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Abstract 

In order to generalize the applicability of nonlinear numerical investigation of the 

structural behavior of slab panels at high deflections, which utilizes tensile membrane 

action in the slabs, the meshing of such floor systems cannot be restricted to orthogonal 

grids. A separate but related issue is that nonlinear numerical modelling of internal slab 

panels with continuity across their edges has shown that the way in which their 

boundary conditions are defined can have a considerable influence on their predicted 

membrane forces in various situations. This research investigates the behaviour of the 

membrane forces in orthogonal and non-orthogonal composite slabs at elevated 

temperatures by means of numerical modelling. With different continuity conditions at 

slab panel edges, the effects of various boundary conditions on the tensile membrane 

action of non-orthogonal slabs at high deflections are identified.  In order to achieve this 

end, a penalty function method is first developed which allows boundary conditions to 

be defined in terms of relationships between different degrees of freedom in the 

system’s global coordinates, as opposed to the conventional binary “free or restrained” 

choice for individual degrees of freedom.  This allows boundary conditions either to be 

defined with respect to axes inclined to the global system, or to link displacements at 

different nodes.  This easily defines suitable boundary conditions for non-orthogonal 

slabs, and also allows the continuity of internal panels to be realistically modelled. 

In terms of simplified design methods, it is often possible to divide internal floor areas 

of a building into rectangular or square panels, but the problem of slabs at or near the 

edges of non-orthogonal buildings still exists.  This thesis attempts to begin to extend 

these methods to non-orthogonal slabs by determining the optimal small-deflection 

yield-line failure patterns for quadrilateral slabs of different geometries. Simplified 

design methods assume that the enhancement of capacity due to tensile membrane 

action increases continuously with vertical deflection. However, as slab deflection 

increases, through-depth cracks which may or may not coincide with the yield lines can 

occur, and these cause progressive reduction of the enhancement of load capacity.  

Optimizing assumed yield-line patterns by using a plastic work balance method, the 

research establishes and validates two existing yield-line patterns for trapezoidal slabs. 

Further studies to determine the precise yield-line patterns of trapezoidal slabs are made 

by gradually changing of the geometrical parameters. 
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A new plastic energy method which includes the internal work dissipation during rebar 

extension has been extended to triangular slabs. The post-yield-line behaviour of such 

slabs has been demonstrated. This research validates and compares the enhancement 

factor performance from the new plastic energy method to the existing simplified design 

method. An investigation of the influence of different reinforcement meshes and 

geometry on the enhancement of load-carrying capacity of isosceles triangular slabs has 

been carried out. 
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 Introduction Chapter 1

In the past two decades, the design of composite structures to resist the effects of fire 

has been greatly developed. Performance based approaches are gradually replacing the 

traditionally-used prescriptive method for structural fire safety design. These traditional 

methods are based on the results from standard fire tests on single structural elements 

and ignore the interactions which occur between structural elements in real buildings 

under fire situations. As a result, the traditional methods requiring the application of 

passive fire protection to all exposed steelwork as protection against elevated 

temperatures have generally been proved to be over-conservative. With the generation 

of observations from real structural fire tests, and advanced understanding of the 

influence of composite floor systems on overall structural stability at elevated 

temperatures, considerable reductions in passive protection costs, while maintaining 

equivalent or higher levels of safety, have been made possible. 

 Background 1.1

In the presence of sufficient oxygen and combustible material, relatively small ignition 

sources can generate fire easily. For a natural fire, the development is divided into four 

phases: ignition, growth, heating and cooling.  The ignition phase is when the 

combustible material starts to burn locally. Then the fire gradually spreads over the 

combustible materials during the growth phase, until the average temperature is about 

600°C. Then the fire starts to grow rapidly, and develops the rapid heating phase (called 

flashover) where everything in the compartment is heating up. When the combustible 

material is consumed slowly, or there is not enough oxygen, it enters the cooling phase, 

which terminates when the material or oxygen has gone completely. In most cases, a 

fire happens accidentally and unpredictably. It is impossible to prevent fires from 

happening, so that the aim of fire safety engineering is to ensure that the whole structure 

is capable of maintaining its stability and integrity for at least the period the occupants 

require to exit the building safely, and also to minimize the economic loss of property 

and contents.  

For the steel and composite structural elements which are commonly used in building 

construction, fire is certainly one of the biggest problem the designer faces. Due to their 
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high strength-to-weight ratio, structural steel elements can cross longer spans and also 

have a lower requirement for foundations. These benefits make steel one of the most 

popular structural materials in multi-storey building construction in the UK. However, 

there is one obvious disadvantage to steel; its high thermal conductivity, which means 

that the temperature of steel grows rapidly when it is heated by a fire environment. 

When the temperature of steel has increased sufficiently, it loses its strength and 

stiffness very quickly, which suggests that the structural elements will no longer be 

capable of supporting their applied loads. Therefore, in order to ensure that structural 

elements retain appropriate strength and stiffness to survive during a given fire 

resistance period, it is necessary to apply passive protection materials to keep them 

below their limiting temperatures over that period. Even so, the cost of these protective 

materials can be very high, and the industry is investing in developing economic 

protection materials and updating design methods to reduce the expense. 

 Structural fire engineering 1.2

With the target of protecting life and property, structural fire engineering includes 

developing design methods for structural members to achieve appropriate fire resistance, 

and also to analyse the behaviour of structural members under fire situations. The 

available design codes such as BS5950 Part 8 (2003) and Eurocode 3 Part 1.2 (CEN 

1995) contain some limitations, because their development is based on previous tests on 

isolated structural members, and neglects the interaction between them and other 

members. From the observations in a series of fire tests carried out by the Building 

Research Establishment on an 8-storey steel-framed building at the Cardington 

Laboratory, the traditional design method based on the behaviour of isolated members 

in fire was shown to be over-conservative. The interactions between the structural 

members showed the existence of an inherent fire resistance which somehow improved 

the load carrying capacity of the whole structure. This has persuaded a growing number 

of designers to adopt the performance-based design method, which is a rational fire 

engineering approach to provide fire safety as required, by taking account of the actual 

behaviour of the three-dimensional structure in fire. If the interactions are considered in 

determining the fire protection by using a performance-based design method, it can 

never practically be based on using results from large-scale tests, because the cost is 

extremely high. Therefore, it is becoming increasingly important to allow the 
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performance-based design method to be based on numerical modelling which can 

accurately illustrate the behaviour of structures in fire situations. 

Using the results from numerical modelling of the behaviour of structures in fire, the 

performance-based approach has been made possible, and is a considerable 

improvement on the previous design methods. However, there are still some limitations 

on numerical modelling based on the finite element method. The first step in numerical 

modelling is to build up a model which is divided into a mesh of elements located 

according to the 3D global coordinates. After input of the properties of the materials, 

applied loads, structural elements etc., it is necessary to define movement constraints on 

specific nodes dependent on the locations of the supports, which are also known as 

boundary conditions.  

For the structural elements which are simulated parallel to the global axes and without 

continuity, the boundary conditions can be set as fixed or free to move in any of the 

global coordinate directions. However, for those elements not parallel to any global axis 

or with continuity, these simple constraints are not enough to model the actual supports 

accurately. This situation is quite common, as with the development of modern 

architecture, many buildings are designed with non-orthogonal floor layouts, which 

means that at least one edge of any floor slab is aligned in a direction that is not parallel 

to any global axis. To ensure the accuracy of analysis results, the problem of defining 

boundary conditions has to be resolved. 

 Research aims 1.3

The finite element program Vulcan has been developed by the Structural Fire 

Engineering Research Group at the University of Sheffield for three-dimensional 

analysis of the behaviour of structures at elevated temperatures. The main objective of 

this research is based on the Vulcan code, to create a practical structural fire engineering 

analysis tool which is able to analyse models with non-orthogonal meshes. In other 

words, update the program with the new function of defining the boundary conditions of 

any model in localized coordinates. Once the problem of restraining the boundary 

conditions has been resolved, the membrane actions of non-orthogonal slabs can be 

analysed, and the final target of extending the simplified design method for rectangular 

slabs to non-orthogonal ones can be developed. 
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The main threads of this research include: 

 By applying penalty function methods to the original structural stiffness matrix, 

the ability of the program Vulcan can be improved to restrain the nodal movements 

on structural elements in any direction.  Further studies can be done on the 

behaviour of composite floor systems with non-orthogonal slab panels and 

continuous edges.  

 Simpler modelling can be done assuming the collapse mechanisms of triangular 

and trapezoidal slabs, based on yield-line patterns, by applying work equations to 

confirm the locations of yield line intersections in triangular and trapezoidal slabs. 

Parametric studies can be done on the influence of change of geometry on 

trapezoidal and triangular slabs, and developing the relationships between 

geometric parameters and the locations of yield line intersections. 

 Research on the previously developed simplified design method for rectangular 

composite slabs in fire includes considering the enhancement of tensile membrane 

action due to large deflection. An initial objective was to extend this method to 

triangular and trapezoidal slabs at elevated temperature and to determine the 

distribution of membrane force. In fact there were found to be limitations and 

uncertainties in extending the simplified design method into triangular and 

trapezoidal slabs. 

 Outline of this thesis 1.4

The main body of this thesis consists of seven chapters. Each chapter includes a brief 

introductory paragraph at the beginning, giving an overview of the chief contents in the 

particular chapter. At the end of each chapter, a concluding section summarizes the 

crucial findings. 

Chapter 2: Literature review 

The chapter provides relevant observations from previous fire tests and research works 

relating to structural fire engineering and the tensile membrane action of composite 

slabs at elevated temperature. This includes not only fundamental knowledge about 

steel and composite structure in fire and design methods, but also the development of 

the BRE-Bailey method which simply models the enhancement of load capacity which 



Chapter 1 Introduction 

 

5 

 

derives from tensile membrane action occurring when the slab attains large deflections 

as part of a design tool for fire resistance of composite slabs. 

Chapter 3: Penalty function method and relative constraints 

In this chapter, a brief introduction to the penalty function method has been provided 

and some simple examples illustrate the details of application of the penalty function 

method to structural finite-element-based stiffness analysis. In the latter section of this 

chapter, a validation study on the influence of nodal movement constraints, represented 

by the penalty function method is demonstrated in both rectangular and irregular shapes 

of slab. In addition, the effect on membrane action has been compared between 

rectangular slabs with and without nodal displacement restrained. 

Chapter 4: Numerical modelling and validation 

This chapter shows the research on the behaviour of triangular and trapezoidal slabs at 

elevated temperatures by using the non-linear analysis program Vulcan with the penalty 

function method applied. The study has investigated triangular slab panels at different 

locations within a floor layout. The effects on tensile membrane action due to different 

boundary conditions have been studied. On the other hand, analysis of rectangular slab 

panels with continuous edges is also illustrated. It is a very common situation that the 

behaviour of rectangular or square slab panels with different boundary conditions needs 

to be analysed individually instead of a whole floor system. After applying the penalty 

function method, this demand can be satisfied. 

Chapter 5: Simplified design method for non-orthogonal slabs 

In this chapter, the calculation for load capacity or fire resistance enhancement by 

tensile membrane action in triangular slabs has been attempted. However, in the process 

of building up equilibrium equations, the limitation of the previous method’s 

assumptions for rectangular slabs has been pointed out as not suitable for triangular 

slabs. In order to extend the simplified design method to trapezoidal slabs, the locations 

of yield line intersections have to be found. Hence, two main yield-line patterns have 

been assumed, optimized and validated. Since the locations of yield line intersections 

are dependent on the trapezoidal geometry, the change-over between these two yield-

line patterns has been investigated by performing a geometric parametric study. As 

there is little research work that has been done to date, some fresh views about yield-
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line pattern transformation due to geometry change have been developed, but further 

research is needed on the process of extending the simplified design method into 

trapezoidal slabs. 

Chapter 6: New internal work method for capacity enhancement 

This chapter explains a new method to calculate the internal work dissipation, based on 

different assumed collapse mechanisms, recently reported by Burgess (2013). A 

comparison of enhancement factors between this method and BRE-Bailey method has 

been carried out and extended into triangular slabs. A parametric study on the influence 

on enhancement factors from geometry change has been carried out. The results from 

this method at ambient temperature have made good sense, but its performance at 

elevated temperature needs further research in future. 

Chapter 7: Conclusion and further study 

This chapter presents the findings and conclusions of this research, recommendations on 

the limitations and unsolved problems for future work. 
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 Literature Review Chapter 2

In this chapter, relevant fundamental knowledge and the development of structural fire 

engineering are reviewed. As one of the most important factors affecting the behaviour 

of structural elements at elevated temperatures, the properties of steel are reviewed and 

summarized. The behaviour of reinforced concrete slabs at elevated temperature are 

described on the basis of previous researches, together with the development of 

simplified design methods, including the load bearing capacity enhancement of slabs 

due to tensile membrane action. 

Between 1995 and 2003 a series of fire tests (Kirby, 1998) were conducted at the 

Building Research Establishment (BRE) Large Building Test Facility at Cardington. 

Before the Cardington Fire tests, in the early 1990s the behaviour of composite slabs 

had been brought to attention in a number of fire accidents (Abu, 2009). In the post-

accident investigations, it was observed that the integrity of composite slabs was 

generally maintained, although the steel deck was observed to have separated from the 

concrete slab. It was suspected that the existing prescriptive methods for selection of 

fire protection were over-conservative. Because of this uncertainty about the traditional 

methods and a shortage of observations from real building fires, the Cardington fire 

tests were set up in a specially-designed 8-storey steel-framed composite-floored 

building. The results of Cardington tests (Kirby, 1998) generally confirmed the over-

conservativeness of the previous method, and indicated that tensile membrane action 

needed to be considered in design methodologies. 

 Material properties at elevated temperature 2.1

 Steel properties at elevated temperature 2.1.1

For steel and reinforced concrete composite structures, the mechanical properties of 

steel at elevated temperature is one of the most important aspects which influence their 

structural behaviour in fire. As a thermally conductive material, steel has a fairly low 

resistance to heat (Purkiss, 1996). Steel starts to lose its strength dramatically at about 

400C, and this continues to decline until about 800C at an almost constant rate. Above 
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this temperature, the strength of steel continues to decrease, but at a slower rate, until its 

melting point is reached at about 1500C. 

The stress-strain behaviour of steel at elevated temperatures is definitely different from 

that at ambient temperature, because of the lack of a yield plateau and the fact that the 

slope of the stress-strain curve remains positive during most of the plastic range. From 

British Steel data (Kirby and Preston, 1988) about a series of test on isolated steel 

members, it was apparent that the stress-strain behaviour of steel at elevated 

temperatures is dependent on the rate of heating because of the influence from the creep 

at temperature over 450C. The clearly defined yield plateau at 20C is replaced by a 

gradual increase of strength with strain at elevated temperatures. As the strength of steel 

is one of the most important parameters in structural fire design, however, this makes it 

quite difficult to define the strength of steel at elevated temperatures. Instead of fixing a 

unique limiting strain value for yield strength at elevated temperature (such as 0.2% at 

20C), the design codes BS5950 and Eurocode 3 employ different values of limiting 

strain to evaluate the reduction factors. BS 5950 Part 8 (BSI 1990) adopts a strain limit 

of 1.5% for beams and 0.5% for columns, whereas Eurocode 3 Part 1.2 (CEN 2005a) 

adopts 2.0% as a “yield” strain for all member types. The steel grades 43A and 50B 

were until recently the UK grades most commonly used in construction; the equivalent 

steel grades defined by the Eurocodes are S275 and S355 respectively. According to the 

equations provided by Eurocode 3 Part 1.2 (CEN 2005a), the stress-strain curves are 

standardised in the form shown in Figure 2.1. 

 

Fig. 2.1 Stress-strain curves for steel at elevated temperatures 
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Steel  

Temperature 

 

θa 

Reduction factors at temperature θa relative to the value of fy or Ea at 20 °C 

Reduction factor 

(relative to fy) 

for effective yield 

strength  

 

ky,θ = fy,θ / fy 

Reduction factor 

(relative to fy) 

for proportional limit 

 

 

kp,θ = fp,θ / fy 

Reduction factor 

(relative to Ea) 

for the slope of the 

linear elastic range 

 

kE,θ = Ea,θ / Ea 

20°C 1.000 1.000 1.000 

100°C 1.000 1.000 1.000 

200°C 1.000 0.807 0.900 

300°C 1.000 0.613 0.800 

400°C 1.000 0.420 0.700 

500°C 0.780 0.360 0.600 

600°C 0.470 0.180 0.310 

700°C 0.230 0.075 0.130 

800°C 0.110 0.050 0.090 

900°C 0.060 0,.0375 0.0675 

1000°C 0.040 0.0250 0.0450 

1100°C 0.020 0.0125 0.0225 

1200°C 0.000 0.0000 0.0000 

NOTE: For intermediate values of the steel temperature, linear interpolation may 

be used. 

Table. 2.1 Reduction factors for stress-strain relationship of carbon steel at elevated temperatures 

(Eurocode 3 Part 1.2 (CEN 2005a) Table 3.1) 

in which, 

ky,θ   is the reduction factor for effective yield strength of steel (2% strain) at relevant 

elevated temperature, 

kp,θ      is the reduction factor for proportional limit, 

kE,θ      is the reduction factor for the linear elastic range (Young’s Modulus). 
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In the table provided by Eurocode 3 Part 1.2 (CEN 2005a), temperature increments are 

given from ambient temperature (20°C) to elevated temperature in 100°C steps. The 

proportional limit and Young’s modulus are assumed decrease from about 200°C, while 

the effective yield strength is assumed start to drop from 400°C, but more rapidly than 

the other two parameters. The reduction factors for yield strength, proportional limit and 

elastic modulus taken from Eurocode 3 are shown in Figure 2.2 below, 

 

Fig. 2.2 Strength reduction factors of structural steel at elevated temperature 

For reinforcing steel, Eurocode 4 Part 1.2 (CEN, 2005b) suggests, the strength and 

deformation properties of reinforcing steels at elevated temperatures may be obtained 

using the same mathematical model as for structural steel, the three main parameters 

given in Table 2.2 may be used for hot-rolled reinforcing steel. For cold-rolled 

reinforcing steel the values of the three main parameters are given in Eurocode 4 Part 

1.2 (CEN, 2005b) Table 3.4, and also in Eurocode 2 Part 1.2 (CEN 2004) Table 3.2a. 

 Concrete properties at elevated temperature 2.1.2

Concrete also loses its stiffness and strength at high temperature as well. An important 

aspect is water, which exists in normal form as liquid, and turns into steam and 

evaporates when it is heated to over 100°C. This phenomenon also happens in concrete, 

in which a great proportion of free water exists. When the temperature exceeds 300°C, 

siliceous concrete starts to lose its strength because of the different thermal expansion of 

aggregates and cement matrix. Depending on the type of aggregates, the properties of 

concrete are different in compression and tension. According to Eurocode 2 Part 1.2 
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(CEN, 2004), when concrete under compression, the form of the stress-strain 

relationship at elevated temperature is presented in Figure 2.3. 

  

 

Fig. 2.3 Stress-strain relationships of concrete under compression at elevated temperatures 

(Eurocode 2 Part 1.2 (CEN, 2004)) 

For concrete under compression, the stress-strain relationships given in Fig. 2.3 are 

defined by three parameters: the compressive strength fc, θ and the corresponding strain 

εc1,θ define ultimate conditions.  Values for εcu1,θ , which define the range of the 

descending branch, are taken from the table provided in Eurocode 2 Part 1.2 (CEN, 

2004). The values of both of the strains εc1,θ and εcu1,θ are temperature-dependent. For 

the tensile strength of concrete at elevated temperature, Eurocode 2 Part 1.2 suggests it 

should be ignored for conservativeness. However, if the tensile strength needs to be 

taken into account, a simplified reduction of the characteristic tensile strength of 

concrete by the coefficient kc,t (θ)can be adopted as, 
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𝑓𝑐𝑘,𝑡(𝜃) = 𝑘𝑐,𝑡(𝜃) ∙ 𝑓𝑐𝑘 

                                       (2.1) 

The reduction factor kc,t (θ) is defined as follows: 

 For 20°C ≤ 𝜃𝑐 ≤ 100°C: 

𝑘𝑐,𝑡(𝜃) = 1.0 

                                                 (2.2) 

 For 100°𝐶 < 𝜃𝑐 ≤ 600°𝐶: 

𝑘𝑐,𝑡(𝜃) = 1.0 − 1.0 (𝜃 − 100)/500 

                           (2.3) 

Generally, concrete provides the greatest fire resistance properties of any common 

building material. This excellent fire resistance is due to the properties of concrete’s 

constituent materials (i.e. cement and aggregates). When these materials chemically 

combine, this creates a material which is essentially inert and has low thermal 

conductivity (50 times lower than steel), which means that its interior heats very slowly 

in fire, causing a slow degradation of strength with increase of the outside temperature. 

This low thermal conductivity and strength loss enable concrete to provide very 

effective inherent fire resistance. 

 Review of yield-line theory and virtual work method 2.2

 Introduction 2.2.1

The yield-line theory, which was initiated by Ingerslev (1923) and greatly extended and 

improved by Johansen (1962), is a method for the limit analysis of reinforced concrete 

slabs. The theory have been great enhanced and extended by many authors such as 

Jones and Wood (1967), Sawczuk and Jaeger (1963), Park and Gamble (1980), Kemp 

(1965), Morley (1966), and Kwiecinski (1965). Described by Prager (1955), the yield 

line theory is recognized as a simple and quick method to determine the upper bound of 

the small-deflection plastic failure loads of slabs. As an upper bound approach, the 

plastic load capacity of the slab is estimated by assuming a failure mechanism which is 

compatible with its specific boundary conditions. In the yield line theory, the moments 

across the plastic hinge lines are equal to the moments of resistance of the reinforced 

concrete sections, and by applying the energy balance principle to generate equations of 

equilibrium, by equating the work done by external loads to the work dissipated across 
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yield lines, the load capacity can be determined. Being an upper bound approach, the 

yield line method provides ultimate loads which are either correct or too high. However, 

the advantages of yield line design are easy to observe:  

1. Firstly, applying the yield line method makes slab design quick and simple. For 

reinforced concrete slabs, using linear elastic analysis makes it very complicated to 

determine the shear forces and moments in each direction due to the applied load, 

and for irregular shapes of slab this becomes even more difficult.  In the latter case 

numerical analysis is nearly always necessary for adequate solution.  However, when 

using the yield line method, manual calculation can be done easily; computational 

approaches are not necessary, but the designer requires experience to recognize a 

probable collapse mechanism.  

2. Secondly, the linear elastic method can only predict when the first yield appears, 

whereas the yield line method gives the ultimate capacity which dictates what makes 

a slab collapse and helps the engineer to appreciate its ultimate behaviour.  

3. Finally, the yield line method is much easier to implement in different geometric 

shapes of slab than is linear elastic analysis. No matter how complex the slab shape 

or applied load profile, it is always possible to obtain a reasonable value of the 

ultimate load. 

The disadvantages of yield line design also need to be considered. A critical factor in 

using this method is that it requires familiarity with the probability of a slab failure 

mechanism. This demands a certain amount of design experience to be applied with 

confidence and accurate judgement. As mentioned above, the yield line method is easy 

for hand calculation, because it treats complex slabs in a simple way and is an 

independent method of analysis and verification. However, as it concerns ultimate limit 

state behaviour, it does not provide guidance on slab behaviour in a serviceability limit 

state. 

 Fundamental concepts and rules of yield line theory 2.2.2

In the yield line theory, the slab is postulated to collapse at a certain ultimate loading 

through generating a series of cracks in the reinforced concrete slab, across which 

reinforcing bars have yielded and plastic rotation occurs. At these locations the 

reinforcing bars are all assumed to have yielded, and the moment in each bar direction 
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reaches the moment of resistance; these discrete cracks, which are named yield lines, 

constitute plastic hinge lines. The yield lines divide the slab into several rigid regions 

(“facets”) which are assumed to remain plane throughout the collapse process. When 

the collapse mechanism has formed, the plastic deformations across the yield lines are 

much larger than any elastic deformations of the slab facets between the yield lines 

(Park and Gamble, 1980), so that the rigid perfectly-plastic assumption is reasonable. 

Since the yield lines are the hinges about which rotation occurs between two adjacent 

slab segments, and since they form the intersections between inclined flat plates as the 

slab deflects, they must be straight lines. According to the geometry of the deformed 

slab, for compatibility of deformation the yield lines must intersect at common points of 

adjacent regions. Another rule for yield lines is that the axes of rotation of the facets 

generally lie along the lines of support and pass over any columns; also the yield lines 

must end at a slab edge. As described above, the yield lines develop into a mechanism 

form which is called yield line pattern. 

As mentioned by Park and Gamble (1980), the regions of the slab between the yield 

lines are not investigated to guarantee that the moments do not exceed the ultimate 

moments of resistance of the sections, but the ultimate moments of resistance between 

the lines of plastic hinges will be exceeded only if an inappropriate collapse mechanism 

is applied. Therefore, selecting the correct yield line pattern for a given slab and its load 

arrangement becomes the primary task when applying yield line analysis. As described 

by Wood (1961), for rectangular slabs with isotropic reinforcement the mode of 

collapse has to be bisymmetric, and the central yield line must be parallel to two edges 

because the corresponding axes of rotation can never meet. In general, for a yield line 

pattern normally originating from the positions of the axes of rotation, such as the 

supported slab edges, has yield lines which pass through the intersections of the axes of 

rotation at the slab corners. However, there still many possible yield line patterns which 

can be assumed for a given slab, although they all obey these general rules. For each 

assumed yield line pattern, the ultimate collapse load can be found by using the plastic 

work balance or equilibrium method. The correct yield line pattern is the one which 

gives the lowest collapse load. 
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Fig. 2.4 Typical simple yield line patterns (Kennedy and Goodchild, 2003) 

 

 Virtual work method 2.2.3

The plastic work balance method of analysis is the most common and simplest way of 

applying yield line theory; it is also considered the quickest way to analyse a slab by 

hand calculation. The primary principle of the method is that the external work done by 

displacement of the loads must balance with internal work absorbed by rotation under 

fully plastic moments at the yield lines. In fact, the virtual work balance can be 

expressed as, 

∑(𝑃 × 𝛿)
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

=∑(𝑀 × 𝑙 × 𝜃)
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

 

                (2.4) 

In which, 

P  =  applied load(s) on a particular region of slab; 

δ   =  the vertical displacement of the load(s) P on each region; 

M =   the ultimate moment of resistance of slab per unit width; 

l   =   the length of yield line or projected length on the axis of rotation for the region; 

θ  =   the angles of rotation of the regions about the yield lines. 
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In the work balance equation (2.4), the vertical displacement δ is calculated as a 

proportion of the maximum deflection δmax occurring at a point located on the yield line 

pattern. For the purpose of convenience, the maximum deflection always is given a 

value of unity during the calculation, because it cancels out with the fraction of δmax on 

the other side of the equation. The value of M is given by Park and Paulay (1975) as, 

𝑀 = 𝐴𝑠𝑓𝑦(𝑑 − 0.59𝐴𝑠
𝑓𝑦

𝑓𝑐′𝑏
) 

                                           (2.5) 

where As is the area of tension steel reinforcement per unit width, fy is the yield strength 

of the reinforcement, d is the distance from compression concrete edge to the centroid 

of the tension steel, b is the width of concrete in compression. The angle of rotation θ of 

a region is assumed to be vanishingly small, so that it can be expressed as δmax/length, in 

which the length is the perpendicular distance between the point of maximum deflection 

and the axis of rotation of that region. 

For a given slab with given geometry and reinforcement details, all these parameters can 

be defined. As consequence, the collapse load P can be found as the solution of 

Equation 2.4. Thus, for a given slab, it is possible that different collapse mechanisms 

are postulated, and after comparing the collapse loads for each of them the lowest 

should be selected as the best model of the correct yield line pattern for the slab. 

 Review of behaviour of steel-Framed buildings at elevated 2.3

temperature 

 Introduction 2.3.1

In the ambient temperature condition, the load-carrying capacity of a composite floor 

system is assessed on the basis of the supporting composite beams and flexural strength 

of the composite slab. The flexural strength of the composite slab is generally 

dependent on the steel profile deck and concrete, and the contribution from mesh is 

ignored. Current fire design methods follow a similar approach, except that the 

simplified analytical design method for composite slabs in fire ignores any contribution 

from the steel deck (Bailey and Moore, 2000b). The reason for neglecting the effect of 

the steel deck follows the observations from earlier accidental fires, such as Broadgate 
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(1991a) and Basingstoke (1991b) both of which gave evidence of the separation of steel 

deck and concrete, due both to the free water in concrete turning into steam and being 

released at high temperature, and to differential thermal expansion between the steel 

deck and the concrete surface. Hence, the flexural strength of slab at elevated 

temperature only depends on the reinforcement mesh and concrete. For the whole floor 

system, the structural components that are assumed to make a contribution to the load 

carrying capacity in fire conditions are reinforcement mesh, concrete and composite 

steel beams. However, according to the design code, the strengths of these components 

are reduced significantly within the fire resistance regime.  

 Broadgate Phase 8 fire, London 2.3.2

In 1990, a fire took place in an uncompleted 14-storey composite steel-framed office 

block in the Broadgate development in London. The floor system consisted of arrays of 

composite beams forming a composite slab which was designed to have 90 minutes’ fire 

resistance. At the time of the fire, the sprinkler system and other active measures were 

not ready to use, and the fire protection for steel beams was unfinished because the 

building was still under construction. After the fire, an investigation indicated that the 

temperature of the exposed steel beams did not exceed 600°C although the fire 

temperatures were estimated to be more than 1000°C (SCI, 1991). Even with a 

maximum permanent vertical deflection of 600mm, the composite slab still maintained 

its integrity, with observations indicating only some reinforcement failure and 

debonding of the steel profiled decking from the concrete.  The composite beams also 

deflected between 82 mm and 270 mm; however, there was no observation of structural 

collapse. Beams which suffered higher deflections were found to exhibit local buckling 

of the bottom flange and web near their supports. In addition, the steel columns without 

protection were found to be deformed so that they shortened by about 100 mm. All of 

the behaviours were considered to have been induced by the restraint to the thermal 

expansion of these components by adjacent structure which remained much cooler 

(Newman et al., 2000; 2006). 

 Churchill Plaza building, Basingstoke 2.3.3

In 1991, a fire accident occurred in the Mercantile Credit Insurance Building, Churchill 

Plaza, Basingstoke. This was a 12-storey building constructed in 1988 with passive 
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board protection to columns and spray protection to the steel downstands of composite 

floor beams. The bottom face of the composite slab was left unprotected and the 

building was designed for 90 minutes’ fire resistance. 

The fire started on the eighth floor and then spread to the tenth floor very quickly, 

because of the failure of glazing. Fortunately, the fire protection materials performed 

well, so that there was no permanent deformation to the structural steel frame. Similarly 

to the Broadgate fire, debonding between the steel decking and the concrete was 

observed. After the fire, a load test was carried out on the most seriously affected area; 

however, the slab was observed to have sufficient load-carrying capacity, and was ready 

to be reused with no structural repair needed. 

 Cardington fire tests 2.3.4

Between 1995 and 2003, a series of fire tests was carried out on an 8-storey steel-

framed building at the Building Research Establishment’s Cardington Laboratory in the 

UK. The aim of these tests was to investigate the behaviour of a real building under 

mainly natural fire situations, and to gather experimental data which could be used to 

validate the results from numerical analysis of structures in fire.  

The composite structural design of the building met the UK national design codes BS 

5950 (BSI, 1990a; 1990b) and was verified for compatibility with Eurocodes 3 and 4 

(CEN, 1992; CEN, 1994). The whole building’s footprint was 21m x 45m, and the 

overall height was 33m. The floor system consisted of a 0.9mm thick PMF CF70 steel 

decking with downstand steel beams, with shear studs welded through the trapezoidal 

steel deck onto both primary and secondary beams in order to ensure composite action. 

The slab cast onto the decking was of light-weight Grade 35 concrete with 130 mm 

maximum thickness and A142 (142mm
2
/m in both directions) anti-crack reinforcement 

mesh. Two overall views of the building are shown in Figure 2.5 below. 
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Fig. 2.5 Cardington fire test building (Foster et al., 2007) 

As described by Kirby (1998), in these tests three main beam sections (305 x 48kg/m 

UB, 356 x 51kg/m UB and 610 x 101kg/m UB) and three column sections (305 x 

198kg/m UC, 305 x 118kg/m UC and 254 x 89kg/m UC) were selected. The design 

imposed load was 2.5kN/m
2 

on each floor, except for the roof which was supposed to 

support a plant room with 7.5kN/m
2 

loading. Apart from the fifth floor, all other loads 

were imposed using sand bags each weighing 11kN, uniformly distributed throughout 

the whole building to simulate typical office loading.  

The first six fire tests took place between January 1995 and July 1996. These tests 

included:  

1. Restrained beam;  

2. A plane frame;  

3. Two corner compartments;  

4. A large compartment and an office fire demonstration test.  

Another test was carried out in 2003 in order to collect more experimental data on the 

behaviour of beam-to-beam and beam-to-column connections. This test has also gave 

the opportunity to verify the suitability of specialized numerical modelling software 

(Foster et al., 2007). The first 6 tests occurred on various floors; the location of each test 

is shown in Figures 2.6 and 2.7 below. 
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Fig. 2.6 Locations of first 6 fire tests at Cardington (Foster et al., 2007) 
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Fig. 2.7 Location of the seventh test at Cardington (Foster et al., 2007) 

 

 Observations from fire accidents and Cardington fire tests 2.3.5

In the Broadgate fire it had been shown that, although some debonding between steel 

deck and concrete was observed, the composite slab could still maintain its integrity. 

Moreover, when some structural components had lost their load-carrying capacity in fire, 
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the composite slab with supporting perimeter beams and adjacent structure staying in a 

cooler condition, made a considerable contribution to the global structural stability. The 

reason for this effect is the composite slab performing as a highly-deflected membrane 

which can distribute the loads from the weakened area to the supporting edges, together 

with the restraints to thermal expansion provided by the surrounding cooler members. 

The observations from Churchill Plaza indicated that the conventional design for 

exposed steelwork protection is over-conservative. The post-fire load test on the most 

damaged area of the slab gave evidence that extra load carrying capacity exists (SCI and 

CTICM, 2009). 

Observations from the Cardington fire tests once again showed that the traditional fire 

protection design methods for composite floor systems are very conservative. These 

traditional design methods suggest either protecting all the steel beams and columns or 

using the limiting temperature method provided in BS 5950 (BSI, 1990a; 1990b) or the 

similar Critical Temperature method from Eurocode 3 Part 1-2 (CEN 2005a). 

According to Bailey and Moore (2000c), in the former method, the ‘Yellow Book’ 

(ASFP, 1992) is normally used to decide the level of fire protection needed, and it is 

assumed that the steel member is fully loaded (subject to the normal ULS safety factors) 

at ambient temperature, which is a highly conservative assumption for loading which 

coincides with a fire event. However, the conventional design methods obviously ignore 

the real load-path mechanisms when the composite floor system suffers the large 

vertical deflections which commonly occur during a fire. 

 Tensile membrane action 2.4

During the late 1960s, a considerable number of theoretical and experimental research 

papers (Park, 1964a and 1964b; Kemp, 1967; Wood, 1961; Sawczuk, 1965; Hayes, 

1968) were published on the performance of reinforced concrete slab floors when large 

vertical displacements take place. These works indicated that slabs at large vertical 

deflection are  capable of carrying greater loads than those given by the original (small-

deflection) yield line theory, because tensile membrane action occurs within the slab 

whether or not there was horizontal restraint at the slab edges. As mentioned by Bailey 

(2004), for a given vertical displacement a floor slab with horizontal restraint to 

movement around its perimeter will have a greater load-carrying capacity compared to 
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an equivalent horizontally unrestrained floor slab. For a slab without horizontal restraint 

at its boundaries, a ring of compressive membrane force can be seen to be generated 

within the slab and around its edges, and this provides the horizontal restraint to a field 

of tensile membrane forces in the slab’s central area, as shown in Figure 2.8. 

 

Fig. 2.8 Membrane action of a floor slab with no horizontal restraint around its perimeter (Bailey, 

2004) 

However, the essential condition for the supporting compressive ring to be created is 

that the vertical displacements at the slab perimeter must remain small as the load 

increases (Foster et al., 2004). The reason for this requirement was explained by Bailey 

(2004).  If the perimeter beams are able to collapse at the same load as the internal 

beams, with central plastic hinges forming, a collapse mechanism consisting of a single 

yield line passing through the whole arrangement of composite beams which forms the 

slab will make the floor effectively fold along this yield line. Therefore, tensile 

membrane action can never happen because run-away deflection occurs.  

Even though the previous research illustrated some perceptions of the behaviour of 

slabs at large vertical displacement, no practical context was identified in which tensile 

membrane action, so the methods generated were not able to be applied in practice. 

However, the observations from the Cardington fire tests have clearly indicated both 

that the existing design models for composite floor behaviour at elevated temperature 

are over-conservative, and that their deflections can become very large; thus the 

behaviour of concrete slabs at large deflection once again became worthy of attention. 

Following the results obtained from the Cardington tests, many researchers have 

simulated these fire tests using experiments (Bailey, et al., 1999; 2000a) and by finite 

element modelling (Elghazouli, et al., 2000; Gillie, et al., 2002; Huang, et al., 2002; 

2003a; 2003b; O’Connor, et al., 2003). After much validation of finite element software, 
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it is now possible to predict the extent and advantage of tensile membrane action of 

composite floor systems in fire. At the same time, two simplified analytical methods 

have been developed, by Bailey (2000b; 2001a; 2001b; 2003; 2004) and by Cameron 

and Usmani (2005a; 2005b). In Bailey’s method (often referred to as the Bailey-BRE 

Method), he assumes that the slab has no horizontal restraint at its edges, so that the 

membrane action comprises tensile membrane force in the slab’s central area 

surrounded by a ring of compressive membrane force. On the other hand, in Cameron 

and Usmani’s method, it is assumed that the tensile membrane forces developed in the 

slab can only be balanced by the provision of anchorage along the slab edges, since 

most of the slab’s bending capacity is lost at high temperatures. However, from the 

small-scale tests and modelling by Foster (2004; 2006) and Abu (2009), it has been 

shown that thermal gradients acting alone through the depth of the slab can cause 

significant amounts of tensile membrane stress in axially-unrestrained simply-supported 

slabs.  Contrary to the suggestion made by Cameron and Usmani (2005a; 2005b), it is 

not essential to provide horizontal edge restraint to sustain this load-carrying 

mechanism at elevated temperatures. Some other researchers have also developed 

simplified design methods to determine the capacity of composite slabs in fire including 

consideration of tensile membrane action (Clifton, 2001; Omer et al., 2006; Li et al., 

2007). The Steel Construction Institute (SCI) has adopted the Bailey-BRE method in its 

design guidance on evaluating the load-carrying capacity of composite slabs in fire 

(Newman et al., 2000; 2006). 

 Developments of the Bailey-BRE method 2.5

The observations from the Cardington fire tests on composite floor systems showed that 

the increase in slab load-carrying capacity was due to the development of tensile 

membrane action in the slab’s central area with its perimeter vertically supported. This 

conclusion concurs with that of the early research studies (Wood, 1961; Park, 1964; 

Taylor, 1965; Sawczuk and Winnicki, 1965; Kemp, 1967; Hayes, 1968) on tensile 

membrane action at ambient temperature. Bailey and Moore (2000a; 2000b) initially 

developed the design method by Hayes (1968) for composite slabs at elevated 

temperature. In 2000, a 9.5m x 6.5m composite slab test at ambient temperature (Bailey, 

2000) was carried out at BRE Garston. In this test, a transverse tension crack 

penetrating the full slab thickness was eventually observed across the middle of the long 
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span of the slab. At this stage the failure load was 4.81kN/m
2
 and the vertical 

deflections were over 650mm. On investigating the test results, tensile membrane action 

was observed and the eventual failure load was almost twice the load-carrying capacity 

calculated using the conventional yield-line theory.  

In early investigations about membrane action at ambient temperature (Wood, 1961; 

Hayes, 1968), it had been concluded that when the slab was subjected to an increasing 

vertical displacement the initial yield-line pattern still remained. This was also observed 

in the BRE Garston ambient temperature test.  This corresponded well with the 

consistent observations from previous experimental investigations (Bailey, 2000) that a 

large full depth tensile crack occurs across the slab shorter span at the centre of the 

longer span.  The previous research by Sawczuk and Winnicki (1965) had shown that 

two possible failure modes exist, as shown in Figure 2.9.  

 

 

Fig. 2.9 Two modes of slab failure mechanism by Sawczuk and Winnicki (Bailey, 2001a) 

The failure mode I (two transverse cracks located at the intersections of yield-lines 

along the shorter span) was considered the more critical. According to the observations 

from the BRE Garston test and test results from other investigation, an update of the 

simple design method took both modes of failure into account (Bailey, 2001a). The 

fundamental design strategy, illustrated in Figure 2.10, for using the simple design 

method is that a composite floor is divided into an array of rectangular or square 

horizontally unrestrained composite slab panels with unprotected internal beams, but 

with protected beams supporting their edges.  

Mode of failure I Mode of failure II 
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Fig. 2.10 Floor plate division and Schematic of Bailey-BRE Method (Abu, 2009) 

The calculation procedure used by Bailey and Moore (2000b) is almost identical to the 

previous calculation procedure initiated by Hayes (1968). This method also based on 

rigid-perfectly plastic yield-line theory, but subjecting the slab to large deflections, and 

assessing the enhancement of its load-carrying capacity due to tensile membrane action 

above the traditional small-deflection yield-line load capacity.  

However, for the first few years after the simplified design method was developed, there 

was only one failure mechanism considered in original Bailey-BRE method, which is a 

full-depth tension crack at the middle of the slab’s longer span, aligned across its shorter 

span (Bailey, 2000; 2001a; 2003; 2004), shown as mode of failure II in Figure 2.9. In 

2007, the design method was reviewed and the failure mode was been updated to 

include not only tensile fracture of reinforcement across the shorter span but also 

compressive crushing of the concrete slab at its corners (Bailey and Toh, 2007).  In this 

version of the design method, the derivation was also updated to account for the failure 

mode incorporating two tension cracks from the intersections of the yield lines. The in-

plane stress assumption along the yield lines and the central crack is as shown in 

Figure 2.11. 

Unprotected Beams 

Protected Beams 

Yield lines 

(a) Composite Floor Slab (b) Slab Panel 
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Fig. 2.11 In-plane stress distribution of updated BRE-Bailey design method (Bailey and Toh, 2007) 

For the updated design method, the modifications included trapezoidal tensile stress 

blocks instead of a linear stress distribution along the diagonal yield lines. However, the 

method still neglected any contribution from the tensile strength of concrete to the load 

capacity, in order to remain conservative. It is assumed that, in reality, the passive fire 

protection applied to the perimeter beams will keep them at a low enough temperature 

to control their deflections sufficiently to provide effective vertical support to the slab 

edges. The load carrying capacity of a composite slab after a given time in fire can be 

calculated from Equation 2.6. 

𝑤𝑝𝜃 = 𝑒 (
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑙𝑎𝑏 𝑖𝑛 𝑏𝑒𝑛𝑑𝑖𝑛𝑔

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑙𝑜𝑜𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑜𝑎𝑑
)

+
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑏𝑒𝑎𝑚𝑠 𝑖𝑛 𝑏𝑒𝑛𝑑𝑖𝑛𝑔

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑙𝑜𝑜𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑜𝑎𝑑
 

(2.6) 
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In which, 

wp,θ  is the load carrying capacity of composite slab at a given time; 

e       is the enhancement factor calculated by the design method (Bailey and Toh, 2007) 

As initially announced by Hayes (1968), the overall enhancement factor e is calculated 

as, 

𝑒 = 𝑒1 −
𝑒1 − 𝑒2
1 + 2𝜇𝑎2

 

                                                    (2.7) 

in which, μ  is the ratio of the yield moment capacity of the slab in orthogonal 

directions, and a is the aspect ratio. In the Equation 2.7, when the aspect ratio is equal to 

1, and the reinforcement ratio is same in both directions, which the coefficient of 

orthotropy μ is equal to 1, e1 and e2 is identical, therefore, the overall enhancement e 

equals to either one of them. However, if the coefficient μ is not equal to 1, this 

equation can not tell if the longer or shorter span dominating the overall enhancement 

factor. According to Hayes (1968), normally, the value of e1 and e2 is not same and the 

difference is explained by the effects of vertical shear or in-plane shear. Obviously, this 

explanation is not enough to resolve the problem caused by the variety of orthotropy. 

Prediction of the maximum allowable vertical displacement at the fire limit state is 

based on the appearance of the central through-depth tension crack. This attempts to 

combine deflection due to thermal bowing of the slab and mechanical strain in the slab 

reinforcement, as shown in Equation 2.7. The limitation of deflection due to mechanical 

strain in reinforcement is ‘shorter span/30’. The full derivation, with amendments for 

both isotropic and orthotropic reinforcement, can be found in the references by Bailey 

(2000; 2001a; 2001b; 2003; 2004) and by Bailey and Toh (2007). 

∆𝜃=
𝛼(𝑇2 − 𝑇1)𝑙

2

19.2ℎ
+ √(

0.5𝑓𝑠𝑦

𝐸𝑠
) ×

3𝐿2

8
 

                                  (2.8) 

in which, 
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α                is the coefficient of thermal expansion of the concrete slab; 

T2 and T1    are the bottom and top surface temperatures of the slab; 

L and l       are the longer and shorter spans of the slab; 

h                is the effective thickness of the slab; 

fsy and Es  are reinforcement strength and Young’s modulus. 

As mentioned in above, this equation to estimate the maximum allowable deflection 

includes two sections, thermal effects and mechanical strains in the reinforcement. 

 

Thermal effects 

When considering the thermal effects, it assumes the slab to be unrestrained with four 

edges simply supported, also the temperature distribution through the slab is assumed to 

be linear (Vassart and Zhao, 2013). Announced by Bailey (2001b), for design purposes, 

the value of (T2 – T1) for composite slabs can be taken as 770°C for up to 90 minutes 

fire resistance and 900°C for 2 hours fire resistance. 

 

Fig. 2.12 Slab deflection due to thermal effects 

As illustrated in Fig.2.12, the vertical displacement δ1 represents the deflection induced 

by thermal effects as the composite slab definitely will experience thermal curvature 

when subject to fire condition. The deflection is given by, 

𝛿1 =
𝛼(𝑇2 − 𝑇1)𝑙

2

8ℎ
 

                                                 (2.9) 

where,  

α  is the coefficient of thermal expansion 
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l   is the length of the slab shorter span 

h is the thickness of the slab 

Because the Equation 2.8 is initially based on a one-way spanning slab with assumed 

linear temperature distribution through the depth, for four edges simply supported slab, 

a reduction factor of 2.0 is applied at first. However, after comparison to the results 

from Cardington tests, Bailey and Moore (2000a) had increased the ‘safety factor’ from 

2.0 to 2.4, for the purpose of ensuring the deflection limit is conservative. Therefore, the 

vertical deflection due to thermal effects becomes as, 

𝛿1 =
𝛼(𝑇2 − 𝑇1)𝑙

2

19.2ℎ
 

                                                 (2.10) 

Mechanical strains in reinforcement 

In calculating the mechanical strains in reinforcement, it was assumed that the deflected 

shape of the slab due to transverse loading is parabolic, and the strain in the 

reinforcement is the same value along the slab length (Bailey and Moore, 2000a). In 

order to make this assumption which takes transverse loading into account, the slab has 

to be pin supported as, 

 

Fig. 2.13 Slab deflection due to mechanical strains in reinforcement 

and the displacement is given by, 

𝛿2 = √(
0.5𝑓𝑠𝑦

𝐸𝑠
)
3𝐿2

8
 

                                            (2.11) 

where, 

Es   is the elastic modulus of the reinforcement at room temperature 
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fsy  is the yield strength of the reinforcement at room temperature 

L   is the length of slab longer span at zero displacement 

When calculating the slab deflection considering the membrane forces, the total slab 

deflection is evaluated by combining the components due to thermal effects and strain 

in reinforcement, which is, 

𝛿 = 𝛿1 + 𝛿2 

                                                (2.12) 

in which,  

𝛿2 ≤
𝑙

30
 

(2.13) 

However, as we look into these two components which are combined together, in fact, 

the two equations are concluded from two situations with different types of support. In 

the first equation, it assumes the slab is simply supported on all edges, which implies 

that there is no transverse force existed in the system. But when it calculating the 

deflection due to strains in the reinforcement, it assumes the deflection shape of the slab 

is due to transverse loading. In this case, the deflection due to thermal effects and strains 

in the reinforcement cannot be just simply added up but need further investigations.  

 Extension and validation of BRE-Bailey method 2.6

The original Bailey-BRE method has been extended to include the effects of continuity 

and additional reinforcement which may sometimes be placed in the slab ribs, by 

Clifton (2001). In his method, the capacity of the unprotected beams at high temperature 

was also considered in the yield-line calculation.  This method checks the individual 

components of a slab panel, such as protected beams and columns. Following Clifton’s 

method, Bailey (2004) investigated the contribution of the unprotected beams in 

catenary action to the load carrying capacity, and concluded that it is usually negligible. 

Usmani and Cameron (2004) also developed a 3-step design method to calculate the 

load capacity of horizontally restrained composite slabs at elevated temperatures. The 
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origin of this method was from the results of numerical and analytical research 

following the Cardington tests, and proposed that the main factor which governed the 

behaviour of composite slabs at elevated temperatures was thermal strain.  It asserted 

that the deflected shape due to thermal bowing is the main aspect of behaviour which 

leads to tensile membrane action.  It also assumed that the bending resistance of a 

composite slab can be ignored when it is subject to large displacements, such as in the 

fire condition. The temperature distribution through the slab thickness is predicted for a 

given fire situation, and the change of slab shape and membrane stress and strain due to 

the thermal condition are determined. The energy balance method is then adopted to 

determine the maximum collapse load of the slab. 

Since the cost of carrying out full-scale composite slab tests in fire is extremely high, 

some analysis programs based on the finite element method have been developed in 

order to simulate the behaviour of composite slabs under fire conditions. These 

programs include Vulcan (Bailey, 1995; Najjar and Burgess 1996; Huang, et al. 1999; 

2000; 2004a; 2004b) developed at the University of Sheffield to analyse steel and 

concrete structures; ADAPTIC, developed at Imperial College in London; SAFIR, from 

the University of Liège in Belgium, and ABAQUS which is a general-purpose finite 

element program. These finite element programs have been employed by many 

researchers to verify the results from experiments, and can show tensile membrane 

action at elevated temperatures. From comparison of results using Vulcan, Huang, et al. 

(2004a) indicated that both the simplified design method and Vulcan output confirm 

that the existence of tensile membrane action in concrete slabs greatly influences the 

integrity of composite floor systems at large deflections. The paper also concludes that 

the Bailey-BRE method tends to predict larger load capacity enhancements caused by 

tensile membrane action than the modelling using Vulcan analysis; this means that the 

Bailey-BRE method may predict greater fire resistance finite element modelling can 

justify (Huang, et al. 2004a). 

Foster (2006) conducted a series of experiments on small-scale slabs to verify the 

tensile membrane action behaviour of concrete slabs at ambient and elevated 

temperatures. The test results were generally in accordance with the Bailey-BRE 

method at ambient temperature (Foster et al., 2004).  However, at elevated temperatures, 

it indicated that the transverse crack across the shorter span could be observed before 
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the yield line pattern was seen to form, as the material strength decreased dramatically. 

The appearance of the transverse crack was unexpected, but occurred without any sign 

of structural failure. From these tests, it was also observed that slabs showed higher 

capacity when using reinforcement with low bonding to the concrete (Foster, 2006). 

Since the development of Bailey-BRE design method, many researchers have carried 

out extensive work. Bailey and Toh (2007a; 2007b) performed a series of experiments 

on small-scale concrete slabs at ambient and elevated temperatures. The experiments 

showed that the mild steel reinforcement was crucial to the appearance of tensile 

membrane action, since the collapse of the slab can be avoided when it is subject to 

large deflections. In the tests, two modes of failure were observed at ambient 

temperature: with lower reinforcement ratios applied; tensile fracture of reinforcement 

occurring across the middle of the slab, and (with higher reinforcement ratios) 

compressive crushing happening at the slab corners. The simplified design method was 

updated, although compressive crushing was not observed in the elevated temperature 

tests (Bailey and Toh, 2007a; 2007b). 

In spite of some discrepancies between the Bailey-BRE method and other investigations, 

tensile membrane action is absolutely a potentially useful tool to develop a 

performance-based fire engineering design method. However, in the Bailey-BRE 

method, the initial step is to divide the composite floor system into rectangular or square 

slab panels.  This is the major limitation to analysing non-orthogonal slab panels.  The 

research outlined in this thesis will therefore search for solutions for floor slabs which 

can not be divided into orthogonal shapes, and to extend simplified models to be 

applicable for non-orthogonal slab panels. 

 Summary 2.7

In this chapter, the material properties and key properties of steel and concrete that 

influence their structural behaviour in fire conditions have been reviewed. Relevant 

current design processes and research in structural fire engineering have also been 

summarized. Previous tests have indicated that the phenomenon of tensile membrane 

action exists, and that prescriptive standards for composite floor design are over-

conservative. The traditional fire resistance test procedure is not accurate or appropriate 
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in determining the structural behaviour, because the behaviour of isolated elements 

under test differs from that of members in whole structures. 

As the foundation of the manual calculation method of tensile membrane action, the 

yield-line theory and the work balance method have been reviewed. Since yield-line 

theory is an upper-bound method, for slabs of any geometry the correct load bearing 

capacity can only be determined by assuming the correct yield-line pattern. In other 

words, if a comprehensive set of different yield-line patterns are assumed the minimum 

load capacity obtained from the set using the work-balance method determines the 

correct yield-line pattern. 

The development of performance-based design methods within fire safety engineering 

has been described. The previous investigations and researches into tensile membrane 

action and the development of the BRE-Bailey method have been summarized. Earlier 

research into tensile membrane action at ambient temperature, based on yield-line 

theory for slabs at small deflections, has been developed by several researchers into the 

high-temperature stage. Although the BRE-Bailey method has been widely adopted, 

there are still some shortcomings which are currently unexplained. 
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 Penalty function method and relative constraints Chapter 3

 Introduction of penalty function method 3.1

Most optimization problems attempt to provide solutions within a set of defined 

constraints. The set of solutions which are obtained as the final result of an evolutionary 

search must necessarily be feasible; that is, they must satisfy all constraints (Smith and 

Coit, 1995). Several methods exist to take into account the constraint relationships. The 

penalty function method is one of these ways, using a series of unconstrained problems 

to replace a problem with constraints. Each unconstrained problem is formed by adding 

a term which is called a penalty function to the objective function. The penalty 

functions each consist of a penalty parameter multiplied by the equation of one of the 

constraints. The measure of violation of a constraint is non-zero when the constraints 

are violated and is zero when constraints are not violated. Generally, two basic types of 

penalty functions exist: exterior penalty functions, which penalize unfeasible solutions, 

and interior penalty functions, which penalize feasible solutions. 

The advantages of the penalty function method are that the size of the system matrix is 

preserved, and multiple constraints can be handled, whether they act on a single node or 

many nodes. Imposing a constraint using a penalty function means that the equation of 

constraint is multiplied by a parameter (called penalty parameter) which is defined by 

the user, and the result is then added to the whole system of equations (Askes and 

Ilanko, 2006). However, the main limitation of the penalty function method can not be 

neglected. In practice, the difficulty of selecting a suitable value of the penalty 

parameter is the most significant shortcoming of the method. If the penalty parameter is 

assigned too small a value, implementation of constraints cannot be absolutely achieved, 

but if an over large value is given to the penalty parameter, the tolerance during 

nonlinear solution will affect the final results. Exact answers would be generated if the 

penalty parameter were able to approach infinity. Obviously this is not feasible in 

practical computational solution processes, so the penalty parameter is normally set as a 

very large number, which is positive in order to ensure positive-definiteness of the 

resulting system of equations (Bathe 1996; Hughes 2000; Zienkiewicz and Taylor 2000). 

However, if the value of the penalty parameter is set too large, this will destroy the 
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conditioning of the matrix, which means that solution of the system of equilibrium 

equations becomes impossible.  

 Aims and objective of using penalty functions method 3.2

As modern architecture develops, numerical investigations on structural behaviour 

which utilize tensile membrane action can not restrict themselves to rectangular 

meshing. Although simplified methods can divide the internal floor areas of a building 

into rectangular or square panels, the problem of slabs at non-orthogonal edges of 

buildings still exists.  The edge slab panel ABCD, shown in Fig. 3.1, can not logically 

be divided into rectangular or square panels, and so although membrane action can be 

analysed, this requires the boundary conditions to be reset. In this case, as the three 

internal edges are not orthogonal to each other, not all boundary conditions at these 

edges can be set in terms of simple freedom or restraint of degrees of freedom aligned 

parallel to the global coordinates.  

Generally, when the edges of a slab are parallel to one or other of the global coordinate 

axes, the boundary conditions are easily set as restraint or freedom of the degrees of 

freedom at nodes, since each of these degrees of freedom represents a movement along 

or about these axes. However, if the edges are not set parallel these axes, it is impossible 

to define the boundary conditions based on the global coordinate axis directions, 

because the movements of the edges which require to be constrained are not along or 

perpendicular to these axes, but are aligned to the local coordinate system.  In order to 

resolve this problem, the penalty function method needs to be applied, so that the 

movements of edge nodes which need to be constrained can be determined as 

relationships between global degrees of freedom, rather than as simple restraint or 

freedom of these degrees of freedom. 



Chapter 3 Penalty Function Method and Relative Constraints 

 

36 

 

 

Fig. 3.1 Typical slab panel at edge of a modern building 

In addition to imposing logical boundary conditions for non-rectangular slabs, the 

continuity boundary conditions can be resolved for sub-panels of large slab areas by 

applying the penalty function method. 

 

Fig. 3.2 Slab analysis of a sub-panel with continuity boundary modelling 

In some cases, it is necessary to analyse the performance of slab elements for a specific 

area of a whole floor panel. When defining the boundary conditions of this area, it is 

often unreasonable to set up restraints as simple on/off switches on the global degrees of 

freedom. Obviously, as shown in Fig. 3.2 above, the boundaries of the area for analysis 

are not outer edges of the floor panel, and so the degrees of freedom at nodes on the 

boundaries AB, BC, CD and AD can not logically be set as restrained or free to move, 

because the movements of nodes on these boundaries must be compatible with those of 

the adjacent slab panels. Their movements may exist in absolute terms but not be totally 
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free to do so. In order to keep the transverse movements compatible with adjacent slabs 

which are assumed to behave identically, the transverse nodal displacements of the 

separating boundaries can be set to be identical when these edges move, so that the 

edges moves as straight lines transverse to their alignment. This process can be 

modelled by using the penalty function method to set the relationship between the 

relevant degrees of freedom at adjacent nodes in pairs to have identical displacements. 

 Application of penalty function method 3.3

In order to impose the penalty functions onto a structural analysis, the process involves 

4 steps, as follows: 

In a linear analysis (which is an incremental analysis under a Newton-Raphson solution 

process), from Hooke’s law the deformation in any degree of freedom is directly related 

to the generalized forces applied to it. Therefore, a system of linear equations can be 

written as, 

𝑲 ∙ 𝒖 = 𝒇 

Here K is the global stiffness matrix which represents the aggregated force-deformation 

relationships for the model. Each stiffness is related to the nature of the deformation in 

each degree of freedom. Generally, each stiffness will be a function of the Young’s 

modulus E, and a sectional parameter (the area of the element A, or the second moment 

of area I.  As u is the vector of amplitudes of the degrees of freedom of the nodal, such 

as the displacements and rotations at all the nodes, and there are 6 degrees of freedom at 

each node, which are the displacements in the X, Y and Z directions and the rotations 

about these 3 directions.  The vector f represents the external forces acting on the 

degrees of freedom. In the calculation procedure, K is a symmetric matrix of the form 

[

𝑘11 𝑘12 𝑘13 ⋯
𝑘21 𝑘22 𝑘23 ⋯
𝑘31 𝑘32 𝑘33 ⋯
⋮ ⋮ ⋮ ⋱

], in which k12=k21, k13=k31, k23=k32 ….And u is a column vector 

of d.o.f. of the form 

{
 
 

 
 
𝑢1𝑥
𝑢1𝑦
𝑢1𝑧
𝜃1𝑥𝑦
⋮ }
 
 

 
 

, in which u1x, u1y and u1z are the orthogonal in-plane and 

transverse panel displacements and rotations about each axis at Node 1, respectively, 
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and the f is a column vector of external forces corresponding to each degree of freedom 

at the node, of the form 

{
 
 
 

 
 
 
𝑓1𝑥
𝑓1𝑦
𝑓1𝑧
𝑓2𝑥
𝑓2𝑦
𝑓2𝑧
⋮ }
 
 
 

 
 
 

. 

After the stiffness matrix and the linear equations have been set up, it is necessary to 

impose the relative boundary conditions.  This involves setting up the penalty parameter 

matrix 𝜶 . In most cases, 𝜶  is a diagonal matrix with components αi, of the 

form [
𝛼𝑖 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛼𝑖

].  Before imposing the 𝜶 matrix, it is necessary to set up the matrix 

representing the constraint conditions.  In order to find this matrix of constraints, it is 

necessary to write the constraint equations representing the physical boundary 

conditions provided. The components of the matrix of constraints are the coefficients of 

the equation. After that we can impose 𝜶 into the process by multiplying the matrix of 

constraints [C], the diagonal matrix of the penalty parameter [𝜶], and the transposed 

matrix of constraints [C]
 T 

: 

[C] [𝛼] [C]
 T 

The next step is to add this to the stiffness matrix: 

[K]+ [C] [𝛼] [C]
 T 

This new matrix will replace the original stiffness matrix [K], so that the stiffness 

equation becomes, 

([K] + [C] [𝛼] [C]
 T 

) ∙ {𝑢}={F}                                

(3.1) 

Solving this new equation, answers which contain the penalty parameter 𝜶 are found. 

These solutions can also be checked against the answers from the original linear 

equation, by setting the 𝜶 value to infinity.  
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 Examples of application of penalty functions 3.4

 Cantilever with axial force 3.4.1

 

Fig. 3.3 Cantilever with axial force 

 

The node movement is constrained to  𝑢1 = 𝑢2.   The calculation procedure is as 

follows: 

Constraint equation:      

𝑢1 − 𝑢2 = 0 

(3.2)                                                               

Matrix of constraint: [C] =[1   − 1] 

 [C]
 T 

= [
1
−1
] 

By using physical balance analysis, the equilibrium equations can be written as: 

2𝑘𝑢1 − 𝑘𝑢2 = 𝑃1 

                                                              (3.3) 

−𝑘𝑢1 + 𝑘𝑢2 = 𝑃2 

                                                              (3.4) 

The stiffness matrix of the unconstrained system is: 

[
2𝑘 −𝑘
−𝑘 𝑘

] 
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The penalty function is imposed: 

([
2𝑘 −𝑘
−𝑘 𝑘

] + [
1
−1
] [𝛼][1   − 1]) {

𝑢1
𝑢2
} = {

𝑃1
𝑃2
} 

                                (3.5) 

The solutions are then: 

𝑢1 =
𝑃1 + 𝑃2
𝑘

 

                                                               (3.6) 

𝑢2 =
(𝑘 + 𝛼)𝑃1 + (2𝑘 + 𝛼)𝑃2

𝑘(𝑘 + 𝛼)
 

                                                            (3.7) 

As 𝛼 becomes very large, 𝑢2 tends towards 
𝑃1+𝑃2

𝑘
= 𝑢1, which is in accordance with 

the constraint conditions. As 𝛼 approaches 0, the constraint is in the process of 

vanishing, and the solutions will be same as those from the unconstrained system. 

 

 Cantilever with vertical loads 3.4.2

 

Fig. 3.4 Cantilever with vertical point load at its end 

The relationship between the displacements in the X and Y directions is constrained to 

be  𝑢1 = 𝑢2 tan 𝜃.  We can simply assume the boundary condition and the subsequent 

process as: 

Constraint:  
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𝑢1 − 𝑢2 tan 𝜃 = 0 

                                                             (3.8) 

[C] = [1  − 𝑡𝑎𝑛 𝜃] 

                                                             (3.9) 

[C]𝑇 = [
1

− 𝑡𝑎𝑛 𝜃
] 

The stiffness matrix: [
𝑘1 0
0 𝑘2

] 

(where 𝑘1 =
𝐸𝐴

𝑙
 and 𝑘2 =

3𝐸𝐼

𝑙3
  for a uniform elastic section) 

Unconstrained stiffness equations: [
𝑘1 0
0 𝑘2

] {
𝑢1
𝑢2
} = {

0
𝑃
} 

Penalty function imposed: 

[C]𝑇𝛼[C] = [
1 − 𝑡𝑎𝑛 𝜃

−𝑡𝑎𝑛𝜃 𝑡𝑎𝑛2𝜃
] [𝛼] 

= [
𝛼 −𝛼𝑡𝑎𝑛 𝜃

−𝛼𝑡𝑎𝑛𝜃 𝛼𝑡𝑎𝑛2𝜃
] 

                                      (3.10) 

The stiffness equations with constraints: 

[
𝑘1 + 𝛼 −𝛼𝑡𝑎𝑛𝜃

−𝛼𝑡𝑎𝑛𝜃 𝑘2 + 𝛼𝑡𝑎𝑛
2𝜃
] {
𝑢1
𝑢2
} = {

0
𝑃
} 

(3.11) 

The solution is found as, 

𝑢1 =
𝑃𝛼. 𝑡𝑎𝑛𝜃

𝑘1𝑘2 + 𝛼(𝑘1𝑡𝑎𝑛2𝜃 + 𝑘2)
 

                                          (3.12)                                            

When 𝛼 approaches infinity, 

𝑢1 =
𝑃𝑡𝑎𝑛𝜃

𝑘1𝑡𝑎𝑛2𝜃 + 𝑘2
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The second root is, 

𝑢2 =
𝑃(𝑘1 + 𝛼)

𝑘1𝑘2 + 𝛼(𝑘1𝑡𝑎𝑛2𝜃 + 𝑘2)
 

                                         (3.13) 

As 𝛼 approaches infinity, 

𝑢2 =
𝑃

𝑘1𝑡𝑎𝑛2𝜃 + 𝑘2
 

It can be seen that 𝑢1 = 𝑢2 𝑡𝑎𝑛 𝜃 , which satisfies the constraint assumed. If 𝛼 

approaches 0, the solutions tend to  𝑢1 = 0, 𝑢2 =
𝑃

𝑘2
, which correspond to the solutions 

for the system without constraints. 

 

 Continuous beam with vertical loads 3.4.3

 

Fig. 3.5 Continuous beam with point load within one span 

 

By using the Slope-deflection Method, for a central point load P, 

𝑀𝐴𝐵
𝐹 = +

𝑃𝑙

8
 

𝑀𝐵𝐴
𝐹 = −

𝑃𝑙

8
 

and, 

𝑀𝐴𝐵 −𝑀𝐴𝐵
𝐹 =

2𝐸𝐼

𝑙
(2𝜃1 + 𝜃2) 

                                        (3.14) 
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𝑀𝐵𝐴 −𝑀𝐵𝐴
𝐹 =

2𝐸𝐼

𝑙
(𝜃1 + 2𝜃2) 

                                        (3.15) 

In this same way, we can write the equations for the span BC: 

𝑀𝐵𝐶 −𝑀𝐵𝐶
𝐹 =

2𝐸𝐼

𝑙
(2𝜃2 + 𝜃3) 

                                        

𝑀𝐶𝐵 −𝑀𝐶𝐵
𝐹 =

2𝐸𝐼

𝑙
(𝜃2 + 2𝜃3) 

                                        (3.16) 

Eliminating the internal moments, 

2𝐸𝐼

𝑙
(2𝜃𝐴 + 𝜃𝐵) =

𝐹𝑙

8
 

                                                  (3.17) 

2𝐸𝐼

𝑙
(𝜃𝐴 + 4𝜃𝐵 + 𝜃𝐶) = −

𝐹𝑙

8
 

                                           (3.18) 

2𝐸𝐼

𝑙
(𝜃𝐵 + 2𝜃𝐶) = 0 

                                                (3.19) 

In matrix form, the stiffness equations can be represented as, 

2𝐸𝐼

𝑙
[
2 1 0
1 4 1
0 1 2

] {

𝜃1
𝜃2
𝜃3

} =
𝐹𝑙

8
[
−1
1
0
] 

                                      (3.20) 

We now impose an additional constraint 𝜃3 = 0 

As there are 3 degrees of freedom which need to be considered, and the constraint is 

𝜃3 = 0, the coefficients of 𝜃1 and 𝜃2 are 0, so that, 

[C] = [0  0  1] 
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[C]𝑇 = [
0
0
1
] 

[C]𝑇𝛼[C] = [
0
0
1
] 𝛼[0  0  1] = [

0 0 0
0 0 0
0 0 𝛼

] 

                                (3.21) 

Now imposing the penalty function: 

[𝐾] + [C]𝑇𝛼[C] =

[
 
 
 
 
 
4𝐸𝐼

𝑙

2𝐸𝐼

𝑙
0

2𝐸𝐼

𝑙

8𝐸𝐼

𝑙

2𝐸𝐼

𝑙

0
2𝐸𝐼

𝑙

4𝐸𝐼

𝑙
+ 𝛼]

 
 
 
 
 

 

                                  (3.22) 

[
 
 
 
 
 
4𝐸𝐼

𝑙

2𝐸𝐼

𝑙
0

2𝐸𝐼

𝑙

8𝐸𝐼

𝑙

2𝐸𝐼

𝑙

0
2𝐸𝐼

𝑙

4𝐸𝐼

𝑙
+ 𝛼]

 
 
 
 
 

{

𝜃1
𝜃2
𝜃3

} =
𝐹𝑙

8
[
1
−1
0
] 

                                  (3.23) 

{
 
 

 
 

4𝐸𝐼

𝑙
𝜃𝐴 +

2𝐸𝐼

𝑙
𝜃𝐵 =

𝐹𝑙

8
2𝐸𝐼

𝑙
𝜃𝐴 +

8𝐸𝐼

𝑙
𝜃𝐵 +

2𝐸𝐼

𝑙
𝜃𝐶 = −

𝐹𝑙

8
2𝐸𝐼

𝑙
𝜃𝐵 + (

4𝐸𝐼

𝑙
+ 𝛼) 𝜃𝐶 = 0

 

                                   (3.24) 

Solving the equations, 

𝜃𝐴 =
𝐹𝑙2(52𝛼𝑙 + 18𝐸𝐼)

16𝐸𝐼(7𝛼𝑙 + 24𝐸𝐼)
 

                                             (3.25) 

𝜃𝐵 = −
3𝐹𝑙2(𝛼𝑙 + 4𝐸𝐼)

16(7𝛼𝑙 + 24𝐸𝐼)
 

                                            (3.26) 
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𝜃𝐶 =
3𝐹𝑙2

192𝐸𝐼 + 56𝛼𝑙
 

                                               (3.27) 

As 𝛼 becomes large, 𝜃𝐶  approaches 0, which corresponds to the constraint imposed.  

For the other degrees of freedom, 𝜃𝐴 approaches  
13𝐹𝑙2

28𝐸𝐼
, and 𝜃𝐵 approaches  − 

3𝐹𝑙2

112𝐸𝐼
. 

 Validation of penalty function method in Vulcan 3.5

 Orthogonal composite slab with applied constraints 3.5.1

As a first step in applying constraints using the penalty function method, a comparison 

between an orthogonal slab with specific independent boundary conditions and relative 

boundary conditions is made. The purpose of this comparison is to determine the extent 

to which relative boundary constraints influence tensile membrane action in comparison 

to the usual fixed/free displacements.  

A slab panel of dimensions 7.5m x 9.0m, with its composite beams designed for a 60-

minute fire resistance period was chosen. The slab panel is designed as an array of 

composite secondary beams 7.5m long, at 3m spacing, of which those not directly 

connected to columns are supported by 9.0m primary beams. The sample orthogonal 

slab is modelled with 30 elements (1.5m × 1.5m each) with properties: 

Material properties:  

 Normal weight concrete (Siliceous aggregate), with compressive strength 

45MPa at ambient temperature; 

 Yield strength of reinforcing steel at ambient temperature: 265MPa; 

 Young’s modulus of reinforcing steel at ambient temperature: 200GPa; 

Slab properties:  

 The thickness of the flat slab analysed is 100mm; since this is actually a 

ribbed slab it is given equivalent stiffness coefficients in its two principal 

directions which are appropriate to a trapezoidal lower edge giving a 

maximum physical depth of 130mm and a minimum depth of 70mm; 

 The flat slab is divided into 13 layers; 
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 The fourth and fifth layers from the bottom of the slab are uniaxial steel 

reinforcement layers; 

Load properties:  

Permanent Loads kN/m
2
 Imposed Loads kN/m

2
 

Concrete Slab self-weight 2.40 Variable load 3.5 

Steel Beam self-weight 0.20 Partitions, ceilings/services 1.7 

Reinforcement Mesh 0.03   

Table. 3.1 Slab panel design loading 

According to SCI P-288 (Newman et al., 2006) and the design load given in Table 3.1, 

a reinforcement mesh size of A193 (193mm
2
/m in each direction) was selected.  

 

Fig. 3.6 Concrete slab physical cross-section with trapezoidal decking profile 

 
 

(a): Slab panel top face (b): Slab panel bottom face 

Fig. 3.7 The 9.0m x 7.5m slab panel analysed in Vulcan 
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Ambient- and elevated-temperature design of the floor beams was carried out using 

Eurocode 4 Part 1-1 (CEN, 2005a) and Eurocode 4 Part 1-2 (CEN, 2005b), assuming 

full composite action between the beams and the slab. The design resulted in the choice 

of 356x127x33UB and 533x210x82UB as secondary and primary beams respectively. 

The finite element analyses were performed with Vulcan (Najjar and Burgess 1996, 

Huang, et al., 1999; 2000; 2004). Because the physical cross-section of the slab panel is 

different in the two principal directions, an equivalent solid slab of 100mm thickness 

(the average physical depth of the composite slab) is used. The distribution of 

temperature through the 13 layers was carried out by the program FPRCBC-T (Huang et 

al., 1996) subjected to the ISO834 standard temperature-time curve. 

 

Fig. 3.8 Division and layers of reinforced concrete slab 

 

 

Fig. 3.9 Temperature-time curves; standard fire, top and bottom faces of slab panel 
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In order to display how the penalty function approach works, the node numbers on one 

of the slab’s short-span edges are assigned as shown in Fig. 3.10 below.  Because the 

aim of this test is to verify the influence of the movement of the edge of a slab which is 

geometrically symmetric, only the left edge node numbers are shown. 

 

Fig. 3.10 Geometry and layout of the slab sample 

When using Vulcan to process the calculation procedure, the most significant task was 

in amending Vulcan to add the constraint matrix, which is read from the input file, onto 

the original stiffness matrix. Before analysis it is necessary to define the values of the 

coefficients which represent the relationships between pairs of d.o.f. and the positions of 

these two d.o.f., in the <RELATIVE CONSTRAINTS> block in the Vulcan input file. 

In the <RELATIVE CONSTRAINTS> block, the user defines two or more groups of 

data to describe the relationships as shown below: 

a1         i1         e1,        a2        i2         e2,           a3        i3         e3 …… 

in which,  

a   is the node number which needs relative boundary restraint applied to it, 

i    is the i
th

 degree of freedom, needing be restrained, 

e    is the coefficient needed to define the relationship. 
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In order to illustrate the influence of relative constraints, two models with simple 

vertical support on all edges have been employed. In the model with normal boundary 

conditions, all four edges are vertically supported but free to move in the X and Y 

directions. On the other hand, in the model with relative constraints, the four edges are 

also vertically supported, but the two edges along the short span are equipped with a 

pre-defined boundary condition constraining the X-direction movements of nodes on 

those edges to be equal to each other, which aims to make the edge move as a straight 

line. 

After the geometrically nonlinear analysis, the horizontal displacements of one edge of 

the slab above are shown in Figs. 3-11 to 3-13. 

 

Fig. 3.11 X-direction displacements of left edge with relative constraint 

 

Fig. 3.12  X-direction displacements of left edge without constraint  
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Fig. 3.13 Comparison of vertical displacements of slab centre 

From Figs. 3.11 and 3.12 above, clearly the horizontal displacements differ with and 

without the relative constraints. In Fig. 3.12, the displacement curves of the nodes 

without constraints differ from one another, which mean that the slab edges curve.  

However, with the displacements pre-set to be equal using the penalty function method, 

all the nodal displacements are identical, as shown in Fig.3.11. In fact, if the slab edge is 

at the edge of a floor the constrained displacement curves shown in these figures are not 

the natural movements of the nodes for an isolated slab, because they have been forced 

to obey the “equal to other nodes” relationship, which we can see has been very 

successfully imposed during the whole analysis process. In contrast, if the slab panel 

models an internal part of the floor system, in-plane curvature of the slab edge can not 

happen in reality. After analysis, the membrane force distribution for a slab without 

relative edge constraints is shown in Fig. 3.14 and that for the slab with edges forced to 

remain straight in Fig. 3.15. 
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Fig. 3.14 Membrane Action with no constraints applied at slab bottom 900.3C 

  

Fig. 3.15 Membrane Action with constraints applied at slab bottom 900.3C 

It can be seen that the membrane forces in these two examples are quite similar over 

most of the area of the slab.  This is because they have the same geometry, and all edges 

have vertical support; the vertical displacements at the centres of the slabs are very close 

to each other overall, which means that the membrane action will be similar in the two 

cases. From about 400C to 800C the difference between the curves is more 

pronounced; the vertical displacement of the slab with constraints is a little larger than 

that without constraints. Hence, the area of tensile membrane force in the centre of the 

slab with constraints is the bigger of the two. 

As shown in the simple calculations illustrating the penalty function method, when the 

penalty parameter 𝜶 approaches infinity (in Vulcan this is represented by a very large 
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positive number), the solutions are subject to the set constraints. On the other hand, 

when the penalty parameter 𝜶 is 0, the results are the same as those of the unconstrained 

problem. To verify this, two slab models of the same size and properties are now used 

as above, but one is run in Vulcan with no recourse to the penalty function method, 

whereas the other uses the penalty function method but sets the penalty parameter to 0. 

It can be seen that the two deflection-temperature curves in Fig. 3.16 match exactly.  

 

Fig. 3.16 Comparison of slab centre deflections 

 The non-orthogonal composite slab with applied constraints 3.5.2

The penalty function method is now applied to a non-orthogonal slab to verify its 

functionality further. In this example, the material properties are kept identical to those 

of the orthogonal slab, but its geometry is amended in order to model a part of a floor 

layout with irregular geometry, as shown in Fig. 3.17 below. As we are concerned with 

an individual slab panel, as in Fig. 3.18, it can be seen that there are four edges of the 

slab panel which are not parallel to the axis of any degree of freedom. The current 

Vulcan can only set each degree of freedom as fixed or free in terms of this global 

coordinate system.  

-600

-500

-400

-300

-200

-100

0

0 200 400 600 800 1000

D
e

fl
e

ct
io

n
s(

m
m

) 

Temperature(C˚) 

Slab Centre Deflections Comparison  



Chapter 3 Penalty Function Method and Relative Constraints 

 

53 

 

 

Fig. 3.17 Typical irregular slab panel located at the edge of a floor layout 

 

Fig. 3.18 Geometry and layout of the non-orthogonal slab example 

Obviously, nodes on the left and right edges can not be either fixed or free in the X or Y 

directions.  If we consider the bottom of the slab panel as the edge of the floor layout, 

its nodes can be free to move. At high temperature, the left and right edges of the slab 

can be constrained to move inward together because they must remain as straight lines; 

therefore it can be assumed that the slope between any pair of nodes on these edges has 
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to remain the same. To reach this goal, the relative boundary conditions can be set by 

using the penalty function method, as  

𝐷𝑥157 − 𝐷𝑥144 = 𝐷𝑥144 − 𝐷𝑥131 

𝐷𝑦157 − 𝐷y144 = 𝐷𝑦144 − 𝐷𝑦131 

(3.28)                

and so on for the rest of the nodes on the left edge of the slab panel. On the right edge, 

the same restraints have also been adopted.  As there is symmetry of the slab panel 

geometry, only the left edge is illustrated here. Since this case aims to model a part of 

the slab panel extracted from a floor plate with irregular geometry, the boundary 

conditions are set with the top and bottom edges defined with fire protection but the 

with side edges left unprotected. 

After the analysis in Vulcan, the nodal displacements on the left edge of the slab panel 

at 550C have been listed in the table below. To verify the results, it is simple to put the 

nodal displacements into an Excel spreadsheet, together with the relative constraint 

equation 3.28. It can be determined whether the results satisfy the equation by checking 

if all the difference is identical.  

Node 

Number 

Nodal Displacement 

(mm) 

Constraint Equation 

Results 

X- Y- X- Y- 

1 -1.4409 25.5755 𝐷𝑥𝑖 − 𝐷𝑥(𝑖−13) 𝐷𝑦𝑖 − 𝐷𝑦(𝑖−13) 

14 -2.221 24.1689 -0.7801 -1.4066 

27 -3.0012 22.7622 -0.7802 -1.4067 

40 -3.7812 21.3552 -0.78 -1.407 

53 -4.5613 19.9481 -0.7801 -1.4071 

66 -5.3412 18.5408 -0.7799 -1.4073 

79 -6.1211 17.1334 -0.7799 -1.4074 

92 -6.901 15.7259 -0.7799 -1.4075 

105 -7.6807 14.3182 -0.7797 -1.4077 

118 -8.4604 12.9105 -0.7797 -1.4077 

131 -9.24 11.5026 -0.7796 -1.4079 

144 -10.0195 10.0948 -0.7795 -1.4078 

157 -10.7989 8.6869 -0.7794 -1.4079 
Table. 3.2 The displacement of each node on left edge and constraint equation results 

It can be seen that the nodal displacements in the X and Y directions vary with pre-

defined constraints. However, from the constraint equation results, it can be observed 
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that all the results are very close to each other, which means that the constraint equation 

works perfectly after applying the penalty functions. Moreover, the aim of keeping the 

edge of the slab panel in a straight line during temperature increase has been achieved. 

On the other hand, an identical model has been set up with no relative constraints 

applied, leaving the slab edges to move freely. After gathering the displacements from 

both models, the movements of slab left edge are illustrated in Fig. 3.19. 

 

Fig. 3.19 Comparison of slab left edge movements of slab lower face at 550C 

In the figure above, it can be seen that the slab edge movement with relative constraints 

applied (represented as the blue dashed line) has stayed straight, but the movement 

without relative constraints (represented as the red dashed line) shows a curvature, 

although it appears very close to the blue dashed line. It is known that with adjacent slab 

panels, the movement of the slab edge must be kept very close to a straight line, so that 

the penalty function has successfully helped to make the results correspond to reality.  

Forcing the movements of slab edges to stay in a straight line also makes the overall 

behaviour of slab edges to be different from that with free movements. With pre-defined 

relative boundary conditions, the beams beneath the slab side edges acquire smaller 

vertical deflections than those with free movement. Because an edge with relative 

constraint conditions is forced to remain in a straight line, this generates inward internal 

forces which prevent the edge from expanding into a curve. At the same time, the 
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internal forces also contribute to decreasing the vertical displacement. In the figures 

below, the nodal vertical deflections at the slab left edge have been illustrated. 

 

 

Fig. 3.20 Slab left edge vertical deflections with relative constraints 

 

Fig. 3.21 Slab left edge vertical deflections with free movement 

The vertical deflections of the slab edges also affect its central deflection. Since the 

beams under the slab side edges are unprotected, as temperatures increase the steel loses 

its stiffness rapidly. Normally, above 800°C the stiffness of steel is at a very low level, 

and a plastic hinge can form at the beam’s mid-span, leading to a “folding” collapse 

mechanism. In both figures above, the vertical straight lines at the end of each curve 

represent the collapse of the beam; all of these occur at around 850°C. According to the 

nodal vertical deflections on the slab edges it can be predicted that the slab central 
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deflection of the model with relative constraints should be smaller than that with free 

movement. 

 

Fig. 3.22 Vertical deflection of slab centre  

In Fig. 3.22 it is shown that, due to the vertical displacement of the unprotected beams, 

the slab with free edge movements has larger central vertical displacement above about 

450°C. It can be observed from Figs. 3.20 and 3.21 that, below 750°C, the vertical 

displacements of the beam are very close to each other for the two models. 

Since the slab side beams are unprotected, and so membrane action can not appear in 

either model, a comparison of membrane forces is not made here. 

 Summary and discussion 3.6

In order to analyse tensile membrane action in non-orthogonal slabs at elevated 

temperatures, in the context of existing finite element programs the essential 

modification to be made is to re-define the statement of boundary conditions. In 

rectangular or square geometries, as successive edges of the slab are perpendicular to 

each other these edges can be aligned along the global axes when modelling takes place. 

Therefore, the boundary conditions of slab edges can be defined as restrained or free to 

move in the directions of the global axes. Under some conditions, however, in which the 

slab is actually continuous, displacements at adjacent edge nodes may need to be ‘tied’ 

together.   
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When the geometry of a slab panel is non-orthogonal, typically triangular or trapezoidal, 

some of its edges can not be parallel to any global axis; only one or two can be aligned 

parallel to an axis, while the others are angled with respect to the global axes. For this 

reason, the penalty function method has been employed to resolve the problem of 

setting appropriate nodal boundary conditions on the slab edges which are not parallel 

to the global axes. Although there are several methods which can resolve this problem 

by applying constraints to the boundary conditions, the reason for adopting the penalty 

function method in preference to others is because of its advantage in retaining the size 

and symmetry of the whole-system stiffness matrix. Since this method is part of a 

standard finite element solution process, retaining the size of the stiffness matrix causes 

little increase in memory space usage, and retaining symmetry allows the standard 

solution process to be used.  

When applying the penalty function method in the analysis program Vulcan, the value 

of the penalty parameter  𝜶 is user-defined. As mentioned previously, too large a value 

of 𝜶 will destroy the conditioning of the matrix, making the arithmetic processes of 

matrix solution rather inaccurate, and occasionally making it impossible to find answers. 

Based on previous experience, 1000 times the average nodal stiffness has been used as 

the value of the penalty parameter within this research. It appears that this selection is 

appropriate, as the nodal displacements have satisfied the intended constraints in the 

cases examined.  The penalty function method has been seen to work well in Vulcan, 

and the program is able to investigate the behaviour of non-orthogonal slabs at elevated 

temperatures. 
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 Numerical modelling and validation Chapter 4

 Introduction of Vulcan analysis program 4.1

The numerical modelling of structural elements in this study was carried out using the 

finite element analysis program Vulcan, which has been progressively developed at the 

University of Sheffield for some years (Bailey, 1995; Najjar and Burgess 1996; Huang, 

et al. 1999; 2000; 2004a; 2004b). For composite floor system analysis in Vulcan, it is 

assumed that the nodes of the elements representing concrete slabs and steel beams are 

defined as lying in a common reference plane, which is assumed to coincide with the 

mid-surface of the concrete slab shell element as shown in Figure 4.1. 

 

Fig. 4.1 Division of reinforced concrete structure into beam and slab elements (Huang, Burgess et al. 

2004b) 

In Vulcan, the concrete slabs are modelled as an assemblage of finite plate elements, 

which are of the quadrilateral nine-noded high-order isoparametric element type 

described by Bathe (1996). All the plate elements are divided into several layers 

representing concrete and reinforcement mesh. In the context of this layered approach, 

several assumptions had been made as follows: 

1. The slab elements are considered to consist of plain concrete layers and steel 

reinforcement layers, without slip between them. 

2. The temperatures of individual layers can differ, but must be uniform within each 



Chapter 4 Numerical Modelling and Validation 

 

60 

 

layer of an element. As the original properties of each layer may be different, their 

stress-strain relationships can change individually. 

3. The reinforcement steel bars in the orthogonal mesh directions are modelled by 

equivalent smeared steel layers with uniaxial stiffnesses in the directions of the 

reinforcing bars. As the thickness of slab is defined by the user, the cross-section of 

the reinforcing steel layer is equal to the total area of rebar in the appropriate 

direction. In addition, bond between the steel layers and the concrete surrounding 

them is assumed perfect. 

4. The layers of concrete are each in a plane-stress state, and after the initiation of 

cracking the concrete is assumed to be an orthotropic material with principal axes 

normal and parallel to the cracking direction, and with the X-, Y-, and Z- axes 

defining the planes of orthotropy. 

According to the thickness of slab, in previous research (Huang et al., 1999) it is 

recommended that the appropriate number of layers used to analyse reinforced concrete 

slabs under fire condition should be 10-20. Therefore, in this study the slab panels have 

been divided into 13 layers to represent the temperature distributions across the 

reinforced concrete slab thickness. 

Because of the relatively poor thermal conductivity of concrete, the temperature of the 

top surface of the slab is always much lower than that of the bottom surface. From a 

previous study (Lin et al., 1989) of fire testing of reinforced concrete slabs, the 

temperature of top surface was about 13.5% of the bottom surface, which means that 

even when the temperature of the bottom surface of slab had reached 1200C, the top 

surface of slab was only at about 180C. In Vulcan, there are five options to represent 

temperature distribution assumptions; user input, uniform distribution, linear 

distribution, bilinear distribution and tri-linear distribution. In this study the temperature 

distribution was defined by user input. The temperature of each layer was determined at 

any time using a finite element thermal analysis program, FPRCBC-T (Huang et al., 

1996) which was developed to evaluate the temperature distribution history of 

reinforced concrete structural member cross-sections. With the fire temperature-time 

curve entered as data, the program can predict of the temperature of any point within the 

structural element by finite element calculation.  
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 Convergence test and sensitive study 4.2

In order to assure the accuracy of results, it is essential to define an appropriate element 

mesh density in any analysis software based on the finite element method. The 

advantage in terms of accuracy comes from smaller divisions (a more dense mesh), but 

this has the disadvantage that it will take longer to process the analysis. For the purpose 

of determining an appropriate balance point in Vulcan, it is necessary to find the most 

efficient density of elements.  

 

Fig. 4.2 Four different slab panels with identical overall dimensions 

In this convergence test, a slab of the same dimensions (6m x 6m) has been meshed in 

four different ways with square elements of side length 3m, 1.5m, 0.75m and 0.375m, 

as shown in Figure 4.2.  All four panels have same dimensions, cross-section, boundary 

conditions and temperature environment. In the simulations, the logic indicates that, as 

the element length decreases, the results should gain in accuracy but the runtimes 

should be longer. In reality, an optimum size will give sufficiently accurate results in a 

sufficiently short runtime. 
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Fig. 4.3 Central deflections of 4 different slab panel divisions with same area 

As shown in Figure 4.3 above, apart from the first (3m element length) case, the results 

are similar in terms of slab centre deflection. For the two finest (0.75m and 0.375m 

element length) cases, the curves are almost identical. Comparing the results of the 

1.5m and 0.75m cases, the differences between are in the range of millimetres before 

runaway happens. Considering the runtime cost and the convenience of meshing slab 

panels, the recommended range of element dimension is 1 – 1.5 m, which should give 

accurate enough results and an efficient runtime. 

 The behaviour of triangular slabs 4.3

Once the appropriate dimensions of elements have been verified for non-orthogonal 

slabs at elevated temperatures, it is necessary to apply Vulcan, including the penalty 

function procedure,.  Before building up triangular slab models in Vulcan, it is desirable 

to apply a design method to the floor slab covering both ambient and elevated 

temperature. However, the design of non-orthogonal slabs can not exactly follow the 

standard methods for rectangular or square slabs, because the difference of geometry 

distinctly changes the properties of the slab panel.  There are some assumptions which 

have to be made during the design process, in order to make the analysis correspond to 

reality, with the aim of ensuring that membrane action occurs in non-orthogonal slabs. 
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 Behaviour of triangular slab with two continuous edges 4.3.1

There are various locations at which triangular slab panels typically to exist in floor 

layout, and these different locations also determine the constraints on the movements of 

the slab panel edges. The most important factor which influences the deformation of 

slab edges is whether there are adjacent slab panels; in other words, whether the slab 

panel to be analysed has continuity across its edges. When determining the boundary 

conditions for the nodes on slab edges, the following rules generally apply: 

1. If the edge has no other slab panel directly adjacent, it is considered that the 

edge can move freely in the direction perpendicular to itself.  

2. If there is an adjacent slab panel connected to the edge, the movement of the slab 

edge needs to be restrained by applying the penalty function method, so that its 

nodes move as a straight line. 

4.3.1.1 Slab panel properties and floor design 

Since there is currently no established design guidance for triangular slabs, the design 

method chosen is that for a square slab panel of dimensions 6.0m x 6.0m with 60-

minutes’ fire resistance, using normal-weight concrete and a trapezoidal profiled 

decking, as shown in Figure 4.4.  According to SCI P-288 (Newman, 2006), under the 

design loading defined in Table 4.1 the required minimum mesh size is A193. By using 

Eurocode 4 Part 1-1 (CEN, 2005a) for steel floor beam design at ambient temperature, 

and Eurocode 4 Part 1-2 (CEN, 2005b) for fire resistance design at elevated 

temperatures, the primary and secondary steel beams are selected as UB 356x171x45 

and UB 305x102x28 respectively. Sufficient fire protection to provide 60 minutes’ fire 

resistance is applied to the primary and secondary beams around the edges of the slab 

panel, and the intermediate secondary beams are left unprotected. 
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Fig. 4.4 Reinforced concrete slab cross-section with steel decking 

 

Permanent Loads kN/m
2
 

Concrete Slab self-weight 2.40 

Steel Beam self-weight 0.20 

Reinforcement Mesh 0.03 

  

Imposed Loads  

Variable load 3.5 

Partitions, ceilings/services 1.7 

Table. 4.1 Design loads for slab panel 

As mentioned above, the design procedure for a square slab is not really adequate for a 

triangular slab, so there are some modifications which need to be applied to the square 

slab design. As is well known, a triangle has half the area of a rectangle or square with 

the same base length and height. Hence, the first modification is to change the geometry 

from a square to a triangular slab, as shown in Fig. 4.5.  
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Fig. 4.5 Change a square slab to an isosceles triangular slab 

Obviously, when considering a triangular slab which has been subdivided from a square 

slab, its area is just half that of the square and, since a triangle is always a more stable 

geometric shape than a quadrilateral, the stiffness of the triangular slab is greater than 

that of the original square slab. Hence, it is reasonable to reduce the section sizes of the 

steel beams and as well as the size of the reinforcing mesh.  Although the stiffness of 

the panel has increased, two edges of the triangular slab have become longer than those 

of the original, and the performance of steel at elevated temperature must also be taken 

into account.  It is assumed that the criterion for selecting the sizes of the steel beams in 

the triangular slab is that the bending moment resistance of the primary and secondary 

beams should be 80% of those of the original steel beams in the rectangular or square 

slab. Following this assumption, the beam sizes UB305x165x40 for primary beams and 

UB254x102x22 for secondary beams were chosen for the triangular slab. The 

reinforcing mesh size was decreased to A142 due to the geometry change. 

4.3.1.2 Boundary conditions 

In order to represent the slab behaviour reliably, one of the essential conditions is to 

ensure correct relative movements of boundary nodes, because the movements of 

boundary nodes affect the behaviour of the slab perimeters directly; this can also be one 

of the most important factors which influence the deflection of the slab centre.  

For a triangular slab with two continuous edges within the floor layout of a building, 

only one edge may be aligned along a global axis, and the other two edges may be 

subject to restraint by the adjacent slab panels. The movements of slab edges are in a 

certain direction outward or inward relative to the slab centre, and the edges of the 
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triangular slab should remain straight lines after the deformation occurs, as shown in 

Figure 4.6. This means that the movements of the slab edges are not purely free in all 

directions, but are subject to a defined relationship. 

 

Fig. 4.6 Movements of slab side edges with continuity 

Verification of the displacements of boundary nodes which are subject to relative 

constraints (where penalty functions have been applied) and comparison against those 

with free movements has been demonstrated in Chapter 3, and is not repeated here. The 

tensile membrane action of triangular slabs which are equipped with the correct 

boundary node movements is more the concern of this chapter. A triangular slab model 

with the geometry and loading shown in Fig.4.4 and Table.4.1 was selected to illustrate 

the results. The cross-section throughout the slab panel differs between its thickest part 

(through a rib) and its thinnest part (through the concrete). An equivalent solid slab with 

100 mm thickness as an average-depth flat composite slab is employed. The distribution 

of temperature through the 13 layers into which it is divided was carried out by the 

program FPRCBC-T (Huang et al., 1996) when its lower surface is subjected to the 

Standard temperature-time curve. In this model, the perimeter of the triangular slab is 

vertically supported as the temperature increases and the apex of the triangular slab is 

defined as fixed in both X and Y directions. 

As mentioned above, Vulcan is a geometrically nonlinear finite element program which 

includes the influence of nonlinear material behaviour at high temperatures. In Vulcan, 

the reinforced concrete slabs are modelled as 9-noded nonlinear layered elements. 

Before a model analysis can be carried out, the whole slab panel needs to be divided 

α 
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into a mesh of 9-noded layered elements. For practical structural dimensions the lengths 

of elements in both the longitudinal and transverse directions need to be kept below 

about 1.5m. When some of the elements are triangular in shape, the three nodes on the 

top faces of these elements stay very close to each other in order to allow them to be 

considered as a single node. The finite element grid was divided as shown in Fig. 4.7. 

 

Fig. 4.7 Grid division for triangular slab panel 

When the external loading has been applied to the slab, and as temperatures increase, 

the reality is that the left- and right-hand edges of the slab move outward from the slab 

centre but not specifically in the X- or Y-direction. Since the left and right edges are not 

aligned along either global axis, absolute restraints cannot be defined for any of the X- 

or Y-direction degrees of freedom. In reality, when the two sides of the triangular slab 

move, it would to make its X-displacements proportional to the distance from the apex 

since the edges have to stay straight. Therefore, according to the Figure 4.7, the 

restraints for the nodal movements on the left-hand edge have been set up as 

(𝐷𝑥119𝑐𝑜𝑠𝛼 − 𝐷𝑦119𝑠𝑖𝑛𝛼) − (𝐷𝑥107𝑐𝑜𝑠𝛼 − 𝐷𝑦107𝑠𝑖𝑛𝛼)

= (𝐷𝑥107𝑐𝑜𝑠𝛼 − 𝐷𝑦107𝑠𝑖𝑛𝛼) − (𝐷𝑥93𝑐𝑜𝑠𝛼 − 𝐷𝑦93𝑠𝑖𝑛𝛼) 

and so on for each node on the left side, with similar conditions being applied to the 

right-hand edge. The method of forcing this to happen is by applying penalty functions 

within the stiffness matrix in the way which has been explained in the previous chapter.  
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4.3.1.3 Finite element analysis and membrane action 

The location of a slab panel determines its boundary conditions. Consider an isosceles 

triangular slab panel with continuous boundaries in the central area of a floor, such that 

there are no two edges which are perpendicular to one another. Hence, only one of the 

three edges can be parallel to a global axis when the slab is modelled in the program. In 

the analytical process, an isosceles triangular slab is defined with its bottom edge 

parallel to the global -X direction, and with its other two edges defined as keeping their 

movements proportional by applying the penalty function method. In this case, in order 

to investigate membrane action occurring in this slab, the edges of the slab are fully 

vertically supported, as an idealisation of a protected perimeter beam.  

After the finite element no-linear analysis carried out by Vulcan, the creation of 

membrane forces and distribution are shown in a series of figure with slab lower face 

temperature increase, as below, 

 

Fig. 4.8 Membrane stress vectors at slab lower face 198C (2D) 
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Fig. 4.9 Membrane stress vectors at slab lower face 402C (2D) 

 

Fig. 4.10 Membrane stress vectors at slab lower face 600C (2D) 

 

Fig. 4.11 Membrane stress vectors at slab lower face 800C (2D) 
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Fig. 4.12 Membrane stress vectors at slab lower face 900C (2D) 

 

Fig. 4.13 Membrane stress vectors at slab lower face 900C (3D) 

When the slab at about 200C, as the slab starts to be heated the membrane stress starts 

to appear because the slab attempts to expand in all directions, although these 

expansions are quite small. At this stage the bottom of slab had been just heated, but the 

top remains in a cool condition. The deflection at the centre of the slab is very small, so 

the thermal expansion of the bottom layer of the slab, restrained by the upper layers, 

causes a net compressive stress. As the temperature grows to 400C, there are barely 

any tensile stresses to be seen and compressive stress dominates over most of the area of 

slab. At about 600C, the compressive membrane stress becomes quite large and covers 

the whole slab. At 800C, the appearance of tensile membrane stress in the central zone 

can be seen clearly, because the deflection of the slab centre is now large enough to 

cause tensile membrane action and the intermediate secondary beam has lost most of its 

strength. In Figs. 4.12 and 4.13, the appearance of tensile membrane force (red vectors) 

is obvious, and is located in the central area of the slab panel. Similar to the 

compressive membrane force distribution in rectangular slabs, a compressive ring is 

generated around the perimeter of triangular slab. However, due to the better stability of 
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triangle than rectangular, the central vertical displacement of triangular slabs is smaller 

than that in rectangular slabs. Hence, the area of tensile membrane force in the 

triangular slab is smaller. From the performance of this triangular slab, it is easily seen 

that tensile membrane action occurs at a higher temperature than is usual for a 

rectangular slab. 

 Behaviour of triangular sab with one continuous edge 4.3.2

In the previous model, the situation of a triangular slab with two continuous edges have 

been simulated and analysed. In order to investigate the behaviour of triangular slab in 

different locations, another triangular model with exactly the same slab geometry and 

properties was built up. With all beams at slab perimeter protected, the only difference 

in this model is that the relative constraints aiming to keep the edge’s movement in the 

Y -direction in a straight line were only applied to the bottom edge which is assumed to 

have continuity with an adjacent slab panel, but leaves the two side edges free to move. 

 

Fig. 4.14 Membrane stress vectors at slab lower face 900C (2D) 

 

Fig. 4.15 Membrane stress vectors at slab lower face 900C (3D) 
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Since the process of tensile membrane action generation is very similar to the previous 

model, only the difference between the distributions at 900C is demonstrated here. 

Comparing Figs.4.12 and 4.14, the most significant distinction is that in Fig.4.14, the 

tensile membrane stress occupies a larger area along the axis of symmetry towards the 

top of slab. In the case in which two side edges have free movement, there is no 

adjacent slab panel which will restrain the deformation of the side edges. Therefore, the 

deflection of the model with no restraint on its side edges is larger than that with 

restraint, and this also induces the larger area of tensile membrane force in the latter 

case. 

 Behaviour of triangular slab at the edge of a building 4.3.3

In reality, when we consider building floor layouts with non-orthogonal slab panels, a 

variety of divisions of the floor layout can be used. However, for convenience of design 

and to standardise construction, the floor is usually divided into rectangular panels over 

most of its area, leaving a minority of triangular panels along the building perimeter, as 

shown in Figure 4.16 below.  

 

Fig. 4.16 Typical non-orthogonal floor panel design 
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4.3.3.1 Slab panel properties and floor design 

Applying the same design process used for the previous model, both ambient- and 

elevated-temperature floor system designs are created for a 9.0m x 6.0m rectangular 

slab.  The same cross-section properties, with 130mm slab thickness, trapezoidal steel 

decking and A252 reinforcement mesh, are specified. The sizes of primary and 

secondary beams are selected as UB 457x152x74 and 305x102x28 respectively. In 

accordance with the previous model, appropriate beam sizes for the triangular slab are 

assumed to need to provide 80% of the bending moment resistance of those in a 

rectangular slab of the same dimensions.  Hence, the beam sizes for the triangular slab 

are UB 406x178x67 and UB 254x102x22.  In addition, the reinforcement mesh is 

replaced by A193. 

After the design for this rectangular slab panel is complete, the next process is to divide 

it into two triangular slabs by cutting it along a diagonal.  

 

Fig. 4.17 Division of rectangular slab to a right-triangular slab 

 

4.3.3.2 Finite element analysis and tensile membrane action 

In the case shown in Figure 4.16, there are two edges AB and BC parallel to the global 

coordinate axes and with continuity, AC is modelled as an edge for which there is no 

adjacent slab panel. With the perimeter of the triangular slab vertically supported, 

continuity of the edge AB implies Y-direction displacement restraint and that of edge 
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BC implies X-direction displacement restraint. Hence, the nodal movements on AB are 

defined as equal to each other in the Y-direction, as are movements in the X-direction for 

BC. The edge AC is defined as free to move in any direction in order to simulate the 

situation at a perimeter edge of the floor layout. 

To ensure that the tensile membrane action occurs, the essential condition is that the 

perimeter of a slab remains stable during the whole process of temperature increase. In 

this case, the beams under the slab edge are provided with 60-minutes’ fire protection 

but the intermediate beams are left unprotected. As analysed by the finite element 

program Vulcan, the results of the model for the slab lower face at 900C are shown in 

Fig. 4.18 below. 

 

Fig. 4.18 Membrane stress vectors at slab lower face 900C (2D) 

 

Fig. 4.19 Membrane stress vectors at slab lower face 900C (3D) 
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From Figs. 4.18 and 4.19 it can be seen that the compressive membrane stress still 

forms a ring around the slab perimeter, and that the tensile membrane stress is located in 

lower section area of slab. The reason for this phenomenon is that, due to the reduction 

in the slab area and the change of geometry, the stiffness of the whole slab has been 

enhanced, especially for the part above the upper intermediate secondary beam, which 

also causes a reduction of the vertical deflection in that area. For this reason, the tensile 

membrane stress occurs mainly in the region below the lower intermediate secondary 

beam. On the other hand, the compressive membrane force keeps a fairly constant width 

around the slab perimeter, so that the area of tensile membrane force has shrunk. 

 Validation of trapezoidal slab behaviour 4.4

In designing a trapezoidal slab, a rational course of action is first to design a rectangular 

slab and then to make equal and opposite changes to the angles of two opposite edges. 

When following this procedure it is necessary to assess the behaviour change from a 

rectangular slab to a trapezoidal slab. In this study the total area of the slab is kept 

constant by rotating the edges about their mid-points. 

 

Fig. 4.20 Transformation from rectangular slab to trapezoidal slab 

Since there is no standard design guide for trapezoidal slabs, a logical design method is 

to treat it as a normal rectangular slab. In contrast to representing a triangular slab as 

rectangular, the shape remains quadrilateral. If the angle of rotation of the two opposite 

edges is not excessive, it is reasonable to keep the sizes of the beams along these edges 

the same as for a rectangular slab. In other cases, considering the load distribution of the 

slab, the sizes of all beams will need to be changed, because the length of the upper 

primary beam is reduced while the lower primary beam is lengthened, and the lengths of 

all secondary beams are increased.  
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 Slab panel properties and floor design 4.4.1

A composite slab panel of dimensions 7.5m x 9.0m, with protection designed for 60 

minutes’ fire resistance has been selected. With the same design loading defined in 

Table 4.1, the same cross-section properties have been adopted as in Figure 4.3, using 

normal-weight concrete and A193 reinforcement mesh. This model is divided into 30 

elements with 1.5m x 1.5m for each; the slab contains four secondary beams as two at 

slab perimeter with protection and two intermediate left unprotected.  

 

   

Fig. 4.21 7.5m x 9.0m slab panel with 60 minutes’ fire resistance 

Using Eurocode 4 Part 1-1 (CEN, 2005a) Eurocode 4 Part 1-2 (CEN, 2005b) for floor 

beam design at ambient and elevated temperatures, and assuming full composite action, 

the resulting selections for primary and secondary beam sections are UB 533x210x82 

and UB 356x127x33 respectively. 

In order to observe slab panel membrane action at elevated temperature, the primary 

beams and the edge secondary beams were protected, leaving the intermediate 

secondary beams unprotected. 

After the composite rectangular slab had been designed, three cases of trapezoidal slabs 

were set up. Each successive trapezoidal slab model had its bottom edge length 

increased by 600 mm and its top edge length reduced by the same amount, so that the 

total area of the slab was kept constant. 
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Case Num. of Models Top Length (mm) Bottom Length (mm) 

1 8400 9600 

2 7800 10200 

3 7200 10800 

Table. 4.2 Different trapezoidal slab top and bottom edge lengths 

 Finite element analysis and membrane actions 4.4.2

To allow membrane action to occur, the rectangular slab and the three trapezoidal slab 

models were all considered as fully vertically supported, as an idealization of the 60-

minute fire protection of the perimeter beams.  

After analysis by Vulcan, the resulting deflections of the 4 different slab models are 

shown in Fig.4.22. Comparing these curves, as the geometry of slab changes from 

rectangular to more trapezoidal, the deflection at the slab centre starts to increase when 

the temperature reaches about 700C. This is because the intermediate secondary beams 

in the trapezoidal slabs are longer than those in the rectangular slab, but have the same 

section size. The intermediate secondary beams in the trapezoidal slab definitely have 

larger deflections, which cause the slab centre to have higher vertical displacement. 

 

Fig. 4.22 The slab centre deflection difference between rectangular and trapezoidal slab 

The slab centre deflections of the three models are very different at about 1100C (slab 

lower face). As the ratio of top to bottom edge length reduces, the deflection of the slab 

centre increases. 
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Similar to the membrane force distribution in a rectangular slab, the membrane forces in 

the central area of a trapezoidal slab are tensile and this is surrounded by a compressive 

ring. From Fig.4.23, it can be seen that the compressive ring in the trapezoidal slab 

forms an approximate trapezium as well.  

 

Fig. 4.23 Membrane stress vectors at slab lower face 950C (2D) 

 

Fig. 4.24 Membrane stress vectors at slab lower face 950C (3D) 

 Validation for trapezoidal continuous slab panel 4.5

In most cases, a non-orthogonal slab panel is at the edge of a building floor, which 

means that it is likely that there are adjacent slab panels continuous with it. In order to 

observe the membrane action in a continuous slab panel, the following model, shown in 

Fig. 4.25, was set up. 
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Fig. 4.25 Layout for continuous trapezoidal slab panel 

In this model, the selection of beam sizes and slab cross-section is the same as in the 

previous 7.5m x 9m composite slab. The sizes of primary and secondary beams are UB 

533x210x82 and UB 356x127x33, respectively. All the edge beams are protected for 60 

minutes’ fire resistance, but intermediate secondary beams were left unprotected. As 

distinct from the previous model, the intermediate primary beam in the X direction, 

between the rectangular and trapezoidal slab panels, was left unprotected, but was of the 

same beam size as the top and bottom primary beams. 

 

   

 .   

 

   

 .   
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Fig. 4.26 Membrane stress vectors at slab lower face 600C (2D) 

 

Fig. 4.27 Membrane stress vectors at slab lower face 600C (3D) 

From the figure above, the membrane action in this continuous slab panel is easy to 

observe. At about 600°C (slab lower surface), the intermediate secondary beams have 

already lost most of their strength, but the central intermediate primary beam still has 

greater strength than the intermediate secondary beams, because of its much larger size. 

Therefore, the membrane action resembles that in two individual (rectangular and 

trapezoidal) slab panels. With compressive stresses parallel to the intermediate primary 

beam, the tensile stress already appears in both slab panel centres. 
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Fig. 4.28 Membrane stress vectors at slab lower face 1000C (2D) 

 

Fig. 4.29 Membrane stress vectors at slab lower face 1000C (3D) 

As the temperature increases, the intermediate primary beam keeps losing its strength 

and the deflection of the whole slab panel also increases. When the temperature of slab 

reached about 1000°C, the membrane action in the whole slab panel differs 

considerably from that at 600°C. Because the intermediate primary beam has lost most 

of its strength, the compressive stress which was previously parallel to the intermediate 

primary beam has almost disappeared. The tensile membrane stress has also spread to 

most of the slab panel’s area. As a result, the individual membrane actions in the two 

slab panels have combined across the whole continuous panel. 
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From this model it can be deduced that, if the intermediate primary beam is adequately 

protected, the membrane action will be isolated within each of the two slab panels. This 

can be considered as further proof that an essential condition for membrane action to be 

mobilized is adequate vertical support from the beams around the perimeter of the slab 

panel.  The change of membrane action also indicates that as the deflection of the slab 

central area increases, the compressive membrane stress is replaced by tensile 

membrane stress. 

 Tensile membrane action of rectangular slab panel with continuous 4.6

edges 

In practice, isolated rectangular slab panels with continuous edges often need to be 

analysed. Since there are four edges in a rectangular slab panel, with different locations 

of the panel the number of continuous edge can also differ. For a typical orthogonal 

building floor layout, as is shown in Fig. 4.30, the three rectangular slab panels denoted 

as 1, 2 and 3 are located in different positions relative to the floor perimeter, which 

implies differences in their boundary conditions and the existence of continuous edges. 

 

Fig. 4.30 Typical building corner floor layout with rectangular slab panels 

In order to compare the tensile membrane action generated in these different situations 

of continuous edges, three isolated models have been created in Vulcan. The floor 

design and slab panel properties, together with the temperature profile, have been 

adopted as the same as those for the rectangular slab panel in Section 4.4.1 and Fig. 

4.21. To ensure that tensile membrane action will be observed, all the edges of each slab 

panel are assumed to have full vertical support during the whole process of temperature 

increase. The finite element grid division is shown in Figure. 4.31. 
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Fig. 4.31 Finite element grid division of rectangular slab panels 

Panel 1 

This slab panel is surrounded by other slab panels, so that their interactions have to be 

considered; during numerical analysis all the four edges are recognized as continuous 

edges and therefore have to stay straight, although the nearness of the floor perimeter 

means that they do not have to be fixed in position. Hence, in this model, the nodal 

movements of the top and base edges are defined as equal in pairs in the Y -direction, 

while the left and right edges are defined as equal in the X-direction. After non-linear 

analysis by Vulcan, the displacements of the slab edges at the lower face at 600C are 

shown in Tables 4.3 and 4.4 below. 

Left Edge in X- Right Edge in X- 

Node Num. 
Displacement  

(mm) 
Node Num. 

Displacement 

(mm) 

1 -1.0931 122 1.1319 

2 -1.0932 123 1.1319 

3 -1.0932 124 1.1319 

4 -1.0931 125 1.1319 

5 -1.0932 126 1.1319 
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6 -1.0931 127 1.1319 

7 -1.0931 128 1.1319 

8 -1.0932 129 1.1319 

9 -1.0932 130 1.1319 

10 -1.0931 131 1.1318 

11 -1.0932 132 1.1319 

Table. 4.3 Left and right edge displacements of internal slab panel 1 

Top Edge in Y- Bottom Edge in Y- 

Node Num. 
Displacement  

(mm) 
Node Num. 

Displacement 

(mm) 

1 2.0995 10 -2.1075 

12 2.0994 17 -2.1074 

18 2.0995 31 -2.1074 

34 2.0992 43 -2.1072 

45 2.0993 54 -2.1073 

56 2.0991 61 -2.1071 

62 2.0992 75 -2.1071 

78 2.0992 87 -2.1072 

89 2.0991 98 -2.1071 

100 2.0994 105 -2.1074 

106 2.0993 119 -2.1073 

122 2.0995 131 -2.1075 

133 2.0995 142 -2.1074 

Table. 4.4 Top and bottom edge displacements of internal slab panel 1 

From Tables 4.3 and 4.4, it can be observed that the left and right edges of the slab 

move almost the same distance along X- but opposite in direction.  Similar behaviour 

can be seen in Y- direction for the top and bottom edges. This result effectively clarifies 

the boundary movements of a slab panel with continuous edges, for which the slab 

edges are kept in a straight line. 

The membrane stress distribution is illustrated in Figure. 4.32. 
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Fig. 4.32 Membrane stress vectors of internal slab panel 1 at slab lower face 600C (2D) 

 

Fig. 4.33 Membrane stress vectors of internal slab panel 1 at slab lower face 600C (3D) 

From this figure it can easily be seen that, due to the symmetric relative constraints on 

boundary conditions, the deformations of the finite slab element are also symmetric in 

top and bottom part, and left and right part. This symmetry can also be found in the 

horizontal deformation of those two intermediate beams. With the symmetric boundary 

movements, both the tensile and compressive membrane stresses are almost symmetric 

as well. 

Panel 2 

The slab Panel 2 is assumed to be located at the bottom edge of the floor layout. 

Therefore, apart from the bottom edge of this slab panel, the rest of the edges are 

defined as continuous with adjacent slab panels. The relative constraints used in Panel 1 

have been applied to these three edges, but the bottom edge is left free to move in-plane. 

Since only one edge’s boundary conditions are different from those in Panel 1, the 

distribution of membrane force is very similar, apart from the areas close to the edges 

with different conditions. The edge nodal deflections at 600C are given below: 
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Left Edge in X Right Edge in X 

Node Num. 
Displacement  

(mm) 
Node Num. 

Displacement 

(mm) 

1 -0.9248 122 0.9193 

2 -0.9249 123 0.9194 

3 -0.9249 124 0.9194 

4 -0.9248 125 0.9193 

5 -0.9249 126 0.9193 

6 -0.9248 127 0.9193 

7 -0.9248 128 0.9193 

8 -0.9249 129 0.9194 

9 -0.9249 130 0.9193 

10 -0.9249 131 0.9194 

11 -0.9249 132 0.9194 

Table. 4.5 Left and right edge displacements of edge slab panel 2 

Top Edge in Y Bottom Edge in Y 

Node Num. 
Displacement  

(mm) 
Node Num. 

Displacement 

(mm) 

1 2.7609 10 0 

12 2.7608 17 1.9745 

18 2.7609 31 0.5114 

34 2.7606 43 5.4402 

45 2.7607 54 3.8454 

56 2.7605 61 7.1894 

62 2.7605 75 6.8646 

78 2.7606 87 5.5385 

89 2.7605 98 6.8765 

100 2.7608 105 2.0866 

106 2.7607 119 4.003 

122 2.7609 131 0 

133 2.7609 142 0.5547 

Table. 4.6 Top and bottom edge displacements of edge slab panel 2 

 

In these two tables, symmetric displacements of equal magnitude in X- direction can be 

seen at the left and right edges. The top edge nodes have an identical displacement in 

the Y- direction, keeping the edge straight as expected. With a free movement boundary 

condition, the bottom edge shows a totally different nodal displacement pattern. 
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Fig. 4.34 Membrane stress vectors of edge slab Panel 2 at slab lower face 600C (2D) 

 

Fig. 4.35 Membrane stress vectors of edge slab Panel 2 at slab lower face 600C (3D) 

The difference in the distribution of compressive force in the lower and upper slab panel 

areas is easily seen. The distribution of compressive force is still almost symmetric left-

to-right, and is very similar to the distribution in Panel 1. The horizontal deformation of 

the intermediate beams is symmetric as well. However, in the lower area next to the 

edge with free movement, the compressive force differs compared to the upper area.  

Panel 3 

In this case, the location of this slab panel determines that there is no adjacent slab panel 

next to the right-hand and bottom edges. Hence, the boundary conditions on the bottom 

and right-hand edges are set as free to move. In contrast, the top and bottom edges with 

continuity have respectively been equipped with relative constraints in the Y- and X-

directions. After analysis, the results for boundary displacements at the slab lower face 

at 600C are listed in Tables. 4.7 and 4.8. 
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Left Edge in X- Right Edge in X- 

Node Num. 
Displacement  

(mm) 
Node Num. 

Displacement 

(mm) 

1 -1.6571 122 0 

2 -1.6572 123 2.0145 

3 -1.6572 124 1.0987 

4 -1.6571 125 -0.974 

5 -1.6571 126 0.9176 

6 -1.6571 127 -2.1133 

7 -1.6571 128 -2.1012 

8 -1.6571 129 0.2271 

9 -1.6571 130 -0.8567 

10 -1.6571 131 0.1809 

11 -1.6571 132 0.818 

Table. 4.7 Left and right edge displacements of corner slab panel 3 

Top Edge in Y- Bottom Edge in Y- 

Node Num. 
Displacement  

(mm) 
Node Num. 

Displacement 

(mm) 

1 2.4606 10 0 

12 2.4605 17 2.0222 

18 2.4606 31 0.5225 

34 2.4603 43 5.4608 

45 2.4604 54 3.9164 

56 2.4602 61 7.0949 

62 2.4602 75 6.7946 

78 2.4603 87 5.6077 

89 2.4602 98 6.8243 

100 2.4604 105 2.3844 

106 2.4603 119 4.1963 

122 2.4606 131 0 

133 2.4605 142 0.7835 

Table. 4.8 Top and bottom edge displacements of corner slab panel 3 

With relative constraints applied, the left and top edges have the same displacements. 

On the other hand, the right and bottom edges, which are defined with free movement, 

have nodal displacements which are totally different from each other. From the nodal 

displacements at the free edges, it can be seen that the values are irregular and erratic 

which induced that the shape of the free edges becomes as an strange curve with many 

turning points. 
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Fig. 4.36 Membrane stress vectors of corner slab Panel 3 at slab lower face 600C (2D) 

  

Fig. 4.37 Membrane stress vectors of corner slab Panel 3 at slab lower face 600C (3D) 

With free movement across the bottom edge, the distribution of compressive membrane 

force in the area near the bottom edge is exactly the same as in Panel 2, in which the 

bottom edge is also free to move. In the upper section of the slab panel, as all three 

models have assumed top edge continuity, the distribution of compressive membrane 

force is very similar in all three models. The most significant difference observed in this 

case is that the deformation of intermediate beams is no longer symmetric. Since the left 

edge is defined with continuity, it can be seen that the left intermediate beam has a 

larger horizontal deformation than the right one. Similarly, the slab elements in the left 

section of the slab have larger deformation than those in right section. 
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Fig. 4.38 Comparison of slab central deflections in 3 cases 

In Fig. 4.38 it is shown that in the first 300C the difference in slab central deflection in 

these 3 models is not very obvious, the internal model has a smaller vertical 

displacement. From 350C to 400C, and compared to other two models the internal 

slab panel model has a larger rate of deflection increase. This temperature is about when 

membrane action occurs, as it can be seen that the model which simulates the internal 

slab panel with four continuous edges has the largest vertical deflection. In other words, 

the tensile membrane force in the internal model is larger than in the other two cases. 

From the results, it has been found that the structural failure temperature of the edge 

model is 693.7C, which is the earliest, followed by the corner model about 751.8°C, 

the internal model with all continuous edges persists to 780.8C which is the longest. 

By comparing the vertical deflections of the left and right intermediate beams in Figs. 

4.39 and 40, it can be observed that, in the edge and corner models, the curve is exactly 

same before the structural failure temperature. However, before about 700C, the 

internal model has a smaller vertical deflection than other two models. This is because, 

in the edge and corner models, the bottom edge of the slab panel is defined as free to 

move, but the bottom edge of the internal model is set with relative constraints. 

Therefore, it can be concluded that, for the beam at slab perimeter which supports 

intermediate secondary beams, the continuity of the edge will reduce the deflection of 

the intermediate secondary beam. 
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Fig. 4.39 Vertical deflection of left intermediate beam 

 

Fig. 4.40 Vertical deflection of right intermediate beam 

 Summary and discussion 4.7

Different buildings with different floor layouts provide various types of slab panel sub-

division, when it is necessary to model single isolated panels rather than a complete 

floor. One of the most important factors in obtaining accurate results when using finite 

element analysis on these isolated panel models is to ensure the accuracy of movement 

of each element. For FEM analysis, the density of elements is one of the most important 

basic components which can directly affect the accuracy of results. As a general rule, a 

model which has been divided more finely will be more accurate than a coarser one. 

However, it is impossible to continuously reduce the dimensions of elements, as higher 
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numbers of elements cause longer calculation times. Therefore, it is advisable to find a 

compromise which provides accurate enough results in an acceptable time. 

As Vulcan is a node-based finite element program, the displacement of each node plays 

a key role in representing the whole structural behaviour. The nodes on boundaries 

determine the movements of the slab perimeter.  Different locations on the slab panel 

are assigned different boundary conditions, although perimeter beams to slab panels are 

often considered as providing continuous vertical support in order to allow the 

membrane actions to happen.  Restraints to horizontal movement are dependent on 

whether there are other adjacent slab panels which are not explicitly modelled. 

The global axes used in most FE programs are X, Y and Z, which are orthogonal. If a 

structure has been divided into an orthogonal grid, which is parallel to the global axes, it 

is simple to impose restraints in a model. However if a slab panel is not orthogonal, the 

penalty function method needs to be applied to solve the problem of restraining the 

movements of boundaries.  

Once the movements of boundary nodes have been adequately represented, the 

membrane action of a non-orthogonal slab panel can be observed from geometrically 

nonlinear numerical modelling. From all the models simulated in this chapter, it can be 

concluded that for non-orthogonal slab panels the distributions of membrane force are 

very similar to those found in orthogonal slab panels, having compressive force around 

their perimeter and tensile force located within the central area. However, the zone of   

tensile membrane action has been observed to be smaller in triangular slabs compared to 

rectangular slabs. This is because the geometrical characteristics of a triangle strengthen 

the stiffness of the slab, causing smaller central vertical displacement. Therefore, as the 

distribution of membrane forces has been confirmed, the extension of the basic method 

to the non-orthogonal case can be achieved with more accurate fire limit state design for 

non-orthogonal composite slabs. When applying this method to investigate rectangular 

slab panels in various locations, the results have also successfully shown the differences 

in the distribution of membrane forces. This again shows the contribution made by this 

study, and that it will definitely help, both in further research into slab membrane action 

under different boundary conditions, and also in fire-resistant design of composite slab 

panels in various locations. 
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 Tensile membrane action of non-orthogonal slabs Chapter 5

 Introduction of yield-line pattern of triangular slabs 5.1

According to the initial investigation of membrane action of a reinforced concrete slab, 

the distribution of tensile and compressive stress relates to the small-deflection yield-

line pattern of slabs. Based on the yield-line theory and also the possible stress 

distributions, an equilibrium method was established (Hayes, 1968).  With some 

modifications and improvements, an advanced version of this was developed (Bailey 

and Toh, 2007) as a simplified design method for tensile membrane action of composite 

slabs in fire; this is generally known as the Colin Bailey Design Method. 

In order to extend simplified design into non-orthogonal slabs, the primary aim is to 

determine the appropriate yield-line patterns for these particular slabs. From previous 

experimental research, it has been apparent that the yield-line pattern of a reinforced 

concrete slab also represents its collapse mechanism for higher deflections.  The yield-

line pattern is also affected by the boundary conditions of slab edge support. For an 

isosceles triangular slab with simple support at its edges, the yield-line pattern can 

easily be found. 

 

Fig. 5.1 Yield-line pattern for triangular slab with simple supports 

It is assumed that the in-plane stress distributions of a triangular slab are based on the 

optimized yield-line pattern which is defined by the factor n (Fig.5.1). Therefore, the 
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first problem which needs to be solved is to find the optimized value of n, which is 

related to the exact geometry of the triangular slab. 

For the purpose of finding the optimized value of n, the energy equations are employed,  

𝛿 = 𝑛𝑙 ∙ 𝜃 

                                                     (5.1) 

𝛿 = (𝑟 − 𝑛)𝑙 𝑠𝑖𝑛 𝜔 ∙ 𝜑 

                                            (5.2) 

𝜃 = (
𝑟 − 𝑛

𝑛
)𝜑 𝑠𝑖𝑛𝜔 

                                               (5.3) 

 

 

Fig. 5.2 Triangular slab central deflection and rotation about slab edges 

δ is the vertical displacement at the yield-line intersection point C in the direction of 

perpendicular to the slab panel, θ is the rotation of element 2 about base edge BD, φ is 

the rotation of element 1 about edge AB.  

The loss of external energy due to movement of the loads can be described as, 

𝐸 =
𝛿

3
∙
𝑟𝑙2

2
∙ 𝑃 

                                                   (5.4) 

in which P is the uniformly distributed load intensity on the slab panel. 
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On the other hand, the internal dissipation of energy can be described as, 

𝑊 = 𝛿 [𝑀𝑝𝑦 (
2𝑟

𝑟 − 𝑛
) cot 𝜔 +𝑀𝑝𝑥 (

1

𝑛
+

1

𝑟 − 𝑛
)] 

                           (5.5) 

in which Mpx and Mpy are the plastic moments of resistance in the X and Y directions 

respectively.  When the slab is isotropic, Mpx = Mpy. 

When we equate E to W,  

𝑃 =
6

𝑙2(𝑟 − 𝑛)
(2𝑀𝑝𝑦 ∙ 𝑐𝑜𝑡 𝜔 +

𝑀𝑝𝑥

𝑛
) 

                                    (5.6) 

If  Mpx = Mpy,  

𝑃 =
6𝑀𝑝

𝑙2(𝑟 − 𝑛)
(2 𝑐𝑜𝑡 𝜔 +

1

𝑛
) 

                                       (5.7) 

Differentiating the equation above with respect to n, and setting the derivative equal to 0, 

it is possible to find the value of n which forms a yield-line pattern for minimum P. 

𝑑𝑃

𝑑𝑛
= 0 

Giving, for Mpx = Mpy, 

𝑛 =
−1 + √1 + 2𝑟 𝑐𝑜𝑡 𝜔

2 𝑐𝑜𝑡 𝜔
 

                                              (5.8) 

So that, as 𝑐𝑜𝑡 𝜔 = 2𝑟 

in general, 

𝑃 =
6

𝑙2(𝑟 − 𝑛)
(4𝑟𝑀𝑝𝑦 +

𝑀𝑝𝑥

𝑛
) 

                                      (5.9) 

When Mpx = Mpy 
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𝑃 =
6𝑀𝑝

𝑙2(𝑟 − 𝑛)
(2 𝑐𝑜𝑡 𝜔 +

1

𝑛
) 

                                      (5.10) 

and in general,  

𝑛 =
−𝑀𝑝𝑥 +√𝑀𝑝𝑥

2 + 4𝑟2𝑀𝑝𝑥𝑀𝑝𝑦

4𝑟𝑀𝑝𝑦
 

                                      (5.11) 

when Mpx = Mpy, 

𝑛 =
−1 + √1 + 4𝑟2

4𝑟
 

                                                (5.12) 

where r is the ratio of the triangle height to the base-side length. 

 Membrane action of triangular slabs 5.2

As the membrane stresses in triangular slabs have been found in Vulcan, the 

distributions are similar to those in rectangular slabs.  Qualitatively these can be 

described as a field of tensile membrane stress in the central area of the slab surrounded 

by a ring of compressive stress around the perimeter zone of the slab.  According to the 

previously described equilibrium method and the simplified design method, it is 

reasonable to assume that the membrane force variation across the yield lines in a 

triangular slab will be linear, since the neutral axes along the yield lines will be straight 

lines (Hayes, 1968). The assumed distribution of in-plane membrane stress in a 

triangular slab is shown in Fig. 5.3. 
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Fig. 5.3 In-plane membrane stress distributions of triangular slab 

Where b is a parameter defining magnitude of the membrane force, whose value will 

need to be resolved.  K is the ratio of yield force in the reinforcing steel across the two 

spanning directions.  KT0 is the yield force in the reinforcing steel per unit slab width in 

the direction parallel to the base of the triangle height, and T0 is the yield force in 

reinforcing steel per unit width in the orthogonal direction. 

As the apex angle is usually different from the bottom angles, the parameters f and g 

have been included to describe the magnitude of the membrane stress.  If the slab is an 

equilateral triangle in shape, then f should have same value as g. The resultant tensile 

and compressive forces are given by the areas of the stress triangles in Figure. 5.3, as 

follows: 

𝑇1 =
𝑏𝐾𝑇0
2

(
1

1 + 𝑓
) (1 − 𝑛)𝑙 

                                       (5.13) 

𝐶1=
𝑓𝑏𝐾𝑇0
2

(
𝑓

1 + 𝑓
) (1 − 𝑛)𝑙 

                                       (5.14) 

 



Chapter 5 Tensile Membrane Action of Non-orthogonal Slabs 

 

98 

 

𝑇2 =
𝑏𝐾𝑇0
2

(
1

1 + 𝑔
)√tan2 𝛼 + 𝑛2 𝑙 

                                  (5.15) 

𝐶2 =
𝑔𝑏𝐾𝑇0
2

(
𝑔

1 + 𝑔
)√tan2 𝛼 + 𝑛2 𝑙 

                                 (5.16) 

For equilibrium of Element 1, we use the relationships 

S sin 𝛽 = (𝐶2 − 𝑇2) cos 𝛽 

−S cos 𝛽 = (𝐶2 − 𝑇2) sin 𝛽 − (𝐶1 − 𝑇1) 

Hence,  

(𝐶2 − 𝑇2) = (𝐶1 − 𝑇1) sin 𝛽 

                                    (5.17) 

sin 𝛽 =
𝑛𝑙

√tan2 𝛼 + 𝑛2 𝑙
 

                                           (5.18) 

In the previously developed simplified design method for rectangular slabs, another 

equilibrium equation was estimated, as described by Hayes (1968).  

 

Fig. 5.4 In-plane stress distributions for the equilibrium method (Hayes, 1968) 

According to illustration by Hayes, an upper bound to this moment may be obtained by 

assuming that all the reinforcement along the section is yielding and that the centroids 

of the compressive stress-blocks are at E and F (Fig.5.4). In his assumption of the 

locations of resultant forces, Hayes considered not only the compressive stresses along 
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the yield lines, but also in other regions of Element 1. However, as the distribution of 

compressive stress surrounds the slab perimeter as a ring, the in-plane compressive 

stress is irregularly shaped between the yield line AB (or CD) and the axis of symmetry. 

As an approximation of the true equilibrium state, he assumed that the force resultants 

of each compressive stress zone pass through E and F, which are located at the same 

long-span coordinates as the yield line intersections B and C. This assumption has never 

been proved, and has no analogy in triangular slabs.  This leads to insufficient 

equilibrium equations to find all the unknowns. Therefore, a direct extension of the 

Hayes design method to triangular slabs is impossible unless the assumptions made for 

a rectangular slab can be rationalized and proved. 

 Yield-line patterns of trapezoidal slabs and energy equations 5.3

Compared to the yield-line patterns of triangular slabs, it is more difficult to determine 

the yield-line patterns in trapezoidal slabs, because describing the geometry of trapezia 

is more complicated. Since the yield-line patterns of two-way rectangular slabs have 

already been optimized and are generally accepted, furthermore, small changes in two 

opposing sides of a rectangular slab should not make a big difference to the yield-line 

patterns, as shown in Figure 5.5 below. 

 

Fig. 5.5 Yield-line pattern 1 of trapezoidal slab developed from rectangular slab 

Given the normal optimization of yield-line patterns of rectangular slabs, the first 

assumption for the yield-line pattern of a trapezoidal slab can be a similar pattern to that 

developed for rectangular slabs. In this pattern, the four regions rotate about the edges 

of the slab, and the middle yield line between two intersection points is parallel to the 

two parallel edges. However, changes of trapezium geometry, such as increasing the 
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width, and also following the general rules governing the optimum yield-line pattern, 

the yield line between the two intersection points may be perpendicular or parallel to the 

two parallel sides; so the optimum yield-line pattern may either be of the type shown in 

Figure 5.5 or that in Figure 5.6, depending on the exact geometry and the reinforcement 

areas in the two directions. For rectangular slabs, the aspect ratio would be the main 

factor determining the direction of the central yield-line. However, in trapezoidal slabs, 

there cannot be just one determining factor, because more variables, such as the lengths 

of the top and bottom parallel sides, and the height between them. 

 

Fig. 5.6 Assumed yield-line Pattern 2 of trapezoidal slab 

For this reason it is necessary to determine the load capacities for middle yield-lines 

assumed in either direction, and to investigate these by applying the energy equations 

with the two different yield-line patterns preset. By using the plastic energy balance 

method, the minimum load capacities for each of the two yield-line patterns can be 

found, the smaller of the two results for slabs of the same geometry being considered as 

the one forming the relevant yield-line pattern for the trapezoidal slab.  

In general, the plastic energy balance can be described as equating the potential energy 

expended by the movement of the external loads (the external work) to equal the energy 

dissipated in yield-line rotation (the internal work).  In algebraic terms: 

∑(𝑃 × 𝜐)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 =∑(𝑀 × 𝑙 × 𝜃)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 
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where, 

P is the loading acting on a particular region, 

𝜐 is the vertical displacement corresponding to the load P on each region, 

M is the plastic moment of resistance of the slab per metre of yield-line, 

l is the length of yield-line or projected length of yield-line corresponding to m, 

θ is the rotation at the yield-line corresponding to M. 

Using this equation a uniform load P can be expressed in terms of the other variables, 

and by setting derivatives of P to zero the value of P can be optimized as the minimum 

load capacity. 

 Energy equations for yield-pattern 1 5.3.1

 

 

Fig. 5.7 Yield-line pattern 1 and rotations about slab edges 

Firstly, the vertical displacement δ at point E can be expressed for all the regions of the 

slab as follows: 
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Element 1: 𝛿 = 𝑚𝛾1 

Element 2: 𝛿 = 𝑎𝛾2 

Element 3: 𝛿 = 𝑛𝛾3 

From Figure 5.7 it can be seen that the rotations of Element 1 and Element 3 are about 

the X axis because the appropriate edges of the slab lay are orientated in the X direction. 

However for Element 2, the edge of the slab is not parallel to either the X or Y direction, 

so that the rotation is partly about the X axis and partly about the Y axis. 

Internal Work: 

For Hinge I: 

About X: Dx = 𝑀 ∙
𝑚

𝑡𝑎𝑛𝛽2
∙ (𝛾1 − 𝛾2𝑠𝑖𝑛𝜉) 

About Y: Dy = 𝑀 ∙ 𝑚 ∙ (𝛾2𝑐𝑜𝑠𝜉) 

Therefore, for hinge I:  

𝐷 = 𝑀 ∙ (
𝑚

𝑡𝑎𝑛𝛽2
) ∙ (𝛾1 − 𝛾2𝑠𝑖𝑛𝜉) +  𝑀 ∙ 𝑚 ∙ (𝛾2𝑐𝑜𝑠𝜉) 

         (5.19) 

For hinge II: 

Only about X:  

𝐷 = 𝑀 ∙ (𝑙 −
2𝑚

𝑡𝑎𝑛𝛽2
) ∙ (𝛾1 + 𝛾3) 

                                                         (5.20) 

For hinge III:  

About X:  Dx = 𝑀 ∙
𝑛

𝑡𝑎𝑛𝛽1
∙ (𝛾3 + 𝛾2𝑠𝑖𝑛𝜉) 

About Y: Dy = 𝑀 ∙ 𝑛 ∙ 𝛾2𝑐𝑜𝑠𝜉 

Therefore, for hinge III:  
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𝐷 = 𝑀 ∙ (
𝑛

𝑡𝑎𝑛𝛽1
) ∙ (𝛾3 + 𝛾2𝑠𝑖𝑛𝜉) + 𝑀 ∙ 𝑛 ∙ 𝛾2𝑐𝑜𝑠𝜉 

            (5.21) 

As the yield-line pattern is symmetric, the total internal work dissipated is the internal 

work about hinges I and III multiplied by 2 plus the internal work about hinge II, so that: 

Internal work: 

= 2𝑀 × (−
𝑚𝑠𝑖𝑛𝜉

𝑎𝑡𝑎𝑛𝛽2
+
𝑟𝑙𝑐𝑜𝑠𝜉

𝑎
+

𝑙

2𝑚
+
𝑙

2𝑛
−

𝑚

𝑛𝑡𝑎𝑛𝛽2
+

1

𝑡𝑎𝑛𝛽1
+
𝑛𝑠𝑖𝑛𝜉

𝑎𝑡𝑎𝑛𝛽1
) 

     (5.22) 

and, 

𝑎 = cos (𝛽2 − 𝜉) ∙
𝑚

𝑠𝑖𝑛𝛽2
 

                                       (5.23) 

From the geometry shown in Figure 5.7: 

𝑛

𝑡𝑎𝑛𝛽1
− 𝑟𝑙𝑡𝑎𝑛𝜉 =

𝑚

𝑡𝑎𝑛𝛽2
 

and, 

𝑛 = 𝑟𝑙 − 𝑚 

then m can be expressed as 

𝑚 = (
1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉

𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2
) 𝑡𝑎𝑛𝛽2𝑟𝑙 

                                      (5.24) 

Substituting this expression for m into the equation for internal work, the internal work 

can be expressed in terms of β1, β2, ξ and l as, 
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2𝑀 × [−
𝑠𝑖𝑛𝜉𝑐𝑜𝑠𝛽2
𝑐𝑜𝑠(𝛽2 − 𝜉)

+
𝑐𝑜𝑠𝜉𝑐𝑜𝑠𝛽2

𝑐𝑜𝑠(𝛽2 − 𝜉) ∙ (
1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉
𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2

)
+

1

2𝑟𝑡𝑎𝑛𝛽2 (
1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉
𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2

)

+
1

2𝑟 − 2𝑟 (
1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉
𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2

) 𝑡𝑎𝑛𝛽2

−

1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉
𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2

1 − (
1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉
𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2

) 𝑡𝑎𝑛𝛽2

+
1

𝑡𝑎𝑛𝛽1
+
𝑐𝑜𝑠𝛽2𝑠𝑖𝑛𝜉 − 𝑠𝑖𝑛𝛽2𝑠𝑖𝑛𝜉 (

1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉
𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2

)

𝑡𝑎𝑛𝛽1𝑐𝑜𝑠(𝛽2 − 𝜉) (
1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉
𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2

)
] 

 

External Work: 

 

Fig. 5.8 Deflections of different slab regions 

The vertical displacements at points E and F are both δ, so that the displacement of 

hinge III (EF) is δ. The external work is the work done by load(s) acting on each region, 

which gives 

𝑤(𝑈𝐷𝐿) × 𝐴(𝐴𝑟𝑒𝑎 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛) × 𝜐(𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑎𝑟𝑒𝑎) 

For Element 2 the region is a triangle, so that the centroidal vertical displacement is  
2

3
𝛿, 

and for Elements 1 and 3, both regions are trapezia, which can be divided into one 

rectangle and two right-angled triangles. For the rectangular area, the centroidal vertical 

displacement is  
1

2
𝛿 , and it is  

1

3
𝛿  for the two right-angled triangular areas in both 

trapezoidal regions. With the internal work and ∑𝐴 × 𝜐 have already been sort out, then 

the load capacity w can be expressed as, 
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𝑤 =
𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑊𝑜𝑟𝑘

∑𝐴 × 𝜐
 

in which 

∑𝐴× 𝜐 =
𝑟2𝑙2𝑐𝑜𝑠(𝛽2 − 𝜉) (

1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉
𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2

) 𝛿

3𝑐𝑜𝑠𝜉
−
2

3
(
1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉

𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2
)
2

𝑡𝑎𝑛𝛽2𝑟
2𝑙2𝛿

+
1

2
(
1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉

𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2
) 𝑡𝑎𝑛𝛽2𝑟𝑙

2𝛿

+
1

2
[1 − (

1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉

𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2
) 𝑡𝑎𝑛𝛽2] 𝑟𝑙

2(1 + 2𝑟𝑡𝑎𝑛𝜉)𝛿

−
2

3𝑡𝑎𝑛𝛽1
[1 − (

1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉

𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2
) 𝑡𝑎𝑛𝛽2]

2

𝑟2𝑙2𝛿 

 Energy equations for yield-pattern 2 5.3.2

 

Fig. 5.9 Yield-line pattern 2 of trapezoidal slab 

For this yield-line pattern case, because the distances from E and F to the edge about 

which Element 2 rotates are different, the vertical displacements at points E and F also 

differ. 
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Fig. 5.10 Deflections of different slab regions 

The relationships between deflection and rotation are as follows: 

Element 1: 𝛿 = 𝑚𝛾1 

Element 2: 𝛿 = 𝑎𝛾2 

𝛿1 = 𝑏𝛾2 

Element 3: 𝛿1 = 𝑛𝛾3 

and,  𝛿1 =
𝑏

𝑎
𝛿 

𝑚 =
1

2
𝑡𝑎𝑛𝛽2𝑙 

𝑛 =
1

2
𝑡𝑎𝑛𝛽1(1 + 2𝑟𝑡𝑎𝑛𝜉)𝑙 

𝑎 = cos (𝛽2 − 𝜉)
𝑙

2𝑐𝑜𝑠𝛽2
 

𝑏 = cos (𝛽1 + 𝜉)
(1 + 2𝑟𝑡𝑎𝑛𝜉)𝑙

2𝑐𝑜𝑠𝛽1
 

Internal Work: 

For hinge I: 

About X:    Dx = 𝑀 ∙
𝑚

𝑡𝑎𝑛𝛽2
∙ (𝛾1 − 𝛾2𝑠𝑖𝑛𝜉) 

About Y:    Dy = 𝑀 ∙ 𝑚 ∙ (𝛾2𝑐𝑜𝑠𝜉) 
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Therefore, for Hinge I:  

𝐷 = 𝑀 ∙ (
𝑚

𝑡𝑎𝑛𝛽2
) ∙ (𝛾1 − 𝛾2𝑠𝑖𝑛𝜉) +  𝑀 ∙ 𝑚 ∙ (𝛾2𝑐𝑜𝑠𝜉) 

 (5.25) 

For hinge II: 

Only about X:  

𝐷 = 𝑀 ∙ (𝑙 − 𝑚 − 𝑛) ∙ (2𝛾2𝑐𝑜𝑠𝜉) 

                                                   (5.26) 

For hinge III: 

About X:    Dx = 𝑀 ∙
𝑛

𝑡𝑎𝑛𝛽1
∙ (𝛾3 + 𝛾2𝑠𝑖𝑛𝜉) 

About Y:    Dy = 𝑀 ∙ 𝑛 ∙ 𝛾2𝑐𝑜𝑠𝜉 

Therefore, for Hinge I:  

𝐷 = 𝑀 ∙ (
𝑛

𝑡𝑎𝑛𝛽1
) ∙ (𝛾3 + 𝛾2𝑠𝑖𝑛𝜉) + 𝑀 ∙ 𝑛 ∙ 𝛾2𝑐𝑜𝑠𝜉 

              (5.27) 

As the yield-line pattern is symmetric, the total internal work dissipated is internal work 

about hinge I and hinge III multiplied by 2 plus the internal work about hinge III, so that,  

Total internal work 

= 2𝑀 [𝑡𝑎𝑛(𝛽2 − 𝜉) +
1

𝑡𝑎𝑛𝛽2
+
2𝑟𝑐𝑜𝑠𝛽2𝑐𝑜𝑠𝜉

cos (𝛽2 − 𝜉)
−
𝑠𝑖𝑛𝛽2𝑐𝑜𝑠𝜉

cos(𝛽2 − 𝜉)

+
(1 + 2𝑟𝑡𝑎𝑛𝜉)𝑐𝑜𝑠(𝛽1 + 𝜉)𝑐𝑜𝑠𝛽2

𝑐𝑜𝑠(𝛽2 − 𝜉)𝑠𝑖𝑛𝛽1
+
(1 + 2𝑟𝑡𝑎𝑛𝜉)𝑐𝑜𝑠𝛽2𝑠𝑖𝑛𝜉

cos (𝛽2 − 𝜉)
] 

External Work: 

In Figure 5.11, the relevant out-of-plane deflections of Elements 1 and 3 are 𝛿 and  
𝑏

𝑎
𝛿 

respectively, and both of these exist in Element 2.  As Elements 1 and 3 are triangular 

shapes, the external work for these is much easier to calculate than that for Element 2. 
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Therefore, the external work calculation of Element 2 is shown here, taken in two parts, 

one trapezoidal and one triangular. 

 

Fig. 5.11 The external work done in trapezoid part 

From Figure 5.11 above,  

ω = 𝛽1 + 𝜉 

c =
𝑏 − 𝑎

cos (𝛽1 + 𝜉)
 

𝑇1 =
𝑎

3
[
2(𝑆1 + 𝑆2) +

𝐿2 − 𝐿1
2𝑠𝑖𝑛𝜉

𝑆1 + 𝑆2 +
𝐿2 − 𝐿1
2𝑠𝑖𝑛𝜉

] 

e = √(
𝐿1
2
)
2

+𝑚2 − 𝑎2 

=
𝐿1√𝑠𝑖𝑛2𝛽2 + 𝑐𝑜𝑠2(𝜉 − 𝛽2)

𝑠𝑖𝑛 2𝛽2
 

𝑇2 =
2(𝑆1 + 𝑆2)𝑒 + (𝑆1 + 𝑆2)

2 + 𝑒 (
𝐿2 − 𝐿1
2𝑠𝑖𝑛𝜉

) + (𝑆1 + 𝑆2) (
𝐿2 − 𝐿1
2𝑠𝑖𝑛𝜉

) +
(𝐿2 − 𝐿1)

2

4𝑠𝑖𝑛2𝜉

3 [(𝑆1 + 𝑆2) +
𝐿2 − 𝐿1
2𝑠𝑖𝑛𝜉

]
 

𝛿4 = (
𝑇2 − 𝑒

𝑆1 + 𝑆2
) (𝛿 + 𝛿1) 

𝛿5 =
𝑇1
𝑎
𝛿4 



Chapter 5 Tensile Membrane Action of Non-orthogonal Slabs 

 

109 

 

The external work of the trapezoidal part is (Area of Trapezium) × 𝛿5. Together with 

the external work of the triangular part, the total external work is,  

= [(
𝐿1

2𝑐𝑜𝑠𝛽2
)
2

− 𝑎2]

1
2 𝑎𝑤𝛿

3
+
𝑏(𝑎𝑏 − 2𝑎2 + 𝑏2)𝑤𝛿

3𝑎𝑡𝑎𝑛𝜉
+ [(

𝐿2
2𝑐𝑜𝑠𝛽1

)
2

− 𝑏2]

1
2 𝑏2𝑤𝛿

3𝑎

+
(𝐿1𝑚𝑎𝛿 + 𝐿2𝑛𝑏𝛿)𝑤

6𝑎
 

The external work of the triangular part follows the same method as used previously 

and is not demonstrated here. Having derived the internal and external work, the load 

capacity w can be expressed as, 

𝑤 = [2𝑀𝑡𝑎𝑛(𝛽2 − 𝜉) +
2𝑀

𝑡𝑎𝑛𝛽2
+
4𝑀𝑟𝑐𝑜𝑠𝛽2𝑐𝑜𝑠𝜉

𝑐𝑜𝑠(𝛽2 − 𝜉)
−
2𝑀𝑠𝑖𝑛𝛽2𝑐𝑜𝑠𝜉

𝑐𝑜𝑠(𝛽2 − 𝜉)

+
2𝑀𝑐𝑜𝑠𝛽2(1 + 2𝑟𝑡𝑎𝑛𝜉) cos(𝛽1 + 𝜉)

cos(𝛽2 − 𝜉) 𝑠𝑖𝑛𝛽1
+
2𝑀𝑐𝑜𝑠𝛽2𝑠𝑖𝑛𝜉(1 + 2𝑟𝑡𝑎𝑛𝜉)

cos(𝛽2 − 𝜉)
]

/ [
cos (𝛽2 − 𝜉)√1 − 𝑐𝑜𝑠2(𝛽2 − 𝜉)

12𝑐𝑜𝑠2𝛽2
+
𝑐𝑜𝑠2(𝛽1 + 𝜉)(1 + 2𝑟𝑡𝑎𝑛𝜉)

2

12𝑐𝑜𝑠2𝛽1𝑡𝑎𝑛𝜉

−
𝑐𝑜𝑠(𝛽1 + 𝜉)cos (𝛽2 − 𝜉)(1 + 2𝑟𝑡𝑎𝑛𝜉)

6𝑐𝑜𝑠𝛽1𝑐𝑜𝑠𝛽2𝑡𝑎𝑛𝜉

+
𝑐𝑜𝑠3(𝛽1 + 𝜉)𝑐𝑜𝑠𝛽2(1 + 2𝑟𝑡𝑎𝑛𝜉)

3

12cos (𝛽2 − 𝜉)𝑐𝑜𝑠3𝛽1𝑡𝑎𝑛𝜉

+
𝑐𝑜𝑠2(𝛽1 + 𝜉)𝑐𝑜𝑠𝛽2(1 + 2𝑟𝑡𝑎𝑛𝜉)

3√1 − 𝑐𝑜𝑠2(𝛽1 + 𝜉)

12𝑐𝑜𝑠3𝛽1 cos(𝛽2 − 𝜉)
+

𝑠𝑖𝑛𝛽2
12𝑐𝑜𝑠𝛽2

+
𝑠𝑖𝑛𝛽1𝑐𝑜𝑠𝛽2cos (𝛽1 + 𝜉)(1 + 2𝑟𝑡𝑎𝑛𝜉)

2

12𝑐𝑜𝑠2𝛽1cos (𝛽2 − 𝜉)
] 

This equation is too complicated to optimize mathematically by setting its partial 

derivatives directly to zero. In consequence, the minimum value of w must be found 

iteratively case-by-case.  Here this has been done using an Excel spreadsheet. 

 Numerical optimization of angles β1 and β2 5.3.3

Before taking the further step of looking into the trapezoidal slab’s yield-line pattern, it 

is essential to verify the feasibility and accuracy of this numerical method. It is easy to 

confirm that, when the angle ξ is set to 0, the geometry of the slab becomes rectangular 

and, together with defining the top length l equal to the  height rl, which means that r=1, 

it becomes a square slab. Because the yield-line pattern of square slabs is well known, it 
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provides the simplest example to verify the numerical optimization of the energy 

equations. 

The energy balance equations for the two yield-line patterns were implemented into two 

separate spreadsheets. The parameters which need to be set to define a slab are the top 

length l and ratio factor r, together with the angle ξ.   For the square slab test, the top 

length is set as 15m, so that the factor r is set as 1.0 and ξ as 0to create a square slab.   

In both spreadsheets, the value of β1 can be set from 0° to 90°, as can β2; these vary by 

row and by column respectively. Every cell provides a value of w for a given 

combination of β1 and. In Table 5.1 the minimum values of w (and the corresponding β1) 

for each row which varies β2 are shown in the tables for each of the two yield-line 

pattern equations. 

Yield-line Pattern 1  Yield-line Pattern 2 

Load Capacity w (kN/m
2
) β1 (°)  Load Capacity w (kN/m

2
) β1 (°) 

19.56304000 40  19.55726000 40 

19.50869000 41  19.50568000 41 

19.46676000 42  19.46548000 42 

19.43700000 43  19.43662000 43 

19.41922000 44  19.41918000 44 

19.41330000 45  19.41332000 45 

19.41922000 46  19.41929000 46 

19.43700000 47  19.43746000 47 

19.46677000 48  19.46831000 48 

19.50870000 49  19.51244000 49 

19.56305000 50  19.57061000 50 

Table 5.1 Load capacity w from 40° to 50° of 15m square slab with both yield pattern equation 

In Table 5.1, only load capacities as β1 varies from 40° to 50° are shown; clearly the 

lowest capacity occurs when β1 = 45° in both lists. Also, at this capacity, the value for 

β2 is found as 45°. It is evident that both yield-line pattern equations provide identical 

correct solutions for a square slab, with β1 and β2 equal to 45°.  

 Investigation of trapezoidal slab yield-line patterns 5.4

The work equations for both of the possible yield-line patterns have been carried out in 

terms of parameters β1, β2, ξ and l. To identify the appropriate yield-line pattern for a 

trapezoidal slab of specified geometry, the parameters β1, β2 need to be optimized, with 

ξ and l pre-set. Firstly, two spreadsheets have been set up as described above, based on 

the energy equations for the two yield-line patterns. The requirement is then to find the 

minimum value of all the cells in each of the spreadsheets, and then the appropriate 
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angles β1 and β2 are given with the corresponding minimum value.  With identical 

geometry a minimum value of w will exist in each. The smaller of those two values 

determines the appropriate yield-line pattern for the slab with that particular geometry.  

However, since this numerical method is only about finding the value of β1 and β2, 

validation of the length of the middle yield-line has not been included. In order to make 

sure that the values of β1 and β2 are able to make the middle yield-line exist, the 

following equations also have to be satisfied. 

For the yield-line Pattern 1:  

𝑚

𝑡𝑎𝑛𝛽2
≤
𝑙

2
 

so that      

(
1 − 𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉

𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2
) 𝑟 ≤

1

2
 

For yield-line Pattern 2:  

𝑟𝑙 − 𝑚 − 𝑛 ≥ 0 

so that    

(𝑡𝑎𝑛𝛽1 + 𝑡𝑎𝑛𝛽2 + 2𝑡𝑎𝑛𝛽1𝑡𝑎𝑛𝜉𝑟)/𝑟 ≤ 2 

When the values of β1 and β2 have been identified, they have to be substituted into both 

of these inequalities, together with the other defining parameters, to check whether only 

one yield-line pattern is satisfied, or both.  If both are satisfied, then the one with lower 

load capacity represents the appropriate yield-line pattern. 

In order to find out the relationship between middle yield-line direction and trapezium 

geometry, a randomly selected width of 15m was set for the test slabs.  Three 

investigations have been made: 

1. Increasing the top length with fixed angle ξ and width rl; 

2. Increasing the angle ξ with fixed top length and width rl; 

3. Increasing the width rl with top and bottom lengths fixed. 

The purpose of the first investigation is to compare the effect of top and bottom base 

lengths in determining the direction of the middle yield-line; the bottom base length is a 

function of the top length, angle ξ and width rl as  
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𝐿 = 𝑙 + 2𝑟𝑙𝑡𝑎𝑛𝜉  

Once rl and ξ are fixed, the bottom base length increases with the top length. This case 

also investigates the effect of the ratio of (top + bottom base lengths) against width. 

In the second case, the influence of bottom base length alone is considered.  With width 

rl and top length l fixed, changing the angle ξ changes the bottom base length 

accordingly.  

Change of width is also tested in the third case. However, as at least two parameters are 

related, as the width rl changes, the angle ξ also has to change. 

 Comparison of yield-line patterns with top length increasing and ξ fixed 5.4.1

In this case, the width of the trapezium rl is set as 15m and the angle ξ is fixed as 20°. 

The top length is controlled to increase progressively from 5m to 20m, so that the 

bottom base length increases from 15.2m to 30.2m. Because the angle ξ and width rl are 

fixed, the scale between top and bottom base length are kept.  

Ratio Top Length (m) Load Capacity (kN/m
2
) 

r l Pattern 1 Pattern 2 
3 5 31.67666 35.8043 

2.5 6 28.2279 32.19172 

2.142857 7 25.52962 29.30772 

1.875 8 23.31726 26.95486 

1.666667 9 21.52369 25.00191 

1.5 10 20.06035 23.35629 

1.363636 11 18.83425 21.95318 

1.25 12 17.80248 20.74415 

1.153846 13 16.91605 19.69366 

1.071429 14 16.15267 18.77297 

1 15 15.48528 17.9611 

0.9375 16 14.89968 17.24385 

0.882353 17 14.38315 16.61835 

0.833333 18 13.92249 16.06619 

0.789474 19 13.50962 15.57339 

0.75 20 13.13936 15.16659 

Table 5.2 Load capacity from two different yield-line patterns  
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Fig. 5.12 Load capacity comparison for two yield-line patterns 

Figure 5.12 shows the curves from the two different yield-line patterns in the respective 

spreadsheets. It can be seen that the curve obtained from yield-line Pattern 1 which 

represents the ‘horizontal’ middle yield-line produces a lower value of load capacity 

than Pattern 2, which defines the middle yield-line in the orthogonal direction.  In other 

words, when the width of trapezoidal slab is fixed as 15m and the angle ξ is fixed as 20°, 

there is no observed change of yield-line pattern; yield-line Pattern 1 is always preferred. 

 Comparison of two yield-line patterns with top length fixed and angle ξ 5.4.2

increasing 

An investigation of trapezoidal cases with 15m width, top length varied from 5m to 20m 

and angle ξ increased from 0° to 45°, the results are more complicated and sensitive. 

When ξ = 0°, which means that the geometry is rectangular, the middle yield-line 

should stay parallel to the longer span. Hence, when the top length is shorter than the 

width, yield-line Pattern 2 is optimal. When the top length approaches 15m and the 

geometry is square, the load capacity for both yield-line patterns should be identical. 

When the top length exceeds the width, yield-line Pattern 1 is optimal. 
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Fig. 5.13 Load capacity of two yield-line patterns as top length increasing and ξ is 0° 

In Figure 5.13, the prediction of the change of yield-line pattern of a rectangular slab is 

confirmed, although when the top length exceeds 15m the two curves are very close.  

However, when ξ changes from 0° to 1°, the situation changes.  In all the tests, for cases 

with top length greater than 11m, the yield-line pattern changes from 2 to 1 when ξ 

increases to 1°. This is because the difference in load capacity from these two patterns is 

very small, especially when the top length is about the same as the width.  In contrast, 

for cases with top length between 5m and 11m the change of yield-line pattern only 

occurs with ξ ≤ 10°; the cases with ξ > 10° show yield-line Pattern 1 instead. Together 

with the results from the previous tests with ξ = 20°, for a 15m wide trapezoidal slab 

with top length greater than or equal to 5m and angle ξ > 10° yield-line Pattern 1, with a 

middle yield-line in the ‘horizontal’ direction, will occur.  For this reason, ξ is changed 

within the range 0-10° so that it is possible to observe the change of yield-line pattern.  
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Fig. 5.14 Load capacity comparisons with angle ξ increasing 
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In the series of graphs in Figure 5.14, it is easy to see that the locations of the change 

points in all of are related to the value of angle ξ.  With longer top lengths, the change 

points occur at lower values of ξ. This means that at lower ratios of top:bottom lengths 

and for lower top lengths, there is more chance of generating yield-line Pattern 2. 

However, when the bottom length exceeds a specific value related to the width and 

angle ξ, the yield-line pattern will change from 2 to 1. 

Since the minimum load capacity can be found, the corresponding yield-line pattern can 

easily be found for any case in terms of the angles β1 and β2. The change of yield-line 

pattern is clearest when top length is 8m, so this case has been chosen as an example of 

yield-line patterns to be shown in Figure 5.15. 

For this slab, when the ξ = 0°, the yield-line pattern is clearly yield-line Pattern 2. As ξ 

increases, there is no change of yield-line pattern type until ξ = 5°.  It can be seen that 

the significant change of yield-line pattern occurs rather suddenly. The middle yield-line 

suddenly disappears instead of reducing continuously, and a common intersection point 

takes over in the central area. The yield-line pattern stays in this form as ξ keeps 

increasing. When ξ has increased beyond about 25°, the middle yield-line appears in the 

horizontal direction, forming yield-line Pattern 1. 

During this process it is possible to find approximate shape definition parameter values 

at which the yield-line pattern changes. Firstly, the point at which the middle yield line 

transforms to a common intersection point is when ξ = 5°, or (𝑙 + 𝐿) = 18.625𝑚 , so 

that the ratio   

(𝐿 + 𝑙)

ℎ
= 1.242 

Yield-line Pattern 1 starts to occur when  ξ ≈ 25°, and (𝑙 + 𝐿) ≈ 30𝑚 , so that the ratio

  

(𝐿 + 𝑙)

ℎ
≈ 2 
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Fig. 5.15 Yield-line patterns of 8m top length trapezoidal slab with different angle ξ 

It must be remembered that these ratios are specific to the other controlling shape 

parameter, which is the ratio  
1

𝑟
=

8

15
= 0.533. 
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 Comparison of two yield-line patterns with top and bottom side lengths 5.4.3

fixed and width rl increasing  

In these analyses the top and bottom side lengths are set as 6m and 12m throughout, but 

the width is increased from 5m to 20m, so that ξ reduces from 30.96 to 8.53.  The 

load capacities from both yield-line patterns are listed in Table 5.3 and shown 

graphically in the curves of Figure 5.16.  As the slab height increases, the load 

capacities from both yield-line patterns reduce. However, the rate of reduction of yield-

line Pattern 2 is greater than that of 1, so that when the height reaches 19m yield-line 

Pattern 2 has replaced 1 to represent the yield-line pattern occurring in the slab. 

h (m) ξ (°) 

w (kN/m
2
) 

Yield-line 

Pattern 1 

Yield-line 

Pattern 2 

5 30.96375653 120.861 148.4086 

6 26.56505118 93.23582 112.755 

7 23.19859051 76.19482 90.60999 

8 20.55604522 64.86131 75.8865 

9 18.43494882 56.94164 65.545 

10 16.69924423 51.19117 57.96566 

11 15.2551187 46.89761 52.21169 

12 14.03624347 43.60273 47.71982 

13 12.99461679 40.93649 44.13329 

14 12.09475708 38.82514 41.21451 

15 11.30993247 37.08667 38.80223 

16 10.61965528 35.63265 36.77338 

17 10.0079798 34.4638 35.05077 

18 9.462322208 33.37594 33.56963 

19 8.972626615 32.49918 32.28688 

20 8.53076561 31.72206 31.16123 

Table 5.3 Load capacity from both yield-line patterns with width increase 
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Fig. 5.16 Load capacity comparison with height increasing 

From the data on minimum load capacity of both yield-line patterns, it is easy to find 

the corresponding angles β1 and β2. Hence, the actual yield-line pattern for the 

trapezoidal geometry can be sketched. 

Obviously, when the width is shorter than both top and bottom base lengths, the yield-

line pattern is definitely 1, with the middle yield-line parallel to the top and bottom edge 

lengths. With the height increasing, the length of the middle yield-line reduces until it is 

barely observed when the width is 9m, which is equal to 
1

2
(𝑙 + 𝐿). However, as the 

width continually rises, instead of changing to yield-line Pattern 2, the yield-line Pattern 

1 maintains but with a very small distance between two intersections. When the width 

increases above 18m, which is equal to (𝑙 + 𝐿), the yield-line pattern changes to yield-

line Pattern 2. In the process of yield-line pattern transformation, the reduction of the 

length of the Pattern 1 middle yield-line can be considered as a continuous change, but 

no continuous increase of the Pattern 2 middle yield-line can be observed. On the other 

hand, when the slab is in yield-line Pattern 1, the middle yield-line is located almost at 

the centre of the width.  
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Fig. 5.17 Transformation of the yield-line patterns as height increases. 

 Investigation of change of yield-line patterns  5.4.4

Since the sudden change of yield-line pattern from 1 to 2 has been observed, another 

assumption of yield-line pattern with common intersection has been made. In this yield-

line pattern, named as “Yield-line Pattern 1.5”, all four yield lines are assumed to meet 

at one point which located at the middle of slab.  

By applying the energy equation method into Excel spreadsheet, the collapse loads 

which to cause this collapse mechanism can be found. In order to making comparison to 
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the other two yield-line patterns, the continuous changes of trapezoidal slab geometry 

have been selected as in Fig. 5.15 and 5.17.  

 

Fig. 5.18 Comparison of load capacity for three yield-line patterns with 8m top length 

 

 

Fig. 5.19 Comparison of load capacity for three yield-line patterns with width increase 

From both Fig. 5.18 and 5.19 above, it can be observed that, the third yield-line pattern 

(Yield-line Pattern 1.5) which represents all yield lines meet at one intersection is not 

happen during the change of angle ξ and the width rl. Therefore, it can be conclude that 

from the change between Yield-line Pattern 1 and 2 is sudden, those mechanisms which 

are looks like with common intersection are actual still Yield-line Pattern 1 but only 

because the middle yield-line is very short.  
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Fig. 5.20 Comparison between rectangular and trapezoidal slab 

For a rectangular slab lay in X-Y plane, the geometry is symmetric in both X- and Y- 

axis as Fig. 5.20. It is well known that, if the length of longer span decreases, the middle 

yield line initially lay in X direction will decrease as well until all yield lines meet at one 

intersection, also the geometry of rectangle changes to square at the same time. If the 

decreasement continued, the middle yield line will start to grow in Y direction 

continuously. However, for a trapezoidal slab in Fig. 5.20, the symmetry of geometry is 

only on X axis, the upper and lower part of trapezoid are not symmetric. This is may be 

the reason why it is observed that the change of middle yield line in X direction is 

continuously, but the appearance of it in Y direction is sudden. 

 Summary and discussion 5.5

Throughout the development of tensile membrane action, the small-deflection yield-line 

pattern has been assumed to be the basis of the distribution of membrane force. In a 

rectangular slab, the optimal yield-line pattern has been located analytically in relation 

to the rectangular geometry. When extending this method to non-orthogonal slabs such 

as triangular and trapezoidal shapes, the first thing is also to determine the yield-line 

patterns. For a triangular slab, the form of yield-line pattern has been developed from 

previous research.  However, in the original simplified method for rectangular slab 

membrane action, the assumption for the location of compressive stress-blocks centroid 

has not been proved for triangles, the simplified design method can not be extended to 

the triangular slab. Therefore, there is an equilibrium equation missing for three 

unknowns, and this also caused the problem to find the solution of membrane force 

enhancement for triangular slabs. 

The problem in trapezoidal slabs is more complicated. One of the most important 

factors is the yield-line pattern of trapezoidal slab and the locations of intersections.  
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Two forms of yield-line pattern have been assumed from the start of this research. By 

applying the work balance equations, both of these yield-line patterns have been tested 

with trapezoidal slabs of various geometries.  

Three parameters, the top length l, the angle of the non-parallel sides ξ and width h 

which control the geometry of a symmetric trapezium have been varied separately. As a 

result, when the angle ξ is high (above 20°), no matter how the top length changes, 

yield-line Pattern 1, with middle yield-line parallel to the parallel sides, occurs. This 

may also be related to the width, but needs other tests changing the width and angle ξ at 

the same time for future research.  The change of bottom length and width has also been 

tested. From the results, the transformation of optimal yield-line patterns can be 

observed. As mentioned before, with a constant width the transformation of the yield-

line pattern only happens when the angle ξ is less than 10°. When ξ increases with top 

length fixed, which means only the bottom length is increasing, the change from yield-

line Pattern 2 to 1 is quite sudden, but in these tests the length of middle yield line as in  

yield-line Pattern 1 is very short until the bottom edge becomes significantly longer than 

the top length. The change of the yield-line in the direction of the parallel sides is more 

continuous. This is also revealed by the third test, in which the change of the horizontal 

yield-line is continuous until the length of middle yield-line becomes very short; the 

middle yield-line in the perpendicular direction appears fairly suddenly when the height 

is much greater than top and bottom base lengths.  In both tests it is found that when the 

width is half the sum of the top and bottom base lengths the transformation between 

yield-line Pattern 1 and the 2 occurs but suddenly. This is dissimilar to yield-line pattern 

behaviour in rectangular slabs, because of the asymmetric geometry of the trapezoidal 

slab.  This makes the transformation to yield-line Pattern 2 more difficult to summarize 

and needs to be verified against a wider range of cases with different geometries. 

In summary, the extension of the simplified method to membrane force calculation for 

triangular slabs is limited due to the unproven assumption within the previous method 

for rectangular slabs. For trapezoidal slabs, the optimal yield-line pattern is the initial 

problem needing to be investigated and verified before extending the simplified 

membrane force calculation. Two assumed yield-line patterns have been announced and 

investigated, and further researches are required to examine the existence.  An 

indication of the performance associated with these patterns has been found in these 

tests.  
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 New plastic energy method for load capacity Chapter 6

enhancement 

 Introduction of new internal work method 6.1

From previous chapters, reasons have been demonstrated why the established simplified 

method of calculation of capacity enhancement due to tensile membrane action cannot 

be extended to non-orthogonal slabs.  As has been indicated in previous research papers 

(Bailey, 2007), the simplified method cannot properly predict the maximum allowable 

vertical displacement, at which actual fracture of the reinforcement or crushing of the 

concrete occurs.  Therefore, in the BRE-Bailey method (Bailey, 2001), only a very 

simplified prediction of the maximum allowable vertical displacement at ambient 

temperature has been provided as, 

∆20= √(
0.5fy

E
)
3L2

8
 

                                                         (6.1) 

in which E is the Young’s modulus of the reinforcement across the longer span. 

However, the capacity enhancement due to tensile membrane action is more 

complicated than is suggested by the simple view that load capacity disappears when 

fracture of reinforcement, or crushing of the concrete, first happens. In the process of 

slab collapse, the first cracking is initiated at the lower surface of the concrete slab, and 

occurs when the limiting tensile strain of concrete is first reached.  

 

Fig. 6.1 Crack occurring at the lower surface of concrete slab 

As deflection grows, a yield-line pattern starts to form, so that the slab elements (flat 

facets) rotate about each yield line. To balance the tensile force per unit width in the 
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reinforcement mesh, a small depth of concrete at the top of the slab forms a 

compression block. Cracks start to open from the bottom of the slab, and the reinforcing 

bars are stretched by a small amount at the same time. 

 

Fig. 6.2 Crack partially open in the lower part of the concrete slab 

In the next stage, the slab elements (flat facets) continue to rotate and the crack opens 

fully through the whole slab thickness until the first reinforcement fracture happens. 

With both the in-plane and out-of-plane rotations ξ and η (Figure 6.3) caused by the 

loading, the vertical deflection continues to increase and reinforcing bars continue to 

fracture along the yield-line, until the maximum deflection is reached. 

 

Fig. 6.3 Crack fully open with reinforcement bars in tension 

Since the opening of cracks is a slowly progressing process, this means that the angles 

of in-plane rotation also increase the magnitude of the crack opening. With crack 

opening growing, reinforcement bars begin to fracture one by one, which means that the 

distance between the last fractured rebar and the slab edge reduces. 

The extension of the rebar at any location between two slab elements is given by, 

Δ = 𝜉𝑆 +  𝜂𝜇ℎ 

                                                (6.2) 

where, 
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 μ is the average depth of reinforcement; 

 h is the thickness of the slab; 

 η is the out-of-plane element relative rotation about a yield line; 

 S is the distance between unfractured rebar and the slab edge along the crack; 

 𝜉 is the in-plane element relative rotation between two slab elements. 

As the permissible extension of a bar depends on the fracture ductility strain of the steel 

reinforcement, the maximum extension of a rebar is given as, 

Δ𝑙𝑖𝑚 = 휀𝑢 ∙ 𝑑   

                                                (6.3) 

where, 

휀𝑢 is the fracture ductility strain of a bar. 

𝑑  is the spacing between two adjacent rebars in either the long or short span. 

In this method, which aims to find out the capacity enhancement compared with the 

original capacity determined by the yield-line calculation (as well as the enhancement 

predicted by the existing simplified method) plastic energy/work equilibrium equations 

have been employed. Although the expression for the external work done by loads 

applied to the slab is the same as previously, the balancing internal work in the equation 

includes the in-plane work done in rebar extension as cracks open due to both angles of 

rotation. Therefore, the process by which cracks open at the rebar level needs to be 

considered as it controls reinforcement plastic extension and fracture.  

Once the angle of a yield-line crack is determined, the extension of the rebar across it 

can be found geometrically, which then aggregates as the internal work done. For 

different failure mechanisms, the angles of deformation of cracks can be different 

because of different crack locations. In order to demonstrate the energy work method 

and validate the results by comparing with original yield-line capacity and the BRE-

Bailey method, four failure mechanisms of a rectangular slab have been assumed. 
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 New internal work method calculate enhancement factor for 6.2

rectangular slabs 

In this new internal work method initially announced by Burgess (2013), four assumed 

collapse mechanisms have been illustrated in the reference, as shown in Fig. 6.4.  

 

Fig. 6.4 Four assumed collapse mechanism with crack opening 

All these four collapse mechanisms are based on the basic yield-line pattern of a 

rectangular slab. The locations of additional through-depth cracks are presumed to be 

potentially critical situations which may happen together with the initial yield-line 

pattern. For different locations of cracks, the equations to calculate the internal work 

due to the extension of reinforcement rebar differ. In general, the steps in applying this 

internal work calculation which assesses the energy dissipation in extension of 

reinforcement bars are: 

1) Assume that the location of a crack opening is based on the optimum small-

deflection yield-line pattern, and originates in a critical area of tensile stress, which 

also dictates the direction in which the crack develops; 

2) According to the direction in which each crack opens, and the kinematics of the 

slab facets given their boundary conditions, obtain algebraic expressions for the 

width of opening of the cracks which represent the plastic extension of rebar; 

3) With deflection increasing, the reinforcement mesh starts to ‘unzip’ (progressively 

fracture) along the crack opening until it is completely fractured along the crack. 

The lengths of each crack within which the reinforcement is fractured and intact can 

be found; 
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4) Calculate the internal energy dissipated at any deflection, using equations which 

include the specific properties of the steel reinforcing mesh, combined with the 

current situation in terms of intact reinforcement length. 

The full derivation of the energy equations has been provided by Burgess et al. (2013) 

and is included in the Appendix of this thesis. 

 Comparison and validation of new internal work method 6.3

In the previous section, the method for calculating internal work due to the cracking 

opening has been illustrated, although not derived in detail. For any given deflection, 

the load carrying capacity can be predicted by applying the method. 

To allow logical comparison, the same geometry and properties have been employed for 

4 assumed rectangular slab failure mechanisms; the slab is a 9m x 6m composite slab 

with aspect ratio of r=1.5 and thickness of 120mm. It is assumed to be without 

continuity on any of its four edges. For the reinforcement, a conventional reinforcement 

mesh A142 is chosen to be positioned at the middle- thickness; the rebar sizes and 

spacing are shown in Table 6.1 below: 

 

Spacing 

long span 

Spacing 

short span 

Long span 

wire 

diameter 

Area long 

span wires 

Short span 

wires 

diameter 

Area short 

span wires 

(mm) (mm) (mm) (mm
2
/m) (mm) (mm

2
/m) 

200 200 6 141.4 6 141.4 

Table. 6.1 Detailed size of reinforcement mesh A142 

For the reinforcement mesh, the yield strength of steel fyk has been set as 500MPa (S500) 

with 10% fracture ductility, and for the concrete the compressive strength has been set 

as 30MPa (C30). 

The internal and external work equations have been implemented in an Excel 

spreadsheet, and the enhancement of capacity calculated over a range of deflection ratio 

𝛿
𝑙⁄  from 0 to 0.1, in increments of 0.0001.  The capacity enhancement is plotted in Fig. 

6.5. 
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Fig. 6.5 Enhancement factor performance of Mechanism A (Burgess et al., 2013) 

 

 

Fig. 6.6 Enhancement factor performance of Mechanism B (Burgess et al., 2013) 
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Fig. 6.7 Enhancement factor performance of Mechanism C (Burgess et al., 2013) 

 

 

Fig. 6.8 Enhancement factor performance of Mechanism D (Burgess et al., 2013) 

After the enhancement factors have been found, comparison to the BRE limit excluding 

thermal expansion (red-dotted line) with maximum deflection allowable for each 

mechanism from the conventional methods is shown below, 
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Fig. 6.9 Combination of 4 mechanism enhancement factor and compare to BRE-Bailey method 

(Burgess et al., 2013) 

As shown in Fig. 6.9 above, the behaviour of enhancement factor curves falls into two 

main phases: 

1) At the beginning of first phase, all the capacity enhancement factor curves increase 

continuously. As we can see, the increment ratio of mechanisms A, C and D are 

very close to each other, as the slopes of these three curves are almost equal. The 

enhancement factor curve representing mechanism B exhibits a higher rate of 

increase than the rest of curves.  However, this drops significantly when the 

deflection becomes sufficiently large for the rebar crossing the middle yield-line 

parallel to the longer span to fracture simultaneously. After this point, the curve 

starts to rise again up to about 1.6 times the original yield-line capacity. Apart from 

Mechanism B, the rest of the curves have similar performance, linearly increasing 

until the second phase occurs.  From these 3 curves, the enhancement factor from 

Mechanism C is lowest as the slab initially deflects. However, this curve increases 

steadily until its deflection is the longest in the first phase, and its enhancement 

becomes higher than that of Mechanism D before the second phase happens. 
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2) During the second phase, steel mesh reinforcement in all the mechanisms 

progressively fractures along each yield-line, and the capacity enhancement factor 

begins to decrease until the slab entirely collapses. The fracture of reinforcement 

across these yield-lines takes place either as ‘unzipping’, which is shown as a 

continuous curve, or simultaneous fracture, which is shown as a vertical straight 

line. As shown in Fig. 6.9, in the second phase the enhancement factor of 

Mechanism B increases rapidly after the simultaneous fracture happens, and turns 

into the second highest before the reinforcement rebar starts to ‘unzip’. Although 

the curve of Mechanism B increases fastest, it loses its load carrying capacity much 

more quickly than other mechanism after it reaches its peak value, and becomes the 

lowest. For Mechanism C, the second phase happens at the highest deflection 

among all these curves, and it loses its load carrying capacity slowest. Mechanisms 

A and D have very similar curve shapes, as they do not involve any simultaneous 

fracture. Therefore, with only ‘unzipping’ in these two mechanisms, the two curves 

show smoother performance than B and C in their overall process. 

It is not difficult to conclude that the results get from this energy method make more 

sense than the original yield-line capacity and the BRE-Bailey method its analysis of 

enhancement factor behaviour. The BRE-Bailey method models load carrying capacity 

as increasing linearly, subject only to a single deflection limit. It is inaccurate in taking 

amplified cracking across yield-lines into account, and can only be treated as a 

simplified calculation method which gives unconservative predictions. The prediction 

of enhancement factor which is known to be due to membrane action is definitely 

influenced by the crack development in the slab panel. When cracks gradually open 

wide, the enhancement due to membrane action reduces. In spite of the new method 

considering only the ambient temperature stage as far as the slab itself is concerned, the 

prediction of membrane action given by this energy method is reasonable and reliable. 

More importantly, this method can be easily adapted to non-rectangular composite slabs 

to find their enhancement factors due to tensile membrane action. 
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 Extension of new internal work method into triangular slabs 6.4

For a typical isosceles triangular slab, the optimal yield-line pattern can be determined 

by applying general yield-line rules. In this research, the yield-lines are assumed to 

initiate from each corner of the slab and to intersect at a single point located on the 

slab’s central axis of symmetry. With vertical deflection increasing, it is assumed that 

the crack opens from the yield-line intersection and then develops to the slab corners 

progressively. 

 

 

Fig. 6.10 Assumed crack locations for isosceles triangular slab failure mechanism 
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In order to compare the enhancement predicted by the plastic energy method with 

plastic rebar extension to the slab’s original yield-line capacity, the primary task is to 

find the location of the yield-line intersection.  

 Yield-line capacity of isosceles triangular slab 6.4.1

Adopting the normal plastic energy balance equation which is well known as, 

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑒𝑥𝑝𝑒𝑛𝑑𝑒𝑑 𝑏𝑦 𝑙𝑜𝑎𝑑𝑠 𝑚𝑜𝑣𝑖𝑛𝑔

= 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 𝑏𝑦 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠  

After optimizing the value of external load P with respect to n, the location of the 

intersection and the load capacity provided by the yield-line mechanism can be found. 

From Fig.6.10, the following relationships can be obtained: 

𝜃 =
𝛿

𝑛𝑙
 

𝜙 =
𝛿

(𝑟 − 𝑛)𝑙𝑠𝑖𝑛𝜔
 

𝜔 = arctan (
1

2𝑟
) 

(6.4) 

For the external energy due to load movement, 

𝐸 = 𝑃
𝑙2𝑟

2
∙
𝛿

3
 

                                                  (6.5) 

For the internal energy dissipated by rotations about the yield-lines, 

𝐷 = 𝑀𝑝𝑦(2𝜙𝑐𝑜𝑠𝜔)𝑟𝑙 + 𝑀𝑝𝑥(𝜃 + 𝜙𝑠𝑖𝑛𝜔)𝑙                                    

= 𝛿 [𝑀𝑝𝑦 (
2𝑟

𝑟 − 𝑛
) 𝑐𝑜𝑡𝜔 +𝑀𝑝𝑥(

1

𝑛
+

1

𝑟 − 𝑛
)] 

                                                                                                                                (6.6) 
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In which, 𝑀𝑝𝑥 and 𝑀𝑝𝑦 are the moments of resistance according to the reinforcement 

mesh in the X- and Y- directions; if the reinforcement mesh is isotropic, then 𝑀𝑝𝑥 =

𝑀𝑝𝑦. 

From the equations above, the load capacity P can be expressed as, 

𝑃 =
6

𝑙2(𝑟 − 𝑛)
(2𝑀𝑝𝑦𝑐𝑜𝑠𝜔 +

𝑀𝑝𝑥

𝑛
) 

                                   (6.7) 

If  𝑀𝑝𝑥 = 𝑀𝑝𝑦 = 𝑀𝑝, then 

𝑃 =
6𝑀𝑝

𝑙2(𝑟 − 𝑛)
(2𝑐𝑜𝑠𝜔 +

1

𝑛
) 

                                         (6.8) 

If we partially differentiate and set  
𝑑𝑝

𝑑𝑛
= 0 to optimize p, the value of n is derived as, 

𝑛 =
−𝑀𝑝𝑥 +√𝑀𝑝𝑥

2 + 2𝑀𝑝𝑥𝑀𝑝𝑦𝑟𝑐𝑜𝑡𝜔

2𝑀𝑝𝑦𝑐𝑜𝑡𝜔
 

                                      (6.9) 

If  𝑀𝑝𝑥 = 𝑀𝑝𝑦 = 𝑀𝑝, then 

𝑛 =
−1 + √1 + 2𝑟𝑐𝑜𝑡𝜔

2𝑐𝑜𝑡𝜔
 

                                             (6.10) 

As  𝑐𝑜𝑡𝜔 = 2𝑟  so, 

𝑃(𝐺𝑒𝑛𝑒𝑟𝑎𝑙) =
6

𝑙2
∙

1

(𝑟 − 𝑛)
(4𝑟𝑀𝑝𝑦 +

𝑀𝑝𝑥

𝑛
) 

                            (6.11) 

𝑃(𝐼𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐) =
6

𝑙2
∙

𝑀𝑝

(𝑟 − 𝑛)
(4𝑟 +

1

𝑛
) 

                                 (6.12) 

and 
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𝑛(𝐺𝑒𝑛𝑒𝑟𝑎𝑙) =
−𝑀𝑝𝑥 + √𝑀𝑝𝑥

2 + 4𝑟2𝑀𝑝𝑥𝑀𝑝𝑦

4𝑟𝑀𝑝𝑦
 

                             (6.13) 

𝑛(𝐼𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐) =
1

4𝑟
(−1 + √1 + 4𝑟2) 

                             (6.14) 

 

 Capacity enhancement calculation for isosceles triangular slab 6.4.2

6.4.2.1 Calculation of rebar extension 

Using the same method as for rectangular slabs, according to the properties of the 

isosceles triangle, the following relationships exist: 

𝛾 = arctan (2𝑛) 

𝛽 =
1

2
𝜙2𝑠𝑖𝑛𝜔𝑐𝑜𝑠𝜔 

                                         (6.15) 

𝛼 = [𝑛𝜃2 + (𝑟 − 𝑛)𝜙2𝑠𝑖𝑛𝜔] cos2 𝛾 + 2𝛽(𝑟 − 𝑛)𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛾 

              (6.16) 

The rebar extensions across the yield-line α are given as follows: 

In  X- direction: 

Δ𝛼𝑥 =  𝛼𝑆 cos 𝛾 + 𝜃𝜇ℎ   

so, 

Δ𝛼𝑥 =  𝛼𝑌 + 𝜃𝜇ℎ                 (6.17)   

In  Y- direction: 

Δ𝛼𝑦 =  𝛼𝑆 sin 𝛾 + 𝜙𝜇ℎ  

so, 

Δ𝛼𝑦 =  𝛼𝑋 + 𝜙𝜇ℎ                 (6.18)   

Fig. 6.11 Rebar extension in one of two equal slab corner yield-lines 
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For the yield-line β which initiates from the corner which is on the axis of symmetry, 

the rebar extension in the Y- direction is given by, 

 

 

Δ𝛽𝑦 =  2𝛽𝑋 + 2𝜙𝜇ℎ               (6.19) 

 

 

Fig. 6.12 Rebar extension in unique slab corner yield-line 

 

6.4.2.2 Calculation of internal work 

For the yield-lines α, the internal work is given by 

𝐷𝛼𝑥 = 𝐹𝑝𝑙
2�̅� (

𝛼

2
�̅� + (𝜃 + 𝜙𝑠𝑖𝑛𝜔)𝜇ℎ̅) 

                          (6.20) 

in which, referring to Fig. 6.11, 

𝐹𝑝 is the reinforcement mesh yield force per unit length; 

l    is the length of the triangle’s bottom edge; 

�̅�   is the length of the intact yield line α in the Y- direction. 

�̅� =
1

2
 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅� − (𝜃 + 𝜙𝑠𝑖𝑛𝜔)𝜇ℎ̅
𝛼

2𝑐𝑜𝑠𝛾 − 2𝛽(𝑟 − 𝑛)𝑠𝑖𝑛𝛾
 

𝐷𝛼𝑦 = 𝐹𝑝𝑙
2�̅�1 (

𝛼

2
�̅�1 + (𝜙𝑐𝑜𝑠𝜔)𝜇ℎ̅) 

                             (6.21) 

�̅�1   is the length of the intact yield line α in the X- direction. 

�̅�1 = 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅�1 =
�̅� − 𝜙𝑐𝑜𝑠𝜔𝜇ℎ̅

𝛽
∙
𝑛

𝑟 − 𝑛
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For the yield-line β, the internal work is given by, 

𝐷𝛽𝑦 = 𝐹𝑝𝑙
2�̅�2(𝛽�̅�2 + (2𝜙𝑐𝑜𝑠𝜔)𝜇ℎ̅) 

                            (6.22) 

�̅�2   is the length of the intact yield line β in the X- direction. 

�̅�2 = 𝑟 − 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡;   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅�2 =
�̅� − 2𝜙𝑐𝑜𝑠𝜔𝜇ℎ̅

𝛽
 

 Validation of new internal work method for isosceles triangular slab 6.4.3

In the previous section, the enhancement factor curves obtained from this plastic energy 

method have been compared to the capacity provided by original yield-line and 

enhancement factors from the BRE-Bailey method. As the result is logical in its 

prediction of real slab behaviour, we have a good reason to trust this method when it is 

extended to non-orthogonal slabs. 

The same calculation procedure used for rectangular slabs is applied and implemented 

in an Excel spreadsheet, with triangular slab geometry defined by:  

Short span l = 6m and r = 1.5; 

Slab depth = 100 mm; 

Yield strength of steel fyk = 500MPa (S500) with 10% of ductility; 

Concrete compressive strength = 30MPa (C30). 

Reinforcement mesh: A142 placed at slab middle depth of 60 mm. 

The curve of enhancement factor obtained from the Excel spreadsheet is shown in Fig. 

6.13 below: 
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Fig. 6.13 Enhancement factor development of triangular slab 

From Fig. 6.13, it is easy to notice that, as for rectangular slabs, this curve also has two 

phases. In the first phase, the enhancement of capacity is dramatically increased as slab 

deflection increases. In the first phase, he enhancement factor reaches its peak value at a 

much lower deflection ratio  (𝛿 ⁄ 𝑡 = 1.345) when compared to rectangular slabs of the 

same aspect ratio  (𝛿 ⁄ 𝑡 > 3).  This is because this isosceles triangular slab is smaller 

in area than the rectangular slab, and also a triangle is more stable than a rectangle in 

geometry. After the curve has reached its peak point and cracks start to unzip along 

yield-line β, the enhancement factor also begins to decrease rapidly. Between every two 

‘unzip’ commencement points the slope of curve increases. In the final stage, when the 

rebar across the yield-lines has completely broken, the load carrying capacity is close to 

zero. 

 Parametric study of isosceles triangular slabs 6.4.4

6.4.4.1 Influence on load capacity for different reinforcement meshes 

Generally, the definition of reinforcement ratio is, 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑡𝑒𝑒𝑙 𝑟𝑒𝑏𝑎𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑐𝑟𝑜𝑠𝑠 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛
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For rectangular or square slabs, the area of a cross-section is a constant, and different 

reinforcement mesh areas in the two axis directions represent different reinforcement 

ratios. However, in triangular slabs, the area of a cross-section is variable along any axis 

direction. Therefore, the impact of reinforcement ratio on slab load carrying capacity is 

shown here only by applying different reinforcement mesh sizes onto one triangular 

slab with the geometry and properties given below: 

Geometry:  l = 6m and r = 1.5, in which r is defined as height-to-base ratio;  

Slab thickness: t = 120mm; 

Reinforcement mesh effective depth: 60 mm; 

Material properties: 

Strength of reinforcement rebar: 500N/mm
2
; 

Compressive strength of concrete: 30N/mm
2
; 

Steel ductility: 10%. 

In the first test, four different sizes of reinforcement mesh have been applied.  These are  

A142, A193, A252, A393. All these four models are considered with isotropic 

reinforcement and without discontinuous edges. The details of these reinforcement 

meshes are given in Table.6.2. 

Reinforcement 

Mesh 

Spacing 

long 

span 

Spacing 

short 

span 

Long 

span wire 

diameter 

Area long 

span wires 

Short span 

wires 

diameter 

Area short 

span wires 

 (mm) (mm) (mm) (mm
2
/m) (mm) (mm

2
/m) 

A142 200 200 6 141.4 6 141.4 

A193 200 200 7 192.4 7 192.4 

A252 200 200 8 251.3 8 251.3 

A393 200 200 10 392.7 10 392.7 

Table. 6.2 Details of isotropic reinforcement meshes 

The results for different reinforcement meshes are shown in Fig.6.14. 
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Fig. 6.14 Capacities of different isotropic mesh sizes. 

As expected, higher reinforcement mesh size provides higher load carrying capacity, 

which is also a general observation from rectangular slabs. The points which represent 

the crack origination occur at the same proportion of the deflection-thickness ratio, 

because of the tensile strength of isotropic reinforcement is identical in both directions. 

For different isotropic reinforcement meshes, the two phases of load carrying capacity 

change are clearly observed, and the performance of the whole triangular slab is 

reasonable. 

In a parallel test a triangular slab with orthotropic reinforcement meshes is investigated. 

With exactly the same geometry and material properties as in the example above, the 

only change is in applying the different orthotropic reinforcement meshes listed in 

Table.6.3 below. 

Reinforcement 

Mesh 

Spacing 

long 

span 

Spacing 

short 

span 

Long 

span wire 

diameter 

Area long 

span wires 

Short span 

wires 

diameter 

Area short 

span wires 

 (mm) (mm) (mm) (mm
2
/m) (mm) (mm

2
/m) 

B196 (a) 100 200 5 196.3 7 192.4 

B196 (b) 200 100 7 192.4 5 196.3 
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B283 (a) 100 200 6 282.7 7 192.4 

B283 (b) 200 100 7 192.4 6 282.7 

B385 (a) 100 200 7 384.8 7 192.4 

B385 (b) 200 100 7 192.4 7 384.8 

B503 (a) 100 200 8 502.7 8 251.3 

B503 (b) 200 100 8 251.3 8 502.7 

Table. 6.3 Details of orthotropic reinforcement meshes 

In this orthotropic test, each reinforcement mesh size includes two situations. The mesh 

size followed by (a) has closer rebar spacing in the span parallel to the triangle height, 

and mesh size followed by (b) represents the opposite situation. It has been verified 

previously with increasing isotropic reinforcement mesh size, the load carrying capacity 

increases. Comparisons are made between the two situations with the same size of 

reinforcement mesh. 

 

 

Fig. 6.15 Comparison of load carrying capacities of orthotropic reinforcement mesh B196 
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Fig. 6.16 Comparison of load carrying capacities of orthotropic reinforcement mesh B283 

 

 

Fig. 6.17 Comparison of load carrying capacities of orthotropic reinforcement mesh B385 
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Fig. 6.18 Comparison of load carrying capacities of orthotropic reinforcement mesh B503 

From Figs. 6.15-6.18, it can be seen that the situations (a) in which the slab has a higher 

reinforcement area in the ‘height’ span provides the lower load carrying capacity. In 

Fig. 6.15, for mesh B196, the enhancement of capacity for both situations is almost 

identical at the beginning of the deflection increase. With reinforcement size rising, the 

rate of capacity increase in situation (b) also becomes the higher, as shown in 

Figs. 6.16-6.18. However, the situation (a) in all these models shows a lower rate of 

decrease compared to situation (b), although with increasing the reinforcement size the 

difference in the capacity between the two situations becomes significant.  

Since the reinforcement is orthotropic, the ‘unzipping’ behaviour along yield lines is 

quite different compared with the isotropic reinforcement cases. In all these orthotropic 

cases, situation (a) has a capacity drop from the point at which the crack β starts to 

‘unzip’ in the Y-direction, followed by the point where the diagonal crack α starts to 

‘unzip’ in the Y-direction and then by α ‘unzipping’ in the X-direction.  In situation (b), 

the sequence of ‘unzipping’ differs; firstly α in the X-direction, then crack β and finally 

α in the Y-direction. This is because, in situation (a), there is shorter spacing in the X-

direction, which means the tensile strength is greater along the X-direction. In other 

words, for situation (a) in all these cases, it is harder to open a crack in the X-direction 

than that in the Y-direction. Hence, in situation (a), the crack β appears first, followed by 

crack α ‘unzipping” in Y and then in X. The behaviour of situation (b), which is totally 

opposite, can also be explained in this way. 
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6.4.4.2 Influence on load capacity of geometry change 

The factor conventionally used in rectangular slabs to define the geometry is called 

‘aspect ratio’, equivalent to the longer span divided by the shorter span. In the isosceles 

triangular slabs in this research, the equivalent factor used to define the geometry is the 

height-base ratio, which is the parameter r shown in Fig. 6.10.  In this analysis, the 

material properties have been kept the same as above; the base length l is kept as 6m, 

and the height-base ratio r is increased from 0.5 to 1.5, so that the height rl varies from 

3m to 9m; reinforcement mesh A142 has been selected for all these cases. The resulting 

enhancement factor performances are given in Fig. 6.19. 

 

Fig. 6.19 Enhancement factor behaviour with change of triangular geometry 

Generally, from the Fig. 6.19 above it can be concluded that, with increase of the height 

rl, the load capacity enhancement factor becomes greater. However, it can be seen that 

the proportion of enhancement factor increment is reduced gradually as r increases. 

From r=0.5 to 0.75, the increment of enhancement factor is considerable, but for r=1.25 

to 1.5, the difference is only about 1/6 of that from 0.5 to 0.75.  
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With the triangle height increasing, the appearance of crack ‘unzipping’ also differs. For 

lower height-base ratios, the crack β ‘unzips’ at lower deflection-thickness ratios. 

Moreover, the lower height also causes earlier occurrence of the crack α. As can be seen 

for r=0.5, the ‘unzip’ point of crack β and α in the X-direction almost appear at the same 

time. However, when r=1.5 the ‘unzipping’ of the crack α in the X-direction occurs 

much later than that of crack β. In contrast, the ‘unzipping’ of crack α in the Y-direction 

the opposite of this. For lower height-base ratios, it takes longer for the diagonal crack α 

to start to ‘unzip’ in the Y-direction after it has ‘unzipped’ in the X-direction. 

 Summary and discussion 6.5

In general, at the serviceability stage, the behaviour of slab is elastic with maximum 

steel stress and deflection at the slab centre. When the load increases, a yield-line 

pattern starts to form at the slab corners and centre. On increasing the load further, 

yield-lines form in the most highly stressed locations and develop into continuous 

plastic hinges. These plastic hinges turn into a small-deflection mechanism forming a 

yield-line pattern. As the yield-lines separate the slab panel into several individual flat 

facets that rotate about the slab edge, cracks generate on the soffit where the tensile 

capacity of concrete has been exceeded along the yield-lines. As the rotation keeps 

increasing, the cracks continuously widen, which induces the extension of 

reinforcement bars and their eventual fracture. This can be considered as the post-yield-

line stage behaviour of slabs in the fire situation at much greater deflections at the slab 

centre compared to that at ambient temperature. 

In this chapter, a new plastic work balance method taking account of work done by the 

extension of rebar across yield-line cracks at large deflections has been illustrated. 

Compared to the load carrying capacity provided by the original small-deflection yield-

line work equation which contains only internal work dissipated by the hinges in the 

yield-line rotations, the effect of tensile membrane action on capacity enhancement is 

clearly significant. Since the contrast is based on deflection-related results, it firmly 

proves the enhancement of load-carrying capacity due to tensile membrane action at 

large-deflections, particularly in fire situations. 

Based on the original yield-line pattern, four different failure mechanisms of rectangular 

slab have been examined with various locations and categories of rebar fracture. Each 
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mechanism provides its own curve of enhancement factor, which depends on the 

deflection at which the reinforcement crossing yield-lines starts to fracture progressively 

(or ‘unzip’) or to fracture simultaneously. Compared to the BRE-Bailey method, which 

presents an enhancement factor increasing as a straight line without considering the 

influence of cracks happening, the curves get from this new internal work method seem 

more in accordance with reality. 

According to the comparisons of the results to the original yield-line capacity and the 

BRE-Bailey method, there can be reasonable confidence that this new internal work 

method can be adopted without concern about slab geometry. In fact, after applying this 

energy work method to a typical isosceles triangular slab, the result of enhancement 

factor against deflection ratio also seems convincing. The increase of enhancement 

factor in the early stage, when external loads act on the isosceles triangular slab, and the 

rapid decrease when the rebar crossing the yield-lines starts to ‘unzip’, the behaviour of 

the load carrying capacity is in accordance with expectation. However, since the 

research about non-orthogonal slabs is rare and limited, it is regrettable that there are no 

previously studied examples which can be used for comparison.  

The new internal work method discussed in this chapter currently considers essentially 

ambient temperature behaviour. This is actually more relevant than it might 

superficially seem to be.  The reinforcement layers in a composite slab are insulated by 

its concrete cover; according to Eurocode 4 Part 1-2 (Annex D) the rebar temperature 

remains below 400C up to 60 minutes of the Standard Fire if the cover is at least 35mm.  

Some further study is still needed to extend this method to concrete slabs at elevated 

temperature, although the only variations to the method concern the reduced yield 

strength and fracture ductility of the rebar at elevated temperatures. Temperature 

prediction, at least for rebar, needs to be incorporated, either as a rigorous thermal 

analysis or as simplified data appropriate to particular fire curves.   
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 Conclusions and recommendations Chapter 7

As the revolution in structural fire engineering gathers pace, more performance-based 

structural design methods have identified the existence of tensile membrane action of 

composite slabs under fire situation and the enhancement of fire resistance which it can 

cause. Tensile membrane action is considered as a primary load-carrying mechanism 

when a slab panel is subject to large deflection and has stiff vertical support around its 

full perimeter. The advantage of applying the tensile membrane action mechanism in 

the process of composite steel-framed building design is to reduce the cost of fire 

protection on a considerable number of intermediate beams, while ensuring overall 

structural safety. Among a number of design methods developed so far which take the 

influence of tensile membrane action into account, the Bailey-BRE method has been 

widely acknowledged and adopted. In order to use the Bailey-BRE method, the floor 

layout must be divided into orthogonal slab panels in rectangular or square shapes. 

However, as modern architecture develops in the use of more imaginative concepts, an 

increasing number of building floor layouts are not rectangular or square, and this 

induces the problem of applying the method to irregular shapes of slab panel.  

The series of studies in this thesis were aimed to extend the treatment of tensile 

membrane action to non-orthogonal panels, and to verify such developments by using 

numerical modelling. The conclusions from the various studies are given in its sections, 

and recommendations for further study are made at the end of this chapter. 

 Conclusions 7.1

 The penalty function method 7.1.1

In order to numerically analyse composite slabs of non-orthogonal geometry, slab 

panels around floor edges or corners often cannot be divided into rectangular or square 

shapes, but have to be considered as triangular or trapezoidal. This means that there is at 

least one edge of the slab panel that cannot align along a global axis. The existing 

analysis program Vulcan is only capable of applying the boundary conditions with 

respect to the nodal degrees of freedom as fixed or free to move with respect to each 

global axis.  This is obviously not adequate to investigate the movements of slab panels 

of such irregular geometries. To resolve this shortcoming, the penalty function method 
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has been developed and implemented into the program. The main conclusions of this 

section are: 

 The penalty parameter, which is user-defined, determines the magnitude of the 

influence of the penalty function.  In this research, the penalty parameter has 

been set as 1000 times the average stiffness and this proves to work very well; 

 The degrees of freedom at any nodes can be constrained, in pairs or more, by 

applying penalty functions for the purpose of keeping their movements in a 

defined relationship with respect to any direction in the global coordinates; 

 The nodal displacements on a slab panel edge can be forced to stay in a straight 

line when the edge is actually continuous with an adjacent panel.  In other 

words, the continuous edges will remain straight when deformation occurs; 

 Slab panels located in different areas of a floor layout can be analysed as 

isolated instead of modelling the whole building floor system, but considering 

the interaction between slab panels; 

 The membrane stress vectors are shown to be compatible after application of 

penalty function method for various types of boundary conditions. With 

penalty functions applied, the movement of slab edges is different from those 

free from restraint, which also induces a difference in membrane stress. 

 Numerical modelling and validation 7.1.2

A series of studies on membrane action of non-orthogonal slabs at elevated temperature 

has been conducted. In practice, the models of non-orthogonal slabs can routinely 

include triangular and trapezoidal slabs. Triangular slabs of exactly the same geometry 

with different boundary conditions, subjected to fire, have been simulated. Also, an 

isolated trapezoidal slab and another with continuous edges have been analysed. The 

program Vulcan, with the penalty function method applied, has been used to analyse 

rectangular slab panels located in different areas of a floor layout. The following 

conclusions were drawn: 

 The process of generation of membrane action in triangular slabs is very 

similar to that for rectangular slabs, but starts at higher temperatures; 

 With slab vertical deflection increasing, the tensile membrane stress occurs in 

the central area of the triangular slab, surrounded by a compressive membrane 

stress; 
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 Compared to rectangular slabs, the area of tensile membrane stress in triangular 

slabs is smaller because of the different geometric characteristics. The triangle 

is a more stable geometry than a rectangle in terms of overall stiffness, which 

induced smaller deformation in triangular slabs. This is also the reason why the 

tensile membrane stress in a triangular slab is distributed over a smaller area 

and generated at higher temperatures. 

 The slab edge movements can affect the tensile membrane stress significantly.  

With two continuous edges, the triangular slab model analysed experiences 

more restraint from two adjacent slab panels than that with only one continuous 

edge. As a result, the triangular slab panel with two continuous edges shows a 

smaller area of tensile membrane force compared to that with one continuous 

edge.  

 Due to the geometric properties of a triangle, the area near the slab corners is 

much smaller than that in the slab centre, and therefore the stability in this area 

is much greater. The deformation around this area is tiny and restrains the area 

of tensile membrane force; 

 The membrane action in trapezoidal slabs shows similar behaviour to that in 

rectangular slabs. The case of a trapezoidal slab with continuous edges once 

again proves that the essential condition for tensile membrane action to take 

place is that the perimeter beams have to be protected as temperatures grow. 

 The boundary nodal movements of a rectangular slab panel affect the 

symmetry of membrane stress distribution. 

 With more continuous edges, which means more restraint from adjacent slab 

panels, the central deflection is enlarged. In other words, the restraint from 

adjacent slab panels enhances the tensile membrane action with temperature 

growth. 

 The intermediate secondary beams without protection experience smaller 

vertical deflections if the supporting primary beams lie along edges with 

continuity than those without horizontal restraint. 
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 Tensile membrane action of non-orthogonal slabs 7.1.3

In the manual calculation of enhancement due to tensile membrane action developed in 

Hayes’ initial research and advanced in work by Bailey, the fundamental basis is the 

distribution of compressive and tensile membrane forces across the yield-line pattern 

which forms in the slabs. According to the observations from triangular and trapezoidal 

slab models, the distribution of compressive and tensile membrane forces has been 

determined. In the process of establishing and extending the Bailey-BRE method in 

triangular and trapezoidal slabs, the following conclusions have been reached: 

 The parameters used in both the Hayes and Bailey-BRE methods are resolved in 

equilibrium equations, and contain an assumption that presumes the location of 

the centroid of the compressive stress-block is at a specific point on the 

rectangular slab edge. From the previous research, set out by Hayes, this 

assumption is only based on empirical experience and has never been proved, 

which leads to the conclusion that it cannot be used in triangular slabs. 

 Since the assumption cannot be adopted in triangular slabs and it is not 

reasonable to make another similar assumption, the number of unknown 

parameters is more than the number of equilibrium equations. Therefore, the 

Bailey-BRE method is not able to be extended into triangular slabs unless a 

similar assumption is approved. 

 Before extending the Bailey-BRE method into trapezoidal slabs, the locations of 

yield-line intersections have to be determined. Due to the geometry of a 

trapezium, two general yield-line patterns have been presumed, and the 

existence of both has been demonstrated by performing numerical studies. 

 Establishment of a general equation to define the locations of yield-line 

intersections in terms of the geometric features of a trapezium has been 

attempted. In the process, it has been found that the transformation of the yield-

line pattern corresponding to a change of trapezoidal geometry is very sensitive 

and discontinuous. 

 Based on the knowledge about the behaviour of yield-line patterns in rectangular 

and square slabs, another yield-line pattern has been assumed, but has been 

found not to exist. This phenomenon may be due to the asymmetry of the upper 

and lower part of the trapezium, which induces the sudden appearance of the 

central yield-line in the transverse direction. 
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 Some rough rules linking trapezium geometry to the form of the yield-line 

pattern have been presented. The three parameters defining the geometry of a 

trapezium are the angle ξ between the side and transverse directions, and the top 

and bottom base lengths, l and L. When l is fixed, the transformation of the 

yield-line pattern occurs at a specific value of angle ξ. With top length increasing, 

the transformation of the yield-line pattern happens at smaller value of angle ξ; 

when the top and bottom base lengths are fixed, the transformation of yield-line 

pattern when the sum of top and bottom base length is equal to the width. 

 New plastic energy method for load capacity enhancement 7.1.4

The conventional yield-line method only considers the internal work dissipation in the 

in-plane rotations about the yield-lines. However, after the yield-line pattern has formed 

the concrete in tension at the slab bottom surface starts to crack and the rebar 

experiences stretching. When the crack is totally open, the rebar has more significant 

extension until the fracture takes place. The whole behaviour can be considered both as 

membrane action and also as part of the internal work dissipation after the yield-line 

pattern forms. After validating this method and extending it to triangular slabs, 

parametric studies have been carried out, and the conclusions are: 

 For different assumed yield-line patterns in rectangular slabs, the capacities 

calculated by the new internal work method are different from, and all greater 

than, the original yield-line capacity. 

 The enhancement factor from the new internal work method increases in the first 

phase, when the rebar is still intact; in the second phase, the enhancement factor 

starts to drop after the first rebar fractures. 

 As the deflection at the slab centre grows, more cracks open along the yield lines, 

which induces even more decrease in load capacity enhancement. 

 In fact, the load capacity enhancement factor cannot keep increasing the whole 

time after the yield-line pattern has formed, as described in the Bailey-BRE 

design method.  Both the crack opening and reinforcement fracture have to be 

considered. 

 For isosceles triangular slabs, the yield-line patterns are unique. The load 

capacity enhancement factor performs in similar fashion to rectangular slabs. 
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 The performances of the load capacity enhancement factors for isotropic and 

orthotropic reinforcement meshes are very different, because the ‘unzipping’ 

situations of rebar along the yield lines vary. 

 The geometry of an isosceles triangular slab affects the ‘unzipping’ of mesh 

rebar in terms of the deflection/depth ratio. For isosceles triangular slabs with 

lower height, the crack initiation from the yield-line intersection tends to happen 

simultaneously for all yield lines. 

 Recommendations 7.2

 Slab element in finite element program 7.2.1

The current finite element program Vulcan defines a slab element as 9-noded, which 

needs to be improved in order to include triangular elements.  Considering the stiffness 

and stress distribution, the best way to achieve this is to reduce the node number to 7 

when analysing slabs using triangular elements, so that the stress distribution will not 

concentrate near to the apex. 

 Yield-line patterns of trapezoidal slabs 7.2.2

The numerical studies on two yield-line patterns in trapezoidal slabs with different 

geometries have shown that switching between them is very sensitive. The geometric 

parameters which determine the yield-line pattern and intersection need further 

investigation. The influences of these geometric parameters can be investigated by a 

larger amount of parametric studies over a wider range of parameters, such as increase 

top and bottom base length with width fixed in a various range of width; keep top base 

length and slope angle, increase the width. Summarize the results from these tests and in 

this thesis, the interaction among the geometric parameters can be found, and also an 

equation determines the yield-line pattern for a given trapezoidal slab can be created. 

Moreover, the location of yield-line intersection will be able to be concluded. 

 Equilibrium equations in extending Bailey-BRE method to triangular slabs 7.2.3

To ensure the validity and accuracy of the Bailey-BRE method, the assumption of the 

compressive stress block locations needs to be verified. Once this is validated, a similar 

assumption can be made for triangular slabs, and the equilibrium equations will be 
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established easily.  The method to calculate the enhancement due to tensile membrane 

action in triangular slabs can then be developed. 

 Extension of new internal work method at elevated temperature 7.2.4

The new internal work method which takes account of the energy dissipation in 

reinforcement mesh extension has provided a reasonable and realistic prediction of the 

load carrying capacity of a slab after a yield-line pattern forms. Since this method has 

currently been developed for ambient temperature, it is essential to extend the method 

into the elevated-temperature range. This can be achieved by combining the stiffness 

reduction of steel at high temperature with thermal expansion, temperature distribution 

and the interaction with attached composite steel beams. 

The procedure with penalty function method has shown satisfying results in numerical 

modelling of behaviour of non-orthogonal composite slabs at elevated temperature. 

Using advantages of this tool, it is capable to find out the load carrying capacity of slab 

in any geometry with temperature grows up. Also, it can be an efficient tool to verify 

the results find from manual and computational calculation. It can be predicted that this 

procedure will play a great role in performance-based analytical design for non-

orthogonal composite slabs in future. 
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Appendix A 

Application of Penalty Function Method into Vulcan Analysis 

Program Code 

********************************************************************** 

SUBROUTINE GET_CONS (NEQ, MINCOL, MAXCOL, CONS) 

READ THE RELATIVE CONSTRAINTS FROM THE INPUT FILE AND BUILD UP 

CONSTRAINT MATRIX  

********************************************************************** 

IMPLICIT REAL*8(A-H, O-Z) 

IMPLICIT INTEGER*4(I-N) 

PARAMETER (NUMNOD=1000) 

DIMENSION 

CONS(NUMNOD*6,NUMNOD*6),ICOL1(NUMNOD*6),ICOL2(NUMNOD*6), 

*         ICOL3(NUMNOD*6),ICOL4(NUMNOD*6),ICOL5(NUMNOD*6), 

*         ICOL6(NUMNOD*6)  

IN=3     

DO I = 1,NEQ 

DO J = 1,NEQ 

     CONS(I,J) = 0.0 

   ENDDO 

ENDDO 

 

DO I = 1,NEQ 
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ICOL1(I)=0 

ICOL2(I)=0 

ICOL3(I)=0 

ICOL4(I)=0 

ICOL5(I)=0 

ICOL6(I)=0 

ENDDO 

 

IP = 1 

LENGTH = 20 

 

CALL LOCATE ('RELATIVE CONSTRAINTS        ',LENGTH) 

    

READ(IN,*) IRNOD1,NDR1,CE1,IRNOD2,NDR2,CE2,IRNOD3,NDR3,CE3, 

*     IRNOD4,NDR4,CE4,IRNOD5,NDR5,CE5,IRNOD6,NDR6,CE6 

 

******* FIND THE POSITION OF EACH COEFFICIENT IN CONSTRAINT 

MATRIX ****** 

        

DO WHILE (IRNOD1.NE.0) 

    N1 = (IRNOD1-1)*6 + NDR1 

N2 = (IRNOD2-1)*6 + NDR2 

N3 = (IRNOD3-1)*6 + NDR3 
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N4 = (IRNOD4-1)*6 + NDR4 

N5 = (IRNOD5-1)*6 + NDR5 

N6 = (IRNOD6-1)*6 + NDR6 

    ICOL1(IP)=N1 

    ICOL2(IP)=N2 

ICOL3(IP)=N3 

ICOL4(IP)=N4 

ICOL5(IP)=N5 

ICOL6(IP)=N6           

    CONS(IP,N1) = CE1                              

    CONS(IP,N2) = CE2 

CONS(IP,N3) = CE3 

CONS(IP,N4) = CE4 

CONS(IP,N5) = CE5 

CONS(IP,N6) = CE6    

    IP = IP + 1 

 READ(IN,*) IRNOD1,NDR1,CE1,IRNOD2,NDR2,CE2,IRNOD3,NDR3,CE3, 

*                     IRNOD4,NDR4,CE4,IRNOD5,NDR5,CE5,IRNOD6,NDR6,CE6 

ENDDO 

CALL CHECK ('RELATIVE CONSTRAINTS         ', LENGTH) 

 

********CALCULATE THE SMALLEST COLUMN NUMBER********* 
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 MINCOL=ICOL1(1) 

 DO I=1,IP-1 

 IUU=ICOL1(I) 

 IWW=ICOL2(I) 

IVV=ICOL3(I) 

IZZ=ICOL4(I) 

ICC=ICOL5(I) 

IXX=ICOL6(I) 

IKK=MIN(IUU,IWW) 

IPP=MIN(IVV,IZZ) 

IHH=MIN(ICC,IXX)  

IGG=MIN(IPP,IHH) 

IF (IGG.LT.IKK) THEN 

IKK=IGG 

END IF 

  IF(IKK.LT.MINCOL)THEN 

     MINCOL=IKK 

   END IF  

END DO 

 

***********CALCULATE THE BIGGEST COLUMN NUMBER*********** 

 

MAXCOL=ICOL1(1) 
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DO I=1,IP 

NUU=ICOL1(I)  

NWW=ICOL2(I) 

NVV=ICOL3(I) 

NZZ=ICOL4(I) 

NCC=ICOL5(I) 

NXX=ICOL6(I) 

NKK=MAX(NUU,NWW) 

NPP=MAX(NVV,NZZ) 

NHH=MAX(NCC,NXX) 

NGG=MAX(NPP,NHH) 

IF (NGG.GT.NKK) THEN 

NKK=NGG 

ENDIF 

    IF(NKK.GT.MAXCOL) THEN 

        MAXCOL=NKK 

     ENDIF 

ENDDO 

RETURN 

END 

 

 **********************************************************************  

 SUBROUTINE CONSTRAINTS(CONS,NJ,MINCOL,MAXCOL,ICONSMHT,PROD) 
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************BULID UP THE CONSTRAINTS STIFFNESS MATRIX************ 

 

IMPLICIT REAL*8(A-H,O-Z) 

IMPLICIT INTEGER*4(I-N) 

INTEGER*2 LENGTH 

COMMON /PROBCV/IN 

       

PARAMETER (NUMNOD=1000) 

PARAMETER (NUMMEM=1000) 

DIMENSION PROD(NUMNOD*6,NUMNOD*6),NODP(9,NUMMEM), 

 *      CONS(NUMNOD*6,NUMNOD*6),ALPHA(NUMNOD*6,NUMNOD*6),  

 *      CONSM(NUMNOD*6,NUMNOD*6),CONST(NUMNOD*6,NUMNOD*6), 

 *      IC(NUMNOD*6,NUMNOD*6),ICONSMHT(NUMNOD*6) 

 

           

****************BUILD UP THE CONSTRAINTS MATRIX**************** 

NEQ=NJ*6 

IN=3 

************DEFINE THE VALUE OF PENALTY PARAMETER************ 

ALPH=6.5E+09 

***********BUILD UP THE TRANSPOSE CONSTRAINT MATRIX*********** 

DO I = 1,NEQ 

DO J = 1,NEQ 
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CONST(J,I) = CONS(I,J)                         

ENDDO 

ENDDO      

***********MULTIPLY CONSTRAINT MATRIX AND TRANSPOSED 

CONSTRAINT MATRIX ************ 

CALL MATRIXPRODUCT (CONST,NEQ,NEQ,CONS, 

*                    NEQ,NEQ,CONSM,NEQ,NEQ) 

       

****************BUILD UP THE UNIT MATRIX OF 'ALPHA'**************** 

DO I = 1,NEQ  

DO J = 1,NEQ 

ALPHA(I,J) = 0.0 

ENDDO 

ENDDO 

DO I = 1,NEQ 

      ALPHA(I,I) = ALPH 

ENDDO 

 

***********MULTIPLY THE PRODUCT OF CONSTRAINT MATRIX AND 

TRANSPOSED CONSTRAINT MATRIX WITH MATRIX ALPHA************* 

CALL MATRIXPRODUCT (CONSM,NEQ,NEQ,ALPHA, 

*                    NEQ,NEQ,PROD,NEQ,NEQ) 
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****FIND THE COLUMN HEIGHT IN CONSTRAINTS MATRIX PRODUCT***** 

INN=MINCOL 

M=INN 

DO I=MINCOL,MAXCOL 

IM=ABS(M-INN) 

ICONSMHT(M)=IM 

M=M+1 

ENDDO 

RETURN 

END 

    

********************************************************************** 

SUBROUTINE CONSMATRIX(NEQ,PROD,ICONSMHT,CONSTK) 

**********************************************************************      

SAVE THE CONSTRAINT MATRIX INTO AN ONE-DIMENSIONAL ARRAY 

LIKE THE METHOD DO WITH STIFFNISS MATRIX. THIS PROCEDURE MAKE 

THE CONSTRAINT MATRIX EXACTLY SAME SHAPE WITH STIFFNESS 

MATRIX IN ORDER TO PLUS THEM TOGETHER. 

********************************************************************** 

IMPLICIT REAL*8(A-H,O-Z) 

IMPLICIT INTEGER*4(I-N) 

INTEGER*4 MAXA 

PARAMETER (NUMNOD=1000,NUMSKY=15000000) 

DIMENSION CONSTK(NUMSKY),ICONSMHT(NUMNOD*6), 
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*          PROD(NUMNOD*6,NUMNOD*6) 

M=1 

DO J=1,NEQ 

I=J 

    DO N=1,ICONSMHT(J)+1 

          CONSTK(M)=PROD(I,J) 

          M=M+1 

          I=I-1 

      ENDDO 

 ENDDO  

RETURN 

END 

 

********************************************************************** 

SUBROUTINE MATRIXPRODUCT(A, IrowsA, IcolsA, B, IrowsB, IcolsB, C, IrowsC, 

IcolsC) 

********************************************************************** 

IMPLICIT REAL*8(A-H,O-Z) 

IMPLICIT INTEGER*4(I-N) 

 

PARAMETER (NUMNOD=1000)  

DIMENSION A(NUMNOD*6,NUMNOD*6),B(NUMNOD*6,NUMNOD*6), 

*       C(NUMNOD*6,NUMNOD*6) 
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DO I = 1, IrowsC 

DO j = 1, IColsC 

C(i,j) = 0.0 

ENDDO 

ENDDO 

 

DO i = 1, IrowsA 

DO j = 1, IcolsB 

DO k = 1, IcolsA 

  C(i,j) = C(i,j) + A(i,k)*B(k,j) 

 ENDDO 

ENDDO 

ENDDO 

  

RETURN 

END 
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Appendix B 

New Plastic Energy Method for Rectangular Slab 

Failure Mechanism A 

In Mechanism A, a through-depth crack forms across the slab centre, and in accordance 

with the typical yield-line pattern for a simply supported rectangular slab, diagonal 

yield-line cracks have been assumed as well. The edges of the slab move towards the 

centre of the slab and “relieve” the strains in the reinforcement across part of the short-

span crack. 

 

 

Fig. B1  Assumed crack locations for failure Mechanism A 
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When considering the in-plane rotation of Element 1, the behaviour of the slab element 

is assumed as rigid-plastic, as in yield-line theory. Therefore, the values of β1, β2 and β3 

are the same and represented by β.  With rotation angles: 

𝜃 =
𝛿

𝑛𝑙
 𝑎𝑛𝑑 𝜙 =

2𝛿

𝑙
 

The angles α and β of the crack openings between elements in this mechanism depend 

on the axis deflections during the slab separation after cracking. 

In the X-direction: 

Δ1𝑥 = 𝑛𝑙 − 𝑛𝑙 cos 𝜃 −
𝑙

2
𝛽 

By applying the Taylor series for cos 𝜃: 

cos 𝜃 = 1 −
𝜃2

2!
+
𝜃4

4!
−
𝜃6

6!
+ ⋯+ (−1)𝑛

𝑥2𝑛

(2𝑛)!
 

And, 

Δ1𝑥 = 𝑛𝑙 (1 − (1 −
𝜃2

2
)) −

𝑙

2
𝛽 

Δ1𝑥 =
𝑛𝑙𝜃2

2
−
𝑙

2
𝛽 

In the Y-direction: 

Δ1𝑦 =
𝑙

2
(1 − cos𝜙 )– 𝑛𝑙𝛽 

By applying the Taylor series for cos𝜙: 

Δ1𝑦 =
𝑙

4
𝜙2– 𝑛𝑙𝛽 

Therefore, the angles α and β which determines the crack opening between Elements 1 

and 2 can be calculated as 

𝛽 =
𝑙

2
(1 − cos𝜙)

2

𝑟𝑙
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𝛽 =
1

𝑟

 𝜙2

2
 

𝛼 =
Δ1𝑥 cos 𝛾 + Δ1𝑦 sin 𝛾

𝑙
2⁄

cos 𝛾

 

𝛼 =
2

𝑙
[(
𝑛𝑙𝜃2

2
−
𝑙

2𝑟

𝜙2

2
) cos2 𝛾 + (

𝑙𝜙2

4
−
𝑛𝑙

𝑟

𝜙2

2
) sin 𝛾 cos 𝛾] 

𝛼 = 𝑛𝜃2 cos2 𝛾 + 𝜙2 [(
1

2
−
𝑛

𝑟
) sin 𝛾 cos 𝛾 −

1

2𝑟
cos2 𝛾 ] 

After taking the slab thickness into account, 

𝛼 = 𝑛𝜃2 cos2 𝛾 +
𝜙2

2𝑟
[(𝑟 − 2𝑛) sin 𝛾 cos 𝛾 − cos2 𝛾 ] 

in which,  

n is the parameter defining the location of the yield-line intersection: 

𝑛 =
1

2𝑟
(−1 + √1 + 3𝑟2) 

𝜙 is the rotation of slab Element 1 about edge in longer span, 

𝜃 is the rotation of slab Element 2 about edge in shorter span, 

𝛾 is the angle between the diagonal yield-line and short span edge of Element 2, 

𝛾 = arccos (
1

√1 + 4𝑛2
) 

r is the aspect ratio. 

 

Calculation of rebar extension 

The rebar extension is obtained from the equations above. For different locations of 

cracks, the reinforcing bars can be stretched in their own directions by amounts 

depending on the crack angles to the global axes. 
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In -X direction, 

For diagonal crack α; 

In X-direction, 

𝛥𝛼𝑥 =  𝛼𝑆 𝑐𝑜𝑠 𝛾 + 𝜃𝜇ℎ  

𝛥𝛼𝑥 =  𝛼𝑌 + 𝜃𝜇ℎ                 

In Y-direction, 

𝛥𝛼𝑦 =  𝛼𝑆 𝑠𝑖𝑛 𝛾 + 𝜙𝜇ℎ 

𝛥𝛼𝑦 =  𝛼𝑋 + 𝜙𝜇ℎ                  

Fig. B2  Rebar extension in diagonal crack 

For the crack at the slab edge β1, as this only opens in the Y-direction and the crack is at 

the long edge of the slab, the rebar extension is given as, 

 

 

Δ𝛽1𝑦 =  𝛼𝑋 + 𝜃(1 − 𝜇)ℎ      

 

Fig. B3 20 Rebar extension in slab edge crack 

The crack β2 at the slab centre, which is opening on X direction and caused by the in-

plane rotation only, so the rebar extension is given as, 

 

Δ𝛽2𝑥 =  2𝛽𝑌                          

                                              

 

 

Fig. B4 Rebar extension in slab centre crack 

 



Appendix B 

 

178 

 

For the crack β3 in the X-direction along the slab central axis, the extension is 

 

 

Δ𝛽3𝑦 =  2𝛽𝑋 + 2𝜙𝜇ℎ             

 

Fig. B5  Rebar extension in slab central horizontal crack 

 

Calculation of internal work 

In the previous section, it has been explained that the internal work depends on the rebar 

extension across the yield-line, so that, the internal work due to each yield-line is given 

as below. 

For the diagonal yield-lines α, when the cracks initially appear the reinforcement is 

intact across each yield-line, so that the distances 𝑌 = 𝑙
2⁄  and 𝑋 = 𝑛 𝑙, 

𝐷𝛼𝑥 = 𝐹𝑝
𝑙

2
(
𝛼𝑙

4
+ 𝜃𝜇ℎ) 

and, 

𝐷𝛼𝑦 = 𝐹𝑝𝑛𝑙 (
𝛼𝑛𝑙

2
+ 𝜙𝜇ℎ) 

When the cracks move into the next stage, the rebar becomes part-fractured, so the 

distances 𝑌 < 𝑙
2⁄  and 𝑋 < 𝑛 𝑙, 

𝐷𝛼𝑥 = 𝐹𝑝𝑌 (
𝛼𝑌

2
+ 𝜃𝜇ℎ) 

and, 

𝐷𝛼𝑦 = 𝐹𝑝𝑋 (
𝛼𝑋

2
+ 𝜙𝜇ℎ) 

in which, 
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𝑌 =
∆𝑙𝑖𝑚 − 𝜃𝜇ℎ

𝛼
 

𝑋 =
∆𝑙𝑖𝑚 − 𝜙𝜇ℎ

𝛼
 

If we put 

ℎ̅ =
ℎ

𝑙
 𝑎𝑛𝑑 �̅� =

Δ𝑙𝑖𝑚
𝑙

 

�̅� =
𝑋

𝑙
 𝑎𝑛𝑑 �̅� =

𝑌

𝑙
 

The internal work relationship can be optimized as, 

𝐷𝛼𝑥 = 𝐹𝑝𝑙
2�̅� (

𝛼�̅�

2
+ 𝜃𝜇ℎ̅) 

�̅� =
1

2
 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅� − 𝜃𝜇ℎ̅

𝛼
 

and, 

𝐷𝛼𝑦 = 𝐹𝑝𝑙
2�̅� (

𝛼�̅�

2
+ 𝜙𝜇ℎ̅) 

�̅� = 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =
�̅� − 𝜙𝜇ℎ̅

𝛼
 

As these equations are for one diagonal yield-line, the results need to be multiplied by 4 

when calculating the internal work for the whole slab. 

For slab edge yield-line 𝛽3 , by applying the same equations, 

𝐷𝛽1𝑦 = 𝐹𝑝𝑙
2�̅� (

𝛽�̅�

2
+ 𝜙(1 − 𝜇)ℎ̅) 

�̅� =
𝑟

2
𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅�
2 − 𝜙

(1 − 𝜇)ℎ̅

𝛽
 

The results need to be multiplied by 4 when calculating whole-slab internal work.  
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For the X-direction yield-line 𝛽2,  

𝐷𝛽2𝑥 = 𝐹𝑝𝑙
2�̅�(𝛽�̅�) 

�̅� =
1

2
 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅�

2𝛽
 

The results need to be multiplied by 2 when calculating whole-slab internal work. 

For the Y-direction yield-line 𝛽3, 

𝐷𝛽3𝑦 = 𝐹𝑝𝑙
2�̅�(𝛽�̅� + 2𝜙𝜇ℎ̅) 

�̅� = (
𝑟

2
− 𝑛)𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅� − 2𝜙𝜇ℎ̅

2𝛽
 

The results need to be multiplied by 2 when calculating whole-slab internal work. 

 

Failure Mechanism B 

In this assumed failure mechanism, all the cracks follow the original yield-line pattern 

formed in a rectangular slab with simple support at its edges, and under uniformly 

distributed load. The angles θ and ϕ are the rotations of the two elements about the slab 

edges, but comparing these to the rotations about the slab edges in Mechanism A, the 

crack α is the only one which opens progressively, and it is reasonable to assume that 

the reinforcement across the central yield-line in the long-span direction fractures 

simultaneously without any unzipping effect. 
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Fig. B6  Assumed crack locations for failure Mechanism B 

So, α is given as, 

𝛼 = 𝑛𝜃2 cos2 𝛾 +
𝜙2

2𝑟
[(𝑟 − 2𝑛) sin 𝛾 cos 𝛾] 

 

Calculation of rebar extensions 

The rebar extensions across the yield-line α are given by, 

In the X-direction: 

Δ𝛼𝑥 =  𝛼𝑆 cos 𝛾 + 𝜃𝜇ℎ   

 

 
Fig. B7  Rebar extension in diagonal crack 
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so, 

Δ𝛼𝑥 =  𝛼𝑌 + 𝜃𝜇ℎ                 

In the Y-direction: 

Δ𝛼𝑦 =  𝛼𝑆 sin 𝛾 + 𝜙𝜇ℎ  

so, 

Δ𝛼𝑦 =  𝛼𝑋 + 𝜙𝜇ℎ                 

For the central long-span crack, opening in the Y-direction,  

Δ𝛽𝑦 =  𝑙
𝜙2

2
+ 2𝜙𝜇ℎ              

 

Calculation of internal work 

Using the same calculation method as for Mechanism A, the internal work at each crack 

has been summarized below. 

For the diagonal yield-line α, when mesh reinforcement in the X-direction is intact over 

the yield-line, 𝑌 = 𝑙 2⁄  so the internal work is given by, 

𝐷𝛼𝑥 = 𝐹𝑝𝑙
2�̅� (

𝛼

2
�̅� + 𝜃𝜇ℎ̅) 

 �̅� =
1

2
 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡  𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅� − 𝜃𝜇ℎ̅

𝛼
 

In the Y-direction, when mesh reinforcement is intact across the yield-line, X = n l so 

the internal work is given by, 

𝐷𝛼𝑦 = 𝐹𝑝𝑙
2�̅� (

𝛼

2
�̅� + 𝜙𝜇ℎ̅) 

 �̅� = 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠  𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =
�̅� − 𝜙𝜇ℎ̅

𝛼
 

Since there are 4 diagonal cracks, the equations need to be multiplied by 4 when 

calculating the whole-slab internal work. 

 

Fig. B8  Rebar extension in slab centre crack 



Appendix B 

 

183 

 

For the central long-span crack opening in the Y-direction, the internal work is given by, 

𝐷𝛽𝑦 = 𝐹𝑝𝑙
2�̅� (

𝜙2

2
+ 2𝜙𝜇ℎ̅) 

 �̅� = 𝑟 − 2𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� >
𝜙2

2
+ 2𝜙𝜇ℎ̅ 

 

Failure Mechanism C 

 

 

Fig. B9  Assumed crack locations for failure Mechanism C 
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In this assumed failure mechanism, the critical failure is caused by through-depth cracks 

opening at the yield-line intersections across the shorter span. It is assumed that the 

reinforcement across the diagonal yield-lines fractures simultaneously, as does the rebar 

across the central long-span yield-line. Only cracks β1 and β4 need to be investigated, 

which are both represented by the angle β. 

𝛽 =
𝜙2

4𝑛
 

 

Calculation of rebar extension 

The rebar extension in crack β1 is given by, 

Δ𝛽1𝑦 =
𝑙

2
(1 − cos𝜙) + 𝜙(1 − 𝜇)ℎ           

however, when 𝑋 > 𝑛𝑙, 

Δ𝛽1𝑦 = 𝑙𝜙 [
𝜙

4
+ (1 − 𝜇)

ℎ

𝑙
]  

Fig. B10  Rebar extension in the slab edge crack 

Otherwise, when 𝑋 < 𝑛𝑙, 

Δ𝛽1𝑦 = 𝛽𝑋 + 𝜙(1 − 𝜇)ℎ  

For the rebar extension in β4 is given by, 

Δ𝛽4𝑥 =  𝛽𝑌                                    

 

 

Fig. B11  Rebar extension in crack at yield-line intersection 
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Calculation of internal work 

For the diagonal yield-line crack α, as the reinforcement is assumed to fracture 

simultaneously, before fracture happens when the reinforcement is intact over the yield-

line, 𝑌 = 𝑙
2⁄  and 𝑋 = 𝑛𝑙, and the internal work is given by, 

𝐷𝛼𝑥 = 𝐹𝑝𝑙
2�̅�𝜃𝜇ℎ̅ 

�̅� =
1

2
 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡 𝑤𝑖𝑡ℎ �̅� > 𝜃𝜇ℎ̅ 

𝐷𝛼𝑦 = 𝐹𝑃𝑙
2�̅�𝜙𝜇ℎ̅ 

�̅� = 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡 𝑤𝑖𝑡ℎ �̅� > 𝜙𝜇ℎ̅ 

For the slab-edge crack β1, the width of crack between yield-line intersections is 

different from that near the slab corners. In this case, X1 and X2 represent the distances 

over which rebar is still intact for slab corner zones and between the intersections 

respectively. The internal work is given by, 

𝐷𝛽1𝑦(𝑐𝑜𝑟𝑛𝑒𝑟) = 𝐹𝑝𝑙
2�̅�1 (

𝛽

2
�̅�1 + 𝜙(1 − 𝜇)ℎ̅) 

�̅�1 = 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅�1 =

�̅�
2 − 𝜙

(1 − 𝜇)ℎ̅

𝛽
 

𝐷𝛽1𝑦(𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠) = 𝐹𝑝𝑙
2�̅�2(𝛽�̅�2 + 𝜙(1 − 𝜇)ℎ̅) 

�̅�2 = 𝑟 − 2𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅�2 =

�̅�
2 − 𝜙

(1 − 𝜇)ℎ̅

𝛽
 

For the cracks located at the yield-line intersections β4, the internal work is given by, 

𝐷𝛽4𝑥 = 𝐹𝑝𝑙
2�̅�2𝛽 

�̅� =
1

2
 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅�

𝛽
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Failure Mechanism D 

 

 

 

Fig. B12 Assumed crack locations for failure Mechanism D 
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Mechanism D is a combination of Mechanisms B and C. At one end of the slab, the 

crack forms at the intersection of the yield-lines like Mechanism C. At the other end, 

cracks formed along the diagonal yield-lines and the edges of the slab move towards the 

slab centre. 

Applying same method used in Mechanism A to calculate the displacement caused by 

slab element rotation, the displacements in the X- and Y-directions are given by, 

Δ1𝑥 =
𝑛𝑙𝜃2

2
−
𝑙

2
𝛽1𝑅 

and, 

Δ1𝑦 =
𝑙

4
𝜙2–𝑛𝑙𝛽1𝑅 

The angle α which controls the crack opening magnitude is given by, 

𝛼 = 𝑛𝜃2 cos2 𝛾 +
𝜙2

2(𝑟 − 𝑛)
[(𝑟 − 2𝑛) sin 𝛾 cos 𝛾 −

cos2 𝛾

2
] 

Since only one crack occurs at yield-line intersection along shorter span is assumed, the 

angle β1L and β1R which defines the magnitude of slab edge inward movement is 

different.  

𝛽1𝐿 =
1

4𝑛
𝜙2 

and,  

𝛽1𝑅 =
1

4(𝑟 − 𝑛)
𝜙2 

Since the slab elements are considered as rigid-plastic, it can be get as, 

𝛽2 = 𝛽1𝐿 + 𝛽1𝑅 

𝛽3 = 2𝛽1𝑅 

 

Calculation of rebar extension 

For the reinforcement extension across yield-line crack α, the extension is calculated 

using the same method as for the previous mechanisms, 
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Δ𝛼𝑥 =  𝛼𝑌 + 𝜃𝜇ℎ  

Δ𝛼𝑦 =  𝛼𝑋 + 𝜙𝜇ℎ                     

 

Fig. 13  Rebar extension in diagonal crack 

For the slab edge inward movement between the slab corner and yield-line intersection, 

the reinforcement extension is given by, 

 

 

Δ𝛽1𝐿 𝑦 = 2𝛽𝐿1𝑋 + 2𝜙(1 − 𝜇)ℎ              

 

 

For the slab edge inward movement at the end without a crack at the yield-line 

intersection, the rebar extension is given by, 

 

 

Δ𝛽1𝑅𝑦 = 2𝛽1𝑅𝑋 + 2𝜙(1 − 𝜇)ℎ              

 

 

For the crack located at the yield-line intersection at one end of slab, the rebar extension 

is given by, 

 

 

 

Fig. B14  Rebar extension in slab edge inward 

movement β1L 

 

Fig. B15  Rebar extension in slab edge inward 

movement β1R 
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Δ𝛽2𝑥 = (𝛽1𝐿 + 𝛽1𝑅)𝑌                 

 

 

 

For the horizontal crack along the yield-line at the slab centre, the rebar extension is 

given by, 

 

 

Δ𝛽3𝑦 = 2𝛽1𝑅𝑋 + 2𝜙𝜇ℎ                             

 

 

 

Calculation of internal work 

For the diagonal yield-line at one end of the slab reinforcement fracture is assumed to 

be simultaneous.  When the rebar is intact across the yield-line, 𝑋 = 𝑛𝑙 and 𝑌 = 𝑙 2⁄ , so 

the internal work is given by, 

𝐷𝛼𝐿𝑥 = 𝐹𝑝𝑙
2�̅�𝜃𝜇ℎ̅ 

�̅� =
1

2
 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅� − 𝜃𝜇ℎ̅

𝛼
 

𝐷𝛼𝐿𝑦 = 𝐹𝑝𝑙
2�̅�𝜙𝜇ℎ̅ 

�̅� = 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =
�̅� − 𝜙𝜇ℎ̅

𝛼
 

 

Fig. B16  Rebar extension in yield-line 

intersection crack β3 

Fig. B17  Rebar extension in horizontal yield-

line crack β3 
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For the diagonal yield-line crack α at the other end of the slab, the internal work is given 

by, 

𝐷𝛼𝑅𝑥 = 𝐹𝑝𝑙
2�̅� (

𝛼

2
�̅� + 𝜃𝜇ℎ̅) 

�̅� =
1

2
 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑚𝑒𝑛𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

𝜈
2
̅
− 𝜃𝜇ℎ̅

𝛼
 

𝐷𝛼𝑅𝑦 = 𝐹𝑝𝑙
2�̅� (

𝛼

2
�̅� + 𝜙𝜇ℎ̅) 

�̅� = 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅�
2 − 𝜙𝜇ℎ̅

𝛼
 

For the slab-edge inward movement β1, the internal work is given by, 

𝐷𝛽1𝑌 = 𝐹𝑝𝑙
2�̅� [�̅�𝐿  (

𝛽1𝐿
2
�̅�𝐿 + 𝜙(1 − 𝜇)ℎ̅) + �̅�𝑅  (

𝛽1𝑅
2
�̅�𝑅 + 𝜙(1 − 𝜇)ℎ̅)] 

�̅�𝐿 = 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅�𝐿 =

�̅�
2 − 𝜙

(1 − 𝜇)ℎ̅

𝛽1𝐿
 

�̅�𝑅 = 𝑟 − 𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅�𝑅 =

�̅�
2 − 𝜙

(1 − 𝜇)ℎ̅

𝛽1𝑅
 

For the crack at the yield-line intersection across the shorter span β2, the internal work is 

given by, 

𝐷𝛽2𝑥 = 𝐹𝑃𝑙
2(𝛽1𝐿 + 𝛽1𝑅)�̅�

2 

�̅� =
1

2
 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =

�̅�

𝛽1𝐿 + 𝛽1𝑅
 

For the crack across the slab’s central axis β3, the internal work is given by, 

𝐷𝛽3𝑦 = 𝐹𝑝𝑙
2�̅�(𝛽1𝑅�̅� + 2𝜙𝜇ℎ̅) 

�̅� = 𝑟 − 2𝑛 𝑤ℎ𝑒𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑖𝑛𝑡𝑎𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 �̅� =
�̅�−2𝜙𝜇ℎ̅

2𝛽𝑅
. 


