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Abstract 

With the increasing demand for environmentally friendly hydraulic fluids in the oil and 

gas sector, recent advances in hydraulic technology have sparked renewed interest in the 

application of water instead of oil. For industry, using seawater as a hydraulic fluid 

would bring many benefits as it can be discharged to the sea. The main corrosion 

challenges associated with the use of seawater are addressed in this study, particularly 

on how to extend the material life when corrosion attack is likely to be very severe. On 

the other hand, the material‘s degradation which is common in subsea applications is 

studied in detail which includes how corrosion mechanisms occur. The materials chosen 

in this research are those which are used extensively in subsea applications especially in 

Directional Control Valves (DCV) and piping operating with hydraulic fluids namely: 

(1) carbon steel, (2) stainless steel, and (3) cermet alloys (WC-Ni and WC-Co). 

As an active material, carbon steelcorrodes in a general way whereas passive materials 

such as stainless steel are more prone to localised corrosion which is often more 

catastrophic and difficult to predict and detect. However, cermets alloys (WC-Ni and 

WC-Co) which consist of metals and ceramics may exhibit both active and passive 

trends. Electrochemistry methods which are used in this study provide quantitative data 

which demonstrates different major corrosion parameters. Generally, temperature, 

oxygen, anions and pH are the main parameters that affect corrosion attack. In this 

research the effects of temperature, sulphate to chloride ratio and oxygen were studied 

on corrosion performance of DCV materials and compared the performance in seawater 

with a typical commercial hydraulic fluidHW443. From the analysis, it shows that 

temperature has a severe impact on corrosion rate, but alteration of sulphate to chloride 

ratio could decrease the corrosion rate close to HW443. Therefore, it is clear that by 

changing the sulphate/chloride ratio in seawater and adding green corrosion inhibitor 

similar performance to that compared to the use of commercial hydraulicfluids yet 

reduce the environmental harm on discharge could be attained. The thesis also presents 

information ofgeneric interest in corrosion of carbon steel and other materials of interest 

in subsea environments. Corrosion trends of carbon steel, stainless steel and WC-

cermets and their prevalent corrosion mechanisms (from electrochemical analysis) are 

discussed. 



  

   

 

 

- iv - 

Contents 

 

ACKNOWLEDGEMENTS ii 

ABSTRACT iii 

CONTENTS iv 

LIST OF FIGURES ix 

LIST OF TABLES xv 

NOMENCLATURE xvii 

  

Chapter 1 1 

INTRODUCTION  

1.1 Economic Impact of Corrosion 1 

1.2 The Industrial ProblemChallenge 5 

1.3 Background of This Study 8 

1.4 Objectives 10 

1.5 Thesis Outline 11 

  

Chapter 2 13 

REVIEW OF RELEVANT THEORY  

2.1 Basic Aqueous Corrosion 13 

2.2 SolutionCharacteristics 13 

 2.2.1 Conductivity 13 

 2.2.2 Acidity of alkalinity of a solution 14 

 2.2.3 Oxidizing solution 15 

2.3 Corrosion Mechanisms 15 

 2.3.1 Anodic reaction 17 

 2.3.2 Cathodic reaction 17 

 2.3.3 Cell potential and exchange current density 18 

2.4 Determination of Corrosion Rates by Electrochemical 

Measurements 
19 

2.5 Corrosion Thermodynamics 20 

 2.5.1 Free energy 20 



  

   

 

 

- v - 

2.6 Electrochemical Kinetics of Corrosion 22 

 2.6.1The three electrode cell 22 

 2.6.2 Activation polarisation 24 

 2.6.3 Concentration polarisation 26 

 2.6.4 Resistance polarisation 28 

2.7 Forms of Corrosion 29 

 2.7.1 General corrosion 29 

 2.7.2 Pitting corrosion 30 

2.8 Crevice Corrosion 33 

2.9 Prevention of Corrosion Damage 35 

2.10 Corrosion Parameters 36 

 2.10.1 Chlorides 36 

 2.10.2 Temperature 37 

  2.10.2.1 Arrhenius equation 37 

 2.10.3 Oxygen 38 

2.11 Determination of Corrosion Rates in  the Laboratory 39 

 2.11.1 Linear polarization resistance (LPR) 39 

 2.11.2 Potentiodynamic polarisation 41 

   

Chapter 3 45 

LITERATURE REVIEW  

3.1 Introduction 45 

3.2 Seawater 45 

 3.2.1 Freezing point of seawater, Tf and chemical additions 46 

 3.2.2 Role of anions on corrosion attack 47 

 3.2.3 Saturation 51 

3.3 Seawater as a Corrosive Medium 51 

3.4 Hydraulic Fluids 52 

 3.4.1 History of hydraulic fluids 52 

 3.4.2 Types of hydraulic fluid 53 

 3.4.3 Purposes of hydraulic fluids 54 

 3.4.4 Hydraulic fluid criteria 55 

 3.4.5 Corrosion in hydraulic fluid 55 

3.5 Impact of Oil and Gas Activities on The Environment 56 

 3.5.1 Oil and gas Exploration and Production (E&P) wastes 56 



  

   

 

 

- vi - 

 
3.5.2 Evaluation of the hazard and risk of chemicals used by 

the UK offshore oil and gas industry 

 

57 

3.6 Inhibitors 57 

 3.6.1 Green Inhibitors 62 

 3.6.2 Norwegian Legislation 64 

 3.6.3 UK Legislation 65 

 3.6.4 Environmental test methods 65 

3.7 Oceanic HW Fluids 66 

3.8 Carbon Steels 66 

 3.8.1 Composition of carbon steel 67 

 3.8.2 Corrosion of carbon steel in seawater 67 

3.9 Stainless Steels 69 

 3.9.1 Stainless steel 316L 69 

 3.9.2 The 25Cr Duplex stainless steel 70 

 3.9.3 The passive film 71 

3.10 Nickel Alloys 72 

 3.10.1 Corrosion of Inconel 625 73 

 3.10.2 The passive film of nickel alloys 74 

3.11 Cermets Alloys 75 

 3.11.1 Tungsten carbide cermets 75 

 3.11.2 Structure and microstructure 76 

 3.11.3 Corrosion of cemented tungsten carbides 77 

3.12 Materials Selection for Offshore 79 

3.13 Summarising the Literature Review 81 

   

Chapter 4 82 

MATERIALS AND EXPERIMENTAL PROCEDURES  

4.1 Materials Under Study 82 

4.2 Solution Analysis 83 

4.3 Electrochemical Tests 87 

4.4 Experimental Procedure 89 

 4.4.1 Anodic and cathodic polarization curves 90 

4.5 Surface Analysis 92 

 4.5.1 Light microscopy 92 

 4.5.2 ESEM and EDAX 93 



  

   

 

 

- vii - 

Chapter 5 94 

SETTING THE SCENE FOR CARBON STEELS  

5.1 Introduction 94 

5.2 Determination of the Corrosion Rate 95 

5.3 Benchmarking 97 

5.4 Corrosion Rate in 3.5% NaCl and Other Solutions 98 

5.5 Immersion Tests 99 

5.6 Carbon Steels in Different Sulphate to Chloride Ratios 99 

5.7 The Critical Chloride Concentration 102 

5.8 Critical Oxygen 105 

5.9 Carbon Steel with Inhibitor 107 

5.10 Summary 113 

   

Chapter 6 115 

PASSIVE MATERIALS  

6.1 Introduction 115 

6.2 Bench Marking – Materials in HW443 116 

6.3 Materials in 3.5% NaCl at Different Temperatures 119 

6.4 Materials in Seawater 122 

6.5 Materials in Different Sulphate-Chloride Ratio 126 

6.6 Materials with Inhibitor 136 

6.7 Materials in a ReducedOxygen Environment 137 

6.8 Summary 151 

  

Chapter 7 154 

CERMETS ALLOYS  

7.1 Introduction 154 

7.2 Cermet Alloys in HW443 156 

7.3 WC-Co in Seawater and Different SO4
2-

/Cl
-
Ratios 158 

7.4 WC-Ni in Seawater and Different SO4
2-

/Cl
-
Ratios 

7.5 Summary 

162 

166 

 

 

 

 



  

   

 

 

- viii - 

Chapter 8 168 

DISCUSSION  

8.1 Introduction 168 

8.2 The Demand for Green Hydrauic Fluid 169 

8.3 The Corrosion Mechanism on Carbon Steel 170 

 8.3.1 Protective film on passive alloys 175 

8.4 The Role of Metastable Pitting. 176 

8.5 Pitting Corrosion on Passive Alloys 179 

8.6 Passivation 180 

8.7 Role of Anion on Corrosion Attack 182 

8.8 Passive Potential Range 186 

8.9 Effect of Temperature on Pitting Corrosion 189 

8.10 Effect of Oxygen on Corrosion Attack 190 

8.11 The Role of Inhibitor to Corrosion Protection 191 

8.12 25Cr Duplex Stainless Steel 192 

8.13 CermetsAlloy 192 

 8.13.1 Introduction 192 

8.14 Pseudo-passivation 194 

8.15 Active Corrosion of Cermet Alloys 195 

8.16 Effect of Binder 195 

8.17 The Effect of pH to Corrosion Attack 197 

  

Chapter 9 202 

CONCLUSIONS AND FUTURE WORK  

9.1 Conclusions 202 

9.2 Suggestions for future work 203 

  

References 204 

  

 

 

 

 

 

 



  

   

 

 

- ix - 

List of Figures 

 

Figure 1.1 Diagram showing a typical subsea manifold and subsea field 

equipment arrangement 
2 

  

Figure 1.2 Nine slot template being lifted from a work boat and being deployed 

from a drilling rig 
3 

  

Figure 1.3Hydraulic fracturing in a vertical well 4 

  

Figure 1.4 Typical oil and gas production flow diagram 6 

  

Figure 1.5 The pressure difference between water-base hydraulic fluid and 

hydraulic fluid oil in increasing seawater depth 
7 

  

Figure 1.6 The oil hydraulic fluid increase in viscosity as the pressure increases 7 

  

Figure 1.7  Directional Control Valve 10 

  

Figure 1.8 A schematic diagram of the Directional Control Valve (DCV) 10 

  

Figure 2.1 Oxygen solubility in seawater 15 

  

Figure 2.2 Corrosion mechanism of iron 16 

  

Figure 2.3 Mechanical analogy of free-energy change 21 

  

Figure 2.4 Reaction potential energy profile 22 

  

Figure 2.5 The schematic of three-electrode test cell  23 

  

Figure 2.6 Combined diagram of an anodic and cathodic reaction with 

activation polarisation 
25 

  

Figure 2.7 Schematic diagrams of the three forms of activation polarization 26 

  

Figure 2.8 Onset of concentration polarization at more reducing potentials for a 

cathodic reduction reaction 
27 

  

Figure 2.9 Effect of resistance polarization on the current in a corrosion cell 28 

  

Figure 2.10 Uniform corrosion attack 30 

  

Figure 2.11 Pitting corrosion mechanisms 31 

  

Figure 2.12 Variation in cross sectional shape of pits 32 

  

Figure 2.13 Pitting corrosion of stainless steel 316L in seawater 33 

  

Figure 2.14 A schematic of the crevice corrosion propagation mechanism 

 

34 

 

Figure 2.15 Stages of crevice corrosion 35 



  

   

 

 

- x - 

  

Figure 2.16 LPR measurement from Tafel plot 41 

  

Figure 2.17 A cathodic and anodic polarization plots cyclic potentiodynamic 

analysis 
43 

  

Figure 2.18 A cyclic polarization curve of negative and positive hystheresis 44 

  

Figure 3.1 Composition of seawater 46 

  

Figure 3.2 Variation of the logarithm of pitting corrosion current density with 

time for steel electrode immersed in solutions of 1 X 10
-3

 M Ca(OH)2 

containing increasing concentrations of NaCl at 25ºC 

48 

  

Figure 3.3 Dependence of Epittingof carbon steel on the Cl
-
 ions concentration 49 

  

Figure 3.4 Effects of Na2SO4 concentration on the anodic behaviour of carbon 

steel in dearated 0.5 M NaHCO3solutions at scan rate of 25 mV/s 
50 

  

Figure 3.5 Past applications of water and oil hydraulics 53 

  

Figure 3.6 Types of hydraulic fluid 54 

  

Figure 3.7 Adsorption type inhibitor 58 

  

Figure 3.8 Polarisation diagram of an active-passive metal showing the 

dependence of the current on concentration of passivation-type inhibitor 
59 

  

Figure 3.9 Schematic representation of the benzimidazole molecule 60 

  

Figure 3.10 Schematic of double layer in a liquid 61 

  

Figure 3.11 Structure of inhibitor molecules 63 

  

Figure 3.12 Norwegian Legislation 64 

  

Figure 3.13 Pits with lace-like cover over the top and flat-walled opening 69 

  

Figure 3.14 WC-Co microstructure (white is WC and black is Co) 76 

  

Figure 3.15 Hexagonal structure of á-WC 77 

  

Figure 3.16 Cermets and cemented carbides are formed of a main ceramic 

phase bond by a metal binder. Both metal and ceramic phase form continuous 

interpenetrated skeletons  

77 

  

Figure 4.1 Experimental set up for static corrosion test 88 

  

Figure 4.2 Cyclic polarization curve 89 

  

Figure 4.3 Tafel polarization for carbon steels 90 

  



  

   

 

 

- xi - 

Figure 4.4 Schematic anodic and cathodic polarisation curve 91 

  

Figure 4.5 Light microscope 92 

  

Figure 4.6 Philips XL30 ESEM 93 

  

Figure 5.1 Corrosion rate of AISI 1040 in different ‗seawaters‘ (electrolytes) at 

20ºC 
95 

  

Figure 5.2 Linear polarisation for carbon steel 96 

  

Figure 5.3 Comparison of AISI 1040 on corrosion rate in HW443 hydraulic 

fluid   and distilled water 
97 

  

Figure 5.4 Corrosion rate of (a) AISI 1040 in 3.5% NaCl as a function of 

temperature and (b) comparison AISI 8620, AISI  1040 and AISI 4140 in 3.5% 

NaCl as a function of temperature 

98 

  

Figure 5.5 Carbon steel in immersion test at 20ºC  99 

  

Figure 5.6 AISI 1040 in HW443 and solution 1 for all temperatures 100 

  

Figure 5.7 AISI 1040 in 3.5% NaCl and different sulphate to chloride ratios 102 

  

Figure 5.8 Carbon steel in increasing chloride concentration 103 

  

Figure 5.9 To determine the critical chloride concentration in 3.5% NaCl at 

20ºC 
105 

  

Figure 5.10 The corrosion rates of AISI 1040 (a) as a function of oxygen 

concentration at 4°C, 20°C and 50°C (b) eliminating 50°C data and the critical 

oxygen concentration was identified  

106 

  

Figure 5.11 Comparison of corrosion rate of AISI 1040 in solution 1 with  

CRW 85155 inhibitor added and hydraulic fluid HW443 at 20ºC 
107 

  

Figure 5.12 The corrosion rate of AISI 1040 (a) at different temperatures with 

increasing concentrations of CRW 85155 (b) The ―acceptable‖ corrosion rate 108 

  

Figure 5.13 Percentage protection efficiency of CRW 85155 on AISI 1040 at 

different temperatures.  
110 

 

Figure 5.14 Effect of corrosion rate to chemisorption of inhibitor 

 

111 

Figure 5.15 Carbon steel in CRW 89000 inhibitor 111 

  

Figure 5.16 Corrosion rate for carbon steel in HW443, CRW 85155 and          

CRW 89000 at 20ºC 
112 

  

Figure 5.17 Corrosion rate for carbon steel in S1 added with 50ppm, 100ppm, 

200ppm and 400ppm CRW 89000, solution 1, 3.5% NaCl and HW443 
113 

  



  

   

 

 

- xii - 

Figure 6.1 Schematic of anodic polarisation curve for passive materials at 20ºC 116 

  

Figure 6.2 Anodic polarisation curve of 316L in HW443 at 20ºC (a) E-log i 

plot (b) E-I plot 
117 

  

Figure 6.3 Anodic polarisation curve of 316L, 25Cr duplex and Inconel 625 in 

HW443 at 20ºC (a) E-log i plot (b) E-I plot 
119 

  

Figure 6.4 The anodic polarisation of 316L as a function of temperature in                

3.5% NaCl 
120 

  

Figure 6.5 Anodic polarisation of materials in 3.5% at 20ºC 121 

  

Figure 6.6 Stainless steel 316L in solution 1(SO4
2-

/Cl
-
=0.14)  at different 

temperatures 
123 

  

Figure 6.7 25Cr duplex in solution 1(SO4
2-

/Cl
-
=0.14)  at different temperatures 123 

  

Figure 6.8 Inconel 625 in solution 1 (SO4
2-

/Cl
-
=0.14) (a) at different 

temperatures (b) having metastable pitting at 80°C 
124 

  

Figure 6.9 The breakdown potential in S1 as a function of temperature with 

compared to Eb in HW443 
125 

  

Figure 6.10 Stainless steel 316L in S2 (SO4
2-

/Cl
-
=19.15) at  different 

temperatures. 
127 

  

Figure 6.11 Stainless steel 316L in S3 (SO4
2-

/Cl
-
=0.75) at different 

temperatures 
128 

  

Figure 6.12 Stainless steel 316L in S4 (SO4
2-

/Cl
-
=0.99) at different 

temperatures 
128 

  

Figure 6.13 25Cr duplex in S2 (SO4
2-

/Cl
-
=19.15) at different temperatures 129 

  

Figure 6.14 25Cr duplex in S3 (SO4
2-

/Cl
-
=0.75) at different temperatures 129 

  

Figure 6.15 25Cr duplex in S4 (SO4
2-

/Cl
-
=0.99) at different temperatures 130 

  

Figure 6.16 Inconel 625 in S2(SO4
2-

/Cl
-
=19.15)  at different temperature 130 

  

Figure 6.17 Inconel 625 in S3 (SO4
2-

/Cl
-
=0.75) at different temperatures 131 

  

Figure 6.18 Inconel 625 in S4 (SO4
2-

/Cl
-
=0.99) at different temperatures 133 

  

Figure 6.19 The breakdown potential in S2 as a function of temperature 133 

  

Figure 6.20 The breakdown potential in S3 as a function of temperature 134 

  

Figure 6.21 The breakdown potential in S4 as a function of temperature 134 

  

Figure 6.22 The breakdown potential value of every material in different SO4
2-

134 



  

   

 

 

- xiii - 

/Cl
-
 solutions as compared to HW443 at 20ºC 

 

Figure 6.23 Microscopic image shows pitting of (a) 316L in solution 3 at 80ºC, 

(b) 316L in solution 2 at 50ºC and (c)  316L in solution 2 at 80ºC 
135 

  

Figure 6.24 Microscopic image shows pitting (a) 25Cr duplex in solution 3 at 

80ºC, (b) 316L in solution 2 at 80ºC, (c) 25Cr duplex in solution 1 at 20ºC, (d) 

25Cr duplex in solution 1 at 50ºC, (e) Inconel 625 in solution 3 at 80ºC (f) 

316L solution 3 at 20ºC  (g) Inconel 625 in solution 4 at 4ºC (h) Inconel 625 in 

solution 3 at 4ºC 

 

136 

  

Figure 6.25 Ebof materials in S1 with and without CRW 89000 (100ppm) at 

20ºC 
137 

  

Figure 6.26 316L in S1 with and without oxygen at 4ºC 138 

  

Figure 6.27 316L in S1 with and without oxygen at 20ºC 138 

  

Figure 6.28 316L in S2 with and without oxygen at 4ºC 139 

  

Figure 6.29 316L in S2 with and without oxygen at 20ºC 139 

  

Figure 6.30 316L in S3 with and without oxygen at 4ºC 140 

  

Figure 6.31 316L in S3 with and without oxygen at 20ºC 140 

  

Figure 6.32 316L in S4 with and without oxygen at 4ºC 141 

  

Figure 6.33 316L in S4 with and without oxygen at 20ºC 141 

  

Figure 6. 3425Cr duplex in S1 with and without oxygen at 4ºC 142 

  

Figure 6. 3525Cr duplex in S1 with and without oxygen at 20ºC 142 

  

Figure 6. 3625Cr duplex in S2 with and without oxygen at 4ºC 143 

  

Figure 6. 3725Cr duplex in S2 with and without oxygen at 20ºC 143 

  

Figure 6. 3825Cr duplex in S3 with and without oxygen at 4ºC 144 

  

Figure 6. 3925Cr duplex in S3 with and without oxygen at 20ºC 144 

  

Figure 6. 4025Cr duplex in S4 with and without oxygen at 4ºC 145 

  

Figure 6. 4125Cr duplex in S4 with and without oxygen at 20ºC 145 

  

Figure 6. 42Inconel 625 in S1 with and without oxygen at 4ºC 146 

  

Figure 6. 43Inconel 625 in S1 with and without oxygen at 20ºC 147 

  

Figure 6. 44Inconel 625 in S2 with and without oxygen at 4ºC 147 



  

   

 

 

- xiv - 

  

Figure 6. 45Inconel 625 in S2 with and without oxygen at 20ºC 148 

  

Figure 6. 46Inconel 625 in S3 with and without oxygen at 4ºC 148 

  

Figure 6. 47Inconel 625 in S3 with and without oxygen at 20ºC 149 

  

Figure 6. 48Inconel 625 in S4 with and without oxygen at 4ºC 149 

  

Figure 6. 49Inconel 625 in S4 with and without oxygen at 20ºC 150 

  

Figure 6.50 Comparison of breakdown potential for passive alloys in every                   

solution at  4 ºC 
150 

  

Figure 6.51 Comparison of breakdown potential for passive alloys in every                   

solution at  20 ºC  
151 

  

Figure 6.52 Comparison of materials in different media as compared to 

HW443 
153 

  

Figure 7.1 SEM/EDX analysis of received cobalt tungsten carbide sample 155 

  

Figure 7.2 SEM/EDX analysis of received nickel tungsten carbide sample 155 

  

Figure 7.3 Potential versus current density for WC-Co and WC-Ni in                          

HW443 at 20ºC 
157 

  

Figure 7.4 Anodic polarisation of WC-Co  in S1 at different temperatures 158 

  

Figure 7.5 Reverse potential of WC-Co as a function of temperature in every 

solution 
161 

  

Figure 7.6 Corrosion rate, CR (mpy) of WC-Co in different sulphate/chloride 

ratios as a function of temperature 
161 

  

Figure 7.7 WC-Ni  in solution 1 at 4ºC 162 

  

Figure 7.8 Reverse potential of WC-Ni as a function of temperature in every 

solution 
165 

  

Figure 7.9 Corrosion rate of WC-Ni in all solutions at increasing temperature 165 

  

 

Figure 7.10 Cermets alloy under microscopic observation (a) WC-Ni in 

solution 4 at 4ºC, (b)  WC-Ni in solution 4 at 50ºC, (c) WC-Ni in solution 2 at 

50ºC and (d) WC-Co in solution 1 at 80ºC 

 

167 

  

Figure 8.1 Arrhenius relations in 3.5% NaCl 171 

  

Figure 8.2 Schematic of the activation energy peaks for nucleation  171 

 

Figure 8.3 Microscopy view of AISI 1040 in 3.5% after corrosion attack at 
    172 



  

   

 

 

- xv - 

20ºC 

 

Figure 8.3Oxygen concentration profiles through seawater and corrosion 

product (rust) layer 
177 

  

Figure 8.4Oxygen concentration profiles through seawater and corrosion product 

(rust) layer 

 

Figure 8.5Current (oxygen) transfer through water and rust layer 

175 

 

176 

  

Figure 8.6Changes of number of metastable pits with time on different paper 

finished surfaces 
177 

  

Figure 8.7Schematic model of metastable pits 179 

  

Figure 8.8Schematic drawing showing an adsorption of two kinds of anions at 

different concentration 
186 

 

Figure 8.9 Passive range for 316L, 25Cr duplex and Incoenl 625 in all 

solutions as a function of temperature 187 

  

Figure 8.10The difference in passive range from 4°C to 80°C for passive alloys 

in different sulphate-chloride ratio solutions 188 

  

Figure 8.11 Schematic presentation of the reactions taking place on the WC-Co 

surface 
194 

  

Figure 8.12 WC-Ni in S1 at 20ºC 196 

  

Figure 8.13 Current density appear as independent applied potential 197 

  

Figure 8.14 Corrosion rate for cermets alloy in different sulphate/chloride  

ratio at increasing temperature. (a: Solution 1(SO4
2-

/Cl
-
=0.14 g/L), b: Solution 

2(SO4
2-

/Cl
-
=19.15 g/L), c: Solution 3(SO4

2-
/Cl

-
=0.75g/L) and d: Solution 

3(SO4
2-

/Cl
-
=0.99)) 

201 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

   

 

 

- xvi - 

List of Tables 

 

 

Table 2.1 Standard oxidation-reduction potentials, 25
o
C, Volts (V) versus normal 

hydrogen electrode 
19 

  

Table 3.1 Composition of seawater and pure water properties. 52 

  

Table 3.2 Toxicity classification parameters for the HOCNF Scheme 66 

  

Table 3.3 Material selection for retarding corrosion 80 

  

Table 4.1 Carbon steel composition of samples (wt%) 82 

  

Table 4.2 Alloy composition of samples (wt%) 83 

  

Table 4.3 Mechanical properties of materials 83 

  

Table 4.4 Standard seawater composition 84 

  

Table 4.5 The six major elements in seawater being used 85 

  

Table 4.6 Ionic contents of the solutions used 86 

  

Table 4.7 Composition of solutions 87 

  

Table 5.1 Sulphate and chloride for all solutions 101 

  

Table 5.2Corrosion rates and % Protection efficiency of AISI 1040 109 

  

Table 6.1 Electrochemical data of materials in HW443 at 20ºC 119 

  

Table 6.2 Elecrochemical data of 316L in 3.5% NaCl 121 

  

Table 6.3 Electrochemical data of materials in 3.5% NaCl at 20ºC 122 

  

Table 6.4 The performance of breakdown potential, Eb for passive alloys in 

different composition of sulphate/chloride ratio at increasing temperature 
152 

  

Table 6.5 The rank of performance for passive alloys in different 

sulphate/chloride ratio (1-5 is Best to Worst) 
152 

  

Table 7.1 Element value 157 

  

Table 7.2 Electrochemical parameters of materials in HW443 at 20ºC 158 

  

 

 

 

 

 

 



  

   

 

 

- xvii - 

Table 7.3 Electrochemical parameter for WC-Co in all solutions 160 

  

Table 7.4 Electrochemical parameter for WC-Ni in all solutions 164 

  

Table 7.5 Ranking of cermets alloy in different solutions 166 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

   

 

 

- xviii - 

Nomenclature 

G Energy (J) 

ΔG Free energy (J) 

G
#
 Activation-energy barrier (J) 

M Metal 

G Activation-energy barrier (J) 

 M Metal 

 M
n+

 Metal charged ions 

ne
-
 Transferred electrons 

E Actual potential in volts which is measured against a reference electrode 

 E0 Equilibrium electrode potential (V) 

 0

0E  Standard metal equilibrium electrode potential at 25ºC 

R Ideal gas constant 1.986 calories/mole º K (8.3143J/mol
.
K), 

 T Temperature (º K) 

 n Number of electrons in the anodic half reaction 

 F Faraday‘s constant of 96,494 Coulombs/mole 

 a Chemical activity of the species involved in the reaction 

 aproduct The activities of product species 

areactant The activities of reactant species 

 roxid   The equilibrium oxidation rate 

rred The equilibrium reduction rate 

 I Current (A) 

 i Current density (A/cm
2
) 

η Overpotential (V) 

  Tafel constant (mV/decade) 

 a 
Tafel constants for the anodic reaction (mV/decade) 

 c 
Tafel constants for the cathodic reactions (mV/decade) 

 D Diffusion coefficient 

CB 
The concentration of the reacting molecules or ions 

x Thickness of the diffusion layer 

Ecorr Free corrosion potential (V) 

 E0,anod Equilibrium electrode potential for the anodic reaction (V) 

 E0,cath Equilibrium electrode potential for the cathodic reaction (V) 
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EH Hydrogen evolution potential (V) 

Erep Potential of repassivation (V) 

 i anod0,   
The exchange current density for the anodic reaction (A/cm

2
) 

 i0,cath The exchange current density for the cathodic reaction (A/cm
2
) 

 icorr Corrosion current density (A/cm
2
) 

 iL Limiting currentdensity (A/cm
2
) 

 irev Reversed current density (A/cm
2
) 

 imax Maximum current density (A/cm
2
) 

 is Stabilised current density (A/cm
2
) 

 ia Amplitude of current density (A/cm
2
) 

 Cdl Capacitor (V) 

 Rp Resistance polarisation (Ω) 

 Rs Resistance of the bulk solution  

 HV 
Vickers hardness value 

PRE(n) Pitting Resistance Equivalent number 

 Rr Reaction rate  

 CPT Critical Pitting Temperature 

SE Secondary Electron 

 BSE Back Scattered Electron 

 Ag/AgCl Silver/Silver chloride  

 ρ Particle density (g/cm
3
) 

t Time (sec) 

Eb 
Breakdown potential (mV) 

 σ Standard deviation 

 Q Total charge transfer (Couloms/cm
2
) 
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Chapter 1  

INTRODUCTION 

1.1 Economic Impact of Corrosion 

Corrosion is a complex electrochemical process involving the interaction between 

metallic materials and their environment, which produces corrosion products and leads 

to the degradation of the materials [1]. Various factors affect the corrosion process, such 

as the type of material, design, water vapour, anions in the environment, such as 

sulphate, chloride and carbonate. Although it is often impossible to completely stop 

corrosion in metals, it can be controlled. 

Downhole tubing, surface pipelines, pressure vessels and storage tanks in oil and 

gas production are subjected to internal corrosion by water, which is enhanced by the 

presence of carbon dioxide (CO2) and hydrogen sulphide (H2S) in the gas phase. The 

major cost item is for internal corrosion control. The total annual cost of corrosion in 

the oil and gas production in the US industry is almost $300 billion [2], which includes 

the additional costs for new constructions, maintenance costs for aging or corroding 

equipment, the cost of inspections and structural integrity evaluations as well as the 

costs associated with corrosion-related failures and outages. This analysis shows that 

the "cost of corrosion" is a major economic consequence to society, which is reflected 

in the increased losses that it causes to various industrial sectors of the economy. The 

engineers responsible for specifying materials are continually searching for ways to 

reduce costs and increase performance in industry without sacrificing reliability. 

Generally, the successful and economical exploration and exploitation is heavily 

dependent on material performance and the need for protection against the corrosion of 

equipment. Most importantly, the principles of corrosion must be understood in order to 

effectively select materials and to design, fabricate and utilize metal structures for the 

optimum economic life of facilities and safety in operation.  

The oil and gas industry comprises two parts: upstream (the exploration and 

production sector of the industry) and downstream (the sector which deals with refining 

and processing of crude oil and gas products, their distribution and marketing. Subsea 
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production systems comprise a wellhead, valve tree (Xmas tree) equipment, pipelines, 

structures and a piping system. A number of wellheads have to be controlled from a 

single location. The operations from a subsea control system are part of the subsea 

productionsystem performance whereas the reliability of the control system is a critical 

factor in ensuring safe operation.The control system governs the operation of the valves 

and chokes onsubsea completion, templates, manifolds and pipelines (Figure 1.1 and 

1.2). In addition to satisfactory operational function, the design of a control system must 

also provide the means for a safe shutdown on failure of the equipment or on the loss of 

hydraulic or electricalcontrol from the surface (a platform or floating facility) and other 

safety features that automatically prevent dangerous occurrences. Other than design, 

material degradation of the valve is another factor that causes the failure of the 

equipment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Diagram showing a typical subsea manifold and subsea field 

equipment arrangement [3]. 
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Figure 1.2 Nine slot template being lifted from a work boat (left) and being 

deployed from a drilling rig (right)[4]. 

 

Materials degrade due to corrosion caused by the aggressiveness of seawater. 

However, technological advances on many fronts are increasing the productivity and 

efficiency of oil and gas production. Research shows that by using certain chemicals 

(inhibitors), corrosion can be controlled on conventional carbon steels. With the 

concern over environmental issues, the main topic concerning the usage of chemical is 

how they are discharged into the sea. 

Extracting oil and gas from shale sometimes requires horizontal drilling and 

hydraulic fracturing. Hydraulic fracturingis a process involves using water, sand and a 

small amount of chemicals to fracture the hydrocarbon-bearing rock formation to allow 

flow of hydrocarbons into the wellbore of oil and natural gas locked inside dense, 

impermeable shale. A multiple barrier comprised of layers of protective steel casing and 

cement around the casing are installed in the wells to ensure that neither the fluid that 

will eventually be pumped through the well nor the oil or gas that will eventually be 

collected enter the water supply as shown in Figure 1.3. After that, at sufficient 

pressure, high volumes of fracturing fluids are pumped deep into the well to create or 

restore the small fractures in the reservoir rock.According to industry estimates, 
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hydraulic fracturinghas been applied to more than 1 million wells nationwide, and often 

multiple times per well [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Hydraulic fracturing in a vertical well [6]. 

Apart of that, some types ofhydraulic fluids also use to flush through umbilical to 

remove any seawater that may be caught between the umbilical connectors and their 

manifold docking points during installations. These flush fluids will be discharged to 

the sea by operating the hydraulic circuitry to flush each relevant part. The discharge 

volume has to be small (typically <10 litres) and the fluid should be low toxicity. 

Currently, they are using Oceanic HW443 hydraulic fluid which has a very low toxicity 

[7]. 

The subsea control module which is located at each well tree in subsea field 

equipment will hydraulically operate the tree valves. This operation will cause small 

loss of hydraulic fluid from the valve to the sea and therefore needs intermittently the 

hydraulic fluids to be topped up. This can be done by supplying the hydraulic fluid 

through an umbilical from the host platform. From this activity it was estimated that 

approximately 2,500 litres per annum of hydraulic fluids were discharged directly to the 
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sea. For that reason, hydraulic fluids should be low toxicity and water-based hydraulic 

fluid are the best choice to replace oil-based hydraulic fluids [7]. 

Generally, the progress of the oil and gas business stems from practices and values 

that respond to the nation‘s ongoing commitment to a clean environment. The report by 

the National Energy Policy Development Group, in the US stated that energy 

companies are focusing on ‗the three pillars‘ of sustainable development – economic, 

environment and social considerations[8]. With the growing number of companies, the 

annually reported progress is based on these three pillars. In reflecting on this matter, 

the oil and natural gas industry makes major investments in environmental protection, 

both in complying with regulations, implementation, learning and safety. The results 

have reduced the environmental problem every year. Other efforts targeting 

environmental issues concern protecting surface and groundwater, and preserving plant 

and animal life.    

It can be concluded that applying new technologies at every stage of oil and gas 

production will simultaneously increase productivity. In addition, manufacturers keep 

identifying solutions that balance the benefits of production with the ongoing drive for 

environmental protection. Where companies once focused solely on complying with 

regulations, many now view environmental performance more broadly as a core 

business value. This research is part of finding an alternative or environment choice for 

discharging the waste from oil and gas production to the environment. It would be 

easier if seawater is treated with inhibitors or deionised in some way that could be used 

as a hydraulic fluid; however, this presents many challenges associated with the 

corrosion of the materials of construction, the environment and the material‘s lifetime. 

1.2 The Industrial Problem Challenge 

It is proven that pitting corrosion can be avoided by using oil-based hydraulic 

fluids [9]. However, oil and gas operations insist that oil needs to be cleaned before 

being discharged into the sea. Such cleaning under marine conditions is complicated 

and the oil-water mixtures are needed to be transported along the pipelines to onshore 

separation units. This task could be minimised by using seawater as a hydraulic fluid. In 

addition to the potential cost benefits, seawater could also be easily discharged into the 

sea. Figure 1.4 shows a typical oil and gas production flow diagram. It includes the 

process of extraction of oil, water and mixed gases from the rock formation. 
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Figure 1.4 Typical oil and gas production flow diagram [10] 

According to Simon McManus [11], the using of hydraulic fluids in the extreme 

water depth, will affectreliability due to work-over cost, stability and compatibility of 

the fluid, and pressure to the static system in the subsea. There is a large pressure 

difference for oil-based hydraulic fluids as compared to the pressure needed for 

seawater at increasing depths of seawater. In contrast to water-based hydraulic fluids, 

the pressure difference between water-based hydraulic fluids and seawater needed is not 

more than 2 baras the depth increased as shown in Figure 1.5. He also added that, due to 

drastic changes in pressure, the viscosity of hydraulic oil increases compared to water-

based hydraulic fluids as shown in Figure 1.6. In long umbilicals, increasing the 
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viscosity will gives effect to hydraulic fluid especially when the diameter of the 

umbilical is changed. This is more crucial in narrow umbilicals which need more time 

to pressurise oil-based hydraulic fluids due to compressibility and viscosity. The system 

afterwards will clog due to redundant hydraulic line and leaves the fluids end up in the 

ocean. This might be harmful for marine life, whereas, water-based hydraulic fluid 

without any chemical addition considered to be less toxic to marine life. Overall, this 

would be safe if the operations used seawater as hydraulic fluid. Water-based hydraulic 

fluids bring many benefits compared to oil hydraulic fluid due to low viscosity, low 

compressibility and high specific gravity. Also there is an associated reduced cost of 

operating in the oil and gas operations.  

 

 

 

 

 

 

 

 

Figure 1.5 The pressure difference between water-based hydraulic fluids and 

hydraulic oil in increasing seawater depth [11]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 The oil hydraulic fluid increase in viscosity as the pressure  

increases [11]. 
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With concerning the environmental issue and cost of oil and gas operations, 

therefore the usage of seawater as a hydraulic fluid would bring many benefits to 

replace oil-based hydraulic fluids. The most crucial issue is how to control the corrosion 

attack and ensure the water-based hydraulic fluids perform and comparable way to oil-

based hydraulic fluids. Corrosion in oil and gas production varies from location to 

location. Corrosion canbe classified into one of three general categories; internal 

corrosion caused by the produced fluids and gases, external corrosion caused by 

exposure to groundwater or seawater and atmospheric corrosion caused by salt spray 

and weathering offshore. Of these, internal corrosion is the most costly since internal 

mitigation methods cannot be easily maintained and inspected. 

1.3 Background of This Study 

Generally, oil and gas plant controls the oil or gas well through a wellhead control 

panel. Each well is equipped with a downhole valve, which consists of a master valve 

(MV). This on-off valve is controlled from the control system by sending a signal 

through umbilicals to about 1,300 metresbelow. These umbilicals also distribute 

electrical power, communication and a supplyof hydraulic fluid to the subsea. When the 

signal arrives, the valve acts on spring pressure allowing hydraulic fluid to flow through 

a directional control valve (DCV as in Figure 1.7) to open the master valve. The whole 

system, including the DCV,are made from different types of material ranging from 

carbon steel to high strength and corrosion resistant materials.  

The health and safety practices for subsea activities, means the hydraulic fluid is 

no longer suitable for use in oil and gas operations. The process of discharging the 

waste hydraulic fluid is very costly, which has led to the suggestionto use seawater as 

the hydraulic fluid. Not only is seawater available subsea, but by using the seawater as a 

hydraulic fluid, no more treatment is needed when discharging the waste, which could 

reduce the cost of the operation. The principal problem in using seawater as a hydraulic 

fluid is the risk of corrosion.  

The main objective of this research is to investigate, from a corrosion point of 

view, the feasibility of using seawater as a hydraulic fluid. The best hydraulic fluid is 

the benchmark to determine an acceptable corrosion rate and the hydraulic fluid chosen 

is HW443 which is described in detail later. Compared to other commercial hydraulic 

fluids used by oil and gas companies, HW443 shows the best corrosion resistance at 

elevated temperature [12]. The selectionof materials in this study includesthose mostly 
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used in subsea systems including DCV materials. 

Most industries use inhibitors as their corrosion control. However, when the 

environment is of prime concern, whenever anything is discharged overboard into the 

water in offshore operations it should meet the relevant regulatory requirements. With 

the environmental requirement and the necessity to obtain an acceptable corrosion rate 

that is comparable to commercial hydraulic fluids, this project was undertaken by way 

of contributing to the present practices of the oil and gas industry. Corrosion could be 

controlled by alteration of the corrosion factors or by adding an inhibitor as previously 

practiced by most companies. However, most of the effective inhibitors have an issue 

concerning biocompatibility,biodegradability, bioaccumulation and toxicity 

composition that is harmful to the sea habitat. Most issues arise when discharging the 

waste direct to the sea through bioaccumulation, which can be described as a chemical‘s 

tendency to be taken up and stored by living organisms through their environment and 

diet[13].  

This is the first study, undertaken in conjunction with Aker Solutions, to assess the 

feasibility of using seawater as a hydraulic fluid and the associated corrosion 

challenges. The deterioration of the Directional Control Valve (DCV as shown in 

Figure 1.7) materials in seawater was studied and compared with the degradation rates 

and mechanisms in a commercial hydraulic fluid. This DCV functions as shown 

schematically in Figure 1.8. To achieve better results than a commercial hydraulic fluid, 

some alterations were madeby either changing the sulphate-chloride ratio of seawater or 

the addition of an inhibitor.Although changing the sulphate-chloride ratio in seawater 

would be difficult inpractice (perhaps, treatment water to appropriate sulphate/chlorite 

ratio to get acceptable corrosion rate), previous research has elucidated that aggressive 

anions can increase corrosion attack whereas non aggressive anions penetrate the 

corrosion attack. Thus, by changing the ratio in this research, the critical ratio of 

aggressive and non aggressive anions can be assessed on corrosion attack. 
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Figure 1.7 Directional Control Valve 

 

Figure 1.8 A schematic diagram of the Directional Control Valve (DCV) [12]. 

1.4 Objectives 

The objectives of this study are 

1.To evaluate the corrosion performance of Directional Control Valve (DCV) 

materials of construction (carbon steels, stainless steel 316L, 25Cr duplex, Inconel 625, 

nickel carbide, cobalt tungsten carbide) as a function of seawater parameters such as 

temperature, oxygen, sulphate-chloride ratio and with green inhibitors in static 

conditions. 

2. To evaluate the corrosion attack on materials in seawater in comparison to 

commercial hydraulic fluid HW443. 

 

Hydraulic fluid flow 
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3.To focus on key areas relating to the performance and durability of the materials 

and assess the corrosivity of materials and critical parameters that decrease corrosion 

resistance. 

4.To prepare critical parameters and suitable corrosion control strategies for the 

management of corrosion in seawater systems that are comparable to commercial 

hydraulic fluids. 

1.5 Thesis Outline 

The layout of this thesis is as follows: 

 

Chapter 1 provides the introduction and background to the project. 

 

Chapter 2 presents some basic corrosion theory relating to this study involving 

thermodynamics and electrochemistry.  

 

Chapter 3 presents the literature review relating to static corrosion, hydraulic fluids and 

repassivation-depassivation of passive materials. Some models and techniques 

developed are also reviewed. 

 

Chapter 4 describes the composition and propertiesof the materials, as well as the 

experimental procedures and calculations for possible solutions. 

 

Chapter 5 presents the results of a detailed study of the corrosion of carbon steel in 

seawater and in the benchmark HW443 Hydraulic fluid. 

 

Chapter 6 presents the results of 316L, 25Cr Duplex and Inconel 625. 

 

Chapter 7 presents the results of WC-Co and WC-Ni.  
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The results chapters contain the electrochemical data for different corrosion parameters 

including sulphate to chloride ratio, temperature, oxygen,identification of acceptable 

corrosion ratesthat are comparable to commercial hydraulic fluid. 

 

Chapter 8 discusses the numerous important aspects relating to corrosion and the areas 

that this study makes a contribution to the current understanding. 

 

Chapter 9 summarises the conclusions of the present project and outlines some 

suggestions for future work. Finally, the references cited in the thesis are listed.  
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Chapter 2  

REVIEW OF RELEVANT THEORY 

2.1 Basic Aqueous Corrosion 

Corrosion is defined as the deterioration of a material through a chemical or 

electrochemical reaction with its environment [13-14]. Materials often have a natural 

tendency to combine with other chemical elements to return to their lowest energy state. 

In order to return to lower energy states, materials frequently combine with oxygen and 

water, both of which are present in most natural environments, to form hydrated oxides 

and in the case of iron the iron oxide refers to ―rust‖. Depending on the environment, 

corrosion can be classified as ―wet‖ or ―dry‖ corrosion. Wet corrosion occurs when a 

liquid is present and usually involves an aqueous solution or electrolytes. It accounts for 

the greatest proportion of corrosion incidences in the various industries[15]. A common 

example is corrosion of steel by water. Dry corrosion occurs in the absence of a liquid 

phase or above the dew point of the environment. Vapours and gases are usually the 

corrodents. Dry corrosion is most often associated with high temperatures. In this 

chapter, attention is given to corrosion in aqueous solutions, and dry corrosion, or as 

commonly known, high temperature oxidation, is not considered. The basic aqueous 

corrosion theory will aid the understanding of the corrosion behaviour of materials 

under the specific conditions addressed in this study. 

2.2 SolutionCharacteristics 

2.2.1 Conductivity 

One of the important characteristics of aqueous solutions with respect to corrosion 

is the conductivity of the solution. It is a measure of its ability to transport current.  

Seawater has conductivity of around 54000 µS/cm while fresh drinking water will have 

conductivity less than 100 µS/cm. In a good conductor such as seawater, the distant 

parts of the structure which are cathodic to some other area can play an effective part in 

the cathodic reaction but if the liquid is of poor conductivity, the flow of current will be 

limited to the immediate areas of contact between the two areas [14]. Currentis 

transported easily in high-conductivity solutionsbut much less effectively in low-

conductivity solutions. Various solutions exhibit a wide range of conductivities. 
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Seawater is a highly conductive solution and has a very low resistance to transporting 

current. Distilled water, however,is a very low conductivity solution and has a high 

resistance to the transport of current. In general, as the concentration of dissolved 

species in the solution increases, the conductivity increases, and, in general, as the 

conductivity of the solution increases, the corrosion of metals in that solution increases. 

2.2.2 Acidity of alkalinity of a solution 

Alkalinity can be defined as measurement of the ability of a solution to neutralize 

acids or a parameter to characterize the capacity of a solution to accept acid inputs 

without becoming ‗too acidic‘. Alkaline compounds in the water such as bicarbonates, 

carbonates, and hydroxides remove H
+ 

ions and lower the acidity of the water which is 

increasing the pH value. The pH and alkalinity provide information about the acid-base 

properties of a solution and although the two parameters are related, they are 

independent. pH is defined as a negative decimal logarithm of the hydrogen ion activity 

in a solution [16]. Specifically pH is characterize as the activity of H
+
 in solution 

whereas characterize the stability of the system to stay at or near the original pH when 

the other substances are added.  

     
H

apH log      2.1 

where H
a  is the activity of hydrogen ions (molar concentration). Activity has a 

sense of concentration, however activity is always less than the concentration and is 

defined as a concentration (mol/L) of an ion multiplied by activity coefficient. The 

activity coefficient for diluted solutions is a real number between 0 and 1. The pH has a 

great effect on corrosion for particular metals. Solutions can be described as acidic, 

neutral or alkaline, based on the relative ratio of hydrogen ions to hydroxyl ions. When 

the hydrogen ions predominate over hydroxyl ions, the solution is acidic, whereas when 

the hydroxyl ionspredominate over the hydrogen ions, the solution is alkaline and the 

solution is neutral when both are in balance. Strongly acidic solutions have a greater 

number of hydrogen ions, and strongly alkaline solutions have a greater concentration 

of hydroxyl ions. A value of pH 7 defines a neutral solution, and low values of pH 

identify the solutions as being acidic and higher values from 7-14 identify as alkaline. 

Tap water and seawater typically have neutral pH values. 
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2.2.3 Oxidizing solution 

Oxidizing is a measurement of the tendency of a metal to corrode or oxidize. A 

solution of low oxidizing tendency corrodes only those metals at the lower (more 

active) end of the electromotive force series. A solution of strong oxidizing tendency 

corrodes all metals on the series except those with the most positive (most noble) values 

of the emf series. With the oxygen dissolved in a solution the oxidising 

tendencyincreases. 

The oxygen dissolved in seawater is typically around 6-8 ppm [17]. The solubility 

of oxygen generally decreases with increasing temperature and salinity, and increases 

with increasing pressure. 

Oxygen solubility is strongly temperature dependent and decreases at higher 

temperatures. Consequently, oxygen solubility in freshwater exceeds that in seawater by 

1-3 mg/L, depending on temperature. It means that oxygen solubility increases as the 

pH increases from acidic to alkaline. Thus, the oxygen concentrations in rivers or lakes 

in mountainous areas is usually lower than in lowlands, because it is pressure 

dependent.  Figure 2.1 shows the oxygen solubility in seawater at different temperature.  

 

Figure 2.1 Oxygen solubility in seawater[17]. 

2.3 Corrosion Mechanisms 

The mechanism of corrosion is the actual atomic, molecular or ionic transport 

process that takes place at the interface of a material [18]. Because the corrosion rate 
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cannot be observed directly on an atomic scale, it is necessary to infer possible 

mechanisms from indirect measurements and observations. Examples are the rate of 

change in weight or dimensions, the rate of build up of corrosion products in the 

environment, changes in surface appearance examined by microscope, or changes in the 

mechanical or physical properties. When electrochemical corrosion occurs, the 

mechanism may be inferred from the measurement of electrical potential and current. 

Figure 2.2 shows how a material degrades by the corrosion process. 

The corrosion of metals in an aqueous environment is electrochemical in nature 

involving two or more electrochemical reactions taking place on the surface of the 

metal. As a result, some of the elements of the metal or alloy change from a metallic 

state into a non-metallic state. The energy of the system is lowered as the metal converts 

to a lower-energy form (explained in section 2.2). The change in the energy of the 

system is the driving force for the corrosion process, which behaves according to the 

laws of thermodynamics.  

 

 

 

 

 

 

 

 

Figure 2.2 Corrosion mechanism of iron [19] 

 

For corrosion to occur, three essential elements must be present: electrolyte, 

anode, and cathode. An electrolyte is a solution that can conduct an electric current. An 

electrolytic liquid refers to any liquid that contains ions. Electrodes can be of different 

metals or the same metal with different sizes or areas. Corrosion occurs because there is 

a difference in the electrical potential between the two electrodes/areas such that 

electricity flows in the electrolyte between them. This circuit must be completed by a 

metallic path between the two electrodes.  
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2.3.1 Anodic reaction 

The anode is the site at which metal is corroded, i.e. at which metal dissolution 

takes place. Metal is dissolved and transferred to the solution as metal ions. Positively 

charged atoms of metal detach themselves from the surface and enter into the solution 

or electrolyte as ions. The electrons flow, as electrical current, to the cathode where 

they are consumed. This process is known as oxidation. The detached positive ions bear 

one or more charge. For example in the corrosion of zinc, each Zn atom releases two 

electrons and the Zn ions will carry two positive charges. The electrons travel through 

the metal to the cathode area. 

 

 

           2.2 

The reactions above take place at the anode and must be balanced by other 

reduction processes that occur at the cathode.  

2.3.2 Cathodic reaction 

Electrons reach the cathode by passing through the metal. At a cathode they may 

discharge, for example, H
+
 ions are present in acid electrolytes and form hydrogen gas. 

This process is known as reduction. In reduction, electrons are consumed. Thus, a 

cathodic reaction is a reaction that consumes electrons. When proton reduction occurs, 

the concentration of hydrogen ions in the electrolyte decreases and, thus, this increases 

the alkalinity of the electrolyte in the area of the cathode. The main reactions that occur 

at the cathode are: 

• Hydrogen evolution 

           2. 3 

• If oxygen ions are present, oxygen reduction takes place 

           2.4 

 

Several environmental factors can influence the corrosion rate:  

i. If H
+
 ions increase in concentration (pH drops), the corrosion rate will increase 

because there are more H
+
 ions to receive electrons at the cathode (i.e. the 

amount of oxidant increases). 

Metal              Metal ions + electrons 

M                    M
n+

 + ne
- 

   2H
+
 + 2e

-
             H2 (gas)              in acid environment 

   

            O2 + 2H2O + 4e
-                                

4OH
- 
in alkaline and neutral solution 
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ii. If the solution is made more alkaline, the corrosion rate may be reduced (i.e. by 

passivation). 

iii. If the concentration of the dissolved material is lowered, the conductivity of the 

electrolyte will decrease. Therefore, the resistance is increased, and impedes the 

flow of current. As a result, the overall corrosion rate is reduced. 

2.3.3 Cell potential and exchange current density 

As explained in section 2.3, corrosion occurs because there is a difference in the 

potential between the two electrodes. This potential results from the reaction between 

the anodic and cathodic areas on the surface of the metal. By understanding the cell 

potential of the reaction accompanying an electrochemical or corrosion reaction, the 

change in free energy (explained in section 2.5) can be calculated. This can be 

illustrated by the reaction between copper and zinc occurring at equilibrium: 

Cu
2+

 +Zn = Cu + Zn
2+  

      2.5 

This reaction can be divided into two half-cell reactions: 

 

   Cu = Cu
2+

 + 2e   anodic reaction 

  Zn
2+

 + 2e  = Zn                  cathodic reaction    

  Cu + Zn
2+

 = Cu
2+

 + Zn       2.6 

To determine the potential of a system in which the reactants are not at unit 

activity, the Nernst equation can be employed, which is: 

 

reactant

0 log3.2
a

a

nF

RT
EE

product


       2.7 

Where E is the half-cell potential, E0is the standard half-cell potential, R is the gas 

constant, T is the absolute temperature, n is the number of electrons transferred, F is 

Faraday‘s constant, aproduct and areactant are the activities of product and reactant species. 

The activity is measurement for effective concentration of a species in a mixture. As 

indicated in the above equation, the half-cell potential becomes more positive as the 

amount of oxidised species increases. Table 2.1 shows the list of standard half-cell 
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potentials (E0)for some electrochemical reactions at 25ºC versus the normal hydrogen 

electrode.  

 

Table 2.1 Standard oxidation-reduction potentials, 25
o
C, Volts (V) versus normal 

hydrogen electrode[20] 

 

Exchange current density i0 is a fundamental characteristic of electrode behaviour 

that can be defined as the rate of oxidation and reduction reactions at an equilibrium 

potential expressed in terms of current density. Exchange current density is a misnomer 

since there is no net current. The relationship between the exchange reaction rate and 

current density can be derived from Faraday‘s law [13]. 

nF

i
rr redoxid

0
                                                     2.8

 

Where roxid and rred are the equilibrium oxidation and reduction rates and i0 is the 

exchange current density; n is the number of electrons transferred and F is Faraday‘s 

constant. 

2.4 Determination of Corrosion Rates by Electrochemical 

Measurements 

Electrochemical reactionsare caused by an external voltage (voltage caused by a 

chemical reaction) as in an electrochemical cell. In general, electrochemistry deals with 

Half cell reaction Potential Half cell reaction Potential

Au = Au
3+

+ 3e 1.498 Pb = Pb
2+

 + 2e -0.126

O2 + 4H
+
 + 4e = 2H2O 1.229 Sn = Sn

2+
 + 2e -0.136

Pt = Pt
2+

 + 2e 1.220 Ni = Ni
2+

 + 2e -0.250

Pd = Pd
2+

 + 2e 0.987 Co = Co
2+

 + 2e -0.277

Ag = Ag
+
 +e 0.799 Cd = Cd

2+
 + 2e -0.403

Hg = Hg
2+

 + 2e 0.788 Fe = Fe
2+

 + 2e -0.440

Fe
3+

 + e = Fe
2+

0.771 Cr = Cr
3+

 + 3e -0.744

O2 + 2H2O + 4e = 4OH
-

0.401 Zn = Zn
2+

 + 2e -0.763

Cu = Cu
2+

 + 2e 0.337 Al = Al
3+

 + 3e -1.662

Sn
4+

 + 2e = Sn
2+

0.150 Na = Na
+
 + e -2.714

2H
+
 + 2e = H2 0.000 K = K

+
 + e -2.925
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oxidation and reduction reactions. To determine the potential of active polarisation, the 

Ohm‘s Law  are widely used: 

 R

E
I 

                             2.9 

Where E is the electric potential, defined as the capacity of an electric field to do work, 

and ismeasured in Volts (1 Volt = 1 Joule/Coulomb); Coulomb is the quantity of 

electricity measured in Amperes (1A = 1Coulomb/sec); I is the electric current, which is 

the movement of electrically charged particles and measured in amperes. R is the 

resistance, a term that describes theforces that oppose the flow of electron current and 

which are measured in Ohms (Volt/Ampere). 

There are various ways of measuring the rate of corrosion, including AC 

impedance and electrochemical noise [21]. The modern techniques for the measurement 

of corrosion rates are based on the classical work of Stern and Geary [22]. The 

theoretical relationship between a metal freely corroding potential (E), current density 

(i) and the rate of corrosion was developed by Stern.  

2.5 Corrosion Thermodynamics 

Thermodynamics is the science of energy conversion and has been broadly 

applied to corrosion studies. It describes equilibria as a function of the elements and 

compounds present and the environmental conditions, such as pressure, temperature, 

and chemical composition. It includes the studies and calculations that indicate the 

spontaneous direction of a reaction,which are used to determine whether or not 

corrosion can occur, and to predict the stable corrosion products that may form.  

2.5.1 Free energy 

A law of nature is that the most stable state for a set of reactants is the state that 

has the lowest free energy, G. Accordingly, a metal in contact with a solution moves 

towards the lowest free-energy state. When the system arrives at this state, there is no 

further change. This final lowest-energy state is called equilibrium. At this stage, the 

system is stable, and there is no driving force for any change from that state. These 

principles are illustrated in Figure 2.3 by a mechanical analogy. If the ball moves from 

position 1 to position 2, this represents a decrease in free energy. The transition from 

position 1 to position 2 is a spontaneous direction for this particular system. Chemical 
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and corrosion reactions behave in the same way. The free-energy change accompanying 

an electrochemical reaction can be calculated by the following equation: 

G = -nFE       2.10 

where G is the free-energy change, n is the number of electrons involved in the 

reaction, F is the Faraday constant, and E equals the cell potential. 

Large negative free-energy changes give rise to large positive potential differences, 

and large positive free-energy changes give rise to large negative potential differences. 

If the change in free energy accompanying the transition of a system from one state to 

another is negative, this indicates that spontaneous reaction of the system is possible. If 

no external forces act on the system, the system will tend to transform to its lowest 

energy state. If the change in free energy is positive, this indicates that the transition 

represents an increase in energy, and this requires that additional energy be added to the 

system.  

 

 

 

 

 

 

 

 

 

Figure 2.3Mechanical analogy of free-energy change [1] 

Figure 2.4 shows how a reactant forms a new product along the progress of 

reactions.For a chemical reaction to begin, there must be contact (collision) between the 

reactants. As the reaction proceeds, the potential energy rises to a maximum and the 

reactants form a cluster of atoms, called the activated complex. The highest point on the 

diagram is the activation energy, ∆G, the energy that must be overcome for a reaction to 

occur. After the maximum, the potential energy starts falling as the atoms rearrange in 

the cluster, until it reaches a certain state of energy. Finally, colliding reactant 

molecules form products. There is the possibility that a collision between reactant 
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molecules may not form products. The outcome depends on the factors mentioned in the 

Transition State Theory. If the activated complex can pass the barriers, the product 

forms. Otherwise, the complex falls apart and reverts to the reactants[1].  

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Reaction potential energy profile 

2.6 Electrochemical Kinetics of Corrosion 

As explained in section 2.3.3, an electrochemical reaction involves Faraday‘s law. 

Michael Faraday discovered that current is generated by anodic reaction to an 

equivalent mass loss or corrosion penetration rate. Faraday‘s empirical laws of 

electrolysis relate the current of an electrochemical reaction to the number of moles of 

the element being reacted and the number of moles of electrons involved [20]. 

According to this, the reaction of 1 mol requires 1 mol of electron or 1 Avogadro‘s 

number of electrons (6.023x10
23

). The charge carried by 1 mol of electrons is known as 

1 faraday (F). The Faraday is related to another electrical unit through the electronic 

charge, 1.6X10
-19

 Coulombs (C).  

2.6.1 The three electrode cell 

Most electrochemical accelerated tests make use of a three-electrode system, as 

shown in Figure 2.5. A potentiostat is used to control the potential of the working 

electrode versus a stable reference electrode submerged in an electrolyte, and together 

with an electrometer, an ammeter, logarithmic converter, and data acquisition device is 
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an automated instrument that provides variability of continuous sweep over a desired 

potential range. External current only flows between the working electrode and the 

counter electrode (also called auxiliary electrode).  

The sample to be tested works as working electrode and it was carefully prepared 

with identified surface area. During running the experimental, the immersion time must 

be constant in order to stabilize the electrode in the electrolyte prior to start the test. The 

reference electrode has a stable and well-known potential. The high stability of the 

electrode potential is usually reached by employing a redox system with constant 

(buffered or saturated) concentrations of each participants of the redox reaction. The 

counter electrode exists to ensure that current does not run through the reference 

electrode, and often has a surface area much larger than that of the working electrode to 

ensure that the reactions occurring on the working electrode are not surface area limited 

by the counter electrode. Each electrode represents a half cell reaction.  

 

 

 

 

 

 

 

 

Figure 2.5 The schematic of three-electrode test cell  

 

The basis of electrochemical accelerated test techniques is to change the potential 

of the working electrode and monitoring the current which is produced as a function of 

time or potential through the three-electrode system. As mentioned previously, 

changing an electrode potential from its OCP is referred to as polarization. Generally, 

polarization methods include linear polarization, Tafel plot measurement, wide range 

anodic polarization and cyclic polarization according to the scan range and direction. 
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2.6.2 Activation polarisation 

Electric current from a potentiostat changes a test electrode potential from its open 

circuit potential (OCP), to a potential value that is determined by the magnitude of 

potentiostat current.  

Electrochemical polarisation is divided into three main types – activation 

polarisation, concentration polarisation and resistance polarisation. Activation 

polarisation refers to the situation in which an electrochemical reaction is controlled by 

a slow step in the reaction sequence. Figure 2.6 graphically illustrates an activation 

polarisation for the anodic and cathodic reactions. This plot could be considered as a 

combination of anodic and cathodic reactions or mixed-potential. The requirements of 

mixed-potential theory are met at only a single point, that is, the point where the anodic 

and cathodic reaction curves cross. This is the only location at which the anodic 

reaction rate equals the cathodic reaction rate. The potential of this intersection is 

defined as Ecorr, and the current at this intersection is defined as the corrosion current 

density, icorr. The Ecorr is referred to by several terms, including the corrosion potential, 

the free corrosion potential and the open-circuit potential. At potentials that are more 

positive or more oxidizing than the current potential, the anodic current is greater than 

the cathodic current, and more electrons are generated than are consumed. At potentials 

more negative or more reducing than the corrosion potential, the cathodic current is 

greater than the anodic current, and more electrons are consumed than are generated. A 

steady state of no net consumption or generation of electrons is only achieved at the 

corrosion potential (Ecorr) but not at more oxidizing and more reducing than the 

corrosion potential. In order to maintain a system away from the Ecorr, an external 

current or other reactions must be supplied. 

The slopes of the E-log i plots in the anodic regime and cathodic regime are 

referred to βa, βb and give the Tafel slopes. The slopes are determined by the properties 

of both the surface of the metal and the electrolyte. Many researchers are assuming the 

Tafel values are 120 mV/decade for both anodic and cathodic for corrosion of steel. 

Their basis for assumption comes from related published work. 
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Figure 2.6 Combined diagram of an anodic and cathodic reaction with activation 

polarisation [22]. 

 

 

There are three forms of activation polarization control: mixed control, cathodic 

control and anodic control (Figure 2.7). The type of control basically results from the 

slope values of the anodic and cathodic curves. Under mixed control, the corrosion rate 

is equally sensitive to shifts in the anodic or oxidation reaction and the cathodic or 

reduction reaction. Under cathodic control, the slope of the reduction curve is greater 

than the slope of the oxidation curve. This results in the corrosion reaction being more 

sensitive to changes in the reduction reaction kinetics than to changes in the oxidation 

reaction kinetics. Under anodic control, the slope of oxidation reaction is greater than 

the slope of the reduction reaction curve. This results in the corrosion rate being more 

sensitive to changes in the anodic reaction kinetics than to changes in the cathodic 

reaction kinetics. With this knowledge it is possible to focus on the best method for 

corrosion control.  
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Figure 2.7 Schematic diagrams of the three forms of activation polarization  

 

2.6.3 Concentration polarisation 

Concentration polarisation refers to the situation in which a reaction is 

controlled by the supply of the reactant or the removal of products from a surface. The 

effect of concentration polarization on the shape of the cathodic polarization curve for a 

reduction reaction is shown in Figure 2.8. A frequent case of concentration polarization 

occurs when the cathodic processes depend on the reduction of dissolved oxygen since 

it is usually in low concentration. At low oxygen-reduction rates, the distribution of 

oxygen molecules in the solution adjacent to the electrode surface is relatively uniform. 

At very high reduction rates the region adjacent to the electrode surface will become 

depleted of oxygen molecules. Concentration polarization only becomes important 

when the dissolution current density approaches its limit, iL, and causes an extended 

polarization curve. This represents the maximum rate of possible reduction in a system; 

the equation expressing this parameter is: 
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Where iL is the limiting current density, D is the diffusion coefficient, CB is the 

concentration of the reacting molecules or ions in the bulk solution, and x is the 

thickness of the diffusion layer.The equation shows that the limiting current density is a 

function of D, CB and x. Changes in these parameters will result in the change of 

limiting current density. The smaller the initial exchange current density, the larger will 

be the current density range over which the Tafel equation is likely to apply. The 

diffusion layer thickness is influenced by the shape of the particular electrode, the 

geometry of the system and by agitation. Agitation tends to decrease the diffusion layer 

thickness because of the convection current and, consequently, increases the limiting 

diffusion current density. 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Onset of concentration polarization at more reducing potentials for a 

cathodic reduction reaction.  

The effect of increasing the magnitude of the limiting current is shown by the 

dashed lines. As increasing the iL moves the vertical segment of the line further to the 

right to higher current values, more of the linear portion controlled by activation control 

is observed.  
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2.6.4 Resistance polarisation 

The third form of polarization in an electrochemical cell is resistance 

polarization, also known as ohmic polarization, which results from pure resistance 

elements along the current path in the cell. Ohmic resistance is also referred to as iR 

effects. Ohmic polarization is observed either in the region of ionic conductivity, where 

the current is transported by the movement of ions through the electrolyte from the 

anode to the cathode, or in the electronic conductivity region, where the current is 

transported through the metallic path from the cathode to the anode.  

The effect of resistance polarization on the corrosion current in an 

electrochemical cell is shown in Figure 2.9 as potential versus current density. Three 

cases are shown, with the resistance of the solution increasing from the value of 

R1(where resistance is essentially 0) to R3 (a high resistance value). The resulting 

current through the corrosion cell for each of these resistances is indicated by i1,i2, and 

i3. When the conductivity of the solution is quite high, corresponding to essentially no 

resistance in the electrolyte, the cathodic reduction curve and the anodic oxidation curve 

intersect at iL. In this case, the potentials of the anode and cathode are polarized to the 

same value. As the resistance of the solution increases, the potentials of the anode (Ea) 

and the cathode (Ec) are no longer equal. A potential drop (iR) in the solution results 

from the passage of current (i) through to the resistive solution (R). 

 

 

 

 

 

 

 

 

 

Figure 2.9 Effect of resistance polarization on the current in a corrosion cell [20]. 
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The resulting effect is that some of the potential difference between the anode and 

cathode is taken up by the potential drop through the solution and is, as a consequence, 

unavailable to drive the activation controlled reactions. As the resistance of the solution 

increases from R1 to R2 to R3, the magnitude of the potential drop of resistance 

polarization in the cell increases, with a resulting decrease in the corrosion current of 

the cell from i1to i2 to to i3. 

In seawater, which has high conductivity, there is very little resistance for a 

current to flow and, consequently, it has a high corrosion rate (i1), whereas tap water 

and distilled water have less conductivity, respectively, and, therefore, a low corrosion 

rate. Hence, an effective way to reduce the corrosion current in a corrosion cell is to 

increase the resistance to the ionic current flow through the cell. 

2.7 Forms of Corrosion 

Corrosion problems can be divided into eight categories based on the appearance 

of the corrosion damage or the mechanism of attack: uniform, pitting, crevice, galvanic, 

erosion-corrosion, intergranular, dealloying and stress-corrosion-cracking (SCC) 

corrosion. Although these forms are present in aqueous corrosion, many of them are 

also operative at high temperature. 

2.7.1 General corrosion 

General or uniform corrosion occurs uniformly over the entire metal surface 

causing a general thinning to take place until failure, as shown schematically in Figure 

2.10. This form of corrosion is the most common sight where steel structures are 

abandoned to rust. The simplest method for dealing with uniform attack is based on the 

possible loss of material thickness in designing the system. However in some 

circumstances high general corrosion rates make it necessary to replace 

components,however, because the corrosion is uniform and measurable the 

management of corrosion is relatively simple. It is practically to control the corrosion 

by cathodic protection, coatings or paints or simply by specifying a corrosion allowance 

as it occurs uniformly over the entire surface of the metal component. In other cases, 

uniform corrosion adds colour and appeal to the surface. 
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Figure 2.10 Uniform corrosion attack 

2.7.2 Pitting corrosion 

Pitting and crevice are two modes of localized corrosion. A major characteristic of 

these modes of corrosion is a large ratio of cathode area to anode area. Consequently, 

the current density and, hence, the corrosion rate over the occluded area is very large. 

Other than crevice, pitting corrosion is one of the most insidious forms of attack that 

can severely damage engineering alloys with undesirable consequences. It could be the 

most common type of localized corrosion in which small volumes of metal are removed 

by corrosion from certain areas on the surface to produce craters or pits that may 

culminate in complete perforation of a pipe or vessel wall. It occurs on a metal surface 

in a stagnant or slow-moving liquid. 

Pitting corrosion is usually associated with active-passive-type alloys and occurs 

under conditions specific to each alloy and environment. Generally, it occurs on alloys 

when they are in the passive state.This mode of localized attack may create stress 

concentrations and, thus, reduce the fatigue life of a component. Pitting corrosion is 

characterized by two stages of pit initiation and growth. Generally, pits are initiated at 

pre-existing conditions on a passive surface or as a consequence of local events such as 

physical or chemical damage to the passive surface (Figure 2.11). Pit propagation will 

not occur if conditions lead to immediate repassivation of the local region. Pitting is 

usually preceded by an induction time to activate the local region following which the 

pit propagates as an occluded cell. Pit propagation presence of chloride ions growing by 

autocatalytic mechanism. Pitting corrosion of a stainless steel is illustrated in the Figure 

2.11. The anodic reaction inside the pit begins with dissolution of iron; 

Fe = Fe
2+

 + 2e
-
 (dissolution of iron)      2.12 

The electrons given up by the anode flow to the cathode (passivated surface) where they 

are discharged in the cathodic reaction: 

1/2O2 + H2O + 2e
-
 = 2(OH

-
)       2.13 

 

Thickness is reduced uniformly 
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As a result of these reactions the electrolyte enclosed in the pit gains positive electrical 

charge in contrast to the electrolyte surrounding the pit, which becomes negatively 

charged.The positively charged pit attracts negative ions of chlorine Cl
-
 increasing 

acidity of the electrolyte according to the reaction: 

FeCl2 + 2H2O = Fe(OH)2 + 2HCl      2.14 

pH of the electrolyte inside the pit decreases (acidity increases) from 6 to 2-3, 

which causes further acceleration of corrosion process[20]. Large ratio between the 

anode and cathode areas favors increase of the corrosion rate. Corrosion products 

(Fe(OH)3) form around the pit resulting in further separation of its electrolyte. 

Pitting cavities may fill with corrosion products and form caps over the pit cavities 

sometimes creating nodules or tubercles. Although the shapes of pits vary widely, as 

shown in Figure 2.12, they are usually roughly saucer-shaped, conical, or hemispherical 

for steel and many associated alloys. The image clearly illustrates that weight-loss 

methods are inadequate for pitting evaluations because even a very small weight loss 

can be concentrated in a few pits, with those of maximum depth penetrating the wall 

thickness to produce failure by leakage. However, pit depth increases not only with 

time, as would be expected, but also with surface area. Thus, to predict plant life from 

the small laboratory size test coupon results would be unwise. However, the pitting 

resistance of various alloys can be compared reasonably well from the maximum pit 

depth measurements in the laboratory.   

 

     Figure 2.11 Pitting corrosion mechanisms [20]. 
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Figure 2.12 Variation in cross sectional shape of pits [24] 

It is generally accepted that temperature is one of the most important factors in pitting 

corrosion. When pitting occurs on the surface of stainless steels, the temperature 

dependence of pitting reactions is determined conventionally by measuring current 

densities under constant temperature conditions and controlled varying potentials over a 

number of different temperatures. Based on this point of view, the concept of Critical 

Pitting Temperature (CPT) was first introduced by Brigham and Tozer in 1973[25] and 

has been widely used as a criterion for ranking the pitting susceptibility in stainless 

steels. 

Other than temperature, there are other factors that contribute to the initiation and 

propagation of pitting corrosion;  

 

 Localized chemical or mechanical damage to a protective oxide film. 

 Chemistry factors that can cause the breakdown of a passive film such  

           as acidity; low dissolved oxygen concentrations, which tend to render a  

           protective oxide film less stable; and high chloride concentrations 

 Localized damage to or poor application of a protective coating 

 The presence of nonuniformities in the metal structure of the component, for 

example, non-metallic inclusions 
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Growth of pitting or propagation willtypically lead to the initiation of a pit due to 

the presence of an abnormal anodic site surrounded by normal surface, which acts as a 

cathode, or by the presence of an abnormal cathodic site surrounded by a normal 

surface in which a pit will have disappeared due to corrosion at the local cell, as shown 

in Figure 2.13 below. 

 

 

Figure 2.13: Pitting corrosion of stainless steel 316L in seawater [26]. 

The chromium (Cr), molybdenum (Mo) and nitrogen (N) contents of passive 

alloys, such as duplex stainless steels, are greatly influenced by their pitting and crevice 

corrosion behaviour. A usual way to rank the pitting resistance in stainless steels is by 

the use of the Pitting Resistance Equivalent Number (PREN). This is represented by the 

following equation: 

PREN = %Cr + 3.2% Mo + 16% N      2.15 

The higher the PREN, the better the pitting resistance[25]. This parameter is 

strongly dependent on the content of three most important elements Cr, Mo and N. 

Since there are two phases in the duplex stainless steel, with the three elements 

unevenly partitioned between them, the PREN for each phase should be calculated. The 

actual pitting resistance is governed by whichever phase gives the lower value[25]. A 

PREN above 38 is supposed to provide resistance to marine corrosion [27]. 

2.8 Crevice Corrosion 

Although much of the previous discussion is applicable to pitting and crevice-type 

corrosion in that both involve occluded cells, crevice corrosion exhibits several 

Local cathode 
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distinguishing features. A significant difference is that a crevice has the geometry of a 

pre-existing site for the occluded cell. Therefore, the initiation stages for the two modes 

differ. Crevice geometries are conducive to crevice corrosion in overlapping metal or 

non-metal surfaces, bolts, nuts, washers, joints, irregular surfaces associated with 

scratches and welds, poor adhering surface coatings and inert surface deposits. 

The crevice corrosion propagation process is illustrated in Figure 2.14 for stainless 

steel corroding in a neutral aerated sodium chloride solution. The anodic metal 

dissolution reaction within the crevice is balanced by the cathodic reaction on the 

adjacent surface. The increased concentration of M
+
 within the crevice results in the 

influx of chloride ions (Cl
-
) to maintain neutrality. When the metal chloride formed, it is 

hydrolysed by water to the hydroxide and free acid. The acid produced by the 

hydrolysis reaction keeps the pH value low, while the pH of the solution outside the 

crevice remains neutral (pH 7). 

 

Figure 2.14 A schematic of the crevice corrosion propagation 

mechanism 

The formation of crevice corrosion can be divided into three stages, as shown in 

Figure 2.15. At time zero, the oxygen content in the water occupying a crevice is equal 

to the level of soluble oxygen and is the same everywhere. In stage two, because of the 

difficult access caused by the crevice geometry, oxygen consumed by maintaining the 

passive film is very soon depleted in the crevice. The corrosion reactions now 

concentrate in the crevice (anodic) and on the open surface (cathodic). The large ratio of 

cathodic area compared to the anodic area that forms in these conditions is an 

aggravating factor that accelerates the anodic reaction.In stage three of the crevice 

development a few more accelerating factors fully develop: 

 The metal ions produced by the anodic corrosion reaction readily hydrolyse   

giving off protons (acid) and forming corrosion products. 

 The corrosion products seal the crevice environmenteven further. 
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 The accumulation of a positive charge in the crevice becomes a strong  

 attractor to negative ions in the environment that can be corrosive in their  

 own right. 

 The pH in a crevice can reach very acidic values. 

Figure 2.15 Stages of crevice corrosion [28] 

2.9 Prevention of Corrosion Damage 

Recognizing the symptoms and mechanism of a corrosion problem is an important 

preliminary step to find a convenient solution. There are basically five methods of 

corrosion control: 

i. Change to a more suitable material 

ii. Modifications to the environment 

iii. Use of protective coatings 

iv. The application of cathodic or anodic protection 

v. Design modifications to the system or component 

Some preventive measures are generic to most forms of corrosion. These are most 

applicable at the design stage, probably the most important phase in corrosion control. It 

cannot be overemphasized that corrosion control must start at the ―drawing board‖ and 

that design details are critical for ensuring adequate long-term corrosion protection. It is 

generally good practice to provide adequate ventilation and drainage to minimize the 

accumulation of condensation. 
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2.10 CorrosionParameters 

Environment is the one of the important key factors in any corrosion situation as 

environment is a variable that can change with time and conditions. This variable is a 

complex one, since all the environment factors actually affects a metal corresponds to 

the local environment at the surface of the metal. The corrosion parameters that affect 

aggressiveness of corrosion are anions such as chlorides and sulpahtes, pH, temperature 

and oxygen. 

2.10.1 Chlorides 

Salinity distinctly increases the corrosion rates. Apart from the enhanced surface 

electrolyte formation by hygroscopic salts such as NaCl and MgCl2, direct participation 

of chloride ions in the electrochemical corrosion reactions is also likely. In ferrous 

metals, chloride anions are known to compete with hydroxyl ions for combining with 

ferrous cations produced in the anodic reaction. In the case of hydroxyl ions, stable 

species tend to be produced. In contrast, iron chloride complexes tend to be unstable 

(soluble), resulting in further stimulation of corrosive attack. On this basis, metals such 

as zinc and copper, whose chloride salts tend to be less soluble than those of iron, 

should be less prone to chloride induced corrosion damage, consistent with practical 

experience. 

According to Frankel [29], pitting corrosion will only occur in the presence of 

aggressive anionic species, and chloride ions are usually, although not always the cause. 

The severity of pitting tends to vary with the logarithm of the bulk chloride 

concentration[30]. The reason for the aggressiveness of chloride has been pondered for 

some time and a number of notions have been put forth. Chloride is an anion of a strong 

acid and many metal cations exhibit considerable solubility in chloride solutions [31]. It 

also relatively small anion with a high diffusivity and can interferes with passivation 

and it is ubiquitous as a contaminant.  

In the study by Leckie and Uhlig (1966)on the effect of anions on the critical 

potential for pitting corrosion of stainless steel, they found that increasing the chloride 

concentrations shift the critical potential to more active values and the potential shifted 

to more noble values by the presence of other anions such as ClO4
-
, SO4

2-
, NO3

-
 and 

OH
-
 in sufficient concentrations to act as pitting inhibitors [30]. But according to 

Schwenk, he found that the potential of stainless steel in 0.1N NaCl moves to more 

noble values with increasing Na2SO4 concentration. But, above 0.15M Na2SO4, no 
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pitting observed and it means that sufficient SO4
2-

 added to Cl
-
 solution inhibits pitting. 

[32]. Other anions also act as inhibitors and the amount necessary for complete 

inhibition varying with the anion. Thus, the sulphate/chloride ratio will study in this 

research to find the critical ratio that accelerates corrosion attack. 

2.10.2 Temperature 

The effect of temperature on atmospheric corrosion rates is complex in nature. An 

increase in temperature will tend to stimulate a corrosive attack by increasing the rate of 

electrochemical reactions and diffusion processes. For a constant humidity, an increase 

in temperature would lead to a higher corrosion rate. Raising the temperature will, 

however, generally lead to a decrease in relative humidity and more rapid evaporation 

of surface electrolyte. By reducing the time of wetness in this manner, the overall 

corrosion rate would tend to diminish. 

For closed-air spaces, such as indoor atmospheres, the increasein corrosion rate is 

affected by the relative humidity, which is associated with a drop in temperature. At 

temperatures below freezing, where the electrolyte film solidifies, the electrochemical 

corrosion activity will drop to negligible levels in the absence of chloride 

contamination. The very low atmospheric corrosion rates reported in extremely cold 

climates are consistent with this effect. 

 2.10.2.1 Arrhenius equation 

After observing that many chemical reaction rates depended on the temperature, 

Svante Arrhenius, a chemist from Sweden developed Arrhenius equation to characterize 

the temperature-dependent reactions. The resulting negatively sloped line of logarithm 

of the rate constant, K, versus the inverse temperature, 1/T.is useful for finding the 

missing components of the Arrhenius equation. 

RT

Ea

Aek


      or  A
RT

Ea
k lnln   

Where, k =chemical reaction rate,  A= Pre-exponential factor 

Ea = Activation energy, R= Gas constant 

T= Temperature (K) 
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The activation energy, Ea, is the minimum energy molecules must posses in order 

to form a product. The pre-exponential is related to the amount of timesmolecules will 

hit in the orientation necessary to cause a reaction. It is important to note that the 

Arrheniusequation is based on the collision theory which particles must collide with 

proper orientation and withenough energy. The denominator of the exponential function 

contains the gas constant, R (J/mol*k), and the temperature, T. It should be noted that 

Arrhenius plot shows that reaction rates are inversely proportional to temperature 

changes. Therefore, the negative slope from the Arrhenius plot gives the activation 

energy. 

2.10.3 Oxygen 

Pure water, without dissolved gases (e.g.: oxygen, carbon dioxide and sulphur 

dioxide) does not cause undue corrosion attack on most metals and alloys at 

temperatures up to the boiling point of water [33]. Even at temperatures of about 450ºC, 

almost all of the common structural metals (except magnesium and aluminium) offer 

adequate corrosion resistance to high-purity water and steam [11]. Although 

electrochemical corrison is intensified markedly in strong electrolytes, such as oil-field 

brines, the principal basic corrosive agents in injection waters are the common 

dissolved gases: oxygen, free carbon dioxide and hydrogen sulphide. According to 

Watkins and Kincheloe [34] (1958), corrosion of steel in water increased as the 

concentration of dissolved oxygen increased. 

From the standpoint of corrosion, a significant water component is dissolved 

oxygen (DO) from ambient air. Oxygen acts both as a cathodic depolarizer and as an 

oxidizer. As a cathodic depolarizer, DO can remove hydrogen from the cathode during 

electrochemical corrosion and accelerate the corrosion attack. As an oxidizer, DO can 

be reduced on the metallic surface but participate directly in the electrochemical 

processes. According to Sridhar et al.[35], reduction in oxygen less than 0.06 ppm is 

required for stainless steel 316L to prevent localised corrosion.However, in this thesis 

the oxygen set for passive alloys are 0.04ppb and below (for without oxygen condition 

solutions). 

A study by Uhlig etal.stated the effects of dissolved oxygen on the effectiveness 

of corrosion inhibitor absorption onto mild steel. Uhlig demonstrated that high 

concentrations of corrosion inhibitor increased corrosive attack of the metal substrate. 

He concluded that, small amounts of corrosion inhibitor, which isbelow a critical 
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dissolved oxygen concentration, could decrease the corrosion rate of carbon steels in 

oxygen containing enviroments. Furthermore, his findings demonstrate that the 

effectiveness of inhibitors rely on a critical dissolved oxygen content of the solution 

[36].Caceres et al.[37] also agree that kinetic parametes of carbon steel has a significant 

dependence from dissolved oxygen (DO) and NaCl concentration when they study 

about the variation patterns for corrosion kinetics as a function of DO and NaCl 

concentration. 

As increasing the temperature accelerates the corrosion rate of the steel due to 

faster reaction kinetics. The solubility of oxygen increases with increasing temperature, 

hence, increasing the corrosion rate of metal. For all above reasons, effect of dissolved 

oxygen will be study as a function to different sulphate-chloride ratio and temperature 

for every material. 

2.11 Determination of corrosion rates in the laboratory 

Laboratory test methods include a number of direct current measurement 

techniques that are commonly used in electrochemical testing. Specific methods include 

linear polarisation, potentiodynamic polarisation, potentiostatic polarisation, 

galvanostatic polarisation, Tafel polarisation and polarisation resistance determinations. 

This electrochemical test as shown in Figure 2.5 provides the means for predicting long-

term corrosion behaviour and service lifetime of metallic structures and also a tool for 

the monitoring of equipment to prevent catastrophic failure. The application of an 

electrochemistry test in the laboratory, can provide useful information for a variety of 

tasks and can also contribute to the selection and development of materials. The 

electrochemical corrosion measurements utilize the electrochemical nature of metallic 

corrosion. An external power source is used to apply a voltage or range of voltages to a 

metal specimen surface submerged in an electrolyte. The applied voltage or the voltage 

range pushes the metal-electrolyte interface beyond its steady state conditions, causing a 

measurable electric current to flow. Voltage and its corresponding current are 

independent and their relationship is used to determine metallic corrosion behaviour or 

estimate corrosion resistance or impedance.  

2.11.1 Linear polarization resistance (LPR) 

The polarization resistance (Rp) of a corroding metal is defined using Ohm‘s Law 

as the slope of the potential (E) versus the current (I) plot at the corrosion potential 
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(Ecorr). By measuring this slope, the rate of corrosion can be measured. The correlation 

between icorrand slope is given by: 
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where βa and βc are the anodic and cathodic for Tafel slopes (mV/decade), 

respectively (as described in 2.6).  

The linear polarization resistance (Figure 2.16) method is capable of measuring 

the corrosion rate of a system. It is achieved by shifting the corrosion potential typically 

10 to 20mV in the noble and active direction from Ecorr. Both the potential and the 

current required to achieve this potential are recorded. The potential is stepped in 

increments (called over-potentials, typically 1mV scanning at 0.25 mV/sec) from one 

extreme to the other and each of these steps is recorded. The plotting of these data yield 

a polarization curve. When this is done, it is observed that the applied current density is 

a linear function of the electrode potential. The polarization resistance, Rp, is equal to 

the slope of this curve (ΔE/Δiapp), as shown in Figure 2.16. The corrosion rate can then 

be determined using the Stern-Geary equation: 

      2.17 

 

The quantity βa, andβb are referred to as the Tafel constant, which can be measured 

experimentally or estimated. Corrosion rate can be obtained from Faraday‘s Law; 

 Corrosion rate                sec// 2cmmoles
nF

icorr     2.18 

Where F= Faraday constant = 96500 Coulombs/mole 

Michael Faraday discovered that current is generated by the anodic reaction to an 

equivalent mass loss or corrosion penetration rate. Faraday‘s empirical laws of 

electrolysis relate the current of an electrochemical reaction to the number of moles of 

the element being reacted and the number of moles of electrons involved [13].  
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Figure 2.16 LPR measurement from Tafel plot [22] 

According to this, the reaction of 1 mol requires 1 mol of electron or 1 

Avogadro‘s number of electrons (6.023x10
23

). The charge carried by 1 mol of electrons 

is known as 1 faraday (F). The Faraday is related to another electrical unit through the 

electronic charge, 1.6X10
-19

 Coulomb (C). The corrosion rate in mm per year 

(mm/year) can be obtained by multiplying the steel molecular weight (55.65 g/mol for 

carbon steel and 52 g/mol for stainless steel) as per density (7.8 g/cm
3
 for carbon steel 

and 8.0 g/cm
3
 for stainless steel).  

2.11.2 Potentiodynamic polarisation 

Polarisation diagrams of corroding metals, sometimes called Evans diagrams are 

graphs of potential versus log current or log current density. The design of 

electrochemical cell used in many corrosion laboratories (as shown in figure 2.5) 

consist of electrode being studied (working electrode), reference electrode and the inert 

counter (or auxiliary) electrode that is usually made of platinum. All the electrodes are 

submerged in electrolyte such as seawater which is a medium for electron transfer. 

In seawater, passive film forming alloys like aluminium or stainless steel require 

an induction time for pitting to occur. Thus, the scan rate in a potentiodynamic test can 

significantly influence the results obtained.  The dynamic nature of these test methods 
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may preclude the natural formation of films on a metal or alloy surface, which can 

cause the distorted results. Cyclic polarisation methods are often applied in studying 

localised corrosion. Electrochemical methods to measure the susceptibility of alloys to 

pitting corrosion are reviewed elsewhere. The disadvantages associated with selecting 

the proper scan rate in the potentiodynamic method do not apply to the cyclic methods.  

The Tafel extrapolation test is capable of determining very low metal corrosion 

rates. When conditions are ideal, its accuracy is equivalent to or better than weight loss 

measurements.  However, to maintain accuracy, the Tafel regions must encompass at 

least one order of magnitude of current. Also, this method can only be applied to 

systems that have one reduction process or the Tafel region may be distorted and 

corrosion rate determinations will be inaccurate. Finally, the Tafel method only yields 

an average uniform corrosion rate and is not sensitive to localised corrosion. Therefore, 

the use of this technique in seawater is considered to be limited primarily to obtaining 

an indication of the corrosion rate within an order of magnitude [38].  

Potentiodynamic scanning (PDS) (Figure 2.17) and cyclic polarisation (CP) 

(Figure 2.18(a) and (b)) have cathodic branch curves similar to the Tafel plot. The PDS 

and CP curves also have anodic branches.However, they extend over a wider potential 

range and are often much more complex than the Tafel plot anodic branches. Figure 

2.17 shows additional information obtained when the anodic branch is polarised more 

than 700 to 800 mV beyond the Tafel range. For all the polarisation, the scan starts from 

point 1 and progresses in the positive potential direction. There are a number of notable 

features concerning the curve. The Open Circuit Potential (OCP) is the electrical 

potential difference between two metals submerged in an electrolyte when no electrical 

current flows between them (in this laboratory test is the potential between working 

electrode and the reference electrode). At this potential, the sum of the anodic and 

cathodic reaction rates on the electrode surface is zero. As a result, the measured current 

will be close to zero. This is due to the fact that the potential only measures the current, 

which it must apply to achieve the desired level of polarization. 

As the potential increases in the active region, metal oxidation takes place until it 

is beyond the Tafel plot. When the current and potential increaseto a certain limit, the 

current decreases or is essentially constant over a finite range, the primary passivation 

potential, Epp can be obtained. The log value for current at this point is identified as the 

critical current density icc. As the applied potential increases above this value, the 

current density is seen to decrease with increasing potential until a low passive region is 
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achieved. Once the potential reaches a sufficiently positive value, the breakdown 

potential (Eb) is obtained. This is the most point localized corrosion susceptibility was 

evaluated and also known as pitting potential. This is considered a potential, which 

could be univocally determined according to any given combination of 

material/ambient/testing methods. 

After this point, the applied current rapidly increases due to various phenomena, 

depending on the alloy or environment combination. For some systems, this sudden 

increase in current may be the breakdown of the passive film while for others it may be 

transpassive dissolution. For some alloys, typically those with a very protective oxide 

such as cobalt, the sudden increase in current is due to oxygen evolution[39]. For some 

materials, second passivity happenswhile for others it does not. It should be noted that 

the schematic diagram illustrates some of the possible regions present on an anodic 

polarization scan. Depending on the nature of a particular system, some or all of these 

features may be present.  

Cyclic polarisation (CP) curves can be considered as extensions of potential 

dynamic curves. The test electrode potential is increased in the anodic direction until the 

test electrode polarization either reaches approximately +1000mV from OCP, or the 

current density reaches a given magnitude (area x 0.005 A/cm
2
), then the potential 

decreases towards the OCP. Figure 2.18 (a) and (b) show examples of CP curves. The 

arrows indicate the potential scan directions.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 A cathodic and anodic polarization plots cyclic potentiodynamic 

analysis [24]. 
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Negative hysteresis in figure (a) occurs when the reverse scan current density is 

less than that for the forward scan, whereas positive hysteresis in figure (b) occurs when 

the reverse scan current density is greater than that for the forward scan. 

As mentioned before, the passive film is destroyed when the potential is increased 

into the transpassive region of a PDS or CP curve. Pitting can occur and initiate at 

discrete locations on metal surfaces when the surface film is demolished. It is generally 

believed that pits will continue to grow when OCP is greater than the repassivation 

potential (Ep), and pits will not grow when OCP is less than Ep[23]. Otherwise, passive 

film damage is not repaired and will contribute to pits initiated in positive hysteresis but 

not when negative hysteresis occurs. Damaged passive film repairs itself and pits do not 

initiate in negative hysteresis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

(b) 

Figure 2.18 A cyclic polarization curve. (a) negative hysteresis and (b) positive 

hysteresis [23]. 
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Chapter 3  

LITERATURE REVIEW 

3.1 Introduction 

This chapter will elaborate upon the properties of seawater that accelerate 

corrosion, as well as the requirements of the oil and gas industry and the history of 

hydraulic fluids pertaining to the industry. This includes how the trend changed from 

using water as a hydraulic fluid to oil-based hydraulic fluids. Then, with the 

improvement in research and development, the usage of inhibitors has ensured that in 

the oil and gas sector productivity has been maintained by managing corrosion attack. 

However, with increasing environmental concerns, the chemicals added as inhibitors are 

controlled by environmental legislation to ensure that all discharges are safe for marine 

life. The waste is characterised in four different categories – biocompatibility, 

bioaccumulation, biodegradibility and toxicity. The last paragraph explains about the 

materials used in this research, which can be categorised as active and passive 

materials. 

3.2 Seawater 

Seawater is an extremely complex ionic aqueous solution containing at least 70 

elements in widely-varying concentrations[40]. It has a very good electrical 

conductivity approximately 0.04 mΩ cm
-1

,which is at least 4,000 times better than most 

freshwater[16]. Salinity, pH, oxygen level, and temperature are parameters that have a 

strong influence on corrosion reactions. These factors vary in vertical distribution from 

the seabed to the surface. The salinity and pH of seawater are relatively stable 

measurements whereas temperature and dissolved oxygen may vary.  The salinity 

increased as the depth increased and thus decreased pH to more acidic. Temperature 

may varies with the amount of sun and oxygen content depends on life forms in the 

seawater.  

Theoretically, salinity is the mass of dissolved salt ions present in 1 Kg of 

seawater. Normal salinity is 35 grams/kg of water (3.5%). Figure 3.1 provides a simple 

illustration of the constituents comprising the 3.5% salt content of seawater. Salinity is 
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also used to express the salt content of seawater. Almost 99% of all seawaters have a 

salinity ranging between 33 ppt and 37 ppt.  

The pH of seawater is usually 7.7-8.3 at the surface, but will decrease and become 

more acidic (3-4) in deep water as the density increases. The pH is also affected by 

bacterial action. Organic compounds produce carbon dioxide, which can lower the pH 

to ≈ 5-6. [16]. 

 

 

Figure 3.1 Composition of seawater [41] 

 

3.2.1 Freezing point of seawater, Tf and chemical additions 

The freezing point of seawater is the temperature at which pure ice and seawater 

are in thermodynamic equilibrium[42]. This temperature decreases with increasing 

salinity and increasing water pressure. Examples of antifreezeinclude ethylene glycol, 

which is toxic and not biodegradable and propylene glycol, which is non toxic and 

biodegradable but not so effective and very expensive.  

Other than antifreeze, chlorine in the form of typical biocidesis also added to 

seawater to prevent marine growth, which would cause tube blockage resulting in the 

loss of heat transfer or impingement attack. Extra care must be taken in adding chlorine 

as excess chlorination can produce corrosion effects on steel and copper base alloys. 

Research by the Copper Development Association found that the best way is to measure 
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the residual chlorine at the plant outlet and adjust and maintain the chlorine dose at a 

low level, e.g. 0.1-0.2 ppm [43].  

Temperature, pH, salinity and biological activity are the other factors that should 

be considered when dealing with seawater. The temperature and salinity controls 

seawater density, which is the major factor governing the vertical movement of ocean 

water [44]. The density of seawater normally increases with depth. 

3.2.2 Role of anions on corrosion attack 

Corrosion is the physicochemical interaction between a metal and its environment 

that results in changes in the properties of the metal, and which may lead to significant 

impairment of the function of the metal, the environment, or the technical system, of 

which these form a part. It is known that every substance interacts differently with the 

environment in which it is used. Furthermore, each ionic species present in the 

environment behaves uniquely. While no general theory has been established, so far, 

that accounts with certainty for the corrosion interaction between metals and the 

environment, it is realised that there is more than one factor that influences the 

corrosion of metals in aqueous solutions. This makes it necessary to study the effects of 

the ions in the solution on the corrosion phenomenon, with due consideration to such 

factors as the type of the metal, temperature, pH, oxygen and ions. 

In contrast to general corrosion, attack by pitting sometimes occurs in some 

particular environmental conditions. These problems result from the presence of 

specific aggressive species such as chloride, sulphate or nitrate[45]. Each of these 

species alone can produce pitting corrosion in alloy but with different levels of 

aggressiveness. For some corrosive resistance alloy such ascopper, sulphate ions appear 

more aggressive than chloride ions and nitrate ions are more aggressive than sulphate 

ions[46]. 

El Wanees et al.[47]., in his study about pitting corrosion in the presence of Cl
-
 as 

aggressive ions and CrO4
2-

, HPO4
2-

, NO2
-
, WO4

2-
and MoO4

2-
 as inhibiting anions, found 

that the limiting corrosion currents increase with an increase in the Cl
-
 ion concentration 

and decrease with an increase in the pH and inhibiting ions concentration for 

reinforcing steel (carbon steel) in concrete. The injection of the inhibiting anions in 

solution causes repassivation of pre-formed pits through competition with Cl
-
 ions for 

adsorption sites on metal oxide surface. Figure 3.2 shows that concentrations of Cl
-
 ions 

are not enough to influence the passive character of the steel surface when Cl
- 

ions 

present with concentrations below 5 X 10
-5

 M. With slight increase in the concentration 
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of the aggressive Cl
-
 ions, corrosion current starts to flow compared to presence of Cl

-
 

ions with concentrations below 5 X 10
-5

 M and the flowing currents reach limiting 

values in the higher concentration of Cl
-
 ions. Currents start to decrease once again 

either to reach zero value in presence of 5 X 10
-5

 M Cl
-
 ions, or to reach slightly higher 

values that depend also on the Cl
-
 ions concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Variation of the logarithm of pitting corrosion current density with time 

for steel electrode immersed in solutions of 1 X 10
-3

 M Ca(OH)2 containing 

increasing concentrations of NaCl, at 25
0
C for medium carbon steel [47]. 

 

In a study by Takasaki and Yamada [45] about the effects of temperature and 

aggressive anions on the corrosion of carbon steel in potable water it was concluded that 

the corrosion rate increased in proportion to the concentration of aggressive anions and 

with increasing temperature. A study by Strehblow and Titze [48]on iron and nickel in 

Cl
-
, Br

-
 and I

-
, as aggressive anions and NO3

-
 and ClO4

-
 as the inhibiting anion, found 

that the pitting region within the passive potential range became greater when the 

concentration of the aggressive anions was increased and smaller when the inhibitor 

concentration was increased. 

El-Naggar[49], who studied the aggressive anions Cl
-
, NO3

-
 and SO4

2-
 on the 

corrosion and passivation behaviour of carbon steel in 0.50 M sodium bicarbonate 

solutions found that the presence of these aggressive anions stimulates the anodic 

dissolution rate in both the active and pre-passive potential regions.Pitting corrosion 

was only observed in the presence of Cl
-
 anions, while the presence of NO3

-
 and SO4

2-

anions was only facilitated by the oxygen in the water without themselves participating 

in the cathodic process. The effect of SO4
2-

 anion exerts an indirect effect on increasing 
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the cathodic reaction and influence the anodic reaction [49]. He found that increasing 

the concentration of Cl
-
 ion in the range from 0.002 to 0.100 M in 0.50 M NaHCO3 

solutions shows a very low anodic passivating current followed by pitting potential 

(Epitting). Increasing the Cl
-
 ion concentrations from 0.003 to 0.040 M reduce the oxygen 

evolution on passive electrode and cause the current density increase abruptly and 

developing pitting corrosion at Epitting. Increasing the concentrations of Cl
-
 ion to 0.04 

M, Ebreak coincide with Epitting thus, Cl
-
 ions concentration is considered as the limiting 

concentration. The dependence of Epitting on the concentration of Cl
-
 ion is shown in 

Figure 3.3. The figure shows that the presence of lower concentrations of the Cl
-
 ions 

has a slight effect on the value of Epitting. The latter is slowly shifted in the active 

direction as the concentration of the aggressive anions in increased. This suggests that 

lower concentrations of Cl
-
 ions are not sufficient to form an active pit. The pits formed 

under these conditions are passivatable in nature. The pits formed in the presence of 

high concentrations of Cl
-
 ions (more than 0.0025 M) are active and cannot undergo 

repassivation and the attainment of nearly constant Epitting at higher Cl
-
 ions 

concentrations can be attributed o the formation pitting propagation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Dependence of Epitting of carbon steel on the Cl
-
 ions concentration [49] 

 

Naggar [49] also found that increasing the concentration of SO4
2-

 ions in the range from 

0.0 to 0.2 M in deaerated 0.5 M NaHCO3 solutions shows no pitting and he elucidated 

that the role of SO4
2-

 ions is to facilitate repassivation depending on the potentials and 

passivation currents on the nature of SO4
2-

 ions. From his study obviously shows that 
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the rate of anodic dissolution increase continuously in the passive region until the 

concentrations of SO4
2-

 ions reach 0.20 M, the corrosion rate increase and it decreases 

with further increase in potential as shown in Figure 3.4. Thus, he considered that 0.20 

M  of SO4
2- 

 ions is the limiting concentration concentrations and he grouped 0.02 M to 

0.18 M SO4
2- 

 ions is low concentration ranges whereas 0.2 M SO4
2- 

 ions is high 

concentration range as indicative to the changes in the mechanisms of the passivation 

process. With the evidence of anions effect in increasing and retarding the corrosion 

rate, therefore, some of these anions in seawater were studied in this research. The 

effects were studied by varying the ratio of Cl
- 

and SO4
2-

 in seawater in terms of 

corrosion rate and breakdown potential in DCV materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Effects of Na2SO4 concentration on the anodic behaviour of carbon steel 

in dearated 0.5 M NaHCO3 solutions at scan rate of 25 mV/s; (0) blank; (1) 0.020 

M; (3) 0.055 M; (4) 0.070 M; (5) 0.100 M; (6) 0.150 M (7) 0.180 M; (8) 0.200 M 

[49]. 
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3.2.3 Saturation 

Deep ocean water is usually under saturated with respect to carbonates, whereas 

surface water is usually saturated due to wave action exposure to CO2 in the 

atmosphere. Saturation will affect the deposition of calcium and magnesium salts in 

cathodic reaction during corrosion. Saturation is also caused by Dissolved Oxygen 

(DO). The amount of dissolved gas in seawater is also affected by the water temperature 

and salinity. Increasing the temperature or salinity would reduce the amount of gas that 

could be dissolved. Nominal DO in seawater ≈ 6-8 ppm at 25-30°C [50]. The DO 

may be higher depending upon wave action, slurry and life activities. 

Supersaturation of oxygen may occur due to photosynthesis by phytoplankton 

bloom. When the DO is low, bacteria or biological action and chemical oxygen demand 

will decrease as well. Localised variationsmight also change the DO and temperature as 

well. As depth increases, the temperature will decrease. The surface of the ocean is 

about 13°C and decreases to 5°C at 3,000 feet while the DO decreases to 6ppm[16]. 

3.3 Seawater as a Corrosive Medium 

Water has the highest heat capacity of all solids and liquids except liquid NH3 

because it takes a lot of energy to break the hydrogen bonds and change the structure of 

water[15]. Thus, water has a large thermal buffer capacity and acts as a climate buffer. 

The partial chargeof the water molecules allows them to pull apart and dissolve ionic 

compounds like salt very easily. The salts have the effect of making the water 

molecules cluster and become more ordered, and, thus, harder to pull apart and 

evaporate. 

In addition to pure water, seawater systems are used by many industries, such as 

shipping, offshore oil and gas production and power plants. The main use of seawater is 

for cooling purposes. However, it is also used for fire fighting, oilfield water injection 

and desalination plants. Although corrosion problems in these systems have been well 

studied over many decades, and despite the published information concerning the 

behaviour of materials in seawater, failures still occur. Seawater is normally more 

corrosive than freshwater because of the higher conductivity and the penetrating power 

of the chloride ion through surface films on a metal. The rate of corrosion is controlled 

by the chloride content, oxygen availability and temperature[14]. In Table 3.1, the 

physical properties of seawater and freshwater are compared. 
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Table 3.1 Comparison of seawater and pure water properties 

 

3.4 Hydraulic Fluids 

3.4.1 History of hydraulic fluids 

Oil hydraulics overtook water hydraulics in the early part of the last century for 

both research effort and industrial applications even though water hydraulics were 

pioneered by the ancient Greeks[51]. The growing concern about environmental issues 

has led to renewed interest in water hydraulics because water is non-toxic, 

environmentally friendly and readily available. In many industries, people are steadily 

turning to water-hydraulic systems to replace their oil-hydraulic counterparts, especially 

in the oil and gas industries because water can be easily dischargedinto the sea. Thus, 

the use of water as a hydraulic fluid would not only reduce the environmental issues, 

Property Seawater (35 
0
/00) Pure Water 

Density, g/cm
3
, 25°C 1.024 1.003 

Specific conductivity, ohm
-1

 cm
-1

, 25°C 0.0532 - 

Viscosity, milipoise,25°C 9.02 8.90 

Vapour pressure,mm Hg, 20°C 17.40 17.34 

Isothermal compressibility, vol/atm, 0°C 46.4 x 10
-6 50.3 x 10

-6 

Temperature of maximum density, °C -3.25 3.98 

Freezing point °C -1.91 0 

Surface tension, dyne cm
-1

, 25°C 72.74 71.97 

Velocity of sound, m s
-1

, 0°C 1450 1407 

Specific heat, J g
 -1

 °C
-1

, 17.5°C 3.898 4.182 

Refractive index 1.33940 1.33300 

Osmotic Pressure, bar, 25°C 25.9 - 

pH 8.2 ± 0.1 7 ± 0.1 
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but also reduce the cost of operation in the oil and gas operations. Figure 3.2 shows the 

past applications of hydraulic fluids. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Past applications of water and oil hydraulics [51]. 

 

3.4.2 Types of hydraulic fluid 

 The hydraulic fluid is the connecting element in any hydraulicunit. It is 

important to select with care the hydraulicfluid for the hydrostatic circuit. Quality and 

cleanlinessof the hydraulic fluid are decisive factors for the operationalreliability, 

efficiency and life cycle of the system.Hydraulic fluids must conform with, and be 

selected andused in accordance with, the safety provisions as wellas the generally 

acknowledged rules of technology. 

 Hydraulic fluids are a large group of liquids comprising many kinds of 

chemicals that are used in machines and equipment to transfer pressure from one point 

to another. Figure 3.6 shows the types of hydraulic fluid from oil and water-bases[52]. 
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Figure 3.6 Types of hydraulic fluid [52] 

 

3.4.3 Purposes of hydraulic fluids 

Generally, there are four main purposes of hydraulic fluid – power transmission, 

lubrication, sealing and cooling. The primary purpose of any hydraulic fluid is to 

transmit power mechanically throughout a hydraulic power system. As power 

transmission hydraulic fluid flows easily, power losses can be reduced and make the 

circuit respond quickly.  

Hydraulic fluids must provide the lubricating characteristics and qualities 

necessary to protect all hydraulic system components against friction and wear, rust, 

oxidation, corrosion and demulsibility. These protective qualities are usually provided 

through the use of additives. Some fluids may need special consideration in component 

design to overcome their lack of lubricity.  
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Many hydraulic system components, such as control valves, are operating with 

tight clearances where seals are not provided. In this application, the hydraulic fluid 

must provide the seal between the low-pressure and high-pressure side of the valve 

ports. The amount of leakage will depend on the closeness or the tolerances between the 

adjacent surfaces and the fluid viscosity.For cooling purposes, the circulating hydraulic 

fluid must be capable of removing the heat generated throughout the system. To change 

the hydraulic fluid from oil to water, the melting point is the important criterion to 

consider. 

3.4.4 Hydraulic fluid criteria 

To make the hydraulic fluid successfully fulfil all the requirements, it must be 

chemically inert, have good oxidation and thermal stability and be resistant to 

degradation. The other criterion is that it should exhibit minimal change of viscosity 

with temperature and remain stable and non-volatile at high temperature. As some 

applicationsare for valves, hydraulic fluids will have high pressure in high temperature, 

thus, it is preferable to be non-inflammable and in some instances resistant to nuclear 

radiation. By using water hydraulics, engineers can be sure that the hydraulic fluids are 

clean and readily available. 

3.4.5 Corrosion in hydraulic fluids 

The most common hydraulic fluids used in sub sea applications systems are the 

petroleum-based oils. These fluids contain additives to protect the fluid from oxidation, 

corrosion, reduce the fluid to foam and improve viscosity. To protect from corrosion 

attack, the hydraulic fluid were added with certain amount of inhibitor to provide 

deposit of protective film on metal surfaces. These additives (inhibitor) must exhibit 

excellent hydrolytic stability in the presence of water to prevent fluid breakdown and 

the acid formation that causes corrosion. In some applications, hydraulic fluid needs 

fire-resistance fluids like mineral-oil-based hydraulic fluid. But, even that development 

work has established a successful technology, but they are all some degree of 

toxicological or combustion risk and lead to certain engineering difficulties [53].  

The development of water-based hydraulic systems is further motivated by the 

diminishing resources and increasing cost of mineral oils. The problems of loss of 

viscousity, porting, shear losses in bearing represent a significant proportion of the 

efficiency losses in hydrostatic transmission. This is clearly shows that there are 

advantages in developing hydraulic equipment to operate on a low viscosity, high bulk 
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modulus fluid such as water. However, the use of water alone as a hydraulic fluid 

presents problems because of the high freezing point, low boiling point and corrosion 

problems, particularly with ferrous metals. Because of that, the use of hydraulic fluids 

added with inhibitor could control the corrosion attack, however the major change will 

influence the formulations and will be demanding on environmental legislation and the 

desire for the offshore industry to show its commitment to preserving the sea and 

marine ecosystems. 

Many thousands of pounds and man hours have already been spent in producing 

new fluids and these fluids are about 100 times less toxic than already ‗environmentally 

acceptable‘ hydraulic fluids [54]. With the increased awareness in environmental issues, 

the concern and pressure not only towards industrial activities but also in oil and gas 

industry due to its past record of spillage and discharges and the damage that these have 

caused the environment. The legislation limits the quantities of fluids that can be 

discharge into the sea depending upon the chemical content of these fluids and the 

manner in which they are used. The consequence of such legislation require subsea 

control and drilling mud operators to identify chemicals disposed during routine 

operation and evaluate the possible effects that may cause to the environment. As a 

consequence, the design of control systems and hydraulic fluids use in these systems is 

consider in great detail. The producers are looking for a system that is not only capable 

of functioning at high temperature but also can be direct discharge to the sea which is 

accepted by regulatory bodies.  

3.5 Impact of Oil and Gas Activities on the Environment 

3.5.1 Oil and gas Exploration and Production (E&P) wastes 

The American Petroleum Institute (API) estimated that 149 million barrels of 

drilling waste, 17.9 billion barrels of produced water and 20.6 million barrels of other 

associated wastes were generated in 1995 from exploration and production (E&P) 

operations [55]. Once generated, managing these wastes in a manner that protects 

human health and the environment is essential to ensure the waste is subject to 

hazardous waste regulations. Prudent waste management decisions, even for non-

hazardous wastes, should be based on the inherent nature of the waste and obviously not 

all waste management options are appropriate for every waste.   
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With respect to crude oil, the primary field operations include activities occurring 

at or near the wellhead including exploration, development, and the primary, secondary 

and tertiary production of oil or gas, such as water separation. In 1988, the 

Environmental Protection Agency (EPA) published a listof wastes that were determined 

to be either exempt or non-exempt, although it should not be considered to be 

comprehensive. The exempt wastes include produced water, rig wash, drilling fluids 

and cutting and accumulated materials such as hydrocarbons, solids, sand and emulsion 

from the production separator. Whilst non-exempt wastes include cleaning and painting 

wastes, solvents, acids, refinery, used equipment lubricating oils, boiler cleaning wastes 

and used hydraulic fluids.However, with the increasing concern for environmental 

issues pertaining to the discharge of waste direct to seawater including wastewater has 

caused the environmental board to strengthen the policy. Accordingly, the use of 

seawater with water treatment to reduce the corrosion attack will reduce the 

environmental issues.  

3.5.2 Evaluation of the hazard and risk of chemicals used by the UK  

offshore oil and gas industry 

As mentioned before, in every stage of oil and gas operations, a wide range of 

chemicals are required to enhance drilling performance, to promote production and 

separation of oil or gas, to protect equipment from corrosion and to maintain safety. 

Since the start of oil and gas production in the North Sea in the early 1970‘s, the 

regulation of chemicals used by the offshore industry on the UK continental shelf 

(UKCS) has evolved from a basic consideration of chemical toxicity into a more 

comprehensive assessment and management of the risks posed [56]. In the UK, 

following the introduction of the offshore chemicals regulations, OCR operators of 

offshore oil and gas installations are required to only use chemicals present on the list of 

notified chemicals. Test data describing the persistence, bioaccumulation and toxicity 

(PBT) of chemicals with the exception of some natural materials, salts and similarly 

benign substances considered to pose little or no risk (PLONOR), is required before 

they can be added to the list. 

3.6 Inhibitors 

A corrosion inhibitor is a substance, solid or liquid, which when added in only 

moderate quantities to a corrosive fluid should significantly reduce the corrosivity of 

that fluid towards a particular metal[55]. Corrosion inhibitor reduces the corrosion 

attack in two ways. In some situations, the added inhibitors can alter the corrosive 
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environment into a noncorrosive or less corrosive environment through its interaction 

with the corrosive species. In other cases, the corrosion inhibitor interacts with the 

metal surface and therefore inhibits the corrosion of the metal.  The inhibitors interact 

with the metal surface and form a passive film or an adsorbed layer acting as a barrier 

film. Therefore, base on the mode of interaction, inhibitor can be divided into two broad 

classes which are environment modifiers and adsorption. Environment modifiers act by 

simple interaction with the aggressive species in the environment and reduce the attack 

of the metal by the aggressive species. Adsorption type act by adsorb on the metal 

surface and inhibit the corrosion (Figure 3.7). Regardless of their type, most of the 

inhibitorscurrently used are either organic or inorganic chemicals for the retardation of 

the corrosion progress under different environments. Inorganic compounds must be able 

to oxidize the metal and form a passive layer on its surface. Its molecules may have a 

large structure, double bonds, an active centre or group, thus, giving the molecule an 

ability to cover a large area of metal surface with a firmly attached film. 

 

 

 

 

 

 

   

 

 

Figure 3.7 Adsorption type inhibitor [57] 

 

Inhibitor can be designed to act as anodic or cathodic inhibitors depending upon 

reaction. They are also mixed inhibitors that inhibit both anodic and the cathodic 

reactions and this type are generally represent by organic compounds[55]. Cathodic 

inhibitors inhibit the hydrogen evolution in acidic solutions or the reduction of oxygen 

in neutral or alkaline solutions. Substances with high overpotential for hydrogen in 

acidic solutions and those that form insoluble products in alkaline solutions are 

generally effective cathodic inhibitors [59]. Anodic inhibitors are generally effective in 
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pH range of 6.5 – 10.5 (near neutral to basic) [189]. Nevertheless, the concentration of 

inhibitor is the main factor which affects the effectiveness of inhibitor.The mechanism 

of anodic inhibition can be explained using the polarization diagram of an activepassive 

metal (Figure 3.8) [159].In the absence of inhibitors, the metal corrodes in the active 

state at a rate corresponding to pointA. As the concentration of inhibitor is increased, 

the corrosion rate also increases until acritical concentration and a critical corrosion rate 

(point B) are reached. At the criticalconcentration, there is a rapid transition of the metal 

to the passive state, and the corrosion rate isdecreased (point C). 

 This diagram clearly illustrates the critical aspects of inhibitors concentrations. It 

shows that the protection is rendered when sufficient amount of inhibitor is used. 

Otherwise, corrosion is increased if the inhibitor is sufficient.  

 

 

Figure 3.8  Polarisation diagram of an active-passive metal showing the 

dependence of the current on concentration of passivation-type inhibitor  [60]. 

Apart of two broad classes of inhibitor mentioned before, inhibitor also can be 

classified into (a) passivators, (b) barrier inhibitors, (c) poisons, (d) scavengers and (e) 

neutralizers. Whichever it is, the most important thing is that it must be a non-toxic and 

environmentally friendly chemical. Passivators act as depolarisers in contact with a 

metal surface initiating high current densities at residual anodic areas exceeding the 

critical current density of passivation. Passivator ions are those thermodynamically have 

either an oxidizing capacity (noble in oxidation-reduction potential) or that are readily 

reduced (shallow cathodic polarization curve) as shown in Figure 3.8. Barrier inhibitor 
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forms a layer on a metal or metal oxide surface and frequently, these barriers are as thin 

as one or two layers on inhibitor molecules. Contrary to green inhibitor, poisons or toxic 

inhibitor may harm the habitat and cause side effect in future. A scavenger is used to 

purge out gas that contribute to corrosion attack such as oxygen. Tannin is normally 

used in steam boiler to reduce corrosion attack while neutraliser is used to reduce 

corrosion attack by neutralising the water in water treatment process.  

The use of corrosion inhibitors in all petrochemical facilities in the world is 

currently, because they are cost effective and flexible. The total consumption of 

corrosion inhibitors in the United States has doubled from approximately $600 million 

in 1982 to nearly $1.1 billion in 1998 and the demands for chemical inhibitors is 

expected to increase 3.9% annually [61]. Therefore, an organic inhibitor would bring 

many benefits as it would be non-toxic, environmentally favourable and not contain 

heavy metals. However, there is also the possibility that some organics can serve as 

food sources for bacteria in closed-loop systems, thus, crevice corrosion might occur. 

The tendency to form a stronger coordination bond and, consequently, inhibition 

efficiency is expected to increase in the following order Oxygen < Nitrogen < Sulphur < 

Phosphorus [62]. Nitride is always used as an inhibitor for localised corrosion caused by 

chlorides. Their limitation is because they are toxic to the environment and that high 

levels of inorganic phosphates are also restricted by law. 

Figure 3.9 shows the schematic of a corrosion inhibitor, benzimidazole molecule 

as it enters into electric double layer (EDL). The inhibitor action generally consist of 

two processes: diffusion of the inhibitor molecule to metal/solution interphase (EDL), 

and its adsorption on the metal surface. 

 

 

 

 

 

 

 

Figure 3.9 Schematic representation of the benzimidazole molecule [63]. 
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An electrical double layer, EDLis a structure that appears on the surface of an 

object when it is placed into a liquid. The object might be a solid particle, a gas bubble, 

a liquid droplet, or a porous body. The EDL refers to two parallel layers of charge 

surrounding the object as shown in Figure 3.10. The first layer, the surface charge 

(either positive or negative), comprises ions adsorbed directly onto the object due to a 

host of chemical interactions. The second layer is composed of ions attracted to the 

surface charge via the Coulomb force. This second layer is loosely associated with the 

object, because it is made of free ions which move in the fluid under the influence of 

electric attraction and thermal motion rather than being firmly anchored. It is thus called 

the diffuse layer. 

 

 

 

 

 

 

 

 

 

Figure 3.10 Schematic of double layer in a liquid [64]. 

There are several inhibitors available such as volatile, passivating (anodic), 

precipitation, cathodic, organic, inorganic and mixed. Volatile inhibitors are also known 

as vapour phase inhibitors. These are suitable for vapour environments when inhibitor 

molecules in the vapour get in contact with the surface of metal. Examples of this 

inhibitor include amines and nitrides for ferrous metal inhibition [65].  

Passivating inhibitors are anodic inhibitors. There are two categories of 

passivating inhibitors, namely, oxidizing anions and non-oxidizing anions. Oxidizing 

anions have the ability to passivate metal in the absence of oxygen such as chromate, 

nitrite and nitrate. Non-oxidising anions such as phosphate, tungstate and molybdate, 

require oxygen to perform passivation. 
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Precipitation and organic inhibitors are often film forming in nature. They inhibit 

by blocking anodic and cathodic sites and precipitating on metal surfaces as a protective 

barrier. Organic inhibitors form a hydrophobic layer on the surface of the metal to 

prevent dissolution of the metal. They are classified into organic anions and cations, for 

instance sulphonates and phosphonates. For precipitation, film forming can be found in 

two types, either by slowing down the corrosion without stopping it completely or by 

preventing the attack completely. However, the efficiency depends on the pH and 

saturation index, which is determined by the water composition and temperature, for 

instance, silicates and phosphates [66]. 

The effectiveness of organic inhibitors is related to the extent to which they adsorb 

and cover the metal oxide surface on the structure and the chemical properties of the 

layer formed on the metal surface under particular experimental conditions. The 

adsorption depends on the structure of the compounds, the surface charge on the metal 

and on the type of electrolyte. Molybdate and tungstate were proposed as corrosion 

inhibitors for carbon steel in 1951, but until now no clear and deep insight intothe 

mechanism of action is available [56]. Its effectiveness varies with its concentration, pH 

of solution, immersion time, corrosive medium and surface properties of the alloy. 

For inorganic inhibitors, only the active groups of compounds carrying negative 

anions would reduce the corrosion rate. The common inorganic inhibitors are crystalline 

salts such as sodium chromate and molybdate. Overall, corrosion inhibitor should not 

only mitigate the corrosion, but also be compatible with the environment in the sense 

that it should not cause any complications. 

3.6.1 Green Inhibitors 

In the past two decades, the research in the field of ―green‖ corrosion inhibitors 

has been directed toward the goal of using cheap, effective molecules of low or zero 

negative environmental impact. Therefore, the use of non-toxic inhibitors has also 

become one of the major selection requirements[67]. Omanovic and Ghareba [68]. In 

introduce 12-aminododecanoic acid (AA) as a green corrosion inhibitor to carbon steel 

in CO2-saturated acidic medium also known as sweet corrosion. They identified AA as 

non-toxic, biocompatible and easily biodegradable molecule and be considered as green 

corrosion inhibitor. It also can be considered as high efficiency as it inhibits carbon 

steel from corrosion attack within one hour of application by spontaneous adsorption. 
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Sethuraman and Kamal [69] found Spirulina platensis as green inhibitor for 

mild steel in HCl and H2SO4 media. They found that inhibition efficiency increased 

with increasing the inhibitor concentrations. Spirulina platensis inhibits the corrosion of 

mild steel through adsorption following Temkin isotherm, ∆G. Temkin isotherm, ∆G 

was calculated by using;  

∆G=-RT ln (55.5 K)       3.1 

relationship where R is universal gas constant (kJ/mol), 5535 is a concentration of water 

(mol/L) and T is the temperature and K is equilibrium constant value. 

The use of inhibitors is one of the most practicalmethods of protection against 

corrosion, especially in acidic media [70]. Inhibitors are commonly used in these 

processes to control the metal dissolution as well as acid consumption[71].The most 

acid corrosion inhibitors are nitrogen-sulfur and oxygen-containingorganic 

compounds[72].Saracoglu et at.[73] used Benzamide (BA) and 4-aminoben-

zenesulfonamide (ABSA) to replace Amides Benzotriazole (BTA)  which is known 

toxic and not biodegradable to corrosion of copper in 1.0 M HCl. Figure 3.11 below 

shows the structure of BA and ABSA. Saracoglu et al. found that ABSA more effective 

than BA and the adsorption of inhibitor are followed Langmuir isotherm model.  

 

 

 

 

 

 

 

 

Figure 3.11 Structure of inhibitor molecules [73]. 

To claim the inhibitor are ―green‖ for subsea applications, the inhibitor should 

meet the Norwegian and UK regulatory requirements, such that they can be classed as 

environmentally acceptable. Regarding the discharge of water overboard in offshore 

operations, the Norwegian legislation bodies have drawn up a set of guidelines out of 

concern for the environment. These guidelines differ from those of the UK sector that 
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require chemicals for field applications to have specific properties in terms of 

biodegradation, toxicity and bioaccumulation, and, which initially resulted in many of 

the ‗classic‘ water discharges being discounted. They classified the hazardous into four 

categories black, red, yellow and green, as shown in Figure 3.12. 

PLONOR 

 
BOD ≥ 

60% 

If toxic » red  

BOD < 

60% 

   

BOD < 

20% 

 If toxic » Black 

 Log Pow > 5 Log Pow > 3 Log Pow ≤ 3 

 
Black = Disposal to sea not allowed 

Red = To be replaced 

Yellow = Acceptable 

Green = PLONOR list or water 

“If toxic”: Measured toxicity in an EC-50 or LC-50 test is less than 10 mg/l 

Figure 3.12 Norwegian Legislation [74] 

3.6.2 Norwegian legislation 

Green inhibitors refer to inhibitors that are less toxic, efficient in their 

manufacturing process and can deliver into the system when needed with the correct 

amount. Norwegian authorities divide offshore chemicals into one of four colour 

categories. These categories are based on biodegradation, bioaccumulation and (worst 

case) toxicity tests run according to OSPAR (Convention for protection of the marine 

environment of the North-East Atlantic Ocean) guidelines by GLP (Good Laboratory 

Practice) approved laboratories. 

The worst case chemicals, categorised as Black, are not permitted to be discharged 

unless in exceptional circumstances. Red category chemicals are to be phased out and 

banned (after 2017 according to OSPAR). Yellow category chemicals are permitted and 

Green chemicals are those on the Pose Little or No Risk to the Environment (PLONOR) 

list. For the chemical to meet the Yellow category, the requirements it must meet are: 
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 Biodegradation > 20% 

 Log Pow < 3 

 Toxicity > 10 mg/l 

Or it must not be a chemical that is either Red or Black or on the PLANOR list.  

3.6.3 UK legislation 

As for Norway test data biodegradation, bioaccumulation and toxicity is required 

to conform with the OSPAR guidelines. The UK accepts extended marine 

biodegradation data beyond 28 days and also freshwater biodegradation data. Typically 

if the biodegradation of a chemical is > 20% in 28 days; it will judged according to 

criteria as follows: 

 Biodegradation < 70%  

 Bioaccumulation log Pow  ≥ 3 or Bioconcentration Factor (BCF) > 100 

 Toxicity < 10 mg/l 

 These characterisations are clarified in Organisation for Economic Co-operation 

and Development (OECD) in detail. 

3.6.4 Environmental test methods 

OSPAR publish guidelines for completion of the Harmonised Offshore 

Chemical Notifications Format (HOCNF). The objective of this HOCNF scheme is to 

prevent unacceptable damage to the marine environment by offshore oil and gas 

industry activities. It also standardises the requirements for the testing and reporting of 

all chemicals used by the offshore oil and gas industries operating within the North Sea 

and northeast Atlantic. 

The classification systems places chemicals into one of five categories, A to E, 

as shown in Table 3.2. Chemicals in category A have the potential to cause the greatest 

damage to the environment, and category E chemicals have the potential to cause the 

least damage to the environment. 
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Table 3.2: Toxicity classification parameters for the HOCNF Scheme [75] 

Initial grouping A B C D E 

Result for 

aquatic toxicity 

data (ppm)  

1 > 1 to 10 > 10 to 100 > 100 to 

1,000 

> 1,000 

 

 
Results 

forsediment 

toxicity data 

(ppm) 

10 > 10 to 100 > 100 to 

1,000 

> 1,000 to 

10,000 

> 10,000 

Recently the Registration, Evaluation, Authorisation and Restriction of Chemicals 

(REACH) legislation has come into force within the EU. The scope of the REACH 

extends to all chemicals manufactured in, imported to and exported from the EU. 

3.7 Oceanic HW Fluids 

Oceanic HW Fluids are all water-based formulation and therefore it needs to be 

use with products compatible with water glycol systems. The usage also depends on 

temperature where high glycol content in needed for low temperature condition. 

Oceanic HW600 were designed for use in subsea hydraulic control circuits. It can be 

use in topside controls if the equipment is suitable for use with low viscosity.  In 

Oceanic HW600 series technical manual report, it was reported that Oceanic HW600 

have extremely low toxicity, a high degree of biodegradability and do not bio-

accumulate [76]. To ensure this is accepted by regulation scheme, the hydraulic fluid 

need to tested in accordance with the OSPARCOM Harmonised Offshore Chemical 

Notification Format (HOCNF). The testing includes data which is used to determine the 

potential  

3.8 Carbon Steels 

Carbon steel is widely used in engineering applications and comprises about 85% 

of the annual steel production worldwide. Generally, metallic materials are classified as 

ferrous and nonferrous. Ferrous materials consist of steels and cast irons, while 

nonferrous materials consist of the rest of the metals and alloys. Ferrous metals and 

alloys are basically irons with carbon added to them. As the carbon content rises, the 

metal becomes harder and stronger but less ductile and more difficult to weld. Alloys 

with less than 2%C are classified as steels, while those with more than 2% C are called 
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cast iron[77]. As the name implies, cast iron is predominantly produced by casting 

whereas steels are predominantly produced as wrought products, which needs to be 

deformed and shaped after casting.  

3.8.1 Composition of carbon steel 

Steels are classified or grouped according to some common characteristics. The 

most common classification is by their composition and then by their yield or tensile 

strength. According to their composition, the classification is made regarding to their 

carbon content and the alloy content, which can be classified as low carbon, medium 

carbon and high carbon. Low carbon consists of less than 0.25% carbon content, while 

medium carbon consists of 0.25-0.55% carbon content and high carbon consistsof 

greater than 0.55% carbon content.  

Alloys such as manganese, nickel and molybdenum are added to increase the 

strength. If the alloying elements are less than 5%, they are called low-alloy steels while 

more than 5% alloy content are classified as high-alloy steels. The plain carbon (without 

alloy content) and low-alloy steels are coded according to the AISI-SAE (American 

Iron and Steel Institute and Society for Automotive Engineering) system of designation, 

and, due to economic factors, this class of steel are the materials mostly used in the 

construction industry for oil and gas including pipelines even though they corrodeeasily 

in the environment. 

3.8.2Corrosion of carbon steel in seawater 

With considering the cost of product, carbon steel has been widely employed as a 

construction material in oil and gas production. However, one of the major problems 

related to its use is its low corrosion resistance in this environment. Rusting is an 

important phenomenon accompanied with the corrosion of carbon steel and the 

formation of corrosion products such as iron oxides is an biotic process of chemical 

reactions. It was generally agreed by most of the researches that carbon steels are 

generally attacked by uniform corrosion or general corrosion (Figure 2.10). The term 

‗uniform‘ or ‗general‘ corrosion is used to describe the corrosion damage that proceeds 

in a relatively uniform manner over the entire surface of an alloy. It is an even rate of 

metal loss over the exposed surface. It also characterised by a chemical or 

electrochemical reaction or metal loss due to chemical attack or dissolution that 

proceeds uniformly over the entire exposed surface or over a large area. During this 
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process, the material becomes thinner as it corrodes until its thickness is reduced to the 

point at which failure occurs. In a study by Ueda (2006) it was explain that carbon steel 

not only may be attacked by uniform corrosion, but also may suffer severe localised 

corrosion which is commonly known as ‗ringworm corrosion‘ or ‗mesa corrosion‘ at 

temperature around 100ºC in CO2 environments [78]. Yang etal.in their study about the 

effect of carbon content in carbon steel found that a homogeneous microstructure has 

better corrosion resistance and proper amounts of carbon content and fine carbon-rich 

phases are beneficial to the corrosion resistance of carbon steel [79]. 

Besides of metallurgical composition, lattice structure also plays important roles 

in corrosion behaviours. Xu etal. in their study of corrosion behaviour of carbon steel in 

molten zinc bath found that face-centered-cubic (fcc) structure is more corrosion 

resistance than body-centered-cubic (bcc) possiblt due to the compactness of the atomic 

structure [80]. Andijani and Turgoose elucidate that corrosion rates for carbon steel are 

very low at 25ºC and neutral pH when they comparing the corrosion rates of carbon 

steel in deaerated 1 M NaCl solution and artificial seawater. However, a long-run 

measurements at 50ºC and pH 8.5 shows low corrosion rates compared to short-run 

measurements at the same conditions. This is because of the formation of a protective 

hydroxide film on the metal surface which restricted the access of water to the surface 

[81].  

Oxygen is known to be one of the main parameters for corrosion to happen. Lee et 

al. in their study of carbon steel corrosion under stagnant seawater conditions found that 

the surface are covered with intact, tenacious iron oxide when carbon steel were 

exposed to aerobic seawater for 396 days whereas non tenacious sulphides were 

developed when carbon steel were exposed in anaerobic conditions over the same 

period. They concluded that anaerobic conditions is not inhibit corrosion and oxygen 

are not required for aggressive localised corrosion, but once oxygen is introduce to 

carbon steel which previously maintained under strictly anaerobic conditions, the 

corrosion is extremely aggressive [82]. Apart of this study, Caceres et al. in their study 

for corrosion kinetics of carbon steel as a function of dissolved oxygen and NaCl 

concentration elucidate that all kinetic parameters exhibit a significant dependence from 

both the dissolved oxygen and NaCl concentration [37]. The dissolved oxygen in 

aqueous media can behave as a cathodic depolariser and able to support iron dissolution 

at the anode. Nesmeyanova in her study of carbon steel of pearlite structure in deaerated 

and oxygenated media found that at 280ºC, corrosion rate decreased when constant 
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supply of oxygen to the sample. This is due to the formation of protective layer on the 

sample surface [83].  

3.9 Stainless Steels 

3.9.1 Stainless steel 316L 

Stainless steels (SS) have been widely used in industrial components for decades. 

The selection of stainless steels results from their well-documented resistance to 

corrosion but yet, stainless steel still suffers for corrosion attack especially in corrosive 

media such as seawater. Corrosion of stainless steel in seawater is dependent mainly on 

the salt content (which increase the electrical conductivity) and its oxygen content. A 

number of variables can influence and complicate the course of corrosion in different 

ways such as chloride, sulphate and temperature. 

In the context of corrosion, stainless steels are characterized by their passivity. 

Under certain conditions, steel is passive, where the corrosion rate for the metal is 

relatively low. Iron is considered an active-passive metal and, therefore, steel behaves 

similarly. Passivity can be defined as the loss of chemical reactivity under certain 

conditions [1]. Steel achieves this by having a passive film form along its surface. 

Figure 3.13 (a) below shows the formation of pitting corrosion on SS covered with a 

lace-like layer [84]. This is indicating that the passive film is scarcely soluble, both in 

the bulk electrolyte and that within the pit. The flat-walled pit in Figure 3.13 (b) 

indicated that there is no ohmic layer within the pit which can maintain equal current 

density at all points of the pit surface. The hemispherical (or partly spherical) pits 

suggest that there probably occur processes similar to those accompanying 

electropolishing  within the pit [84]. 

 

 

 

 

 

Figure 3.13 Pits with (a) lace-like cover over the top and (b) flat-walled opening 

[84]. 
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The characterisation of SS is according to the minimum 10.5% wt% Cr 

(Chromium) addition to iron [85]. For most SS, the maximum chromium content is 

about 30% and the minimum iron content is 50%. The stainless characteristic arises 

from the formation of an invisible and very adherent chromium-rich oxide surface film. 

This puts the steel in a passive state and when the film is breached, it immediately heals 

when oxygen is present. It is highly corrosion resistant and shows little or no corrosion 

if the passive film remains intact. According to Strafford etal., corrosion resistance 

obtained when chromium content increased from 1% to 12% by plasma-nitriding 

process [86]. 

Modifications of lower grade stainless steel produce the other classes, according to 

their metallurgy structure, to achieve higher specific strength stainless steels: austenitic 

(face-centred cubic), ferritic (body-centred cubic), martensitic (transformed from the 

austenite face-centred cubic structure at high temperatures to the body-centred 

tetragonal, which is martensite structure at low temperatures when the austenite is 

rapidly cooled in air or in a liquid) and duplex stainless steel (ferritic plus austenitic). 

The choice of austenitic stainless steels is steadily increasing with the introduction of 

newer alloys and by the modification of traditional ones to improve one or more of 

theirs properties. 

The American Iron and Steel Institute (AISI) designate the wrought standard 

grades of stainless steels by three digit numbers. The austenitic grades are designated by 

numbers in the 200 and 300 series, while the 400 grades are either ferritic or martensitic 

[77]. A study by the Society for Automotive Engineers (SAE) and the American Society 

for Testing Materials (ASTM) resulted in the Unified Numbering System (UNS). The 

letters identify stainless steels, however, some stainless alloys use the letter N because 

of their higher nickel content. 

The austenitic stainless steels generally contain from 16% to 26% chromium, up 

to 35% nickel, and up to 20% manganese. The corrosion resistance in a chloride 

environment can be enhanced by balancing the ferrite stabilizer, such as chromium and 

molybdenum.   

3.9.2 The 25Cr Duplex stainless steel 

Duplex stainless steels exhibit excellent properties over either austenitic or ferritic 

stainless steels because of the presence of about equal amounts of the austenite and 

ferrite phases in microstructure.They first became available in the 1930s 

(b) 
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[85].Commercial grades of duplex stainless steels contain 22-26%Cr, 4-7% Ni, up to 

4.5%Mo, 0.7%Cu and tungsten and 0.08-0.35% nitrogen. These are divided into four 

generic types: Fe-23Cr-4Ni-0.1N, Fe-22Cr-5.5Ni-3Mo-0.15N, Fe-25Cr-5Ni-2.5Mo-

0.17N-Cu and Fe-25Cr-7Ni-3.5Mo-0.25N-W-Cu, which are referred to as super duplex 

stainless steels [77]. The modification of the composition enhances the corrosion 

resistance and the adding of nitrogen improves the pitting corrosion resistance.  

Critical Pitting Temperature (CPT) is one of the important parameters for duplex 

and super duplex stainless steel. Its determination can be made by electrochemical 

methods or immersion test [87]. The ASTM G-48 Standard describes the CPT 

determination by immersion tests in 10% FeCl3 solution. The samples are immersed at 

different peak temperatures, starting from a temperature estimated from the equation 

below. It was found that the higher the CPT value, the higher the pitting resistance of 

duplex stainless steels. 

T (°C) = (2.5 X % Cr) + (7.6 X % Mo) + (3.19 X % N) – 41     [87] 

Because of the attractive combination of mechanical properties and corrosion 

resistance duplex stainless steels are used in a wide range of industries, especially oil 

and gas. They are commonly used in aqueous chloride containing environments as a 

replacement for austenitic stainless steels that have suffered pitting during service.  

3.9.3 The passive film 

In appropriate conditions, some base metals can develop a surface condition that 

inhibits interactions with aqueous media. The condition is described as passivity and its 

development is called passivation. The effect is valuable in conferring corrosion 

resistance on bare metal surfaces even in aggressive environments. The corrosion 

resistance of austenitic stainless steels and hardenable stainless steels such as duplex 

stainless steel are depends on the formation of natural occurring transparent oxide films. 

These films may be inpaired by surface contaminations such as organic compounds or 

metallic or inorganic materials [13]. 

Marcus et al.pointed out that passive layer is a simple uniform and homogeneous 

oxide (or hydroxide) films that blocks the transfer of cations from the metal surface to 

the electrolyte [88]. They also added that almost all passive films have multilayer 

structures, usually with inner oxide and outer hydroxide parts. Belo elucidate that the 

composition of the passive film depends on the environment to which it is exposed. In 
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neutral, non-aggressive solutions, it consists of two layers which are one with chromium 

(Cr) rich oxides and the external layer is essentially composed of ferum (Fe) oxides 

[89]. The Cr oxide layer is assumed to be responsible for the effectiveness of the 

passivation, whereas the Fe oxide layer displays some reactivity and is therefore 

significantly affected by the electrolyte. In mild solutions, the outer layer is reasonably 

well defined and thick relatively to the dimensions of the whole film. Immerging in 

artificial sea water, the films also show an internal layer mainly composed by chromium 

oxide and the external layer is a mixture of chromium and iron oxides with a small 

concentration of nickel [89]. 

Qvarfort and Olsson explained that the corrosion product formed on stainless steels 

under moderate low pH may form a protective layer, such as semi-passive layer which may 

prevent further attack. However, this protective layer only efficient in a limited potential 

range. They also added that such semi-passive oxides were only observed on the stainless 

steel, but not on the nickel based alloys [90]. 

Fredrikssonet al.elucidate that the thickness of passive layer of 316L is estimated 

to 2.6 nm for a sample that was polarized at 0.6V in their research of observation full 

depth profile of passive films based on high resolution using non-destructive hard X-ray 

photoelectron spectroscopy (HAXPES) technique in combination with the angular 

resolved X-ray photoelectron spectroscopy (ARXPS). As they expected, the main 

component in the passive film is chromium. They also suggested that in high resolution 

of HAXPES spectra, chromium present in three different oxidation states present as 

well as iron three oxides [91]. 

Souza et al.mentioned that the corrosion resistance properties of a superduplex 

stainless steel containing approximately 50% of ferrite demonstrated good pitting 

resistance at room temperature at several NaCl concentrations. However, above 60 °C 

there is an increase in the average size and numbers of pits with a strong effect on the 

corrosion performance of this material. They concluded that, from the image analysis of 

the microstructure, number and size of pitting vary in function of the temperature [92]. 

3.10 Nickel alloys 

Nickel is predominantly used as an alloying element in stainless and low-alloy 

steels. About 13% of the total nickel is used in nickel-based alloys for corrosion 

resistance and heat-resistant properties. Nickel-Chromiun (N06XXX) containing at least 

15% chromium provides both oxidation and carburization resistance at temperatures 
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exceeding 760ºC (1400ºF) [93]. The chromium provides the formation of a protective 

surface oxide, and the nickels exhibit good retention of the protective coating, 

especially during on-off service exposure at high temperatures.Addition of niobium 

which acts with the molybdenum is to stiffen the alloy‘s matrix thereby providing 

highstrength without the need of a strengthening by heat treatment [77].  

 Inconel 625 (UNS N06625) is a type of nickel-chromium-molybdenum alloy with 

excellent corrosion resistance in a wide range of corrosive media, being especially 

resistant to pitting and crevice corrosion. Apart from having nonmagnetic properties, 

alloy 625 also has excellent fatigue strength and stress-corrosion cracking resistance to 

chloride ions. Most typical applications of Inconel 625 are in chemical processing, 

aerospace and marine engineering, pollution-control equipment, and nuclear reactors. 

3.10.1 Corrosion of Inconel 625  

It is generally recognized that chromiumoxide plays an important role in both 

austenitic and duplex stainless steels materials. However, in the case of nickel-base 

alloys the role of the nickel and iron is notwell established. According to Belo etal., the 

critical chromium concentration necessary to develop a protectivechromium oxide 

barrier at the film-metal interface isapproximately the same (about 15%) for both Fe-Cr 

and Ni-Cr alloys. However, the films formed on nickel-base alloys are thinner than 

those formed onstainless steels [94].  

Despite most of Ni-base alloys having almost the same elements, the various 

element contents are designed to provide exceptional resistance to a variety of corrosive 

environments [77]. For instance, the nickel content is sufficient for resistanceto 

chloride-ion stress corrosion cracking. The nickel, in conjunction with molybdenum and 

copper, also gives outstanding resistance to reducing environments such as those 

containingsulphuric and phosphoric acids. The minor molybdenum alsoaids resistance 

to pitting and crevice corrosion and chromiumalso improves resistance to high-

temperature oxidation and toattack by hot sulphur-bearing gases. Small quantities of 

bothtitanium and niobium are originally added as stabilising elements to tie up carbon 

against sensitisation to intergranular corrosion. Silicon is typically present only in small 

amount in mostnickel-base alloys as a residual element from deoxidation practices or as 

an intentional addition to promote high-temperatureoxidation resistance. 
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3.10.2 The passive film on nickel alloys 

Similar to stainless steel, passive films form on nickel alloys when exposed to a 

corrosive environment. Wu et al., studied the passive films formed on Alloy 690 in 

different pH solutions at high temperatures using potentiodynamic polarization, Auger 

electron spectroscopy, thermodynamic diagrams and the Mott–Schottkyrelation. They 

found that the chemical compositions and electronic structures of the passive films were 

to bestrongly pH-dependent and the passive films were a mixture of Cr2O3 and FeCr2O4 

[95]. 

The semiconducting properties of passive films formed on nickel–base alloys type 

Alloy 600 in borate buffer solution were studied by Belo et al. using capacitance 

measurements and photoelectrochemistry. They study the influence of the alloying 

elements (Fe, Ni, Cr) on the film properties using pure metals and pure alloys. The 

results obtained show that the presence of both chromium and mixed nickel–iron oxides 

in the films revealed by quantitative analysis develops a p-n heterojunction that controls 

their electronic structure, in a similar manner to the case of stainless steels. The nickel 

oxide present in the films acts as a barrier layer that confers improved protection [94].  

According to Kawashima et al., the surface films formed on nickel-based alloy at 

lower potentials in 1.5 M H2SO4 solution contain S
2-

ions other than SO4
2- 

ions, whereas 

S
2- 

ions were not incorporated in the passive film. Passivationtook place by the 

formation ofhydrated chromium oxyhydroxidc and pitting led to no substantial change 

in the average composition of thefilm [96] and Yin et al. reported that the passivation 

regions for nickel-based alloys are wider and stable [97]. Chen et al.proved that the 

passive films formed on nickel-based alloy consist of double layerstructure where the 

outer layer composed of  hydroxide as p-type semiconductor and inner layer composed 

of oxide as n-type semiconductor [98]. 

Marcus et al.studied of the growth and structure of passive filmsin high 

temperature water on a nickel-base alloy and found that in the early stages of oxidation 

of the alloy, an ultra-thin oxide layer (about 1 nm) is formed, which consists of 

chromium oxide(Cr2O3) while Cr(OH)3 at the outer layer with a very small amount of 

Ni(OH)2.  This implies the transport of Cr and Ni throughthe oxide layer, and release of 

Ni
2+

 in the solution [99]. 
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3.11 Cermet Alloys 

Cermet alloys is the name given to a composite material composed of ceramic 

(cer) and metallic (met) materials. A cermet is ideally designed to have the optimal 

properties of both a ceramic, such as high temperature resistance and hardness, and 

those of a metal, such as the ability to undergo plastic deformation. The metal is used as 

a binder for an oxide, boride, or carbide. Generally, the metallic elements used are 

nickel, molybdenum, and cobalt. Depending on the physical structure of the material, 

cermets can also be metal matrix composites, however, cermets are usually less than 

20% metal by volume [77]. 

3.11.1 Tungsten carbide cermets 

WC-based cemented carbides belong to a large family of hard metals that are 

widely used for cutting tools because they show an excellent combination of mechanical 

properties, such as high hardness, strength and wear resistance and, therefore, they are 

well established in several industrial applications[39]. However, their poor corrosion 

resistance in aqueous solutions reduces the spectrum of their applications. This heavy 

alloys were first produced by McLennan and Smithells in 1935 [100]. They are 

essentially three-component pseudoalloys consisting of large amounts of tungsten 

combined with either nickel or copper matrix. Cobalt-tungsten carbide (WC–Co) 

hardmetals are composed of hard WC particles into a tough metallic matrix produced 

during a liquid phase sintering process (Figure 3.14).  

Cemented carbides are used for their outstanding resistance to wear and in many 

cases they also have a high resistance to corrosion. In the manufacturing of resistors 

(especially potentiometers), which may experience high temperature, cemented carbide 

also used as a capacitors and other electronic components. Instead of tungsten carbide, 

cermets are being used in saws and other brazed tools due to their superior wear and 

corrosion properties. Some types of cermets are also being considered for use as 

spacecraft shielding, as they resist the high velocity impact of micrometeoroids and 

orbital debris much more effectively than more traditional spacecraft materials such as 

aluminium and other metals.  

The corrosion resistance of hardmetals, however, is far from outstanding. Several 

efforts have been made to reduce the corrosion susceptibility of WC–Co. It was found 

that using Ni instead of Co as the binder material or alloying Cr
3
C

2
 into the binder 
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phase leads to higher corrosion resistance. However, as a disagreeable consequence, the 

mechanical properties are thereby diminished. Compared with pure nickel, hard metals 

with Ni and Co binders have very limited passivation range [101]. Nickel is more 

corrosion resistant than cobalt while chromium readily forms a protective film.  

 

 

 

 

 

 

 

 

Figure 3.14 WC-Co microstructure (white is WC and black is Co) [102]. 

In neutral and acidic solutions, the corrosion process of WC-Co consists mainly of 

Co dissolution. This Co dissolution is the main corrosion process of WC-Co in neutral 

acidic solutions whereas WC dissolution becomes more significant at alkaline pH.  

By anodic polarisation, the reaction behaviour of WC is influenced by the 

presence of adsorbing ions, which are the binders [39]. So far,no systematic 

investigation has been performed that considers the dissolution behaviour of WC in 

aqueous solutions or the influence of pH solutions.  

3.11.2Structure and microstructure 

Tungsten carbide (WC), tungsten dicarbide (WC2) or tungsten semicarbide (W2C) 

is a chemical compound containing tungsten and carbon with extreme hardness. It can 

be prepared by reaction of tungsten metal and carbon at 1400-2000°C. Other methods 

include a patented fluid bed process, which reacts either tungsten metal or blue WO3 

with CO/CO2 mixture and H2 between 900ºC and 1200°C [103].There are two forms of 

WC, a hexagonal form, á-WC, and a cubic high temperature form, â-WC, which has the 

rock salt structure. The hexagonal form can be visualized as made up of hexagonally 

close packed layers of metal atoms with layers lying directly over one another, with 

carbon atoms filling half the interstices giving both tungsten and carbon a regular 
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trigonal prismatic, 6 coordination [104], as shown in Figure 3.15. It is high melting, 

extremely hard with relative low electrical resistivity. Compared with pure nickel, hard 

metals with Ni and Co binders have very limited passivation range [105]. Nickel is 

more corrosion resistant than cobalt while chromium readily forms a protective film. 

Presumably molybdenum is present to enhance the pitting resistance to chloride [106]. 

 

 

 

 

 

 

 

 

 

Figure 3.15 Hexagonal structure of á-WC [104] 
 

3.11.3 Corrosion of cemented tungsten carbides  

The main properties affecting the corrosion performance of a cemented tungsten 

carbide in a service environment are the material structure and the binder material 

[107]. A binder with poor corrosion resistance can cause delimination between surface 

and substrate and serve as sources of corrosion attack.  Potgieter et al. also pointed that 

tungsten carbide is chemically more stable than cobalt in acidic media and corrosion 

progresses by oxidation of the binder, leaving only a WC skeleton (Figure 3.16) which 

is easily broken down by mechanical action [108]. Scholl et al. study the corrosion 

resistance of 10vol.%  Ni, Co and Fe cemented carbides in sulfuric acid solution and 

found that the corrosion resistance decrease in sequence of (WC, Ni) > (WC, Co) and 

(WC, Fe) [105].  

 

 

 

 

 

Figure 3.16: Cermets and cemented carbides are formed of a main ceramic phase 

bond by a metal binder. Both metal and ceramic phase form continuous 

interpenetrated skeletons [109]. 
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Tomlinson and Linzell [110] investigated the polarization of pure cobalt, nickel, 

tungsten and hard metals based on WC/Co and WC/Ni, in a solution of 0.01M sulfuric 

acid added with 0.99M sodium sulfate at the pH of 2.55. They found that passivation of 

the pure metals nickel, tungsten and cobalt is excellent, good and zero, respectively. 

The polarization of tungsten carbides reflects mainly the behaviour of the binder phase 

and their performance is less than that expected by comparison with pure nickel. 

Tungsten carbides with nickel binders have a superior performance compared with 

cobalt binders [105,110]. Tungsten carbide grain size and the presence of chloride ions 

in this acid environment have no noticeable effects. Also shown by Human et al., the 

binder phase corrodes by a pitting mechanism and attack at the carbide/binder interfaces 

is exaggerated [111]. The binder regions adjacent to the corners of tungsten carbide 

grains are notably attacked and this is especially the case where the meeting of two 

tungsten carbide grains forms an acute angle in the binder phase.  

The oxidation dissolution of tungsten carbide in acid has intermediate step which 

was suggested by Scholl [105]. As the potential increases, tungsten carbide is oxidized 

to WO3, which, at potentials higher than +0.8V, is dissolved according to the following 

proposed reactions:  

(WO3)
4

(solid) + e
-
 → (WO3)

4-
(solution)          3.1 

or  

(WO3)
4

(hydr) + H3O+(solution) + e
-
(metal) → WO2OH(hydr) + H2O  

The grown films of WO3 undergo different types of breakdown in different 

electrolytes. The chemical dissolution of WO3 has also been reported by Burke et al. 

[112] and Fauconnier et al. [113]. 

Lekatou [114] reported that CO2 is one of the products of the electrochemical and 

chemical oxidation of tungsten carbide in a 2M H2SO4 solution. In his work, CO2 was 

detected by mass spectroscopy and acid titration after absorption in NaOH according to 

the following reaction: 

WC(s) + 5H2O → WO3 + CO2(g) + 10H
+
 + 10 e

-
 

Ghandehari et al. (1976) investigated the anodic behaviour of cemented WC-6% 

Co alloy in phosphoric acid saturated with nitrogen by means of potentiostatic 

dissolution, polarization curves and micrographic studies [115]. On the basis of a mass 

balance, tungsten carbide is considered to be dissolved according to the following 

equation at potentials positive to the reversible potential.  
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WC + 6H2O → WO4
2-

 + CO2 + 12H
+
 + 10e

-
 

The corrosion properties of cemented carbides with cobalt binder phase was 

examined in HCl and H2SO4 solution at room temperature by Sutthiruangwong and 

Mori [116]. HCl was found to be more aggressive to cemented carbides with cobalt 

binders than H2SO4. Apart of that, dissolved oxygen has small influence on anodic 

behaviour of cobalt-based cemented carbides.  

Warren et al. [117] have performed one of the few studies on the oxidation of 

tungsten carbide in aqueous media. They identified WO3 as the oxidation product of hot 

pressed WC bars in dry and humid atmospheres. Another important aspect researched 

by Andersson and Bergtrom[118] is the dissolution of tungsten carbide in water. They 

found that WO3 dissolves in water forming tungstate ions by the reaction:  

WO3 + H2O → WO4
2-

 + 2H
+
 

The dissolution of tungsten carbide seems to be continuous after the reoxidation of 

the power, resulting in a decreasing pH with time.  

In alkaline environments, the corrosion characteristics of cemented tungsten 

carbide with cobalt were investigated by Trueman et al. [119]. It was reported that the 

cathodic reactant would be dissolved oxygen and its reduction would be expected to 

promote metal dissolution followed by passivation. If there is sufficient oxygen present, 

the aggressive chloride ions will also promote spontaneous pitting corrosion. Trueman 

also stated that according to the Pourbaix diagram, the anodic polarization curves 

exhibit greater polarization in alkaline environment than in acidic environment and the 

polarization increases cobalt concentration [120]. This suggested metal dissolution 

followed by the formation of a partially protective film. 

3.12 Materials Selection for Offshore 

Steels are the most extensively used structural material in industry. Mild steel is 

the most versatile general-purpose material; it has good mechanical strength, is easy to 

fabricate, has good formability and weldability, is abundant and is low cost. In corrosive 

environments, mild steel structures can be saved by coating and/or cathodic protection. 

However, mild steel may not be able to withstand more severe or aggressive 

environments, such as marine or seawater, and, consequently, austenitic stainless steels 

(UNS S31603 or 316L) have found applications as construction materials. The excellent 

corrosion resistance, good mechanical properties and reasonable cost are the 
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contributing factors for their application. It is a formidable material for the construction 

of evaporators, distiller pipes, pumps and valves. Stainless steel alloys are found to be 

one of the most dependable structural materials under dynamic flow conditions and 

show virtually no corrosion even after very long exposure. However, they are subjected 

to localised corrosion in the presence of chloride ions and under static or stagnant 

conditions. 

Generally, the materials used for offshore structures should have a high ratio of 

strength to self-weight ratio. Other selection factors include degradation processes, ease 

of fabrication or construction, availability, anticipated life and relative cost. There are 

some preferred materials for offshore applications such as tungsten carbide-cobalt-

chromium (WC–Co–Cr) and nickel-based alloys, which are in high demand due to their 

resistance to corrosion. The materials listed below are some of the preferred materials 

for offshore applications together with their best characteristics. 

Table 3.3 Material selection for retarding corrosion [77] 

Material Characteristic 

Duplex stainless 

steel  

Preferred over carbon steel or other stainless steel. It combines the basic 

toughness of the more common austenitic stainless steel with the highest 

strength and improved corrosion resistance of ferritic steels. It can also be 

used in low temperatures and is able to resist stress corrosion cracking (SCC). 

Aluminium 

Despite its high corrosion resistance and low maintenance cost, it is not 

recommended because of low mechanical properties. Still new and requires 

additional research in material technology and design. 

Composite  

 

Copper and its alloy 

 

 

Ceramic 

 

Concrete 

Fibreglass with polyester or epoxy. 

 

Good electrical and thermal conductivity. Thus, often used in heating and 

cooling systems. 

 

Good corrosion resistance 

 

Depends on reinforcement 

WC – Co - Cr High demand due to resistance to corrosion. 

Coating Ti-Al-N 
Using Plasma Vapour Deposition (PVD) and is known as being the best 

coating material. 

Brass 

Widely used as tubing material for condensers and heat exchangers in various 

cooling water systems. It is susceptible to corrosion because of 

dezincification. Increased zinc content would increase the dezincification 

process. 
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3.13 Summarising the Literature Review 

From very cheap materialssuch as carbon steel to cermets alloys, it has been 

shown that improvements in research and development have produced not only high 

strength materials, but also improved corrosion resistance. However, due to cost 

constraints, the applications for high strength and corrosion resistant materials are 

limited in any construction including oil and gas operations. The reality is, every 

material shows a different degree of deterioration when corrosion is about to attack. 

Corrosion can be controlled if environmental factors that affect corrosion attack could 

be identified for different kind of materials types. The most environment factors that 

affect corrosion attack identified by research before are oxygen concentrations, 

temperature, pH, velocity and aggressive ions. Most of the results found that corrosion 

increased as the oxygen concentrations and temperature increased. In acidic media, the 

corrosion attack is more pronounced compared to alkaline medium. Even the velocity or 

flow of the medium does have effect for localised corrosion, but localised corrosion 

more pronounce in static corrosion compared materials in heavy flow. But, the velocity 

might contribute to erosion-corrosion of metals. Several researcher have found that 

aggressive ions such as chloride increased the corrosion attack while sulphate could 

retard corrosion attack [121-124]. The ratio of these aggressive ions is only studied by 

using the ratio of sulphuric acid to hydrochloric acid. There are no research studies 

using the ratio from actual compositions of natural seawater. Therefore, apart from 

using chemical (which need to comply with environmental procedure) to control the 

corrosion attack, some aggressive ions could be identified as a means of controlling 

corrosion attack in seawater. In this research, different level of materials grade, from 

mild steel to highly corrosion resistance materials will be use to study the corrosion 

attack. These materials are generally used in valve systems of oil and gas operations.  
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Chapter 4  

MATERIALS AND EXPERIMENTAL PROCEDURES 

4.1 Materials Under Study 

Three types of materials are used in this research: carbon steels AISI 1040 (UNS 

G10400), AISI 4140 (UNS G41400), AISI 8620 (UNS G86200);stainless steels 316L 

(UNS S31603), nitrogen alloyed stainless steel: 25Cr Duplex (UNS S32760) and 

Inconel 625 (UNS N06625); and cermet materials WC-Ni and WC-Co. 316L, 25Cr 

Duplex, Inconel 625 and WC-Co were cut from solidsteel rod and WC-Ni was cut from 

coupon received from Aker Solutions. The composition given by the manufacturer of 

the materials is given in Tables 4.1 and 4.2. Also shown in Table 4.3 are the mechanical 

properties for each material.  

25Cr Duplex is a type of stainless steel added with nitrogen whereas Inconel 625 

is nickel alloy. The main reason for nitrogen alloying in Inconel 625 is to increase the 

mechanical strength of the steel and to replace some of the expensive nickelalloying 

element. In addition, increased nitrogen content can also increase the resistance to 

localised corrosion and retard the precipitation of the carbide and intermetallic phases 

[77].  

The hard phase in cemented carbide (WC) of cermet alloys is known to be 

relatively unaffected by corrosive attack, as compared to the binder metallic phase (Co 

and Ni) [107]. Nickel binders in cemented carbides are more corrosion resistant than the 

corresponding cobalt containing grades. With some additional chromium in either 

cobalt or nickel containing cemented carbides the corrosion resistance can be improved, 

but it tends to cause reduction in strength [107]. In this research, the cermet alloys used 

are WC-6%Co and WC—9%Ni 

Table 4.1 Carbon steel composition of samples (wt%) 

Composition Cr Ni Mo C S P Mn Si 

AISI 8620 

AISI 4140 

AISI 1040 

0.4 

0.8 

- 

0.4 

- 

- 

0.15 

0.15 

- 

0.18 

0.38 

0.37 

0.04 

0.04 

0.05 

0.035 

0.035 

0.04 

0.70 

0.75 

0.60 

0.15 

0.15 

- 
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Table 4.2 Alloy composition of samples (wt%) 

Composition Other name Cr Ni Mo C S     P Mn   Si Others 

UNS S31603 

 

UNS S32760 

 

UNS N06625 

Austenitic SS 

 

25Cr Duplex 

 

Inconel 625 

 

16.0 

 

25.0 

 

22.0 

10.0 

 

6.0 

 

58.0 

2.0 

 

3.0 

 

9.0 

0.03 

 

0.03 

 

0.05 

0.03 

 

0.01 

 

0.003 

0.045 

 

0.03 

 

0.01 

2.0   

 

1.0 

 

0.03 

1.0 

 

1.0 

 

0.25 

- 

 

Cu=0.,N=0.2, 

W=0.5 

Fe=4.0,Nb=3.15, 

Ti=0.3,Al=0.3 

 

Table 4.3 Mechanical properties of materials[79]. 

 

Material 

Mechanical Properties 

Density, ρ 

(kg/m
3
) 

(X1000) 

Elastic Modulus 

 (GPa) 

Tensile 

Strength 

 (MPa) 

Yield Strength 

(MPa) 

Hardness  

 

AISI 8620 

AISI 4140 

AISI 1040 

UNS S31603 

UNS S32760 

UNS N06625 

7.7-8.03 

7.7-8.03 

7.84 

8 

7.82 

8.44 

190-210 

190-210 

190-210 

79.3 

199 

205.8 

536.4 

655.0 

518.8 

276 

770 

940 

385.4 

417.1 

353.4 

152 

550 

430 

149 (HB) 

197(HB) 

149(HB) 

42(HB) 

28(HC) 

88(HC) 

4.2 Solution Analysis 

The geographical variation in the corrosivity of natural seawaters results from the 

variations in the salinity, microbiological activity, dissolved oxygen concentration and 

temperature. Discounting the inland seas, such as the Dead Sea, the chloride (Cl
-
) 

concentration of seawater varies from about 5.8 g/kg to about 24 g/kg, the sulphate 

(SO4
2-

) concentration varies from 0.8 g/kg to 3.4 g/kg, and the bicarbonate (HCO3
-
) 

concentration varies from 0.01 g/kg to 0.2 g/kg [202]. 

Natural seawater is more aggressive than artificially made seawater (by mixing the 

appropriate compounds found in seawater) or seawater that has been sterilised [35]. The 

aggressiveness of seawater is due to salt content or composition in seawater which is 

not contain in fresh water. The major compositions in seawater are chloride (Cl
-
), 

sulphate (SO4
2-

), calcium (Ca
+
), sodium (Na

+
), magnesium (Mg

+
) and potassium (K

+
), 

which together represent 99.8% of the mass of solutes dissolved in seawater. The 

density of seawater is determined by its salinity and temperature. Seawater from 

Wormly in southern England is used as the international standard for seawater 

composition [80]. The chlorinity is related to salinity, S% = 1.80655 Cl% [50]. 

Research has found that corrosion increases with water salinity up to about 5% of 
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sodium chloride [57]. Salinity can be measured by the refractive index and conductivity 

(charged ions increase with increasing conductivity). Table 4.4 shows the elements 

present in seawater. The conductivity of the solutions for this research are 54mS/cm and 

were prepared using distilled water. 

 

Table 4.4 Standard seawater composition [81] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this research, materials were tested in3.5% NaCl solutions and in seawater 

with different sulphate-chloride ratios (keeping the salinity close to 3.5%). The 

composition of fresh seawater is shown inTable 4.5. The four different solutions were 

prepared with differentsulphate-chloride ratios to identify the effect of these ions on the 

corrosion attack while maintaining the other ion quantity and the same pH between 7.0-

8.0. The solution with the same elements as real seawater was prepared and identified as 

solution 1. Other solutionsare prepared based on the calculation shown and Table 4.6 

was obtained.  

 

Component 

Concentration 

(mg/l) 

% of total 

salt 

Chloride 18,980 55.04 

Sulphate 2,649 7.68 

Magnesium 1,272 3.69 

Calcium 400 1.16 

Potassium 380 1.1 

Bicarbonate 140 0.41 

Bromide 65 0.19 

Fluoride 1 0 

Boric Acid 26 0.07 

Strontium 13 0.04 

Sodium 10,556 30.61 

TOTAL 34,482 99.99 
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Table 4.5 The six major elements in seawater being used[16]. 

Ion 
Avg.g/kg  

Salinity ≈ 3.5% 

Chloride (Cl
-
) 19.25 

Sodium (Na
+
) 10.71 

Sulphate (SO4
2-

) 2.71 

Magnesium (Mg
2+

) 1.30 

Calcium (Ca
2+

) 0.42 

Potassium (K
+
) 0.39 

Total 34.78 
     

Based on the values in Table 4.5, the calculations of seawater in different 

sulphate-chloride ratioswere made using the appropriate chemicals available. The 

chemicals are sodium chloride (NaCl), potassium chloride (KCl), calcium chloride 

hexahydrate (CaCl2.6H2O), magnesium sulphate heptahydrate (MgSO4.7H2O), 

magnesium chloride hexahydrate (MgCl2.6H2O), sodium bicarbonate (NaHCO3), 

hydrochloric acid (HCl) and sulphuric acid (H2SO4). The calculation starts with the 

least amount of ions used. The calculation below is for the amount of potassium 

chloride (KCl) in Solution 1 (Solution 1 (S1) has the same amount composition as 

natural seawater). The remaining calculations for sodium chloride (NaCl), calcium 

chloride hexahydrate (CaCl2.6H2O), magnesium sulphate heptahydrate (MgSO4.7H2O), 

magnesium chloride hexahydrate (MgCl2.6H2O), sodium bicarbonate (NaHCO3), 

hydrochloric acid (HCl) and sulphuric acid (H2SO4), S2, S3 and S4 can be found in 

Appendix. Considering the ratio of SO4
2-

 / Cl
-
 for this S1 is 0.14, the calculation is as 

below; 

 The reaction of KCl:
  ClKKCl  

As shown in Table 4.5, the amount of potassium (K
+
) needed is 0.39g. Thus, the 

amount of KCl needed is: 

1.4KClofweightMolecular
KofweightMolecular

KofMass
KClofMass 




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gClofMass

gKClofMass

3536.0)45.35(
098.39

39.0

743.0)45.35098.39(
098.39

39.0







 

From the calculations, the list in Table 4.6 is obtained. The solutions were 

prepared in 1000ml distilled water (considering the amount of water already existed in 

each chemical) and ensure the pH is between 7.0-8.0,and salinity is 3.5 wt%.  

Table 4.6shows the ratio of SO4
2-

 / Cl
-
 used in this research. As mentioned before, 

solution 1 was based on SO4
2
/Cl

-
 in real seawater. To find the effect of sulphate or 

chloride on corrosion attack, solution 2 was synthesised with a lower amount of 

chloride than sulphate whereas solutions 3 and 4 had a higher amount of chloride than 

sulphate. According to the above calculations, the chemical used to synthesise the 

artificial seawater was calculated. The composition of the solutions is shown in Table 

4.7. 

The sulphate-chloride ratio obtained in Table 4.7 is from the calculation shown. 

As shown in Table 4.6, others ions (Mg
2+

, Ca
2+

, Ca
2+

, K
+
 and Na

+
) except SO4

2-
 and Cl

-
 

are maintained as same as real seawater. To balanced this ionic content and also the 

salinity (~35 g/L), SO4
2-

/Cl
-
 were varied according to Table 4.7 below by calculating 

the salts used using the calculation shown. This is a trial and error process in order to 

get not only 35 ppt salinity, but also pH of 7 to 8. 

Table 4.6 Ionic contents of the 4 solutions used 

 

 

 

 

 

 

 

 

 

 

 

Component 

Seawater 

SO4
2
/Cl

-
=0.14 

(Solution 1) 

(g/kg) 

 

 

 

 

( 

 

SO4
2
/Cl

-
=19.15 

(Solution 2) 

(g/kg) 

 

 

SO4
2
/Cl

-
=0.75 

(Solution 3) 

(g/kg) 

 

 

 

SO4
2
/Cl

-
=0.99 

(Solution 4) 

(g/kg) 

 

 

Chloride (Cl
-
) 19.25 1.09 12.54 11.0 

Sulphate (SO4
2-

) 2.71 20.87 9.41 10.95 

Magnesium (Mg
2+

) 1.30 1.30 1.30 1.30 

Calcium (Ca
2+

) 0.42 0.42 0.42 0.42 

Potassium (K
+
) 0.39 0.39 0.39 0.39 

Sodium (Na
+
) 10.71 10.71 10.71 10.71 

Concentration (mg/l) 34.78 34.78 34.78 34.78 
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Table 4.7 Composition of solutions 

4.3 Electrochemical tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Electrochemical Tests 

Linear polarisation tests were carried out for carbon steel, whereas cyclic 

potentiodynamic polarisation (CPP) tests were carried out for passive materials at four 

different temperatures (4ºC,20ºC,50ºC and 80°C) in static conditions. Specimens with 

an electrical connecting wire were embedded in a non-conducting resin (Figure 4.1 (b)) 

and the exposed surface with known area was subsequently ground using SiC sandpaper 

and diamond polished to a 6-micron finish. The sample was held in each solution for 

5min before starting the experiment to stabilize the surface. 

This method makes use of a three-electrode electrochemical cell, as shown below. 

By using the cyclic polarisation test,the forward and reverse scan was plotted. The 

reference electrode used in all experiments is silver/saturated-silver-chloride (Ag/AgCl) 

half cell, the potential of which, versus normal hydrogen electrode (NHE), is +0.197 V. 

The working electrode is the sample and platinum is used as the counter electrode. This 

accelerated test method facilitates analysis of the kinetics of the corrosion reactions by 

controlling the potential between the reference and the working electrode and 

maintaining the current in the external cell between the counter and the working 

Component 
Solution 1 

SO4
2
/Cl

-
=0.14 

Solution 2 

SO4
2
/Cl

-
=19.15 

Solution 3 

SO4
2
/Cl

-
=0.75 

Solution 4 

SO4
2
/Cl

-
=0.99 

NaCl (g) 24.70 - 5.08 15.29 

HCl (ml) 1.40 - 4.70 0.65 

CaCl2.6H2O 

(g) 
1.14 2.29 1.16 1.16 

MgSO4.7H2O 

(g) 
6.89 12.87 - 13.21 

MgCl2.6H2O 

(g) 
5.18 - 10.87 - 

H2SO4(ml) - 15.57 9.61 5.93 

NaHCO3(g) 3.58 38.35 31.77 17.16 

KCl (g) 0.74 0.74 0.74 0.74 
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electrode. The potential is controlled by a computer-controlled potentiostat (EG&G) 

and is shifted at a constant rate in the anodic direction from the open circuit potential 

(OCP), causing the working electrode to become the anode and causing electrons to be 

withdrawn from it. For linear polarisation, the measurement begins at approximately -

20mV and scan in the positive direction to +20mV from OCP. The data are obtained 

from a linear plot of the potential versus current density graph. The slope of the graph 

was then calculated to obtain the corrosion rate by using the Stern and Geary equation. 

For cyclic potentiodynamic polarisation (CPP) measurement, after the current 

density reaches a preset value of 500μA/cm
2
, the potential then graduallyreturns to the 

open circuit potential as shown in Figure 4.2. The breakdown potential, Eb ( the least 

noble potential where corrosion will initiate and propagate)is then identified, which is 

the potential where the current increases with increasing potential. 

The experiment was repeated in different solutions, with and without oxygen. To 

find the effect of oxygen, the solution was divided into oxygen saturated and non-

oxygen saturated solutions. To get non-oxygen saturated, nitrogen was used to purge the 

oxygen in the solution until the solutions were almost at 0.04 ppb oxygen content. Then 

the electrochemical was run at 4ºC and 20ºC.At high temperature, it is difficult (could 

be say impossible) to control the oxygen content at 0.04 ppb. Therefore, the 

experimental was only focus at 4ºC and 20ºC). The oxygen level was measured by 

using portable dissolved oxygen meter. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Experimental set up for static corrosion tests (a) 3-electrode 

electrochemical cell, (b) sample embedded in a non-conductive resin.  
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Figure 4.2Cyclic polarization curve 

4.4 Experimental Procedure 

The computer-controlled potentiostat was used to conduct anodic and cathodic 

polarisation tests. These tests involved shifting the potential of the working electrode 

from the free corrosion potential, Ecorr (also known as OCP) in the positive or negative 

potential direction. The potential-current (E-i) relationship was then acquired from 

measuring the current between the working electrode and the counter electrode in the 

electrochemical cell.  

For carbon steel, the linear polarization curve information wasused in the formula 

to determine the corrosion rate. The Tafel constants, βa and βc generally used were 120 

mV/decade. It is strongly agreed by Hinds that any values between 60 and 120 

mV/decade, a maximum error of only 20% can be expected [126]. To be sure, this value 

was identified by the Tafel polarization run for carbon steels AISI 4140, AISI 1040 and 

AISI 8260. Figure 4.3 shows the values taken from the slope value of anodic and the 

value was assumed to be same for anodic curve as both polarisations are parallel. From 

the calculation, it is proved that the βa is 120 mV/decade. 
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Figure 4.3 Tafel polarization for carbon steels 

4.4.1 Anodic and cathodic polarization curves 

For all materials, anodic polarisation is an accelerated technique to study the 

corrosion behaviour. This technique has been widely used to determine the resistance to 

passive breakdown due to pitting or crevice corrosion for passive materials and 

polarization resistance in the action region for carbon steels. A schematic anodic 

polarisation curve for a passive material is shown in Figure 4.4a. For passive materials, 

once the potential reaches the breakdown potential (Eb) (at which the passive film 

breaks down), the current increases suddenly. With the absence of crevice corrosion, 

this potential is also referred to as the pitting potential. From an engineering point of 

view, the breakdown potential of the material provides information concerning the 

resistance of materials to passivity breakdown due to not only pitting corrosion but also 

crevice corrosion. Although the potential is reversed at irev, often the current does not 

reduce immediately and a maximum current density (imax) is attained, which gives an 

indication of the propensity for corrosion propagation to occur. An indication of the 

extent of propagation is, therefore, obtained by consideration of imax. 
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        (a) 

 (b) 

Figure 4.4 Schematic (a) anodic polarisation curve (b) cathodic polarisation curve 

 

Figure 4.4b is schematically described the behaviour of cathodic polarisation. 

When the potential is scanned in the negative directive direction, the potential region 

from Ecorr to EH, represents the potential where the oxygen-reduction reaction 

dominates. The rate of reaction reaches a limiting current, iL, which is diffusion 

controlled. In this regime the oxygen supply is depleted at the surface and the rate of 

reaction is controlled by the rate of arrival of oxygen at the surface. At a more negative 

potential than EH, hydrogen-evolution becomes the dominating reaction. This will 

proceed according to a linear E-log i relationship. 
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4.5 Surface Analysis 

The corrosion attackwas viewed by an optical microscope. For a modern light 

microscope, the optical components are very complex and the whole optical path has to be 

very accurately set up and controlled. The probed region may be the extreme top layer of 

atoms, or it may extend up to several microns beneath the sample surface, depending on the 

technique used. From an engineering material‘s viewpoint, the impact of corrosion on a 

system is mostly a surface phenomenon, hence the scientists and engineers interested in 

fundamental corrosion processes have always been among the first to explore the utility of 

surface analysis techniques. In the following sections, the working principle of the surface 

analysis techniques used in this study are described. 

 

4.5.1 Light microscopy 

The light microscope used in this study was a NIKON standard binocular 

metallurgical microscope. The samples were cleaned and dried, placed in a holder and 

pressed to have a flat horizontal surface to use in the microscope. The objective lenses 

used were calibrated using a graticule and the individual magnification bar is shown in 

each photograph. A mounted camera on the microscope enabled the observations to be 

recorded. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Light microscope 
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4.5.2 ESEM and EDAX 

For electron microscopy, the Philips XL30 Environmental Scanning Electron 

Microscope (ESEM), as shown,was used to providehigh-resolution secondary electron 

imaging and optimised X-ray analysis. In environmental mode the gaseous secondary 

electron detector can be used. In High Vacuum mode it offers superior performance for 

both imaging and X-ray analysis at all accelerating voltages on conventionally prepared 

specimens. The EDAX 'Phoenix' energy dispersive X-ray analysis system (EDX / EDS), 

with a UTW detector and LEAP+ technology was incorporated into the ESEM. All 

elements down to the atomic number of boron can be detected, including the light 

elements carbon, nitrogen and oxygen. Both qualitative and quantitative analysis is 

available, as well as the mapping of up to 15 elements at a time. EDXanalysis is capable 

of producing high quality elemental data at a fast rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Philips XL30 ESEM 
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Chapter 5  

SETTING THE SCENE FOR CARBONSTEELS 

5.1 Introduction 

Carbon steels are characterised as actively corroding materials; they corrode at a 

relatively high rate in saline environments. Carbon steel can be divided into three 

groups which are low carbon steel, medium carbon steel and high carbon steel.Below 

0.3% carbon content can be categorised as low carbon steel whereas between 0.3% to 

0.6% are medium carbon steel and up to 0.95% are high carbon steel [77]. For this 

research, AISI 1040, AISI 8620 and AISI 4140 were chosen because they cover the 

different types of carbon steel and being used extensively in subsea applications. AISI 

1040 is plain carbon steel without any alloying elements (except manganese, Mn not 

nore than 1%) whereas AISI 4140 contains chromium (not more than 1%) and 

molybdenum (not more than 0.3%) as alloying elements. Both fall into the medium 

carbon steel category and it could be predicted that AISI 4140 is higher in strength 

compared to AISI 1040 because of alloying elements. AISI 8620 falls into the low 

category of carbon steel but contains nickel (0.55%), chromium (0.50%) and 

molybdenum (0.25%) as alloying elements [77]. Theoretically, AISI 8620 should have 

severe corrosion attack compared to AISI 1040 and AISI 4140 because it is low in 

chromium and carbon content (Figure 5.1). However, Melchers [127]in his research on 

theeffect of carbon content of low alloy steels in marine immersion reveals that carbon 

content has a minimal effect on corrosion attack.For this current researchand so no 

research was done on only one carbon steel; AISI 1040.  

In this study, corrosion experiments were performed on metallographically 

prepared surfaces of carbon steel AISI 1040, AISI 4140 and AISI 8620 at four different 

temperatures: 4
o
C, 20

o
C, 50

o
C and 80

o
C. After several experiments, all carbon steels 

were shown to a similar trend. All of them show a lower corrosion rate 3.5% NaCl and 

higher corrosion rate in seawater (solution 1). One carbon steel was then used for 

further experiments (in different sulphate-chloride ratio and the effect of oxygen on 

carbon steel), AISI 1040. The composition of solution 1 will be discussed later. 
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Figure 5.1 Corrosion rate of AISI 1040 in different „seawaters‟ (electrolytes) at 

20ºC 

For assessing the corrosion behaviour of carbon steels, linear polarization tests 

(Figure 5.2) were performed using four types of electrolyte to obtain the polarization 

resistance (Rp) of carbon steel. The preparation of these electrolytes was described in 

Chapter 4 and they are labelled as solutions 1 (SO4
2-

/Cl
- 
=0.14), 2 (SO4

2
/Cl

- 
=19.15), 3 

(SO4
2
/Cl

- 
=0.75) and 4 (SO4

2
/Cl

-
=0.99). Solution 1 (S1) consists of six major 

elements,similar to real seawater. Besides using these four solutions, the materials were 

also tested in 3.5% NaCl and commercial hydraulic fluid HW443. HW443 is the 

commercial hydraulic fluid and is the reference against which the materials in seawater 

will be compared. These preliminary experiments were run to find the sensitivity of 

corrosion to the electrolyte.The S1, S2, S3 and S4 solutions were also used for passive 

and cermets alloy materials for which the results are presented in Chapters 6 and 7.  

5.2 Determinationof the Corrosion Rate 

For linear polarisation, the measurement scan range was -20mV to +20mV from 

OCP. The data were plotted ona linear scale as potential versus current density graphs. 

The slope was then calculated to obtain thePolarisation Resistance (Rp) and the 

corrosion rate by using the Stern and Geary equation [22]. For example, Figure 

5.2representsPolarisation Resistance (Rp) of carbon steel using a 0.25mV/sec scan rate. 

The linear slope obtained was 837 Ω.cm
-2

, which is referred to as the 

AISI 8620     AISI 1040 AISI 4140 
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polarisationresistance, Rp. This value was then substituted in the equation below to 

determine icorr: 

)/(10105.3

12.012.0

12.012.0

)37.837(303.2
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The value used for βa and βc is 120mV/decade. This is the value used by most 

researchers for carbon steel and the value was validated as shown in Figure 4.3. By 

using the icorr,the corrosion rate in mm/year can be determined using the equation: 
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Where n= number of atoms 

          F= Faraday‘s constant = 96,500 coulombs/mole 
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Figure 5.2Linear polarisation for carbon steel 
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5.3 Benchmarking 

In order for anysolution to besubstituted as a hydraulic fluid, an acceptable 

corrosion rate needs to be established. In this study, HW443 is used as the benchmark. 

According to a previous study by Zheng [12],  who studied the effectiveness of five 

different hydraulic fluids on corrosion attack to 316L and cermets alloys, it was found 

that some hydraulic fluids are better than others within certain parameters. However, 

HW443 shows better corrosion resistance for cermets alloys and 316L. The study also 

depicted that potential breakdown Eb decreased at elevated temperatures in HW443 

while other hydraulic fluids showed no significant decrease in Eb at various 

temperatures. He also detected that HW443 contained about 20% by weight of water of 

2-Dimethylamino-2-methyl-1-propanol (DMAMP), which is a vapour phase corrosion 

inhibitor. Another substance found was Tri-n-octyl phosphate (TOP), which can form 

stable hydrophobic complexes with some metals and is soluble in organic solvents as 

well as supercritical CO2. TOP was detected in HW443 found to be theantifreezing 

component.  

Since the corrosion rate for all carbon steels was similar, the tests reported from 

this point onwards in the thesis only concentrate on factors that affect the corrosion rate, 

not the corrosion rates of different types of carbon steel. Figure 5.3 shows the corrosion 

rate of carbon steel in hydraulic fluid HW443 and distilled water at different 

temperatures. The distilled water shows a lower corrosion rate compared to HW443 for 

every temperature as expected. The results are presented as an average of three tests. 

The ―acceptable‖ corrosion rate will be determined according to the HW443 reference. 

Since that is the fluid currently used and for which control of corrosion is advised.  

 

 

 

 

 

 

 

 

 

Figure 5.3 Comparison of the corrosion rate of AISI 1040 in HW443 hydraulic 

fluidand distilled water as a function of temperature. 
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5.4 Corrosion Rate in 3.5% NaCl and Other Solutions 

Figure 5.4 (a) shows AISI 1040 in 3.5% NaCl at different temperatures. The curve 

obtained reveals that the corrosion rate increased with increasing temperature as 

expected. The effect of temperature on corrosion is discussed in Chapter 8. The 

corrosion rate increased by around 48% from 4ºC to 20ºC and significantly increased 

by 67% from 20ºC to 50ºC and 56% from 50ºC to 80ºC. The corrosion rates were 

alsomeasured for other carbon steels and the trends are parallel (Figure 5.4 (b)). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Corrosion rate of (a) AISI 1040 in 3.5% NaCl as a function of 

temperature and (b) comparison AISI 8620, AISI  1040 and AISI 4140 in 3.5% 

NaCl as a function of temperature 
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5.5 Immersion Tests 

Figure 5.5 displays the immersion test for carbon steel in 3.5% NaCl for several 

hours at 20°C. This experiment was tested to three types of carbon steel to find out the 

effect of immersion to carbon steels. It can be concluded that the corrosion rate 

drastically decreased for all carbon steels once they were immersed in 3.5% NaCl for 

four hours. However, after four hours, the corrosion product seems stabilised on carbon 

steels and retards further corrosion attack.This result also shows that the corrosion rate 

was comparable to the measured corrosion rates from LPR as presented previously in 

Figure 5.1 and Figure 5.4(b). 

 

Figure 5.5 Carbon steel in immersion test at 20ºC  

5.6 Carbon Steels in Different Sulphate to Chloride Ratios 

Chapter 3 explained that some aggressive anions in seawater could increase the 

corrosion rate and some could protect the metal and retard corrosion attack. But, none 

of the previous researchershave studiedthe effect of aggressive anions on corrosion 

based on the actual composition of seawater been studied. Szklarska-Smialowska [130], 

only added sulphuric acid (H2SO4) with sodium chloride (NaCl) to obtain Cl
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in his study about the kinetics of pit growth on nickel. For this research, the sulphate to 
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salinity asnatural seawater and will concentrate on the corrosion rate for AISI 1040. 

Seawater with the same composition as natural seawater was synthesised and labelled as 

Solution 1 (S1).Figure 5.6 displays the corrosion rate of AISI 1040 in HW443 

compared to solution 1 at 20ºC. Similar to other media, thecorrosion rate increased as 

the temperature increased. However, AISI 1040 shows a drastic increase after 20ºC in 

solution 1 (artificial seawater) and it is a big challenge to reduce the corrosion rate to an 

―acceptable‖ corrosion rate (HW443).At 20ºC, the corrosion rate for carbon steel in S1 

(seawater) is fourteen times higher than corrosion rate in HW443 since there are no 

chemical additives to inhibit the corrosion attack.Furthermore, the difference in 

corrosion rates is increased at 50ºC and is about 27 times higher compared to carbon 

steel in HW443. This shows that, using carbon steel in seawater without any corrosion 

control or water treatment is impossible as anticipated.As such the corrosion will have 

to be controlled by controlling the corrosion parameters (anions and oxygen 

concentrations in seawater) or addition of some appropriate inhibitor. 

 

 

 

 

From solution 1 or seawater composition, another three solutions were prepared 

with different ratios of sulphate and chloride. The amounts of sulphate and chloride are 

listed in Table 5.1 and all the pH values for the solutions are within the range 7.0 to 8.0. 

It is to be noted that solution 2 has the highest sulphate-chloride ratio that is permissible 

Figure 5.6 AISI 1040 in HW443 and solution 1 for all temperatures 
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to use. This is because the amount of chloride has to be reduced to obtain a salinity of 

3.5%, which could affect the entire composition of all the other elements that 

chemically exist with chloride. For example, increasing the magnesium chloride will 

affect calcium chloride. However, we have to limit the usage of Mg
2+ 

to 1.30 g/kg and 

Ca
2+ 

to 0.42 g/kg only (refer to Table4.6. The calculation for these solutions was 

presented in Chapter 4. 

 

Table 5.1 Sulphate and chloride for all solutions 

Solution 1 2 3 4 

Sulphate 

(g/L) 
2.71 20.87 9.41 10.95 

Chloride 

(g/L) 
19.25 1.09 12.54 11.0 

SO4
2-

/Cl
-
 ratio (g/L) 

0.14 19.15 0.75 0.99 

 

Figure 5.7 shows the comparison of carbon steel AISI 1040 in 3.5% NaCl and seawater 

with different sulphate to chloride (SO4
2-

/Cl
-
) ratio, which are solutions 1 to 4 with the 

ratioas indicated in Table 5.1. There is significant effect of corrosion rate as the 

temperature increased. Increasing the temperature increased the corrosion rate of AISI 

1040in all solutions. At 4ºC and 20ºC, there are all fairly similar in the corrosion rate. 

However, at 50ºC and 80ºC, the lowest corrosion rate occursin solution 2, which is 

shown to be considerably lower than solution 1. Solution 2 has the highest SO4
2-

/Cl
-
 

ratio compared to other solutions. This could be because sulphate improves the 

corrosion resistance when it exceeds the amount of chloride in the solution and 

indicates that by altering the SO4
2-

/Cl
-
 ratio, the corrosion rate could be reduced. 

However, it is still higher compared tothe acceptable corrosion rate demonstrated by 

carbon steel in HW443 (Figure 5.3). 
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Figure 5.7 AISI 1040 in 3.5% NaCl and different sulphate to chloride ratios 

5.7 The Critical Chloride Concentration 

Since chloride could accelerate the corrosion, the amount of chloride 

concentration was identified by testing the carbon steels in increasing chloride 

concentrations in oxygen saturatedmedium. This experiment was to identify the critical 

chloride concentration in the absence of other elements. Figure 5.8clearly 

demonstratesthat the corrosion rate increases as the temperature and chloride 

concentration increase (as shown in the red ellipse). This region identifies the critical 

chloride concentration because the corrosion rate increases drastically and remains 

stable after this region. 

From Figure 5.8, the critical chloride concentrationcan be identified as suddenly 

increasing, which is shown by the red ellipse. The critical chloride concentration as 

identified regardless the value at 80°C. This is because the ―acceptable‖ corrosion rate 

identified in HW443 at 20°C is 0.04 mm/year (Figure 5.6). Since the corrosion rate at 

80°C is 0.12 mm/year, only the curve at 4°C, 20°C and 50°C will be considered.  
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Figure 5.8 Carbon steel in increasing chloride concentration 

 

This critical area was then plotted and compared to the corrosion rate obtained in 

the hydraulic fluid HW443. The red marked area was enlarged and shown in Figure 

5.9(a). From the value of ―acceptable‖ corrosion rate, which is 0.04 mm/year, the 

critical chloride was identified from this identical line (Figure 5.9 (b)). Then, the critical 

chloride concentration identified is 0.05 g/L. The next step is to identify the critical 

oxygen concentration when chloride concentration is 0.05 g/L. 
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Figure 5.9 (a)  
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Figure 5.9 To determine the critical chloride concentration in 3.5% NaCl at 

20°C.(a) The graph was enlarge and eliminate the curve at 80ºC (b) The 

“acceptable” corrosion rate (corrosion rate of AISI 1040 in HW443): 

4ºC=0.02mm/year, 20ºC=0.04mm/year, 50ºC=0.04mm/year and 80ºC=0.13 

mm/year 

 

5.8 Critical Oxygen 

The critical oxygen concentration was then identified by keeping the amount of 

NaCl at 0.05 g/L and increasing the oxygen content in the solution.In 0.05g/L of NaCl, 

oxygen was purged out by introducing nitrogen gas into the solution.This process was 

only run at 4°C, 20°C and 50°C because at 80°C, the oxygen content was very difficult 

to control.Figure 5.10 (a) presents the corrosion rate of AISI 1040 in 0.05 g/L NaCl as a 

function of oxygen concentration.However, it was detected that the corrosion rate is not 

significant at 50°C and several results show fluctuating values of corrosion rate. 

Therefore, the curve for 50°C was eliminated leaving the data at 4ºC and 20ºC. These 

two plots were enlarged and shown in Figure 5.10 (b). 
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 (a) 

 

(b) 

Figure 5.10The corrosion rates of AISI 1040 (a) as a function of oxygen 

concentration at 4°C, 20°C and 50°C (b) eliminating 50°C data and the critical 

oxygen concentration was identified 

 

 

 

 

Since the corrosion rate in HW443 is 0.04 mm/year at 20°C, this value is plotted 

and the critical oxygen concentration identified (Figure 5.10 (b)). From the graph, the 
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value of critical oxygen concentration can be concluded to be approximately 6 ppb at 

20°C and 16 ppb at 4°C. This is a useful information if the solution oxygen content can 

be managed, the corrosion attack can be controled by treating the seawater. By using the 

target value, corrosion control can be managed by desalination and removal of oxygen 

in seawater. 

5.9 Carbon Steel with Inhibitor 

Apart from studying the effect of sulphate-chloride ratio and oxygen contentto 

reduce the corrosion attack, the effect of the inhibitor was also studied. The AISI 1040 

was studied in solution 1 with the addition of CRW 85155 (usually used in deaerated 

waters) and CRW 89000 (inhibitor for oxygen saturated conditions). 

Figure 5.11reveals the difference in the corrosion rate for carbon steel in solution 

1 addedwith CRW 85155 inhibitor at increasing concentrations compared to HW443 at 

20ºC. The corrosion rate decreased by around 71% when CRW 85155 was added.  

 

Figure 5.11 Comparison of corrosion rate of AISI 1040 in solution 1 with  

CRW 85155 inhibitor added and hydraulic fluid HW443 at 20ºC 

 

Therefore, it shows that there is a significant difference when inhibitor CRW 

85155 is used. However, the efficiency of the inhibitor still low as compared to 
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in Figure 5.11 that from 20ppm to 100ppm CRW 85155, the corrosion rate only 

decreased by around 18%. 

The comparison foreach temperature is shown in Figure 5.12 (a) as compared to 

corrosion rate of AISI 1040 in hydraulic fluid HW443 (Figure 5.12(b)). From 20ºC to 

80ºC, the corrosion rate does not decrease further even when the concentration of the 

inhibitor was increased. In addition, at 80ºC the corrosion rate of AISI 1040 in HW443 

is much lower than AISI 1040 in seawater added with 100 ppm CRW 85155. 

 

 

 

 

 

Figure 5.12The corrosion rate of AISI 1040 (a) at different temperatureswith 

increasing concentrations of CRW 85155 (b) The “acceptable” corrosion rate 
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Surface adsorption to a solid can be categorized into two broad categories; 

physisorption and chemisorption. Physisorption is non-specific loose binding of the 

adsorbate to the solid via van der Waals type interaction which includes multilayered 

adsorption. However, chemisorption involves chemical reaction by monolayer. The 

inhibition effect of CRW 85155 on carbon steel property is attributed of molecular 

structure of the inhibitor‘s organic compounds to the carbon steel surface. This 

chemisorption is an important feature to determine the absorption of molecules on the 

metallic surface. They can absorb on the metal surface by blocking the active sites on 

the surface and thereby reducing the corrosion rate. From anodic polarization, the 

percentage protection efficiency (%P) is given by the equation below and the data is 

summarised in Table 5.2.; 

%P = θ X 100        where         
 

)(

)()(

duninhibitecorr

inhibitedcorrduninhibitecorr

i

ii 
             [128]      5.1    

According to Christov and Popova [129], the mechanism of corrosion inhibitor is 

dependent on the metal, the medium and the structure of the inhibitor. This possible 

mechanism is the adsorption of the inhibitor by blocking the metal surface and this 

prevents the corrosion process from taking place. When this sole mechanism is 

considered, it is possible to develop adsorption isotherm data by using corrosion rate. 

The percentage of protection efficiency was plotted as a function of temperature in 

Figure 5.13. The curve depicted the protection efficiency decrease as the temperature 

increased and increased as the inhibitor concentration was increased. 

 

Table 5.2 Corrosion rates and % Protection efficiency of AISI 1040 

Medium Temperature 

(ºC) 

Corrosion rate, mm/year (% Protection efficiency) 

Inhibitor concentration   

0 ppm 20 ppm (%) 50 ppm (%) 100 ppm (%) 

S1 

4 0.32  0.08 (61.5) 0.09 (72.2) 0.07 (83.1) 

20 0.55 0.16 (52.5) 0.15 (68.4) 0.13 (78.4) 

50 0.68 0.30 (34.2) 0.28 (52.6) 0.25 (64.5) 

80 0.88 0.50 (16.9) 0.48 (48.2) 0.38 (51.1) 
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Figure 5.13 Percentage protection efficiency of CRW 85155 on AISI 1040 at 

different temperatures 

The adsorption of organic inhibitors can be described by chemisorptions types of 

interaction. This involves charge-sharing or charge-transfer from the inhibitor 

molecules to the metal surface to form a coordinate type of a bond [194]. Adsorption of 

inhibitor molecules occur because the interaction energy between inhibitor molecules 

and the metal surface is higher than that between water molecules and the metal surface. 

Therefore, the inhibition effect by inhibitor molecules is attributed to the adsorption of 

inhibitors molecules through its functional groups onto the metal surface. Rapid 

adsorption rate protect and shielded the reactive metal from the aggressive environment. 

Figure 5.14 presents the corrosion rate of AISI 1040 when CRW 85155 was applied. 

The linear relationship elucidate that the Protection efficiency (Ɵ) is according to 

Langmuir adsorption isotherm. 

While CRW85155 can be usedin environments without oxygen, another 

alternative inhibitor that can be used in an oxygen environment is CRW89000, which 

consists of sodium hydroxide (2mg/m
3
) and sodium nitrate. Figure 5.15depicts carbon 

steel AISI 1040 in solution 1 with four different concentrations of CRW89000 at 

elevated temperatures. By increasing the concentration, the corrosion rate decreased 

about 84%-90% from 4ºC to 80ºC. 
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Figure 5.14 Effect of corrosion rate to chemisorption of inhibitor  

 

 

Figure 5.15 Carbon steel in CRW 89000 inhibitor 

Figure 5.16portrays the comparison of the corrosion rate for carbon steel AISI 

1040 in different solutions, namely, HW443, solution 1 added with inhibitor CRW 
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concentrations, CRW 85155 shows better performance than CRW 89000. When the 

100ppm concentration is added, the performance of CRW 89000 is 41% lower than 

CRW 85155 and 69% higher than HW443. Because of CRW 85155 does not shows 

much significant different as the concentration of inhibitor was added, CRW 8900 was 

added more (up to 400 ppm) to solution 1 (S1) to validate as it is comparable to 

HW443. The plot shows that when seawater (S1) added with 400 ppm CRW 89000, the 

corrosion rate of AISI 1040 is similar to corrosion rate in HW443.  

 

 

 

Figure 5.16 Corrosion rate for carbon steel in HW443, CRW 85155 and          

CRW 89000 at 20ºC 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400

C
o
rr

o
si

o
n

 r
a
te

 (
m

m
/y

ea
r)

 

Inhibitor concentration  (ppm) 

S1 + CRW 85155

HW443

S1 + CRW 89000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

C
o

rr
o
si

o
n

 r
a
te

 (
m

m
/y

ea
r)

 

Inhibitor concentration (ppm) 

S1 + CRW 89000 

 

S1 + CRW 85155 

 

HW443 

 



  

   

 

 

- 113 - 

The concentration of CRW 89000 was increased to 200ppm and 400ppm. Figure 

5.17indicates that at 20ºC, when solution 1 had 400ppm CRW 89000 added, the 

corrosion rate obtained was close to the corrosion rate in HW443. This reveals that 

changing the sulphate-chloride ratio and also controlling the amount of oxygen, the 

corrosion rate can be manageable to acceptable corrosion rate. Furthermore, in oxygen 

environment, the corrosion attack of carbon steel can be managed by using green 

inhibitor. The corrosion rate can be reduced to acceptable corrosion rate by added 

400ppm of CRW 890000 in seawater. Figure 5.17 compares the corrosion rate of AISI 

1040 in different concentration of CRW 89000, artificial seawater (S1), 3.5% NaCl and 

commercial hydraulic fluid (HW443). 

Figure 5.17 Corrosion rate for carbon steel in S1 added with 50ppm, 100ppm, 

200ppm and 400ppm CRW 89000, solution 1, 3.5% NaCl and HW443 

5.10 Summary 

To conclude, the corrosion rate of carbon steel at 20°C can be reduced close to the 

acceptable corrosion rate obtained in HW443, by using the seawater with 400ppm CRW 

89000 inhibitor. Altering the sulphate-chloride ratio is not an effective choice of 

reducing the corrosion attack of carbon steel. Apart of that, by controlling the chloride 

content at 0.05 g/L and oxygen concentration at 16 ppb, the corrosion rate can be 

reduced as much as corrosion rate of AISI 1040 inHW443 at 20°C. After these three 
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separate experimental methods, it shows that corrosion rate of carbon steel in seawater 

can be manageable by controlling the chloride content and oxygen dissolution or 

addition of a green inhibitor. In real situations, to use seawater as hydraulic can be 

realised by desalination or osmosis treatment to seawater. Temperature is a main key to 

corrosion susceptibility. 
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Chapter 6  

PASSIVE MATERIALS 

6.1 Introduction 

In the previous chapter, the strategy of treating the seawater to reach an acceptable 

corrosion rate was assessed. In this chapter the assessment of more advanced materials 

is presented. Still the same objective is addressed which is to assess the feasibility of 

using seawater as a replacement to hydraulic fluid. 

In anodic polarisation tests, the electrode potential of the material is scanned from 

the free corrosion potential (Ecorr), also known as the Open Circuit Potential (OCP), in 

the more positive direction at a fixed rate. When passivity is exhibited, the current 

initially remains very small. Once the potential reaches the breakdown potential (Eb) (at 

which the passive film breaks down due to the overpotential driving force), the current 

increases suddenly. The breakdown potential of the material provides information on 

the resistance of materials to passivity breakdown [131]. Each anodic polarisation scan 

was reversed once the current reached a set current (irev) of500µA/cm
2
. The degree of 

the increase in current beyond irev gives an indication of the propensity for corrosion 

propagation [132]. An indication of the extent of propagation is therefore obtained by 

consideration of imax, which represents the maximum current attained should the current 

not begin to fall immediately after scan reversal. The comparison of corrosion 

behaviour among materials could be assessed based on their breakdown potential,Eb,imax 

and the passive potential range, which is the magnitude of |Eb-Ecorr| in static conditions. 

For this chapter, the results will only concentrate on the three types of alloy –

austenitic stainless steel (UNS S31603 also known as 316L), 25Cr Duplex and a high 

alloy,nickel alloy (UNS N06625 also known as Inconel 625), which exhibit passive 

behaviour in static 3.5%NaCl. The tests are done in different sulphate-chloride ratios. 

The inhibitor response at all temperatures from 4
o
C to 80

o
Cand also in seawater (S1) 

with response to dissolved oxygen are assessed. 

As shown in Figure 6.1, this curve reveals an electrochemical response during 

anodic polarisation when the potential is scanned in the positive direction from Ecorr 

(also known as OCP); only very small currents (typically <10 µA/cm
2
[185]) are 

recorded until Eb, is reached. At this point the current rises rapidly as a function of 
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potential indicating that corrosion attack has initiated. The current corresponding to the 

breakdown potential is denoted as breakdown current (current density, ib (A/cm
2
)) 

As explained in the previous chapter, both stainless steels and other high alloy 

materials (including Ni and Co-based alloys) develop a thin passive film on their 

surface. Unlike active materials (carbon steel), passive materials depend on this thin 

passive film to protect themselves from corrosion. The nature of thin passive films, 

which preclude charge transfer and give the materials their superior corrosion 

resistance, has been the subject of many papers [25,33,133-135]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Schematic of anodic polarisation curve for a passive material at 20ºC. 

6.2 Bench Marking – Materials in HW443 

The first set of analyses examined the materials‘ performance in commercial 

hydraulic fluid HW443. Figure 6.2 presents the results obtained from the cyclic 

polarisation tests for 316L in HW443 at 20ºC. The arrows indicate forward and reverse 

scans. As mentioned in Chapter 2, the cyclic polarisation curve hysteresis can provide 

information on pitting corrosion rates and how readily a passive film repairs itself. 

Positive hysteresis occurs when passive film damage is not repaired and pits will initiate 
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whereas negative hysteresis (Figure 6.2) occurs when a damaged passive film repairs 

itself and pits do not initiate.  

The specific electrochemical parameters, previously described in section 2.11.2, 

are labelled on the graph, which include Open Circuit Potential (OCP), passivation 

potential (EPP), breakdown potential (Eb), protection potential (EP), critical current 

density (icc) and passive current density (ip). These three alloys all exhibited a passive 

region right from the corrosion potential, Ecorr. When the potential was increased from 

the corrosion potential through the passive region, the potential corresponding to the 

abrupt rise in current was taken as the breakdown potential, Eb (some may refer to it as 

pitting potential). This was used as a criterion for evaluating the pitting corrosion 

resistance of the materials. It is directly influenced by the quantity of passivating 

elements present in the alloys.   

 

 

Figure 6.2 Anodic polarisation curve of 316L in HW443 at 20ºC (a) E-log i plot (b) 

E-I plot 
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Figure 6.3 compares the anodic polarisation behaviour of 316L, 25Cr duplex and 

Inconel 625 in commercial hydraulic fluid, HW443 at 20ºC. All the materials show 

negative hysteresis in their corrosion performance in HW443. The best performance is 

shown by 25Cr duplex, which has the highest Eb. The negative hysteresis is often 

thought to characterize an alloy in terms of localised corrosion. The interpretation 

include that the material would be expect to resist localised corrosion if the 

repassivation potential appear as negative hysteresis [26]. 

 The electrochemistry parameters of 25Cr duplex, 316L and Inconel 625 in 

HW443 are listed in Table 6.1, which shows that in terms of passive film breakdown 

25Cr duplex appears to be the most outstanding material compared to Inconel 625, 

which has almost the same chromium content.The passivating elements, such as 

chromium and nitrogen, hinder the development of pit growth, thereby increasing the 

extent of the potential passive region [106]. 
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Figure 6.3Anodic polarisation curve of 316L, 25Cr duplex and Inconel 625 in 

HW443 at 20ºC (a) E-log i plot (b) E-I plot 

 

 

Table 6.1 Electrochemical data of materials in HW443 at 20ºC 

Material 
OCP 

(mV) 

Epp 

(mV) 

Potential passive 

region 

 

Eb 

(mV) 

EP 

(mV) 

ip 

(µA/cm
2
) 

icc 

(µA/cm
2
) 

316L -311 -215 873 658 409 -5.17 -6.15 

25Cr duplex -324 -246 935 689 415 -4.21 -5.33 

Inconel 625 -297 -196 619 423 284 -5.32 -5.51 

6.3 Materials in 3.5% NaCl at Different Temperatures 

Cyclic polarisation was also studied in 3.5% NaCl. Figure 6.4 compares the 

anodic curves for 316L in 3.5% NaCl at different temperatures. It is clear that the form 

of anodic polarisation curve on 316L is comparable at four temperatures. There is a 

significant reduction in Eb as the temperature increases. The drastic change in the nature 

and the properties of oxide films on passive alloys in water in increasing temperature is 

attributed to a breakdown of passivity [136, 137]. The curve shows a negative hysteresis 
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at4ºC and changed to positive hysteresis as the temperature increased from 20ºC to 

50ºC. The positive hysteresis could indicate that the passive film damage is not repaired 

and that pits might initiate [23]. However, at 80°C, 316L was actively corroding as soon 

as potential and current increased. As a result, the anodic polarisation does not show 

any breakdown potential. 

The cyclic polarisation properties of 316L for all temperatures are compiled in 

Table 6.2. The OCP values shifted towards more active values as the temperature 

increased, while the breakdown corrosion potential presented the opposite tendency. 

The breakdown potential, Eb decreased as the temperature increased. The difference in 

passivation potential value, Epp and breakdown potential, Eb can be used to determine 

the existence of the potential passive region. The potential passive region reduced as the 

temperature increased. However, the Eb values of 316L at 20°C is higher than Eb values 

of 316L in HW443. 

 

Figure 6.4 The anodic polarisation of 316L as a function of temperature in 3.5% 

NaCl 

Figure 6.5 shows the anodic polarization curves in 3.5% NaCl at 20ºC for 25Cr 

duplex, Inconel 625 and 316L. In the following results, the material degradation and 

susceptibility to localised corrosion will be discussed in terms of their breakdown of 

potential during anodic polarization. Table 6.3 shows the data for the cyclic polarization 

tests for 316L, 25Cr duplex and Inconel 625 in 3.5% NaCl at 20ºC. The Eb values also 

shows a same trend as materials in HW443 which are 25Cr duplex > Inconel 625 > 
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316L. In addition, the potential passive region of 25Cr duplex performs a little bit 

higher than Inconel 625 which  indicate that 25Cr duplex is more stable before the 

passive film destroy.  

 

Table 6.2 Electrochemical data of 316L in 3.5% NaCl 

Temperature 
OCP 

(mV) 

Epp 

(mV) 

Eb 

(mV) 

EP 

(mV) 

ip 

(µA/cm
2
) 

icc 

(µA/cm
2
) 

4ºC -189 -93 561 509 -5.64 -6.51 

20ºC -267 -110 594 310 -4.93 -5.36 

50ºC -186 -70 257 79.97 -5.98 -6.24 

80ºC -106 NA NA -164 -4.03 -4.74 

 

 

Figure 6.5 Anodic polarisation of materials in 3.5% NaCl at 20ºC 
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Table 6.3Electrochemical data of materials in 3.5% NaCl at 20ºC 

Material 
OCP 

(mV) 

Epp 

(mV) 

 

Potential 

passive 

region 

 

 

Eb 

(mV) 

EP 

(mV) 

ip 

(A/cm
2
) 

icc 

(A/c

m
2
) 

316L -267 -222 816 594 310 -4.93 -5.36 

25Cr 

duplex 
-161 105 988 1093 805 -0.272 -5.65 

Inconel 625 -291 -123 964 1086 328 -5.17 -5.59 

6.4 Materials in Seawater 

It is possible that the variation in chemical composition of seawater may influence 

the corrosivity [138].  According to Takasaki and Yamada (2006) the corrosion rate 

increased in proportion to the concentration of aggressive anions and with increasing 

temperature [45]. Therefore, the effect of seawater (which contain aggressive anions) on 

corrosion attack was identified. In this study, seawater was synthesised according to the 

same major elements as natural seawater (Solution 1). The main reason we are not using 

the  real seawater is because of the microbiological life in seawater will leads to an 

increased liability of local corrosion and an increased corrosion rate [139,140]. 

Therefore, it will affect the objective of assessing the feasibility of using seawater in 

subsea applications. 

Figure 6.6 shows the anodic polarisation of 316L in seawater (solution 1) at 

different temperatures: 4ºC, 20ºC, 50ºC and 80ºC. It shows clearly that the breakdown 

potential (Eb) decreased as the temperature increased. As expected, increasing the 

temperature decreased the passive region. At all temperatures, 316L shows a positive 

hysteresis in solution 1. 

Figure 6.7 and 6.8 showsthe 25Cr duplex and Inconel 625 in seawater (solution 1) 

at different temperatures, respectively. Compared to 316L, the passivation and 

repassivation of 25Cr duplex is more stable compared to 316L according to their small 

gap in forward and reverse scan whereas Inconel 625 shows negative hysteresis at 4ºC 

and 20ºC, and stable hysteresis as well as positive hysteresis at 50ºC and 80ºC. There is 

only slight difference in the performance with increasing temperature, meaning that 

25Cr duplex and Inconel 625 are stable at increasing temperature. 
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Figure 6.6 Stainless steel 316L in solution 1 (SO4
2-

/Cl
-
=0.14) at different 

temperatures  

 

For 25Cr duplex in seawater, the hysteresis at 4°C and 20°C presents as a negative 

while the plot changes toa positive hysteresis at increasing temperature, which means 

that pitting may occur since the passive film breakdown not repairs itself. The passive 

region also decreases as the temperature increases. As the applied anodic potential 

increases, the passive current is followed by a sharp increase due to the disruption of the 

passive layer formed on 25Cr duplex surface. The current increases after the breakdown 

of passive film, which might be associated with the transpassive dissolution of 

chromium and gas evolution [34]. 

 

 

Figure 6.7 25Cr duplex in solution 1 (SO4
2-

/Cl
-
=0.14)  at different temperatures  

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-100 0 100 200 300 400 500

E
(V

) 

Current, I(µA) 

4°C

20°C

50°C

80°C

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-100 0 100 200 300 400 500 600

E
b
(V

) 

Current, I(µA) 

4°C

20°C

50°C

80°C



  

   

 

 

- 124 - 

For Inconel 625 in seawater, despite of having small hysteresis (the forward and 

reverse scan) value which indicate the small disruption of surface passivity [26], 

Inconel 625 also present to have a metastable pitting before the passive film breaks at 

80ºC (Figure 6.8 (b)) as shown in red marked.  

 

 

 

 

Figure 6.8 Inconel 625 in solution 1 (SO4
2-

/Cl
-
=0.14) (a) at different temperatures 

(b) having metastable pitting at 80°C 
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According to breakdown potential, both 25Cr duplex and Inconel 625 show high 

in Eb. However, 25Cr duplex seems more corrosion resistance as breakdown potential is 

higher at every temperature. As tabulated in Table 4.2 (Chapter 4, section 4.1), 

chromium content is slightly higher in 25Cr duplex compared to chromium content in 

Inconel 625 (chromium content 22 wt%). Because of this, 25Cr duplex shows better 

performance compared to Inconel 625. 

Figure 6.9 shows the effect of increased temperature on the Eb value for each 

material in seawater (solution 1) as compared to HW443 hydraulic fluid. 25Cr duplex 

and Inconel 625 proved to be the least affected by increased temperature compared to 

316L. 316L shows a sudden drop in Eb from 4°C to 20°C. All the materials show the 

lowest  Ebat 80°C and also active behaviour observed at higher temperature might be 

the result of insufficient oxygen available to aid complete repassivation [95]. This 

figure also presents the Eb value in HW443 at 20ºC which has set before as the 

benchmark of acceptable corrosion attack. This indicates that the corrosion resistance 

has to improve more than 70% to switch the applications of commercial hydraulic fluid 

to seawater. 

 

Figure 6.9 The breakdown potential (Eb) in S1 as a function of temperature with 

compared to Ebin HW443 
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6.5 Materials in Different Sulphate-Chloride Ratios 

This experiment was conducted to quantify the effect of sulphate and chloride 

anions in seawater. The composition of each solution which was synthesized in the 

laboratory is shown in Chapter 4. Figure 6.10 shows 316L in solution 2, which is higher 

in sulphate and lower in chloride compared to real seawater (S1). At all temperatures, 

there are oscillations at anodic polarisation. According to Indira and Doss (1967), the 

regular and persist oscillation at anodic polarization under controlled conditions is due 

to periodic change in the thickness of the film by alternate dissolution and deposition 

[191]. The increasing in thickness of the film will raise the pH which causes the leading 

to oxygen evolution and restores the original pH by agitation and facilitates solution of 

the film. Therefore, the process of oxygen evolution will disturbs the stationary film 

adjacent to the electrode on the solution side and thereby enhances dissolution. The 

breakdown potential at every temperature are higher compared to 316L in S1. This 

indicates that sulphate has an inhibiting effect on pitting corrosion [140,141], and the 

polarisation exhibits positive hysteresis at every temperature. The value of OCP and Eb 

are presented in appendix of this thesis.  

Pistorius and Burstein (1992), in their study about the growth of corrosion pits on 

stainless steel in chloride solutions containing dilute sulphate on 304 stainless steels, 

found that the presence of sulphate causes the distribution of available pit sites to be 

shifted to a higher potential, which causes pit propagation in both metastable and stable 

states [142].  Figures 6.10 to 6.18 show the anodic polarisation curves of 316L, 25Cr 

duplex and Inconel 625 in S2, S3 and S4. Some materialssuch as Inconel 625 

experience secondary breakdown potentials as shown in Figure 6.16 (Inconel 625 in 

solution 2 at 50°C and 80°C). The value of breakdown potentials at 4ºC, 20ºC, 50ºC 

and 80ºC for each material as compared to HW443are shown in Figures 6.19, 6.20 and 

6.21, respectively. 

For passive alloys including austenitic stainless steels (316L), corrosion resistance 

is provided by a very thin surface film,known as passive film that is an invisible film of 

oxide, formed by the metal reacting withthe ambient environment. Normally these films 

are free of pores, but their stability may be weakened locally in the environment 

contained aggressive anions. Figure 6.10, shows 316L in solution 2 (S2) which has 

higher sulphate and lower  chloride (SO4
2-

/Cl
-
 =19.15) compared to seawater, S1 (SO4

2-

/Cl
-
=0.14). The cyclic polarisation shows a positive hysteresis at all temperatures. The 
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differences of Eb values as compared to HW443 is shown in Figure 6.19 and  indicates 

that the corrosion resistance of 316L in solution 2 has to be improved to almost 24% to 

an acceptable Eb as shown by 316L in HW443. The comparison of all solutions is 

shown in Figure 6.22 and 316L shows a increased Eb as the sulphate/chloride ratio is 

changed. However, the Eb values are not comparable to the Eb value of 316L in 

commercial inhibitor HW443. Nevertheless, this value is not significant to the amount 

of sulphate and chloride to affect corrosion attack on 316L and this is probably due to 

competition effect of anions on 316L and will be discussed later in Chapter 8. 

 

 

Figure 6.10 Stainless steel 316L in S2 (SO4
2-

/Cl
-
=19.15) at different temperatures 

 

Figure 6.11 and 6.12 presents the cyclic polarisation of 316L in solution 3 and 4. 

All the polarisations shows 316L in positive hystheresis at all temperatures. Solution 3 

and 4 are having low sulphate composition compared to chloride. The ratioSO4
2-

/Cl
-
of 

solution 3 is 0.75 whereas solution 4 contains SO4
2-

/Cl
-
 equal to 0.99. In both solutions, 

316L exhibits a decrease in Eb as the temperature increases. For a better observation for 

Eb point due to anodic oscillation (oxygen evolution), some of the polarisation are 

presents in E-log i curve. 
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Figure 6.11  Stainless steel 316L in S3 (SO4
2-

/Cl
-
 = 0.75)  at different temperatures  

 

Figure 6.12Stainless steel 316L in S4 (SO4
2-

/Cl
-
 = 0.99)  at different temperatures  
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respectively. Almost all of the hysteresis shows positive directions and repassivation 

potential are close to anodic scan which indicate that the materials would be expected to 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-100 0 100 200 300 400 500 600

E
(V

) 

Current (µA) 

4°C

20°C

50°C

80°C

-7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 E
(V

)

log i(A/cm
2
)

 4
o
C

 20
o
C

 50
o
C

 80
o
C



  

   

 

 

- 129 - 

resist localised corrosion [26]. Some polarisations of 25Cr duplex in solution 2 and 4 

perform to have secondary Eb in anodic polarisation.  

 

 

Figure 6.13 25Cr duplex in S2 (SO4
2-

/Cl
-
=19.15) at different temperatures  

 

 

 

Figure 6.14 25Cr duplex in S3 (SO4
2-

/Cl
-
=0.75) at different temperatures  

-0.5

0

0.5

1

1.5

2

-100 0 100 200 300 400 500 600

E
(V

) 

Current, I(µA) 

4°C

20°C

50°C

80°C

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-100 0 100 200 300 400 500 600

E
(V

) 

Current, I(µA) 

4°C

20°C

50°C

80°C



  

   

 

 

- 130 - 

 

Figure 6.15 25Cr duplex in S4 (SO4
2-

/Cl
-
=0.99) at different temperatures 

 

Figure 6.16 to 6.18 presents the anodic polarisation of Inconel 625 in solution 2 to 

4 respectively. At high temperature, Inconel 625 presents to have secondary Eb in 

solution 3 and 4. The comparison of Eb value to the acceptable Eb value in HW443 is 

presented in Figure 6.19 to 6.21. As predicted, the Eb value of Inconel 625 decrease as 

the temperature increase in both solutions. However, these values are not drastically 

reduced compared to 316L and this is indicating that Inconel 625 is stable in increasing 

temperature.  

 

Figure 6.16 Inconel 625  in S2(SO4
2-

/Cl
-
=19.15)  at different temperatures  
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Figure 6.17 Inconel 625  in S3(SO4
2-

/Cl
-
=0.75)  at different temperatures  

 

 

Figure 6.18 Inconel 625  in S4 (SO4
2-

/Cl
-
=0.99) at different temperatures  
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following figures. Figures 6.19, 6.20 and 6.21 present the breakdown potential values of 

316L, 25Cr duplex and Inconel 625 in S2, S3 and S4, respectively. Figure 6.22 presents 

the breakdown potential of 316L, 25Cr duplex and Inconel 625 in every solution as 

compared to HW443 at 20°C. S2 has less Cl
-
 than SO4

2- 
whereas S3 and S4 have more 

Cl
-
 than SO4

2-
. According to El-Naggar, SO4

2-
 has an inhibiting affect onthe surface of 

the metal whereas Cl
-
 is an aggressive ion that penetratescausing localised attack [49]. 

The Eb value for 316L increased drastically from solution 1 to solution 2 and 3 

(sulphate higher than chloride) which indicate that resistance of material to passivity 

breakdown can be improved by changing the anions ratio (SO4
2-

/Cl
-
ratio) of seawater. 

Other than that, the resistance to passivity breakdown could be improved by alternative 

way such as addition with chemical inhibitor or reducing the dissolve oxygen (DO) in 

seawater. 316L shows reducing in Eb value in S1 and sudden increased in S2 as 

compared to Eb of 316L in HW443. This explains the degradation effect of chloride 

(higher chloride content in S1) and inhibition effect by S2 (higher sulphate amount 

compare to chloride).  If comparing the performance of these materials in seawater 

(solution 1) and chemical inhibitor (HW443), HW443 provide better inhibition effect on 

316L and 25Cr duplex (16%-78%) than on Inconel 625 (only 3%). 

316L and Inconel 625 shows decreasing in Eb in solution 3 and 4compared to Eb 

in solution 2 whereas 25Cr duplex shows the opposite trend. The sulphate ratio in 

solution 3 and 4 is slightly lower than chloride which can explained that the inhibition 

effect of sulphate is not significant as both anions are comply to competition effect. 

However, in all solutions, the Eb values are lower than Eb value for the materials in 

HW443 which suggest that apart of changing the SO4
2-

/Cl
-
ratio, the resistivity of 

materials to potential breakdown can be improve if use with inhibitor or reduced the 

oxygen content in seawater.  

For 25Cr duplex, the lowest value of Eb is perform in solution 2 and the difference 

in Eb compared to HW443 is about 36%. Referring to Figure 6.22, 25Cr duplex is 

outstanding performance in Eb compared to 316L and Inconel 625 in all mediums. The 

difference of Eb in solution 3 and solution 4 are 23% and 27% respectively as compared 

to Eb value in HW443. 

For Inconel 625, the difference of Eb value in solution 1 as compared to in HW443 

is only 3%. Comparing the Inconel 625 to other materials explained that Inconel 625 is 

the least material that affected by different sulphate/chloride ratio and in HW443 

inhibitor. Increasing the chloride content in solution 3 and 4 promotes chloride ions to 

dominating perforation of passive film on Inconel 625. 
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From the breakdown potential results, it can be concluded that 25Cr duplex and 

Inconel 625 will maintain the ability of having higher Ebto exist in higher or lower 

SO4
2-

/Cl
-
 ratios compared to 316L due to its composition.  

From the breakdown potential results, it reveals that all of these passive materials 

especially 25Cr duplex and 316L needs additional corrosion protection such as addition 

with inhibitor to attain higher breakdown potential as performed by these materials in 

HW443. It also can be concluded that Inconel 625 react scantily with HW443 even it is 

very stable at different SO4
2-

/Cl
-
ratio. The microscopic view of some of these pitting 

attacks can be seen in Figure 6.23 and Figure 6.24. 

 

Figure 6.19 The breakdown potential in S2 as a function of temperature 

 

 

 

Figure 6.20 The breakdown potential in S3 as a function of temperature 
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Figure 6.21 The breakdown potential in S4 as a function of temperature 

 

Figure 6.22 The breakdown potential value of every material in different SO4
2-

/Cl
-
 

solutions as compared to HW443 at 20ºC 
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Figure 6.23 Microscopic image shows pitting of (a) 316L in solution 3 at 80ºC, (b) 

316L in solution 2 at 50ºC and (c)  316L in solution 2 at 80ºC  
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Figure 6.24 Microscopic image shows pitting (a) 25Cr duplex in solution 3 at 80ºC, 

(b) 316L in solution 2 at 80ºC, (c) 25Cr duplex in solution 1 at 20ºC, (d) 25Cr 

duplex in solution 1 at 50ºC, (e) Inconel 625 in solution 3 at 80ºC (f) 316L solution 

3 at 20ºC  (g) Inconel 625 in solution 4 at 4ºC (h) Inconel 625 in solution 3 at 4ºC 

 

6.6 Materials withInhibition 

As discussed in the previous chapter it is feasible that the corrosion rate of carbon 

steel can be controlled by addition of a green inhibitor. If this is added and there is other 

corrosion resistance alloys (CRAs) used, than until that present; it is important to 

understand the behaviour of the other alloys in particular their pitting behaviour. Figure 

6.25 shows the comparison of breakdown potential, Eb of 316L, 25Cr duplex and 

Inconel 625 in solution 1 and solution 1 added with inhibitor CRW 89000. CRW 89000 

is known a green inhibitor and used where oxygen exists in the corrosive environment. 

As stated previously, the nobility of the Ebgives an indication of the resistance of the 

material to passivity breakdown.This figure elucidate that, at 20ºC the Eb value of 

materials are higher when S1 is added with 100 ppm CRW 89000.  The Eb values are 

almost significant to Eb of materials in commercial hydraulic fluid, HW443. All passive 

alloys presents an increasing of Ebvalue if seawater (S1) is added with CRW89000 and 

the performance are better compared to materials in HW443 hydraulic fluid. 316L 

shows the highest increasing value of Ebwhen S1 is added with CRW89000 which is 

about 82% followed by Inconel (47%) and 25Cr duplex about 43%. The trend is similar 

to materials performances in solution 1 to 4 (25Cr duplex > Inconel 625>316L). 
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Figure 6.25 Ebof materials in S1 with and without CRW 89000 (100ppm) at 20ºC 

6.7 Materials inaReducedOxygenEnvironment 

The test continued exposing the materials to a reduced oxygen environment by 

purging with nitrogen to remove the oxygen. Accordingly, the nitrogen was still 

bubbled when the cyclic polarisation tests were running.For all the experiments, the 

bubbles are controlled with 1 bubble every 1 second and the oxygen reading was 

recorded using an oxygen concentration electrode. The oxygen was purging from 

solution until the measurement detect by oxygen meter at least 0.04ppb. The effect of 

oxygen was just considered at 4ºC and 20ºC with the assumption that higher 

temperatures will accelerate the corrosion rate. 

Figure 6.26 and 6.27 presents the anodic polarisation of 316L in solution 1 with 

and without dissolved oxygen at 4ºC and 20ºC respectively. The polarisation of 316L in 
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oxygen. Metastable pitting occurs on 316L in solution 1 without dissolved oxygen at 

20ºC (red marked). Figure 6.28 to 6.29 presents the anodic polarisation of 316L in 

solution 2. The material shows high Eb in S2 at 4ºC when the dissolved oxygen is low. 

Figure 6.30 and 6.31 shows the anodic polarisation of 316L in solution 3 at 4ºC and 

20ºC. With no oxygen in solution 3 at 20ºC, 316L shows an increasing current at the 

repassivation curve. Figure 6.32 and 6.33 shows the anodic polarisation of 316L in 

solution 4 at 4ºC and 20ºC. 
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Figure 6.26 316L in S1 with and without oxygen at 4ºC 

 

 

Figure 6.27 316L in S1 with and without oxygen at 20ºC 
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Figure 6.28 316L in S2 with and without oxygen at 4ºC 

 

 

Figure 6.29 316L in S2 with and without oxygen at 20ºC 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-12 -10 -8 -6 -4 -2 0

logi(A/cm
2
)

E
(V

)

316L in solution 2 without

oxygen

316L in solution 2 with

oxygen

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-10 -8 -6 -4 -2 0

log i(A/cm
2
)

E
(V

)

316L in solution 2 without

oxygen

316L in solution 2 with

oxygen



  

   

 

 

- 140 - 

 

Figure 6.30 316L in S3 with and without oxygen at 4ºC 

 

Figure 6.31 316L in S3 with and without oxygen at 20ºC 
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Figure 6.32 316L in S4 with and without oxygen at 4ºC 

 

Figure 6.33 316L in S4 with and without oxygen at 20ºC 

 

Figure 6.34 to 6.41 presents the cyclic polarisation of 25Cr duplex in different 

SO4
2-

/Cl
-
ratio with and without dissolved oxygen at 4ºC and 20ºC. The Eb value are 

summarised in Figure 6.50 and shows that 25Cr duplex are sustain at higher Eb value in 

every conditions which can be explained that 25Cr duplex is excel to resist corrosion 

attack in every environment conditions especially when there are no oxygen in 

solutions. However, the Eb value for 25Cr duplex is not really significant with and 

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0

log i(A/cm
2
)

E
(V

)

316L in solution 4 with

oxygen

316L in solution 4 without

oxygen

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0

log i(A/cm
2
)

E
(V

)

316L in solution 4 with oxygen

316L in solution 4 without

oxygen



  

   

 

 

- 142 - 

without oxygen as compared to 316L which also explained that stability of 25Cr duplex 

in aggressive environment.  

 

 

Figure 6.34 25Cr duplex inS1 with and without oxygen at 4ºC 

 

Figure 6.35 25Cr duplex inS1 with and without oxygen at 20ºC 
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Figure 6.36 25Cr duplex inS2 with and without oxygen at 4ºC 

 

 

 

Figure 6.37 25Cr duplex inS2 with and without oxygen at 20ºC 
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Figure 6.38 25Cr duplex inS3 with and without oxygen at 4ºC 

 

 

 

Figure 6.39 25Cr duplex inS3 with and without oxygen at 20ºC 
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Figure 6.40 25Cr duplex inS4 with and without oxygen at 4ºC 

 

Figure 6.41 25Cr duplex inS4 with and without oxygen at 20ºC 
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Figure 6.42 and 6.43 present cyclic polarisation curves of Inconel 625 in seawater 

(solution 1) at 4°C and 20°C respectively. Figure 6.44 to 6.51 presents the Inconel 625 

in the changing SO4
2-

/Cl
-
ratio conditions from seawater composition (solution 1) with 

and without dissolved oxygen at 4ºC and 20ºC. As stated previously, sulphate can 

behave as inhibiting effect to passive materials. However, the effectiveness depends on 

competitive reactions between suphate and chloride [45]. Like the other materials, the 

Eb increased when the oxygen was purged from the solution. The value of Eb are quite 

complex to identified because sometimes the material presents to have secondary 

breakdown potential. According to Laycock (1999), Ebcan be defined as a potential 

where the anodic current density first rise and reached a sustained level > 10 

µA/cm
2
[192]. In solution 2 and 3, the emergence of an active loop on the forward scan 

indicated that initial attemps to repassivate were not completely successful. The 

possibility that the observed active behaviour could be due to insufficient oxygen (it 

only happen in a solution without oxygen) to aid complete repassivation [193]. The 

value of Eb for 316L, 25Cr duplex and Inconel 625 in all solutions as compared to 

HW443 with and without oxygen content is summarised in Figure 6.50 and 6.50 at 4°C 

and 20°C respectively.   

 

Figure 6.42 Inconel 625 inS1 with and without oxygen at 4ºC 
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Figure 6.43 Inconel 625 inS1 with and without oxygen at 20ºC 

 

Figure 6.44 Inconel 625in S2 with and without oxygen at 4ºC 
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Figure 6.45 Inconel 625in S2 with and without oxygen at 20ºC 

 

 

Figure 6.46 Inconel 625in S3 with and without oxygen at 4ºC 
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Figure 6.47 Inconel 625 in S3 with and without oxygen at 20ºC 

 

Figure 6.48 Inconel 625in S4 with and without oxygen at 4ºC 
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Figure 6.49 Inconel 625in S4 with and without oxygen at 20ºC 

Figure 6.50 and 6.51 summarised the breakdown potential Eb value in all solutions 

with and without oxygen content at 4ºC and 20°C. In both temperature, 316L presents 

to have the lowest Eb value compared to Inconel 625 and 25Cr duplex. The performance 

of Inconel 625 and 25Cr duplex more excel when oxygen was purged from solutions. 

However, the suphate-chloride ratio is not significant in all solutions with or without 

oxygen. At 4°C, the highest Eb value was achieved by Inconel 625 in the solution 3 

without oxygen content and 25Cr duplex perform to have high Eb in all solution at 

20ºC. 

 

Figure 6.50 Comparison of breakdown potential for passive alloys in every                   
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Figure 6.51 Comparison of breakdown potential for passive alloys in every                   

solution at 20ºC  

 

6.8 Summary 

This chapter presents all the data for CRAs alloy used in this research which are 

stainless steel 316L, 25Cr duplex and Inconel 625. The composition of these materials 

are presented in Chapter 4 section 4.1 and shows that 25Cr duplex has the highest 

chromium content followed by Inconel 625 and stainless steel 316L. The breakdown 

potential was used to study the aggressiveness of corrosion attack to different materials. 

The breakdown potential is an indication of the resistance to the initiation of corrosion 

[22]. A higher Eb signifies less corrosivity of material to localised attack and lower 

Ebsignify easily attack by localised corrosion. Therefore, 25Cr duplex performs higher 

Eb in most of aggressive media. A ranking of fluid corrosivity from ‗best‘ to worst‘ at 

each temperature is prepared in Table 6.4 and Table 6.5 according to Figure 6.22. As 

temperature increased, the protective property of the oxide film degraded in every 

solution. Apart from varying the temperature, the composition of seawater was also 

varied according to different sulphate to chloride ratios. This table summarises that 

25Cr duplex and Inconel 625 shows similar performance in corrosion resistance and 

316L shows severe corrosion attack and is this proved by microscopy images. Table 6.5 

was ranked according to Figure 6.6 to 6.8, 6.10 to 6.18 which presented the Ebof 

materials in different sulphate-chloride ratio at increasing temperatures. The value of Eb 
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to 80% as 4 and 81% -100% is 5 (the ‗Worst‘). The performance of materials in 

solution 1 (seawater), solution 1 (S1) with inhibitor, S1 without oxygen at 4ºC and 20ºC 

and the highest Ebvalue (in S4 at 4ºC) is presented in Figure 6.53 as compared to 

Ebvalue performed in commercial hydraulic fluid, HW443.  

 

Table 6.4The performance of breakdown potential, Eb for passive alloys in 

different composition of sulphate/chloride ratio at increasing temperature. 

 

Solutions 
 

Best                                                      Worst 

Solution 1 (SO4
2-

=0.14) 25Cr duplex           Inconel 625            316L 

Solution 2 (SO4
2-

=19.15) 25Cr duplex           Inconel 625            316L 

Solution 3 (SO4
2-

=0.75) 25Cr duplex           Inconel 625            316L                                 

Solution 4 (SO4
2-

=0.99) 25Cr duplex           Inconel 625            316L 

 

Table 6.5 The rank of performance for passive alloys in different 

sulphate/chloride ratio (1-5 is Best to Worst) 

 

Solutions 

 

 

Material 

 

Temperature 

4ºC 20ºC 50ºC 80ºC 

Solution 1 

(SO4
2-

=0.14) 

316L 1 4 5 5 

25Cr Duplex 1 1 1 2 

Inconel 625 1 3 3 4 

Solution 2 

(SO4
2-

=19.15) 

316L 1 1 3 4 

25Cr Duplex 1 1 1 1 

Inconel 625 1 1 1 2 

Solution 3 

(SO4
2-

=0.75) 

316L 1 2 3 5 

25Cr Duplex 1 1 1 2 

Inconel 625 1 2 3 3 

Solution 4 

(SO4
2-

=0.99) 

316L 1 4 5 5 

25Cr Duplex 1 1 1 4 

Inconel 625 1 2 3 3 
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Figure 6.52 Comparison of materials in different media as compared to 

HW443 
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Chapter 7  

 

 

CERMETS ALLOYS 

7.1 Introduction 

Cermets have been used in some components in subsea valves and so this study 

assessed their corrosion behaviour in seawater and compared the rates and mechanisms 

with carbon steel and the passive alloys in chapter 6 using cyclic polarisation. Tungsten 

carbide (WC) or cemented carbides are composite materials consisting of tungsten 

carbide grains cemented together by a metallic binder, most probably cobalt (Co). They 

are known for their combined high hardness, due to the hard WC phase and working 

toughness due to the binder. Cemented carbides have applications spanning most 

engineering fields. However, applications in chemically aggressive environments are 

less successful because they are susceptible to corrosion [143]. For WC-Co, the 

corrosion properties in acidic and neutral electrolytes are controlled by the corrosion 

resistance of the Co binder [115,144]. WC dissolution becomes more significant at 

alkaline pH [39].  

The Co binders are modified by dissolving tungsten (W) and carbon (C) during 

the sintering process [77]. This modification of composition slightly improves the 

corrosion resistance of cermets alloy. Since the corrosion behaviour of cermets alloy is 

governed by the galvanic coupling of the anodic metallic binder to the cathodic ceramic 

phase. Then, the only method that has been used to improve the corrosion resistance is 

the use of corrosion resistant binders such as Ni, Ni-Cr and Ni-Cr-Mo [144,145]. 

However, problems still exist in offshore oil industry field when using nickel tungsten 

carbide (WC-Ni) in the hydraulic system due to the complex factors relating to the 

corrosion process and how the environment parameters affect the corrosion 

mechanisms. A good understanding of the corrosion factors together with the critical 

point of environment parameters and cermets alloy is then necessary.  

In this study, the cermet alloys – WC-6%Co and WC-9%Ni – are usedto evaluate 

the corrosion performance in seawater and different SO4
2-

/Cl
-
 ratios of seawater at 
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different temperatures. The performance will then be compared to the performance of 

each material in HW443 hydraulic fluid.  

The surface microstructure of WC-Co and WC-Ni are shown alongside the 

elemental composition respectively in Figure 7.1 and Figure 7.2 generated from 

SEM/EDX analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 SEM/EDX analysis of received cobalt tungsten carbide sample  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2SEM/EDX analysis of received nickel tungsten carbide sample  
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7.2 Cermet Alloys in HW443 

Figure7.3 presents the anodic polarisation of WC-Co and WC-Ni in commercial 

hydraulic fluid HW443. The electrochemical response is totally different to passive 

materials, as they do not experience passive breakdown. These curves have negative 

hysteresis and do not have an obvious passive region on the forward scans. Both 

materialsdoes not exhibit passivity but behave as active materials in HW443. In the 

forward scan, the current density increases consistently from the OCP as the potential 

progressively increases. 

The corrosion current density, icorr is determined by Tafel extrapolation, and the 

values are 2.50 µA/cm
2
 for WC-Co and 1.72 µA/cm

2
 for WC-Ni. The icorr value for 

WC-Co is much higher than WC-Ni under the same condition, indicating that the 

corrosion resistance of WC-Ni is better than WC-Co in HW443. The forward scan 

becomes linear at around 20mV from OCP on E-log I relationallowing the icorr to be 

determined.  

The reverse potential, Er is the potential at which the current density reaches the 

pre-set value of 500 µA/cm
2
. This could be an indication of the corrosion resistance of 

the active materials. A higher Er demonstrates a larger over-potential required for 

corrosion to occur at the same rate. The Ervalue for WC-Co and WC-Ni are 808 mV 

and 965 mV, respectively. 

The protection potential, Ep reveals how efficiently the current density drops when 

the potential decreases. It is the point of intersection of anodic and cathodic branch on 

the reverse scan. The OCP is the potential of material under freely corroding conditions. 

The values of all electrochemistry in HW443 are presented in Table 7.2. 

Although the corrosion rate is complex because of the nature of the material, but it 

is not negligible. With considering that the corrosion occurs generally on the entire 

surface, average corrosion rate of cermets alloy can be estimated by quoting icorr value 

according to; 

Corrosion rate, CR (mpy)= icorr x (Λ) x (1/ρ) x ε -----------------------------------[23] 

Where Λ is a combination of several conversion terms and is 1.2866 x 10
5
 

(equivalent · sec ·mils)/(Coulombs · cm · years). ρ is the density of the cermets with a 

value of 15g/cm
3
 and the value of ε of WC-Co cermets is 16.5 g/equivalent and ε of 

WC-Ni, the following equation is applied: 
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      -----------------------------------------------[8] 

 

The weight percent, atomic weight and valence value for each element are listed 

below. The effective equivalent weight obtained is 18.40 g/equivalent. The corrosion 

rate obtained in Table 7.2 elucidate that corrosion rate of WC-Co is higher than WC-Ni 

in commercial hydraulic fluid HW443.  

Table 7.1 Element value 

Element Weight% (x) 
Atomic weight 

(M) 
Valence (z) 

C 7.2 12.01 4 

W 86.5 183.85 6 

Ni 6.3 58.70 2 

 

 

 

Figure 7.3Potential versus current density for WC-Co and WC-Ni in HW443 at 

20ºC 
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Table 7.2 Electrochemical parameters of materials in HW443 at 20ºC 

 

7.3 WC-Coin Seawater and Different SO4
2-

/Cl
-
Ratios 

For passive alloys (Chapter 6), different SO4
2-

/Cl
-
 ratios do have some effect on 

the breakdown of the passive layer on the metal surface. The effect of the SO4
2-

/Cl
-
 ratio 

was also studied for cermets alloys. Figure 7.4 presents the cyclic polarisation of WC-

Co in S1 (seawater) at different temperatures. Cyclic polarisation exhibits positive 

hysteresis (except at 20ºC) as the reverse scan is below the forward scan. At the 

temperature, 4ºC, 20ºC and 80ºC, there is no protection on the reverse scan until the 

potential drops to OCP. The temperature affects the corrosion behaviour in a same way 

as in HW443, which can be proved by the data supplied in Table 7.3. By using the same 

calculation as WC-Co in HW443, the value of corrosion rate (mpy) and other 

electrochemical parametersfor WC-Co in different SO4
2-

/Cl
-
ratio are presented in Table 

7.3. CPP curves of WC-Co in other solutions are presented in the Appendix (Figure A.5 

to Figure A.7).  

 
Figure 7.4Anodic polarisation of WC-Co  in S1 at different temperatures 
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The reverse potential, Er of WC-Co in all solutions as a criterion of corrosivity at 

elevated temperature are presented in Figure 7.5. This figure reveals that increasing the 

temperature gives an obvious effect of lowering the Er. However,in solution 2 (SO4
2-

/Cl
-
  

ratio is 0.75) WC-Co shows the value increase about 7% from 4ºC to 20ºC. WC-Co 

become least corrosive in solution 4 (SO4
2-

=10.95mg/l and the Cl
-
=11 mg/l) at 4ºC and 

20ºC but become the most corrosion when the temperature increase to 50ºC and 80ºC. 

The amount of sulphate and chloride in solution 4 is almost equal. Therefore, the high 

value of Er at low temperature might be inhibiting effect of sulphate whereas Er value at 

high temperature are caused by competitive absorption between sulphate and chloride 

and left chloride to perforate corrosion attack.The Er of WC-Co in solution 3 presents 

tremendous performance at elevated temperature regardless at 4ºC and 20ºC. Although 

the amount of sulphate is about half and chloride content is higher as compared to 

solution 2, this performance of Er is better as compared to WC-Co in solution 2. WC-

Co performs an outstanding performance in solution 4ºC at 20ºC when compared to 

commercial hydraulic fluid HW443. Clearly, the Er value of WC-Co in solution 4 can 

compete the performance performed by HW443 at 20ºC. However, at increasing 

temperature, the performance becomes the worse. 

Figure 7.6 presents the corrosion rate of WC-Co in different SO4
2-

/Cl
-
 ratio as a 

function of temperature. Corrosion rate increased as the temperature increased as 

expected.  The worse corrosion rate occur on WC-Co in solution 1 (seawater) and 

solution 2 performed the best result as compared to other solutions. The corrosion rate 

increased from 4ºC to 20ºC almost 83% and maintained until 80ºC. Solution 2 has 

higher sulphate content compared to chloride (SO4
2-

=20.87mg/l and the Cl
-
=1.09 mg/l). 

At lower temperature, the sulphate content react as inhibiting agent while at higher 

temperature, the chloride dominate the competition and increased corrosion attack. By 

comparing the corrosion rate overall, all solutions are less corrosion attack compared to 

solution 1 (seawater). However, if compare to HW443 at 20ºC, solution 3 and 4 has 

better corrosion rate. Solution 3 and 4 has higher chloride content than sulphate. This is 

contradict to explain that sulphate has inhibiting effect to WC-Co. 
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Table 7.3 Electrochemical parameter for WC-Co in all solutions 

 

 

Solution 
Temperature 

(
o
C) 

Er 

(mV) 

OCP 

(mV) 

Ep 

(mV) 

icorr 

(µA/cm
2
) 

CR 

(mpy) 

S1 

SO4
2-

/Cl
-
=0.14 

4 260 -170 N/A 1.60 0.23 

20 213 -214 N/A 5.01 0.71 

50 151 -151 149 7.92 1.12 

80 36 -140 N/A 15.03 2.13 

S2 

SO4
2-

/Cl
-
=19.15 

4 337 -62 -56 0.5 0.07 

20 364 -96 N/A 3.0 0.42 

50 206 -163 N/A 3.1 0.44 

80 11.98 -256 -333 3.2 0.45 

S3 

SO4
2-

/Cl
-
=0.75 

4 928 -117 -64 0.3 0.04 

20 770 -190 
N/A 

0.3 0.04 

50 530 -170 
N/A 

3.2 0.45 

80 394 -210 
N/A 

4.46 0.63 

S4 

SO4
2-

/Cl
-
=0.99 

4 1127 -165 
N/A 

0.6 0.08 

20 1028 -152 
N/A 

1.9 0.27 

50 154 -224 N/A 5.6 0.79 

80 116 -175 -72 15.8 2.24 
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Figure 7.5 Reverse potential of WC-Co as a function of temperature in every 

solution.  

 

Figure 7.6 Corrosion rate, CR (mpy) of WC-Co in different sulphate/chloride 

ratios as a function of temperature 
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7.4 WC-Ni in Seawater and Different SO4
2-

/Cl
- 
Ratios 

Because of the nature of cermets alloy, which consist of metal and ceramic 

composition, the corrosion rate is complex to identify. The corrosion attack could be 

assessed by calculating the corrosion rate or electrochemistry evaluation. 

Figure 7.7 shows WC-9%Ni in S1 at 4ºC, which has the same composition as real 

seawater. Like WC-Co, WC-Ni does not behave like passive material 316L. There is no 

breakdown potential as the potential increased. The temperature affects the corrosion 

behaviour in the same way as the other materials presented previously. The forward 

branch of the curve becomes linear after 50mV from OCP. Extrapolating this linear line 

and intersect with the current value will give icorr.As WC-Ni behaves as an active 

material, icorr is determined by Tafel extrapolation and the corrosion rate of WC-Ni in 

all solutions was calculated and presented in Table 7.4.WC-Ni in other solutions are 

presented in Appendix (Figure A.5 to Figure A.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 WC-Ni  in solution 1 at 4ºC 
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Figure 7.9 and 7.10 is generated from the list of electrochemistry data in Table 

7.4, which shows the corrosion properties of WC-9%Ni for all solutions at increasing 

temperatures from 4ºC to 80ºC. Figure 7.9 presents the reverse potential of WC-Ni in 

every solution at increasing temperature. All the solutions show the same trend as 

increasing the temperature decreased the reverse potential. However, solution 1 shows 

mostly the highest Er in every situation which explains that solution 1 is the least 

corrosive compared to other solutions while solution 3 is the most corrosiveyet solution 

3 presents constantly reduce as the temperature increased. WC-Ni shows drastically 

reduce in solution 2 from 4ºC to 20ºC about 18%.Comparing the corrosion rate with 

commercial hydraulic fluid HW443 at 20ºC, present all solutions need to reduce 62% to 

87% to reach acceptable corrosion rate. The open circuit potential is fluctuate in every 

solution. 

The effect of temperature is different for the other solutions – S2, S3 and S4. S2 

has the highest sulphate (SO4
2-

) to chloride (Cl
-
) ratio, which is 19.15 mg/l and S3 and 

S4 are higher in Cl
-
 content compared to SO4

2-
 while S3 has SO4

2-
/Cl

-
, which is equal to 

0.75 and S4 has a value for SO4
2-

/Cl
-
 of 0.99. The corrosion rate for WC-Ni in S2, S3 

and S4 is lower than in S1, which is the real seawater composition. Although increasing 

the temperature affects the corrosion rate, different SO4
2-

/Cl
-
 does not have a significant 

effect on the corrosion rate. However, it shows that changing the SO4
2-

 and Cl
-
 amount 

in seawater can decrease the corrosion rate. The effect of SO4
2-

 in retarding the 

corrosion rate could not be seen in this result but, it is proved that by changing the 

amount of SO4
2-

 and Cl
- 
ratio could decrease corrosion rate very close to hydraulic fluid 

HW443. Further electrochemistry for cermets in inhibitor was not evaluate as the aim 

for this research is to provide information for seawater to be used as hydraulic to 

replace chemical hydraulic fluid.. 
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Table 7.4 Electrochemical parameter for WC-Ni in all solutions 

 

 

 

 

 

Solution 
Temperature 

(
o
C) 

Er 

(mV) 

OCP 

(mV) 

Ep 

(mV) 

icorr 

(µA/cm
2
) 

CR 

(mpy) 

S1 

SO4
2-

/Cl
-
=0.14 

4 707 -127 29 1.99 0.31 

20 715 -161 98 6.31 1.00 

50 1156 -333 -239 7.94 1.25 

80 -61 -250 N/A 10 1.58 

S2 

SO4
2-

/Cl
-
=19.15 

4 705 -115 12 3.98 0.26 

20 576 -173 43.9 10 0.48 

50 1360 -330 -107 18 0.75 

80 139 -218 -255 31.6 0.87 

S3 

SO4
2-

/Cl
-
=0.75 

4 199 -152 N/a 1.99 0.27 

20 199 -130 -28.5 6.3 0.35 

50 235 -201 -149 6.3 0.64 

80 119 -385 N/a 10 0.70 

S4 

SO4
2-

/Cl
-
=0.99 

4 200 -145 -46 1 0.27 

20 698 -157 20.9 2.51 0.56 

50 172 -449 -119 7.9 0.60 

80 1004 -431 -181 10 0.97 
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Figure 7.8 Reverse potential of WC-Ni as a function of temperature in every 

solution.  

 

 

Figure 7.9 Corrosion rate of WC-Ni in all solutions at increasing temperature. 
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7.5 Summary 

This chapter presents the electrochemistry results for cermets alloy which are WC-

Co and WC-Ni. The sample composition is presented in Chapter 4 and WC-Ni was 

supplied by oil and gas company and the sample was cut from coupon into desired size. 

The EDX was taken to confirm the materials composition before the experiment. Both 

cermets alloys shows similar performance in Oceanic hydraulic fluid HW443 at room 

temperature (20ºC). These alloys shows combination of active and passive behaviour 

however there are no breakdown potential to be observed. Therefore, the value of 

corrosion current density, icorrwas identified to obtain corrosion rate (CR) by calculation. 

An increase of temperature does not alter the trend of the curves, however the corrosion 

process is accelerated as expected. This is characterised by decreasing reverse potential 

and increasing free corrosion current density. Therefore, the protection potential reduces 

as well at higher temperature. Table 7.5 below presents the severity ranking of reverse 

potential and corrosion rate of solutions at different temperature. Solution 3 (SO4
2-

/Cl
-
 

of 0.75) appears to be the best in terms of Erfor WC-Co whereas solution 1 (SO4
2-

/Cl
-
 of 

0.14) appear to be the best solution in terms of Er for WC-Ni. When comparing the 

corrosion rate calculated from current density, solution 3 becomes the best solution for 

both cermets. Nevertheless, solution 1 become the worst solution for both cermets. 

Table 7.5Ranking of cermets alloy in different solutions  

Temperature 

(ºC) 

Er 

High                                                                       Low 

Cermets WC-Co WC-Ni WC-Co WC-Ni WC-Co WC-Ni WC-Co WC-Ni 

4 S4 S1 S3 S2 S2 S4 S1 S3 

20 S4 S1 S3 S4 S2 S2 S1 S3 

50 S3 S2 S2 S1 S4 S3 S1 S4 

80 S3 S4 S4 S2 S1 S3 S2 S1 

Temperature 

(ºC) 

 

CR(mpy) 

High                                                                       Low 

Cermets WC-Co WC-Ni WC-Co WC-Ni WC-Co WC-Ni WC-Co WC-Ni 

4 S1 S1 S4 S3 S2 S4 S3 S2 

20 S1 S1 S2 S4 S4 S2 S3 S3 

50 S1 S1 S4 S2 S3 S3 S2 S4 

80 S4 S4 S1 S4 S3 S2 S2 S3 
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Figure 7.11 shows some microscopic view of cermets alloy. Figure 7.11 (a) show 

the WC-Ni in solution 4 at 4ºC which showing no obviously of corrosion attack. 

However, at 50ºC WC-Ni appear to have corrosion attack and from electrochemistry, 

the corrosion rate is 0.6 mpy at this environment. From Table 7.4, solution 2 could be 

classified as moderate solution will perforate corrosion. From microscopic view, WC-

Ni in solution 2 at 50ºC (Figure 7.11(c)) does not show any severe corrosion attack. 

WC-Co appears to have dark surface under microscope after electrochemistry and 

difficult to increased the picture contrast. Figure 7.11 (d) show WC-Co in solution 1 at 

80ºC and observed likely a pitting appear on WC-Co surface even though WC-Co in 

solution 1 do not show breakdown potential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10 Cermets alloy under microscopic observation (a) WC-Ni in solution 4 

at 4ºC, (b)  WC-Ni in solution 4 at 50ºC, (c) WC-Ni in solution 2 at 50ºC and (d) 

WC-Co in solution 1 at 80ºC. 
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Chapter 8  

DISCUSSION 

 

8.1 Introduction 

It has been proven by several authors that pitting corrosion can be avoided by 

using oil-based hydraulic fluids. However the demand by environmental policies insist 

that all oil and gas activities especially when discharging to environment must be non-

toxic, must not bio accumulate and be biodegradable. This request a cleaning process 

before discharging to the environment and such cleaning under marine conditions is 

complicated and the oil-water mixtures are needed to be transported along pipelines to 

onshore separation units. This task could be minimised if hydraulic fluids are being 

replaced by seawater. In addition to the potential cost benefits, seawater could also be 

easily discharged into the sea. 

The corrosion behaviour of carbon steel was evaluated and presented in Chapter 5 

and considered as an active material. In contrast to active material, passive materials 

show a different kind of corrosion attack and mechanism. Evaluations of passive 

materials – 316L, 25Cr duplex and Inconel 625 – were provided in Chapter 6, whereas 

cermet alloys, which consist of a combination of metal and ceramic can show active and 

passive behaviour,were presented in Chapter 7. The objective of this research is to study 

the corrosion attack of Directional Control Valve (DCVs) material for use in seawater 

by applying seawater as a hydraulic fluid. As such all classes of construction materials 

are considered and corrosion mechanism and rates were identified to provide some data 

for corrosion control. All the acceptable corrosion rates and passive film breakdowns 

were compared to commercial hydraulic fluid HW443, which has been used by 

previous researchers. All the electrochemistry was evaluatedeither at different 

temperatures and sulphate/chloride ratios, oxygen and inhibitor. Contradict approach to 

corrosion was examined and evaluated where it was presented that carbon steel 

experiences general corrosion, passive alloys experience localised corrosion and 

cermets alloys experience as general corrosion. 
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8.2 The Demand for Green Hydraulic Fluid 

Generally, successful and economical exploration and exploitation is heavily 

dependent on material performance and the need for protection against corrosion of 

equipment. Materials could degrade due to corrosion caused by the aggressiveness of 

seawater. However, the technology advances on many fronts are increasing the 

productivity and efficiency of oil and gas production. Applying new technologies in 

every stage of oil and gas production will simultaneously increase productivity. In 

addition, manufacturers keep identifying solutions that balance the benefits of 

production with the ongoing drive for environmental protection. Where companies once 

focused solely on complying with regulations, many now view environmental 

performance more broadly as a core business value. This research is part of an attempt 

to find an alternative for hydraulic fluid to replace oil-based hydraulic fluid which is not 

harmful when discharged tothe environment. It would be easier if seawater is treated 

with inhibitors or deionised in some way that could be used as a hydraulic fluid; 

however, this presents many challenges associated with the corrosion of the materials of 

construction, the environment and the material‘s lifetime. The health and safety 

practices for subsea activities, means that oil-based hydraulic fluid is no longer suitable 

for use in oil and gas operations. However, water-based hydraulic fluid may cause 

several disadvantages such as leakage due to low viscosity, instability at higher 

temperature and may need coolant. The process of discharging the waste hydraulic fluid 

is very costly, which has led to the suggestion to use seawater as the hydraulic fluid. 

Not only the seawater is readily available in subsea, but, also, by using the seawater as a 

hydraulic fluid, no further waste water treatment is needed when discharging. This also 

will contribute to reducing the cost of the operation for subsea activities. Nevertheless, 

the most crucial problem of using seawater as a hydraulic fluid is the risk of corrosion 

attack on material involved. 

The main objective of this research is to identify the critical parameters in the 

aqueous environment, which accelerates the corrosion rate and find a means of reducing 

the corrosion attack to something comparable to the behaviour of hydraulic fluid when 

using in subsea operations. The best hydraulic fluid as the benchmark to determine an 

acceptable corrosion rate and the hydraulic fluid chosen is HW443. 
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8.3 The Corrosion Mechanism on Carbon Steel 

Carbon steel can be attacked either by uniform or pitting corrosion in seawater. 

Uniform or general corrosion can be classified as corrosive attack proceeding evenly 

over the entire exposed surface area. It is probably the most common form of corrosion 

for carbon steel and is relatively easily measured and predicted. Figure 5.3in Chapter 5 

presents the corrosion rate of carbon steel in distilled water as compared to commercial 

hydraulic fluid HW443. It reveals that when there are no halide anions in asolution 

(distilled water) except oxygen, the corrosion rate can be reduced beyond the 

commercial hydraulic fluid. The figure reveals that the corrosion rate of carbon steel in 

distilled water is much lower compared to the corrosion rate in HW443 and increasing 

the temperature has low significant effect to corrosion rate. This elucidate that by 

removing salt content in seawater would reduce corrosion rate on carbon steel. 

According to Ying and Haichao (2001), the general corrosion rate of low alloy 

steels in seawater is approximately equal to 0.1 mm/year for local corrosion of low 

alloy steel in 3.5% NaCl [151] and referring to Figure 5.4(a), the corrosion rate for AISI 

1040 in 3.5% NaCl for this research is around 0.32 mm/year at 20ºC. However, AISI 

1040 can be categorised as medium carbon steel and this reason contribute to higher 

corrosion rate. Increasing the temperature has an effect on the electrochemical kinetics, 

which relates to the electron flow to or from the metal-electrolyte interface. The rate of 

any transformation is controlled by the magnitude of one or more energy barriers that 

every particulate entity must surmount to transform or could be simplified as the 

minimum energy required to start a chemical reaction. The activation energy of a 

reaction is usually denoted by -∆G
#
. The reaction rate, r can be expressed as below for 

the reaction rate, which applies to many reactions over moderate temperature range, 

using Arrhenius‘ equation [104]. 

                                    RT

E
Ar a )exp(

          8.1 

where A is the pre-exponential factor, there is an empirical relationship between 

temperature and rate coefficient. This equation can be applied by replacing the reaction 

rate, r by current, I and the energy of the process is the product of the charge and the 

potential drop, E, through which it is carried. Thus, the activation energy is the change 

in free energy (∆G=-nFE) during the process and the relation is; 
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                     RT

nFE
k

RT

G
ki


 expexp

                                                          8.2
 

Where k is a constant depending on the process and on the ion activity. 

Figure 8.1 shows the Arrhenius relationship for AISI 1040 in 3.5% NaCl. The 

negative slop of Arrhenius plot indicates the activation energy was positive value. 

Therefore, the metal atom must overcome the activation energy peak which indicates 

that only a part of metal with higher energy can be corroded (Figure 8.2).  

 

Figure 8.1 Arrhenius relations in 3.5% NaCl 

 

 

 

 

 

 

 

 

 

Figure 8.2Schematic of the activation energy peaks for nucleation 
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The immersion test had done to three types of carbon steels namely AISI 1040, 

AISI 8260 and AISI 4140. The carbon steels was immersed in 3.5% NaCl for various 

periods and the corrosion rate was calculated. The effect of corrosion product to 

corrosion rate can be seen in Figure 5.5 in Chapter 5 where all the carbon steels are 

behave as same trend. Apart of comparing different compositions of carbon steels (low–

medium-high carbon steel) on corrosion attack, the trends of corrosion attack also can 

be studied by using more than one carbon steel. The corrosion rate for all carbon steels 

decreased as the exposure time increased. This is due to the property of corrosion 

products which are porous and soluble as shown in Figure 8.3 below. However, for 

AISI 8620 and AISI 4140, the corrosion rate slightly increased at 24 hours immersion. 

According to Li et al.(2013), corrosion product may retard the corrosion uniform 

corrosion attack, but if it is not fully covered the steel surface, it may lead to initiation 

of localised corrosion due to galvanic effect [195]. 

 

 

 

 

 

 

 

 

Figure 8.3Microscopy view of AISI 1040 in 3.5% after corrosion attack at 20ºC 

 

According to Rosales etal.(2003) the increasing protective rust thickness increased 

with increasing time and resulted in a decrease in the corrosion rate for carbon steel 
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are consistent with Zhu etal. (2002) who studied the characterisation of corrosion 

products on carbon steel. They found that with an increase in the immersion time in 

NaCl solution, the polarisation resistance of the recrystallized alloy steadily increases, 

which reflects an increase in the protective characteristics of the corrosion product 
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corrosion continuously drops with time and this behaviour is influenced by the 
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formation of an oxide layer, which reduces the limiting current density for oxygen 

reduction[148]. 

There are several factors that affect corrosion attack on carbon steel including pH, 

anions, oxygen and temperature. An increase in temperature affects the chemical 

composition and physical properties of water, the nature and properties of deposits and 

the actual behaviour of the metal exposed. The water composition is affected by 

changes in the stability and solubility of the dissolved solids. The study by Takasaki and 

Yamada (2007), revealed that corrosion of carbon steel increased in proportion to the 

concentration of aggressive anions and with increasing temperature [45]. The 

underlying concept is a mechanism of chemical reactions involving the passage of 

reaction species through an intermediate activated complex, subsequently dissociating 

into reaction products. This activated complex is known at an energy level exceeding 

the energy of the reactants by the activation energy. 

Anions were identified by several authors as the main attack by corrosion in a 

seawater environment [149]. Figure 5.6 reveals that other anions also contribute to 

corrosion for carbon steels. According to Wren etal.,(2010) the corrosion rate to carbon 

steel does not depend on halide anion type or concentration. However, it will accelerate 

breakdown and inhibit the repassivation process [150]. For passive alloy, El 

Waneesetal.(2010)reported that the breakdown potential of stainless steel in 3.5% NaCl 

is lower compared to real seawater because non aggressive anions exist in real seawater, 

which can resist corrosion [47]. However, this behaviour could be different to carbon 

steel, which behaves as an active material and was attacked by general corrosion. 

To get an acceptable corrosion rate, the carbon steel was tested in commercial 

hydraulic fluid HW443 and compared to S1 (Solution 1), which was synthesisedwith 

the same compositions as real seawater. Figure 5.6 shows that the corrosion rate of AISI 

1040 in solution 1at 20°C is 93% higher compared to corrosion rate of AISI 1040 in 

commercial hydraulic fluid HW443. The corrosion rate of AISI 1040 in HW443 was 

used as a benchmark to identify the critical environment parameter (pH, oxygen and 

anion) to obtain ‗acceptable‘ or ‗unacceptable‘ corrosion rate. Other approach such as 

eitherusing green chemical inhibitor or deaerated dissolved oxygen was used to obtain 

the corrosion rate as closed to commercial hydraulic fluid (HW443).  

As it is knownthat chloride can accelerate corrosion and that other anions, such as 

SO4
2-

, can resist corrosion, the SO4
2-

/Cl
-
 ratio was identified to study the anion effect to 

corrosion rate of carbon steel. The composition of SO4
2-

 and Cl
-
 are listed in Table 5.1, 
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which shows that Solution 2 has the highest SO4
2-

 compared to Cl
-
. As Figure 5.4 

reveals that all carbon steels used are showing a same trend to corrosion attack, 

therefore, the following experimental was only run for AISI 1040. This was chosen 

because AISI 1040 is plain medium carbon steel. Four different solutions of SO4
2-

/Cl
-
 

ratio were prepared and corrosion rate of AISI 1040 was identified. Figure 5.7 presents 

the corrosion rate of carbon steel for every solution compared to 3.5% NaCl at 

increasing temperature (4°C, 20°C, 50°C and 80°C). At 4°C to 20°C, the corrosion rate 

of carbon steel in 3.5% NaCl is the lowest as compared to corrosion rate of AISI 1040 

in different SO4
2-

/Cl
-
 ratio content. However, increasing the temperature to 50°C and 

above increased the corrosion rate of AISI 1040 in 3.5% NaCl tremendously higher than 

AISI 1040 in different SO4
2-

/Cl
-
 ratio.Apart of that, AISI 1040 in S2 (SO4

2-
/Cl

-
 =19.15), 

which has the highest SO4
2-

 to Cl
-
 ratio,is more stable at increasing temperature. Even at 

80ºC, the corrosion rate of carbon steel in S2 is the lowest. This shows that the role of 

sulphate (SO4
2-

) in chloride environmentis complex to understand either it can speed or 

inhibit corrosion attack on carbon steel.  

The corrosion rate of carbon steel was also studied using an inhibitor. CRW85155 

was chosen as this has been used by other researchers with carbon steel in erosion 

corrosion. However, the corrosion rate only reduced to 71% after CRW 85155 was 

added and there was no significant difference when the concentration was increased up 

to 100ppm, as shown in Figure 5.11. The trend is also the same at increasing 

temperature when the concentration of CRW 85155 is increased, as shown in Figure 

5.12. In addition to using CRW 85155, another inhibitor was chosen as used by several 

oil and gas companies in an oxygen environment. This inhibitor – CRW 89000 – 

consists of 2mg/m
3
 sodium hydroxide and sodium nitrate. Figure 5.15 shows that at 

20ºC, with the addition of 400 ppm of CRW 89000 to S1, the corrosion rate can be 

reduced as close tothe corrosion rate of carbon steel in HW443;however, the corrosion 

rate increased as the temperature increased. Nevertheless, when using this inhibitor at 

100ppm, the corrosion rate was still higher compared to carbon steel in HW443 and 

carbon steel in S1 with CRW 85155 added (Figure 5.16). This reveals that apart from 

changing the SO4
2-

/Cl
-
 ratio, the corrosion rate of carbon steel can be reduced by 

increasing the inhibitor concentrations up to 400 ppm to control the corrosion of carbon 

steel in a static and oxygen environment. Figure 5.17conclude the corrosion rate of AISI 

1040 in seawater (S1) with different concentrations of green inhibitor (CRW 89000) 

and AISI 1040 in 3.5% NaCl compared to the bench mark of corrosion rate (the 

corrosion rate in HW443). The graph presents that the corrosion rate of carbon steel 
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isreduced when 400 ppm CRW 89000 was added to S1 and the corrosion rate is closed 

to HW443 when the carbon steel with this electrolyte composition in a temperature 

20°C and below.  

8.3.1 Protective film on passive alloys 

As revealed by several authors, chloride accelerates corrosion and penetrates the 

protective film [92, 122, 150]. The critical chloride concentration can be identified by 

increasing the chloride concentrations from 0g/L in an oxygen environment. The 

corrosion rate for carbon steel drastically increases at chloride concentrations around 

0.05 g/L as shown in Figure 5.9 (a) and (b). This value is then used to get critical 

oxygen concentrations by increasing the oxygen content from 0ppm (Figure 5.10 (a) 

and (b)). According to Jordan and Williams (1996), the corrosion rate of carbon steel in 

corrosive agents and without oxygen is 0.02 mpy [152].For this research, the critical 

oxygen content was evaluated by purging nitrogen gas to the solution overnight. The 

reading of oxygen content was then read using a Dissolved Oxygen (DO) probe. Linear 

polarisation was taken from time to time until 35ppb at 4ºC and 20ºC considering that it 

is difficult to control the oxygen levelat higher temperatures (50ºC and 80ºC). This is 

because during the electrochemical process, oxygen is produced and this process rapidly 

increases as the temperature increases. 

Figure 8.4 below shows oxygen transport mechanism entering the mild steel 

through seawater and corrosion product (rust layer). 

 

 

 

 

 

 

 

Figure 8.4 Oxygen concentration profiles through seawater and corrosion product 

(rust) layer [224]. 
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Even corrosion rates increased as the oxygen concentration increased, but at a certain 

limit, once water diffusion layer increased, the oxygen concentration decreased. As a 

result, the corrosion rate will decreased. This study was presented by Melchers and 

Jeffrey (2005) to describe the rate of material loss (corrosion rate) with time [153]. 

Figure 8.5 below shows a schemetic of oxygen diffusion from bulk water to the 

corrosion surface through the waters surrounding the corroding surface and through the 

corrosion product (rust) layer.  

Figure 8.5 Current (oxygen) transfer through water and rust layer [154]. 

 

Even though the corrosion rate for carbon steel strongly depends on oxygen 

concentrations, some modifications of seawater are able to control the corrosion attack. 

Figure 5.17 reveals that at 20ºC, the corrosion rate of AISI 1040 can be reduced to 

‗acceptable‘ corrosion rate (AISI 1040 in HW443) eitherthe carbon steel is in seawater 

with 400ppm CRW 89000 orreduced the chloride content to 0.05 g/L withlowering the 

oxygen content to approximately 16 ppb (Figure 5.9 in Chapter 5). 

8.4 The Role of Metastable Pitting 

Metastable pitting of metals and alloys has been studied by many authors in order 

to understand the early mechanism of localised corrosion, and to find a potential method 

to predict the pitting tendency of metals, as there is a close relationship between 

metastable and stable pitting behaviours [111-114].Figure 6.23 (Chapter 6 section 6.5)  

shows that metastable pitting occurs at surrounded pit and becomes the point from 

which pitting propagates. It can be said that for 316L at higher concentrations, there 

also occurscorrosion of the remaining part of the metal surface, which refersto 

metastable pitting. Metastable pitting is nucleated at some electrochemically active site, 

probably a sulphide inclusion, although other sites, such as iron-rich clusters in the 
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metal matrix have also been proposed [115]. The transition to stable pit growth occurs 

when the pit has grown sufficiently for its own depth to act as a diffusion barrier. Then 

the pit propagates without its cover and is thus stable. The early metastable pits are 

controlled by the diffusion of metal cations away from the nucleation pit. Some authors 

have focused on the current oscillations and transients, which reflect the influence of 

chloride concentrations on the potential of metastable pitting on polarization curves. 

These current fluctuations before pitting are the results of nucleation, growth and 

repassivation of metastable pits on the metal surface [116].  

Y. Zuo etal. (2002) studies the nucleation number of metastable pits at time 

different according to different surface roughness. They reveal a graph as shown in 

Figure 8.6 below as the number of metastable pits decreased as the surface roughness of 

sample increased (900 grit paper). It can be conclude that the smoother the surface, the 

more corrosion resistance. This is also affect pitting corrosion attack as the pitting 

decreased as the metastable pits decreased. However, the effect of surface roughness 

cannot be seen in this research because the entire samples are polished at the same grit. 

Nevertheless, metastable pits can be identified from anodic polarisation in cyclic 

polarisation potential. Figure 6.27 and Figure 6.8 in Chapter 6 reveals the metastable 

pitting developed on316L at 20°C and Inconel 625 in S1 at 80°C respectively. 

 

 

 

 

 

 

 

 

 

Figure 8.6Changes of number of metastable pits with time on different paper 

finished surfaces.  

 

The way by which the solution composition affects the occurrence of metastable 

pitting remains to be described. Pistorius (1992) in his paper described that the role of 
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dilute sulphate concentration in the chloride solution (where the sulphate concentration 

is significantly less than the chloride concentration) is to shift the distribution of 

metastable pit sites to a higher potential at which they are activated [117]. However, the 

number of sites activated is barely discernible and it is only marginally affected. Thus, 

the pitting potential, which is considered as the potential below which no stable pits 

could be observed, is unchanged. He also determined that pit propagation in metastable 

and stable states are inhibited by sulphate ion and that the growth is also independent of 

the electrode potential [117]. From observation of contrasting measurements of the 

pitting potential in chloride solutions containing higher concentrations of sulphate with 

sulphate-to-chloride ratio >1,Uhlig (1979) found that an increase in pitting potential is 

observed [118]. Subsequently, he explored the extended effect of some important 

features of the solution composition on the frequency of occurrence of metastable pits, 

the pH, the chloride concentration and the effects of dissolved oxygen. Because 

metastable pitting causes pitting growth, previous research can be used as a reference to 

this study.  

It is well known that chloride ions, Cl
-
 cause pitting corrosion in aqueous solutions 

by aggravating the protective property of the surface oxide film. Many researchers [115, 

119, 120] have studied metastable pitting to understand the pitting corrosion mechanism 

of metals. Laycock et al.(1998) reported that the metastable pitting activity of 304 

stainless steel reached a peak of around 0.3 VSCE and then decreased with increasing 

applied potential below the pitting potential (breakdown potential, Eb) [155]. They 

attributed the decrease in metastable pitting activity after it reached a peak to the 

exhaustion of active sites. The total number of available sites for metastable pitting was 

observed to be smaller for the smoother surface in comparison with the rougher finish.  

While Pistorius (1992) and Uhlig (1979) studied the solution composition effect of 

electrode potential and the direct effect of pitting corrosion, C.J. Semino (1979) 

elucidated that the corrosion resistance of high alloy steels in many environments is due 

to their ability to produce an oxide film, which keeps the alloy in a metastable state of 

passivity [120]. He also concluded that the increase of chloride concentration shifts the 

pitting potential to become more negative and that the value of pitting potential is not 

affected by oxygen content in solution. Figure 8.7 below shows a schematic model of 

how metastable pits are induced by a stable pit, where the growing stable pit produces 

Fe
2+ 

ions, and the hydrolysis of Fe
2+

 ions will attract more anions, such as Cl
-
, into the 

pit cavity. Generally, Cl
-
 ions have stronger mobility and can diffuse readily into the 
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cavity to acidize the local chemistry, resulting in accelerating growth of the pit [122]. 

El-Sayed etal. (2009) in their research presentedthat increasing the chloride 

concentration shifts the pitting potential in the active direction until at about 5%, when 

it stays constant indicating complete depassivation [156]. However, it is difficult to 

conceive that such large ions like ClO4
-
 and SO4

2-
, which can also provoke pitting, 

should travel through the passive film lattice[124] whereas chloride (Cl
-
) can interfere at 

a higher driving force to form the passivation oxide film [125]. 

 

Figure 8.7 Schematic model of metastable pits [93]. 

8.5 Pitting Corrosion on Passive Alloys 

As mentioned before, the corrosion resistance of high alloy steels in many 

environments is due to their ability to produce an oxide film that keeps the alloy in a 

metastable state of passivity. The stability of this passive state is damaged when these 

alloys are polarised above some electrode potential in environments containing 

aggressive ions, such as chloride (Cl
-
) ions,causing pitting to appear. Pitting corrosion 

can be described as the destructive failure through perforations by a single pit, which 

can cause complete equipment failure. It occurs when discrete areas of a material 

undergo rapid attack, although the vast majority of the surface remains virtually 

unaffected. Mankowski and Szklarska-Smialowska (1975) observed that the higher 

accumulation of Cl
-
 content within pits indirectly decreases the pH value and slows pit 

development [157]. However, Jingyietal.(1989)stated that changes of passivating 

behaviour indicate that the corrosivity of occluded solutions increased as the pH 

decreased and they found that Cl
-
 concentration in occluded solutions increased with 

decreasing pH. However, the effect of Cl
-
 concentration is less pronounced than the pH 

value [158]. In another research, Mankowski and Szklarska-Smialowska (1975) found 



  

   

 

 

- 180 - 

that the concentration of Cl
-
 ions in the pits is higher than that in the bulk solution. This 

affects the pH of the solution inside the pits, which results from the hydrolysis of 

corrosion products and high concentrations of chloride ions [159]. Apart from 

environmental factors including compositionof the solutions that affect the corrosion, 

pitting and crevices can only be distinguished according to the mechanism of corrosion 

attack.Green and Fontana (1958) differentiated between pitting and crevice corrosion. 

They suggested that crevice corrosion is an attack that is limited to surface areas 

shielded from direct exposure to the electrolyte, regardless of the surface structure 

produced by the attack [129]. 

The pitting tendency of a metal or alloy is governed by many factors. From the 

perspective of controlling pitting corrosion, it is essential to highlight the factors that 

influence pitting corrosion. As of now, no quantitative relation exists that can predict a 

pitting failure. Qualitative understanding exists between various parameters that affect 

the pitting tendency of an alloy, which, in fact, forms the basis for material selection 

and environmental control for preventing pitting failures.  

For pitting to occur, the most basic requirement is the existence of a passive state 

for the material in the environment of interest. Pitting occurs when portions of the metal 

surface lose their passivity and dissolve rapidly. Thus, in this research, the corrosion 

attack for passive materials was identified by their breakdown potential (also known as 

pitting potential, where the bare surface fails to repassivate and the occurrence of an 

abrupt permanent increase in current) at each temperature, which can be seen in Chapter 

6. The favourable aspect of pitting is that only certain types of anions are responsible 

for pitting in certain environmentswith sufficiently oxidizing potential. In many 

situations, pitting can severely limit the performance of material including DCV 

materials.  

8.6 Passivation 

Passivation of metals results from the formation of a condensed phase of 

continuous oxide layer on the metal surface. According to Wagner (1965), a metal or 

alloy is passive when the amount of at least one of the metallic components consumed 

by a chemical or electrochemical reaction in a given time is significantly lower at a 

higher affinity than at a lower affinity [160]. The phenomenon of metal passivation was 

discovered by Keir as far back as 1790, when it was observed that metallic iron in 

concentrated nitric acid suddenly became in an altered state (the passive state) after 
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violent metal dissolution had occurred in the fresh state (the active state) [131]. The 

passivation mechanism has been explained in Chapter 6 and this chapter presents all the 

results for passive materials of DCV materials, which are 316L, 25Cr duplex and 

Inconel 625. 

Figure 6.2 in Chapter 6 shows 316L in HW443 at 20ºC. The close curve of 

forward and reverse scan of potential dynamic shows that 316L behaves as stable 

repassivation in HW443. Figure 6.3 shows the anodic polarisation for all materials-

316L, 25Cr duplex and Inconel 625 in HW443 hydraulic fluid. The figure shows that 

Inconel 625 has the lowest breakdown potential and 25Cr duplex has the highest.Table 

6.1 presents the electrochemistry data for these materials in HW443 at 20ºC. By 

comparing the breakdown potential at 20ºC, the best performance materials in HW443 

can be ranked as 25Cr duplex >316L > Inconel 625. By referring to this figure, 316L 

performs better than Inconel 625, which has a higher nickel and chromium content 

compared to 316L. The chromium content hinders the pit growth and thereby should 

increase the breakdown potential and extend the passive region of Inconel 625. The 

results of Imax shows that the ranking is 25Cr duplex >Inconel 625>316L in which 

Imaxrepresents the maximum current attained should the current not begin to fall 

immediately after scan reversal. It also represents the stability of materials after the 

repassivation process, which is supported by Yin etal.(2009) who studied Ni-based 

alloys exposed in oil/gas field environments. They elucidated that Inconel 625 has a 

stable passivation region compared to other Ni-based alloys due to its higher nickel 

content [161]. 

To study the environmental effect, which accelerates corrosion, the materials were 

tested in 3.5% NaCl and compared to the performance in HW443. Figure 6.4 shows 

316L in 3.5% NaCl, and, as expected, the breakdown potential decreased as the 

temperature increased. The hysteresis also changed from negative hysteresis at 4ºC 

topositive hysteresis at20ºC, 50ºC and 80ºC. Negative hysteresisindicates that the 

materials of the damaged passive film repair itself and pits do not initiate whereas 

positive hysteresis occurs when the passive film damage is not repaired and pits might 

initiate. The electrochemical data of 316L in 3.5% NaCl are presented in Table 6.2 and 

show that the OCP shifted to a positive value and breakdown potentials decreased as the 

temperature increased. At 80°C, 316L in 3.5% NaCl changed from passive to active 

reaction as there is no breakdown potential in anodic polarisation. Figure 6.5 shows the 

anodic polarisation for passive materials in 3.5% NaCl at 20ºC and electrochemical data 
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are presented in Table 6.3. Similar to anodic polarisation in HW443, the ranking based 

on breakdown potential, Eb, is 25Cr duplex >Inconel 625>316L. 

8.7 Role of Anion on Corrosion Attack 

Chloride ions are one of the most significant natural contaminants in the marine 

environment,and play a major role in the corrosion process of structural steel. Many 

researchers agree that increasing Cl
-
 concentrations will decrease resistance to pitting 

corrosion, especially for stainless steel [133-139]. Corvo et al.(2007) proposed a 

mathematical model and suggested that the chloride ions deposited accelerate the 

corrosion rate on mild steel caused by chloride ions [162]. He also suggested that the 

rust layer becomes porous and induces chloride ions from outside easily, which 

promotes corrosion. However, chloride ions only play a key role during the initial 

stages of atmospheric corrosion, as the rust layer grows in thickness, the supply of fresh 

chloride ions may gradually diminish, and, as a result, the formation of chlorides would 

be slower. According to Hoar (1967), the method of passive breakdown by anions is 

due to the small size, which could easily penetrate the pores in the passivating oxide 

film [163]. 

To date, there is no research studying the effect of sulphate/chloride ratio using the 

same composition of real seawater, as they used sulphuric acid or hydrochloric acid 

instead of synthesised seawater based on the same salinity as real seawater. Szklarska-

Smialowska (1972)studied the pitting kinetics of nickel in solutions containing different 

ratios of SO4
2-

 and Cl
-
. He found that the pitting perforation depends on the Cl

-
 

concentration added to the SO4
2-

 solutions. An excess of Cl
-
 causes general corrosion 

whereas excess SO4
2- 

in solution inhibits pitting [168].Figure 6.9 reveals the breakdown 

potential of passive alloys in seawater (S1) and HW443 as a function of temperature. 

All the materials show the same trend of a decrease in Ebas the temperature increases. 

25Cr duplex and Inconel 625 has higher breakdown potential in S1 than in HW443. 

This presents that 25Cr duplex and Inconel 625 may corrode in seawater and HW443 is 

not well protected for these alloys from chloride environment. Conversely, the HW443 

is able to protect 316L in S1 (seawater). This could be consider as 316L reacts actively 

with HW443 to perform an oxide layer on the surface of the metals to form a protective 

film and 25Cr duplex and Inconel 625 do not actively react with HW443. Furthermore, 

the decision to use HW443 as comparative performance is based on previous research 

[5] who studied the performance of Oceanic HW443 hydraulic fluid which is low in 



  

   

 

 

- 183 - 

toxicity. However, the study was not include Inconel and 25Cr duplex in their study. By 

comparing the anodic polarisation for 316L, 25Cr duplex and Inconel 625 in S1 

according to temperature, 316L shows the lowest in breakdown potential compared to 

25Cr duplex and Inconel 625. From Eb performance, the ranking of the best materials is; 

25Cr duplex > Inconel 625 > 316L for every temperature. However, Inconel 625 had a 

negative hysteresis more than 25Cr dupex at increasing temperature, which shows that 

Inconel 625 is able to self-repair damaged passive film compared to others. 

Apart from the study of electrochemical performance in S1, which has the same 

elements as seawater, the solutions also varied in SO4
2-

/Cl
-
. Table 4.7 (Chapter 4 section 

4.2) shows the composition for the elements. S4 has the highest ratio and S2 the least 

ratio. The study is based on the effect of sulphate (SO4
2-

) and chloride (Cl
-
) on pitting 

corrosion where S2 has the highest sulphate and lowest chloride content and S1 has 

lowest sulphate and highest chloride content. Unlike to the anodic polarisation 

performance shown for 316L, the 25Cr duplex shows more stable forward and reverse 

scan for all temperatures. Figures 6.16 show the anodic polarisation of Inconel 625 in 

S2 at increasing temperature. The difference can be seen in Inconel 625 for anodic 

polarisation, as it shows primary and secondary breakdown potential, as shown in 

solution 2 at 50ºC and 80ºC.This shows that there is a sudden increase in current at 

potentials around 400-500 mV and then the potential increased at 200 µA/cm
2
. At the 

potential around 700-800 mV, the current increased and the breakdown potential can be 

detected. At increasing temperature from 50°C to 80°C, Inconel 625 presents to have 

secondary breakdownpotential with increasing current in S2 and S3. Thisreveals that 

even at higher temperatures, Inconel 625 manages to self-repair the damaged passive 

film. 

The compilation of breakdown potential of S2, S3 and S4 with the function of 

temperature is presented in Figures 6.19, 6.20 and 6.21, respectively. By comparing the 

Eb of materials in all solutions to Eb obtained from the anodic polarisation of materials 

in HW443, 25Cr duplex and Inconel 625 show the same performance as they show in 

S1. The value ofEbwere not increased for 25Cr duplex and Inconel 625 in hydraulic 

fluid HW443. For stainless steel 316L, the Eb in HW443 is higher than Eb in solution 2 

and solution 4. In solution 3, which has SO4
2-

/Cl
-
=0.75 g/L, the Eb shows a decrease in 

performance in HW443 at 20ºC. Microscope images in Figure 6.23 show that the large 

area of metastable pitting could result in a higher Eb for 316L in solution 3. The study 

by L. Tarja (2000) regarding localised corrosion of UNS S30403 in chloride, sulphate 
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and thiosulphate containing environments reveal that thiosulphate has a synergistic 

effect with chloride in inducing localized corrosion where thiosulphate prepares the 

surface while chloride weakens the passive surface, and, furthermore, initiates the pits 

[169]. This study also elucidates that sulphate has an inhibiting effect on pitting 

corrosion on UNS S30403 steel when the molar ratio Cl
-
/SO4

2-≤0.5. 

In considering that a material‘s composition has an effect on the breakdown 

potential, 316L has the least chromium content compared to 25Cr duplex and Inconel 

625. Chromium will react with oxygen to form chromium-rich oxide at the metal 

surface, which retards the corrosion by passive film formation, and the solutions 

composition and surface condition also affects the repassivation potential (Er) of 

materials [147]. However, the addition of other elements to 316L could increase the 

corrosion performance. The study by K. Hashimoto (1979) revealed that the additionof 

molybdenum to the stainless steel reduces the passive current density and enhances the 

rate of passivation [170]. In this work, the Mo usage is 2.0% in 316L, 3.0% in 25Cr 

duplex and 9.0% in Inconel 625. This reveals how Inconel 625 has a higher passive 

range and manages to self-repair the passive film. 

Ann and Song (2007) in their study of assessing the chloride threshold level 

(CTL) ions of steel concrete in corrosive medium, found that at lower CTL, the 

corrosion of steel was initiated at defects at the steel-concrete interface, commonly at 

entrapped air voids [141]. CTL can be defined as the content of chloride at the steel 

depth that is necessary to sustain local passive film breakdown, and, hence, initiate the 

corrosion process. The assessment of CTL is a key element predicting the service life of 

concrete structures exposed to chlorides. 

Although most researchers agree with the contribution that Cl
-
 could accelerate 

pitting in stainless steel, the effect of nonaggressive anions in aqueous solutions play an 

important role in the passivation process not only in stainless steel, but also in low alloy 

steel [142, 143]. For stainless steel, the risk of pitting decreased with increasing 

sulphate concentration. Pohjanne etal. (2007) found that increasing the sulphate 

concentration decreased pitting corrosion and a higher sulphate/chloride ionic ratio was 

needed to inhibit the pitting corrosion of stainless steels at higher chloride 

concentrations [122]. In another study by Pyun etal., (1999) it was found that in 

addition to the aniotic ratio, the anions competition also has an effect on corrosion 

attack. In their study, they also found that the addition of Cl
-
 and SO4

2-
 reduces the 

anodic dissolution rate and the additional SO4
2-

 was accounted for by the reduced 
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reacting surface area caused by competitive adsorption of SO4
2-

 ions and OH
-
 ions. The 

pitting was only observed in the presence of Cl
-
and was not caused by the adsorption of 

SO4
2-

 ions [123]. Figure 6.19 presents the breakdown potentials of passive alloys in S2 

(SO4
2-

/Cl
-
=19.15) which has higher sulphate compared to chloride ratio. The same 

results present as these alloys in S1. 25Cr duplex and Inconel 625 used to have better 

corrosion protection in S2 compared to these alloys in HW443. However, the 

breakdown potential of 316L is lower in S2 compared to 316L in HW443 which 

elucidate that HW443 gives better protection on 316L in higher sulphate content. S3 

and S4 have slightly lower sulphate content compared to chloride. However, the trends 

are still the same; changing the SO4
2-

/Cl
- 
ratio does not gives a significant effect to Eb of 

316L and HW443 does not significant for 25Cr duplex and Inconel 625. 

Generally, the initiation of pittingattack can be ascribed to the halide ion, such 

asCl
- 

ion. Firstly,they adsorb on the passive film, especially on the weak sites 

[225].Secondly, they penetrate the passive film with the assistance ofa high electric 

field across the passive film and attack the base metal until stable pitting occurs by the 

quick dissolution ofmetal without the protection of the passive film. As the ratio 

increased, it is effect the adsorption of Cl
-
ion on the passive film. 

When the concentration of SO4
2-

- is much lower, Cl
-
ion were the main ions 

adsorbed on thesurface. Since there was competitive adsorption between SO4
2-

- and Cl
-

ion, Cl
-
ion would arouse the convergence of the Cl

-
ion at certain local sites and increase 

the concentration of Cl
-
ion atsuch locations indicated in Figure 8.8(b). One would 

expect thatwith increasing the number of Cl
-
ion adsorbed on certain sites, more Cl

-
ion 

would penetrate the passive film and attack the base metal. Since the ability of Cl
-
ion to 

attack the passivefilm became lower because of the lower density of Cl
-
ionas shown in 

Figure 8.5 (c), the inhibited effect of SO4
2-

ion on pit initiation. When the concentration 

of the SO4
2-

ion roseconsiderably high, the surface was completely covered withSO4
2-

ion, attributed to its easier ability to absorb on thesurface than Cl
-
ion.Now Cl

-
ion was 

unable to be closeto the surface, the 316L was protected in such solution.Zuo etal. 

(2002) also found that the competitive adsorption between SO4
2-

 and Cl
-
 ions at active 

surface sites is the reason for inhibition [165-167]. The ratio of Cl
-
 to SO4

2-
 ratio 

influences the pits nucleation and growth. 

The competitive adsorption process between those two kinds of anions occurred in 

a dynamic way. The wholeprocess could be characterized by the following course: 

theanions adsorbed on the metal surface while they left off at the same time when they 
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both adsorbed on the samelocation. Cl
- 
ion would be usually edged out of the location 

andmove over the passive film because of the repulsive forcebetween them and the 

lower weight of Cl
- 
ion. This processmay lead to the convergence of Cl

- 
ionat certain 

sites. Withthis knowledge about the convergence of Cl
- 
ion at certain sitescaused by the 

competitive adsorption between Cl
- 

and SO4
2-

ions as shown in Figure 8.8 below, 

elucidate the effect of sulphate chloride ratio to corrosion attack. It can be described 

as,Cl
- 
ion evenlyadsorbed on the metal surface without the SO4

2-
ion presented.  

Figure 8.8 Schematic drawing showing an adsorption of two kinds of anions at 

different concentration. 

8.8 Passive Potential Range 

The passive potential range of materials can be determined between primary 

passivation potential Epp and Eb which also known as passive range or passivity region. 

The Epp is the potential after the current decreases or becomes essentially constant over 

a finite potential region. The range of passive region can be used to characterise the 

corrosion behaviour and evaluate how the effectiveness of a passive film protects the 

metals from corrosion. Figure 8.9 below shows the passive range for 316L, 25Cr duplex 

and Inconel 625 in all solutions. In all solutions, it can be seen that the passive range 

increased as the temperature decreased from 80ºC to 4ºC for all materials. For 316L, the 

passive range decreased about 83% from 4ºC to 80ºC in S1 whereas 25Cr duplex 

decreased 40% and Inconel decreased 60% for the same range of temperatures. This 

shows that temperature drastically affectsthe corrosion attack for 316L compared to 

25Cr duplex and Inconel 625. 

The same figure also shows the passive rangein S2 which has the highest sulphate 

compared to chloride content. 316L shows a decrease in the passive range of about 62% 

compared to 25Cr duplex and Inconel 625, which decreased 30% and 17%, 
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respectively. The same trend is shownfor S3, which decreased 47%, 25% and 35% 

presents by 316L, 25Cr duplex and Inconel 625 respectively.However, all these passive 

alloys show the highest passive range in S3. The solution 3 has almost equal SO4
2-/Cl

-
 

ratio. The highest passive range might be due to competition effect between anions on 

metal surface.Increasing the temperature does not give a significant effect to passive 

region change for Inconel 625 and 25Cr duplex, in fact, the passive range of 25Cr 

duplex was decreased from 50°C to 20°Cin solution 3. In S4, the passive range 

decreased for 85%, 58% and 43% by 316L, 25Cr duplex and Inconel 625 respectively. 

Figure 8.10 reveals that Inconel 625 has the shortest passive range in S2 (SO4
2-

:Cl
-
 

is 20.87:1.09) whereas 316L and 25Cr duplex has the shortest passive range in S3 

(SO4
2-

:Cl
-
 is 9.41:12.54). A small differencein passive range can be conclude that the 

temperature does not have a significant effect on corrosion attack from 4ºC to 80ºC, 

especially for 316L, which has a massive difference in every solution at every 

temperature. This indicates that sulphate can inhibit materials from corrosion attack 

especially from localised corrosion attack. This is supportedby Hong and Nagumo 

(1997) who studied the effect of SO4
2-

 concentration in NaCl solution on the early 

stages of pitting corrosion on stainless steel. By using the AC impedance method, they 

found that the Warburg impedance coefficient, ó (calculated from Nyquist impedance 

plots) decreases with increasing Na2SO4 in the solution [171].  

 

Figure 8.9Passive range for 316L, 25Cr duplex and Incoenl 625 in all 

solutions as a function of temperature 
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This is because increasing the concentration of SO4
2-

 in NaCl solution decreases the 

total number of surface sites available for metastable pits. Thus, increasing SO4
2-

 

concentration in NaCl solution causes the shift of not only pitting potential but also the 

metastable potential to more positive potentials. They also studied the effect of chloride 

concentration for the same criteria on type 304 stainless steel. They found that the 

impedance coefficient increases with increasing chloride concentration at low potentials 

in the passive region when the diffusion process begins to occur at the surface. The 

chloride concentrations also have an effect when metastable pitting starts to grow [172]. 

 

 

Figure 8.10 The difference in passive range from 4°C to 80°C for passive alloys in 

different sulphate-chloride ratio solutions 

 

While Naggar (2006) elucidated that SO4
2-

 ion retards the localised penetration in 

the pitting area [49], Alhajji and Reda (1996) found that increasing SO4
2-

 ion from 15 

ppm to 150 ppm in tap water increases the corrosion rate due to uniform corrosion for 

long-term experiments conducted over an eight month period under stagnant conditions 

[173]. The study by Newman and Moayed (2006) on adding sulphate at critical pitting 

potential (CPT-the first temperature when stable pitting occurs at intermediate 

potentials) on 904L shows that sulphate increases the critical concentration of metal salt 

in the pit, expressed as a fraction of the saturation concentration, which is required to 

sustain pit dissolution [174]. 

From the kinetic point of view, a compact non-porous film is produced from the 

formation of film growth by the transfer of the metal into the film by ionic conduction 
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within the film and by ion transfer between the film and electrolyte. Porous films may 

form by precipitation from a supersaturated electrolyte, which allows direct contact 

between the metal and the electrolyte and are not passivating in the sense that the mean 

corrosion rate drops at positive electrode potentials. The true current density in the 

pores continues to grow with the electrode potential at the interface between the metal 

and the electrolyte. Porous films are sometimes formed by precipitation from the 

electrolyte on top of a compact passivating film [154].  

8.9 Effect of Temperature onPitting Corrosion 

Temperature gives has a great effect to corrosion attack not only on active 

materials (carbon steel) but also on corrosion resistant alloys (CRAs) such as 316L, 

25Cr duplex and Inconel 625. While the active materials built rust as a protective layer, 

passive materials built a passive film to protect them from corrosion attack. However, in 

highly aggressive environment, the passive film will destroy and exposed the base metal 

for further corrosion attack, which is called breakdown potential, Eb. To carbon steel, 

temperature may accelerate the corrosion attack by losing their weight, while 

temperature may give an effect to passive alloys by destroying the passive film. 

According to Laycock and Newman (1998), at higher temperatures, the passive film 

became thicker, but more porous, and, therefore, less protective [155]. Until now, no 

theory has satisfactorily explained the effect of temperature on breakdown potential, Eb. 

This effect is probably related to changes concerningthe kinetics of passivation and 

repassivation, diffusion rate, hydrolysis kinetics, properties of passivating films and 

dissolution rate of the alloy in its passive state. All of them change with increasing 

temperature. 

For stainless steel, increasing the temperature not only decreases the breakdown 

potential to more negative values, but also increases the kinetics of the pitting corrosion. 

According to Szklarska-Smialowska and Mankowski (1975), increasing the temperature 

also increases the number of pits formed at the same potential as a higher temperature 

provides more sites susceptible to the nucleationof pits [157]. Increasing the 

temperature also accelerates the reagent transport and reaction products to or from the 

electrode. Thus, it affects chloride ions adsorption in the pits as well as an increase in 

the initial current density in the pits. As the concentrations change, it leads to an 

increasing concentration polarization, whichaffects ohmic polarisation when the salt 

layers or other solid corrosion products appear in the pits. However, the mechanism of 
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pitting corrosion in stainless steel not only depends on temperature, as the oxidation 

process also strongly depends on oxygen at the metal interface. According to Resenfeld 

and Danilov (1967), the strength of the oxygen-metal bond cannot be considered the 

same at all parts of the surface [175]. Therefore, the dissolution passive film in 

aggressive environment sometimes is not significant to increasing the temperature as 

other factors may also contribute to corrosion attack on metal surface. 

Figure 6.9, 6.19-6.21 in Chapter 6shows the breakdown potential, Ebof 316L, 

25Cr duplex and Inconel 625 as a function of temperature. The effect of temperature to 

corrosion attack on carbon steel has been explained in section 8.3 and the Arrhenius 

relations to activation energy at increasing temperature was presented in Figure 8.2. the 

temperature also gives an impact to breakdown potential, Eb of passive alloys. 

Increasing the temperature in solutions was reduced the Eb value for every materials. 

The Ebwasalso compared to Eb of materials in HW443 at 20ºC. According to Piantini 

etal.(1997), temperature has a significant influence on the passivity behaviour for 

duplex stainless steel. Theydetermined that temperatures between 23ºC and 60ºC 

improve the stability of passive films [176]. This is explained by the constant 

breakdown (small significant change) of passive film at increasing temperatures, due to 

changes in the composition and structure of the passive film as well as the increasing 

velocity of the phenomena involved. In this research 25Cr duplex was the most stable in 

corrosive environment even at increasing temperature followed by Inconel 625 and 

316L. 

8.10 Effect of Oxygen on Corrosion Attack 

Since seawater is a complex, delicately balanced solution of many salts containing 

living matter, suspended silt, dissolved gases, and decaying material, the individual 

effect of each of the factors affecting corrosion behaviour is not readily distinguishable. 

Because of the interrelation between the effects of many variables in the seawater 

environment, an alteration in one may affect or depend on the relative magnitude of 

others. 

The reaction of oxygen with a clean metal surface follows the sequence: 

1)adsorption, 2)formation of oxide nuclei, and 3) growth of continuous oxide. The 

adsorption of oxygen forms a stable structure that remains on the metal surface and is 

considered to make up a passive film. Continuous exposure to low oxygen pressure, 
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oxide nuclei will grow rapidly to a thickness limited by the electro tunnelling distance 

and growth of the continuous film following logarithmic oxidation kinetics [159].  

 It has been observed in a number of cases that the corrosion rate of carbon steel 

should be linearly dependent on the oxygen concentration.  Schumacher (1979) reported 

the effectof dissolved oxygen on the corrosion of carbon steels from laboratory 

experiments and concluded that the corrosion rate of steel is linearly proportional to the 

dissolved oxygen [177]. For stainless steel, the specific function of oxygen in the 

passivation process is still not clearly understood. Three mechanisms are postulated to 

describe the reaction of oxygen with stainless steels to produce passivity – adsorbed 

gas, oxide film and passivating inhibitor [118, 159, 161-163]. However, under practical 

conditions the formation of layers or films often interferes with the exception of alloys, 

which tend to require oxygen to function in the passive state with low corrosion rate. 

Furthermore, alloys that have rather active corrosion potentials may cause corrosion 

with a cathodic reaction involving the reduction of hydrogen ions and/or water itself 

[164]. Covino et al. (1986) used the OCP technique to measure the quantity of oxygen 

consumed during the passivation process showed that alloys with lower amounts of 

chromium consumed less oxygen [178]. They found that 1.7 ppm oxygen is required to 

stabilise the passivity of Fe-Cr alloys containing >12.5% wt Cr. 

The strength of the oxygen-metal bond is not the same at all parts of the surface. 

In the zones where this bond is less strong, adsorption displacement or substitution of 

the oxygen by the chloride ions is possible [157]. The chloride ions displacing the 

oxygen from the surface penetrate under the oxide film and the process develops in a 

relatively enclosed zone where the diffusion of oxidizers is hampered. 

8.11 The Role of Inhibitor to Corrosion Protection 

The corrosion behaviour for 316l, 25Cr duplex and Inconel 625 was also studied 

in CRW 89000 inhibitor. This is the inhibitor used in oxygen environments by oil and 

gas companies. Figures 6.25in Chapter 6 compares the breakdown potential of 316L, 

25Cr duplex and Inconel 625 in solution added with 100 ppm inhibitor CRW 89000 at 

20ºC.All passive alloys shows higher in Eb when solution 1 (seawater) added with 

inhibitor. This shows that the inhibitor chemically modifies the surface of these 

materials to mitigate or prevent the corrosion process. While numerous corrosion 

inhibitors have been suggested, the detrimental effect of many of them in the oil and gas 

process limit their commercial use, for example, the presence of chloride in marine 
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environments can penetrate the porous structure of passive film [166]. However, the 

presence of non-aggressive anions could inhibit corrosion naturally apart from using 

inhibitors to increase the corrosion resistance. 

8.12 The 25Cr Duplex Stainless Steel 

As described in Chapter 3, duplex stainless steels exist in a two-phase 

microstructure, austenite-ferrite. Chromium (Cr) and molybdenum (Mo) enrich in 

ferrite, while nitrogen (N) and nickel (Ni) are mainly found in austenite [71]. Because 

of the high content of alloying elements, the duplex stainless steels show complex phase 

transformation and precipitation behaviour [167]. The best general properties are 

obtained with approximately equal amounts of austenite and ferrite and the absence of 

third phases such as σ and χ [168, 169]. However, due to high chromium and 

molybdenum contents and their high diffusion rate in ferrite, duplex stainless steel are 

prone to form some unwanted secondary phases during exposure to elevated 

temperatures between 400 and 1000°C.The study by Ezuber et al. (2007) found that 

sigma phase precipitation, which is produced during the pre-quenched heat treatment of 

duplex stainless steel was immune to pitting corrosion in seawater at ambient 

temperature but susceptible to pitting at 50ºC and above [179]. The results also clearly 

indicated that the presence of nitrogen and relatively higher chromium content duplex 

stainless steel is an advantage for seawater pitting corrosion resistance. This shows that 

apart from composition, heat treatment during the duplex process contributes to the 

higher resistance of this material to corrosion attack. In this research, 25Cr duplex 

presents to have the highest Ebvalue in all solution at increasing temperature compared 

to other passive alloys (316L and Inconel 625). 

8.13 Cermet Alloys 

8.13.1 Introduction 

WC–Co hardmetals are composed of hard WC particles in a tough metallic matrix 

produced during a liquid phase sintering process. Due to strength, cemented carbides 

have applications spanning most engineering fields. However, application in chemically 

aggressive environments is less successful because they are susceptible to corrosion. 

However, there is little research on cermet alloys for material degradation due to 

corrosion. Various efforts have been made to reduce the corrosion susceptibility of WC-

Co. It was found that using Ni instead of Co as the binder material or alloying element 
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into the binder phase leads to higher corrosion resistance [39]. However, in terms of 

wear, cemented carbides bonded with nickel show lower toughness than that of co-

bonded carbides [78]. Other carbides are also introduced during sintering to improve 

processibility, mechanical and corrosion properties and prevent grain growth during 

sintering. It has been shown that the addition of tungsten (W) and molybdenum (Mo) in 

cobalt-base alloys influences the corrosion behaviour by stabilising the face centred 

cubic (fcc) phase [171]. In WC WC-based cermets, both the corrosion protection 

efficiency afforded to the substrate (which is usually anodic to the carbide) and the 

corrosion of the coating constituents themselves have been investigated [172, 173]. 

Studiesconcerning the corrosion process of carbon steel coated with WC-Co cermets in 

3.5% NaCl [174] show that increasing the cobalt content from 12% to 17% provides 

more protection by changing the pore morphology from interconnecting the isolated 

pores. 

Due to the heterogeneous microstructure and binder phase composition, the 

corrosion mechanisms of WC-Co are very complex, and only very little is known about 

the exact corrosion processes taking place. This is in respect of the relationship 

behaviour between the electromechanical and in-service corrosion performance. Some 

researchers claim that the whole WC-Co surface does not behave equally active, and 

that the corrosion attack proceeds predominantly at locations where the WC phase has 

fallen out after localized initiation of corrosion has taken place. Bozzini etal. (2009) 

reported that the corrosion of WC-Co is controlled by the galvanic coupling of the 

anodic metallic binder to the cathodic ceramic phase, which exhibits electronic 

conductivity [180]. Aristizabelet al. (2011) revealed that the oxidation resistance of 

WC-Co increases with metallic content [181]. This is observed by materials containing 

higher fractions of tungstates. However, Lekatou etal.(2008)claim that the corrosion 

resistance of cermet alloys strongly depends on the binder composition [182]. They also 

found that corrosion of WC-Co begins with active dissolution of Co in preferential sites, 

such as intersections of adjacent WC particles [178]. They also explained that 

pseudopassivity proceeds via a passive process (oxide formation), pseudopassive 

(limitation of Co
2+

 diffusion), binder dissolution (active process), and, lastly, followed 

by localised corrosion. However, the reactions taking place on the hardmetal surface are 

strongly dependent on the potential of the system. At open-circuit conditions or at small 

applied potentials, the binder phase undergoes selective dissolution, while it is only in 

the higher potential range that the dissolution of the WC phase takes place. At 

intermediate potentials (i.e., below the dissolution of the WC phase), the observations of 
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different researchers diverge. Some authors report a passive behaviour of the composite, 

others claim a kind of pseudo-passive state, where the presence of non-adherent, but 

diffusion-inhibiting corrosion products leads to a limitation of current density. 

Figure 8.11 below gives a schematic description of the reaction taking place on 

the hardmetal surface. Because the WC are more noble in oxidation potential compared 

to Co, a galvanic coupling between the two phases will force the anodic part of the 

overall corrosion reaction to proceed on the Co phase. Thus, Co dissolution occurs due 

to the unfavourable surface ratio of anodic compared to cathodic sites. In parallel, 

cathodic reaction occurs in oxygen or hydrogen reduction will take place on the WC 

phase, and, consequently, protect the hardmetals against corrosion. 

 

 

 

 

 

 

 

 

Figure 8.11 Schematic presentation of the reactions taking place on the WC-Co 

surface [39]. 

8.14 Pseudo-passivation 

Pure cobalt does not passivate and remains active with increasing potential. A film 

forms on Co(W,C) alloys causing the current to become relatively independent of 

potential but remaining very high. This behaviour is termed here 'pseudo-passivation'. 

According to Machio etal. (2010) the behaviour happens when the current density 

decreases minimally as the potential is increased [183]. With increasing carbon and 

tungsten additions, the corrosion current density and critical current density are reduced. 

The corrosion potential shifts to more positive values with increasing additions. It is 

shown that carbon and tungsten additions influence the corrosion behaviour by a 

stabilisation of the fcc phase. Empirical equations are derived, which quantitatively 
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relate the volume fraction of the fcc phase to the composition of the alloy, i.e., the 

carbon and tungsten content in the binary and ternary alloys. 

Investigations performed in aqueous solution, containing chloride ions, revealed 

that the whole WC-Co surface does not behave equally active, as the corrosion attack 

proceeds predominately at locations where the WC phase has fallen after localised 

initiation of corrosion has taken place.  

8.15 Active Corrosion of Cermet Alloys 

The corrosion behaviour of cermet alloys should be affected by: 

a) the corrosion behaviour of its components 

b) the galvanic effect of the WC-Co and WC-Ni couple 

c) the galvanic effect between matrix regions of higher W concentration 

In spite of intensive research, the mechanism of the active dissolution of Co and 

Ni, is not completely understood. Anions and also the structure of the surface, affect the 

anodic current-density potential curves in oxide-free dissolution, as in acid solutions 

[180]. Ebersbach etal. (1967) in their research about kinetics of the anodic passivation 

of cobalt and nickel found that active corrosion is pH dependent, which suggests OH
-
 

contribution [184]. 

8.16 Effect of Binder 

As explained before, cemented alloys consist of hard WC particles in a tough 

metallic matrix produced during a liquid phase sintering process. For WC-Co and WC-

Ni, corrosion attack will depend on the matrix – Co and Ni – and the corrosion 

attacksare mainly between the WC-Co interfaces. The corrosion attack at the interface 

will produce an oxide layer. The study by Aristizabel etal.(2008) concerning oxidation 

behaviour of WC-Co found that Co content has an effect on the oxidation layer, 

thus,affecting the oxidation behaviour. Co content increases the oxide layers and 

exhibits a more compact structure [181], however, Co binder has low corrosion 

resistance [185]. 

In terms of grain size, according to Virtanen etal.(2009), the smaller the grain size, 

the higher the corrosion resistance because the corrosion behaviour is strongly 

influenced by the WC dissolved in the Co binder[185]. 
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Human and Exner (1997)in their research concerning the relationship between 

electromechanical behaviour and in-service corrosion found that electromechanical 

behaviour of WC-Co composites can be modelled using the linear rule of mixture [187] 

]187[1.8CoCo

A

WCWC

A

CoWC iAiAi 
 

Where i
WC-Co

, i
WC

, i
Co

 is current density for WC-Co, WC and Co, respectively, and 

AA
WC

, AA
Co

are the cross-sectional area fractions of the WC and Co phase respectively. 

Human also added that at increasing polarisation, the corrosion current is due to 

oxidation of the binder. This agrees with other authors who claimed that corrosion 

resistance only depends on the cermet binder. Figure 8.12 below shows WC-Ni in 

seawater at 20ºC.  The partial current due to binder phase oxidation initially increases 

exponentially with increasing potential. A maximum is reached after which the current 

abruptly decreases. Thereafter, the current density appears to remain relatively 

independent of the applied potential, as shown in Figure 8.13, as distinct potentials but 

remaining very high. This behaviour is termed ‗pseudo-passive‘. Although this 

phenomenologically looks similar to passive behaviour, the form of the polarisation 

curve is due to an ohmic drop at the specimen surface, caused by a thick surface deposit 

[185].   

Figure 8.12 WC-Ni in S1 at 20ºC 
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Figure 8.13 Current density appear as independent applied potential 

The rise of current density is similar to transpassive behaviour, however, according to 

Human and Exner (1997), by comparing with the individual phases of cermet 

compositions, it is apparent that the current increase is due to WC oxidation and not to a 

surface film breakdown like passive materials.  

8.17 The Effect of pH to Corrosion Attack 

Concerning the corrosion susceptibility, the solution pH dominates the effect of 

specific ions. In neutral and acidic solutions, the corrosion process of WC-Co consists 

mainly of Co dissolution. WC dissolution becomes more significant at alkaline pH. 

Degradation is mainly the result of selective uniform dissolution of the phases (Co or 

WC) not of localised corrosion because of the poor passivating ability of Co [101]. 

Synergistic effects due to galvanic coupling between the Co binder and WC accelerate 

Co dissolution and hinder WC dissolution in the hardmetals compared to the pure 

compounds. However, the Co binder phase contains W and C, which make it more 

corrosion resistant than pure Co.  

The presence of aggressive chloride ions in the electrolyte solution causes 

increasing corrosion rates, whereby the effect was found to be dependent on the solution 

pH [102], which agrees with Ghandehari etal.(1976) who said that hydrogen (which 

contributes to pH value) has no significant effect onthe oxygen reduction of copper 

[115]. 
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According to Schmutz etal.,(2007)the corrosion process of WC-Co in neutral and 

acidic solutions mainly consists of Co dissolution whereas WC dissolution is more 

significant in alkaline solutions [144]. The study by Gilli etal.(1969) on the passivation 

of Ni caused by saltlayers in concentrated H2SO4, found that as the concentration of 

H2SO4increases (acidic), the solubility of Ni sulphate decreases gradually and results in 

precipitation as a layer on the electrode [188]. 

Figure 7.3 and 7.4 in Chapter 7 shows an anodic polarisation of WC-Co and WC-

Ni in commercial hydraulic fluid HW443 at 20ºC. Both materials show similar 

polarisation and both have a negative hysteresis. Figures 7.5 and7.6showsthe reverse 

potential, Er and corrosion rate of WC-Co as a function of temperature in S1, S2, S3 

and S4, respectively. All the polarisations exhibit positive hysteresis and there is no 

obvious in passive range at increasing current density. Lekatou et al.(2010) reported 

that almost 80% appear to have a positive hysteresis and 20% appear as a negative 

hysteresis during potentiodynamic polarisation of WC-Co [189]. However, changing 

the SO4
2-

/Cl
-
 to higher SO4

2-
 shows that the polarisation mostly changed from positive 

to negative hysteresis. The rest of cyclic polarisation for WC-Co were compiled in 

Appendix and some of WC-Co hysteresis presents to have secondary Eb. WC-Co in S4 

having secondary breakdown potential Eb at 4ºC and 20ºC. This is similar to Eb but in 

the WC-Co system, this emerging can be related to a pseudo-passivation peak. This is 

typical of the corrosion behaviour of this material, due to precipitation of corrosion 

products [187].  

The anodic polarisation if WC-Ni in S1, S2, S3 and S4 are shown in Figures 7.9-

7.10. In contrast to WC-Co, WC-Ni has a more negative hysteresis than positive 

hysteresis in every solution. WC-Ni in S1 behaves as pseudo-passive at 20ºC,which 

also happen for WC-Ni in S2 at 4ºC and in S4 at 20ºC. It has been assumed thus far that 

the passivation can be produced only by oxygen layers. ―Passivation‖, however, can 

also be obtained by a salt layer. Ghandehari etal. (1976) in their study about oxygen 

reduction of copper in dilute sulphuric acid solutions report that sulphate ions caused 

decreased solubility of oxygen and inhibited oxygen reduction by adsorption and 

blocking the surface as well as decreasing the oxygen solubility [115]. 

The current maximum (the hump as shown in Figure 7.11) is due to cathodic film 

formation, which inhibits the rate of oxygen reduction. The reduction process may also 

contain adsorbed sulphate ions. Ghandehari etal.(1976) also added that hydrogen ions 

have no significant effect at this region [115]. Figures 7.10 and 7.11 also show that WC-
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based cemented carbides oxidate at all temperature ranges. This finding is supported by 

the research of R.B. Perez-Saez etal.(2009)who studied the kinetics inversion of WC-

based carbides [190]. 

As explained in Chapter 3, WC-Ni perform as active corrosion and corrosion rate 

can be determined using the formulae  

Corrosion rate, CR (MPY)= icorr x (Λ) x (1/ρ) x ε 

The corrosion rates for WC-Ni in all solutions are presented in Table 7.4. The 

highest corrosion rates are obtained in S1. Figure 7.8 and 7.9 shows the corrosion rate 

and reverse potential for WC-Ni for all solutions as a function of temperature. As 

expected, the corrosion rate increased linearly to the increasing temperature of S1, S2, 

S3 and S4. At 20°C, the WC-Ni has higher value in corrosion rate in all solutions 

compared to corrosion rate of WC-Ni in HW443. 

Figure 8.14 below presents the comparison of WC-Co and WC-Ni at increasing 

temperature in S1, S2, S3 and S4 respectively. Both materials present increase in 

corrosion rate at the temperature increased. In all solutions WC-Ni shows increased 

steadily as the temperature increased.  
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(d) 

Figure 8.14 Corrosion rate for cermets alloy in different sulphate/chloride  ratio at 

increasing temperature. (a) Solution 1(SO4
2-

/Cl
-
=0.14 g/L),(b) Solution 2(SO4

2-
/Cl

-

=19.15 g/L), (c) Solution 3(SO4
2-

/Cl
-
=0.75g/L) and (d) Solution 3(SO4

2-
/Cl

-
=0.99)) 

 

The corrosion rate of WC-Co increased drastically from 4°C to 20°C in solution 2 

(b) and the rate stable from 20°C to 80°C which explain that at high sulphate content 

WC-Co in stable at high temperature. However, in solution 3and 4 which contain 

almost equal content of sulphate and chloride, the corrosion rate increased drastically 

from 20°C to 50°C which explained that reducing of sulphate content contribute to 

reducing of inhibition effect for WC-Co at high temperature. Conversely, WC-Ni 

presents to have stable corrosion rate in different sulphate/chloride ratio. 
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Chapter 9  

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions  

 The corrosion products produced on the carbon steel surface can slow the 

corrosion attack, however, after sometime the protective product collapses and 

the carbon steel surface is exposed to corrosion again. 

 The corrosion rate of carbon steel can be reduced by using CRW 85155 added to 

seawater. However, increasing the inhibitor concentrations from 20ppm to 

100ppm at 20ºC does not reduce the corrosion rate for the carbon steel in static 

conditions. 

 Changing the inhibitor to CRW 89000 could obtain a corrosion rate close to the 

corrosion rate in HW443 by using seawater added with 400 ppm CRW 89000 at 

20ºC. 

 Another alternative to control the corrosion rate of carbon steel in seawater is by 

controlling the chloride content at 0.05 g/L and oxygen content about 16 ppb. 

 For passive materials, increasing the temperature reduces the breakdown 

potential for all materials and solutions. 

 25Cr duplex and Inconel 625 show higher breakdown potential in seawater (S1) 

compared to HW443, but 316L shows lower breakdown potential in S1. 

 Overall, the experiment shows that 25Cr duplex shows better performance 

compared to Inconel 625 and 316L when comparing the breakdown potential. 

However, Inconel 625 is able to self-repair for the second time after the first 

time breakdown in potential. Furthermore, Inconel 625 shows the most stable 

breakdown for all solutions and temperatures. The passive range difference 

shows that Inconel 625 is the most stable forall solutions and temperatures. 

 For cermet alloys, WC-Co has a more positive hysteresis compared to WC-Ni, 

which has a more negative hysteresis, especially at higher temperature. 

 WC-Co presents as pseudo-passive at low temperature. 
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 The corrosion rate of WC-Ni is determined by calculation as WC-Ni is 

considered to perform as an active material. 

 Changing the composition of the sulphate-to-chloride ratio of seawater reduces 

the corrosion rate of WC-Ni. 

 It should be noted that some inconsistency in the results might be due to the non-

homogeneous composition of the materials. Thus, there is often no local 

uniformity of the current distribution on the entire surface and this affects the 

electrochemistry results. 

 Apart from having a smaller size compared to Cl
-
, SO4

2-
 anions also increase the 

pH value of solutions, thus, it helps in decreasing corrosion attacks.  

 

9.2 Suggestions for Future Work 

i. The oxygen content is very difficult to control at increasing temperature plus the 

electrochemical reaction also contributes to the oxygen content. Future 

experimental work should only concentrate on active materials to study the 

oxygen parameters that affect corrosion attack. 

ii. As the heat treatment process affects the stainless steel composition and cermet 

binder, the materials used in the experimental work should only be purchased 

from the same supplier. 

iii. To study the corrosion behaviour of cermet alloys, the cyclic polarisation curve 

should be compared to other percentages of WC-Co alloys as increasing the 

current density and constant potential might not be due to surface film 

breakdown, but to WC oxidation. 

iv. There should be different approaches to studying the corrosion behaviour of 

cermet alloys because cermets consist of ceramic and metal compositions. The 

corrosion behaviour is in between active and passive corrosion mechanism. 

v. Induction time is the time spent between the injection of the aggressive anion 

into solution and the start of pitting  

vi. The effect of velocity should be studied in the future. 
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Appendices 

 

 The reaction of KCl:  

Because of 0.39g of K
+
 needed, thus, the amount of KCl needed is: 

 

 

 

 The reaction of CaCl2:  

Referring to equation 1, the mass of  is obtained 

 

 

 

* The total amount of Mg = 1.30g, which is separated into 0.68g in MgSO4.7H2O 

and 0.62g in MgCl2.6H2O 

 The reaction of MgSO4:  

 

 

 

 The reaction of MgCl2: 

 

 

 

* The total amount of sodium = 10.71g, which is separated into 9.72g in NaCl and 

0.98g in NaHCO3 

MgSO4                          Mg
2+

 + SO4
2- 

MgCl2                               Mg
2+   

+ 2Cl
-
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 The reaction of NaHCO3: 

 

 

 The reaction of NaCl 

 

 

 

The remaining Cl
- 
is, Total Cl

-
 = 19.25 – (0.3536 + 0.743+1.81 + 14.98)= 1.3634g. 

Thus, HCl is added to cover the remaining total of Cl
-
 needed.  

 The reaction of NaCl: 

 

 Considering the ratio, SO4
2-

 / Cl
-
 for this solution is 0.14 and this is 

labelled as solution 1 (S1). 

 

 

Calculation for Solution 2 (SO4
2-

= 20.87g and Cl
-
 = 1.09g) 

 

 The reaction of KCl:  

Because of 0.39g of K
+
 needed, thus the amount of KCl needed is: 

 

 

 

 

 The reaction of CaCl2:  Ca
+   

                       Ca
+
 + 2Cl

- 

NaHCO3                             Na
+   

+ HCO3
-
 

NaCl                           Na
+   

+ Cl
-
 

HCl                             H
+   

+ Cl
-
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Referring to equation 1, mass of  is obtained 

 

 

 

 The reaction of MgSO4:  

 

 

 

 The reaction of NaHCO3: 

 

 

 The reaction of H2SO4: 

The remaining SO4
2- 

is; Total SO4
2-  

 = 20.87 – 5.0196= 15.89g. Thus, H2SO4 is 

added  

 

 Considering the ratio, SO4
2-

 / Cl
-
 for this solution is 19.15 and this is 

labelled as Solution 2 (S2). 

 

Calculation for Solution 3 (SO4
2-

= 9.41 g and Cl
-
 = 12.54g : SO4

2
/Cl

--
=0.75 ) 

 

 The reaction of KCl :  

Because of 0.39g of K
+
 needed, thus, the amount of KCl needed is: 

 

 

MgSO4                        Mg
2+

 + SO4
2- 

NaHCO3                             Na
+   

+ HCO3
-
 

H2SO4                           H
+   

+ SO4
2- 
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 The reaction of CaCl2:  

Referring to equation 1, the mass of  is obtained 

 

 

 

 The reaction of MgCl2: 

 

 

 

 The reaction of H2SO4: 

 

 

 

 The reaction of NaHCO3: 

 

 

 The reaction of NaCl: 

 

 

 

The remaining Cl
- 
is, Total Cl

-
 = 12.54 – (0.743+0.3536 + +3.79+3.08)= 4.57g. 

Thus, HCl is added to cover the remaining total of Cl
-
 needed.  

Ca
+   

                       Ca
+
 + 2Cl

- 

NaHCO3                           Na
+   

+ HCO3
-
 

NaCl                            Na
+   

+ Cl
-
 

HCl                             H
+   

+ Cl
-
 

MgCl2 . 6H2O                           Mg
2+   

+ 2Cl
-
 

H2SO4                             H
+   

+ SO4
2- 
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 The reaction of NaCl: 

 

 Considering the ratio, SO4
2-

 / Cl
-
 for this solution is 0.99 and this is 

labelled as solution 4 (S4). 

 

Calculation for Solution 4 (SO4
2-

= 10.95 g and Cl
-
 = 11g : SO4

2
/Cl

--
=0.99 ) 

 

 The reaction of KCl:  

Because of 0.39g of K
+
 needed, thus, the amount of KCl needed is: 

 

 

 

 

 The reaction of CaCl2:  

Referring to equation 1, the mass of  is obtained 

 

 

 

 The reaction of NaHCO3: 

 

 

 The reaction of NaCl: 

 

 

Ca
+   

                      Ca
+
 + 2Cl

- 

NaHCO3                            Na
+   

+ HCO3
-
 

NaCl                            Na
+   

+ Cl
-
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 The reaction of MgSO4:  

 

 

The remaining SO4
2- 

is; Total SO4
2-

 = 10.95 - 5.138 = 5.812 g. Thus, HCl is added 

to cover the remaining total of Cl
-
 needed.  

 The reaction of H2SO4: 

 

 

 

The remaining Cl
- 
is, Total Cl

-
 = 11.0 – (0.3536 + 0.743 + 9.27)= 0.6334 g. Thus, 

HCl is added to cover the remaining total of Cl
-
 needed.  

 The reaction of NaCl :  

 

 Considering the ratio, SO4
2-

 / Cl
-
 for this solution is 0.99 and this is 

labelled as solution 4 (S4). 

 

 

 

 

 

 

 

 

 

 

HCl                            H
+   

+ Cl
-
 

MgSO4                         Mg
2+

 + SO4
2- 

H2SO4                            H
+   

+ SO4
2- 
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Figure A.1: Anodic polarisation for passive materials in S1 at different 

temperatures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Anodic polarisation for passive materials in S2 at different 

temperatures 
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Figure A.3: Anodic polarisation for passive materials in S3 at different 

temperatures 

 

Figure A.4: Anodic polarisation for passive materials in S4 at different 

temperatures 
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Table A1: Electrochemical data of 316L 

* the value in red colour is Eb of metal in the solutions without oxygen 

 

 

 

 

Solution Temp 
OCP 

(mV) 
Epp (mV) Eb (mV) ip (µA/cm

2
) icc (µA/cm

2
) 

Imax 

(µA) 

1 

4ºC -224 -179 
634 

1185 
2.06 -5.66 2110 

20ºC -203 -164 
142 

200 
-5.47 -5.72 2583 

50ºC -188 -173 25 -4.46 -5.48 1494 

80ºC -163 -139 -3.99 -4.35 -5.51 1737 

2 

4ºC -268 -208 
656 

986 
1.49 1.14 586 

20ºC -230 -182 
499 

551 
1.02 0.39 1512 

50ºC -250 -190 257 46.2 12.7 2720 

80ºC -256 -217 115 8.9 4.1 2239 

3 

4ºC -253 -202 
705 

805 
133.8 1.6 1540 

20ºC -193 -124 
464 

1046 
65 3.3 2530 

50ºC -254 -203 358 111 5.9 3510 

80ºC -255 -210 274 1314 6.2 4337 

4 

4ºC -211 -172 
782 

1182 
4.8 1.7 1752 

20ºC -182 -134 
304 

640 
130.5 3.3 1718 

50ºC -167 -143 43 73.2 4.8 1555 

80ºC -167 -152 -14 47.3 2.1 1800 
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Table A2:  Electrochemical data of 25Cr duplex 

* the value in red colour is Eb of metal in the solutions without oxygen 

 

 

 

 

Solution Temp 
OCP 

(mV) 
Epp (mV) Eb (mV) ip (µA/cm

2
) icc (µA/cm

2
) Imax (µA) 

1 

4ºC -238 -172 
1195 

1080 
-4.70 -5.37 1560 

20ºC -250 -196 
1141 

1091 
-4.58 -5.36 1750 

50ºC -191 -128 1059 -5.00 -5.33 1520 

80ºC -127 -58 765 -3.88 -5.21 2300 

2 

4ºC -205 -134 
1018 

1085 
0.11 -0.24 2595 

20ºC -235 -187 
863 

1017 
-4.61 -5.431 1513 

50ºC -174 -132 856 -4.31 -5.21 1500 

80ºC -231 -177 627 -4.21 -5.30 1520 

3 

4ºC -336 -279 
1150 

1259 
-4.43 -4.85 1600 

20ºC -162 -90 
1049 

1116 
-4.71 -5.49 1504 

50ºC -258 -186 1026 -4.45 -5.17 1430 

80ºC -228 -164 906 1.44 1.042 3.37 

4 

4ºC -205 -148 
1153 

1279 
-4.58 -5.60 1580 

20ºC -234 -171 
990 

1046 
-4.47 -5.57 1800 

50ºC -142 -73 932 -4.19 -5.47 1550 

80ºC -193 -142 407 -4.38 -5.15 3440 
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Table A 3: Electrochemical data of Inconel 625 

* the value in red colour is Eb of metal in the solutions without oxygen 

 

 

 

 

Solution Temp 
OCP 

(mV) 
Epp (mV) Eb (mV) ip (µA/cm

2
) 

icc 

(µA/cm
2
) 

Imax (µA) 

1 

4ºC -323 -260 
1028 

954 
-4.69 -5.57 1608 

20ºC -296 -233 
699 

701 
-4.54 -5.19 1660 

50ºC -192 -120 527 -4.63 -5.48 1470 

80ºC -182 -122 391 -4.94 -6.12 1470 

2 

4ºC -239 -167 
686 

466 
-4.62 -5.83 1516 

20ºC -209 -149 
674 

395 
-4.89 -6.35 1506 

50ºC -300 -249 614 -4.52 -5.67 1574 

80ºC -229 -190 512 -4.94 -6.14 2250 

3 

4ºC -302 -251 
782 

847 
-3.48 -5.82 1730 

20ºC -297 -249 
537 

417 
-4.06 -5.74 1484 

50ºC -300 -252 426 -4.36 -5.69 2242 

80ºC -316 -262 407 -4.08 -5.52 2120 

4 

4ºC -270 -216 
669 

558 
-4.64 -5.88 1760 

20ºC -258 -192 
511 

414 
-4.67 -5.92 1650 

50ºC -288 -219 438 -4.67 -5.57 1860 

80ºC -210 -117 387 -4.60 -5.37 1528 
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Figure A.5: Cyclic polarisation of WC-Co in solution 2 (SO4
2-

/Cl
-
 

=19.15)at different temperatures. 

 

 

Figure A.6: Cyclic polarisation of WC-Co in solution 3 (SO4
2-

/Cl
-
 =0.75) at 

different temperatures 
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Figure A.7: Cyclic polarisation of WC-Co in solution 4 (SO4
2-

/Cl
-
 =0.99) at 

different temperatures 

 

 

Figure A.8: WC-Ni  in S1 at different temperatures 
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Figure A.9: WC-Ni  in S2 at different temperatures 

 

Figure A.10: WC-Ni  in S3 at different temperatures 
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Figure A.11: WC-Ni  in S4 at different temperature 

 

Figure A.12: Cyclic polarisation of WC-Ni in solution 2 (SO4
2-

/Cl
-
 =19.15) at 

different temperatures 
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Figure A.13: Cyclic polarisation of WC-Ni in solution 3 (SO4
2-

/Cl
-
 =0.75) at 

different temperatures 

 

 

Figure A.14: Cyclic polarisation of WC-Ni in solution 3 (SO4
2-

/Cl
-
 =0.75) at 

different temperatures 
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Figure A.15: Cyclic polarisation of WC-Ni in solution 4 (SO4
2-

/Cl
-
 =0.99) at 

different temperatures 
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