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Abstract

This dissertatiorassesses the contrimn of CCS in mitigating climate change,
investigates Computational Fluid Dynamics (CFD) in aiding the development of CCS
technology and presents the results afir and oxyfuel combustionexperimets

conductedn a 250 kWfurnace

Coal combustionwasinvestigated usingan-preheated and preheated &reheating
increasd the heat input to the flame atftk radiative heat transferear the flame
region enhanang flame stability and burnouRadiativeand convectivéeat transfer
measurements showeldat the total heat transfeis manly influencel by thermal
radiation data on whichs essentialn validating newly developedadiationmodels

Oxy-fuel experiments produced flue gagh over90% CO;, concentratior{allowing
CCSwithout chemical scrubbingExit concentrations of NO and S@creased with
reduced recycle ratio, largely due ttee reduction in dilution.However total NO
emissions reduced by8%compared to aifiring, whichwas attributedo low levels

of atmosyheric N> in the oxidiser angignificantreductiorsin fuel NO formation

Air and oxyfired peak radiative heat transfer correspondeal tangeypical of coat

fired boilers. For the oxycases, iffurnace temperatures and heat flux increased with
total & concentrationRadiative heat transf@ncreasedvith highergas emissivity.
The results indicated thdhe airfired temperature profiles can leatcred when
retrofitting to oxy-firing by modifying therecycle ratio, and the optimuratio lies
between lie invesigated cases of 27% and 30% concentrationgusing a dry
recyclg. The radiative heat flux profiles catsobe adjustedTemperature and heat
flux measurementmdicateddelayed combustion due to the higher heat capacity of

COz anddelayed mixng between the Primpand Secondary/Tertiary streams.

CFD modelling was undertaken on 250 k& 2.4 MW coalfired furnaces under
air-firing conditions, and a 508W. utility boiler firing coal, abiomass blend, and
100% biomassinderair and oxyfuel conditions Using wet recycle, the optimum
total O- concentration lies betweeR5 and 30%, where afired heat transfer
characteristics can be matched without significaatificationswhen fring coal or

thebiomass blend, but not 100% biomass.
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Chapter 1

Introduction

1.1 The Issue of Climate Change

The broader context for this project is the continuing global effort to mitigate the
effects ofClimateChange. In 2013 the Intergovernmental Panel on Climate Change
(IPCC) published it&th assessment report, which reconfirmed that human adgtivity
primarily the burning of fossil fuels, industrial activity and land use chainges led

to a dramatic increase in the concentration ot @Cthe atmosphere which, along
with other secalledgreenhouse gases (&HN20, CFCs), is largely responsible for
climate chang€IPCC, 2013)Figurel1.1 shows the increase in global anthropogenic
CO; emissions sincéhe industrial revolution. There is a particularly dramatic rise
since circa 1950, with current annual £@missions stand at over 30 thousand
gigatonnes. This increase correlates to changes in atmospherico@€entration
shown inFigure 1.2, which when compared to the data from ice core records over a
400,000 year period, illustrates the historic nature of the increase thatdased

over the last century.
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Figure1.1. Global CQ emissions from FossHuel Burning, Cement Manufacture,

and Gas Flaring, in gigatonn@SDIAC, 20149.
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Figurel.2. Record of past variations in atmospheric;€@centrations from ice core
records (Met Office, 201).

The level of CQ concentration in the atmosphere currently stands at 398 ppm
(USNOAA, 2014, which is an almost 40% dnease since the beginning of the
industrial revolution and is substantially higher than levels recorded in ice cores from
the last 800,000 years (IPCC, 2013). The level is predicted to reach 550 ppm by 2050
(Stern, 2008 In order to avoid the most dangerous effects of climate chiawbech

includes the melting of glaciers and arctic ice sheetqathd di f i cati on of
oceans, extreme weather conditions such as droughts and floods and other possible
consequences such as food supply shofRggal Society, 20055tern, 2005 which

could even lead to civil unrest and the destabilisation of developing countries, mass
migrations of refugees efcit is recognised by the Copenhagen Accord that the global
average temperature rise must not exceed (ZEP, 2010 According to Stern

(2006, at the current emissions trends, there is a 77 to 99% chance that this 2°C rise
will be exceeded. Therefore, in order to keep the temperature rise Ihédoovitical

2°C, global emissions must be stabilised before ZBRQ0, 2009 and reduced by 50%

below 1990 levels by 205@CC, 2009.

When modelling future climate change for its Fifth Assessment Report (2013), the
IPCC identified four scenarios (Representation Concentration Pathways, or RCPs),
which wereidentified by their estimated total radiative forcing in year 2X@ative



to 1750: RCP2.6 (2.6 ¥?); RCP4.5(4.5 Win?); RCP6.0 (6.0 Wi?); and RCP8.5

(8.5 WIm?). These corresponded to one mitigation scenario (RCP 2.6), two
stabilization scenarios (RCP 4.5 & RCP 6.0), and one scenario with very high levels

of greenhousgas emissions (RCP 8.5). These were chosen to represent a range of

likely climate policies (or lack thereof) during the course of the coming century, each

resulting in different land use practices and levels of greenhouse emissions leading to

2100. The pedictions for global surface temperature increases are shokigure
that a

1.3. |t

the 2°C target identified above.

shows

starkly

policy
of CO; emissions (RCP8.5), is projected to lead to temperature rises well in excess of

historical
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Figurel.3. Time series of global annual mean surface air temperat®@€(2013.

Given our continuing reliance on fossil fuels (in 2007 they provided over 80% of the

worl doés

large quantities of C®emissions, mitigating climate change will be a major

challenge. Indeed, recent figures suggest that fossil fuel power plants, together with

tot al
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of

p (ZER 20103 the buenmg of whichu graaluces)

heavy industryproduce 52% of global COemissions- approximately 15 billion
tonnes of CQper year(ZEP, 2103.
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1.2 Energy Sector

The 4" IPCC report showed that the energy sector is a key contributor o CO
emissions. In 2004 it was responsible for 26% of the total anthropogenic CO
equivalent emissionPCC, 2007. This is due to the major part of tledectricity

being generated from fossil fuels, with over 41% coming from coal. In the UK coal
provided 29% of the electricity in 2012 (World Coal Association, 20fiure1.4

shows the projected electricity generation trends for the next two decades, indicating
a significant increase in energy demand, which is predicted to rise by 50% over the
next 20 years alone. This increase is driven primarily by population lytvet world
population is predicted to grow from 7 billion to 9 billion by 2050), economic
development and rising standards of living in the developing parts of the {XBfRY
20103.

trillion kilowatthours
40
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| Matural gas

30 M Coal
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25

2007 2015 2020 2025 2030 2035
Figurel.4. World net electricity generation by fugEA, 2010.

It is clear that to meet this demand a combination of improved energy efficiency (both
in the generation sector and at end uae)l increased reliance on low carbon energy
sources will be needed mitigate climate chand®ielke, 2009 Over the longer term

this inadeased demand is expected to be met entirely from low carbon energy sources.
These technologies include renewables (such as solar, wind, hydroelectric and
geothermal power as well as sustainably farmed biomass) and nuclear power (and in
many decades to canperhaps power provided by fusion reactors). However, each of

these technologies face unique challenges. Nuclear power, for example, is very



expensive, due to the high cost of construction and decommissioning, and also has

issues regarding safety and th#ficulty of long term waste disposdFyfe, 1999.

Although many renewable technologies share the problems of high cost, the main
challenges derive from their unreliable and unpredictable ndtigere 1.5, which

shows the significant changes in the U
importance of technologies that are reliable, flexible and capable of adjusting to
sudden changes in camaption. Balancing an intermittent demand with generation
technologies that are inherently intermittent is too great of a challenge to be met in

the near future.
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Figurel.5. UK electricity demand &eneration by fuel typeover a period of 9 days
(ELEXON, 201).

Theref ore t he FlgiEedd)shatenemydgereratiorowillsconiinue to

rely on fossil fuels over the short and medium term are justified.

From the major fossil fuel sources, coal is the most abundant with proven reserves of
109 years, Wwereas natural gas reserves are estimated to last for 56 years, and oil for
53 years (based on 2012 reserves and production (8fs2013.



As a first step towards reducing the carbon intensity of fossitkfaséd power
generation, increasing the efficiency of existing technologies is required. Although
efficiency increases alone cannot reduce emissions to near zero, theglwitbh

lower CQ emissions per unit of energy generated. While numerous cost effective
enduser efficiency improvements, such as home insulation, have been identified and
are being promoted, these fail to realise carbon savings on the scale required to
mitigate global C@emissionsKigurel.6). On the other hand, this figure shows the
substantial abatement potential of CCS technologies, although these come at much

higher costs.

Abatement costs vs "business as usual,” 2030

$ per metric ton of carbon dioxide equivalent Low-penetration wind
Cars plug-in hybrid Gas plant CCS? retrofit
Degraded forest reforestation Coal CCS retrofit
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Residential appliances Degraded land CCS new build
Retrofit residential HVAC? restoration Coal CCS new build
50 Tillage and residue management  Znd-generation
Insulation retrofit (residential}  hiofuels
Cars full hybrid Building efficiency || | Nuctea"
Waste recycling new build
0 L L
lD]:F . . |
EL gjriaer:ﬁ :lml restoration E?;;E:szlig}iring
Grassland management
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‘ lﬂlfdduced slash-and-burn agriculture conversion agriculture conversion
mall hydro . , :
1 I 1st-gEnerat|'un hiofuels High-panstration wind
-100 . Solar PV4
_Hu:e management _ Solar CSP5
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Electricity from landfill gas
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Cropland nutrient management
Motor systems efficiency
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—2p0 Lighting: switch incandescent to LEDE (residential)

10 20 30 38

Figurel.6. CO; abatement cost and potential of a range of technoldlieKinsey
& Company 2014).

Abatement potential,
gigatons of carbon dioxide
equivalent per year

Biomass is a promising alternative fuel source that can dgecbwith or replace,
coal in pulverised fuel boilers. When sustainably produced, the process can be
considered clos® carbon neutral because theL€leased during the combustion of
the biomass is removed from the atmosphere by a new generation of crops. Biomass
also contains less sulphur and nitrogen, lowering bdfh &d NOx emission
compared to coal firing. Furthermore, as part of a balanced energy mix, bicemass
increase energy security (DECC, 2012bhere is considerable experience of co
firing small amaints of biomass with coal in cefited power stations; and in the UK,

6



the government has provided additional incentives for full conversion to biomass
firing in the form of Renewable Obligation Certificates (DECC, 2012&jowever,

given the constraints {sh as the availability of suitable land, and concerns that
switching agricultural production away from food will lead to higher prices, or even
shortages of staple foodstuffs), it is clear that ealhkemain a key part of the energy

mix for at least seeral decades (see IEA predictiondHigure 1.4). This is because
substantial reserves of coal remain (see above), and many countries, both advanced
and developing @auntries, currently rely heavily on coal (séable1.1). Therefore,

CCS technologies for caoéifing will be essential for any successful effort to mitigate

global climate change.

Tablel.1. Share otoal in the worldwide energy generation mix in 2Q\\rld Coal
Association, 2014).

South Africa [ERSEL Indonesia 44%
Poland 86% USA 43%
PR China 81% Germany 43%
Australia 69% UK 29%

68% Japan 27%

1.3 Carbon Capture and Sequestration

CCS is widelyregarded as having the potential to enable the continued use of fossil
fuels over the coming decades whilst also reducing thee@@sions of the sector to

near zero. Thus, it promises to enhance the energy security of nations with significant
fossil fuelreserves, and enable those nations that rely on energy imports to maintain
a more diverse range of supply. Another advantage of CCS is its technological
maturity for short term deployme(florin and Fennell, 2030Stern(2006 stresses

the economic benefits of early action in climate change mitigation, as opposed to a
reactive approach of dealing with the sequences down the line. According to the
IEA (2010, CCS is an essential part of the strategy to achieve substantial CO
reductions by 2050. They estimate that the cost of mitigation is considerably higher if
CCS is not included in the strategy to



0Bl ue Map scenari o6, 19% of the emissi
35 coal fired and 20 gas fired CCS units of 500 MW capacity).

When it comes to the UK, CCS has been endorsed by both the UK Gove(aaht
and the industry lead coalition of the APGTF (2014). In order to achieve the 2050
targetof reducing the emissions of the power generation sector to close to zero, while
maintaining energy security and diversity, HM Governmé&®09 plans the

implementation of CCS, with the potential to secure close to 90%r&fDctions

across the energy sector, as well as significant reductions within heavy industry (e.g.

cement manufzure) and even transport (if widespread electrification of vehicles is
introduced). As of 20Q%ll new coal and gas fired plants, over the 300 MW net

generation capacity, have to be built ready for retrofitting with a CCS plant.
CCS involves three techlogical components:

1 first, the technology to capture the €@missions of large point source
emitters such as power stations éare discussed in Chapter 2).

1 second, the means to transport the capturegt@€@he storage site. The
cost of storage is miinear with increasing sca{&atzer, 2007, therefore
newly built power stations should be placed close to a storage site and
ideally in clusters, possibly together with heavy industry plants suitable to
CCS such as cement manufacturing or refineries, to take advantage of
economie®f scale. In the UK there are many such suitable areas, dense in
power stations and heavy industry and relatively close to depleted natural
gas reservoirs under the North and Irish Sea, for example in the Yorkshire
and Humber region.

1 and thirdly, its injetion to deep geological formations, such as deep saline
aquifers or depleted oil and gas reservoirs, where it is initially trapped in
the small pores of the porous rock, then it migrates through the formations
and over the longer term it undergoes mirisadiion and it is considered

immobile.

or



The liquid CO:2
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reservoir
(porous rock)

Figurel.7. Schematics of CC&EP, 2010a

Each of these 3 components is a separate scientific field in its own right, and this thesis
looks only at the first part of this procestowever alltechnologies have now been
developed sufficiently to allow the deployment of CCS in the near futurseTdan

be categorised as peembustion, postombustion and oxjuel combustior(Florin

and Fennell, 20)0and will be explored in more detail in Chapter 2.

1.4 Objectives and Aims

Thisthesishelps advance our understanding of the-fwgl combustion process, and

the role that it my play in the development of technologies for Carbon Capture and
Sequestration. It presents the results of an experimental programme conducted on a
250kW solid fud combustion test facility (located at the PACT national facilities near
Sheffield), and investigates CFD modelling for dxgl combustion.

Chapter 2 presentsliterature review of experimental oxyel research. It describes
the physical processes tagiplace during combustion, as well as their applicability
to oxyfuel Computational Fluid Dynamic¢CFD) modelling, which can be an
important tool in aiding the design and development of this promising technology.



Chapter 3 provides a detailed descriptidrihe facilities and measurement devices.
It describes the fuel used and the experimental conditions investigated. Experimental
practices and estimation of measurement errors are also presented, along with the

experimental schedule.

Chapter 4describes the combustion of coal unbeth air- and oxyfired conditions
in a stateof-the-art 250 kW CTF. A range of measurement techniques were used to
obtain a detailed picture of the combustion process, with a particular focus on flame

characterisatio and heat transfer performance.

Measurements presented and discussed include radiative and total heat flux taken
along the length of the furnadégame temperature profiles, flue gas emissions of O
CQO,, CO, SQand NQ as well as burnout.

Chapter He<ribes the CFD modelling studies, beginning with pilot scale simulation

work on the 25&W facility. The CFD results are compared to the resulitsined

from the experimental programme. In addition, modelling work conducted on a
commercial 500 MW powetation is outlined. The investigated cases on this include

the validation of the aifired base case against data provided by the power station.
Then the theoretical cases of converting to biomadging and oxyfuel operation

are analysed.

Chapter Bummarises the major findings and makes suggestions for future work.
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Chapter 2

Literature Review and Combustion Modelling

2.1 Chapter Overview

This chapter outlines the literature that relates to both the experimental and the CFD
modelling aspects dheresearchnto air andoxy-fuel combustion. A brief summary

of the three major CCS technologies is provided. Then, the chapter describes the
physical processes taking place during combustion, as well as their applicability to

the two methods that were utilised: expeggntal investigations, andomputational

Fluid Dynamics(CFD) modelling. These are important in aiding the design and

development of commerciakale CCS technology.

2.2 Commercial CCS Technologies

Three technologiepre-combustion, postombustion and oxfuel combustionhave
been developed to a sufficient extent to allow the deployment of CCS in the near
future (Florin and Fennell, 2030

2.2.1 Pre-combustion

A schematic of the technology is showrfFigure2.1. The main feature of the process

is the conversion of solid fuel sources (including coal) to gaseous fuel, called synthesis
gas or O6syngas6, in a gas.f@ieluadergoedpartial ng t
oxidation to provide energy for the conversion procébs.produced syngas consists

mainly of CO, H, CHs, CO, (plus tars and other trace components, the exact nature

and amount of which will depend on the composition of the fusic). In the next

step, the syngas is reacted with steam in a wgasgrshift reactor where the CO is
converted to Cg) which produces a stream with a high £&Oncentration, typically

50%. The CQthen can be separated from the stream at high tempesatipzessure.

At the end of this process a gas mixture, consisting primarily,dgtroduced which

can be combusted in a gas turbine or used to run a fuel cell.
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Figure2.1. Schematic of the pre combwstiproces¢ZEP, 2010a

One of the main disadvantages of the process is the high dbst gésifier, which
requires continuous operation of the unit in order to be cost effective. This reduces
the flexibility of this technology and makes it more suitable only for base line
operation (unless, at times of low electricity demand, the excessdgyd can be
stored on site or used as a feedstock for chemical manufacture p{gdess)and
Fennell, 201D

Another problem of the process is the issue of complexity, which imposes challenges
for flexible operation. Even the commercially available IGCC plants still have issues

with the operability and availability of the plafitatzer, 2007.

However, an advantage of the process (over pastbustion) is that the scrubbing

plant runs at high temperature and pressure and the partial pressure iof ti®
treated stream is high, and thus enables the use of physical scrubbing agents, which
bind to the CQless strongly than chemical agentsl dnerefore their regeneration
requires less energy. The current energy penalty ofcqmébustion plants is
approximately ™% (APGTF, 201).
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2.2.2 Postcombustion

This technology is the least intrusive option. It does not require modifications to the
power plant and its boilershd involves attaching a scrubber at the end of the
generation plant. Thus one of the main advantages of the process is retaining
operational flexibility of the power plant. A schematic of the process is shown in

Figure2.2.

Turbine j

Electricity

+ Water

Chemical
wash

Carbon dioxide + Nitrogen + Water

Compressed
and dehydrated

Transport
and storage

Figure2.2. Schematic of the post combustion prod@ssP, 2010a

The flue gas from the boiler needs to be cleaned as the scrubbing process is
particularly sensitive to the impurities that are present. The flue gas is then drawn
through the scrubbing unit at typically 80°C and atmospheric pressure where
approximately 90% of the GGs removed and the remaining flue gas, which consists

largely of N and BO and some Cg&)is sent to the chimney.

Due to the low concentration of GGn the flue of conventional power stations
(typically 12-14%), the process requires the use of chemical scrubbers, which bind to
the CQ and carry it to a second unit where the@©Orecovered and the scrubbing
solvent is regenerated. However, regeneration requires large amounts of heat (20% of
the generated powethus imposing a parasitic load on the power plant which lowers

its overall efficiency by 12% (APGTF, 2011). Anothésatlvantage of the process is

that the scale up and capital and operational cost of the capture plant is significant,

due to the large volume of flue gas which needs to be treated.
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2.2.3 Oxy-fuel Combustion
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Figure2.3. Schematic of the oxfjuel combustion proce4ZEP, 2010a

Recirculate to control boiler temperature

Oxy-fuel technologyis one of the leading contenders f6CS.The main difference

from conventional air firing is that the fuel is burned in a mixtur®pénd recycled

flue gasesFlue gas recycle (FGR) is necessary as burning coal inQaufwithout

N2 acting as adiluenf would produce furnace temperatures which could not be
withstood by conventional furnace materidds. removing the N upstream of the
process, a flue gas rich in @@nd water vapour is producethe water vapour can

be removed simply by condensation, legven product stream of high purity @O
which, after subsequent purification and dehydration, is ready to be pumped away to
a geological storage site. This eliminates the need for a costlg@ostustion capture

plant, although the extra cost is now shiftedhe oxygen plant.

2.3 Economic and Feasibility Issues

The question of which of these technologies will ultimately be widely adopted
depends on numerous factors, including the economy, technological maturity,
expected plant availability and operational xitglity, and environmental

performance.

All the technologies offer above 90% g€apture efficiencyDhungel, 2010 The
maximum eficiency that each technology can achieve will be especially important in
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the event that a carbon tax is introduced. Pastl oxyfuel combustion are both
suited to retrofit existing plants, whereas-pagnbustion is only applicable for newly
built facilities (Florin and Fennell201Q.

The main economic challenge of the carbon capture technologies is to reduce the
overall plant efficiency loss, which is caused by the parasitic energy requirement of
CO; separation (for preand posttcombustion), of @separation (for oxyuel), and

of CO, processing (for all of the above). For a supercritical, uhis results in
approximately 9% reduction in overall efficiency (e.g. from 38% to 29%), which
requires a 32% increase in coal consumption to maintainatine ®utpuiKatzer,

2007). This means that CCS will result in significantly increased @foduction,
although most of this COcan be captured and stored, thus resulting in overall

reductions in C@emissions.

A way to reduce the cost associated with CCS is the sale of the cap@u.eSo far,

CQOqis utilised on a large scale for enhanced oil recovery (EOR) or enhanced coal bed
methane (ECBM) extraction. High purity @@an also be used as feedstock for
various chemical processes, e.g. urea or methanol production. As an alte@@iive

is being investigated as a feedstock for 3rd generation biofuel production (i.e. large
scale bioreactors, where algae transform the @ flue to bicoils). However there

are a number of issues with all of the above technologies. For example,tiggve
guantities of emissions around the globe only a fraction of thisda® be viably
recycled as a chemical feedstock, and also when considering the life cycle assessment,

theoverall CQ reduction may be drastically reduced.

As Toftegaarcet al (2010 have pointed out, techreconomicstudies have shown

that based on current knowledge there is no significant cost difference between the
three available CCS technologies (although some early studies suggested that oxy
fuel technology might be the most cost efficient). However, there exists a degree of
uncertainty concerning the configuration and cost assumptions that have been built

into these assessments.

A number of detailed studies have explored the potential clesttigéness of oxy
fuel technology compared to a conventionatkdgwn power station. For example
Xiong et al (2009 explored the economic feasibility of oXyel technology for
retrofit in Chira. Taking into account both the cost of electricity (COE) and CO
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avoidance cost (CAC)Yhey predicted that the COE is comparable to conventional
air firing as long as the unit price of €@ within 1722 $/t (according to the authors
15-25 $/t sale pricés acceptable in China) or, if a carbon tax is considered, when the
unit CQe tax is between 236 $/t. They also found the cost of CAC to decrease with
increasing power output by3 $/t (from 300 to 600 MW), which is due to the scale
dependence of the @somic viability of steam cycles. Thus ekyel technology is

more suitable to large scale power plants with advanced steam cycles.

MI T ©he Future of Coateport found that a 500 MW oxyiel combustion plant
may offer 10% lower COE and 25% lower CAC tteupercritical post combustion

plant of the same unit sifKatzer, 2007.

Oxy-fuel technology can lead to increased efficiency associated with the reduced flue
gas losses, as the overall volume of the flue gas is lower, it is cooled further, and the
latent heat of water vapour iscavered during the condensation step. Furthermore

due tosignificantly lowertotal NOx production,the costly deNOx plants are often
omitted from the cost estimates of efuel plants, along with d&C units when the
co-storage of S@along with CQ is assumed. Although it should be noted that this
latter option has not been proven, and raises serious concerns for transport and storage

due to the corrosive nature of 50

When considering oxjuel technology, the major cost is associated with the O
production. Shatl{2006 estimates this to b&7% of the overall cost, and the €0
processing unit (CPU) and FGR accounting for 36% and 7%, respectively. At present,

on a large scale, cryogenic air separation is the most viable option (though as part of

the ENCAP project other innovative technologiase also being investigated,
including membrane separation and chemical looping). Detrdie(2009 found that

the efficiency of cryogenic air separation units (ASU) has more than doubles si
1971, and project a continued increase d
the overall energy of separation is still significantly greater than the theoretically

required separation energyo.

The operational cost of the ASU also depends erpthity of Q required, and Shah
(2009 found that 9997.5% purity is optimal, but also recognised the need for
minimising air ingress to the system). Jor@l04) notes that this may be pigularly
challenging for retrofit purposes for boilers where the level of air leakage into the
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boiler or downstream may already be significant. Another way of reducing the energy
penalty of the ASU plant is by successful heat integration of the ASUhanidw
temperature heat sources of an -txgl plant (flue gas condensation, £0
compression, steam cycl@ordalet al, 2009 - though higher dege of integration

poses additional process control challenges, which will need further investigation.

van der Broeket al (2009 noted the significan potential that, over time,
technological learning curves may decrease the capital and operational cost of
separation and C{processing technologieldowever,overall it is difficult to assess

fully the cost effectiveness of any of the CCS technologigen that the national and
international policy frameworks remain uncertain (e.g. carbon tax and measures to
support CCS). Moreover public confidence in the safety and reliability of CO
transportation and storage will be necessary for overall succassnfight be

particularly important for landlocked nations with no access to deep sea aquifers).

2.4 Technological Challenges of Oxyjfuel Combustion

Oxy-fuel combustion has long been a common process in the glass, cement and steel
industries.However,oxy-fuel technology with FGR for fossil fuel plants was first
proposed by Abrahamt al (1982, with the aim of producing C{Qor Enhanced Oil
Recovery (EOR). Since then a number of small and medium scale experiments have
been condcted and, together with several demonstration projects, have significantly
contributed to our current understanding of the process. Although the individual
components of the process are all commercially available, they have never been
integrated togethean a large scale. There was, therefore, a requirement for full scale
pl ant experience to assess the plantds
using high pressure steam cycles, viable with unit sizes of typically above 250 MW
(Davidson and Santos, 2010

A number of large scale oxfyel plants are currently at the planning and development
stagegMIT, 2014). These include:

1 426 MW coal fired CCS plant at Selby, UK, a partnership between
ALSTOM and Drax Power Ltd.,
1 a 200 MW retrofit project to Amerden's coal fired plant, in lllinois, USA

T as part the BureGer.0 initiative,
17
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1 a 350 MW power plant in China, a partnership betwdstom and China
Datang Corporation

1 one possible option for the Kor€aCS2 project promotely the Korea
Carbon Capture and Sequestration R&D Center the building of 500 MW
oxy-fuel power plant,

1 and CIUDEN is pursuing a 323 MW circulating fluidised bed -fuxsf
plant at El Bierzo, Spain.

A number of demonstration projects have been successfiylgmented in order to

provide information for scaling up, which include:

Doosan Babcock 6 sydtdn alVRahfréw YKC o a |
Vattenfall 6s 30 MW plant at Schw?2rz
CS Energyés Callide 60A6, a 30 ,MW r e
CIUDEN 20 MW plant (along with a 30 MW CFB unit) in Spain,

Total 6s 35 MW gasFrahcer ed Lacqg projec
Babcock & Wil c opfaciidyrimindipna,dJSA 5 MW

and also their 30 MWClean Environment Development Facility (CEDF)

in Ohio, USA (Davidon and Santd201Q MIT 2014)

= =4 4 A4 A A -

These demo plants all contribute to important advancements in our technical

understanding of oxjuel technology.

2.5 CFD Modelling as a Development Tool

Oxy-fuel technology is still in development and4cilitate Researcl& Development

Computational Fluid Dynamics (CFD) can be used.

In short, a CFD software package is used to model the real life cborbagplication

on a computer. It uses an array of mathematical models (so called submodels) to
describe the numerous theripbysical phenomena taking place during combustion
(e.g. devolatilisation, char combustion, radiation etc.), and their interacitiorone

another.

The first commercial CFD packages became available more than 25 years ago and,

due to the state of the computational park (especially limited power and processing
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speed), simplified models were used to make predic{®alsmidtet al, 2009. But
simplifications require assumptions that introdeceors in the predictions, and, as
combustion modelling incorporates numerous submodels, these errors can compound

and distort the results significantly.

Due to significant advances in computational power, CFD can now be used to model
the complex physicadnd chemical processes taking place during combustion more
accurately. Therefore CFD has become a useful tool aiding burner and furnace design
and development. Even though computer modelling cannot (yet) replace physical
testing of a new design, it camrfexample, be used for psereening of alternate
designs, thereby reducing the physical simulations required and offering significant
cost and time savingSmithet al, 2003. The use of CFD is recognized to be able to
provide reliable qualitative solutions (i.e. correctly predict trefdé)liams et al,

2002, of, for example, iffurnace temperature profiles, heat flux distribution, flame
characteristics, pollutant formation trends, etc. In certain aspects predictions can
match experimental results within 10%, e.g.MNission from single burners (160

kW & 40 MW) and in full scale 500 MW furnaces at Didcot and Ratcliff power
stations both equipped with 48 low NBurners(Stopford, 200p

CFD may also be used to model furnace performance changes due to the usage of
different coal blends, which is common practice nowadays to counter price
fluctuations of coals used. Thus, there are increasing requirements for CFD codes to
provide not onlyqualitative trends, but quantitative results as \f@illiams et al,

2002.

Currently, however, the submodels are not yet refinedgimtmuproduce quantitative
results for conventional combustion applications. In the case ofu@kygombustion,
modelling is further complicated by the fact that the submodels were developed (and

validated) for air fired coal combustion.

Detailed knowlede and understanding of the underlying elementary physics is
required in order to successfully describe them by mathematical models, which when
incorporated into the overall model, should in theory, be more general and accurate,

and also retain this accusathroughout a range of different problems.

Although Magnussen and Hjertag@®77) noted that one must be cautious with
model selection, as they may mask important &fedth less important ones.
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Figure2.4. lllustrationof different submodels and components of a CFD model.

Each mathematical submodel of combustion requires numerous inputs. These include
physicalproperties related to the materials whose behaviour they describe (aeg. in
case of char combustion the porosity and chemical structutechar particles),

which require empirical data, often specific to that particular material, and also
physical onditions (e.g. the heat transfer to the particle, concentration species
surrounding the particle), which is calculated by the CFD code during modelling of
the fluid flow.

The modelling process begins firstly with defining the computational domain and
disaetizing it into a finite number of cells. Within these cells partial differential
equations of mass, momentum, species concentration and energy are solved by
integrating them over the domain, converting the integrals to algebraic equations and
solving then via iterative methods. This, in essence, is the finite (or control) volume
method.

The following sections detail the physical combustion phenomena as well the

approach for modelling them using CFD.

In order to maximise the chance that the large scafgsplaill succeed (and thus
demonstrate the technological and economic feasibility of the process) the
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fundamentals of oxyuel combustion technology have to be understood (for recent

reviews of the technological developments and overall status of thaediel@heret
al. (2012), Scheffknechdt al (2011, Davidson and Sant¢2010, Toftegaarcet al
(2010, Wall etal. (2009).

It is clear that replacing Nwith CO, changes the fundamentals of the combustion

process.

This is due to the fact that the thermophysical properties 20fliff€D

significantly from N. The differences are listed below (and are illustrated graphically

in Figure2.5):

T

CQO, being a tdatomic gas, actively participatestimermal radiation thus
impacting the in furnace heat transfer profiles,

CQO, (57.83 kd/mol al127C) has a higher heat capacity thap(R4.18
kJ/mol at1127C), which can impact on the adiabatic flame temperature,
CQO has a higher molecular weight (44mgl) than N (28 g/mol), which

will increase the density of the mixture,

the thermal conductivity of theALO, mixture differs from Q/CO,, and

may have an impact on the heating up rate of the coal articles, and
consequently flame characteristics.

the ircreased C@®concentration in oxyuel combustion results in a lower

O diffusion rate than in conventional cases, hinderingli@usion to the

char particle and may also increase the importance of the Boudouard

gasification reaction, influencing char bou.

The presence of the flue gas recycle and the additional process plapted@ction

and CQ processing units) further complicates the process and, as a restgpaixy

combustion differs from conventional air fired combustion in a number of ways:

Flame characteristics
Coal reactivity

Heat transfer

Emissions characteristics

Corrosion

= =2 4 A A -

Process control
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Figure2.5. Comparison of thermophysical property differences betweeraGON
- determined a1127C and 1 atm. Data taken from Toftegaatdl (2010.

2.5.1 Flame Temperature

In pulverised fuel flames, the flame temperature is considered to be the most important
factor influencing particle heat up, ignition and burn@hungel, 201 At the same

O- concentrations, the adiabatic flame temperature (ATF) of aduetyflame is

lower than an air firedne. This is due to differences in the thermal property of the
mixture, which is characterised by the product of density and specific heat and is
referred to as the heat si(®haddix and Molina, 2009However,by increasing the

O2 concentration, and as a result reducing the €fcentration rad thus the heat
sink, the AFT of the air firing application can be matched. This is typically achieved
at 30% Q concentration, which is, at a fixed oxygen to fuel ratio, controlled by
varying the amount of the recycled flue gas, requiring approxima@ly i@cycled
(Wall, 2007%).

2.5.2 Particle HeatUp, Ignition and Flame Propagation

Increasing the ©concentration also enhances reaction and heat release rates and
consequety increases the rate of devolatilisation, lowers the time required for
ignition, and increases the flame propagation speed (all of which is retarded by
substituting N with CQO,). Thus by proper &CO; ratio selection, it is possible to
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match ignition time and volatile flames of oxfpel furnaces to conventional flames
(Shaddix and Molina, 2009Ignition studies carried out by Man and Gibb{2611)
on thirteen coals from a widenge of coal ranks, confirmed these findings. The

optimal recycle ratio was found to be-38% percent.

Smart and Riley2011) carried out tests firing South African bituminous and Russian
semiant hracite <coal s, fired with a 0.5
Combustion Test Facility (CTF). They found that by reducing the recycle ratio (thus
increasing the ®enhancement anflame temperature) the flame stability and
luminosity may both be increased, and demonstrated th&tiekgombustion allows

for a wider range of coals to be budne a conventional utility boiler (potentially

including semianthracites).
2.5.3 Burnout

Toftegaard(2010 notes that char combustion is typically controlled by both kinetics
and diffusion (Zone 1l), and as the diffusivity ob @ CO; is 0.8 timesthat of its
diffusivity of N2 (at1127C), atthesame Q partial pessures, the lower diffusivity is
expected to lower the rate of char combustion. Similarly, as the diffusivity of small
hydrocarbon is also lower in G@tmospheres, the rate of volatile combustion is also
negatively affected by the increased presenc€E@f However, when the AFT is
matched, the increase i @oncentration results in an overall enhanced burnout of

char and volatiles.

The enhanced burnout may also be explained by the increased importance of the

Boudouard reaction athigh CQ partial pessure:
0 009c¢o0
However,as at high @patrtial pressures, the G@as to compete with the>@r the

char, the influence of this reaction is not yet clear, and requires further investigation
(Wall et al., 2009.

2.5.4 Heat Transfer

In pulverised fuel furnacesadiation is the principal mode of heat transfer, which is

dependent on the flame temperature and the radiative properties of the gas mixture

and the particledrurthermoreas theemissivity of the C@and HO is higher than
that of N2, oxy-fuel combustion results in higher radiation fluxasdtherefore for
23
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retrofit applicatios lower AFT is required to match the HT to the radiative section.
The increased heat transfer in the radiative section will, though, result in lower gas
temperatures in the convective section. This heat transfer between the two sections
will have to be optnised for retrofit applications.

Smartet al (2009) Smartet al (20109 and Smart an®iley (2017]) investigated the
effect ofthe recycle ratio on the furnace radiation profiles and found that overall the
radiative heat transfer matchair firing cases at 724% recycle ratios. Evewhen
semtanthracite was usethe radiation profile away from the burner region (axial
distance >0.75 m) could be matched to profiles produced by bituminous coals under
air fired conditiongdSmart and Riley, 2031 Although near the flame region (axial
distance <0.75 m) the radiation flux was significantly lower for the sarthiracite

(due to low vohtile content of seranthracites).
2.5.5 Emissions

Numerous studies have been conducted on the impact dirimgyon the pollutant
formation (see for exampl&haddix and Molina, 201Smartet al, 20100). The
consensus view is that oXyel combustion results in significantly lower N@nd
SO« emissions per unit of enargproduced than conventional air firing. The
concentration of pollutant species in the flue is, though, significantly increased due to
the accumulating effect of the recycle. The reduction of M@y be attributed to a
number of reasons, including: deciiegsthermal NQ formation by the low nitrogen
concentration and lower AFT, limiting the full conversion by the high NO
concentration, the reduction of the recycled N@avidson and Santos, 2010
Toftegaarcet al (2010 list the following methods resulting in lower N@®missions:
oxidant staging, wet flue gas recycling (thus increasing tf@ ebncentration),
increasing the partial pressure of Ni@ the oxidant, increasing oxygen purity and
limiting air ingress. The decrease of ;S€nissions is attributed to higher retention
rates of S in the fly ash particles due to the highdxoifer SQ concentrations.

2.5.6 Corrosion

Jordal(2004 notes that the high concentration of £8ulphur and chlorine species
increases the corrosive nature lokefgases. Also Fleigt al. (2009 found that as the
partial pressure of SOncreases, the percentage ofsSfonversion also increases

compared to conventional éfown combustion. Therefore as the dew point is a
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function of the partial pressure of the gases, the increase (8@ HO)
concentration may resuh operationaproblems due to low temperature corrosion.
The increased partial pressure of O@ay also exacerbate issues associated with
carburization of Cr containing steel tul{@sftegaarcet al, 2010.

2.6 Coal Combustion Processeand Modelling Strategies

Coal is supplied to conventional utility boilers in a pulverised form. The coal is milled
directly before it is combusted in ball mills, to a typical diameter range5004um

and it is transported to the burners via the pringrystream. In the combustion
chamber the coal is heated rapidly (typically at the rates oTI1(Williams et al,

2007) and first its moisture and then is volatile content is released leaving behind the
porous char, which is then oxidised to CO anc @aving the inert ash, which in

case of incomplete combustion, contains some unburned carbon.
Coal combustion is generally divided into the following three parts:

1 particle heat up and dehydration,
9 volatile release and combustion,

1 char combustion.

In realty these steps can overlap with each other. The late stage devolatilisation and
onset of char combustion, for example, have been found to overlap, particularly for
lower rank coals (due to the higher reactivity of lignite chars). For high rank coals, on
the other hand, the lower volatile flux can allow sufficieat@diffuse to the particle

and reach high enough concentration to initiate heterogeneous combustion before all
the volatiles are releasd@&letcher and Hardesty, 1992However for simplicity,

these steps are modelled in succession (while the successive steps are not allowed to

commence befordné previous step is completed).
2.6.1 Coal Analysis

Many of the models used for coal combustion modelling require parameters which
depend on the type of coal. Therefore experimental analysis of the coal used is
required.
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The different types of coals are clagsif based on coal rank, where a higher rank
represents a further stage in the procesbeévolution of coal. The proximate and

ultimate analyses are used commonly to assess the rank of the different types of coals.

Coal originates from biomass that ove mi | | i ons of years ha
compacted and c h @Abbasetal, 1999 farnang b diversesangke 0

of coals with variable chemical as well as physical properties. These depend on the
type of biomass materials from which the camformed, as well as the geological,
geographical and climatic conditions during the process. Coal is maafeouganic
compounds, so called macerals (vitrinite, liptinite and inertinite), and inorganic
mineral méter. The properties of different maceral vary (especially in their swelling
behaviour and the structure of char produced). However, due to their relatively small

unit size (typically 25 um in diameter), the pulverised fuel particles can be considered

aspseudohomogeneous when modelling their combugiiiiams et al., 200Q.

Mineral matter originates either from the biomass or mineral matter from the
surroundings of the coalification site and tkluscomposition may vary significantly,

and can influence slagging and fouling in boil@bbaset al, 199§. This effect has

to be considered (especially when firing blends of different coals) as slagging and
fouling reduces the heat transfer to the steam banks because of the added thermal
resistance of the deposits, and thus can require more frequent maintenance shutdowns
of the furnace.

Coal also contains S, N, and trace amounts of Cl, Hgt&, from whch during
combustion various pollutant and corrosive gases and vapours can form, which have
to be dealt with accordingly in order to minimise the environmental impact of the
combustion plant and adhere to emissions regulations.

2.6.2 Particle Heating and Dehydiation

As the pulverised coal enters the combustion domtsrtemperature rises due to
convective and radiative heat transfer to the particle:
a (I)Q—Y w Y Y 16,9 Y
Qo
The film heat transfer coefficient is evaluated using ¢beelation of Ranz and
Marshall(1952a19521). The rate at which the particle is heated is proportiortakto

tempeaturegradient and the surface area of the particle. The surface area is dependent
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on the particle diameter, which is modelled by discretising the complete size range
into an adequate number of size intervals, each representative of an average diameter.
This is based on sieving data fitted to the Rd&sammler distributio{ANSYS Inc.,

2013).

Another assumption during modelling is that the internal resistance to heat transfer is
negligible compared to the boundary layer resistdAd¢SYS Inc., 2013)j.e. for

typical pulverised coal particle diameters, the Biot number is low, and internal
temperature profile of the particle can be assumed as unffiitrams et al., 200Q.

The moisture contentf @article is evaporated between a specified onset temperature
11°C and 100°C. Below 100°C the vaporisation is assumed to be governed by
diffusion, driven bythe water vapour concentration gradient between the surface of
the particle and the bulk of thega

0 QQ 6 O
wherek. is the film mass transfer coefficient, and it is evaluated usie&®anz and
Marshall(1952a 19520 correlation.

When the particle reachaegemperature df00°C the droplet boiling law is activated.
During this process the particle temperature is assumsgitainconstant and the
rate of moisture release is driven by the conveamn radiative heat transfer to the

particle:

% [

T(‘) mY YTO,,g Y

After all the moisture is evaporatdtie particle temperature begins to increase again,

initiating the evolution of volatile produst
2.6.3 Devolatilisation

Devolatilisation governs the major characteristics of the flame, including flame shape,
size, stabilityetc.(Williams et al,, 2007. Therefore correct predictions are necessary

for accurate modelling of pulverised fuel combustion.

Devolatilisation is an endothermic process (Baum and Sti&&tl) estimated that
devolatilisation becomes significant 327°C), and it depends on a number of
structural parameters of the patreoal matrix\Williams et al, 200Q. At the heating

rates encountered in typiqalilverised fuehpplicatiors (~1® °C/s), and considering
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the small size athe pulverised fueparticles, devolatisation is a rapid process and it
is measured in milliseconds (for Pittsburgh coal&7C devolatilisation times were
measured as 6 to 12 ms in a rangd\N@mixtures(Shaddix and Molina, 2009in

contrast with char combustion which may require several seconds to complete).

The volatile matr content of coal is routinely measured by the proximate analysis at
950°C (which is comparable toulverised fuelconditions), but at relatively low

heating rates. As the volatile release depends significantly on the encountered heating
rates (Fletcher and Hardesty, 1992s peci fi cati on of t he d
temperatur e vol atriCFmoyellirgl THedcoal charanterisagos s a r y
experiments conducted by the IFRF found that for most high volatile coals, the high
temperature volatile yield exceeds the value obtained during proximate analysis by up

to 60% to 70%Peters and Weber, 199but low and medium volatile coals do not

exceed the promate yield. Ideally high temperaturevolatile yield should be
determined experimentally for each c@Bletcher and Hardesty, 199Reters and

Weber, 199Y.

Volatile release is typically estimated based on Arrhenius rate expressions fitted to
empirical devolatilisation data or by the use of network pyrolystes. The models

available are as follows.
2.6.3.1 Constant Rate Model

This model assumes a single rate fovalatilisation, whichremainsconstant from

the onset of the devolatilisation until all the volatiles are evolved. Rillg81)
recommends the appropriate value of 12 1/s for coal combustion. However, as the rate
of devolatilisation increases with the particle temperatttetcher and Hardesty,
1992, the use of more complex models is necessary to obtain realistic results.

2.6.3.2 Single RateModel

This model assumes that the volatile release is first order dependent on the amount of

volatiles left in the particle:
Qw 0y 0
— 0 U
Qo

The rate of devolatilisation is related to the particle temperature and it is expressed in

the form of Arrheniugxpressions:
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The preexponential factor and the activation energy are determined by best fit
approach (plotting the log of empirically obtained reaction rates agaiigt 1/

A limitation of this model is that these constants are specificedype of coal and
also to the combustion conditions, and thus have to be determined empirically at

heating rates relevant pulverised fuetombustion (typically at TOC/s).
2.6.3.3 Two Competing Rates

The volatile release is described by two reactions with different rates, both of which

competeor the coal available:
0 Bawe a o VNN QQ6 Q
0 Bweé a OO0 VRO QQ6 Q
where the rates are expressed as:
Q0 6Q !
0 6Q !

Kobayashiet al (1977 recommended setting the yield of the first (slow) reaction,
yi1, to the proximate volatile content of the coal, and the second (fast) reggtitn,
1.

The low vyield reaction is favoured at lomperatures and high yield at higher
temperatures. Therefore this model takes the effect of incraasihgating rate into
consideration on predicting the ultimate volatile yield. However a comparison of one
and two step devolatilisation models by Eledr and Hardesi({1.992) found that using

the coefficients of Kobayashi resulted in poor predictions compared against
experimental data, but coefficients proposed by Ubhayetkalr (1976 agreed more
closely with the data. However the constantthese models are still dependl on

the coal typethus experimental measurements are still necessemy limit its

application by the availability of such data.
2.6.3.4 Network Pyrolysis Models

Alternatively these rates can be estimated using network codes, suchR¢G-G
(FunctionalGroup Depolymerization, Vapaation, Crosslinking), FLASHCHAIN
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or CPD (Chemical Percolation Devolatilisation). They are based on the description of
the structural network of coal, and if measurements of these properties are available
then these network codes can be used asppveessr to estimate the constants
required by singe and two competing rate models (Williams, 2002). For a detailed
description of the former two modelsee Smittet al, 1993; Solomon and Fletcher,
1994; and Niksa, 199@ he CPD model iavailable in FLUENT.

2.6.3.5 CPD Model

This model was developed at Sandia National Laboratories and describes the
devolatilisation rates based on the chemical and physical transformations of the coal
structure. It considers the parent coal as a network of chemical bridges, which connec
the aromatic clusters. As a result of pyrolysiese bridges are cleaved to form light
gases, which having low vapour pressures, escape the particle at the early stages of
devolatilisation, and heavier tar precursors which remain in the lattice fperlamd
vaporise at later stages to form tars. The CPD code models this process by assigning
Arrhenius type rates to these processes. These rates are shown to be independent of
coal type and thus do not require measurements (which would have to be @airried

at temperatures, heating rates and oxidising atmospheres appropriate to the modelled
conditions). A number of structural parameters still have to be determined empirically
using®*C NMR spectroscopfANSYS Inc., 2013, anéletcher& Hardesty, 199p

This is an expensive technique, but a collection of results for thirteen typically utilised
coals is listedoy ANSYS Inc. (2013)Alternatively the correlation oBenettiet al

(1999 can be used to estimate NMR data from the ultimate and proximate analysis

of the coal.

Williams et al. (2007) found that the choice between the above models influences the

predicted location of the flame front slightly.
2.6.3.6 Swelling

Swelling is an important phenomenon as it increases the diameter afticte{thus
the reactive surface available for the subsequent char combustion). It takes place
during the devolatilisation process and its progress was found to be related to the
extent of volatile evolutioStreetet al, 1969:

Q . 0
o P ° PF
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whereCsw is the swelling coefficient and it is determined experimentally.

Swelling ceases at the end of devolatilisation and the char particles burn
approximately at a constant diameter, forming hollow spheres (so called cenospheres)
in the procesg§Ansonet al, 197).

2.6.4 Char Combustion

Towardsthe end of devolatilisation, when the particle temperature is sufficiently high
and diffusion flux of volatiles away from the particle has decreased (allowing O
diffusion towards the particle to intensify)etttombustion of char particles begins.

This is a heterogeneous process, thus resulting in mass transfer between the two
phases (solid char and gaseous mixture). Char combustion occurs on the surface, and
thus first requires the absorption of the oxidantoothe char surface, where
recombination takeplace, forming CO an@€0O,. The products of combustion then

diffuse away from the char surface.

When char oxidation is considered, it is generally modellegte® step reaction,
assuming that the carbon oigés to form CO on the particle surface and this CO is

added to theas phases through source terms:

8 g 0 506Y0 ppandaph £ o

0 0 060 YO o Wl PQPAE £ a
The heat of formation of CO is assumed to be liberated entirely onto the particle,
where the heat of combustion of CO is added to the gas phase enthalpy. This is based
on Baum an®/)8tal eatl @s i on, which predict e
burning at 1000°C at 4concentrations between -PX1%, less than 6% of the CO is
burntwithin a distance of two diameters away from the particle. Although Peters and
Weber(1997 suggest that at higher temperasutige fraction of carbon reacting in

the close vicinity of the particle is increased.

The rate at which the chemical processes take place (oxidiser absorption to the
surface, recombation, and diffusion of products away from the patrticle) is a function

of the particle temperature, due ttee dependence of the surface reaction on the
Arrhenius term. Whereas the diffusiontb& oxidiser to and products away from the
surface is only wddy depen@nt on temperaturgGriffiths and Barnard, 1995
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Thus at low temperatusethe rate of combustion is limited lohiemical kinetics. This
temperature region is called Zone | (illustrate&igure2.6). At higher temperatures

the chemical reaction rate is increased, and thegidih rate of @towards the particle
surface becomes significant (Zone I1). Whilst at very high temperature the chemical
rate is sufficiently high that the combustion is limited only by the rate at wimécD,

diffuses towardsthe particle (Zone III).

bulk diffusion internal diffusion/ chemical
control chemical control
control
)
E
(@)
=,
— Zone lll
@
£

Zone |

1/T [L/K]

Figure2.6. Schematic of theambustion regimes.

The transition temperature between these zones is a function of coal char reactivity,
as well as the patrticle size. Typically very small particles never burn under diffusion
control alone, whereas combustion rates of particles > 10 mm are limited biodiffus

alone.

The reactivity of coal chars is a function of the parent coal, thus reactive brown coal
chars burn at Zone | conditions up to approxima8ly°C, whereas less reactive
anthracite chars may burn under chemical control up to &&®€ (Griffiths and
Barnard, 1995 However,Baum and Stredtl971) concluded that in the majority of

pulverised fuebpplications char particles burn under Zone Il conditions.

For modelling purposes the onset of char combustion is only initiated after completion
of the devolatilisation process. A number of different approaches exist for char

combustion modelling, which are discussed below.

Until the 1970s, mathematical modegliconsidered the char particles as spheres of
constant density, the diameter of which reduced as a function of the carbon burnout.
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However, as illustrated byigure2.7, char particles burn approximately at a constant
diameter, forming hollow spheres (so called cenospheres) in the pfAnesset al.,
1971). Thus, Baum and Stre€t971) developed their model, which took this into

account.

Figure2.7. SBEM of Thosby char produced in a drop tube furnace (DatA377C
and 250 ms at 5% Williams et al, 2003.

2.6.4.1 Diffusion Limited Model

A simplified version of their approach is the diffusiomited model, which assumes
that the rate of char combustion depends only of the diffusi@z ofito the particle
surface. The particles are assumed to buatahstant diameter with decreasing bulk
density (thus increasirtye porosity). The rate ahass release is governed by:

s RO ETY v
This approach assumes thia¢ diffusion of the oxidant is the rate determining step
(Zone 1), and thus there is no need for experimental determination for the Arrhenius
rates of surface combustion. However, neglecting these rates means that the effect of
chemical control is neglected as well, and as Zone Il conditions are dominant in

pulverised fuetombustion, the effects of chemical kinetics have to be included.
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2.6.4.2 Kinetics/Diffusion Limited Model

The char combustion model of Baum and St(&éé¥1 determines tle rate of char
combustion based on both bulk difiais and chemical kinetics ratecording to:
(04} 5 O x
Q0 "o X

whereA; is the surface area of the partighex is the partial pressure of the oxidant

in the surrounding mixtureDo is the diffusion limited rate angy is the chemical

kinetics rate, which are evaluated as:

8

o0 & YUY TC
0 Q
x o6Q 7

where C1 and C; are the binary diffusion coefficient of20n the air and are the

Arrhenius preexponential faar, respectively.

The weighting built into the rate equation means that it will be applicable to Zone |
and IIl conditions as well, since when eitlieror » assumes a large value its effect

its negated on the overall rate of mass loss.

The disadvantagef dhis approach is that the Arrhenius constants of the chemical
reaction have to be determined experimentallprderfor each coal to be modelled.
However, this also means that the effedhefinternal surface area and pore diffusion
are also included in this rate. This is becals@ncorporates the surface factpr,
defined as the areathfereacting surface over the external surface area of the particle,
which is adjusted to match the exip@ental measurements.

However, Williamset al. (2000 notal that this model still neglects a number of
important characteristichat influence the char combustion, nam@)ychanges in
the pore streture during combustionij Y Stefan flow, (i) particle fragmentationi\y)
effect of char petrographic structure and impuritiegheneactivity, andy) continued
change in thehar surface aee

2.6.4.3 Intrinsic Model

Schmi dt 6 ¢1989 model iisrsimilarcto the pwous model in assuming the

importanceof boththebulk diffusion and chemical kinetics rates. It also incorporates
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the effects of the pore structure (porosity and pore radius) on the internal diffusion

rate ofthe Oy into the latter:

where( is the effectiveness factor (the ratio of actual combustion rate if no pore
diffusion resistance existeddyg is the specific internal surface area, dqads the
intrinsic reactivity expressed in Arrhenius terms. The effectiveness factor ina@por

the effect of Knudsen diffusion, thus taking the internal pore structure into account.

The continued change of particle size and density, are also expressed considered by

this model (as a function of burnout).

Backreedyet al (2006 notal that the specific internal surface aréy, increases
during char combusting. This is due to the swelling of vitrinite compounds (whereas
inertinite does not contribute to swelling). Therefore they proposed to express the
changes in the origin@y as a function of carbon burnout (using a quadmduation

fitted to DTF experimental data).

In order to make their empirical equation applicable to different types of coals, a
maceral correction factofmag Was defined in terms of the inertinite and vitrinite

content of the parent coal.

Another important process influencing the char burnout is the thermal annealing of
the particle during char combustion, which decreases the reactivity as a function of
temperature and tim@Hurt, 199§. Therefore Backreedgt al. (2006 introduced a
simple annealing factofann, into the overall rate equation, which is désed as a
function of particle temperature, carbon burnout and particle diameter. The overall
char burnout rate thus takes the form:

(90 . " YY®O Oux

— Q "Q = ;
Qo 10 U O x

whereDg is evaluated based on the correlation usedayum and(18)r eet 6
kinetics/diffusion limited model, angy isbased o5 mi t(19&Y) sntrinsic reactivity

rate equation.

Thus the intrinsic model with the above modification has been an accepted method

for modelling char combustion ke ETII group for both conventional aiown
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combustion(Backreedyet al, 2006 Ma et al, 2009 Pallaréset al, 2007) and oxy
fuel combustior{Edgeet al., 20115).

Another recent method for char combustion predictions is the carbon burnout kinetics
(cbk) model, which is a variation of the intrinsic model and was designed to predict
the caibon burnout and resulting carbon content of the flash based on temperature and
O- concentration histories. Modifications to the original cbk model have been
proposed to include the effects of morphological changes in char structure, maceral
composition, bar annealing and the effect of char gasifica{iedgeet al., 2011

Due to the complexity of coal combustion, quantitative predictions of burnout is
shown to be inaccurate, whéme reaction of char with species other thani©not
included in the modele.g. HO, CO (Stopford, 200 which is especially important

in the case of oxyuel combustion where the partial pressure of these is significantly
increased due to thecycle and the elimination of2NBlending, applied routinely

nowadays, increases the uncertainties about char burnout predictions further.
2.6.5 Volatile Combustion

As the products of devolatilisation (tars and lighter volatile gases), diffuse away from
the mrticle, they react with the oxidiser species and break to form dighte
hydrocarbons and intermediapecies (CO, b and also radical fractions (e.g. OH

H-, CHy-)). In subsequent stegbese oxidise to form Cand water vapour. At high
temperaturesa significant amount of CO is present in the flue gases (even if there is
adequate amount @-. available), as CO is an equilibrium product of combustion.
Whereas at lower temperaturélse exit CO concentration is negligible (provided
there is enough oxiser present). Besides C, H and O, coal contains a wide range of
other compounds (S, N, CI, K etc.), many of which react during combustion to form

pollutant and corrosive species, including«<®@d NQ, HCI, KOH and KCI.

Combustion is an exothermic process, whittreaseshe temperature of the gas
mixture and consequently hedhe particlesthus enhancing char combustion and
shaping the iffurnace heat flux profiles. This heat release rate is dictated by the rate
at whch the volatiles are consumed, therefore modelling of volatile combustion is

also crucial to the success of combustion models.

As noted by Magnussen and Hjerta¢E977) in turbulent norpremixed flamesthe

chemical reactions may assumed to be very fast, and therefore the rate of
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homogeneous combustion is determined by the rate of mixing between the oxidiser
and reactant species on the molecular scale (eliminatingeldemealculate complex

and often ambiguous chemical rates). In diffusion flames, the fuel and oxidiser occur
in separate atles, and their intermixing idetermined by the rate of dissipation of
these eddies. The fuel and the oxidiser are both fluctuafiramtities, with a
relationship between their mean concentration and their fluctuations. Magnussen and
Hjertager(1977) proposed that their mean concentration is adeqoa¢xpress the

rate of dissipation. Therefore the reaction rate is taken as the lower value of the

following equations:

Yio R0 RO "8 QE o
Q )/{F\U %
Y L] "\ ’: B (I)
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whereR is net rate of production oflue to reactiom, Yp is mass fraction of product
species,Yr is mass fraction of reactant specie§,and 36 are thestoichiometric
coefficients of reactants and products, respedgtieeidA andB are constantd and

0.5, respectively.

The reaction rate will depend on the local concentration of the reactants and will be
proportional to the inverse of the large eddy mixing time skéleTherefore, volatile
combustion rates depend on performance of the turbulence maodskdqlently the
accuracy of the above models can be increased by the use of more advanced

turbulence models. Therefore the use of LES modelling is recommended.

The second equation is significant during premixed combustions, where fu@b and

occur in the ame eddies but separated by eddies containing the hot product species.
In cases when the concentration of the hot product gases are low the effect of their
dissipation on the combustion rate is taken into account by the second equation

(Magnussen and Hjertager, 1977

This means thahe combustion rate is independenttbé temperature (as infinitely
fast kinetics is assumed), but also when combustible gase®aeapthe combustion
does not require an ignition source. Therefore the EDM is not suitable for premixed

combustion when the burner annuli are included into the geometry, as the EDM would
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initiate combustion as soon as the reactants enter the domaihigfsituations the

finite rate/eddydissipation model is recommended).

In most combustion situations, the assumption of infinitely fast chemistry is
justifiable, with the exception of situations when flame ignition and extinction is
investigated viainsteady simulation, and also when intermediate species do need to
be taken into account. For example, when predictions on pollutant formation are

required, as these may involve complex intermediate steps.

The EddyDissipation Concept (EDC) is a modifiedrsion of the EDMand also
introduced by Magnussefi1989, considering non equilibrium chemistry (i.e.
includes the effect of chemical kinetics). It assumes that the reaction takes place over
a small time scale, in small turbulent structures, cdileel scales, and the rate is
dictated by an Arrhenius expression. This model is suitable for assessing formation

and destruction of pollutants in modern combustSchmidtet al, 2009.

A distinct type of homogeneous combustion modelling is the use of statistical
averaging techniques, using probability densitgctions (PDF), with an assumed
shape of the probability curve derived from experimental data. The system is modelled

as two streams of fuel and oxidiser, the PDF table igppyeessed, and used as a

0l ook upd reference durtherrage of theeconbustion | at i

based on the mixture fraction. With the assumption of equilibrium conditions the
species fractions, temperature and density are uniquely related to the mixture fraction
(ANSYS Inc., 2013).

2.7 Pollutant Formation

Emissions for elecizity generation from coal fired power plants are covered under
the Large Combustion Plant Directive (LCPD) 2001/80/EC, setting emissions limits
for NOx, SQ, CO and particulate matter, due to their detrimental effect on the
environment. Therefore emiss®mredictions of these compounds are vital in

combustion modelling applications.
2.7.1 Nitrogen Oxides

Nitrogen monoxide (NO) is a major pollutant generated dupuotyerisedcoal
combustion, a small proportions of this is converted to nitrogen dioxide) (N@e
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flue gases and together they are referred to as EM@ntually all the NO is converted

to NG in the atmosphere, where it may cause acid rain, which is dangerous to plant
life, water systems, the built environment and human health. The formatio®a$ N
favoured at low temperatures and may be significant in fertilizer production, but it is

a negligible pollutant whepulverisedfuel combustion is considered.

In pulverisedcoal applications the most important methods of l@mation are the
oxidation of molecular nitrogen (therm&lO) and oxidation of nitrogen containing
compunds present in the char (fudD). The latter accounts for approximately 70
80% of the total N@formation, and the letter to around 2@Begeet al, 20113

Thermal NO formation is due to the oxidation $ molecules in air. At high
temperatures, ©molecules dissociate to O radicals, which in turn attack the N
molecules to form NO and N radicals (this reaction is the rate controlling step). The
N radicals than reacts with an @olecule to form more NO armh O radicalde

Nevers, 200p The rate of tis process igxporentially related to temperature.

R
[ ou ./

R
/ ut ./

These above tweactions are usually referred to as the Zeldovich mechanism. In fuel
rich and near stoichiometrair-fuel mixtures the presence of the OH radicals also

becomes important.

h
FCou 1

PromptNO is formed in fuel rich regions of the flame, wherg idl attacked by
hydrocarbon radicals to form cyanide and hydrogen cyanide, according to the

equations:
#( . 9 (#.
# . O #.

The cyanides are then oxidised to NO after the fuel rich @mélevers, 2000 The
contribution of prompNO to total NQ formation is small (~5%)Edgeet al, 2011

Fuel NO is a result of the chemically bound nitrogen inphkwerisedfuel. Part of

this nitrogen is released during devolatilisation (voldtl)eto the gaseous phases in
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the fom of hydrogencyanide (HCN) and ammonia (N} which after subsequent
oxidisation stepsan beconverted to NO.The remaining fraction of thnitrogen in

the char ¢harN) is released via heterogeneous reactions to the cyanide/amine pool,
wherethey can te oxidised forming NOHowever if the N containing intermediate
species evolve in reducing atmospheres the conversion of the reduction of these
species to molecular:Ns promoted Figure 2.8). This mechanism is used for NO
reduction in burner or fuel staging applications, where fuel rich zones with very low

O2 concentration are produced near the burner wihevelatilisationis taking place.

Another formof NO reductiontechnique takes advantage of teburnmechanism,

by recycling NO formed downstream of the flame to the root region via internal
recirculation patterns. This NO then can be reduced stdyNother volatiles or
recycled back to intermediate volatid products through heterogeneous char surface
reactions (Hill and Smoot, 2000).

Figure2.8. The simplified fuelNO formation and reduction mechanisimsINy refer
to themain and IN to the intermediate nitrogen containing spe¢isters and
Weber, 199Y.

Predicting accurately the distribution of fudl between the char and volatiles is
important, as they release nitrogen species at different regions of the Taise
distribution depends on the particle temperature itngaate, coal type and particle
size. Network codesuch as FEDVC or CPD modelsnay be used as pprocessors
to determingheN partitioning between volatiles and char.

The rate of fueNO formation and destruction depends on the concentrations of the

nitrogen containing species and on the temperature. Where formation reaction is also
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