
Tools for Next-Generation Transcriptional Control in 

Chinese Hamster Ovary Cell Factories 

 

 

Adam John Brown 

 

 

 

 

 

 

 

 

 

 

 

Submitted for the degree of Doctor of Philosophy 

May 2014 

 

 

Department of Chemical and Biological Engineering 

University of Sheffield 

 

 

 

 

 



2 

 

Declaration of Originality 

 

In accordance with the University regulations, I hereby declare that:  

 

1. This thesis has been composed solely by myself 

2. It is entirely my own work 

3. It has not been submitted in part or whole for any other degree or personal 

qualification 

 

Based on the work within this thesis the following articles have been published 

(shown in Appendices C and D): 

 

Chapter Two: 

Brown AJ, Sweeney B, Mainwaring DO, James DC. 2014. Synthetic promoters for 

CHO cell engineering. Biotechnol. Bioeng. doi: 10.1002/bit.25227 

 

Chapter Three: 

Brown AJ, Mainwaring DO, Sweeney B, James DC. 2013. Block decoys: 

transcription factor decoys designed for in vitro gene regulation studies. Anal. 

Biochem. 443(2): 205-210 

 

Based on the work within this thesis the following patent applications have been 

filed: 

 

Chapter Two: 

Brown AJ, James DC. UK patent application number GB 1321109.9 (29 November 

2013) Synthetic promoters for CHO cells 

 

Chapter Three: 

Brown AJ, James DC.UK patent application number GB1310853.5 (18 June 2013) 

Transcription factor block-decoys  

 

 



3 

 

Acknowledgements 

 

This research would not have been possible without sponsorship from UCB and the 

Engineering and Physical Sciences Research Council.  

 

I owe a huge thanks to Professor David James for being supportive of all research 

ideas, for providing the wisdom and guidance to make them a reality and, most 

importantly, for responding with a joke every time they went wrong. I am also 

grateful to my industrial supervisors Dr Bernie Sweeney and Dr David Mainwaring 

for their feedback, help and advice.  

 

I would also like to thank all colleagues of the James research group for making it 

such a fantastic, supportive and frequently hilarious place to complete a PhD. In 

particular to Dr Sarah Davies for providing unofficial supervision on the way to the 

train station every day.  

 

Of course, most thanks to my partner and best friend, Kim. As with everything else 

in life, doing this PhD would have been half as fun and twice as difficult without her. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

Abstract 

Recombinant gene transcription in Chinese hamster ovary (CHO) cells, the dominant cell 

factory utilised for biopharmaceutical production, is still routinely regulated with a limited set 

of functionally ill-defined and uncontrollable genetic elements.  This study presents novel 

transcription control technologies that facilitate development of next-generation 

biopharmaceutical manufacturing systems.  

Firstly, synthetic promoters designed specifically to harness the pre-existing 

transcriptional activation machinery of CHO cell factories have been constructed. Transcription 

factor regulatory element (TFRE) function was screened in CHO cells and active elements were 

utilised to create synthetic promoter libraries exhibiting 140 discrete activites, operating over 

two orders of magnitude, where the most active promoters significantly exceeded that of the 

human cytomegalovirus immediate early 1 (hCMV-IE1) promoter. Through precise control of 

recombinant gene expression in CHO host cells over a broad dynamic range this technology 

could be utilised to both maximise transcription of easy-to-express proteins and provide 

optimised protein-specific transcription levels (synchronised with polypeptide-specific folding 

kinetics) of difficult-to-express proteins. Further, it will enable construction of bespoke, 

synthetic cell factories that require the expression of several genes to be stoichiometrically 

balanced. 

Secondly, a novel method of transcription factor (TF) decoy (synthetic 

oligodeoxynucleotides that specifically sequester cognate TFs) formation has been developed, 

where blocks containing discrete TF binding sites are combined into circular molecules. Unlike 

currently available methods block-decoys allow rapid construction of chimeric decoys targeting 

multiple TFREs. Moreover, they enable fine tuning of binding site copy ratios within chimeras, 

facilitating sophisticated control of the cellular transcriptional landscape. It was demonstrated 

that a bespoke block-decoy chimera was able to inhibit expression from multiple target elements 

simultaneously in CHO cells. Block-decoys can be utilised to investigate any multi-TF mediated 

cell function or phenotype and represent a valuable new tool for characterising and controlling 

CHO cell transcription. 

Finally, the mechanistic functionality of the promoter most commonly utilised to drive 

transgene expression in CHO cells, hCMV-IE1, has been analysed. It was found that hCMV-

IE1 promoter activity in CHO cells is predominantly mediated via just two TFREs (CRE and 

NFkB), where physical prevention of TF-TFRE interactions at these sites, either by intracellular 

TF sequestration or TFRE deletion, reduced activity by >75%.  This mechanistic understanding 

of hCMV-IE1s functional regulation in CHO cells facilitates strategies to predictably control or 

improve its activity by engineering the promoter’s TFRE composition or the cell factory’s TF 

abundances. This will likely be most useful for optimising transient gene expression systems 

where hCMV-IE1 is the current promoter of choice. Cumulatively, the tools developed in this 

thesis enable sophisticated, next-generation transcriptional control in CHO cell factories.  
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Chapter 1: Introduction  

 

This study aims to develop novel tools in order to facilitate next-generation 

transcriptional control in Chinese hamster ovary (CHO) cell factories. This 

introductory chapter contextualises the subsequent work within this thesis. An 

overview of biopharmaceutical production processes is provided, outlining the 

pathway from potential drug candidate gene sequence to purified therapeutic 

protein. Subsequently, the need to produce better drugs, cheaper and faster is 

highlighted and a set of critically required biomanufacturing developments are 

presented. The restrictive limitations of currently available recombinant gene 

expression control elements are then discussed. Finally, the chapter comes full circle 

to outline how sophisticated transcriptional control technologies could enable 

disruptive innovation in biomanufacturing, detailing the opportunities available at 

each discrete production process step. 

 

1.1. Chinese hamster ovary cell factories for biopharmaceutical 

production 

 

1.1.1. Biopharmaceuticals 

 

Biopharmaceuticals, pharmaceuticals produced using biotechnology techniques, 

provide effective therapies to conditions such as cancer, multiple sclerosis and 

rheumatoid arthritis. There are currently over 400 biologics approved for use and 

thousands more in the developmental pipeline. Worldwide sales total in excess of 

$100 billion and the market is projected to maintain its 15% annual growth rate 

(Langer, 2013).  Amongst the nine major classes of biologics (monoclonal antibodies 

(mAbs), hormones, growth factors, fusion proteins, cytokines, blood factors, 

enzymes, vaccines and anti-coagulants) mAbs are both the best-selling and most 

rapidly growing, with hundreds of candidates currently in clinical trials (Aggarwal, 

2012). mAbs provide significantly improved therapies to many conditions, often 

covering large patient populations that require long-term treatment, and are usually 

engineered to improve functionality, for example by humanisation (Shukla et al., 

2010). Indeed, the majority of modern biologics entering the market, including 
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fusion proteins and bispecific antibodies, are proteins specifically engineered to 

optimise their bioactivity, immunogenicity and pharmacokinetics, (Walsh, 2010; 

Czajkowsky et al., 2012). 

 

1.1.2. Chinese hamster ovary cell factories 

 

The majority of modern biopharmaceuticals are recombinant proteins produced in 

mammalian cell factories. Dominance of mammalian expression systems is primarily 

due to their capacity to perform human-like protein folding, assembly and post 

translational modifications (PTMs). This is particularly important for glycoproteins 

(approximately half of all approved biologics), where mammalian systems are 

required to produce proteins displaying therapeutically acceptable glycoprofiles with 

low immunogenicity and high bioactivity (Walsh 2010; Grainger et al., 2013). Given 

the relative high costs, low productivity and slow production pipelines there is 

continuing interest in developing non-mammalian production hosts. Accordingly, 

biopharmaceuticals that do not require human-like PTMs are predominantly 

produced in microbial cells, in particular Escherichia coli (Berlec et al., 2013).  

However, the majority of top-selling biologics do require PTMs (including mAbs, 

Tissue Plasminogen Activator, and Erythropoietin) and products produced in 

mammalian systems still account for over 70% of biopharmaceutical sales revenue 

(Zhu, 2012). Unsurprisingly, there have been significant efforts to synthetically 

engineer non-mammalian hosts to produce human-like proteins.  For example, 

correctly folded and assembled (but not glycosylated) mAbs have recently been 

produced in E. coli (Huang et al., 2012). If the N-glycosylation pathway from 

Campylobacter jejuni can be successfully introduced into E. coli, these advances in 

protein processing could be exploited to enable faster, cheaper mAb production in 

microbial cell factories (Prandhal et al., 2012; Spadiut et al., 2014). There has also 

been significant progress in glycoengineering both yeast and plant systems to 

overcome their respective glycosylation problems of low serum half-life and high 

immunogenicity (Bosch et al., 2013; Spadiut et al., 2014). 

Although developments in non-mammalian systems offer considerable 

promise in the long-term, mammalian cells are clearly established as the 

biopharmaceutical manufacturing factories of choice for the foreseeable future. 

Whilst multiple mammalian cell platforms have been utilised for production (baby 
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hamster kidney, NSO mouse myeloma, human embryo kidney), over 70% of 

therapeutic recombinant proteins are currently made in Chinese hamster ovary 

(CHO) cells. Moreover, the dominance of the CHO cell factory will likely increase 

in the near-future as most candidates currently in clinical development utilise a CHO 

cell platform (Walsh, 2010; Zhu, 2012).  CHO cells have reigned as the preferred 

biopharmaceutical production system for > 25 years because they: i) produce 

therapeutically satisfactory glycoprofiles, ii) are well established safe hosts, being 

non-permissive for most human viruses, iii) are easily adapted to serum-free 

suspension culture in chemically defined media, providing compatibility with large-

scale, regulatory-compliant bioreactor production processes, iv) benefit from decades 

of industrial optimisation, resulting in well-established CHO bioprocesses that have 

improved titers > 100 fold in 20 years, and v) have a good record of biologic 

approvals, facilitating an easier path through the strict regulatory procedures (Kim et 

al., 2012a; Lai et al., 2013). Although human cell lines such as Per.C6 are generating 

considerable interest due to potential advancements in viable cell densities and 

glycosylation profiles (Bandaranayake, 2014), CHO cells are clearly established as 

the most important biologics production factory of both the present and near-future.  

 

1.2. Biopharmaceutical production processes 

 

Production of a new therapeutic protein requires the development of a CHO clonal 

cell line delivering high titres of acceptable quality product under large-scale 

manufacturing conditions. The translation of a drug candidate gene sequence into 

vials of regulatory body-approved protein requires considerable investment in time, 

labour and costs and involves multiple discrete upstream (cell line isolation and 

bioreactor production) and downstream (product isolation and purification) 

bioprocesses (Shukla et al., 2010; Vijayasankaran et al., 2010). Each discrete 

production process presents both unique challenges and potential optimisation 

opportunities. Moreover, despite > twenty five years of optimisation there remains 

considerable pressure, and opportunity, to enact disruptive step-change innovation in 

all production process steps. 
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1.2.1. Process 1: CHO cell factory selection 

 

Although CHO cells are the glycoprotein production factory of choice, not all CHO 

cells are created equal. Since the original CHO cell line was isolated in 1957 from a 

primary culture of Chinese hamster ovarian cells (Puck, 1985) multiple distinct CHO 

cell lineages have been developed with unique bioproduction characteristics via 

mutagenesis, directed evolution and genetic engineering. ‘CHO cells’ are in fact 

hundreds of discrete cell lines with varying genotypes and diverse phenotypes 

(Lewis et al., 2013; Wurm, 2013). Critical cell line characteristics required for 

biomanufacturing include i) growth in serum-free, chemically-defined suspension 

culture, ii) high specific protein productivity, iii) desirable bioreactor growth 

characteristics (i.e. maximised integral of viable cell density (IVCD), accelerated 

growth rate, etc.), iv) the capability to produce high-quality homogenous products, 

particularly uniform glycosylation events, and v) the ability to rapidly create stable, 

high yielding recombinant daughter cell lines (Birch et al., 2006; Kim et al., 2012a). 

Given that different CHO cell lines vary significantly in these key attributes, and 

further that they respond differentially to process platforms further downstream 

(media, feeding strategy, bioreactor conditions, purification, etc.) it is unsurprising 

that most biopharmaceutical companies have developed optimised production cell 

lines in-house. Utilising cell hosts specifically adapted for production processes 

improves product quality and yield, reduces development times, and enables 

implementation of standardised manufacturing bioprocesses. For example, the pre-

adaption of parental lines to suspension growth in chemically defined, serum free 

media has enabled rapid switching between static and suspension growth, reducing 

timelines by approximately six months (De Jesus et al., 2013). 

Development of next-generation factories is predominantly focused on 

genetically engineering cells to optimise key bioproduction functionalities, including 

apoptosis, proliferation, protein folding and secretion (Datta et al., 2013). Ultimately, 

most strategies to date have proved unsuccessful, and few genetically engineered 

hosts have been employed in manufacturing processes. However, Potelligent cells 

are an example of simple successful engineering, where gene-knockout of α-1, 6-

fucosyltransferase resulted in production of fucose-free mAbs that exhibit enhanced 

antibody dependent cellular cytotoxicity activity (Shirita, 2009). This host has been 

licensed by multiple companies and is the parental cell line of several mAbs 
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currently in clinical trials. Development of the CHOK1SV (Lonza’s proprietary 

growth-optimised host) Potelligent cell line is an example of multiple desirable 

bioproduction functionalities being combined in a single production-optimised 

factory.  

 

1.2.2. Process 2: vector engineering 

 

Plasmid vectors are utilised to introduce sequence-optimised product genes into the 

selected host cell line. Sequence engineering involves codon-optimisation and 

removal of elements that promote undesirable mRNA folding/ stability, such as 

cryptic polyA tails and splice sites (Birch et al., 2006; Hung et al., 2010). 

Appropriate gene expression control elements are employed to support efficient 

transcription and translation rates. These technologies are discussed in detail in 

section 1.4. Briefly, strong promoters (most commonly the human cytomegalovirus 

immediate early one (hCMV-IE1) promoter) are used to achieve high levels of 

transcription, and translational regulatory sequences (polyA tail, Kozak sequence, 

introns) are included to ensure favourable mRNA stability, export and translation 

(Kim et al., 2012a). Additionally, elements that minimise production instability, such 

as matrix attachment regions (MARs), are often incorporated flanking the expression 

cassette. Functioning to promote formation of open chromatin environments, these 

elements negate integration site-specific effects on transgene expression and prevent 

gene silencing (Rita Costa et al., 2010). 

Successful plasmid genomic integration events are isolated utilising an 

appropriate selection system. Dihydrofolate reductase (DHFR) or glutamine 

synthetase (GS) selection marker genes are commonly used in conjunction with 

CHO hosts that require these enzymes for growth in either GHT (glycine, 

hypoxanthine, thymidine) or glutamine deficient media respectively. Selection of 

cell clones overproducing the selection marker is achieved by i) controlling 

selection-gene expression with ‘weak’ promoters and ii) exposing stable 

transfectants to increasing concentrations of specific enzyme inhibitors 

(methotrexate or methionine sulfoximine for DHFR and GS respectively) (Butler, 

2005; Fan et al., 2012). Direct linkage of the selection and product genes in the 

expression vector therefore facilitates indirect selection of cells that also overproduce 

the product protein. 
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1.2.3. Process 3: transient expression 

 

Before entering the time and cost-intensive process of developing a stable product 

producing cell line, small quantities of developmental material are produced via 

transient gene expression (TGE). Milligram to gram product quantities produced 

rapidly (< 5 weeks) and cheaply are utilised for toxicology studies, process 

development, and product quality evaluation (Baldi et al., 2007). Moreover, transient 

transfection provides an assessment of the products ‘expressability’ in the host cell 

factory. Rapid screening of candidate products utilising TGE prevents inefficient 

commitment of resources and improves speed-to-market (Cain et al., 2013).  

 

1.2.4. Process 4: cloning 

 

Following satisfactory results from developmental studies the expression vector is 

stably transfected into host cells via lipofection, polyfection or electroporation, prior 

to culture in selective media. Stably transfected cells represent unique integration 

events (i.e. vector inserted in different genomic loci at varying copy number) and 

vary significantly in critical bioproduction characteristics such as growth rate and 

productivity (Wurtele et al., 2003). Utilising this heterogeneous cell pool for protein 

manufacture would result in inconsistent bioprocesses, with unpredictable yields and 

variable product qualities. It is therefore a regulatory (and technical) requirement to 

perform single cell cloning (Agrawal et al., 2012). The production clonal cell line 

requires multiple key attributes that must be evaluated during the selection process, 

including high productivity, suitability for bioreactor scale manufacture, resistance to 

apoptosis, adaptability to suspension growth, production stability and high growth 

rate. Cells meeting these extensive criteria are rare events within the heterogenous 

population, necessitating the screening of several thousand clones (Lai et al., 2013). 

Traditionally this was achieved by serial limiting dilution. Requiring multiple rounds 

of dilutions to ensure monoclonality, and subsequent low throughput methods to 

assay clone productivity, this process was restrictively time, cost and labour 

intensive (De Jesus et al., 2011). Accordingly, under significant industry pressure, a 

number of optimised high-throughput screening technologies have been developed in 

recent years. For example, flourescence-activated cell sorting (FACS) can be utilised 

to specifically separate high producers from low producers, significantly reducing 



22 

 

the number of clones requiring screening. Multiple FACS-based methods have been 

developed to overcome the difficulties associated with monitoring production of 

secreted proteins. For example, linking easily detectable fluorescent markers such as 

green fluorescent protein (GFP) to the product gene facilitates indirect selection of 

high producers (Kim et al., 2012b). Alternatively, secreted protein can be ‘captured’ 

at the cell-surface using affinity matrices and detected with fluorescently labelled 

antibodies (Black et al., 2011). 

Fully automated screening technologies have also been developed, including 

CellCelector and Clonepix systems (Mann 2007; Haupt et al., 2009). Growth in 

semi-solid media allows automatic isolation of distinctly separated clonal colonies, 

and further, results in localised close-proximity capture of secreted product. 

Following addition of an appropriate product-detection agent fluorescent halos form 

around clonal populations, whereby halo intensity is a measure of clone productivity. 

Clones are ranked according to growth rate, productivity and monoclonality and top 

performers are robotically transferred to 96-well plates for further characterisation 

(Dharshanan et al., 2011; Lai et al., 2013). Using automated systems several 

thousand clones are screened in a single week and poor performing clones are 

rapidly removed from the pipeline. Resultant panels of selected clones (~ 250) are 

robustly evaluated for key performance parameters such as productivity, growth rate 

and production stability. Subsequently, ~ 25 clones are re-adapted to suspension 

growth and their predicted performance in large-scale manufacturing processes is 

determined (Noh et al., 2013). Utilising shake flasks/ mini-bioreactors, production 

media and manufacturing feeding regimes critical bioproduction functionalities (cell 

growth characteristics, product titer, product quality, metabolism, etc.) are evaluated 

to select a final panel of ~ 5 clones. Production stability is monitored in these lines 

over several (> 50) generations to identify a single production clonal cell line and 

master/ working cell banks are prepared for use in large-scale manufacture (Li et al., 

2010). 

 

1.2.5. Upstream process 5: manufacturing process development 

 

Producing sufficient cell mass to inoculate 20,000 L bioreactors requires stepwise 

expansion of cultivation volume. Starting with a single working cell-bank vial, 

biomass is accumulated through a series of shake flask and bioreactor stages, 
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typically ending with working volumes of 2,000 L (Davis, 2007). Several innoculum 

trains are run simultaneously to feed multiple production bioreactors. Stainless steel 

tanks remain the industry standard but disposable systems, with associated 

advantages in cost, flexibility and speed, are increasingly being utilised (Shukla and 

Gottschalk, 2013). Large-scale manufacture typically employs fed-batch bioreactor 

processes, where small feed volumes (< 10% volume) are added to culture to 

maintain key nutrient sufficiency. Perfusion culture systems, where ‘old’ media is 

continuously replaced, are infrequently utilised due to complexity and sterility issues 

(Pollock et al., 2013).   

Media development requires definition of batch medium, feed composition, 

and feeding strategy. Companies frequently utilise a single chemically defined, 

protein free media comprising amino acids, lipids, inorganic salts, vitamins and trace 

elements. Whilst generic media is unlikely to be optimal for each product, owing to 

metabolic variance between cell lines, it significantly shortens development 

timelines and allows implementation of downstream platform processes (Li et al., 

2010). In cases of unacceptably low productivity platform media can be optimised, 

for example by addition of animal-component-free hydrolysates. Additionally, 

antifoam and synthetic polymers (such as Pluronic F-68) are included in most media 

as protectants against sparging and agitation-related cell damage (Birch and Racher, 

2006).  

Feed compositions and regimen are designed to prevent nutrient depletion 

and toxic by-product accumulation. Controlled feeding of key substrates (e.g. 

glucose and glutamine) and consumed-nutrients (e.g. amino acids and iron) is critical 

to maximise both IVCD and specific productivity (Khattak et al., 2010). Although 

platform feeds are routinely employed, cell-specific variation usually necessitates 

feed optimisation via design of experiments approaches (Sellick et al., 2011).  

Bioreactor operating conditions are optimised to maximise productivity, 

minimise protein aggregation/ degradation and prevent undesirable glycosylation 

modifications. Multiple chemical (pH, osmolality, dissolved oxygen/ carbon dioxide) 

and physical (temperature, mixing) parameters are controlled throughout the 

production process to prevent undesirable fluctuations significantly affecting product 

yield and quality. Operating conditions are optimised utilising scale-down bioreactor 

models, and parameters are either maintained (volume-independent) or 
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proportionally scaled up (volume-dependent) in full-scale validation studies prior to 

large-scale product manufacturing (Li et al., 2010).  

Advances in media design, feeding regimen, and bioreactor control strategies 

have been the major source of yield increases during the past twenty years. 

Predominantly this has been achieved by facilitating improved cell growth profiles, 

whereby cell biomass is rapidly accumulated (proliferation phase) and subsequently 

maintained for extended periods of time (production phase) (Hacker et al., 2009). 

Cell growth dynamics are increasingly being optimised by employing biphasic 

bioreactor processes where proliferation and production phases are maintained at 

37°C and 32°C respectively. Hypothermic conditions arrest cell growth, increase 

culture longevity, and enhance specific productivity (Masterton and Smales, 2014).  

 

1.2.6. Downstream processes  

 

Although this thesis focuses on novel upstream process technologies, a brief 

summary of downstream process steps provides a complete overview of 

biopharmaceutical manufacturing. Cells/ cell debris are first removed from 

bioreactor cell culture media by centrifugation and filtration using depth and 

membrane filters. Product protein is specifically captured by affinity 

chromatography (for example, Protein A chromatography for mAbs) to remove host 

cell proteins and DNA, prior to a low pH viral inactivation step (Hogwood et al., 

2013). Polishing processes employing ion exchange and size exclusion 

chromatography remove host, product and process impurities to regulatory-standard 

concentrations. A final viral-removal filtration precedes an ultrafiltration step to 

concentrate the product in formulation buffer (Shukla et al., 2010). The resultant 

product can be utilised as a therapeutic drug, completing the pathway from potential 

drug candidate gene sequence to purified biopharmaceutical protein.  

 

1.3. Biopharmaceutical manufacturing requires disruptive step-change 

innovation 

 

Despite over two decades of bioprocess development and optimisation there is still 

considerable scope for innovation at each biopharmaceutical production process step. 
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Moreover, dramatic evolution of the biopharmaceutical industry is placing 

continually increasing demand, and necessity, to deliver these potential disruptive 

step-change advancements. Substantial pressure is currently being applied from key 

decision makers (governments, healthcare systems, insurance companies, and 

regulatory bodies), patients, and the biopharmaceutical companies themselves.   

 

1.3.1. Industry Pressure 

 

The blockbuster era has likely ended due to increased competition (i.e. multiple 

biologics available for the same conditions), reduced patient populations per drug 

(most new therapeutics coming to market treat conditions with relatively small 

patient populations) and the rise of biosimilars (Calo-fernandez, 2012). Accordingly, 

there is significant pressure to i) improve product qualities to provide superior 

therapies, ii) reduce manufacturing costs to improve cost/ profit per dose, and iii) 

shorten development timelines to maximise the period of patent-protected market 

exclusivity (Morton and Kyle, 2012).  Further, bioindustrial portfolios of candidate 

biopharmaceuticals are diversifying to include many difficult-to-express (DTE) 

proteins, such as fusion proteins. Production yields of DTE proteins are typically 

low, with many candidates being inexpressible and impossible-to-manufacture 

(Pybus et al., 2014). Cell host capabilities are therefore critically restricting 

production, necessitating development of next-generation cell factories by either 

adopting new systems or engineering existing ones. Finally, the risk of product 

failure is increasing due to stricter regulatory approval processes and increasing 

target complexity. Of the small proportion of drug candidates that advance to clinical 

trials < 20% subsequently gain regulatory approval (DiMassi, 2014). Significant 

reductions in development costs are required to enable companies to absorb such 

product-failures whilst maintaining profits. Further, the risks of late-stage failure 

need to be minimised; potentially by building quality into products and 

implementing streamlined biomanufacturing processes with improved predictability 

and control (Elliott et al., 2013). 

 

1.3.2. Patient pressure 

 

Ultimately, the true value of biopharmaceuticals is their ability to extend, improve,  
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and save patient lives.  As a result of extended life-expectancy and widespread 

adoption of cancer-causing behaviours (smoking, inactivity, etc.), increasing portions 

of the population are requiring treatment for cancer and central nervous system 

disorders (e.g. dementia, Alzheimer’s disease) (Mariotto et al., 2010; Siegal et al., 

2013). Biopharmaceuticals represent the most effective, and in many cases only, 

therapy for these conditions. Whilst this presents significant opportunities for 

industrial profits, at current cost-per-dose it is becoming economically impossible to 

provide biopharmaceutical therapy to such large patient populations. Indeed, 

increasingly patients are being denied access to potentially life-saving/ extending 

biologics. Further, millions of patients currently suffering life-changing morbidity 

could benefit from biopharmaceutical therapy if it were not considered economically 

intractable (Kelly and Smith, 2013). Moreover, the effects of globalisation are 

exponentially increasing the healthcare demands in developing countries (Jemal et 

al., 2011). Therefore, the worst-case scenario where cost, rather than capability, is 

the primary variable affecting patient outcomes is likely to be exacerbated in the 

near-future. Significant reductions in biopharmaceutical costs are therefore 

immediately required.  

Development of modular, plug-and-play platform processes is a promising 

strategy to significantly reduce production costs, minimise development timelines 

and enable streamlined, flexible manufacturing. Such technology may facilitate 

patient optimised (stratified or personalised) medicine, which will likely require a 

pipeline capable of delivering high yields from quick, low-volume manufacturing 

processes with minimal optimisation.  

 

1.3.3. Decision-maker pressure 

 

Current models of healthcare spending are considered unfeasible and governments 

are attempting to reduce healthcare expenditure in the short term and provide a 

roadmap for sustainable spending in the future (Miller, 2012). Ultimately the 

solution to these challenges is to either buy fewer drugs or pay less for them. 

Accordingly, policy-makers, payers (in the U.S), and healthcare bodies (such as 

National Institute for Health and Clinical Excellence in the U.K) are increasingly 

choosing cost as their primary decision-making factor, reinforcing the requirement 

for disruptive innovation in biologics manufacturing to reduce cost-per-therapy. 
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Additionally, regulatory bodies have become progressively more cautious 

throughout the past decade, demanding both higher product standards and increased 

advancement over existing therapies (Morton and Kyle, 2012). Consequently, there 

is a critical need to both improve product qualities and enable production of DTE 

proteins.   

 

1.3.4. Critically required biopharmaceutical manufacturing developments 

 

Disruptive step-change innovations in biopharmaceutical manufacturing are clearly 

required to enable the ideal solution whereby decision-makers can select biologics 

therapies offering optimal patient outcomes whilst delivering sufficient industry 

profits. Currently, the ten most critically required biomanufacturing developments 

are as follows: 

 

1. Increased titers via improvements in specific productivity and IVCD 

2. Reduced costs of product development and manufacture 

3. Faster product speed-to-market 

4. Enhanced, and more predictable, product quality 

5. Higher yields from TGE 

6. Increased manufacturing flexibility 

7. Development of standardised platform processes  

8. Increased cell factory capability 

9. Removal of production instability 

10. Better prediction, and minimised risk, of product-failure  

 

In simple terms we need to produce better drugs, cheaper and faster, and every 

biopharmaceutical production process step presents opportunities to achieve this. 

 

1.4. Gene expression control technology represents a suboptimal 

biomanufacturing component 

 

Innovative gene expression control technologies are needed to facilitate many of the 

critically required biomanufacturing developments. Expression cassettes contain 
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multiple sub-components including promoters, untranslated regions (UTRs), and 

expression stability elements. Cumulatively, these components control transcription 

and translation rates of both the product and selection marker genes. However, 

despite critical importance in determining productivity, CHO gene expression 

control technology is a severely unoptimised manufacturing component. Expression 

cassette elements would ideally enable sophisticated, optimisable control of all 

critical parameters (i.e. product and selection marker transcription and translation). 

However, currently, vector engineering involves the relatively primitive process of 

selecting components with rigid parameter outputs from a restricted toolbox. 

Precision controllability, predictability, and product-specific optimisation are 

therefore impossible. Given that i) suboptimal expression cassettes lock-in 

production limitations at the beginning of the manufacturing process that cannot be 

overcome with downstream optimisation, ii) currently utilised expression control 

technologies lack desirable functionality and exhibit well-known undesirable 

characteristics and iii) product gene transcription and translation rates are well-

established critical rate-limiting factors in biopharmaceutical production, we simply 

cannot continue to engineer production vectors from a limited set of blunt-tool parts. 

The catalogue of currently available components will now be detailed, beginning 

with a brief overview of translation and expression stability control options, before 

turning to the focus of this thesis and major opportunity for delivering disruptive 

innovation, transcription control elements. 

 

1.4.1. Defining the current toolbox: post-transcriptional regulatory elements 

 

Recombinant mRNA translation rates have been shown to be a critical rate limiting 

factor in biopharmaceutical production (Lattenmayer et al., 2007; McLeod et al., 

2011; O’Callaghan et al., 2011). Translation of a given mRNA is a function of 

mRNA export, localisation, and stability, and the specific rates of translation 

initiation, elongation, and termination.  These six parameters are regulated by 

elements within 5’ and 3’ UTRs and the product coding sequence (Van Der Kalen et 

al., 2009; Jackson et al., 2010).  

Under normal cellular conditions the first step in translation, ribosome-

binding, is mediated by 5’ mRNA caps. However, under cell stresses commonly 

found (e.g. hypoxia, stationary phase growth) and specifically employed 
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(hypothermia) during manufacturing processes, cap-dependent translation is 

repressed (Al-Fageeh et al., 2005). Internal ribosome entry sites (sequences able to 

specifically recruit ribosomes via cap-independent mechanisms) can be included 

within 5’ UTRs to maintain translation rates throughout bioreactor production (Lee 

et al., 2005; Koh et al., 2013). 5’ UTRs also typically contain optimised Kozak 

sequences to facilitate high-levels of translation initiation (Rita Costa et al., 2010). 

Further, introns are routinely employed to confer efficient mRNA export, 

cytoplasmic localisation and increased stability against degradation (Bicknell et al., 

2012). As intragenic introns are undesirable due to potential formation of splicing 

variants (Zago et al., 2009) production vectors typically contain a single intron 

located within the 5’ UTR (Ng et al., 2010; Skoko et al., 2011). The adenovirus 

tripartite leader sequence, which can both increase mRNA stability/ export and 

facilitate cap-independent translation initiation, is a further CHO-characterised 5’ 

UTR element that can be used either in conjunction with, or as an alternative to, 

introns (Mariati et al., 2010). Multiple desirable 5’ UTR components are often 

incorporated in a single cis-regulatory element by utilising 5’ UTRs from viral genes 

(frequently hCMV-IE1) (Ng et al., 2010). 

There are comparatively fewer component options for inclusion in 3’ UTRs. 

The two most commonly employed elements are the Woodchuck Hepatitis Virus 

Posttranscriptional Regulatory Element which directs efficient mRNA export, and 

SV40 polyadenylation signals that function to increase translation initiation and 

inhibit mRNA degradation (Wulfhard et al., 2008; Rita Costa et al., 2010). Product 

coding sequences themselves significantly affect translation rates and are routinely 

optimised in silico using bioinformatic tools to remove cryptic splice sites, optimise 

codon usage, eliminate mRNA destabilising motifs, and reduce CpG content (Kalwy 

et al., 2006; Bauer et al., 2010;  Fath et al., 2011). In the near-future next-generation 

translation control systems may enable sophisticated, precise regulation of 

translation rates that can be optimised specifically for each product. For example, 

Ferreira et al. describe the production of a synthetic RNA element library, 

comprising short upstream open reading frames (ORFs) and varying translation 

initiation sites, that facilitates user-defined translation levels of individual genes 

(Ferreira et al., 2013).  
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1.4.2. Defining the current toolbox: expression stability enhancing elements 

 

Recombinant CHO clones typically exhibit low and/ or unstable product gene 

expression as a functional consequence of the local chromatin structure at the site of 

integration (SOI) (Zhu, 2012). Heterochromatic regions, characterised by highly 

condensed structures and unfavourable post-translational modifications of core 

histone tails (e.g. deacetylation, dephosphorylation, methylation and ubiquitylation), 

are inaccessible to the transcriptional machinery and therefore repressive to 

transgene expression (Huisinga, 2006). The vast majority of integration events are 

within these transcriptionally non-permissive regions, necessitating the screening of 

several thousand clones to isolate rare high-producers (Lai et al., 2013). Further, 

(and perhaps more importantly, given the development of high-throughput clone 

screening technologies) expression in high-producers is often silenced over time due 

to the spread of nearby heterochromatin regions (i.e. positional effect variegation) 

(Girod et al., 2005; Kim et al., 2012a). Moreover, even relatively minor 

unfavourable local chromatin structure remodifications can significantly impact 

protein titers by reducing the frequency of transcriptional bursts (Pilbrough et al., 

2012).  

Elements that maintain integrated gene copies in transcriptionally active 

genomic regions are increasingly being utilised in production vectors to i) increase 

the occurrence of high-producing clones, ii) enhance productivity of top performing 

clones, iii) facilitate long-term expression stability, and iv) enable copy-number-

dependent expression levels, with increased productivity per copy number. Strategies 

are centred on either forming and maintaining euchromatic regions at the SOI, or 

specifically targeting the expression cassette to transcriptionally permissive sites in 

the CHO genome. The former most commonly employ scaffold/ matrix attachment 

regions (S/MARs), sequences that naturally occur at the boundaries of 

transcriptionally active genomic regions. S/MARs prevent heterochromatic spread 

by acting as boundary elements and promote localised euchromatin formation by 

recruiting histone acetyltransferases, chromatin remodelling complexes and 

components of the transcriptional machinery (Girod et al., 2007). Multiple 

endogenous and exogenous S/MARs have been shown to be extremely effective at 

promoting high-level, stable expression in CHO cells (Kwaks et al., 2003; Wang et 

al., 2008; Wang et al., 2012). Examples of the latter strategy most commonly 
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employ recombination mediated cassette exchange (RMCE), whereby both the 

identified genomic integration site and the expression cassette are tagged with the 

same specific recombinase recognition sequences. Whilst this approach is limited by 

the availability of genomic hotspots and the requirement to isolate new host cell 

lines, RMCE has been shown to produce stable, highly productive clones (Nehlsen et 

al., 2009; Zhou et al., 2010). Moreover, availability of genomic and transcriptome 

data should significantly improve RMCE in CHO cells by enabling identification of 

novel integration loci (Xu et al., 2011). Future vectors will likely benefit by 

combining both strategies (i.e. RMCE utilising S/MAR containing expression 

cassettes) to facilitate both insertion into, and maintenance of, transcriptionally-

active chromatin regions.  

 

1.4.3. Defining the current toolbox: transcriptional regulatory elements 

 

Product gene transcription is the first step in protein expression and a critical 

parameter affecting productivity. Multiple studies evaluating the relative control that 

discrete cellular processes exert on production have identified transcription rate as a 

major rate limiting factor (Mead et al., 2008; Chusainow et al., 2009; McLeod et al., 

2011; O’Callaghan et al., 2011).  Transcription rates are controlled by gene-specific 

regulatory elements, comprising core promoters, proximal/ distal promoters and 

enhancers. Transcriptional output of a given gene is functionally determined by 

interactions between transcription factors (TFs) and their cognate binding sites 

(transcription factor regulatory elements (TFREs)) within these elements to 

overcome multiple rate-limiting process steps (Coulon et al., 2013). TFs function as 

activators or repressors to either relieve or impose regulation at each step by 

interacting with, and/ or recruiting accessory proteins to, the transcriptional 

machinery. The mechanistic function of TF-TFRE interactions has high-level 

complexity owing to the fact that i) TF expression and activity is highly regulated, ii) 

individual TFs can function as either activators or repressors depending upon cellular 

state and iii) spatial positioning of TFREs within promoters, and combinatorial 

interactions between locally bound TFs, significantly affect TF activity (Fuda et al., 

2009). The rate of transcription of a given gene at a specific timepoint is therefore 

determined by the TFREs present in its promoter, their combinatorial and spatial 
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configurations, and the complement of TFs active in the cell. Promoter components 

for CHO cells fall into three discrete categories; viral, endogenous, and synthetic.  

 

1.4.3.1. Viral promoters 

 

Cell permissiveness to viral infection is often determined by virus promoter activity. 

Promiscuous viruses have accordingly evolved complex promoters containing 

multiple discrete TFREs to broaden their host cell ranges (Stinski and Isomura, 

2008). Specifically designed to access TFs that are active in most cell types, viral 

promoters exhibit high activity in most mammalian cell lines. Unsurprisingly, they 

are therefore a popular choice for recombinant gene expression in divergent cell 

types, including CHO, and many production vectors utilise strong viral promoters to 

control product gene transcription (Birch and Racher, 2006; Rita Costa et al., 2010; 

Datta et al., 2013).  

Historically, the hCMV-IE1 promoter has been utilised to drive constitutive 

strong expression in the vast majority of production vectors (Birch and Racher, 

2006; Rita Costa et al., 2010; Datta et al, 2013). However, both mouse and rat CMV-

IE1 promoters (mCMV-IE1, rCMV-IE1) have been shown to exhibit higher activity 

than hCMV-IE1 in transient and stable CHO cell transfectants (Xia et al 2006). 

Accordingly, mCMV-IE1 has been employed in some recent production vectors and 

has been adopted by at least one well-known contract manufacturer. Although 

infrequently utilised, multiple other viral promoters also have characterised high-

activity in CHO cells, including simian virus 40 early promoter and enhancer 

(SV40E), adenovirus major late promoter, myeloproliferative sarcoma virus long 

terminal repeat (LTR), rous sarcoma virus LTR, and human immunodeficiency virus 

LTR (Makrides, 1999; Pontillier et al., 2008). All of these promoters must contain 

one or more constituent TFREs able to bind cognate TFs present in CHO cells. 

However, little is known about how they function mechanistically in the CHO cell 

and therefore strategies to precisely control or improve their transcriptional activity 

are not available. This is particularly problematic given that they are often associated 

with a number of undesirable bioproduction characteristics, such as induction of 

cellular stress and activation of apoptotic pathways (Pontillier et al., 2008). Further, 

many (including hCMV-IE1) have been shown to be cell cycle dependent, with 

greatest activity during S-phase; potentially limiting given that in a fed-batch 
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production over half of the integral cell area exists in the stationary phase (Dale, 

2006; Prentice and Tonkin, 2007). Moreover, hCMV-IE1 is known to contribute to 

production instability via promoter methylation and gene deletion (Yang et al., 2010; 

Kim et al., 2011). Accordingly, viral promoters are increasingly being considered as 

unsuitable for manufacturing processes and in recent years many companies have 

replaced them with endogenous promoters. 

 

1.4.3.2. Endogenous promoters 

 

Mammalian cells require constitutive expression of multiple genes to maintain 

cellular homeostasis. Transcriptional regulation of these ‘house-keeping’ genes is 

accordingly controlled by constitutively active promoters (Schwanhäusser et al., 

2011). Endogenous CHO ‘house-keeping’ gene promoters have therefore 

specifically evolved to deliver constitutive, stable expression in the host cell factory. 

Although they are generally not as active as viral alternatives their expression 

dynamics are therefore better suited to manufacturing processes, making endogenous 

promoters attractive candidates for controlling product gene transcription. 

Strategies to isolate novel endogenous CHO promoters have involved i) 

utilising regulatory sequences from highly expressed genes, ii) employing promoters 

specifically suited to bioprocess conditions, and iii) screening the CHO genome for 

transcriptionally active elements. A successful application of strategy 1 showed that 

regulatory elements from the Chinese hamster elongation factor-1α (CHEF-1α) gene 

significantly increased (6 – 35 fold) expression of several proteins in stable CHO cell 

clones, relative to hCMV-IE1 (Running Deer and Allison, 2004). The CHEF1α 

promoter has since been utilised in many production vectors. More recently, Le et al. 

utilised transcriptomics data to identify CHO endogenous promoters with desired 

expression dynamics (Le et al., 2013). Whilst this is a promising avenue to identify 

promoters with discrete expression levels, it can be a significant challenge to define 

the genomic regulatory sequences controlling expression of specific genes. Strategy 

2 has been utilised to isolate promoters exhibiting high activity during stationary 

phase bioreactor cell growth in order to synchronise expression with the production 

phase (for example, ferritin heavy chain and growth arrest and damage inducible 53 

promoters) (de Boer et al., 2004; Prentice and Tonkin, 2007). Further, endogenous 

promoters highly active at 32°C have been described to optimise expression rates 



34 

 

during biphasic bioreactor processes (Thaisuchat et al., 2011). The third strategy has 

predominantly involved randomly inserting CHO genome fragments upstream of 

reporter genes and screening for protein expression to identify transcriptionally 

active sequences (Pontiller et al., 2008; Pontiller et al., 2010; Chen et al., 2013). 

These non-targeted approaches have isolated low-activity elements that may have 

application when high-level product expression is cytotoxic.  

Whilst they offer some improved functionalities over viral alternatives, 

endogenous promoters have two significant limitations. Firstly, they exhibit 

inefficient transcriptional activity per unit DNA sequence (CHEF1α is > 15x larger 

than hCMV-IE1), often requiring extensive 5’ and 3’ sequence extensions to 

function effectively (likely due to MAR-like boundary elements within these 

regions). Secondly, and far more importantly, they are blunt-tools evolved for 

divergent functions that are extremely unlikely to enable optimal product gene 

transcription levels. Viral and endogenous promoters provide unpredictable, 

uncontrollable functionality and cannot facilitate the sophisticated optimisable 

transcriptional control that is required to achieve many critical biopharmaceutical 

manufacturing developments.  

 

1.4.3.3. Synthetic promoters 

 

Synthetic promoters can be defined as novel non-naturally occurring sequences 

capable of providing both i) significantly higher transcription levels than exist in 

nature, and ii) controllable activity, specifically tailored to desired outputs.  Synthetic 

promoters therefore offer a potentially attractive solution in CHO cells, as they can 

replace functionally ill-defined and uncontrollable genetic elements in expression 

vectors with sophisticated, bespoke controllers with predictable function. 

Synthetic promoters have been traditionally produced by screening either (i) 

randomised DNA sequences or synthetic oligonucleotide repeats or (ii) assemblies of 

known cis-regulatory elements (e.g. TFREs), both upstream of minimal core 

promoter motifs. Studies have demonstrated that the exquisite gene expression 

control offered by synthetic promoters is highly context-dependent, necessitating 

promoters to be specifically constructed for each host cell type (Schlabach et al., 

2010).  Whilst synthetic promoter libraries have been designed to function in a range 

of microbial bioproduction hosts, such as Corynebacterium (Yim et al., 2013), 
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Saccharomyces (Blazeck et al., 2012),  Pichia (Stadlmayr et al., 2010) and 

Streptomyces (Seghezzi et al., 2011), and also in certain mammalian cells (Ferreira 

et al., 2011; Ogawa et al., 2007; Schlabach et al., 2010), few studies have previously 

explored the utilisation of synthetic promoters in CHO.  Hitoshi et al. engineered a 

single synthetic hybrid by fusing the chicken AG and hCMV-IE1 promoters (Hitoshi 

et al., 1991). On a larger scale, Tornøe et al. created a small pool of promoters (< 20) 

with a tenfold range in activity by randomising the sequences separating TFREs 

within a chimeric promoter (Tornøe et al., 2002). Further, Grabherr et al. constructed 

five synthetic promoters with approximately equivalent activities by constructing 

contiguous sequences with nucleotide compositions mimicking those found in highly 

active promoters (Grabherr et al., 2011). Both of these studies targeted broad activity 

in mammalian cells (tested in multiple diverse cell lines) and neither sought to 

specifically design synthetic promoters to function in concert with the 

transactivational machinery of CHO cell factories. Accordingly, neither of these 

small libraries enable predictable, precise, robust control of CHO gene expression 

over broad dynamic ranges and synthetic promoter activities reported were 

significantly below that of hCMV-IE1.   

Ligand-controllable synthetic gene switches are an alternative synthetic 

transcriptional control strategy that has seen considerable developmental effort. 

Typically these systems comprise a synthetic TF (comprising a mammalian 

transactivation domain fused to a prokaryotic response regulator), a synthetic 

promoter (comprising cognate TFREs for the synthetic TF), and an inducer molecule 

that modulates TF-TFRE binding kinetics to switch transcription on/ off (Tigges and 

Fussenegger, 2009; Weber and Fussenegger,  2010). Multiple such systems, utilising 

variable TFs, TFREs and inducers, have been described in CHO. Early systems were 

restricted by employing inducer molecules that were incompatible with bioreactor 

manufacturing due to adverse cellular effects, difficult downstream processing steps 

and regulatory concerns (e.g. antibiotics, hormones, metal ions) (Walter et al., 1991; 

James et al., 2000; Fux and Fussenegger, 2003). More recent systems have 

addressed these issues by utilising common regulatory-approved media components 

as inducer molecules, such as amino acids, gases and vitamins (Hartenbach et al., 

2007; Weber et al., 2009; Gitzinger et al., 2012). Modern systems also benefit from 

optimised expression control dynamics with improved inducer responsiveness and 

more rapid on/ off switching. However, whilst these systems offer on/ off (and a 
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degree of ligand-titratable) transcriptional control, their implementation is inherently 

relatively complex, requiring coordinated expression of the synthetic TF and the 

engineered target gene construct and the inducer molecule. Moreover, precision 

control over a broad dynamic range is currently unachievable and all systems 

described to date are significantly weaker than hCMV-IE1.  They are therefore an 

inherently less robust solution than the use of synthetic promoters.  

 

1.5. Innovative gene expression control technology could enable multiple 

critically required biomanufacturing developments 

 

This thesis has thus far presented the following facts: 1) biopharmaceutical 

production is of considerable importance from both a human and economic 

perspective, 2) CHO cells are the major biologics production cell host of the present 

and near-future, 3) all bioproduction process steps present opportunities for 

disruptive step change innovation, 4) this innovation is urgently required to meet 

demands from patients, industry and key decision makers, and 5) current 

transcriptional control technology represents a suboptimal, productivity-limiting 

manufacturing component. This section ties a thread between these points by 

detailing how sophisticated transcriptional control could facilitate development of 

next-generation biopharmaceutical manufacturing systems. This blueprint 

specifically outlines the opportunities available at each process step, the innovative 

promoter technologies required to exploit them, and the critical biomanufacturing 

developments that could be enabled. 

 

1.5.1. Opportunity 1: engineering next-generation synthetic CHO cell factories 

 

Process: upstream process 1 - cell factory selection. 

Current limitation: current cell factories exhibit unoptimised bioproduction 

functionalities and are unfit-for-purpose.  

Potential solution: engineer next-generation synthetic cell factories specifically 

optimised for biopharmaceutical production 
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Required technology: CHO-specific sophisticated gene expression control 

technology enabling predictable, controllable transcription regulation over a broad 

dynamic range. 

Critical development enabled: increased cell factory capability 

 

CHO cell factories are unoptimised for biopharmaceutical production and exhibit 

productivity-limiting performance in critical functionalities such as proliferation, 

apoptosis, protein folding and glycosylation (Kim et al., 2012a; Datta et al., 2013). 

To date, improvements in factory performance have been achieved via directed 

evolution and mutagenesis - for example adaptation to serum-free suspension culture 

(Hacker et al., 2009). Whilst these approaches enable incremental advancements, 

they are uncontrollable and unpredictable, and it is therefore widely acknowledged 

that next-generation cell factory engineering will require implementation of synthetic 

biology strategies (Pasotti et al., 2012; Esvelt and Wang 2013).  

Previous CHO cell synthetic engineering attempts have predominantly 

involved tailoring the expression of single genes. Whilst this approach has seen some 

success, for example the Glycart-Roche and Potelligent glyco-engineering 

technologies, these simple, small-scale attempts have unsurprisingly proved largely 

ineffective (Umaña et al., 1999; Yamane-Ohnuki et al., 2004; Kildegaard et al., 

2013). Tinkering with a few components from amongst thousands within the cell 

factory’s incredibly complex design space is unlikely to provide optimised functions. 

Biopharmaceutical production involves thousands of endogenous proteins in 

multiple cellular pathways and next-generation CHO cell factories will accordingly 

require sophisticated multigene engineering strategies where the expression of 

multiple genes is stoichiometrically balanced (Dinnis and James, 2005; Guye et al., 

2013).  

Large-scale synthetic engineering requires seven key enabling technologies: 

genomics (Lewis et al., 2013), transcriptomics/ proteomics/ systems modelling 

(Kildegaard et al., 2013), DNA synthesis (Ma et al., 2012), multigene engineering 

systems (Torella et al., 2014), high-throughput screening tools (Lai et al., 2013) and 

sophisticated gene expression control technology. Of these, only the latter is 

currently unavailable for CHO cells. Stoichiometrically balancing the expression of 

multiple genes will require the ability to select (or rapidly design) promoters with 

appropriate desired activities. Predictable control of transcriptional activity over a 



38 

 

broad dynamic range would facilitate construction of completely novel design spaces 

with bioproduction-optimised cellular functionalities (e.g. factories that are resistant 

to apoptosis, have increased viable cell densities, and provide optimised product 

glycosylation). Currently unfit-for-purpose CHO cell factories could accordingly be 

demolished and rebuilt according to specific design instructions. Synthetic cell 

factories, optimised for biomanufacturing and operating at maximal productivity, 

could potentially enable all ten of the critical bioproduction developments detailed in 

section 1.3.4 to facilitate manufacture of better drugs, cheaper and faster. 

 

1.5.2. Opportunity 2: enabling product-specific optimised transcription rates 

 

Process: upstream process 2 - vector engineering. 

Current limitation: product gene transcription rates routinely limit productivity. 

Potential solution: specifically optimise the transcription rate of each recombinant 

protein. 

Required technology: system-specific sophisticated gene expression control 

technology enabling precise, predictable transcription control over a broad dynamic 

range.  

Critical development enabled: increased titers via improvements in specific 

productivity.  

 

Recombinant gene transcription has repeatedly been identified as a rate limiting 

factor in biopharmaceutical production. Productivity is a function of multiple 

discrete cell factory processes (i.e. transcription, translation, protein folding, 

assembly, glycosylation, and secretion) and therefore optimal transcription rates are 

protein-specific, dependent upon the factory’s capacity to perform downstream 

processes. For ETE proteins, where transcription rates have been shown to exert a 

high level of control over production, transcription rates are typically too low, failing 

to take full advantage of downstream factory capability (McLeod et al., 2011; 

O'Callaghan et al., 2010). For DTE proteins, where maximising transcription is 

unlikely to be beneficial as ER folding and assembly processes assume 

proportionately greater control over synthetic flux as proteins become more DTE, 

transcription rates are typically too high, inducing downstream bottlenecks leading to 

unfolded protein responses, cellular stress and apoptosis (Girod et al., 2013; Le 
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Fourn et al., 2014). For mAbs, where light chain : heavy chain transcription rate 

ratios are a critical parameter effecting productivity, transcription ratios are typically 

suboptimal resulting in inefficient folding and assembly (Ho et al., 2013; Pybus et 

al., 2014). Clearly, maximising productivity of most biopharmaceuticals will require 

the ability to provide optimised recombinant gene transcription rates that are 

kinetically coordinated with polypeptide-specific downstream process rates. 

However, this is currently intractable given that available promoters are restricted to 

enabling a very limited set of discrete activities. Libraries of CHO-specific 

promoters with hundreds (or indeed thousands) of discrete activities covering a 

broad dynamic range would facilitate protein-promoter matchmaking to specifically 

optimise transcription rates for each product. Such technology could potentially be 

utilised to increase productivity, and titers, for the vast majority of 

biopharmaceuticals. 

 

1.5.3. Opportunity 3: maximising transient expression yields 

 

Process: upstream process 3 – transient expression 

Current limitation: low recombinant gene expression levels limit productivity 

Potential solution: increase recombinant gene transcription rate 

Required technology: promoters with significantly increased activity compared to 

existing alternatives. 

Critical development enabled: higher yields from transient production systems 

 

TGE is utilised to rapidly produce grams of developmental material for use in 

toxicology studies, process development, and product quality evaluation (Baldi et 

al., 2007). Moreover, significant time and cost advantages over stable expression 

systems have seen growing interest in utilising TGE for large-scale manufacturing. If 

regulatory concerns surrounding protein quality, process consistency and product 

safety can be addressed, TGE could potentially enable significantly increased 

manufacturing flexibility (Cain et al., 2013). However, despite significant progress, 

TGE systems currently provide relatively poor yields, where low recombinant gene 

expression levels are a critical productivity-limiting factor (Zhu et al., 2012). 

Currently available promoters (the vast majority of these systems utilise hCMV-IE1) 

are therefore incapable of maximising transcription rates in these systems. 



40 

 

Availability of new promoters with significantly increased activity compared to the 

current TGE promoter of choice (hCMV-IE1) would enable increased transgene 

expression rates and facilitate significant improvements in transient production 

yields. This would further reduce the cost and time associated with production of 

developmental material and, more importantly, would be a significant step towards 

enabling TGE as a method for large-scale therapeutic protein manufacturing. 

 

1.5.4. Opportunity 4: shortening the cloning process 

 

Process: upstream process 4 – cloning. 

Current limitation: isolation of stable high-producing clones is time-intensive and 

significantly slows speed-to-market. 

Potential solution: increase the frequency of high-producers and minimise expression 

instability.  

Required technology: promoters that enable optimised selection marker transcription 

rates and improved product gene expression stability. 

Critical development enabled: faster product speed-to-market 

 

Selection marker gene expression levels are a key determinant of cloning efficiency 

(Lai et al., 2013). Ideally, selection gene expression would be optimised to enable 

specific selection of high producing clones containing either multiple gene copy 

numbers or integration events in highly transcriptionally active genomic loci. This 

would require ‘Goldilocks’ transcription rates that are high enough to prevent 

survival of low-producers and low enough to allow survival of sufficient clone 

numbers. However, this level of control is currently unachievable and the vast 

majority of production vectors utilise the relatively weak SV40E promoter to 

regulate selection marker gene transcription.  Predictably, this element provides 

unoptimised functionality, routinely resulting in low average clone productivity and 

necessitating both multiple rounds of gene amplification and/ or screening of several 

thousand clones (De Jesus et al., 2011; Agrawal et al., 2012).  

The ability to predictably and precisely control transcription in CHO cells 

would enable optimised selection marker gene expression to increase both average 

clone productivity and the frequency at which high-producers occur. Moreover, if 

bespoke promoters could be engineered to remove expression instability issues 
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associated with current product gene promoters (e.g. hCMV-IE1 methylation) the 

failure-rate of late-stage clones may be reduced, negating the requirement for time-

consuming stability studies (Li et al., 2010; Kim et al., 2011). Sophisticated 

transcriptional control technology could therefore potentially be utilised to 

significantly improve cloning efficiency and enable isolation of higher producers in 

shorter timescales.   

 

1.5.5. Opportunity 5: co-ordinate product gene expression with bioreactor 

conditions and processes. 

  

Process: upstream process 5 – manufacturing process development. 

Current limitation: product gene expression dynamics are not ideally suited to 

bioreactor conditions. 

Potential solution: synchronise expression levels with proliferation/ production 

phases. 

Required technology: promoters specifically designed to function optimally in 

bioprocess conditions. 

Critical development enabled: increased titers via improvements in specific 

productivity and IVCD. 

 

Protein yields are optimised when cell biomass is rapidly accumulated (proliferation 

phase) and subsequently maintained for extended periods of time (production phase) 

(Hacker et al., 2009; Li et al., 2010). Accordingly, product gene expression would 

ideally be minimised during the proliferation phase (to maximise cell growth rate) 

and maximised during the production phase. However, currently available promoters 

do not facilitate biphasic expression kinetics, for example hCMV-IE1 is 

preferentially active during proliferation phases (Dale, 2006). Ligand-controllable 

synthetic gene switches may potentially offer attractive solutions but inherent 

complexity and relatively low expression levels limit their utilisation (Weber and 

Fussenegger,  2010). Similarly, endogenous promoters preferentially active during 

production phases have been described but typically provide insufficient levels of 

activity (Prentice and Tonkin, 2007). Moreover, their functionality is ill-defined, 

preventing exploitation or control of desirable qualities. Synthetic promoters could 

be specifically designed to provide optimal transcription dynamics by constructing 
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them from cis-regulatory elements that are preferentially active during production 

phases. Similarly, promoters could be further refined for optimal functionality both 

during desirable bioprocess conditions, such as hypothermia, and common stresses, 

such as hypoxia (Masterton and Smales, 2014). Utilising bioreactor-optimised, 

specifically engineered promoters could both increase product titers and enable 

implementation of desirable bioreactor conditions that may be currently intractable. 

 

1.6. Thesis overview 

 

As outlined in section 1.5, innovative transcription control technologies have the 

potential to deliver multiple critically required biomanufacturing developments. The 

work in this thesis now describes the development of three such technologies that 

cumulatively enable sophisticated, next-generation transcriptional control in CHO 

cell factories. 

 Chapter two details the materials and methods that were used in this study. 

Chapter three presents the first-ever synthetic promoters designed specifically to 

regulate recombinant gene transcription in CHO cells.  TFRE function in CHO cells 

was functionally screened and active elements were utilised to construct libraries of 

synthetic promoters that exhibited variable activity over two orders of magnitude, 

significantly exceeding that of hCMV-IE1.  Promoter functionalities were validated 

in both different CHO host lines and through a fed-batch transient production 

process. The precision control of recombinant gene transcription enabled by these 

synthetic promoters will facilitate the design of novel, predictable synthetic 

constructs for diverse CHO cell engineering applications. 

Chapter four presents a novel form of TF decoys that are specifically 

designed for use in CHO cells (TF decoys are short synthetic oligodeoxynucleotides 

(ODNs) that sequester cognate transcription factors and prevent their binding at 

target promoters). A method was developed whereby blocks containing discrete 

transcription factor binding sites (TFRE-blocks) are combined into circular 

molecules, enabling rapid construction of chimeric decoys containing 

stoichiometrically optimised ratios of input TFRE-blocks.  It was demonstrated that 

block-decoys were able to inhibit expression from multiple target elements 

simultaneously in CHO cells using a bespoke chimeric decoy. Enabling investigation 
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of any multi-TF mediated cell function or phenotype, block-decoys are a valuable 

new tool for characterising and controlling CHO cell transcription. 

In chapter five the mechanistic functionality of the hCMV-IE1 promoter is 

systematically deconstructed to identify the discrete TFREs that control its activity in 

CHO cells. hCMV-IE1 has been employed in the vast majority of regulatory 

approved production vectors, is currently used to drive expression of many 

biopharmaceutical products, and is the current promoter of choice for TGE systems, 

yet surprsisingly little was previously known about how it functioned in CHO cells. 

In silico bioinformatics analysis (of both hCMV-IE1s TFRE composition and CHO 

cell’s TF complement) and evaluation of the activity of discrete promoter regions 

identified a design space that was interrogated via TF sequestration (utilising block-

decoys) and TFRE knockout (utilising synthetic CMV constructs with scrambled 

TFRE sequences). It was determined that i) the vast majority of CMVs activity 

within CHO cells is dependent upon just two TFREs, NFkB and CRE, and ii) YY1 is 

a negative regulator of the CMV promoter in CHO. This mechanistic understanding 

of hCMV-IE1’s functional regulation enables strategies to predictably control and 

improve the activity of this commonly-utilised genetic component by engineering the 

promoter’s TFRE composition or the cell factory’s TF abundances. 
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Chapter 2: Materials and Methods 

 

This chapter details the materials and methods that were used in this study. 

 

2.1. Vector construction 

 

2.1.1. Promoterless reporter vectors 

 

A promoterless vector was subcloned from pSEAP2control (Clontech, Oxford, UK) 

by PCR amplification of appropriate vector regions with Phusion high fidelity 

polymerase (New England Biolabs, Hitchin, UK) using the following primer pairs 

(Sigma, Poole, UK): PVForward1: 5’-ATGCC TCGAG CTTCG AATCG CGAAT 

TCG and PVReverse1: 5’-AGTCA AGCTT TTACC ACATT TGTAG AGG; 

PVForward2: 5’-ATGCA AGCTT ACCGG TGGAT CCGTC GACCG ATGC and 

PVReverse2: 5’-ATGCA ATGAT CTCGA GCCCG GGCTA GC. Amplified 

fragments were digested with XhoI and HindIII (Promega, Southampton, UK), gel 

extracted (Qiaquick gel extraction kit; Qiagen, Crawley, UK) and ligated with T4 

DNA ligase (Life Technologies, Paisley, UK). Recombinant plasmid was amplified 

in E. coli DH5α cells and purified using a Qiagen plasmid mini kit (Qiagen). Finally, 

correct plasmid construction was confirmed by restriction analysis and DNA 

sequencing. A second reporter plasmid was created by replacing the secreted alkaline 

phosphatase (SEAP) open reading frame (ORF) with the turbo green fluorescent 

protein (GFP) ORF. Unless otherwise stated, all vectors in this study were 

constructed and analysed using the same methodology. 

 

2.1.2. Core promoter-reporter vectors 

 

The core promoter sequences shown in Table 2.1 were synthesised (Sigma), PCR 

amplified, and cloned into XhoI and EcoRI sites directly upstream of the SEAP ORF 

in the promoterless SEAP-reporter vector.  
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Table 2.1: DNA sequences of core promoter constructs used in this study 

Core 

promoter 

construct 

Sequence (5’ - 3’) 

CMV AGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGC

CTAGATACGCCATCCACGCTGTTTTGACCTCCATAGAAGAC 

CHEF1α GAACGGTATAAAAGTGCGGTAGTCGCGTTGGACGTTCTTTTTCG

CAACGGGTTTGCCGTCAGAACGCAGGTGAGTGGCGGGTTTG 

Supercore AGGCTTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGC

CTAGATAGACATCCACGAGCGGACGTGCGTTTTAGAAGAC 

Synthcore2 AGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATTCTT

CCGGATAGCTGTCTACGCTGTCAGCTGCTCCATAGAAGAC 

TA box AGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGGTGACACGC

CTAGATACGCCATCCACGCTGTTTTGACCTCCATAGAAGAC 

INR AGGTCACGTCCGTCAGAGCTCGTTTAGTGAACCGTCAGATCGCC

TAGATACGCCATCCACGCTGTTTTGACCTCCATAGAAGAC 

MTE.DPE AGGCTACGTCCGTCAGAGCTCGTTTAGTGAACCGGTGACACGC

CTAGATAGACATCCACGAGCGGACGTGCGTTTTAGAAGAC 

DCE AGGTCACGTCCGTCAGAGCTCGTTTAGTGAACCGGTGACATCTT

CCGGATAGCTGTCTACGCTGTCAGCTGCTCCATAGAAGAC 

 

 

2.1.3. TFRE-Reporter Vectors 

 

Synthetic oligonucleotides containing 7x repeat copies of the TFRE consensus 

sequences in Table 2.2 were synthesised (Sigma), PCR amplified, and inserted into 

KpnI and XhoI sites upstream of the CMV core promoter in the promoterless SEAP 

and GFP-reporter plasmids. 

 

2.1.4. Synthetic Promoter Libraries 

 

Synthetic promoter building blocks were constructed from complementary single 

stranded 5’ phosphorylated oligonucleotides (Sigma), annealed in STE buffer (100 

mM NaCl, 50 mM Tris-HCl, 1 mM EDTA, pH 7.8, Sigma) by heating at 95°C for 5 

min, prior to ramp cooling to 25°C over 2 h. Oligonucleotides were designed such 
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that the resulting double stranded blocks contained the specific TFRE (Table 2.2) 

and a 4 bp TCGA single stranded overhang at each 5’ termini. 

 

Table 2.2: DNA sequences of transcription factor regulatory elements (TFREs) used to 

construct TFRE-reporter vectors.  

Transcription Factor Regulatory Element (RE) Sequence 

Activator protein 1 (AP1) TGACTCA 

CC(A/T)6GG element (CArG) CCAAATTTGG 

CCAAT displacement protein (CDP)                GGCCAATCT 

CCAAT-enhancer binding protein alpha (C/EBPα) TTGCGCAA 

Cellular myeloblastosis (cMyb) TAACGG 

cAMP RE (CRE) TGACGTCA 

Elongation factor 2 (E2F) TTTCGCGC 

E4F1  GTGACGTAAC 

Early growth response protein 1 (EGR1) CGCCCCCGC 

Estrogen-related receptor alpha RE (ERRE)     AGGTCATTTTGACCT 

Enhancer box (E-box)                  CACGTG 

GATA-1 (GATA) AGATAG 

GC-box GGGGCGGGG 

Glucocorticoid RE (GRE) AGAACATTTTGTTCT 

Growth factor independence 1 (Gfi1) AAAATCAAC 

Helios RE (HRE) AATAGGGACTT 

Hepatocyte nuclear factor 1 (HNF) GGGCCAAAGGTCT 

Insulin promoter factor 1 (IPF1) CCCATTAGGGAC 

Interferon-stimulated RE (ISRE) GAAAAGTGAAACC 

Myocyte enhancer factor 2 (MEF2) CTAAAAATAG 

Msx homeobox (MSX) CGGTAAATG 

Nerve growth factor-induced gene-B RE (NBRE) AAAGGTCA 

Nuclear factor 1 (NF1) TTGGCTATATGCCAA 

Nuclear factor of activated T cells (NFAT) AGGAAATC 

Nuclear factor kappa B (NFκB) GGGACTTTCC 

Octamer motif (OCT) ATTAGCAT 

Retinoic acid RE (RARE) AGGTCATCAAGAGGTCA 

Yin yang 1 (YY1) CGCCATTTT 

Random 8mer (8mer) TTTCTTTC 
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For example the sequences used for the NFκB-RE block were as follows (RE site 

underlined): 5’-TCGATGGGACTTTCCA-3’ and 5’-TCGATGGAAAGTCCCA-3’.  

Synthetic promoter libraries were constructed by ligating block molecules at 

appropriate stoichiometric molar ratios with high concentration T4 DNA ligase (Life 

Technologies). A ‘cloning-block’ containing KpnI and XhoI sites was included in 

ligation mixes at a 1:20 molar ratio of the RE blocks. The ligated molecules were 

digested with KpnI and XhoI (Promega), gel extracted (Qiaquick gel extraction kit, 

Qiagen), and inserted upstream of the CMV core promoter in the promoterless SEAP 

reporter vector. 

 

2.1.5. Plasmid-decoys 

 

A minimal TFRE-acceptor vector containing only the sequences required for 

propagation in bacteria (pUC Ori, AMPr) and a multiple cloning site (MCS) was 

subcloned from pSEAP2control by PCR amplification of appropriate vector regions 

using the following primer pairs (Sigma): PDForward1: 5’-AAGTG AATTC 

AGAAT CAGGG GATAA CGCAGG and PDReverse1: 5’-TACGA AGTTT 

CATGA GACAA TAACC CTG; PDForward2: 5’-ATGCA AGCTT AGGTA 

CGGGA GGTAC TTGG and PDReverse2: 5’-ATCTG AATTC ATCTC GAGCC 

CGGGC TAGC. Synthetic oligodeoxynucleotides containing 7x repeat copies of 

target TFRE consensus sequences (TFRE-ODNs) were synthesised (Sigma), PCR 

amplified, and inserted into the MCS to construct TFRE-specific plasmid-decoys. 

The TFRE consensus sequences used to construct TFRE-ODNs were as follows: 

NFκB-RE, GGGACTTTCC and NFκB-RE-scrambled, AATCGCAAGT.  

 

2.1.6. hCMV-IE1 promoter-variant reporter vectors 

 

Discrete hCMV-IE1 promoter regions were PCR amplified using the primer pairs 

shown in Table 2.3 and inserted upstream of the CMV core promoter in the 

promoterless GFP-reporter vector.  

Wild-type hCMV-IE1 (nucleotides 595 – 1194 in accession number 

M60321.1) and synthetic promoter-variants with varying TFRE sites ‘knocked out’ 

(i.e. scrambled) were synthesised (GeneArt, Life Technologies), gel extracted and 

cloned upstream of the SEAP ORF in the promoterless SEAP reporter-vector. TFRE 
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sites were scrambled as follows: NFkB, AATCGCAAGT; CRE, CTACTGTG; and 

YY1, TGTC. 

 

Table 2.3: Primers used to amplify discrete hCMV-IE1 promoter regions. F = forward, 

R = reverse, TSS = transcriptional start site, CRM = Cis-regulatory module. 

hCMV-IE1 promoter 

region 

Primer sequences (5’ – 3’)  

Distal + proximal (-560 

to -50 relative to TSS) 

F: TTATCTCGAGAGTTCATAGCCCATATATGGAGTTCC 

R: ATCGGAATTCGTCTTCTATGGAGGTC 

Distal (-560 to -300) F: TGGCGGTACCAGTTCATAGCCCATATATGG 

R: ATAACTCGAGCAGGCGGGCCATTTACCG  

Proximal (-300 to -50) F: TAAACTCGAGGCATTATGCCCAGTACATG 

R: ATCGGAATTCGTCTTCTATGGAGGTC 

CRM 1 (-560 to –448) F: ATATGGTACCGGGTCATTAGTTCATAGCC 

R: ATATCTCGAGTACGTCATTATTGACGTC 

CRM 2 (-467 to –354) F: ATATGGTACCTTGACGTCAATAATGACG 

R: ATATCTCGAGTACACTTGATGTACTGC 

CRM 3 (-375 to –259) F: ATATGGTACCCTTGGCAGTACATCAAG 

R: ATATCTCGAGAGTAGGAAAGTCCCGTAAGG 

CRM 4 (-302 to –192) F: ATATGGTACCCTGGCATTATGCCCAGTAC 

R: ATATCTCGAGCATTGGTGTACTGCCAAAAC 

CRM 5 (-210 to –92) F: ATATGGTACCTTTGGCAGTACACCAATG 

R: ATATCTCGAGTTTGGAAAGTCCCGTTG 

CRM 6 (-143 to –31) F: ATATGGTACCTGACGTCAATGGGAGTTTG 

R: ATATCTCGAGGACCTCCCACCGTACACG 

 

 

2.2. Cell culture and transfection 

 

CHO-S and CHO-K1 cells were cultured in CD-CHO medium (Life Technologies) 

supplemented with 8 mM and 6mM L-glutamine (Sigma) respectively. CHO-DG44 

cells were cultured in CD-DG44 medium (Life Technologies) supplemented with 8 

mM L-glutamine and 18 mL/L pluronic F68 (Life Technologies). All cells were 

routinely cultured at 37°C in 5% (v/v) CO2 in vented Erlenmeyer flasks (Corning, 

Surrey, UK), shaking at 140 rpm and subcultured every 3-4 days at a seeding density 
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of 2 x 10
5
 cells/ml. Cell concentration and viability were determined by an 

automated Trypan Blue exclusion assay using a Vi-Cell cell viability analyser 

(Beckman-Coulter, High Wycombe, UK).  Two hours prior to transfection, 2 x 10
5
 

cells from a mid-exponential phase culture were seeded into individual wells of a 24 

well plate (Nunc). Cells were transfected with DNA-lipid complexes comprising 

DNA and Lipofectamine (Life Technologies) at a 1: 3 ratio (µg/µl), prepared 

according to the manufacturer’s instructions. Transfected cells were incubated for 24 

– 72 h prior to protein expression analysis. To eliminate potential promoter-promoter 

interference, individual transfections did not include a co-transfected reporter vector 

to compare transfection efficiencies.  However, each 24 well plate included a set of 

three external reporters (CMV-SEAP, SV40-SEAP and 7x CRE-SEAP) to confirm 

reproducible transfection performance.  

 

2.2.1. Fed-batch transient transfection 

 

Two hours prior to transfection 6 x 10
6
 cells from a mid-exponential phase CHO-S 

culture were seeded into 50 mL CultiFlask bioreactors (Sartorius, Surrey, UK) at a 

working volume of 6 mL. Cells were transfected with DNA: lipofectamine 

complexes, prepared according to the manufacturer’s instructions. Fed-batch cultures 

were maintained for seven days by nutrient supplementation with 10% v/v CHO CD 

Efficient Feed A (Life Technologies) on day 2, 4 and 6. SEAP expression and cell 

growth were measured at 24 h intervals.   

 

2.3. Quantification of reporter expression 

 

SEAP protein expression was quantified using the Sensolyte pNPP SEAP 

colorimetric reporter gene assay kit (Cambridge Biosciences, Cambridge, UK) 

according to the manufacturer’s instructions. GFP protein expression was quantified 

using a Flouroskan Ascent FL Flourometer (Excitation filter: 485 nm, Emission 

filter: 520 nm). Background fluorescence/ absorbance was determined in cells 

transfected with a promoterless vector.  
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2.4. Bioinformatics analyses 

 

2.4.1. In silico analysis of transcription factor regulatory elements 

 

The following promoter sequences were retrieved from GenBank: hCMV-IE1 

(accession number M60321.1), mouse CMV-IE1 (M11788), rat CMV-IE1 

(U62396), guinea pig CMV-IE1 (CS419275), mouse CMV-IE2 (L06816.1), simian 

virus 40 early promoter and enhancer (NC_001669.1), adenovirus major late 

promoter (KF268310), myeloproliferative sarcoma virus long terminal repeat (LTR) 

(K01683.1), rous sarcoma virus LTR (J02025.1), and human immunodeficiency 

virus LTR (K03455.1). Promoters were analysed using the Transcription Element 

Search System (TESS: http://www.cbil.upenn.edu/cgi-bin/tess/tess) and the 

Transcription Affinity Prediction tool (TRAP: http://trap.molgen.mpg.de/cgi-

bin/trap_form.cgi) according to the methods previously described by Schug (Schug 

2008) and Manke et al. (Manke et al., 2008).  

 

2.4.2. Analysis of hCMV-IE1’s 4mer composition 

 

To determine the relative abundance of every possible 4mer sequence, the hCMV-

IE1 promoter was analysed using the Regulatory Sequence Analysis (RSA, 

http://rsat.ulb.ac.be) oligo-analysis tool (van Helden et al., 1998).    

 

2.4.3. In silico analysis of synthetic promoter libraries 

 

The relationship between synthetic promoters’ discrete TFRE compositions and 

relative activities was analysed using the statistical analysis software R (R 

Development Core Team, 2013; http://r-project.org). The R script developed to 

execute this analysis (synpro.anal.R) utilised the following R packages (available at 

http://cran.r-project.org/web/packages): ggplot2, leaps, relaimpo, DAAG, 

RDCOMClient, R2wd, plyr, and stringr. This script can be downloaded at 

https://sourceforge.net/projects/syntheticpromoteranalysis/files/ 
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2.5. Block-decoy construction and analysis 

 

2.5.1. Construction of block-decoys 

  

Regulatory element (RE)-block molecules were developed by annealing two 

complementary, single stranded 5’ phosphorylated DNA ODNs (Sigma) in STE 

buffer (100 mM NaCl, 50 mM Tris-HCl, 1 mM EDTA, pH 7.8, Sigma). ODNs were 

heated at 95°C for 5 min and then ramp cooled to 25°C over 2 h to create RE-blocks 

that contain a transcription factor binding site and a 4 bp TCGA single stranded 

overhang at each 5’ termini.  RE-blocks (12 µg) were then ligated with 5 units of 

high concentration T4 DNA ligase (Life Technologies) at room temperature for 3 h 

to form block-decoys. Chimeric decoys were constructed by ligating varying molar 

concentrations of different RE-blocks. The sequences of all RE-blocks employed in 

this study are shown in Table 2.4. 

 

2.5.2. Analysis of Block Decoy Structure 

 

Block-decoy population size distribution was analysed by ethidium bromide agarose 

gel electrophoresis utilising molecular weight markers (Hyperladder II, Bioline, 

London, UK). To confirm block-decoys circularisation, 1.5 µg of purified block-

decoy was added to 5 units of high concentration T4 DNA ligase before gel analysis.  

To test the stability of block-decoys against exonuclease, 4 µg of block-decoy was 

incubated with 300 units of Exonuclease III (Promega) and the mixture was 

incubated at 37 °C.  A mixture of linear ODNs spanning the molecular weight range 

of the block-decoys was used as a positive control.  
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Table 2.4: DNA sequences of oligonucleotides used to construct TFRE-specific block-

decoys. Complementary oligonucleotides were annealed to create RE-blocks that were 

subsequently ligated to form TFRE-specific block-decoys. 

TFRE Target Oligonucleotide sequences (5’ – 3’) 

NFκB TCGATGGGACTTTCCA 

TCGATGGAAAGTCCCA 

CRE TCGATTTGACGTCATT 

TCGAAATGACGTCAAA 

E-box TCGAAACACGTGAGA 

TCGATCTCACGTGTT 

YY1 TCGATCGCCATTTTAA 

TCGATTAAAATGGCGA 

8mer TCGAAGTTTCTTTCGA 

TCGATCGAAAGAAACT 

E4F1 TCGATTGTGACGTAACTT 

TCGAAAGTTACGTCACAA 

GC-box TCGATGGGGCGGGGA 

TCGATCCCCGCCCCA 

RARE TCGATAGGTCATCAAGAGGTCATT 

TCGAAATGACCTCTTGATGACCTA 

C/EBPα TCGATTTTGCGCAATT 

TCGAAATTGCGCAAAA 

NF1 TCGATTTGGCTATATGCCAATT 

TCGAAATTGGCATATAGCCAAA 

NFκB-scrambled TCGATAATCGCAAGTA 

TCGATACTTGCGATTA 

CRE-scrambled TCGATTGACTAGAGTT 

TCGAAACTCTAGTCAA 

E-box-scrambled TCGAAAGCTCAGAGA 

TCGATCTCTGAGCTT 
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Chapter 3: Synthetic Promoters for CHO Cell Engineering 

 

This chapter presents the first-ever synthetic promoters designed specifically to 

regulate recombinant gene transcription in CHO cells.  TFRE function in CHO cells 

was functionally screened and active elements were utilised to construct libraries of 

synthetic promoters that exhibited variable activity over two orders of magnitude, 

significantly exceeding that of hCMV-IE1.  Promoter functionalities were validated 

in both different CHO host lines and through a fed-batch transient production 

process. The precision control of recombinant gene transcription enabled by these 

synthetic promoters will facilitate the design of novel, predictable synthetic 

constructs for diverse CHO cell engineering applications. 

 

Based on the work within this chapter the following article has been published 

(shown in Appendix C): 

 

Brown AJ, Sweeney B, Mainwaring DO, James DC. 2014. Synthetic promoters for 

CHO cell engineering. Biotechnol. Bioeng. doi: 10.1002/bit.25227 

 

Based on the work within this chapter the following patent application has been 

filed: 

 

Brown AJ, James DC. UK patent application number GB 1321109.9 (29 November 

2013) Synthetic promoters for CHO cells 

 

3.1. Introduction 

 

As discussed in section 1.5, novel transcription control technologies could enable 

disruptive step-change innovation in biopharmaceutical manufacturing. The precise 

transcriptional control required to implement multiple critically required 

biomanufacturing developments (outlined in section 1.3) is currently unachievable 

with viral and endogenous promoters that exhibit uncontrollable and unpredictable 

functionality (Pontillier et al., 2008; Kim et al., 2011; Datta et al., 2013). These 

naturally evolved blunt-instruments are restricted to offering a very limited set of 
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discrete activities.  In contrast, synthetic promoters can be engineered to exhibit 

specifically tailored activities over broad dynamic ranges. They therefore represent 

an attractive solution for achieving sophisticated, predictable transcriptional control 

in CHO cells. Given that multiple studies have demonstrated synthetic promoter 

activity to be highly context (i.e. cell type) dependent, novel synthetic promoters 

need to be specifically designed to harness the transcriptional activation machinery 

of CHO cell factories (Ogawa et al., 2007; Schlabach et al., 2010). 

Synthetic biology strategies aim to achieve desirable systems (or behaviours) 

by constructing novel devices with predictable functionality from characterised, 

modular parts (bioblocks) (Passoti et al., 2012).  When applied to transcriptional 

control this typically involves constructing libraries of promoters (devices) that 

exhibit activities over broad dynamic ranges (behaviours) from parts that are either i) 

random synthetic oligonucleotides (e.g. 6 - 10 bp oligomers) (Ferreira et al., 2011), 

ii) known TFREs (Koschmannet et al., 2012), or iii) existing promoters (e.g. by 

producing mutagenised or hybrid variants) (Smith et al., 2013). This strategy has 

been employed to construct synthetic promoter libraries for a range of microbial 

protein production hosts, including Saccharomyces (Blazeck et al., 2012), 

Streptomyces (Seghezzi et al., 2011) and E. coli (De Mey et al., 2007), and has been 

particularly successful in Pichia pastoris where considerable synthetic promoter 

engineering efforts have facilitated improved bioprocesses, optimised expression 

levels and increased yields in the manufacture of industrial and therapeutic enzymes 

(Hartner et al., 2008; Ruth et al., 2010; Mellitzer et al., 2012; Vogl et al., 2013).  

Mammalian cell system synthetic promoters have predominantly been constructed 

by randomly assembling small numbers (2 – 6) of discrete system-active TFREs 

(although a few studies have utilised random synthetic oligonucleotides (Edelman et 

al., 2000; Schlabach et al., 2010)). Such promoters have typically been developed 

for use in cell type-specific gene therapy applications, for example in macrophages 

(He et al., 2006), neurons (Hwang et al., 2004), hepatocytes (Han et al., 2011), 

myocytes (Jianwei et al., 2012) and tumour cells (Xiong et al., 2011; Chen et al., 

2012). Construction of most mammalian synthetic promoters has therefore required 

a priori knowledge of host system TFRE functionality - something that is currently 

unavailable for CHO cells.  

Few studies have previously explored the utilisation of synthetic promoters in 

CHO (discussed in detail in section 1.4.3.3). Whilst two studies have characterised 
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the activity of small synthetic promoter libraries in CHO cells, both targeted broad 

mammalian cell activity (tested in multiple diverse cell lines) and neither sought to 

specifically design promoters to function in concert with CHO cell factory 

transactivational machinery (Tornøe et al., 2002; Grabherr et al., 2011). 

Cumulatively, these libraries contain a small number of promoters (< 25) that are 

only capable of controlling gene expression over a narrow range (< 10-fold) and 

have relatively low top activities (significantly less than hCMV-IE1). Accordingly, 

no promoters to date have enabled predictable, precise, robust control of CHO gene 

expression over a broad dynamic range.  

The work in this chapter describes for the first time the creation of a library 

of 140 synthetic promoters specifically designed to regulate the expression of 

recombinant genes in CHO cells.  TFRE function in CHO cells was functionally 

screened and active elements were utilised to construct libraries of synthetic 

promoters that exhibited variable activity over two orders of magnitude, significantly 

exceeding that of hCMV-IE1 in transient production processes.  Moreover, relative 

promoter activities across a broad dynamic range were maintained in both different 

CHO cell hosts and across a fed-batch transient production process. The precision 

control of recombinant gene transcription enabled by this synthetic promoter 

technology will facilitate the design of novel, predictable synthetic constructs for 

diverse CHO cell engineering applications.   

 

3.2. Results 

 

3.2.1. Selecting a core promoter for use in synthetic promoter library 

construction 

 

3.2.1.1 Identifying a core promoter design space 

  

In order to construct CHO-cell specific synthetic promoters the activity of core 

promoter regulatory elements (CPREs) was first evaluated in CHO-S cells. CPREs 

within core promoter regions (typically -50 - +50 relative to the transcriptional start 

site (TSS)) bind cognate general TFs to form transcription preinitiation complexes 

(PICs). As transcriptional activators (both discrete TFREs and larger elements such 
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as proximal promoters and enhancers) have been shown to function specifically with 

different CPREs, it is optimal to comparatively evaluate different TFREs and 

synthetic promoters using a single fixed core promoter (Theisen et al., 2010). 

However, the design space for constructing synthetic core promoters is limited to the 

following seven previously described CPREs: TA box; initiator element (Inr); motif 

10 element (MTE); downstream promoter element (DPE); TFIIB recognition 

elements (BREu/BREd); X core promoter element (XCPE1/2); and the downstream 

core element (DCE) (Juven-Gershon and Kadonaga, 2010). Moreover, the design 

space is further reduced as i) BRE and XCPE have been shown to exhibit repressive 

and unpredictable functionality and ii) each CPRE’s functionality is dependent upon 

strict spatial positioning relative to the TSS (Juven-Gershon et al., 2008)). The 

positional requirements of the five CPREs (TA box, INR, DPE, MTE, and DCE) that 

can be utilised to construct synthetic core promoters are shown in Figure 3.1.  

Multiple studies have demonstrated that CPREs function synergistically to 

increase transcription initiation rates (Juven-Gershon and Kadonaga, 2010). 

Accordingly, it was hypothesised that optimised core promoter functionality in CHO 

cells would be achieved by maximising CPRE numbers. Given that DCE inclusion 

prevents utilisation of DPE and MTE blocks (see Figure 3.1), the design space was 

narrowed to two synthetic core construct compositions;  Ta box: INR: MTE: DPE 

and Ta box: INR: DCE. The former has previously been shown to be highly active in 

HeLa cells and is patented as the ‘supercore’ (Juven-Gershon et al., 2006), whilst the 

latter has never previously been constructed and will hereafter be referred to as 

synthcore2. It was predicted that these two synthetic cores would exhibit higher 

activities than naturally occurring alternatives. However, core promoters from the 

hCMV-IE1 (-34 to +48 relative to the TSS, containing a TA box and an INR, 

hereafter referred to as CMV core) and CHEF1α (-34 to +48 relative to the 

transcriptional start site, containing a TA box, hereafter referred to as CHEF1α core) 

promoters were evaluated in parallel as they have (indirectly) proven functionality in 

driving high levels of recombinant gene expression in CHO cells. It was 

hypothesised that this design space of four core promoters with varying CPRE 

compositions (Figure 3.1) would yield a ‘part’ with desirable, characterised 

functionality for inclusion in subsequent synthetic promoter libraries.  
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Figure 3.1: Core promoter engineering design space. The design space for core promoter 

construction is limited to five discrete core promoter regulatory elements (CPREs), with 

associated spatial positioning requirements. The varying CPRE compositions of the seven 

core promoters evaluated in this study are shown. 

 

 

3.2.1.2 Different core promoters exhibit variable activities in CHO cells 

 

In order to determine the relative transcriptional activity of core promoters in CHO-S 

cells reporter constructs containing each core upstream of a secreted alkaline 

phosphatase (SEAP) reporter gene were constructed. These vectors were otherwise 

‘promoterless’ (i.e. devoid of proximal/ distal promoter sequences), and therefore 

SEAP expression levels were directly dependent on relative core activities. 

Measurement of SEAP reporter production after transient transfection of CHO-S 

cells with each core-reporter plasmid is shown in Figure 3.2. These data show that 

core constructs exhibit varying ‘basal level’ activities in CHO, where relative SEAP 

production from each core occurred at the ratio supercore 4.73: synthcore2 2.03: 

CMV 1.00: CHEF1α 0.33.  
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Figure 3.2: Core promoter constructs exhibit variable ‘basal level’ activities in CHO 

cells. Each core promoter construct (CPRE compositions shown in Figure 3.1) was cloned 

upstream of SEAP reporters in otherwise ‘promoterless’ vectors. CHO-S cells (2 x 10
5
) in 

24-well plates were transfected with 1 μg of core reporter-vector and SEAP activity in cell 

culture supernatant was measured 72 h post-transfection. Data are expressed as a percentage 

of the production exhibited by the CMV core promoter.  Bars represent the mean + SD of 

three independent experiments each performed in triplicate. 

 

 

Previous studies have demonstrated that MTE, DPE and DCE elements are 

incapable of initiating transcription in isolation, requiring either TA boxes or INRs 

for functionality (Lim et al., 2004). Evaluation of the activity of these CPREs in the 

absence of TA boxes and INRs (i.e. core promoters containing only MTE.DPE or 

DCE) confirmed that neither of these elements were active in CHO cells in isolation 

as both were incapable of driving detectable levels of SEAP production (Figure 3.3). 

It was therefore inferred that the higher activities exhibited by supercore and 

synthcore2, relative to CMV core, were a result of synergistic interactions between 

MTE/ DPE/ DCE elements and TA boxes/ INRs.  
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Figure 3.3: MTE, DPE and DCE elements are incapable of initiating transcription in 

isolation. Core promoter constructs containing only MTE.DPE or DCE elements were 

cloned upstream of SEAP reporters in otherwise ‘promoterless’ vectors. CHO-S cells (2 x 

10
5
) in 24-well plates were transfected with 1 μg of core reporter-vector and SEAP activity 

in cell culture supernatant was measured 72 h post-transfection. Bars represent the mean + 

SD of three independent experiments each performed in triplicate. 

 

 

To determine if relative activities were maintained at higher levels of 

expression (i.e. > basal transcription levels) core promoter function was evaluated in 

the context of relatively weak (SV40E, - 155 to - 35 relative to TSS) and strong 

(hCMVIE1 distal + proximal promoters, -559 to -35 relative to the TSS) expression 

cassettes. This analysis showed that relative core promoter activities were not 

maintained in either SV40E-core-SEAP or hCMVIE1-core-SEAP reporters, where 

relative SEAP production from each core occurred at the ratios supercore 1.94: 

synthcore2 0.89: CMV 1.00: CHEF1α 0.48 and supercore 0.75: synthcore2 0.67: 

CMV 1.00: CHEF1α 0.38 respectively (Figure 3.4). These data reveal that the 

increased activities of supercore and synthcore2 relative to the CMV core at basal 

transcription levels are significantly reduced in weak SV40E expression cassettes. 

Moreover, in the context of the strong hCMV-IE1 cassette both cores exhibited 

reduced SEAP production relative to the CMV core. Therefore it was inferred that 
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relative core promoter functionalities are variable in CHO cells, dependent on 

surrounding expression cassette elements.  

 

 

 

Figure 3.4: Core promoters exhibit variable relative activities in the context of different 

expression cassettes. Each core promoter construct was cloned downstream of either 

SV40E (A) or hCMV-IE1 (B) enhancer elements in SEAP reporters. CHO-S cells (2 x 10
5
) 

in 24-well plates were transfected with 1 μg of SEAP reporter-vector and SEAP activity in 

cell culture supernatant was measured 72 h post-transfection. Data are expressed as a 

percentage of the production exhibited by CMV core promoter in each expression cassette. 

Bars represent the mean + SD of three independent experiments each performed in triplicate. 
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Lastly, the activity of TA box and INR elements in isolation was determined 

by constructing hCMV-IE1-core-SEAP reporters containing either the wildtype 

CMV core or TA box/ INR knockout variants (i.e. CMV cores with either the TA 

box or INR element sequence scrambled). Measurement of SEAP reporter 

production after transient transfection of CHO-S cells with each core-reporter 

plasmid is shown in Figure 3.5. This analysis showed that i) removal of either CPRE 

from the CMV core promoter resulted in > 55% decrease in SEAP expression and ii) 

in contrast to DPE, MTE and DCE, TA boxes and INRs are capable of initiating 

transcription in isolation in CHO cells.  

 

 

Figure 3.5: TA box and INR elements are capable of initiating transcription in isolation 

in CHO cells. Core promoter constructs containing only TA box or INR elements were 

cloned downstream of the hCMV-IE1 enhancer in SEAP reporters. CHO-S cells (2 x 10
5
) in 

24-well plates were transfected with 1 μg of core reporter-vector and SEAP activity in cell 

culture supernatant was measured 72 h post-transfection. Data are expressed as a percentage 

of the production exhibited by the wild-type CMV core promoter (containing both TA box 

and INR elements) in the same hCMV-IE1 expression cassette. Bars represent the mean + 

SD of three independent experiments each performed in triplicate. 
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3.2.1.3 CMV core is the best available part for inclusion in synthetic promoter 

libraries 

 

Whilst discrete CPRE compositions exhibited variable activity in different 

expression cassettes, at relatively low levels of expression a rank order of strength 

was identified; TA box + INR + MTE + DPE > TA box + INR > TA box or INR 

(Figure 3.6). Addition or subtraction of CPRE blocks therefore represents a simple 

method for tailoring the transcription rate of lowly expressed genes in CHO. 

However, at higher levels of expression, supercore, synthcore2 and CMV core drove 

similar SEAP production levels. This is likely a function of TFRE-TF interactions 

within enhancers reducing the rate-limitation of core-mediated steps such as PIC 

formation and transcription initiation (Juven-Gershon and Kadonaga, 2010).  

The CMV core has proven functionality in driving high levels of recombinant 

gene expression in CHO cells (as part of the hCMV-IE1 expression cassette) during 

production processes. Accordingly, alternative core promoters would need to exhibit 

significantly improved functionality to replace CMV core in synthetic promoter 

libraries - particularly the patented supercore which has associated licensing costs. 

Evaluation of the core promoter engineering design space in CHO-S cells both i) 

confirmed the CMV core was a robust CHO-active element and ii) revealed that 

rationally designed synthetic cores did not exhibit enhanced functionality over the 

CMV core. Therefore the CMV core will be utilised for construction of synthetic 

promoter libraries. 

 

 

Figure 3.6: Variable CPRE compositions enable three discrete core promoter activities 

at low levels of expression in CHO cells.  
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3.2.3. Identification of active transcription factor regulatory elements in 

CHO-S cells. 

 

Construction of synthetic promoter libraries required a pool of CHO-active TFREs. 

As it was considered intractable to functionally screen all previously described (> 

250) elements (Mathelier et al., 2013), a bioinformatics analysis was employed to 

narrow the design space to a set of TFREs significantly likely to exhibit CHO cell 

activity. Accordingly, in order to identify discrete TFREs capable of recombinant 

gene transactivation in CHO-S cells putative TFREs in ten viral promoters (listed in 

Table 3.1) generally known to be active in CHO cells were surveyed in silico. It was 

rationalised that these promoters must contain one or more constituent TFREs able 

to bind cognate transcription factors present in CHO cells.  Using online search tools 

that scan DNA sequences for transcription factor (TF) binding sites, specifically 

Transcription Element Search System (TESS) and Transcription Affinity Prediction 

tool (TRAP), stringent search parameters (Manke et al., 2008; Schug, 2008) were 

employed to minimise false positives. Across all viral promoter sequences, 67 

discrete TFREs were identified as being present in one or more.  To further minimise 

this pool (design space) TFREs that did not occur in at least two promoters were 

filtered out.  Viral promoter-specific TFRE compositions are listed in Table 3.1. 

Table 3.2 lists the final set of 28 TFREs incorporated into the functional screen and 

their associated consensus sequences.   

To determine the relative transcriptional activity of each TFRE in CHO-S 

cells sets of both GFP and SEAP reporter constructs that each contained seven repeat 

copies of a specific TFRE in series, upstream of the CMV core promoter, were 

created. Measurement of GFP and SEAP reporter production after transient 

transfection of CHO-S cells with each TFRE-reporter plasmid is shown in Figure 

3.7. This analysis identified seven TFREs that significantly increased expression of 

both SEAP and GFP over basal expression from the core promoter up to 100-fold 

(NFκB, E-box, AP1, CRE, GC-box, E4F1, C/EBPα). A further two elements (OCT 

and RARE) increased SEAP expression but showed no observable increase in GFP, 

likely due to differences in reporter measurement (e.g. intracellular turnover of GFP, 

extracellular accumulation of SEAP).  No other TFREs mediated a significant 

increase in reporter expression above core control levels.  These data identify a 
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group of TFREs that can independently mediate activation of recombinant gene 

transcription in CHO-S cells using available transcription factor activity.  The 

relative level of reporter expression is a function of TF relative abundance, affinity 

of the TF for its cognate TFRE and the discrete mechanism of transcriptional 

activation. Lastly, the data implies that many TFREs that exist in common viral 

promoters used to drive recombinant gene expression in CHO cells may be 

functionally redundant. 

 

Table 3.1: Transcription factor regulatory elements identified by bioinformatic survey 

of viral promoters.  Ten viral promoters known to exhibit activity in CHO cells were 

surveyed for the presence of discrete transcription factor regulatory elements (transcription 

factor binding sites) using Transcription Element Search System (TESS) and Transcription 

Affinity Prediction (TRAP) algorithms using stringent search parameters to minimise false 

positives. 28 TFREs that occur in more than one viral promoter are listed.  

Promoter Transcription Factor Regulatory Elements  

Human Cytomegalovirus immediate early 1 

(hCMV-IE1) 

AP1, CArG, C/EBPα, CRE, E4F1, EGR1, 

GC-box, Gfi1, IPF1, NF1, NFκB, RARE, 

YY1 

Mouse Cytomegalovirus immediate early 1 

(mCMV-IE1) 

AP1, CRE, E-box, E4F1, ERRE, Gfi1, HRE, 

IPF1, NF1, NFκB, NFAT, NBRE, RARE 

Rat Cytomegalovirus immediate early 1 

(rCMV-IE1) 

AP1, E2F, ERRE, ISRE, NFκB, NFAT, 

NBRE, RARE 

Guinea pig Cytomegalovirus immediate early 1 

(gpCMV-IE1) 

AP1, GATA, GC-box, GRE, HNF, MSX, 

NF1, NFκB, OCT, RARE, YY1 

Mouse Cytomegalovirus immediate early 2 

(mCMV-IE2) 

CArG, GC-box, cMyb, E2F, EGR1, GATA, 

HRE, MSX, RARE 

Simian virus 40 early promoter and enhancer 

(SV40E) 

AP1, C/EBPα, cMyb, E-box, GATA, GC-box, 

MSX, NFκB, OCT 

Adenovirus major late promoter (AdMLP) CDP, E-Box, EGR1, GATA, GC-box, HNF, 

NF1, YY1 

Myeloproliferative sarcoma virus long terminal 

repeat (LTR) (MPSV LTR) 

CDP, cMyb, ERRE, GATA, GC-box, Gfi1, 

GRE, NF1, RARE, YY1  

Rous sarcoma virus LTR (RSV LTR) CArG, CDP, C/EBPα, ISRE, OCT 

Human immunodeficiency virus LTR (HIV 

LTR) 

E-box, GC-box, GATA, HNF, NFκB, NF1 
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Table 3.2: DNA sequences of transcription factor regulatory elements identified by 

bioinformatic survey of viral promoters.  Ten viral promoters known to exhibit activity in 

CHO cells were surveyed for the presence of discrete transcription factor regulatory 

elements (transcription factor binding sites) using Transcription Element Search System 

(TESS) and Transcription Affinity Prediction (TRAP) algorithms using stringent search 

parameters to minimise false positives. DNA sequences of single TFREs that occur in more 

than one viral promoter are listed. Measurement of their relative ability to activate 

transcription of recombinant reporter genes in CHO-S cells is shown in Figure 3.7.  

Transcription Factor Regulatory  Element (RE) Sequence 

Activator protein 1 (AP1) TGACTCA 

CC(A/T)6GG element (CArG) CCAAATTTGG 

CCAAT displacement protein (CDP)                GGCCAATCT 

CCAAT-enhancer binding protein alpha (C/EBPα) TTGCGCAA 

Cellular myeloblastosis (cMyb) TAACGG 

cAMP RE (CRE) TGACGTCA 

Elongation factor 2 (E2F) TTTCGCGC 

E4F1  GTGACGTAAC 

Early growth response protein 1 (EGR1) CGCCCCCGC 

Estrogen-related receptor alpha RE (ERRE)     AGGTCATTTTGACCT 

Enhancer box (E-box)                  CACGTG 

GATA-1 (GATA) AGATAG 

GC-box GGGGCGGGG 

Glucocorticoid RE (GRE) AGAACATTTTGTTCT 

Growth factor independence 1 (Gfi1) AAAATCAAC 

Helios RE (HRE) AATAGGGACTT 

Hepatocyte nuclear factor 1 (HNF) GGGCCAAAGGTCT 

Insulin promoter factor 1 (IPF1) CCCATTAGGGAC 

Interferon-stimulated RE (ISRE) GAAAAGTGAAACC 

Myocyte enhancer factor 2 (MEF2) CTAAAAATAG 

Msx homeobox (MSX) CGGTAAATG 

Nerve growth factor-induced gene-B RE (NBRE) AAAGGTCA 

Nuclear factor 1 (NF1) TTGGCTATATGCCAA 

Nuclear factor of activated T cells (NFAT) AGGAAATC 

Nuclear factor kappa B (NFκB) GGGACTTTCC 

Octamer motif (OCT) ATTAGCAT 

Retinoic acid RE (RARE) AGGTCATCAAGAGGTCA 

Yin yang 1 (YY1) CGCCATTTT 

Random 8mer (8mer) TTTCTTTC 
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Figure 3.7: Identification of active transcription factor regulatory elements in CHO-S 

cells.  Seven copies of each TFRE (as described in Table 3.2) were cloned in series upstream 

of a minimal CMV core promoter in reporter vectors encoding either GFP or SEAP 

reporters.  CHO-S cells (2 x 10
5
) in 24-well plates were transfected with 1 μg of SEAP 

(black bars) or GFP (white bars) TFRE reporter-vector.  SEAP activity in cell culture 

supernatant and intracellular GFP were measured 24 h post-transfection.  Data are expressed 

as a fold-change with respect to the activity of a vector containing only a minimal CMV core 

promoter (Core).  A random 8bp sequence with no known homology to TFRE sequences 

(8mer) was also used as a control.  Bars represent the mean + SD of three independent 

experiments each performed in triplicate, using three clonally derived plasmids for each 

TFRE-reporter construct.  

 

3.2.4. First generation synthetic promoters exhibit a broad activity range 

up to that of hCMV-IE1 

 

In order to construct a first generation synthetic promoter library all TFREs 

identified as transcriptionally active in CHO-S cells were utilised.  Oligonucleotide 

building blocks containing a single copy of each TFRE sequence (TFRE blocks) 

were chemically synthesised (NFκB, CRE, E-box, GC-box, E4F1, and C/EBPα; AP1 
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was omitted from the library due to previously observed functional redundancy 

between CRE and AP1 sites (Hai and Curran, 1991)), and ligated at an equal ratio to 

assemble random TFRE-combinations which were inserted upstream of the CMV 

core promoter in SEAP reporter plasmids.  A control CMV promoter reporter 

plasmid was constructed using the hCMV-IE1 promoter (-559 to +48 relative to the 

TSS, i.e. the complete hCMV-IE1 enhancer containing the distal, proximal and core 

promoter regions, hereafter referred to as CMV) upstream of the SEAP ORF. 

Purified plasmid DNA from 110 transformed E.coli colonies picked at random was 

utilised for measurement of SEAP reporter production. 

Transient production was employed to determine the relative activity of 

synthetic promoters as it both maximises throughput and provides a direct readout of 

synthetic promoter transactivation without potential interference from integration-

specific effects or silencing.  Whilst SEAP production is not a direct measurement of 

transcriptional activity, previous experiments in this laboratory have confirmed that 

SEAP activity in cell culture supernatant is linearly correlated with SEAP mRNA 

levels post-transfection.  Moreover assay conditions were optimised such that control 

CMV-SEAP reporter activity was in the centre of the linear assay range with respect 

to plasmid copy number (DNA load) and measured SEAP output.  SEAP production 

at 24 h post transfection was measured for each synthetic promoter, and each 

promoter was sequenced to reveal its TFRE-block composition.   A small proportion 

(14) of reporter plasmids were found to be lacking a promoter insert and these were 

excluded from further analysis.  The relative transcriptional activity of the remaining 

96 promoters is shown in Figure 3.8, and their TFRE-block compositions are listed 

in Supplementary Table 1 in Appendix A.  These data show that generation 1 

synthetic promoter activities spanned two orders of magnitude, where the most 

active synthetic promoter exhibited a 1.2-fold increase in SEAP production over that 

deriving from the CMV control vector.  
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Figure 3.8:  First generation synthetic promoters vary in activity up to that of CMV.  

First generation synthetic promoters were constructed by random ligation of NFκB, CRE, E-

box, GC-box, E4F1 and C/EBPα TFREs in equal proportion. Synthetic promoters were 

inserted upstream of a minimal CMV core promoter in SEAP reporter plasmids and 

transfected into CHO-S cells.  SEAP expression was quantified 24 h post-transfection.  Data 

are expressed as a percentage of the production exhibited by promoter 1/01.  SEAP 

production from the control CMV-SEAP reporter is shown as the black bar.  Each bar 

represents the mean of two transfections, for each promoter less than 10% variation in SEAP 

production was observed. 

 

3.2.5 Development of a fully automated synthetic promoter library 

analysis platform to identify optimised design spaces 

 

It was hypothesised that the broad variance in first generation synthetic promoter 

activities was a function of varying discrete TFRE block compositions (as shown in 

Appendix A). Determination of the design rules governing promoter activity would 

accordingly enable rational design of second generation promoters with optimised 

functionality. It was envisaged that an automated promoter analysis platform 

facilitating simple selection of optimised design spaces would enable industrial 

companies to develop desirable synthetic promoters in-house. Statistical analysis 

software R was utilised to develop the analytics platform as it i) is open-source and 
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free of charge, ii) is compatible with all operating systems, iii) has a vast array of 

available statistical analysis tools that are regularly extended by a dedicated 

community, and v) employs user-friendly computing language (Kreutzer et al., 2012; 

R Development Core Team, 2013). A promoter library analysis R script 

(synpro.anal.R) was developed that automatically generates a word document 

analysis report from a CSV file detailing promoter activities and sequence 

compositions. The data provided within this report enables rapid identification of an 

optimal design space for second generation promoter library construction. Key 

components of the four stage analysis will now be outlined using synthetic promoter 

library 1 data as an example (see Appendix B for the full analysis report). Note that 

this section (3.2.5.1 – 3.2.5.5) is intended to detail the generic benefits of the 

developed analytics platform for rapidly identifying optimal next-generation 

synthetic promoter library construction strategies. Specific analysis of the 

design rules that determined first generation synthetic promoter activities is 

presented in section 3.3.6. 

 

3.2.5.1. Synthetic promoter library analysis platform: section 1 – key library 

statistics 

 

The first analysis section provides the data required to evaluate the following 

assumptions: 

1. The relative abundance of TFRE blocks across the promoter library is as designed 

2. Relative promoter activity is not simply a function of promoter length 

3. Promoter activities cover the desired/ expected expression range. 

The analysis first converts the TFRE blocks into letter identifiers, in this example A - 

F. Data is generated showing i) the distribution of each TFRE block across the 

promoter library (Table 3.3), ii) the relationship between relative transcriptional 

activity and promoter length (Figure 3.9), and iii) the range of promoter activities 

(Figure 3.10). The data in this example showed that i) the relative abundance of each 

TFRE per promoter was approximately equivalent (as expected given that TFRE-

blocks were ligated at an equal ratio), ii) there was no significant correlation between 

promoter length and activity, and iii) promoter activities spanned over two orders of 

magnitude. Therefore all three assumptions were confirmed, justifying progression 

to further analysis.  
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Table 3.3: Relative abundance at which discrete TFRE blocks (A – F) occurred per 

promoter in synthetic promoter library 1.  

A               B               C 

Min.   :0.000   Min.   :0.000   Min.   :0.000 

1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000 

Median :2.000   Median :2.000   Median :2.000 

Mean   :1.897   Mean   :1.814   Mean   :2.237 

3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:3.000 

Max.   :7.000   Max.   :7.000   Max.   :7.000 

 

D               E               F 

Min.   :0.000   Min.   :0.000   Min.   :0.000 

1st Qu.:0.000   1st Qu.:1.000   1st Qu.:1.000 

Median :1.000   Median :2.000   Median :2.000 

Mean   :1.629   Mean   :1.969   Mean   :2.072 

3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:3.000 

Max.   :6.000   Max.   :7.000   Max.   :7.000 

 

 

 

Figure 3.9: Range of promoter activities across the library. Data are expressed as a 

percentage of the expression exhibited by the most active promoter.  
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Figure 3.10: Correlation between promoter length and relative transcriptional activity. 

The slope of the linear regression line (blue) indicates the extent to which total TFRE block 

number determines relative promoter strengths. 

 

3.2.5.2 Synthetic promoter library analysis platform: section 2 - identification of 

TFREs that are positive, neutral and negative regulators of promoter activity. 

 

The second analysis section provides the data required to evaluate the contribution 

discrete TFREs make to promoter activities. Three figures are generated for each 

TFRE that enables blocks to be designated as positive, negative or neutral effectors 

of promoter strength. Figure 3.11 shows an example figure from the synthetic 

promoter library 1 report, generated for block D. These data clearly identify block D 

as a negative effecter of promoter strength that is abundant in low activity promoters 

and lacking in high-activity promoters. Determination of each TFRE block’s 

functionality facilitates binary (yes/ no) decisions regarding formation of next-

generation design spaces; for example in this case block D would not be included in 

second generation library construction.  
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Figure 3.11: Correlation between discrete TFRE block abundances and relative 

promoter activities. Three figures are generated for each discrete TFRE-block - this 

example shows the analysis of block D in synthetic promoter library 1. A) The number of 

the TFRE block in each synthetic promoter is plotted against relative activity of that 

promoter. The linear regression line is shown, where the slope of the line indicates the extent 

to which the TFRE occurs in promoters of varying activity. B) The mean number of the 

TFRE block in higher or lower activity promoters (over or under mean promoter activity). 

C) The mean number of the TFRE block in promoters within discrete library subsections. 

Subsection 1-10 contains the top 10% of promoters (ranked by activity). 

 

3.2.5.3. Synthetic promoter analysis platform: section 3 - multiple linear 

regression analysis 

 

The previous section identified TFREs to be excluded from/ included in second 

generation library construction. The third analysis section provides the data required 

to manipulate this design space by identifying optimal TFRE block stoichiometries 

that can be employed in next-generation library construction. Every possible 

multiple linear regression model (i.e. each combination of TFRE block variables; 

e.g. A, A + B, A + B + C, etc.) explaining promoter activity is ranked (see Appendix 

B for all models) and the ‘best’ model (ranked by r
2
) for each number of parameters 

is reported (Table 3.4). The data generated enables identification of parameters 
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(TFRE blocks) that significantly contribute to explaining promoter strengths. In this 

example model fit was maximised in a four parameter model, indicating that 

promoters’ relative abundance of blocks A and F had minimal effect on their 

activities. The most parsimonious model is then reported with associated key 

statistics, such as the model summary (Table 3.5), analysis of variance table and the 

contribution of each variable to r
2
 (Figure 3.11). The analysis in this example 

indicated that discrete TFRE blocks were positive (E and C) and negative (B + D) 

effectors of promoter activity. Moreover, these data identified potential design 

solutions to specifically tailor next-generation library activities. For example, in this 

case an optimal stoichiometric ratio of TFRE blocks to increase promoter strengths 

was predicted to be E 1.58 : C 1. Accordingly, at the conclusion of this analysis stage 

second generation library construction strategies can be implemented by employing 

design-led TFRE block ratios in ligation reactions. 

  

Table 3.4: Multiple linear regression models explaining relative promoter activities. 

The best fitting model for each possible number of parameters (discrete TFRE blocks A- F) 

is reported. Block inclusion/ exclusion within a model is indicated by a 1 or a 0 respectively. 

The r
2
 statistic is reported for each model. 

  TFRE blocks 

Number of 

parameters 

A B C D E F r
2
 

1 0 0 0 0 1 0 0.255 

2 0 0 0 1 1 0 0.425 

3 0 0 1 1 1 0 0.512 

4 0 1 1 1 1 0 0.561 

5 1 1 1 1 1 0 0.565 

6 1 1 1 1 1 1 0.566 

 

 

 

 

 

 

 



74 

 

Table 3.5: Key statistics of the ‘best’ multiple linear regression model explaining 

synthetic promoter activities. 

Residuals: 

  Min     1Q  Median    3Q    Max 

    -28.708      -7.958      -1.922      5.880      45.711 

Coefficients: 

           Estimate          Std. Error           t value                 Pr(>|t|) 

(Intercept)   13.3184     3.5032    3.802   0.000258 *** 

B             -3.2190    0.9963   -3.231   0.001713 ** 

C             3.7386     0.8859    4.220   5.72e-05 *** 

D            -5.8172     0.9259   -6.282   1.09e-08 *** 

E              5.8472      0.8301    7.044   3.33e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 13.62 on 92 degrees of freedom 

Multiple R-squared:  0.5618, Adjusted R-squared:  0.5427 

F-statistic: 29.49 on 4 and 92 DF,  p-value: 8.842e-16 

 

 

 

Figure 3.12: Relative contribution of each TFRE-block parameter to the ‘best’ model’s 

r
2
 statistic. 
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3.2.5.4 Synthetic promoter analysis platform: section 4 – string analysis 

 

The fourth analysis section provides the data required to evaluate the effects of 

combinatorial interactions between neighbouring blocks within promoters.  Design 

rules governing promoter activity are likely to be more complex than simply being a 

function of relative TFRE block abundances. Combinatorial interactions between 

specific combinations of neighbouring TFRE blocks (i.e. strings) and spatial effects 

are likely key determinants of promoter strength. Statistically significant conclusions 

from string analyses are computationally intractable with the sample size of the first 

generation promoter library (96). However, the data generated for this analysis 

section will be detailed in order to provide an example of the output that could be 

utilised for larger promoter libraries.  

The functionality of every two and three block TFRE-string is analysed to 

both i) determine how neighbouring sites impact each blocks function and ii) allow 

characterisation of larger parts that could be utilised in future design spaces (i.e. 

blocks containing two or three discrete TFREs could be included in ligation 

reactions). Strings are evaluated both in the context of each discrete TFRE (Figures 

3.12 and 3.13 show the figures generated for block A in synthetic promoter library 

1), and as a collection of comparative block parts (Figure 3.14, Table 3.6). The data 

generated identifies whether discrete TFRE-strings need to be avoided (for example 

if neutral regulators negatively affect neighbouring positive regulators) or employed 

in next-generation library construction. Accordingly, second generation library 

design spaces are finalised at the conclusion of this final analysis stage.  

 

3.2.5.5. The developed analytics platform enables simplified, modular synthetic 

promoter library construction pipelines. 

 

The R script synpro.anal.R can be utilised to automatically generate the 

comprehensive data analysis required to optimise next-generation design spaces. 

This analytics platform can be utilised as a black box technology within 

biopharmaceutical companies or academic groups and requires minimal 

computational programming or bioinformatics skills. The platform can be employed 

to rapidly identify optimal library construction strategies to achieve desired promoter 

activities – for example to tailor/ optimise the expression levels of a specific 
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recombinant protein. By facilitating analytics-led design space manipulation the 

analysis package therefore enables a complete synthetic promoter library engineering 

pipeline in CHO, which could also be utilised in divergent mammalian cell types. 

 

 

Figure 3.13: Relative abundance of 2-block TFRE strings in synthetic promoters of 

varying activities. The number of promoters within discrete library subsections (subsection 

1 contains the top 20% of promoters, ranked according to strength) that contain each 

possible 2-block string is reported. Figures are grouped to show the relative differences 

between every possible 2-block string containing each discrete TFRE (this example shows 

every 2-block string containing TFRE block A). Counts represent either orientation, e.g. AB 

could occur as either ‘A B’ or ‘B A’.  
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Figure 3.14: Average library position of promoters containing 3-block TFRE strings. 

Promoters were ranked according to relative activity (1 = most active) and analysed to 

identify constituent 3-block TFRE strings. For each discrete TFRE a figure is generated 

detailing the average library position of promoters containing each possible 3-string where 

that TFRE is the central block (this example shows the output for block E; e.g. A.E and C.B 

refer to AEE and CEB respectively). Each TFRE figure is split into two sections to highlight 

higher (blue) and lower (red) performing 3-strings respectively 

 

 

 

Figure 3.15: Relative activities of each 2-block TFRE string. Promoters were ranked 

according to relative activity (1 = most active) and analysed to identify constituent 2-block 

TFRE strings. The average library position of promoters containing each possible 2-string is 

shown. Strings can occur in either orientation, e.g. CE could occur as either ‘C E’ or ‘E C’ 
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Table 3.6: Relative activities of each 3-block TFRE string. Promoters were ranked 

according to relative activity (1 = most active) and analysed to identify constituent 3-block 

TFRE strings. The average library position of promoters containing each possible 3-string is 

shown.  

String 
Ave. 

pos.  
String 

Ave. 

pos.  
String 

Ave. 

pos.  
String 

Ave. 

pos.  
String 

Ave. 

pos. 
String 

Ave. 

pos. 

AAA 73.50 ABA 49.50 ACA 55.53 ADA NA AEA 33.28 AFA 58.80 

AAB 56.00 ABB 76.50 ACB 36.60 ADB 63.75 AEB 50.66 AFB 43.50 

AAC 36.50 ABC 36.30 ACC 54.80 ADC 60.25 AEC 27.16 AFC 50.00 

AAD 57.00 ABD 67.00 ACD 39.80 ADD NA AED 49.66 AFD 77.50 

AAE 14.00 ABE 51.60 ACE 20.87 ADE NA AEE 11.83 AFE 40.83 

AAF 74.75 ABF 51.83 ACF 37.44 ADF 84.20 AEF 23.00 AFF 35.50 

BAA 44.00 BBA 74.67 BCA 32.60 BDA 74.00 BEA 41.71 BFA 64.66 

BAB 64.14 BBB 54.50 BCB 29.00 BDB 55.00 BEB 54.00 BFB 77.20 

BAC 41.60 BBC 31.50 BCC 43.50 BDC 55.25 BEC 34.00 BFC 34.75 

BAD 84.00 BBD NA BCD 66.37 BDD 94.00 BED 47.75 BFD 78.50 

BAE 33.12 BBE 59.75 BCE 7.75 BDE 55.67 BEE 17.00 BFE 50.20 

BAF 62.25 BBF 59.50 BCF 21.00 BDF 62.50 BEF 43.71 BFF 52.71 

CAA 64.66 CBA 50.33 CCA 61.28 CDA 49.75 CEA 20.25 CFA 44.80 

CAB 49.88 CBB 32.00 CCB 33.75 CDB 70.33 CEB 12.00 CFB 36.14 

CAC 40.20 CBC 34.75 CCC 44.50 CDC 71.67 CEC 14.75 CFC 35.66 

CAD 77.00 CBD 47.00 CCD 38.28 CDD 51.00 CED 54.00 CFD 33.33 

CAE 18.66 CBE 26.83 CCE 15.25 CDE 42.22 CEE 12.00 CFE 31.00 

CAF 35.60 CBF 55.80 CCF 25.85 CDF 52.75 CEF 31.50 CFF 52.40 

DAA 80.00 DBA 77.00 DCA 64.40 DDA 61.50 DEA 61.60 DFA 31.50 

DAB 77.50 DBB 54.75 DCB 77.00 DDB 52.50 DEB 48.00 DFB 74.25 

DAC 30.66 DBC 63.25 DCC 50.33 DDC 82.00 DEC 50.33 DFC 50.20 

DAD NA DBD 86.33 DCD 75.83 DDD 79.25 DED 94.00 DFD 62.62 

DAE 28.66 DBE 34.75 DCE 44.00 DDE NA DEE 37.00 DFE 48.50 

DAF 55.66 DBF 71.20 DCF 65.50 DDF 38.00 DEF 39.67 DFF 73.42 

EAA 28.40 EBA 31.71 ECA 22.00 EDA 40.00 EEA 14.67 EFA 33.00 

EAB 23.33 EBB 60.00 ECB 21.50 EDB 59.67 EEB 14.00 EFB 59.00 

EAC 38.90 EBC NA ECC 18.11 EDC 55.83 EEC 14.75 EFC 38.42 

EAD 15.00 EBD 40.00 ECD 28.00 EDD 62.33 EED 62.67 EFD 57.00 

EAE 30.85 EBE 32.50 ECE 40.25 EDE 52.50 EEE 14.00 EFE 15.50 

EAF 83.00 EBF 52.00 ECF 39.20 EDF 57.67 EEF 24.33 EFF 23.66 

FAA 72.00 FBA 57.25 FCA 49.33 FDA 40.00 FEA 19.60 FFA 43.71 

FAB 59.67 FBB 56.50 FCB 56.75 FDB 63.00 FEB 43.25 FFB 53.50 

FAC 23.16 FBC 33.75 FCC 40.67 FDC NA FEC 33.42 FFC 76.66 

FAD 71.00 FBD 79.00 FCD 56.00 FDD 67.80 FED 66.62 FFD 61.75 

FAE 39.80 FBE 45.60 FCE 35.00 FDE 59.50 FEE 65.33 FFE 52.80 

FAF 28.50 FBF 73.00 FCF 65.25 FDF 62.77 FEF 44.67 FFF 37.80 

 

 



79 

 

3.2.6. Variation in first generation synthetic promoter activity was a 

consequence of the differing relative abundance of specific TFRE blocks  

 

The developed analytics platform was utilised to identify the design rules that 

determined first generation synthetic promoter activities. Analysis of synthetic 

promoter composition revealed that (i) synthetic promoter length varied between 7 

and 31 TFRE blocks (mean = 11.9 ± 4.2 blocks; 189 ± 66 bp), although relative 

transcriptional activity was unrelated to promoter length (ii) across the generation 1 

library the relative abundance of the six TFRE building blocks was approximately 

equivalent and (iii) individual TFRE blocks could occur in either forward or reverse 

orientation (i.e. the consensus TF recognition sequence could occur on either DNA 

strand) but this was not apparently related to synthetic promoter activity, either with 

respect to the general frequency of occurrence or with respect to the relative 

orientation of specific TFRE blocks.  Therefore, it was inferred that variation in 

synthetic promoter activity was a consequence of the differing relative abundance of 

specific TFRE blocks within promoters and/or positional effects (i.e. that specific 

neighbouring or distal combinations of TFRE blocks may affect promoter strength).  

Whilst the latter was computationally intractable given the size of the library, the 

former was addressed by determination of the relative frequency with which 

individual TFRE blocks occurred within synthetic promoters of varying activity.  

These data are shown in Figure 3.15.  Whilst no single TFRE block exhibited an 

obviously dominant influence over synthetic promoter strength, individual TFRE 

blocks were either relatively abundant in active promoters (NFκB, E-box), equally 

distributed across promoters (C/EBPα, GC-box) or relatively abundant in low 

activity promoters (E4F1, CRE).  This bias was confirmed by multiple linear 

regression analysis, where either an all factor model (inclusion of all six TFREs, r
2
 = 

0.57, p = 1.7 x 10
-14

) or a parsimonious model excluding C/EBPα and GC-box 

TFREs (as these do not improve model fit; r
2
 = 0.56, p = 8.84 x 10

-16
) predicted the 

optimal stoichiometry of TFRE blocks to be NFκB 1.58 : E-box 1.  The other TFRE 

blocks were either neutral (C/EBPα, GC-box) or negative effectors (E4F1, CRE).  

Analysis of specific promoter sequences throughout the library confirmed site 

designations as positive, neutral or negative. For example, the strongest promoter 

(1/01) contains the highest ratio of positive (NFκB, E-box) : negative (E4F1, CRE) 
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sites (9 : 1) in the library. Moreover, the three most active promoters (1/01 – 1/03) 

are the only promoters in the library containing more than 7 positive sites and fewer 

than 3 negative sites. There are also multiple examples where high numbers of 

positive sites are apparently counteracted by high numbers of negative sites to 

produce relatively weak promoters, for example promoters 1/37, 1/52 and 1/68 

which have positive : negative ratios of 8 : 8, 8 : 8, and 9 : 11 respectively. 

 

3.2.7 Second generation synthetic promoters achieve twice the activity of 

CMV. 

 

In order to further improve synthetic promoter activity a second generation library 

using random ligation of a mixture of TFRE blocks at an optimal ratio derived from 

analysis of the composition of first generation promoters was created.  Specifically, 

negative TFREs were omitted (E4F1, CRE, Figure 3.15), positive TFREs were 

included at the ratio NFκB 5 : E-box 3, and neutral TFREs were included at the ratio 

C/EBPα 1 : GC-box 1.  The latter were included based on the hypothesis that 

increased complexity could be advantageous. For example, the three most active 

synthetic promoters in the first generation library all contained at least two copies of 

both neutral TFREs (see Appendix A) and thus they could contribute to unknown 

positional effects.  It was expected that second generation promoters would contain 

the same average number of TFRE blocks (12) as first generation promoters.  

A second generation library was created as described previously; 50 

transformed E.coli colonies were picked at random, synthetic promoters in purified 

plasmid DNA were sequenced and 44 reporter plasmids containing promoter 

sequences were utilised for measurement of SEAP reporter production. The relative 

transcriptional activity of second generation promoters is shown in Figure 3.16, and 

their TFRE-block compositions are listed in Supplementary Table 2 in Appendix A.  

Second generation promoters exhibited significantly increased activity. The mean 

expression level (relative to CMV) shifted from 21.2% for first generation promoters 

to 116% for the second generation library.  Twenty five synthetic promoters (57% of 

the library) achieved a higher SEAP production than the CMV control, with the 

strongest promoter (2/01) exhibiting a 2.2-fold increase.  
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Figure 3.16: Relative abundance of transcription factor regulatory elements in first 

generation synthetic promoters.  First generation synthetic promoters were sequenced to 

enable assignment of TFRE block composition (listed in Appendix A).  The number of each 

TFRE block in each synthetic promoter is plotted against the relative activity of that 

promoter (A-F).  In each case the linear regression line is shown, where the slope of the line 

indicates the extent to which each TFRE occurs in promoters of varying activity.  The mean 

number of each TFRE block in higher or lower activity promoters (over or under mean first 

generation promoter activity) is indicated in each case. 
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Figure 3.17: Generation two synthetic promoters achieve twice the activity of the CMV 

promoter. Second generation synthetic promoters were constructed by random ligation of 

NFκB, E-box, GC-box, C/EBPα TFREs in the ratio 5 : 3 : 1 : 1.  Synthetic promoters were 

inserted upstream of a minimal CMV core promoter in SEAP reporter plasmids and 

transfected into CHO-S cells.  SEAP expression was quantified 24 h post-transfection.  Data 

are expressed as a percentage of the production exhibited by CMV control promoter (black 

bar).  SEAP production from the most active promoter from the first generation library 

(1/01; Fig. 2) reporter is shown as a checked bar.  Otherwise, each bar represents the mean 

of two transfections, for each promoter less than 10% variation in SEAP production was 

observed. 

 

 

3.2.8. Variation in second generation synthetic promoter activity was a 

consequence of the differing relative abundance of specific TFRE blocks  

 

The analytics platform (synpro.anal.R) was utilised to identify the design rules that 

determined second generation synthetic promoter activities. Analysis of the TFRE 

block composition of second generation promoters revealed that the relative 

stoichiometry of TFRE blocks across the library was approximately as designed 
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(NFκB 5 : E-box 2.81 : GC-box 1.32 : C/EBPα 1.15).  In silico analysis utilising 

TFRE-prediction tools confirmed that unexpected, additional TFRE sites had not 

formed at TFRE-block junctions during promoter assembly.  In contrast to first 

generation promoters the slope of the fitted linear regression line relating total TFRE 

block number (synthetic promoter length) and promoter activity was slightly positive 

(r
2
 = 0.31, p = 8.9 x 10

-5
), although this was not regarded as a significant factor.  As 

shown in Figure 3.17, for second generation promoters the influence of GC-box and 

C/EBPα is generally negative, whereas NFκB and E-box remain positive effectors. 

However, considering the composition of second generation promoters listed in 

Appendix A, the data do not support the conclusion that either NFκB or E-box TFRE 

blocks could support high transcriptional activity alone – clearly a combination of 

both is necessary.  The most powerful promoters (2/01- 2/03) contain relatively high 

numbers of both TFREs in approximately equal proportion, with a correspondingly 

low number of negative GC-box and C/EBPα blocks.  Some lower activity 

promoters do contain relatively large numbers of NFκB or E-box blocks (e.g. 2/11, 

2/13, 2/17) but (i) contain a sub-optimal ratio of NFκB : E-box (2/11, 2/17) or (ii) 

also contain relatively large numbers of GC-box and C/EBPα blocks (2/13). 
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Figure 3.18: Relative abundance of transcription factor regulatory elements in second 

generation synthetic promoters.  Second generation synthetic promoters were sequenced 

to enable assignment of TFRE block composition (listed in Appendix A).  The number of 

each TFRE block in each synthetic promoter are plotted against the relative activity of that 

promoter (A-D).  In each case the linear regression line is shown, where the slope of the line 

indicates the extent to which each TFRE occurs in promoters of varying activity.  The mean 

number of each TFRE block in higher or lower activity promoters (over or under mean 

second generation promoter activity) is indicated in each case. 
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3.2.9. Synthetic promoters exhibit conserved relative activity in different 

CHO host cell lines and through a fed-batch transient production process. 

 

In order to determine if synthetic promoters performed robustly and predictably their 

relative functional capability in different CHO host lines and through a fed-batch 

transient production process was evaluated. With respect to the former, it was 

hypothesised that different CHO hosts may contain varying proportions of 

transcription factors that could markedly influence synthetic promoter function, 

especially as the complexity of synthetic promoters is significantly reduced 

compared to CMV.  With respect to the latter, it was hypothesised that transition of 

CHO cells through a production process, with the associated dynamic variation in 

cell physiology and function (e.g. growth rate, suspension culture) may change the 

relative proportion of endogenous transcription factors affecting synthetic promoter 

activity. 

A panel of seven promoters from both first and second generation libraries 

were selected that cover a broad range of promoter activity (1/51 < 1/17 < 1/04 < 

1/02 < 2/19 < 2/03 < 2/01).  These were compared to the activity of CMV.  Figure 

3.18 shows transient SEAP production from all promoters in three commonly 

utilised host lines; CHO-S, CHO-DG44 and CHO-K1.  The relative rank order of 

promoter activity is maintained in all three cell lines, with the exception that 2/03 

outperforms 2/01 in CHO-K1. In contrast to the original screen, promoters 2/03 and 

2/01 have approximately equivalent expression in CHO-DG44 and CHO-S.  In each 

cell line the top performing synthetic promoter drives significantly higher SEAP 

production than CMV; 3.1-fold 1.9-fold, and 1.7-fold in CHO-DG44, CHO-S, and 

CHO-K1 cells respectively. It is noted that in general CHO-DG44 cells exhibited 

significantly less reporter production than either CHO-S or CHO-K1 cells, 

presumably due to their reduced “transfectability” by lipofection. 

Lastly, it was hypothesised that transfection of cells with synthetic promoters 

specific for a small number of transcription factors may function as decoys, 

effectively competing with the host cell genome for transactivation, thus reducing 

host cell proliferation.  Therefore, the same panel of promoters were evaluated in a 

longer-term fed-batch SEAP production process over 7 days, utilising CHO-S host 

cells in suspension (Figure 3.19).  A transient system was employed (rather than 
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stable) to ensure production variability was directly linked to differences in promoter 

activity rather than cell line specific, site-specific integration or promoter silencing 

(e.g. methylation, deletion) artifacts.  It was observed that the differences in synthetic 

promoter activity observed in static microplates were maintained in the fed-batch 

transient system.  The highest SEAP titer, driven by promoter 2/03, was over 1.65-

fold that obtained by CMV-mediated expression.  It was observed that no synthetic 

promoter had a significant effect on the integral of viable cell density at the end of 

the transient production process, disproving the hypothesis. 

 

 

Figure 3.19: Synthetic promoters exhibit conserved relative activity in different CHO 

host cell lines. The relative activity of seven synthetic promoters with differing relative 

activity was determined in CHO-S cells, CHO-K1 cells and CHO-DG44 cells.  Cells (2 x 

10
5
) were transfected with 250 ng SEAP-reporter vector, and SEAP production was 

quantified 24 h post-transfection.  Data are expressed as a percentage of the activity of the 

CMV promoter in each cell line. Note that in general CHO-DG44 cells exhibited 

significantly less reporter production than either CHO-S or CHO-K1 cells (SEAP production 

from the CMV promoter in each cell line (100%) occurred at the ratio CHO-S 1: CHO-K1 

0.81: CHO-DG44 0.32). Values represent the mean + S.D of three independent experiments 

performed in triplicate. 
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Figure 3.20: Synthetic promoters exhibit conserved relative activity in a fed-batch 

transient production process. CHO-S cells (6 x 10
6
) were transfected with 7.5 μg of SEAP  

reporter-vectors, where SEAP expression was under the control of synthetic promoters with 

varying activity or the control CMV promoter.  SEAP production and viable cell 

concentration were measured over the course of a 7-day fed-batch process in tube-spin 

bioreactors.  The mean IVCD at Day 7 (white bars) and SEAP titer (black bars) are shown.  

SEAP data are expressed as a percentage of the control CMV promoter activity. Two 

independent transfections were performed in duplicate. 

 

 

3.3. Discussion 

 

The work in this chapter describes construction of the first bespoke synthetic 

promoters designed specifically to function with the transcriptional machinery of 

CHO cell factories. The characterised transcriptional ‘parts’ (CPREs, TFREs, core 

promoters and proximal/ distal promoters) and suite of synthetic promoter 

construction tools (TFRE-reporter plasmids, analytics platform, modular 

construction pipeline methodology) can be utilised to replace functionally ill-defined 

and uncontrollable genetic elements in expression vectors with sophisticated, 

bespoke controllers that can engineer host cell function predictably. 

Synthetic promoter activity was primarily a function of a promoter’s relative 

composition of NFκB and E-box TFREs. TFs that bind these sites are amongst the 
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most frequently occurring oncogenes, and their impaired regulation is a principal 

mechanism by which cancerous cells achieve uncontrolled proliferation and 

suppressed apoptosis (Dolcet et al., 2005; Lin et al., 2012). It is therefore likely that 

these synthetic promoters will be functional in a range of transformed mammalian 

cell types and may have use in cancer-targeted gene therapeutic applications. It is 

anticipated that there are more complex design rules governing NFκB and E-box 

function (spatial effects, combinatorial interactions) and that many additional 

combinations of TFREs could be utilised to construct CHO cell synthetic promoters. 

Determination of the former would require construction of larger, specifically 

designed synthetic promoter libraries with the associated computational modelling, 

whilst the latter would require a more comprehensive screen of CHO cell TFRE 

activities. Moreover, it is envisaged that emerging transcriptomics data will enable 

identification of endogenous TFREs that are active in different CHO cell hosts, or 

under specific bioprocess conditions (Datta, 2013). 

TFREs that do not exhibit activity in CHO-S cells were indirectly identified. 

Whilst inactivity may be explained by assay-design features (i.e. suboptimal TFRE 

sequences, TFs unable to drive transactivation independently) it could be evidence 

that their cognate TFs are not expressed in CHO cells. It would not be surprising if 

CHO cells expressed a particularly narrow range of transactivators given that CHO 

cells have lost specific functionalities over the course of their long-term (> 50 years) 

culture in vitro (Lewis et al., 2013; Xu et al., 2011).  Unrecognised TFREs could be 

utilised with their cognate TFs as inducible, controllable elements to construct 

regulated gene expression systems (switches, oscillators, synthetic regulatory 

cascades) for synthetic biology applications in CHO cells (Tigges and Fussenegger 

2009; Weber and Fussenegger 2010). Many of these inactive TFREs are present in 

the CMV promoter, suggesting that a large proportion of the CMV sequence (and 

that of other viral promoters) may be functionally redundant in CHO cells. The CMV 

promoter has evolved to access a broad range of TFs to enable the virus to infect a 

wide range of host cells with varying physiology and TF activity (Stinski and 

Isomura, 2008).  Specifically designed, rather than evolved, the synthetic promoters 

have far more efficient transcriptional activity per unit DNA sequence (synthetic 

promoter 2/01 exhibited a 2.2-fold increase in activity over CMV but is less than half 

the size).   
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Synthetic promoters that achieved higher titers than CMV in fed-batch 

transient SEAP production could be utilised to optimise the transient production of 

early stage products (i.e. development material for toxicology and clinical trials 

testing (Daramola et al., 2013)). Although the promoters have not been tested in a 

stable expression format, and therefore it cannot be definitively claimed that they 

will maintain either their relative activities or expression stability in stable 

transfectants, they may offer additional advantages beyond high level transcriptional 

activity. For example, the CMV promoter can contribute to production instability via 

promoter methylation and gene deletion (the latter likely via homologous 

recombination, i.e. ‘looping-out’ caused by two identical CMV sequences 

surrounding a light chain gene copy (Kim et al., 2011)).  This homologous 

recombination also predisposes synthetic genetic circuits to failure (Sleight et al., 

2010).  The most potent synthetic promoters do not contain CpG islands and two 

different synthetic promoter sequences could be utilised within constructs to 

minimise gene copy loss. Further, as CpG islands in CMV have been shown to 

interfere with the functionality of matrix attachment regions (Girod et al., 2005), the 

synthetic promoters could be more compatible with existing transcription enhancing 

technologies such as ubiquitously-acting chromatin opening elements, bacterial 

artificial chromosomes and site-specific integration systems (Zhou et al., 2010; 

Mader et al., 2012). Moreover, they could be utilised with other expression control 

technologies in research applications requiring highly precise regulation. For 

example, they could be employed in conjunction with recently described synthetic 

elements that control translation initiation rates (Ferreira et al., 2013). Lastly, it is 

suspected that by utilising specific TFRE combinations the synthetic promoters 

could be refined to exhibit desirable bioproduction functionalities such as increased 

activity at sub-physiological temperatures (Al‐Fageeh et al., 2006) or during 

stationary phase cell growth (Prentice et al., 2007).  

The synthetic promoters presented in this chapter enable precise control of 

recombinant gene expression in CHO host cells over a broad dynamic range. For 

easy to express proteins, where transcription rates have been shown to exert a high 

level of control over production, (O'Callaghan et al., 2010; McLeod et al., 2011), 

they could be utilised to maximise recombinant gene transcription levels (for 

example, by using synthetic promoter 2/01). For difficult to express proteins (e.g. 

bispecific antibodies, fusion proteins), where maximising transcription is unlikely to 
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be beneficial, they could be utilised to provide optimised protein-specific 

transcription activity kinetically coordinated with polypeptide-specific folding and 

assembly rates. An obvious potential application is in monoclonal antibody (mAb) 

expression where synthetic promoters of varying activity could be used to achieve 

mAb-specific light chain : heavy chain (LC : HC) expression ratios to optimise mAb 

production (Ho et al., 2013; Pybus et al., 2013). For example, the recent study by 

Pybus et al., demonstrated that three different difficult to express mAbs had three 

discrete optimal LC : HC expression ratios of  9 : 1, 4 : 1 and 2.3 : 1. By utilising 

synthetic promoter 2/01 (to maximise LC gene expression) in conjunction with 

synthetic promoters 2/25, 1/03 or 1/24, each of these ratios could be functionally 

achieved. Lastly, the provision of 140 discrete promoter activities, covering over 

three orders of magnitude, will enable CHO cell engineers to precisely engineer the 

cell factory, where systems level control of cell function may require the constitutive 

expression of several genes to be stoichiometrically balanced. By enabling 

sophisticated multigene engineering systems these synthetic promoters will therefore 

facilitate exploitation of the current revolution in CHOmics (Datta et al., 2013). 
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Chapter 4: Transcription Factor Block-Decoys 

 

This chapter presents a novel form of TF decoys that are specifically designed for 

use in CHO cells. A method was developed whereby blocks containing discrete 

transcription factor binding sites (TFRE-blocks) are combined into circular 

molecules, enabling rapid construction of chimeric decoys containing 

stoichiometrically optimised ratios of input TFRE-blocks.  It was demonstrated that 

block-decoys were able to inhibit expression from multiple target elements 

simultaneously in CHO cells using a bespoke chimeric decoy. Enabling investigation 

of any multi-TF mediated cell function or phenotype block-decoys are a valuable 

new tool for characterising and controlling CHO cell transcription. 

 

Based on the work within this chapter the following article has been published 

(shown in Appendix D): 

 

Brown AJ, Mainwaring DO, Sweeney B, James DC. 2013. Block decoys: 

transcription factor decoys designed for in vitro gene regulation studies. Anal. 

Biochem. 443(2): 205-210 

 

Based on the work within this chapter the following patent application has been 

filed: 

 

Brown AJ, James DC.UK patent application number GB1310853.5 (18 June 2013) 

Transcription factor block-decoys  

 

4.1. Introduction 

 

Transcriptional output of a given gene at a specific time point is determined by the 

composition of transcription factor regulatory elements (TFREs) within its promoter 

and the availability of cognate transcription factors (TFs) within the cell (Coulon et 

al., 2013). Cellular transcriptomes are therefore a functional consequence of multiple 

TF-TFRE interactions occurring at thousands of discrete genomic loci. A 

mechanistic understanding of the TF-TFRE interactions regulating individual 
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promoters’ transcription would enable strategies to predictably control, manipulate 

and improve their activities. A mechanistic understanding of the TF-TFRE 

interactions regulating multiple promoters’ activities within discrete pathways would 

enable strategies to engineer entire cellular processes.  Characterisation of TF-TFRE 

interaction functionalities within the CHO cell factory could accordingly enable i) 

optimisation of product gene transcription rates throughout biomanufacturing 

processes and ii) cell line engineering strategies to achieve desirable bioproduction 

phenotypes, such as resistance to apoptosis and increased proliferation.  

Physical disruption of TF binding to target sites is the most effective and 

well-established method of investigating TF-TFRE interactions. An effective method 

to achieve this is the use of transcription factor decoys (Tomita et al., 1999; Bezzerri 

et al., 2011; Renard et al., 2012); short synthetic oligodeoxynucleotides (ODN) that 

contain a specific TFRE motif.  When introduced into a cell the decoys compete for 

available TFs, preventing their association at target promoters (Bielinska et al., 

1990). This site-specific sequestration of TFs makes decoys an attractive method to 

determine the functional contribution of individual TFREs to a promoter’s activity. 

The key determinants of decoy effectiveness are stability, specificity, and uptake 

(Osako et al., 2012). Multiple methods of decoy formation have been developed to 

improve these factors, primarily focusing on their stability against intracellular 

nucleases. These include chemical modifications such as the use of phosphorothioate 

groups (Bielinska et al., 1990), and circular dumbbell ODNs that have enzymatically 

ligated termini (Osako et al., 2007), conferring resistance to exonucleases (the 

primary cause of intracellular degradation (Gamper et al., 1993)). Although such 

advancements have greatly improved decoy functionality, particularly in potential 

therapeutic applications (Gambari et al., 2011), currently available methods are not 

ideally suited to in vitro gene regulation studies.  

  As most promoters contain binding sites for multiple TFs, gene regulation 

studies utilising decoys are likely to require multiple decoys, targeting varying 

combinations of different TFREs.  Ideally, where multiple TFREs are targeted at 

once they would be included on a single decoy molecule to avoid the uneven 

distribution of different decoys across the transfected cell population. 

Phosphorothioate and dumbbell decoys targeting two (Miyake et al., 2006; Lee et 

al., 2012) and three (Gao, 2006) TFREs have been described (and shown to be far 

superior to using individual decoys against each site) but these formation methods do 
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not allow for the rapid creation of bespoke chimeric decoys. Further, they do not 

provide the capability to fine-tune the molar ratio of different sites within one 

molecule. Currently available tools are therefore poorly suited for in vitro 

investigations into multi-transcription factor mediated processes that may require 

multiple regulatory elements to be inhibited in varying combinations. Determination 

of the TF-TFRE interactions regulating promoters/ cellular pathways in CHO cells is 

therefore intractable with current decoy methods. 

This chapter describes a novel method for decoy formation, specifically 

designed to enable characterisation of TF-TFRE interaction functionalities in CHO 

cells. This method utilises blocks containing discrete TFREs (TFRE-blocks) to 

construct circular, exonuclease-resistant molecules (block-decoys). Unlike currently 

available methods block-decoys allow rapid construction of chimeric decoys 

targeting multiple regulatory elements. Further, they enable fine tuning of binding 

site copy ratios within chimeras, allowing sophisticated control of the CHO cellular 

transcriptional landscape. This novel method offers significant advantages for multi-

target decoy studies investigating multi-TF mediated phenotypes in CHO, and is 

particularly suited to gene regulation studies. Block-decoys therefore represent a 

valuable new tool for investigating, characterising and controlling CHO cell 

transcription. 

 

4.2 Results 

 

4.2.1 ‘Plasmid-decoys’ exhibit undesirable decoy function 

 

In order to construct decoys optimised for use in CHO cells, plasmid vectors were 

evaluated as a TFRE delivery vehicle. It was hypothesised that plasmids would 

exhibit desirable decoy functionality as they i) are exonuclease resistant, ii) have 

well-established transfection protocols and iii) can be produced via low-cost, high-

yield systems. A minimal TFRE-acceptor vector (< 2500bp) containing only the 

sequences required for propagation in bacteria (pUC Ori, AmpR) and an extended 

multiple cloning site (MCS) was constructed in order to maximise TFRE copies per 

unit DNA sequence (i.e. maximise the number of TFRE copies that can be 

transfected per cell) (Figure 4.1). TFRE-specific decoys were constructed by 
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inserting appropriate synthetic ODNs (TFRE-ODNs) containing multiple TFRE 

copies into the MCS. As low-cost DNA synthesis is restricted to ODN sizes of < 120 

nucleotides, approximately 7x TFRE copies can be inserted per TFRE-ODN. It was 

predicted that bespoke chimeric decoys could be constructed by inserting different 

TFRE-ODNs into discrete MCS acceptor regions (nine TFRE-ODNs can be inserted 

per decoy-plasmid).   

The use of decoy-plasmids to inhibit the activity of specific TFREs was 

evaluated using a GFP reporter plasmid containing 7 copies of the NFkB-RE motif 

upstream of a core CMV promoter (i.e. the NFkB-reporter plasmid described and 

utilised in section 3.3.3).  An NFkB-RE decoy was constructed by separately 

inserting two NFKB-RE-ODNs (i.e. 14 NFkB-RE copies) into the decoy plasmid 

MCS. Measurement of GFP production after transient co-transfection of CHO-S 

cells with reporter vector and varying concentrations of decoy plasmid is shown in 

Figure 4.1. This analysis identified that NFkB-RE-reporter expression was not 

inhibited by NFkB-RE decoy plasmids. It was hypothesised that decoy-plasmids did 

not enable delivery of sufficient TFRE copies per cell to sequester significant 

quantities of cognate TFs. Therefore, it was concluded that the requirement for 

‘accessory’ DNA sequences (i.e. pUC Ori, AmpR) was critically limiting to decoy-

plasmid functionality, rendering it an ineffective method for decoy formation. 

 

4.2.2 Block-decoy formation and stability 

 

In order to construct circular decoy molecules with significantly increased TFRE 

copies per unit DNA sequence an improved formation method was developed. This 

method utilises blocks containing discrete TFREs (TFRE-blocks) to construct 

circular molecules (block-decoys). The method of block-decoy construction is shown 

schematically in Figure 4.2. TFRE-blocks containing a single transcription factor 

binding site and a 4 bp TCGA single stranded overhang at each 5’ terminus are 

created by annealing two complementary, single stranded 5’ phosphorylated DNA 

ODNs. The cohesive ends enable RE-blocks to be ligated together into extending 

concatamers.  At sizes greater than 100 bp DNA molecules are likely to bend 

(Ulanovsky et al., 1986; Zhang et al., 2003), allowing ligation of cohesive termini 

(Shore et al., 1991; Révet et al., 1998). Therefore, ligation of input TFRE blocks 

theoretically results in covalently closed circular block-decoys containing multiple 
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copies of the target binding sites. It was predicted that block-decoys would exhibit 

desirable functionalities of decoy-plasmids (easy-to-transfect, exonuclease-resistant, 

low cost production) whilst increasing TFRE copies per unit DNA sequence by > 

100 fold. Moreover, it was hypothesised that bespoke chimeras could be rapidly 

constructed by adjusting the stoichiometric ratio of different TFRE blocks in ligation 

reactions.  

 

Figure 4.1: Decoy-plasmids do not inhibit expression mediated by discrete regulatory 

elements. A) Decoy-plasmid map. TFRE specific decoy-plasmids are constructed by 

cloning synthetic ODNs containing multiple TFRE copies into the MCS. B) CHO-S cells (2 

x 10
5
) were co-transfected with an NFkB-RE-dependent GFP reporter plasmid with either an 

NFkB-RE decoy-plasmid (white bars) or a scrambled NFkB-RE decoy-plasmid (black bars) 

at concentration of 0.2 – 2 µg/ml DNA per transfection. Data were normalised with respect 

to GFP expression in the presence of the scrambled decoy in each case. Bars represent the 

mean + SEM of three independent experiments each performed in triplicate. 
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Figure 4.2: Schematic of block-decoy formation. (A) Single stranded oligonucleotides are 

annealed to form regulatory element-blocks containing a transcription factor binding site and 

a 4 bp single stranded overhang at 5’ termini. (B) Regulatory element-blocks are ligated 

together into extending concatamers which circularise (C), allowing intramolecular ligation 

of cohesive termini, yielding covalently closed circular block-decoys containing multiple 

copies of the target binding site (D). 

 

 

Block-decoy formation was confirmed by gel electrophoresis. This analysis 

showed that different TFRE-specific decoys constructed using the appropriate 

TFRE-blocks exhibited near-identical size distributions, with the vast majority of 

molecules between 100 – 300 bp in size (Figure 4.3).  To test the hypothesis that 

circularisation of decoys prevented further ligation (thus limiting their size) purified 

block-decoys were utilised as the substrate in further ligation reactions (Figure 4.3).  

No variation in block-decoy size distribution was observed, indicating an absence of 

ligatable single stranded overhangs. Further, block-decoy stability against digestion 

by Exonuclease III, active against linear DNA, was evaluated (Figure 4.3).  This 

analysis showed decoys were resistant to exonculease digestion and it was therefore 

concluded that this method of block-decoy construction yields circular ODNs 

containing approximately 7 – 20 copies of a target TFRE. 
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Figure 4.3: Circular block decoys contain numerous regulatory element binding sites.  

Agarose gel analysis of block decoys constructed from NFkB-RE (lanes A2,3), E-box (lanes 

A4,5) and CRE (lanes A6,7) regulatory element binding site blocks. Circularisation of a 

purified block decoy (B1) was demonstrated by (i) two further sequential ligation reactions 

(B2,3) which showed no additional increase in decoy size distribution and (ii) stability on 

digestion with Exonuclease III for 0, 1 and 6 h at 37°C (lanes C2-C4) respectively.  Lanes 

C5, 6 and 7 show digestion of linear DNA sampled at the same time points. 

 

4.2.3 Block-Decoy Function and Specificity 

 

The work in chapter 3 (section 3.3.3) identified seven discrete TFREs that are 

transcriptionally active in CHO-S cells. Moreover, a panel of GFP and SEAP 

reporter plasmids containing 7 copies of each of these discrete TFREs upstream of a 

core CMV promoter were constructed and validated, where minimal reporter 

expression was observed with the core promoter alone (1 - 3% of reporter activity of 

TFRE-containing plasmids). These CHO-active TFRE reporters provide an ideal 

system for evaluating the use of block-decoys to inhibit the activity of specific 

TFREs.  

Initially, reporter plasmids utilising NFkB-RE (the strongest element 

identified in the CHO-S TFRE functional screen) to drive reporter expression were 

used to validate the specific inhibitory effects of block-decoys in vitro. Measurement 

of GFP production after transient co-transfection of CHO-S cells with NFkB-

reporter vector and varying concentrations of NFkB block-decoy is shown in Figure 

4.4. This analysis identified that the NFkB-RE block-decoy inhibited expression 

from NFkB-RE-GFP reporter plasmid in a dose-dependent manner.  In order to 

validate that the NFkB-RE block decoy specifically inhibited NFkB-RE reporter 

expression, CHO-S cells were co-transfected with i) NFkB-RE block-decoy and 

different GFP plasmids utilising varying TFREs (E-box, CRE) to drive reporter 
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expression and ii) NFkB-RE-GFP reporter and different TFRE-specific (E-box, 

CRE) block decoys. As shown in Figure 4.5 the concentration of NFkB-RE block-

decoy exhibiting maximal inhibition of NFkB-RE-GFP reporter expression (2 μg/ml) 

had no significant effect on GFP expression from either CRE or E-box reporter 

plasmids. Further, block-decoys constructed from E-box and CRE TFRE-blocks did 

not significantly affect expression from NFkB-RE-GFP reporter plasmid. It was 

therefore concluded that block-decoys function to specifically sequester cognate 

TFRE-binding transcription factors, inhibiting expression from promoters dependent 

on their activity. Lastly, the stability of block-decoys in vitro was analysed by 

evaluating NFKB-RE block decoys in a longer-term cell culture process. As shown 

in Figure 4.6 decoys maintained significant inhibition of NFkB-RE mediated 

expression throughout a 4 day GFP production process. These data therefore indicate 

that block-decoys exhibit relatively long-term intracellular stability. 

 

 

Figure 4.4: NFkB-RE block-decoys inhibit NFkB-RE mediated expression. CHO-S cells 

(2 x 10
5
) were co-transfected with a NFkB-RE-dependent GFP reporter plasmid with either a 

NFkB-RE block decoy (white bars) or a scrambled NFkB-RE block decoy (black bars) at 

concentration of 0.2 – 2 µg/ml DNA per transfection. GFP expression was quantified 24 h 

post-transfection Data were normalised with respect to GFP expression in the presence of 

the scrambled decoy in each case. Bars represent the mean + SEM of three independent 

experiments each performed in triplicate. 
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Figure 4.5: Circular block decoys specifically inhibit expression mediated by discrete 

regulatory elements. A) CHO-S cells (2 x 10
5
) were co-transfected with a NFkB-RE-

dependent GFP reporter plasmid with 2ug/ml scrambled NFkB-RE block decoy (control) or 

different regulatory element block decoys illustrating specific inhibition with NFkB-RE 

block decoy. B) Co-transfection of NFkB-RE block-decoy (white bars) or scrambled NFkB-

RE block decoy (black bars) and different GFP reporter plasmids varying in transcription 

factor specificity (CRE, E-box or NFkB-RE) illustrating specific inhibition of NFkB-RE 

mediated reporter expression. GFP expression was quantified 24 h post-transfection. Data 

were normalised with respect to GFP expression in the presence of the scrambled decoy in 

each case. In A and B each bar represents the mean + SEM of three independent experiments 

each performed in triplicate. 
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Figure 4.6: Block-decoys inhibit NFkB-RE mediated expression throughout a four day 

GFP production process. A) CHO-S cells (2 x 10
5
) were co-transfected with a NFkB-RE-

dependent GFP reporter plasmid with either a NFkB-RE block decoy (white bars) or a 

scrambled NFkB-RE block decoy (black bars) at concentration of 2 µg/ml DNA per 

transfection. GFP expression was quantified at varying timepoints post-transfection. Data 

were normalised with respect to GFP expression in the presence of the scrambled decoy in 

each case. Bars represents the mean + SEM of three independent experiments each 

performed in triplicate. 

 

 

4.2.4 Constructing chimeric block decoys 

 

A major advantage of the block-decoy strategy is that it can be utilised to construct 

stoichiometrically optimised chimeric decoys targeting multiple TFREs.  In order to 

validate this functionality the specific inhibitory effects of two further TFRE-specific 

block-decoys were evaluated (E-box and CRE TFREs were selected as they 

exhibited the next highest transcriptional activities (after NFkB) in the CHO-S TFRE 

functional screen). As shown in Figure 4.7 both E-box and CRE block-decoys 

inhibited expression from corresponding TFRE-specific reporter plasmids in a dose-

dependent manner. In both cases, TFRE-specific reporter expression was inhibited 

only by the corresponding block-decoy. Accordingly, chimeras specifically targeting 

multiple TFREs (NFKB-RE, CRE and E-box) could be constructed by ligating 

multiple discrete TFRE-blocks. 
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Figure 4.7: TFRE-specific block-decoys exhibit variable potency. A) CHO-S cells (2 x 

10
5
) were co-transfected with a E-box-dependent GFP reporter plasmid with either a E-box 

block decoy (white bars) or a scrambled E-box block decoy (black bars) at concentration of 

0.2 – 2 µg/ml DNA per transfection. B) Co-transfection with a CRE-dependent GFP reporter 

plasmid with either a CRE block decoy (white bars) or a scrambled CRE block decoy (black 

bars). GFP expression was quantified 24 h post-transfection. Data were normalised with 

respect to GFP expression in the presence of the scrambled decoy in each case. Bars 

represent the mean + SEM of three independent experiments each performed in triplicate.  
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It is assumed that the relative extent to which each TFRE-specific block-

decoy inhibits reporter expression from its corresponding TFRE-reporter plasmid is 

a function of block-decoy specific differences in (i) the relative intracellular 

abundance of TFs and (ii) TF-TFRE block binding kinetics.  As shown in Figure 4.8 

each TFRE-specific block decoy exhibited a characteristic inhibitory dose-response 

relationship, where at the highest concentrations expression from each corresponding 

TFRE-specific reporter was inhibited over 90%. Log transformation of block-decoy 

concentration data and nonlinear regression analysis enabled determination of the 

relative potency of each block-decoy, and revealed that their inhibitory potency 

occurred in the order: E-box > NFKB-RE > CRE, with a stoichiometry of E-box: 

0.5: NFkB-RE: 0.8: CRE: 1.0 (calculated by interpolation to determine relative 

inhibitory concentrations). It was therefore concluded that equivalent inhibition of 

multiple TFREs would require stoichiometric tailoring of TFRE site copies within 

block-decoys according to the relative ‘potency’ of each TFRE-block. 

To test the hypothesis that chimeric block-decoys could be constructed with 

controlled TFRE-block ratios, ligation reactions were evaluated where i) six distinct 

TFRE-blocks were ligated in an equimolar ratio, and ii) four TFRE-blocks were 

ligated in a 1.0 : 0.6 : 0.2 : 0.2 ratio. A “cloning-block” containing XhoI and KpnI 

sites was added to each ligation mix to enable subsequent linearisation. Linearised 

molecules were cloned into an acceptor plasmid and fifty clonally derived plasmids 

from each library were sequenced. The actual stoichiometric ratios of RE-blocks 

across the block-decoy libraries was approximately equal to the input ratios (1.18: 

1.09: 1.03: 1.00: 0.96: 0.86 and 1.00: 0.57: 0.25: 0.22). It was therefore concluded 

that chimeric block-decoys containing stoichiometrically tailored quantities of 

TFRE-blocks could be constructed by controlling the molar ratio of TFRE-blocks in 

the ligation reaction, and therefore that cells transfected in vitro with chimeric 

molecules will contain TFRE-blocks at the specified concentrations across the cell 

population.  
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Figure 4.8: Stoichiometric optimisation of chimeric block-decoys targeting multiple 

regulatory elements.  In order to determine the correct stoichiometry of different TFRE-

blocks in chimeric decoys to achieve equivalent inhibition of each regulatory element, the 

relative ability of separate TFRE-blocks to inhibit TFRE-specific reporter expression was 

first quantified. CHO-S cells were separately co-transfected with three different TFRE-

specific block decoys (CRE, NFkB-RE and E-box) or the corresponding scrambled block-

decoy controls at varying block decoy concentration with the corresponding TFRE-specific 

GFP-reporter plasmids (at a ratio of decoy : reporter plasmid maintained at 1 : 1).  GFP 

expression in block-decoy transfected cells is shown as a percentage of reporter expression 

in cells transfected with the same concentration of scrambled decoy control.  Best fit curves 

obtained by non-linear regression analysis were utilised to determine the relative ratio of 

TFRE-specific blocks employed to construct chimeric decoys. 

 

 

4.2.5 Chimeric block-decoys target multiple TFREs simultaneously 

 

In order to demonstrate the novel capability of the block-decoy methodology to form 

stoichiometrically optimised chimeras, block decoys targeting multiple TFREs were 

constructed. In order to construct chimeric block decoys exhibiting maximal, 

equivalent inhibition of all TFRE-reporter plasmids the stoichiometry of TFRE-

blocks in ligation reactions was adjusted according to the extent individual TFRE-

specific block-decoys inhibited expression of the cognate TFRE-reporter (i.e. the 

relative ‘potency’ of each TFRE-block).  Thus, to achieve concurrent inhibition of 

NFkB-RE and E-box to a similar extent using the block-decoy approach TFRE-
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blocks were ligated in the stoichiometric molar ratio NFkB-RE 1.0 : E-box 0.62. 

Anticipating that chimeric decoys would require a greater concentration of decoy to 

be transfected to achieve a specific reduction in TFRE-reporter expression (as the 

number of copies of each TFRE-block is effectively reduced with an increase in the 

number of different TFRE-blocks utilised to construct a chimeric decoy) we (i) 

increased total TFRE-decoy DNA load per transfection and (ii) utilised alternative 

TFRE-SEAP reporter constructs to enable more sensitive detection of TFRE driven 

reporter expression.  Preliminary experiments showed that a decoy concentration of 

3.5 µg/ml decoy was the maximal decoy load that could be co-transfected with 

TFRE-reporter plasmid whilst still maintaining quantitation in the linear range from 

each TFRE-specific SEAP reporter plasmid (transfected at 2 µg/ml). Chimeric 

decoys were therefore transfected at this concentration. Figure 4.9 shows that the 

chimeric decoy constructed from NFkB-RE and E-box TFRE-blocks significantly 

inhibited expression from both TFREs at approximately equivalent levels. Moreover, 

it had no significant effect on GFP production from CRE-reporter plasmids, 

confirming specific inhibition of NFkB-RE and E-box mediated reporter expression. 

In order to further demonstrate the functionality of block-decoys for 

investigating multi-TF mediated phenotypes in CHO cells, a chimeric decoy was 

constructed targeting all three TFREs at approximately equivalent levels by ligating 

TFRE-blocks in the stoichiometric molar ratio E-box 0.5 : NFkB-RE 0.8 : CRE 1.0. 

Utilising the maximal decoy concentration of 3.5 µg/ml, this equated to TFRE-block 

concentrations of 0.76 (E-box), 1.22 (NFkB-RE) and 1.52 µg/ml (CRE).  Through 

interpolation of the single decoy data summarised in Figure 4.8 it was predicted that 

under these conditions chimeric decoys would inhibit expression from E-box, NFkB 

and CRE-SEAP reporter plasmids by 88%. Figure 4.9 shows that the chimeric decoy 

significantly inhibited expression from all three TFREs at approximately equivalent 

levels. E-Box, NFkB-RE and CRE dependent SEAP expression was reduced to 77%, 

76% and 68% respectively, showing the chimeric decoy simultaneously sequestered 

a substantial proportion of the intracellular cognate TFs that bind to each of the three 

TFREs. The slight reduction in decoy potency compared to predicted values may be 

explained by (i) the reduced transfection efficiency associated with transfecting a 

higher concentration of DNA (resulting in fewer copies of each RE-block per cell) or 

(ii) TF-binding dynamics being affected by the presence of multiple RE-blocks. 

Nonetheless, the results show that three transcription factor binding pathways can be 
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inhibited simultaneously using a chimeric block-decoy containing stoichiometrically 

tailored quantities of each TFRE-block. This is the first time that a transcription 

factor decoy has been shown to target multiple elements by using an optimised 

number of copies of each binding site. 

 

 

 

Figure 4.9: Chimeric block-decoys target multiple TFREs simultaneously. CHO-S cells 

(2 x 10
5
) were co-transfected with 3.5 chimeric block decoys and 2 µg/ml of either CRE, E-

box or NFkB-RE SEAP-reporter plasmid. Chimeric decoys were constructed using 

stoichiometric ratios of TFRE-blocks in the ratio A) NFkB-RE 1.0 : E-box 0.62 and B) CRE 

1.0 : NFkB-RE 0.8 : E-box 0.5 (control scrambled chimeric decoys contained the same ratio 

of scrambled TFRE-blocks). SEAP expression was quantified 24 h post-transfection. Each 

bar shows SEAP expression in chimeric decoy treated cells relative to expression with the 

same concentration of scrambled decoy.  In A and B each bar represents the mean + SEM of 

three independent experiments performed in triplicate.  



106 

 

4.3 Discussion 

 

The work in this chapter describes a novel method for TF decoy formation that 

enables construction of chimeric decoys containing stoichiometrically optimised 

ratios of input TFRE-blocks. Exhibiting intracellular stability (resistance to 

exonuclease-degradation), chimeric block-decoys can target multiple TFREs 

simultaneously by specifically sequestering cognate TFRE-binding TFs. Specifically 

designed to enable characterisation of TF-TFRE interaction functionalities in CHO 

cells, block-decoys have significant advantages over existing decoy methods for 

studies requiring the simultaneous inhibition of multiple elements in defined 

combinations.  Block-decoys can be applied to characterise any multi-transcription 

factor mediated CHO cell function (e.g. regulation of a specific promoter) or 

phenotype (e.g. regulation of cellular proliferation) and accordingly will facilitate 

both sophisticated transcriptional control and advanced cell engineering strategies.  

Most studies utilising TF decoys in CHO cells are likely to require multiple 

decoys, targeting varying combinations of different binding motifs. For example, if a 

promoter of interest contains eight discrete TFREs there are over 200 possible 

unique chimeric combinations. By employing the block-decoy methodology to 

determine this promoter’s functional regulation any of these chimeras could be 

rapidly constructed following the initial synthesis of eight TFRE-blocks. This 

compares to existing methods, where all chimeras would have to be designed and 

synthesised independently. The ability to rapidly construct hundreds of different 

chimeric combinations from a pool of input TFRE blocks provides substantial 

savings in both time and costs. Further, by utilising block-decoys the binding site 

ratios within each chimera could be adjusted to precisely control the relative extent 

to which each TFRE is inhibited in each transfected cell.  This is a major advantage 

over the use of mixtures of single decoys, whose relative distribution within 

transfected cells is unpredictable. Moreover, adjustable control of TFRE-block ratios 

enables the optimal inhibition of each target element at any decoy concentration. 

Fine-tuning of binding site copy ratios enables more efficient inhibition, reducing the 

final decoy concentrations required and potentially facilitating more TFREs to be 

targeted simultaneously compared to existing methods. Block-decoys therefore offer 

significant advantages for concurrent inhibition of multiple TFREs in vitro, where 
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DNA load is often a restricting factor. Indeed, in this study where decoy 

concentrations were significantly limited by co-transfection with TFRE-reporters, 

block decoys enabled maximal equivalent inhibition (> 70%) of three TFREs 

simultaneously. Utilisation of increased decoy concentrations (as will be possible in 

the vast majority of block-decoy applications, which will not require vector co-

transfection) will likely increase both the levels of inhibition and the number of 

elements that can targeted simultaneously.  

Whilst the method’s primary advantages are the ability to rapidly construct 

chimeric molecules and to control their binding site ratios, block-decoys have other 

potential benefits. Circular DNA has been associated with improved transfection 

efficiencies, compared to linear ODN (Chancham et al., 2001; Dhanoya et al., 2011). 

Further, multiple copies of the same binding site within a single decoy molecule may 

enhance TF sequestration (Gotea et al., 2010; Lee et al., 2012). It was previously 

shown that decoys with three site copies achieved stronger inhibition than those 

containing a single site (Gao et al., 2006). Therefore, the 7 – 20+ binding sites per 

block-decoy may enhance decoy function and efficiency. 

Block-decoys can be utilised to determine the function of individual TFREs 

in the mechanistic regulation of discrete promoters in CHO cells. Given the current 

revolution in CHOmics (Datta et al., 2013) we are therefore in a position to i) 

determine CHO cell factory TF profiles throughout bioproduction processes and ii) 

identify the TFs required by specific promoters for transactivity. Accordingly, block-

decoys will enable accurate prediction of discrete promoters’ activities during 

bioprocesses and facilitate strategies (e.g. engineering of promoters, cell factories 

and/or bioreactor operating conditions) to optimise recombinant gene expression 

levels throughout production processes. For example, block-decoys could be 

employed to determine the mechanistic regulation of synthetic promoter 2/01 that 

was constructed in chapter 3. Intracellular levels of NFkB-RE, E-box, C/EBPα and 

GC-box binding TFs could then be specifically controlled/ monitored to ensure that 

sufficient quantities are maintained to facilitate maximal promoter activity during the 

production of both early stage products and easy to express proteins. Further, routine 

determination of synthetic promoters’ functional regulation will facilitate CHO cell 

synthetic engineering strategies requiring the constitutive expression of several genes 

to be stoichiometrically balanced. Employing mulitple synthetic promoters to 

achieve precise gene expression ratios may be doomed to failure by promoter 
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intereferance – i.e. promoters exhibiting unpredictable activities due to ‘competition’ 

for availalbe TFs. For each synthetic promoter, block-decoys could be utilised to 

determine i) the TFREs required for activity, ii) how activity is affected by 

intracellular fluctations in TF abundances and iii) which TF-TFRE interactions are 

likely sources of activity variance. Compatible synthetic promoters could 

accordingly be selected for use in engineering attempts that i) individually display 

robust activity (e.g. activity not significantly impacted by minimal fluctations in TF 

abundances) and ii) collectively exhibit minimal promoter-promoter interference 

(e.g. promoters that do not rely on the same TF-TFRE interactions for activity). 

Lastly, an obvious application of block-decoys is in determining the TF-mediated 

regulation of critical functionalities such as proliferation, apoptosis, protein folding 

and glycosylation. Negative and positive effectors could accordingly be either 

knocked-out or over-expressed respectively in relatively simple cell engineering 

strategies. Moreover, neutral effectors could be utilised with their cognate TFs as 

inducible, controllable elements to construct regulated gene expression systems 

(switches, oscillators, synthetic regulatory cascades) for synthetic biology 

applications in CHO cells (Tigges and Fussenegger 2009; Weber and Fussenegger 

2010).  
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Chapter 5: A mechanistic understanding of the CMV promoter’s 

functional regulation in CHO cells. 

 

In this chapter the mechanistic functionality of the hCMV-IE1 promoter is 

systematically deconstructed to identify the discrete TFREs that control its activity in 

CHO cells. In silico bioinformatics analysis (of both hCMV-IE1’s TFRE composition 

and CHO cell’s TF complement) identified a design space that was interrogated via 

TF sequestration (utilising block-decoys) and TFRE knockout (utilising synthetic 

CMV constructs with scrambled TFRE sequences). It was determined that i) the vast 

majority of CMV’s activity within CHO cells is dependent on just two TFREs, NFkB 

and CRE, and ii) YY1 is a negative regulator of the CMV promoter in CHO. This 

mechanistic understanding of hCMV-IE1’s functional regulation enables strategies 

to predictably control or improve its activity by engineering the promoter’s TFRE 

composition or the cell factory’s TF abundances. 

 

5.1 Introduction 

 

The human cytomegalovirus immediate early 1 (hCMV-IE1) promoter has been 

utilised for > 25 years to control recombinant gene transcription in CHO cells. 

hCMV-IE1 has been employed in the vast majority of regulatory approved 

production vectors, is currently used to drive expression of many biopharmaceutical 

products, and is the promoter of choice for transient gene expression (TGE) systems 

(Birch and Racher, 2006; Rita Costa et al., 2010). However, surprisingly given its 

long-term use, little is known about how it functions in the CHO cell and therefore 

strategies to precisely control or improve its transcriptional activity are not generally 

available. Determination of its mechanistic functionality in CHO cell factories would 

enable i) rational re-engineering to improve its bioproduction performance, ii) 

strategies to predictably control its activity during bioreactor processes and long-

term sub-culture, and iii) identification of system-active ‘parts’ (both discrete TFREs 

and TFRE-combinations comprising cis-regulatory modules (CRMs)) that could be 

utilised to construct CHO-specific synthetic promoters (Li et al., 1999; Rajkumar 

and Maerkl, 2012; Blazeck et al., 2012; Brown et al., 2014). Reverse engineering of 

hCMV-IE1’s functionality in CHO cells could therefore facilitate development of 
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improved gene expression control technologies for biopharmaceutical 

manufacturing. 

In its natural context hCMV-IE1 drives expression of the major immediate 

early (IE) proteins IE1 and IE2 to initiate a hierarchical viral gene cascade (Isomura 

et al., 2004). Functioning as the master regulator of productive viral infection, 

hCMV-IE1 activity is the primary determinant of both cellular permissiveness and 

infection outcomes (i.e. abortive, lytic or latent) (Stinski and Isomura, 2008; Liu et 

al., 2013). Accordingly, in order to enable a broad host cell range, hCMV-IE1 is a 

highly complex element that has evolved to contain multiple discrete transcription 

factor regulatory elements (TFREs) cognate for common cellular transcription 

factors (TFs) (Stinksi and Isomura 2008). First characterised in the 1980s, its ability 

to deliver rapid, high levels of transcription in diverse cell types led to its 

establishment as the de facto choice for driving recombinant gene expression in 

mammalian cells in vitro. Still routinely employed in the vast majority of 

mammalian expression vectors hCMV-IE1 (hereafter referred to as CMV in this 

chapter) is perhaps the most recognisable and widely utilised genetic element in 

modern day molecular biology (Galle, 2013).  

Unsurprisingly, the promiscuous strong activity of CMV has been utilised to 

drive transcription of biopharmaceutical products in CHO cells. Capable of driving 

constitutive high levels of target gene expression within CHO cell factories, it was a 

gold standard vector component for over 20 years (Hacker et al., 2009). However it 

has been associated with undesirable bioproduction characteristics including i) 

induction of cell stress and activation of apoptotic pathways, ii) cell cycle dependent 

activity, and most significantly iii) contribution to production instability via 

promoter silencing and gene deletion (de Boer et al., 2004; Dale 2006; Kim et al., 

2011). Accordingly, some contemporary production vectors employ alternative 

elements such as the Chinese hamster elongation factor-1α (CHEF-1α) promoter 

(Running Deer and Allison, 2004). Whilst endogenous regulatory elements offer 

some improved functionalities (e.g. enhanced expression stability), they are typically 

significantly less active than CMV and exhibit far less efficient transcriptional 

activity per unit DNA sequence (CHEF1α is > 15x larger than CMV). CMV 

therefore remains particularly attractive for use in situations where optimised 

productivity requires maximised transcription – for example in the production of 

easy to express proteins and in TGE (McLeod et al., 2011; Zhu et al., 2012). Its 
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functionality in the latter is likely to become increasingly important if TGE systems 

are developed for large-scale therapeutic protein manufacturing (Cain et al., 2013).  

Numerous strategies have been employed in attempts to improve CMV 

functionality for biopharmaceutical production in CHO cells. For example, co-

expression of the adenoviral E1 protein and heat shock at 42°C have both been 

shown to enhance CMV activity (Cockett et al., 1991; Pshenichkin et al., 2011). 

Further, compounds that promote euchromatic histone modifications (e.g. 

hyperacetylation and demethylation) such as sodium butyrate, 5-aza-2’deoxycitidine 

and dimethyl sulfoxide have been shown to increase CMV-driven transgene 

expression in CHO cells (Radhakrishnan et al., 2008; Choi et al., 2005). This is 

unsurprising given that the CMV promoter is known to recruit histone deacetylases 

(HDACs) and methyltransferases and is associated with heterochromatic histone 

modifications (i.e. CMV promoter silencing) during viral latency (Cuevas-Bennett 

and Shenk, 2008; Stinski and Isomura, 2008; Liu et al., 2013). Moreover, the same 

reagents have been shown to ‘re-activate’ CMV in multiple human cell models, 

suggesting CMV may be silenced in CHO cells via commonly described 

mechanisms (Murphy et al., 2002; Grassi et al., 2003, Keller et al., 2007). 

Unfortunately these compounds are typically poorly compatible with bioreactor 

processes due to unpredictable and undesirable side-effects on critical cellular 

characteristics such as proliferation and apoptosis (Wang and Zhang, 2007; Jiang and 

Sharfstein, 2008). An alternative approach has utilised accessory elements from the 

CMV genome (unique region (UR), modulator, exonA, intronA) to increase protein 

production from CMV promoter-containing expression cassettes. This strategy has 

been employed by at least one well known contract manufacturer. Whilst 

employment of these four elements simultaneously has been shown to increase 

productivity (Mariati et al., 2010), multiple studies have indicated that the UR and 

modular components exhibit negative effects on CMV transcriptional activity 

(Huang et al., 1996, Chao et al., 2004; Lee et al., 2007). Enhanced productivity is 

likely a result of i) 5’ UTR components (exonA and intronA) functioning via non-

CMV specific, well-established mechanisms to increase mRNA abundance 

(increased RNA POL II processivity, enhanced mRNA stability and elevated 3’-end 

pre-mRNA processing), export and translation rates (Skoko et al., 2011; Bicknell et 

al., 2012), and/or ii) UR and modulator components exhibiting non-CMV specific, 

well established MAR-like insulator function in stable cell lines (Lashmit et al., 
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2004; Stinski and Isomura 2008). Accordingly, these accessory viral regulatory 

elements are not considered to comprise a ‘larger’ CMV promoter (i.e. do not 

positively augment CMV’s transcriptional activity), and are instead viewed as useful 

discrete expression cassette elements with non-promoter function (i.e. do not 

increase the rate of transcription initiation). Ultimately, CMV’s functionality in 

bioreactor-scale protein production has not been improved in the past 25 years and 

tractable strategies to predictably control or rationally optimise its activity are 

currently unavailable.  

The transcriptional activity of CMV is highly variable in different cell types. 

Cell-specific transactivational power is exhibited both in animal models in vivo 

(Mcgrew et al., 2004; Vasey et al., 2009; Mella-Alvarado et al., 2013) and in panels 

of mammalian cell lines in vitro (Qin et al., 2010; Schlabach et al., 2010). As with 

any promoter, CMV’s activity is a function of its constituent TFREs and the 

availability of cognate TFs within the cell (Coulon et al., 2013). CHO-specific 

mechanistic regulation of CMV activity is therefore a consequence of the 

functionality of one or more TF-TFRE interactions. The work in this chapter 

systematically deconstructs the complex CMV promoter to identify the discrete 

TFREs that control its activity in CHO cells. In silico bioinformatics analysis (of 

both the CMV promoter and CHO cells TF complement) and evaluation of the 

activity of discrete promoter regions identified a design space that was interrogated 

via TF sequestration (utilising block-decoys described in chapter 4) and TFRE 

knockout (utilising synthetic CMV constructs with scrambled TFRE sequences). 

Results indicated that the vast majority of CMVs activity within CHO cells is 

dependent on just two TFREs; NFkB and CRE. Further, YY1 was identified as a 

negative regulator of the CMV promoter in CHO. This knowledge will enable 

strategies to predictably control/ improve CMVs activity in CHO cells by 

engineering the promoter’s TFRE composition and/or the factories’ TF abundances.  
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5.2 Results 

  

5.2.1. In silico identification of TFREs likely to regulate CMV promoter activity 

in CHO cells 

 

In order to identify TFREs that are likely to functionally regulate CMV activity, the 

promoters TFRE composition was analysed in silico using online search tools that 

scan DNA sequences for TF binding sites. Transcription Element Search System 

(TESS) and Transcription Affinity Prediction tool (TRAP) were utilised, employing 

stringent search parameters to minimise false positives (Manke et al., 2008; Schug 

2008). The CMV promoter is defined as the sequence spanning from -560 to +50 

relative to the transcriptional start site of the IE1 gene within the viral genome, 

comprising three structurally distinct, synergistically functioning components - the 

distal, proximal and core promoters between -560 to -300, -300 to -50 and -50 to + 

50 respectively (Stinski and Isomura, 2008). The bioinformatics analysis confirmed 

CMV to be an extremely complex genetic element, containing 42 separate binding 

sites distributed throughout the distal and proximal promoters at a frequency of one 

site per every 12.4 bp (Figure 5.1). A total of 12 discrete TFREs were identified at 

copy numbers ranging from 1 – 8, where the most abundant (> 3 sites) were YY1, 

NF1, RARE, GC-box, NFkB and CRE (comprising both CREB and AP-1 binding 

sites due to observed functional redundancy (van Dam and Castellazzi, 2001; Manna 

and Stocco, 2007).  

In order to evaluate the likely functional relevance of the TFREs identified by 

bioinformatics analysis, a comprehensive literature review was carried out of 

previous studies investigating CMV’s mechanistic regulation in other cell hosts. 

Given the CMV promoter’s function as a master regulator of hCMV infection 

outcomes its activity has been extensively characterised in human cell lines. As 

shown in Table 5.1, 10 of the 12 TFREs have previously been identified as 

functional effectors of CMV activity in other cell systems (no additional TFREs 

were identified). Many of these TFREs have been differentially identified as neutral, 

negative or positive regulators of CMV activity, depending on cellular host and 

expression conditions (lytic viral infection, recovery from latency, or transient 

expression) (Galle, 2013). Previous studies therefore both i) highlighted the complex 
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and context-specific regulation of the CMV promoter, and ii) provided empirical 

evidence suggesting that the vast majority of elements identified in silico had the 

potential to regulate CMV’s activity in CHO cells.  

 

 

Figure 5.1: The CMV promoter contains multiple copies of numerous discrete 

transcription factor regulatory elements. The human cytomegalovirus immediate early 1 

promoter was surveyed for the presence of discrete transcription factor regulatory elements 

using Transcription Element Search System (TESS) and Transcription Affinity Prediction 

(TRAP) algorithms using stringent search parameters to minimise false positives.  

 

Table 5.1: Previous empirical evidence showing discrete TFREs functionally regulate 

CMV promoter activity. In silico analysis of the CMV promoter identified 12 discrete 

constituent TFREs. Literature databases were comprehensively searched to identify previous 

studies that have shown these TFREs to be functional regulators of CMV activity in any cell 

host. An example reference is given for each TFRE. 

TFRE Evidence of effector function 

CArG Caposio et al., 2010 

C/EBP Prosch et al., 2001 

CRE Lashmit et al., 2009 

E4F1 X 

ERF Wright et al., 2004 

GC-box Isomura et al., 2005 

GFI1 Zweidler-Mckay et al., 1996 

MSX X 

NF1 Lashmit et al., 2009 

NFkB Liu et al., 2010a 

RARE Ghazal et al., 1992 

YY1 Pizzorno, 2001 
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Previous work in this thesis (section 3.2.3) determined the relative 

transcriptional activity of 11 of the 12 (ERF was not included in the screen) CMV-

constituent TFREs in CHO-S cells (Figure 5.2). Five of these elements could 

independently mediate recombinant gene expression in CHO-S cells using available 

TF activity. It was therefore hypothesised that these five CHO-active TFREs (NFkB, 

CRE, GC-box, E4F1, C/EBPα) were likely regulators of CMV activity in CHO. 

Whilst TFRE inactivity may have been a consequence of assay-design features (i.e. 

suboptimal TFRE sequences, TFs unable to drive transactivation independently) it 

could be evidence that cognate TFs for the six CMV-constituent CHO-inactive 

TFREs are not expressed in CHO cells. It is predicted that CHO cells may express a 

particularly narrow range of transactivators given their loss of specific functionalities 

over the course of long-term (> 50 years) culture in vitro (Lewis et al., 2013; Xu et 

al., 2011). In order to evaluate the availability of cognate TFs for CMV-constituent 

TFREs within CHO cells, CHO genomic (Xu et al., 2011), transcriptomic 

(unpublished data available in-house; ~ 40 Gb of transcriptome sequence data from 

exponentially growing ECACC CHO-K1 cells cultured in CD-CHO) and proteomic 

data (Baycin-Hizal et al., 2012) were analysed. As shown in Table 5.2, the CHO cell 

TF complement contains potential cognate binding partners for 7 of the 12 CMV-

constituent TFREs. 

It is noted that i) unknown TFs may bind to TFREs, ii) TF expression may 

vary between different CHO-cell hosts, iii) TFs are particularly challenging to detect 

by proteomics (Hargrove et al., 1989; Baycin-Hizal et al., 2012) and iv) 

transcriptomic/ proteomic data sets are rarely exhaustive. However, the presence of 

available cognate TFs in two separate studies utilising two distinct CHO cell-lines 

clearly identifies TFREs that are likely to be regulators of CMV activity in CHO 

(C/EBP, CRE, GC-box, NF1, NFkB, RARE, YY1). Moreover, four TFREs for 

which cognate TFs were not identified (CArG, ERF, GFI, and MSX) were also 

inactive in the CHO-S TFRE functional screen and present at relatively low copy 

numbers (< 3 sites) in the CMV promoter.  Therefore, based on the in silico analyses 

it was predicted that CMV’s activity within CHO cells was a functional consequence 

of the interplay between one or more of the following eight TFREs: C/EBP, CRE, 

EF41, GC-box, NF1, NFkB, RARE, and YY1.  
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Figure 5.2: CMV-constituent TFREs exhibit variable activity in CHO-S cells. Seven 

copies of each TFRE were cloned in series upstream of a minimal CMV core promoter in 

reporter vectors encoding either GFP or SEAP reporters.  CHO-S cells (2 x 10
5
) in 24-well 

plates were transfected with 1 μg of SEAP (black bars) or GFP (white bars) TFRE reporter-

vector.  SEAP activity in cell culture supernatant and intracellular GFP were measured 24 h 

post-transfection.  Data are expressed as a fold-change with respect to the activity of a vector 

containing only a CMV core promoter (Core).  A random 8bp sequence with no known 

homology to TFRE sequences (8mer) was also used as a control.  Bars represent the mean + 

SD of three independent experiments each performed in triplicate, using three clonally 

derived plasmids for each TFRE-reporter construct. Modified from Figure 3.7. 
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Table 5.2: The CHO cell TF complement contains potential cognate binding partners 

for multiple CMV-constituent TFREs. CHOmics data was analysed to evaluate the 

availability of cognate TFs for CMV-constituent TFREs within CHO cells. Genomic (Xu et 

al., 2011) and proteomic (Baycin-Hizal et al., 2012) data were accessed at CHOgenome.org. 

Unpublished transcriptomic data (~ 40 Gb of transcriptome sequence data from 

exponentially growing CHO-K1 cells) was available in-house. A maximum of four cognate 

TFs are listed for each TFRE within each dataset. 

                              Cognate TFs present 

TFRE Genome Transcriptome 

 

Proteome 

CArG SRF 

 

X X 

C/EBP C/EBPγ; C/EBPδ; C/EBPε; 

C/EBPζ 

C/EBPγ; C/EBPε 

 

C/EBPζ 

CRE ATF1; CREB1; c-Fos;  

c-Jun  

ATF1, CREB1, c-Jun ATF1; CREB1; 

JunB 

E4F1 E4F1  X X 

ERF ERF-like X X 

GC-box EGR1; GCFC1-like; SP1-

like; SP2-like  

EGR2; GCFC1 GCFC1-like; SP3 

GFI GFI-1; GFI-1B X X 

MSX MSX1; MSX2; MSX3 X X 

NF1 NF1A; NF1B; NF1C; NF1X NF1A; NF1B; NF1C; 

NF1X  

NF1B; NF1X 

NFKB NFKB-p100; NFKB-p105; 

REL; RELA  

NFkB-p105; RELA; RELB  REL; RELA; 

RELB  

RARE RARα; RARβ; RARγ; 

RXRα 

RARα; RARβ; RARγ; 

RXRα 

RXRβ 

YY1 YY1-like X YY1  

 

 

5.2.2. Functionally-redundant TFREs synergistically regulate the CMV 

promoter’s activity in CHO cells 

 

In order to evaluate the functional contribution of discrete CMV structural 

components to promoter activity, GFP reporter constructs containing either the distal 

or proximal promoter upstream of the CMV core were created. Their relative activity 
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compared to the full CMV promoter (distal + proximal) was determined by transient 

production as it provides both a model system of CMV’s predominant modern-day 

function (i.e. driving transient protein production) and a direct readout of 

transactivation without potential interference from integration-specific effects or 

silencing. Whilst GFP production is not a direct measurement of transcriptional 

activity, assay conditions were optimised such that CMV-GFP reporter activity was 

in the centre of the linear assay range with respect to plasmid copy number (DNA 

load) and measured GFP output. Measurement of GFP production after transient 

transfection of CHO-S cells with each reporter plasmid is shown in Figure 5.3. This 

analysis identified that the distal and proximal promoters exhibited 49% and 76% of 

the activity of the full CMV promoter, where minimal reporter expression was 

observed with the core promoter alone (< 1% of reporter activity of CMV-GFP). The 

data therefore indicated that whilst both components exhibited significant activity 

(i.e. both contained CHO-active TFREs), the proximal promoter TFRE composition 

contained greater transactivation potential. Further, given that the cumulative activity 

from both components in isolation was greater than that of the full promoter, the 

analysis suggested that CMV contains functionally redundant TFREs. 

In order to both i) further evaluate the functional redundancy of CMV-

constituent TFREs and ii) determine whether transcriptional activity could be 

pinpointed to smaller discrete promoter regions, six cis-regulatory modules (CRMS; 

100bp regions containing > 5 TF binding sites) from within the CMV promoter were 

cloned upstream of a CMV core in GFP reporter constructs (Figure 5.4). The relative 

transcriptional activity of CMV-CRMs is shown in Figure 5.4. The majority of 

CMV-CRMs had minimal activity compared to the full CMV promoter. The data 

showed that CMV was ‘greater than the sum of its parts’ as the cumulative activities 

of the six CRMs (that collectively contained the promoter’s entire TFRE 

composition) totalled only ~ 60% of that of full CMV promoter. It was therefore 

inferred that CMV-constituent TFREs function synergistically to regulate the 

promoter’s activity in CHO cells. Whilst CMV apparently contains functionally 

redundant TFREs, the CRM data indicated that positive effectors of activity are 

widely distributed throughout the sequence and further highlighted that they are 

relatively more abundant within the proximal, as compared to the distal, promoter.  

Whilst significant activity could not be localised to smaller discrete promoter 

regions, preventing a simplified analysis of mechanistic regulation, comparison of 
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CRM’s relative activities and TFRE compositions enabled determination of putative 

TFRE functionalities. For example, the two most active CRMs (CRM 5 and 6) had 

very similar TFRE compositions, where NFkB, CRE and GC-box elements 

accounted for 5/6 of the constituent TFREs. The data therefore indicated that one or 

more of these three TFREs were positive regulators of CMV activity in CHO. This 

was unsurprising given that previous work in this thesis determined NFkB, CRE and 

GC-box elements to be functional effectors of CHO-specific synthetic promoter 

activities. However, CRMs 3 and 4 both contained multiple copies of these TFREs 

yet exhibited virtually no transcriptional activity. Whilst more complex design rules 

may have governed NFkB, CRE and GC-box function within CRM constructs (e.g. 

spatial effects, combinatorial interactions), it was predicted that the inactivity of 

CRMs 3 and 4 was a consequence of negative effector TFREs. Both constructs 

contained multiple NF1 and YY1 sites, indicating that one or both of these elements 

may function to negatively regulate CMV activity in CHO. It was therefore 

concluded that the mechanistic regulation of CMV promoter activity in CHO cells 

likely involves TFs binding at discrete TFREs to repress transcriptional activity.  

 

 

Figure 5.3: Discrete CMV promoter structural components exhibit differential activity in 

CHO-S cells. The CMV promoter comprises two structurally distinct, synergistically functioning 

components (distal and proximal promoters; see Figure 5.1 for relative TFRE compositions). 

CMV distal and proximal promoters were cloned upstream of the CMV core promoter in GFP 

reporter plasmids. CHO-S cells (2 x 10
5
) in 24-well plates were transfected with 300ng of CMV 

reporter-vector and GFP expression was quantified 24 h post-transfection. Data are expressed as 

a percentage of the production exhibited by the full CMV (distal + proximal) promoter.  Bars 

represent the mean + SD of three independent experiments each performed in triplicate. 
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Figure 5.4: Discrete cis-regulatory modules from within the CMV promoter exhibit 

differential activity in CHO-S cells. Cis-regulatory modules (CRMs) from within the CMV 

promoter were cloned upstream of the CMV core in GFP reporters. CRM TFRE compositions 

are shown. CHO-S cells (2 x 10
5
) in 24-well plates were transfected with 300ng of CMV-CRM 

reporter-vector and GFP expression was quantified 24 h post-transfection. Data are expressed as 

a percentage of the production exhibited by either A) the full CMV promoter or B) the most 

active CRM.  Bars represent the mean + SD of three independent experiments each performed in 

triplicate. 
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5.2.3. YY1, NFkB and CRE are functional regulators of CMV activity in CHO 

cells 

 

In order to specifically determine whether discrete TFREs functionally regulated 

CMV activity in CHO cells, TF decoy molecules targeting the eight TFREs 

identified in silico as likely effectors of promoter activity were constructed. TF 

decoys, short synthetic oligodeoxynucleotides containing a specific TF binding 

element, compete for available intracellular TFs and prevent their association at 

target promoters. This site-specific TF sequestration makes them an ideal method for 

determining the functional contribution of individual TFREs to a promoter’s activity. 

The block-decoy methodology of decoy formation that was developed previously in 

this thesis and designed specifically for characterising TF-TFRE interaction 

functionalities in CHO cells was utilised (Brown et al., 2013). In order to facilitate 

the use of maximal decoy concentrations, CMV-SEAP reporter constructs were 

created to enable more sensitive detection of CMV driven reporter expression (i.e. to 

reduce reporter-plasmid DNA load). It was previously shown that three different 

TFRE-specific block-decoys were able to specifically inhibit > 90% of expression 

from promoters dependent on their target TFREs at decoy concentrations of 2 μg/ml 

(Brown et al., 2013). Accordingly, to ensure maximal inhibition of the 

transactivation mediated by each CMV-constituent TFRE, decoy concentrations of 4 

μg/ml were employed in this study. Preliminary experiments confirmed that SEAP 

quantitation was in the linear assay range with respect to plasmid copy number and 

measured SEAP output when CHO-S cells were co-transfected with 4 μg/ml decoy 

and 1 μg/ml CMV-SEAP-reporter (moreover, experiments within this laboratory 

have confirmed that SEAP activity in cell culture supernatant is linearly correlated 

with SEAP mRNA levels post-transfection, providing a direct measurement of 

transcriptional activity).   

Measurement of SEAP production after transient co-transfection of CHO-S 

cells with CMV-SEAP-reporter and each TFRE-specific decoy is shown in Figure 

5.5. This analysis identified that CMV activity was increased > 1.5 fold by YY1 

decoys, suggesting that YY1 binds to cognate sites within the CMV promoter to 

negatively regulate its transactivation. In contrast, CMV activity was reduced by 

38% and 49% by CRE and NFkB decoys respectively. The data therefore indicated 

that CMV activity in CHO was highly dependent on TFs binding at these two 
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discrete elements. Although CMV activity was not significantly affected by the other 

five TFRE-specific decoys (C/EBP, E4F1, GC-box, NF-1, RARE) it is assumed that 

the relative extent to which each TFRE-specific block-decoy inhibits expression 

from its target TFRE is a function of block-decoy specific differences in both the 

relative intracellular abundance of TFs and TF-TFRE block binding kinetics. 

Therefore, it is noted that the block-decoy approach does not provide definitive proof 

of neutral effector function (i.e. false-negatives could have occurred). Moreover, as 

CMV apparently contains functionally redundant TFREs (Figure 5.3), it was 

hypothesised that identified neutral effectors may have regulatory function in the 

absence of NFkB and CRE-mediated transactivation. In order to both evaluate this 

hypothesis and determine if the two identified positive regulatory elements (NFkB 

and CRE) functioned synergistically to transactivate CMV, a chimeric decoy 

targeting both CRE and NFkB was created by ligating NFkB and CRE TFRE-blocks 

at a 1: 1 stoichiometric molar ratio. In order to maintain decoy loads and TFRE block 

copy numbers, single target-decoys (NFkB or CRE) were constructed by ligating 

consensus and scrambled TFRE blocks at a 1: 1 molar ratio (e.g. CRE decoy 

constructed by ligating CRE-consensus and NFkB-scrambled TFRE blocks). 

Anticipating that chimeric decoys would require a greater concentration of decoy to 

be transfected to achieve a specific reduction in TFRE-mediated expression (as the 

number of copies of each TFRE-block is effectively halved per decoy molecule) an 

increased TFRE-decoy DNA load was utilised per transfection. Preliminary 

experiments showed that a decoy concentration of 6 µg/ml was the maximal decoy 

load that could be co-transfected whilst still maintaining SEAP quantitation in the 

linear range from the CMV-SEAP reporter plasmid (transfected at 1 µg/ml). As 

shown in Figure 5.5, CMV-driven SEAP expression was reduced by 77% by the 

chimeric decoy, where decoys targeting either CRE or NFkB individually reduced 

CMV activity by 34% and 46% respectively. The analysis therefore indicated that i) 

the vast majority of CMVs activity in CHO cells is a functional consequence of TF-

TFRE interactions at NFkB and CRE sites and ii) a large proportion of the CMV 

sequence is redundant in CHO, comprising multiple TFREs (C/EBP, E4F1, GC-box, 

NF-1, RARE) that exhibit minimal transactivation potential. 
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Figure 5.5: YY1, NFkB and CRE are functional regulators of CMV activity in CHO-S cells. A) 

CHO-S cells (2 x 10
5
) were co-transfected with 1 µg/ml CMV promoter-SEAP reporter plasmid and 4 

µg/ml block-decoys targeting different transcription factor regulatory elements. B) CHO-S cells (2 x 

10
5
) were co-transfected with 6 µg/ml chimeric block decoys and 1 µg/ml CMV-promoter reporter 

plasmid. Chimeric block decoys targeting both NFkB and CRE (NFkB + CRE) were constructed by 

ligating CRE and NFkB TFRE-blocks at a stoichiometric molar ratio of 1: 1 (control scrambled 

chimeric decoys contained the same ratio of scrambled TFRE-blocks). Chimeric decoys targeting 

CRE or NFkB were constructed by ligating consensus and scrambled TFRE blocks at a 1: 1 molar 

ratio (e.g. CRE decoy constructed by ligating CRE-consensus and NFkB-scrambled TFRE blocks). 

SEAP expression was quantified 24 h post-transfection. Each bar shows SEAP expression in decoy 

treated cells relative to expression with the same concentration of either A) block-decoys containing a 

random 8bp sequence with no known homology to TFRE sequences (8mer control) or B) scrambled 

decoy control. In A and B each bar represents the mean + SD of three independent experiments 

performed in triplicate. 
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5.2.4. A CMV promoter devoid of NFkB and CRE sites exhibits minimal 

activity in divergent CHO cell hosts 

 

Decoy-mediated physical sequestration of YY1, NFkB and CRE-binding TFs could 

theoretically have reduced transient protein production via non-CMV specific 

mechanisms by affecting the regulation of multiple endogenous genes.  Therefore, in 

order to confirm that TF-TFRE interactions at these elements specifically regulated 

CMV activity in CHO cells, synthetic CMV constructs were created with YY1, 

NFkB and CRE binding sites ‘deleted’. NFkB (all 4 NFkB sites scrambled to 

AATCGCAAGT), CRE (all 8 CRE sites scrambled to CTACTGTG) and NFkB + 

CRE (all NFkB and CRE sites scrambled) knockouts (KO) were synthesised and 

inserted into SEAP reporter vectors. Construction of a YY1 knockout was more 

complex as the YY1 consensus sequence is extremely degenerate and has a very 

short core sequence (CCAT) (Golebiowski et al., 2012). YY1 sites are accordingly 

challenging to identify in silico, particularly when stringent search parameters are 

employed to minimise false positives (as they were in the CMV bioinformatic 

survey) (Schug, 2008). It was therefore predicted that the CMV promoter may 

contain additional potential YY1 binding sites that were not identified by the initial 

in silico analysis. Utilising the online Regulatory Sequence Analysis (RSA) oligo-

analysis tool (van Helden et al., 1998) it was determined that the core YY1 sequence 

CCAT (or the reverse orientation ATGG) occurs in 16 discrete occurrences and is 

the most abundant 4mer within the CMV promoter (Figure 5.6). Therefore as i) YY1 

core motifs are apparently evolutionarily maintained in the CMV promoter, 

suggesting functional relevance and ii) empirical evidence indicates YY1 can 

potentially bind to any site containing the CCAT core sequence (Golebiowski et al., 

2012), all 16 CCAT motifs were scrambled (to TGTC) to ensure deletion of every 

possible YY1-binding site. However, as shown in Figure 5.6, due to binding site 

overlap this potentially affected the functionality of multiple putative positive 

effector sites (i.e. scrambling YY1 elements disrupted multiple CRE and NFkB 

consensus sequences). Accordingly, it was hypothesised that the YY1-KO-CMV 

promoter would exhibit a reduction in the binding of both transcriptional repressors 

and activators. 
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Figure 5.6: The CMV promoter contains 16 putative YY1 binding sites. The human 

cytomegalovirus immediate early 1 promoter was surveyed for the presence of extended 

((C/G/A)(G/T)CCATN(T/A)(T/G/C)) and core (CCAT) YY1 consensus sequences. Analysis 

with the RSA oligo-analysis tool determined that the YY1 core consensus sequence is the 

most abundant 4mer within the CMV promoter, indicating evolutionary maintenance and 

functional relevance. A CMV-YY1-Knockout(KO) was constructed by scrambling all 16 

potential YY1 binding sites (measurement of its activity in divergent CHO cell hosts is 

shown in Figure 5.7). Due to TFRE overlap, sequence scrambling at 7 discrete YY1 sites 

simultaneously disrupted NFkB or CRE sites within the CMV-YY1-KO construct (as 

indicated). 

 

 

As it was hypothesised that CMV’s mechanistic regulation may vary in 

different CHO cell lines due to varying TF complements, the activity of synthetic 

CMV promoters was evaluated in two commonly utilised hosts. Figure 5.7 shows the 

transient SEAP production from all synthetic CMV promoters compared to a control 

wild-type CMV (no TFREs scrambled) in CHO-S and CHO-K1. The data showed 

that relative promoter activities were approximately maintained in both CHO hosts. 

YY1-KO, NFkB-KO and CRE-KO promoters exhibited 38 - 42% (CHO-K1 – CHO-

S respectively), 48 - 30% and 92 - 85% of wild-type promoter activity respectively. 

The analysis therefore identified that whilst deletion of NFkB elements significantly 

reduced CMV activity, removal of CRE sites had minimal effect on promoter 

strength. However, when both NFkB and CRE sites were deleted simultaneously 

(NFkB+CRE-KO) promoter activity was reduced to 15-8% compared to wild-type, 

suggesting that CMV-NFKB-KO mediated expression was dependent on CRE-

mediated transcriptional activation. The data therefore indicates that CRE sites 

within CMV exhibit significant transactivation potential, but are largely functionally 
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redundant in the presence of NFkB sites. Further, the analysis verified the findings of 

the block-decoy study in showing that the vast majority of CMV promoter activity (> 

80%) in CHO is a functional consequence of TF-TFRE interactions at NFkB and 

CRE regulatory elements. Accordingly, it was perhaps unsurprising that CMV-YY1-

KO exhibited reduced activity compared to wild-type CMV (despite the finding that 

YY1 block-decoys increased CMV activity > 1.5 fold) given that multiple CRE and 

NFkB sites were disrupted in this construct (Figure 5.6). Whilst it therefore proved 

intractable to conclusively determine if YY1 sites are negative regulators of CMV 

activity, the TFRE deletion analysis definitively confirmed that CMV activity in 

CHO cells is predominantly dependent on just two discrete positive regulator 

TFREs; NFkB and CRE.  

 

Figure 5.7: Deletion of NFkB and CRE sites abolishes the vast majority of CMV 

promoter activity in CHO cells. Synthetic CMV promoters with varying TFREs knocked 

out (i.e. scrambled) were synthesised and cloned into SEAP reporter vectors. The relative 

activity of each synthetic CMV construct was determined in CHO-S and CHO-K1 cells. 

Cells (2 x 10
5
) were transfected with 300 ng SEAP-reporter vector, and SEAP production 

was quantified 24 h post-transfection.  Data are expressed as a percentage of the activity of 

the wild-type CMV promoter in each cell line. Bars represent the mean + SD of three 

independent experiments each performed in triplicate. 
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5.3 Discussion 

 

The work in this chapter shows that CMV promoter activity in CHO cell factories is 

predominantly mediated via CRE and NFkB TFREs. Physical prevention of TF-

TFRE interactions at these sites, by either intracellular TF sequestration or TFRE 

deletion, independently reduced CMV activity by approximately 75% and 85% 

respectively. The involvement of these two elements in CMV regulation is 

unsurprising given that they i) are present at relatively high copy numbers in the 

promoter, ii) have cognate TFs available within CHO cells (Baycin-Hizal et al., 

2012), iii) have previously been shown to be transcriptionally active in CHO cells 

(Brown et al., 2014) and iv) have commonly been identified as regulators of CMV 

activity in divergent cell types (Hunninghake et al., 1989; He and Weber, 2004; 

Lashmit et al., 2009; Liu et al., 2010a). However, it was unexpected that the 

remaining CMV-constituent TFREs were largely unable to positively regulate 

promoter activity, suggesting that the majority of the CMV sequence is functionally 

redundant in CHO. Despite CMV’s highly complex TFRE composition (12 discrete 

TFREs, 42 binding sites) its mechanistic regulation in CHO cells is therefore 

apparently relatively simplistic.  

Disruption of NFkB-mediated promoter transactivation via either TFRE-

deletion or TF-sequestration reduced CMV activity by approximately 50%. 

Additional, simultaneous disruption of CRE-mediated transactivation (by either 

method) further reduced CMV activity to approximately 80% of wild-type levels. 

However, in isolation, physical sequestration of CRE-binding TFs significantly 

reduced CMV activity whilst CRE site deletion had minimal effect. These data 

suggest that CRE-binding TFs can regulate CMV activity both directly (i.e. binding 

at CRE sites within the promoter) and indirectly (for example by either interacting 

with, or regulating the expression of, other TFs). With respect to the latter, it was 

recently shown that CRE-binding protein 1 regulated CMV activity in 293T cells 

without directly binding to the promoter (Chia et al., 2014). The analyses therefore 

indicated that whilst NFkB sites could almost completely compensate for CRE site 

deletion, CRE sites could only partially compensate for NFkB site deletion. 

Accordingly, CMV promoter function in CHO cells can largely be explained by the 

following simple design rules: 1) activity is primarily dependent on NFkb sites 
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(mirroring previous work in this thesis that showed CHO-specific synthetic promoter 

activities were primarily a function of NFkB site copy numbers), 2) when NFkB-

mediated transactivation is disrupted (as may occur under certain cellular conditions) 

activity is predominantly dependent on CRE sites, and 3) if NFkB and CRE-

mediated transactivation are simultaneously disrupted the vast majority of promoter 

activity is abolished. 

A mechanistic understanding of the CMV promoter’s functional regulation in 

CHO cell factories will enable strategies to precisely control or improve its 

transcriptional activity. For example, it has been shown in multiple cell models that 

the CMV promoter can be ‘de-silenced’ by increasing the intracellular abundances of 

active positive effector TFs (Keller et al., 2007; Stinski and Isomura, 2008; Liu et 

al., 2013). Indeed, in N-Tera2 cells CMV activity can be immediately de-silenced by 

phorbol ester stimulation via a mechanism that is entirely dependent on TF-TFRE 

interactions at NFkB and CRE sites (Liu et al., 2010a).  Accordingly, production cell 

lines suffering productivity loss as a result of CMV silencing could potentially be 

‘rescued’ by either over-expressing, or activating, NFkB and CRE-binding TFs. 

Moreover, utilisation of the same strategies in the development of future producer 

cell lines may both increase production and help to prevent the occurrence of 

silencing. Overexpression of NFkB and CRE-binding TFs and/or the development of 

production processes to specifically control/optimise their intracellular abundances 

could also enable significant increases in CMV-driven transient protein production. 

Given that CMV is currently the promoter of choice for CHO TGE systems this 

could both optimise the production of early stage products (i.e. development material 

for toxicology and clinical trials testing (Daramola et al., 2013)) and help facilitate 

exploitation of TGE as a method for large-scale biopharmaceutical manufacturing 

(De Jesus and Wurm, 2011).  

Disrupting YY1-mediated regulation of CMV activity may provide 

additional opportunities to improve promoter performance. Physical sequestration of 

YY1 with block-decoys increased CMV activity to approximately 150% of wild-

type levels, indicating that YY1 is a negative regulator of CMV in CHO. YY1 is a 

well-known repressor of CMV activity in other cell types and can repress 

transcription by competing with activators for promoter binding sites and/or 

recruiting co-repressor complexes (Liu et al., 1994; Pizzorno, 2001, Liu et al., 

2010b). With respect to the former, many of the putative YY1 sites in CMV overlap 
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with, or are in close proximity to, NFkB and CRE elements. With respect to the 

latter, YY1 can recruit histone deacetyltransferases and methyltransferases to 

promoters (Zhang et al., 2011), and therefore may play a key role in mediating CMV 

silencing in stable CHO cell lines (Liu et al., 2013).  However, in contrast to block-

decoy-mediated disruption of YY1 regulation, deletion of all putative YY1 binding 

sites reduced CMV activity by approximately 60%. This is likely explained by the 

fact that deletion of YY1 sites simultaneously disrupted multiple NFkB and CRE 

elements. Construction of CHO-specific synthetic ‘CMV-like’ promoters devoid of 

YY1 binding sites and containing fully optimised CRE and NFkB compositions (i.e. 

optimised copy numbers, orientation, spacing, location and affinities) (Sharon et al., 

2012) may provide significantly increased activities. Such promoters could 

potentially be used to maximise recombinant gene transcription levels in transient 

protein production. Alternatively, TGE yields may be optimised by utilising the 

wild-type CMV promoter in conjunction with YY1-specific block-decoys. 
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Chapter 6: Conclusions and future work 

 

6.1 Conclusions 

 

The tools developed in this thesis enable sophisticated, next-generation 

transcriptional control in CHO cell factories. CHO cell engineers can now for the 

first time i) precisely control recombinant gene expression over broad dynamic 

ranges, ii) rapidly determine/ control the mechanistic regulation of any multi-

transcription factor mediated cell function (e.g. regulation of a specific promoter) or 

phenotype (e.g. regulation of cellular proliferation), and iii) implement strategies to 

predictably control and improve the activity of the most commonly utilised genetic 

component, the hCMV-IE1 promoter. Accordingly, functionally ill-defined and 

uncontrollable genetic elements exhibiting suboptimal performance can now be 

replaced with bespoke control systems offering predictable, precise and optimised 

transcriptional activity. The novel suite of tools presented in this thesis can therefore 

facilitate development of next-generation biopharmaceutical manufacturing systems 

via the following specific applications: 

 

1.  CHO cell factory engineering. The provision of 140 discrete promoter activities, 

covering over two orders of magnitude, will enable CHO cell engineers to precisely 

vary the transcriptional activity of many functional genes simultaneously in order to 

obtain desired phenotypes. Critically, by utilising block-decoys to ‘stress-test’ 

synthetic promoters (i.e. determine how discrete promoters’ activities are affected by 

fluctuations in intracellular TF abundances) elements can be selected that do not 

exhibit promoter-promoter interference, allowing construction of multi-gene 

engineering systems with robust, reliable and predictable performances. The two 

technologies can therefore be utilised in tandem to enable creation of bespoke, 

synthetic mammalian cell factories harbouring multiple genetic components 

operating at an optimal, designed stoichiometry. By facilitating optimisation of key 

bioproduction functionalities such as protein folding and glycosylation this will 

potentially enable both (i) re-engineering of existing stable cell factories to render 

failed products manufacturable and (ii) forward engineering of new cell factories 

with predictable manufacturing properties. This will eliminate the current concept 
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that some products are ‘difficult-to-express’ (DTE), and replace it with the concept 

that ‘designer products’ are easy to express in ‘designer cell factories’. 

 

2. Product-gene transcription rates. The precise control of recombinant gene 

expression enabled by the synthetic promoter libraries can be utilised to i) maximise 

transcription levels of easy-to-express proteins, ii) optimise transcription levels of 

DTE proteins, such that activity is kinetically coordinated with polypeptide-specific 

folding and assembly rates, and iii) achieve optimal mAb-specific light chain: heavy 

chain expression ratios (block-decoys could again be employed to select promoter 

pairs that do not exhibit promoter-promoter interference). In the long-term, this will 

eliminate the productivity-limiting one-promoter-fits-all approach and replace it with 

the concept that each specific product requires a product-specific promoter (i.e. 

protein-promoter matchmaking) in order to both optimise factory performance and 

maximise productivity. In the short-term, whilst synthetic promoter technology is 

being further validated, the identified hCMV-IE1 control strategies will facilitate 

optimisation of the incumbent manufacturing component. Over-expression/activation 

of NFkB and CREB and/or silencing/inactivation of YY1 could both i) ‘rescue’ 

silenced stable cell factories, ii) prevent silencing and enhance productivity in new 

cell factories and iii) significantly increase transient protein production yields. 

 

6.2 Future work 

 

Future work is required to both further validate and improve the tools developed in 

this thesis. Whilst many future studies may utilise block-decoys (e.g. to determine 

the mechanistic regulation of discrete promoters or cell phenotypes) direct follow-on 

work will predominantly focus on hCMV-IE1-control strategies and synthetic 

promoter development.  

 

6.2.1 Strategies to improve hCMV-IE1 function – reduction to practice 

 

Whilst multiple potential strategies to improve hCMV-IE1 functionality have been 

proposed, follow-on work should focus on testing the following two approaches as 

they offer the greatest potential industrial benefits in both the short and longer term: 
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1. Re-activation of silenced stable cell lines. It is hypothesised that transiently 

increasing the intracellular abundance of NFkB and CREB and/or decreasing the 

abundance of YY1 will enable hCMV-IE1 ‘de-silencing’. This hypothesis could be 

interrogated in stable producing cell lines that have suffered productivity loss as a 

result of hCMV-IE1 silencing. These cell lines could be transiently transfected with 

vectors encoding discrete combinations of the NFkB gene, CREB1 gene and a YY1-

targeting short interfering RNA (siRNA). Subsequent measurement of hCMV-IE1 

activity (i.e. protein production) over short-term batch culture and during bioreactor-

scale production processes would determine the efficacy of this approach to 

‘reactivate’ silenced cell lines. This work could potentially identify a simple method 

to routinely ‘de-silence’ stable cell lines that utilise the hCMV-IE1 promoter, with 

minimal effect on cell factory performance (e.g. cell growth and viability), by 

transient transfection of an optimised ‘CMV-reactivation vector’. 

 

2. Optimisation of transient gene expression (TGE) systems. The work in chapter 

5 showed that transient hCMV-IE1-driven protein production was increased by 

disruption of YY1-mediated regulation. The potential to increase TGE yields by 

inhibiting YY-1 activity could be determined in longer-term larger-scale transient 

production processes utilising either YY1-specific block-decoys or YY1-targerting 

siRNAs. Utilisation of reporter-vectors harbouring different promoter elements (i.e. 

testing YY1-inactivation in combination with a range of discrete promoters) would 

determine whether YY1-knockdown specifically increases hCMV-IE1 activity or 

generically improves CHO cell functionality. Measurement of key factory 

performance indicators (e.g. cell viability), cellular productivity and protein yields 

would accordingly confirm whether TGE systems can be simply optimised by YY1-

inactivation.  

 

6.2.2 Synthetic promoter library development – reduction to practice 

 

Given the availability of expression stability enhancing strategies (such as 

recombination mediated cassette exchange and matrix attachment regions (MARs)) 

it is anticipated that synthetic promoters will maintain their relative activities in 

stable expression systems. However, clearly, it will be imperative to rigorously test 

this hypothesis. This could be achieved by cloning a panel of functionally diverse 
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(with respect to expression range) synthetic promoters into reporter-protein encoding 

vectors containing the genetic elements necessary for producing stable CHO cell line 

transfectants (e.g. glutamine synthetase selection marker, MARs, introns). Each 

synthetic promoter-reporter vector could then be utilised to create triplicate stable 

transfectant pools, prior to monitoring of reporter production and cell proliferation 

over long-term (> 100 generations) batch culture. Evidence of robust and predictable 

performance in stable CHO cell factories would be a significant step towards 

integrating synthetic promoter technology into biomanufacturing systems. 

Whilst TFRE-reporter vectors provided a robust measurement of TFRE 

activities they were limited to assaying a relatively narrow range of TFREs (< 35), 

restricting the subsequent synthetic promoter design space. Utilisation of a high-

throughput assay system, such as the recently described massively parallel reporter 

assay (MPRA) (Melnikov et al., 2012; Kheradpour et al., 2013), would enable 

functional screening of all known TFREs (> 200). In addition to the screen used in 

this study (short-term transient expression in multiple CHO hosts) the MPRA could 

be employed to determine the relative activity of each TFRE in bioprocess-relevant 

production conditions through a fed-batch culture, utilising stable pools. TFREs that 

are active in all CHO cell types, and maintain high activity during extended 

stationary phase culture could then be selected to construct next-generation synthetic 

promoters specifically designed to operate within specific process parameters, 

enabling optimal control of cell specific production rate during bioreactor operations. 

Moreover, identification of production phase specific TFRE functionalities would 

enable promoter design that permits biphasic cell biomass accumulation and product 

synthesis.  

 Finally, it will be necessary to exemplify that next-generation CHO cell 

factories can be created by employing synthetic promoters to improve factory 

performance via controlled and predictable multigene engineering. This could be 

achieved by using a combination of design-of-experiments response surface 

modelling and multigene expression to construct engineered synthetic cell factories 

capable of significantly improved DTE protein synthesis. For example, DTE product 

genes (such as tissue plasminogen activator and erythropoietin) could be co-

expressed with discrete combinations of functional genes that have previously been 

utilised singly for CHO cell engineering (e.g. chaperones, redox proteins, unfolded 

protein response transactivators, vesicle trafficking components, etc.). Statistical 
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modelling could then be employed to determine optimal functional gene 

stoichiometries that could subsequently be achieved in novel synthetic factories by 

utilising appropriate synthetic promoters (i.e. with appropriate relative activities) to 

construct multigene engineering vectors. Creation of stable cell clones expressing the 

DTE protein, and monitoring of their growth and productivity, would then determine 

whether these bespoke CHO cells were able to increase productivity via protein-

specific design solutions. 
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Appendix A: Synthetic promoter TFRE-block compositions 

 

Supplementary Table 1:  Sequence and relative activity of first generation synthetic 

promoters.  N = NFκB-RE, E = E-box, G = GC-box, B = C/EBPα-RE, C = CRE, F = E4F1-

RE.  Reverse orientation (3’ to 5’ with respect to the SEAP reporter) is indicated by an 

apostrophe. 

Promoter Sequence Relative Activity (%) 

1/01 N E E N G B C E’ B’ N N E G’ N 100 

1/02 E’ F F’ B’ E G’ N’ E’ B N N’ N N’ G N 84.46 

1/03 E E G’ C N’ G’ G G’ C’ E N N’ B’ E’ B E’ 67.20 

1/04 B’ C’ E’ G C B’ N N’ N’ G F’ B N’ 58.3 

1/05 G F N G N B’ N’ B C E’ N’ 56.87 

1/06 C E E’ G’ E N E C B’ G’ C’ N’ G’ 54.89 

1/07 B’ E B’ G’ N B B E C’ N N 54.71 

1/08 E E’ N’ C B’ E’ E G B E N 52.64 

1/09 B G’ N B’ C’ N’ E E’ C’ G E’ 51.31 

1/10 B’ E N’ E E’ B C’ G G N 48.83 

1/11 C’ E’ N B’ E G’ F’ 47.64 

1/12 B’ N N E E G’ C E N’ B’ B 47.18 

1/13 G B E’ N’ G E N C’ B’ N E’ E’ C E’ 44.7 

1/14 C G G N C B B’ N’ N C’ F E’ N 38.43 

1/15 N’ B F’ C’ N’ B E’ N C’ N’ 35.94 

1/16 C F’ N N B’ C’ E E’ F’ 34.31 

1/17 G’ G G B’ E N B N’ B’ C B’ E G’ G 34.27 

1/18 N N’ E B’ C G’ E B’ C’ 34.03 

1/19 E E C E C N N’ F C N B N’ E’ 33.77 

1/20 F’ G E E E’ N’ F E B G’ E’ E 33.35 

1/21 N E N’ E’ N N N’ 32.57 

1/22 F G’ B’ E N’ E’ B’ E’ G G B 31.73 

1/23 C’ N E’ B C B N G’ E 30.32 

1/24 C N’ B B E’ F N E’ G N’ C 28.25 

1/25 G G’ B’ G’ B’ N’ C N N B’ E’ C C E’ B’ 28.13 

1/26 N G’ B’ N E E E’ F’ N B’ N’ B 27.33 

1/27 B’ C E F’ B’ E F’ N G N N 26.87 

1/28 E’ F N’ N E E C N E’ F’ N G’ N G E’ F N G’ N E’ F’ 25.72 
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1/29 N N N N N N  25.69 

1/30 C B’ N E’ E’ G N’ 24.68 

1/31 B’ G B E’ F’ N’ C B N’ E’ B G 23.33 

1/32 E’ F G’ N G E E N F N C G B’ G G B’ 20.09 

1/33 C N’ F N G’ G’ G’ N’ F F C’ N E’ N’ 19.46 

1/34 G G’ N’ E E F C E B’ E’ C’ N’ F G’ 15.22 

1/35 C B C’ E B G’ N’ B’ E’ G N’ G G 15.16 

1/36 E C’ N G F’ F G F G’ N E B C’ 14.48 

1/37 N F’ E E F F’ B N B N F G F’ C C’ G N’ E C N’ 14.44 

1/38 N’ C N C C E’ G C B’ N N 13.75 

1/39 C’ E’ C’ E’ F B G’ G’ N’ G E’ E’ C C 13.59 

1/40 E’ F G C E F F’ G’ G F’ G F G E G B’ N B’ E N F B G’ 13.57 

1/41 B’ B’ E G’ F’ G’ B’ F’ E N’ B C 12.38 

1/42 F’ B’ G’ N B B F’ E’ E B C’ N B E’ N G’ B’ C N’ G 12.23 

1/43 G E’ F N C B C’ E E 12.1 

1/44 G’ E E F C’ C’ B’ N E’ 12.04 

1/45 F’ B N’ C’ B C’ G N’ E’ G E C 12.01 

1/46 N G E’ C’ G’ E B E’ E C F C’ E’ E F E G C 11.56 

1/47 E E E E E E E  10.78 

1/48 E’ G’ F G’ E’ C F G’ E’ G B’ E’ B B C 9.11 

1/49 B’ E’ F G’ N F C G G’ B’ N’ B’ E C 8.94 

1/50 F G’ E’ E’ C’ B’ 8.74 

1/51 F C’ G’ N F’ C G N G C’ B E G’ 8.53 

1/52 C N’ C’ N C’ G’ N’ E’ N’ F C C N’ B’ C’ C N C’ N’ F G  8.53 

1/53 G G’ F’ N B’ N’ F’ E’ B’ N 8.44 

1/54 C C C C C C C  8.43 

1/55 G’ C C’ C N’ E N 8.03 

1/56 G’ B’ C’ N E’ G E F’ F 7.38 

1/57 N’ B’ B G’ F G’ F N E 6.89 

1/58 N G C’ C 7.74 

1/59 C’ G’ G E’ E’ G’ B N B N F’ F E F’ 6.06 

1/60 G G G G G G G 6.03 

1/61 G’ B’ C C N’ B’ E E B’ 5.94 

1/62 F F F F F F  4.7 

1/63 E’ E G G C’ N’ G B’ C G F’ F’ B E E B F’ 4.62 
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1/64 E B B C’ F’ C B E’ G’ 4.29 

1/65 F’ B G’ B’ C E E’ F’ B 4.04 

1/66 E’ E C G N C’ F’ E C G’ E F’ N C 4 

1/67 E’ G’ G’ N F E’ F’ N N’ G F F’ 3.94 

1/68 G’ G’ N’ F’ N’ C B’ E’ C’ E B F E’ F N’ G C’ G C’ N G’ C B 

C F N’ B E F B’ G 3.57 

1/69 E G B C F’ B B G N C 3.43 

1/70 E’ N’ G F N E’ G’ C F E’ C’ G G C B’ 3.35 

1/71 E’ N’ F G’ C F E B C’ C N 3.24 

1/72 F F’ C G’ C’ B’ C’ N’ C G B B F’ C N’ F E’ E B’ F’ G’ G B’ 3.14 

1/73 B B B B B B B 3.13 

1/74 C’ G’ C’ B’ B E B’ C’ B B B 3.1 

1/75 G G N’ N’ F G F C’ B G’ 2.57 

1/76 B F G G G G F B C’ E F 2.52 

1/77 E F E’ N F G’ N F N G’ F C’ F G’ G 2.46 

1/78 F’ G G C’ G G’ F N’ B’ 2.39 

1/79 F F F’ E’ F’ C’ F B C’ N B E B’ 2.22 

1/80 E’ G C E F’ F’ B’ G E’ G 2.11 

1/81 B’ G C B’ G F G F’ 2.02 

1/82 B’ E’ B’ B G’ B F’ C’ B’ N C’ C’ G’ 2.01 

1/83 F’ C’ F’ N B G’ N G’ 2 

1/84 B’ C’ B’ F’ G’ G E’ B C G C 1.94 

1/85 C’ E E’ E B G F G F’ F F’ E G 1.87 

1/86 G’ E’ N F E B’ F C’ E’ F’ C C’ 1.71 

1/87 F’ C B’ G F G G E F’ C’ E 1.57 

1/88 C’ N’ G E’ C’ G C N’ G’ F F 1.35 

1/89 C’ G G B’ C C B’ 1.34 

1/90 F C’ G’ B’ F E’ F’ G’ F G C 1.33 

1/91 E’ B’ C E F’ F’ F B B G’ B’ C C B C’ G 1.33 

1/92 C’ E’ F C F’ F’ E F’ E B 1.26 

1/93 B F’ G E G’ G N F C F 1.23 

1/94 B’ E G N’ N F C G F N F C’ F 0.66 

1/95 G’ G’ N’ F’ F’ E’ C’ B’ C C’ 0.38 

1/96 E B E’ B’ E E B’ F G C’ F F B 0.36 
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Supplementary Table 2: Sequence and relative activity of second generation synthetic 

promoters.  N = NFκB-RE, E = E-box, G = GC-box, B = C/EBPα-RE.  Reverse orientation 

(3’ to 5’ with respect to the SEAP reporter) is indicated by an apostrophe.  

Promoter Sequence Relative Activity (as a % 

of hCMV-IE1 activity) 

2/01 N G E E’ N E’ E’ N N N E’ E N E’ 216.66 

2/02 E N’ N’ N’ E E E’ N’ E’ B’ N’ E’ N N E’  175.94 

2/03 E E N’ G’ E N’ E’ N’ N’ E’ N’ N’ N B 174.82 

2/04 N E N E N N’ N’ E N 169.04 

2/05 N’ N G N B’ E’ E’ N B N E’ N N’ 166.6 

2/06 N’ N’ N N E’ N G’ E’ N’ E B’ 157.92 

2/07 N’ N’ E’ N G’ N’ N’ N’ B N 155.3 

2/08 E’ E’ N’ B’ N’ N’ G’ N N N’ E 154.47 

2/09 N’ N’ E N B N N’ E’ N G E’ E 151.37 

2/10 E’ N B’ N’ N E’ N B N N N’ G’ N N N’ 150.63 

2/11 E N’ E N N’ N’ N’ N E’ N’ N’ N’ N’ B N’ E’ N E’ N E’ 150.17 

2/12 N’ E’ N N B’ N’ N N E’ B E 148.93 

2/13 E B B’ E B’ N N E’ N N’ E E G’ N G N E B N 143.62 

2/14 E N’ N’ N G N N’ G’ B N’ G N 140.87 

2/15 N G’ E’ N’ N’ N N’ E’ N 140.87 

2/16 N G’ E N N’ B’ N N G’ G 140.77 

2/17 E’ N G’ G’ E’ E N N N E’ N N’ G’ N’ B’ N E E’ N N N 138.95 

2/18 N’ N’ N N’ G’ N’ N G’ E’ N B E 138.83 

2/19 E’ N’ N B’ N N E’ G N N E B’ N E 137.6 

2/20 E E N’ E’ E’ E N’ G’ E’ N E’ N G’ 137.53 

2/21 N N E’ E N’ N G E’ N’ E’  132.61 

2/22 N E’ G’ E N’ B E’ N’ E N 117.77 

2/23 N’ E’ N’ N G N’ N N G E’ 117.22 

2/24 B’ E N’ N’ E N’ G’ N E’ G N B’ N 113.38 

2/25 N G’ N N N N’ N’ B N’ N 108.35 

2/26 B E’ G’ N G’ N’ E G E’ N’ G’ 99.36 

2/27 N’ N E’ N’ N’ E E B’ E G’ E’  98.83 

2/28 E N’ N’ N N’ N N’ B 97.9 

2/29 B’ N’ G’ G’ E’ N’ E’ N E N’ B N  94.66 

2/30 E N N’ N E N B N’ N’ 94.36 
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2/31 E’ G’ G’ N’ G’ E B N’ E N’ N 90.93 

2/32 N N G’ E E’ N N’ G’ E E 90.49 

2/33 N’ E G N N’ E E’ B’ N’  87.38 

2/34 B E G’ N’ N N G E 82.11 

2/35 N’ N’ G B G’ B’ N N’ N N’ B’ 76.61 

2/36 N’ E N’ G N N B’ E G 75.11 

2/37 G’ N N N’ N E E G’ G’ 70.59 

2/38 G E B N N E’ E’ N’ 70.24 

2/39 N N G E’ B E’ N 63.19 

2/40 G’ N’ N E’ G N’ N’ B G 62.21 

2/41 E B’ E’ E B’ N’ N’ E’ B’ 57.26 

2/42 N’ G N’ N E G B’ B’ 41.65 

2/43 G E’ B’ N G’ N G B’ N 36.61 

2/44 B E E’ E B E’ B’ B E’ N 32.3 
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Appendix B: Synthetic promoter library analysis report 

 

A synthetic promoter library analysis R script (synpro.anal.R) was developed that 

automatically generates a word document analysis report from a CSV file detailing 

promoter activities and sequence compositions. The data provided within the report 

enables rapid identification of optimal design spaces for next generation promoter 

library construction. This appendix shows an example of the full analysis report 

generated from synthetic promoter library 1 data.   

 

Synpro.anal.R can be downloaded at the following site: 

https://sourceforge.net/projects/syntheticpromoteranalysis/files/ 
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Synthetic Promoter Library Analysis Report 

 

This analysis report was automatically generated, by executing the R script synpro.anal.R, from a CSV file detailing 

synthetic promoter activities and TFRE-block composition. The data within this report enables simple, rapid 

identification of an optimal design space for next-generation promoter library construction. Input/ response is 

required where text is underlined and bold.  

 

 

Reporter protein used: 

 

Cell line: 

 

Date: 

 

The analysis first converts the TFRE blocks into letter identifiers (TRREs sorted alphabetically). Within this analysis 

letter identifiers correspond to the following TFREs: 

 

A: 

 
B: 

 
C: 

 
D: 

 
E: 

 
F: 
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Section 1: Key Library Statistics 

 

The first stage of the analysis checks key library statistics and evaluates three basic assumptions. Output 1 provides a 

summary of the dataframe statistics, showing the distribution of each TFRE block across the promoter library. 

 

 
       A               B               C               D               E               F         

 Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000   

 1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:1.000   

 Median :2.000   Median :2.000   Median :2.000   Median :1.000   Median :2.000   Median :2.000   

 Mean   :1.897   Mean   :1.814   Mean   :2.237   Mean   :1.629   Mean   :1.969   Mean   :2.072   

 3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:2.000   3rd Qu.:3.000   3rd Qu.:3.000   

 Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.000   Max.   :7.000   

   Expression     

 Min.   :  0.00   

 1st Qu.:  3.13   

 Median :  8.94   

 Mean   : 17.88   

 3rd Qu.: 28.13   

 Max.   :100.00   

Output 1: Relative abundance at which discrete TFRE blocks occurred per promoter. 

 

 

Assumption 1: The relative abundance of TFRE blocks across the promoter library is as designed = 

TRUE/FALSE 

 

The range of promoter activities across the library is shown in Figure 1. If the range of activities is undesirable then 

the library may need to be re-constructed with different design criteria. 

 

Assumption 2: Promoter activities cover the desired/ expected expression range. = TRUE/FALSE 

 

Figure 2 shows the correlation between total number of sites per promoter and relative transcriptional activity. 

Promoter length is not expected to be a key determinant of promoter activities. If this assumption is false then 

library 2 will need to be tailored accordingly.  

 

Assumption 3: Relative promoter activity is not simply a function of promoter length. = 

TRUE/FALSE 
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Figure 1: Range of promoter activities across the library 

 

 

 

Figure 2: Correlation between total TFRE sites and promoter strength 
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Section 2: Identification of TFREs that are positive, neutral and negative regulators of 
promoter activity. 
 
The second analysis section provides the data required to evaluate the contribution discrete TFREs make to 

promoter activities. Three figures are generated for each TFRE that enables blocks to be designated as positive, 

negative or neutral effectors of promoter strength: 

 

A) The number of the TFRE block in each synthetic promoter is plotted against relative activity of that promoter. The 

linear regression line is shown, where the slope of the line indicates the extent to which the TFRE occurs in 

promoters of varying activity.  

 

B) The mean number of the TFRE block in higher or lower activity promoters (over or under mean promoter activity).  

 

C) The mean number of the TFRE block in promoters within discrete library subsections. Subsection 1-10 contains 

the top 10% of promoters (ranked by activity). 

 

Determination of each TFRE block’s functionality facilitates binary (yes/ no) decisions regarding formation of next-

generation design spaces. Comments regarding each sites regulatory function can be made in Table 1. 

 

TFRE Designation Comments 

A Positive/Negative/Neutral Comments about each site 

B x x 

C x x 

D x x 

E x x 

F x x 

Table 1 Characteristics of each individual site 
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Statistics for site A 

Statistics for site B 
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Statistics for site C  

Statistics for site D 

 

0

25

50

75

100

0 2 4 6

C sites

E
x
p

re
s
s
io

n

A

0

1

2

Overmean Undermean

Subsection of Promoter Library

N
o

. 
o

f 
S

it
e

s

B

0

1

2

3

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Subsection of Promoter Library

N
o

. 
o

f 
S

it
e

s

C

0

25

50

75

100

0 2 4 6

D sites

E
x
p

re
s
s
io

n

A

0.0

0.5

1.0

1.5

2.0

Overmean Undermean

Subsection of Promoter Library

N
o

. 
o

f 
S

it
e

s

B

0

1

2

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Subsection of Promoter Library

N
o

. 
o

f 
S

it
e

s

C



147 

 

Statistics for site E 

Statistics for site F 
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Section 3: Multiple linear regression analysis 

The previous section identified TFREs to be excluded from/ included in second generation library construction. The 
third analysis section provides the data required to manipulate this design space by identifying optimal TFRE block 
stoichiometries that can be employed in next-generation library construction. Every possible multiple linear 
regression model (i.e. each combination of TFRE block variables; e.g. A, A + B, A + B + C, etc.) explaining promoter 
activity is shown in Table 2.  
 

Table 2 Every possible linear regression model explaining promoter activity. 
 A B C D E F Cp 

1 0 0 0 0 1 0 61.4384544023012 

1 0 0 0 1 0 0 78.5724635748259 

1 0 0 1 0 0 0 95.1419454497566 

1 0 1 0 0 0 0 107.141473786276 

1 0 0 0 0 0 1 112.341919802167 

1 1 0 0 0 0 0 114.350229719397 

2 0 0 0 1 1 0 28.2756569589081 

2 0 0 1 0 1 0 50.221521871889 

2 0 1 0 0 1 0 51.8097338126759 

2 0 0 1 1 0 0 55.478137419795 

2 0 0 0 0 1 1 59.5660754377266 

2 1 0 0 0 1 0 62.5587845193788 

2 0 1 0 1 0 0 73.9041066417525 

2 0 0 0 1 0 1 80.4794264130189 

2 1 0 0 1 0 0 80.5677652297131 

2 0 1 1 0 0 0 89.8836699216804 

3 0 0 1 1 1 0 12.2380702117546 

3 0 1 0 1 1 0 19.5213468747679 

3 1 0 0 1 1 0 29.8616073813271 

3 0 0 0 1 1 1 30.2206407123572 

3 0 1 1 0 1 0 40.9277548746367 

3 0 0 1 0 1 1 46.2356466543471 

3 0 1 1 1 0 0 50.9522038289653 

3 0 1 0 0 1 1 51.1155842369699 

3 1 0 1 0 1 0 51.4097393822449 

3 1 1 0 0 1 0 52.3550181535026 

4 0 1 1 1 1 0 3.92181845593615 

4 0 0 1 1 1 1 13.7873763075448 

4 1 0 1 1 1 0 13.9029502237848 

4 1 1 0 1 1 0 20.7028328390454 

4 0 1 0 1 1 1 21.5149585219501 

4 1 0 0 1 1 1 31.7542490162291 

4 0 1 1 0 1 1 38.4363414380822 

4 1 1 1 0 1 0 41.5687626775507 

4 1 0 1 0 1 1 46.7979178478901 

4 1 1 0 0 1 1 51.1591808761318 

5 1 1 1 1 1 0 5.22380260258146 

5 0 1 1 1 1 1 5.79330319039121 

5 1 0 1 1 1 1 15.3267308461078 

5 1 1 0 1 1 1 22.7011585925734 

5 1 1 1 0 1 1 38.4460666837745 

5 1 1 1 1 0 1 54.904821935078 
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In table 2 block inclusion/ exclusion within a model is indicated by a 1 or a 0 respectively. The total number of 

parameters in the model (including the intercept) and the models Cp value are shown in the first and last columns 

respectively. The better the models’ explanation of the data, the closer its Cp value will be to the number of model 

parameters. Figure 3 shows the Cp of each model against its number of parameters, indicating the ability of different 

numbers of paramaters to significantly explain promoter strength. The best fitting model for each possible number 

of parameters is shown in Table 3. The most parsimonious model is then reported with associated key statistics 

(model summary, analysis of variance table, the contribution of each variable to r2) in outputs 2-5 and Figure 4.  

 

 

Figure 3: Model size vs. Cp 

 

 

 A B C D E F  r2 

1 0 0 0 0 1 0 61.4384544023012 0.255650632826516 

2 0 0 0 1 1 0 28.2756569589081 0.425125302372607 

3 0 0 1 1 1 0 12.2380702117546 0.512061333509037 

4 0 1 1 1 1 0 3.92181845593615 0.56178272897213 

5 1 1 1 1 1 0 5.22380260258146 0.565146966595023 

6 1 1 1 1 1 1 7 0.566225631401972 

Table 3 Best model for each number of parameters 

 

 

A     B     C     D     E     F 

FALSE  TRUE  TRUE  TRUE  TRUE FALSE 

Output 2: Sites included in the best model 

  

0

30

60

90

2 3 4 5 6 7

Parameters

C
p



150 

 

 

Call: 

lm(formula = sp2 ~ ., data = bestest2) 

 

Residuals: 

Min      1Q  Median      3Q     Max 

-28.708  -7.958  -1.922   5.880  45.711 

 

Coefficients: 

Estimate Std. Error t value Pr(>|t|) 

(Intercept)  13.3184     3.5032   3.802 0.000258 *** 

B            -3.2190     0.9963  -3.231 0.001713 ** 

C             3.7386     0.8859   4.220 5.72e-05 *** 

D            -5.8172     0.9259  -6.282 1.09e-08 *** 

E             5.8472     0.8301   7.044 3.33e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 13.62 on 92 degrees of freedom 

Multiple R-squared:  0.5618, Adjusted R-squared:  0.5427 

F-statistic: 29.49 on 4 and 92 DF,  p-value: 8.842e-16 

Output 3: Summary of the best model 

 

Analysis of Variance Table 

 

Response: sp2 

Df  Sum Sq Mean Sq F value    Pr(>F) 

B          1  1377.5  1377.5  7.4267  0.007693 ** 

C          1  3614.3  3614.3 19.4862 2.755e-05 *** 

D          1  7682.0  7682.0 41.4168 5.466e-09 *** 

E          1  9202.0  9202.0 49.6118 3.327e-10 *** 

Residuals 92 17064.2   185.5 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Output 4: Best models anova Statistics 
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(Intercept)           B           C           D           E 

13.318357   -3.219040    3.738559   -5.817171    5.847189 

Output 5: Model Coefficients for the best model 

 

 

 

Figure 4: Relative contribution of each TFRE-block parameter to the ‘best’ model’s r
2
 statistic. 

 

These data identify potential design solutions to specifically tailor next-generation library activities by 

indicating optimal TFRE block stoichiometries to increase promoter strengths (i.e. best model 

coefficients). Accordingly, at the conclusion of this analysis stage second generation library 

construction strategies can be implemented by employing design-led TFRE block ratios in ligation 

reactions. 
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Section 4: String analysis 

 

The fourth analysis section provides the data required to evaluate the effects of combinatorial interactions between 

neighbouring blocks within promoters. The functionally of every two and three block TFRE-string is analysed to both 

i) determine how neighbouring sites impact each blocks function and ii) allow characterisation of larger parts that 

could be utilised in future design spaces (i.e. blocks containing two or three discrete TFREs could be included in 

ligation reactions). Strings are evaluated both in the context of each discrete TFRE and as a collection of comparative 

block parts.  

 

First, the relative abundance of 2-block TFRE strings in synthetic promoters of varying activities is analysed. The 

number of promoters within discrete library subsections (subsection 1 contains the top 20% of promoters, ranked 

according to strength) that contain each possible 2-block string is reported. Figures are grouped to show the relative 

differences between every possible 2-block string containing each discrete TFRE. Counts represent either 

orientation, e.g. AB could occur as either ‘A B’ or ‘B A’.  
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Statistics for site A 

 

Statistics for site B 

 

 

 

 

 

0

1

2

3

4

5

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

AA

0

5

10

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

AB

0.0

2.5

5.0

7.5

10.0

12.5

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

AC

0

2

4

6

8

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

AD

0

5

10

15

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t
AE

0

2

4

6

8

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

AF

0

5

10

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

BA

0

1

2

3

4

5

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

BB

0.0

2.5

5.0

7.5

10.0

12.5

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

BC

0.0

2.5

5.0

7.5

10.0

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

BD

0

3

6

9

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

BE

0.0

2.5

5.0

7.5

s1 s2 s3 s4 s5

Subsets

C
o

u
n

t

BF



154 

 

Statistics for site C 

 

Statistics for site D 
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Statistics for site E 

 

Statistics for site F 
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It is now useful to consider which of these two strings are most associated with high expression. Firstly, Figure 6 

shows the percentage of the top 15 promoters which contain each 2string. Figure 7 shows the average library 

position of promoters containing each 2 string. These two figures enable identification of strings significantly 

associated with strong promoters. 

 

 

Figure 7: Percentage of the top 15 promoters in the library that contain each possible 2 string. 

 

 

 

Figure 8: Average library position of promoters containing each possible two string. 
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Next, the relative abundance of 3-block TFRE strings in synthetic promoters of varying activities is analysed. For each 

discrete TFRE a figure is generated detailing the average library position of promoters containing each possible 3-

string where that TFRE is the central block (e.g. A.E and C.B refer to AEE and CEB respectively). Each TFRE figure is 

split into two sections to highlight higher (blue) and lower (red) performing 3-strings respectively.  

 

Statistics for site A 
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Statistics for site B 

 

 

Statistics for site C 
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Statistics for site D 

 

 

Statistics for site E 
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Statistics for site F 

 

 

 

It is now useful to consider which of these three strings are most associated with high expression. Firstly, Figure 7 

shows the top 20 3strings in terms of the average library position of promoters they appear in. Figure 8 is a check for 

any strings that are significantly associated with the very top promoters, showing the percentage of the top 10 

promoters (ranked by activity) that contain each 3string (the top 10 strings are shown). Finally, table 4 shows the 

relative activities of all 3-block TFRE strings. The average library position of promoters containing each possible 3-

string is shown. 

 

The data generated in this section identifies whether discrete TFRE-strings need to be avoided (for example if neutral 

regulators negatively affect neighbouring positive regulators) or employed in next-generation library construction. 

Accordingly, second generation library design spaces are finalised at the conclusion of this final analysis stage.  

 

Assumption 4: Neutral regulators do not negatively affect neighbouring positive regulators. If false 

these sites will be removed from library 2 = TRUE/FALSE 

 

Assumption 5: Discrete combinations of positive (or neutral) regulators are not positively correlated 

with high promoter activity. If false these larger parts can be utilised in the next design space. = 

TRUE/FALSE 
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Figure 7: Top 20 3strings in terms of average library position of promoters that contain each string. 

 

 

 

Figure 8: Top 10 3strings in terms of the percentage of the strongest 10 promoters which contain 

them. 
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 String Ave string Ave string Ave string Ave string Ave string Ave 

1 AAA 73.50000 ABA 49.50000 ACA 55.57143 ADA NA AEA 33.28571 AFA 58.80000 

2 AAB 56.00000 ABB 76.50000 ACB 36.60000 ADB 63.75000 AEB 50.66667 AFB 43.50000 

3 AAC 36.50000 ABC 36.30000 ACC 54.80000 ADC 60.25000 AEC 27.16667 AFC 50.00000 

4 AAD 57.00000 ABD 67.00000 ACD 39.80000 ADD NA AED 49.66667 AFD 77.50000 

5 AAE 14.00000 ABE 51.60000 ACE 20.87500 ADE NA AEE 11.83333 AFE 40.83333 

6 AAF 74.75000 ABF 51.83333 ACF 37.44444 ADF 84.20000 AEF 23.00000 AFF 35.50000 

7 BAA 44.00000 BBA 74.66667 BCA 32.60000 BDA 74.00000 BEA 41.71429 BFA 64.66667 

8 BAB 64.14286 BBB 54.50000 BCB 29.00000 BDB 55.00000 BEB 54.00000 BFB 77.20000 

9 BAC 41.60000 BBC 31.50000 BCC 43.50000 BDC 55.25000 BEC 34.00000 BFC 34.75000 

10 BAD 84.00000 BBD NA BCD 66.37500 BDD 94.00000 BED 47.75000 BFD 78.50000 

11 BAE 33.12500 BBE 59.75000 BCE  7.75000 BDE 55.66667 BEE 17.00000 BFE 50.20000 

12 BAF 62.25000 BBF 59.50000 BCF 21.00000 BDF 62.50000 BEF 43.71429 BFF 52.71429 

13 CAA 64.66667 CBA 50.33333 CCA 61.28571 CDA 49.75000 CEA 20.25000 CFA 44.80000 

14 CAB 49.88889 CBB 32.00000 CCB 33.75000 CDB 70.33333 CEB 12.00000 CFB 36.14286 

15 CAC 40.20000 CBC 34.75000 CCC 44.50000 CDC 71.66667 CEC 14.75000 CFC 35.66667 

16 CAD 77.00000 CBD 47.00000 CCD 38.28571 CDD 51.00000 CED 54.00000 CFD 33.33333 

17 CAE 18.66667 CBE 26.83333 CCE 15.25000 CDE 42.22222 CEE 12.00000 CFE 31.00000 

18 CAF 35.60000 CBF 55.80000 CCF 25.85714 CDF 52.75000 CEF 31.50000 CFF 52.40000 

19 DAA 80.00000 DBA 77.00000 DCA 64.40000 DDA 61.50000 DEA 61.60000 DFA 31.50000 

20 DAB 77.50000 DBB 54.75000 DCB 77.00000 DDB 52.50000 DEB 48.00000 DFB 74.25000 

21 DAC 30.66667 DBC 63.25000 DCC 50.33333 DDC 82.00000 DEC 50.33333 DFC 50.20000 

22 DAD NA DBD 86.33333 DCD 75.83333 DDD 79.25000 DED 94.00000 DFD 62.62500 

23 DAE 28.66667 DBE 34.75000 DCE 44.00000 DDE NA DEE 37.00000 DFE 48.50000 

24 DAF 55.66667 DBF 71.20000 DCF 65.50000 DDF 38.00000 DEF 39.66667 DFF 73.42857 

25 EAA 28.40000 EBA 31.71429 ECA 22.00000 EDA 40.00000 EEA 14.66667 EFA 33.00000 

26 EAB 23.33333 EBB 60.00000 ECB 21.50000 EDB 59.66667 EEB 14.00000 EFB 59.00000 

27 EAC 38.90909 EBC NA ECC 18.11111 EDC 55.83333 EEC 14.75000 EFC 38.42857 

28 EAD 15.00000 EBD 40.00000 ECD 28.00000 EDD 62.33333 EED 62.66667 EFD 57.00000 

29 EAE 30.85714 EBE 32.50000 ECE 40.25000 EDE 52.50000 EEE 14.00000 EFE 15.50000 

30 EAF 83.00000 EBF 52.00000 ECF 39.20000 EDF 57.66667 EEF 24.33333 EFF 23.66667 

31 FAA 72.00000 FBA 57.25000 FCA 49.33333 FDA 40.00000 FEA 19.60000 FFA 43.71429 

32 FAB 59.66667 FBB 56.50000 FCB 56.75000 FDB 63.00000 FEB 43.25000 FFB 53.50000 

33 FAC 23.16667 FBC 33.75000 FCC 40.66667 FDC NA FEC 33.42857 FFC 76.66667 

34 FAD 71.00000 FBD 79.00000 FCD 56.00000 FDD 67.80000 FED 66.62500 FFD 61.75000 

35 FAE 39.80000 FBE 45.60000 FCE 35.00000 FDE 59.50000 FEE 65.33333 FFE 52.80000 

36 FAF 28.50000 FBF 73.00000 FCF 65.25000 FDF 62.77778 FEF 44.66667 FFF 37.80000 

Table 4. Relative activities of each 3-block TFRE string.   
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Section 5: Next generation synthetic promoter library design criteria 

 

Based on the analysis provided, the optimal design space for next-generation promoter library construction can now 

be confirmed. 

 

TFRE Element Name Stochiometric Weighting 

A X X 

B X X 

C X X 

D X X 

E X X 

F X X 

Table 5. Next-generation library construction criteria  
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Appendix C: Published article 1 – Brown et al. 2014 
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Appendix D: Published article 2 – Brown et al. 2013 
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