old case. More recent developments of the method (Becker et al 2008) 

employ a GMM-UBM approach from the automatic speaker comparison field 

(Reynolds et al 2000) in order to compare samples and arrive at a conclusion. The 

distributions of each formant (F1, F2, F3) from each sample are modelled using 

Gaussian Mixture Models (GMMs). A Universal Background Model (UBM) is also 

created from the combined distributions of formant measurements from a reference 

population of speakers so that the degree of similarity between the criminal and suspect 

samples can be assessed against a reference population. 

The GMM-UBM approach to LTFD analysis is more complex and is usually much 

harder to undertake than measuring and plotting the centre frequencies of 
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monophthongs. However, a software package, Vocalise, has recently become available 

that allows the entire process of formant measurement, model generation and 

comparison to be undertaken in a single piece of software (Alexander et al 2013). The 

software is targeted at forensic practitioners who may not have the necessary technical 

expertise to implement their own system, and it aims to bridge the gap between 

traditional phonetic methods and newer automatic speaker comparison techniques. 

1.3.2.4 Bayesian Approaches 

In recent years within the field of forensic speech science, and within forensic science 

more generally, the issue of how conclusions are expressed has received a significant 

amount of attention. Until recently, the conclusion of a speaker comparison analysis 

would be expressed as the likelihood that the suspect was the unknown speaker, e.g. 

‘The unknown speaker is very likely to be Mr Smith’, where the degree of likelihood is 

selected from a predefined verbal scale. Such approaches are problematic for a number 

of reasons including the fact that they address the ‘ultimate issue’, i.e. whether the 

suspect is guilty or not, they are logically flawed and commit the prosecutor’s fallacy, 

and make no overt acknowledgement of the number of other speakers who may be 

similar to the unknown speaker. See French and Harrison (2007), Rose and Morrison 

(2009) and French et al (2010) for further discussions of these issues and the potential 

solution discussed below, as well as a description of the current framework for 

expressing conclusions adopted by forensic speech practitioners in the UK. 

A preferable way of expressing conclusions, which is both logically and legally correct, 

is using the Bayesian approach. This involves assessing the likelihood of obtaining the 

evidence, i.e. the findings, if the suspect was the unknown speaker versus the likelihood 

of obtaining the evidence if another person was the unknown speaker. The result is 

often expressed as a single value, known as the likelihood ratio, which is obtained by 

dividing the first likelihood value by the second (Evett 1998). Given the statistical 

nature of this approach, it requires numeric data in order to calculate the two 

probabilities.  Consequently, it has been widely adopted in areas such as DNA analysis. 

It has also become commonplace in the automatic speaker comparison field which uses 

statistical models to represent speakers and speech samples derived from MFCC (Mel 

Frequency Cepstral Coefficients) features obtained across entire recordings. 
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The adoption of a Bayesian framework for expressing results obtained from traditional 

auditory and acoustic phonetic analyses is problematic because many of the tests are not 

numeric in nature. For those that are, such as fundamental frequency and formant 

analyses, one significant problem is a lack of reference data required for determining the 

typicality of features within the wider population in order to assess the likelihood of 

obtaining the evidence if a person other than the suspect was the unknown speaker. 

Satisfactory methods for combining the results from the analyses of the various 

components of speech, both impressionistic and numeric, in order to arrive at a final 

conclusion do not currently exist. Verbal likelihood ratios can be arrived at for 

subjective methods and used to express the final conclusion of an analysis but this 

practise has not yet been widely adopted.  

Notwithstanding these issues, methods have been and continue to be developed to allow 

a numerical Bayesian analysis of phonetic features. One of the first of these involved 

the application of the Multi-Variate Kernel Density (MVKD) approach which was 

initially developed for the comparison of glass fragments by comparing their refractive 

indices (Aitken and Lucy 2004). This approach has been successfully applied to various 

types of formant data and fundamental frequency measurements (e.g. Rose 2002 and 

Morrison 2011). The GMM-UBM approach, mentioned above, has also been used with 

long term formant distributions and formant dynamics (Morrison 2011). It is likely that 

in the future these numerical approaches will become more commonly used by forensic 

practitioners as the use of simpler tools becomes more widespread, more reference data 

becomes available and as methods need to be validated (see Section 1.3.5). Formant 

measurements lend themselves to these kinds of approach as they are relatively easy to 

measure, a large amount of data can be collected from a speech sample and they can be 

interpreted in terms of their articulatory and phonetic origins. 

1.3.3 Content Determination – Transcription & Disputed Content 

The second most common type of work that is undertaken by forensic speech scientists 

is determining spoken content in recordings. Most frequently this involves preparing a 

verbatim transcript of what can be heard. Often the recordings that are submitted are of 

poor quality otherwise they would be transcribed by typists or police officers. The 

material is usually replayed from waveform editing software to allow precise control 

over the replay and repetition of material during the preparation of the transcript. 

Occasional use may be made of acoustic analysis tools, particularly spectrograms, but 
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the transcriber will generally rely on their own skill, and knowledge of speech and 

language processes in order to determine what was said. 

A subtask of content determination is termed questioned or disputed content analysis. 

This type of analysis is requested when the content of an utterance has the potential to 

have significant evidential value. Either two competing interpretations will have been 

offered for an utterance, often an incriminating one by the prosecution and a benign one 

by the defence, or a single interpretation exists and it requires confirmation due to its 

potential significance. For the analysis to be requested there is usually some ambiguity 

in the interpretation of the utterance.  It is not sufficient for a forensic analyst to simply 

state that they prefer or agree with a certain interpretation without providing a 

justification based on a comprehensive examination of the material. This will involve a 

detailed analysis of the utterance in question, both auditorily and acoustically, and a 

comparison with non-disputed speech from the same speaker, either within the same 

recording or in other reference recordings. In the ideal circumstances unambiguous 

instances of the competing interpretations would exist for analysis and comparison. If 

these are not available then other realisations of the same vowels or consonant segments 

and transitions from the two interpretations are examined. 

Formant measurements from vowels, vowel-consonant and consonant-vowel transitions 

are some of the most common features considered in questioned content analysis. The 

determination of vowel phonemes relies on the comparison of measured vowel centre 

frequencies and diphthong trajectories, whereas the interpretation of consonants is 

assisted by visual examination of formant transitions into and out of vowels. Since the 

number of tokens to be measured is often small, careful measurements can be made 

using multiple methods if necessary. The measurements from the utterance in question 

will then be compared either numerically or visually via a plot with the non-disputed 

reference tokens. Further discussion of the approach together with examples from cases 

in which formant measurements were used to resolve issues of disputed content are 

presented in French (1990) and French and Harrison (2006 p. 259-260). 

The conclusion concerning the interpretation of the disputed utterance will normally be 

expressed verbally. In cases where the measurements from the reference material for 

two interpretations form two distinct distributions and the measurements from the 

questioned utterance falls within one distribution and not the other, the conclusion may 
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be expressed in categorical terms. Where there is sufficient doubt in the interpretation of 

the measurements and the auditory analysis the analyst may decide to offer no opinion. 

However, the measurements made to assist in reaching a conclusion do lend themselves 

to evaluation within a Bayesian framework which reduces reliance on the subjective 

interpretation by the analyst. Morrison et al (2014) describe a case in which formant 

values and voice onset time (VOT) were used in the resolution of a disputed utterance 

using the normal methods described above. The article also presents an analysis from a 

Bayesian perspective in which different statistical approaches are adopted in order to 

address the question using an entirely numerical and statistical approach. 

1.3.4 Voice Line-ups 

A further area of work in which forensic analysts are occasionally asked to assist is in 

the creation or assessment of voice line-ups, which are the auditory equivalent of a 

visual identification parade. A victim or witness may hear a criminal but not see them, 

and claim that they could identify the voice of the criminal if they heard them speak 

again. A set of guidelines were drawn up in the UK (Home Office 2003) to assist in the 

construction of voice parades to ensure that they are carried out in a fair and appropriate 

way. One of the requirements is that a forensic phonetician assesses the samples of the 

foils’ speech against that of the suspect to ensure that they are sufficiently similar. 

However, no formal method is suggested for comparing and assessing the samples. 

Methods under development involve assessing the similarity judgements of lay listeners 

using multidimensional scaling techniques (McDougall 2013) and comparing those 

results with acoustic measurements of the voices, including formants (McDougall 

2011). It is envisaged that a quantitative method will be developed for assessing the 

similarity of the voices of foils to ensure that they are perceptually similar enough to the 

voice of the suspect to ensure a fair line-up. The outcomes of this work will also have 

relevance to speaker comparison analysis since the fundamental issue that the research 

addresses is quantifying the similarity of voices. 

1.3.5 The Increasing Use of Formants 

There is little doubt that over the past 15 years the use of formant measurements within 

the forensic field has increased. This can probably be attributed to a number of factors 

including the greater availability of software analysis tools, an increase in forensic 

research concerning formants and the broad acceptance of the combined auditory-

acoustic method for speaker comparison. Their use in the UK has also been influenced 
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by external judicial factors and will continue to be effected by regulatory developments 

within forensic science more generally, both of which are discussed below.  

In 2002 an appeal was heard in the Northern Ireland Criminal Court of Appeal 

concerning the conviction of Anthony O’Doherty in 1997 (R v O'Doherty [2002]). The 

conclusion from a speaker comparison analysis was an important piece of prosecution 

evidence at the original trial but it was based on limited acoustic analysis and no 

formant analysis. The appeal heard from several experts and the general view was that 

acoustic analysis was an important component of speaker comparison examinations. 

The conviction was quashed and in their ruling the appeal judges stated that: 

‘in the present state of scientific knowledge no prosecution should be brought 

in Northern Ireland in which one of the planks is voice identification given by 

an expert which is solely confined to auditory analysis. There should also be 

expert evidence of acoustic analysis … which includes formant analysis.’ 

The ruling is binding on the criminal courts within Northern Ireland but not in England 

and Wales. However, the position adopted in the ruling would be seen as persuasive in 

the courts in England and Wales and would be difficult to argue against. This ruling has 

resulted in a marked increase in the use of formants in speaker comparison cases across 

the UK. 

More recently, in 2008, the England and Wales Court of Appeal (Criminal Division) 

heard an appeal in the case of Flynn and St John which also involved speaker 

comparison evidence (R v Flynn & Anor [2008]). Whilst the case primarily concerned 

the identification of voices by police officers, rather than by forensic analysts, the 

appeal judges stated: 

‘we think it neither possible nor desirable to go as far as the Northern Ireland 

Court of Criminal Appeal in O'Doherty which ruled that auditory analysis 

evidence given by experts in this field was inadmissible unless supported by 

expert evidence of acoustic analysis’. 

This ruling makes the situation in England and Wales less prescriptive than in Northern 

Ireland, but given the extensive use of formants and acoustic analysis by experts 

demonstrated in the survey reported by Gold and French (2011) it still remains difficult 

for a practitioner to argue against their use. 
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Recently, forensic science as a whole has come under greater scrutiny as the validity 

and reliability of many of its disciplines are questioned and compared with the gold 

standard of DNA analysis (National Research Council 2009, Law Commission 2011). 

Unlike DNA analysis, many branches of forensic science have developed around expert 

opinion and interpretation without the competence of individual analysts or the methods 

having been rigorously tested under forensically realistic conditions. This position is 

changing both in the UK and abroad with the introduction of regulation and 

accreditation to international standards. The standard that is being applied in the UK 

and elsewhere is ISO 17025 titled ‘General requirements for the competence of testing 

and calibration laboratories’ (International Organisation for Standards, 2005). The 

recently appointed Forensic Science Regulator for England and Wales has also 

produced a Codes of Practice document (Forensic Science Regulator, 2011) which sets 

out how ISO 17025 should be applied to forensic science in England and Wales. One of 

the key requirements is that methods that are regularly used for casework are validated, 

i.e. it must be demonstrated that a method, technique or process is capable of achieving 

what it claims to. In the case of interpretive methods, such as speaker comparison 

analysis, a critical aspect of the validation will involve the competency testing of 

experts since, the interpretation of results and formulation of conclusions is inextricably 

linked to their individual training, skills and knowledge. Notwithstanding this, the 

measurement tools and individual analysis methods that provide the results on which a 

conclusion is based will also need to be validated. This means that formant 

measurement tools and the measurement and analysis approaches discussed above will 

be subject to validation. Although this has not yet taken place it is likely that the 

validation of formant measurement methods will require their accuracy, behaviour and 

limitations to be determined under different circumstances. The accreditation also 

requires the creation of standard operating procedures for the different methods and 

tools. Information within these procedures will be based on the outcome of the 

validation testing and will no doubt contain advice and guidance on the use of specific 

measurement tools and methods. It is envisaged that the experiments and results 

described in this thesis and the resulting guidance will be beneficial to analysts 

designing and implementing validation testing and writing standard operating 

procedures. Whilst the experiments have not been specifically designed as validation 

tests, they could be modified and extended relatively easily to fulfil the requirements for 

validation testing.  



56 

The use of formant based methods is likely to continue to increase in the future for a 

number of reasons. Their numeric nature means they can be tested and their 

performance can be assessed more easily than subjective methods that often require a 

considerable expenditure of time. They are also less subjective than many of the other 

techniques employed by forensic speech scientists which should make the results from 

different practitioners more consistent. The ability to automate analyses allows greater 

amounts of reference data to be obtained which will facilitate the presentation of results 

in a Bayesian framework. These reasons are also cited as some of the benefits of using 

automatic speaker comparison systems. One advantage that formants based methods 

have over automatic systems is that formant measurements can be readily understood 

and interpreted from a phonetic perspective, unlike the MFCCs used in automatic 

systems which are opaque. 

1.4 Summary 

This chapter has introduced formants by means of the source-filter model of speech 

production and presented three commonly used methods for measuring them. The final 

section discussed how formants are used in the field of forensic speech science. The 

following chapter builds on this introduction by examining the literature concerning 

formant measurement errors before the research aims and questions for this thesis are 

presented.  
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Chapter 2 Literature Review 

This chapter presents an overview of research on formant measurement accuracy and 

the limited advice concerning their measurement. Together with the introductory 

material in the previous chapter, this provides the background to the research described 

in this thesis. Following this, the motivation and goals for the present research are 

presented with a formal statement of the research questions. 

2.1 Formant Measurement Accuracy 

2.1.1 Measurement Method 

The following section considers a number of studies where the main focus is on the 

underlying performance of the measurement method. 

One of the earliest studies concerning formant measurement accuracy examined the 

errors in formant measurements made from wide-band spectrograms and wide-band 

spectral sections (Lindblom, 1960). The study involved five subjects determining the 

frequency of the first three formants for six synthetic vowels created with six different 

fundamental frequencies. The study also examined the effect of altering the bandwidth 

of the analysis filter for both the spectral sections and the spectrograms. Table 2.1 

shows the mean absolute error values across all the vowels and fundamental 

frequencies. 

 Spectral Section Spectrogram 

Analysis filter width (Hz) 45 300 300 600 

Mean absolute error (Hz) 40 55 50 90 

Spread (Hz) - 60 70 150 

Maximum error (Hz) 90 170 150 250 

Table 2.1 Absolute formant measurement errors from spectral sections and 

spectrograms averaged over six synthetic vowels at six fundamental frequencies 

measured by five subjects. Adapted from Lindblom (1960 Table I-1). 

The results show differences in performance both across the two methods and for the 

different filter widths. The study also presents plots for the errors across the range of 

fundamental frequencies, which show a poorer performance for the higher frequencies 

(up to 350 Hz). A number of factors are noted that influence the measurements, 

including the pre-emphasis filter, the location of the harmonics within the formant, and 

the relation between the width of the filter and the fundamental frequency. Whilst the 

results are not broken down by vowel, it is reported that ‘subjects consistently located 
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low formants much too high, e.g. F1 of [i:] at about 400 Hz instead of 240 Hz’ (1960, p. 

5). The conclusion to be drawn from this evidence is that measurement of formant 

frequencies on a spectrogram requires some degree of interpretation by the analyst. 

Therefore, the accuracy of the measurement method cannot be completely isolated from 

the skill and abilities of the analyst. Whilst this issue is not addressed in this specific 

study, a further report involving the same author (Lindblom et al 1960) does address 

this issue and it is considered in Section 2.1.2 where similar studies are also discussed. 

A further work by Lindblom (1961) summarises his earlier findings (Lindblom 1960, 

Linblom et al 1960) and presents several observations relating to the sources of errors 

encountered in the analysis of vowels. A clear statement is made at the very start of the 

report which both encompasses the aim of measuring formants and some inherent 

limitations: 

When we measure the formant frequencies of a vowel we always aim at 

estimating the pole frequencies. Unless our measurements stand for poles they 

have no theoretical justification. This has sometimes been overlooked since 

neither the pole nor always the corresponding envelope peak have any direct 

spectrographic manifestations. (1961, p. 3) 

This is followed by the important observation that some of the sources of error are 

inherent in the speech signal whilst others are a consequence of the analysis tool, in this 

case spectrography. Several sources of error are listed: 

1. The higher the fundamental frequency the less information on the (spectral) 

envelope shape. 

2. The asymmetry of a formant (in terms of the relative location of harmonics) may 

considerably increase the difficulties in formant frequency estimations. 

3. In close vowels only the upper slope may be visible in the first formants. 

4. The first two formants of back vowels are often badly defined since they are 

usually close together. 

5. Close back vowels have only a slight amount of energy in the upper formants. 

Considerable high-frequency pre-emphasis may be needed to make them appear. 

6. Zeros often interfere with the F-pattern and make accurate judgements difficult. 

7. In non-stationary intervals the time position of the sample must be chosen more 

or less arbitrarily. (1961, p. 3) 
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The results from the earlier study (Lindblom 1960) are also revisited, and the magnitude 

of the errors is contextualised as often being larger than the difference limen for formant 

frequencies, which is given as approximately 3%. It is also observed that: 

The magnitude of these errors is to some extent dependent on the inter-

relations between pole frequency and fundamental frequency, i.e. the further 

the strongest harmonic within a formant from the envelope peak, the larger the 

error (1961, p. 4) 

A somewhat pessimistic statement is made that: 

the prospect of finding a formula that will be of general application and 

automatically give us the frequency of the pole are highly unfavourable (1961, 

p.4) 

Following the widespread adoption of linear prediction as a method of speech analysis 

in the late 1960s and early 1970s, which achieves precisely what Lindblom suggested 

might not be possible, a number of studies examined the accuracy of the technique for 

measuring formants. Chandra and Lin (1974) compared the performance of the 

autocorrelation (stationary) and covariance (non-stationary) methods of determining the 

linear prediction model parameters. They analysed both synthetic and real speech, and 

examined the effects of LP order, the duration of the analysis segment and its location 

relative to pitch periods. 

For synthetic speech they found that the covariance method produced almost perfect 

formant estimates when the duration of the analysis segment was less than one pitch 

period. In these conditions the autocorrelation method produced errors that were larger. 

As the duration of the segment increased past one pitch period the magnitude of the 

errors for both methods increased but then stabilised as the duration increased further. 

At the longer segment durations, greater than two pitch periods, the results from both 

methods were generally equivalent. For the real speech the findings were the same i.e. 

that for both methods as the analysis segment duration increased the formant estimates 

stabilised. They also found that for the autocorrelation method, when the segment 

duration was longer that a pitch period the particular windowing function that was 

applied to the segment influenced the results. They found that the application of a 

Hamming window produced a more accurate spectrum than when no window was 

applied. For the covariance method when the segment duration was less than a pitch 

period the precise alignment of the segment affected the results, with the best 
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performance when the glottis was closed. However, they note that ‘it is not always 

possible to isolate open and closed glottis conditions in real speech’ (1974 p.413). 

The study also examined the influence of the LP order on the normalised minimum total 

square error, a measure of the similarity between the original signal and the signal 

predicted by the LP model. Their results showed that for both the real and synthetic 

speech the normalised error reduced as the LP order increased. They also investigated 

the influence of segment duration and found that for segment lengths longer than a pitch 

period the stationary and non-stationary formulations resulted in very similar errors 

especially for the synthetic speech. However, for the real speech, the covariance method 

resulted in much smaller errors for the all segment durations. 

Both Chandra and Lin (1974) and Markel and Gray (1976, p. 187), in their summary of 

the former’s work, make comment that the advantage of testing synthetic speech is that 

the parameters are known, so an objective measure of performance can be obtained. But 

they also warn that for the results to be meaningful the synthesised speech must closely 

resemble real speech. 

Another study, which is also summarised by Markel and Gray (1976, p. 188-189), 

examines the influence of voice periodicity on the accuracy of formant measurements 

(Atal and Schroeder, 1974). Again, synthesised speech is used and on this occasion the 

fundamental frequency is varied, as well as the formant frequency. The results are 

presented for signals with only one formant with a range between 200 and 700 Hz, with 

fundamental frequencies of 100, 200 and 400 Hz. The maximum errors for the three F0 

conditions are 11, 30 and 67 Hz respectively. Like Lindblom (1961), the maximum 

errors are compared with difference limen of 3 to 5% (Flanagan 1972), and for 200 and 

700 Hz they fall above them. The errors are not constant, but vary as the formant 

frequency changes. They oscillate around the true formant value and pass through zero 

when the true formant value is a multiple of the fundamental frequency. The authors 

report that similar results were found when synthetic speech was generated with two or 

more formants. 

The more recent work by Vallabha and Tuller (2002) considers four sources of 

systematic errors in the LPC analysis of formants. They again predominantly use 

synthetic speech and note that since the ‘synthesiser satisfied all the assumptions of 

LPC analysis’ it ‘constituted a best-case scenario for the analysis method’. They begin 
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by examining the effect of fundamental frequency on formant measurement error. The 

problem is referred to as ‘F0 quantisation’, since it has already been shown that formant 

estimates tend towards the frequency of F0 harmonics. They summarise their findings 

as showing that the error increases linearly with fundamental frequency and that they 

oscillate more rapidly for the higher formants ‘because the small changes in F0 

accumulate and cause larger shifts in the higher harmonics of F0’. They note that ‘if F0 

is varying within a small range (e.g. F0 ± 10 Hz), the F1 estimate will vary slowly and, 

because F1 bandwidth is usually small, the error range will be quite large. For the same 

F0 fluctuation, the F2 estimate will fluctuate rapidly but because of the large bandwidth, 

the error range will be smaller than for F1’. 

They next consider the errors due to the selection of the incorrect LPC order. They 

suggest that the usual rules of thumb for selecting the LPC order (twice the number of 

expected formants plus two or the sampling frequency in kilohertz) ‘ignore systematic 

between-speaker or between-vowel differences’. They propose and investigate a 

heuristic for determining the optimum order based on reflection coefficients, which can 

be derived from the LP coefficients and are equivalent to the acoustic reflection 

coefficients of an acoustic tube model of the vocal tract. The effects of altering the LPC 

order are investigated for five repetitions of two vowels by two speakers and the 

heuristic is shown to select more appropriate LPC orders than the rules of thumb. 

The third source of systematic errors concerns the relationship between the frequency of 

the poles generated by the LP analysis and their equivalent spectral peaks. By 

manipulating the frequency and bandwidth of a pole, it is clearly demonstrated that the 

greater the bandwidth of the pole and the closer it is in frequency to another pole, the 

greater the divergence between the pole’s frequency and the spectral peak. The fourth 

source of errors relates to the alternative method of obtaining the formant estimates 

from the LPC coefficients, peak peaking, and specifically the use of interpolation to 

obtain more accurate estimates. The analysis found that estimates were ‘biased toward 

the nearest harmonic’ and that the errors were higher for formants with smaller 

bandwidths. To reduce the errors it is suggested that the length of the DFT is increased, 

which is used to obtain the spectrum from which the peaks are located. 

The overall findings are summarised by way of a number of recommendations. These 

are: 
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1. The order of the LP filter should be matched to the utterance being analysed 

whenever possible. If this is not feasible, then the order of the filter should at 

least be matched to each speaker. 

2. Root-solving should be used with caution for low formants or when formants are 

close to each other. In the latter situation, root-solving is best used to detect the 

existence of multiple formants. The locations of the roots bracket the locations 

of the spectral peaks and can thus guide the peak-picking algorithm. 

3. When estimating the locations of the spectral peaks, the length of the DFT 

should be at least 512 (with parabolic interpolation) or 2048 (without 

interpolation). (Vallabha and Tuller 2002, p.156-157) 

The magnitude of the errors encountered is again placed in context by comparing them 

to difference limen for trained listeners obtained by Kewley-Port and Watson (1994). 

For steady-state synthetic vowels they describe the thresholds as being relatively 

constant at around 14 Hz for frequencies less than 800 Hz, and increasing linearly above 

this frequency with a resolution of about 1.5%. The magnitude of formant errors 

encountered are summarised as being between 15 to 60 Hz, leading to the conclusion 

that the perceptual quality of resynthesized vowels may well be altered. They also note 

that when analysing real speech, with a fluctuating fundamental frequency, ‘averaging 

of formant estimates over adjacent analysis frames can be effective in reduction the F0 

quantization’. (2002, p. 158) A further comment relates to the analysis of diphthongs 

and the suggestion is made that, based on their experience, a single LPC order is 

sufficient for a given token, provided that the order is matched to the speaker. 

A further study by Vallabha and Tuller (2004) expanded the testing of their heuristic for 

determining an optimum LPC order. The heuristic was applied to a relatively broad 

range of vowels for three speakers, two male and one female. For each speaker a 

different range of optimum values was established. To examine the effect of sampling 

frequency the similar speech material was recorded for a 13 year old male speaker at a 

sampling rate of 20 kHz. This was then down-sampled to 15 kHz and 10 kHz. 

Application of the heuristic again showed a range of optimum orders across the vowels 

and the ranges changed for the different sample rates. The higher orders were selected 

for the higher sampling rate and lower orders for the lower rates. 
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2.1.2 Analyst Variability 

The studies summarised above focus on the accuracy of the analysis method. However, 

the analyst is an integral part of the formant analysis process, even if this is limited to 

the selection of the LPC order when conducted an LPC analysis. A number of studies 

have therefore examined the performance of analysts when measuring formants from 

spectrograms and some have also compared them with LPC analysis. These studies are 

discussed in this section. 

In Lindblom et al. (1960) a study is reported that investigated the variability in the 

repeated measurements of vowel formants from spectrograms by five analysts. Real 

speech was examined, rather than synthetic, and the first four formants were measured 

from wide-band spectrogram for a total of six vowels, with an F0 of around 120 Hz. 

The average deviation from the mean reported for one analyst was for a spread of 10 to 

30 Hz, averaged over the four formants. It was found that ‘the systematic disagreement 

between subjects was maximally 130 Hz with an average values of the order of 50 Hz’ 

(1960, p. 12). Karlsson (1975) conducted a similar study but concentrated on the vowels 

of female speakers. Eight analysts measured the formants of five synthetic vowels, 

again using a wide-band spectrogram. The average deviation was found to be 31 Hz 

with a standard deviation of 32 Hz, across all 4 formants, with the errors for F3 tending 

to be on average higher at 41 Hz. A slight increase in the errors with pitch was also 

observed. Comparison of the errors across the eight analysts revealed a spread of mean 

errors from 36 Hz below the true value to 26 Hz above it. Four of the eight analysts also 

performed measurements on 20 natural vowels spoken by 10 female speakers. 

Comparison of the variation of measurements, rather than their accuracy, revealed 

different patterns of deviation from those found for the synthetic speech. Also, the 

deviations were greater for the real speech. Overall, the results are comparable with 

those reported in Lindblom et al (1960) for male speakers. 

Monsen and Engebretson (1983) report on a comparative study between the accuracy of 

spectrographic measurements by three experienced analysts, and the equivalent results 

from an LP analysis. The speech material comprised 90 synthesised tokens with a range 

of fundamental frequencies, from 100 to 500 Hz, with formants that represented a range 

of different vowel qualities. The bandwidths of all instances of one vowel were also 

varied from 50 to 400 Hz. The spectrographic measurements were made from wide-

band representations that were accompanied by narrow-band sections from the centres 
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of the vowels. The LP analysis was conducted using the Speech Microscope (Vemula et 

al., 1979) set of computer programs. The LP order used was 22, which seems 

surprisingly high. No information is provided about the sampling frequency used so it is 

difficult to assess its suitability. However, it was selected on the basis of a short pilot 

experiment that tested a range of orders from 12 to 30, which showed that below order 

20 the absolute error increased, whilst above 20 it remained relatively constant. 

A detailed analysis of the results is presented, with a separation made between those 

obtained for tokens with a fundamental frequency between 100 and 300 Hz and those 

from the higher range of 350 to 500 Hz. This was done as the performance between the 

two sets was markedly different. Table 2.2 shows the mean absolute error (MAE) values 

over all tokens for each formant for both analysis methods. For F1 and F2 both the LP 

and spectrographic methods produced similar results within each of the F0 ranges. 

However, for F3 the performance of the spectrographic method is much worse in both. 

For vowels where formants were closely spaced, the performance for the LP analysis 

decreased, whereas no such pattern was seen for the spectrographic analysis. For both 

methods, the performance did decrease for increasing formant bandwidth. 

F0 Range Method F1 MAE (Hz) F2 MAE (Hz) F3 MAE (Hz) 

100 - 300 Hz 
LP 69 57 50 

Spectrographic 70 40 111 

350 - 500 Hz 
LP 143 105 111 

Spectrographic 143 123 174 

Table 2.2 Combined mean absolute error values for F1, F2 and F3 from LP and 

spectrographic measurements from 90 synthetic vowel tokens separated by two F0 

ranges. The measurements were made by 3 analysts (adapted from Monsen and 

Engebretson, (1983), Tables 4 and 5). 

The variability of the performance across the analysts was also considered, with their 

absolute error across the three formants in the 100 to 300 Hz F0 range reported as 64, 

79 and 79 Hz. This increased to 141, 166 and 133 Hz in the 350 to 500 Hz F0 range. 

The study also demonstrates the change in performance of the LP analysis for a 

different synthesis method. The findings reported above were from a parallel synthesis 

approach, which was chosen as it was considered to be more representative of real 

speech than serial synthesis. The LP analysis was re-run on speech generated with the 

same formant values but using serial synthesis. The results were reported for the 100 to 

300 Hz F0 range as 31 Hz, 40 Hz and 26 Hz for F1 to F3 respectively, which shows a 
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marked improvement compared with the results from the parallel approach of 69 Hz, 57 

Hz and 50 Hz seen in Table 2.2. 

A study by Wood (1989) compared formant measurements from spectrograms and LP 

analysis for real speech. The speech material consisted of 60 words spoken in 

Bulgarian. Whilst it is acknowledged that the true formant values cannot be known, the 

findings are assessed in light of those from Monsen and Engebretson, (1983). The 

results showed that F1 for the LP analysis, on average, produced results that were 34 Hz 

higher than the spectrographic measurements for stressed vowels and 26 Hz higher for 

unstressed vowels. Since Mosen and Engebretson (1983) reported that the 

spectrographic analysis underestimated the true frequency by about 10%, it is presumed 

that these results show that the LP analysis ‘underestimated F1 in the Bulgarian vowels 

by about 5%’. The F2 results show the LP analysis to be on average 9 Hz lower for 

stressed vowels and 21 Hz lower for unstressed vowels. The results from Mosen and 

Engebretson (1983) show a 3% overestimate of F2 values with spectrographic analysis, 

so again, the LP is analysis is assumed to be closer to the true value. No spectrographic 

measurements were made for F3 as it was not well defined for a number of vowels, 

especially the unstressed one. However, the LP analysis did produce estimates for 

nearly all vowels, which, again based on the performance of LP in the Mosen and 

Engebreston (1983) tests, are assumed to be relatively accurate. 

In the studies that have been summarised so far, the effects of analyst variability have 

only been considered for spectrographic analysis. Where LPC analysis has been used, it 

has generally been applied in a systematic and controlled way. However, this does not 

necessarily reflect the real world usage of LPC analysis tools when being used in an 

interactive way i.e. where decisions must be made concerning where in time a 

measurement should be made and what analysis parameters should be used. The study 

by Duckworth et al. (2011) investigates this issue by comparing the formant 

measurements from three analysts for real speech material both before and after 

agreeing a common measurement procedure. The speech material consisted of six 

repetitions of six monophthongs from a total of 40 male speakers, separated in to two 

sets with 20 speakers per set. The measurements were made using the Praat software for 

the initial set after agreeing some very general principles, but the analysts were free to 

choose the measurement method, either LPC, spectrogram or spectral slice. Following 

the first set of measurements, the analysts agreed a common strategy which restricted 
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them to LPC analysis only and a clearly defined method for locating the point in time at 

which to take the measurements. These procedures were then applied to the 

measurements made for the second set of speakers. The measurements were compared 

across the two speaker sets in a pair-wise way between the three analysts for each vowel 

category. As predicted, after agreeing a common strategy, the measurements from the 

second set showed less between-analyst variation. Overall, the variation for F3 was the 

greatest in both sets, whereas the most consistent results were for F2 in the second set. 

The measurements for individual speakers were examined and it was found that for 

many of them the three analysts produced very similar formant estimates. However, a 

number of speakers showed very large differences, which contributed to the overall 

variation. Whilst the location in time of the measurements and choice of LPC order was 

not analysed, the study does make recommendations that such information should be 

retained. This is particularly relevant in the forensic context where the close scrutiny of 

formant measurements may occur if the results from different analysts are divergent. 

2.1.3 Technical Characteristics of the Speech Signal 

The research considered in the previous sections mainly concerns the effects of the 

measurement process, including the analyst, on the accuracy or variability of formant 

measurements. Another factor which has been shown to affect formant measurements is 

the technical characteristics of the speech signal. The studies summarised below all 

focus on this issue. 

One of the early works that considers the impact of the technical characteristics of the 

speech signal is the study by Künzel (2001), which examines the ‘telephone effect’. 

Since telephone channels act as filters, with a pass-band measured in this study from 

approximately 400 to 3400 Hz, it was hypothesised that the reduction of speech energy 

at the lower frequencies would result in an artificial upshift in formants. Ten male and 

ten female speakers were recorded reading ‘The North Wind and the Sun’ in German in 

to a standard digital telephone handset whilst being simultaneously recorded via a 

microphone at the near end of the line and at the far end of the line. The F1 and F2 

values were measured in both recordings for the 29 vowel tokens. The measurements 

were made from spectrograms using the KAY Multi-Speech Software. Attempts were 

made to use the LPC formant tracking function of the software but this was found to be 

unreliable up to 50 per cent of the time, so it was not used. Comparison of the two 

conditions found that for F1 the difference between them was significant, with the 
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values always being higher in the telephone recordings. The results for F2 overall 

showed no significant differences, confirming the hypothesis. Examining the results 

from the different vowels revealed that those with the lower F1 values tended to have 

the greatest differences. When the results were examined for the individual speakers, a 

range of variation was found, meaning that it was not possible to apply a general rule to 

compensate for the upshift in F1 values. 

A study by Byrne and Foulkes (2004) replicated the work of Künzel (2001), but used a 

mobile phone at the speaker’s end of the line rather than a landline. A standard text was 

read by six male and six female speakers whilst being simultaneously recorded at both 

ends of the phone line. Measurements for F1 to F3 were made via LPC spectra in the 

Sensimetrics SpeechStation2 software using the narrowest bandwidth setting available. 

Some problems were reported where the first and second formants were too close to 

resolve and where F3 in the mobile phone recordings could not be located at all. Only 

F1 showed a significant difference between the two conditions, with an average upward 

shift of 29% in the mobile phone recordings compared with the microphone recordings. 

Again, the upward shift was greatest for vowels with the lowest F1 values. The F2 

values showed little change across the conditions as did the majority of F3 values. 

However, the highest F3 values in the direct recordings did show a large downward 

shift in the mobile phone recordings. Variability was found across tokens and speakers 

precluding a compensatory algorithm. 

In order to examine in greater detail the effects on formant measurements of the GSM 

AMR codec used in mobile telephones, Guillemin and Watson (2006, 2008) conducted 

a controlled study in which recorded speech was processed via the codec at different bit 

rates. In order to remove other potential variables that could be introduced by using a 

real telephone network, the speech was encoded and decoded within a computer. 

Formant measurements were made on the original unprocessed and the GSM processed 

speech using WaveSurfer with default settings, including an LPC order of 12. The 

preliminary findings suggest that the overall tendency is for formant frequencies across 

all three formants to decrease in the processed versions. A difference is seen between 

the male and female speakers, with the changes for female speakers being greater. They 

also report that the behaviour is unpredictable and that no patterns emerge across the 

different bit rates tested. However, a similar study by Enzinger (2010), reached different 

conclusions. The same approach of applying the GSM codec to recorded speech at 
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different bit rates within a computer was used and in this study the telephone network 

band-pass filtering characteristics were also simulated. This study again found the 

raising of F1, caused by the band-pass filtering and concluded that the effects of the 

GSM codec were small relative to the filtering effect. A small tendency was found for 

F3 to be lower in the encoded signals. The study concludes that the codec does cause 

problems for the automatic tracking of formants resulting in the incorrect assignment of 

formants and in some cases missing them completely, but after applying manual 

corrections the differences were ‘rather small’. 

It is likely that a significant proportion of the differences seen by Guillemin and Watson 

(2006, 2008) are a consequence of tracking errors rather than the codec significantly 

altering the position of the formants. The default settings of WaveSurfer would have 

restricted the bandwidth of the unprocessed signal to 5 kHz, whilst the codec required 

the speech to be down sampled, resulting in an upper frequency of 4 kHz. Furthermore, 

the highest two bit rates restrict the upper frequency to approximately 3.6 kHz, the 

middle range bit rates limit it to approximately 3.4 kHz, whilst the lowest two show 

upper limits of 2.8 kHz and 3 kHz respectively. Whilst it is acknowledged by the 

authors that the limited bandwidth will affect the higher formant frequencies and that 

the tracker clearly has difficulty in locating some of the formants, no mention is made 

of the suitability of the analysis parameters selected, particularly the LPC order (2008, 

213). 

Another technical aspect of the speech signal that has received attention in relation to 

formant measurement errors is the recording process. The study by Livijn (2004) 

examines the influence of different recording devices on formant measurements. A 

modified version of ‘The North Wind and the Sun’ was read in Swedish, in an anechoic 

room, whilst being simultaneously recorded via a condenser microphone connected to a 

computer, via a dynamic microphone connected to a standard cassette recorder, by a 

microcassette recorder and via a mobile telephone that was being recorded at the distant 

end of the line. Formant frequencies F1 to F3 were measured at the start, middle and 

end of all the 18 vowels in each recording using Praat. It is assumed that an LPC 

analysis was used although it is not stated and no settings are given. The values from the 

recording made directly to the computer were considered as the reference set and the 

measurements from the other devices were compared with them. The largest deviations 

were found for the microcassette recording, followed by the mobile telephone, then the 
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standard cassette. The largest divergences for the microcassette are reported as 13 %, 

12.4 % and 10.6 % for F1 to F3 respectively. However, a number of large differences 

are attributed to artefacts of the measurement process rather than an inherent shift 

caused by the recording method. Upward shifts in F1 are again observed for the mobile 

phone. 

The impact of lossy compression algorithms is the focus of the work by van Son (2005). 

Four male and four female speakers were recorded simultaneously via a fixed condenser 

microphone and a head-mounted dynamic microphone to an audio CD recorder. The 

speech material was read and retold versions of the ‘The North Wind and the Sun’, in 

Dutch. The recordings from the condenser microphone were re-recorded to a MiniDisc 

player so that the material would be compressed using the ATRAC3 method, as well as 

separately being subjected to MP3 encoding at a bit rate of 192 kbps and Ogg Vorbis 

encoding at 80 kbps and 40 kbps. Formant measurements for F1 to F3 at vowel 

midpoints were made using Praat’s Burg tool with default settings to emulate a naïve 

user. The formant measurements were converted to semitone values to allow a direct 

comparison across the three formants, with a difference of 1 semitone being 

approximately equivalent to 6 % within the range of 0.25 to 3 semitones. The 

measurements from the compressed recordings and different microphone were initially 

compared with those from the reference CD in order to locate large differences in 

formant values for each vowel token. Differences larger than 9 semitones for individual 

tokens were removed from the further analysis of the results. Of the 2415 tokens, the 

most were removed for the different microphone condition, approximately 3.8%, 2.4% 

and 0.2% for F1 to F3 respectively. The percentage of rejected tokens for the 

compressed recordings were much lower than for the microphone change and were 

relatively consistent across codecs (0.8% for F1 and F2, 0.1% for F3). The least 

rejections occurred for the MP3 encoded material. Analysis of the remaining errors, 

with the outliers removed, showed that in terms of RMS errors, expressed in semitones, 

the microphone change produced the largest errors of approximately 1.7 semitones for 

F1, 1.3 semitones for F2 and 1.2 semitones for F3. For each codec, the performance was 

similar across the three formants, with the Ogg Vorbis 40 kbps material performing 

worst, with an error of approximately 0.8 semitones RMS error for each formant, and 

the MP3 material performing the best with errors of approximately 0.3 semitones RMS. 

The MiniDisc and Ogg Vorbis 80 kbps results were similar at around 0.6 semitones 

RMS. 
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The results from van Son (2005) showed that the greatest differences in formant 

measurements were introduced by using a different microphone. Results from a 

preliminary study using three different microphones indicate large changes can occur in 

formant values measured by LPC analysis (Hansen and Pharao, 2006). Almost 15% of 

the 252 measured values from one speaker showed differences between 5 and 10%, 

whilst a further 12% showed differences greater than 10%. A further experimental 

procedure using more microphones at a number of distances and with more speakers is 

described but no detailed analysis was reported.  

In addition to the microphone, other factors that influences the frequency spectrum of 

the signal are the acoustic environment in which the speech occurs and the distance 

from the speaker to the microphone. A small-scale study by Vermeulen (2009) aimed to 

investigate these effects on formant measurements. Twelve synthetic steady state 

vowels were generated with a fundamental frequency of 100 Hz and formant 

frequencies that coincided with the harmonics. The vowels were replayed via a 

loudspeaker in three acoustic environments, a semi-anechoic room, a long corridor and 

a domestic living room. Recordings were made at a range of distances from the 

loudspeaker. Initial formant measurements made via an LPC analysis in Praat of the 

original synthetic vowels revealed an average error across the four formants of the order 

of 4%. It was decided that LPC analysis would not be used to analyse the recordings so 

the relative amplitudes of the harmonics of the fundamental measured from FFT spectra 

were considered instead. Statistically significant differences were observed across the 

spectra for the distances in each acoustic environment but the interpretation of the 

results in relation to how the changes affected the appearance of formants was 

problematic. 

2.1.4 Contextualising Formant Variation & Errors 

Several of the studies summarised above relate the magnitude of the errors found to 

difference limen in order to contextualise the results (e.g. Lindblom 1960, Monsen and 

Engebretson 1983, Vallabha and Tuller 2002). Whilst this is a useful technique, the 

significance of formant measurement errors is different across applications. The errors 

themselves may be of little relevance; it is how the measurements are interpreted and 

what conclusions are drawn from them that are most important. This issue is considered 

in the context of sociophonetics by Woehrling and Mareüil (2007). The study compares 
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the performance of Praat and Snack
1
 on two large corpora of French, one consisting of 

face to face recordings, the other containing telephone speech. In addition to comparing 

the performance of the software, the aim of the study is to determine if it is possible to 

discriminate two varieties of French based on the formant measurements. 

For both Praat and Snack the frame advance was set to 10 ms and a frame width of 50 

ms was chosen. Given the limited bandwidth of the telephone recordings the upper 

analysis frequency in Praat was limited to 3000 Hz for male speakers and 3300 Hz for 

females and the number of formants to extract was set to 3. However, it is not clear if 

the tracker function in Praat was used or if the Burg tool was used and the setting of 3 

corresponded to an LPC order of 6. No mention is made of the LPC order in Snack or 

whether the upper analysis frequency was reduced, but it is stated that the other 

parameters were set to default. Formants were measured for 10 phonological vowels 

that had been automatically segmented in the corpora. Whilst the number of tokens is 

not provided the telephone material contained approximately 70 speakers per region 

with an average conversation duration of 14 minutes. A similar amount of material was 

available in the face to face corpus. 

Formant measurements that were outside a range of ± 500 Hz from a set of reference 

values for each vowel category were discarded. For each vowel category, correlation 

coefficients were calculated for mean F1 and F2 values for each speaker and distances 

were calculated between the means within each corpus. Overall, the correlations 

between the F1 values for the male and female speakers in each corpus were all greater 

than 0.85. Summed absolute differences for F2 were less than 50 Hz for all 

circumstances but were greater than 50 Hz for F1 for the telephone speech. In general 

for individual vowels the correlations were good with only 16% being under 0.7. 

However, some weak correlations and large distances were noted for the telephone 

corpus, with Praat’s F1 values being consistently higher, which resulted in a vertical 

shift in plotted vocalic triangles. They therefore warn: 

‘Praat and Snack exhibit substantial differences, especially on F1 and certain 

vowels. Therefore comparisons among vowel spaces stemming from different 

signal processing tools must be taken with caution.’ (2007, p. 1008) 

                                                
1 The software WaveSurfer is built on the Snack toolkit and produces identical measurements. This is 

discussed in more detail in Section 7.2.2. 
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The study goes on to examine various differences found between the northern and 

southern varieties of French in the corpora. Finally, decision tree techniques were 

applied to the measurements from the vowel /ɔ/ to see if they could be used to 

discriminate between speakers from the north and south of France. The performance of 

the system was between 73% and 97% depending on the software, sex of the speakers 

and the corpus used. This performance was considered sufficient to ‘outline a spreading 

linguistic change: /ɔ/ fronting in northern French’ (2007, p. 1009). Whilst the study 

clearly demonstrates the differences in the measurements between the software used, its 

aim of discriminating two varieties of French was achieved. 

A study by de Castro et al. (2009) examines the performance of a forensic speaker 

comparison method based on the statistical modelling of features extracted from 

formant measurements obtained via an automatic measurement process and compares it 

with those made by an analyst. A clear motivation for using an automatic measurement 

approach is that it is much quicker and also allows the analysis of more material, 

resulting in statistical models that are more representative. Whilst no information is 

provided in relation to the actual measured values and the differences found between the 

two methods, it is accepted that analysts will produce more accurate measurements. The 

outcome of the tests of the speaker comparison system revealed that even though the 

performance based on the automated formant measurements is worse than with the 

human measured values, the performance is still acceptable. 

A similar, but more extensive set of tests are reported by Zhang et al (2012). They 

tested the performance of 5 formant trackers and 4 analysts by fusing the results from 

the formant measurements with a baseline MFCC system and assessed whether the 

addition of the formant data provided an improvement over the MFCC system on its 

own. The comparisons were also conducted using different quality recordings from 

telephones. Again, information concerning the differences in the actual measurements is 

not provided but an assessment of the within-analyst reliability is reported showing 

relatively good within and cross analyst agreement. The fusion of the human-supervised 

measurement results with the baseline system always led to an increase in performance 

over the baseline system on its own. The pattern of results from the automatic 

measurement systems was more complex with some trackers in some conditions 

improving the performance of the combined system, whilst others did not. However, the 
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study concludes by questioning whether the degree of improvement from the analyst 

based measurements is justified given the time required to make the measurements. 

2.2 Software Performance & Guidance 

The studies discussed above provide many useful insights into the measurement of 

formants, including factors that can influence the measured values and the magnitude of 

errors or variation that can be encountered. However, a number of specific issues are not 

addressed by the literature, but which are relevant not only to forensic speech scientists, 

but the wider phonetics community. Several of the studies examine the variation in 

performance of analysis methods when parameters such as LPC order are altered, but 

they have not been conducted using software that is currently in widespread use. It is 

therefore not certain how the findings might relate to these specific implementations of 

the measurement methods. Those studies that do use current software tend to have a 

different focus and the performance of the software is not addressed at a level of detail 

sufficient to yield any significant insights that might assist analysts when making their 

own measurements. There are some studies which provide a comparative analysis of the 

performance of current software, and these are discussed in Section 7.4, but the results 

only serve as a benchmark against which a novel approach is being assessed. These 

studies also highlight a number of problems when interpreting the reported 

performance, such as insufficient detail concerning the methods followed and the 

presentation of results in ways which makes them difficult to compare across studies. 

Comparisons of the performance of commonly used software have been conducted from 

a forensic perspective (Schiller and Köster 1995 and Howard et al 1993), but they only 

concern the measurement of fundamental frequency. A further work by Morris and 

Brown (1996) also addresses the accuracy of fundamental frequency estimates from a 

general speech analysis viewpoint. At present, no similar studies exist either in the 

forensic field or within phonetics more broadly that directly address the performance 

and variability of commonly used formant measuring tools. 

A further shortcoming of the studies reviewed above is their limited attention to the 

performance for different speakers. Whilst the work by Vallabha and Tuller (2002, 

2004) does propose an approach for selecting an optimum LPC order for an individual 

speaker, this is only demonstrated on a small number of speakers. Also, many of the 

studies consider measurements from a range of vowels but little attention is paid to 

variation across the vowel space. 
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In terms of practical guidance that is available to analysts when making formant 

measurements, very little is available. Earlier work such as Makhoul (1975, p. 574) 

discusses the issue of determining an optimum LPC order for the overall representation 

of the spectrum rather than for specifically measuring formants. The suggested approach 

is to examine the system error, i.e. the difference between the original signal and the 

LPC signal, for increasing LPC orders until the error no longer significantly decreases 

with increasing LPC order. Whilst this may appear to be a sensible approach, it is 

difficult to implement in modern analysis software and it is not apparent if it would 

result in the most accurate formant measurements. One of the earlier studies that does 

address obtaining formant measurements from an LPC analysis (Markel, 1972) 

discusses the issue of selecting appropriate analysis parameters. For LPC order it states 

that it ‘is not a strong function of the particular speech sound’ but ‘it is a strong function 

of the system sampling rate’ and therefore the maximum analysis frequency (1972, p. 

134). It recommends that a suitable LPC order can be calculated as the sampling rate 

measured in kHz plus 4 or 5. So for a sampling rate of 10 kHz (giving a maximum 

analysis frequency of 5 kHz) the optimum LPC order is 14 or 15. This advice is 

repeated in Markel and Gray (1976, p.154) and is often considered as a general rule of 

thumb for determining a suitable LPC order. 

A slightly different rule of thumb is provided by Ladefoged (1996, p.212) and suggests 

taking the sample rate in kHz and adding 2. However, he describes choosing the correct 

LPC order as being ‘somewhat of an art’ (1996, p. 212) and ultimately suggests trying 

several LPC orders and then seeing which provides the ‘most interpretable results’. 

Harrington and Cassidy (1999, p. 221) recommend that the minimum LPC order for 

voiced male speech is equal to the sample rate in kHz. For a recording with a sample 

rate of 10 kHz or a specified maximum analysis frequency of 5 kHz, the three rules of 

thumb suggest a range of LPC orders from 10 to 15. The suitability of the orders within 

this range and the sensitivity of measurements across it has not been subject to 

empirical testing using modern software implementations. 

One acknowledgement in a forensic text of the variation in performance between 

formant analysis software appears in Rose (2002, p. 265-267). Based on this variable 

performance Rose states that ‘it is mandatory to carry out comparison of questioned and 

suspect material on the same equipment, with exactly the same settings’ (p. 267). Whilst 

on the face of it this may appear to be sensible advice, it contradicts the 
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recommendation given by Vallabha and Tuller (2002, p. 156) that ‘the order of the LP 

filter should be matched to the utterance being analysed whenever possible’ and where 

that is not possible it ‘should at least be matched to each speaker’. Such contradictory 

advice is clearly problematic for analysts attempting to determine what might be 

considered as ‘best practice’ based on the guidance of others. 

Another source of information on LPC analysis is textbooks concerned with speech 

analysis. They frequently contain descriptions of the principles of LPC analysis, the 

limitations and the pitfalls, but by their nature any advice or suggested settings are very 

general and not software specific. At the other extreme the manuals or help files for 

software packages may provide a description of the algorithm or analysis process, the 

available analysis parameters and default values, without providing any detailed 

guidance in their usage. 

2.3 Present Research 

2.3.1 Motivation 

It is apparent from Section 1.3 that formants are considered to be an important speech 

feature in the field of forensic speech science and that they are measured and analysed 

in a significant proportion of cases.  It is also clear from previous sections that formants 

are subject to many sources of variation from both a speech production perspective and 

from technical factors including the type of signal transmission and the measurement 

method. These factors mean that formant measurements used in forensic analysis will 

contain inaccuracies and errors. If the sources of error and the likely reliability of the 

measurements are not understood and accounted for then analysts are at risk of 

misinterpreting the data. This has the potential to influence and ultimately alter the 

outcome of individual forensic tests, which in turn can affect the final conclusion 

reached by a forensic scientist concerning the identity of a speaker or the interpretation 

of an utterance. In the most extreme situation it is possible for the misinterpretation of 

erroneous formant measurements to be a significant contributory factor to a miscarriage 

of justice. Whilst the author is not aware of any examples of this having occurred, based 

on other instances of misinterpreted data that have been encountered in casework, it is 

possible to envisage scenarios in which it could. 

The potential impact of formant estimation errors is a function of both the magnitude of 

the errors and the weight or reliance placed on the measurements as part of an 
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individual test and in reaching a final conclusion. Whilst highly inaccurate 

measurements have the potential to lead to the most significant misinterpretation of the 

data, they should also be more easily identifiable as erroneous, allowing them to be 

rejected. It is the measurements which are moderately inaccurate that pose the greatest 

risk of misinterpretation. 

The impact of errors also depends on whether they are random or systematic. Since 

formants are subject to natural variation in speech production, caused by differences in 

articulatory movement and co-articulation effects, multiple tokens of vowels from the 

same category are usually analysed to obtain a distribution of measurements. Random 

errors in the measurement process will cause these distributions to be artificially wide. 

In speaker comparison analysis the distributions are compared across samples. If the 

random nature of the errors is the same across the samples, and there are a sufficient 

number of representative tokens in each sample, then the overall influence on the two 

distributions should be similar. Whilst this is of limited significance for distributions 

that genuinely display a high degree of overlap, for non-overlapping or partially over-

lapping distributions the random errors may artificially increase the degree of overlap. 

This is problematic for the interpretation of the data as the extent of the overlap may be 

incorrectly attributed to the degree of similarity between the samples rather than 

inaccurate measurements. 

Similar issues arise when measurements from an individual token are compared with a 

distribution from another sample, as is often done when analysing disputed content. 

Random errors will result in an artificial widening of the distribution and even where 

the measurements from the disputed token are not truly part the distribution they may 

fall within it. This again leads to the potential for the data to be misinterpreted. 

Systematic errors result in predictable shifts in measured values, such as that caused by 

the filtering effect of telephone transmissions (Künzel 2001 and Byrne and Foulkes 

2004). If the process that caused the shift applies equally to the measurements being 

compared, then this type of error is potentially unproblematic as both are affected to the 

same extent. However, if only one set of measurements is affected or the two are 

affected differently then there is the potential for the results to be misinterpreted. If 

formant measurements from two samples originating from the same speaker are affected 

differently, their distributions may appear separate when in fact they should overlap. 
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The opposite could also occur where distributions from different speakers are shifted so 

they overlap when in fact they should be separate. 

The potential impact of errors is also influenced by the number of tokens analysed. In 

general, the greater the number of tokens the better the representation of the true 

distribution of values. A single erroneous value in a well-represented distribution will 

have a smaller overall impact than in a sparse distribution. Within a well-represented 

distribution a single erroneous value may appear as an outlier allowing it to be rejected 

or reanalysed. However, forensic samples are often short and of poor quality which 

limits the number of tokens available for analysis. In the case of disputed utterance 

analysis the acceptance or rejection of an interpretation can be strongly influenced by 

the measurements from a single token in the word in question. In situations such as 

these with very limited data the potential impact of errors is at its greatest. 

To arrive at a conclusion for a forensic case, either on the identity or non-identity of a 

speaker or the acceptance or rejection of the interpretation of an utterance, the outcome 

of a formant analysis is assessed subjectively in conjunction with the outcome of other 

examinations, such as an auditory analysis. Since these processes are subjective, there 

are no fixed thresholds for determining the results of individual analyses or the final 

conclusion. Reaching a conclusion can be particularly difficult when the results of a 

formant analysis are at odds with the results of other tests or where the formant analysis 

outcome is unclear. Coupled with this difficulty, forensic scientists are also susceptible 

to cognitive bias when making measurements and interpreting findings (Kassin et al 

2013). Confirmation bias, the tendency to find features, make measurements or interpret 

findings in such a way as to support an opinion that has already been formed, can affect 

the measurement and interpretation of formants. This type of bias can manifest itself as 

analysts being less critical of measurements which appear to support their already 

formed opinion. Alternatively, analysts could be overly critical and use measurement 

errors as an explanation for findings that do not fit their conclusion. Analysts may also 

be overly reliant on formant measurements as they consider them to be superior to other 

forms of analysis as they provide what appears to be an objective result. This can occur 

with material of poor quality, which is a common attribute of forensic recordings, where 

formants are unclear in spectrographic representations but measurements from a LPC 

analysis are nevertheless accepted as accurate. 
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The discussion above highlights the potential impact that formant measurement errors 

can have on forensic analyses. For forensic speech scientists to be able to properly 

analyse and interpret formant measurements and reach conclusions based on them, they 

must have knowledge and understanding of the sources of variation and the resulting 

reliability of the measurements. Whilst some of this knowledge can be acquired through 

personal experience it must also be obtained from empirical studies. Some research has 

focussed on formant accuracy and variation from a forensic perspective such as 

Duckworth et al (2011) concerning the influence of analysts’ decisions on 

measurements and Byrne and Foulkes (2004) on the telephone effect. A very limited 

number of studies consider the difference in performance of automatic speaker 

comparison systems when using automatic versus manual measurements (Zhang et al 

2012 and de Castro et al 2009). The literature does provide some insight into the 

reliability of LPC derived formant measurements but there is a lack of information 

concerning the performance and behaviour of tools currently used by analysts. This is a 

significant shortcoming as it cannot be assumed that all software implementations will 

behave in the same way. Furthermore, there is very little empirically derived advice 

available to analysts concerning the measurement of formants. It is these issues that are 

the motivation for the research presented in this thesis. 

2.3.2 Research Goals 

The ultimate goal of the thesis is to provide guidance and information that will be of 

assistance to forensic speech scientists when making and interpreting LPC derived 

formant measurements. This guidance and information will be based on the empirical 

study of the behaviour and accuracy of formant measurements made by software 

currently in use by forensic speech scientists. The insight gained from these 

investigations should allow analysts to better understand some of the factors that can 

influence the accuracy of formant measurements and therefore make better informed 

decisions when making and analysing measurements. As well as facilitating greater 

accuracy of measurements, the results of this work have the potential to improve the 

performance of speaker comparison and disputed content determination methods. 

2.3.3 Research Questions 

In order to focus the investigations presented in this thesis, three research questions are 

posed. 
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RQ 1. What influence does the LPC formant measuring tool have on the 

accuracy of formant measurements? 

RQ 2. How does altering the LPC analysis parameters affect formant 

measurement accuracy? 

RQ 3. To what extent does the accuracy of LPC formant measurements vary 

across speakers? 

The questions concern three important factors that can affect the accuracy of formant 

measurements. The influence of the measuring tool and how it is used is addressed in 

Question 1. For analysts to reliably use specific software, its behaviour and performance 

must be understood. It is not sufficient to simply assume that results reported in the 

literature are universally applicable to all software, so tools currently used by analysts 

must be tested empirically. Since different analysts may use different software, it is 

important to understand how measurements may vary between them, especially if the 

results from one piece of software may be compared with those from another. 

Considering different tools is particularly important as guidance derived from the results 

for one may not be applicable to others. 

Question 2 concerns the influence of the analysis parameters. Understanding the effects 

that altering the parameters can have on measurements is important since it is the means 

by which analysts interact with the software and can influence the measurements. Such 

understanding will allow analysts to use tools in the most appropriate ways in order to 

make more accurate measurements and develop better analysis strategies. These effects 

must be investigated across software tools as the findings from one may not be 

applicable to others. 

The effect of the speaker is the focus of Question 3. Since the LPC method relies on a 

simplified model of speech production it is to be expected that the behaviour and 

accuracy of formant measurements will vary across speakers because for each one the 

degree of correspondence with the model will be different. This source of variation is a 

further factor that analysts must consider when making and interpreting measurements. 

It is of particular relevance for the forensic speaker comparison task where formant 

measurements are compared across recordings from potentially different speakers. 
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2.4 Summary 

The present chapter has reviewed the literature concerning formant measurement errors 

arising from a range of sources, namely the measurement method, analyst variability 

and the technical characteristics of the speech signal, as well as considering how the 

errors may be contextualised. The limited guidance on measuring formants and issues 

concerning the performance of software are also discussed. This was followed by a 

presentation of the motivation and goals for the current research and the research 

questions. The following chapter describes a pilot study concerning the variability of 

formant measurements across three software packages (Harrison, 2004) and a 

supplementary analysis of the results.  
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Chapter 3 Variability of Formant Measurements Across 

Current Software 

This chapter is a summary of the research conducted for the author’s MA dissertation 

(Harrison, 2004) and is supplemented by a further analysis of the data carried out after 

the dissertation was completed. This further work was presented at the conference of the 

International Association for Forensic Phonetics and Acoustics (IAFPA) in 2006 

(Harrison, 2006). 

3.1 Introduction 

The review of the literature in the previous chapter revealed that little attention has been 

paid to the behaviour and performance of formant measuring tools currently used by 

speech analysts. This chapter begins to address this issue by analysing and comparing 

formant measurements obtained from three commonly used LPC analysis tools for two 

speakers across of range of analysis parameters. The analysis of the results from these 

experiments addresses the first two research questions, which ask what influence the 

software and the analysis settings have on the accuracy of formant measurements. This 

is achieved firstly by examining how the measurements vary as the analysis parameters 

change, and secondly by considering the proportion of accurate measurements obtained 

at different LPC orders. Since the measurements were only obtained for two speakers, 

the experimental results provide a limited answer to the third question concerning how 

the accuracy varies across speakers. Despite the limitations of the study, the results 

highlight the importance of empirically testing software and provide the basis for some 

important guidance for analysts when making formant measurements. 

3.2 Methodology 

3.2.1 Determining Accuracy 

The nature of formants means that it is problematic to determine the accuracy of 

formant measurements as there is no sufficiently reliable or accurate method that can be 

used to obtain ‘true’ values which can be compared with measured values. In 

recognition of this fundamental issue, the approach chosen for this pilot study was to 

consider the relative variation of formant values across analysis settings rather than 

attempting to determine the absolute accuracy of the measurements. 
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3.2.2 Speech Data 

In order to have control over the speech material, recordings were made specifically for 

the study rather than relying either on forensic case materials or recordings made for 

another purpose. To replicate some of the range of quality that can be found in forensic 

recordings, the speech material was recorded simultaneously via a microphone (Shure 

SM58) and at the far end of a landline telephone to landline telephone line connection. 

The recordings were made to a Tascam DA-40 digital audio tape recorder at a sampling 

rate of 44.1 kHz and 16 bit resolution. The simultaneous recording process allowed the 

measurements from the two channels to be directly compared without the differences in 

production which would have occurred had the material been repeated for the second 

channel. 

To further control the speech material to ensure a sufficient number and range of vowel 

tokens, a word list was compiled. The words are shown in Table 3.1. The list contains 

real words, mainly in a CVC structure, with an initial /h/ due to its open articulation 

requiring minimal articulatory movement to reach the vowel target. The vowels were 

selected to represent the four extremes of the vowel space generally utilised by speakers 

of most accents of English and have the lexical headwords FLEECE, TRAP, PALM and 

GOOSE (Wells, 1982). A neutral vowel, NURSE/lettER, was also included. The final 

consonant was controlled to allow an investigation into whether this factor had any 

influence on the measurements. However, this aspect of the data analysis was not 

undertaken. 

Final 

Consonant 

Vowel Category 

FLEECE TRAP PALM GOOSE NURSE/lettER 

Zero he ha Har who hisser 

/t/ heat hat heart hoot hurt 

/d/ heed had hard who’d herd 

/s/ cease  pass Haas Soos hearse 

/z/ he’s has SARS who's hers 

/n/ seen Hann Hahn Hoon Hearn 

Table 3.1 Word list arranged according to final consonant and vowel category. 

The word list was presented to the subjects with the word order randomised to remove 

any ordering effects, and filler words were included at the start and end of the list to 

combat any list effects. The list was read three times resulting in 18 tokens per vowel 

category and 90 tokens in total. The subjects were two male native British English 

speakers, including the author. 
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3.2.3 Software 

It was observed in the literature review that the majority of previous studies of formant 

measurement accuracy have not been carried out on implementations of the LPC 

algorithm in software currently used by phoneticians. As one of the aims of the study 

was to test currently used software, members of IAFPA were contacted by email in 

2004 and asked what software they used when making formant measurements. Sixteen 

of the fifty-six members responded. The three most commonly used programs were 

Praat (8 users), Kay CSL/Multi-Speech (8 users) and WaveSurfer/X Waves (5 users). 

Based on these results the three programs used in the study were Praat (Boersma, 2001), 

the Snack Sound Toolkit (Sjölander, 1997) and Kay Multi-Speech (Kay Elemetrics, 

2004). The Snack Sound Toolkit is the underlying software that WaveSurfer is built on 

and the two systems produce identical measurements. 

3.2.4 Analysis Settings 

The formant analysis tools within each of the three programs require a number of 

different analysis settings to be specified. Analysing the effects and interactions of all 

possible settings would have made the study prohibitively large. Therefore, a subset was 

chosen based on two criteria: settings which are likely to be adjusted by an analyst, and 

settings which are sufficiently similar across the programs. The settings chosen were 

LPC order (specified via the ‘number of formants’ setting in Praat), pre-emphasis and 

frame or analysis width (or length). To restrict the complexity of the study, the effect of 

each setting was examined independently, i.e. when one setting was varied the other 

parameters were kept at their default values. The settings used are listed in Table 3.2. 
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Multi-Speech Praat WaveSurfer 

LPC Width 

(s) 

Pre-

Emph 

Formants 

= LPC 

Width 

(s) 

Pre-

Emph 

(Hz) 

LPC Width 

(s) 

Pre-

Emph 

6 0.005 0.0 3 = 6 0.005 1 10 0.01 0.0 

8 0.010* 0.3 4 = 8 0.010 25 11 0.02 0.1 

10 0.015 0.6 5 = 10* 0.015 50* 12* 0.03 0.3 

12* 0.020 0.9* 6 = 12 0.020 75 13 0.04 0.5 

14 0.025 1.1 7 = 14 0.025* 100 14 0.049* 0.7* 

16 0.030 1.3 8 = 16 0.030 125 15 0.06 0.9 

18  1.5 9 = 18 0.035 150 16 0.07  

    0.040  17 0.08  

    0.045  18 0.09  

    0.050   0.10  

Table 3.2 Analysis parameters selected as variables and the settings used for each 

program. Asterisk denotes the default values. 

The numerical values of the settings were selected to provide a degree of comparability 

across the software and also cover a range around the default values that an analyst may 

choose. Some restrictions were imposed by the software, such as Multi-Speech only 

permitting even numbered LPC orders. A complicating factor was that the pre-emphasis 

parameter is not equivalent across the programs. For Praat it specifies the frequency 

above which pre-emphasis is applied, whereas for WaveSurfer, and presumably Multi-

Speech, the value is the coefficient for the pre-emphasis filter. 

The remainder of the analysis parameters were kept at their default settings except for 

the Number of Formants setting in WaveSurfer which was reduced from 4 to 3, as this 

was the number of formants to be logged. See Section 7.3.2.4 for a discussion of the 

influence this analysis parameter has on the measurements in a different set of 

recordings. Also, the Maximum Format parameter in Praat was set to 5,000 Hz, since 

the default value of 5,500 Hz is more suitable for female speakers, according to the 

manual. There is no equivalent parameter in Multispeech as the analysis is performed 

across the entire frequency range of the signal. In order to ensure consistency across the 

programs the recordings were resampled at 10 kHz, to give a signal bandwidth of 5 

kHz, before being analysed in Multispeech. 

3.2.5 Measurement Process 

To ensure that the same central steady state section of each vowel was analysed across 

the three programs, a start and end time was determined based on a visual inspection of 

a broad-band spectrogram in conjunction with the waveform. These timings were used 
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for all of the measurements at each analysis setting within each of the programs. The 

small time offset between the synchronised telephone and microphone recordings, 

caused by the slight delay introduced by the telephone transmission, was determined so 

that the same timings could be used for each set. 

The standard LPC formant measuring tool was used in each of the programs. Within 

WaveSurfer this is a tracker, whereas for Praat the standard Burg function does not 

perform any tracking and assumes that the first pole frequency is F1, the second is F2 

and so on. Based on the results presented in Figure 3.6 to Figure 3.9, certain aspects of 

the behaviour for Multi-Speech are the same as that seen for Praat, so it is assumed that 

the Multi-Speech tool is also a simple formant measurer, not a tracker. The 

measurement values obtained from each program were the mean of the measurements 

from all the frames within the analysis time period specified for each vowel. The mean 

values for the first three formants were logged. 

3.2.6 Script Automation 

To facilitate the large number of measurements made over the range of analysis settings 

and tokens, scripts were used to automate the measuring and logging process where 

possible. This also reduced the potential for mistakes to be made during these processes. 

This was relatively easy to accomplish for Praat and the Snack Toolbox. However, it 

was not possible to automate these processes in Multi-Speech, so the formant 

measurements were manually copied from the software and logged to a spread sheet. 

3.3 Initial Analysis of Results 

3.3.1 Raw Formant Plots 

To obtain an overall impression of the data the mean formant values for each token 

were plotted. Separate plots were generated for each speaker, analysis parameter and 

recording channel for F1, F2 and F3 as well as all three formants combined. An 

example plot of the F1 values from the microphone recording of speaker 1 obtained 

from Praat whilst varying LPC order is shown in Figure 3.1.  
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Figure 3.1 Mean F1 values for all of speaker 1’s 90 vowel tokens from the microphone recording obtained at different LPC order settings in 

Praat. The vowel categories are labelled. 
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The variation in the measurements across the LPC orders can be seen clearly in Figure 

3.1. The sets of measurements from the five vowel categories are easily distinguishable 

due to the differences in the measured values and the different patterns of variation in 

each category across the LPC orders. Within the categories of FLEECE, GOOSE and 

NURSE the measurements obtained with LPC orders 10 to 18 are particularly 

consistent. For TRAP and PALM the LPC orders 10 to 14 show consistencies, while 

orders 16 and 18 display some variation in the measurements. Across all categories the 

measurements obtained at LPC order 6 are very different from those at the other orders. 

This is a consequence of the LPC model having an insufficient number of coefficients 

to adequately model the speech spectrum. This effect is demonstrated in Figure 1.9. For 

all the tokens at LPC order 6 the measured F1 value, i.e. the frequency of the lowest 

pole in the LPC model, does not correspond to the first formant in the speech signal. In 

the case of TRAP and PALM the measured F1 values correspond to the second formant 

of the vowel. 

The plots of the measurements obtained for the other formants, analysis parameters, 

software, speaker and recording channel exhibit differing degrees of variation and 

patterning in the results. It is apparent that the measurements are, to some extent, 

influenced by all of these variables. Given the range and complexity of variation 

present, it is difficult to summarise the data meaningfully in this form. However, one 

very clear result is that variation of LPC order has a much greater influence on the 

measured formant values than pre-emphasis or frame width. The pattern of variation 

caused by varying the LPC order is also different for the three formants across the three 

programs. This finding is discussed further in Section 3.4. 

3.3.2 Quantitative Analysis 

To reduce the complexity of the data and attempt to reveal any clear patterns, a 

quantitative analysis was conducted. As previously discussed it was not possible to 

consider the measurements in terms of absolute accuracy as no true formant values 

could be obtained. To assess the variation in the measurements across analysis settings 

the values obtained with the default analysis settings in each program were used as a set 

of reference measurements. The measurements obtained when one parameter was varied 

could then be expressed in terms of a difference from those reference values. The 

absolute differences were calculated for all measurements so that positive and negative 

differences would not cancel each other out when calculating the mean difference. The 
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mean differences were calculated for all tokens at each parameter setting and for each 

vowel category. Table 3.3 shows the average difference results for the data shown in 

Figure 3.1. Again, the same patterns in the results can be seen, with greatest variation in 

LPC orders 6 and 8, and greatest stability in the measurements for FLEECE, GOOSE 

and NURSE in the LPC orders above 10. 

 LPC Order 

Vowel 6 8 10 

(Default) 

12 14 16 18 

FLEECE 2416 280 0 8 5 9 9 

TRAP 522 317 0 45 28 99 130 

PALM 425 278 0 39 53 68 114 

GOOSE 1681 152 0 2 3 6 13 

NURSE 748 570 0 8 15 15 19 

All 1158 320 0 20 21 39 57 

Table 3.3 Mean F1 absolute difference values (Hz) by vowel category, and all 

tokens combined, for variation in LPC order in Praat from speaker 1’s 

microphone recording. 

Despite analysing the data as mean absolute differences, the results still exhibited 

complexity, especially across vowel categories. However, the analysis did confirm the 

trends observed in the raw formant plots. For all programs, when varying LPC order, 

the mean absolute differences for F1 were smaller than for F2, which were in turn 

smaller than for F3. For pre-emphasis and frame width the differences across the 

formants were less pronounced. In general, the mean absolute differences for altering 

pre-emphasis were less than those from frame width, with the greatest being for 

variation in LPC order. The results from Praat from altering both pre-emphasis and 

frame width showed very little variation in any of the formants. In the case of pre-

emphasis this could be accounted for by the fact that the parameter operated differently 

from those in WaveSurfer and Multi-Speech. The complete set of results from the 

microphone recordings are presented and discussed in Harrison (2004). 

3.3.3 Default Settings Measurements 

One clear result which emerged from the data was the difference between the 

measurements obtained with the default settings for each program. Figure 3.2 to Figure 

3.4 show the average formant values by vowel category for speaker 1 for F1, F2 and F3 

respectively. For the vowel categories TRAP and PALM there are considerable 

differences between the results from each program, which suggests that the default 

settings must be resulting in inaccurate measurements in some of the programs. This 
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illustrates the problem of simply accepting the default analysis settings. As the Number 

of Formants parameter in WaveSurfer was set to 3, and given the findings discussed in 

Section 7.3.2.4 from other tests conducted with WaveSurfer, it is likely that the higher 

values for F3 seen in Figure 3.4 for TRAP, PALM and GOOSE are a consequence of 

this being not being on the most appropriate setting. It is not clear if this setting caused 

the behaviour seen for F1 for TRAP and PALM in Figure 3.2.  

 

Figure 3.2 Mean F1 values by vowel category obtained with default analysis 

settings for all three programs for speaker 1’s microphone recording. 
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Figure 3.3 Mean F2 values by vowel category obtained with default analysis 

settings for all three programs for speaker 1’s microphone recording. 

 

Figure 3.4 Mean F3 values by vowel category obtained with default analysis 

settings for all three programs for speaker 1’s microphone recording. 

3.3.4 Summary 

Even though the pilot study was limited in its scope, the results showed that 

considerable variation does occur in formant measurements from software most 
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commonly used by analysts. The results began to address the research questions posed 

as they demonstrated variation across the software, the analysis parameters and the 

speakers. When embarking on the pilot study, it was hoped that it would be possible to 

propose a clear set of guidelines or recommendations to assist practitioners when 

making formant measurements. Given the complex set of results and the dependency on 

each of the experimental variables and the limited data set, this was not possible. 

However, two general recommendations were made. Since the programs tested are 

capable of producing inaccurate results, the first recommendation was to compare all 

formant measurements with spectrographic representations to assist in identifying 

inaccurate measurements. Secondly, it was suggested that owing to the variation in 

results obtained across vowel categories, that within a recording the same LPC order 

should be used consistently for a particular vowel category. A further general comment 

was made that analysts should be aware of the effects that altering analysis parameters 

can have on formant measurements. 

3.4 Further Analysis of Data 

3.4.1 Analysis Method 

As discussed in Section 3.3.2, the first quantitative analysis of the data revealed a 

complex set of results with limited general patterns or trends. The formant 

measurements were analysed in terms of their difference relative to the measurements 

obtained with the default analysis settings and no consideration was given to their 

accuracy. The results in Section 3.3.3 demonstrated that the default analysis settings for 

some vowel categories and formants resulted in measurements that were very different 

across the software. The use of these values as reference data in the previous analysis 

could have resulted in an incorrect impression of the behaviour and performance of the 

software or a masking of patterns. 

Even though it is not possible to obtain true formant values which can be used to 

calculate the accuracy of the measurements, it is possible to make a judgment about 

their accuracy more generally. Analysts often make decisions about the acceptability of 

formant measurements by visually comparing values that are overlaid on spectrograms. 

Determining the proportion of values that are reasonably accurate would give an 

indication of performance and would provide a more grounded analysis of the results 

compared to the previous approach. 
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In order to make such an assessment of accuracy a criterion must be established for 

accepting and rejecting measurements as being sufficiently close to the true value. 

Analysts will generally reject formant measurements as inaccurate if they are overlaid 

on a broad-band spectrogram and do not visually align with a formant in the 

spectrogram. To determine this band, several spectrograms of the recorded speech 

tokens were examined and an impressionistic 300 Hz band that aligned with the visual 

centre of each formant (i.e. 150 Hz above and 150 Hz below) was chosen as being a 

reasonable bandwidth within which to classify measurements as being acceptable. 

For each token the upper and lower limits of a 300 Hz acceptable band were determined 

for the first three formants. This was done through the examination of spectra and the 

measurement of spectral peaks. This proved to be the most successful method, having 

attempted using spectrograms, LPC derived bandwidth measurements and spectrograms 

with overlaid formant values.  

The spectra were generated with a bandwidth of 260 Hz in order to make the formants 

visible rather than the harmonics of the fundamental frequency. This bandwidth was 

chosen as it is the default bandwidth for the spectrogram display in Praat. The spectra 

were generated over the same material that was used to obtain the mean formant 

measurements. It was not possible to determine the 300 Hz band for every formant, as 

some peaks were not clear, so these tokens were ignored in the analysis. In some 

instances double peaks were present in the location of the formant so the frequency of 

the peak with the highest amplitude was chosen as the centre of the band. 

Each formant measurement was then considered against the acceptable 300 Hz band for 

that token and was either rejected or accepted. This was only carried out for the 

measurements obtained from varying the LPC order as the extent of variation present in 

the measurements from varying pre-emphasis and frame width was relatively small. The 

percentage of accepted measurements for each vowel category at each analysis setting 

was then calculated.  

3.4.2 Results 

The percentage of acceptable formant measurements were plotted across LPC order for 

each vowel category in the form shown in Figure 3.5. 
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Figure 3.5 Percentage of F1 measurements for each vowel category falling within a 

300 Hz acceptable band across LPC order for the microphone recording of 

speaker 1 from Praat. 

The results in Figure 3.5 can be divided in to two groups. The results from vowel 

categories TRAP and PALM exhibit an inverted U shaped curve whilst FLEECE, 

GOOSE and NURSE rise to a plateau as LPC order increases. This behaviour is 

explained below.  

All the results for the two speakers, for both the microphone and telephone recording 

condition, across all formants and in all three programs are shown in Figure 3.6 to 

Figure 3.9. 
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Figure 3.6 Speaker 1 microphone recording – percentage of acceptable formant measurements for each vowel category across LPC order for 

F1, F2 and F3, across all three programs. 
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Figure 3.7 Speaker 1 telephone recording – percentage of acceptable formant measurements for each vowel category across LPC order for F1, 

F2 and F3, across all three programs. 
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Figure 3.8 Speaker 2 microphone recording – percentage of acceptable formant measurements for each vowel category across LPC order for 

F1, F2 and F3, across all three programs. 
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Figure 3.9 Speaker 2 telephone recording – percentage of acceptable formant measurements for each vowel category across LPC order for F1, 

F2 and F3, across all three programs. 
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Whilst there is still complexity to the results, some clear patterns do emerge which were 

not apparent from the previous analysis. Comparing the three programs, the results from 

Praat and Multi-Speech form either an inverted U shaped curve or they rise to a plateau 

as the LPC order increases, whereas for the majority of results from WaveSurfer the 

lines are relatively horizontal. This shows that for Praat and Multi-Speech the general 

accuracy of the measurements is sensitive to LPC order, whereas for WaveSurfer there 

is much less influence from LPC order. Overall, for Praat the LPC order that gives the 

most accepted measurements is 10. For Multi-Speech there is a range from 10 to 14 

which produces the most acceptable results. 

For Praat and Multi-Speech the results for F1 tend to exhibit a rise and plateau form, 

whereas the F2 and F3 results have an inverted U shape. This behaviour, and the 

different pattern of results from WaveSurfer, is a consequence of the way each program 

derives the formant measurements from the LPC analysis. Praat and Multi-Speech 

assume that each pole of the filter model defined by the LPC coefficients corresponds to 

a formant, with the lowest frequency pole being F1, the next one being F2 and so on. 

When the LPC order is too low the model contains fewer poles or peaks than the speech 

signal and the poles tend not to align with the formant peaks in the speech so the 

measurements are often incorrect. This accounts for the lower percentage of accepted 

measurements at the lowest LPC orders for Praat and Multi-Speech across all three 

formants. At higher LPC orders the LPC analysis produces a better model of the speech 

signal and the poles of the model correspond to the formants, resulting in a high 

percentage of accepted measurements for all formants. As the LPC order increases 

further, extra poles appear resulting in peaks in the spectrum of the LPC model that do 

not correspond to formants. These additional poles tend to appear above the first 

formant of the speech signal, rather than below it, so F1 retains a high percentage of 

accepted measurements at the highest LPC orders. If an extra pole occurs in the LPC 

model between the true location of F1 and F2 then the software will return the 

frequency of this pole as the measurement for F2 since it simply returns the frequency 

of the second lowest pole. This will also influence the accuracy of the F3 measurement 

since the third lowest frequency pole will potentially be aligned with the second 

formant. This results in a low percentage of accepted measurements at the highest LPC 

orders for F2 and F3. The effect on the LPC model spectrum and the number of peaks 

as the LPC order increases is demonstrated in Figure 1.9. 
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WaveSurfer, unlike the other two programs, employs a formant tracking process, which 

is described in Section 7.2.2.1. At the higher LPC orders the LPC model contains more 

poles and peaks than the speech signal, just like with Praat and Multi-speech, but the 

tracker analyses all of the poles in an attempt to determine which ones correspond to 

formants and which ones do not. The tracking process results in a more consistent 

performance across the LPC orders tested. The results do not show a low percentage of 

accepted measurements at the lowest LPC order because WaveSurfer imposes a lower 

limit on the LPC order to ensure that enough poles are in the model for the tracker to 

function. The limit is twice the number of formants to be tracked plus four. For these 

tests the number of tracked formants was three so the minimum LPC order was ten. 

Comparison of the results from the microphone recordings with the telephone 

recordings for Praat and Multi-Speech show a leftward shift in the inverted U curves for 

F2 and F3, i.e. the highest percentage of accepted measurements occurs at lower LPC 

orders for the telephone recordings. The results also show an increase in performance 

for F1 at the lower LPC orders. This is again a consequence of the measurement 

approach used by the software. Because telephone signals have a reduced bandwidth, 

and therefore fewer formants, the speech in the telephone recordings is modelled better 

at a lower LPC order. 

For WaveSurfer, the telephone recordings show better performance than the 

microphone recordings. This is most dramatic for speaker 1 where the microphone 

recording performance was particularly poor, especially for F3, and the telephone 

recording achieved almost 100 percent acceptance at all LPC orders, for all formants 

and across all vowels. This degree of improvement was not as marked for speaker 2, 

especially with the limited change in the results for F3. This shows that the performance 

is to some extent speaker dependent. Speaker 2 actually shows a reduction in 

performance from the microphone to the telephone material for the F1 TRAP 

measurements made from LPC order 12 upwards. 

In general, the level of acceptance is higher for the telephone recordings than the 

microphone recordings. In the case of WaveSurfer this is likely to be because the 

Number of Formants setting was at 3, which is better aligned with the expected number 

of formants that will be found in the frequency band limited telephone recordings. In 

relation to the other software it is possible that the analysis settings used are also better 
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suited to the reduced bandwidth signal or that the telephone filtered speech is a better fit 

to the simple production model assumed for LPC analysis. 

3.5 Best Software 

An obvious question to ask when comparing different algorithms or programs is 

“Which one is the best?” In order to answer the question a criterion must be specified 

against which they can be judged. This could be the accuracy of measurements, the 

consistency of measurements across analysis parameters or the performance across 

speakers. Given the range of factors which influence the performance, and the limited 

number of speakers, there is not sufficient data on which to reliably answer the 

question. However, this question is returned to in Chapter 7 where the performance of 

three formant trackers is assessed. 

3.6 Summary 

The initial results from the pilot study and their further analysis begin to address the 

first two research questions concerning the effect of software and analysis parameters 

on formant measurements. Whilst the methodology employed did not allow an 

assessment of absolute accuracy, it effectively demonstrated the complex variation of 

formant measurements across three analysis parameters and three programs for two 

speakers. By considering the general accuracy of the measurements, the further analysis 

showed quite clearly that the behaviour of the measurements is influenced by the 

formant measurement method used by the software and that this behaviour is affected 

by the LPC order. The results also showed variation in the behaviour of measurements 

across vowel categories. In terms of the analysis parameters, across all programs, LPC 

order was found to have a much greater influence on the measurements than frame 

width or pre-emphasis. 

The study provided limited insight into the third research question, which concerns the 

variation of measurements across speakers, since only two were considered. However, 

notable differences were seen in the measurements across the speakers, which suggest 

that the research question is well founded. 

An important aspect of the study was that the software tested was in common use by 

analysts. The fact that differences in performance were seen across the programs 

highlights the need for such empirical testing as it demonstrates that programs do not all 



101 

behave the same and that generic guidance may not be applicable to all programs. The 

results show that the wide range of LPC orders from 10 to 15 suggested by the rules of 

thumb discussed in Section 2.2 is not universally applicable. Praat’s performance was 

relatively good over LPC order 10 and 12, whereas Multi-Speech was generally 

consistent from order 10 to 14. The fact that WaveSurfer employs a tracker function 

meant the performance was relatively unchanged across all LPC orders tested, rendering 

the rules somewhat redundant. 

In terms of translating the findings into guidance or advice for analysts, two aspects of 

the results are particularly important. Firstly, the differences seen in the formant 

measurements obtained at the default settings across the three programs show that it 

cannot be assumed that default settings will give accurate measurements. Whilst the 

default settings produced generally accurate measurements in some situations, in others 

they did not. This suggests that the tailoring of settings could lead to more accurate 

measurements. Secondly, the difference in behaviour across the programs shows that 

analysts should understand the way in which particular programs operate and appreciate 

how altering the LPC order may influence the results. Despite the limited scope of the 

study the results serve to illustrate the variation found across the variables investigated 

and can raise awareness of it, even if they cannot be used to form more specific 

guidance. In order to provide more detailed answers to the research questions and 

provide more specific guidance, the accuracy and behaviour of formant measurements 

require further study. This is done in the following chapters. 
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Chapter 4 Formant Measurement Errors From Synthetic 

Speech 

4.1 Introduction 

Chapter 3 focused on the effects that varying analysis parameters had on formant 

measurements across three commonly used speech analysis tools. One of its limitations 

was that the absolute accuracy of the measurements could not be determined since it 

was not possible to obtain true reference values. The approach adopted in this chapter 

overcomes this limitation by using synthetic speech to investigate measurement 

variability. As the true formant values are specified during the synthesis process, 

measurement errors can be calculated accurately. A simple source-filter synthesis 

method is employed with the first and second formants and fundamental frequency as 

the primary variables, whilst the measurements are made using Praat’s formant tool 

across a range of LPC orders.
2
 This method provides results that mainly address the 

second research question: 

RQ 2. How does altering the LPC analysis parameters affect formant 

measurement accuracy? 

The measurements and analysis only concern a single synthetic speaker, so limited 

insight is gained into the variation in accuracy across speakers, which is the focus of the 

third research question. 

RQ 3. To what extent does the accuracy of LPC formant measurements vary 

across speakers? 

However, some insight is gained from the influence of fundamental frequency on the 

measurements. The issue of speaker performance is addressed in greater detail in 

Chapter 5, where measurements from multiple synthetic speakers are examined.  

4.2 Motivation for Using Synthetic Speech 

It is clear from Chapter 3 that formant values derived from an LPC analysis are 

dependent on many factors, including the speaker, the software and the chosen analysis 

parameters. However, the absolute accuracy of the measurements could not be 

                                                
2 The approach employed in this chapter has been presented and published with preliminary data 

(Harrison 2007, 2008a, 2008b, 2008c). 
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determined due to the methodology employed. In order to calculate the accuracy of a 

measurement the true value of the quantity being measured must be known. As 

discussed in Section 1.2, because of the widely spaced harmonics of the glottal sound 

source, measuring formants by FFT spectra, spectrograms or LPC is problematic. None 

of these approaches can be considered as satisfactory for obtaining true formant values. 

Techniques such as x-rays (Fant 1960), MRI scans (Clément et al 2007) or impulse 

reflectometry (Gray 2005) can be used to determine the resonance characteristics of the 

vocal tract independently of the speech signal but they are not sufficiently accurate to 

provide reference values to compare with other methods as they also rely on models and 

assumptions to obtain formant values. Furthermore, they can only be used when the 

method is applied simultaneously with the recording of the speech signal. 

One way in which true formant values can be known is to specify them during the 

production of synthetic speech. The measured values can be compared with the ‘ground 

truth’ values used in the synthesis process, and the resulting measurement error can then 

be calculated. Other studies in which this method has been used are discussed in Section 

2.1.1. 

Using synthetic speech has other advantages. In addition to being able to specify 

formant centre frequencies and bandwidths, many other speech production variables can 

also be controlled and manipulated. These include parameters relating to the glottal 

source, with one of the most important being fundamental frequency. Since speech 

synthesis is generally performed by computer software, all the synthesis parameters can 

be specified and controlled precisely. This allows a degree of precision in the speech 

output that could not be achieved by a human. For instance, as described in Section 4.3, 

evenly sampled vowel spaces can easily be generated with various fundamental 

frequencies. 

Since the synthesis is conducted within computer software, the process lends itself to 

being automated, allowing many speech tokens to be generated without analyst 

intervention. As described in Section 4.3.14, this can also be combined with an 

automated analysis process allowing the entire procedure to be carried out 

automatically. This permits many thousands of tokens to be generated and analysed, 

which would take a considerable amount of time and effort if done manually. 
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4.3 Methodology 

4.3.1 Speech Synthesis Methods 

There are three general speech synthesis methods, namely concatenative synthesis, 

model-based synthesis, and articulatory synthesis. Concatenative synthesis entails 

combining strings of short segments of pre-recorded speech to produce the required 

speech output. Model-based synthesis techniques generally rely on the source-filter 

model of speech production, where a sound signal representing the vocal sound source 

is passed through a filter that reflects the spectral characteristics of the vocal tract, 

resulting in the speech signal (Klatt and Klatt, 1990). Articulatory synthesis involves the 

construction of a mathematical model of the vocal tract based on the acoustic properties 

and locations of the articulators within it. Then the airflow through it is modelled to 

produce a speech signal at the lips. 

Of these three approaches the model-based method is the most suitable for investigating 

formant measurement errors as it relies on the assumption that the vocal tract filter is 

independent of the source, and the filter can be constructed from specified resonance or 

formant frequencies. This is the method adopted by other studies that use synthetic 

speech to investigate formant measurement errors. The following sections describe the 

implementation of this method. 

4.3.2 Praat’s Source-Filter Synthesiser 

The specific source-filter synthesiser used in this chapter is a relatively simple all-pole 

cascade synthesiser that can be implemented easily in Praat and is described in the 

manual (Boersma 2001). It was chosen for several reasons. Firstly, this method most 

closely aligns with the assumptions of the speech model on which LPC analysis is 

based. Therefore, this represents a best-case scenario for an LPC-based formant 

measurement system, and it is assumed that such measurement methods will achieve 

their best performance with this type of synthetic material. Secondly, this 

implementation allows the relevant parameters to be specified directly and the synthesis 

process can be controlled easily through Praat’s native scripting language. Also, in this 

implementation the number of required parameters is relatively small, reducing the 

number of potential variables and allowing the study to be relatively constrained. Since 

Praat was the software used both to synthesise the speech and measure the formants, 

both steps could be integrated in a single script. 
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The synthesiser does not exist as a single function within Praat but uses several different 

standalone functions. The process of combining these functions and the various options 

are described within the software’s manual (Boersma, 2001). The following sections 

discuss the different stages of the process and the settings used. 

4.3.2.1 Generating the Glottal Source 

The first stage of the synthesis process is to generate a glottal source signal. Praat has 

the capability to allow a high degree of control over the glottal source signal generation 

in order to replicate, to some degree, the diversity found in real speech. However, in the 

first instance, a simplified representation of the signal, known as a pulse train, was used. 

It consists of a series of pulses: sounds with very short onset, duration and offset, which 

represent the sound made by the vocal folds as they open and close during phonation. A 

more complex model and realistic representations are employed in Chapter 5. 

To generate the pulse train signal within Praat, a PitchTier object with a defined 

duration is first created. This is effectively a container for pitch points, which represent 

a pitch contour. Each pitch point is defined by a time and a fundamental frequency 

value. If a single point is added to the tier then the entire contour over the duration of 

the PitchTier is flat. If multiple points are added at different times and frequencies then 

the contour is dynamic. 

The next step is to use the pitch contour information in the PitchTier to generate a 

sound. In this instance the ‘To Sound (pulse train)…’ command is used, which creates a 

Sound Object containing a pulse train with the fundamental frequency contour and 

duration defined by the PitchTier. Several parameters must be specified, including the 

sampling frequency of the sound to be generated. A sample rate of 44.1 kHz was used 

for all tokens. The remaining parameters are of little relevance in the configuration 

being used and were kept at their default values. 

The waveform shown in Figure 4.1 is a pulse train generated using this method, with a 

fundamental frequency of 100 Hz at a sample rate of 44,100 Hz. The period of the 

waveform, i.e. the time between each pulse, is 10 milliseconds.  
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Figure 4.1 An example of the pulse train waveform used to produce synthetic 

speech, shown with a fundamental frequency of 100 Hz. 

The frequency spectra of pulse trains generated using this method contain the 

fundamental frequency plus harmonics at all multiples of it. There is no roll-off in the 

amplitude of the harmonics as the frequency increases so each harmonic has the same 

amplitude as the fundamental. The pulse train can be described as a buzzing sound with 

prominent higher frequencies. 

The spectrum of the pulse train in this form is not a particularly good approximation of 

that of real glottal source signals. The amplitude roll-off characteristics of normal glottal 

source signals are generally accepted to be –12 dB per octave (Klatt and Klatt, 1990), 

meaning that the amplitude of the harmonics decreases by 12 dB for every doubling in 

frequency. However, as the sound waves pass the lips and leave the mouth the change in 

acoustic impedance results in a boost to the higher frequencies of the order of +6 dB per 

octave. In order to replicate these effects within the synthesis process a –12 dB per 

octave filter could be applied to the pulse train before it is subject to the vocal tract filter 

and then a +6 dB per octave filter can be applied after the vocal tract filter. However, 

given the assumption of linearity of the source-filter model, these effects are often 

combined as a single –6 dB per octave filter which can be applied to the glottal pulse 

signal before it is filtered by the vocal tract filter. The resulting speech output signal 

then has an overall spectral slope of –6 dB per octave. 

The –6 dB per octave filter was applied using Praat’s ‘De-emphasize’ filter command. 

The only parameter that can be specified is the frequency above which the filter will be 

applied. The setting used was the default value of 50 Hz. 

4.3.2.2 Specifying the Vocal Tract Filter Parameters 

The second stage of the synthesis process is to specify the characteristics of the vocal 

tract filter. This information is stored as formant points, which are within a FormantGrid 
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container object with a specified duration. Each point is defined by a time, a formant 

number, a centre frequency and a bandwidth. This information represents a formant 

contour across the duration of the FormantGrid. Like the PitchTier, if points exist at 

different frequencies at different times then the contour is dynamic. The specified centre 

frequency and bandwidth values determine the location of the poles that define the 

vocal tract filter. 

4.3.2.3 Filtering the Source 

The third and final stage of the synthesis process is to filter the glottal source signal to 

produce the speech output. This simply involves selecting both the Sound object 

containing the –6 dB per octave filtered pulse train and the FormantGrid object with the 

filter parameters specified as formant centre frequencies and bandwidths, then executing 

the ‘Filter’ command. There are no parameters or options to specify. 

Praat generates several IIR (infinite impulse response) filters, one for each formant, 

whose properties are determined by the centre frequency and bandwidth values 

provided. The glottal source signal is then filtered by each one in turn in a cascade 

process. The final output signal is the synthesised speech. 

A conceptual representation of the source-filter speech production and synthesis process 

is shown in Figure 1.1. It shows an idealised glottal source spectrum, the frequency 

response of the vocal tract filter and the spectrum of the resulting speech signal. 

4.3.3 Synthesis Variables & Parameters 

The simple source-filter synthesis method and pulse train glottal source within Praat 

have a limited number of parameters that can be specified, which limits the possible 

variables. The three independent variables chosen were fundamental frequency, and the 

first and second formant centre frequencies. For the study to be relevant the specified 

values must, as closely as possible, reflect real speech. In the following sections the 

specific values for each of the relevant parameters is presented as well as the reasons for 

selecting them. 

4.3.4 Vowel Variability & Duration 

The vowel synthesis process in Praat allows both fundamental frequency and formants 

to vary with time. In order to restrict the study, all the vowel tokens were generated with 
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a constant fundamental frequency and formant frequencies. They were therefore all 

monotone monophthongs. 

The duration of each synthesised token must be specified as part of the synthesis 

process. A duration of 300 ms was chosen so that a sufficiently large number of glottal 

pulses would be included in each generated token. 

4.3.5 Fundamental Frequency 

Previous studies have shown that formant measurement errors are influenced by 

fundamental frequency (Atal and Schroeder, 1974, Vallabha and Tuller, 2002). The 

fundamental frequency of the glottal source pulse train was therefore used as a variable 

for this study. No other aspect of the glottal source was varied, but in Chapter 5 other 

parameters are considered. 

It was decided that all vowel tokens would be generated with fundamental frequency 

values ranging from 70 to 190 Hz at 5 Hz intervals. This covers a range of frequencies 

that could be readily produced by a typical adult male speaker (Baken and Orlikoff 

2000, p. 175, 188). In order to constrain the study, the frequency range was not 

extended to cover the higher frequencies typically produced by women and children. 

Also, it is known that such higher fundamental frequencies tend to make measuring 

formants more problematic (Traunmüller and Eriksson, 1997) as there is relatively less 

spectral information in the speech signal due to the greater spacing of the harmonics. 

4.3.6 Vowel Qualities 

As previously discussed in Section 1.3.1, the vocal tract is capable of producing a wide 

range of different vowel qualities. In a descriptive framework, vowels are often labelled 

or categorised according to the two main parameters of height and frontness, which 

describe the relative position of the tongue body within the oral cavity. The first and 

second formant frequencies are relatively well correlated with vowel height and 

frontness respectively and these two measured values alone are often used to 

characterise vowel realisations (Fant, 1960). 

The first and second formant frequencies therefore provide a convenient way to define a 

large set of vowel qualities. It is for this reason that the first and second formant 

frequencies were chosen to define the synthetic vowel realisations used in this study. 
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The choice of specific values and the associated higher formants and bandwidth values 

are discussed below. The formant centre frequency and bandwidth values, used to 

generate the vocal tract filter, allow the measurement error to be calculated. In order to 

differentiate them from the measured formant values they will be referred to as the 

‘specified formants’ or ‘specified values’. 

In order to constrain the study and utilise a simple speech production model, other 

aspects of vowel quality, such as nasalisation and roundedness, were not considered. 

4.3.7 F1~F2 Vowel Space 

The range of F1 and F2 values used to define the vowel space were selected to be 

typical of an adult man. The specific values were obtained from a vowel perception 

study (Nearey, 1989) where they were used to generate synthesised vowels, and 

represented the ‘baseline’ condition. They are based on average male values from 

Peterson and Barney (1952) and Fant (1973). The F1 values ranged from 250 to 700 Hz, 

whilst F2 ranged from 750 to 2250 Hz. Constraints were applied to the F1~F2 pairs in 

order to remove certain combinations that fall outside of the normal vowel quadrilateral. 

Whilst these are not explicitly stated in Nearey (1989), they must have been applied as 

the plots showing the vowel space have certain combinations removed (1989, p.2096, 

Figs 1 & 2). The constraints which were applied in the current study can be represented 

mathematically as follows: 

[1] F1 + F2 <= 2500 Hz – removes low front vowels (lower left corner of 

vowel space) 

[2] F2 – F1 >= 350 Hz – removes low back vowels (lower right corner of 

vowel space) 

The resolution of the vowel space was chosen to be 10 Hz for F1 and 20 Hz for F2. This 

produced a total of 2,858 F1~F2 combinations or vowel tokens. Other resolutions were 

tried initially but these were found to be a reasonable compromise between processing 

time and detail within the vowel space. 

The resulting F1~F2 vowel space is shown in Figure 4.2. The directions of the axes 

have been reversed and their positions swapped in order for the orientation of the vowel 

space to replicate the representation of the vowel space or vowel quadrilateral 

commonly used in phonetics and other areas of speech research. 
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Figure 4.2 Arrangement of the 2,858 synthetic vowel tokens over the F1~F2 vowel 

space. 

4.3.8 F3 Calculation 

Broad and Wakita (1977) found that based on 778 steady-state tokens of 30 vowels 

from one female speaker, the measured F3 values were distributed in such a way that 

they could be calculated with reasonable accuracy from the corresponding F1 and F2 

values. The F3 values existed in one of two planes that formed a front-back split in the 

F1~F2 vowel space, shown in Figure 4.3. This same approach was also adopted by 

Nearey (1989), who again used the data from Peterson & Barney (1952) and Fant 

(1973) to calculate the coefficients to represent the planes, as well their line of 

intersection. 

In Nearey (1989), the intersection between the planes corresponds to the line: 

[3] F2 = (0.17 x F1) + 1463 

If the F2 value in the F1~F2 pair is less than the value calculated by [3] then it is classed 

as a back vowel; if greater, then it is a front vowel. The following equations are then 

used to calculate the F3 values for each F1~F2 pair according to whether the vowel is 

front or back: 
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[4] F3front = (0.522 x F1) + (1.197 x F2) + 57 

[5] F3back = (0.7866 x F1) – (0.365 x F2) + 2341  

The resulting F3 values used in the current study are between 1994 Hz and 2862 Hz. 

Figure 4.3 shows a three dimensional plot of the F1, F2 and F3 combinations used. The 

two planes on which the F3 values lie are reasonably apparent. The value of F3 is 

represented by both the colour indicated in the colour bar and the height of the point in 

the vertical or z axis. 

 

Figure 4.3 Three dimensional representation of the F1~F2~F3 synthetic vowel 

space with F3 represented by both height in the z axis and colour. 

4.3.9 F4 & F5 Determination 

The approach adopted by Broad and Wakita (1977) to calculate F3 is not extended to 

the higher formants F4 and F5, and no comment is made about them. However, in 

Nearey (1989), F4 and F5 were required for the synthesis process used and their values 

were held constant at 3500 Hz and 4500 Hz respectively. The justification for these 

figures was that they correspond approximately to the fourth and fifth resonant 

frequencies of a uniform tube with a length of 17.5 cm that is open at one end and 

closed at the other, which is often considered to be the equivalent of an average male 
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vocal tract in a neutral position. The values used in Nearey (1989) have been adopted 

here. 

4.3.10 Bandwidth Values 

Nearey (1989) does not discuss formant bandwidth values. It was therefore necessary to 

locate an alternative source for this data. A suitable study was Fant (1972), in which 

empirical data were used to derive a series of formulae for calculating the bandwidths of 

the first three formants from their centre frequencies. The formulae (numbered 56 to 58 

in Fant, 1972) are as follows: 

[6] B1 = 15(500/F1)
2
 + 20(F1/500)

1/2
 + 5(F1/500)

2 
 

[7] B2 = 22 + 16(F1/500)
2
 + 12000/(F3-F2)  

[8]
3
 B3 = 25(F1/500)

2
 + 4(F2/500)

2
 + 10F3/(F4-F3)  

Table 4.1 summarises the properties of the calculated bandwidth values. 

Formant Mean (Hz) Std Dev (Hz) Min (Hz) Max (Hz) 

F1 46.9 9.7 39.4 75.4 

F2 51.8 8.7 33.9 73.3 

F3 79.6 24.0 33.6 131.2 

Table 4.1 Mean, standard deviation, minimum and maximum values for formant 

bandwidths calculated using Fant (1972) formulae for F1, F2 and F3. 

No formulae are provided in Fant (1972) for the calculation of bandwidths for F4 and 

F5. Since the F4 and F5 centre frequency values do not vary over the F1~F2 vowel 

space it was decided to simply select constant bandwidth values as well. These were 

chosen as 200 Hz and 300 Hz respectively. These values align well with the plot in 

Hawks and Miller (1995, p. 1343, Fig 1) of average bandwidth values against formant 

centre frequencies derived from empirical data.  

4.3.11 Single Synthetic Speaker 

The specific formant and bandwidth values described above form a single set from an 

effectively limitless number of sets that could have been generated. Altering the range 

of the F1~F2 space, the method to calculate F3, the values chosen for F4 and F5 or 

modifying the bandwidth formulae would have created a different set. Each set of 

                                                
3 In Fant (1972) there is an error in equation number 58. The final term should contain a division operator 

as shown in [8] rather than the multiplication operator. 
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values can be considered as a single ‘synthetic speaker’. The remainder of this chapter 

is concerned with measurement errors for this single synthetic speaker. 

4.3.12 Formant Measurement Method 

The analysis undertaken in this chapter is primarily concerned with addressing the 

second research question concerning the effects of altering analysis parameters, and as a 

consequence only a single program is used to measure formants. The Praat software was 

chosen as it was found to be the single most used piece of software in the survey of 

forensic phoneticians described in the previous chapter, it is the main speech analysis 

tool used in the author’s forensic laboratory and its scripting capabilities enable the 

synthesis and analysis processes to be entirely automated. 

The specific function within Praat that was used was ‘Sound: To Formant (burg)…’. As 

noted in Section 3.2.5 previously, this function is not a tracker since it does not track 

formant values from one analysis frame to the next, nor does it make decisions about 

whether measurements are likely to correspond to formants or not. It simply carries out 

an LPC analysis and returns the pole frequencies as the measured formant values with 

only those below 50 Hz and those 50 Hz or less below the maximum analysis frequency 

being disregarded as unlikely formant values. 

Again, in order to constrain the study, LPC order was chosen as the only analysis 

parameter that would be varied. In the previous chapter and in other studies (Chandra & 

Lin, 1974, Vallabha & Tuller, 2002), LPC order has been shown to be an analysis 

parameter that has a significant influence on measured formant values. The remaining 

parameters were held at their default values for male speech. These were:  

 Time step =  0.00625 s 

 Maximum Formant = 5000 Hz 

 Window Length = 0.025 s 

 Pre-emphasis from = 50 Hz 

The range for LPC order was chosen to be from 6 to 20 in steps of 1. For Praat’s 

‘Sound: To Formant (burg)…’ function LPC order is not specified directly. Instead, the 

parameter ‘Maximum number of formants’ is used and this value is equal to half the 
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LPC order. As a consequence the ‘Maximum number of formants’ parameter can be 

specified in steps of 0.5, e.g. a setting of 4.5 corresponds to an LPC order of 9. 

From the perspective of the user Praat’s formant measurement process involves 

executing the ‘Sound: To Formant (burg)…’ function with the specified analysis 

parameters on a Sound object containing a synthesised vowel token. Praat then executes 

several processes to obtain the formant measurements. Firstly, the sound is resampled 

with a sampling frequency that is twice the specified Maximum Formant value. Pre-

emphasis of +6 dB per octave is then applied to the sound above the frequency specified 

in order to flatten the frequency spectrum of the sound by adjusting for the –6 dB per 

octave roll-off. The sound is then considered in terms of individual analysis frames with 

duration and locations determined by the ‘Time Step’ and ‘Window Length’ settings. A 

Gaussian-like window function is applied to each frame to reduce of the effect of the 

discontinuity in the waveform at the start and end of the frame. An algorithm, 

developed by Burg (Childers, 1978) (as cited in Boersma, 2002), is then applied to each 

frame, which calculates the LPC coefficients. The pole frequencies are obtained from 

the LPC coefficients and are subsequently converted to formant centre frequency and 

bandwidth values. Any formants with a centre frequency either below 50 Hz or within 

50 Hz of the ‘Maximum Formant’ settings are considered as artefacts of the LPC 

algorithm rather than true formant values, and they are rejected. The formant centre 

frequency and bandwidth values for each analysis frame are made available to the user 

in a Formant Object within Praat’s Objects List. 

A range of queries can be run on the Formant Object to obtain information about the 

measurements, including formant values from specific frames and statistical measures. 

In this study a series of queries were run to obtain the mean centre frequency and mean 

bandwidth for F1 to F5 from time 0.1 seconds to 0.2 seconds from each 0.3 second 

token. The average value is obtained rather than a value from a single frame because the 

analysis frames do not coincide with pitch periods (i.e. it is not a pitch synchronous 

analysis) and there may be differences in the measurements across frames. Taking the 

mean reduces any potential effect of this variation. 
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4.3.13 Calculation of Measurement Error 

The final stage in the speech synthesis and measurement process is the calculation of the 

measurement error for the formant centre frequencies. This simply involved subtracting 

the specified value from the measured value. This can be expressed as follows: 

[9] Ferror = Fmeasured – Fspecified  

Calculating the error in this way means that if the error value is greater than zero then 

the measured value is greater than the specified value and if the error value is negative 

then the measured value is less than the specified value. 

The calculated error values are expressed in Hertz, as are the specified formant values 

and the measured values from Praat. Since formants span a range of frequencies from 

F1 to the higher formants that is approximately a factor of 10, percentage errors were 

also calculated to allow the errors to be compared across the formants. This was done 

using the following formula:   

[10] F% error = ((Fmeasured – Fspecified)/ Fspecified) x 100  

Another measure which could be used to represent errors is the cent, which is one 

hundredth of a semitone. It is a logarithm unit which is used to measure the interval 

between frequencies, most commonly for musical notes. The use of the scale is not 

widespread within phonetics and is very infrequently used in the field of forensic speech 

science. Use of the unit in the present study would present two main problems. Firstly, 

since the measure is not in widespread use by the intended readership of this work, 

unfamiliarity with results expressed in cents would make their interpretation difficult. 

Secondly, the results presented in other published research concerning formant 

measurement errors are generally expressed in Hertz or, less commonly, as percentages. 

If cents were used then comparisons with these studies would not be possible. 

4.3.14 Implementation 

Several stages were involved in the calculation of the formant values, the generation of 

the synthetic speech, the subsequent formant measurement and error calculation. The 

first of these was to generate the specified formant and bandwidth values. This was 

done via a single Praat script using the formulae and constant values described above. 

The script produced a table, as a plain text file, with 2,858 rows, one for each vowel in 
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the vowel space, containing each token’s formant and bandwidth values. The table was 

generated with empty columns to store the measured values and calculated errors so that 

all the data for a given LPC order and fundamental frequency would be stored in a 

single table file. 

All the remaining stages were performed by a single script. This consisted of a nested 

loop structure, where the main body of the script, which performed the synthesis, 

measurement and logging, would be executed for each combination of fundamental 

frequency and LPC order. For each combination the script first read the specified 

formant value table file into Praat. It cycled through each row generating a vowel token 

with the required fundamental frequency, and then performed the formant analysis at 

the specified LPC order. The mean centre frequency and bandwidth values were then 

obtained, the measurement error was calculated, and measurements and error values 

were inserted in the table. When the script had worked through every row in the table it 

was saved with a new filename indicating the fundamental frequency and LPC order 

used to obtain the measurements. The script then returned to the start of the loop and 

reloaded the original specified formant table and started the process again with a 

different combination of fundamental frequency and LPC order. With the parameters 

specified above, over 1 million vowel tokens were synthesised and measured, which 

took almost 20 hours to complete.  

4.4 Analysis 

The following sections describe and present the results of the analysis that was 

conducted on the data generated using the method described above. It is limited to the 

centre frequencies of the first three formants, as these are the parameters most often 

considered within forensic casework and in phonetics more generally. All of the 

analysis was carried out in Matlab (The MathWorks, 2007). This was used as it has 

powerful data analysis, processing and plotting capabilities. Commands entered in the 

software can be combined easily in scripts or functions, allowing many of the processes 

to be automated and easily repeated. The data within each of the text files generated by 

the Praat synthesis and formant analysis script were imported in to Matlab to allow the 

analysis to be undertaken. 
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4.4.1 Error Surface Plots 

The initial analysis of the data involved plotting the measurement error for each formant 

over the entire F1~F2 vowel space for each combination of fundamental frequency and 

LPC order. This allowed a quick impression to be gained of how the measurement error 

varied across the vowel space as well as what influence the fundamental frequency and 

LPC order had. 

One way to display this data would have been as three-dimensional scatter plots, with 

the x and y axes showing the specified F1 and F2 values with the measurement error on 

the z-axis. Whilst this method worked to some extent, the data could be difficult to 

interpret, especially in some orientations of the plots, as the spatial relationship between 

data points was not readily apparent. This occurred because data points could be seen in 

the gaps between other data points and their spatial proximity could not be easily 

determined. In view of this problem the method was not used. 

To overcome this problem surface plots were generated, where a surface is fitted to the 

data points. These are created by way of a command that calculates triangles (a process 

known as Delaunay triangulation; Delaunay 1934) between the data points. These 

triangles are then plotted and filled in with colour to give a continuous opaque surface. 

A colourmap is applied to the plot so that the colour at any point on the surface also 

represents the height of the surface in the z axis. This colourmap is interpolated over the 

surface so that the transitions between data points are smooth and continuous in all 

directions. The only problem with this type of representation is that because the surface 

is opaque certain sections of it can be hidden by other parts. However, within Matlab 

the surface can be rotated easily so that it can be seen from any angle. This is therefore 

only a problem when producing a static representation of a plot.  

Figure 4.4-Figure 4.6 show the measurement error surface plots for F1 to F3 at a 

fundamental frequency (F0) of 100 Hz and an LPC order of 8. At this F0 and LPC order 

the errors are particularly stable and are some of the smallest obtained across all three 

formants. The orientation of each of the plots is different in order to provide the best 

overall impression of the surface from a single viewpoint. The range on the z-axis is 

also different for each plot, as is the range represented by the colourmap, since the range 

of the errors is different for each formant. 
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Figure 4.4 Surface plot representing F1 measurement error from synthetic speech 

with a F0 of 100 Hz measured in Praat with an LPC order of 8. 

 

Figure 4.5 Surface plot representing F2 measurement error from synthetic speech 

with a F0 of 100 Hz measured in Praat with an LPC order of 8. 
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Figure 4.6 Surface plot representing F3 measurement error from synthetic speech 

with a F0 of 100 Hz measured in Praat with an LPC order of 8. 

Perhaps the most obvious feature of all three plots is the cyclic or repetitive nature of 

the error surfaces. In Figure 4.4 the F1 error surface shows 5 repetitions of a sine wave 

type shape over the specified F1 values, which cover a range of 500 Hz. Therefore the 

effective period of each cycle is approximately 100 Hz, which corresponds to the F0 of 

the synthetic vowel tokens measured. This association is considered in greater detail in 

Section 4.4.5. There also appears to be some dependency of the error surface on F2 with 

slight cyclic variation as F2 changes. This is most noticeable at the peaks and valleys. 

Overall, the range of errors is relatively small at 32 Hz, with a minimum of –24 Hz and 

a maximum of 8 Hz. A feature which is not particularly clear in this orientation of the 

plot, although it can be seen as a change in the darkness of the blue in the troughs, is 

that the range of error variation within a cycle increases as F1 increases. 

The F2 measurement error surface, shown in Figure 4.5, is also cyclic. The effective 

period appears to be shorter than for F1. However, this is a consequence of the range of 

the F2 axis being greater than the F1 axis. The specified F2 values cover a range of 

1500 Hz and the number of cycles shown in the plot is 15. Again, the period of variation 

corresponds to the F0. There is also some variation in the F1 direction and again this is 

relatively small. What is more apparent in this plot is the trend for the measurement 
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errors to become larger in a negative direction as F2 increases. The overall range is 

small at 51 Hz, with a minimum of –40 Hz and a maximum of 11 Hz. 

Figure 4.6 shows that the F3 measurement error surface is somewhat different in that 

there are two distinct regions, which both exhibit cyclic behaviour. These correspond to 

the two planes that make up the specified F3 values (see Section 4.3.8). The dependence 

of the specified F3 values on F1 and F2 make the periodicity in the two regions of this 

plot somewhat harder to interpret. However, if the error values are plotted against the 

specified F3 values then it becomes clear that the cyclic dependency on the specified 

values is the same as for the other formants, i.e. it is dependent on the fundamental 

frequency. Again, the errors overall are relatively small, with a range of 95 Hz, from a 

minimum of –83 Hz, to a maximum of 12 Hz. 

4.4.1.1 Animated Error Surfaces 

The error surface plots only show the behaviour at a single LPC order at one 

fundamental frequency. The measurement errors were calculated for each formant of 

each vowel token across a total of 15 LPC orders and 25 fundamental frequencies. This 

gave a total of 375 error surface plots for each formant. It would obviously be 

impractical to generate and view each one individually. However, one way in which an 

overall impression of the data was gained was by making animated error surfaces to see 

the effects of varying either LPC order or fundamental frequency. For example, the LPC 

order would be held constant whilst the error surface for each fundamental frequency 

was displayed in turn. The process effectively added a fourth dimension to the plots. 

From examining these animations two main trends became apparent. The first was that 

as fundamental frequency increased the effective period of the repetition in the error 

surfaces increased, confirming the initial impression that the cyclic property is linked to 

fundamental frequency. Secondly, as LPC order increased, the magnitude of the errors 

also increased in a negative direction, showing that the measurements were under-

estimating the true formant values. This was most apparent for F2 and F3. Also, the 

increase in errors was not always uniform across the vowel space, with certain localised 

regions showing much better performance than others. 
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4.4.2 Distribution of Errors 

To provide an overall impression of the variation in performance across LPC orders, the 

errors from all fundamental frequencies for each LPC order were combined. This 

arrangement of the data more closely reflects the realities of human speech since it 

occurs across a range of fundamental frequencies. A convenient way to summarise the 

behaviour of the errors across LPC orders was to generate box plots for each formant. 

Figure 4.7 to Figure 4.9 show boxplots generated from the errors across all fundamental 

frequencies for F1 to F3 respectively. At each LPC order, the horizontal red line 

represents the median value, the lower and upper edges of the blue box are the 25
th

 and 

75
th
 percentile, and the black whiskers extend to the limits of the data that are not 

considered outliers. Outliers have been determined as values that fall outside a range 

defined as being 1.5 times the interquartile range above the 75
th

 percentile and 1.5 times 

the interquartile range below the 25
th

 percentile, where the interquartile range is the 

difference between the 75
th

 and the 25
th

 percentile (Tukey, 1977). If the data were 

normally distributed then these limits would encompass 99.3% of the values. All of the 

outliers are shown in the plots as red crosses. Since the size of the errors cover a large 

range, each plot includes a detailed view of the region where the errors were smallest. 

 

Figure 4.7 Boxplot showing the distribution and variation of F1 measurement 

errors from synthetic speech for all fundamental frequencies across LPC order. 
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Figure 4.8 Boxplot showing the distribution and variation of F2 measurement 

errors from synthetic speech for all fundamental frequencies across LPC order. 

 

Figure 4.9 Boxplot showing the distribution and variation of F3 measurement 

errors from synthetic speech for all fundamental frequencies across LPC order. 
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The boxplots reveal a significant amount of information about the data and the 

behaviour of Praat’s formant measuring tool. In Figure 4.7, the central tendency of the 

F1 errors, represented by the median, remains relatively similar across LPC orders 6 to 

15, as does the interquartile range. Above LPC order 15, the even numbered orders have 

larger negative errors and the interquartile range increases. Also, the distributions 

become negatively skewed. The odd orders 17 and 19 are more similar to the lower 

orders. The results from LPC order 6 show a large number of outliers that extend well 

above the central range of results and a number below. At order 7 the number and range 

of outliers has decreased and at order 8 there are none. As the order increases to 10 and 

above, the majority of the outliers are below the central band of results. The most 

accurate and least variable results occur at LPC orders 8 and 9. Overall, at the lowest 

LPC order the F1 measurements tend to be overestimates. As the order increases the 

distribution of the errors centre around 0 Hz and at higher orders the measurements tend 

to be underestimates. Given the way that the formants are defined by Praat, i.e. the 

lowest frequency pole is always F1, and the way that extra peaks appear in the spectrum 

as the LPC order increases, this behaviour is expected and it aligns with the patterns 

observed in the previous chapter. 

In the case of the results for F2 and F3 shown in Figure 4.8 and Figure 4.9 the effect of 

the LPC order on the errors is much greater than for F1. For F2, the results at LPC order 

6 are not dissimilar to those for F1. At orders 7 and 8 the variability of the F2 errors is 

reduced, as are the number and dispersion of outliers. The most accurate and least 

variable measurements exist at LPC order 9. At LPC order 10 and above, the magnitude 

and the variation in the errors become much greater, and the measurements are 

generally underestimates. This behaviour can again be accounted for by the way Praat 

extracts formant measurements and the behaviour of the LPC analysis. As the order 

increases and more poles/peaks appear in the LPC model, the second pole/peak, which 

Praat assumes corresponds to the second formant, often no longer corresponds to the 

second formant and instead lies somewhere below it. Similar behaviour is seen in the 

results from F3 in Figure 4.9 and it can be explained by the same mechanism. 

In addition to generating boxplots, the distributions of errors were also examined via 

histograms. For F1, the form of the distributions aligned very well with the impression 

given by the boxplots. Ignoring the outliers, the distributions were approximately 

symmetric, with negative skewing only occurring at order 14 and above. The 
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histograms of the errors for F2 revealed behaviour that was somewhat harder to 

interpret in the boxplots. At orders 7, 8 and 9 the distributions are roughly symmetrical 

and similar to those for F1 at the same orders. At higher orders, from 10 to 13, the 

distribution of the F2 errors is very different. This is also shown by the configuration of 

the boxplots at these orders as the 75th percentile at the top of the box lies very close to 

the upper whisker. Figure 4.10 shows the distribution of F2 errors at LPC order 11. The 

distribution is very negatively skewed and a tall narrow peak occurs just below 0 Hz.  

 

Figure 4.10 Histogram of F2 errors at LPC order 11 from synthetic speech across 

all fundamental frequencies, with a bin width of 1 Hz. 

The median F2 error at LPC order 11 is -33.1 Hz, which corresponds to the transition 

point from the narrow peak to the gradual slope in Figure 4.10. This means that 50% of 

the measurements are very close to the true value. The distributions of the F2 errors at 

LPC order 10, 12 and 13 are similar in form to the distribution at order 11. At LPC 

orders 14 and above the distributions are different again and are roughly symmetric or 

gently skewed, as shown in the boxplots. This sudden change in the behaviour of the 

measurements as the LPC order increases corresponds to a large proportion of the F2 

measurements no longer corresponding to the true F2 value. 
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The distributions of F3 errors at LPC orders 7, 8 and 9, which produce the most 

accurate measurements, are also approximately symmetrical and consist of a tall narrow 

peak. At order 10 and above the behaviour changes but it is different from that seen for 

F2. Rather than retaining a tall narrow peak around 0 Hz the entire distribution becomes 

relatively broad and a tall peak occurs around -600 Hz. A smaller narrow peak is also 

present just below 0 Hz. Figure 4.11 shows the distribution of F3 errors at LPC order 

11.  

 

Figure 4.11 Histogram of F3 errors at LPC order 11 from synthetic speech across 

all fundamental frequencies, with a bin width of 1 Hz. 

In Figure 4.11 the narrow peak just below 0 Hz represents the F3 measurements that are 

relatively accurate. Most of the measurements in the larger central peak and some in the 

area to the left are F3 measurements that correspond with the true F2. This is a 

consequence of how Praat assigns pole frequencies to formant measurements. Since 

extra peaks appear in the LPC spectrum at higher LPC orders the third pole often 

corresponds with F2 and a higher pole aligns with F3. This effect is not seen for the F2 

errors as it is less common for the second pole to align with F1 since the first pole rarely 

occurs below the true F1. This type of behaviour could be considered as a formant 

numbering error, rather than a measurement error, since the LPC analysis has accurately 



127 

represented the F2 peak but it has not been assigned the correct label by the software. 

Formant numbering errors are considered further in Section 4.4.7. 

The distributions of F3 errors are similar up to LPC order 17 and all show a peak around 

-600 Hz. Above this order the distributions become approximately symmetrical or 

skewed and the peak is no longer present. 

4.4.3 Mean Error & Mean Absolute Error 

The majority of studies on formant measurement errors report performance as either 

mean error or mean absolute error (ignoring the sign or the direction of the error). Mean 

absolute error is a useful measure as it removes the potential effect of positive and 

negative errors cancelling each other out and gives a better sense of the overall size of 

the errors, whether they are under or over estimates. Mean or mean absolute errors may 

also be expressed as a percentage, which is helpful when comparing the magnitude of 

errors across formants. Summary statistics were calculated for the results discussed 

above to compare them with the results presented in the following chapters as well as 

other published studies. They were calculated for the errors from all fundamental 

frequencies at LPC order 9, as this setting produced the most accurate measurements. 

The standard deviation was also calculated to provide a measure of the variability of the 

errors. The mean and standard deviation are valid summary statistics at this LPC order 

as the examinations of the distribution of errors showed them to be sufficiently 

symmetric. At this LPC order the mean or median do not reflect the overall magnitude 

of the errors since the centre of the distributions are located near to 0 Hz. The summary 

statistics were also calculated for the combined errors from the three formants to give an 

overall measure of performance.  The values are shown in Table 4.2. 

 F1 F2 F3 F123 

Mean Error (Hz) 7.48 2.49 -9.58 0.13 

(%) 1.73 0.26 -0.40 0.53 

 

Mean Absolute Error (Hz) 13.04 11.97 13.16 12.72 

(%) 3.00 0.91 0.56 1.49 

 

Standard Deviation (Hz) 14.54 14.52 12.61 15.65 

(%) 3.43 1.15 0.53 2.29 

Table 4.2 Summary statistics for each formant and three formants combined for 

measurement errors from synthetic speech for all fundamental frequencies at LPC 

order 9. 
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Table 4.2 demonstrates the differences between the mean error and the mean absolute 

error. The mean error varies between the three formants, showing a different central 

tendency for each, whereas the mean absolute error is much more similar, meaning 

overall the errors are of comparable magnitude. The standard deviation shows little 

different for the three formants indicating a similar degree of variation of the errors. In 

percentage terms the performance is worst for F1 as the errors are proportionally larger 

in comparison to the true values. 

4.4.4 F0 Influence on Errors  

The analyses in the previous two sections did not consider the influence of fundamental 

frequency on the formant measurement errors. However, it is clear from the 

examinations of the error surface plots in Section 4.4.1 that fundamental frequency does 

affect the pattern of the errors. In order to quantify this effect, summary statistics were 

calculated for the errors for each formant at each fundamental frequency. These were 

restricted to LPC orders 7, 8 and 9 as these were the orders that produced the most 

accurate measurements across all three formants. The statistical measure which is most 

revealing is the mean absolute error. This is plotted against fundamental frequency in 

Figure 4.12 for all three formants with F1 represented as crosses, F2 as circles and F3 as 

stars, at LPC orders 7 (red points), 8 (green points) and 9 (blue points). 
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Figure 4.12 Mean absolute error from synthetic speech across fundamental 

frequency for LPC orders 7 (red), 8 (green) and 9 (blue) for F1 (crosses), F2 

(circles) and F3 (stars). 

The results in Figure 4.12 show that there is a clear relationship between fundamental 

frequency and mean absolute error across all three formants at the LPC orders 

examined. For each formant and LPC order the errors are smallest at the lowest 

fundamental frequency and increase linearly as the fundamental increases. The slope of 

each line is similar, showing that the effect is consistent across formants and LPC 

orders. The only deviation from this pattern is for LPC order 7 at the higher 

fundamental frequencies. The plot also shows the difference in overall performance 

between the three LPC orders and the three formants. The standard deviation of the 

errors was also calculated and plotted across fundamental frequency and this showed the 

same pattern. The standard deviation increased linearly for all formants as the 

fundamental frequency increased, showing that the variation or spread of the errors is 

greatest at higher fundamentals. 

4.4.5 F0 Influence on Individual Vowels 

An alternative way to examine the effect of fundamental frequency on measurement 

error is to consider how the error varies for specific vowel tokens as fundamental 

frequency changes. Figure 4.13 to Figure 4.15 show the measurement error for F1, F2 
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and F3 for a single vowel at LPC order 9 as fundamental frequency increases. The 

example lies centrally in the vowel space and has the specified values of F1 = 500 Hz, 

F2 = 1510 Hz and F3 = 2183 Hz. 

 

Figure 4.13 F1 measurement error across fundamental frequency for specified F1 

formant frequency of 500 Hz at LPC order 9 from synthetic speech. Green dots 

represent fundamental frequencies that are integer multiples of 500 Hz and red 

dots represent ones that are half integer multiples. 
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Figure 4.14 F2 measurement error across fundamental frequency for specified F2 

formant frequency of 1510 Hz at LPC order 9 from synthetic speech. Green dots 

represent fundamental frequencies that are integer multiples of 1510 Hz and red 

dots represent ones that are half integer multiples. 
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Figure 4.15 F3 measurement error across fundamental frequency for specified F3 

formant frequency of 2183 Hz at LPC order 9 from synthetic speech. Green dots 

represent fundamental frequencies that are integer multiples of 2183 Hz and red 

dots represent ones that are half integer multiples. 

What is apparent in the plots, and is clearest in Figure 4.13 for F1, is that the 

measurement error oscillates as fundamental frequency changes. A consequence of the 

oscillation is that there are certain frequencies where the measurement error is zero. 

This occurs around the point where the fundamental frequency is either an integer 

multiple of the specified formant value or a half integer multiple. For example, for F1, 

166.7 Hz multiplied by 3 and 142.6 multiplied by 3.5 are both equal to 500 Hz, the 

specified formant value, and it is near these frequencies that the measurement error is 

zero. The points where the fundamental frequency is an integer multiple of the specified 

formant frequency have been marked on the plots as green dots, whilst the half integer 

multiples are red dots. 

The closest alignment of the measured error with these points is for F2 at the higher 

fundamental frequencies. At lower fundamental frequencies the spacing of 5 Hz 

between measurements is not sufficient to capture the oscillations in the measurements. 
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This starts to occur below about 110 Hz. It is even more marked for F3 with the lack of 

data occurring below a fundamental of 160 Hz. 

The oscillating behaviour of the errors can be explained by considering the alignment of 

the resonant formant peaks with the harmonics of the fundamental. The formant 

measurements are most accurate when a harmonic of the fundamental frequency 

coincides with the specified formant frequency. In this situation the harmonic can be 

seen as reinforcing the location of the resonant peak. When a harmonic does not align 

with the specified formant value, the measured value is pulled away from the true 

resonant peak by the influence of the nearest harmonic. When the fundamental is a half 

integer multiple of the formant frequency then the harmonic peaks are located 

equidistant from the formant centre frequency so the effective pull of the harmonics is 

cancelled out, resulting in a near zero error. 

This effect also accounts for the oscillations in the error surfaces. As the specified 

formant values increase they periodically become aligned with integer and half integer 

multiples of the harmonics of the fundamental frequency resulting in near zero errors. 

The measurement errors systemically increase and decrease as the specified formant 

values move between these points. 

4.4.6 F1~F2 Vowel Space Distortion 

Another way of examining the influence of the harmonics of the fundamental frequency 

on the formant measurements is to generate scatter plots of the measured F1 and F2 

values for various combinations of LPC order and fundamental frequency. Figure 4.16 

and Figure 4.17 show the measured F1 and F2 values at an LPC order of 8 at a 

fundamental frequency of 100 Hz and 150 Hz respectively. 
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Figure 4.16 F1 and F2 measurements from synthetic speech at LPC order 8 and 

fundamental frequency of 100 Hz showing the effective distortion of the F1~F2 

vowel space. 
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Figure 4.17 F1 and F2 measurements from synthetic speech at LPC order 8 and 

fundamental frequency of 150 Hz showing the effective distortion of the F1~F2 

vowel space. 

Both figures show the distortion that has occurred to the evenly sampled vowel space 

that is shown in Figure 4.2. The distortion manifests itself as the bunching of 

measurements. This is most apparent in the F1 direction. It is also visible in the F2 

direction but owing to the higher spacing between specified F2 values (20 Hz versus 10 

Hz for F1) the effect is less pronounced. The bunching of the measurements is centred 

on the harmonics (i.e. multiples) of the fundamental frequency. In Figure 4.16 with a 

fundamental frequency of 100 Hz the F1 values are bunched around 300, 400, 500, 600 

and 700 Hz. In Figure 4.17, where the fundamental frequency is 150 Hz, the bunching 

of F1 measurements is around 300, 450 and 600 Hz. However, as the formant frequency 

increases the bunching tends to occur slightly lower than the harmonic. These plots 

clearly demonstrate the influence that the harmonics have on the formant measurements. 

An alternative way of visualising the bunching effect is to examine the distribution of 

measurements. From such plots it is clear that the effect also extends to F3. 
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4.4.7 Measurement Strategy 

In the analyses reported so far, the measurements from each LPC order were examined 

together, and statistical measures were calculated for the results from each order. Whilst 

this is a useful way to summarise the influence of LPC order and the performance of the 

software, it does not reflect all of the ways in which the software could be used in 

practice. Considering all the results from a single LPC order as a set is the equivalent of 

making all measurements using the same LPC order. If the software is being used in an 

interactive way, i.e. by examining formant values overlaid on a spectrogram, then it is 

likely that the LPC order will be adjusted when necessary to obtain more accurate 

measurements for certain vowel tokens. Also, the analyses have followed the formant 

numbering system imposed by Praat, where the lowest frequency pole is F1, the second 

is F2 and so on. Again, this may not reflect how the tool is used by analysts and may 

reduce the potential accuracy of measurements by following this rule. 

In order to investigate these issues, a series of measurement strategies were constructed 

which reflect the approaches that analysts might adopt when using Praat. The strategies 

involve selecting measurements which are closest to the specified values and 

constraining the choice in ways that reflect how an analyst might make decisions and 

use the software. The strategies are as follows: 

1. Praat’s formant numbering approach is followed and the LPC order is free to 

vary from token to token but the three formants must be measured at the same 

LPC order. For each token the LPC order is selected on the basis of the one 

which minimises the sum of the absolute error across the three formants. 

2. Praat’s formant numbering approach is followed and the LPC order is free to 

vary from token to token and from formant to formant, so the F1 measurement 

could be from LPC order 9, while the F2 measurement could be from order 10. 

The LPC order chosen is the one that produces the smallest error for each 

formant. 

3. The selected formant is not restricted to Praat’s numbering approach so the 

measured F2 value could have originally been labelled by Praat as F3. The LPC 

order can vary from token to token but must remain the same across the three 

formants. The LPC order and formants are selected on the basis of the ones that 

minimise the sum of the absolute errors across the three formants. 
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4. Praat’s numbering approach is not used and the LPC order is free to vary across 

tokens and formants. 

The strategies were applied to the measurements, and the mean absolute errors were 

calculated for the three formants. These are presented in Figure 4.18 together with the 

results from the approach previously adopted in this chapter, which is referred to as the 

‘default’ strategy. When the formant measurements were made, only the first five 

formant values were logged. At LPC orders above 10, formant values would have been 

obtained by the software that were not logged. This means for the approaches where 

Praat’s formant numbering scheme is not followed (i.e. strategies 3 and 4), the complete 

set of potential formants is not available, and so the analysis may not be a true reflection 

of the performance that could be achieved. 

 

Figure 4.18 Mean absolute errors from synthetic speech for F1 (red), F2 (green) 

and F3 (blue) across all fundamental frequencies over the entire vowel space from 

four measurements strategies and the default approach. 

The results in Figure 4.18 show that altering the measurement strategy does influence 

the magnitude of the measurement errors. Strategy 1 shows a slight improvement over 

the default approach for F1 and F2, but at the expense of the error for F3. Therefore 

simply changing LPC order on a token by token basis to obtain more accurate 
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measurements has a limited effect compared with keeping it constant across all tokens, 

as in the default approach. However, using different LPC orders for each formant does 

result in a marked improvement for F1 and F2 in Strategy 2. Abandoning Praat’s 

formant numbering approach in Strategy 3 shows a moderate improvement in 

performance, which is greatest for F3. Finally, Strategy 4, the least constrained of the 

approaches, gives the best performance with mean absolute errors around 5 Hz for all 

three formants.  

These results show that improvements in performance can be achieved by altering the 

LPC order from token to token, using different LPC orders for each formant and not 

being constrained by Praat’s numbering approach. The topic of measurement strategies 

is returned to Section 6.3.2. 

4.5 Summary 

The main focus of this chapter addressed research question 2 concerning the effect of 

analysis parameters on formant measurement accuracy. The methodology employed 

considered the effects of LPC order. Using synthetic speech, rather than real speech, 

allowed the accuracy of the measurements to be quantified. 

The analysis of the measurements demonstrated the variation in performance of Praat’s 

formant measuring tool as LPC order was altered. The results showed that for the 

synthetic speaker LPC order 9 produced the most accurate measurements, with a mean 

absolute error of approximately 13 Hz for each formant. Below this LPC order the 

measurements tended to be overestimates, whereas above it the measurements were 

underestimates. Outside the range of orders 7 to 9 the magnitude of the errors was very 

large, especially for F2 and F3. Closer inspection of the results showed that the 

behaviour of the measurements for each of the three formants was different across the 

LPC orders. 

Since formant measurements were obtained from the synthetic speech across a range of 

fundamental frequencies, some insight was gained that helps to answer the third 

research question, which asks how the accuracy of measurements can vary across 

speakers. Comparing the mean absolute error obtained across the fundamental 

frequencies of the synthesised speech showed a clear influence on the accuracy, with the 

most accurate measurements being made at the lower fundamentals and the least 
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accurate at the highest. The change in performance across the fundamentals appeared 

linear and this held for all three formants and the three LPC orders tested. 

The analysis also revealed the influence of the harmonics of the fundamental frequency 

on the measurements. Since the harmonics of the fundamental are effectively sampling 

the frequency response of the vocal tract and concentrations of energy are present at 

these harmonics, it is perhaps unsurprising that the measured values will be drawn 

towards the harmonics. This behaviour resulted in the error surface plots over the vowel 

space having a cyclic form, with the period of oscillation of the surface being 

approximately equal to the fundamental. 

The way in which the accuracy of the measurements was initially assessed across the 

LPC orders only gives an insight into the practical situation where all measurements are 

made using the same LPC order. Whilst this approach might be adopted where the 

measurement process is entirely automated, if an interactive approach is used then the 

analyst is likely to alter the LPC order in an attempt to obtain more accurate 

measurements. In order to replicate different ways in which an analyst might use the 

software a number of strategies were formulated and the performance was determined 

for each one. The strategies involved combinations of permitting the LPC order to vary 

across tokens and formants, as well as bypassing Praat’s assignment of pole frequencies 

to formants. In the least constrained scenario, in which the LPC order could vary across 

formants and Praat’s formant numbering approach was ignored, a large improvement in 

performance occurred with the mean absolute error being reduced to approximately 5 

Hz for all three formants. 

When interpreting the measures of performance and behaviour reported in this chapter it 

must be remembered that they have originated from synthetic speech, which conforms 

to the assumptions imposed by LPC analysis. Therefore, the results should be 

considered as a best-case scenario. Also, they only represent the performance obtained 

with one speaker. The following chapter addresses this issue, which is raised in the third 

research question, by examining the performance for multiple synthetic speakers. 

However, the results from this chapter should instil confidence in Praat’s formant 

measuring tool as it is clearly capable of producing relatively accurate measurements, 

especially when used interactively. 

The obvious guidance which stems from the analysis in this chapter is: 
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 To obtain the most accurate measurements the LPC order should be adjusted, 

where necessary, for each vowel token and formant. The numbering of formants 

employed by Praat can be ignored. 

 If LPC order cannot be varied then care should be taken to ensure that a suitable 

LPC order is selected, since measurements obtained with an inappropriate order 

can lead to highly inaccurate results. 
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Chapter 5 Multiple Synthetic Speakers 

5.1 Introduction 

Chapter 4 examined formant measurement accuracy across the vowel space of a single 

synthetic speaker when fundamental frequency and LPC order were varied. Several 

trends and patterns were present in the data, but since they were derived from what is 

effectively a single speaker, it is not apparent how applicable they are to other speakers. 

The current chapter explores this issue by analysing and comparing the measurement 

errors from multiple synthetic speakers, which addresses the third research question: 

RQ 3. To what extent does the accuracy of LPC formant measurements vary 

across speakers? 

The methodology involves examining the accuracy of formant measurements from two 

groups of synthetic speakers, one which have different sets of specified F3 values and 

the other which employ more realistic glottal source signals. These parameters were 

chosen as variables since they are known to vary between individuals. The 

measurements were made across a range of LPC orders, and these results therefore 

provide insights into the second research question: 

RQ 2. How does altering the LPC analysis parameters affect formant 

measurement accuracy? 

The extent of variation in the synthesis parameters, and in the measurements, by no 

means covers the complete range of variability in real speech. However, the results 

provide an indication of the extent of variability in formant measurement errors that can 

exist between speakers. They also serve to reinforce the guidance offered in the 

previous chapter. 

5.2 Alternative F3 Speakers 

5.2.1 F3 Calculation 

In Chapter 4 a bi-planar representation of F3 was used to calculate the F3 values for all 

F1~F2 combinations using equations and data from Nearey (1989). Whilst this 

representation of F3 is motivated by observations made by Broad and Wakita (1977), it 

is not the only method for describing the relationship between F3 and the first two 
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formants. An alternative approach is presented by Kasuya and Yoshizawa (1992) (cited 

in Kasuya et al., 1994) in which regression analysis is used to derive the coefficients for 

a quadratic representation of F3. This is shown in Equation 11, where a0 to a5 are 

coefficients. 

[11] F3 = a0 + a1F1 + a2F2 + a3F1
2
 + a4F2

2 
+ a5F1F2  

In Kasuya et al. (1994) coefficients were derived from five adult Japanese male 

speakers repeating the same short phrase /aoiue/ (“blue top” in English) in their normal 

speaking style, with two sets from one speaker (Speaker A and A’) who also adopted a 

different prosodic style. The specified F3 values for the synthetic speakers analysed in 

this chapter were calculated using these coefficients and Equation 11 across the F1~F2 

space defined in the previous chapter. Two sets of generated formants, those for 

speakers B and C, were found to contain values that were very close to or overlapped 

with either the F2 or F4 values in certain limited regions of the vowel space. These 

speakers were rejected from this study since the F1~F2 vowel space would have had to 

be modified to accommodate them and this would have resulted in non-directly 

comparable sets of measurements. The coefficients for the speakers that did produce 

acceptable F3 values are shown in Table 5.1. 

 Speaker a0 a1 a2 a3 a4 a5 

A 3570 0.12 -2.27 2680 1.05e-3 -1.54e-3 

A’ 4060 -2.61 -2.20 5270 0.90e-3 -0.77e-3 

D 3970 -0.66 -1.55 1720 0.52e-3 -0.50e-3 

E 3580 3.49 -1.99 -1250 0.73e-3 -1.44e-3 

Table 5.1 Coefficients from Kasuya et al (1994) for predicting F3 values from F1 

and F2 using a quadratic function for four speakers. 

The specified F3 values generated for each speaker are summarised in Table 5.2. The 

values for the speaker generated and analysed in Chapter 4, referred to as the ‘baseline’, 

are also shown for comparison. 

Speaker Mean (Hz) SD (Hz) Min (Hz) Max (Hz) Range (Hz) 

Baseline 2342 165 1994 2862 868 

A 2269 164 2061 3068 1007 

A` 2386 219 2098 3093 995 

D 2647 117 2506 2958 452 

E 2686 201 2366 3248 881 

Table 5.2 Summary statistics for the specified F3 values for the Kasuya et al (1994) 

speakers and the baseline speaker from the previous chapter. 
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The summary statistics in Table 5.2 show that the specified F3 values generated for 

each speaker are similar. However, this is to be expected given the physiological 

constraints that are shared by the speakers and that the F3 values were generated using 

the same set of F1~F2 values. Figure 5.1 shows the specified F3 values as a surface for 

each of the four Kasuya et al (1994) speakers.  

 

Figure 5.1 Three dimensional representation of the F1~F2~F3 synthetic vowel 

space for all four Kasuya et al (1994) speakers, with F3 represented by both height 

in the z axis and colour. 

Overall, the shape of the F3 surfaces is different from that of the baseline speaker shown 

in Figure 4.3. This is mainly due to the two different mathematical approaches used to 

derive the values. Speakers A, D and A` all have bowl-like surfaces, whereas for 

Speaker E the main portion of the surface, rising up from the lowest region, has a 

convex shape. A and A` (recall these are in fact the same speaker) have similar F3 

values for close vowels, but as F1 increases the values diverge. Speakers D and E are 

somewhat similar to each but different from A and A`. However, the overall shape of 

the surface for Speakers D and E is different and they tend to diverge at the edges of the 

vowel space. 
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5.2.2 Determination of Measurement Errors 

To determine the measurement errors associated with each of the four Kasuya speakers, 

the specified formant values were used in the same processes described in Chapter 4. 

Since fundamental frequency was previously shown to produce small variation in 

overall performance relative to LPC order, it was was held constant at 100 Hz. 

Measurements were made at LPC orders from 6 to 20 and the vowels were synthesised 

with a sampling rate of 44.1 kHz. 

5.2.3 Analysis of Measurement Errors 

The formant measurements and resulting errors for the Kasuya speakers were subject to 

the analysis methods described in Chapter 4, namely the generation of error surface 

plots, the plotting of measurement errors against specified values, and the calculation 

and plotting of statistical summary data. The outcomes of these analyses were also 

compared with the results for the baseline speaker with a fundamental frequency of 100 

Hz. The most relevant data and findings are presented below. 

5.2.3.1 Statistical Summary Data 

The statistical summary data showed the formant measurement errors from the Kasuya 

speakers to be very similar to those from the baseline speaker, particularly for the first 

two formants. LPC orders 7, 8 and 9 again produced accurate and relatively stable 

measurements, with order 9 being the most accurate overall for all speakers. Table 5.3 

shows the mean absolute error for the first three formants, and all formants combined, 

from LPC order 9. 

Speaker Mean Absolute Error (Hz) 

F1 F2 F3 F123 

Baseline 8.82 8.04 10.70 9.19 

A 8.80 7.87 9.09 8.58 

D 9.25 8.53 15.55 11.11 

E 9.31 8.58 16.32 11.41 

A' 8.86 8.04 11.87 9.59 

Table 5.3 Mean absolute error for Kasuya and baseline speakers with F0 of 100 Hz 

for the first three formants and all three formants combined at LPC order 9.  

For F1 and F2 the mean absolute error in Table 5.3 shows very little difference across 

the speakers. Examination and comparison of the error surfaces for these formants at 

LPC orders 7, 8 and 9 showed them to be very similar at each order for all speakers in 

terms of structure and error values. Even at LPC orders 6 and 10 to 20, which produced 
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substantially inaccurate measurements, the statistical summary data showed the 

behaviour of the measurements to be closely aligned across speakers. The conclusion 

that can be drawn from these observations is that the measurement of F1 and F2 is 

minimally influenced by the specified F3 values. 

Unlike F1 and F2, the F3 mean absolute error in Table 5.3 shows variability across the 

speakers. For speaker A the error is 9.09 Hz, which is less than the 10.70 Hz error for 

the baseline speaker, whereas for speaker E the error is considerably greater at 16.32 

Hz. A similar pattern was observed for LPC orders 7 and 8, where the rank order of the 

speakers based on performance was the same as order 9, i.e. A, baseline, A’, D, E. If the 

speakers are ranked according their mean specified F3 values, which are shown in Table 

5.2, then the ordering is the same as for their performance. This suggests that the 

magnitude of the measurements errors is related to the specified values, an issue 

discussed further in Section 5.2.4. 

5.2.3.2 F3 Error Surfaces 

Comparison of the F3 error surfaces generated for the Kasuya speakers and the baseline 

speaker revealed differences between the speakers. For the baseline speaker, the error 

surface shown in Figure 4.6 has two distinct regions that correspond to the two planes 

on which the specified values lie. Within the two regions the cyclic peaks and troughs 

run parallel but their orientation and apparent period of repetition is different in each. 

For the Kasuya speakers the surfaces are again cyclic but the peaks and troughs are 

elliptical or curved rather than parallel. This can be seen clearly in Figure 5.2, which 

shows the F3 error surface for Speaker A at an LPC order of 8. For this speaker the 

peaks and troughs are elliptical and concentric. 
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Figure 5.2 F3 measurement error surface for Kasuya Speaker A with F0 of 100 Hz 

at LPC order 8. 

The differences in structure of the error surfaces are not surprising given the different 

forms of the specified F3 values over the F1~F2 vowel space. As discussed above, the 

peaks and troughs in the error surfaces, for all formants, correspond to regions where 

the specified formant value is the same. For the Kasuya speakers, the F3 values lie on 

quadratic surfaces and consequently the regions in which the specified formant values 

are the same are either elliptical or curved. Comparison of the specified F3 values with 

the F3 measurement errors over the F1~F2 vowel space for each of the Kasuya speakers 

confirmed that the peaks and troughs do correspond to regions with the same specified 

F3 values. 

Even though the peaks and troughs correspond to vowels with the same specified F3 

value, the measurement error associated with them varies over the vowel space. This 

shows that the F3 measurement error is not only dependent on the specified F3 value 

but also on the other formants, i.e. its position within the F1~F2 vowel space. The F3 

error surface shown in Figure 5.2 for Speaker A at LPC order 8 shows a general trend 

for the magnitude of the errors to increase in a negative direction (underestimate the true 

value) towards the front open vowels, i.e. those with high F1 and F2 values. This is also 
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the case when the LPC order is 9, but at the lower LPC order of 7 the increase in error 

magnitude shifts to become a greater over-estimation towards the front open vowels. 

These overall trends in the error surfaces at different LPC orders are generally the same 

for all the Kasuya speakers as well as the baseline speaker. 

5.2.4 Speakers With Constant F3 

To investigate the dependence of the F3 errors on the F1 and F2 specified values, a 

further four synthetic speakers were generated with constant specified F3 values over 

the F1~F2 vowel space. Keeping the specified F3 values constant would eliminate their 

effect on the F3 errors. The F3 values used were 2500 Hz, 2750 Hz, 3000 Hz and 3250 

Hz, as they spanned the range between the maximum F2 value at 2230 Hz and the 

constant F4 value at 3500 Hz. Again, the speakers were generated using the same 

method described in the previous chapter, except that the specified F3 values were held 

constant and fundamental frequency was not varied. The resulting synthesised vowel 

tokens were only analysed at LPC orders 7, 8 and 9 using the same methods already 

employed. 

Figure 5.3 to Figure 5.5 show the F3 measurement error surfaces for each of the four 

constant F3 synthetic speakers at LPC orders 7, 8 and 9, with a fundamental frequency 

of 100 Hz. 
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Figure 5.3 F3 measurement error surface from constant F3 synthetic speakers at 

LPC order 7 with fundamental frequency of 100 Hz. 

 

Figure 5.4 F3 measurement error surface from constant F3 synthetic speakers at 

LPC order 8 with fundamental frequency of 100 Hz. 
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Figure 5.5 F3 measurement error surface from constant F3 synthetic speakers at 

LPC order 9 with fundamental frequency of 100 Hz. 

All of the error surfaces are non-horizontal and exhibit different degrees of slope over 

the vowel space, which shows that the F3 measurement errors have a dependence on F1 

and F2. There is also a dependence on the specified F3 values and the LPC order as the 

location and slope of all of the surfaces across these variables are different. The general 

direction of the slope of the surfaces at each of the LPC orders is the same as that 

described above for the Kasuya speakers and the baseline speaker. Figure 5.3 shows that 

at LPC order 7 the error surfaces tend to slope downwards from the open front vowels, 

where the largest errors occur, to close back vowels with the smallest errors. For LPC 

orders 8 and 9, shown in Figure 5.4 and Figure 5.5, the direction of slope is reversed, 

with the surfaces sloping downwards from close back vowels to open front vowels. 

However, the largest errors still occur with open front vowels but at these LPC orders 

they are negative, showing that the measurements are underestimates of the true formant 

values rather than overestimates, which occur at LPC order 7. The overall performance 

for the constant F3 speakers, represented by mean absolute error, is shown in Table 5.4. 
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Specified F3 (Hz) Mean Absolute Error (Hz) 

LPC Order 7 LPC Order 8 LPC Order 9 

2500 95.70 37.58 9.55 

2750 140.03 54.81 19.87 

3000 121.07 36.47 24.11 

3250 100.89 206.74 46.15 

Table 5.4 Mean absolute measurement errors from synthetic speakers with 

constant specified F3 values with a fundamental frequency of 100 Hz. 

Again, LPC order 9 produces the best performance for each speaker and the magnitude 

of the error increases as the specified F3 value increases. This is the same pattern that 

was seen with the Kasuya speakers. This trend is also relatively clear in the error surface 

plot in Figure 5.5. For LPC orders 7 and 8 the performance does not appear to be linked 

to the specified F3 values.  

5.2.5 Summary of Results from Alternative F3 Speakers 

The results presented above show the impact that changing the specified F3 values had 

on the measurement errors. For the F1 and F2 errors this was very small, with both the 

structure of the error surfaces and the values represented by them being very close to the 

baseline speaker. However, the effect on the F3 errors was more marked. LPC order 

was shown to have an impact on both the magnitude and the overall behaviour of the F3 

measurement errors across all speakers, with LPC order 9 producing the most accurate 

measurements. At this order, the errors increased as the specified F3 values increased. 

The form of the error surfaces was strongly influenced by the structure of the specified 

F3 values over the vowel space. Generating speakers with constant F3 values not only 

demonstrated the dependence of F3 measurement errors on the vowel token’s F1~F2 

values but also the influence that the specified F3 values have. This was shown to vary 

across LPC orders. 

5.3 Alternative Glottal Source Speakers 

A simple pulse train signal was used as the glottal sound source for the synthetic 

speaker in Chapter 4, and for the alternative F3 speakers discussed above. Whilst 

intelligible speech can be produced using such a signal, other glottal signal 

representations have been developed, from which more accurate and realistic sounding 

speech can be generated (Fant et al. 1985). In the following sections one such 

representation is used to generate a further set of synthetic speakers that are subject to 

the same measurement and analysis procedures already employed. These results help 
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address the third research question, as they provide some indication of the potential 

extent of variation in measurement errors that can exist across speakers. 

5.3.1 Approximation of the LF Model 

The LF model is a four parameter glottal flow model (Fant et al. 1985). Whilst this 

model has been widely used both as the source for speech synthesisers and as a 

mathematical model for analysing real glottal source signals, it is computationally 

complex. A simplified approximation of the model has been proposed, which produces 

acceptably similar results (Qi & Bi 1994). This is the glottal source model that is used in 

the following sections of this chapter. 

The simplified model, like the LF model, consists of two equations that define the 

derivative (the rate of change) of the glottal flow. The derivative of the glottal flow is 

generally used in speech synthesis applications since this form incorporates the 

radiation effect at the lips. The first equation is the same as that in the LF model (Qi & 

Bi 1994, equation 1). The second equation remains as an exponential function but is 

simpler in form than in the LF model (Qi & Bi 1994, equation 6). This allows the model 

parameters to be calculated easily without solving the roots of two non-linear equations, 

as the LF model requires.  

The synthesis model parameters, α and ωg can be calculated relatively easily (Qi & Bi 

1994, equation 8). Two methods are provided in Qi and Bi (1994) to determine the 

value of the third parameter ε. The first, termed ‘approximation I’ requires root solving 

techniques, so the simpler ‘approximation II’ equation was used (Qi & Bi 1994, 

equation 11). 

5.3.2 Generation of Glottal Waveforms 

The number of combinations of parameters that will generate realistic glottal waveforms 

for LF-type models is large. To ensure that the parameter values used would produce 

viable waveforms with the simplified LF model, those presented by Qi and Bi (1994) 

were used. These values were as follows: the gain constant, E0, was 1, whilst te and tp 

were held constant at 60% and 45% of the fundamental period (tc) respectively. In Qi 

and Bi (1994) the parameter ta is varied between 1% and 20%, however, in the 

simplified model ta and Ee are equivalent independent parameters, i.e. changing ta or Ee 

has the same effect on the waveform. In the present study, Ee, the amplitude of 
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maximum negative excursion of the glottal derivative waveform, was chosen as the 

variable for computational simplicity. The range of values for Ee ranged from 1 to 10 in 

steps of 1, which are approximately equivalent to ta values of 20% and 1% respectively. 

The fundamental frequency was held constant at 100 Hz. 

To generate the glottal waveforms the equations from Qi and Bi (1994) were 

implemented in a Matlab script and the waveforms were generated at a sample rate of 

44.1 kHz. The equations only generate a single period of the waveform, so each 

waveform was repeated in series to form a sound file with a duration of 300 ms that 

could be used by the Praat script to generate the synthetic vowel tokens. Figure 5.6 

shows a single period of the 10 waveforms generated for each of the Ee values. 

 

Figure 5.6 A single period of the ten waveforms generated using the simplified LF 

model with Ee varying from 1 to 10. 

Figure 5.6 shows that as Ee increases from 1 to 10, the amplitude of the negative 

excursion relative to the positive excursion increases. Also, the speed of the transition 

from the negative excursion back to zero increases. This is modelling a more abrupt 

closure of the vocal folds. The resulting spectral characteristics of the waveforms are 

shown in Figure 5.7. These have been generated from the 0.3 second duration audio 



153 

files and smoothing has been applied to allow easier comparison of the spectra and to 

highlight their overall shape. 

 

Figure 5.7 Smoothed frequency spectra of glottal waveforms generated using the 

simplified LF model with Ee varying from 1 to 10. 

The spectra show that as Ee increases from 1 to 10 the difference in amplitude increases 

between the low frequency region around the fundamental and the higher frequency 

regions above. The spectral slope between 200 and 500 Hz also increases. At higher 

frequencies, above 1000 Hz, the spectral slope is relatively constant across all speakers 

at approximately –12 dB per octave. 

Whilst the set of parameters used to generate the glottal waveforms have not been 

chosen to represent specific voice qualities, the spectra for Ee =1 could be considered as 

representing a modal voice, while at Ee = 10 the spectra is more like a breathy voice, but 

without the higher frequency aspiration noise (Fant et al. 1985). To represent specific 

voice qualities more accurately would require the adjustment of several glottal source 

parameters. Since the intention is to provide an indication of the potential degree of 

variation in formant measurement errors across speakers, and not to investigate the 

effects of voice quality directly, this was not done. 
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5.3.3 Determining Formant Measurement Errors 

The ten glottal source signals were used in Praat to generate synthetic vowel tokens 

using the same method for the baseline speaker described in the previous chapter. The 

same measurement and error calculation process was used with LPC order ranging from 

6 to 20. The measured formants and resulting errors were subject to the same analysis 

techniques previously used. The important results and findings are discussed below. 

5.3.4 Analysis of Formant Measurement Errors 

In general, the error surfaces generated from the variable glottal source speakers show 

less regularity in structure and greater variation than the baseline speaker across LPC 

orders 7 to 9. For example, Figure 5.8 shows the F1 error surface for LPC order 8 from 

the speaker with an Ee value of 2. The local variation in amplitude in terms of peak to 

peak (or trough to trough) differences is not consistent across the surface and is much 

greater than for the baseline speaker shown in Figure 4.4. This effect is present across 

the error surfaces for F1, F2 and F3 for LPC orders 7 to 9, and the degree of variation 

increases as the Ee value decreases. 

 

Figure 5.8 F1 error surface for LPC order 8 for synthetic speaker with glottal 

source Ee value of 2. 



155 

Another obvious feature in many of the F2 and F3 error surfaces is a switch in direction 

of slope at LPC order 8 when compared with the baseline speaker. For the baseline 

speaker at LPC orders 8 and 9 the direction of slope of the F2 and F3 error surfaces 

were the same. The F2 error surfaces sloped downwards from back vowels to front 

vowels, whilst the F3 error surfaces sloped downwards from close back vowels to open 

front vowels. At LPC order 7 the error surfaces exhibited slope in the opposite 

directions. For the variable pulse source speakers at LPC 8 the F2 and F3 error surfaces 

slope in the same direction as the surfaces for LPC 7 for both the baseline speaker and 

the variable pulse source speakers. 

A feature that is present in many of the errors surfaces is localised regions with large 

error values relative to the rest of the surface. These regions occur either at the edge of 

the surface, as shown in Figure 5.9, or across several small relatively regularly spaced 

locations, as seen in Figure 5.10. In some instances they both occur in the same surface. 

 

 

Figure 5.9 F3 error surface for synthetic speaker with glottal source Ee value of 8 

at LPC order 8. 
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Figure 5.10 F2 error surface for synthetic speaker with glottal source Ee value of 6 

at LPC order 8. 

The F3 error surface for the speaker with an Ee value is 8 at LPC order 8, shown in 

Figure 5.9, exhibits very large errors for most front vowels. The error values across the 

rest of the surface are relatively small and comparable with those for other speakers and 

LPC orders. This type of localised divergence is not seen in all error surfaces, as it only 

occurs for certain combinations of LPC order, speaker and formant. However, these 

combinations do include all formants and LPC orders. Also, the divergent regions do 

not seem to be restricted to a particular edge of the vowel space and may occur along 

only a section of an edge. The same type of localised divergent errors were also present 

for some of the Kasuya and constant F3 speakers, shown in Figure 5.4 and Figure 5.5, 

however, the magnitude of the divergent errors was much smaller. The same feature 

was also observed for the baseline speaker but outside the range of LPC orders that 

produced the most stable results, i.e. LPC orders 7, 8 and 9. 

In Figure 5.10, the F2 error surface for the speaker with an Ee value of 6 at LPC order 8, 

the divergent regions occur systematically across almost half of the vowel space. An 

alternative view of the surface, in which the error value is represented just by colour, is 

shown in Figure 5.11. In this plot, the spatial patterning of the divergent regions is much 

clearer than in Figure 5.10. It is also apparent that the degree of divergence, i.e. the 
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magnitude of the errors, as well as the size of the regions decreases from front to back 

vowels. The size also decreases from open to close vowels. In the specified F1 direction 

the divergent regions occur roughly every 100 Hz, the same as the fundamental 

frequency, but they appear centred approximately 25 Hz above the harmonics of the 

fundamental. The spacing in the specified F2 direction also appears to be every 100 Hz 

with the regions lying above the harmonics of the fundamental frequency. 

 

Figure 5.11 F2 error plot with error represented by colour only, for synthetic 

speaker with glottal source Ee value of 6 at LPC order 8. 

Similar patterns of divergent error values were also observed for other speakers with 

different Ee values as well as the baseline speaker at LPC orders above 9. Again, they 

were only present for certain combinations of LPC order, speaker and formant. Even 

though these errors surfaces exhibited some patterning in the location of the divergent 

regions they were not all as structured as the example shown above. 

5.3.5 Summary Data 

The error surfaces discussed above demonstrate that altering the glottal source signal 

can have a marked impact on measurement performance. To gain an overall impression 

of the variation it is again helpful to summarise the results. Figure 5.12 shows the mean 
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absolute error for the ten variable glottal source speakers for LPC order 7, 8 and 9 for all 

three formants. 

 

Figure 5.12 Mean absolute measurement error for speakers with varying glottal 

source with Ee values from 1 to 10 for LPC orders 7, 8 and 9.  

At LPC order 7 (red points), the mean absolute error decreases as Ee increases for all 

formants, whereas at order 9 (blue points), the performance is relatively constant across 

Ee values. However, comparison across the formants at order 9 shows F3 to perform 

worse than F1 and F2, except when Ee is 1. This behaviour is different from the baseline 

speaker, whose results are shown in Table 5.3, where the performance across formants 

is very similar. The errors from LPC order 8 (green points) show much greater variation 

in performance across Ee values, with particularly poor performance for F2 and F3 

when Ee is 7. This is a consequence of specific regions in the vowel space exhibiting 

very large negative errors, as shown in Figure 5.9 to Figure 5.11. These types of errors 

can be considered as formant numbering errors as they result from the method 

employed by the software to assign formant numbers to pole frequencies, which was 

previously discussed in Section 4.4.7. In these instances, where a large negative error 

occurs for the F2 measurement, a pole is present in the model between the true F1 and 

F2 values. Since this is the second pole, it is labelled as F2, and the third pole, which 

aligns with the true F2, is now labelled as F3, resulting in the measured F3 value also 
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being a large underestimate. The true F3 value is now modelled by the fourth pole. The 

extra pole causes both F2 and F3 to be mislabelled, so both formants show poor 

performance. 

To determine the influence of the additional poles and the numbering errors, Praat’s 

numbering approach was ignored and the measurement errors were recalculated. Table 

5.5 shows an example of the effect of this approach on the mean absolute error for the 

three formants from the speaker with an Ee of 7 at LPC order 8. 

Measurement Strategy Mean Absolute Error (Hz) 

F1 F2 F3 

Default 14.10 94.28 268.80 

Ignore Praat Numbering 14.10 37.62 60.23 

Table 5.5 Mean absolute errors for speaker with Ee of 7 at LPC order 8 with 

Praat’s default measurements strategy and Praat’s formant numbered ignored. 

Since no extra poles occurred below the true F1 values over the vowel space, the results 

for F1 remained unchanged. Whereas F2 and F3 show a very marked improvement in 

performance when the measured formant values are selected based on their proximity to 

the true formants. However, the mean absolute error values show that the performance 

is not as good as that obtained at LPC order 9 for the same speaker. 

5.4 Summary 

The testing and analysis conducted in this chapter focused on the issue of variation in 

the accuracy of formant measurements across speakers, which is raised in research 

question 3. Different synthetic speakers were created by altering the specified F3 values 

and the glottal source signal of the baseline synthetic speaker from the previous chapter. 

Formant measurements were made across a range of LPC orders and their accuracy was 

examined and compared. 

The results demonstrate that modifying the baseline speaker to create different synthetic 

speakers did influence the accuracy of formant measurements. When the F3 values were 

altered, the greatest impact was on the magnitude of the F3 errors and the structure of 

the F3 error surfaces. The location and form of the cyclic regions was governed by the 

arrangement of the specified F3 values within the vowel space. Altering F3 had minimal 

influence on the performance in relation to F1 and F2. When constant specified F3 

values were used it was apparent that the F3 measurement errors were also dependent 
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on the location of the vowel within the F1~F2 vowel space. Using constant F3 values 

also clearly demonstrated the dependence of the error behaviour on the specified F3 

value as well as LPC order. Since real speakers show different patterns of F3 use 

(Peterson and Barney 1952, Kasuya et al. 1994) this variation in performance is to be 

expected across real speakers. Combining these effects with the influence from 

differences in use of the F1~F2 vowel space is likely to lead to greater performance 

variation in real speakers. 

Changing the glottal source signal from a simple pulse train to a more realistic 

representation led to considerable variation across the different synthetic speakers both 

in terms of the structure of the error surfaces and the overall performance. These effects 

were apparent across all three formants. The main difference between these speakers, 

and the baseline speaker, was the appearance of localised regions of large errors either 

at the edge of the vowel space or systemically distributed across areas of the vowel 

space. Whilst such behaviour was observed at LPC orders above 9 for the baseline 

speaker, these features were present for the variable glottal source speakers at LPC 

orders 7, 8 and 9, which otherwise produced the most accurate measurements. 

Application of an alternative measuring strategy was shown to reduce the influence of 

these errors on the overall performance. 

The changes made to the baseline speaker represent only a very small proportion of the 

possible ways in which real speakers vary. It would seem reasonable that the greater 

variation present in real speech would lead to even greater variation in formant 

measurement errors from real speech. The magnitude of the errors and the variation is 

also likely to be greater than that observed for the synthetic speakers, since they 

conform to the assumptions of the LPC model and therefore represent ideal speakers. 

The variation in performance from real speech is explored in Chapter 6 and Chapter 7. 

From a practical perspective, the results from this chapter support the guidance offered 

in the previous chapter. Additionally, the error surface plots from the variable glottal 

source speakers demonstrate that for certain speakers, an LPC order that can produce 

relatively accurate measurements in certain regions of the vowel space can also lead to 

large errors in other regions. This finding again highlights the potential dangers of using 

a single LPC order for all vowel tokens or assuming that a single order is appropriate 

for several speakers, which is recommended by Rose (2002, p. 267). Reassuringly, these 



161 

large errors can be mitigated by the application of an alternative measurement approach. 

The results also show that the performance at different LPC orders will vary across 

speakers. 
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Chapter 6 Formant Measurement Accuracy from Real 

Speech 

6.1 Introduction 

Chapter 4 and Chapter 5 examined the performance of Praat’s LPC formant 

measurement tool when analysing different synthetic speakers, since their speech could 

be controlled and analysed in ways that are not possible with real speech. However, it 

cannot be assumed that the same performance is achievable with real speech, due to the 

simple speech production model used. This chapter seeks to address the issue by 

analysing and comparing the behaviour of formant measurements from a large number 

of real speakers, which provides answers to the third research question: 

RQ 3. To what extent does the accuracy of LPC formant measurements vary 

across speakers? 

The methodology involves comparing formant measurements made using Praat’s LPC 

tool across a range of LPC orders for a subset of the TIMIT speech corpus with a set of 

reference formant values (Deng et al 2006). The reference values allow the accuracy of 

the measurements to be determined. The measurements are also subjected to different 

analysis frameworks that replicate the decisions analysts might make when measuring 

formants interactively. This approach provides further insight to the second research 

question: 

RQ 2. How does altering the LPC analysis parameters affect formant 

measurement accuracy? 

The findings from these experiments demonstrate that whilst the general behaviour of 

the errors from the real speakers is comparable with synthetic speakers, the magnitude 

of the errors and range of variation seen across speakers is much greater. The results 

also highlight the improvements in performance that can be made by allowing LPC 

order to vary across speakers, tokens and formants. These findings justify the guidance 

that LPC order should be tailored as specifically as possible to obtain the best 

performance. 
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6.2 The VTR Database 

The VTR database is a large set of ‘ground truth’ formant, or vocal tract resonance 

(VTR), values that have been compiled with the specific aim of facilitating objective 

testing of automatic formant estimation methods. The formant values were obtained 

from a subset of speech samples from the TIMIT speech corpus. A sophisticated 

formant estimation technique (Deng et al. 2004) was initially applied to the samples to 

produce ‘crude estimates’ that were subject to ‘extensive manual correction’ to ‘provide 

accurate VTR’ values (Deng et al 2006, p. 370). In this context the ‘ground truth’ 

concerns information derived from the speech signal, whereas in Chapter 4 and Chapter 

5, the ground truth reference values were properties of the synthetic vocal tract filter. 

The TIMIT database (Zue et al. 1990) consists of relatively high quality digitised 

microphone recordings, of 6300 read sentences spoken by 630 speakers, (438 male, 192 

female), from eight major dialect regions of the United States of America. The audio 

files have a sample rate of 16 kHz. Ten sentences are spoken by each speaker, with a 

total of 2,342 distinct sentences from three different sets, designed to elicit dialectal 

differences, and cover an extensive range of phonetic pairs in varying contexts. Each 

recording is accompanied by a time aligned word transcription and phonetic 

transcription. 

The VTR database contains formant values for a subset of 516 sentences
4
 from the 

TIMIT corpus. For all sentences the first four formant centre frequency and bandwidth 

values are given at intervals of 10 ms across the entire recording, even for periods of 

silence, and for speech sounds for which formants would not normally be measured, 

such as consonants. The authors’ motivation for including values for these segments is 

that resonances are a physical property of the vocal tract, not the speech signal, and they 

exist even if they are not excited. Of the VTRs provided only the first three formant 

centre frequency values have been hand corrected. The remaining values are the results 

from the algorithm (Deng et al. 2004) initially used to produce the ‘crude estimates’. 

                                                
4 The documentation accompanying the VTR database states that it contains formant values for a total of 

538 sentences. However, only data for 516 sentences were provided in the version of the database that 

was available to download from the Internet. 
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6.2.1 Limitations of the VTR Database 

The VTR database is undoubtedly a valuable resource, but it has limitations that must 

be considered when using the data and interpreting results derived from it. The formant 

values cannot be considered as absolute ground truth values, since they are still 

measurements from the speech signal, which are subject to the same fundamental 

limitations inherent in all formant measurement techniques (discussed previously in 

Section 1.2). But, given the extent of checking and manual correction used, the values 

are likely to be approaching the limits of accuracy that are achievable from pre-recorded 

speech with the currently available measurement techniques. 

Concerns about the ‘ground truth’ aspect of the VTR database are also raised by Gläser 

et al. (2010), who used the database in their evaluation of a novel formant tracking 

technique. They suggest that the formant tracker used to obtain the initial VTR values 

may benefit from incorporating additional information, such as the speaker’s sex, and 

they state in relation to the manual corrections of values that ‘in some cases even visual 

inspection may not provide means to identify real formant locations’ (2010, p. 230). 

However, they do conclude that they ‘nevertheless think that this database provides a 

reasonable basis for deriving quantitative performance measures’ (2010, p. 230). Mehta 

et al (2012) who also use the database to test a formant tracking algorithm note that it 

‘only yields estimates of ground truth’ (2012, p. 1737). 

Another limitation of the database is that some vital information relating to the 

generation of the measured formant values is not provided in the documentation. This 

makes the measurement of formants for the purposes of comparison with the database 

somewhat problematic. The lack of information is surprising given that the purpose of 

making the database publically available was to allow the comparison of other formant 

measurement techniques with the ‘ground truth’ values provided. These issues are 

discussed in more detail in Sections 6.2.4, 6.2.5 and 7.3.1. 

6.2.2 Speech Material Examined 

The synthetic speech generated for the previous chapters was highly controlled and was 

restricted to monotone, stable monophthongs, with limited variation in the glottal 

source, and with vocal tracts constructed to reflect typical male speakers. The 516 

TIMIT sentences used by the VTR database vary much more. The sentences selected 

were chosen to form a balanced set of speakers, dialects, genders and phonemes. They 
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are spoken by 186 different speakers, of which 113 are male and 73 are female. For 24 

speakers (16 male, 8 female) there are 8 sentences, and for the remaining 162 speakers 

(97 male, 65 female) there are only 2 sentences. By using such a varied dataset, relative 

to the previous chapters, the findings from the analyses would be well suited to answer 

RQ3, concerning variation in measurement accuracy across speakers. 

Since the focus of this study is vowel formant measurements, the analysis below is 

limited to the portions of speech segmented and labelled as vowels within the TIMIT 

phonetic transcriptions. A total of twenty different vowel categories are used within the 

transcripts, of which 15 are monophthongs and 5 are diphthongs. Within the 516 

sentences there are a total of 6,601 vowel tokens with an average of almost 13 per 

sentence, of which 5,528 are monophthongs (an average of just less than 11 per 

sentence) and 1,073 are diphthongs (an average of 2 per sentence). 

6.2.3 Determining Formant Measurement Errors in Praat 

The general approach used for determining formant measurement errors for synthetic 

speech was also applied to the real speech. The measurements from the TIMIT samples 

produced by Praat were compared with the reference values in the VTR database to 

determine the measurement errors. Again, the measurements were obtained from the 

‘Sound: To Formant (burg)…’ function. However, notable differences exist between the 

two sets of speech material that influenced the specific measurement and analysis 

processes used. One of the most significant is that the specified formant values for the 

synthetic speech were time invariant, whilst the real speech is dynamic and the formant 

values change across time. It was therefore critical that the measurements made in Praat 

were compared with values in the VTR database that had originated from the same short 

section of speech. The way in which this was addressed is discussed in the following 

sections. 

6.2.4 Comparable Measurements – Time Step & Window Length 

The analysis parameters in Praat that determine the amount of material contained in 

each analysis frame and their relative spacing, namely the time step and window length, 

were selected to be the same as those used to generate the VTR database measurements. 

The time step, or frame advance, value of 10 ms was provided in the documentation 

accompanying the database, while the window length, or frame width, value of 25 ms 

was obtained via a private communication with one of the database’s authors (Deng, 
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2011). The function in Praat used to measure the formants (‘To Formant (burg)…’) 

does not provide the option to select the windowing function applied to the analysis 

frames and information about the function used for the VTR database was not provided 

in the documentation. The settings used for the other analysis parameters are discussed 

in Section 6.2.6. 

6.2.5 Comparable Measurements – Time Alignment 

Even with the same time step and window length settings it was essential that the 

measurement frames were aligned in time. The crucial information to ensure this 

occurred were the timings associated with the first measurement frames for the VTR 

database and the measurements generated in Praat. If the first frame from each set of 

measurements is aligned then the remainder of the frames will also be aligned since the 

time step and window length settings are the same. The timing of the first frame is 

easily obtained for the measurements made within Praat through the execution of a 

query within the software. However, the equivalent information is not provided for the 

VTR database in the accompanying documentation and the authors of the database were 

unable to provide it (Deng 2011). The lack of this critical information is somewhat 

surprising given that the main purpose of releasing the database is to allow the data to 

be used for comparative testing. 

Several attempts were made to determine the correct alignment of the formant values by 

both numerical and visual comparison of the VTR measurements with equivalent 

measurements from Praat at different timing offsets. Unfortunately, none of these 

approaches provided a satisfactory alignment across multiple utterances. Further 

attempts to solve this problem were undertaken by Dr Frantz Clermont who was also 

unable to achieve a satisfactory logically motivated alignment. 

No mention of this problem is made by Gläser et al. (2010), but Rudoy et al. (2007) 

state that their analysis frames were ‘left-aligned with the first sample of each TIMIT 

utterance’ (2007, p. 527). This was further checked and confirmed through personal 

communications between Dr Clermont and the authors (Mehta, 2011). Given that the 

approach of aligning the left hand edge of the first analysis frame with the start of each 

recording appeared to have provided a satisfactory alignment for Rudoy et al. (2007) it 

was adopted for the analyses described below. See Section 7.3.1 for a further discussion 

of this issue and the approach adopted in Chapter 7. 
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6.2.6 Other Analysis Settings 

Another important difference between the synthetic speech and the TIMIT recordings is 

that the synthetic speech was generated to represent an average male speaker, whereas 

the TIMIT recordings are of both male and female speakers. Whilst this has 

implications for the comparison of the measurement errors across the real and synthetic 

speakers, this also has an influence on the analysis settings used in Praat. The 

‘Maximum Formant’ setting determines the upper frequency limit of the formant 

analysis, and for male speakers, including the synthetic speakers previously tested, is 

normally set at 5,000 Hz. Since female speakers tend to have shorter vocal tracts, and 

consequently higher formant values, a setting of 5,500 Hz is recommended in the Praat 

manual for female speakers (Boersma, 2010). Therefore, values of 5,000 Hz and 5,500 

Hz were used for the ‘Maximum Formant’ setting for the male and female speakers 

respectively. 

The only analysis parameter that was a variable was LPC order. As with the previous 

analyses of the synthetic speech this was varied from 6 to 20 in steps of 1. Varying LPC 

order meant the data could be considered in relation to RQ2, to further understand the 

influence of analysis parameters on measurement accuracy. The analysis parameter, 

‘pre-emphasis (from frequency)’, was held constant at the default of 50 Hz. 

6.2.7 Implementation 

A script was used in Praat to load each TIMIT recording, perform the formant analysis 

and save the resulting formant measurements in separate log files for each recording and 

LPC order. Praat exhibits a peculiarity whereby the timing of the initial formant 

analysis frame is dependent on the duration of the material being analysed. It was 

therefore necessary to append a specific period of silence to the end of each recording 

before the formant measurements were made. A further complicating factor is that 

within Praat the specified window length is the effective duration rather than the true 

duration, which is twice the specified value due to the Gaussian-like windowing 

function applied to each analysis frame (Boersma, 2010). To ensure the correct 

alignment of the analysis frames it was therefore necessary to add a period of silence to 

the start of each file to compensate for the doubling of the frame width. However, 

before the formant measurements were saved to log files the timings associated with 

them were adjusted to reflect the true timings within the original audio files. 
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For the sake of simplicity of the Praat script and to allow flexibility in the analysis of 

the resulting data, formant measurements were made for all frames across the 

recordings. Since the Praat formant measurement process used does not take into 

account any frame to frame information, each measurement is independent of those 

from frames surrounding it, so there was no possibility of influence on the 

measurements from non-vocalic segments. The determination of which measurements 

originated from vowel tokens was made during the analysis of the results within Matlab. 

The log files generated in Praat were loaded into Matlab together with the data from the 

VTR database and the TIMIT time-aligned phonetic transcripts. The phonetic 

transcripts were used to determine which analysis frames related to vowel tokens. The 

transcript files contain a start sample number, an end sample number and a phonetic 

label for each segment. It was necessary to convert the start and end sample values to 

corresponding analysis frames. Owing to the length and overlap of the analysis frames, 

each sample occurs within two or three adjacent analysis frames. The rule applied to 

determine which one of the two or three frames should be selected as the start or end 

frame was to choose the one whose centre was closest to the sample. The only exception 

to this rule was for adjacent vowel tokens. If the rule had been applied in these 

circumstances then the same frame would have been assigned as the final frame of the 

first token and the first frame of the second token. This would have resulted in that 

frame being included twice in the analyses. To avoid this occurring, the following frame 

was selected as the start frame for the second token. 

Once it had been determined which frames corresponded to vowel tokens, the 

measurement errors were calculated across all the LPC orders. The errors were 

calculated on a frame by frame basis by subtracting the measured F1, F2 and F3 values 

from the reference values from the VTR database from the corresponding frame. During 

the calculation of the errors information concerning the speaker, vowel and frame was 

retained to allow subsequent analysis of subsets of the data. 

6.3 Analysis of Measurement Accuracy 

The set of data obtained from the processes described above is both large and relatively 

complex. The nature of the data means that there are many ways in which it can be 

analysed, summarised and presented. The following sections consider the results in 

three ways. The first approach begins by summarising how the entire set of 
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measurement errors vary across LPC order and provides analysis results that are 

equivalent to those derived for the synthetic speakers. These results are most applicable 

to the second research question. The analysis also shows the differences between the 

results from the male and female speakers. In addition, consideration is also given to 

how the measurement errors change when different analysis frameworks are applied to 

the results. For example, one framework requires the LPC order to be fixed across all 

tokens, whereas another allows it to vary across tokens. A set of ‘benchmark’ 

framework results are obtained which represent the best possible performance that can 

be obtained with the measurement method employed. The other results are then 

compared with this benchmark set. This again addresses RQ2. 

The second approach examines how the measurement errors vary over the vowel space. 

The results are considered from the different analysis frameworks, as well as how the 

LPC orders used to obtain them are distributed over the vowel space. The third and final 

section examines how the performance of the different analysis frameworks varies 

across speakers. The results show the range of variation found both within and across 

speakers as well as examining the relationship with factors such as the mean 

fundamental frequency of the speaker and their location within the vowel space. The 

range of LPC orders used by speakers is also considered. These analyses are focused on 

RQ3. 

The analyses only consider the errors from the first three formants, F1 to F3, since these 

were the values that were subject to hand correction within the VTR database. Also, 

these are the formants most often examined by forensic speech scientist, and 

phoneticians more generally. 

6.3.1 Influence of LPC Order 

6.3.1.1 Distribution of Errors 

To obtain an overall impression of the influence of LPC order on the behaviour of the 

errors, and allow them to be compared with the results presented in Section 4.4.2 for the 

synthetic speech, boxplots were generated showing the distributions of the measurement 

errors for each formant across LPC order. These are shown in Figure 6.1 to Figure 6.3. 

To recap, the horizontal red line represents the median value, the lower and upper edges 

of the blue box are the 25th and 75th percentile, and the black whiskers extend to the 

limits of the data that are not considered outliers. The outliers are values that fall outside 
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a range defined as being 1.5 times the interquartile range above the 75th percentile and 

1.5 times the interquartile range below the 25th percentile, and are shown as red crosses. 

Note that the range and scale of the vertical axes are different across the three plots. 

 

Figure 6.1 Boxplot showing the distribution and variation of F1 measurement 

errors for all frames from the VTR database across LPC order with Praat’s 

normal measuring tool. 
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Figure 6.2 Boxplot showing the distribution and variation of F2 measurement 

errors for all frames from the VTR database across LPC order with Praat’s 

normal measuring tool. 
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Figure 6.3 Boxplot showing the distribution and variation of F3 measurement 

errors for all frames from the VTR database across LPC order with Praat’s 

normal measuring tool. 

In general terms, the overall behaviour of the errors is the same as that observed for the 

synthetic speakers. The main difference between the two sets of results is that the errors 

from the synthetic speakers are smaller. At the lower LPC orders the mean errors are 

positive meaning that the measurements tend to be overestimates, whilst at the higher 

LPC orders the mean errors are negative showing that the measurements are generally 

underestimates. This behaviour is most marked for F2 and F3. 

Histograms were also generated to show the distribution of the errors for each formant 

at each LPC order. These tended to confirm the impression of the distributions that was 

provided by the boxplots. The distributions at the LPC orders which gave the best 

results were generally symmetric so the mean absolute error and standard deviation 

were judged to be suitable measures of performance. The mean absolute errors, which 

ignore the sign of the error, were found to decrease as LPC order increases, reach a 

minimum and then increase. This was most apparent for F2 and F3. 

For F2 and F3 the smallest mean absolute error occurs at an LPC order of 10. Whilst for 

F1 the lowest mean absolute error is at LPC order 15. The error values at these LPC 
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orders are shown in Table 6.1 under the ‘All’ column, together with the standard 

deviation and their percentage equivalents. 

6.3.1.2 Differences between Male & Female Results 

The measurement errors were grouped and analysed according to the sex of the 

speakers. In general terms, the errors from both the male and female speakers exhibit 

the same behaviour across LPC order that was described above. The differences 

between the two groups lie in the magnitude of the errors and the LPC orders at which 

the smallest errors occur. Table 6.1 shows the results across all frames for male 

speakers, female speakers, and both sexes combined. 

 All Male Female 

F1 LPC Order 15 16 14 

F1 Mean Absolute 

Error (Hz) 

63.68 13.27% 61.37 13.79% 63.70 11.60% 

F1 Standard 

Deviation (Hz) 

88.51 20.08% 82.33 20.39% 93.05 18.20% 

 

F2 LPC Order 10 11 10 

F2 Mean Absolute 

Error (Hz) 

125.67 8.28% 113.61 7.86% 139.71 8.23% 

F2 Standard 

Deviation (Hz) 

188.57 13.00% 169.06 11.45% 205.54 12.29% 

 

F3 LPC Order 10 10 10 

F3 Mean Absolute 

Error (Hz) 

144.12 5.91% 137.63 5.95% 154.67 5.83% 

F3 Standard 

Deviation (Hz) 

228.94 9.69% 220.20 9.79% 242.49 9.53% 

Table 6.1 Summary statistical data and percentage equivalents at LPC order with 

lowest absolute mean errors from VTR database for male speakers, female 

speakers and all speakers. 

The data in Table 6.1 reveals some differences between the male and female speakers. 

In terms of the mean absolute error and standard deviation across all formants, the 

values for the male speakers are consistently lower than those from the combined data 

set, whilst the values from the female speakers are consistently higher than the 

combined set. This result is to be expected since the male speakers tend to have lower 

formant values than the female speakers (see Table 6.2), which is a consequence of the 

shorter female vocal tract. However, in percentage terms the situation is reversed for F1 

and F3 where the smallest absolute errors and standard deviations occur for the female 

speakers rather than the male speakers. For F1 and F2 the LPC order at which the 
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smallest absolute error occurs is lower for the female speakers than for the male 

speakers, whilst for F3 it is the same. 

The mean values for the reference formant values from the VTR database are shown in 

Table 6.2 for all speakers, male speakers and female speakers. The percentage 

difference from the combined set is also given for the male and female group. 

 All Male Female 

F1 (Hz) 527 493 (-6.5 %) 583 (10.6 %) 

F2 (Hz) 1593 1487 (-6.7 %) 1765 (10.8 %) 

F3 (Hz) 2520 2384 (-5.4 %) 2743 (8.8 %) 

Table 6.2 Mean reference formant values from the VTR database for all speakers, 

and male and female speakers separately, with percentage differences between 

male and female speakers and the entire set. 

Another way to summarise the results, which makes them easier to compare with the 

results from other frameworks in the following sections, is to combine the errors from 

all three formants and calculate the absolute mean and standard deviation in absolute 

and percentage terms. These results are shown in Table 6.3 for all the results as well as 

for male and female speakers. 

 All  Male  Female  

F123 Mean Absolute 

Error (Hz) 

111.15 9.15 % 105.63 9.49 % 120.14 8.61 % 

F123 SD (Hz) 178.71 15.00 % 169.99 15.66 % 191.62 13.67 % 

Table 6.3 Mean absolute error and standard deviation for combined errors from 

all formants for the VTR database with Praat’s normal tool shown for all 

speakers, and male and female separately, with LPC orders shown in Table 6.1. 

Combining the measurement errors from all three formants does not alter the relative 

performance between  the sexes. 

6.3.1.3 Overall Performance 

The results above consider the performance when the three formants are considered 

separately and show which LPC orders give the smallest errors for each formant. 

However, it is also possible to consider the three formants in combination and 

determine which LPC order provides the smallest errors overall. A criterion needs to be 

established in order to determine the best overall performance. The two most 

straightforward are the minimum mean combined absolute error across the three 

formants and the minimum mean combined absolute percentage error across the 

formants. 
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The minimum mean absolute combined error is determined by summing the absolute 

error for F1, F2 and F3 for each frame at each LPC order. The mean combined absolute 

error across all the frames is then calculating for each LPC order. The best performance 

is achieved at the LPC order which has the lowest mean combined absolute error. The 

same approach is applied to the minimum mean combined absolute percentage error, 

except that the absolute percentage errors are summed rather than the absolute errors. 

For both criteria the smallest overall error occurs at an LPC order of 10. This is the 

same LPC order that gave the smallest errors for F2 and F3 in isolation. The absolute 

mean and standard deviations, as well as their percentage equivalents are shown in the 

table for all three formants at LPC order 10.  The mean combined error across the three 

formants is also shown. This value allows the overall performance of this approach to 

be compared with the other frameworks discussed below.  

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

75.61 16.70 % 125.67 8.28 % 144.12 5.91 % 115.13 10.29 % 

Standard 

Deviation (Hz) 

144.71 29.72 % 188.57 13.00 % 228.94 9.69 % 184.69 20.32 % 

Table 6.4 Mean absolute and standard deviation values at LPC order 10 across all 

VTR database frames from Praat’s normal tool for individual formants and all 

formants combined. 

6.3.2 Analysis Frameworks 

The analysis of the measurement errors presented above provides an overall picture of 

the behaviour of the results across different LPC orders and demonstrates the influence 

that LPC order has on measurement accuracy. However, the relevance of these 

summarised results to real world measurement scenarios is somewhat limited as it 

represents a measurement strategy that involves keeping the LPC order constant across 

all speakers and vowel tokens. Whilst this approach might be applied when making a 

large set of automated measurements, it is not to be recommended given that previous 

work (Harrison, 2004 and Vallabher and Tuller, 2004, 2006) clearly shows that 

performance is speaker and vowel category dependent, and that errors can be reduced 

by using different LPC orders. 

It is therefore desirable to analyse the data in ways that more accurately reflect realistic 

analysis strategies, such as modifying the LPC order on a token by token basis or using 

different LPC orders for different formants of the same token. The behaviour of 

measurement errors in more realistic circumstances is presented in the following 
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sections by considering subsets of the measurements which are the equivalent of 

employing different analysis frameworks. Before examining the analysis frameworks, 

the results for a benchmark condition are established that considers the best 

performance that can be obtained from the measurement process applied.  

6.3.2.1 Benchmark Performance 

The measurement process described above produced formant measurements, and their 

associated errors, across a range of LPC orders for all vowel frames. Comparison of 

these results with the reference values from the VTR database makes it relatively 

straightforward to determine the LPC order at which the smallest errors occur for a 

given formant, frame, token or speaker. Determining these minimum errors provides a 

benchmark of the best achievable performance with the measurement process used. 

Whilst this benchmark performance is not achievable with a realistic analysis 

framework, the magnitude of the errors and the behaviour of the LPC orders that led to 

them provides useful information when assessing and comparing the performance of the 

other measurement strategies introduced below. 

To conduct this analysis as part of a manual process would be the equivalent of 

allowing a different LPC order for each formant within an analysis frame and allowing 

the LPC orders to vary from frame to frame. Such an approach would be very time 

consuming and difficult to apply in a normal measurement scenario. It should be noted 

that within this approach, and those that follow, it is still assumed that the lowest 

estimated formant frequency corresponds to the first formant, the next lowest to the 

second formant and so on. In Sections 4.4.7 and 5.3.5 analysis strategies were applied to 

the measurements which ignored the formant numbering imposed by Praat’s tool. It was 

not possible to apply this approach to the results in this chapter as only the first three 

formant values were logged when the measurements were made. 

6.3.2.2 Benchmark Performance Results 

The results below have been obtained by determining the smallest absolute error 

obtained for each formant for each frame regardless of the LPC order. The same 

previously used statistical measures have then been calculated across this set of 

minimum errors. Again, percentage as well as absolute values have been calculated. 
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 F1 F2 F3 

Mean Absolute 

Error (Hz) 

25.79 5.98 % 58.00 3.74 % 71.09 2.91 % 

Standard 

Deviation (Hz) 

46.21 12.43 % 91.21 5.85 % 111.08 4.61 % 

Table 6.5 Mean absolute error and standard deviation for measurements from 

VTR database with Praat’s normal tool when LPC order is free to vary across 

frames and formants - the benchmark condition. 

Comparison of the benchmark minimum possible error statistical results in Table 6.5 

with those from Table 6.4, where the LPC order is 10 for all frames and formants, 

shows a very large change in performance. In terms of the mean absolute error, they 

have reduced by approximately half between the two situations. For F1 the mean 

absolute error has decreased from 75.61 Hz (16.70 %) to 25.79 Hz (5.98 %), for F2 

from 125.67 Hz (8.28 %) to 58.00 Hz (3.74 %) and for F3 from 144.12 Hz (5.91 %) to 

71.09 Hz (2.91 %). The variability of errors, measured as standard deviation, also shows 

a reduction of approximately a half. 

Comparison of the results from the combination of all three formants with those from a 

fixed LPC order of 10 shows the same trends. All the measures shown for the 

benchmark case are less than half for the LPC order 10 case. 

 F123  

Mean Absolute Error (Hz) 51.63 4.21 % 

SD (Hz) 87.29 8.54 % 

Table 6.6 Combined absolute mean error and standard deviation across all three 

formants for benchmark case. 

When determining the minimum error for each formant in each frame a record was 

retained of the LPC order that had produced each minimum error. This was done to 

enable an analysis of the LPC orders that resulted in the minimum errors. A summary, 

in terms of the median, mode and interquartile range for LPC order are shown in Table 

6.7. 

 F1 F2 F3 

LPC Order Median 15 10 10 

LPC Order Mode 20 10 10 

LPC Order Interquartile Range 9 3 2 

Table 6.7 Summary statistics of LPC orders resulting in the minimum formant 

errors for the benchmark case. 

The results in Table 6.7 reflect the earlier findings in Section 6.3.1 that the best 

performance for F2 and F3 occurs at LPC order 10. The median value of 15 for F1 is 
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also the same as the single order that produced the overall best performance in Section 

6.3.1. However, the mode shows that order 20 was encountered most frequently. Order 

20 was used more than twice the number times of the second most frequent order, 

which was 19. The distribution of the orders for F1 was relatively uniform apart from a 

peak at 20. For F2 and F3 the distributions were much narrower, as reflected by the 

interquartile range, and roughly symmetric, with a slight positive skew. For each 

formant, the full range of LPC orders from 6 to 20 was encountered. 

When interpreting this data it must be remembered that the reference values used to 

obtain these results are still only estimates themselves. Therefore, what is most 

important is the change in performance across different analysis frameworks rather than 

the magnitude of the errors. 

6.3.2.3 Other Analysis Frameworks 

The previous sections 6.3.1.3 and 6.3.2.2 have considered the measurements in terms of 

two extreme analysis frameworks, the first with the LPC order restricted to a single 

value across all frames and formants, and the second with no constraint on LPC order. 

The following sections consider intermediate frameworks with differing constraints, 

some of which are equivalent to realistic approaches that could be applied by human 

analysts. 

The first approach allows the LPC order to be different across each of the three 

formants but requires that it remains constant for each formant within each vowel token. 

The second approach allows the LPC order to vary within a token, i.e. from frame to 

frame but it must be the same across the three formants within each frame. The third 

approach combines the previous two so that the LPC order is constant across the three 

formants within a vowel token. Whilst the first framework could be easily adopted 

when manually measuring formants, the second approach may be difficult to achieve in 

the real world. The combined third framework also represents a realistic approach to 

measuring formants and is perhaps the one most often adopted by analysts when making 

computer assisted measurements. 

6.3.2.4 LPC Order Fixed within Tokens, Variable Across Formants 

In this first approach each of the three formants is considered in isolation since the 

framework allows a different LPC order for each formant. However, for each formant 
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the LPC order must remain the same within individual vowel tokens. In order to 

determine which LPC order produces the smallest overall error within a token, the 

combined errors from each frame of that token must be considered. As discussed 

previously in section 6.3.2.1, this requires a criterion to determine which LPC order 

produces the smallest errors. The same criteria of smallest mean absolute error and 

smallest mean absolute percentage error are adopted for this, and the following two 

frameworks. However, unlike the earlier applications of the criteria, this framework 

requires the mean absolute error is calculated by combining the measurements for each 

frame across a token, rather than across the three formants, since the LPC order 

constraint is across the token not the formants. 

Applying this framework to the entire set of measurements results in a subset of 

measurements and associated LPC orders that represent the minimum errors achievable 

under these conditions. The summary statistics for the set of measurements found with 

the minimum mean absolute error criterion are presented in Table 6.8. 

 F1 F2 F3 F123 

Mean Absolute 

Error (Hz) 

43.11 9.26 % 96.07 6.29 % 102.70 4.21 % 80.63 6.58 % 

Standard 

Deviation (Hz) 

63.60 15.43 % 139.02 9.20 % 152.08 6.31 % 124.56 11.13 % 

Table 6.8 Mean absolute error and standard deviation for measurements from 

VTR database with Praat’s normal tool when LPC order was fixed across 

individual tokens but varied across formants with minimum summed absolute 

error criterion. 

A statistical summary of the LPC orders that gave rise to these results is shown in Table 

6.9. 

 F1 F2 F3 

LPC Order Median 15 10 10 

LPC Order Mode 20 10 11 

LPC Order Interquartile Range 8 3 1 

Table 6.9 Summary statistics of LPC orders that gave rise to minimum errors 

when LPC order was fixed across individual tokens but varied across formants, 

with mean absolute error as minimum criterion. 

The results show that the performance in terms of mean absolute error for each formant 

lies roughly halfway between that obtained for the benchmark case and that where the 

LPC order is held constant across all analysis frames. The percentage mean absolute 

error and standard deviation results are also similarly located approximately centrally 
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between the results from the two extreme frameworks. The combined formant errors are 

also positioned between the two sets of results from the other frameworks. The LPC 

orders, in terms of their distributions and summary statistics for each formant, are very 

close to those that produced the benchmark results. This is perhaps to be expected since 

each formant is considered independently of the other two as is the case in the 

benchmark framework. However, the interquartile ranges are slightly reduced in the 

current framework for F1 and F3, meaning that the constraint of the LPC order within a 

token has resulted in slightly less variation in LPC order.  

The results from using the summed percentage error criterion for the current framework 

where the LPC order is held constant across a token is shown in Table 6.10. 

 F1 F2 F3 F123 

Mean 

Absolute 

Error (Hz) 

43.27 9.22 % 96.30 6.28 % 102.73 4.20 % 80.77 6.57 % 

Standard 

Deviation 

(Hz) 

63.96 15.20 % 140.27 9.14 % 152.23 6.31 % 125.13 10.99 % 

Table 6.10 Mean absolute error and standard deviation for measurements from 

VTR database with Praat’s normal tool when LPC order was fixed across 

individual tokens but varied across formants with minimum summed percentage 

error criterion. 

The summary statistics for the LPC orders that produced these results are identical to 

those in Table 6.9 for the same LPC order constraint with the minimum absolute error 

criterion. The distributions of the orders for each formant were very similar across the 

two conditions. 

Comparison of Table 6.8 with Table 6.10 shows that the error results are also very 

similar. The similarity is not surprising given that the LPC order constraint only applies 

within a formant across a frame, not across all three formants. The consequence of this 

is that the summed absolute and summed percentage errors for an individual formant 

across a frame will tend to track each other as the LPC order is changed. A different 

outcome is seen below in the following frameworks where the LPC order constraint is 

applied across the formants. 
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6.3.2.5 LPC Order Fixed Across Formants, Variable Across Frames 

For the second approach, the LPC order is considered as being fixed across the formants 

for the frame being considered but the order can change from frame to frame. Since 

three measurements for each frame are being used to determine the LPC order at which 

the minimum error occurs, a criterion must be applied that specifies what constitutes the 

minimum error. Again, the sum of the absolute errors across the three formants in a 

frame and the sum of the absolute percentage errors across the three formants are used. 

Applying this framework and the summed absolute error criterion to the entire set of 

results gives a subset of measurements where the associated errors are summarised by 

the figures shown in Table 6.11. 

 F1 F2 F3 F123 
Mean 

Absolute 

Error (Hz) 

69.09 15.06 % 97.53 6.46 % 81.36 3.34 % 82.66 8.29 % 

Standard 

Deviation (Hz) 

83.8 20.86 % 137.66 9.27 % 124.70 5.17 % 119.59 14.53 % 

Table 6.11 Mean absolute error and standard deviation for measurements from 

VTR database with Praat’s normal tool when LPC order was fixed across 

formants but varied across frames, minimum criterion was summed absolute 

error. 

Unlike the previous framework, where a different LPC order could be used for each of 

the three formants, the current framework applies the same LPC order to all three 

formants. The median and the mode of the LPC orders that gave rise to the errors above 

are both 10 and the interquartile range is 2. The distribution was roughly symmetric, 

with a slight positive skew, and the full range of LPC orders from 6 to 20 was 

encountered. This behaviour is very similar to that found for F2 and F3 in the other 

frameworks presented above, showing that the errors for F2 and F3 have the greatest 

influence on the determination of the LPC order used. This is to be expected as the F1 

errors are less variable across LPC order. 

Examination of the error results from the three formants reveals that unlike the previous 

frameworks, F3 has a mean absolute error that is smaller than F2’s. This is a 

consequence of the minimum absolute error criterion. Since F3 tends to have the largest 

errors the criterion effectively reduces the size of the error associated with F3 

measurements. Whilst it might be expected this would result in the F3 errors being 
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smaller than for the previous framework, it is surprising that overall the F3 errors are 

actually less than those for F2. 

Comparison of the F2 errors with the previous framework shows them to be similar, 

whilst the F1 errors are higher. Since the F3 errors are smaller it then becomes harder to 

assess which approach gives the best overall performance based on the results from 

individual formants. The combined F1, F2 and F3 errors allows the overall performance 

to be assessed. The current framework has a combined mean absolute error of 82.66 Hz 

or 8.29%, whilst the previous framework has slightly better performance with 80.63 Hz 

or 6.58%. However, the standard deviation for the previous framework is higher than 

for the current one. 

Application of the minimum sum of absolute percentage errors to the current framework 

leads to a subset of formant measurement errors with the summary results shown below.  

 F1 F2 F3 F123 

Mean Absolute 

Error (Hz) 

60.98 13.24 % 97.13 6.34 % 105.95 4.31 % 88.02 7.97 % 

Standard 

Deviation (Hz) 

75.00 18.31 % 138.87 8.98 % 172.32 6.96 % 137.10 13.36 % 

Table 6.12 Mean absolute error and standard deviation for measurements from 

VTR database with Praat’s normal tool when LPC order was fixed across 

formants but varied across frames, minimum criterion was summed percentage 

error. 

The LPC orders that produced these results have identical summary statistics to those 

described above for the same LPC order constraint with the minimum absolute error 

criterion, i.e. a median and mode of 10, and an interquartile range of 2. The distributions 

of the orders for each formant were very similar across the two conditions. Comparison 

of the error results with those from the absolute mean criterion show very similar results 

for F2, whilst the F1 values have decreased and the F3 values have increased and risen 

above those for F2. The reduction in the F1 error is to be expected since overall, F1 

tends to produce the largest percentage errors and the criterion is minimising this 

measure. Therefore it will have a larger impact on the results of F1. The combined F123 

absolute mean error is higher for the percentage criterion, but the percentage mean error 

is smaller, again a consequence of the criterion minimising the percentage error. 
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6.3.2.6 LPC Order Fixed within Tokens and Across Formants 

The final measurement framework requires the LPC order to remain constant within 

each token and be the same across the three formants. The error results from this 

framework are shown in Table 6.13. Again, in the first instance the criterion for 

determining the minimum error is to sum all the absolute errors across each formant for 

the entire token. 

 F1 F2 F3 F123 

Mean Absolute 

Error (Hz) 

70.84 15.44 % 108.76 7.16 % 107.51 4.40 % 95.70 9.00% 

Standard 

Deviation (Hz) 

90.57 22.52 % 152.95 10.24 % 158.94 6.57 % 139.33 15.72% 

Table 6.13 Mean absolute error and standard deviation for measurements from 

VTR database with Praat’s normal tool when LPC order was fixed across 

individual tokens and fixed across formants, minimum criterion was summed 

absolute error. 

These results were obtained with LPC orders that had a median of 10, a mode of 11 and 

an interquartile range of 1. Again, the distribution of orders was approximately 

symmetric with a slight positive skew, although it was narrower than for the previous 

condition, which is reflected by the smaller IQR. Also, the range of orders encountered 

was reduced with a minimum order of 7, and a maximum of 16. This is in contrast to all 

the other previous frameworks where the full range of LPC orders from 6 to 20 was 

encountered, apart from for F3 under the constant LPC order within a token situation 

where the maximum LPC order was 18. 

Unsurprisingly, the combination of the two previous frameworks has resulted in 

measurement errors that are greater than either of those produced by the frameworks 

when applied individually. Again, the absolute F3 error is smaller than the F2 error, but 

by only 1 Hz, rather than the difference of 16 Hz seen in the previous framework under 

the absolute criterion. 

Application of the minimum summed percentage error criterion to the combined 

frameworks leads to the summary statistics shown in Table 6.14. 
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 F1 F2 F3 F123 

Mean 

Absolute 

Error (Hz) 

66.29 14.43 % 110.06 7.19 % 118.72 4.83 % 98.36 8.82 % 

Standard 

Deviation 

(Hz) 

83.05 20.47 % 155.29 10.17 % 178.20 7.24 % 146.58 14.74 % 

Table 6.14 Mean absolute error and standard deviation for measurements from 

VTR database with Praat’s normal tool when LPC order was fixed across 

individual tokens and fixed across formants, minimum criterion was summed 

percentage error. 

The summary statistics and distribution for the LPC orders remains similar to those 

from the absolute error criterion with a median of 10, but the mode increased to 11. The 

IQR was again 1, but the range increased as the highest LPC order encountered was 20. 

Overall, the results in absolute terms from the minimum percentage criterion are worse 

than those for the absolute criterion, but the situation is reversed when the percentage 

results are considered. This again repeats the patterns seen for the two frameworks in 

isolation, albeit with very small differences between the two minimum error criteria for 

the first framework. 

6.3.2.7 Summary of Results From Different Frameworks 

The clear pattern that emerges from the results above is that the greater the restriction 

on the variation of the LPC order, the greater the size of the errors. The smallest errors 

occur when the LPC order is free to change across formants and frames (i.e. the 

benchmark condition), whilst the largest are when the LPC order remains constant 

across all formants and analysis frames. In terms of the intermediate analysis 

frameworks, constraining the LPC order across the frames of a token results in smaller 

errors than constraining the LPC order across the three formants. The combination of 

these constraints produces a further increase in the magnitude of the errors. The 

criterion used to determine which measurements at which LPC order constitutes the best 

measurement, or minimum error, also has an impact on the results. For all the 

frameworks, the absolute minimum mean error criterion results in an absolute mean 

error that is less than when the absolute minimum percentage mean error is used. The 

situation is reversed for the percentage mean errors. However, the results from the 

different criterion for a given framework are relatively close. 
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Figure 6.4 Mean absolute error (circles) and standard deviation (line extending 1 

SD above mean) across 9 LPC variation conditions. (Key to conditions: Tkn = 

Token, F = Frame, Fix = Fixed, Var = Variable, Abs = Absolute Error Criterion, 

Per = Percentage Error Criterion). 

 

Figure 6.5 Percentage mean absolute error (circles) and standard deviation (line 

extending 1 SD above mean) across 9 LPC variation conditions. (Key to conditions: 

Tkn = Token, F = Frame, Fix = Fixed, Var = Variable, Abs = Absolute Error 

Criterion, Per = Percentage Error Criterion). 

Figure 6.4 and Figure 6.5 show the results from each of the nine measurement 

frameworks previously examined in terms of mean absolute error and mean absolute 
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percentage error. The results are ordered according to increasing combined error across 

the three formants for the absolute error results. The circles represent the mean absolute 

error for each formant whilst the vertical bars extend one standard deviation above the 

mean. The naming convention for the LPC order constraints is Tkn = Token, F = 

Formant, Fix = LPC order fixed, Var = LPC order variable, Abs = Absolute minimum 

error criterion, Per = Percentage minimum error criterion. 

The clear difference between the two sets of results is that in the absolute error case for 

each set of results the F1 errors are always smaller than those for F2, which in most 

cases are smaller than those for F3. By contrast, for percentage error the F1 results are 

always larger than the F2 errors, which are in turn always larger than the F3 errors. 

6.3.3 Distribution of Errors Across the Vowel Space 

The analysis of the synthetic data in the earlier chapters has shown that one of the 

factors that influences the errors associated with LPC derived formant measurements is 

the vowel category or location of the vowel token within the vowel space. The 

following sections examine how the errors and associated LPC orders derived from the 

various frameworks behave within the vowel space. The section begins by examining 

the distribution of the reference formant measurements within the vowel space. This is 

followed by the results from the various analysis frameworks considered over the vowel 

space. The results are presented in the same order that they were above. Only an 

illustrative subset of the generated plots has been included. 

6.3.3.1 Distribution of Vowels Within the VTR Database 

The subset of the TIMIT corpus used for the VTR database was specifically selected to 

contain a balanced representation of speakers, dialects, genders and phonemes (Deng et 

al. 2006, p. 370). Therefore, it is to be expected that the vowel space will be well 

represented. The vowel tokens within the TIMIT corpus have been labelled with vowel 

categories, but these classifications will not be used in the analyses presented below. 

This is for two reasons. Firstly, vowel categories are a linguistic construct motivated by 

the perceptual and phonological properties of vowels. Whilst the categories are clearly 

linked to the acoustic properties of vowels, namely the formant frequencies, they are not 

defined by them. Secondly, there are only twenty categories used within the corpus, of 

which fifteen are monophthongs and five are diphthongs. There is overlap between the 

categories in terms of F1~F2 values, and the amount of the vowel space covered by the 
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categories is also different. This makes it problematic to compare performance across 

the categories. Also, the categories are potentially too broad to provide the resolution 

necessary to observe patterns or tendencies within the results. Therefore, as for the 

previous analyses of the synthetic data, the location of the vowels within the vowel 

space will be defined by their reference F1 and F2 values, and in some instances their 

F3 values. 

For the purposes of these analyses each speech frame is considered independently, 

rather than within the context of the vowel token that it is a part of. There are a total of 

67,424 analysis frames. The F1, F2 and F3 values for these frames are summarised in 

Table 6.15. This shows the extent of the range of the reference formant values within 

the database. 

 F1 F2 F3 

Mean (Hz) 527.45 1593.00 2520.34 

SD (Hz) 132.78 384.98 358.66 

Min (Hz) 113.74 638.53 1218.41 

Max (Hz) 1131.77 3048.02 4030.12
5
 

Table 6.15 Summary statistics for reference formant values in the VTR database 

relating to vowels. 

The overall vowel space represented by these values relate to many speakers, both male 

and female, so it is obviously much larger than that which would be expected for any 

single speaker. To be able to determine statistical measures for the errors across the 

vowel space it is necessary to divide it into small regions and then analyse the frames 

located in each region. 

Before analysing the measurement errors the distribution of the specified formant values 

across the vowel space was determined. This is shown in Figure 6.6 as a surface plot. 

The F1 values were divided into bins between 100 Hz and 1,150 Hz. with a width of 50 

Hz, creating 21 bins. The F2 values were divided in to 100 Hz wide bins between 575 

Hz and 3,075 Hz, resulting in 25 bins. 

                                                
5 The maximum reference F3 value within the database is 5206 Hz. This is an erroneous value which has 

been excluded from the summary statistics in Table 6.15. 
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Figure 6.6 Distribution of F1 and F2 reference values from the VTR database 

shown across the F1~F2 vowel space. 

It is clear from the plot that there is a central tendency in the data where the greatest 

number of frames occurs. The central peak in the plot is around an F1 value of 

approximately 525 Hz and an F2 value of 1,800 Hz. 

6.3.3.2 Distribution of Errors With Constant LPC Orders 

Following the same order of presentation of the analyses of the data considered above, 

the first situation examined is where the LPC order is held constant for the analysis of 

all frames of data but the results for each formant are considered at different LPC 

orders. 

The mean error values for F1 at an LPC order of 15 are shown in Figure 6.7. This is the 

LPC order at which the smallest average absolute error of 63.68 Hz occurred across all 

frames. 
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Figure 6.7 F1 mean error surface over the F1~F2 vowel space for all the VTR 

database vowel frames measured using Praat’s normal tool with an LPC order of 

15. 

The plot clearly shows that the mean measurement error is dependent on the location of 

the vowel within the F1~F2 vowel space. The dependency on the F1 value is much 

greater than it is for F2. The vowels with lower specified F1 values tend to produce 

errors greater than 0, i.e. overestimates, whilst the higher specified F1 values produce 

negative error values, i.e. underestimates. The F1 values around which the errors cross 

from positive to negative are in the region of 400 to 600 Hz. The equivalent absolute 

error surface plot has a concave or U shape, most pronounced in the F1 direction. This 

is a consequence of the underestimates found at the higher specified F1 values 

becoming positive errors when the absolute value is determined. Also, the entire surface 

is shifted upwards in the positive direction with the lowest point of the surface being 

around 50 Hz. This is because the absolute mean values remove the effect of the 

underestimates and overestimates cancelling each other out. The distribution of the 

standard deviation values across the F1~F2 space is very similar in structure to the 

absolute mean surface, as it shows the greatest variation in the means towards the 

extremes of the F1 range, more so at the higher specified values, with minimal influence 

from F2 across the space. 
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The error surfaces from LPC orders above and below 15 are not dramatically different, 

apart from those at the lower orders of 6 and 7. The magnitude of the errors at these 

LPC orders is so large that the results are not really meaningful in terms of their 

distribution across the vowel space. The general consistency in the results across the 

LPC orders is to be expected given the relatively stable performance of the F1 

measurements shown in Figure 6.1. 

The surfaces produced from the errors expressed as percentages are different in one 

significant respect from those described above. In the error surface plots of the numeric 

error values, the magnitude of the errors at the extremes of the reference F1 values is 

approximately the same. However, for the percentage errors the excursion at the lower 

F1 values is much greater than at the higher F1 values. This is simply a consequence of 

the results being expressed as percentages. At the lower reference F1 values a given 

error is much larger in percentage terms than the same error at a higher reference F1 

value. The same pattern is also observed for the standard deviation results expressed in 

percentage terms. 

The error surface for F2 at an LPC order of 10, which produced the smallest average 

absolute error of 125.67 Hz, also shows variation across the F1~F2 vowel space (Figure 

6.8). In contrast with the error surface for the F1 error values, in Figure 6.7, the F2 error 

surface shows dependency of the errors on both F1 and F2. The largest errors occur in 

the region with the lowest F1 and F2 values (close back vowels) whilst the largest 

negative errors occur with the highest F1 and F2 values (open front vowels). The region 

in which the errors change from being over estimates to underestimates is across a band 

that runs from low F1 values and high F2 values (close front vowels) to high F1 values 

and low F2 values (open back vowels). 
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Figure 6.8 F2 mean error surface over the F1~F2 vowel space for all the VTR 

database vowel frames measured using Praat’s normal tool with an LPC order of 

10. 

The F2 absolute error surface is again a concave shape or U shape with the highest 

errors occurring at the low and high F1~F2 extremes. The shape of the standard 

deviation surface is again the same as that for the absolute error surface. When 

considering the errors in percentage terms, the same difference found for the F1 errors is 

again observed. The magnitude of the percentage errors at the higher F1 and F2 values 

are less than at the lower F1 and F2 values. 

At the lower LPC orders of 6 and 7 the errors are so large that their distribution is not 

really relevant. At LPC order 8 the region with the higher specified F1 and F2 values 

produces errors in the region of 100 Hz, whilst for the lower specified F1 and F2 values 

the errors are considerably higher. At LPC order 9 the surface is similar to that at order 

10 but the low F1~F2 region with the higher errors covers a larger proportion of the 

surface. As the order increases above 10 the region with the higher F1~F2 specified 

values produces the largest negative errors and the size of this area increases through the 

orders. At order 13 the majority of the surface has very large negative errors with only a 

small section with low specified F1 and F2 values producing relatively small errors. 
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The error surface for F3, again at LPC order 10, shown in Figure 6.9, which produced 

the smallest mean absolute error of 144.12 Hz, is very similar in structure to the F2 

error surface. The absolute error and standard deviation plots are also similar with the 

greatest errors and deviations being found in the regions with the highest and lowest F1 

and F2 reference values. Altering the LPC order has the same effect on the error 

surfaces described for F2 above. When examining the F3 error results in percentage 

terms, the same differences described for the F1 and F2 percentage results are also 

observed. 

 

Figure 6.9 F3 mean error surface over the F1~F2 vowel space for all the VTR 

database vowel frames measured using Praat’s normal tool with an LPC order of 

10. 

Whilst it is useful to examine how the F3 errors behave across the F1~F2 vowel space it 

is not possible to determine from such a plot if the F3 errors are dependent on the 

reference F3 values. Since it is clear that F1 and F2 errors are dependent on their 

specified values it is worthwhile considering the F3 errors against the specified F3 

values. When the F3 errors are plotted on an F2~F3 vowel space then a clear 

dependency is visible between the specified F3 values that is similar in nature to that 

exhibited for F1 and F2 and their respective specified values. At the lower F3 values the 

measurements are overestimates, i.e. the errors are positive, whilst at higher specified 
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F3 values the measurements are underestimates and the errors are negative. Over the 

F2~F3 vowel space the mean absolute errors and the standard deviation are the highest 

at the edges of the space where the number of analysed frames is also at its smallest. 

In general, these results show that there is a clear dependency of the measurement errors 

on the specified reference formant values. For the LPC orders that resulted in the 

smallest errors, the lower specified values tend to have overestimated measurements, 

i.e. positive errors, whilst the higher specified values have underestimated 

measurements, i.e. negative errors. This pattern is clear across all three formants. A 

consequence of this is that the smallest errors occur in the central region of the vowel 

space where there is a relatively large and even spacing between the formants. The 

largest errors tend to occur towards the extremes of the vowel space. These are also the 

areas where the least number of frames exist. The tendency towards the central area is 

also a consequence of the greater number of frames within that area which biases the 

selection of the LPC order at which optimum performance occurs. 

6.3.3.3 Distribution of Errors Over Vowel Space for Benchmark Case 

Having examined how the errors are distributed across the vowel space for the situation 

where the LPC order is held constant across all frames, the following section considers 

the distribution of errors where the minimum possible error for each frame and formant 

is determined, i.e. the benchmark scenario presented in Section 6.3.2.1. Figure 6.10 

shows the distribution of F1 mean errors across the F1~F2 vowel space for the 

benchmark case. 
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Figure 6.10 F1 mean error surface over the F1~F2 vowel space for all the VTR 

database vowel frames measured using Praat’s normal tool for the benchmark 

LPC order variation case. 

Comparison of Figure 6.10 with Figure 6.7 reveals that for the benchmark situation 

there is still a similar dependency on the F1 values, but the magnitude of the errors at 

the lower specified F1 values is less than when the LPC order is fixed at 15. Also, the 

negative errors at the higher F1 values seen in the fixed LPC condition are almost non-

existent in the benchmark situation. Comparison of the absolute errors reveals a less 

marked U shape with the only significant excursions occurring at the lower specified F1 

values and a large area of stable errors within the centre of the vowel space. The results 

expressed as percentages reveal the same patterns. 

Figure 6.11 shows the mean F2 errors across the F1~F2 vowel space. Comparison with 

the equivalent plot when the LPC order is fixed at 10 (Figure 6.8) shows that, as 

expected, the magnitude of the errors is much less for the benchmark results, the 

dependency on the specified F1 values is no longer apparent and the direction of the 

dependency on the specified F2 values has changed. In the benchmark situation the 

lower F2 values are resulting in underestimates, whilst the higher F2 values are leading 

to measurements that are overestimates. Plotting the absolute mean F2 error reveals a 

surface very similar to the mean F2 surface. 
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Figure 6.11 F2 mean error surface over the F1~F2 vowel space for all the VTR 

database vowel frames measured using Praat’s normal tool for the benchmark 

LPC order variation case. 

The F3 mean errors over the F1~F2 vowel space do not show the same dependency as 

the F3 mean errors with a fixed LPC order of 10 (Figure 6.9). Rather, for the benchmark 

case the surface is relatively flat. Plotting the F3 mean errors over the F2~F3 space 

reveals a dependency on the specified F3 values. However, like the F2 errors, the 

direction of the dependency has changed from the fixed LPC order condition so that the 

underestimated negative errors occur at the lower F3 values whilst the overestimated 

positive errors occur at the higher F3 values. 

In general, for the numeric values and percentage representations, the distributions of 

mean error, absolute error and standard deviation for the three formants across the 

F1~F2 and F2~F3 vowel space for the benchmark case are much more stable and have 

lower values than those seen above for the constant LPC order cases. This is to be 

expected given that the measurements have the minimum possible errors. Whilst there is 

a dependency of the errors on the reference values, for F2 and F3 the direction of this 

dependency has switched between the fixed LPC order case and the benchmark case. 
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What is also of interest is the distribution over the vowel space of the LPC orders that 

have resulted in the minimum benchmark errors. The following three figures show the 

distribution of the median LPC order for F1 to F3 over the F1~F2 vowel space. In these 

plots the LPC order is represented only by colour, rather than as a surface, since it is a 

discrete variable. The same bin sizes that were used to calculate the error distributions 

over the vowel space have also been used for the calculation of the summary LPC order 

statistics. 

 

Figure 6.12 Median LPC order across the F1~F2 vowel space which produced the 

F1 errors in the LPC variation benchmark case. 

LPC Order 
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Figure 6.13 Median LPC order across the F1~F2 vowel space which produced the 

F2 errors in the LPC variation benchmark case. 

 

Figure 6.14 Median LPC order across the F1~F2 vowel space which produced the 

F3 errors in the LPC variation benchmark case. 

LPC Order 

LPC Order 
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Examination of Figure 6.12 to Figure 6.14 shows that the median of the LPC orders 

giving rise to the minimum benchmark errors are dependent on the location within the 

vowel space. In the case of the F1 benchmark errors (Figure 6.12) the dependency on F1 

is the most pronounced. At the lower specified F1 values the LPC orders are the highest, 

around 19 and 20, whilst at the higher specified F1 values the LPC orders are the 

lowest, at 6 and 7. There is also a smaller dependency on F2 resulting in the highest 

LPC orders occurring for low F1 and low F2 values i.e. close back vowels. The general 

tendency for the F2 influence is the same as for F1 in that for the higher specified F2 

values the LPC orders are lower. 

A similar dependency on location within the vowel space in seen in Figure 6.13 for the 

LPC orders for the benchmark F2 errors. Again, the highest LPC orders are seen at the 

lower specified F2 values, while the lower LPC orders are seen at the higher F2 values. 

Also, a small influence is seen in the F1 direction. In comparison with the LPC order 

surface for the F1 errors, there is a relatively stable region in the surface where the LPC 

order remains between LPC orders 8 and 10. This accounts for approximately two thirds 

of the surface. 

In contrast with the LPC order surfaces for F1 and F2 errors, the F3 surface shows much 

less variation across the F1~F2 vowel space. The mean LPC order values all lie 

relatively close to 10. However, there is a slight dependence on F1 and F2, again, in the 

same direction, with lower LPC orders at higher specified values. These data were also 

considered over the F2~F3 vowel space and a clear dependency on the specified F3 

values was apparent. However, the overall range was less than that seen for F1 and F2 

and generally occurred between LPC orders 8 to 12. 

It is clear from the distribution of LPC orders over the vowel space that for the smallest 

errors to be generated when measuring formants, the LPC order must change. The 

greatest variation in LPC order is seen for F1, followed by F2 and then F3. In view of 

this finding it is then perhaps obvious that when the LPC order is fixed across all 

frames, as in Section 6.3.1.3, the overall performance is worse than the benchmark case 

where the LPC order is free to change. 

A further finding highlighted by these results is that for a given region of the vowel 

space, the three formants show a tendency towards different LPC orders. This is most 
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marked between F1 and the other two formants, which tend to be relatively similar, 

apart from the region with the lowest F2 values. This has implications for the analysis 

frameworks where the same LPC order must be applied to each of the three formants 

within an analysis frame. The impact this has on the results in terms of the distribution 

of errors and LPC orders over the vowel space is considered in the following sections 

where the results from the other analysis frameworks are presented. 

6.3.3.4 LPC Order Fixed within Tokens, Variable Across Formants 

The analysis framework that produced results closest to the benchmark condition was 

the situation where the LPC order was fixed across the frames within a token for a given 

formant, but the LPC order could be different across the three formants. Consideration 

of the error results across the vowel space in both numeric and percentage terms and 

with both minimum error criteria (minimum absolute error and minimum absolute 

percentage error) reveals results very similar in structure to the benchmark condition. 

For the F1 errors, the surfaces only show overestimates at the lower F1 values, with no 

significant regions of underestimates at the higher F1 values. The surfaces for both F2 

and F3 errors in numeric terms show no apparent dependency across the vowel space. 

However, when the F2 absolute errors are considered as percentages there is 

dependency on the F1~F2 values with the larger errors occurring in the lower F1~F2 

region (close back vowels) and the smallest errors in the higher F1~F2 region (open 

front vowels). 

The distributions of the LPC orders that produced these results are very similar to those 

for the benchmark condition. The only obvious difference is that the range of LPC 

orders used for F2 is somewhat reduced in the low F1~F2 region (close back vowels). 

6.3.3.5 LPC Order Fixed Across Formants, Variable Across Frames 

The next analysis framework considered was where the LPC order was fixed across the 

three formants and was free to vary from frame to frame. This produced overall 

performance results that were the next closest to the benchmark set, after the framework 

in the previous section. Examination of the distribution of the errors over the vowel 

space for the current framework reveals a set similar to those already described but with 

the following points of note. The errors for F1 are more similar to the benchmark results 

that the fixed LPC order case, but show slightly more underestimates at the higher F1 

values than the benchmark case. The errors for F2 show the same tendency as for the 
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fixed LPC order 10 results, i.e. the overestimates occur at lower F1 and F2 values with 

the underestimates at the higher F1~F2 values, but the dependency is less marked. The 

F3 results show a dependency not previously encountered, where the negative errors 

occur at the lower F1~F2 values (close back vowels) and the positive errors occur at the 

higher F1~F2 values (open front vowels). The variation across the vowel space is less 

marked than for the other formants, but when the minimum error criterion is the 

summed percentage error then a small region of negative errors in the lower F1~F2 area 

becomes quite apparent. This is also clear on the F2~F3 vowel space plots. These also 

reveal that positive F3 errors occur at the higher F3 values. 

The current framework requires the same LPC order across all three formants for each 

frame so there is only a single distribution of LPC orders for all three formants. The 

distribution is almost identical to the distribution of LPC orders for F3 in the benchmark 

condition shown in Figure 6.14. There is slight variation across the surface with the 

median LPC orders around 11 in the low F1~F2 region (close back vowels) dropping 

over the surface to 9 in the high F1~F2 region (open front vowels). Considering the 

LPC orders in relation to the F2~F3 vowel space produces a distribution almost 

identical to that discussed above for F3 in the benchmark condition. Again, the higher 

median LPC orders occur at the lower F3 values. When the minimum error criterion is 

the mean absolute percentage error, the LPC orders in the lower F1~F2 region are 

slightly higher than for the minimum absolute error criterion. The same is also true for 

the distribution over the F2~F3 vowel space at the lower F3 values. 

6.3.3.6 LPC Order Fixed within Tokens and Across Formants 

The final framework examined was a combination of the previous two, so the LPC 

order must remain the same across all three formants and within each vowel token, but 

is free to change from one token to the next. The distribution of errors across the vowel 

space from this framework are very similar to those from the previous framework where 

the LPC order was fixed across the three formants but free to change from frame to 

frame. Also, the distribution of LPC orders leading to these results is again very similar 

to those from the previous framework. This suggests that the constraint across the three 

formants has a greater influence on the LPC order and resulting formant measurements 

than the constraint across the frames. 
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6.3.3.7 Summary of Errors & LPC Orders Over the Vowel Space 

The results presented in the sections above make it clear that formant measurement 

errors are dependent on the location of the vowel within the vowel space. Not only is 

the magnitude of the errors affected by the vowel’s location, but also the direction of the 

error, i.e. whether they are over or underestimates of the true value. Also, the nature of 

the dependence over the vowel space is different across the three formants examined. 

Furthermore, the dependencies can change according to the analysis framework 

adopted. The greater the constraints on the measurement process, the larger the errors 

and the greater the variation in the errors across the vowel space. 

For analysis frameworks where the LPC order can vary, patterns also emerge over the 

vowel space for the LPC orders used. Where a different LPC order can be adopted for 

each formant then the higher LPC orders tend to occur at the lower formant values and 

the lower LPC orders at the higher formant values for a given formant. The greatest 

variation in LPC orders is seen for F1. For the frameworks where the LPC order must 

be the same across the three formants, the variation in the use of LPC orders is 

dramatically reduced. 

6.3.4 Variation of Performance Across Speakers 

Previous studies have found that the performance of formant analysis techniques and 

the behaviour of resulting errors are to some extent dependent on the speakers (Künzel 

(2001), Byrne and Foulkes (2004), Vallabha and Tuller (2004) and Duckworth et al. 

(2011)). The large number of speakers in the VTR database makes this an ideal data set 

within which to further explore the variation in performance across speakers and 

address RQ3. However, a limitation is that for most of the speakers, 162 out of 186, 

there are only 2 sentences of speech. This final section begins with a description of the 

speakers within the dataset, followed by an analysis of the results already presented in 

this chapter with the speaker considered as a factor. 

6.3.4.1 Description of the Speakers 

The VTR database contains reference formant measurements for 186 different speakers, 

113 male and 73 female. For 24 of the speakers (16 male and 8 female) there are 8 

sentences each and for the remaining 162 speakers (97 male and 65 female) there are 2 

sentences each. The average number of vocalic frames for the 8 sentence speakers is 
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997 across an average of 98 tokens, whilst for the 2 sentence speakers there are an 

average of 267 frames across an average of 26 tokens. 

6.3.4.2 Speakers’ Reference Formant Values 

The distribution of reference formant values within the entirety of the dataset has 

already been described in Section 6.3.3.1. In order to examine the distribution of 

formant values for individual speakers, the mean values were calculated for the first 

three formants for each speaker. Figure 6.15 shows the mean reference F1 values 

plotted against the mean F2 values for each speaker. The axes have been oriented to 

align with the representation of the F1~F2 vowel space used in the rest of the thesis. To 

differentiate between the two sexes, the values for the male speakers are represented 

with a blue circle, and the female speakers are shown as red circles. 

 

Figure 6.15 Plot of the mean F1 reference value against the mean F2 reference 

value for each of the 186 speakers in the VTR database. Male speakers are shown 

as blue circles, female speakers are red circles. 

The plot shows the expected tendency for the mean F2 values to increase as the mean 

F1 values increase. The plot also shows that there is very limited overlap between the 

mean values for male and female speakers. However, there is a large degree of overlap 

between the sexes in terms of the individual vowel tokens. For F3, the mean values 
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ranged from 1,998 Hz to 2,703 Hz for the men and 2,369 Hz to 3,112 Hz for the 

women. 

To provide a further indication of the variability that exists within the reference 

formants across the speakers, the standard deviation values for all speakers were 

calculated. In general, male speakers exhibited lower mean formant values than the 

females, and showed smaller variability. The variability of the F3 values was smaller 

than for the F2 values. 

It should be noted that the mean values do not necessarily represent the mid-point of a 

speaker’s normal vowel space or a measure that is directly comparable across speakers, 

since the distribution of vowel tokens for each individual was not controlled for in the 

original TIMIT corpus or in the selection of speakers for the VTR database. 

6.3.4.3 Speakers’ Fundamental Frequency 

As well as differences in the region and range of the vowel space used by individual 

speakers, differences are also found in their fundamental frequencies.  The mean and 

standard deviation of fundamental frequency were calculated for each speaker within 

Praat using the autocorrelation method. The values were calculated across all the speech 

material for each speaker. Figure 6.16 shows the distribution of the measured mean 

fundamental frequency for each speaker in the form of a histogram with a bin width of 

10 Hz.  The results have been separated for the male and female speakers, with the blue 

bars showing the results for the male speakers and the red bars for the female speakers. 

The range and overall mean for each sex are what one would expect for normal male 

and female speakers of American English (Fitch and Holbrook 1970, Baken and 

Orlikoff 2000, p. 175-176 Table 6-2). There is some overlap in the distributions 

between 150 and 180 Hz. 
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Figure 6.16 Histogram showing the distribution of speakers’ mean fundamental 

frequency from the sentences used in the VTR database. Male speakers are blue 

and female speakers are red. 

6.3.4.4 Analysis of Speakers’ Results 

The following sections consider the results of the analysis framework already described 

in this chapter in terms of the performance of individual speakers. Section 6.3.4.5 

summarises the mean absolute errors for the speakers across the frameworks already 

used in this chapter. This is followed by Sections 6.3.4.6 to 6.3.4.11, which consider 

how these results vary for individual speakers both across and within the frameworks, 

and they examine the relationships between the errors and speaker properties, such as 

fundamental frequency and location within the vowel space. Finally, Sections 6.3.4.12 

to 6.3.4.18 examine the behaviour of the LPC orders for speakers across the analysis 

frameworks. 

6.3.4.5 Analysis of Mean Speaker Errors Across Frameworks 

This first section summarises the performance or the magnitude of the errors for 

speakers across the different analysis frameworks. The first stage was to determine the 

mean absolute and mean absolute percentage errors for all three formants, across all the 

frames for each speaker. The mean, standard deviation, minimum and maximum values 

of the speakers’ mean absolute error were then calculated. These results are shown in 

Figure 6.17 for the mean absolute errors and Figure 6.18 for the mean absolute 

percentage errors. The plots are similar in form to Figure 6.4 and Figure 6.5, which are 
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used to summarise the overall performance across each of the analysis frameworks. 

Again, the same ordering of frameworks has been used and the circles represent the 

mean of the speaker means for each formant with the vertical bars extending one 

standard deviation above the mean. The minimum and maximum speaker mean values 

have also been included as upward and downward pointing triangles respectively, to 

show the range of speaker means encountered. 

 

Figure 6.17 Mean (circles), standard deviation (bar = 1 SD), minimum (upward 

triangles) and maximum (downward triangles) of individual speakers’ absolute 

mean error across analysis frameworks for F1 (red), F2 (green) and F3 (blue). 

(Key to conditions: Tkn = Token, F = Frame, Fix = Fixed, Var = Variable, Abs = 

Absolute Error Criterion, Per = Percentage Error Criterion). 
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Figure 6.18 Mean (circles), standard deviation (bar = 1 SD), minimum (upward 

triangles) and maximum (downward triangles) of individual speakers’ percentage 

absolute mean error across analysis frameworks for F1 (red), F2 (green) and F3 

(blue). (Key to conditions: Tkn = Token, F = Frame, Fix = Fixed, Var = Variable, 

Abs = Absolute Error Criterion, Per = Percentage Error Criterion). 

As expected, the means of the speaker means (both in numeric and percentage terms) 

are very close to the overall means from each of the frameworks. However, the standard 

deviations of the speaker means are much less than the overall standard deviations of 

the errors. The differences across the numeric and percentage representations are again 

present, namely that for the numeric values the F1 means and standard deviations are 

less than those for F2 and F3 whilst the reverse is true for the percentage error results. 

Across the frameworks, as the LPC order constraints become more restrictive, the 

magnitude of the mean speaker errors increases. 

6.3.4.6 Analysis of Mean Errors Within & Across Frameworks 

The previous section provides an overall summary of the individual speaker means and 

shows how they vary across the analysis frameworks, but it does not consider the 

behaviour of individual speakers. Figure 6.19 shows the mean absolute F1, F2 and F3 

errors in numeric terms for each speaker in the framework where the LPC order is fixed 

both within individual tokens and across formants, with the absolute minimum error 

criterion (sixth framework from the left in Figure 6.17 and Figure 6.18). The red, green 

and blue vertical bars represent the F1, F2 and F3 mean absolute error respectively for 
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each speaker. The speakers have been ordered according to increasing combined error, 

i.e. the sum of the mean error from F1, F2 and F3. 

 

Figure 6.19 Mean absolute errors for F1 (red), F2 (green) and F3 (blue) for 186 

speakers in the VTR database from the analysis framework where the LPC order 

is fixed both within individual tokens and across formants, with the absolute 

minimum error criterion. 

The plot shows the range of combined errors extends from just less than 200 Hz for the 

speaker on the far left to just over 500 Hz for the speaker on the far right. In general, the 

errors for F1, represented by the red bars, are less than those for F2 and F3, represented 

by the green and blue bars, which overall are roughly equal. One obvious feature of the 

plot is that the errors for the individual formants do not appear to increase 

proportionally as the combined error increases. This feature is examined in more detail 

below. 

Figure 6.19 only concerns the results from one framework. Examination of the same 

type of plot for the results from the other frameworks reveals the same lack of 

proportionality between the individual mean formant errors as the combined error 

increases. The only difference of note across the frameworks is the range and magnitude 

of the errors, which are represented in Figure 6.17 and Figure 6.18. 

Comparison of the plots with those generated from the mean absolute percentage errors 

shows the same overall structure with a non-proportional increase in the errors for the 
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three formants. The only significant difference across the two sets of plots is that the F1 

errors are larger than the errors from F2 and F3 in the percentage error plots, whilst the 

opposite is true in the numeric error plots. This is to be expected given the differences 

seen in the summary plots at Figure 6.17 and Figure 6.18. 

6.3.4.7 Relationship Across Formants 

The apparent lack of proportionality between the errors from the three formants for the 

individual speakers suggests that there is not an obvious relationship between them. In 

order to comment further on this, scatter plots of the mean speaker errors for F1 against 

F2, F1 against F3 and F2 against F3 for all the frameworks were generated. Examples 

are shown in Figure 6.20 to Figure 6.22 for the mean values presented in Figure 6.19. 

 

Figure 6.20 Scatter plot of mean absolute F1 error vs mean absolute F2 error for 

186 VTR database speakers from the analysis framework where LPC order is 

fixed within the token and across formants, with the absolute error criterion. 
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Figure 6.21 Scatter plot of mean absolute F1 error vs mean absolute F3 error for 

186 VTR database speakers from the analysis framework where LPC order is 

fixed within the token and across formants, with the absolute error criterion. 
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Figure 6.22 Scatter plot of mean absolute F2 error vs mean absolute F3 error for 

186 VTR database speakers from the analysis framework where LPC order is 

fixed within the token and across formants, with the absolute error criterion. 

The scatter plots of the speaker means for F1 vs F2 and F1 vs F3 show no apparent 

trends in the data. However, the scatter plot for F2 vs F3 does show a positive linear 

tendency with the data points lying in a general diagonal orientation from the bottom 

left to the top right of the plot. However, they are not tightly grouped. Similar patterning 

is seen across the scatter plots for the other analysis frameworks for both the numeric 

and percentage representations of the speakers’ mean errors. Overall, these results 

suggest that there is no apparent relationship between the mean absolute errors of F1 

and F2, and between F1 and F3, but that a slight dependence exists between F2 and F3. 

To allow a numeric assessment and comparison of the cross formant relationships, 

Pearson’s correlation coefficients were calculated for the three formant comparisons 

across the frameworks. The correlation coefficients support the observation that the 

relationship between F2 and F3 is stronger than that for both F1 and F2, and F1 and F3. 

Whilst the majority of the coefficients were significant, they nevertheless showed that 

the relationships between the formants are reasonably weak. This is apparent from the 

degree of dispersion in the scatter plots. 
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6.3.4.8 Relationship Across Frameworks 

It is clear from the results presented in the sections above that for all of the analysis 

frameworks the performance of individual speakers occurs over a range. What is not 

apparent from those results is whether the speakers who achieve a high performance for 

one analysis framework also do so for the other frameworks, or whether speakers that 

perform well in one framework perform poorly in others. The results presented below 

address this issue. 

The first approach taken was to generate a series of scatter plots, examining the 

relationships between the speaker means for each formant across the different analysis 

frameworks. Again, this was done for both the numeric and percentage representations 

of the mean absolute error values for each speaker. As well as considering the 

individual formants, plots were also generated for the combined means across the three 

formants. Two example scatter plots are shown in Figure 6.23 and Figure 6.24. The first 

shows F1 errors for the framework with LPC order fixed across individual tokens and 

formants with the absolute minimum error criterion plotted against F1 errors from the 

benchmark condition. The second shows F3 errors for the same framework in the first 

plot against the F3 errors from the framework with LPC order fixed across individual 

tokens but variable across formants with the absolute minimum error criterion. 
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Figure 6.23 Scatter plot of mean absolute F1 error from analysis framework where 

LPC order is fixed within the token and across formants, with the absolute error 

criterion vs mean absolute F1 error from the benchmark framework for 186 VTR 

database speakers. 
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Figure 6.24 Scatter plot of mean absolute F3 error from analysis framework where 

LPC order is fixed within the token and across formants, with the absolute error 

criterion vs mean absolute F3 error from the analysis framework where LPC 

order is fixed within the token and variable across formants, with the absolute 

error criterion for 186 VTR database speakers. 

Figure 6.23 shows a relatively strong correlation between the two sets of speakers’ 

mean absolute errors, whilst Figure 6.24 shows an even stronger correlation. Pearson’s r 

correlation coefficients for the data in the two plots are 0.8542 and 0.9877 respectively. 

Correlations of the strength seen in these two plots were found across the entire set of 

plots generated. Overall they show much tighter groupings that those seen above for the 

comparison of speakers’ mean absolute errors across formants. Correlation coefficients 

were also calculated for all combinations and they were all significant at the .01 level 

(two tailed). The correlation coefficients for the percentage means tended to be even 

higher. 

These results show that for the errors from both the individual formants and all three 

formants combined, the change in performance across frameworks is relatively 

consistent within the group of speakers. Even though the magnitude of the errors is 

different across frameworks, speakers that perform well in one, relative to the rest of the 

group, perform well in the others, and those that perform badly, relative to the other 

speakers, do so across all the frameworks. This suggests that there is some feature or 
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features of the speaker that influences or determines the level of performance achieved. 

A number of the speakers’ attributes were compared with the error results to determine 

if they were related to the performance of the speakers. The results from these 

comparisons are presented below. 

6.3.4.9 Performance of Male & Female Speakers 

The first factor considered was the sex of the speakers, and whether it was related to 

performance. In terms of the mean absolute errors presented in Table 6.1 and Table 6.3, 

the errors represented numerically were greater for female speakers than male speakers, 

whilst the sexes were reversed for the percentage errors as a consequence of female 

speakers having, on average, higher formant values. In order to examine the relationship 

between speaker sex and performance, the speakers were ranked according to the mean 

combined error across the three formants for each of the nine frameworks. The speaker 

with rank number 1 had the smallest mean combined error and the speaker with rank 

number 186 had the largest mean combined error. The average rank position for each 

speaker across the frameworks was then calculated. This was done for both the numeric 

and percentage representations of the mean. Since the results in the previous section 

showed that within the group each speaker had a similar relative performance across the 

frameworks, the approach of averaging the rank positions across the frameworks was 

justified. 

To determine the distribution of the two sexes within the ranked speakers, histograms 

were generated for both sets of rankings from the numeric and percentage errors. These 

are shown in Figure 6.25 for the rankings derived from the absolute numeric errors, and 

in Figure 6.26 for the rankings from the percentage errors across the analysis 

frameworks. In both plots, the number of male speakers is represented by the blue bars, 

and the female speakers are represented by the red bars. The bin width for the 

histograms is 12. When interpreting these plots it should be remembered that out of the 

186 speakers only 73 are female and 113 are male.  
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Figure 6.25 Distribution of speaker sex (male = blue, female = red) by mean rank 

position based on mean combined errors across frameworks, grouped in 12 

speaker blocks.   
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Figure 6.26 Distribution of speaker sex (male = blue, female = red) by mean rank 

position based on mean combined percentage errors across frameworks, grouped 

in 12 speaker blocks. 

In Figure 6.25 the distribution of male and female speakers according to their ranking 

from the numerically expressed errors does not show any particular patterning in 

comparison to Figure 6.26 where the number of female speakers per interval decreases 

in a relatively systematic way as the number of male speakers increases across the 

ranks. In the case of the numeric errors the number of female speakers per interval 

varies across the intervals but shows no particular patterning across the range, apart 

from the final complete interval where all the speakers, except for one, are female. 

However, the speaker with the lowest average rank position, i.e. the best performing 

speaker, was a woman, speaker ‘fjen0’. Of the female speakers in the first interval, they 

occupied positions 1, 3 and 7. At the other end of the performance range female 

speakers also occupied the worst 16 positions. The histogram derived from the 

percentage results shows that expressing performance in this way does reveal an overall 

tendency between the performance of the speakers and the sex of the speakers. 

However, there is still significant overlap between the sexes. 



218 

6.3.4.10 Fundamental Frequency 

The next factor considered that might be related to performance was fundamental 

frequency. The mean fundamental frequency values for the speakers presented in 

Section 6.3.4.3 fall into two relatively distinct sex groups, with minimal overlap. The 

results in the section above show that both sexes display a wide range of performance in 

terms of mean absolute error which are almost in complete overlap. Given the two 

different groupings of the sexes across fundamental frequency and performance, it 

seems unlikely that any strong relationship will exist between a speaker’s fundamental 

frequency and their performance. To confirm whether or not this was true, two scatter 

plots were generated for the fundamental frequency against mean rank position across 

frameworks, derived from numeric mean formant errors, and against mean rank position 

derived from the percentage errors. The first of these two scatter plots is shown in 

Figure 6.27. Again, male and female speakers have been distinguished by the colour of 

the data points. 

 

Figure 6.27 Scatter plot of speakers’ mean fundamental frequency against mean 

rank position across frameworks derived from numeric errors. Male speaker are 

blue, female speaker as red. 

Figure 6.27 shows the separation between the male and female speakers in terms of 

their mean fundamental frequencies, with the female speakers occupying the right hand 
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side of the plot and the male speakers on the left. However, as observed above, there is 

no such separation in terms of the performance. Overall, this leads to a dispersed set of 

data points. Had a strong relationship existed between fundamental frequency and 

performance a tighter grouping of the data points would be expected. Even within the 

sexes there is no apparent dependency no fundamental frequency. The scatter plot 

derived from the percentage data had a very similar overall structure to Figure 6.27 and 

revealed no apparent relationship between the measures. 

Pearson’s correlation coefficients were also calculated for the mean rank positions 

derived from both the numeric and percentage against fundamental frequency for the 

group as a whole and for the two sexes. The coefficients are shown in Table 6.16. Those 

correlation coefficients that are significant at the 0.01 level (two tailed) are marked with 

a double asterisk, whilst those that are significant at the 0.05 level (two tailed) are 

marked with a single asterisk. 

Performance All n = 186 Male n = 113 Female n = 73 

Numeric 0.2718** 0.1786* 0.0616 

Percentage -0.3282** 0.0812 0.0214 

Table 6.16 Pearson’s correlation coefficients for comparison of mean speaker rank 

across frameworks determined from performance expressed numerically and in 

percentage terms with mean speaker fundamental frequency. ** = significant at 

0.01 level (two tailed), * = significant at 0.05 level (two tailed). 

The weak correlation coefficients confirm the absence of a strong linear relationship 

between fundamental frequency and performance. The difference in direction of the 

correlation between the mean rank positions derived from numeric and percentage error 

values aligns with the findings from the previous section whereby the distribution of the 

sexes was different across the two performance measures. The differences in magnitude 

of the correlation coefficients between the individual sexes and the entire set of speakers 

suggests that the correlation seen for the group is a consequence of combining the two 

sexes rather than it being an extension of a relationship that exists within the individual 

sexes. 

A number of scatter plots were also generated to compare the mean absolute errors for 

individual speakers for different frameworks with their mean fundamental frequency 

values. They were created to check that the process of determining the mean rank 

position across frameworks had not weakened or obscured any relationships that may 

have been apparent for individual formants for specific frameworks. The plots revealed 
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very similar results to those seen for the mean rank based plots, which could be 

considered as a validation of the selection of the mean ranks as a representative 

performance measure. 

6.3.4.11 Location Within Vowel Space 

Another factor that was considered to be potentially related to the performance of 

speakers was their location within the vowel space. The results in section 6.3.3 show 

that the localised mean errors from the entire data set exhibit various trends and 

tendencies over the vowel space. To discover if any relationships existed between the 

performance of speakers and their location within the vowel space the mean rank 

positions of the speakers were compared with their mean reference formant values. The 

mean reference formant values are presented in Section 6.3.4.2 and show that there are 

differences across the sexes. Again, as with fundamental frequency, the values tend to 

fall into one of two groups according to the speaker’s sex. However, the amount of 

overlap is greater for the formants than for fundamental frequency. Given this similar 

behaviour it is again expected that there will be no strong relationship between the 

performance, expressed as mean rank position, and the location of the speaker within 

the vowel space. 

Scatter plots were produced to show the mean rank position against mean reference 

formant values and the results from each sex were colour coded. The plots again 

showed the clear grouping of data points from the two sexes across the reference 

formant values, with the female speakers generally having higher values than the male 

speakers. However, in terms of the performance, the plots showed no strong 

relationships between the two parameters with a large degree of dispersion in the data 

points similar to that seen for the fundamental frequency plots above. In order to assess 

whether any underlying tendencies were present the Pearson correlation coefficients 

were calculated. These are shown in Table 6.17. Correlation coefficients are marked 

with a double asterisk if they are significant at the 0.01 level (two tailed) and those that 

are significant at the 0.05 level (two tailed) are marked with a single asterisk. 
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Performance Formant All n = 186 Male n = 113 Female n = 73 

Numeric 

F1 0.0704 -0.2409* -0.1543 

F2 0.2853** 0.1377 0.1711 

F3 0.3008** 0.2374* 0.1123 

Percentage 

F1 -0.5794** -0.5724** -0.3494** 

F2 -0.3497** -0.1355* -0.0172 

F3 -0.3478** -0.0204 -0.1211 

Table 6.17 Pearson’s correlation coefficients between mean rank position 

determined both numerically and in percentages terms, and mean reference 

formant values for each formant. ** = significant at 0.01 level (two tailed), * = 

significant at 0.05 level (two tailed). 

On the whole, the correlation coefficients show a weak relationship between the 

performance of the speakers, expressed as mean rank position, and mean reference 

formant values. For the mean rank positions derived from the numeric errors there is a 

slight tendency for the lower performers to have higher reference formants, at least for 

F2 and F3. For the rank positions derived from the percentage errors the tendency is 

reversed and the effect is strongest for F1. Even though some of the results for the sexes 

are significant, the coefficients only indicate a weak relationship between the 

parameters. 

6.3.4.12 LPC Order Variation Across Speakers 

This final section of the analysis considers the usage of LPC orders by the speakers 

across the analysis frameworks and whether this is related to factors previously 

examined, such as the speaker’s sex, mean fundamental frequency and location within 

the vowel space. Such information could prove useful in helping to determine suitable 

LPC orders for speaker based on these attributes. The results presented in Sections 

6.3.3.2 to 6.3.3.6 for the entire set of results shows that there is a range of different 

behaviours for the LPC orders for different analysis frameworks and across the three 

formants. The analysis of the behaviour across the speakers begins by considering the 

LPC orders used by speakers within the different analysis frameworks. 

6.3.4.13 LPC Use Within Frameworks by Speakers 

To summarise the use of LPC orders by speakers, the median, minimum and maximum 

LPC orders were determined across all of the analysis frames for each speaker for each 

analysis framework. As noted in Section 6.3.2, for every analysis frame in each of the 

analysis frameworks, the LPC order that resulted in the minimum error for each formant 

was recorded. It is these values that were used to determine the summary measures of 

LPC order for each speaker. For the analysis frameworks where the LPC order was 
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permitted to be different across the three formants, the summary values were calculated 

separately for each formant. For the frameworks were the LPC order was fixed across 

the formants only a single set of summary values was calculated. The frameworks 

where the LPC order was fixed across all tokens for all speakers have not been 

considered in this part of the analysis. 

The summary statistics for each speaker were displayed on a series of plots, with one 

plot per framework where the LPC order was fixed across formants, and one plot per 

formant per framework where the LPC order was variable across formants. In each plot 

the speakers were ordered according to increasing median LPC order and range. An 

example plot for the condition where the LPC order is fixed within tokens and across 

formants with the absolute error criterion is shown in Figure 6.28. 

 

Figure 6.28 Plot of median LPC order (thick horizontal line) and range (thin 

vertical line) for all speakers ordered by increasing median value and range. The 

results originate from the framework where LPC order is fixed within tokens and 

across formants, with the absolute error criterion. 

In Figure 6.28, the range of median LPC orders is from 10 to 13. Overall, the lowest 

LPC order encountered across the speakers was 8 whilst the highest was 17. The 

smallest range displayed by one speaker is 2, whilst at the other extreme one speaker 

has a range of 7. In addition to the plots, the same summary data was calculated for each 

analysis framework. For the frameworks where the LPC order could vary across the 



223 

formants, the typical median LPC orders decreased from F1 to F3, as did the range of 

the medians. This is the same as the overall results for the entire set of results presented 

in Section 6.3.2. Also, the typical range of LPC orders encountered decreases from F1 

to F3. Comparison of the benchmark framework with the frameworks with LPC order 

fixed just within tokens reveals a reduced range of LPC orders. 

The frameworks where the LPC order was restricted across the formants show a much 

reduced range of median LPC orders. Where the LPC orders are variable within a token 

the range of LPC orders is greater than where the LPC order is fixed within the tokens. 

Overall, as the LPC order becomes more restricted across the frameworks, the range of 

LPC orders used by the individual speakers is reduced. However, even within the most 

restrictive framework, it is apparent that different speakers are using different ranges of 

LPC orders. 

6.3.4.14 LPC Variation Across Formants in Frameworks 

For three of the frameworks the LPC order is permitted to vary independently for each 

formant. To find out whether or not there was a linear relationship across the three 

formants in terms of the mean LPC order used by each speaker, scatter plots of the 

median LPC orders for F1 vs F2, F1 vs F3 and F2 vs F3 were generated for each 

framework. Within each of the plots a general positive tendency was apparent for each 

formant pairing but the data points were relatively dispersed. The relationships were not 

as strong as those described in the following section for the cross framework 

comparisons. However, they were somewhat stronger than the relationships seen across 

the formants in terms of the magnitude of the errors, discussed in Section 6.3.4.7. 

6.3.4.15 LPC Use Across Frameworks 

Comparison of the median LPC orders for speakers across the analysis frameworks 

provides an indication of how stable the speakers’ use of LPC orders is across the 

frameworks. Again, this was done by examining scatter plots of the median LPC orders 

across the frameworks. For the frameworks where the LPC order is fixed across the 

formants, all the cross framework comparisons showed a very strong degree of linear 

dependence. When these frameworks were compared with the frameworks where LPC 

order could vary across the formants, the strongest relationship was with the median 

LPC orders obtained for the F3 measurements. The relationship for F2 was slightly less 
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strong, and even less so for F1. These results suggest that when the LPC order is fixed 

across formants the behaviour of the LPC orders for individual speakers is most similar 

to that for F3 when the LPC order is not restricted. 

Comparisons of the LPC orders for formants across frameworks showed that for 

individual formants, the usage of LPC orders by individual speakers is very similar 

across frameworks. 

6.3.4.16 LPC Use Compared With Sex 

Having previously considered whether the mean errors for speakers are associated with 

various attributes of the speakers, such as sex, mean fundamental frequency and 

location within the vowel space, these parameters are now examined against the median 

LPC order usage for speakers. As stated above, if strong relationships could be shown 

then they could be used to help determine suitable LPC orders for speakers. 

In order to consider the sex of the speaker against the median LPC order usage the same 

approach of determining the rank order of the speakers was used, but on this occasion it 

was derived from the median LPC order rather than the mean speaker error. Histograms 

were again generated showing the number of speakers of each sex within the bins. For 

all frameworks a clear pattern emerged where the tendency was for the female speakers 

to use lower LPC orders whilst the male speakers used higher LPC orders. The 

patterning seen was very similar to that shown in Figure 6.26 for the distribution of the 

sexes across mean percentage speaker error. As observed in the plot there was a large 

degree of overlap between the sexes across the LPC orders but the gradual transition 

across the speakers was evident for all frameworks. The same pattern was also observed 

for the frameworks where LPC order was not restricted across the formants and median 

LPC orders had been calculated for the three individual formants. 

6.3.4.17 LPC Use Compared With Fundamental Frequency 

Scatter plots were generated to compare the median LPC order for each speaker against 

their mean fundamental frequency for all of the frameworks. The data points in the plots 

were again colour coded to allow the male and female speakers to be easily identified. 

The separation of the two sexes was clearly evident in the fundamental frequency 

direction as already noted above when considering the mean errors. Across the 

frameworks a weak tendency was apparent in the data with speakers with a lower mean 
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fundamental frequency tending towards having higher LPC orders and speakers with 

higher fundamental frequencies tending towards lower LPC orders. However, this 

relationship was only moderate. 

The patterning within the data is clearly linked to the fact that male speakers tend to 

have a lower mean fundamental frequency than female speakers. Since the results from 

the previous section showed that male speakers tended toward higher LPC orders it is 

no surprise that a similar pattern is seen again when fundamental frequency is compared 

with mean LPC order. 

6.3.4.18 LPC Use Compared With Vowel Space Usage 

The final section of data analysis considers the relationship between the location of 

speakers within the vowel space and their usage of LPC orders. Again, the location of 

speakers within the vowel space was represented by the mean of the reference values 

from the VTR database. A series of scatter plots were generated to compare each of the 

three formants with the median LPC orders used by each of the speakers for each of the 

analysis frameworks. For the frameworks where the LPC order was constrained across 

the three formants, the same median LPC order was plotted against the mean reference 

values for each formant. For the frameworks where the LPC could vary across the 

formants the median LPC order for each formant was only compared with the 

corresponding mean reference values. In all of the plots the sex of the speakers was 

identified by different coloured data points. 

All of the scatter plots showed a moderate negative linear tendency, with some variation 

across the formants and frameworks, i.e. the higher median LPC orders were generally 

associated with lower mean reference formants, whilst the lower median LPC orders 

were located with the higher mean reference formants. The patterning was somewhat 

more apparent than for the comparison of mean fundamental frequency described in the 

previous section.  Again, the two sexes formed two relatively distinct groupings in the 

plots with the male speakers generally having lower mean reference formant values than 

the females. 

6.4 Summary 

The methodology employed in this chapter involved comparing formant measurements 

made using Praat’s LPC tool across a range of LPC orders for a subset of the TIMIT 
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speech corpus with a set of reference formant values (Deng et al 2006). The reference 

values allow the accuracy of the measurements to be determined. The experiments 

undertaken were focused on the second and third research questions: 

RQ 2. How does altering the LPC analysis parameters affect formant 

measurement accuracy? 

RQ 3. To what extent does the accuracy of LPC formant measurements vary 

across speakers? 

Using the reference formant values from the VTR database allowed the performance of 

a large number of speakers to be assessed, which provided answers to RQ3. By 

considering this performance over a range of LPC orders and applying different analysis 

frameworks that replicate the decision analysts might make when measuring formants, 

the findings also addressed RQ2. 

The key outcomes can be summarised as follows: 

 Overall, the measurements that were obtained when the LPC order was constant 

across all speakers and analysis frames revealed the same behaviour as seen for 

the synthetic speech but the errors were larger. 

 Allowing the LPC order to vary across the formants and analysis frames via the 

application of different analysis frameworks showed a clear reduction in the 

magnitude of the errors. The greater the restriction on the variation of the LPC 

order, the smaller the increase in performance. Keeping the LPC order the same 

across the three formants within a token resulted in worse performance than if it 

was restricted across the frames of a token. 

 The performance of individual speakers was shown to vary within the group, 

and their relative performance was reasonably consistent across the frameworks. 

 No strong relationships were found between the performance of speakers and the 

parameters of speaker sex, fundamental frequency and their location within the 

vowel space. 

 Examination of the variation in LPC orders over the vowel space from the 

different analysis frameworks highlighted the tendency for different LPC orders 

to be used within different regions. Also, the patterning across the three 

formants was different. 
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 The LPC orders used by individual speakers for the analysis frameworks were 

shown to have different central tendencies and ranges across the speakers. 

 Comparison of the LPC orders used by speakers with the parameters of speaker 

sex, fundamental frequency and location within the vowel space showed 

relationships that were stronger than those found when compared with speaker 

performance. However, the correlations were only moderate and showed 

negative linear tendencies, i.e. higher LPC orders were more aligned with 

speakers with lower F0. 

These findings support the guidance provided in Section 4.5, that LPC order should be 

adjusted where necessary for each vowel token and formant, and again highlight the 

magnitude of the errors that can occur if inappropriate orders are used. Further guidance 

that is motivated by these findings is that LPC order should be tailored to individual 

speakers to obtain the most accurate measurements. Unfortunately, the speaker 

attributes of sex, mean fundamental frequency and vowel space position do not provide 

strong indicators for suitable LPC orders or likely performance. 
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Chapter 7 Performance of Formant Trackers 

7.1 Introduction 

The work presented in Chapter 6 examined the performance of Praat’s normal formant 

measuring tool when analysing real speech. As previously discussed, the measurements 

made by this tool are not subject to any formant tracking processes. To assess whether 

formant trackers produce more accurate measurements, and investigate the potential 

differences in performance between tools, the experiments reported in the current 

chapter consider formant measurements from the same speech material, made with three 

formant trackers. In doing so the findings address all three research questions: 

RQ 1. What influence does the LPC formant measuring tool have on the 

accuracy of formant measurements? 

RQ 2. How does altering the LPC analysis parameters affect formant 

measurement accuracy? 

RQ 3. To what extent does the accuracy of LPC formant measurements vary 

across speakers? 

The reference values from the VTR database are again used to assess the performance 

of the formant trackers and the results are examined in terms of their variation across 

the vowel space and across speakers. As well as making the measurements over a range 

of LPC orders, the influence on performance of other parameters relating to the tracking 

functions of the tools is considered. The results are also compared with those from other 

studies that have used the VTR database, which raises several methodological issues. 

The findings from this chapter build on those from the previous chapters concerning the 

speakers and the analysis parameters, and strengthen the conclusions drawn. They also 

highlight the differences in performance that can be expected between different 

measuring tools, and their influence on the behaviour of the measurements. The 

guidance derived from these results highlight further pitfalls when using formant 

trackers, but also suggest ways to further improve measurement accuracy. 

7.2 Formant Trackers 

Three LPC-based formant trackers were selected in order to examine the differences in 

performance across formant measuring tools. The first two trackers are those in the 
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Praat and Wavesurfer
6
 software. They were chosen because they are freely available to 

download from the internet and the software is widely used within the forensic speech 

science and phonetic communities. WaveSurfer was also chosen because it has been 

used to provide benchmark results in several other studies that have used the VTR 

database, for example, Mehta et al. (2012), Smit et al. (2012) and García Laínez et al. 

(2012). The third tracker has been developed by Dr Frantz Clermont (Clermont 1991, 

1992) and is known as the Iterative Cepstral Analysis by Synthesis (iCAbS) tracker. 

This tracker applies a novel approach to the formant tracking problem and whilst not 

currently freely available, variants of it have been used by the author, and others, in 

several research projects, for example, Clermont (1991), Clermont et al (2008) and 

French et al. (2012). 

The three trackers selected all follow a two stage measurement process. In summary, the 

first stage is an LPC analysis that produces a set of candidate formant values, whilst the 

second stage processes those candidates via a series of rules to arrive at the estimated 

formant values. Praat’s Burg tool, used in the previous chapters, does have this 

structure, but the rules that are applied to the candidate formant values are very limited. 

The rules are that candidates below 50 Hz and within the upper 50 Hz of the analysis 

bandwidth are rejected. For those that remain, the lowest candidate is designated as F1, 

the next lowest as F2 and so on. However, the term tracker is not applied to this method 

since the rules are very basic and no frame to frame information is used to arrive at the 

formant estimates. 

The following sections discuss the fundamental operating principles of the three chosen 

trackers, as well as the specific implementations employed in this study, together with 

the analysis settings used in the various test conditions. 

7.2.1 Praat Tracker 

7.2.1.1 Principles 

The tracker function within Praat extracts a specified number of formant tracks from a 

set of candidate values derived from an LPC analysis. This is done by considering all 

the possible combinations of the candidate values for each analysis frame and all of the 

possible tracks through them from one frame to the next. For each set of possible tracks, 

                                                
6 The formant tracking algorithm that is used in WaveSurfer is the same as that used in the Entropic ESPS 

X Waves software. 



231 

a series of values, known as costs, are calculated. These costs are based on how far each 

candidate formant deviates from a set of reference values, how wide the bandwidth of 

each formant is relative to its centre frequency, and how large the jump in frequency is 

between consecutive frames. The set of candidates that are chosen as the formant tracks 

are those that overall produce the smallest costs. This process favours candidate values 

that are closest to the specified reference values, have the smallest bandwidths and have 

the smallest jumps in frequency across frames. The calculation of the costs and the 

method of combining them are given in the Praat manual (Boersma, 2002). 

The function requires several parameters to be specified. The first of these is the number 

of tracks to extract. For the function to operate there must be at least this number of 

candidates in each frame. Reference formant values, from F1 to the number of formant 

tracks to be extracted, must also be provided. The default values suggested in Praat’s 

manual are for a neutral vowel derived from the odd harmonics of a lossless tube which 

is open at one end and has the length of a typical female vocal tract. The final three 

settings are the frequency cost, the bandwidth cost and the transition cost, which weight 

each of the calculated cost values described above. No parameters relating to the LPC 

analysis are specified for the tracker function since it can only be applied to candidate 

formant values, not directly to a sound file. 

7.2.1.2 Implementation & Settings 

The formant tracker function within Praat, called by the command ‘Track…’, is distinct 

from the ‘Sound: To Formant (burg)…’ function previously used in this thesis. The 

‘Track…’ function only operates on formant objects within Praat, where formant 

objects are a data structure containing formant values obtained from applying a 

function, such as ‘Sound: To Formant (burg)…’, to a sound object. The candidate 

formants must already have been created before the tracker process can be run. 

Since the tracker function requires that formant measurements are made first, a 

modified version of the script file used in the previous chapter for Praat’s standard 

formant measuring tool (see Section 6.2.7) was used to both obtain the candidate 

formant measurements and perform the tracking. The script was altered to include the 

tracking command after the initial formant measurements were made. The settings used 

to obtain the initial candidate formant values were the same as those used in the 

previous chapter (see Sections 6.2.4 to 6.2.6). Again, the upper analysis frequency was 
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set at 5,000 Hz for the male speakers and 5,500 Hz for the female speakers. The only 

formant measurement parameter that was varied was the LPC order. 

To investigate the effect of altering some of the formant tracking parameters, three 

different sets of measurements were made, each with different combinations of analysis 

settings. For all three, the tracker settings of ‘Frequency cost’, ‘Bandwidth cost’ and 

‘Transition cost’ retained their default values of 1. Whilst it would be interesting to 

explore the effects of altering these parameters, such work is outside the scope of this 

study. 

For the first two sets of measurements the reference formant values were kept at the 

values that represent a typical neutral vowel, i.e. 500 Hz, 1,500 Hz, 2,500 Hz and 3,500 

Hz for F1 to F4 for the male speakers and 550 Hz, 1,650 Hz, 2,750 Hz and 2,850 Hz for 

F1 to F4 for the female speakers. The first series of tests, named the ‘Default’ condition, 

were run with the ‘Number of tracks’ at the default value of 3, with the LPC order 

varying from 6 to 20.  

The second series, referred to as the ‘4 formant’ condition, was made with the ‘Number 

of tracks’ set to 4 formants and the LPC order was varied from 8 to 20. This parameter 

was selected as a variable because whilst its function is obvious, and may well be 

changed by an analyst, its impact on the accuracy of the measurements does not appear 

to be documented. 

For the final set of measurements, referred to as the ‘Optimum’ condition, the ‘Number 

of tracks’ was set at 4 formants, with the LPC order varying from 8 to 20, and the 

reference formant values were altered to an ‘optimum’ set for every vowel token. The 

values used were the mean reference values for the specific token obtained from the 

VTR database, i.e. a value very close to the true value of the formant. This required the 

values from the VTR database to be read by the Praat script and passed to the tracker 

function for each vowel token. The reference values were chosen as a parameter to alter 

because again, the influence of varying them is not documented. The parameter is of 

interest because many speech corpora have time aligned segmental transcripts and such 

information could be used to select a set of relevant average reference values for each 

token based on the category of the transcribed vowel. The reference values from the 

VTR database were used in this instance, rather than average values for each vowel 

category, so that the approach could be tested using what are effectively the best 
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possible reference values. A similar approach of specifying reference values on a token 

by token basis could also be adopted by analysts making formant measurements 

interactively. 

A summary of the analysis settings used for the three conditions is shown in Table 7.1. 

No Condition 

Name 

LPC 

Range 

Number of 

Formants 

Reference 

Formant Values 

1 Default 6 to 20 3 Default 

2 4 formants 8 to 20 4 Default  

3 Optimum 8 to 20 4 Optimum from 

VTR database 

Table 7.1 Analysis parameters used for the three conditions used to measure 

formants in the VTR database with the Praat tracker. 

One significant difference between the analysis approach used for the Praat tracker and 

that used in the previous chapter concerns how the measurements were made in the 

sound file. For the previous chapter, formant measurements were made across the 

entirety of each file. This was done to simplify the analysis procedure within Praat since 

the measurements from individual frames were not influenced by those surrounding 

them. The determination of which frames corresponded to vowels was undertaken at a 

later stage when the formant measurements were analysed within Matlab. However, this 

approach is not necessarily desirable when using the formant tracker since the transition 

cost element means that the selection of candidate formant values is influenced by those 

surrounding them. As the effect of including non-vocalic segments within the 

measurement process was not known, and the Praat manual suggests that the function 

should only be applied to vowels (Boersma, 2002), it was decided to restrict the 

measuring of the formants to the vocalic sections only. Also, the Optimum condition 

could not be tested if measurements were made across the entirety of the file. However, 

this issue was examined for WaveSurfer (see Section 7.2.2.2).  

The vocalic sections of the sound files that were subject to analysis were determined 

from the phonetic transcripts that accompany the TIMIT sound files. The timings for the 

analysis frames were selected so that they aligned with those made in the previous 

chapter. This also ensured that the alignment of the measurements with the VTR 

reference values remained constant within sound files. However, the overall alignment 

of the measurements from the three trackers with the VTR reference values was 

different from the previous chapter. This is discussed in Section 7.3.1. 
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7.2.2 WaveSurfer 

7.2.2.1 Principles 

The formant tracker within WaveSurfer follows the same basic approach as Praat’s 

tracker in order to arrive at the formant estimates, i.e. it selects the formant candidates 

that produce the minimum cost values associated with the formant frequency, formant 

bandwidth and frame to fame differences (Talkin, 1987). However, at a practical level, 

the function combines both the LPC analysis that produces the candidate values, and the 

tracking process. Therefore, a number of parameters for the LPC analysis must be 

specified. The parameters and the values used for them in this study are described in 

Section 7.2.2.2. Unlike Praat, only one parameter relating to the tracking element of the 

function can be specified in WaveSurfer. That parameter is the nominal or reference 

value for the first formant. Rather than being able to specify the reference values for 

each formant, WaveSurfer calculates the reference values for the higher formants based 

on the value given for F1. There is no option to modify the behaviour or weighting of 

the other elements involved in the tracking process. These are fixed within the software. 

7.2.2.2 Implementation & Settings 

The WaveSurfer software package itself is not scriptable. However, WaveSurfer is built 

on a set of functions which are known as the Snack Sound Toolkit
7
 (Sjölander, 1997). 

These functions can be utilised from within programming languages such as Tcl/Tk or 

Python. For this study the Tcl/Tk language was chosen as this had been used for the 

author’s Masters research (Harrison, 2004) discussed in Chapter 3. The script used in 

that study was modified for the current tests. The modified script follows the same basic 

procedure used for the Praat tracker script, i.e. it sequentially opens all of the sound files 

and for each one performs the formant analysis, and logs the formant measurements and 

the settings used to obtain them. The operation of the Snack script was checked to 

confirm that the measurements obtained in this way were identical to those made using 

the WaveSurfer software (version 1.8.8p3) with the same analysis settings. Identical 

results were obtained from the Snack script and WaveSurfer when a number of files 

were compared
8
. To avoid confusion, the results in the following sections will be 

                                                
7 The specific version of the Snack toolkit used in this thesis was 2.2.10 which was part of the Tcl 

software. The Tcl software was Active State Tcl version 8.4.19.6295590 win32 ix86 threaded, released on 

8
th

 February 2012. 

 
8 The TIMIT audio files contain a 1024 byte header at the start of the file that needs to be ignored when 

opening them in WaveSurfer and with the Snack Toolkit. 
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attributed to WaveSurfer but Snack will continue to be discussed in this section in 

relation to the script and the implementation.  

A number of different analysis conditions, i.e. combinations of settings, were employed 

when measuring the formants in order to investigate the change in performance caused 

by altering them. For most of these conditions, the Snack script was configured to 

measure the formants across the entire sound file, rather than within vowel tokens. The 

frames that corresponded to vowels were determined later in the processing within 

Matlab when the measurement errors were calculated. The reason this approach was 

adopted was so that the results would be comparable with those from other studies 

discussed in Section 7.4, where WaveSurfer was tested using the VTR database. 

However, as discussed above for the Praat tracker, such an approach could have a 

detrimental effect on performance since the formants must also be tracked through non-

vocalic segments. In order to examine the effect of this approach on the measurements, 

one of the measurement conditions only measured the formants within the vowel tokens 

(see the Vowels condition below). For this condition, the same method described for the 

Praat tracker was used to determine the timings of the analysis frames. 

The six different analysis conditions for which formant measurements were made are 

summarised in Table 7.2. The sets of parameters were chosen to reflect WaveSurfer’s 

default settings (‘Default’), the equivalent configuration used for the Praat tracker 

(‘Vowels’), the setting used by García Laínez et al. (2012) (‘Hamming’) and two 

intermediate states (’25 ms’ and ’25 ms Hamming’). The final condition, ‘3 formants’, 

was chosen in order to investigate the effect of the ‘Number of Formants’ parameter. 

Snack imposes a condition on the LPC order so that it must be at least four more than 

twice the number of formants, i.e. for 4 formants the minimum LPC order is 12. So for 

all the conditions, apart from the ‘3 formants’, the range of LPC orders tested was 12 to 

20. 
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No Condition 

Name 

LPC Order 

Range 

Number 

of 

Formants 

Window 

Length 

(ms) 

Window 

Type 

Speech 

Analysed 

1 Default 12 to 20 4 49 Cos^4 All 

2 25 ms 12 to 20 4 25 Cos^4 All 

3 Hamming 12 to 20 4 49 Hamming All 

4 25 ms 

Hamming 

12 to 20 4 25 Hamming All 

5 Vowels 12 to 20 4 25 Hamming Vowels 

6 3 formants 10 to 20 3 49 Hamming All 

Table 7.2 Analysis parameters used for the six conditions used to measure 

formants in the VTR database with the Snack tracker. 

The remainder of the analysis parameters were given their default values across all of 

the conditions. The time step, or frame advance setting, was 0.01 seconds, so that it 

corresponded with the time difference of the measurements in the VTR database. 

Within WaveSurfer this parameter is referred to as ‘Frame interval’, but for the Snack 

command it is confusingly called ‘Frame length’. The LPC analysis type was set to 

autocorrelation, which is specified by a 0 both within the script and in WaveSurfer. The 

pre-emphasis factor was set at 0.7. The sampling rate, which determines the upper 

frequency limit of the signal when it is resampled before the LPC analysis, was set at 

10,000 Hz. The nominal value for the first formant frequency was kept at 500 Hz
9
. 

Unlike the Praat tracker, these two values were not adjusted according to the sex of the 

speaker. This was done to provide comparability with the WaveSurfer results reported 

in the other studies discussed below.  

7.2.3 iCAbS 

7.2.3.1 Principles 

The Iterative Cepstral Analysis by Synthesis (iCAbS) tracker is a development of the 

earlier Cepstral Analysis by Synthesis (CAbS) tracker (Clermont, 1991; 1992). Rather 

than using heuristic approaches to determine the candidate values most likely to be 

formants, such as those used by Praat and WaveSurfer, the CAbS tracker uses an 

objective measure derived from the speech signal. The tracker selects the candidate 

formants which produce the best alignment with the linear prediction cepstrum 

measured from the speech signal. For a given frame, synthetic cepstra are generated for 

all of the possible combinations of the candidate formants. Each synthesised cepstrum is 

compared with the measured cepstrum and the cepstral distance is calculated. The 

                                                
9 In WaveSurfer the default value for the nominal F1 frequency is -10 Hz. Tests were conducted in both 

Snack and WaveSurfer and they confirmed that identical measurements are produced when the setting is 

either -10 Hz or 500 Hz.   
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cepstral distance measure used is more sensitive to differences around spectral peaks 

(Yegnanarayana and Reddy, 1979) and allows the frequency range of the comparisons 

to be specified (Clermont and Mokhtari, 1994). It is also possible to apply a dynamic 

programming approach to minimise the cepstral distances across a number of frames. 

Previous work has shown that the settings chosen for the LPC order and the upper 

cepstral comparison frequency can markedly affect the reliability of the tracker 

(Clermont et al. 2007). Also, the optimum values for these parameters can vary across 

speakers and conditions. As a consequence of this the iterative version of the CAbS 

tracker was created, which automatically cycles through a specified range of LPC orders 

and upper cepstral comparison frequencies (Clermont et al. 2007). For each 

combination of the two parameters the CAbS tracker is applied and a set of tracked 

formants are produced. To determine which combination of parameters has produced 

the best formant tracks a continuity quality value is calculated, which is the average 

frame to frame difference for F1 to F3. The set of tracked formants with the minimum 

continuity quality value are presented as the final output values for the tracker. 

7.2.3.2 Implementation & Settings 

The implementation of the iCAbS tracker used in this chapter was coded by the author 

using a combination of the programming language Perl and the scripting capabilities 

within Praat. The tasks of opening the sound files, determining where the vowel tokens 

occurred and the logging of the formant values was undertaken by a Praat script that 

was essentially the same as the one used for the Praat tracker. In terms of the actual 

formant measuring, the ‘To LPC (autocorrelation)...’ function within Praat was used to 

obtain the initial LPC values which are then passed to a Perl script. The Perl script 

processes the LPC values to obtain the LP cepstrum from the signal as well as the 

candidate formant values by root solving. It is only necessary to generate the LPC 

coefficients for the highest LPC order being considered because the coefficients for the 

lower LPC orders are derived from the initial set (Clermont, 2011, personal 

communication). The remainder of the processing, including the determination of the 

combinations of candidate formants, the generation of the synthetic cepstra, the cepstral 

distance calculations and calculations of the continuity quality, is conducted by the Perl 

script. The final tracked formant values are passed from the Perl script back to the Praat 

script for logging. 
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The analysis parameters used by the LPC function were a window length of 25 ms, a 

time step (frame advance) of 10 ms and a pre-emphasis setting of 50 Hz, i.e. the same as 

those used previously for Praat’s Burg tool and the tracker. The iCAbS tracker uses the 

autocorrelation method within Praat for the LPC analysis, rather than the Burg method. 

Again, the maximum formant frequency setting, which determines the sample rate of 

the speech file before being subject to the LPC analysis, was set to 5,000 Hz and 5,500 

Hz for male and female speakers respectively. 

A total of six sets of analysis parameters were tested with the iCAbS tracker. The 

parameters that were varied were the LPC order range, the number of formants to be 

extracted and the upper cepstral comparison frequency range. The settings used for each 

of the six conditions are set out in Table 7.3. The settings were chosen to represent a 

number of combinations that could be adopted, including limiting the range of LPC 

orders to a single order, i.e. removing the iterative aspect for the LPC order. The step 

size for the upper cepstral comparison frequency was 250 Hz for all conditions.  

No. Condition 

Name 

LPC Order 

Range 

Number of 

Formants 

Upper Cepstral 

Comparison 

Frequency 

Range (Hz) 

1 Default 8 to 16 4 3,000 to 5,000 

2 3 formants 8 to 16 3 3,000 to 5,000 

3 LPC 8 to 14 8 to 14 4 3,000 to 5,000 

4 LPC 12 12 4 3,000 to 5,000 

5 LPC 16 16 4 3,000 to 5,000 

6 LPC 12, upper 

comp freq 4 

kHz 

12 4 3,000 to 4,000 

Table 7.3 Analysis parameters used for the six conditions used to measure 

formants in the VTR database with the iCAbS tracker. 

Like the Praat tracker, the iCAbS tracker was only used to measure formants within the 

vowel tokens, not across the entire sound files. The same process for determining their 

location was used. For each vowel token analysed the script also logged the LPC order 

and upper cepstral comparison frequency that the tracker had selected as providing the 

best formant values, as well as the continuity quality value for those formants. These 

results are examined in Section 7.3.2.3 as part of the analysis of the performance. The 

dynamic programming option of the CAbS tracker was not included in the current 

implementation of the iCAbS tracker. This was done to reduce the computational 

requirements and because the frame to frame continuity is already considered in the 
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continuity quality calculation used to determine the optimum LPC order and upper 

cepstral comparison frequency. 

7.3 Analysis of Measurement Errors 

The following sections examine the measurement errors from the three formant trackers 

with the analysis conditions described above. The first section discusses the alignment 

of the measurements both across the trackers and with the reference values from the 

VTR database, which is different from that in the previous chapter. This is followed by 

a brief re-examination of some of the measurements from the previous chapter with the 

new alignment. The next section examines the overall results from the three trackers for 

all of the tests undertaken. This is followed by a re-examination of a subset of the 

results from the Praat tracker and WaveSurfer to determine the minimum possible errors 

that can be achieved if the LPC order is permitted to vary across vowel tokens. The 

following section considers how the overall and minimum errors behave over the vowel 

space. The next section examines the results across the speakers. The final section 

considers how the results compare with those from other studies that have used the VTR 

database. 

7.3.1 Alignment of Measurements 

The remainder of this chapter concerns the analysis and comparison of the measurement 

errors from the three different formant trackers. To ensure that the results are 

comparable it was necessary to consider the alignment of the measurements across the 

trackers. This is discussed in Section 7.3.1.1. Related to this is the issue of the 

alignment of the measurements with the VTR reference values. This topic was revisited 

following the initial calculation of the measurement errors and the comparison of them 

with the results from other studies. This is discussed in Section 7.3.1.2. 

7.3.1.1 Alignment of Measurements Across Trackers 

In the case of the Praat and the iCAbS trackers, it was simple to confirm the alignment 

of the measurements, as both sets had been produced using very similar scripts and, 

more importantly, each measurement was assigned a timing within Praat that 

corresponded to the centre of the analysis frame. Comparison with the WaveSurfer 

results was less straightforward as neither WaveSurfer nor Snack assigns timings to the 

exported or logged measurements. But, information is provided in the Snack 

documentation which states, ‘the first row corresponds to a start time of half the 
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window length’ (Sjölander, 2004). This can be interpreted in two different ways; firstly, 

it could mean that the first analysis frame is left aligned with the start of the recording, 

so the timing of the first measurement is half the window length, or, secondly, it could 

mean that the start of the first analysis frame is located at a time which is half the 

window length, so the centre of the first analysis frame occurs at a time equivalent to a 

whole analysis frame. With the WaveSurfer default window length of 0.049 seconds the 

timing difference between the two interpretations is 0.0245 seconds, which, with a 

frame advance of 0.01 seconds, is almost two and a half frames different. Examination 

of a number of sound files and formant measurements at different frame lengths within 

WaveSurfer confirmed that the first interpretation was the correct one. This meant that 

for all three trackers the timings of the frames were the equivalent of having the first 

frame aligned with the start of the sound file. 

For the analysis conditions where the frame length was 25 ms, the alignment of the 

frames across the three trackers was identical. However, for the WaveSurfer conditions 

with a 49 ms frame length, the centres of the frames were offset by 2 ms from those 

with a 25 ms frame length. No attempt was made to compensate for this offset since 

WaveSurfer was tested with both frame lengths allowing the 25ms frame length results 

to be directly compared with the other trackers. 

7.3.1.2 Alignment of Measurements with VTR Reference Values 

Initially, the formant measurement errors were calculated using the same alignment with 

the VTR reference values described in the previous chapter. This was based on the 

assumption that the start of the first VTR analysis frame was aligned with the start of 

the sound file. However, comparison of the results obtained for WaveSurfer with those 

presented by Deng et al. (2006), the creators of the database, showed them to be 

somewhat different, especially for F2. Contact was again made with the authors of the 

database in order to discover if their methodology for obtaining the measurements from 

WaveSurfer was significantly different from that described above. It was confirmed that 

their analysis settings remained constant across all utterances, that the formants were 

tracked across entire files, that segments were determined according to the TIMIT 

segmentation information, and that the measurements were made with WaveSurfer 

rather than the Snack toolkit (Deng, 2013, Cui, 2013). 
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To further investigate the difference in performance, the measurement errors for 

WaveSurfer’s Default condition at LPC order 12 were re-calculated across a number of 

different alignments with the VTR reference values. The mean absolute error values for 

the three formants at the different alignments are shown in Figure 7.1. The offset values 

show the shift in the alignment of the VTR reference values relative to the WaveSurfer 

measurements. The 0 ms offset corresponds to the alignment used in the previous 

chapter. The negative offset values correspond to the VTR values shifted backwards in 

time relative to the WaveSurfer measurements, whilst the positive values are a forwards 

shift in relative time. 

 

Figure 7.1 Mean absolute error values from WaveSurfer’s Default condition at 

LPC order 12 across different time alignments with the VTR reference values for 

F1 (red), F2 (green) and F3 (blue).  

The plot clearly shows that the magnitude of the errors is dependent on the alignment of 

the measurements with the VTR reference values. The best performance is achieved 

with an offset of -20 ms. At this offset, the performance is better than that reported by 

Deng et al. (2006). 

Given these findings, it was decided to re-examine the alignment of the VTR reference 

values with the speech signal. This was done using WaveSurfer, which allows log files 
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from other sources to be loaded into the program and overlaid on spectrograms. It is 

also possible to easily adjust the offset or time alignment of the data points. Several 

TIMIT samples and their accompanying VTR reference values were loaded into 

WaveSurfer and the alignment of the VTR values was adjusted across a range of offsets. 

It became clear that the alignment applied in the previous chapter did not provide the 

best overall visual match. This was most apparent for diphthongs with large changes in 

F2. A range of negative offsets did result in better alignments but no objective visual 

criterion could be used to determine which one was the most appropriate. The offset 

value within WaveSurfer that was selected was -0.0165 seconds. If it is assumed that 

the frame length used to create the VTR values is 25 ms then this shift corresponds to a 

change in alignment of -29 ms relative to the alignment used in the previous chapter. 

This alignment was also selected since it resulted in the centre of the analysis frames 

being equidistance between the frames for the 49 ms and 25 ms frame length conditions 

for the trackers. 

7.3.1.3 Comparability with Results from Chapter 6 

The change in alignment from the previous chapter has an effect on the comparability of 

the earlier results with those presented below for the trackers. It is clear from Figure 7.1 

that varying the alignment alters the magnitude of the errors, with the greatest change 

occurring for F2. However, it is assumed that the overall tendencies and patterns seen 

within the results will not be significantly affected. This is because the bias within the 

results that is introduced by the misalignment is consistent through the entire set of 

results. This assumption is also supported by a comparison of the results presented 

below with the equivalent results calculated with the same alignment as the previous 

chapter. Arrangements of the error surfaces and the relative performance of the trackers 

both across trackers and across conditions for the same tracker were not markedly 

different. 

In order to allow a more direct comparison of the results from the trackers with those 

from Praat’s Burg tool, some of the Burg errors were recalculated with the new 

alignment. The mean absolute error and standard deviation values for LPC 10 across all 

vowel frames are shown in Table 7.4. 
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 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

76.25 16.93 % 86.91 5.65 % 123.34 5.01 % 95.50 9.20 % 

Standard 

Deviation (Hz) 

108.63 28.44 % 152.09 10.59 % 208.83 8.74 % 163.94 19.30 % 

Table 7.4 Mean absolute error and standard deviation from the Praat Burg tool at 

LPC order 10 for all vowel frames with modified VRT alignment. 

Comparison of these results with the equivalent values in Table 6.4 show that the 

performance measured as mean absolute error for F1 has actually decreased from 75.61 

Hz to 76.25 Hz, but has increased for F2 and F3 from 125.67 Hz to 86.91 Hz and from 

144.12 Hz to 123.34 Hz, respectively. Again, with the new alignment, the best 

performance for F1 was achieved at an LPC order of 15, resulting in a mean absolute 

error of 59.75 Hz. This compares with a mean absolute error of 63.68 Hz in Table 6.1. 

The error values were also recalculated at the new alignment for the minimum errors 

achieved using the ‘Tkn Fix, F Fix, Abs’ analysis framework. These are shown in Table 

7.5. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

71.55 15.67 % 70.10 4.53 % 87.90 3.56 % 76.52 7.92 % 

Standard 

Deviation (Hz) 

82.60 20.42 % 106.89 6.83 % 134.66 5.45 % 113.65 14.22 % 

Table 7.5 Mean absolute error and standard deviation from the Praat Burg tool 

for minimum errors (‘Tkn Fix, F Fix, Abs’ framework) for all vowel frames with 

modified VTR alignment. 

These results show a similar change in performance in comparison with the previous 

results in Table 6.13. Again, the performance for F1 is slightly worse (71.55 Hz vs 

70.84 Hz), with the greatest change being for F2 from 108.76 Hz to 70.10 Hz. The LPC 

orders that produced these results are very similar to those reported previously, with a 

median and mode LPC order of 11, an IQR of 1 and a range from 7 to 16. 

7.3.2 Overall Tracker Results 

The following sections present the overall results from each of the test conditions for 

the three trackers. For the Praat tracker and WaveSurfer results the errors are calculated 

at each LPC order. The calculation of the measurement errors followed the same 

process used in the previous chapter (see Section 6.2.7). The formant measurements 

were loaded in to Matlab, together with the VTR reference values, and the measurement 

errors were calculated. Even though many of the analysis conditions for the trackers 
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have the number of measured formants set to 4, the errors were only calculated and 

analysed for F1 to F3. 

The results in the following sections address the questions raised by RQ1 and RQ2 

concerning the variation in performance across software and across analysis parameters. 

7.3.2.1 Praat Tracker 

Like the analyses in the previous chapters, boxplots were generated to show the 

behaviour and distribution of the errors from all of the analysis frames at each LPC 

order. The configuration of the boxplots was the same as described previously (see 

Sections 4.4.2 and 6.3.1.1). The boxplots for the results for the Praat tracker for the 4 

formant condition are shown in Figure 7.2 to Figure 7.4. Also, mean absolute error 

values from all frames were calculated for each formant across the LPC orders. 

 

Figure 7.2 Boxplot of F1 measurement errors for all frames from Praat tracker, 4 

formant condition. 
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Figure 7.3 Boxplot of F2 measurement errors for all frames from Praat tracker, 4 

formant condition. 

 

Figure 7.4 Boxplot of F3 measurement errors for all frames from Praat tracker, 4 

formant condition. 
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The overall structure of the results in Figure 7.2 for the F1 errors is very similar to that 

in Figure 6.1 in the previous chapter for the F1 errors from the non-tracked Burg 

measurements. For both sets of results the minimum mean absolute error occurs at LPC 

order 15 and is 60.73 Hz for the tracker and 59.75 Hz for the recalculated Burg results 

at the new alignment. In contrast, comparison of the structure of the results for F2 and 

F3 in the figures above with those from the previous chapter reveals marked differences. 

For the tracker results the behaviour across the LPC orders for F2 and F3 is very much 

like that of F1. Unlike the non-tracked results, the errors for F2 and F3 do not change 

from a tendency of being overestimates to underestimates and continue to increase in 

magnitude as the LPC order increases. Rather, they remain positive across the LPC 

orders and are relatively stable. 

A consequence of this is that the mean absolute errors for F2 and F3 are also relatively 

stable across the higher LPC orders and show only a slight increase across the LPC 

orders. The reason for this difference in behaviour is that the second and third formants 

are not restricted to taking the values of the second and third candidate formants. As the 

LPC order increases the number of candidate formants within the analysis bandwidth 

increases and as extra poles appear, the frequency of the second and third candidates 

will reduce, which causes the effect seen in the results from Praat’s Burg tool. 

The numeric results for Praat’s 4 formant tracker condition are given in Table 7.6 for 

LPC order 11, which is the order at which the mean absolute error across the three 

formants is the minimum. Comparison of these values with those from the non-tracked 

condition at LPC order 10 (Table 7.4), which also produced the minimum combined 

mean absolute error, shows that whilst F1 and F2 performed better for the tracker, F3 

was worse. The difference in F3 means that the average performance across all three 

formants was worse for the tracker. The same is also true for the standard deviation 

results. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

74.06 16.29 % 83.75 5.75 % 144.95 6.55 % 100.92 9.53 % 

Standard 

Deviation (Hz) 

90.07 22.82 % 145.94 12.02 % 287.29 15.01 % 194.58 18.07 % 

Table 7.6 Mean absolute error and standard deviation for Praat Tracker 4 

formant condition at LPC order 11. 

Across the LPC orders the overall behaviour of the summary statistics for the Default 

and Optimum conditions are the same as those for the 4 formants condition. For the 
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three conditions the LPC order at which the best performance occurs, as determined by 

the minimum combined absolute mean error, is different. For the Default condition this 

is at LPC order 14, for the 4 formant condition it is at LPC order 11 and for the 

Optimum condition it is at LPC order 15. However, given the relative stability of the 

errors over the LPC orders the differences between the errors across the LPC orders 

within each of the conditions is relatively small. The statistical summaries for the 

Default and Optimum conditions at these LPC orders are given in Table 7.7 and Table 

7.8. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

61.75 13.37 % 102.42 7.29 % 178.75 8.39 % 114.31 9.68 % 

Standard 

Deviation (Hz) 

81.65 19.73 % 192.27 15.55 % 356.89 19.02 % 240.39 18.31 % 

Table 7.7 Mean absolute error and standard deviation for Praat Tracker Default 

(3 formants) condition at LPC order 14. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

60.93 13.01 % 74.89 4.96 % 90.66 3.69 % 75.49 7.22 % 

Standard 

Deviation (Hz) 

82.31 19.20 % 115.01 7.86 % 139.36 5.87 % 114.99 12.84 % 

Table 7.8 Mean absolute error and standard deviation for Praat Tracker 

Optimum condition at LPC order 15. 

Comparison of the results from the three analysis conditions reveals differences in 

performance across all three formants. Overall, the Default settings produce the worst 

performance, then the 4 formant condition, with the Optimum condition producing the 

best. Altering the reference values that the tracker uses on a token by token basis for the 

Optimum condition has markedly improved the performance compared with the other 

two conditions. The number of formants to be measured also has an influence on the 

results, with the default 3 formant condition producing better performance than the 4 

formant condition for F1 but a relatively worse performance for F2 and F3. Both these 

conditions also produced results that were worse than those using Praat’s standard 

formant measuring tool with the same LPC order of 10 across all the material. This 

result highlights the finding that using a tracker does not necessarily result in better 

performance. 

7.3.2.2 WaveSurfer 

Examination of the statistical summary results for the WaveSurfer test conditions across 

the LPC orders showed the same relative stability in the errors that were seen above for 
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the Praat tracker for the higher LPC orders. Again, a slight increase in the mean 

absolute errors occurs as the LPC order increases. The stability was even more apparent 

since the lower LPC orders, which tend to produce the largest errors, could not be tested 

using WaveSurfer due to the minimum permitted LPC order being 12 when extracting 4 

formants. The only unstable set of errors across the LPC orders was for F3 in the 3 

formants condition. At LPC order 10 the mean absolute error was 560.00 Hz. This 

reduced across the LPC orders to a still relatively large minimum value of 278.61 Hz at 

LPC order 20. However, the errors for F1 and F2 showed the same stability found 

across the other conditions. 

The summary statistical results at the LPC order that produced the best performance for 

each of the conditions are shown in Table 7.9 to Table 7.14. Again, the criterion for 

determining the best performance is the minimum mean absolute error across the three 

formants. Given the poor performance of F3 for the 3 formants condition, the results are 

shown for LPC order 12, which produced the best performance for F1 and F2. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

61.01 12.48 % 80.75 5.16 % 136.69 5.68 % 92.82 7.77 % 

Standard 

Deviation (Hz) 

86.57 18.71 % 156.97 9.32 % 267.03 11.61 % 186.85 13.88 % 

Table 7.9 Mean absolute error and standard deviation for WaveSurfer Default 

condition at LPC order 13. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

68.05 13.57 % 89.69 5.66 % 142.11 5.86 % 99.95 8.36 % 

Standard 

Deviation (Hz) 

98.41 20.62 % 181.03 10.41 % 268.98 11.65 
% 

196.83 14.96 % 

Table 7.10 Mean absolute error and standard deviation for WaveSurfer 25ms 

condition at LPC order 14. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

59.33 12.24 % 78.63 5.03 % 132.30 5.50 % 90.09 7.59 % 

Standard 

Deviation (Hz) 

81.40 17.79 % 151.23 8.93 % 262.83 11.41 % 182.31 13.35 % 

Table 7.11 Mean absolute error and standard deviation for WaveSurfer Hamming 

condition at LPC order 13. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

61.70 12.64 % 83.07 5.32 % 135.82 5.64 % 93.53 7.86 % 

Standard 

Deviation (Hz) 

86.92 18.83 % 158.22 9.45 % 262.84 11.40 % 185.13 13.92 % 

Table 7.12 Mean absolute error and standard deviation for WaveSurfer 25 ms 

Hamming condition at LPC order 13. 
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 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

60.33 12.48 % 79.77 5.18 % 143.81 6.08 % 94.64 7.91 % 

Standard 

Deviation (Hz) 

84.97 18.93 % 139.12 8.75 % 282.62 12.78 % 190.11 14.23 % 

Table 7.13 Mean absolute error and standard deviation for WaveSurfer Vowels 

condition at LPC order 12. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

58.18 12.12 % 85.21 5.70 % 403.02 17.43 % 182.14 11.75 % 

Standard 

Deviation (Hz) 

80.13 17.96 % 160.74 11.76 % 574.11 26.40 % 382.68 20.57 % 

Table 7.14 Mean absolute error and standard deviation for WaveSurfer 3 

formants condition at LPC order 12. 

For all of the conditions, apart from the 3 formants condition, the performance is very 

similar. Even for the 3 formants condition the results for F1 and F2 are comparable with 

the other conditions. Apart from the 3 formants condition, none of the others stand out 

as being dramatically better or worse than the others. However, the best overall 

performance is achieved by the Hamming condition. These results show that the 

analysis parameters that were modified only have a limited impact on the performance 

of WaveSurfer. 

Comparison of the WaveSurfer statistical summary results with those from the Praat 

tracker show them to generally be better than Praat’s Default and 4 formant conditions, 

but worse than the Optimum condition results. Comparison with Praat’s non-tracked 

Burg results at LPC order 10 shows that WaveSurfer consistently outperforms Praat in 

terms of F1 but the situation is reversed for F3, whilst for F2 they are similar. 

7.3.2.3 iCAbS 

For each of the iCAbS tracker analysis conditions only a single set of measurement 

errors were generated, unlike the Praat tracker and WaveSurfer, where a set of errors 

were generated across a number of LPC orders. This is because the optimum LPC order 

is automatically selected by the iCAbS tracker as part of the measurement process. The 

summary statistics for each of the analysis conditions are presented in Table 7.15 to 

Table 7.20. 
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 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

66.79 14.43 % 77.74 5.02 % 117.84 4.85 % 87.46 8.10 % 

Standard 

Deviation (Hz) 

88.40 21.21 % 134.06 8.34 % 229.18 9.98 % 162.30 15.02 % 

Table 7.15 Mean absolute error and standard deviation for iCAbS Default 

condition. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

78.09 17.27 % 112.20 7.61 % 360.91 15.44 % 183.73 13.44 % 

Standard 

Deviation (Hz) 

137.07 36.14 % 232.58 17.99 % 573.77 26.00 % 385.83 28.10 % 

Table 7.16 Mean absolute error and standard deviation for iCAbS 3 formants 

condition. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

69.09 15.06 % 76.41 4.96 % 118.87 4.93 % 88.12 8.32 % 

Standard 

Deviation (Hz) 

89.37 21.99 % 123.49 8.09 % 229.13 10.18 % 159.85 15.55 % 

Table 7.17 Mean absolute error and standard deviation for iCAbS LPC 8 to 14 

condition. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

68.99 15.20 % 77.28 5.00 % 116.82 4.80 % 87.70 8.33 % 

Standard 

Deviation (Hz) 

87.85 22.26 % 126.39 8.29 % 216.62 9.14 % 154.74 15.63 % 

Table 7.18 Mean absolute error and standard deviation for iCAbS LPC 12 

condition. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

61.50 12.78 % 89.17 5.66 % 123.06 4.96 % 91.24 7.80 % 

Standard 

Deviation (Hz) 

89.16 20.12 % 174.67 10.07 % 235.65 9.47 % 177.35 14.31 % 

Table 7.19 Mean absolute error and standard deviation for iCAbS LPC 16 

condition. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

60.11 12.63 % 207.42 11.65 % 254.48 9.43 % 174.00 11.24 % 

Standard 

Deviation (Hz) 

81.87 18.41 % 384.28 19.08 % 417.70 14.80 % 343.18 18.51 % 

Table 7.20 Mean absolute error and standard deviation for iCAbS LPC 12, upper 

comparison frequency 4 kHz condition. 

The results from the Default, LPC 8 to 14 and LPC 12 conditions are very similar, both 

overall and for each formant. Each of these conditions has the number of formants 

parameter at 4 and the range of the upper cepstral comparison frequency is from 3,000 

Hz to 5,000 Hz. The only parameter that is altered across these conditions is the range 

of the LPC orders that are used. These results show that for the iCAbS tracker, altering 

the range of the LPC orders and even restricting it to a single value, at least within a 
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sensible range, does not adversely affect the performance. The results for the LPC 16 

condition are not dramatically different from these three conditions and the F1 

performance is actually better, although for F2 and F3 it is worse. 

Reducing the number of formants setting to 3 produced a marked change in the 

performance, especially for F2 and F3. This was also seen in the results for the Praat 

tracker and WaveSurfer. For both WaveSurfer and the iCAbS tracker, reducing the 

number of formants extracted resulted in the overall mean absolute error doubling, with 

the greatest increase in the errors occurring for F3. For the iCAbS tracker the results for 

the LPC 12, 4 kHz upper comparison frequency condition also show a large deviation 

from the other sets of results. This condition resulted in a significant increase in the 

errors for both F2 and F3. 

The best four conditions for the iCAbS tracker produced results that are comparable in 

terms of their magnitude with those from WaveSurfer. They are better than the Default 

and 4 formant conditions for the Praat tracker, but Praat’s Optimum condition produced 

the best results of all the trackers. 

In addition to logging iCAbS’ measured formant values, a record was kept of the LPC 

orders, upper cepstral comparison frequencies and mean frame to frame distances that 

led to the selection of the tracked formants for each vowel token. Table 7.21 shows the 

median, mode and IQR of the LPC orders for the three conditions in which the LPC 

order was varied. 

Condition LPC Order 

Median 

LPC Order 

Mode 

LPC Order 

IQR 

Default 13 16 4 

3 formants 13 16 5 

LPC 8 to 14 12 14 3 

Table 7.21 Summary statistics for the LPC orders used by iCAbS to produce 

measurements in the conditions with variable LPC order. 

The Default and 3 formant conditions both had an LPC order range set from 8 to 16. 

The median and mode are the same for both conditions, whilst the IQRs only differ by 

one. The distributions of the orders showed them to be relatively uniform with a peak at 

the highest order. The same distribution was seen for the LPC 8 to 14 condition, but 

with a reduced range of LPC orders, the median, mode and IQR values are lower. 
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The upper cepstral comparison frequencies and mean frame to frame distances for all 

six of the iCAbS tracker measurement conditions were also examined. However, the 

interpretation of these values was found to be less straightforward as they relate to non-

standard measures which are specific to the implementation of the tracker. No clear 

patterns were seen in the data. 

7.3.2.4 Discussion 

Overall, the iCAbS tracker performed slightly better than WaveSurfer, which in turn 

was slightly better than the Praat tracker in the 4 formant condition. The best performer 

was the Praat tracker in the Optimum condition. This shows that providing the tracker 

with specific information about the vowel being measured leads to more accurate 

formant measurements. This improvement in performance could be harnessed when 

automatically measuring formants in speech samples that have accompanying segmental 

information. 

For all three trackers, the condition in which three formants were measured, rather than 

four, produced the worst performance. The sensitivity of the performance to this setting 

is perhaps not obvious and deserves to be highlighted. An analyst who only requires 

values for the first three formants may simply assume that the ‘number of formants’ 

parameter simply controls the number of formant values that are returned by the 

software. Whilst the setting does serve this function, it also dramatically alters the 

performance of the three trackers, especially for the third formant. Having the default 

value of this setting as 3 for the Praat tracker may well lead to poor performance which 

could be easily avoided if the setting is changed. Since it is the default setting, analysts 

may well choose not to change it and assume, albeit incorrectly, that it is an appropriate 

value. 

The better performing conditions for WaveSurfer produced results that were comparable 

with those from Praat’s non-tracking Burg tool when the LPC order was 10 across all 

tokens. The Praat tracker results for the Default and 4 formant conditions were worse. 

These findings are perhaps surprising as they show that these two formant trackers do 

not consistently outperform Praat’s Burg tool. However, the results from the trackers 

show that they are much less sensitive to the choice of the LPC order than Praat’s 

standard tool. 
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7.3.3 Minimum Errors 

The general approach used to obtain the measurements summarised above can be 

likened to an automated unsupervised measurement process, i.e. the analysis parameters 

are selected and no decision is made by the analyst in relation to the accuracy of the 

formant tracks. Such an approach is likely to be adopted when making a large number 

of measurements on segmented speech material. However, formant trackers can also be 

used by analysts in an interactive way, where parameters are adjusted on a token by 

token basis until satisfactory formant tracks are achieved. 

In the previous chapter a number of analysis frameworks were imposed on the 

measurements in order to simulate a number of different approaches that a human 

analyst may take when adjusting the analysis parameters. The same technique is 

adopted in the following sections for some of the tracker results. However, only one 

such framework is adopted, which requires the LPC order to remain constant within a 

vowel token and across the formants (‘Tkn Fix, F Fix, Abs’ framework in the previous 

chapter). The framework determines the LPC order at which the minimum errors occur 

for each vowel token. In this instance the minimum error criterion is the sum of the 

absolute errors across the formants. Even though this approach was shown in the 

previous chapter to be most influenced by the errors produced by F3, since these tend to 

be the largest, this approach was selected since it is more representative of the decision 

an analysts would make when visually inspecting formant tracks overlaid on a 

spectrogram with a linear frequency scale. The errors that result from the application of 

the framework are then summarised using the same statistical measures used previously. 

The framework was applied to the results from the three conditions for the Praat tracker 

and to the results for the Default, 25 ms Hamming and Vowels conditions for 

WaveSurfer. Since the iCAbS tracker already considers measurements across a number 

of LPC orders it is not possible to retrospectively apply this framework to those results. 

7.3.3.1 Praat Tracker 

Table 7.22 to Table 7.24 show the minimum errors obtained across the range of LPC 

orders for the three conditions tested with the Praat tracker. 
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 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

54.27 11.65 % 73.73 5.10 % 116.18 5.40 % 81.39 7.38 % 

Standard 

Deviation (Hz) 

74.21 17.51 % 123.40 10.01 % 234.38 12.65 % 159.87 13.90 % 

Table 7.22 Mean absolute error and standard deviation for Praat Tracker Default 

condition with minimum error framework for each token. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

55.28 11.94 % 66.31 4.42 % 89.71 3.91 % 70.43 6.76 % 

Standard 

Deviation (Hz) 

76.18 18.22 % 102.67 7.40 % 169.87 8.59 % 123.08 12.72 % 

Table 7.23 Mean absolute error and standard deviation for Praat Tracker 4 

formant condition with minimum error framework for each token.  

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

50.33 10.76 % 61.11 3.98 % 68.61 2.80 % 60.02 5.85 % 

Standard 

Deviation (Hz) 

68.00 15.96 % 89.08 5.78 % 100.85 4.22 % 87.40 10.40 % 

Table 7.24 Mean absolute error and standard deviation for Praat Tracker 

Optimum condition with minimum error framework for each token. 

Comparison of these figure with the results from the constant LPC order tests presented 

in Table 7.6 to Table 7.8 for the same conditions show an improvement in performance. 

The improvement is seen across all three conditions and for all three formants. The 

largest improvements are seen for the F3 errors, which is to be expected since the 

minimum error criterion tends to minimise the F3 errors as they are the largest. The 

biggest improvement in overall performance is for the Default condition. However, in 

overall terms, the Default condition results are still worse than the results for Praat’s 

non-tracked Burg results with the same minimum error framework applied (see Table 

7.5 for comparable results produced with the same alignment with the VTR reference 

values). 

Table 7.25 summarises the LPC orders that were selected in order to obtain the 

minimum error results presented above. 

Condition LPC Order 

Median 

LPC Order 

Mode 

LPC Order 

IQR 

Default 15 14 6 

4 formants 14 11 6 

Optimum 16 20 5 

Table 7.25 Summary statistics of the LPC orders used to obtain the minimum 

error values for the Praat tracker across the three conditions tested. 

For each condition the full range of LPC orders tested was utilised. The wide spread of 

LPC orders is reflected by the large IQR values. The median LPC orders are higher than 
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those selected by the iCAbS tracker, but this most likely due to the restricted range 

made available to the iCAbS tracker. The results are similar to the LPC orders that 

produced the minimum errors for the Optimum and Default conditions in the fixed LPC 

order tests discussed above. The distribution of the orders for all conditions were 

relatively uniform, apart from the lowest orders which were used infrequently. 

7.3.3.2 WaveSurfer 

Table 7.26 to Table 7.28 show the minimum errors obtained for three of the better 

performing conditions for WaveSurfer. These three conditions were selected since they 

represent the Default analysis parameters, those with the same window length as the 

other studies discussed (25 ms Hamming condition), and the Vowel condition which is 

the equivalent of the approaches adopted for the Praat tracker and iCAbS. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

52.94 10.62 % 65.53 4.22 % 85.26 3.49 % 67.91 6.11 % 

Standard 

Deviation (Hz) 

74.75 15.55 % 111.75 6.62 % 151.09 6.38 % 116.85 10.43 % 

Table 7.26 Mean absolute error and standard deviation for the WaveSurfer 

Default condition with minimum error framework for each token. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

53.67 10.79 % 68.08 4.39 % 86.22 3.53 % 69.32 6.24 % 

Standard 

Deviation (Hz) 

75.66 15.76 % 115.09 6.83 % 150.59 6.37 % 117.90 10.58 % 

Table 7.27 Mean absolute error and standard deviation for the WaveSurfer 25ms 

Hamming condition with minimum error framework for each token. 

 F1  F2  F3  F123  

Mean Absolute 

Error (Hz) 

53.21 10.74 % 67.20 4.34 % 85.14 3.50 % 68.52 6.19 % 

Standard 

Deviation (Hz) 

74.92 15.85 % 111.88 6.74 % 150.07 6.44 % 116.46 10.63 % 

Table 7.28 Mean absolute error and standard deviation for the WaveSurfer 

Vowels condition with minimum error framework for each token. 

The application of the minimum error framework to the WaveSurfer results again 

causes a reduction in the errors with the greatest improvement being for F3. The 

resulting mean absolute error values for each formant are more similar than for the fixed 

LPC order results. The summary statistic of the LPC orders that obtained the minimum 

orders for each condition was identical. The median LPC was 15, the mode was 12 and 

the IQR was 5. For each condition all of the LPC orders from 12 to 20 were used. 
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7.3.3.3 Discussion  

The results presented above show that allowing the LPC order to vary between vowel 

tokens reduces the overall magnitude of the errors relative to the situation where the 

LPC order is the same across all tokens. This reflects the findings in the previous 

chapter (Section 6.3.2). These results suggest that a human analyst who is adjusting the 

analysis parameters on a token by token basis can produce more accurate measurements 

than using the same LPC order across all tokens. The overall performance is better if an 

analyst modifies the LPC order when using a formant tracker. However, even the results 

obtained from applying the minimum error frameworks to the measurements from 

Praat’s non-tracking Burg tool are better than those produced by the trackers with a 

fixed LPC order. 

The iCAbS tracker can generate candidate formants across a range of LPC orders and 

applies an objective criterion, which is based on the signal, to select the best formant 

values. This can be seen as an approach which is similar to that used by the minimum 

error framework. However, the results from the application of the minimum error 

framework outperform the iCAbS tracker. However, the minimum error framework 

does utilise the VTR reference values in order to determine the minimum errors. The 

same performance may not be achieved by a human analyst who would be visually 

comparing the formant tracks with a spectrogram. 

7.3.4 Variation of Errors Across the Vowel Space 

The following sections examine the behaviour of the measurement errors from the three 

trackers over the vowel space. The same approach used in the previous chapter was 

applied to the error values from the trackers, i.e. error surface plots were created over 

the F1~F2 and F2~F3 vowel spaces. The results from the Praat tracker and WaveSurfer 

are considered for both the constant LPC order analyses and for the minimum error 

framework. The error surfaces were generated for all of the Praat tracker conditions, but 

only for the better performing conditions for WaveSurfer and iCAbS. 

The behaviour of the LPC order across the vowel space is also examined for the 

minimum error frameworks for the Praat and WaveSurfer, and for the iCAbS results. 
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7.3.4.1 Praat Tracker 

The F1 mean error surfaces for the three Praat tracker conditions for LPC order 10 and 

above are very similar in structure to that shown in Figure 6.7 in the previous chapter. 

The structure also remains relatively stable over this range of LPC orders. The 

overestimates, with positive errors, occur at the lower F1 values, whilst the 

underestimated measurements, with negative errors, are at the higher F1 values. The 

same structure is seen across the minimum error framework conditions but the 

magnitude of the errors at the limits of the F1 range is smaller and the surfaces are at a 

shallower angle, indicating that there is less variation over the surface in the F1 

direction. 

The structure of the F2 mean error surfaces for the Default condition and the 4 formant 

condition are somewhat different to that shown in Figure 6.8 in the previous chapter. 

The F2 error surface for the Default condition at LPC order 14, which produced the 

overall minimum error, is shown in Figure 7.5. The central region of the surface is 

relatively flat, whereas at the lowest and highest F2 values the magnitude of the errors is 

very large. There is also no apparent dependency in the surface on the F1 value. 

 

Figure 7.5 F2 mean error surface over the F1~F2 vowel space for the Praat tracker 

Default condition at LPC order 14. 
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The F2 error surface for the 4 formant condition at LPC order 11, which produced the 

minimum overall error, is very similar to that shown in Figure 7.5. For both the Default 

and 4 formant conditions as the LPC order increases the structure changes and the 

surface becomes very steep, with the highest positive errors at the lower F2 values and 

the lowest negative errors at the higher F2 values. 

For the Optimum condition, above LPC order 10 the error surface is relatively flat and 

shows very little variation in either the F1 or F2 direction. Comparison of this error 

surface with those for the Default and 4 formant conditions show that altering the 

tracker’s reference values from the default settings prevents the very large errors 

occurring at the extremes of the F2 range. In the non-Optimum conditions, at the 

extremes of the F2 range, the tracker is tending to gravitate towards candidate values 

which are closer to the fixed reference values rather than the correct ones. Figure 7.6 

shows a typical example of such an error, in this instance for F3. 

 

Figure 7.6 Spectrogram of vowel sequence /ɔɚ/ in the word ‘towards’ from file 

‘SI1154.WAV’ spoken by ‘mcdr0’, with overlaid candidate formant values as red 

dots produced by an LPC analysis at order 12. The formant tracks produced by 

Praat’s tracker with the 4 formant condition settings are shown as blue lines. A 

tracking error has occurred from the sixth analysis frame onwards for F3.  

At the sixth analysis frame the track for the third formant shifts from the candidate 

values that follow the true F3 values as shown by the spectrogram, up to those that are 
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associated with the fourth formant. Across the incorrectly tracked section the candidate 

values associated with F4 are closer to the reference value of 2,500 Hz than the 

competing candidate values aligned with the true F3. This has caused the track to jump 

to the higher candidates. If the candidate values are accepted using the numbering 

approach of Praat’s normal measuring tool then then measurements would have been 

acceptable measurements that would not have included such a large error in F3. 

For the minimum error framework results, the F2 error surface for the Optimum 

condition is very similar to the constant LPC order situation. For the Default condition, 

the minimum error surface does not display the region of large negative errors at the 

higher F2 values and the region of large positive errors at the lower F2 values is smaller. 

The surface for the 4 formants condition is similar, but the magnitude of the errors in 

the lower F2 region is even smaller. 

The F3 error surfaces for the Default and 4 formant conditions across the F1~F2 vowel 

space show a distinct region in the lower F1~F2 area of the vowel space where the 

errors are large and positive. This is in contrast to the rest of the surface which is 

relatively stable. Figure 7.7 shows the F3 errors across the F2~F3 vowel space, which 

reveals a similar pattern. 
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Figure 7.7 F3 mean error surface over the F2~F3 vowel space for Praat tracker 4 

formant condition at LPC order 11. 

For both conditions, as the LPC order increases, the region of large positive errors 

spreads towards the centre of the surface and a similar region containing large negative 

errors appears at the higher F3 values. The minimum error framework results for both 

conditions have the same structure as seen in Figure 7.7, but the magnitude of the 

largest errors is reduced. 

The F3 error surfaces for the Optimum condition are again relatively flat and stable 

above an LPC order of 10. No regions of large errors are present. This means that the 

same effect described above for F2 also occurs for F3, i.e. at the extremes of the F3 

values the tracker tends to favour candidate values towards the centre of the range, 

resulting in large errors at the extremes. Providing the tracker with information about 

the true location of the formants removes this effect. 

7.3.4.2 WaveSurfer 

The F1 error surfaces for the WaveSurfer results across all of the three conditions 

examined are again very similar to the F1 error surfaces described above and in the 

previous chapter. Minimal variation is seen across the surfaces as the LPC order 
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changes. Again, the same structures are seen for the minimum error framework results, 

with somewhat smaller errors. 

At LPC order 12 the F2 error surfaces across the conditions are relatively flat and show 

little variation. As the LPC order increases to 13 and above, a region of large negative 

errors appears in the higher F2 region. However, unlike the Praat tracker F2 error 

surfaces, no region of large positive errors occurs in the lower F2 region. The F2 error 

surfaces for the minimum error framework results are also relatively flat. 

The F3 error surfaces over the F2~F3 vowel space show tendency for positive errors, 

i.e. overestimates, in the lower F3 region of the space, and negative errors in the higher 

F3 region. This can be seen in Figure 7.8 for the Default condition at LPC order 13. 

 

Figure 7.8 F3 mean error surface over the F2~F3 vowel space for WaveSurfer 

Default condition at LPC order 13. 

From LPC order 14 and higher in the region of the highest F3 values large negative 

errors occur. Unlike the F3 errors for the Default and 4 formant conditions for the Praat 

tracker, the behaviour of the errors at the lower F3 values does not significantly change. 

The F3 error surfaces for the minimum error framework results are much more uniform 

and do not show the variation across the F3 values. 
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7.3.4.3 iCAbS 

For the iCAbS tracker the F1 errors across the vowel space are again very similar to 

those seen already. Across the four conditions examined there is very little to 

distinguish them. However, the F2 error surfaces are somewhat different to those 

described previously. Figure 7.9 shows the F2 error surface for the iCAbS Default 

condition. For each of the conditions positive errors tend to occur at the lowest F1 

values for central F2 values. Another obvious feature for all conditions is a small dip 

towards the right hand edge of the surface at the lower F2 values. One feature that is 

only present for the F2 mean error surface for the LPC 16 condition is a region of large 

negative errors across the left hand edge of the surface with the highest F2 values. 

 

Figure 7.9 F2 mean error surface over the F1~F2 vowel space for iCAbS Default 

condition. 

The F3 errors for all four conditions are relatively stable across the majority of the 

F1~F2 surface with some larger errors occurring at the edges of the surfaces. A similar 

pattern is seen for the F3 errors when considered over the F2~F3 vowel space, which 

also contains isolated pockets of positive and negative errors. 
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7.3.4.4 LPC Order Variation 

Plots were generated to show how the median LPC order varied across the vowel space 

for the minimum error tracker conditions. Since the minimum error criterion required 

that the LPC order was the same across the three formants within a vowel token, only 

one set of values per tracker condition existed. The same plots were also generated for 

the iCAbS tracker results where the LPC order was varied. 

Figure 7.10 shows the distribution over the F1~F2 vowel space of the median LPC 

order for the Praat tracker 4 formant condition. The distribution for the Default 

condition was very similar. The plot shows a tendency for the higher LPC orders to 

occur towards the lower F1 values and it also exhibits some dependence on F2 within 

that region. Figure 7.11 show the median LPC order distribution for the Optimum 

condition, which in comparison shows less F2 dependence at the lower F1 values. The 

LPC orders are generally higher, which is to be expected given the results in Table 7.25 

that show a higher overall median LPC order for the Optimum condition when locating 

the minimum errors. 

 

Figure 7.10 Median LPC order usage across the F1~F2 vowel space for Praat 

tracker 4 formant condition minimum errors. 

LPC Order 
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Figure 7.11 Median LPC order usage across the F1~F2 vowel space for Praat 

tracker Optimum condition minimum errors. 

The plots generated for WaveSurfer over the F1~F2 vowel space showed distributions 

similar to that shown above for the Optimum Praat tracker condition, with similar LPC 

order magnitudes. The distributions for the iCAbS tracker were much more uniform, 

showing no apparent dependency on the location in the vowel space. Also, the median 

LPC orders were lower, but since the upper LPC order was 14 or 16, compared with 20 

for Praat and WaveSurfer, this is not surprising. 

7.3.4.5 Summary of Errors Across the Vowel Space 

The behaviour of the F1 errors over the vowel space for the three trackers is very similar 

and reflects the patterns seen in the previous chapter for the non-tracked results. The 

variation in the behaviour of the F2 and F3 errors for the Praat tracker and WaveSurfer 

clearly demonstrates the impact of the tracking decision being partly determined by a 

set of reference values. The behaviour of the F2 and F3 errors for iCAbS are different to 

those from the Praat tracker and WaveSurfer. The behaviour seen cannot be clearly 

linked to the tracking methodology employed. 

The application of the minimum error framework to the results showed a reduction in 

the degree of variation seen in the error surfaces. Examination of the LPC orders that 

LPC Order 
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gave rise to the minimum errors revealed some dependence on the location within the 

vowel space. However, this dependence was not seen in the LPC orders that were 

selected by the iCAbS tracker. 

7.3.5 Variation of Performance Across Speakers 

The analyses described in the following sections concern the performance of the 

speakers across the three trackers. A subset of the results is examined using the same 

methods applied in the previous chapter to the data from Praat’s Burg tool. The subset 

of results consists of the 3 conditions for the Praat tracker, the Default, 25ms Hamming 

and Vowels conditions for WaveSurfer, and the Default, LPC 8 to 14, LPC 12 and LPC 

16 conditions for iCAbS. The results for Praat and WaveSurfer are considered only at 

the LPC orders that resulted in the smallest combined errors as shown in the tables 

above. The subset also includes the minimum error conditions for these Praat and 

WaveSurfer conditions. All of the analyses are based on the mean absolute error for 

each speaker. Only the numeric errors, rather than the percentage equivalents, are 

considered in these analyses. 

7.3.5.1 Analysis of Mean Speaker Errors Across Trackers 

The results were first examined by determining the mean and the standard deviation of 

the speakers’ mean absolute errors across the three formants. These values are shown in 

Figure 7.12 for the subset of the normal tracker conditions and in Figure 7.13 for the 

minimum error conditions. The mean values are represented by circles, whilst the 

standard deviations are shown by the vertical error bars. The colours red, green and blue 

are used for F1, F2 and F3 respectively. 
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Figure 7.12 Mean and standard deviation of the mean absolute errors from 186 

speakers for each tracker condition for F1 (red), F2 (green) and F3 (blue). 

 

Figure 7.13 Mean and standard deviation of the mean absolute errors for 186 

speakers for each tracker condition with the application of the minimum error 

frameworks for F1 (red), F2 (green) and F3 (blue). 

As expected, the mean values in Figure 7.12 and Figure 7.13 are very similar to those in 

the earlier tables for the entire set of errors across all frames for each tracker condition. 

The standard deviations of the speakers’ absolute mean errors are much lower than the 
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standard deviations for the entire set of errors. In Figure 7.12 the improvement in 

performance across the three Praat tracker conditions from the Default to the Optimum 

is clear, albeit that the F1 performance for the 4 Formants condition is the worst of the 

three. The WaveSurfer conditions have very similar results, which is also the case for 

the first three iCAbS conditions, with the fourth showing performance that is better for 

F1, but worse for F2 and F3. 

The results in Figure 7.13 reflect the earlier findings that the results from the minimum 

error conditions are better than those from the constant LPC order conditions. For Praat, 

the minimum error conditions show the same improvement across the three conditions 

seen in Figure 7.12. The results for WaveSurfer are again very similar across the 

condition. 

7.3.5.2 Analysis of Mean Errors Within & Across Trackers 

In order to examine the mean absolute errors for individual speakers, a series of plots, 

similar to that at Figure 6.19 in the previous chapter, were generated. These showed the 

mean absolute errors for each formant for each speaker as a stacked bar chart, ordered 

according to increasing combined error across the three formants. Whilst the plots 

showed the magnitude and range of errors encountered for speakers across the different 

trackers and conditions, they did not reveal any systematic differences when compared 

with the equivalent results from Praat’s Burg tool. Like the results from the previous 

chapter, the plots from the tracker data did not show any obvious relationships between 

the magnitudes of the errors across the formants for individual speakers. However, this 

point is addressed in more detail in the following section. 

7.3.5.3 Relationship Of Errors Across Formants 

To further examine the relationships across the formants for speakers’ mean absolute 

errors, a series of scatter plots were generated to compare F1 with F2, F1 with F3 and 

F2 with F3. The plots were similar to those shown in Figure 6.20 to Figure 6.22 in the 

previous chapter and showed similar amounts of dispersion in the data. Again, there 

were some plots that showed a weak tendency towards positive correlations. These were 

generally for the F2 vs F3 comparisons, but several of the F1 vs F2 plots also showed 

similar patterning. To summarise these relationships Pearson’s r correlation coefficients 

were calculated for each of the formant pairs across the formant conditions. These 

showed that the relationships between the formants are, in general, greatest for F2 and 



268 

F3, followed by F1 and F2. The size of the correlation coefficients is comparable with 

those from the previous chapter. This suggests that overall the use of a formant tracker 

does not increase the level of dependency in the errors across formants. Again, the 

majority of the correlations were significant, but the relatively weak relationships are 

apparent from the magnitude of the correlation coefficients and the amount of 

dispersion seen in the scatter plots. 

7.3.5.4 Relationship of Errors Across Trackers 

The final section examining the error results from speakers considers their behaviour 

across the different tracker conditions. The results from the previous chapter, presented 

in Section 6.3.4.8, showed that the speakers behaved in a very similar manner across the 

analysis frameworks, i.e. those that had large errors for one framework also tended to do 

so for the others. To determine if this also applied to the tracker results a series of 

scatter plots were generated to compare the mean absolute measurement errors from all 

speakers across all possible combinations of tracker conditions. This was done for each 

formant individually as well as for the combined error summed across all three 

formants. 

The scatter plots all showed a positive correlation, but a much wider range of 

dispersions existed across the tracker conditions in comparison with those seen across 

the minimum error frameworks in the previous chapter. In general, the strongest 

correlations existed between the conditions for the same tracker, whilst the weakest 

correlations were between the conditions for different trackers. Again, to summarise the 

results Pearson’s r correlation coefficients were calculated for all combinations. All of 

the correlations were significant at the 0.01 level (two tailed). 

Both the scatter plots and the correlation coefficients show that the performance for 

individual speakers varies both within and across the different formant trackers. This 

means that while some speakers will perform well for a particular tracker they may well 

perform badly for another, or even for a different analysis condition with the same 

tracker. The comparisons of the Praat Default and 4 formant conditions with those from 

the other trackers shows relatively small coefficients around 0.3, whilst for most of the 

WaveSurfer and iCAbS comparisons the coefficients are around 0.7. The correlation 

coefficients for the errors from the individual formants showed somewhat different 

patterns especially for F1. 
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7.3.5.5 Variation Across Speaker Parameters 

In Section 6.3.4 in the previous chapter speakers’ mean errors were considered against 

the parameters of speaker sex, fundamental frequency and vowel space location, in 

order to determine if these factors were related to performance. The findings were that 

only weak correlations existed between performance and the parameters examined. In 

view of those findings and the variation in performance for speakers seen across the 

different tracker conditions, it was considered unlikely that the tracker results would 

yield results that were substantially different those in the previous chapter. Therefore, 

these comparisons were not undertaken. 

7.3.5.6 LPC Order Variation Across Speakers 

The speaker results were also examined in terms of the LPC orders that were selected 

when the minimum error framework was applied to the WaveSurfer and Praat tracker 

results, and those that were selected by iCAbS. Following the same approach described 

in the previous chapter (Section 6.3.4.13), the median, mode, minimum and maximum 

LPC orders were determined for each speaker for each tracker condition. The summary 

values were displayed in plots like the one shown at Figure 7.14, which shows the 

results for the 4 formants condition for the Praat tracker. Examining the plots for the 

different tracker conditions revealed that for most speakers the minimum errors were 

obtained across a wide range of LPC orders. 
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Figure 7.14 Plot of median LPC order (thick horizontal line) and range (thin 

vertical line) for all speakers ordered by increasing median value and range. The 

results are from the Praat tracker with the 4 formant analysis parameters and the 

minimum error framework. 

Comparison of the results across the three trackers show that the median LPC orders 

across the Praat tracker and WaveSurfer were similar. The differences that were seen in 

the range results are a consequence of the ranges of the LPC order tested for the two 

trackers being different. The mean LPC order results for iCAbS are different from the 

other two, but it is not apparent if this is a consequence of a more limited range of LPC 

order being tested or whether it is a result of a different tracking approach. 

7.4 Results from Other Studies Using the VTR Database 

A number of other studies have used the VTR database to test the performance of 

formant trackers, often ones that employ novel approaches to the formant tracking 

problem. In principle, it is useful to compare the results from the Praat tracker, 

WaveSurfer and iCAbS with those from these other studies as it provides further 

information about their performance relative to other trackers. Such comparison would 

shed further light on RQ1. However, the comparison of the results is problematic. Some 

of the studies, such as Gläser et al. (2007), Gläser et al. (2010) and Rudoy et al. (2007), 

do not present their results in a form that are comparable with those presented above. 

These studies only provide summary statistics for the measurement errors across all 
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speech segments rather than breaking them down by segment type, i.e. there are no 

results provided for just the vowel segments. Also, they use non-comparable measures 

of the errors. Rudoy et al. (2007) have reported root mean square error reduction 

relative to their results from WaveSurfer, whilst Gläser et al. (2007) have employed an 

error measure based on formant specific thresholds. In Gläser et al. (2010) the results 

from their tracking method are presented as mean relative percentage improvements 

compared to the results from Praat, WaveSurfer and Mustafa and Bruce’s (2006) 

tracking method. 

One feature common to most of the studies is that in addition to testing a new formant 

tracking technique, which is the main focus of each of the articles, they also report the 

results from tests with WaveSurfer. This is done so that the performance of the new 

techniques can be compared with a benchmark tool that has ‘wide use among voice and 

speech researchers’ (Mehta et al., 2012, p. 1737). In most of the studies the reported 

performance of WaveSurfer has been determined by the authors. However, in the case 

of Özbek and Demirekler (2008) they simply quote the performance figures for 

WaveSurfer and the MSR algorithm provided by Deng et al. (2006). The inclusion of 

results from WaveSurfer in these studies also highlights a significant issue. In each of 

the reported studies, and in the tests undertaken for this thesis, the performance for 

WaveSurfer is different. This means that there must be differences between the 

implementation of the testing processes across the studies. Some of these differences 

may be in the analysis parameters that have been selected, but it is highly likely that 

some of them relate to other aspects of the testing procedure, which will most probably 

have also been applied to the testing of the new tracking methods. The consequence of 

this is that the results from the different studies cannot be considered as directly 

comparable since they have not been tested in identical ways. 

7.4.1 Results From Deng et al. (2006) & Smit et al. (2012) 

Table 7.29 shows the results presented in Deng et al. (2006, p. 370, Table 1) for 

WaveSurfer and their MSR tracker, as well as the results from Smit et al. (2012, p. 899, 

Table 3) for WaveSurfer, Praat and their novel approach based on spectral peak picking 

and contour integration. The values are mean absolute errors across frames for the 

vowel segments only. 
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Study Tracker F1 (Hz) F2 (Hz) F3 (Hz) 

Deng et al 2006 WaveSurfer 70 94 154 

MSR 64 105 125 

 

Smit et al 2012 WaveSurfer 53 84 172 

Praat 90 116 167 

wGDF-CI 57 86 131 

GDF-CI 57 87 133 

Table 7.29 Mean absolute error values expressed in Hertz for measurements of 

vowel frames referenced to the VTR database reported in Deng et al. (2006, p. 370, 

Table 1) and Smit et al. (2012, p. 899, Table 3) obtained from different formant 

trackers. 

Comparison of the WaveSurfer results across the two studies shows that the F1 and F2 

performance was better for Smit et al. (2012), whilst the F3 performance was better for 

Deng et al. (2006). In percentage terms the differences are 32 %, 12 % and 12 % for F1 

to F3 respectively. These error values are also different to those reported above for 

WaveSurfer. The results from the current study of WaveSurfer presented above have 

mean absolute error values ranging from 58 to 68 Hz for F1, from 79 to 90 Hz for F2 

and from 132 to 144 Hz for F3, ignoring the 3 formants condition (see Table 7.9 to 

Table 7.14). These results are better than those presented by Deng et al. (2006) for all 

three formants. Compared with Smit et al (2012) they are better for F3, similar for F2 

and worse for F1. 

Contact was again made with the authors of the VTR database in order to discover if 

their methodology was significantly different from that used in the present study. It was 

confirmed that their analysis settings remained constant across all utterances, that the 

formants were tracked across entire files, that segments were determined according to 

the TIMIT segmentation information, and that the measurements were made with 

WaveSurfer rather than the Snack toolkit (Deng, 2013, Cui, 2013). However, there are 

two differences between the set of VTR reference values used in Deng et al. (2006) and 

those that are in the publically available database. Firstly, the Deng et al. (2006) results 

relate to measurements taken from 538 sentences, not the 518 that are provided in the 

VTR database, and secondly, they were calculated from the first pass correction of the 

VTR values, not the second pass ones in the released version of the database. A warning 

is provided in the user manual that accompanies the database that the use of the second 

pass values may lead to different results. However, given the differences found between 

the results from the current study and those reported elsewhere, it is not apparent how 
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much of the disparity with the Deng et al. (2006) results can be attributed to these 

issues. 

Closer examination of the description of the methodology in Smit et al. (2012) reveals 

that certain relevant information is not provided and there are a number significant 

differences in the approach used. No information is provided about the analysis settings 

used for either Praat or WaveSurfer, and the raw results from Praat and the other 

trackers being tested were post-processed with a three point running median filter. The 

filter was applied in order to make the results more comparable with those from 

WaveSurfer, since they had been subject to a tracking procedure. Furthermore, they list 

the total number of vowel frames analysed as 61,238 (Smit et al. 2012, p. 899, Table 2) 

compared with the 67,242 frames analysed in this thesis; a difference of 6,004. Since 

there are a total of 6,601 vowel tokens, the difference in frames is equivalent to just less 

than 1 frame per token. Given the number of known and potential differences between 

the approaches it is difficult to assess their impact on the results. 

7.4.2 Results From Mehta et al. (2012) 

One study which provides comparably more information in relation to the analysis 

parameters used is Mehta et al. (2012). Again, both the Praat tracker and WaveSurfer 

are used as benchmark conditions for comparison with the performance of a KARMA 

(Kalman autoregressive moving average) formant tracker. Some of the analysis 

parameters for Praat and WaveSurfer were matched to those of the KARMA algorithm, 

presumably in an attempt to provide comparability between the results. The sampling 

frequency was 7 kHz, giving an upper analysis frequency of 3.5 kHz, the analysis 

frames were 20 ms in duration, with a Hamming window and 50 % overlap, i.e. a frame 

advance of 10 ms, and the LPC order was 12. The default tracking, or ‘smoothing’ 

settings as they are referred to in the text, were used for WaveSurfer and Praat. Again, 

these settings do not completely match those used in the current study. Also, the 

performance is expressed as root mean square error (RMSE), rather than mean absolute 

error. To assess the similarity of the results for Praat and WaveSurfer from Mehta et al. 

(2012) with those from the tests described above, some of the error summary values 

were recalculated as root mean square errors. This was done for the default condition of 

WaveSurfer at LPC order 12, for the default condition of the Praat tracker at LPC order 

12 and for the 4 formants condition for the Praat tracker, again at LPC order 12. These 

conditions were chosen as they were the most similar to those tested by Mehta et al. 
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(2012). These RMSE values, together with the results for the vowel segments reported 

in Mehta et al. (2012, p.1738, Table IV), are shown in Table 7.30. 

Study Tracker F1 RMSE 

(Hz) 

F2 RMSE 

(Hz) 

F3 RMSE 

(Hz) 

Mehta et al. 

2012 

KARMA 82 258 336 

WaveSurfer 112 254 262 

Praat 134 269 341 

 

Current WaveSurfer 

Default LPC 

order 12 

85.56 145.35 292.16 

Praat Default 

LPC order 12 

95.72 173.28 380.48 

Praat 4 

formants LPC 

order 12 

95.47 160.47 301.91 

Table 7.30 Root mean square error values expressed in Hertz for vowel frames 

from the VTR database reported in Mehta et al. (2012, p.1738, Table IV) and 

WaveSurfer default condition, Praat tracker default condition and 4 formants 

condition at LPC order 12 from the current study. 

These results show a clear difference in performance for both Praat and WaveSurfer 

across the two sets of results. For WaveSurfer, the F1 and F2 RMSE values are smaller 

in the current study but the Mehta et al. (2012) result for F3 is better. The situation is 

the same between the default condition of the Praat results and Mehta et al (2012), but 

for the 4 formant condition the current study’s results are better for all three formants. 

The differences in the results highlights a potential issue that adjusting the analysis 

parameters of the benchmarking tools, i.e. WaveSurfer and Praat, to those of the tracker 

being tested, may make the benchmark performance worse. During the development of 

the tracker under test it is likely that the analysis parameter values will be optimised to 

ensure that it performs at its best. However, it would appear that in the studies 

considered above that no such optimisation is applied to the benchmarking tools. 

Adjusting the analysis parameters so that they reflect those of the system being 

compared may actually decrease the performance of the tool being used as the 

benchmark. The difference in the Praat tracker results for F3 between the default and 

the 4 formant conditions clearly demonstrate the effect that altering a single parameter 

can have. 



275 

7.4.3 Results From García Laínez et al. (2012) & González et al. (2012) 

Two further studies which employ the VTR database to test a novel tracking technique, 

and use WaveSurfer as a benchmark, are García Laínez et al. (2012) and González et al. 

(2012). Both test the same tracking method, based on a beam-search algorithm, with the 

first providing a detailed description of the technique and test results for different 

configurations of the tool, whilst the second considers its performance for degraded 

speech material. These studies are of note for two reasons. Firstly, the overall 

performance, for both the new algorithm and WaveSurfer, is markedly better than any 

of the other studies discussed above. Secondly, even though the limited description of 

the testing procedures used for the two studies appear to be identical, the results 

reported for WaveSurfer are different in each one. However, identical results are 

reported in the studies for one of the configurations of the new tracker being tested. 

The apparent difference in performance of WaveSurfer between the two studies could 

simply be a typographical error or it may be a consequence of the tests having been re-

run differently for the second study. If this were the case then this further demonstrates 

the sensitivity of the results to changes in the testing process, albeit in this case 

unknown changes. The results are not directly comparable with any of the other studies 

since another different methodological approach has been applied. Rather than use all of 

the 518 sentences in the database, only 420 were analysed. Also, the errors are 

calculated for all voiced frames, rather than all speech frames or vowel frames only. In 

García Laínez et al. (2012) some of the analysis parameters are provided; the sample 

rate was 10 kHz, the pre-emphasis factor was 0.7, the LPC analysis was autocorrelation, 

the frame duration was 49 ms with a Hamming window, the frame advance was 10 ms 

and the LPC order was 12. The results from the two studies for WaveSurfer and one of 

the test algorithm conditions (designated ‘Quad+Mp’) are shown in Table 7.31. 

Tracker F1 (Hz) F2 (Hz) F3 (Hz) 

WaveSurfer García Laínez et al. (2012) 18.46 30.84 46.33 

WaveSurfer González et al. (2012) 29.95 57.66 76.53 

Beam-search ‘Quad+Mp’ 18.39 27.96 35.26 

Table 7.31 Mean average error values for WaveSurfer and the beam-search 

tracking algorithm (condition ‘Quad+Mp’) for vowels in the VTR databased 

reported in García Laínez et al. (2012, p. 754, Table 1) and González et al. (2012, p. 

44, Table 1). 

Comparison of the results from WaveSurfer with the other studies shows a marked 

difference in performance. Compared with the results from this study in Table 7.9 for 
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the default condition at LPC order 13, the three formants show an improvement in 

performance of over 60%. It is not apparent why the results in these two studies should 

be so different to all of the others. 

7.5 Summary 

This chapter has examined the effects of using different formant trackers on formant 

measurement accuracy across a range of settings, for a large number of speakers. In 

doing so it has provided answers to all three research questions. The important 

outcomes are summarised as follows: 

 The alignment of the measurements with the reference values in the VTR 

database was found to have a marked impact on the magnitude of the 

measurement errors. Because of this, the alignment was changed from that used 

in the previous chapter and some results were re-calculated to allow comparison 

with measurements in the current chapter. 

 Whilst the behaviour of the F1 errors across the LPC orders from the trackers 

was similar to that seen for Praat’s Burg tool, the behaviour of the errors for F2 

and F3 were different. They behaved more like the F1 errors as the LPC order 

increased and they remained relatively constant. This was a consequence of the 

trackers being able to select formant candidates other than the second and third 

ones for F2 and F3 respectively. 

 Comparison of Praat’s Burg tool results with the tracker conditions revealed 

them to be similar. However, the tracker results were much less sensitive to 

changes in LPC order. It is not necessarily the case that trackers will produce 

more accurate measurements. 

 Altering the reference formant values for Praat’s tracker on a token by token 

basis produced the best performance. 

 Setting the ‘number of formants to extract’ parameter to 3 for all of the trackers 

produced unexpectedly poor performance, particularly for F3. 

 Applying the minimum error framework to the results (the equivalent of an 

interactive measurement process) showed improvement in the performance 

across all trackers and combinations of settings considered. 

 Examination of the variation in measurement errors over the vowel space 

showed clear effects of the tracking algorithms of Praat and WaveSurfer for F2 
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and F3. The extremes of the vowel space showed where formant candidates 

were incorrectly selected due to the bias of the tracker reference values. 

 A range of performance was seen across the speakers for individual tracker 

conditions and there were no strong relationships across individual speaker’s 

errors for the three formants. 

 Comparison of speakers’ performance across the tracker conditions showed a 

range of relationships, with some speakers having similar performance across a 

range of trackers and conditions, whilst others showed varying performance 

across different combinations of parameters for the same tracker.  

 Examining results from studies that have used the VTR database to assess the 

performance of other formant trackers revealed a range of reported performances 

for WaveSurfer and Praat. Given the lack of relevant information it was not 

possible to determine the specific reasons for the differences. Nevertheless, the 

they illustrate the problems of comparing reported performance for formant 

measurement tools. 

The guidance that follows from these findings echoes that from previous chapters in 

respect of the need to select appropriate LPC orders, and that the best performance can 

be obtained by tailoring this setting, and measuring formants in an interactive way. 

Advice concerning whether or not to use a formant tracker must be motivated by the 

situation in which it is to be used, since in certain circumstances, namely when LPC 

order is not altered, Praat’s simple Burg tool can outperform Praat’s tracker. If 

information is available about the vowel being analysed then this can be used to obtain 

better performance. If a tracker is to be used then care must be taken to use appropriate 

settings for parameters such as the number of formants to be extracted. A warning is 

offered concerning the reliability of reported performance of formant measuring tools, 

since differences in the testing methodology, even with the same material, can markedly 

alter performance. 
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Chapter 8 Discussion & Guidance 

This chapter brings together the findings from the previous five chapters and discusses 

them in the context of the three research questions. This is followed by the presentation 

of practical guidance on the measurement of formants for forensic speech scientists, and 

phoneticians more generally, that arises from these results. 

8.1 Software 

The first research question asked: 

RQ 1. What influence does the LPC formant measuring tool have on the 

accuracy of formant measurements? 

The results from all of the analysis chapters show that the behaviour and accuracy of 

formant measurements differs across software tools. This is clearly demonstrated by the 

reanalysis of the measurements from the pilot study presented in Section 3.4, and the 

comparison of the results from the formant trackers in Chapter 7, with the non-tracker 

results in Chapter 6. The findings show that the overall behaviour of the measurements 

is influenced by the measurement method employed by the software. Differences in the 

measurement method are apparent when the performance of F2 and F3 are examined 

across LPC order, for example in Figure 3.6 to Figure 3.9. For the simple formant 

measuring tools in Praat and Multi-Speech, which do not apply any formant tracking, 

the performance for F2 and F3 deteriorates at higher LPC orders as the number of poles 

in the LPC model increases. This results in F2 and F3 measurements being below their 

true values, i.e. they are underestimates. In Chapter 3, the worst performance was seen 

at LPC orders 16 and 18 for the F3 measurements from Praat, where almost all 

measurements across all vowel categories fell outside of the 300 Hz acceptable limit. 

The results in Chapter 6, also from Praat’s measurements of real speech, showed F2 and 

F3 to have median errors of around -500 Hz and -800 Hz at LPC order 15, which 

increased in magnitude at higher orders. In contrast, the results from Praat’s tracker 

function, and WaveSurfer, show that their performance remains relatively constant for 

F2 and F3 as LPC order increases, since the trackers are able to select more appropriate 

pole frequencies for the measured values. The alternative approach to the tracking 

problem adopted by the iCAbS tracker also displayed differences in the behaviour and 

accuracy of its measurements, again demonstrating that the underlying approach of the 
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software influences the measurements. The influences from the different software were 

seen at a specific level, by considering the distribution of errors over the vowel space, 

and more generally through the comparison of summary statistics. 

Since the formant trackers apply prior knowledge about the nature of formants to the 

measurement process, it may seem a reasonable assumption that they would produce 

more accurate results than Praat’s normal measuring tool. However, the results in 

Chapter 7 show that this is not necessarily the case, and making an overall assessment 

of performance is not straightforward. This is partly because the performance of the two 

approaches is not as different as might be expected, and it is also influenced by the 

analysis settings used, which are discussed in the following section. Another factor that 

makes straightforward comparisons difficult is the way in which performance is 

assessed. It is clear from many of the analyses that the measurements for each of the 

three formants behave differently, so it is important to consider them separately. 

However, this makes the comparison of software and analysis settings problematic 

when the relative performance is different across the formants. Combining the errors 

from all three formants to give a single measure of performance is one way in which 

this problem was overcome. 

For Praat’s normal formant measuring tool, at an LPC order of 10, the combined mean 

absolute error across the three formants from the TIMIT speakers was 95.5 Hz. This 

outperformed the best results from Praat’s tracker at its default settings, which only 

achieved a combined mean absolute error of 100.9 Hz at LPC order 11. However, 

WaveSurfer’s default settings achieved 92.9 Hz, whilst iCAbS gave the best 

performance of all with 87.5 Hz at its default settings. These results demonstrate that 

formant trackers do not always give the most accurate results and that the performance 

across trackers can vary. 

The results discussed so far have only considered the accuracy of measurements when 

the analysis parameters were kept constant across the vowel tokens examined. Whilst 

this may reflect the situation where measurements are made in an entirely automated 

way, a significant proportion of formant measurements are made interactively by 

analysts. To simulate an interactive approach, a number of measurement strategies and 

frameworks were constructed. Since the true formant values were known, it was 

possible to choose measurements closest to the true values in a similar way to how a 
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real analyst would, with the LPC formant values overlaid on a spectrogram. In Sections 

4.4.7 and 5.3.5 the numbering assignment of formants to pole frequencies employed by 

Praat’s formant measuring tool was ignored, and a marked improvement in the accuracy 

of the measurements from the synthetic vowels was seen. For one speaker, the mean 

absolute error was reduced from 94.3 Hz to 37.6 Hz for F2 and from 268.8 Hz to 60.2 

Hz for F3. Whilst this approach was not tested on the real TIMIT speech, a similar 

improvement is to be expected for real speech. The other strategies applied to the 

TIMIT speech involved allowing the LPC order to vary across tokens and formants. The 

application of these strategies improved the accuracy of the measurements in all 

circumstances. For Praat’s normal tool, for a constant LPC order across all tokens and 

formants, the combined mean absolute error across the three formants was 115 Hz. By 

allowing the LPC order to vary across tokens this was reduced to 98 Hz. Allowing LPC 

order to vary across individual analysis frames reduced the error even further to 83 Hz, 

whilst the best performance of 80 Hz occurred when LPC order could vary across 

tokens. In general, the strategies which were the least constrained in terms of how the 

LPC order could vary showed the greatest improvements. 

Other studies in which the performance of different software tools have been tested 

report variation across them (Jemaa et al 2009, Woehrling and Mareüil 2007 and Chen 

et al 2009). However, comparison of the results in those studies with the current work is 

problematic since the speech material, methodology employed and performance 

measures are not consistent. One of the benefits of using the VTR database is that, in 

principle, it allows the performance of tools that have been tested with it to be 

compared, since a common dataset is used. However, when attempting to compare the 

tools tested in the current experiments with those reported elsewhere, a number of 

issues arose. Some concerned the measure used to represent performance, such as RMS 

error, or how the results were combined for different speech segments. However, more 

fundamental issues were highlighted by the different performances reported for the 

same software, i.e. WaveSurfer, which was employed as a benchmark, in many of the 

studies (e.g. Deng et al 2006, Smit et al 2012, García Laínez et al. 2012 and González et 

al. 2012). The fact that similar results were not reported for WaveSurfer suggests 

differences in the testing methodology used, which raises questions about the 

comparability of the test results from the tools being examined. These findings highlight 

the difficulties, and dangers, of using reported data to make assessments and 
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comparisons of performance, especially when insufficient information is provided about 

the methodology used.  

Overall, these results confirm previous observations and research studies in showing 

that performance does vary across different software. They also show that the accuracy 

of formant measurements is not only dependent on the software but also the way in 

which it is used to make the measurements. These findings make it clear that the 

performance observed for one tool cannot be assumed to apply to another, especially 

one with a different measurement method. This highlights the need for the testing of 

specific tools to understand their individual performance.  

8.2 The Analysis Settings 

Research question two asks:  

RQ 2. How does altering the LPC analysis parameters affect formant 

measurement accuracy? 

It is already clear from the previous section that the analysis settings influence the 

accuracy of formant measurements. They are inextricably linked to the software, and its 

measurement approach, since they control its operation and resulting behaviour. 

The findings from the pilot study reported in Chapter 3 showed that LPC order had a far 

greater influence on the formant measurements than the frame duration or pre-emphasis. 

Based on this outcome, the testing of the synthetic and real speech reported in Chapter 

4, Chapter 5 and Chapter 6 only considered the effects of LPC order. These chapters 

demonstrated the very strong influence of LPC order on measurement accuracy. It was 

clear that for Praat’s normal formant measuring tool there is a relatively narrow range of 

LPC orders that produce accurate results. This range was found to be between 9 and 11 

depending on the material being analysed. When the order is outside that range, the 

performance was markedly reduced, particularly for F2 and F3. Since LPC order 

controls the complexity of the LPC model, and governs the number of poles that can 

exist in it, the degree of influence seen on the formant measurements was unsurprising, 

especially given Praat’s underlying measurement method. 
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The application of measurement strategies to replicate the approaches adopted by 

human analysts, where different LPC orders could be chosen, showed that the 

performance could be improved. The implication of this finding is that a single LPC 

order will not produce the most accurate formant measurements across a range of 

vowels or speakers. The findings demonstrated that freedom to employ different LPC 

orders and ignore Praat’s formant numbering system were sensible approaches to 

improving performance. However, these both require some additional decision making 

in order to determine whether the chosen LPC order and pole frequencies have 

produced accurate measurements. 

One solution to this problem is formant trackers, which often use theoretically-driven 

information about the nature of formants to process the results of an LPC analysis in an 

attempt to improve measurement accuracy. However, this approach brings with it 

additional analysis settings, either user-controlled or hard coded in the software, which 

may further influence the accuracy of the measurements. The testing of the formant 

trackers in Chapter 7 therefore considered some of the additional parameters related to 

the tracking function. Sets of parameters were selected for the testing which represented 

typical values an analyst might choose, and which had some comparability across the 

systems. 

The analysis of the tracker measurements demonstrated that the rules they applied could 

make good decisions about formant measurements, but not for all trackers or 

combinations of parameters. As discussed above, the performance was not always better 

than Praat’s normal tool, which was demonstrated by the poorer performance of Praat’s 

tracker with its default settings. Praat’s normal tool gave a combined mean absolute 

error of 95.5 Hz at LPC order 10, whilst the tracker with its default settings gave a 

combined error of 114.3 Hz at order 14. Again, application of measurement strategies to 

allow LPC order to vary across tokens for Praat and WaveSurfer showed an 

improvement in performance, with the Praat tracker achieving a combined error of 81.4 

Hz. This finding shows that using trackers with a single LPC order does not achieve the 

best possible performance. 

The analysis parameters that produced the best results were when the reference values 

for Praat’s tracker were adjusted on a token-by-token basis to reflect the formant values 

of the vowel being measured. This gave a combined error of 75.5 Hz at LPC order 15. 
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In the error surface plots for both the Praat Tracker and WaveSurfer with their default 

settings, the effect of using reference values for a neutral vowel for all tokens was 

apparent, as shown in Figure 7.5. At the extremes of the vowel space, when the target 

formant value was the furthest away from the reference value, the trackers often 

selected the incorrect candidate formant, resulting in a large error. Comparison with the 

error surface from the Praat tracker with the optimum reference values showed these 

errors were not present. This again demonstrates that applying more information, in this 

case making the trackers reference values similar to the expected formant values, 

improves the measurement accuracy. These results were improved further still by again 

allowing LPC order to vary across tokens, leading to a combined mean absolute error of 

60.0 Hz. Similar findings have been reported by Evanini et al (2009) who also used 

expected formant values for different vowel categories as part of a novel format 

measurement process. Statistical models were trained for each vowel category with a set 

of centre frequency and bandwidth values. The models were subsequently used in the 

tool to obtain formant measurements by selecting the pole frequency combinations from 

an LPC analysis that were closest to the model for the specific vowel category. The tests 

showed a 10% improvement for F1 and 20% improvement for F2 in the global mean 

absolute difference compared with hand measurements. 

Not all combinations of parameters showed good performance for the trackers. The one 

parameter which had a marked negative influence on performance for all three trackers 

was ‘number of tracks’ or ‘number of formants’, when the setting was 3, rather than 4. 

This parameter may seem to be quite innocuous, and its function could be 

misinterpreted as simply defining the number of formant values that the software 

displays or logs. However, the results show that this is not the case. For all three 

trackers the measurements obtained when this parameter was set to 3 produced the 

worst sets of results. The mean absolute errors combined across the formants were 

114.3 Hz for Praat, 182.1 Hz for WaveSurfer and 183.7 for iCAbS. For all trackers, the 

decrease in performance for individual formants was greatest for F3. Given these 

findings, some of the differences in performance across the software that were found in 

the pilot study can be attributed to the influence of this parameter on the results from 

WaveSurfer. The selection of the value for this parameter in the pilot study was done 

without appreciating its influence on the measurement process. 
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In summary, these results illustrate the influence the analysis parameters have on the 

resulting measurements. They show that to avoid poor performance the parameters 

chosen must be appropriate for the software and the material examined. It is therefore 

important that the influence of the parameters for a particular tool are understood by 

those who use it. Accepting the default settings without considering their suitability 

presents the danger of making inaccurate measurements. Using the same settings for all 

measurements also poses the same risk. The advice offered by Rose (2002, p. 267) to 

keep the settings the same is not supported by the findings discussed. 

8.3 The Speaker 

The final research question asked: 

RQ 3. To what extent does the accuracy of LPC formant measurements vary 

across speakers? 

All the experiments conducted provided some insight into the extent of variation in 

formant measurement accuracy that can exist across speakers. Whilst these differences 

in performance are relatively easy to observe and quantify, their causes are harder to 

determine. Since speakers display differences across many speech parameters, such as 

size and shape of the vowel space, fundamental frequency (F0), and voice quality, 

determining the source of the variation is problematic as the influence of each can be 

difficult to isolate. 

Synthetic speech was used in the first instance to investigate the extent of variation in 

formant measurements across speakers. Two advantages that synthetic speech has over 

real speech are that the formant values can be specified in the synthesis process, so true 

measurement errors can be calculated, and the speech can be precisely controlled, so 

that the influence of speech parameters can be observed in the results. The analysis in 

Chapter 4 showed a strong dependence between F0 and the structure of the error 

surfaces, which was governed by the frequencies of the harmonics of the F0. This was 

also observed for the speakers in Chapter 5. A clear relationship was also seen between 

F0 and the magnitude of the errors, with larger errors occurring at higher F0s. These 

findings were in agreement with Atal and Schroeder (1974), who reported maximum 

errors of 11, 30 and 67 Hz for fundamental frequencies of 100, 200 and 400 Hz from 

synthetic speech with a single formant. Figure 4.12 shows that for the LPC orders that 
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produced relatively accurate measurements, the errors increased across F0, and the 

magnitude of the errors was different at each order. Modifying the structure of the third 

formant showed changes in the F3 error surfaces, which were again linked to F0, but 

little impact was seen in the errors for F1 and F2. The magnitude of the F3 errors were 

shown to be influenced by the specified F3 values as well as their location within the 

F1~F2 vowel space. These findings show that the errors produced by the synthetic 

speakers are dependent on speech parameters that vary across speakers, which implies 

that performance is speaker dependent. 

The different glottal source speakers showed greater variation in the magnitude of the 

errors, and differences were again seen in performance across LPC orders. The glottal 

source parameter that was altered did result in changes in the behaviour of the 

measurements, but a clear pattern was not evident. 

The findings from the synthetic speakers show that some systematic relationships do 

exist between speech parameters and the formant measurement errors. Whilst some of 

these remained relatively stable, LPC order was shown to be another factor which 

influenced the behaviour. Given the differences between real speech and the simple 

speech production model used to generate the synthetic speech, it was not apparent if 

these findings would be replicated for real speakers.  

The formant measurements from the real speech in the TIMIT corpus showed variation 

in performance for Praat’s standard tool across the speakers. When the overall results 

were divided according to sex, the mean absolute error for all three formants combined 

was 105.6 Hz for the men and 120.1 Hz for the women. However, when the speakers 

were ranked according to performance there was no obvious relationship with the 

speaker sex. The mean F0 values for the speakers were distributed as expected, and 

when the performance was compared with F0 no clear relationships were established. 

The same was true when performance was compared with vowel space usage, which 

was also distributed as expected across the sexes. 

These findings can be interpreted in several ways. Since the patterns found for the 

synthetic speech were not seen in the real speech, it could be argued that the synthetic 

speech did not sufficiently model the complexity of real speech, and that performance is 

governed by the interactions of several factors. Alternatively, comparing the average 

performance of each speaker with their mean F0 may have hidden patterns, which could 
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have been seen by considering the F0 value for each frame or token analysed. The same 

could be true for vowel space usage since this was also represented by average values.  

Another view is that the reference values from the VTR database were not accurate 

enough to provide a clear picture of the behaviour of the measurements. Perhaps the 

reality is that a combination of all three factors has led to these findings. In any case, 

based on these results, none of these parameters provide a basis on which to estimate 

the performance of a speaker. 

When the measurements from Praat’s standard tool were subject to the different analysis 

frameworks, the relative performance of speakers tended to stay the same across the 

frameworks i.e. those speakers who performed well for one framework did so for the 

others. However, when the performance of speakers was considered across the different 

formant trackers and analysis conditions, the relationships were more complex. These 

results show that the accuracy of measurements for individual speakers is to some 

extent dependent on the analysis tool used. 

For the analysis frameworks where the LPC order was permitted to vary across tokens, 

the smallest measurement errors were obtained when a range of LPC orders were used 

for each speaker. The specific orders, and the range of orders, varied across speakers. 

This finding is in agreement with Vallabha and Tuller (2004) who also showed that 

speakers have a range of optimum LPC orders rather than a single one. 

In summary, these findings demonstrate that the speaker is an integral part of the 

formant measurement process and that the performance of tools is not only governed by 

the analysis settings, but by the speaker being analysed. This makes the assessment of 

formant measurement tools problematic as their performance is to some extent 

determined by the material they are analysing, and the behaviour of the material can be 

different across tools. These issues all serve to highlight the complexities and potential 

difficulties in measuring formants. 

8.4 Guidance 

The ultimate aim of this thesis is to offer information and practical guidance which will 

assist analysts when making formant measurements. Whilst the discussion above and 

the results presented in the previous chapters provide helpful information and insights, 
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the current section sets out practical guidance and advice based on the findings of this 

research. 

The most general advice that can be offered is that measuring formants by LPC analysis 

should not be treated as a simple automatic process which can be left to a computer to 

carry out blindly. It should be clear from the research summarised in Chapter 2, and the 

tests described in this thesis, that formant measurements are influenced by many factors, 

including the software tool used, the analysis settings and the speaker. If analysts 

acknowledge that these factors will have a bearing on the formant measurements they 

make, and an understanding of their effects, then they will be in a better position to 

make more reliable measurements. 

To use a formant measuring tool properly, analysts must understand the process it 

follows to obtain the measurements. This must include, as a starting point, an 

understanding of the principles of LPC analysis, as described in Section 1.2.3, including 

its limitations. Without this knowledge it is difficult to understand the process used 

within a specific tool. The knowledge of a particular implementation must also include, 

as an absolute minimum, whether the tool performs formant tracking or not. In the 

author’s experience it is common for the term ‘formant tracker’ to be incorrectly used to 

refer to Praat’s normal formant measuring tool. Whilst the term is certainly more 

elegant than ‘normal formant measuring tool’, its use may well lead to the user 

believing that the tool conducts formant tracking, when it does not. The problem can be 

compounded by referring to the formant measurements overlaid on a spectrogram, as 

shown in Figure 1.8, as ‘formant tracks’, again reinforcing the misapprehension that 

they are the result of a formant tracking process. This may lead to the incorrect 

assumption that the results are more likely to be accurate as they come from a tracker 

and that the analyst will not intervene and adjust parameters, such as LPC order, in an 

attempt to obtain better measurements. By understanding issues such as these, and how 

the tool works, analysts should be able to better interpret the measurements, and adjust 

and select appropriate settings to achieve more accurate results. 

In addition to understanding the underlying measurement process of their software, 

analysts should also be aware of the influence of analysis parameters on the resulting 

formant measurements and any peculiarities that exist for their chosen tools. This is 

especially important for LPC order, as this has been shown to have a significant effect 
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on accuracy. Analysts should understand how LPC order relates to the underlying LPC 

analysis and how it influences the modelled LPC spectrum, as shown in Figure 1.9, and 

the number of poles, from which the formant measurements are derived. They should 

also be aware of the different ways in which the parameter may be specified in software. 

For instance, in Praat, LPC order is specified via the ‘Number of formants’ setting, 

leading to an LPC order that is twice this value. Specifying the parameter in this way 

gives rise to the unconventional and potentially confusing situation where the number of 

formants can be specified as half integers to select odd numbered LPC orders, i.e. if the 

‘Number of formants’ setting is 4.5 then the LPC order is 9. Additionally, the name 

used for this parameter may also reinforce the misconception that the tool is a formant 

tracker. Another example of a parameter that is specified in a non-conventional way is 

pre-emphasis in Praat. This specifies the frequency above which the pre-emphasis is 

applied rather than the more commonly used pre-emphasis filter coefficient.  

Care should also be taken with the selection of analysis settings for formant trackers, as 

these can also have a marked influence on measurement accuracy. The parameter 

‘Number of tracks’ in Praat or ‘number of formants’ in WaveSurfer and iCAbS was 

shown to affect the tracking process and does not simply determine how many formant 

values are logged or presented by the software. This is particularly important if 

measurements are to be made automatically and not compared with spectrograms. 

An understanding of the behaviour of the software used is perhaps best gained through 

the use of it with commonly encountered speech materials, such as poor quality or 

telephone recordings in the forensic context, combined with an understanding of its 

specific underlying measurement process and analysis parameters. Without some 

knowledge of the software’s underlying process it may be difficult to interpret the 

effects seen on measurements when analysis parameters are adjusted. So some 

responsibility must lie with the authors of the software to provide sufficient information. 

A user manual cannot be expected to include detailed information concerning the 

behaviour of the software in a wide range of scenarios, but information about the 

measurement process, and parameters of the tool, will be invaluable to analysts when 

attempting to interpret the behaviour of the software. In this respect, the Praat manual 

(Boersma 2010) is particularly helpful and contains a sufficient level of detail for 

analysts to understand the measurement process adopted by the software. In contrast, 

the WaveSurfer manual page (Sjölander and Beskow 2006b) contain no information 
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about the analysis method or the analysis parameters. Information is available within the 

documentation for the Snack Sound Toolkit (Sjölander 2004), which WaveSurfer is 

built from, but this documentation is unlikely to be found, or even known about, by a 

typical analyst.  

The way in which the software tools are used will have an influence on the accuracy of 

the measurements that can be made with them. The most accurate results will be 

obtained when the tools are used in an interactive way, where measurements are 

overlaid on spectrograms and the analysis parameters, such as LPC order, are adjusted, 

where necessary, on a token by token or even formant by formant basis. The results in 

Section 6.3.2 showed that the smallest errors occurred when the variation of LPC order 

across tokens and formants was least constrained. Overlaying the measurements on a 

spectrogram allows the analyst to make a visual comparison between the spectral 

representation of the signal and the formant values obtained over a range of analysis 

parameters. A decision as to whether to accept or reject the measurements obtained with 

a specific combination of analysis settings will be based on the degree of visual 

alignment between the measurements and the representation of the formants seen in the 

spectrogram. Such an approach cannot be guaranteed to obtain the most accurate 

measurements possible, since certain combinations of analysis parameters will produce 

similar measurements and attempting to determine which is the most accurate is 

problematic. This is due to the difficulty in determining the centre of formants within 

spectrograms and the fact that their appearance is also governed by the analysis settings 

used to generate the spectrogram. Additional consultation of FFT or LPC spectra may 

assist where the interpretation of the spectrogram is problematic. Whilst not a perfect 

approach, allowing analysis parameters to vary means that obviously erroneous 

measurements are rejected which would otherwise be accepted if the analysis 

parameters remained constant across all tokens and formants. The advice to adopt this 

method is counter to that offered by Rose (2002, p. 267) who recommends all settings 

be kept constant, but echoes the approach suggested by Ladefoged (1996, p.212) to try a 

range of settings. 

One significant drawback of this approach is that it is a time consuming process. 

Automated approaches in which measurements are made without any direct intervention 

by an analyst can still yield relatively accurate results, but there is a danger that the 

analysis parameters used may not be suitable for certain speakers, vowels or formants. 
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In general, it was found that the more specific the tailoring of the analysis parameters, 

the greater the level of accuracy that can be achieved. The issue then arises of how to 

tailor the settings. If a speech corpus contains both male and female speakers then it is 

likely that the sound files will be coded for sex. This can easily be factored into the 

analysis settings by applying a different maximum analysis frequency based on the sex 

of the speaker, as was done in this research. If the speech material has been segmented 

and the vowels labelled then this information can be used in Praat to modify the tracker 

settings on a vowel by vowel basis, which was shown to produce the most accurate 

results. 

The suitability of other approaches for determining appropriate settings will be 

governed to some extent by the amount of material being analysed and its variability in 

terms of factors such as the diversity of recording channels and the number of speakers. 

However, a method should be adopted to check the suitability of the chosen parameters. 

In the absence of any standardised approaches, this is perhaps best achieved by 

examining the measurements. This could involve overlaying measurements on 

spectrograms for a representative sample of material to gain an impression of their 

accuracy, and allow the identification of any problematic tokens. An alternative 

approach could involve examining the distributions of measurements to detect the 

occurrence of obviously erroneous values. Since automated measurements can be made 

repeatedly, it could be beneficial to obtain the measurements with different sets of 

analysis parameters and examine the variation in the resulting measurements. This 

could involve checking the distribution of measurements, in order to obtain an overall 

impression of the data, and determine how sensitive the measurements are to the 

adjustment of parameters. Until more systematic methods for determining suitable 

parameters are developed, such as the one discussed by Vallabha and Tuller (2002, 

2004), then the application of knowledge and checking of measurements provides the 

best solution. 

For measurements obtained by either an interactive or automated method, the default 

settings of the software may produce accurate measurements. However, they should be 

treated as a useful starting point and not universally applied without due consideration 

to the material being analysed. An obvious example is Praat’s ‘Maximum formant 

frequency’ setting, which has a default value 5,500 Hz that is more appropriate for 

female rather than male speakers. Since the vast majority of recordings encountered in 
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forensic casework involve men rather than women, this default setting is not appropriate 

most of the time. Another example from Praat is the default setting of 3 for the ‘Number 

of tracks’ parameter for the tracker. This was shown to give particularly poor 

performance for F3 measurements. Given the factors that have been shown to influence 

formant measurements, both in this thesis and in those studies described in Chapter 2, 

recommending suitable settings for different scenarios would be unwise. As already 

stated above analysts should select appropriate settings based on their knowledge of the 

software and the material being analysed. 

The validation of methods and tools used in forensic analysis was discussed in Section 

1.3.5. The research presented in this thesis will be helpful to those tasked with designing 

and implementing validation exercises, and writing standard operating procedures. 

Based on the outcomes of this research it is apparent that a key element of validating 

formant measurement methods must be the competency testing of analysts who make 

the measurements. An analysis tool may be shown to produce accurate results for a 

range of speakers and recording conditions, but if an analyst is not able to use the tool 

effectively by selecting suitable analysis parameters and making accurate 

measurements, then the method will not have achieved its aim. Another important 

consideration in the forensic context is the consistency of measurements both for 

individual analysts and across analysts. Achieving consistency in measurements will 

reduce the dependency of the results on the individual analyst and allow measurements 

and findings to be repeated by others. This can be achieved by following the guidance 

given so far and adopting analysis approaches such as those used by Duckworth et al. 

(2011). These included using standard settings for some parameters, but allowing LPC 

order to vary, and making measurements at a single time point in a relatively stable part 

of the token around its maximum intensity (2011, p. 40). 

Because the analysis parameters selected can have a large influence on the accuracy of 

measurements, the analysis settings used and the location in a sound file where the 

measurements were made should be logged. This not only provides an accurate record 

of the work carried out, which is a general requirement of forensic analysis, but makes 

the reviewing of measurements easier. In the forensic context, this may be done by a 

colleague who is peer reviewing an analysts work, or by another expert. Similar advice 

is given by Duckworth et al. (2011). 
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The logging and reporting of analysis settings is recommended for speech research more 

generally, where formant analysis is conducted. Accurately reporting the method 

followed, including the analysis parameters used, allows others to critically assess the 

methodology and potential accuracy of the measurements. This permits a better 

understanding of the results and their implications. Simply stating the software that was 

used to make the measurements is wholly insufficient. Accurate reporting also allows 

work to be replicated. Had further information been provided on the method followed in 

the studies reported by García Laínez et al. (2012) and González et al. (2012), which are 

discussed in Section 7.4.3, it may have been apparent why their claimed performance 

for WaveSurfer was much better than the other studies discussed in Section 7.4 and 

those presented in this thesis. 

Since the research presented has compared the performance of different software, a 

potential outcome might have been to recommend one tool over the others. However, 

the results did not indicate a clear and universally valid choice. In common with the 

guidance offered above, it is the analyst’s knowledge of the particular tool, the analysis 

parameters chosen and the way in which it is used that will have greater influence on its 

performance than any fundamental differences between the tools. Other factors may 

influence the choice of software, including the ease with which parameters can be 

adjusted, how the measurements are displayed and logged, and how easily the 

measurement process can be automated. The ability to automate certain tasks via scripts, 

as permitted in e.g. Praat, is particularly useful and has facilitated the research reported 

in this thesis. Some of the recommendations given above involving repeated 

measurements with different settings would be particular difficult to undertake, 

especially on large datasets, without some form of automation. The automatic logging 

of measurements, together with the settings used to obtain them and the timings from 

which they originate, can significantly reduce the time burden when measuring formants 

interactively (French and Harrison, 2004). 

8.4.1 Impact on Forensic Analysis 

The main motivating factor for the research conducted in this thesis is the lack of 

information and guidance for forensic practitioners concerning the measurement of 

formants, as discussed in Section 2.3.1. This thesis not only presents results that 

demonstrate the magnitude and behaviour of errors that can be encountered across 

different software, settings and speakers, but it also provides specific guidance. If 
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forensic analysts apply the guidance presented in this chapter, and critically assess their 

measurements in light of the experimental findings, then they should make more 

accurate formant measurements and be less likely to misinterpret them. This should lead 

to more reliable conclusions concerning speaker identity and disputed content. 

Ultimately, the impact of this work is that the risk of a miscarriage of justice is reduced.  

The results of the experiments have shown the magnitude of errors that can occur, and 

provided insights into the influence of the measurement tool, the analysis settings and 

the speaker on the accuracy of formant measurements. This work should raise 

awareness of these factors within the forensic community, and by gaining an 

understanding of them, analysts should give more critical consideration to them when 

interpreting measurements and drawing conclusions. At present, the telephone effect on 

formants is well known within the field, often being cited in research and taken into 

account when interpreting measurements. However, little explicit acknowledgement is 

given to the influence of software, settings or speakers either in forensic research or in 

casework. By drawing attention to the importance of these factors this situation will 

hopefully change. 

At the most fundamental level, the findings reinforce the point that all formant 

measurements must be assumed to be inaccurate to some degree. Forensic analysts must 

always consider this when making and interpreting measurements. If this is coupled 

with an understanding of the basis of LPC analysis and knowledge of the operating 

principles of the software used, then these factors alone should allow forensic analysts 

to begin critically assessing the likely accuracy of measurements rather than blindly 

accepting them as accurate. 

At a more specific level, the findings show the errors obtained at LPC orders which 

produce the most accurate measurements tend to be distributed symmetrically around 

zero (see for example Section 6.3.1.1). The implication of this is that distributions of 

relatively accurate formant measurements can appear to be wider than they truly are. In 

sparsely populated distributions the opposite is also possible, so distributions may 

appear narrower. This has implications for speaker comparison analysis where 

distributions of measurements are compared across recordings and is especially relevant 

where there is only limited or non-existent overlap, since this may be a consequence of 

errors rather than a true reflection of the similarities of the distributions. This applies 
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equally to tests which rely on manual comparison as well as automatic ones such as the 

MVKD or GMM-UBM approaches. Analysts must therefore take this factor into 

account when conducting such comparisons and interpreting the outcomes. 

The experimental results also revealed systematic interactions between the errors and a 

number of speech and analysis parameters. For example, the results from the synthetic 

speech showed a tendency for errors to be larger for higher fundamental frequencies. 

This relationship is particularly important for analysts to take into account when 

interpreting measurements from the speech of women and children as they generally 

have higher fundamental frequencies than men. Interactions were also seen across the 

F1~F2 vowel space with the largest errors tending to occur at the edges of the space. 

However, the specific patterning was different across the formants and the measurement 

approaches adopted. Therefore, as a general principle, analysts should be more cautious 

of measurements originating from the edges of a speaker’s vowel space. This guidance 

is particularly relevant to measurements made using WaveSurfer, or Praat’s tracker with 

default settings, as the errors at the edge of the space were shown to be associated with 

the tracker employing reference formant values for a central vowel. 

The factors that were investigated revealed general tendencies in the errors rather than 

rigid relationships which applied universally and could be accounted for in a consistent 

manner. Whilst this finding is less problematic where a large number of tokens are 

analysed and the emphasis is on the overall distribution of the measurements, it presents 

issues where an individual token or small number of tokens are concerned. For a single 

token, it cannot be known how the influence of each factor has combined to affect the 

overall accuracy of the measurements. Analysts should be particularly cautious when 

undertaking disputed utterance cases, where the focus is often on the measurements 

from a single token. Great care should be taken to ensure that the most appropriate 

settings are used and that the measurements are checked against spectrograms and other 

spectral representations to ensure they are as reliable as possible. Extreme caution 

should be applied when interpreting the measurements if such checks cannot be 

satisfactorily done, which may be the situation with poor quality or noisy recordings. 
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8.4.2 Guidance Summary 

The guidance and advice offered above can be distilled into the following three key 

points, which if applied, should lead to analysts making more accurate formant 

measurements: 

 Understand the principles of LPC analysis and how the analysis parameters can 

affect the resulting measurements 

 Understand how the LPC analysis process is implemented in the software being 

used and how the analysis parameters configure the underlying measurement 

process 

 Based on this knowledge, tailor the analysis approach and the analysis 

parameters to the speech being analysed, at the formant, token or speaker level, 

where practical. 
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Chapter 9 Conclusions 

9.1 Thesis Summary 

In Chapter 1, formants were introduced and defined with reference to the source-filter 

model of speech production. Methods of measuring formants were discussed, with 

particular attention paid to the LPC approach, as this was the method used throughout 

the thesis. The chapter concluded with a discussion on the use of formant measurements 

within the field of forensic speech science, this being the area from which the 

motivation for this research originated. 

Chapter 2 summarised previous research relating to the accuracy of formant 

measurements. This focused on the measurement method, variability introduced by the 

analyst and technical aspects of the speech signal. The chapter discussed the limited 

advice concerning formant measurements, and highlighted the lack of guidance relating 

to commonly used software. The overall aim of the thesis was presented, which was to 

provide such guidance. The research questions were stated, which focused on 

investigating the influence of three factors on formant measurement accuracy: the 

software, the analysis settings and the speaker. 

In Chapter 3, the findings and a further analysis of results from a pilot study were 

presented, which examined the variation in formant measurements encountered across 

three commonly used software tools. Formants were measured in recordings of two 

speakers reading a word list, made both directly via a microphone, and over a telephone 

line. The analysis parameters of LPC order, frame length and pre-emphasis were varied. 

Differences were found in the variability of the measurements across the software, the 

speakers, the vowel categories and recording conditions. Of the three analysis 

parameters, LPC order was found to have the greatest influence on the measurements. 

Whether the measurement tool used a formant tracking process or not also had a marked 

effect on the measurements. The outcomes of this study helped to shape the main body 

of this research. 

The formant measurement errors from a single synthetic speaker were examined in 

Chapter 4. Synthetic vowel tokens based on realistic formant values were generated 

across a range of fundamental frequencies. The formants of the resulting vowels were 

analysed using Praat’s standard formant measuring tool for a range of LPC orders. The 
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measurement errors were examined for the three formants across the vowel space. 

Systematic differences were observed in the error surfaces for the three formants, which 

were influenced by LPC order. The magnitude of the errors was found to increase as 

fundamental frequency increased. Imposing different measurement strategies on the 

measurements, which allowed LPC order to vary across tokens, and which ignored 

Praat’s formant numbering approach, showed a marked improvement in the accuracy of 

the measurements.  

In Chapter 5, two sets of synthetic speakers were generated in order to examine the 

influence that different speaker characteristics might have on measurement accuracy. 

For the first set of speakers the structure of their third formant across the F1~F2 vowel 

space was altered. Measurements from these speakers showed that changing this 

structure had the greatest effect on F3 errors, which were largest for the synthetic 

speakers with higher average F3 values. The second set of speakers that were created 

had different glottal source waveforms. These speakers exhibited larger errors than the 

first set at certain LPC orders, which were a consequence of localised regions in the 

vowel space that had poor performance. Again, the behaviour of the measurements was 

found to differ across LPC orders. 

Chapter 6 returned to the analysis of real speech and examined 518 sentences from the 

TIMIT corpus for which a set of hand corrected formant values were available. These 

were used as reference values from which formant measurement errors were calculated. 

Again, the measurement were made using Praat’s normal measuring tool across a range 

of LPC orders. A number of measurement strategies were imposed on the results to 

reflect the ways a real analyst might make measurements. Allowing the LPC order to 

vary across the three formants and across tokens was found to produce the greatest 

reduction in the overall error. The performance of individual speakers was compared 

with the speaker characteristics of sex, average fundamental frequency and location 

within the vowel space. However, no strong relationships were found. Performance was 

shown to vary across speakers, as was a preference for different ranges of LPC orders. 

In Chapter 7, the same speech material was analysed using three formant trackers with a 

number of different analysis parameter combinations. The measurement errors were 

analysed in similar ways to those in the previous chapter. Unsurprisingly, the 

performance of the trackers was found to be less sensitive to variation in LPC order. 



299 

However, certain combinations of parameters resulted in poor performance. Allowing 

the LPC order to vary across tokens again produced a reduction in the magnitude of the 

errors. Overall, the most accurate measurements were obtained when the reference 

values for Praat’s tracker were altered on a token-by-token basis. The results from the 

individual speakers were compared across the formant trackers and speaker 

characteristics, but no clear patterns emerged. 

The discussion in Chapter 8 brought together the key findings from the previous 

chapters and considered them in light of the three factors investigated: the software, the 

analysis settings and the speaker. This was followed by statements of guidance based on 

the findings. The guidance suggested that understanding the principles of LPC analysis, 

how it was implemented in specific software and the influence of analysis parameters 

were important when making formant measurements. By using this knowledge to tailor 

the analysis approach and analysis parameters, analysts could be expected to make more 

accurate measurements. 

9.2 Summary of Research Contribution 

The research presented in this thesis has fulfilled its overall aim by providing guidance 

and information that will assist analysts in making more accurate formant 

measurements. The experiments conducted explored the influences of the software tool, 

the analysis parameters and the speaker on formant measurement accuracy. Not only do 

the results of these experiments form the basis of the guidance presented, they 

contribute to knowledge concerning the accuracy of formant measurements and the 

factors that affect them. 

The research is the first comprehensive investigation of the performance of software 

currently used by analysts to measure formants, which is based on a large set of data 

from a wide range of speakers. It is also the first study to provide guidance on the 

measurement of formants based on such an empirical investigation. 

The contribution of this research is of particular importance as the formant 

measurements were made in software commonly used by analysts. The results and 

findings are therefore directly applicable to those specific tools. Since these tools are not 

restricted to a specific narrow discipline, the outcomes of this research can influence 

formant analyses conducted across a range of fields. By aiming to increase the accuracy 
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of the formant measurements this work has the potential to improve the performance of 

other analysis techniques which are based on formant data. 

9.3 Further Research 

The research presented in this thesis raises questions and opportunities for further 

investigation that also have the potential to improve formant measurement accuracy. 

From a practical perspective, it is sensible to ask to what extent the guidance provided 

leads to greater accuracy in formant measurements. This could be tested by assessing 

the performance of analysts before and after receiving the guidance. Comparison of 

their performance would demonstrate the effectiveness of the guidance and could reveal 

opportunities for it to be improved or refined. As this research has suggested, and prior 

research has shown, the analyst is a key component of the measurement process, so a 

better understanding of the strategies they employ, and their ability to apply the 

guidance, would provide useful insights. 

In terms of the investigation of the effects of analysis parameters, a potentially 

important one that was not considered in this study is the maximum analysis frequency. 

This parameter has a marked influence on the LPC analysis, which is inextricably 

linked with the LPC order. However, it is not apparent to what extent adjusting this 

parameter, perhaps in combination with the LPC order, could improve the accuracy of 

formant measurements. The scripts for performing the measurements and analysing the 

measurement errors already exist, so examining its effects would be straightforward. 

Since the parameter controls the frequency bandwidth over which the LPC analysis 

occurs, it may have a significant influence on recordings with a restricted frequency 

bandwidth, such as those from telephone lines, which are often encountered in forensic 

casework. 

Whilst the findings of the present study are applicable to the forensic context, one 

forensically relevant parameter that was not considered in detail is the quality of the 

recording. The findings from the pilot study showed differences in the accuracy of the 

measurements between the microphone and telephone conditions. Since telephone 

recordings are frequently encountered in casework, the investigation of their influence 

on formant measurements would be a welcome extension of the present research. The 

findings would also be of relevance more widely where phonetic data are collected via 

the telephone. Again, this could be achieved easily using the materials already analysed, 
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by re-recording the speech via various telephone connection types. To ensure 

comparability of the results, care would need to be taken to ensure that the VTR 

reference values were correctly aligned with the new recordings, since this has been 

shown to affect the results. The analysis could be conducted in parallel with 

investigations into the influence of the maximum analysis frequency parameter.  

Another aspect of this work which deserves further investigation is the relationships 

between the speaker, the analysis settings and their performance. A greater 

understanding of the interdependency between these factors would allow a better 

informed selection of analysis parameters and understanding of the variation in 

performance that can be expected across speakers. A starting point may be to examine 

in greater detail the results from the 24 speakers for whom eight sentences were 

analysed. The creation of a simple test to pre-determine suitable analysis parameters 

would potentially lead to improvements in performance. 

Finally, the further development of formant trackers may negate the requirement to pre-

determine standard analysis parameters. The iCAbS tracker showed strong potential in 

this respect. The principle of comparing the signal with LPC models obtained from 

different sets of parameters mirrors the analysis strategies that were shown to give better 

performance. Again, based on the results presented, developing a tracker in which the 

LPC order could vary across formants would likely yield improvements in performance.  

9.4 Conclusion 

The thesis has demonstrated that the software used, the analysis settings employed and 

the speakers being analysed all influence the accuracy of formant measurements. By 

using knowledge of LPC analysis, its specific implementation in software and 

understanding the influence of analysis parameters, analysts can make more accurate 

measurements. It is hoped that the guidance provided will be followed and that more 

accurate formant measurements will be made. 
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