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Abstract 

 

Clouds are a critical component of Earth’s climate and hydrological cycle. The formation of 

ice in the atmosphere, especially at lower altitudes, can substantially impact the evolution of 

clouds and their radiative properties, and represents the initiation of the cold rain 

precipitation process. In mixed-phase clouds quantitatively understanding the interactions 

between ice and liquid, and the subsequent impact on the cloud development, is 

fundamentally dependent on the process of ice formation and its representation within cloud 

models.  

 

Experiments show that ice nucleating particles (INPs) exhibit variability in both freezing 

efficiency and time-dependent behaviour. The variability in freezing efficiency is currently 

well characterised and represented, but variability in time-dependence is poorly 

characterised and rarely represented in models and parameterisations. The primary aim of 

this thesis is to understand the role that time-dependence plays in the freezing behaviour of 

droplets, and secondly to examine the sensitivity of mixed-phase clouds to time-dependence 

in immersion mode freezing. It is initially found that CNT-based models are unable to 

reproduce the observed time-dependent behaviour. A new model is therefore presented that 

uniquely incorporates the variability in both freezing efficiency and time-dependent 

behaviour; this is applied to experimental data to understand the manifestation of 

time-dependence in experiments. The model is then used to derive a new theoretical 

framework for use in experimental analysis and cloud modelling studies. The framework is 

underpinned by the finding that the temperature dependence (named λ) of the nucleation 

rate coefficient solely determines the time-dependent behaviour observed in droplet 

freezing experiments. New and existing experimental data is used to demonstrate the ability 

for the framework to reconcile data obtained on different timescales with different 

experimental methods. Finally, an efficient and representative parameterisation is used to 

explore the sensitivity of mixed-phase clouds to time-dependence. Using a series of 

increasingly complex models (0D to 2D) it is shown that the inclusion of time-dependence 

impacts cloud properties in regimes where the updraught speed is relatively low.  
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Chapter 1: Introduction 

1 Chapter 1: Introduction 

1.1 Clouds and The Earth’s Energy Budget 

The Earth’s energy budget is determined by the flux of incoming solar shortwave radiation 

(SWR) and the fluxes of thermal longwave radiation (LWR) within the atmosphere. Clouds 

at all altitudes play a substantial role in the transmittance of SWR and LWR through the 

atmosphere. Around 22 % of the incoming SWR is reflected back to space by clouds. 

Within the atmosphere clouds also interact with the outgoing LWR and act to absorb, 

re-emit, and scatter the radiation, thus trapping a proportion of the energy within the 

atmosphere.  

 

 

Figure 1.1. Characteristics of clouds that can influence their radiative properties.  

 

 

The radiative properties of clouds, graphically represented in Figure 1.1, are governed by 

several factors including the size and number concentration of hydrometeors, the phase of 

hydrometeors, spatial extent, thickness, and altitude. Clouds close to the surface generally 

reflect a high fraction of incoming SWR, and exert a negative radiative effect on the 

climate. High altitude clouds such as cirrus are often optically thin, and do not reflect much 

incoming SWR. However, due to their cold temperature any absorbed outgoing LWR is 
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re-emitted with a much lower energy, and thus these clouds exert a positive radiative effect 

on the climate. Boucher et al. (2013) have estimated a global annual mean radiative effect 

of -20 W m-2 due to cloudy conditions, with clouds therefore having a net cooling effect on 

the Earth.  

 

Clouds can therefore be seen as a critical component of Earth’s climate, especially in a 

changing climate where an increase in mean surface air temperature may have substantial 

impacts on the development and evolution of clouds. General Circulation Models (GCMs) 

numerically simulate the atmosphere and are used to reproduce and forecast long-term 

changes in the climate. These models provide us with the best estimate of how changes in 

atmospheric constituents, such as an increase in CO2, will impact the climate in the future 

and subsequent results are commonly used to inform governments and influence policy. A 

single GCM grid cell is typically 50 to 100 km in the horizontal and 15 km in the vertical 

(Boucher et al., 2013). There are many sub-grid scale processes (e.g., convection, 

turbulence, scavenging, precipitation mechanisms, aerosol activation, ice formation) that are 

either parameterised or neglected; the feedbacks and interactions between these processes 

occur on microphysical scales that currently cannot be represented within GCMs 

(Bodenschatz et al., 2010; Ma et al., 2012). Consequently, feedbacks on clouds due to 

climate change are seen as a major uncertainty (Cess et al., 1989; Randall et al., 2003; Bony 

et al., 2006).  

 

Mixed-phase clouds, where supercooled water co-exists with ice, are found at all latitudes 

(Hogan et al., 2004; Nasiri and Kahn, 2008; Hu et al., 2010; Boucher et al., 2013) and 

observational studies commonly report the existence of supercooled liquid layers at 

temperatures down to -35 °C (Hogan et al., 2004; Hu et al., 2010; Kanitz et al., 2011). 

These cloud types represent a large proportion of the cloud-climate feedback uncertainty 

due to poorly understood microphysical processes that primarily include the initial 

formation of ice, but also the subsequent in-cloud interactions and feedbacks on cloud 

properties. This is reflected in Figure 1.2 where each bar represents the best estimate of the 

radiative forcing due to specific components in the atmosphere between 1750 and 2011. 

The interactions and feedbacks between aerosol and clouds (expressed as an effective 
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radiative forcing) remains a significant uncertainty, with the 5 to 95 % confidence range 

spanning -1.2 to 0.0 W m-2; reflecting a low level of confidence. 

 

 

Figure 1.2. Radiative forcing bar chart for the period 1750–2011 based on emitted compounds (gases, aerosols or 

aerosol precursors) or other changes. Red (positive forcing) and blue (negative forcing) are used for emitted 

components which affect few forcing agents, whereas for emitted components affecting many compounds several 

colours are used as indicated in the inset at the upper part the figure. The vertical bars indicate the relative uncertainty 

of the radiative forcing induced by each component; reproduced from Myhre et al. (2013) Fig. 8.17 (pg 698).  

 

 

1.2 Mixed-Phase Clouds 

Observations of mixed-phase clouds show diversity in characteristic properties. At high 

latitudes (e.g., the Arctic) the freezing level is at the surface, so any liquid cloud that forms 

will be supercooled. Low level (< 2 km) clouds, such as stratus and stratocumulus, have low 

updraught velocities (< 10 cm s-1) and are typically long-lived with low ice number 

concentrations; McFarquhar et al. (2007) measured average concentrations of 1.6 to 5.6 L-1. 

In mid-latitudes the large-scale ascent of an air mass above the freezing level can result in 

persistent mixed-phase stratus clouds with low updraught velocities (~5 to 10 cm s-1); 

Crosier et al. (2011) observed an average ice number concentration of 0.2 L-1 in southern 
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England and Hobbs and Rangno (1985) observed similar concentrations in North America. 

Similarly formed mixed-phase clouds are also found in the tropics at altitudes of 4 to 8 km 

(Riihimaki and McFarlane, 2010). In convective and frontal systems the clouds can extend 

to greater altitudes (up to 12 km) and contain updraught velocities ranging from ~1 m s-1 in 

cumulus to > 10 m s-1 in cumulonimbus clouds; these velocities result in high cloud liquid 

water content, cold cloud top temperatures and high number concentrations (e.g., > 100 L -1 

(Hobbs and Rangno, 1985)). 

 

1.3 Ice Phase Interactions in Mixed-Phase Clouds 

The formation of ice in a supercooled liquid cloud can impact its subsequent development 

and evolution in several ways and is primarily dependent on the existing cloud properties. 

These include the concentration and composition of aerosol present, existing size and 

number distribution of cloud hydrometeors, temperature, cloud dynamics, and available 

water vapour.  

 

Precipitation processes are closely linked to the presence of ice particles, and in particular 

the process of primary ice formation which initiates glaciation of the cloud. Ice crystals are 

known to have a lower equilibrium water vapour pressure than supercooled liquid water 

droplets. As a consequence under supersaturated conditions with respect to ice newly 

formed ice particles can grow at the expense of the evaporating liquid droplets - known as 

the Wegener-Bergeron-Findeisen (WBF) process. In clouds where the total water content is 

high and the number of ice particles small, these ice particles can grow to precipitable sizes 

and thus enhance precipitation and modify cloud lifetime. The WBF process is thought to 

be the main pathway for precipitation in mixed-phase clouds ((Pruppacher and Klett, 1997), 

hereafter PK97, Ch. 1), and importantly, is a process that depends on the presence of 

pre-existing ice particles. 

 

Secondary ice formation (the multiplication of a single ice particle) occurs either from 

fragmented ice crystals as a result of evaporation or collisions (Vardiman, 1978) or from the 

ejection of ice splinters during the process of riming, where sedimenting ice particles collect 

supercooled droplets. This is thought to occur between -3 and -8 °C and is known as the 
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Hallett-Mossop (HM) process (Hallett and Mossop, 1974). Modelling studies have shown 

that providing there is sufficient supercooled water the HM process can multiply the 

existing number ice crystals by several orders of magnitude (Phillips et al., 2003), which 

leads to a modification of the cloud hydrometeor size distribution and precipitation. Again, 

this process will be sensitive to the formation of primary ice particles.  

 

A modification to the size and number distribution of cloud hydrometeors, which includes 

the WBF and HM process, can have a direct impact on the optical properties of the cloud. 

Precipitation intensity, onset, and duration can be enhanced or supressed, which can lead to 

a modification of the cloud lifetime. The process of riming can alter the size distribution of 

hydrometeors, and graupel production and subsequent interaction with ice particles is 

thought to be the mechanism behind cloud electrification.  

 

The freezing of liquid, and the associated latent heat, can enhance cloud updraughts 

allowing cloud tops to reach higher altitudes (and thus a colder temperature), whereas the 

melting of precipitation below the cloud base can create strong downdraughts and cold 

pools that may trigger new convective cells (Tompkins, 2001). These processes can 

substantially alter the microphysical characteristics of the cloud and therefore its radiative 

properties.  

 

Interactions and feedbacks between aerosol, ice, and liquid in mixed-phase clouds need to 

be quantitatively understood and sufficiently represented in models in order to predict the 

behaviour of developing systems, and predict the response of mixed-phase clouds to 

changes in the climate. The fundamental process of primary ice formation along with 

knowledge of cloud microphysical properties is integral to understanding the extent to 

which the subsequent interactions impact the cloud development and radiative properties.  

 

1.4 Ice Nucleation 

Primary ice formation is the transition from the metastable parent phase (liquid or gas) to 

the stable solid phase via nucleation. This is thought to occur as a result of random 

fluctuations of embryonic ice-like germs of molecules within the parent phase. With 
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continued growth of a germ (via collisions and aggregation) a critical size is reached where 

the new phase is energetically more favourable and the germ grows into a macroscopic 

crystal. Homogeneous nucleation occurs within the bulk phase of supercooled liquid, 

whereas heterogeneous nucleation occurs on the surface of a particle either in the 

supercooled liquid or supersaturated gas phase. These two nucleation modes will be 

discussed in Sections 1.5 and 1.6. 

 

1.5 Homogeneous Ice Nucleation 

In the atmosphere liquid droplets are observed to supercool to temperatures below -38 °C 

before freezing occurs. The presence of dissolved solutes in the droplet has also been 

observed to depress the freezing temperature (Koop, 2004). These processes will play an 

important role in cloud formation and development in the upper troposphere and therefore 

represent an important radiative component of the Earth’s energy budget. The homogeneous 

freezing temperature is also the point at which the cloud will inevitably glaciate, and defines 

the lower temperature limit to the mixed-phase regime.  

 

1.5.1 Classical Nucleation Theory 

In a pure water droplet (i.e., no solid inclusions or solutes) the energy barrier required for a 

freezing event to occur is suggested to be a result of the Gibbs free energies for forming the 

ice-liquid surface interface and the volume transition from liquid to ice. Classical 

Nucleation Theory (CNT) is a thermodynamic framework that was developed to calculate 

and extrapolate these energies under changing conditions. Assuming that ice germs can be 

approximated by a sphere with macroscopic properties then following PK97 (Ch. 7) the 

surface interface free energy (  ) can be expressed as 

 

        
      (1.1) 

 

where    is the radius of the ice germ and      is the interfacial energy between ice and 

liquid water. Similarly, the transition energy of the volume (  ) can be expressed as 
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(1.2) 

 

where    is the volume of water molecule in ice,    is the Boltzmann constant,   is the 

temperature in Kelvin, and    is the saturation ratio with respect to ice. The summation of 

Eqs. (1.1) and (1.2) provide us with the total Gibbs free energy (  ) of the energy barrier: 

 

 
    

    
 

   

            
      

(1.3) 

 

A plot of    and the two components at 270 K is plotted in Figure 1.3a. As the radius of the 

ice germ increases the magnitude of    and    increases, but due to different dependencies 

on    there exists a maximum value of   . This maximum at     is associated with a 

critical radius   
 , at which point growth of the ice germ is energetically favourable. The 

dependence of     on temperature is shown in Figure 1.3b. The amount of energy required 

for a freezing event to occur strongly decreases with decreasing temperature. 

 

 

Figure 1.3. (a) shows the Gibbs free energy as a function of ice germ radius; the red (green) dashed line represents the 

surface (volume) energies and the blue solid line represents the summation of these two terms. The dotted line marks 

the criticial radius and associated critical Gibbs free energy. (b) shows how the critical Gibbs free energy varies with 

temperature. 
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Setting the derivative       ⁄    in Eq. (1.3) and solving for    provides the critical 

radius (  
 ) required for an event to occur: 

 
  

  
       

       
 

(1.4) 

 

 and substituting back into Eq. (1.3) provides an expression for the critical Gibbs free 

energy (   ) at a given temperature: 

 

 
    

       
   

 

          
 
 

(1.5) 

 

The nucleation rate for the formation of critical germs per unit volume per unit time,   , can 

then be expressed as: 

 

 
           ( 

      

   
) 

(1.6) 

 

where   is a kinetic factor that accounts for the flux of water molecules to the ice germ 

interface and the energy required for the reorientation of the molecule associated with the 

phase transition. This can be calculated following PK97: 

 

 
  

   

 
   ( 

      

   
)     

(1.7) 

 

where   is the Planck constant,        is the diffusion energy across the liquid-ice interface, 

and      is the number density of molecules in the bulk liquid. Various expressions for   

have been proposed as well as additional factors in Eq. (1.6) that act to refine the expression 

(see PK97 Ch. 7 and references therein).  

 

1.5.2 Homogeneous Ice Nucleation Measurements  

The probability for a critical germ to form in the liquid phase will increase with the volume 

of the droplet, and as the growth is governed by the random fluctuations in attachment and 
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detachment of water molecules, the system is stochastic and the probability will also 

increase for longer periods of time. Assuming that a single critical germ causes the freezing 

process the rate of change in the number of droplets can be expressed as 

 

    

  

        
(1.8) 

 

where    is the number of liquid droplets,   the volume of the droplet, and    the change in 

time. The number of droplets that freeze (  ) in a given period of time ( ) can be expressed 

upon integration of Eq. (1.8) and rearranging:  
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(1.9) 

 
  

    

    

       
(1.10) 

 
  

  

    

            
(1.11) 

 
     

  

  

              
(1.12) 

 

where             , and      is the fraction of    droplets frozen after a duration of time. 

Essentially            describes the probability that a freezing event will not occur (    ) 

so conversely          where   is the probability of a freezing event occurring. 

Equation (1.12) provides a means for experimentally determining    if the volume of the 

droplet is known. 

 

1.6 Heterogeneous Ice Nucleation 

The formation of ice via homogeneous nucleation occurs at supercooled temperatures below 

~ -38 °C; however, ice is commonly observed to form at warmer temperatures. The 

provision of a surface for the ice germ to form on (within either a supercooled droplet or 

supersaturated water vapour) can reduce the energy barrier required for a critical germ to 

develop. This is known as heterogeneous nucleation and can occur via several different 
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pathways (shown in Figure 1.4) depending on the interaction between the ice nucleating 

particle (INP) and the metastable parent phase. The following descriptions follow those of 

Vali (1985). 

 

1.6.1 Nucleation Pathways 

 

Figure 1.4. Graphic representation of the heterogeneous ice nucleation pathways with respect to temperature and ice 

supersaturation Si. Solid line is the water saturation line where Sw = 1.0. All modes occur at or above the water 

saturation line except for deposition. 

 

 

Deposition mode occurs when an ice germ nucleates directly from the vapour phase onto 

the INP in conditions where the water vapour pressure is supersaturated with respect to ice 

but subsaturated with respect to water.  

 

In immersion mode freezing the INP is internally immersed within a supercooled water 

droplet prior to freezing; likely as a result of either previous activation as a cloud 

condensation nucleus (CCN), melting of heterogeneously frozen ice particles, or an aerosol 
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scavenging process. Upon a change in temperature or time the immersed particle acts as a 

nucleation site. 

 

The process of contact mode freezing is a result of the INP coming into contact with the 

supercooled droplet surface; either from an external collision or through an internal process 

where the particle comes into contact with the liquid-vapour interface through freezing 

cycles or droplet evaporation (Durant and Shaw, 2005; Fornea et al., 2009). In-cloud 

collisions can arise as a result of Brownian motion, diffusiophoresis, electrophoresis, or 

thermophoresis forces (PK97 Ch. 17); the latter is thought to be the more important source 

(Phillips et al., 2007). 

 

Condensation mode occurs as the result of an INP being activated as a CCN under 

supercooled conditions. During the condensation process the partially immersed INP acts as 

a nucleation site with the resulting critical ice germ forming on the particle-liquid interface. 

This mode is often combined with immersion mode, in the assumption that the INP 

becomes fully activated as a CCN and therefore fully immersed within a droplet. 

 

1.6.2 Relative Importance of Nucleation Pathways in Mixed-Phase Clouds 

Observational studies of clouds above homogeneous freezing temperatures show strong 

evidence that water saturation is a pre-requisite for the formation of ice, which suggests that 

deposition mode nucleation plays a minor role. During the SAMUM campaign Ansmann et 

al. (2009) reported that in 99 % of observed cases the initiation of ice in altocumulus at 

Cape Verde occurred within the liquid cloud top. Based on observations from the M-PACE 

campaign Prenni et al. (2009a) concluded that only heterogeneous pathways that act at or 

above water saturation played a major role in ice formation above -30 °C with the 

immersion or condensation mode dominating. Westbrook and Illingworth (2011) analysed 4 

years of lidar and radar observations in Southern England and found that in 95 % of cases 

where cloud ice formed above -20 °C, the ice originated from supercooled liquid clouds. 

Similarly, using lidar, radar, and microwave observations of arctic stratiform clouds de Boer 

et al. (2011) found that ice was not observed until after a liquid layer formed. Ansmann et 

al. (2005) presented lidar observations of an altocumulus above Leipzig, Germany. The 
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authors found that ice was being produced in the edges of the clouds and in downdraught 

regions. It was hypothesised that contact mode freezing played a dominant role due to the 

absence of ice in the cloud interior. However, several modelling studies have shown contact 

mode freezing is not dominant in many mixed-phase clouds. Cui et al. (2006) and Phillips et 

al. (2007) used cloud resolving models (CRMs) to simulate deep convective clouds and 

found that contact mode freezing made little contribution to the production rate of ice. 

Using a GCM that included an ice nucleation scheme Hoose et al. (2010) found that 

immersion mode freezing was the dominant process, followed by contact mode. Similarly, 

using a 1D kinematic framework with detailed microphysics Field et al. (2012) found that 

observed INP concentrations of a lee wave cloud were best reproduced by 

immersion/condensation mode freezing (a single parameterisation was used to describe the 

cumulative production rate). Following these observations and results this thesis will focus 

on immersion mode freezing due to its potential primary atmospheric importance.  

 

1.6.3 Classical Nucleation Theory (Heterogeneous) 

The CNT thermodynamic framework discussed in Sect. 1.5.1 can be extended to include the 

inclusion of a solid nucleus. This nucleus provides a site for the germ formation to occur 

and can enhance the probability that an ice germ of critical size will be reached. The 

inclusion therefore acts to reduce the energy barrier required for the critical size to be 

achieved. This effect can be incorporated into Eq. (1.6) as a ‘compatibility’ factor,   , that 

represents the substrate’s ability to enhance the probability of a critical germ formation. The 

nucleation rate for the formation of critical germs per unit surface area per unit time (  ) can 

therefore be expressed as 

  

 
           ( 

         
   

) 
(1.13) 

 

For the immersion mode     and   can be calculated using the expression for 

homogeneous nucleation; Eqs. (1.5) and (1.7) respectively. With regards to the 

compatibility factor a value      would describe a surface that has no effect on the energy 

barrier (as compared to homogeneous), whereas      describes an increasing ability to 
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reduce the energy barrier. To relate this ability to a physical property a conceptual function 

that relates a wettability parameter to describe    has been proposed: 

 

 
   

                 

 
 

(1.14) 

 

where   is the contact angle of a spherical ice germ in contact with the substrate. This is a 

widely used parameter that is adjusted to fit to experimental data, with the contact angle   

being a reported quantity. This conceptual ‘contact-angle’ model has a significant weakness 

in the assumed geometric form of the ice germ but it does provide a parameter that is able to 

describe the relative ability for a substrate to catalyse nucleation. 

 

Assuming that the probability of a critical germ forming on a substrate increases with 

surface area and that              then following Eq. (1.12) the fraction of droplets, or 

particles, that freeze after a given period of time can be expressed as 

 

   

  

                      
(1.15) 

  

where   is the surface area of the available INP and    is the number of droplets containing 

an immersed INP. As in Eq. (1.12) the probability of a freezing event not occurring (    ) is 

described by           . 

 

1.6.4 Heterogeneous Nucleation Sites 

Due to observational limitations it is not possible to directly observe the critical germ 

nucleus experimentally and therefore prove or disprove the contact-angle model. 

Alternatively, it has been hypothesised that INPs exhibit physiochemical properties that 

lead to preferred nucleation sites on the surface (PK97 Ch. 9.2.3; Kulkarni and Dobbie, 

2010). These may be chemical, crystallographic, or surface features such as cracks, steps, or 

pores that provide sites where the energy barrier required for nucleation is at a local 

minimum. A good lattice matching (i.e., a substrate that exhibits an ice like crystallographic 

structure acting as a template for ice formation) has been ascribed to the nucleating 
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properties of kaolinite and silver-iodide (PK97 Ch. 9.2.3.4; Mason, 1971), but more recent 

studies, using molecular dynamics simulations, have shown that for kaolinite at least, a 

different mechanism is causing nucleation (Hu and Michaelides, 2007; Cox et al., 2012). 

These mechanisms are difficult to understand and study and as such it is not currently 

possible to use the known physiochemical properties of a potential INP to predict its 

freezing behaviour (Hoose and Möhler, 2012). 

 

1.6.5 Experimental Methods 

Experiments are performed under a wide range of conditions in an effort to empirically 

understand ice nucleation and determine rates for use in predictions of freezing behaviour. 

Some of these instruments are designed to take real-time measurements of ambient air, 

whilst others are designed for use in laboratories with known samples and quantities. This 

section will provide a brief description of several common instrument designs and 

individual instruments that are currently used. 

 

The Continuous Flow Thermal Gradient Diffusion Chamber (CFDC) is an instrument where 

temperature and supersaturation (with respect to ice and liquid) are controlled using parallel 

plates held at differing temperatures. Each plate is coated with a layer of ice and held at a 

specific temperature; the ice-vapour interface is therefore saturated with respect to ice. By 

changing the temperatures of each opposing plate a supersaturation gradient is created in the 

region between the plates. A flow of air containing the INP sample is passed through the 

instrument and the total fraction frozen is measured. These instruments use a short 

residence time (~ 10 s (DeMott et al., 2011)) which is commonly fixed; the importance of 

the residence time will be discussed in Chapter 4.  

 

Cold-stage instruments typically consist of a single temperature controlled plate that is used 

to observe the freezing behaviour of a population of droplets (or single droplet) upon a 

change in temperature or a change in time. See Figure 1.5 for a typical instrument design. 

Droplets containing a known concentration of INPs are applied to a substrate and cooled at 

a constant rate. Freezing events are measured using an optical microscope. Using this 

method, varying cooling rates can be used to investigate the temperature-dependence of an 
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INP (ranging from ~0.01 to 10 °C min-1). Freeze-thaw cycles can be performed in order to 

understand the reproducibility (or stochastic nature; see Sect. 1.8.2.3), and isothermal 

experiments, where the temperature is held constant for a duration of time (on the scale of 

minutes to days (Murray et al., 2011; Wright et al., 2013)), can be used to examine the time-

dependent behaviour of an INP.  

 

 

Figure 1.5. Schematic of a typical cold-stage instrument. Figure taken from Murray et al. (2010). 

 

 

The Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber is 

distinctly different from the previous examples in that it is designed to reproduce the 

evolution of a cloud. The AIDA cloud chamber is an 84 m3 insulated chamber that can be 

cooled down to -90 °C (Mohler et al., 2006). A representative atmosphere is achieved 

through mechanical expansion of the chamber using a vacuum and a frost layer on the 

inside of the chamber. Cooling experiments at a range of rates can be performed where 

temperature (Connolly et al., 2009) or supersaturation (Mohler et al., 2006) is varied with 

time. The scale of the AIDA cloud chamber permits the interaction of the hydrometeors and 

therefore a more realistic treatment of ice formation processes in the atmosphere, however, 

it is impossible to determine the individual freezing events and the precluding nucleation 

event. Cooling rates are typically limited to above ~1 °C min-1, which in terms of a typical 

cloud updraught speed is relatively high. 

 

These examples demonstrate the range of temporal conditions that are commonly applied in 

immersion mode freezing experiments. The effect that this has on the resulting data is not 
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currently understood, and therefore accurately reconciling data obtained using the range of 

techniques is not currently possible. 

 

1.6.6 Experimental Analysis 

The instruments described previously are all designed to make observations on the fraction 

of viable droplets that freeze. Some instruments (cold-stage, AIDA) are capable of 

measuring this fraction as a continuous function of time and temperature, thus producing 

cumulative fraction frozen (hereafter referred to as f(T)) curves, whereas others (CFDCs) 

are only capable of single measurements, and require multiple experiments to obtain f(T) 

curves. If the surface area per droplet is known then temperature-dependent ice formation 

rates can be determined from the fraction frozen data. This rate is either assumed to follow 

CNT, in that the critical ice germ formation is dependent on temperature and time, or a 

simplified model where it is assumed that the formation of the germ is simply dependent on 

temperature. These descriptions will be fully defined in Sect. 1.6.3 but for now are named 

the stochastic and singular approach, respectively. 

 

The stochastic approach follows from CNT in Sect. 1.6.3 so that on rearranging Eq. (1.15) 

the nucleation rate coefficient      , in events per unit surface per unit time, is calculated as 

 

      
           

   
 

(1.16) 

 

where      is the fraction of viable droplets frozen at a temperature   for a duration of 

time  . 

 

The singular approach uses a nucleation coefficient      , in events per unit surface area, 

that describes the cumulative number of droplets that freeze,     , upon cooling from        

to a temperature   so that:  

      
           

 
 

(1.17) 
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These two expressions are commonly used to obtain functions that characterise the 

temperature dependent ability of an INP species or population. A summary of these results 

will be presented in the following sections.  

  

1.7 Observations and Sources of INPs 

The atmospheric loading of INP species, both in terms of concentrations and composition, 

has been determined through a combination of early ice crystal residue studies and more 

recent in-situ aircraft observations using CFDC instruments.  

 

Kumai (1951, 1961) examined ice crystal residues with an electron microscope at locations 

in the US and Japan and found that the nuclei could be categorised into mineral dust, 

hygroscopic particles, combustion products and micro-organisms. Clay minerals, 

specifically of the illite, koalinite, and montmorillonite groups, were found to be the 

dominant component. Isono et al. (1959) used an ice nucleus counter and found that low 

INP concentrations occurred in maritime air masses, and high concentrations in continental 

air masses. Particularly high concentrations were found in dust storms originating from arid 

regions. Concentrations determined at -20 °C varied from < 0.1 L-1 (maritime) to > 60 L-1 

(dust storm) with typical daily concentrations ~ 1 to 10 L-1. This early work showed 

evidence that mineral dusts made up a significant proportion of atmospheric INP species 

and that concentrations varied depending on source region.  

 

More recent data on atmospheric INP concentrations are summarised in Figure 1.6. 

Observations typically range from ~ 1 to 10s L-1, with maximum values of 100s L-1. 

Compared to typical ranges of aerosol concentrations (105 to 107 L-1) it is clear that INPs 

represent a very small subset of all aerosol particles. Similar to the conclusions of Isono et 

al. (1959), INP concentrations are spatially and seasonally variable, with events such as dust 

storms correlated with the highest observed concentrations (DeMott et al., 2003a). 
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Figure 1.6. Atmospheric observations of INP concentrations from various studies. This figure does not take into 

account the temperature at which observations were made.  

 

 

 

 

Figure 1.7. Graphic showing relative contributions from different INP species from in-situ observations. 
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Following from the work by Kumai, several recent observational studies have used mass 

spectroscopy, or electron microscopy to determine the composition of atmospheric INP 

species. The results are summarised in Figure 1.7: DeMott et al. (2003a) and Richardson et 

al. (2007) sampled air at an elevated location in the western US; Pratt et al. (2009) took in-

situ samples above Wyoming, US; and Prenni et al. (2009b) sampled air over the Amazon 

basin. In all studies mineral dust was found to be a major constituent. Combustion products 

were found in three of the studies and sulphates, important for ice formation in cirrus 

clouds, were reported in all elevated air samples. Pratt et al. (2009) and Prenni et al. (2009b) 

both found that biological species accounted for a large proportion of all observed INP 

species.  

 

Mineral dusts originate from the erosion of crustal rocks followed by uplift from dust 

storms, dust devils, and other convective processes (Knippertz and Todd, 2012). Prospero et 

al. (2012) used a satellite product to determine global dust sources and transport. The study 

found that sources are associated with topographical lows in arid regions that have evidence 

of past fluvial action. Once airborne dust particles can be transported large distances; 

mineral dusts from the African continent have been found in the East coast of US, the 

Amazon and Europe (Sassen, 2002; Prenni et al., 2009b; Klein et al., 2010) and mineral 

dusts from Asia have been found in the western US and China (Huang et al., 2008). The 

classification of mineral dust covers a wide range of individual minerals. Using X-ray 

diffraction analysis Murray et al. (2012) presented the relative mineralogical composition of 

samples taken from locations across the globe. Similar to Kumai (1961) they found that 

atmospheric dust predominantly consists of clay minerals (illite, kaolinite, montmorillonite, 

and chlorite), feldspars (K-feldspar, and Na-Ca feldspar), and quartz. 

 

Carbonaceous combustion products originate from either natural sources, such as wildfires, 

or anthropogenic sources such as biomass burning and industrial processes. Individual 

insoluble soot particles range from ~ 0.01 to 0.1 µm in diameter but commonly agglomerate 

to form particles up to 0.5 µm (Popovicheva et al., 2008). Using airborne observations 

Hudson et al. (2004) estimated that ~ 33 % of all particles in the North American 

troposphere were carbonaceous in origin. Through ageing processes these particles are able 
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to become activated as CCN and thus potential immersion mode INPs (Sun and Ariya, 

2006). 

 

Biological particles (also known as bioaerosols) include pollen, fungal and lichen spores, 

bacteria, diatoms, and fragments of plants and animals. The relative abundance and 

concentration of these particles in the atmosphere is highly uncertain, with emission 

estimates ranging from < 10 to 1000 Tg yr-1 (Winiwarter et al., 2009; Hoose et al., 2010). 

Christner et al. (2008) analysed precipitation from Europe, North America, and Antarctica 

and inferred that bacteria was present in 95 % of cases, and Elbert et al. (2007) estimated 

airborne fungal spore concentrations to be on the order of 1 to 10 L-1, demonstrating the 

potential global importance of bioaerosols as an INP species. Known bacteria species acting 

as INPs include Pseudomonads, such as Pseudomonas syringae. Several companies mass 

produce these bacteria (grown from cultures) for use in snow makers; commercially 

available examples include Snomax™ and Icemax™. Fungal species include strains of 

fungi belonging to the genus Fusarium. Known pollens include those from trees, such as 

birch and alder, and also grasses. 

 

Volcanic material (i.e., fine ash) has also been found to act as an atmospheric INP. Volcanic 

ash is composed of a crystalline element similar to natural mineral dusts, and a silicate-rich 

element. The enhancement of INP concentrations during volcanic events has been reported 

by several studies (Isono et al., 1959; Hobbs et al., 1971; Prenni et al., 2009a). The global 

abundance and concentration is dependent on volcanic events and also the type of eruption 

(i.e., duration, lava viscosity, vertical extent, ash production mechanisms); therefore global 

estimates are missing.  

 

The number of airborne aerosol particles that are able to nucleate ice at a given location is 

highly variable and dependent on many factors including meteorological conditions, sources 

and age of the air mass, seasonality, and the species of INP present. In the next section the 

freezing characteristics of these INP species determined from immersion mode experiments 

will be discussed. 
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1.8 Characteristics of INP Species Determined from Experiments 

As previously discussed the atmosphere contains a wide range of particles that are able to 

act as ice nucleating particles (INPs). In order to understand which species are important to 

ice formation processes experiments into the properties and freezing characteristics of INPs 

are investigated using the instruments described in Sect. 1.6.5.  

 

Immersion mode experiments are performed using samples of either relatively pure INP 

species, samples from the field, or atmospheric proxies. Atmospheric proxies, such as 

Arizona test Dust (ATD) and NX-Illite, are commonly used because they are generally well 

characterised and available in large quantities. This makes them useful for inter-

comparisons and calibrating instruments. Field samples are useful as they provide a source 

species, which can be assumed to be a direct proxy of atmospheric INPs. Assuming that 

CNT effectively describes the behaviour between a supercooled droplet and an immersed 

INP (Sect. 1.6.3) then we expect the freezing behaviour to be dependent on temperature, 

INP surface area, and time. The vast majority of studies concentrate on determining the 

former two properties, with a much smaller proportion characterising the time-dependence; 

this is partly due to the design limitations of many instruments (see Sect. 1.6.5), and also the 

assumption that time-dependence is not important (see Sects. 1.9.2 and 1.10.2). 

 

1.8.1 Temperature Dependence 

The relative importance of different INP species can be illustrated by determining the 

nucleation rate coefficient      , or the nucleation coefficient      , from Sect. 1.6.6. 

Values of ns are general presented as only knowledge of the surface area and temperature is 

required. Figure 1.8, adapted from Murray et al. (2012), shows experimentally determined 

values of       using Eq. (1.17). Different INP classifications have been colour-coded as 

mineral dusts, combustion products, biological particles, and volcanic ash. The foremost 

observation is that the nucleation rate of all species increases with decreasing temperature. 

However, it is apparent that each species tends to have a unique dependence on 

temperature. Using          ⁄  as a means to compare gradients: P. syringae (Lindow et 

al., 1989)  has a gradient of ~ -8.5; birch pollen (Pummer et al., 2012) ~ -1.9; soot (Demott, 
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1990) ~ -0.24; and volcanic ash (Hoyle et al., 2011)  ~ -0.54. Species that are active at high 

temperatures tend to exhibit the steepest experimentally determined gradients.  

 

The second observation from Figure 1.8 is that the different INP classifications generally 

tend to be active in separate temperature regimes. Some biological particles are active at 

warm temperatures, whereas mineral dust and volcanic ash are active at much colder 

temperatures. It is worth noting that the analysis of data using       implicitly neglects 

time-dependence. Thus it is reasonable to propose that some of the variation seen in 

datasets, especially between instruments, may arise due to time-dependent freezing 

behaviour. This proposal will be re-addressed in Chapter 4. 

 

  

Figure 1.8. Nucleation coefficients       for a range of atmospheric INPs determined from immersion mode 

experiments. Data points are colour coded according to their INP classification: mineral dust (red); combustion 

products (green); biological particles (blue); and volcanic ash (black).       values calculated using Eq. (1.17) with 

surface area following the individual studies. Figure adapted from Murray et al. (2012).  

 

 

1.8.2 Time Dependence in the Immersion Mode 

Following CNT (see Sect. 1.5.1) at a given temperature the nucleation rate, i.e., the rate at 

which critical ice-germs are formed, is assumed to be dependent on surface area and time. 

Cold-stage instruments, along with some CFDCs, are capable of changing temporal 
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conditions so that the role of time-dependence can be identified. This can be achieved using 

one of three methods: varying the cooling rate; varying the residence time at constant 

temperature; or subjecting a droplet, or population of droplets, to a series of freeze-thaw 

cycles. The observed time-dependence, or stochastic nature, of ice nucleation is expected to 

differ through each method used; the following sections will illustrate this.  

 

1.8.2.1 Cooling-Rate Dependence 

The cooling rate within a system is negatively correlated with time, in that an increase in 

cooling rate decreases the time required for the system to change from a temperature    to 

  , and vice versa. From Eq. (1.15) the probability of a single droplet freezing at a 

temperature   can be described by                  . Therefore an increase in 

cooling rate causes a decrease in time and a decrease in  . For a population of identical 

droplets the probability of an event occurring at all temperatures changes by the same factor 

causing the f(T) curve to systematically shift. An increase in cooling rate shifts the f(T) 

curve to colder temperatures, and a decrease to warmer temperatures.  

 

Vali and Stansbury (1966) found evidence of this behaviour in constant cooling 

experiments with distilled tap water. Using a series of cooling rates (0.5, 1.0, 2.0, and 

4.0 °C min-1) they found that the mean freezing temperature of the population of droplets 

increased by 0.2 °C for each doubling of cooling rate. Similarly, in a study by Murray et al. 

(2011) droplets containing kaolinite mineral dust were cooled at varying rates using a cold-

stage instrument. The data were analysed and       values determined using Eq. (1.16). The 

data, shown in Figure 1.9, collapse onto a single line. If the freezing behaviour was 

independent of time then a systematic shift in the data would be observed. Wright et al. 

(2013) also performed multiple cold-stage experiments at a range of cooling rates and found 

similar behaviour. However, they found that the cooling-rate dependence was not constant 

for the range of INP species tested; Table 1.1 summarises their results. The gradient 

         ⁄  is used to illustrate the different cooling-rate dependence between species; a 

steep gradient relates to a strong cooling-rate dependence. Icemax™, a commercially 

available bacteria INP, shows very little cooling-rate dependence, whereas kaolinite, 

montmorillonite and flame soot show strong cooling-rate dependence. The two filtered rain 
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water samples show a similar weak dependence, and the unfiltered sample close to zero. 

These examples demonstrate a substantial variability in the cooling-rate dependence of 

atmospherically relevant INPs. 

 

 

Figure 1.9. Nucleation rate coefficients      determined from droplets containing kaolinite. Multiple experiments 

were performed at cooling rates ( ) ranging from 0.8 to 10.0 °C min-1. Figure adapted from Murray et al. (2011). 

 

 

Table 1.1. Range of INP species tested by Wright et al. (2013) with the corresponding range of cooling rates used and 

the gradient between the shift in temperature    and the change in cooling rate        . 

 

INP species tested Cooling rates used (°C min
-1

)          ⁄  

Icemax
™

 (bacteria) 0.05 - 2.0  > -0.1 

ATD (dust proxy) 0.01 - 5.0  -0.5 

Montmorillonite (mineral dust) 0.05 - 5.0  -1.3 

Kaolinite KGa-2 (mineral dust) 0.02 - 2.0  -1.4 

Flame soot (combustion product) 0.02 - 1.0  -1.7 

Rain water sample 1 (filtered) 0.01 - 5.0  -0.5 

Rain water sample 2 (filtered) 0.5 - 2.0  -0.5 

Rain water sample 3 (unfiltered) 0.5 - 2.0  > -0.1 

 

 

1.8.2.2 Residence-Time Dependence 

Nucleation is thought to be a stochastic process, where an increase in time directly increases 

the probability that a critical ice germ will form. To examine this form of time-dependence 

isothermal experiments are performed where droplets containing an INP sample are held at 

a constant sub-zero temperature for some duration of time.  
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Figure 1.10. Fraction frozen for populations of droplets containing a 400nm kaolinite particle in the  ZINC 

instrument. Experiments were performed at a range of temperatures and the residence time within the ZINC was 

varied between 1.1 and 21.4 s. The dashed lines are to help guide the eye. Figure adapted from Welti et al. (2012). 

 

 

Murray et al. (2011) used a cold-stage instrument held at a constant temperature to observe 

the decay of liquid droplets containing kaolinite with time. They found that the decay in 

liquid droplets was exponential with respect to time, and that the rate of decay increased 

with decreasing temperature. Welti et al. (2012) used a CFDC instrument to investigate the 

time-dependent behaviour of droplets containing single kaolinite (FLUKA) particles. This 

was achieved by changing the flow rate through the CFDC, thus varying the residence time. 

Their data for 400nm kaolinite particles are shown in Figure 1.10. At all temperatures the 

f(T) generally increases with increasing residence time. A factor of ten change in residence 

time, from 1.1 to 10.3 s, results in roughly double the fraction frozen. Wright and Petters 

(2013) also used a cold-stage instrument for ‘hold’ experiments where droplets containing a 

known weight fraction of ATD particles were cooled down at 1 °C min-1 to -26.1 °C and 

held for over 12 hours. They found that the decay of liquid droplets was not constant with 

time (i.e., non exponential) and instead the decay rate decreased with increasing time. This 

behaviour was attributed to variability in the freezing behaviour between particles, and 

therefore droplets. The results from these studies show that there is a relationship between 
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residence time and f, however, this relationship and how it relates to an INP’s nucleating 

properties is not currently understood. 

 

1.8.2.3 Freeze-Thaw Experiments 

In these experiments single, or populations of, droplets are cooled down at some rate until 

frozen then heated until thawed; this process is then repeated for a number of cycles. The 

variability in an individual droplet’s freezing temperature (        ) is thought to be related 

to the stochastic nature of the nucleation within the droplet.  

 

Vali (2008) used this method with droplets containing two soil samples. Each experiment 

consisted of between 100 and 144 droplets (0.01 cm3) and up to 65 freeze-thaw cycles. 

Rank correlation coefficients were calculated for each run and used to determine how 

random (i.e., stochastic) the variability in          was from one run to the next. Results from 

both samples showed little evidence of a stochastic behaviour; the majority of droplets 

typically had < 1 °C change in          and rank coefficients were > 0.9. The range in          

over the entire population was ~ 18 °C, which was much larger than the individual droplet 

fluctuations. From this it was inferred that the droplet population contained diversity in the 

ability to nucleate ice. Wright and Petters (2013) also performed this type of experiment 

with ATD particles and used the standard deviation (         ) in          for each droplet to 

describe the stochastic nature of nucleation;           < 0.1 °C would correspond to very 

weak time-dependence. They found that           varied between 0.21 and 3.52 °C with the 

majority of drops < 1.0 °C. With the additional evidence from the isothermal experiments 

(previous section) the authors concluded that ATD is a heterogeneous surface, i.e., exhibits 

an inter-particle variability. Similar to the cooling and isothermal experiments, the freeze-

thaw experiments demonstrate variability in the time-dependent freezing behaviour of 

different INP species. 

 

These three observable manifestations of time-dependent behaviour are likely a result of the 

same stochastic behaviour of ice nucleation on the INP. If this is the case then it should be 

possible to link the stochastic property of an INP to different manifestations of time-
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dependence; the literature shows that this has not been investigated and as such is poorly 

understood. 

 

1.9 Heterogeneous Freezing Models 

In order to reproduce the freezing behaviour observed in experiments a number of freezing 

models have been developed and are described in the literature. This section will describe 

the models that are commonly used. 

 

1.9.1 The Single-Component Stochastic Model 

The single-component stochastic (SCS) model, previously derived in Sect. 1.6.3 as Eq. 

(1.15), follows from CNT where the probability of a critical germ forming at a temperature 

( ) is dependent on the INP surface area ( ), the duration of time ( ), and a factor ( ) which 

describes how efficiently a material nucleates ice. The rate at which critical germs form in a 

droplet is expressed by the nucleation rate coefficient (  ). In this model the freezing 

behaviour of each particle is assumed constant and freezing is time dependent. The 

temperature-dependent function       is often expressed as a simple linear function (e.g., 

Murray et al. (2011)), or derived using CNT (e.g., Chen et al. (2008)). The CNT-based SCS 

models are often referred to as 1θ models, as they are characterised by a single contact 

angle. Using this model isothermal simulations will be characterised by an exponential 

decay of liquid droplets with respect to time. 

 

1.9.2 Singular Freezing Model 

It was proposed by Vali and Stansbury (1966) that nucleation occurs on distinct nucleation 

sites where the energy required for a critical germ to form is at a local minimum. Each site 

represents a threshold temperature at which point nucleation will occur. A population of 

particles will contain a distribution of sites, and it is this distribution that determines the 

formation of ice at a given temperature. As discussed in Sect. 1.8.2.3 Vali (2008) observed 

that the variability in          for individual droplets in freeze-thaw cycles was much smaller 

than the overall range in          for the population, and thus was evidence of inter-particle 

variability. Following the proposed model this was viewed as a distribution of sites that, 
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assuming time-dependence plays a negligible role, can each be characterised by a single 

freezing temperature. A droplet containing a number of particles or sites is then 

characterised by the most efficient site. This turns the probability of freezing into a 

deterministic function dependent on the number of ‘active’ sites at a given temperature, and 

is known as the singular model.  

 

In the singular model the cumulative number of sites per unit surface area that are active at 

a temperature   is denoted by the nucleation coefficient   (T), and is experimentally 

determined using Eq. (1.17). This is often called the ice active site density (Connolly et al., 

2009; Murray et al., 2012; Hoose and Möhler, 2012) or the active site density (DeMott, 

1995). With knowledge of       the cumulative fraction of droplets that will be frozen at a 

temperature   can be calculated as: 

 

                     (1.18) 

 

This can also be expressed as a differential rate coefficient,     , that describes the fraction 

of droplets that freeze upon a change in temperature   :  

 

                         (1.19) 

 

From this equation it can be seen that in isothermal experiments, where     , no freezing 

events will occur as the residence time increases. A change in cooling rate will also have no 

effect on the f(T) data. This is contrary to the results shown in Sect. 1.6.2. To account for 

the          variations seen when changing the experimental cooling rate Vali (1994) 

proposed a ‘modified singular’ freezing model in which a cooling-rate dependent 

temperature offset is incorporated into the nucleation coefficient for use in cooling 

experiments: 

 

                       (1.20) 
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where   is of the form         | |  where   is the cooling rate in °C min-1 and   is an 

empirical parameter determined from experimental data.  

 

1.9.3 Multiple-Component Stochastic Models 

None of the previous models can satisfy the observed variability in both time-dependent 

behaviour and nucleation efficiency. As a result a number of complex models based on the 

SCS model have been developed, called Multiple Component Stochastic (MCS) models. In 

these models, a population of droplets, or sites, are divided into sub-populations of identical 

entities. Each sub-population, or component, can then be described by the SCS model with 

the summation representing the entire population. The probability of a component occurring 

with a specific efficiency can be characterised using a probability density function (PDF). 

 

Marcolli et al. (2007) used a CNT-based MCS model to show that a distribution of particles, 

each characterised by a specific contact angle ( ), was required to reproduce their 

experimental data. Different PDFs were used to characterise this distribution; it was found 

that a log-normal distribution was appropriate. This model, named the  PDF model, was 

then extended to include a distribution of active sites, which assumed that a single particle 

exhibits multiple nucleation sites on its surface. The distribution of active sites per particle 

was calculated as an exponential function of the contact angle. With this method larger 

particles are more likely to contain sites of better nucleating ability than smaller particles.  

 

Lüönd et al. (2010) developed a similar  PDF model to describe the total fraction of 

droplets freezing in the ZINC CFDC of the form: 

 

 
       ∫        [            ]  

 

 

 
(1.21) 

 

where      describes the probability of a particle being characterised by the contact angle 

 , and         is the nucleation rate coefficient at a temperature   and contact angle  . In 

this MCS model particles are divided into components of equally-efficient populations. The 

total fraction of frozen droplets (each droplet is assumed to contain a single particle in the 
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ZINC) is determined by integrating between all possible INP efficiencies (     ). It 

was assumed that a log-normal distribution was appropriate. Similar to Marcolli et al. 

(2007) this was extended to include a distribution of active sites per particle, so that each 

droplet contains a distribution of active sites, and thus contact angles.  

 

Niedermeier et al. (2011) developed a MCS model, named ‘the soccer ball’ model, of the 

form: 

 

 

     
 

        
∑        

        

   

 

(1.22) 

 

where          is the total number of droplets and         is the probability of freezing 

occurring in drop k at a temperature   and a time  . Here each droplet is treated as a 

separate component. In the soccerball model the surface of each particle is assumed to be 

divided into a number of equal sized patches, with each being characterised by a specific 

contact angle randomly assigned from a Gaussian distribution. In the simplest form every 

particle is assigned the same distribution of contact angles; the subsequent population of 

uniform particles can then be thought of as being internally mixed. In an externally mixed 

population each particle is separately assigned a distribution. It is clear that with this 

condition a small number of patches per INP will result in a population with diverse ice 

nucleating ability, whereas if all particles contain many sites then the probability of a 

specific site occurring per INP will increase and the population tends towards a uniform 

ability.  
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Figure 1.11. CNT-based freezing models. Figure adapted from  Ervens and Feingold (2012). 

 

The different treatment of an INPs nucleating ability in the previously mentioned 

CNT-based models is presented in Figure 1.11. The 1θ picture represents the SCS model 

where all particles, or all sites, are described by the same contact angle. The θPDF model is 

the simplest form of a MCS model; each droplet, or sub-population of droplets, is described 

by a single contact angle. The ‘internal’ soccer ball model is similar to the 1θ model; each 

particle or droplet is described by the same distribution of contact angles, and are thus 

equivalent. The ‘external’ soccer ball model is the more complicated treatment, with 

randomly assigned distributions of contact angles per particle or droplet. 

 

These models have been used in each respective study to reproduce, or provide evidence 

for, inter-particle variability in their data. In each case the nucleation rate coefficient       

is calculated using CNT (see Sect. 1.6.3), and therefore time-dependence is an implicit 

consequence of the model. Broadley et al. (2012) presented a model in which the nucleation 

rate was assumed to be approximated by an exponential function of temperature. This 

allowed flexibility in both the temperature-dependence and the relative efficiency of the 

nucleation rate coefficient, rather than being constrained by CNT. A PDF was used to 

describe inter-particle variability through the distribution of droplet sub-populations. A 

significant benefit to this system is that it is not constrained by theory and therefore, similar 

to the soccer ball model, additional distributions can be used to represent diversity in 

nucleation sites on the particle’s surface. The development and application of this MCS 

model will be presented in Chapter 2. Wright and Petters (2013) used the same method to 
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investigate the freezing behaviour of ATD. In their MCS model a distribution of active sites 

per particle was generated using a Poisson distribution and then each site assigned a 

‘characteristic temperature’ to describe the site’s ability to catalyse the freezing event. 

  

1.10 Modelling Studies of Heterogeneous Ice Nucleation 

1.10.1 Immersion Mode Freezing Schemes 

The representation of immersion mode ice formation in cloud simulations has progressed 

from simple deterministic functions to freezing schemes that are able to capture the 

diversity of nucleating species in the atmosphere. An early parameterisation was based on 

experimental data by Bigg (1953b) who found that the nucleation ability of water droplets 

containing ‘freezing nuclei’ was volume dependent. Although we now have strong evidence 

that ice nucleation has a surface area dependent mechanism the probability of finding an 

INP within a droplet may increase with volume due to droplet coalescence ad scavenging 

processes. This parameterisation, and variations of, is still widely used (Reisin et al., 1996; 

Cui et al., 2006; Morrison and Grabowski, 2008). 

 

Several parameterisations that represent cumulative freezing events by all modes of ice 

nucleation have been developed based on observations of in-situ ice number concentrations 

per litre (    ), where each ice particle is assumed to be the result of a single INP. Fletcher 

(1962) collated a number of datasets from various global locations and found that      

could be reasonably approximated by a temperature dependent function: 

 

          (            ) (1.23) 

 

where            is the supercooled temperature,   = 10-5 L-1, and   = 0.6 °C-1. Meyers et al. 

(1992) found that this function frequently under-predicted at warm temperatures, and, based 

on CFDC data, presented a new supersaturation-dependent parameterisation valid 

between -7 and -20 °C, and from -5 to + 4.5 % water supersaturation: 

 

         (   (         )) (1.24) 
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where    is the fractional ice supersaturation,   = -0.639, and   = 0.1296. A more recent 

parameterisation for      has been proposed by DeMott et al. (2010). The authors found 

that observed      in mixed-phase cloud conditions were correlated with the number of 

particles with a diameter over 0.5 µm (R2 of 0.9); the remaining variability was attributed to 

the diversity of INP species. The function that describes the relationship is: 

 

                   (        )
               

 (1.25) 

 

where   is the temperature in kelvin,          is the number concentration (cm-3) of aerosol 

particles with diameter over 0.5 µm,   = 5.94 × 10-5,   = 3.33,   = 0.0264, and   = 0.0033. 

This parameterisation is used for predicting the number of available INPs for subsequent 

use in heterogeneous ice nucleation pathways, rather than assuming that the presence of ‘n’ 

INPs leads to ‘n’ ice particles.  

 

Functions that predict      provide an estimate of the number of INPs. In order to 

subsequently understand the rate of ice formation under any given conditions, or quantify 

the impact of different modes and INP species on cloud development, several immersion 

mode schemes have been developed that incorporate multiple classifications, or species, of 

INPs. Khvorostyanov and Curry (2004) developed a theoretically based scheme for 

immersion and condensation freezing that allowed the droplet to contain both an insoluble 

and soluble fraction. Using the CNT framework their scheme (hereafter KC) bases the 

nucleation efficiency of a droplet on the INP surface properties (contact angle, active sites, 

and a crystallographic misfit factor) and the water-activity (i.e., freezing depression due to 

dissolved solutes). A polydisperse aerosol population is incorporated into the KC scheme 

and permits varying INP species; each characterised by a specific contact angle. 

 

Diehl and Wurzler (2004) presented a more simplified immersion mode scheme based on 

the singular freezing model. In their scheme (hereafter DW) the freezing efficiency of a 

droplet that includes an insoluble particle is assumed to scale with volume, but not particle 

size. The relative efficiency of multiple species (mineral dusts, biological, and soot) is 
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represented by a temperature dependent nucleation coefficient, in units cm-3, determined 

from experimental literature. Similar to the KC scheme, freezing point depression from 

dissolved solutes is included through the introduction of a soluble component to the aerosol 

species.  

 

An alternative observationally constrained ice nucleation scheme was proposed by Phillips 

et al. (2008) (hereafter PDA). The PDA scheme uses empirical parameterisations from 

existing literature of      to predict ice formation rates (cumulative contributions from 

deposition, condensation and immersion) based on the chemistry and surface area of 

multiple INP species (dust and metallic, inorganic black carbon, and insoluble organic 

aerosol). The number of INPs that are activated within a specific size bin for each species is 

a function of temperature, ice supersaturation, and is scaled to a reference particle surface 

area. The enhancement above water saturation (from immersion and/or condensation 

freezing) is achieved using a simple factor and freezing rates are constrained by 

observational data.  

 

Eidhammer et al. (2009) used a parcel model that included ice nucleation to compare the 

three multiple-species freezing schemes previously described (KC, DW, and PDA). 

Simulations of mixed-phase clouds were performed with an initial temperature of 10 °C 

(-14 °C) and constant updraughts of 50 and 500 cm s-1 (5 and 500 cm s-1). A detailed 

treatment of soot and mineral dust INP species was used, and included aerosols with 

insoluble and soluble fractions, therefore permitting activation as both a CCN and INP. A 

range of simulations consistently showed a variation in the ice production rates resulting in 

differences in ice number concentrations over several orders of magnitude, as shown in 

Figure 1.12. The variation impacted the cloud dynamics (through release of latent heat) and 

the authors hypothesised that this would affect the cloud radiative properties. Only the PDA 

scheme was found to compare well against field campaign measurements. 
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Figure 1.12. Simulated ice number concentration in a parcel model using three different immersion freezing schemes: 

Khvorostyanov and Curry (2004) (red); Diehl and Wurzler (2004) (green); Phillips et al. (2008) (blue) Solid lines and 

dashed lines correspond to constant parcel updraught speeds of 5 and 50 cm s-1, respectively. Figure adapted from 

Eidhammer et al. (2009). 

 

 

1.10.2 Importance of Time-Dependence 

Incorporating an accurate representation of time-dependence into an ice nucleation scheme 

currently requires the use of a MCS model, such as the KC scheme. This is suitable for box 

modelling studies but becomes computationally demanding when applied to cloud resolving 

models. The relative importance of time-dependence in the atmosphere has therefore been 

the focus of several modelling studies. 

 

Ervens and Feingold (2012) used an idealised box model (constant temperature and 

saturation) to explore the affect that the choice of freezing model has on the prediction of 

f(T) as a function of time. Using fitting parameters determined from experimental data in 

Lüönd et al. (2010) the authors used a CNT-based SCS model, three CNT-based MCS 

models, and a singular model. It is worth noting that the original fitting parameters were 

minimised so that each could reproduce the temperature where f(T) = 50 %, therefore 

unsurprisingly, as conditions moved away from the original dataset the predictions 

diverged. Changing the surface area of the INPs and the temperature both had significant 

impacts on f(T). The same method was used in a parcel model that includes dynamical and 

supersaturation feedbacks (i.e., vapour, liquid, and ice interact).  
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Figure 1.13. Modelled ice number concentration (a), IWC and LWC (b), and IWC/LWC ratio (c) for five different 

freezing models in a parcel model with polydisperse INP population. Figure reproduced from Ervens and Feingold 

(2012). 

 

 

Runs using uniform sized particles showed that at high updraught speeds the rate of ice 

production was only weakly dependent on the distribution of  , whereas at low updraught 

speeds there was a large variation in predicted ice concentrations, specifically from the 

time-independent singular model and the CNT SCS model. The runs using a polydisperse 

INP population (representative of atmospheric INPs) are shown in Figure 1.13 and show 

similar variation between models. The ice concentration at a height of 300 m varied from 

~ 1 to 4 L-1 for the deterministic and soccer ball (internal) models respectively (Figure 

1.13a), and the IWC/LWC ratio exceeded an order of magnitude variability for the same 

two freezing models (Figure 1.13c). 

 

Ervens and Feingold (2013) used a CNT-based SCS model to understand the sensitivity of 

immersion mode freezing probability (       ) to temperature, contact angle, time, and INP 

surface area. The sensitivity ( ) of each variable ( ) was determined using      

      ⁄ . They concluded that      decreased with decreasing temperature, and that ice 

nucleation has a very weak sensitivity to time-dependence. 

 

As previously discussed in Sect. 1.2 arctic stratus clouds are commonly observed to remain 

in a mixed-phase state for long periods of time (Uttal et al., 2002; Verlinde et al., 2007; de 

Boer et al., 2009; Shupe et al., 2010). Fridlind et al. (2012) used large-eddy simulations 

with detailed microphysics to reproduce observations of arctic stratus with persistent low 
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ice number concentrations. The formation of ice through the immersion mode was 

represented by a singular freezing model (Fridlind et al., 2007). They found that the 

available INPs were rapidly depleted through ice formation and subsequent precipitation; it 

was estimated that an increase in INPs by a factor of 30 would reproduce the observations. 

On the basis of similar observations Westbrook and Illingworth (2013) proposed that the 

low ice number concentrations could be maintained if time-dependence played a role: in a 

diverse INP population the freezing of the most efficient INPs would be followed by the 

slow production of ice in part due to time-dependence. The authors also hypothesised that 

in-situ measurements of INP concentrations using CFDC instruments may be under-

predicted due to short residence times. This hypothesis will be discussed in Chapter 4. 
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1.11 Aims of Thesis 

The aim of this thesis is primarily to understand and quantify the role that time-dependence 

plays in the freezing behaviour of droplets, and secondly to determine the importance of this 

behaviour in mixed-phase clouds.  

 

 

In Chapter 2 it is initially shown that CNT-based models are unable to reproduce the 

observed time-dependence in experimental data. A new MCS model that represents 

variability in both nucleation efficiency and time-dependent behaviour is presented. The 

model is applied to experimental data and then used to understand how time-dependence 

affects droplet freezing behaviour in cooling, isothermal, and freeze-thaw experiments. 

 

 

In Chapter 3 a new framework is derived and developed for use in determining the 

time-dependent properties of INPs, and reproducing their behaviour. The framework 

provides a means for reconciling experimental data obtained over a range of temporal 

conditions, and using different techniques. A new accurate and efficient immersion mode 

parameterisation is then presented for use in cloud modelling studies. 

 

 

In Chapter 4 the new framework is applied to experimental data from atmospherically 

relevant INPs obtained using different instruments and experimental methods. The 

framework is used to demonstrate the following: 

 Determining the time-dependent properties of an INP 

 Predicting the freezing behaviour of INPs in experiments 

 Determining whether an INP behaves as a single or multiple-component species 

The framework is then applied to existing experimental data in order to quantify the range 

in time-dependent behaviour of a wide range of atmospherically relevant INP species, and 

finally, using the framework the implications for in-situ INP measurements are presented. 
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In Chapter 5 a cloud model with detailed microphysics is used to determine the sensitivity 

of mixed-phase clouds to time-dependence in the immersion mode production of ice. A 

series of increasingly complex simulations are performed with different cases in order to 

answer the following questions: 

 How does time-dependence in the immersion mode affect the other hydrometeor 

species? 

 How does this affect the development of the cloud and its bulk properties? 

These results will then be used to answer the following: 

 Under what conditions is it important to accurately represent time-dependence in 

the immersion mode? 
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Chapter 2: The Simplified Multiple 

Component Stochastic (Si-MCS) Model 

2 Chapter 2: The Simplified Multiple Component Stochastic (Si-MCS) Model 

2.1 Introduction 

In this chapter I show that Classical Nucleation Theory (CNT) based Multiple Component 

Stochastic (MCM) models are unable to reproduce the time-dependent behaviour observed 

in immersion mode freezing experiments. A new MCS model is presented which is not 

based on CNT and simulations are presented to understand the impact of time-dependence 

on the freezing of droplets in cooling, isothermal, and freeze-thaw experiments. The new 

model will also underpin the development of the Framework for Reconciling Observable 

Stochastic Time-dependence (FROST) presented in Chapter 3. 

 

The material presented in this chapter is an extension of work that R. Herbert contributed 

to in a paper published in Atmospheric Chemistry and Physics (Broadley SL; Murray BJ; 

Herbert RJ; Atkinson JD; Dobbie S; Malkin TL; Condliffe E (2012) Immersion mode 

heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral 

dust, Atm. Chem. Phys., 12, pp.287-307). R. Herbert developed a first version of the Si-MCS 

together with S. Broadley, work which is expanded on here. The experimental data on NX-

illite was obtained by S. Broadley. The data on K-feldspar was obtained by T. Whale using 

experiments jointly designed by R. Herbert and T. Whale. 

 

2.2 CNT-based MCS Models 

As highlighted in Chapter 1 extensive experimental studies in the immersion mode have 

shown that INPs exhibit both inter-particle variability in nucleating efficiency and time-

dependent variability. In this section existing MCS models, which are all based on CNT, 

will be applied to immersion mode freezing data. The link between the model and the 

simulated time-dependence will also be investigated. 
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CNT is a thermodynamic model that has been used to reproduce the formation rate of 

critical ice germs in supercooled liquid droplets. The inclusion of an INP is thought to 

provide a site for nucleation to occur upon, which catalyses the freezing event. In this model 

a conceptual contact angle θ is used to characterise the ability for an INP to act as a catalyst.  

 

The effect of θ on the heterogeneous nucleation rate Js is shown in Figure 2.1. Js has been 

calculated following the CNT description in Zobrist et al. (2007) with the interfacial energy 

calculated following Murray et al. (2010) assuming hexagonal ice. Figure 2.1 shows that Js 

is a very strong function of contact angle with smaller contact angles resulting in larger 

values of Js. In addition, Figure 2.1 also shows that the gradient dln(Js)/dT is dependent on 

both temperature and contact angle.  

 

 

Figure 2.1. Heterogeneous nucleation rate coefficient Js against temperature T derived using CNT for a range of 

contact angles 40 ≤ θ ≤ 180. The contact angle represents a proxy for the ability of a substrate to catalyse nucleation, 

with a decreasing contact angle corresponding to an increasingly effective substrate. 

 

 

In order to link CNT to heterogeneity in nucleating efficiency several MCS models are 

described in the literature and are presented in Chapter 1. The basis of these models is that a 

population of INPs, or nucleating sites, can be characterised by a PDF that describes the 

probability of a particular contact angle occurring per INP or site. The PDF parameters can 

be changed in order to fit to experimental data. The distribution of sites cannot be 

determined directly and therefore must be either inferred from experimental data or 
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theoretically determined. Marcolli et al. (2007) used a variety of functions and distributions 

and found that a log-normal distribution of contact angles best reproduced their data, 

whereas Broadley et al. (2012) found that a normal distribution was more appropriate. 

Alternatively Sear (2013) proposed that the nucleation efficiency of a population of INPs 

consisting of a large number of nucleation sites can be described by a Weibull distribution. 

 

 

Figure 2.2. Examples of various PDFs used in CNT-based MCS models; the figure shows the normalised probability 

that a specific INP site is characterised by a contact angle θ; assuming either a normal, log-normal, or Weibull 

distribution.  

 

Figure 2.2 shows a series of typical PDFs using a normal, log-normal, and Weibull 

distribution of contact angles, hereafter referred to as     ,        and     , 

respectively. The different distributions lead to a variation in the shape of the PDF, 

especially in the distribution tails. It is not known which is more appropriate and therefore 

in the examples where experimental data is reproduced, each distribution will be applied 

and only the most suitable shown.  

 

2.2.1 Cooling-Rate Dependence in CNT-based MCS Models 

To investigate time-dependence in CNT-based MCS models a series of cooling simulations 

were performed using an idealised box model. Results will be used to understand how 

changes to the mean and variability in θ affect the simulated freezing behaviour. In the 

simulations the freezing rate of droplets was determined using Eq. (1.22) following 

Niedermeier et al. (2011). For the probability of freezing occurring per droplet a        
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was used to determine the characteristic contact angle per droplet, and Js calculated as 

described in Sect. 2.2.  

 

Figure 2.3. A conceptual diagram of how the cumulative fraction frozen (f) changes upon an increase in cooling rate. 

This change can be seen as both a change by β ºC and fdiff.  

 

 

Figure 2.3 shows the characteristic changes that will be used to determine the time-

dependent behaviour in the following simulations. An increase in the cooling rate results in 

a change to the f(T) curve which can be seen as either a change in f at a specific temperature 

(represented by fdiff) or a change in the temperature at a specific f (represented by a 

temperature β °C). The distinction between the two is required as a large magnitude in 

β does not necessarily correspond to a large magnitude in fdiff, as seen in Figure 2.3. 

 

 

      

Figure 2.4. Contour plots of (a) the change in temperature β, calculated at f = 0.5, between a 1 and 10 °C min-1 

cooling simulation using a log-normal CNT-based θPDF model and (b) the mean temperature  ̅   at which f = 0.5 for 

the same set of runs. The x axis shows the effect of changing the θPDF mean and the y axis the θPDF diversity. The 

θPDF diversity ranges from a monodisperse population (~ 0.01) to an extremely diverse population (0.10). 
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A series of simulations were performed where the mean and diversity of θ was varied; a 

log-normal distribution was used for the PDF of θ. The f(T) data from cooling rates of 1 and 

10 °C min-1 was used to determine β, as well as the mean temperature at which 50% of 

droplets had frozen from the two cooling rates,  ̅  . This value provides a characteristic 

temperature at which freezing occurred and the results of these simulations are shown in 

Figure 2.4. The plot in panel a of Figure ‎2.4 shows that β is independent of the width of the 

distribution (diversity), but strongly dependent on the mean θ of the distribution of contact 

angles. Similarly, panel b shows that  ̅   is independent of diversity, but dependent on the 

mean θ. 

 

 

Figure 2.5. How the gradient dln(Js)/dT determines the cooling-rate dependence. A change in cooling rate ∆r at a 

temperature T will result in the same change in      but will manifest with different β values. This results in a 

negative correlation between the magnitude of λ and β. 

 

 

The relationship between the mean freezing temperature and time-dependent behaviour can 

be explained by the temperature dependent nature of the nucleation rate Js, seen in Figure 

2.1. The relation between the temperature dependence -dln(Js)/dT (hereafter referred to as λ)  

and β is demonstrated in Figure 2.5. For two INP species characterised by λ1 and λ2 (where 

λ1 > λ2) a decrease in time at a specific temperature will increase the probability of an event 

not occurring, PNOT, by the same factor. This reduction can also be seen as an equivalent 

systematic shift in temperature β that corresponds to the temperature change required so that 

Jsstr1 = Jsstr2. The result is that the shift by β °C will be dependent on λ. This relationship, 

between λ and β describes the behaviour seen in Figure 2.4. λ in CNT varies with 

temperature as seen in Figure 2.1, and therefore so too does β. The implication of this result 
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is that the time-dependent behaviour in simulations using CNT is solely a function of 

temperature. At high temperatures λ is large and therefore weak time-dependence would be 

expected, whereas at low temperatures λ is smaller resulting in a strong time-dependence. 

 

2.2.1.1 Using a CNT-based MCS Model to Reproduce NX-illite Freezing Data 

In the following sections the CNT-based model will be tested against experimental data 

obtained using a range of cooling rates and it will be shown to be lacking. The first example 

will use experimental data from cooling and isothermal experiments using NX-illite 

presented by Broadley et al. (2012). This INP species is thought to be representative of 

natural desert dust aerosol. The experiments were performed using a cold stage instrument, 

as described in Chapter 1. A population of droplets containing the mineral dust NX-illite 

were either cooled at a constant rate or held for a specific length of time at a supercooled 

temperature. The droplet population was produced by nebulising a volume of ultra-pure 

water (18.2 MΩ resistivity) containing a suspension of the mineral dust onto a glass slide 

with a hydrophobic coating. The resistivity of the water sample is a measure of its purity; 

water is a poor conductor (as compared to any dissolved minerals/salts) and therefore an 

increasing resistivity corresponds to an increasing purity, for comparison tap water is 

typically <1 MΩ. The nebulising method ensured that all droplets contained the same dust 

concentration as the suspension. A specific surface area of 104.2 ± 0.7 m2 g-1 (Broadley et 

al., 2012) was used to determine the surface area per droplet. The results are summarised in 

Figure 2.6. 

 

Figure 2.6a shows the data for cooling experiments performed with a cooling rate (surface 

area) of 0.8 (6.43), 1.0 (8.54), 6.0 (8.06), and 7.5 °C min-1 (5.43 × 10-7 cm2), which 

corresponds to runs 13a, 15a, 14a, and 12 in Broadley et al. (2012), respectively. The data 

appear to fall on a single f(T) curve with a variation of less than 1 °C between the four 

datasets, which strongly suggests that there is very little cooling-rate dependence, and 

therefore, time dependence. Data from an isothermal experiment are shown in Figure 2.6b. 

The experiment was performed at -29.5 °C with a population of droplets containing an 

average surface area per droplet of 2.65 × 10-7 cm2. In this experiment a decay in the 

number of liquid droplets is evident, with over 40% of droplets freezing after 11 minutes. 
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This clearly shows that although there is weak cooling-rate dependence there is time-

dependent behaviour. The data also shows that the exponential decay rate decreases with 

time, which, as described in Chapter 1 suggests that this mineral dust behaves as a multiple-

component species.  

 

 

Figure 2.6. (a) The cumulative fraction frozen (f) for a series of experiments using droplets containing particles of the 

mineral dust NX-illite cooled at a range of cooling rates and (b) the decay of liquid droplets containing NX-illite in an 

isothermal experiment where the temperature was held constant at -29.5 °C. Data reproduced from Broadley et al. 

(2012). 

 

 

In the CNT-based MCS model the only variables that can be adjusted are those that relate to 

the PDF. The experimental dataset at 0.8 °C min-1 was used to determine the distribution 

and θPDF that best described the data, with the surface area per droplet and cooling rate as 

per the experiment. Using the root-mean-square-error (RMSE) between the simulated and 
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experimental dataset, it was found that a normal distribution with a mean μnormal = 78.8 ° and 

σnormal = 3.2 ° produced a PDF that resulted in the lowest RMSE (     = 4.2 × 10-4, 

       = 5.2 × 10-4, and      = 5.3 × 10-4). This distribution was then used to simulate 

the 0.8 and 7.5 °C min-1 datasets. Figure 2.7 shows the experimental and simulated f(T) 

curves. The two simulated f(T) curves are separated by between 1.5 and 2.0 °C, which 

shows that the CNT model over-predicts the cooling-rate dependence (β) of NX-illite. The 

reason for this is that by using CNT the cooling-rate dependence becomes primarily a 

function of temperature since the temperature dependence of λ is defined by CNT. In this 

case a much higher temperature would be required to match the simulated time-dependence 

with the observations. 

 

 

Figure 2.7. f(T) experimental data (symbols) from Figure 2.6a for cooling rates of 0.8 and 7.5 °C min-1 and simulated 

f(T) (dashed lines) using a CNT-based θPDF model.  

 

 

A potential caveat to this conclusion is that if the experimentally derived surface area per 

droplet was over estimated then the mean contact angle in the simulation would need to 

increase in order to reproduce the data. Figure 2.8 shows the gradient λ as a function of 

temperature and contact-angle. The data in Figure 2.7 lies roughly between -27 and -37 °C 

and is characterised by a mean contact angle of 78.8 °. This is indicated in Figure 2.8 and 

shows that if the mean contact angle was increased then the gradient λ would be higher, 

resulting in weaker cooling-rate dependence. However, in order to attain this dependence 
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the actual surface area per droplet in the experiment would need to be larger at 1 × 106 cm2, 

which is an unfeasibly large value. 

 

  

Figure 2.8. The gradient λ = -dln(Js)/dT as a function of contact angle and temperature derived using CNT. The white 

bar roughly corresponds to the gradient that characterises the data in Figure 2.7, and the dashed line to a gradient that 

would result in weaker cooling-rate dependence. 

 

 

2.2.1.2 Using a CNT-based MCS Model to Reproduce K-feldspar Freezing Data 

It was recently proposed by Atkinson et al. (2013) that K-feldspar dominates the freezing 

behaviour of many multi-constituent species such as natural dusts. Similar to NX-illite, the 

data was obtained using a cold stage instrument (described in Whale et al. (2014)) upon 

which ~ 40 identical droplets were cooled at constant rates. The 1 μL droplets were 

produced, via pipette, from a bulk suspension of dust particles in ultra-pure water (18.2 

MΩ). Thus, the resulting droplets are approximately identical and contain the same surface 

area per droplet. A specific surface area of 1.86 ± 0.004 m2 g-1 (Whale et al., 2014) was 

used to determine the surface area per droplet. The resulting data are shown in Figure 2.9 

for cooling experiments performed at 0.2 and 2.0 °C min-1 with a surface area of 1.86 × 10-2 

cm2 per droplet. 

 

Simulated f(T) curves using the CNT-based MCS model are compared with the 

experimental values in Figure 2.9. The simulated curves were produced following the 

method outlined for NX-illite previously. A PDF described by a Weibull distribution was 

found to best reproduce the 0.2 °C min-1 data based on RMSE values (     = 5.9 × 10-4, 
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       = 5.4 × 10-4, and      = 5.0 × 10-4), with μWeibull = 49.8 ° and σWeibull = 2.87 °. It is 

clear from Figure 2.9 that the CNT-based model under-predicts the cooling-rate dependence 

that is observed in the experiment.  

 

In summary, it is clear from both the K-feldspar and NX-illite examples that the nucleation 

rate coefficient as predicted by the CNT-based model is unable to capture the time-

dependent behaviour that is observed in experimental data. 

 

  

Figure 2.9. The cumulative fraction frozen for droplet freezing experiments using droplets containing particles of the 

mineral dust K-feldspar cooled at 0.2 and 2.0 °C min-1 and simulated f(T) (dashed lines) using a CNT-based θPDF 

model.  

 

 

2.3 A New Simplified MCS Model 

In light of the results of the previous section a new MCS model named the Simplified MCS 

(Si-MCS) model was developed. This model is unique as it is able to reproduce both 

inter-particle variability in nucleating efficiency and time-dependent variability that is 

observed in experiments. The unique feature of this model is that the temperature 

dependence λ can be controlled, which allows time-dependent variability to be represented. 

As shown in the previous sections the CNT-based models were unable to represent this.  

 

In this section the principles and assumptions of the Si-MCS will be presented. The model 

will then be tested using existing experimental data, and finally used to simulate and 

determine the expected time-dependent behaviour in droplet freezing experiments.  
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2.3.1 Deriving the Si-MCS Model 

As with the previous MCS models it is assumed that the population of INPs, or nucleation 

sites, can be divided into sub-populations of equally efficient entities. Each sub-population 

is then treated as a single component where the nucleating efficiency per surface area of 

particle is equal. The single component stochastic (SCS) model can then be used to 

determine the number of droplets freezing in each model step, with the summation 

representing the freezing behaviour of the entire population. The principles of the Si-MCS 

are shown in Figure 2.10. 

 

 

Figure 2.10. Principles of the Simplified MCS (Si-MCS) model. (a) shows the nucleation rate coefficient for a series 

of sites, represented by the range of symbols, and (b) the associated PDF that describes the probability of occurrence 

for each site. Assuming one site per droplet results in an externally mixed population of droplets, as in (c), whereas 

assuming multiple sites per particle, or droplet, results in an internally mixed population as in (d). See Sect. 2.3 for 

more details.  

 

 

As an alternative to using CNT to predict Js(T) a simple exponential temperature-dependent 

function is used to describe the nucleation rate coefficient of a single component (denoted 

by i): 
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where λi is the gradient -dln(Js,i)/dT as in Sect. 2.2 and φi, a positive value where 0 ≤ φi ≤ 50, 

represents the relative freezing efficiency of the component. A value of φi tending towards 

zero represents an increasing efficiency to catalyse nucleation.  

 

Each particle or site is assumed to be approximated by a single function of Js,i(T) and the 

value of λi for each INP species is assumed to be constant. With these assumptions the range 

of φi in a droplet will determine the range of Js,i(T) as shown in Figure 2.10a. The variability 

in φi is modelled using a PDF to describe the probability that a specific surface area of the 

immersed particle will be characterised by φi, so that           . Here   is the total 

surface area of INP in the droplet and    the surface area characterised by φi. Using these 

assumptions an immersed particle contains a number of sites (      ), each of which has a 

unique value of φi (and therefore function Js,i(T)) and a corresponding surface area that 

relates to the probability of φi occurring, as shown in Figure 2.10d. 

 

For a single droplet with        the probability that a freezing event occurs at a temperature 

T over a period of time t can be calculated as: 
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) 

(2.2) 

 

For a number of droplets, each containing the same population of sites, the number that 

freeze in δt seconds can be calculated as: 

 

 

                                 (     ( ∑               

      

   

)) 

(2.3) 

 

This description can be seen as being internally mixed, i.e., a population of droplets 

containing the same surface area per droplet will exhibit the same distribution of sites per 

droplet. This description is essentially equivalent to the SCS model; a number of identically 

sized particles will have the same distribution of nucleation sites and will therefore behave 
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as a single component, albeit with an internally mixed population of sites. In a single 

component system a decreasing value of λ will lead to an increasing width in the f(T) curve. 

Therefore, using the internally mixed assumption in Eq. (2.3) an INP species with a wide 

f(T) curve will be strongly time-dependent whereas with a narrow f(T) curve it will be 

weakly time-dependent. Using this hypothesis the NX-illite (freezing over ~ 10 °C) should 

be more sensitive to changes in the cooling rate than K-feldspar (freezing over ~ 4 °C). 

However, both NX-illite and K-feldspar show ~ 1 °C change in f(T) upon a factor of 10 

change in cooling rate, indicating that the cooling-rate dependence is similar for both 

mineral dust species, and that the internally mixed description is not applicable to these INP 

species simultaneously. 

 

Equation (2.3) can be extended to describe a particle-to-particle variability so that the 

distribution of sites per droplet is externally mixed: 
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(2.4) 

 

where k denotes each individual droplet. This can be simplified when it is assumed that the 

most efficient site present per droplet can be used to characterise its nucleating ability, and 

thus only one type of nucleation site is present per droplet. Under this assumption Eq. (2.4) 

can be rewritten as: 
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(      (             )) 

(2.5) 

 

where           is the number of droplets characterised by the site i, determined using a PDF 

so that                        , and   the surface area per droplet. An example population 

of droplets following an externally mixed description is shown in Figure 2.10c.  
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As with the CNT-based models the distribution used to describe the PDF for φi was allowed 

to vary. In the following examples a normal, log-normal and Weibull distribution are used. 

 

2.3.2 Applying the Si-MCS to Experimental Data  

In the following sections the new Si-MCS model is used to determine the cooling-rate 

dependence of two atmospherically relevant mineral dust species: NX-illite and K-feldspar. 

The model is also used to predict the freezing behaviour of K-feldspar in an isothermal 

simulation, which is then compared to experimental data. 

 

2.3.2.1 NX-illite Mineral Dust 

The NX-illite freezing data presented in Sect. 2.2.1.1 was used with the Si-MCS to 

determine a value of λ that characterises the INP’s time-dependent behaviour. The 

time-dependence of an INP species should be constant in different experiments. Therefore 

the model was applied separately to both the cooling and isothermal experiments, and 

results compared. 

 

Cooling experiments performed at cooling rates of 1.0 and 6.0 °C min-1 were used to 

determine the value λ that best reproduce the data. These datasets were chosen as both 

experiments used the same bulk suspension concentration and therefore have a similar 

average surface area per droplet (8.5 ×10-7 and 8.1 × 10-7 cm2, respectively). The 

distribution of sites per droplet per experiment can then be assumed to be equivalent and the 

change in f(T) data primarily due to cooling-rate dependence. A least squares minimisation 

between the experimental and simulated data was performed using each of the three 

distributions. The normal distribution PDF resulted in the lowest RMSE (     = 

7.725 ×10-4,        = 1.21 × 10-3, and      = 9.815 × 10-4), with λ = 4.35, μnormal = 28.9, 

and σnormal = 3.1. All distributions resulted in a minimised λ of 4.35. The experimental data 

and simulated f(T) curves are shown in Figure 2.11a. The same procedure was carried out 

for the isothermal experimental data (from Figure 2.6b) and is shown along with the 

resulting simulated data in Figure 2.11b. Similar to the cooling experiments a normal 

distribution PDF best reproduced the data with λ = 4.4, μnormal = 27.4, and σnormal = 0.9 
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(minimised RMSE values of      = 6.209 × 10-4,        = 6.268 × 10-4, and      = 

7.761 × 10-4).  

 

 

 

Figure 2.11. (a) Experimental data of f(T) (shown as symbols) from Figure 2.7a for cooling experiments at 1 and 

6 °C min-1 along with the simulated f(T) data determined using the Si-MCS model. The parameters λ, µnormal and 

σnormal were systematically varied until the RMSE between simulated and experimental data was minimised, with the 

resulting values shown in the figure. Similarly, (b) shows the isothermal experimental decay of droplets from Figure 

2.7b along with a simulated decay using the Si-MCS model and following the procedure as in (a). 

 

 

Even though the surface area per droplet was roughly equivalent (~ 3 to 8 × 10-7 cm2) the 

fitting parameters for the isothermal experiment suggest that the distribution of nucleation 

sites (or sub-populations) is considerably narrower than in the cooling experiments. Due to 

the method used in the isothermal experiment it was not possible to simulate the cooling 

(from 0 °C to the isothermal temperature) that preceded the isothermal experiment. The 
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narrowing of the distribution provides evidence that the droplets containing the more 

efficient nucleation sites have preferentially frozen during the cooling. At the point of the 

isothermal the distribution of available nucleation sites has decreased and results in a 

narrower distribution, as demonstrated by the decreased standard deviation (3.1 to 0.9).  

 

The agreement to each separate dataset is unsurprising as the added λ variable in the Si-

MCS allows the cooling-rate dependence to be varied. However, the consistency between 

the cooling experiments and isothermal experiment suggests that the new model is able to 

represent both the variability in nucleating efficiency and time-dependent behaviour. 

 

2.3.2.2 K-feldspar Mineral Dust 

Similar to the previous example the Si-MCS was used to determine the value of λ that best 

describes a series of experimental datasets for the mineral K-feldspar obtained at cooling 

rates of 0.2, 0.4 and 2.0 °C min-1.  

 

The 0.2 and 2.0 °C min-1 experimental data were taken from Sect. 2.2.1.2, and the 

0.4 °C min-1 data was obtained using the same cold stage instrument and method. The 1 μL 

droplets are approximately identical and contain the same surface area per droplet of 

1.86 × 10-2 cm2 therefore it was assumed that the site PDF was the same for both 

experiments. A minimisation technique, based on the combined RMSE value between 

experiment and simulated data, was used for each PDF distribution. The data was best 

reproduced with λ = 3.2 and a      where μWeibull = 11.67 and σWeibull = 1.22 (minimised 

RMSE values of      = 4.3 × 10-3,        = 2.37 × 10-3, and      = 1.65 × 10-3). The 

data and simulated f(T) data is shown in Figure 2.12. The good agreement between the three 

datasets shows that the Si-MCS model is capable of reproducing the cooling-rate dependent 

behaviour of the K-feldspar sample.  

 

In addition to the cooling experiments an isothermal experiment was performed using the 

same cold stage instrument and method. The population of droplets, each containing 

1.86 × 10-2 cm2 of K-feldspar particles, were cooled down at systematically decreasing rates 

until a temperature of -11 °C and held constant for 2 hrs. The time at which each droplet 
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freezing event occurred was recorded and is shown in Figure 2.13. To test whether the 

Si-MCS model had correctly determined the time-dependence of K-feldspar from the 

cooling rate experiments, the      parameters from Figure 2.12 were used with λ = 3.2 to 

determine the expected decay for a population of droplets under the same conditions. The 

justification in using the      parameters is that the droplets were produced from the same 

bulk suspension and therefore it can be assumed that droplets in both sets of experiments 

are equivalent. For the simulation the experimental cooling profile prior to reaching Tiso was 

used, which resulted in a number of droplets freezing before Tiso, as was observed in the 

experiment. The experimental uncertainty was estimated by Whale et al. (2014) as ± 0.4 °C; 

therefore two additional simulations were performed at Tiso ± 0.4 °C. The expected decay, 

determined using the Si-MCS model, is included in Figure 2.13. The good agreement 

between experimental and simulated data provides additional evidence that the Si-MCS is 

able to reproduce the time-dependent behaviour of K-feldspar. 

 

 

Figure 2.12. Experimentally determined f(T) data (symbols) for droplets containing the same concentration of K-

Feldspar particles cooled at varying rates (0.2, 0.4, and 2.0 °C min-1). Dashed lines represent the minimised fits to the 

data using the Si-MCS model. Fits were determined by varying the            parameters and λ; surface area per 

droplet and cooling rates were as per the experiment. 
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Figure 2.13. Expected decay (dashed line) of liquid droplets in an isothermal simulation at -11 °C using the Si-MCS 

with the parameters determined from the K-feldspar cooling experiments shown in Figure 2.12. Symbols show the 

corresponding experimental data from an isothermal experiment performed at -11 °C using droplets containing the 

same concentration of K-feldspar particles as in Figure 2.12. 

 

 

2.3.3 The Manifestation of Time-Dependence 

The Si-MCS model provides a tool that can be used to understand the sensitivity of droplet 

freezing experiments to the time-dependent properties of an INP species. In this section the 

Si-MCS model is used to understand how different temporal conditions can impact f in 

immersion mode experiments.  

 

The stochastic, time-dependent nature of ice nucleation is expected to manifest differently 

depending on the experimental method and temporal conditions. Isothermal experiments, 

where the temperature is held constant for a duration of time (as in CFDC and cold stage 

instruments), will describe the time-dependent behaviour of the whole droplet population. 

The population may exhibit droplet-to-droplet variability in either time-dependent 

behaviour or nucleation efficiency. Freeze-thaw experiments, where single (or populations 

of) droplets are repeatedly frozen and thawed, will describe the time-dependent behaviour 

of each droplet. The variation in freezing temperatures over a number of cycles is expected 

to be equivalent to the droplet’s time-dependent properties. Cooling experiments, where a 

population of droplets are cooled at some rate, will exhibit time-dependence upon a change 
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in cooling-rate. As in the Sect. 2.3.2 the shift in temperature of the f(T) curve is expected to 

be dependent on the time-dependent properties of the droplet population. 

 

It is clear that although time-dependence plays a role in each method its manifestation is 

expected to differ between experimental methods. As seen in Sect. 2.3.2.2 the model 

parameters (mean and diversity of φ, and λ) determined from cooling-rate experiments were 

used to produce the expected decay of liquid droplets in an isothermal experiment with 

good agreement. This shows that the Si-MCS model can be used to examine the different 

manifestations of time-dependence that would be observed in experiments. 

 

2.3.3.1 Cooling-Rate Dependence 

A series of simulations were performed in order to determine the impact of time-

dependence on f in cooling experiments upon a change in cooling rate. The additional effect 

of the mean and diversity of site efficiency φ was also examined. 

 

  

Figure 2.14. The simulated change in the f(T) curve upon a change in cooling rate from 1 to 10 °C min-1 for two INPs 

described with the same λ but different site diversity σnormal. β remains constant but fdiff decreases with σnormal. 

 

 

Following Figure 2.14 the values of β and fdiff were determined for a change in cooling rate 

from 1 to 10 °C min-1. The magnitude of β provides the quantitative information on how the 

f(T) curve shifts in temperature whereas the magnitude of fdiff provides qualitative 

information on how important this effect is. For example, a large shift by β may correspond 

to a small value of fdiff. In terms of experimental observations this would be a negligible 
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time-dependent effect on the f(T) curve. Conversely, if the magnitudes were reversed then 

although β is small the observed time-dependent effect would be considerable. 

 

  

Figure 2.15. Sensitivity of β (a) and fdiff (b) to the temperature dependence of the nucleation rate (λ) and the PDF 

mean (µnormal) in the Si-MCS model. For each data point a simulated cooling experiment was performed at 1 and 

10 °C min-1; as shown in Figure 2.3 β was calculated where f = 0.5 and fdiff was calculated at the mean T50 determined 

for each cooling rate. A normal distribution was used to describe the PDF; the standard deviation was kept constant at 

σnormal = 3 and µnormal was varied.  

 

 

In these simulations the mean nucleating efficiency (μnormal of     ) was varied along with 

λ whilst the diversity in efficiency was held constant at σnormal = 3. Figure 2.15 shows the 

sensitivity of β and fdiff. It can be clearly seen that changes to the f(T) curve are dependent 

on λ but independent of the mean efficiency. The time-dependent response of f(T) increases 

with decreasing λ; i.e., a shallow temperature dependent nucleation rate will have a stronger 

time-dependent response. The independence of fdiff with respect to μnormal describes a f(T) 

curve that does not change shape. The independence of β also shows that the f(T) curve will 

shift by the same value (upon the same change in cooling rate) regardless of the mean 

efficiency of the droplet population. 

 

To understand the dependency on site diversity a second series of simulations were 

performed where the diversity of the droplet population was varied along with λ, whilst 

μnormal was held constant at μnormal = 20. The results are shown in Figure 2.16. As with μnormal 

the simulations show that β is dependent on λ but independent of the diversity in droplet 

efficiency, conversely, fdiff is dependent on both μnormal and λ. This happens because as the 

diversity increases so does the width of the f(T) curve. This then causes fdiff to become less 
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sensitive to changes in cooling rate. This behaviour is demonstrated in Figure 2.14 where β 

is constant but fdiff decreases with diversity. 

 

 

 

 
 

Figure 2.16. Sensitivity of β (a) and fdiff (b) to the temperature dependence of the nucleation rate (λ) and the PDF 

standard deviation (σnormal) in the Si-MCS model. Method as in Figure 2.15 but here the mean was held constant at 

µnormal = 20 and σnormal was varied. The normalised impact of both β and fdiff is shown in (c); here, the data from (a) 

and (b) were normalised so that a value of 1 corresponds to -βmax + -fdiff,max. This provides a range, between 0 and 1, 

that describes the combined time-dependent response to f(T) with an increasing number representing an increasing 

response. 
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represents a combination of σnormal and λ that results in the maximum combined magnitude 

of β and fdiff. Using this method an increasing value represents an increasingly time-

dependent response. The results of this normalisation in Figure 2.16c show that a substantial 

observable cooling-rate dependence is expected for all values of σnormal when λ < 0.5. For 

larger values the cooling-rate dependence decreases with both increasing λ and the 
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efficiency diversity. INP species that exhibit a very narrow distribution of nucleating 

efficiencies would have observable cooling-rate dependence at all values of λ, although the 

magnitude of this would decrease with increasing λ.  

 

In terms of the fundamental effect of λ on f(T) the results from these simulations suggest 

that β is only dependent on λ. To test this further a set of simulations were run where all free 

variables in the Si-MCS model were varied. This included the assumed PDF distribution 

(normal, log-normal, and Weibull) and associated PDF parameters, surface area per droplet, 

cooling rates, the fraction f at which β was calculated, and λ. The results, shown in Figure 

2.17, verify the relationship between the systematic shift in f(T) by β °C and the temperature 

dependence of the nucleation rate coefficient, -dln(Js)/dT = λ. All this data falls on a single 

line which can be described by the power law                 , which describes a near 

one-to-one relationship. 

 

 

Figure 2.17. The shift in the f(T) curve, by β °C, upon a factor of ten change in cooling rate for a number of 

simulations using the Si-MCS model. In these simulations all variables in the Si-MCS model were varied; these 

included the surface area, PDF distribution, PDF mean and standard deviation, cooling rates, the temperature 

dependence of the nucleation rate λ, and the fraction at which β was calculated. All data fall onto a single line when 

plotted against λ which shows that the cooling-rate dependence is purely dependent on λ. 

 

 

The relationship between λ and β suggests that a simple relationship can be used to 

determine the change to the f(T) curve upon a change in cooling rate. The singular freezing 
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model presented in Chapter 1 is able to describe the variability in nucleating efficiency 

using a simple temperature dependent function; with correctly determined characteristics 

for an INP species the β-λ relationship could be used in conjunction with this in order to 

predict the freezing behaviour of droplets containing the species. This will be the focus of 

the following chapter.  

 

2.3.3.2 Residence-Time Dependence  

In experiments where the temperature is held constant for a period of time a change in 

residence time leads to a change in the amount of time that nucleation can occur. As 

nucleation is thought to be a stochastic process this change is expected to have a 

corresponding effect on f. A series of isothermal simulations were performed using the 

Si-MCS in order to understand how the characteristic properties of the INP species (PDF 

parameters, T, and λ) are expected to affect the decay rate of droplets with regards to a 

change in residence time. Figure 2.18 shows the dependence of the droplet decay rate as a 

function of residence time at two isothermal temperatures (Tiso). The diversity of the      

distribution was also varied for each Tiso whilst μnormal was held constant at μnormal = 17.  

 

 

Figure 2.18. Simulated decay in liquid droplets (1 – f) over time using the Si-MCS model at two temperatures and an 

increasing diversity of nucleating efficiency (represented by an increasing standard deviation). A normal distribution 

is used to represent the PDF, with λ = 0.5 and µnormal = 17. In a single component system (where all φ = µnormal, as 

with σnormal = 0.01) the liquid droplets will exponentially decay at a constant rate dependent on λ, whereas in a 

multiple component system (where a range of φ exist) the decay rate decreases with time.  
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The distribution where σnormal = 0.01 represents a monodisperse population where all 

droplets are characterised by the value of μnormal. According to Eq. 1.15 a monodisperse 

population will behave as a single component-system, and therefore liquid droplets will 

exponentially decay. This behaviour can be seen in Figure 2.18 as a linear relationship 

between ln(1-f) and time. As the temperature decreases this decay rate increases due to the 

increasing value of Js and therefore the probability of freezing. The monodisperse 

population generally represents the maximum fraction able to freeze for a given λ and t. An 

increasing diversity in droplet nucleating efficiency (σnormal) results in a decay rate that 

decreases with residence time. At a specific residence time the fraction of droplets that 

freeze will decrease with increasing diversity. This occurs because as the PDF width 

increases the range of nucleation efficiencies increases, and therefore the droplet population 

contains both more and less efficient droplets. Due to the exponential relationship between 

the probability of freezing and time, the less efficient droplets have a more substantial effect 

on the decay rate than the more efficient ones. 

 

The sensitivity of f with regards to λ, T, and σnormal is shown in Figure 2.19, which shows the 

residence time required for the simulation to reach a frozen fraction of f = 0.1. This provides 

information on how the decay rate changes with temperature. At low values of λ the time 

required to attain f = 0.1 changes by a factor of 104 over 20 °C, whereas at high values of λ 

this results in a change by factor of ~ 1018. This shows a change in Tiso will have a greater 

effect on the residence-time dependence for larger values of λ. In CFDC experiments where 

a constant residence time is used, upon a decrease in Tiso the change in f will be greater for 

higher values of λ. 
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Figure 2.19. The impact of λ and φ diversity in isothermal simulations using the Si-MCS model as a function of 

isothermal temperature. The figure shows the time for the isothermal simulation to reach f = 0.1 All simulations used 

a normal distribution to determine the PDF where the mean was held constant at µnormal = 17.  

 

 

Figure 2.19 also shows that an increase in diversity systematically decreases the trend to 

lower residence times; again the fractional change is lower for small values of λ, and vice 

versa. This shows that a change in diversity can be described by an equivalent change in the 

temperature Tiso. This change is independent of temperature but is dependent on λ and one 

can expect this to also be dependent on the chosen fraction (in this case f = 0.1) which can 

be inferred from Figure 2.18. This suggests that a knowledge of how the equivalent shift in 

temperature manifests for a given diversity and λ could be used to derive a simple means of 

predicting the isothermal decay of droplets at any temperature for a correctly characterised 

INP species. An equivalent derivation will be presented in the following chapter.  

 

The key conclusion from these simulations is that in isothermal experiments 

time-dependence manifests as residence-time dependence and that similar to cooling 

simulations there is a significant sensitivity to λ. However, unlike the cooling simulations, 

the diversity of the population efficiency does have an affect on the decay of liquid droplets. 

 

2.3.3.3 Freeze-Thaw Variability  
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how the nucleating properties of an INP are expected to affect the variability of Tfreeze in 

freeze-thaw experiments. 

 

A freeze-thaw experiment can be simulated in the Si-MCS model when it is realised that 

one droplet being frozen n times at a cooling rate r is equivalent to n identical droplets 

being frozen a single time at a rate r. A single-component system where φ equals the 

median freezing temperature provides a population of identical droplets, which can be used 

with the Si-MCS to simulate a single cooling experiment. Applying a prescribed n droplets 

to the resulting f(T) curve provides the temperature at which each consecutive droplet 

freezes. These temperatures correspond to Tfreeze values from n freeze-thaw cycles, and 

therefore the standard deviation in Tfreeze can be determined, hereafter named σT,freeze. Using 

this method a series of 1 °C min-1 cooling simulations were performed to determine σT,freeze 

as a function of the median freezing temperature and λ; the results are shown in Figure 2.20. 

The results show that σT,freeze is solely dependent on λ and is independent of the mean 

freezing temperature. In a single-component system a change in cooling rate will move the 

median freezing temperature by β, therefore σT,freeze is also independent of the freeze-thaw 

experiment cooling rate. This behaviour was reported by Fornea et al. (2009) who 

performed freeze-thaw experiments using the same INP species over a range of cooling 

rates (1 to 10 °C min-1) and found no statistical difference in σT,freeze.  

 

   

Figure 2.20. The resulting standard deviation (σT,freeze) of freezing temperatures for a single droplet frozen over 104 

freeze-thaw cycles as a function of the mean freezing temperature and λ. σT,freeze is only dependent on λ. 
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The dependency of σT,freeze on λ shown in Figure 2.20 is described by the following power 

law 

                      (2.6) 

 

Wright and Petters (2013) presented a very similar relationship                      . 

Their method varied from this in that several other parameters (including nsites per droplet, 

and cooling rate) were varied. These variables would act to impact the location of the f(T) 

curve (with regards to temperature) and will ultimately affect the range of Tfreeze and 

therefore σT,freeze. The newly presented relationship in Eq. (2.6) is therefore a better 

representation of how a droplet with specific freezing characteristics (i.e., INP surface area 

and nucleation efficiency) would be expected to behave upon multiple freeze-thaw cycles. 

 

2.4 Conclusions 

In this chapter a CNT-based MCS model was applied to atmospherically relevant 

immersion mode freezing data. The model is unable to reproduce the observed cooling-rate 

dependence in immersion mode freezing data for K-feldspar and NX-illite. A sensitivity 

study using the model shows that the resulting time-dependent behaviour through the use of 

CNT is primarily a function temperature, which is inconsistent with the observations. 

 

A new simplified MCS model (Si-MCS) model was presented which uniquely allows the 

temperature-dependency (λ) of the nucleation rate coefficient (Js) to be varied. The model is 

able to represent variability in both nucleating efficiency and time-dependent behaviour. As 

demonstrated by the application to experimental data, the Si-MCS can be used determine 

the time-dependent behaviour of an INP species, and then simulate its expected 

time-dependent behaviour in different experimental methods.  

 

Finally, a series of simulations using the Si-MCS were performed to understand the 

relationship between INP nucleating properties and time-dependent behaviour in cooling, 

isothermal, and freeze-thaw experiments. The results show for the first time that the 

manifestation of time-dependence in all experimental methods is solely dependent on λ. It 
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was also demonstrated that freeze-thaw experiments using a single droplet are equivalent to 

a cooling experiment with a population of identical droplets. 
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Time-Dependence (FROST)  

3 Chapter 3: The Framework for Reconciling Observable Stochastic Time-Dependence (FROST) 

3.1 Introduction 

In the previous chapter the simplified multiple component stochastic (Si-MCS) model was 

presented which is able to represent variability in both nucleating efficiency and time-

dependent behaviour. However, the model is too complex for use in cloud modelling 

studies. In this chapter a new simplified framework based on the Si-MCS is developed for 

use in reconciling the time-dependencies in immersion mode freezing experiments. The 

framework is then incorporated into an existing parameterisation for use in cloud modelling 

studies. 

 

The derivation and development of the FROST model was published in Atmospheric 

Chemistry Physics and Discussions (Herbert, R. J., Murray, B. J., Whale, T. F., Dobbie, S. 

J., and Atkinson, J. D.(2014), Representing time-dependent freezing behaviour in 

immersion mode ice nucleation, Atmos. Chem. Phys. Discuss., 14, 1399-1442, 

doi:10.5194/acpd-14-1399-2014). All development and derivations were carried out by R. 

Herbert. 

 

3.2 Deriving the Framework 

The results from Chapter 2 suggest that the manifestations of time-dependence in 

immersion mode freezing are all dependent on λ. If these results can be verified analytically 

then it may be possible to link the varying time-dependent behaviour across different 

instruments and therefore reconcile data obtained under differing temporal conditions. 
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3.2.1 Cooling-Rate Dependence  

The aim of this derivation is to determine the temperature change β that occurs for a 

specific fraction f(T) upon a change in cooling rate. Using the Si-MCS the number of 

droplets that freeze (  ) within a single time step    at a temperature T can be determined 

by: 

                         (3.1) 

 

where    is the number of liquid droplets at the beginning of the time step. For a population 

of droplets (each containing a surface area s of an INP species), the cumulative number that 

will freeze upon cooling in    steps of    from the melting point of ice (T0) to T can be 

calculated using the product of the probability for an event not happening        at each 

consecutive step. The probability of an event occurring is therefore        so that: 

 

 

     (  ∏      

  

   

) 

(3.2) 

where, 

                          (3.3) 

 

Js(Tk) is the nucleation rate coefficient at time step k, s is the surface area of INP, and    is 

the initial number of droplets at T0 °C. The cumulative fraction frozen after    steps,      , 

can be expressed as  

 

 

      
  

  
   ∏      

  

   

 

(3.4) 

Incorporating Eq. (3.3) into Eq. (3.4) gives: 

 

         ∏                 

  

   

      ( ∑       

  

   

    ) 

(3.5) 

 

In the Si-MCS model the nucleation rate coefficient Js at Tk is expressed as          

        . To calculate        for any number of  tr steps this can be expanded: 
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Therefore it can be se seen that: 

 

                     [         ]         [         ]  (3.6) 

 

Incorporating into Eq. (3.5): 

 

           (             ∑[         ] 

  

   

) 

(3.7) 

 

The summation term can be removed using a geometric summation of series where  

 

∑      
    

   

   

   

  

 

Rearranging Eq. (3.7) identifies the series: 

              

            
 ∑[         ] 

  

   

 

(3.8) 
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Substituting the right hand side into the geometric summation of series formula where a = 

1; r = exp(-λ T); and        (therefore       ) gives: 

 

              

            
 

  [         ]    

           
 

(3.9) 

 

This can now be rearranged and solved for the number of steps   : 

 

                            

            
      (          ) 

(3.10) 
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(3.11) 
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(3.12) 
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(3.13) 

 

A change in the cooling rate from r1 to r2 results in a change in the number of steps required 

to reach fraction  , so that                : 
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(3.14) 

 

where    is constant in both simulations, and    is dependent on the cooling rate. 

Introducing the constant                          gives: 
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]  

 

    
 

(3.15) 

 

When (           )    , Eq. (3.15) is approximated by the following equation:  
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          [

               

               
]  

 

    
 

(3.16) 

 

This condition may break down in situations where either s or        is very large, 

corresponding to atmospherically unrepresentative sizes or exceptionally efficient 

nucleating INPs, respectively. This will also break down as   approaches zero, which 

occurs when either f ≈ 1 or     1 (e.g., 1 × 10-8).  

 

Cancelling terms in Eq. (3.16) provides: 

 
          [

    
    

]  
 

    
 

(3.17) 

 

Multiplying the change in    by the temperature step    (constant in both cases) provides a 

formula for the change in temperature: 

 
                 [

    
    

]  
 

  
  

(3.18) 

 

Substituting    
  

    
 and    

  

    
 into Eq. (3.18) provides a formula that can be used to 

calculate the change in temperature observed at a fraction f upon a change in cooling rate: 

 
     [

  
  

]  
 

 
 

(3.19) 

where λ describes the temperature dependence of Js; -dln(Js)/dT. This can be seen as being 

directly equivalent to the empirically determined value of β in the previous chapter, and 

confirms the relationship between λ and β. A comparison between this equation and the fit 

from Figure 2.17 strengthens this finding: applying a change in cooling rate from 1 to 

10 °C min-1 leads to      [
 

  
]  

 

 
         . 

 

3.2.2 Extending to Residence-Time Dependence 

In this section Eq. (3.19) will be extended to isothermal conditions.  

 

Using      ⁄  the relative change in cooling rate described by        ⁄   can also be 

expressed as a relative change in time        ⁄  : 
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     [

  
  

]  
 

 
 

(3.20) 

 

   is the shift in temperature (Tiso) required to produce the same frozen fraction in two 

isothermal experiments with duration times of t1 and t2, so that f(Tiso,t1) = f(Tiso+∆T,t2). This 

temperature change is equivalent to that relating to cooling-rate dependence, and therefore 

the two variations are referred to as β(r) and β(t) for cooling-rate dependence and residence-

time dependence, respectively. 

 

3.2.3 Reconciling Isothermal Experiments with Cooling Experiments 

In the previous chapter a potential relationship for reconciling cooling and isothermal 

simulations was presented. To examine this further a similar derivation can be performed to 

analytically determine how the change in cooling rate corresponds to a change in residence 

time for an isothermal simulation. This can be achieved by equating the fraction frozen in a 

cooling experiment simulation (denoted as ‘cool’) to that of an isothermal simulation 

(denoted as ‘iso’), so that                 . 

 

For the cooling experiment the fraction frozen is expressed as previously, so that from Eq. 

(3.5): 

 

              ( ∑       

     

   

    ) 

(3.21) 

 

The probability of a freezing event occurring in an isothermal experiment is as described by 

Eq. (3.21) but here the temperature    is constant so that              :  

 

 

             ( ∑     

    

      )                            

(3.22) 

 

In the isothermal simulation, the total time for a fraction to be reached is simply a product 

of the time step and number of steps where                . Incorporating this into Eq. 

(3.22) gives: 
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(3.23) 

For a specific fraction frozen where                  Eq. (3.23) can be equated to Eq. 

(3.21). Realising that       for the isothermal simulation equals       in the cooling 

experiment after ncool steps gives: 
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    )       (  (      
)        ) 

(3.24) 

 

where the left-hand-side represents the cooling experiment simulation and the right-hand-

side, the isothermal simulation. Solving for   gives: 
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(3.25) 

 

As per Eq. (3.6) the nucleation rate coefficient in the Si-MCS model is represented by 

                 . Therefore, in a cooling simulation           (        )  

[         ]  and in an isothermal simulation          
     (        )  

[         ]     . 

 

Replacing        and          
  in Eq. (3.25) gives: 
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(3.26) 

 

Cancelling out terms gives: 
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The summation term can be removed using a geometric summation of series, for which the 

sequence must be reversed using  

∑           

     

   

 ∑       

     

   

 

so that: 

 

             ( ∑ [              ]
  

     

   

) 

(3.29) 

 

The summation of series can be performed using: 

 

∑      
      

   
 

 

   

 

which subsequently results in:  

 

 
            

  [             ]
       

               
 

(3.30) 

 

Substituting a variable x for (                  ) it can be seen that where    , 

[             ]
         0. Rearranging so that    

                  

    
 

           

    
, it can 

be seen that this limit is reached for all cases except when, simultaneously, Tiso is very high 

( > -5 °C) and   is very small (   ). Therefore, providing the isothermal simulation is 

below this temperature: 

 

 
     

      
               

 
(3.31) 

 

A Taylor expansion of               results in [          
         

 

  
 

         
 

  
 ]. 

When            ⁄          
 ,                        (satisfied when the 

simulation temperature step         ), therefore Eq. (3.31) can be simplified to  

 

 
     

      
        

 
(3.32) 
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Substituting        
      

      
, where         

 

 
     

      
              

 
 

       
 

(3.33) 

 

This formula describes the time required for an isothermal simulation at a temperature Tiso, 

to attain the same f(T) as a cooling simulation cooled from 0 °C to Tiso at a rate rcool; this 

confirms the results found in Chapter 2. 

 

3.2.4 The FROST Framework 

The previous sections show that the time-dependent behaviour of immersion mode freezing 

in cooling and isothermal simulations are dependent on λ, and that the two can be 

reconciled. As shown in Chapter 2 the third manifestation of time-dependence, observed in 

freeze-thaw experiments, is also dependent on λ, and additionally is independent of the 

mean nucleating efficiency and diversity of the INP species. 

 

Assuming that an INP species behaves as per the assumptions in the Si-MCS model (i.e., a 

linear relationship between ln(Js) and T) then these relationships and equations can be 

combined into a single consistent framework that can be applied to experimental data in 

order to normalise variable temporal conditions. This includes different residence-times, 

cooling-rates, instruments, and experimental method.  

 

As previously stated the variability in Tfreeze from freeze-thaw experiments is only 

dependent on λ, and therefore does not require reconciliation. The standard deviation of 

freezing temperatures can therefore be determined using the empirical relationship 

presented in Chapter 2: 

 

 
          

      

 
 

(3.34) 

 

The cooling and isothermal experiments can be reconciled by applying a standard reference 

cooling rate          , for which 1 °C min-1 was chosen. For cooling rate experiments, 
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replacing 
1r  in Eq. (3.19) with           and    with the cooling rate r, in °C min-1, gives the 

shift in temperature (β) as a function of cooling rate: 

 

 
        

 

 
  (

 

| |
) 

(3.35) 

 

For isothermal simulations, replacing       with           in Eq. (3.33) gives the time 

required for an isothermal simulation to be comparable to a normalised cooling simulation. 

Substituting    in Eq. (3.20) with        in Eq. (3.33), and    with the residence time t, in 

seconds, gives β as a function of residence time: 

 

 
        

 

 
  (

   

  
) 

(3.36) 

 

where λ describes the temperature dependence of Js, -dln(Js)/dT.  

 

Equations (3.35) and (3.36) can be used with λ to normalise data to a 1 °C min-1 cooling rate 

using                  where 'T  is the normalised temperature, and             the 

temperature of the experiment data point. These equations form the basis of a new 

framework called the Framework for Reconciling Observable Stochastic Time-dependence 

(FROST). 

 

3.3 Incorporating the FROST Framework into a Singular Model 

The FROST framework provides a means for normalising experimental data, regardless of 

temporal conditions. It can be seen that the framework is essentially predicting the time-

dependent behaviour of a species, in order to normalise it. Therefore the framework can 

also be used to prognostically determine the time-dependent freezing behaviour where 

                . Here 'T  represents the normalised temperature and simulationT the 

temperature adjusted for time-dependent effects.  
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For predicting f(T) in cooling or isothermal simulations this requires the addition of a 

function that can describe the temperature-dependent freezing behaviour of a species, of 

which the singular freezing model is well suited. 

 

The singular freezing model is able to describe the inter-particle variability of ice nucleating 

ability, but not time-dependence. Vali (1994) presented a modification of this (referred to as 

the modified singular model) which included a cooling-rate dependent temperature offset 

that introduced an element of time-dependence; however, this was an empirically 

determined relationship with little theoretical justification. 

 

The fundamental assumption of the singular freezing model is that the probability of a 

droplet freezing is dependent on the distribution of sites on the immersed INP’s surface. 

Each site has a characteristic freezing temperature, Tc, and therefore the freezing probability 

at a temperature T is proportional to the cumulative number of sites where the condition 

Tc > T applies. This distribution of sites is commonly referred to as the active site density 

(DeMott, 1995), ( )Tns  (also called the ice active surface site density (Connolly et al., 2009; 

Murray et al., 2012; Hoose and Möhler, 2012)).  

 

Using the singular freezing model the fraction of droplets that will freeze at a temperature T 

is described by 

( ) ( )( )sTnTf  sexp1  
(3.37) 

 

By rearranging Eq. (3.37) it can be seen that ( )Tns  (in units cm-2) is directly related to the 

cumulative fraction frozen: 

( )
( )( )

s

Tf
Tn




1ln
s

 

(3.38) 

 

It is therefore apparent that a systematic shift in f(T), caused by a change in the cooling rate 

or residence time, results in a systematic shift in ( )Tns  so that, upon incorporating Eq. 

(3.35) into Eq. (3.38) it can be seen that for a specific cooling rate r (where r > 0): 



92 

 

 

( )
( )



















 s

r
TnrTf



ln
exp1, s  

(3.39) 

 

The differentiation of ns with respect to T results in the function k(T) that can be used to 

determine the change in the fraction frozen occurring upon a decrease in T: 
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(3.40) 

 

where k(T) is in units cm-2 °C-1. As mentioned previously equations (3.39) and (3.40) are 

consistent with the empirical modified singular freezing model outlined by Vali (1994), 

however here the time-dependent behaviour is directly related to the temperature 

dependence of the nucleation rate coefficient, λ.  

 

Similar equations can also be defined for isothermal experiments by incorporating Eq. 

(3.36) into Eq. (3.37) so that at a specific temperature, Tiso and residence time in seconds, t: 
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(3.41) 

 

Again, upon differentiation an equation is obtained for the change in fraction frozen upon a 

change in residence time from t  to tt  :  
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(3.42) 

 

where ( )tt    has replaced ∆T through the incorporation of Eq. (3.33) into 

trT  60 ; r is in °C min-1 and ∆t in seconds.  
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These equations, as part of the FROST framework, can be used to predict and reproduce the 

freezing behaviour of droplets containing immersed INPs for use in both experimental 

related practice, and more importantly, for accurately representing the variability in 

nucleating efficiency and time-dependence in cloud modelling studies.  

 

3.4 Conclusions 

In this chapter the derivation and development of a new framework, named the Framework 

for Reconciling Observable Stochastic Time-dependence (FROST) was presented. FROST 

provides, for the first time, a means for determining and reconciling the time-dependent 

behaviour of immersion mode freezing in cooling, isothermal, and freeze-thaw experiments. 

The development of FROST highlights the primary role that the temperature dependence of 

the nucleation rate coefficient, λ, plays in the manifestation of time-dependence. 

 

The framework was incorporated into a deterministic model to produce a simple 

parameterisation that is able to uniquely represent the variability in both nucleating 

efficiency and time-dependence that has been observed in experiments. This provides an 

accurate yet computationally efficient parameterisation for use in cloud modelling studies. 
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Chapter 4: Reconciling 

Time-Dependencies in Experimental 

Data using FROST  

4 Chapter 4: Reconciling Time Dependencies in Experimental Data using FROST 

4.1 Introduction 

The FROST framework can be used to identify the value λ which characterises the time-

dependencies in immersion mode freezing experiments, as well as to normalise 

experimental data obtained over differing temporal conditions. In this chapter the 

application of the FROST framework will be demonstrated using a combination of original 

and existing experimental droplet freezing data for atmospherically relevant INPs obtained 

via a range of methods and instruments.  

 

The application of the FROST model to experimental data was published in Atmospheric 

Chemistry Physics Discussions (Herbert, R. J., Murray, B. J., Whale, T. F., Dobbie, S. J., 

and Atkinson, J. D.(2014), Representing time-dependent freezing behaviour in immersion 

mode ice nucleation, Atmos. Chem. Phys. Discuss., 14, 1399-1442, doi:10.5194/acpd-14-

1399-2014). The experimental data on K-feldspar and the kaolinite MICROLITRE dataset 

were obtained by T. Whale; the experiment was designed jointly by R. Herbert and 

T. Whale.  

 

4.2 Immersion Mode Terminology  

The terminology used in the following chapter will be outlined briefly. The basis of this 

follows discussions with Gabor Vali, Thomas Whale, and Ben Murray, as well as members 

of the CNAA committee including Barabara Hale, Paul DeMott, and Ottmar Möhler. 

 

The foundation of the terminology is based on quantitative measurements that can be 

directly determined from experimental data. The freezing rate R(T) = dln(1-f)/dt describes 
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the rate at which a population of droplets are observed to freeze per unit time at a 

temperature T (with units s-1). The similar value R*(T) = dln(1-f)/dT described the rate of 

freezing per unit change in temperature (°C-1). These two rates can be seen as physical 

properties of the experimental dataset, however, they may not offer any physical insight into 

the nucleating characteristics of the INP species as they only refer to the droplet freezing 

rate.  

 

By normalising to INP properties, such as surface area s, number of nucleation sites nsites, 

mass of INP m, or even droplet volume V, the resulting rates can be used to infer the key 

dependencies of the freezing rate. For example, if, upon normalising R(T) to surface area, a 

series of experiments performed at varying INP concentrations fall onto a single line, or 

curve, then this would indicate that the freezing rate is dependent on the surface area of INP 

per droplet. These normalised rates will hereafter be referred to by including a subscript that 

corresponds to the INP property being normalised to: Rs(T) and Rs*(T) are the surface area 

normalised freezing rates (in units cm-2 s-1 and cm-2 °C-1, respectively) and Rv(T) and Rv*(T) 

are the volume normalised freezing rates (in units cm-3 s-1 and cm-3 °C-1, respectively). The 

gradient of the freezing rates and normalised freezing rates (assuming droplets with 

homogeneous properties) is referred to as ω, where   -      ⁄ .  

 

Following this terminology it can be seen that for an INP species that exhibits a uniform 

nucleating efficiency per droplet (i.e., all droplets are characterised by the same φ) 

Rs(T) = Js(T) and therefore ω = λ. This type of INP will be referred to as single-component, 

in that it only requires a single nucleation rate to describe its freezing behaviour. 

Conversely, for INP species that exhibit a diversity in nucleating efficiency per droplet (i.e., 

where φ is different for each droplet) Rs(T) ≠ Js(T) and therefore ω < λ. This INP species 

will be referred to as multiple-component, in that it requires multiple nucleation rates to 

describe its freezing behaviour. This is an important distinction as Rs is often reported as Js, 

whereas in this chapter it will be shown that this is not always the case and that many 

materials are not single-component. As a notable point, it is also apparent that Rs*(T) is 

analogous to ns(T) for both single and multiple-component species, and therefore -

dln(ns)/dT = ω. 
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4.3 Application of the FROST Framework with Experimental Data 

In this section the FROST framework will be tested using a combination of new 

experimental droplet freezing data and literature data for atmospherically relevant INPs 

obtained via a range of methods and instruments.  

 

4.3.1 Kaolinite Data (KGa-1b) from Two Cold-Stage Instruments  

In this example data from droplet freezing experiments from two cold stage instruments, 

including a range of cooling rates, are combined to test the capability of the FROST 

framework.  

 

The first dataset, referred to as PICOLITRE, is taken from Murray et al. (2011). In their 

experiments micron sized droplets containing known amounts of kaolinite (KGa-1b, Clay 

Mineral Society) mineral dust were cooled at constant rates on a cold stage instrument 

coupled with an optical microscope. Each experiment was characterised by a specific 

cooling rate and weight percent (wt%) of mineral per droplet. For this study four datasets 

are used (experiments vii, viii, ix and xi in Murray et al. (2011)) corresponding to cooling 

rates (wt%) of 5.4 (0.34), 9.6 (1.0), 0.8 (1.0) and 5.1 (1.0) °C min-1, respectively. 

 

The second experimental dataset, referred to as MICROLITRE, was obtained on the cold 

stage instrument previously described in Chapter 2. In this experiment ~40 droplets of 1 µl 

volume containing known amounts of the same kaolinite sample as Murray et al. (2011) 

(KGa-1b) were cooled at constant rates of 0.1, 0.2, 0.5, and 1.0 °C min-1. All experiments 

were performed with a wt% of 1.0, which corresponds to a surface area, s, of 

1.178 ± 0.3 cm2 per droplet calculated using a specific surface area of 11.8 ± 0.8 m2 g-1 

Murray et al. (2011). The temperature uncertainty, arising from the temperature probe and 

observed range in melting temperatures, has been estimated by Whale et al. (2014) as 

± 0.4 °C. Freezing data is limited to T > -20.5 °C below which the substrate was observed to 

influence freezing behaviour. 
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Figure 4.1. Normalised freezing rates Rs(T) values determined from cooling experiments with a range of cooling 

rates. Open symbols represent experimental data from Murray et al. (2011) and closed symbols represent original 

data. The black  dashed line shows a linear fit to all data (ln(Rs) = -1.12(T + 23.1)). Temperature uncertainty for the 

MICROLITRE data (not shown) is estimated at ± 0.4 °C, and uncertainty in Rs (not shown) is estimated at -17 % and 

+25 %.  

 

 

In a single-component system the gradient -dln(Rs)/dT, named ω, is equal to λ. If the system 

were multiple component then the slope ω will be smaller than λ because an inappropriate 

model was used (i.e. ω is a lower limit to λ). For a set of data obtained at a single cooling 

rate it is not possible to say if the sample is a single or multiple-component species, further 

tests are required. Murray et al. (2011) did this by performing isothermal experiments in 

addition to experiments at various cooling rates and found that the values of Rs (presented 

as Js values in their study) derived from both styles of experiment were consistent. They 

concluded that nucleation by kaolinite KGa-1b was consistent with a single-component 

system between -37.15 ≤ T ≤ -27.65 and therefore Rs = Js. Surface area normalised freezing 

rates (Rs) for the PICOLITRE and MICROLITRE experiments are shown in Figure 4.1. The 

larger droplets in the MICROLITRE experiment contain significantly greater s per droplet 

than the PICOLITRE experiment, which increases the probability of freezing, resulting in 

higher freezing temperatures. The Rs values determined from a range of cooling rates fall 

onto a single line, as expected for a single-component.  

 

These conclusions were tested further by comparing the expected freezing behaviour of the 

kaolinite sample with an isothermal experiment. An isothermal experiment with droplets 
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containing a single-component species will exponentially decrease with respect to time, this 

behaviour can be reproduced with a knowledge of λ. A fit to the combined PICOLITRE and 

MICROLITRE Rs data in Figure 4.1 provides the slope ω, which assuming a single-

component species is equal to λ. The fit is described by ln(Rs) = -1.12(T + 23.1) and thus 

ω = λ = 1.12. The isothermal experiment, shown in Figure 4.2, was performed at -18 °C 

with droplets containing 1.0 wt% of KGa-1b particles. The expected decay was simulated 

using the value of Js determined from the fit to ln(Rs) in Figure 4.1 at -18 °C and λ = 1.12 . 

The expected exponential decay matches the measured decay; this is consistent with a 

single-component system and additionally demonstrates that the observed time-dependence 

in the cooling experiments is consistent with the observed time-dependent in the isothermal 

experiment. 

 

 

Figure 4.2. The exponential decay of liquid droplets during an isothermal experiment at -18 °C together with an 

isothermal simulation at the same temperature using the linear fit to all data in Figure 4.1. The grey area follows the 

experimental uncertainty in T around the modelled isothermal. The experiment duration was 17 minutes, at which 

point one droplet remained unfrozen. 

 

 

In Figure 4.3 the MICROLITRE dataset is placed in the context of the FROST framework. 

If the INP species can be characterised with a single λ then the application of Eq. (3.35) will 

modify each data point by                 . With the correct value of λ in the FROST 

framework, the data will converge onto the curve of a 1 °C min-1 cooling experiment for the 
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species tested. Figures 4.2a, b, and c show the cumulative fraction frozen f(T), ns(T) values, 

and Rs(T) values from Figure 4.1, respectively. On applying FROST with λ = 1.12 both the 

modified f(Tꞌ) and ns(Tꞌ) data converge (Figure 4.3d and e, respectively). This additionally 

supports the conclusion that kaolinite KGa-1b is well represented by a single-component 

system. 

 

 

Figure 4.3. Raw f(T) data and derived Rs(T) and ns(T) values from kaolinite (KGa-1b) MICROLITRE cooling 

experiments ((a), (b), and (c) respectively), and the corresponding normalised data, f(Tꞌ) and ns(Tꞌ), ((d) and (e), 

respectively) using the value of λ determined directly from the linear fit to ln(Rs) against T in Figure 4.1 and 

reproduced in (c). Temperature and Rs uncertainty is as in Figure 4.1. Uncertainty in ns (not shown) is estimated as 

± 20 %.  

 

 

The results from Figure 4.1 show that kaolinite exhibits a linear relationship between ln(Rs) 

and T over 20 °C which is at odds with CNT. This might suggest that there is a flaw in CNT 

theory, or alternatively it may be the case that there are multiple INP populations which 

happen to give the appearance of a single-component system. To test this further a series of 

simulations were performed using CNT-based models, including the SCS and MCS models. 

The CNT-based nucleation rate coefficients were determined as in Chapter 2, and f(T) 

simulated assuming a 1 °C min-1 cooling rate. The f(T) data was then used to determine the 

overall Rs(T) function in order to make a comparison to the experimental data. The results 
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are shown in Figure 4.4. The PICOLITRE and MICROLITRE data is shown along with the 

linear fit to the data reproduced from Figure 4.1, which has been extrapolated to make clear 

comparisons. The assumption of a single-component species was simulated using the SCS 

model with θ = 78.5 ° and clearly shows that this assumption can not concurrently 

reproduce both datasets. The CNT-based MCS model was able to reproduce the data but 

required the presence of two distinct distributions of contact angles consisting of a uniform 

contact-angle distribution at low temperatures and a log-normal contact-angle distribution at 

higher temperatures. In CNT the time-dependent behaviour is related to temperature, 

therefore it would be expected that the high-temperature experimental dataset would behave 

with considerably weaker time-dependence than the lower temperature dataset. However, 

the evidence presented here suggests that KGa-1b behaves with consistent time-dependent 

behaviour at high and low temperatures, and thus CNT cannot describe the linear nature of 

ln(Rs) for this species.  

 

 

Figure 4.4. Fitting CNT to PICOLITRE and MICROLITRE experimental data from Figure 4.1 assuming either a 

single contact angle (1θ) or a distribution of contact angles (θPDF). For the θPDF simulation a log-normal bimodal 

distribution of θ was used. For comparison the extrapolated linear fit from Figure 4.1 has been included. 
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on a hydrophobic surface. Each droplet contained 0.1 wt% of K-feldspar, corresponding to 

a surface area of 1.85 × 10-2 ± 0.004 cm2 calculated using a specific surface area of 

1.86 m2 g-1 (Whale et al., 2014).  

 

Figure 4.5a, b, and c show the experimental f(T) data, and derived ns(T) and Rs(T) values, 

respectively. For the 0.2, 0.4 and 2.0 °C min-1 curves two separate experiments were 

performed and for the 1.0 °C min-1 curve five experiments were performed. A systematic 

shift in f(T) outside of instrumental error (± 0.4 °C) can be seen for the experiments at 0.2 

and 2 °C min-1, which indicates that there is a cooling-rate dependence for nucleation by K-

feldspar.  

 

The data now needs to be tested to establish whether it is a single or multiple-component 

system. The normalised freezing rates, Rs, for the 0.2 and 2.0 °C min-1 runs are shown in 

Figure 4.5c. If K-feldspar behaved as a single-component then the two datasets would fall 

onto the same line, as they do for kaolinite in Figure 4.1a. However, they do not fall on the 

same line; the Rs values are significantly different between the two cooling rates, hence this 

suggests that K-feldspar is multiple-component. In this case derived values of Rs are not 

equal to the nucleation rate coefficient Js.  

 

With the correct value of λ in the FROST framework, the modified data will converge onto 

a single curve. Therefore, in order to determine the value of λ, a procedure was followed 

where λ was iteratively varied until ns(Tꞌ) converged onto a single curve. The best fit was 

determined by the minimisation of the RMSE between the data and a linear fit to ln(ns) for 

data where Texperiment ≤ -10.5 °C. This temperature was chosen to limit effects from sporadic 

events at high temperatures from minor constituents in the K-feldspar sample which include 

quartz and Na/Ca-feldspar (4 and 15 %, respectively, as reported by Atkinson et al. (2013)). 

This fitting procedure, with a RMSE value of 0.009, resulted in λ = 3.4 and is shown in 

Figure 4.5e. This value is substantially steeper than the gradients ω in panel c (0.85 and 

0.9). Recall that for kaolinite, the gradient ω was used to normalise the ns values in Figure 

4.3e which provided additional evidence that that kaolinite is single-component. In 

K-feldspar the fact that ω ≠ λ shows that K-feldspar is multiple-component.  
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Figure 4.5. Layout as in Figure 4.3 but for the species K-feldspar at cooling rates of 0.2, 0.4, 1.0 and 2.0 °C min-1. 

Brackets beside the cooling rates indicate the number of experiments performed. Linear fits to derived ln(Rs) values 

for runs at 0.2 and 2.0 °C min-1 are shown as solid lines in (c) resulting in ω = 0.85 and 0.9, respectively. Modified 

ns(Tꞌ) data was minimised and resulted in λ = 3.4. In this example ω ≠ λ suggesting that K-feldspar is a multiple-

component species.  

 

 

To identify whether this behaviour is consistent, similar to the kaolinite sample, an 

isothermal experiment was also performed at Tiso = -11 °C with 20 droplets (28 froze during 

cooling to Tiso) containing 0.1 wt% of K-feldspar. The data is shown in Figure 4.6. For a 

single-component species the decay of liquid droplets over time will be exponential (as was 

the case for kaolinite KGa-1b), whereas as seen in Chapter 2 a multiple-component species 

will result in a non-exponential decay. The results from Figure 4.5 suggest that the latter 

behaviour is to be expected. On inspection of the isothermal data, shown in Figure 4.6, it is 

clear that the decay of liquid droplets was not exponential, again consistent with K-feldspar 

being multiple-component. To highlight this, the decay expected from a single-component 

system was plotted assuming Rs = Js. The two limiting values of Rs from Figure 4.5c 

at -11 °C were used. The simulated decays clearly over-predict the rate of decay. To 

simulate the expected decay assuming a multiple-component system, the Si-MCS model 
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was initially used as a fitting tool to obtain a φ PDF distribution that best reproduced the 

entire normalised f(Tꞌ) dataset in Figure 4.5d, using the minimised value λ = 3.4. This 

distribution (µ = 11.2, σ = 1.11) was then used to simulate an isothermal experiment which 

included the initial cooling period require to reach Tiso. This is required as the more efficient 

droplets may freeze upon cooling and therefore decrease the number of droplets available 

for the isothermal experiment, as well as the φ PDF.  

 

 

Figure 4.6. Decay of liquid droplets in an isothermal experiment at Tiso = -11 °C using K-feldspar, and simulated 

experiments assuming a single and multiple-component species. The shaded regions follow the instrument-based 

error of ± 0.4 °C around Tiso. The triangular symbols indicate when a freezing event occurred, throughout the 120 

minute duration of the experiment. 

 

 

The expected decay, shown in Figure 4.6 as a black dashed line, shows a clear consistency 

between the multiple-component simulation and the experimental data. This again shows 

strong evidence that the K-feldspar sample exhibits a range of φ and would require a 

multiple-component system to describe its freezing behaviour. 

 

This example is important as it illustrates that for a multiple-component species the 

observed gradient ω of the derived Rs(T) values from a single experiment does not 

characterise its stochastic behaviour. For these species a series of experiments at different 
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cooling rates or residence times must be performed in order to determine the value of λ that 

can be used to characterise its stochastic behaviour.  

 

4.3.3 Mineral Dust Freezing Experiments using the ZINC CFDC Instrument 

Welti et al. (2012) (hereafter WELTI) studied the dependence of freezing probability on 

residence time for droplets containing particles of mineral dust using the ZINC CFDC 

instrument. The mineral dust used by WELTI was supplied by the chemical company Fluka 

as kaolinite, but contained a range of minerals including feldspar and it has been suggested 

that it is this feldspar content which controls its ice nucleating ability (Atkinson et al., 

2013). In their experiment, WELTI size-selected single particles, immersed them in 

supercooled droplets and passed the droplets into ZINC. Within the instrument the droplets 

experienced isothermal conditions and the frozen fraction was determined using a 

depolarization detector. Variable flow rates and a series of detection points provide a range 

of residence times, and by performing experiments at several temperature WELTI built up 

f(T) curves for a range of residence times. For this example only the data for 400 nm 

particles is used.  

 

The data is shown in Figure 4.7a along with derived ns(T) and Rs(T) values in b and c, 

respectively. Similar to the K-feldspar data the Rs(T) values for the mineral dust do not fall 

onto a single line and show a separation between residence times consistent with a multiple-

component system. Therefore, in order to determine the value of λ that describes the 

residence-time dependence, the same procedure was followed as in the previous example 

with K-feldspar. Each data point represents a single isothermal experiment with a single 

residence time, t. Hence, Eq. (3.36) can be used to modify each data point with 

( )tTT  experiment' , assuming that the species can be characterised by a single value for λ. 

Using derived ns(T) values, with INP surface area per droplet calculated assuming a 

spherical particle 400nm in diameter as per the experiment, λ was systematically varied 

until the ns(Tꞌ) values converged onto a single line, again described by an exponential fit to 

ln(ns). This resulted in λ = 2.19 with a ln(ns) RMSE of 0.047, and is shown in Figure 4.7e. 

For comparison, an exponential fit describing the raw ns(T) data resulted in a RMSE of 

0.076. The two exponential fits were used to reproduce the expected fraction frozen data for 
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a 1 °C min-1 cooling experiment, and are plotted along with the observed and normalised 

fraction frozen dataset in Figures 4.7a and 4.7d, respectively. The range of ω determined 

from the ln(Rs) fits in Figure 4.7c was estimated as 1.2 at -33 °C and 0.2 at -36 °C. These 

values are lower than the minimised value of λ (2.19) suggesting that the mineral dust 

sample used in the WELTI study is multiple-component, which agrees with the conclusions 

of WELTI. 

 

 

Figure 4.7. Layout as in Figure 4.3 but for 400 nm kaolinite (Fluka) isothermal experiments from Welti et al. (2012) 

at residence times ranging from 1.11 to 21.4 s and temperatures from -32.15 to -37.15 °C. Rs(T) values, shown in (c), 

do not fall onto a single line and exhibit a consistent separation with increasing residence time. Modified ns(Tꞌ) data 

resulted in λ = 2.19. The fits shown in (d) and (e) were used to reproduce a 1 °C min-1 cooling experiment and are 

shown as dashed lines in (a) and (d). Error bars are reproduced from Welti et al. (2012). 

 

 

Similar to the kaolinite and K-feldspar examples the determined value of λ was used to 

reproduce the expected decay of liquid droplets over time. With CFDC instruments the 

cooling from ambient temperature to the experimental temperature is very rapid and 

therefore the distribution of INP efficiency per droplet in the isothermal experiment can be 

assumed to be represented by the function of ns(Tꞌ) determined in Figure 4.7e. Recall that in 

the cold stage isothermal previously, a period of cooling was required to reach Tiso and 

therefore the Si-MCS model had to be used in order to keep track of each sub-population. 

At this point the function ns(T) could have been determined for the remaining droplets and 
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used as in the following example. To calculate the expected decay of liquid droplets with 

time Eq. (3.41) was used with the value of λ (2.19) determined previously. The 

experimental data, along with the expected decay, is shown in Figure 4.8. It can be seen that 

at high temperatures (-34.15 to -32.15 °C) the FROST framework is able to reproduce the 

experimental decay very well. However, at lower temperatures (-35.15 to -37.15 °C) there 

are large differences. The reported errors bars are large for the lowest temperature data and 

suggest an increasing uncertainty with decreasing temperature. Also the fraction of droplets 

frozen is not expected to increase with decreasing temperature as stated by WELTI. This 

suggests a potential experimental issue, which would explain the discrepancies. 

 

 

Figure 4.8. Experimental data (symbols) from Figure 4.7a plotted as the decay in liquid droplets over time for each 

temperature, along with the expected decay determined using Eq. (3.41) with the function of ns(Tꞌ) in Figure 4.7e and 

λ = 2.19. The expected decay at each temperature is shown as a dashed line. 

 

 

The implication of not taking into account time-dependence when analysing experimental 

data is demonstrated in Figure 4.9. The first example, shown as the magenta line, is the 

resulting ns(T) function determined directly from the raw experimental data; a change in 

cooling rate has no affect. The black lines in the figure show the resulting ns(T) functions 

determined on application of the FROST framework; using this method a change in cooling 

rate has a corresponding affect on the ns function. This may have important consequences in 

the atmosphere and will be examined further in Chapter 5. 
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Figure 4.9. The resulting equivalent function of ns(T) for different cooling rates using the FROST framework (black 

lines) and directly fitting to the experimental data (magenta line). 

 

 

Here the FROST framework has been used to both normalise isothermal experiments 

performed over a range of residence times, and determine a value of λ that can be used to 

potentially describe the cooling-rate and time-dependent behaviour of this mineral dust in 

simulations. This example additionally highlights the necessity to use relatively pure 

samples in order to limit uncertainties due to multiple INP species. 

 

4.3.4 Volcanic Ash from ZINC and AIDA 

In this final example the framework is used to normalise droplet freezing data from two 

fundamentally different experimental methods. Following the eruption of Eyjafjallajökull in 

Iceland during April 2010, a single sample of volcanic ash was collected and analysed to 

investigate its freezing characteristics in the AIDA expansion chamber (Steinke et al. 

(2011), hereafter STEINKE) and the ZINC ice nucleating chamber (Hoyle et al. (2011), 

hereafter HOYLE). In HOYLE the ZINC CFDC instrument, as described in the previous 

example, was used to determine the total fraction of droplets frozen over a range of 

temperatures (-43.15 ≤ T ≤ -26.15 °C) with a residence time of 12 s at each temperature. 

Each supercooled droplet contained a single immersed particle, which ranged from ~0.1 to 

3 µm in diameter, D. The 84 m3 AIDA cloud chamber is capable of simulating an 

ascending, cooling air parcel, and is coupled to an array of instruments, which were used by 
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STEINKE to determine the freezing characteristics of the same volcanic ash sample. In this 

method the dust sample (~0.1 ≤ D ≤ ~15 µm) is dispersed into the cloud chamber prior to 

expansion. 

 

 

Figure 4.10. Layout as in Figure 4.1 but for a single volcanic ash sample from the Eyjafjallajökull eruption in 2010. 

Red circles represent data presented in Hoyle et al. (2011) using the ZINC instrument, and black squares represent 

data from Steinke et al. (2011) using the AIDA expansion chamber. ns(T) data in (b) was reproduced from Murray et 

al. (2012); f(T) values in (a) were also determined from this dataset. A fit to determined Rs values in (c) resulted in ω 

= 0.55. The raw ns(T) data was modified and resulted in λ = 0.595. The similarity in ω and λ suggests that this 

volcanic ash sample behaves as a single-component. 

 

 

The ice nucleating efficiencies of the two datasets were compared in Murray et al. (2012) 
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STEINKE. Due to non-cumulative nature of the STEINKE f(T) dataset a polynomial fit to 

the data was used to determine the differential fraction-frozen required to calculate Rs(T) 

values. The two datasets fall onto a single line with a ln(Rs) RMSE of 0.22 with a gradient 

ω = -dln(Rs)/dT = 0.55. Following the previous two examples, λ was systematically varied 

until the ns(Tꞌ) values converged onto a single line described by an exponential fit to ln(ns), 

resulting in λ = 0.596. Applying this value to Eqs. (3.35) and (3.36) results in 

β(r) = -0.12 °C and β(t) = -3.57 °C for the STEINKE and HOYLE dataset, respectively. 

Figure 4.10d and e show the subsequently modified f(Tꞌ) and ns(Tꞌ) data. The modified 

fraction frozen data shows a difference between datasets due to the larger surface area per 

droplet in the HOYLE experiments (also evident in panel b). The ns(Tꞌ) data is shown in 

Figure 4.10e, with a linear fit to the combined dataset producing a ln(ns) RMSE of 0.25.  

 

In this example ω (0.55) and λ (0.596) are similar, which suggests that this INP species is 

reasonably described by a single-component system (where ω = λ). On application of 

λ = ω = 0.55 a fit to the modified data produces a RMSE of 0.26, which is very similar to 

the minimised value (0.25) used to determine λ, which supports this conclusion. However, 

Murray et al. (2012), from which these data were reproduced, state that the average surface 

area per droplet determined for the HOYLE dataset may be over-predicted, which could 

potentially impact these results. The ns and Rs values would shift to higher values, and 

subsequently ω would increase slightly and λ would also increase, but by a larger factor. In 

this scenario ω < λ which would suggest that the volcanic ash sample is a 

multiple-component system.  

 

Fornea et al. (2009) also performed an immersion mode experiment using a volcanic ash 

sample from Mount St. Helens. In their experiments single particles with a diameter of 

250 ≤ D ≤ 300 μm were immersed within five 2 μL droplets and each subjected to 25 

freeze-thaw events. Additionally, as a means of testing the sensitivity to cooling rate, 

droplets containing the same volcanic ash sample were subjected to freeze-thaw cycles, but 

cooled at different rates (1 to 10 °C min-1). The freeze-thaw experiments resulted in an 

average σT,freeze of 2.0 °C and the variable cooling experiments resulted in a shift in the 

average freezing temperature by -3.6 °C (upon a change from 1 to 10 °C min-1) without any 
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change in σT,freeze. Applying these data to the FROST framework Eqs. (3.34) and (3.35) were 

used to determine λ, resulting in λ = 0.635 and λ = 0.640 for the freeze-thaw and cooling 

experiments, respectively. The first important point worth noting is that these two values, 

determined from distinct experimental and analysis methods, show very good agreement, 

providing evidence that the FROST framework is capable of normalising time-dependent 

behaviour. Secondly, a comparison to the values determined for the first volcanic ash 

sample previously (ω = 0.550 and λ = 0.595) shows that there is a strong similarity with 

regards to the magnitude of λ.  

 

Even though these volcanic ash samples are from different sources these results suggest that 

they have similar time-dependence properties. These additional results provide evidence 

that the λ value determined for the Eyjafjallajökull sample is robust, and therefore 

strengthens the conclusion that the Eyjafjallajökull ash sample tested is a single-component 

species. Due to the experimental method used by Fornea et al. (2009) it is not possible to 

determine Rs values, and therefore ω, which would be required to conclude whether the 

Mount St. Helens volcanic ash sample is also a single-component species. 

 

4.4 The Sensitivity of Freezing Probability to the Time-Dependence of 

Nucleation 

Using Eqs. (3.19) and (3.20) in the FROST framework a first-order indication of the 

potential importance of time-dependence is shown in Figure 4.11 where values of β(r) and 

β(t) for 0.5 ≤ λ ≤ 10 have been plotted. Each point represents the shift of a specific fraction 

frozen, by a temperature β °C that results from a fractional change in either cooling-rate or 

residence-time for a species with a specific value of λ. This plot shows how materials with a 

small value of λ (corresponding to a shallow gradient ω in a single-component system) are 

more sensitive to timescale; with a decreasing λ corresponding to an increasing shift by β 

for the same change in timescale.  
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 Figure 4.11. The shift in temperature β that will result from a fractional change in cooling rate or residence time for a 

specific value of λ. Values include those determined from (i) this thesis, (ii) Wright et al. (2013) cooling experiments, 

(iii) Wright et al. (2013) freeze-thaw experiments, (iv) Fornea et al. (2009), and (v) Vali (2008), and (vi) Vali and 

Stansbury (1966). INP samples are colour coded depending on INP type. Blue (solid and dashed) arrows correspond 

to rain samples (unfiltered and filtered) from freeze-thaw experiments by Wright et al. (2013). 

 

 

4.5 Comparing the Time-Dependencies of Atmospherically Relevant 

INPs 

The application of FROST to the data presented here and existing data can be used to 

determine the range in time-dependent behaviour for atmospherically relevant INP species 

obtained using different experimental methods. The various methods and datasets from each 

study will be briefly presented. 

 

Vali and Stansbury (1966) reported a 0.2 °C shift in f(T) upon each doubling of cooling rate 

for cooling experiments using droplets of distilled water. Vali (2008) performed a series of 

freeze-thaw experiments (of up to 65 cycles) with a population of droplets containing a soil 

sample and a population of distilled water droplets; resulting in σT,refreeze = 0.2 and 

σT,refreeze = 0.42 °C, respectively. Fornea et al. (2009) performed a number of freeze-thaw 

experiments using a droplets containing samples of volcanic ash (from Mt. St. Helens) and 

presented σT,refreeze values; a series of cooling experiments at different rates were also 
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performed using the same volcanic ash sample. Wright et al. (2013) performed a series of 

cooling experiments to characterise the cooling-rate dependence (over two orders of 

magnitude change) of several atmospherically relevant INP species, including several 

mineral dusts, flame soot, a bacterial based substance (Icemax™), and rainwater samples. 

For each experiment median freezing temperatures were presented. Additionally, Wright et 

al. (2013) performed freeze-thaw experiments with the same INP samples. The standard 

deviation in freezing temperature for each INP was presented.  

 

 

Table 4.1. Values of λ from various immersion mode studies. λ determined using the FROST framework. 

 

Study and experimental method Material λ 

Vali and Stansbury (1966) – cooling Distilled water 3.5 

Vali (2008) – freeze-thaw Soil 

Distilled water 

6.3 

3.0 

Fornea et al. (2009) – freeze-thaw Volcanic ash (Mt. St. Helens) 0.6 

Fornea et al. (2009) – cooling Volcanic ash (Mt. St. Helens) 0.6 

Hoyle et al. (2011) – isothermal  

& Steinke et al. (2011) – cooling 

Volcanic ash (Eyjafjallajökull) 0.6 

Welti et al. (2012) – isothermal Kaolinite Fluka 2.2 

Wright et al. (2013)  – freeze-thaw Icemax
™

 

ATD 

Montmorillonite 

Kaolinite KGa-2b 

Flame soot 

Filtered rain #1 

Filtered rain #2 

Filtered rain #3 

Filtered rain #4 

Unfiltered rain #1 

Unfiltered rain #2 

Unfiltered rain #3 

2.9 

2.3 

0.9 

2.2 

1.7 

1.3 

2.0 

2.6 

1.9 

1.6 

1.4 

1.9 

Wright et al. (2013) – cooling Icemax
™

 

ATD 

Montmorillonite 

Kaolinite KGa-2b 

Flame soot 

Filtered rain #3 

Filtered rain #4 

Unfiltered rain #1 

23.0 

4.4 

1.8 

1.7 

1.4 

4.6 

4.6 

23.0 

This study – cooling and isothermal 

 

Kaolinite KGa-1b 

K-feldspar 

1.1 

3.4 
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The corresponding values of λ from each study were determined using the FROST 

framework. The values are shown in Table 4.1 along with those determined and presented 

in the earlier sections. A subset has been included in Figure 4.11 to demonstrate the relative 

importance of each species. From Figure 4.11 and Table 4.1 it is clear that atmospherically 

relevant INPs exhibit a wide range of time-dependent behaviour. INP species that have a 

value of λ with a large magnitude (λ > 4), such as the Icemax™ and ATD, will exhibit very 

little time-dependence and would likely be well approximated by a singular freezing model. 

For those with a small magnitude (especially λ < 1) such as the volcanic ash from HOYLE 

and STEINKE the significant cooling-rate and residence-time dependence must be taken 

into account.  

 

These findings are important because it changes the way that the ice nucleation community 

should frame the debate of whether time-dependence is important in ice nucleation. In the 

past the question has been whether time-dependence is important, but this question should 

be rephrased to whether a particular INP species has a strong time-dependence or not, and 

at what point this stops having an impact on ice nucleation rates, i.e., is there a limiting 

value of λ, beyond which the singular freezing model is adequate? This latter question will 

be addressed in the following chapter. 

 

4.6 Implications for In-situ INP Measurements 

The variability in λ shown in Figure 4.11 raises the question of whether the role of time-

dependence is being taken into account when measuring INP concentrations in the 

atmosphere. In this section the FROST framework will be used to understand how a specific 

instrument residence time (t) relates to a cloud updraught speed. This will provide 

information on how representative a residence time t is on the cloud being measured. 

 

Atmospheric INP concentrations are generally determined by passing a flow of particles 

through supercooled conditions (constant T) and measuring the fraction of particles that 

produce ice particles. By changing the isothermal experiment temperature the number of 

INPs that are ‘active’ at that temperature can be determined. For the immersion mode, dry 

particles are subjected to water supersaturated conditions prior to the supercooling in order 
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to immerse each particle in a single droplet. The isothermal experiments are typically 

performed with short residence times. 

 

The most extensively used instrument used for in-situ measurements (and post field 

campaign analysis of in-situ air) is the Colorado State University (CSU) CFDC which has 

been used in a large number of field campaigns (DeMott et al., 2010). The temporal 

characteristics of this instrument therefore represent the conditions used for measuring INP 

concentrations in the atmosphere. The CSU-CFDC residence time is dependent on the air 

flow used and has a typical range of 3 to 30 s (Rogers et al., 1998; DeMott et al., 2003a; 

Cziczo et al., 2003; DeMott et al., 2003b). This range will be used to constrain the typical 

temporal conditions used for measuring the INP concentration. 

 

Equation (3.33) was used to determine the cooling rate (in °C min-1) that would be required 

to reach the same fraction frozen as in an isothermal experiment with a residence time t. 

This cooling rate can then be used to determine the equivalent in-cloud updraught speed, 

wequivalent. To determine the wequivalent a wet adiabatic lapse rate of 5.5 °C km-1 was used so 

that upon incorporation with Eq. (3.33) 

 

 

 
            

 

            
 

(4.1) 

 

where t is the residence time in seconds and wequivalent is in units of m s-1. A range of 

instrument residence times (1 ≤ t ≤ 60) and values of λ (0.1 ≤ λ ≤ 10) were applied to Eq. 

(4.1), and the results are shown in Figure 4.12. Each data point in this plot describes the 

updraught speed which would be required to reach the same f as in an instrument with a 

specific residence time for an INP characterised by λ. The implication shown in this data is 

that an in-situ measurement of INP concentration is only applicable at a single cloud 

updraught speed, the value of which is dependent on the instrument residence time and λ. 

The application of the in-situ measurement to clouds with w < wequivalent will lead to an 

over-prediction of the INP concentration and w > wequivalent to an under-prediction. 
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Figure 4.12. The equivalent in-cloud updraught speed as a function of instrument residence time and λ. Colour coded 

contours are 2 m s-1 apart and dashed lines have been included to show where updraught speed is < 2.0 and 

> 10.0 m s-1. Updraught speeds calculated assuming a wet adiabatic lapse rate of -5.5 °C km-1.  

 

 

To understand the magnitude of the discrepancy in predicted INP concentration the FROST 

framework was used to determine the difference in concentration between the in-situ 

measurement and the expected concentration in a simulated cloud with constant updraught 

speed w. For these calculations four values of w were used (1.0, 2.5, 5.0, and 10.0 m s-1). 

Equation (3.19) was used to determine β upon a change in updraught speed from the 

wequivalent in Figure 4.12 to the simulated or prescribed w. Assuming a single-component 

species, equating f(T) with f(T + β) can be used to determine the equivalent change in f, 

which results in the equation: 

 

 

             

              
 

  
  

          
(4.2) 

 

β values determined from Figure 4.12 were applied to this formula and the results are 

shown in Figure 4.13. Each separate panel shows the relative difference in INP 

concentration between an in-situ measurement and a simulated cloud with updraught speed 

w. The marked region encompasses the range in typical in-situ CFDC instrument residence 

times and also encompasses the range in λ that most of the INP species shown in Figure 

4.11 were observed to exhibit. This can therefore be seen as representative of the 

experimental method and time-dependent characteristics of atmospherically relevant INP 

species. 

 

0.1 1 10
0

10

20

30

40

50

60  wequivalent 

  / m s
-1

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40In

s
tr

u
m

e
n
t 
re

s
id

e
n
c
e
 t
im

e
 /

 s



2 ms
-110 ms

-1

0.2 0.5 2 3 4 5



117 

 

The principal result is that due to the short residence times INP concentrations at low 

updraught speeds, especially for w < 1 m s-1, may be substantially under-predicted. For 

example, if a population of droplets contained kaolinite KGa-1b particles (λ = 1.12) then the 

predicted INP concentration (based on a 30 s residence time) would only account for ~20% 

of the actual number concentration; a weakly time-dependent species (λ = 3) would be 

under-predicted by ~50%. Only species that have extremely weak time-dependent 

behaviour (λ > 6) would be well represented by the 30 s residence time. As w increases the 

trends can be seen to systematically shift (with respect to λ) to higher percentages, so that at 

w = 5 m s-1, representing a convective cloud, the kaolinite species would be well 

represented by the 30 s residence time, whereas now the less time-dependent species are 

being over-predicted.  

 

  

Figure 4.13. The percentage difference in measured and predicted INP concentration when time-dependence is not 

taken into account for a range of simulated updraught speeds. The measured concentration is dependent on instrument 

residence time t and λ. These values are assuming a single-component system and are therefore an upper limit to the 

expected difference. The shaded cyan box represents the area that encompasses the typical in-situ measurement 

residence times and the estimated range of λ within which most INP species are observed to fall (estimated from 

Figure 4.11). 
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concentrations used in cloud modelling studies. However, the results shown in Figure 4.13 

were determined assuming a single-component species. As shown in Chapter 2 the 

difference in f upon a change in temporal conditions for a multiple-component species 

decreases with increasing site diversity. This suggests that the results from Figure 4.13 are 

an upper limit to the effect that time-dependence has on the measured INP concentration.  

 

The effect on the measurements introduced from using a short instrument residence time 

could be accounted for using the FROST framework if λ of the species being measured is 

known. This would require knowledge on the classification of INPs in the atmosphere, and 

also knowledge on their characteristic λ. A continued experimental characterisation of 

relevant INPs could accomplish this. 

 

4.7 Conclusions 

In this chapter the FROST framework was used to reconcile, for the first time, immersion 

mode freezing data obtained using different experimental methods and time-scales. The 

application of FROST and a newly designed set of methods can be used to determine the 

value λ that characterises the time-dependent freezing behaviour of INPs. With knowledge 

of λ the freezing behaviour in immersion mode experiments can be prognostically 

simulated. As demonstrated, experimental data obtained from different instruments and 

methods can now be reconciled to remove time-dependent effects, allowing the underlying 

nucleation rate coefficient to be consistently determined.  

 

The FROST framework was used to determine λ from a range of existing experimental 

datasets obtained using cooling, isothermal, and freeze-thaw experiments. This unique 

dataset provides information on the variation in time-dependent properties for a wide range 

of atmospherically relevant INPs. The INPs are predominantly characterised by 1 ≤ λ ≤ 3 

although some species, including volcanic ash samples from Mt. St. Helens and 

Eyjafjallajökull, and black carbon, show substantial time-dependent behaviour. 

 

Finally the framework was used to highlight the possible implications for in-situ 

measurements of INP concentrations using instruments with short residence times. Typical 
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instrument residence times were used to show that single-component INPs with low λ 

values will be under predicted by up to 80% in a simulated 1 m s-1 updraught, whilst only 

species with λ > 6 would be well represented. At higher updraught speeds (5 m s-1) this 

behaviour systemically shifts to higher % so that low λ species are well represented but for 

species with high λ the INP concentration will be substantially over-predicted. 
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Chapter 5: Time-Dependence Sensitivity 

Studies using a Cloud Model with 

Detailed Microphysics  

5 Chapter 5: Time-Dependence Sensitivity Studies using a Cloud Model with Detailed Microphysics 

5.1 Introduction 

In Chapters 3 and 4 it was found that the time-dependent behaviour of an INP species can 

be characterised using λ, which describes the temperature dependence of the nucleation rate 

coefficient Js for a particular INP species. A parameterisation was presented in Chapter 3 

that is able to represent this time-dependent behaviour for use in modelling studies.  

 

In this chapter the parameterisation that forms part of the FROST framework is 

incorporated into a detailed microphysics scheme in the Met Office KiD model and used to 

estimate the sensitivity of mixed-phase clouds to immersion mode time-dependence. A 

series of increasingly complex modelling frameworks will be used to understand the 

relationship between λ and various cloud properties. 

 

5.2 Model Description and Development 

The Met Office Kinematic Driver (KiD) model was developed and introduced by Shipway 

and Hill (2012) as a 1D and 2D framework for comparing microphysics schemes without 

the added complexities of dynamical and radiative feedbacks. To achieve this, radiation and 

its effect on cloud development is not considered in the KiD modelling framework, and 

dynamics are prescribed throughout the simulation. Prognostic variables are advected using 

the advection scheme as described by Leonard (1993), known as ULTIMATE. Several 

microphysics schemes are already embedded in the framework and include single and 

double-moment bulk schemes, and a bin scheme. For these simulations the double-moment 

Thompson09 scheme (Thompson et al., 2008) was chosen. Results from a microphysics-

scheme inter-comparison by Shipway and Hill (2012) show that this scheme falls well 
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within the spread of the other microphysics schemes, including the widely used Morrison 

2M scheme. 

 

The Thompson09 bulk microphysics scheme (described in full by Thompson et al. (2008)) 

predicts the mass mixing ratios of cloud water, rain, cloud ice, graupel, and snow, and also 

the cloud ice and rain number concentrations. Following observations by Field et al. (2005) 

the snow size distribution is determined using a combined exponential and gamma 

distribution, all other hydrometeor species are represented by a gamma distribution. Water 

vapour condensation is determined using a saturation threshold (Flatau et al., 1992), the 

autoconversion of cloud droplets into rain follows Berry and Reinhardt (1974) and the 

collision-collection processes between species is determined following Verlinde et al. 

(1990). The growth and sedimentation of hydrometeor species is represented, as well as the 

melting of ice phase species.  

 

The unmodified Thompson09 scheme currently represents freezing in the immersion mode 

following the parameterisation presented by Bigg (1953b), in which the probability of 

freezing is dependent on droplet volume and temperature only. All droplets are considered 

to contain an INP and therefore viable for freezing heterogeneously in the immersion mode. 

Rain droplets exceeding a mass of 3.27 × 10-6 g (relating to graupel with a diameter of 

250 μm) are transferred into graupel, with smaller rain droplets and all water droplets 

transferred into cloud ice. Ice nucleation via deposition and condensation mode is 

determined following Cooper (1986) less the contribution from the immersion mode. 

Homogeneous nucleation is represented by a threshold temperature of -38 °C, at which 

point all liquid hydrometeors are immediately frozen. Contact mode nucleation is not 

represented. 

 

For an improved representation of homogeneous freezing the temperature threshold used as 

a homogeneous freezing temperature was replaced with a parameterisation based on results 

from Murray et al. (2010) where the probability of a droplet freezing is determined as: 
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( ) ( )tvJTP  vshomogeneoufreezing, exp1  
(5.1) 

 

where v is the droplet volume in units cm-3, Δt is the model time step in seconds, and Jv is 

the homogeneous nucleation rate coefficient, described by the formula: 
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(5.2) 

 

where T0 is a temperature offset and A, B, C, D and E are constants, with the values given 

in Table 5.1 as per Murray et al. (2010). Following the observations as discussed in Chapter 

1 all other heterogeneous modes were switched off for the simulations. 

 

Table 5.1. Constants for Jv in Eq. (5.2). 

 

Constant Value 

T0 37.231 °C 

A 50.181 

B 31.922 

C 8.9479 

D 0.10188 

E 2.6711 

 

 

5.2.1 Incorporating the FROST framework  

As highlighted in Chapter 4 the freezing behaviour of INP species are measured under 

certain temporal conditions, which might be substantially different to the timescales 

available in clouds. The incorporation of the FROST framework in the model will provide a 

means for understanding the significance of this by testing the sensitivity of the cloud 

evolution to changes in λ. As in the unmodified Thompson09 scheme all droplets are 

assumed to contain a single INP with a constant surface area, which therefore describes a 

single-component system. This is an idealised treatment of the INP population but provides 

a means for exploring the significance of the variation in timescales for different INP 

species. 
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The existing immersion mode parameterisation (Bigg scheme) was replaced with the 

parameterisation presented in Chapter 3 so that the probability of a droplet freezing at a 

temperature T and cooling rate r (in °C min-1) is determined as: 

 

( )
( )




















 Ts

r
TkrTP



ln
exp1,freezing  

(5.3) 

 

where λ is the value that characterises the time-dependence of the INP species, s the surface 

area per droplet, and ΔT the change in temperature per model time step. The function of 

k(T) describes the differentiated form of the cumulative nucleation rate, ns(T). The default 

nucleation rate used is that of the mineral dust K-feldspar which is described by the function 

    -                          as presented by Atkinson et al. (2013), where T is 

the temperature in kelvin. A corresponding particle surface area sK-fe per droplet is 

prescribed as 1 × 10-9 cm2 which corresponds to an equivalent particle radius of ~0.1 μm. In 

addition I also use an ns function for kaolinite, an example of a less efficient INP; the rate is 

described by                              which was determined from the 

experimental dataset presented in Chapter 4. A corresponding ska is prescribed as 

3.14 × 10-8 cm2 corresponding to a radius of 0.5 μm. The difference in s between the two 

INP species follows from the observation that K-feldspar is generally found as a minor 

component of atmospheric dust INPs, and kaolinite found as a major component (Broadley 

et al., 2012). 

 

5.2.2 Mixed-Phase Cases  

The KiD model has a number of pre-existing 1D and 2D mixed-phase cases (Shipway and 

Hill, 2011) that are used to prescribe the simulation dynamics, as well as the initial profile 

of potential temperature θT, pressure, and water vapour mixing ratio qv. Hydrometeors and 

aerosols can also be prescribed but will not be in these simulations. A time and altitude-

dependent forcing can be applied to each of the prescribed variables. In this chapter a series 

of cases will be used to examine the role of time-dependence. An idealised 0D case is 

developed and used initially, and then followed by a series of existing 1D and 2D cases.  
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In the 0D simulations the 1D framework is adapted in order to isolate certain processes for 

use in an idealised sensitivity study. This is achieved by initialising and running the 

simulation as a 1D case but only considering a single altitude. Advection is switched off but 

sedimentation of hydrometeors is allowed. Using this method the boundary conditions are 

fulfilled by the surrounding 1D column. The case domain is a single column with a 

maximum height of 1000m. The θT profile is initialised to linearly decrease with height, and 

qv is initialised so that a relative humidity RHliquid of 100% is attained. For simulations using 

this case a constant forcing of θT with respect to time is applied to the column, so that a 

single grid cell will experience a constant cooling. By changing the magnitude of forcing a 

varying equivalent updraught speed wequivalent is achieved. All 0D simulations are taken at a 

height z = 300m from the 1D column which corresponds to an initial temperature of 

10.3 °C. 

 

 

Figure 5.1. The prescribed vertical updraught speeds used for the various 1D simulations. These idealised cases are 

described in Shipway and Hill (2011). 

 

 

The 1D simulations consist of two mixed-phase stratocumulus cases and two convective 

cases. The corresponding dynamics of each case are shown in Figure 5.1. The mixed1 case 

is characterised by an oscillating updraught/downdraught in time with the magnitude 
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linearly increasing with height where a maximum w = 0.7 m s-1 is reached. The mixed2 case 

is designed to simulate a quasi-steady stratocumulus layer. It exhibits an oscillating 

updraught/downdraught with a maximum w = 0.1 m s-1 which is restricted to the lower 

~400m of the column, a prescribed constant forcing of the water vapour field is also applied 

so that a steady precipitation rate is expected to be reached. Default profiles built into the 

KiD model (Shipway and Hill, 2011) are used to initialise the prescribed variables of θT and 

qv for both cases. These include the option of either a profile used in the GCSS SHEBA 

inter-comparison project, or a profile taken from the M-PACE campaign; both are shown in 

Figure 5.2. The SHEBA profile is characterised by a strong 4 °C inversion at ~400 m, 

whereas the M-PACE profile is characterised by a linearly decreasing temperature with 

height.  

 

 

Figure 5.2. The resulting profiles of T and RHliquid used for the various 1D simulations following prescribed profiles 

of θT and qv. 

 

The first convective case, deep1, is designed to simulate steady-state convection. A constant 

updraught characterised by wmax is applied along with a constant water vapour forcing 

which varies with height so that a steady precipitation rate is expected. The deep2 case is 

designed to reproduce an updraught core which varies in both height and time and can be 

seen as a transient case of deep convection, the dynamics of both convective cases are 

summarised in Figure 5.1. The initial prescribed profiles of θT and qv for both convective 

cases are shown in Figure 5.2, the overall profile characterises a dry boundary layer 

followed by a 5 km deep saturated layer. At temperatures below 0 °C qv is prescribed so that 

a RHice of 100% is attained. 
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The 2D simulations consist of a mixed-phase stratocumulus case and a squall line case, the 

prescribed variables and dynamics are shown in Figure 5.3. The stratocumulus case is based 

on the dynamics as described in Morrison and Grabowski (2007) combined with a profile 

taken from the Alaskan ISDAC campaign used to simulate mixed-phase conditions. This 

results in distinct updraught and downdraught regions with equal magnitudes of w with 

wmax = 1 m s-1, and an upper-level 200 m deep saturated layer. The squall line case has been 

taken from Slawinska et al. (2009) and is characterised by an expansive convective region 

and stratiform region. These simulations only concentrate on the convective region, which 

occurs between 30 and 70 km in the horizontal and has a maximum wmax of 10 m s-1. As 

shown in Figure 5.3 the prescribed domain is characterised by a 15 km wide saturated 

convective cell with a freezing level height of ~4 km. A left-to-right flow of 4 m s-1 is 

prescribed along with a weak left-to-right shear of 0.1 m s-1 km-1 (Slawinska et al., 2009). 

The addition of observationally constrained perturbations result in a convergent flow at the 

base of the cell and divergent upper-level flow.  

 

  

Figure 5.3. The initial prescribed domains of w, T, and RHliquid used in the 2D simulations. Solid contours show 

positive w and dashed contours negative w in m s-1. The white hatched regions show those where RHliquid ≥ 100%. 
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Table 5.2. Summary of each set of simulations performed. 

 

 Simulation name Description* 

0D 

(variable λ, wequivalent) 

0D_Kfe  

Using kaolinite nucleation rate 0D_Ka 

1D 

(variable λ) 

1D_m1SHEBA Mixed1 case, SHEBA profile 

Mixed1 case, M-PACE profile 1D_m1MPACE 

1D_m3SHEBA Mixed3 case, SHEBA profile 

Mixed3 case, M-PACE profile 1D_m3MPACE 

1D_d1w10 Deep1 case, wmax = 10 m s
-1

 

Deep1 case, wmax = 0.05 m s
-1

 1D_d1w005 

1D_d1wmax Deep1 case, wmax varied 

1D_d2 Deep2 case 

2D 

(variable λ) 

2D_ISDAC Stratocumulus case using ISDAC profile 

2D_ISDAC_sa     - with increased sK-fe per droplet 

2D_ISDAC_Ka     - using kaolinite nucleation rate 

2D_SQUALL Squall line (deep convective region only) 

 

* Default nucleation rate is K-feldspar with sK-fe = 10
-9

 cm
2
 

 

 

A number of simulations were performed for each case where λ was varied, and in some the 

updraught speed (or corresponding cooling rate) was additionally varied. A description of 

each set of simulations and its associated name is shown in Table 5.2. A factor of ×100 

increase in sK-fe was used for the simulations where the surface area was varied. Hereafter, 

the subscripts c, r, i, s, and g will be used to refer to cloud water, rain, ice, snow, and 

graupel, respectively.  

 

5.3 0D Modelling Studies 

These simulations will be used to help understand how the time-dependent behaviour of an 

INP species influences the evolution of an idealised mixed-phase cloud. This was achieved 

by simultaneously running the same simulation with a variety of λ values (λ = 0.5, 1, 3, 5, 

and 10) which covers the range observed in experiments presented in Chapter 3. 

Additionally the prescribed θT forcing was varied so that a range of cooling rates, and thus 

equivalent updraught speeds wequivalent, were achieved; ranging from 0.05 to 30 m s-1. 

Various cloud properties will be examined in order to determine key cloud variables or 

properties that can be used to assess the sensitivity of the simulation to time-dependence in 

the 1D and 2D simulations. 
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Figure 5.4 and Figure 5.5 show the evolution of each hydrometeor species along with the 

cumulative mass of liquid droplets frozen via the immersion mode (∑imm) and through 

homogeneous freezing (∑hom). The primary effect of time-dependence is shown by the 

systematic shift in ∑imm. As expected, small magnitudes of λ cause a greater variation in 

freezing rates than large magnitudes. At low wequivalent the highest freezing rates correspond 

to a smaller magnitude in λ, whereas at high wequivalent this relationship is reversed. This 

behaviour is observed because nucleation rates in the FROST framework are normalised to 

a 1 °C min-1 cooling rate, which corresponds to wequivalent ≈ 3.5 m s-1. At updraught speeds 

above this, the nucleation efficiency is decreased and conversely increased below this 

speed, which suggests that the immersion mode freezing rate will vary considerably at both 

extremes of updraught speed (i.e., low and high) when the value of λ is small.  
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Figure 5.4. Evolution of several hydrometeor species (right-to-left) throughout a series of simulations of constant 

wequivalent (0.1, 0.8, 5, and 10 m s-1) for a range of increasing λ, corresponding to a decreasing time-dependent 

behaviour. a) shows cloud ice number concentration, and b-c) the mass mixing ratio of cloud ice, snow, and graupel, 

respectively. 
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Figure 5.5. Same as Figure 5.4 but for a) the mixing ratio of cloud droplets; b) the mixing ratio of rain; c) the 

cumulative sum of liquid mass frozen via the immersion mode; and d) the cumulative sum of liquid mass frozen via 

homogeneous freezing. 
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The time-dependent effect on ice production can be seen to directly impact the other cloud 

hydrometeor species. The variation in ∑imm is similarly observed in the resulting ice 

number concentration Ni and mixing ratios qi, qs and qg. As shown in Figure 5.6 this then 

causes a comparable variation in the evolution of the cloud’s ice water content (IWC). This 

has a corresponding effect on the cloud’s liquid water content (LWC), and shows that the 

lifetime of the mixed-phase cloud is effected by the magnitude of time-dependent 

behaviour. For example, with an INP species where λ = 0.5 the cloud will fully glaciate 

at -20 °C in a 0.1 m s-1 updraught but remains in a mixed-phase state until -31 °C in a 

10 m s-1 updraught. By comparison a value of λ = 10 results in a difference of -2.5 °C. 

 

 

Figure 5.6. Same as Figure 5.4 but for a) Ice water content (IWC) and b) liquid water content (LWC) 

 

 

The final state of the cloud can also be inferred from the IWC evolution in Figure 5.6. At 
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qi, qs, and qg at three updraught speeds. A negative value corresponds to times when the 

λ = 0.5 simulation has a relatively higher mixing ratio. At low updraught speeds there is 

negligible difference for all ice species below -35 °C whereas for wequivalent = 5 and 10 m s-1 

there is a considerably greater cloud ice mass in simulations for λ = 0.5. This is due to a 
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content due to time-dependence could have a radiative impact, especially at high updraught 

speeds. 

 

  

Figure 5.7. The absolute difference between the λ5.0 and λ0.5 simulations where ΔX = X(λ5.0 – λ0.5) for qi, qs, and qg. A 

negative value corresponds to a relatively larger magnitude in the λ0.5 simulation. The different colours represent the 

range of equivalent updraught speeds wequivalent. The apparent discontinuity is an artefact from the analysis process. 
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Figure 5.8. The mass growth rate as a function of T for variables corresponding to cloud ice, snow, and graupel. Data 

is only shown for simulations where wequivalent = 10 m s-1 and λ = 0.5 (solid lines) and 5.0 (dotted line). See Table 5.3 

for a description of each variable. 

 

 

 

Table 5.3. Description of the hydrometeor mass growth sources referred to in the chapter. 

 

Variable name Description 

Cloud ice  

pri_wfz Immersion mode freezing of cloud water 

pri_rfz Immersion mode freezing of rain 

pri_who Homogeneous freezing of cloud droplets 

pri_rho Homogeneous freezing of rain 

pri_ide Depositional growth of ice 

pri_ihm Production of cloud ice via HM process 

prs_iau 

pri_inu 

Autoconversion of ice to snow (sink) 

Deposition mode nucleation of ice from vapour 

Snow  

prs_iau Autoconversion of ice to snow (source) 

prs_sde Depositional growth of snow 

prs_ide Depositional growth of ice converted to snow 

prs_sci Snow collecting cloud ice 

prs_scw Snow collecting cloud water 

Graupel  

prg_rfz Immersion mode freezing of large rain droplets 

prg_rho Homogeneous freezing of large rain droplets 

prg_rcg Graupel collecting rain droplets 

prg_gcw Graupel collecting cloud water droplets 
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The bulk mean properties of the 0D_Kfe simulations can be used to infer cloud-scale 

responses to time-dependence. The mean, as a function of wequivalent, was calculated 

between -8 and -38 °C for Ni and Nr, along with qi, qr, qg, and qs. The results are shown in 

Figure 5.9. λ-dependent variation can be seen at low and high updraught speeds, relative to 

wequivalent = ~3.5, in all variables. All ice species are enhanced at low wequivalent when λ is 

small and enhanced at high wequivalent when λ is large. An enhancement in ice production 

enhances the depletion of rain, and therefore an opposite trend can be seen in rain. This 

shows that the variation in immersion mode ice production due to time-dependence impacts 

a cloud throughout its evolution. 

 

 

Figure 5.9. Mean number concentrations and mixing ratios for cloud hydrometeor species as a function of wequivalent 

and λ. Mean values determined between -8 and -38 °C. 
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distribution slope parameter. This value does not have a quantitative description but 

provides a simplified view of changes to the distribution, i.e., an increasing characteristic 

diameter may reflect a distribution shifting to larger sizes or an increasing distribution 

width. The sensitivity of D to changes in λ will provide evidence of an impact on the 

hydrometeor size distribution, and therefore potential radiative characteristics. Similar to 

the previous figure, the mean D for cloud water droplets, rain, and cloud ice was calculated 

between -8 and -38 °C. At low updraught speeds Dc decreases with a decreasing λ, whereas 

in high updraughts this is reversed. This relationship correlates with the variation seen in the 

LWC evolution in Figure 5.6. A similar relationship is seen in Dr at high updraught speeds 

and λ-dependence results in ~2 μm at 10 m s-1 and ~5 μm variation at 33 m s-1. For Di low 

values of λ result in the largest diameters at both extremes of updraught speed. At low 

wequivalent this is due to the earlier onset in ice production, whereas at high wequivalent this is a 

result of the variation in homogeneous freezing. A later onset of ice production results in 

more available liquid for homogeneous freezing, and thus acts to increase the mean 

diameter. This can be seen from the lack of pri_who data from the λ = 5 simulations in 

Figure 5.8. All three hydrometeor species show that time-dependence in the immersion 

mode has an impact on the mean radiative properties of the clouds. 

 

 

Figure 5.10. Same as Figure 5.9 but for the characteristic diameter of cloud droplets, rain droplets, and cloud ice.  
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To examine the dependence of these results on the chosen nucleation rate (K-feldspar) the 

nucleation rate of kaolinite mineral dust was also used in a series of simulations. This 

provides a contrasting case using a less efficient INP species. Figure 5.11 shows mean 

hydrometeor properties as in Figure 5.9. Kaolinite is a less efficient species than K-feldspar 

and therefore the immersion freezing rate is lower. This is reflected in the lower maximums 

of Ni, qi, and qg, and also explains why Nr and qr are higher. Similar λ-dependent variations 

can be seen in all plots except for graupel, where a smaller value of λ results in an enhanced 

mean mixing ratio at high wequivalent. This behaviour is due to an enhanced homogeneous 

freezing rate as a result of more available liquid at low temperatures. This shows that a 

relatively less efficient nucleation rate will lead to a smaller time-dependent effect on the 

cloud properties.  

 

 

Figure 5.11. Mean number concentrations and mixing ratios for cloud hydrometeor species as a function of wequivalent 

and λ as in Figure 5.9 but for simulations using the nucleation rate of the mineral dust kaolinite. Mean values 

determined between -8 and -38 °C. 
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seen in the other hydrometeor species. Importantly, the cloud lifetime varies considerably 

with λ at low updraught speeds, and the resulting IWC is also sensitive to λ, especially in 

clouds with high LWC. Estimates of the mean cloud hydrometeor diameters also show a 

considerable sensitivity to λ at both extremes of updraught speed. The variation in λ for 

atmospherically relevant INP species from Chapter 4 was in the range 0.4 ≤ λ ≤ 23 which 

shows that the range of values being used here is representative. 

 

5.4 1D Modelling Studies 

The results from the previous 0D simulation will be re-examined using a series of 1D 

simulations with various mixed-phase cases. These simulations are more complex than the 

idealised simulations in that advection between cells can occur, and the prescribed 

dynamics vary in height and time. 

 

Following the results from Sect. 5.3 in each set of simulations the λ-dependence will be 

examined through the variation in mixing ratio, LWC, IWC, and a column mean 

characteristic hydrometeor diameter. The total column mixing ratio, or mass path (MP), of 

each will be used as a proxy for mixing ratio. Similarly a liquid water path (LWP) and ice 

water path (IWP) will be used instead of LWC and IWC. The total cumulative number of 

liquid hydrometeors frozen via the immersion mode will also be presented as a function of 

simulation time. 

 

5.4.1 Stratus Cases 

5.4.1.1 Mixed1 – SHEBA Profile 

The mixed1 case consists of oscillating updraughts and downdraughts, with a linearly 

increasing magnitude with height. The SHEBA profile is characterised by an inversion at 

~500 m.  

 

The results from the simulation are summarised in Figure 5.12 as the mixing ratios of cloud 

water, cloud ice, and snow. A variation with respect to λ is an indication that the time-

dependence has an effect on the cloud’s properties. After 30 mins the ice mass path (iMP) 
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shows large variation between λ = 0.5 and 5; this persists for a further 30 mins. The sudden 

decrease in iMP between 30 and 60mins is an artefact due to the 20 minute frequency in 

maximum updraught. At 6 hrs no ice is present during simulations for λ < 0.5. Snow follows 

a similar trend but is present at 6 hrs for all λ due to the combination of continued growth 

and slow sedimentation rates. Cloud water is not present below λ = 0.5, whereas above this 

value cMP increases substantially over the remaining λ values. Due to the low updraught 

speeds (wmax ≈ 0.3 m s-1) the immersion freezing rate is substantially enhanced at low values 

of λ. This is shown as an early burst in ice production, followed by a rapid collapse in the 

cloud water content, hence why cMP = 0 below λ = 0.5. Above this value immersion 

freezing does not out-compete the cloud water production and ice is produced throughout 

the simulation. As λ increases, the ice production rate decreases and the iMP also decreases. 

For λ ≥ 2 an equilibrium in iMP appears to be reached after 60 mins. These results show 

that this stratus case is sensitive to λ, and that changes to the immersion mode freezing rate 

affect the development of other hydrometeor species. 

 

   

Figure 5.12. 1D_m1SHEBA simulations: Total column mass path of cloud ice, snow, and cloud water as a function 

of λ determined after 30 mins (dotted line), 60 mins (dashed line), and 6 hrs (solid line). 
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LWP decreases rapidly to 0, showing that the cloud has fully glaciated. As λ increases the 

IWP maximum decreases, but a mixed-phase state persists for longer periods of time. After 

6 hrs in the λ1.0 simulation the IWP = 0.03 g m-2 and LWP = 5 g m-2, and in the λ4.0 

simulation IWP = 0.015 g m-2 and LWP = 14 g m-2. This demonstrates a substantial 

dependence of key cloud radiative properties on the time-dependence of the immersion 

mode INP species. 

 

 

Figure 5.13. 1D_m1SHEBA simulations: evolution of IWP, LWP, and cumulative number of liquid droplets frozen 

as a function of simulation time for a range of λ.  

 

 

 

5.4.1.2 Mixed3 – SHEBA Profile 

The mixed3 case is characterised by a low-level oscillating updraught and downdraught 

with wmax = 0.17 m s-1, and additionally by a constant prescribed qv forcing, with which a 

steady rain-rate is expected. Figure 5.14 shows the λ-dependent total column mass paths of 

the five hydrometeor species and Figure 5.15 shows the evolution of the IWP and LWP. 
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Figure 5.14. Same as Figure 5.12 but for 1D_m3SHEBA simulations.  
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immersion mode is enhanced to such a degree that all newly condensed water is 

immediately frozen. This supresses droplet growth and as such supresses the production of 

rain; this is highlighted in Figure 5.15 by the evolution of the IWP and LWP for λ = 0.5. 
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state is reached after ~ 2hrs of simulation; this can be seen in Figure 5.15. The steady-state 

LWP and IWP are dependent on λ, with an increasing magnitude leading to higher and 

lower values, respectively. This case demonstrates a distinct change in regime between INP 

species exhibiting strong (small λ) and weak (large λ) time-dependent behaviour. All 

hydrometeor species varied by around two orders of magnitude, simply due to the time-

dependence of immersion mode freezing. 
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Figure 5.15. Same as Figure 5.13 but for 1D_m3SHEBA simulations. 

 

 

5.4.1.3 Comparisons to M-PACE Profile 

The two cases, mixed1 and mixed3, were additionally run using the M-PACE profile shown 

in Figure 5.1 in order to expand on the results from the previous mixed-phase stratus cases. 

The λ-dependent variation of IWP, LWP, Dc, and Di were determined from the simulations 

and are presented together with the SHEBA simulations in the following figures. 

 

 

Figure 5.16. Comparison of IWP evolution as a function of λ for the four 1D stratus cases. All plots share the same 

contour range. 
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The IWP provides information on how the cloud ice hydrometeors evolve throughout the 

simulation. The IWP data from the SHEBA simulations are summarised alongside data 

from the M-PACE simulations in Figure 5.16. In all cases there is considerable λ-dependent 

variability as well as distinct regime changes dependent on λ. An offset in λ between the M-

PACE and SHEBA simulations can be seen, which has an effect on the resulting value of λ 

at which the regime changes occur. The offset occurs due to the colder SHEBA profile; the 

nucleation rate exponentially increases with temperature, and therefore any variations due 

to time-dependence will be similarly enhanced. This behaviour is analogous to using a less 

efficient nucleation rate as observed in the 0D simulations. This result shows that the effect 

that time-dependence has on the developing cloud is dependent on temperature as well as 

the characteristic value of λ. The sensitivity to λ is highlighted by the distinct regime 

changes.  

 

 

Figure 5.17. Same as Figure 5.16 but for LWP. Contours ranges are unique to each case. 
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a steady, if not increasing LWP is reached which is independent of λ apart from where rain 

is supressed by enhanced freezing rates. Again, similarities between profiles can be seen. 

The results suggest that nucleation by a strongly time-dependent species (λ < ~0.5) will 

rapidly deplete all liquid water and glaciate the cloud. However, with weaker time-

dependent species (λ > ~1) the cloud may persist for periods of time closer to the 

observations. de Boer et al. (2009) summarised observations from several campaigns and 

showed that arctic stratus have LWP values ranging from near zero to >300 g m-2, with the 

mean varying between location and season. This makes it difficult to compare the results to 

observations. 

 

 

Figure 5.18. Same as Figure 5.16 but for the column mean characteristic diameter of the cloud water droplet 

distribution. Contour ranges are unique to each case. 
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λ-dependence can be seen in all cases, but it is the regime changes that appear to dominate 

the λ-dependence. In combination with the variability in IWP and LWP (Figures 5.16 and 

5.17)  this could have significant radiative effects that could be explored in future work. 

 

These simulations provide evidence that the evolution of arctic stratus and their resulting 

properties are sensitive to the characteristic value λ of the INP population. In these 

simulations the persistent behaviour of the clouds is due to a slow weakly time-dependent 

(large λ) production of ice; the slow production limits the glaciation of the cloud. However, 

in these simulations it is assumed that the INP population is dependent on the mass of cloud 

droplets, and therefore INP depletion does not occur as would be expected in the 

atmosphere.  

 

 

Figure 5.19. Same as Figure 5.16 but for column mean characteristic diameter of the cloud ice size distribution. 
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the freezing rate was supressed when λ was small (i.e., strongly time-dependent). Therefore 

in the deep convective case the hypothesis is that iMP will increase with increasing λ.  

 

The deep1 case is characterised by a constant updraught centred at an altitude of 5 km, 

which corresponds to a temperature of ~0 °C in the prescribed temperature profile. Figure 

5.20 shows the mass paths for cloud ice, snow, cloud, and rain as a function of λ. Contrary 

to the initial hypothesis the iMP decreases with an increasing value of λ. This occurs 

because the upper-level of the convective cell has a weakening updraught speed and also a 

colder temperature. Therefore, although wmax = 10 m s-1, the largest contribution of droplets 

frozen via the immersion mode occurs at the top of the cell where w < wmax. In this case it is 

clear that there is much less sensitivity to λ than in the stratus cases. In the deep1 case the 

iMP decreases by a factor of ~4 upon a change from λ = 0.1 to 5, whereas the same change 

resulted in factor of ~100 change in iMP for the stratus cases. A comparable effect is also 

seen in the other hydrometeor species. This highlights that at higher updraught speeds there 

is much less sensitivity to time dependence.  

 

 

 

Figure 5.20. 2D_d1w10 simulations: total column mass path of cloud ice, snow, and cloud water as a function of λ 

determined after 30 mins (dotted line), 60 mins (dashed line), and 6 hrs (solid line).  
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5.4.2.2 Comparison to Slowly Ascending Clouds (wmax = 5 cm s
-1

) 

A second set of simulations were performed using the deep1 case where wmax was decreased 

to 5 cm s-1. This will provide information on how λ-dependence varies with updraught 

speed and also provides a case of slowly ascending clouds. The simulated mass paths at 5 

hrs have been plotted in Figure 5.21 along with those from the wmax = 10 m s-1 simulations. 

There is a clear distinction between the two sets of simulations; the weak ascent simulations 

show substantially more λ-dependence as made apparent by the increased iMP sensitivity. 

The variability in iMP consequently impacts the cloud water content and both Dc and Di. A 

comparison to Dc and Di in the strong convective simulations shows very little sensitivity to 

λ. This suggests that as wmax increases the cloud becomes less sensitive to time-dependence 

in the immersion mode. 

 

To examine this behaviour further, a series of simulations were performed where wmax was 

systematically increased from 0.04 to 40 m s-1. For each wmax two simulations were 

performed where a value of λ = 0.5 and 4 was used. The difference in mass path between 

the two values of λ at a simulation time of 3 hrs was used to examine the λ-dependent 

variability at different updraught speeds. Figure 5.22 shows the resulting data for ice, snow, 

cloud, and Dc. The results show that as wmax increases the difference between each species 

decreases and converge. As discussed earlier upon further increases in wmax the two 

simulations would be expected to diverge, reflecting the relative enhancement of immersion 

freezing in the high λ simulation. These results show that the sensitivity to time-dependence 

decreases as updraught speed increases, which corresponds to the 0D simulation results. 
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Figure 5.21. Same as Figure 5.20 but showing a comparison between the 1D_d1w10 and 1D_d1w005 simulations. 

The column mean cloud and rain droplet characteristic diameter is also included. 

 

 

 

 

Figure 5.22. The fractional difference of iMP, sMP, cMP, and Dc at 3 hrs between simulations where λ = 0.5 and 

λ = 4.0 as a function of wmax using the deep1 case. A tendency towards 1 describes a decreasing sensitivity to λ. 
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5.4.2.3 Deep2 Case 

The deep2 case uses the same prescribed profile of θT and qv as deep1, but dynamics are 

characterised by a transient deep convective cell with wmax = 20 m s-1 varying in height and 

time, as shown in Figure 5.1. There is no qv forcing in this case.  

 

  

Figure 5.23. 1D_d2 simulations: total column mass path of cloud ice, snow, and cloud water as a function of λ 

determined after 30 mins (dotted line), 60 mins (dashed line), and 6 hrs (solid line). 

 

 

The cloud hydrometeor mass paths are shown in Figure 5.23 as a function of λ. In this case 
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small. This shows that the presence of a strongly time-dependent INP species in a cloud 

may switch on ice production in regions where weakly time-dependent INP species do not. 

In these simulations the HM process was not active, but in slightly colder cases secondary 

ice production mechanisms such as the HM process could be impacted. 
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ascending clouds (w ≈ 5 cm s-1) will have a substantial dependence on λ. This supports the 

findings from the stratus cases. 

 

5.5 2D Modelling Studies 

In these simulations the dynamics and initial vales of θT and qv are prescribed on a 2D 

domain as shown in Figure 5.3. A mixed-phase stratocumulus case and a deep convective 

case will be used to examine the λ-dependence following the results from the 0D and 1D 

simulations. 

 

5.5.1 Stratocumulus ISDAC Case 

The stratocumulus case is characterised by an updraught and downdraught cell with a 

linearly decreasing temperature profile. The upper-levels of both cells are saturated with 

respect to water. 

 

The 1D stratus simulations provided evidence that the development and resulting properties 

of these clouds are sensitive to the time-dependence of the INP population. These 

simulations are more complex and will be used to test the results from the 1D cases. A 

simulation was performed for each prescribed value of λ (0.1 ≥ λ ≥ 5). The horizontally 

averaged mixing ratio profiles of cloud ice and snow for three of the simulations are shown 

in Figure 5.24. Each colour represents a different simulation and thus λ. Throughout the 

evolution of the cloud the ice mixing ratio qi shows a substantial λ-dependence. Above 

150 m there is a four order-of-magnitude difference in qi between λ = 0.2 and 1.0. Snow 

also shows a comparable difference at the beginning of the simulation but at the end of the 

simulation (2 hrs) the difference is ~2 orders-of-magnitude. The apparent enhanced 

evolution of snow, as compared to the λ = 0.2 simulation, is due to the increased 

sedimentation rate in the λ = 0.2 simulation. These differences represent a significant effect 

on the cloud properties, including precipitation and potential radiative effects. 

 



151 

 

 

Figure 5.24. Horizontally averaged mixing ratio profiles for cloud ice and snow from the 2D_ISDAC simulations. 

Solid, dashed, and dotted lines correspond to simulation times of 20, 60, and 120 minutes, respectively. The different 

colours correspond to different values of λ. 

 

 

 

Figure 5.25. Horizontally averaged growth rate profiles for different sources of snow mass from the 2D_ISDAC 

simulations after 2 hrs. Solid lines correspond to simulations where λ = 0.2 and dashed lines where λ = 1.0. Variable 

descriptions can be found in Table 5.3 
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These results show that a direct effect on the cloud ice distribution (through enhanced or 
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hence why comparable λ-dependent differences are seen between ice species in Figure 5.24. 
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This is important as a strong correlation between cloud ice production and total ice water 

content is evident. 

 

 

Figure 5.26. Cloud ice, snow, and cloud water mass paths as a function of λ in the 2D_ISDAC simulations.  
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nucleating efficiency relative to K-feldspar; at a specific temperature the kaolinite 

simulation will have a relatively lower ice production rate. The apparent ‘offset’ in variation 

is observed because a decrease in λ counteracts the reduced nucleation rate. A similar 

response can be expected for changes in the temperature profile. This simulation highlights 

two points: first, the efficiency of the nucleating species will to a degree impact it’s 

λ-dependence with more efficient species exhibiting a greater sensitivity to λ; and secondly, 

the sensitivity to λ will increase with decreasing temperature.  

 

 

Figure 5.27. Same as Figure 5.26 but for simulations using the nucleation rate of the mineral dust kaolinite. 
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lower values of λ. As well as supporting the conclusions from the kaolinite simulation, this 

additionally shows that the surface area per droplet is an important factor in λ-dependent 

variation to the cloud properties. 

 

 

Figure 5.28. Same as Figure 5.26 but for simulations using a surface area per droplet sK-fe of 1 × 10-7; a factor of 100 

increase from the default. 

 

 

 

 

Figure 5.29. Comparison of horizontally averaged immersion mode freezing rate profiles between the three sets of 

simulations using the 2D_ISDAC case. Black and red lines correspond to λ = 0.2 and λ = 1.0, respectively. 
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The sensitivity to changes in the nucleation rate and s were looked at further to understand 

how these changes impact the growth and interaction of the hydrometeor species. The effect 

on immersion mode freezing rates is shown in Figure 5.29. With a value λ = 1.0 the freezing 

rate profiles systemically shift, whilst for λ = 0.2 the lower half of the profile shows the 

same comparable shift but the upper half does not change considerably. The lack of 

variation upon a change in s and nucleation rate suggests that the immersion mode freezing 

rate has already reached a maximum due to the low value of λ. The impact that the variation 

in s has on the growth of snow is demonstrated in Figure 5.30. The growth rates for λ = 0.2 

show little change, which corresponds to the small change seen in the ice production rates. 

However, for the simulations where λ = 1 the increase in s substantially affects the growth 

rate of snow through all processes. This suggests that the weaker time-dependent INP 

species are more sensitive to changes in the nucleation rate and surface area than those with 

a strong time-dependence. However, this sensitivity is difficult to quantify without 

extensive simulations with different cases. 

 

 

Figure 5.30. A comparison of horizontally averaged growth rate profiles for snow between simulations where the 

surface area per droplet s was increased by a factor of 100. Data obtained after 2 hrs of simulation. Solid lines 

correspond to the 2D_ISDAC_Kfe simulation, and dotted lines to the 2D_ISDAC_sa simulation. 
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5.5.2 Squall Line Case 

The final case is of a deep convective cell within a squall line described in Slawinska et al. 

(2009). The convective region in the prescribed domain consists of a saturated 9 km deep 

convective cell with wmax = 10 m s-1 and a freezing level at ~4 km. In these simulations λ 

was varied between 0.1 and 10. Through prior testing it was found that the simulation 

reached a steady-state after 6 hrs, and hence 6 hrs was used as the total simulation duration.  

 

In the 0D simulations the sensitivity to λ was apparent at both extremes of w, whereas the 

1D deep cases show that as w increased the sensitivity to λ decreased. The difference in the 

1D simulations was explained by the domination of ice production in cloud top regions 

where w was low. In this 2D case freezing is expected to occur in regions other than the 

cloud top and so provides a more realistic deep convective case. The evolution of the cloud 

iMP as a function of λ is shown in Figure 5.31. Initially λ-dependence is only seen below 

λ = 0.5 but as the simulation progresses a clear dependence is seen at all λ. At the end of the 

simulation when a steady state has been reached the highest iMP values are found at high 

values of λ at 40 km, and also at very low values of λ at 50 km. The maximum at high 

values of λ corresponds to ice production in the core updraught region; as seen in the 0D 

sensitivity studies at an updraught speed of 10 m s-1 the immersion mode ice production rate 

is supressed at low values of λ. Hence a higher value of λ leads to an increased ice 

production rate. Conversely, the maximum at low values of λ corresponds to the saturated, 

low updraught, region on the edge of the updraught core. The large variation from changes 

to λ shows that time-dependence has a substantial impact on the primary production of 

cloud ice in this case. 
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Figure 5.31. Ice mass path as a function of λ throughout the evolution of the cloud. At 6 hrs the simulation has 

reached a steady-state. Data from 2D_SQUALL simulations. 
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Figure 5.32. Horizontally averaged growth rate profiles for cloud ice mass sources. Solid lines correspond to 

simulations where λ = 0.5 and dashed lines where λ = 5.0. Data from 2D_SQUALL simulations. 
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Figure 5.33. . Snow mass path as a function of λ throughout the evolution of the cloud  as in  Figure 5.31. 

 

 

 

 

Figure 5.34. Horizontally averaged growth rate profiles for cloud snow mass sources. Solid lines correspond to 

simulations where λ = 0.5 and dashed lines where λ = 5.0. Data from 2D_SQUALL simulations. 
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Figure 5.35. Graupel mass path (a), rain mass path (b), cloud water mass path (c), and total ice water path (d) as a 

function of λ at a simulation time of 20 mins and 6 hrs. Data from 2D_SQUALL simulations. 
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the IWC. Therefore, in convective cases where the LWC is high time-dependence is not 

important. 

 

 

Figure 5.36. Ice mass path as a function of λ throughout the evolution of the cloud for the 2D_SQUALL_sa 

simulations where sK-fe was increased to 1 × 10-7 cm2. 
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Figure 5.37. Same as Figure 5.36 but for the snow mass path in the 2D_SQUALL_sa simulations. 

 

 

 

 

Figure 5.38. Comparing snow mass growth rate profiles from 2D_SQUALL simulations (grey lines) and 

2D_SQUALL_sa simulations (coloured lines). Solid lines refer to simulations where λ = 0.5 and both dashed and 

dotted lines to simulations where λ = 4.0. 

 

 

As observed in Figure 5.33 snow dominated the total IWP in the default simulation, and as 

seen in Figure 5.34 the growth of snow was dominated by processes that did not depend on 

0.1

1

10
30 40 50 60 70

  

 

 x / km

 

20 mins

0.1

1

10

1 hr

 



 

 

0.1

1

10

2 hrs

  

 

 

30 40 50 60 70
0.1

1

10

2D_SQUALL_sa

6 hrs

   

 

  x / km

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0

  sMP  

g m
-2

 x10
3

10
-11

10
-9

10
-7

10
-5

10
-3

0

2

4

6

8

10

12

 

 

z
 /

 k
m

Rate / g kg
-1
 s

-1

 prs_iau

 prs_ide

 prs_sci

 prs_scw

 prs_sde

  = 0.5

  = 4.0

2D_SQUALL_sa



163 

 

cloud ice. Therefore in order for time-dependent to have an impact on snow the cloud ice 

interactions must become the dominant growth source of snow. The affect of an increased 

surface area on snow growth is shown in Figure 5.38 . The enhanced ice production does 

increase the growth rate of snow via cloud ice processes, but the collection of water and 

depositional growth from vapour still dominate. However, these latter processes are not 

affected by the enhanced ice production and suggest that if the surface area was increased 

further still, or the nucleation rate increased, then the cloud ice would dominate.  

 

 

5.6 Conclusions 

In this chapter the FROST framework was applied to a detailed microphysical model in 

order to assess, for the first time, the sensitivity of mixed-phase clouds to the 

time-dependent variability observed in immersion mode freezing experiments.  

 

Results from 0D simulations show that the production of ice via the immersion mode is 

sensitive to λ at both low and high updraught speeds. This occurs due to the sensitivity of 

low λ values to the timescale. The λ-dependent variability has a substantial affect on 

evolution of all other cloud hydrometeors, and also the final state of the cloud. This has 

implications for radiatively important properties such as liquid and ice water content, 

hydrometeor sizes, and cloud lifetime.  

 

A series of 1D simulations were performed using arctic stratus cases and a range of 

convective cases. Clouds with low updraught speeds (< 1 m s-1) are highly sensitive to the 

time-dependent properties of the INP population, whereas above λ ≈ 4 time-dependence 

does not play a significant role. In all arctic stratus cases the lifetime of the mixed-phase 

state was sensitive to λ; at low values of λ the substantial ice production rapidly glaciated 

the clouds, whereas for high vales of λ the slow production rate allowed the cloud to persist 

for long periods of time. The value of λ at which this regime change occurred varied 

between cases. A relationship between the variability in immersion mode ice production 

and other hydrometeor species was observed, as in the 0D simulations. 
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Finally, a series of 2D simulations were performed using a mixed-phase stratocumulus case 

and a deep convective case. As in the previous simulations, slow updraught speeds lead to 

greater λ-dependent variability. In cases such as the stratocumulus where wmax ≤ 1 m s-1, 

prevalent regions of low updraught speeds lead to an enhanced ice production rate with low 

values of λ. At very low λ this leads to a rapid glaciation, whereas at high values of λ the 

cloud persists. In cases with prevalent regions of high updraught speeds, such as the deep 

convective case where w ≥ 10 m s-1, the ice production rate is also substantially sensitivity 

to λ. However, in the 2D deep convective simulations the total ice water content was 

dominated by snow and graupel and therefore the net sensitivity of the cloud to λ was 

negligible.  
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Chapter 6: Conclusions, Implications, 

and Further Work 

6 Chapter 6: Conclusions, Implications, and Further Work 

6.1 Summary of Results 

In this thesis the role of time-dependence in immersion mode heterogeneous ice nucleation 

was investigated. A unique conceptual freezing model was developed and used to 

understand how time-dependence affects the freezing behaviour in laboratory experiments. 

Based on the principles of this model a new framework was presented for use in reconciling 

and reproducing data obtained on different time-scales, and using different experimental 

techniques. Finally, a new parameterisation was incorporated into a detailed microphysics 

scheme to assess, for the first time, the sensitivity of mixed-phase clouds to 

time-dependence in immersion mode ice production. 

 

In Chapter 2 a Classical Nucleation Theory (CNT) based Multiple-Component Stochastic 

(MCS) model was used to reproduce K-feldspar and NX-illite droplet freezing data 

obtained from a range of cooling rates. In both examples the CNT-based MCS model was 

unable to reproduce the cooling-rate dependence. A series of simulations were used to show 

that the time-dependence in CNT-based models is primarily a function of temperature, with 

time-dependent behaviour becoming more apparent with a decreasing temperature. 

 

A new Simplified MCS (Si-MCS) model was developed in order to provide a freezing 

model that is able to represent the observed variability in time-dependent behaviour. This 

model allows the temperature dependence (λ) of the nucleation rate coefficient (Js) to be 

varied. Data from cooling experiments with K-feldspar were used to determine the time-

dependent characteristics of the species, and successfully predict the freezing behaviour of 

this complex INP species in an isothermal experiment. 

 

A series of simulations were then performed using the Si-MCS model in order to 

understand the relationship between INP nucleating properties and time-dependent 
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behaviour in cooling, isothermal, and freeze-thaw experiments. It was found that 

time-dependent behaviour in all experimental methods is solely dependent on λ. In cooling 

experiments a change in cooling-rate systematically shifts the cumulative fraction frozen (f) 

curve by a temperature β which is directly dependent on λ. In isothermal experiments the 

decay rate of liquid droplets increases with λ, and in freeze-thaw experiments the variability 

in freezing temperature σT,freeze also increases with λ. It was additionally found that a 

freeze-thaw experiment can be simulated using a cooling simulation with a monodisperse 

population of droplets. 

 

In Chapter 3 the principles of the Si-MCS were used to derive and develop a novel 

Framework for Reconciling Observable Stochastic Time-dependence (FROST). The 

framework uses the relationship between λ and time-dependence to reconcile observational 

obtained on different time scales in cooling, isothermal, and freeze-thaw experiments. The 

FROST framework was then incorporated into a deterministic freezing model to produce a 

computationally efficient parameterisation for use in cloud modelling studies. The new 

parameterisation is unique as it is able to accurately represent the variability in both 

nucleation efficiency and time-dependent behaviour. 

 

The application of the FROST framework was demonstrated in Chapter 4 using 

experimental data for K-feldspar, kaolinite (KGa-1b), a kaolinite rich mineral (FLUKA), 

and a volcanic ash sample from the 2010 Eyjafjallajökull eruption. The determination of 

characteristic values of λ (which define the time-dependent behaviour) for each INP species 

shows that the kaolinite and volcanic ash INPs are considerably sensitive to the timescale, 

whereas the K-feldspar and kaolinite rich mineral were less sensitive. As demonstrated, 

knowledge of λ can be used with FROST to predict the freezing behaviour of complex INP 

species in cooling, isothermal and freeze-thaw experiments. 

 

A comprehensive method for determining whether an INP species behaves as a 

single-component species (constant nucleating efficiency per droplet) or 

multiple-component species (distinct nucleating efficiency per droplet) species was 

outlined. Using this method it was found that the kaolinite and volcanic ash samples behave 
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as single-component species, whilst K-feldspar and the kaolinite rich mineral sample are 

multiple-component species. This distinction has implications for how f is expected to be 

affected by changes to the cooling rate or residence time. 

 

FROST was applied to immersion mode freezing data from previous experimental studies 

and λ values for a wide range of samples were determined. Atmospherically relevant INPs 

exhibit a wide range in λ (0.4 ≤ λ ≤ 23) which corresponds to a wide range in observable 

time-dependent behaviour (5.8 ≤ β ≤ 0.1 for a factor of ten increase in cooling rate). 

Volcanic ash, and kaolinite (KGa-1b) have the smallest values of λ, whilst Icemax™, 

Arizona Test Dust (ATD), and K-feldspar consistently have the highest λ values. The 

majority of the INP species are characterised by 1 ≤ λ ≤ 3; this range represents a 

considerable time-dependent variability. 

 

Finally the framework was used to highlight the possible implications for in-situ 

measurements of INP concentrations using instruments with short residence times. A 

typical range of 1 ≤ λ ≤ 3 was used to approximate representative INPs. Assuming the 

in-situ measurements were obtained using a residence time of 30 s, modelled clouds with 

low updraught speeds (w < 1 m s-1) will substantially under-predict the concentration of 

INPs. For λ = 1 (λ = 3) the measured INP concentration only accounts for 15% (50%) of the 

predicted concentration. The magnitude of the under-prediction will increase with 

decreasing λ and w. Conversely, modelled clouds where w > 10 m s-1 will over-predict the 

INP concentration by between 150% and 500% (for λ = 1 and λ = 3 respectively). These 

results were calculated assuming a single-component system and therefore represent the 

maximum magnitude; in a multiple-component system the percentage difference would be 

expected to decrease with increasing nucleating diversity. 

 

In Chapter 5 the parameterisation from the FROST framework was incorporated into 

detailed microphysical model. Simulations were then performed in order to determine the 

sensitivity of mixed-phase clouds to time-dependence in the immersion mode production of 

ice. Results from idealised 0D simulations show that at extremes of w, ice production is 

sensitive to λ. Relative to high λ values, low values of λ lead to an enhanced rate of ice 
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production at low updraught speeds (w < 1 m s-1) and a supressed rate at high updraught 

speeds (w > 10 m s-1). 

 

Results from 1D and 2D simulations show that the production rate of ice in clouds that 

exhibit slow updraught speeds (w < 1 m s-1) such as arctic stratocumulus and mid-latitude 

stratus, is highly sensitive to the characteristic λ of the INP population. The enhancement, or 

suppression, of ice production directly affects the development of the cloud and its 

subsequent bulk properties. This includes radiative properties such as characteristic 

hydrometeor diameter, liquid and ice water paths, and cloud lifetime. At low values of λ the 

enhanced ice production results in a rapid glaciation of the cloud, whilst the persistence of 

the mixed-phase state increases with λ. In deep convective clouds the cloud ice mass is 

sensitive to λ. However, due to the dominance of other ice hydrometeor species the 

variability in cloud ice mass has a negligible net impact on the resulting cloud.  

 

6.2 Implications for Experimental Measurements 

The results from this thesis highlight the significant role that time-dependence plays in the 

freezing behaviour of droplets in immersion mode experiments. The implications relate to 

the accuracy and robustness of the data that is obtained, and to how the data is then used to 

represent freezing behaviour under conditions outside of those of the experiment. 

 

The relative efficiency of an INP species is typically determined and presented without a 

consideration for time-dependent effects. Therefore, a nucleation rate function based on this 

data may be incorrectly describing the nucleating behaviour of the species. For high λ 

species this may be appropriate but as shown in Chapter 4 atmospherically relevant INP 

species exhibit a wide range of characteristic λ values.  

 

An assessment of the relative importance of INP species must take into account the 

variability in experimental temporal conditions. It is reasonable to suggest that in using a 

short residence time, or high cooling rate, the relative importance of a species is biased 

towards those with high values of λ; the efficiency of low λ species will be increasingly 

biased towards artificially low values. On application of the FROST framework, data from 



169 

 

cooling and isothermal experiments can be normalised to a standard cooling rate (of 

1 °C min-1), which then allows an unbiased comparison of the relative efficiency of 

different INPs. Additionally, the modelling studies in Chapter 5 show that the relative 

importance of an INP species is a function of nucleation efficiency, characteristic λ, and 

cloud updraught speed. Previously this has been framed simply around the nucleating 

efficiency and abundance. For example, an abundant but inefficient INP that exhibits a low 

λ, such as kaolinite (λ = 1.12), may be more important than the rare but efficient species 

K-feldspar (λ = 3.4) in clouds with low updraught speeds.  

 

The modelling studies in Chapter 5 also show that the correct representation of 

time-dependence in simulating immersion mode freezing can considerably influence the 

development of clouds and their resulting bulk properties. The substantial variability 

observed in some cases demonstrates the need to correctly characterise the time-dependent 

properties of all atmospherically relevant INPs. The FROST framework provides a simple 

means for determining this value from experimental data. A second point for consideration 

is the assumption that all droplets contain a viable INP. The sensitivity studies in Chapter 5 

were performed assuming that every droplet contained a particle with the same nucleating 

behaviour; atmospheric populations will likely contain a variety of INP species and will 

likely not be present in every cloud droplet. In the case where a population exhibits 

diversity in nucleating behaviour (through a range in surface area or species) the more 

efficient INPs will preferentially freeze first and leave the weaker nucleating droplets. The 

time-dependent properties of the remaining droplets may then lead to a slow production of 

ice, and therefore represent a more important subset of INP than the efficient ones. Further 

work would require the additional use of multiple INP species and a means for 

prognostically determining the probability that a water droplet or rain droplet will contain a 

viable INP for immersion mode freezing to occur.  

 

The implications for in-situ INP measurements were demonstrated in Chapter 4. The 

instruments that are currently being used to measure atmospheric INP concentrations do not 

take time-dependent effects into consideration; this can have a substantial impact on the 

data that is obtained, and also how it is implemented in models. This supports the 
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conclusions of Fridlind et al. (2012) and Westbrook and Illingworth (2013) who found that 

the modelled number of available INPs was insufficient to reproduce their observations of 

long-lived mixed-phase clouds. Westbrook and Illingworth (2013) proposed that the 

discrepancy could be as a result of the short timescales used in INP counters. These results 

support their conclusion. In cases where experimental data may be affected by the temporal 

conditions, it is possible to normalise the data using the FROST framework. This requires 

knowledge of λ which can be obtained through either cooling experiments performed at 

multiple rates, isothermal experiments performed at different temperatures, or a freeze-thaw 

experiment.  

 

The fundamental process of heterogeneous ice nucleation is still poorly understood. 

Classical Nucleation Theory (CNT) was shown to be an unrepresentative model for 

heterogeneous ice nucleation in several cases. This was demonstrated by the failure to 

reproduce the observed cooling-rate dependence in Chapter 2 and the failure of CNT to 

describe the nucleation rate coefficient of kaolinite in Chapter 4. Ervens and Feingold 

(2013) used a CNT-based model in series of simulations and concluded that the timescale 

played a minor role in immersion mode ice production. Following the results from Chapter 

2 the range of values used in their study corresponds to ~2 ≤ λ ≤ 3, which when compared to 

the range of λ for atmospherically relevant INPs presented in Chapter 4 (0.6 ≤ λ ≤ ~10) 

shows that the parameter space that was tested is unrepresentative.  

 

6.3 Implications for Modelling Ice Formation in the Atmosphere 

Mixed-phase stratus have been observed to persist for long periods of time (Uttal et al., 

2002; Verlinde et al., 2007; de Boer et al., 2009; Shupe et al., 2010) but modelling studies 

are unable to reproduce this behaviour (Fridlind et al., 2012). Based on observations of 

long-lived mixed-phase clouds over the UK Westbrook and Illingworth (2013) suggested 

that this persistence could be described by the slow production of ice through a 

time-dependent process. The results from Chapter 5 support this conclusion, and show that 

the lifetime of the cloud is substantially sensitive to the time-dependent properties of the 

INP species. 
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In the simulations performed in Chapter 5 only a single INP species was considered. In 

reality the droplet population may be a combination of different INP species and therefore 

freezing behaviours; Wright et al. (2013) observed that the rainwater samples they collected 

contained a mixture of dissolved and undissolved aerosol components which could 

potentially act as multiple constituents. The range in λ shown for the INP species in Chapter 

4 leads to the question of how best to implement time-dependent characteristics for a 

complex multiple-constituent INP population, where each constituent has a characteristic 

time-dependence, in a cloud model. The time-dependent behaviour of a population of INPs 

containing many separate species may be dominated by a single species, and therefore a 

single value or temperature dependent function of λ. Where distinct species are dominant in 

different temperature ranges it would be possible to have a temperature dependent function 

of λ to reflect the relative dominance of each. For multiple-constituent species where no 

single species is observably dominant, the population of particles/droplets would need to be 

split into separate populations and treated as an externally mixed population. Whilst many 

current ice nucleation schemes (Diehl and Wurzler, 2010; Phillips et al., 2008; Barahona, 

2012) are capable of describing separate species it may be more realistic to represent a 

series of dominant components so that the time-dependence and inter-particle variability 

can be accurately described for a complex, evolving INP population. This may involve an 

increased computational demand and so the first step in correctly representing time-

dependent variability in a cloud model is to determine under which conditions it is an 

important process to include. To achieve this, the λ characterisation of each component 

needs to be determined through a series of isothermal, cooling, and freeze-thaw experiments 

on a representative material. Once λ has been determined for the individual or dominant 

component of the species then the normalised data can be used with the FROST framework 

to produce a representative parameterisation.  

 

A second assumption used in Chapter 5 that should be considered for future work is the 

assumed availability of INP-containing-droplets. In the simulations it was assumed that 

each droplet contained a single INP; this is likely an over prediction. Following on from the 

previous paragraph, the sources and sinks of INP-containing-droplets should primarily be 

linked to either an aerosol scheme or based on the formation of cloud water droplets. 



172 

 

Secondly, for a multiple-component species or multiple-constituent droplet population the 

more efficient INPs would be expected to freeze earlier; this would result in a preferential 

depletion of the more efficient INPs and therefore impact the overall INP distribution. 

However, a continued entrainment of additional INPs may counteract this behaviour. 

 

6.4 Further Work 

The results from this thesis highlight three primary pathways for further work which are all 

aimed at expanding on current knowledge of heterogeneous ice nucleation. These are 

summarised below. 

 

6.4.1 Improving Knowledge of Fundamental Heterogeneous Ice Nucleation 

Mechanisms 

The Si-MCS model can be applied to experimental data in order to infer how an INP’s 

physicochemical properties determine its freezing behaviour. This would require a 

comprehensive experimental dataset where key dependencies are identified, and then 

systematically varied. In order to limit sporadic events a large number of droplets would 

ideally be required, along with a system that can be carefully controlled and replicated over 

many cycles. Microfluidic devices have been previously used in such a manner for 

homogeneous ice nucleation (Riechers et al., 2013) and other instruments for heterogeneous 

ice nucleation are in development (Haarig, 2013). These results could be used in 

conjunction with molecular dynamics simulations to understand the dependencies on a 

molecular scale. The information from this work could then be used to improve CNT or 

alternatively, develop a new theoretical framework. 

 

6.4.2 The Continued Characterisation of Atmospherically Relevant INP Species 

As demonstrated, the FROST framework provides a comprehensive means for identifying 

the time-dependent characteristics of INP species, and the Si-MCS provides a means for 

identifying PDF parameters that describe the inter-particle variability in the ice nucleating 

efficiency of a species. These may be combined to characterise INP species which would 

provide a comprehensive dataset of INP properties. As suggested in Sect. 6.3 the use of 
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representative materials would help constrain the individual behaviour of each component. 

A comparison between these and complex species could be used to further test the FROST 

framework and Si-MCS model. The continuation of in-situ measurements, with the added 

application of FROST, could be used in combination with global modelling studies to 

develop a representative climatology for use in global cloud modelling studies. As 

highlighted in Sect. 6.3 it may be appropriate to identify the key INP species in order to 

reduce complexity. 

 

6.4.3 Improving the Representation of Ice Nucleation in Models 

Feedbacks on clouds due to climate change are considered a major uncertainty in climate 

predictions, with mixed-phase clouds representing a large proportion of this uncertainty 

(Bony et al., 2006). As shown in this thesis, the representation of time-dependence in the 

immersion mode can have a substantial impact on the development and properties of the 

cloud. 

 

Experimental observations should play a more significant role in the development of new 

heterogeneous ice nucleation parameterisations and schemes; the Bigg immersion mode 

freezing scheme (Bigg, 1953a) is outdated yet still widely used. This thesis has presented 

the most comprehensive study into the sensitivity of time-dependent immersion mode 

freezing behaviour in cloud models; however the representation of this mechanism can be 

further improved. In order to examine the sensitivity of this, and other freezing modes, the 

KiD model could be used to understand how other nucleation rate dependencies affect the 

formation and evolution of mixed-phase clouds. This can be achieved following the 

progression of results from the further work previously outlined; key dependencies could 

then be identified and used to produce a new representative ice nucleation scheme. The 

development of a new INP scheme for use in tracking the sources and sinks of INPs would 

also improve on the results of this thesis. 

 

 

  



174 

 

  



175 

 

References 

7 References 

Ansmann, A., Mattis, I., Müller, D., Wandinger, U., Radlach, M., Althausen, D., and Damoah, 

R.: Ice formation in Saharan dust over central Europe observed with 

temperature/humidity/aerosol Raman lidar, Journal of Geophysical Research: Atmospheres, 

110, D18S12, 10.1029/2004jd005000, 2005. 

Ansmann, A., Tesche, M., Seifert, P., Althausen, D., Engelmann, R., Fruntke, J., Wandinger, 

U., Mattis, I., and Müller, D.: Evolution of the ice phase in tropical altocumulus: SAMUM lidar 

observations over Cape Verde, J. Geophys. Res., 114, D17208, 10.1029/2008jd011659, 2009. 

Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., 

Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by 

mineral dust in mixed-phase clouds, Nature, 498, 355-358, 10.1038/nature12278, 2013. 

Barahona, D.: On the ice nucleation spectrum, Atmos. Chem. Phys., 12, 3733-3752, 

10.5194/acp-12-3733-2012, 2012. 

Berry, E. X., and Reinhardt, R. L.: An Analysis of Cloud Drop Growth by Collection Part II. 

Single Initial Distributions, J. Atmos. Sci., 31, 1825-1831, 10.1175/1520-

0469(1974)031<1825:aaocdg>2.0.co;2, 1974. 

Bigg, E. K.: The formation of atmospheric ice crystals by the freezing of droplets, Q. J. R. 

Meteorol. Soc., 79, 510-519, 10.1002/qj.49707934207, 1953a. 

Bigg, E. K.: The Supercooling of Water, Proceedings of the Physical Society. Section B, 66, 

688, 1953b. 

Bodenschatz, E., Malinowski, S. P., Shaw, R. A., and Stratmann, F.: Atmospheric science. Can 

we understand clouds without turbulence?, Science, 327, 970-971, 10.1126/science.1185138, 

2010. 

Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J.-L., Hall, A., 

Hallegatte, S., Holland, M. M., Ingram, W., Randall, D. A., Soden, B. J., Tselioudis, G., and 

Webb, M. J.: How Well Do We Understand and Evaluate Climate Change Feedback Processes?, 

J. Clim., 19, 3445-3482, 10.1175/jcli3819.1, 2006. 

Boucher, O., Randall, D., Artaxo, P., Bretherton, C. S., Feingold, G., Forster, P., Kerminen, V. 

M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S. C., Stevens, B., 

and Zhang, X. Y.: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. 

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New 

York, NY, USA., 2013. 

Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., 

Condliffe, E., and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich 

powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287-307, 

10.5194/acp-12-287-2012, 2012. 



176 

 

Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., H, L. E. T., Li, Z. 

X., Liang, X. Z., Mitchell, J. F., Morcrette, J. J., Randall, D. A., Riches, M. R., Roeckner, E., 

Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I.: 

Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation 

models, Science, 245, 513-516, 10.1126/science.245.4917.513, 1989. 

Chen, J. P., Hazra, A., and Levin, Z.: Parameterizing ice nucleation rates using contact angle 

and activation energy derived from laboratory data, Atmos. Chem. Phys., 8, 7431-7449, 

10.5194/acp-8-7431-2008, 2008. 

Christner, B. C., Morris, C. E., Foreman, C. M., Cai, R., and Sands, D. C.: Ubiquity of 

Biological Ice Nucleators in Snowfall, Science, 319, 1214, 10.1126/science.1149757, 2008. 

Connolly, P. J., Möhler, O., Field, P. R., Saathoff, H., Burgess, R., Choularton, T., and 

Gallagher, M.: Studies of heterogeneous freezing by three different desert dust samples, Atmos. 

Chem. Phys., 9, 2805-2824, 10.5194/acp-9-2805-2009, 2009. 

Cooper, W. A.: Ice Initiation in Natural Clouds, Meteorological Monographs, 21, 29-32, 

10.1175/0065-9401-21.43.29, 1986. 

Cox, S. J., Kathmann, S. M., Purton, J. A., Gillan, M. J., and Michaelides, A.: Non-hexagonal 

ice at hexagonal surfaces: the role of lattice mismatch, Phys. Chem. Chem. Phys., 14, 7944-

7949, 10.1039/C2CP23438F, 2012. 

Crosier, J., Bower, K. N., Choularton, T. W., Westbrook, C. D., Connolly, P. J., Cui, Z. Q., 

Crawford, I. P., Capes, G. L., Coe, H., Dorsey, J. R., Williams, P. I., Illingworth, A. J., 

Gallagher, M. W., and Blyth, A. M.: Observations of ice multiplication in a weakly convective 

cell embedded in supercooled mid-level stratus, Atmos. Chem. Phys., 11, 257-273, 

10.5194/acp-11-257-2011, 2011. 

Cui, Z. Q., Carslaw, K. S., Yin, Y., and Davies, S.: A numerical study of aerosol effects on the 

dynamics and microphysics of a deep convective cloud in a continental environment, J Geophys 

Res-Atmos, 111, D05201, Artn D05201 

Doi 10.1029/2005jd005981, 2006. 

Cziczo, D. J., DeMott, P. J., Brock, C., Hudson, P. K., Jesse, B., Kreidenweis, S. M., Prenni, A. 

J., Schreiner, J., Thomson, D. S., and Murphy, D. M.: A method for single particle mass 

spectrometry of ice nuclei, Aerosol Science and Technology, 37, 460-470, 2003. 

de Boer, G., Eloranta, E. W., and Shupe, M. D.: Arctic Mixed-Phase Stratiform Cloud 

Properties from Multiple Years of Surface-Based Measurements at Two High-Latitude 

Locations, J. Atmos. Sci., 66, 2874-2887, 10.1175/2009jas3029.1, 2009. 

de Boer, G., Morrison, H., Shupe, M. D., and Hildner, R.: Evidence of liquid dependent ice 

nucleation in high-latitude stratiform clouds from surface remote sensors, Geophys. Res. Lett., 

38, L01803, 10.1029/2010gl046016, 2011. 

Demott, P. J.: An Exploratory-Study of Ice Nucleation by Soot Aerosols, J. App. Meteorol., 29, 

1072-1079, 1990. 

DeMott, P. J.: Quantitative descriptions of ice formation mechanisms of silver iodide-type 

aerosols, Atmos. Res., 38, 63-99, 1995. 



177 

 

DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M., Thomson, D. S., 

Borys, R., and Rogers, D. C.: Measurements of the concentration and composition of nuclei for 

cirrus formation, Proceedings of the National Academy of Sciences of the United States of 

America, 100, 14655-14660, 2003a. 

DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C., Brooks, S. D., 

Prenni, A. J., and Kreidenweis, S. M.: African dust aerosols as atmospheric ice nuclei, Geophys. 

Res. Lett., 30, 1732, 10.1029/2003GL017410, 2003b. 

DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., 

Richardson, M. S., Eidhammer, T., and Rogers, D. C.: Predicting global atmospheric ice nuclei 

distributions and their impacts on climate, Proceedings of the National Academy of Sciences, 

107, 11217-11222, 10.1073/pnas.0910818107, 2010. 

DeMott, P. J., Möhler, O., Stetzer, O., Vali, G., Levin, Z., Petters, M. D., Murakami, M., 

Leisner, T., Bundke, U., Klein, H., Kanji, Z. A., Cotton, R., Jones, H., Benz, S., Brinkmann, M., 

Rzesanke, D., Saathoff, H., Nicolet, M., Saito, A., Nillius, B., Bingemer, H., Abbatt, J., Ardon, 

K., Ganor, E., Georgakopoulos, D. G., and Saunders, C.: Resurgence in Ice Nuclei 

Measurement Research, B. Am. Meteorol. Soc., 92, 1623-1635, 10.1175/2011bams3119.1, 

2011. 

Diehl, K., and Wurzler, S.: Heterogeneous Drop Freezing in the Immersion Mode: Model 

Calculations Considering Soluble and Insoluble Particles in the Drops, J. Atmos. Sci., 61, 2063-

2072, doi:10.1175/1520-0469(2004)061<2063:HDFITI>2.0.CO;2, 2004. 

Diehl, K., and Wurzler, S.: Air parcel model simulations of a convective cloud: Bacteria acting 

as immersion ice nuclei, Atmos. Environ., 44, 4622-4628, DOI 

10.1016/j.atmosenv.2010.08.003, 2010. 

Durant, A. J., and Shaw, R. A.: Evaporation freezing by contact nucleation inside-out, Geophys. 

Res. Lett., 32, L20814, 10.1029/2005gl024175, 2005. 

Eidhammer, T., DeMott, P. J., and Kreidenweis, S. M.: A comparison of heterogeneous ice 

nucleation parameterizations using a parcel model framework, J. Geophys. Res., 114, D06202, 

10.1029/2008jd011095, 2009. 

Elbert, W., Taylor, P. E., Andreae, M. O., and Pöschl, U.: Contribution of fungi to primary 

biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and 

inorganic ions, Atmos. Chem. Phys., 7, 4569-4588, 10.5194/acp-7-4569-2007, 2007. 

Ervens, B., and Feingold, G.: On the representation of immersion and condensation freezing in 

cloud models using different nucleation schemes, Atmos. Chem. Phys. Discuss., 12, 7167-7209, 

10.5194/acpd-12-7167-2012, 2012. 

Ervens, B., and Feingold, G.: Sensitivities of immersion freezing: Reconciling classical 

nucleation theory and deterministic expressions, Geophys. Res. Lett., n/a-n/a, 

10.1002/grl.50580, 2013. 

Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton, T. W., and Cotton, R. 

J.: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud, Q. J. R. 

Meteorol. Soc., 131, 1997-2017, 10.1256/qj.04.134, 2005. 



178 

 

Field, P. R., Heymsfield, A. J., Shipway, B. J., DeMott, P. J., Pratt, K. A., Rogers, D. C., Stith, 

J., and Prather, K. A.: Ice in Clouds Experiment–Layer Clouds. Part II: Testing Characteristics 

of Heterogeneous Ice Formation in Lee Wave Clouds, J. Atmos. Sci., 69, 1066-1079, 

10.1175/jas-d-11-026.1, 2012. 

Flatau, P. J., Walko, R. L., and Cotton, W. R.: Polynomial Fits to Saturation Vapor Pressure, J. 

App. Meteorol., 31, 1507-1513, 10.1175/1520-0450(1992)031<1507:pftsvp>2.0.co;2, 1992. 

Fletcher, N. H.: The Physics of Rainclouds, Science, 3603, Cambridge University Press,= New 

York, 236 pp., 1962. 

Fornea, A. P., Brooks, S. D., Dooley, J. B., and Saha, A.: Heterogeneous freezing of ice on 

atmospheric aerosols containing ash, soot, and soil, J Geophys Res-Atmos, 114, D13201, Artn 

D13201 

Doi 10.1029/2009jd011958, 2009. 

Fridlind, A. M., Ackerman, A. S., McFarquhar, G., Zhang, G., Poellot, M. R., DeMott, P. J., 

Prenni, A. J., and Heymsfield, A. J.: Ice properties of single-layer stratocumulus during the 

Mixed-Phase Arctic Cloud Experiment: 2. Model results, J Geophys Res-Atmos, 112, 2007. 

Fridlind, A. M., van Diedenhoven, B., Ackerman, A. S., Avramov, A., Mrowiec, A., Morrison, 

H., Zuidema, P., and Shupe, M. D.: A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic 

Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation 

Processes, J. Atmos. Sci., 69, 365-389, 10.1175/JAS-D-11-052.1, 2012. 

Haarig, M.: Cold-Stage-Experimente zur heterogenen Eisnukleation im Immersionsmodus, 

Masters Thesis, Karlsruhe Institute of Technology, 2013. 

Hallett, J., and Mossop, S. C.: Production of secondary ice particles during the riming process, 

Nature, 249, 26-28, 1974. 

Hobbs, P. V., Bluhm, G. C., and Ohtake, T.: Transport of ice nuclei over the north pacific 

ocean, Tellus, 23, 28-39, 10.1111/j.2153-3490.1971.tb00544.x, 1971. 

Hobbs, P. V., and Rangno, A. L.: Ice Particle Concentrations in Clouds, J. Atmos. Sci., 42, 

2523-2549, 10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2, 1985. 

Hogan, R. J., Behera, M. D., O'Connor, E. J., and Illingworth, A. J.: Estimate of the global 

distribution of stratiform supercooled liquid water clouds using the LITE lidar, Geophys. Res. 

Lett., 31, L05106, 10.1029/2003gl018977, 2004. 

Hoose, C., and et al.: How important is biological ice nucleation in clouds on a global scale?, 

Environ. Res. Lett., 5, 024009, 2010. 

Hoose, C., and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of 

results from laboratory experiments, Atmos. Chem. Phys., 12, 9817-9854, 10.5194/acp-12-

9817-2012, 2012. 

Hoyle, C. R., Pinti, V., Welti, A., Zobrist, B., Marcolli, C., Luo, B., Höskuldsson, Á., Mattsson, 

H. B., Stetzer, O., Thorsteinsson, T., Larsen, G., and Peter, T.: Ice nucleation properties of 



179 

 

volcanic ash from Eyjafjallajökull, Atmos. Chem. Phys., 11, 9911-9926, 10.5194/acp-11-9911-

2011, 2011. 

Hu, X. L., and Michaelides, A.: Ice formation on kaolinite: Lattice match or amphoterism?, 

Surface Science, 601, 5378-5381, doi.org/10.1016/j.susc.2007.09.012, 2007. 

Hu, Y., Rodier, S., Xu, K.-m., Sun, W., Huang, J., Lin, B., Zhai, P., and Josset, D.: Occurrence, 

liquid water content, and fraction of supercooled water clouds from combined 

CALIOP/IIR/MODIS measurements, Journal of Geophysical Research: Atmospheres, 115, 

D00H34, 10.1029/2009JD012384, 2010. 

Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., Yi, Y., and Ayers, J. K.: Long-

range transport and vertical structure of Asian dust from CALIPSO and surface measurements 

during PACDEX, J. Geophys. Res., 113, D23212, 10.1029/2008jd010620, 2008. 

Hudson, P. K., Murphy, D. M., Cziczo, D. J., Thomson, D. S., de Gouw, J. A., Warneke, C., 

Holloway, J., Jost, J. R., and Hubler, G.: Biomass-burning particle measurements: Characteristic 

composition and chemical processing, J Geophys Res-Atmos, 109, 2004. 

Isono, K., Komabayasi, M., and Ono, A.: Volcanoes as a Source of Atmospheric Ice Nuclei, 

Nature, 183, 317-318, Doi 10.1038/183317a0, 1959. 

Kanitz, T., Seifert, P., Ansmann, A., Engelmann, R., Althausen, D., Casiccia, C., and Rohwer, 

E. G.: Contrasting the impact of aerosols at northern and southern midlatitudes on 

heterogeneous ice formation, Geophys. Res. Lett., 38, L17802, 10.1029/2011gl048532, 2011. 

Khvorostyanov, V. I., and Curry, J. A.: The Theory of Ice Nucleation by Heterogeneous 

Freezing of Deliquescent Mixed CCN. Part I: Critical Radius, Energy, and Nucleation Rate, J. 

Atmos. Sci., 61, 2676-2691, doi:10.1175/JAS3266.1, 2004. 

Klein, H., Nickovic, S., Haunold, W., Bundke, U., Nillius, B., Ebert, M., Weinbruch, S., 

Schuetz, L., Levin, Z., Barrie, L. A., and Bingemer, H.: Saharan dust and ice nuclei over Central 

Europe, Atmos. Chem. Phys., 10, 10211-10221, DOI 10.5194/acp-10-10211-2010, 2010. 

Knippertz, P., and Todd, M. C.: Mineral dust aerosols over the Sahara: Meteorological controls 

on emission and transport and implications for modeling, Rev. Geophys., 50, RG1007, 

10.1029/2011rg000362, 2012. 

Kokhanovsky, A.: Optical properties of terrestrial clouds, Earth-Sci. Rev., 64, 189-241, 

http://dx.doi.org/10.1016/S0012-8252(03)00042-4, 2004. 

Koop, T.: Homogeneous ice nucleation in water and aqueous solutions, Zeitschrift Fur 

Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical 

Physics, 218, 1231-1258, 2004. 

Kumai, M.: Electron-microscope study of snow-crystal nuclei, Journal of Meteorology, 8, 151-

156, doi:10.1175/1520-0469(1951)008<0151:EMSOSC>2.0.CO;2, 1951. 

Kumai, M.: Snow crystals and the identification of the nuclei in the northern Unites States of 

America, Journal of Meteorology, 18, 139-150, doi:10.1175/1520-

0469(1961)018<0139:SCATIO>2.0.CO;2, 1961. 

http://dx.doi.org/10.1016/S0012-8252(03)00042-4


180 

 

Leonard, B. P.: Positivity-preserving numerical schemes for multidimensional advection, 

National Aeronautics and Space Administration ; National Technical Information Service, 

distributor, [Washington, DC] : [Springfield, Va., 1993. 

Lindow, S. E., Lahue, E., Govindarajan, A. G., Panopoulos, N. J., and Gies, D.: Localization of 

ice nucleation activity and the iceC gene product in Pseudomonas syringae and Escherichia coli, 

Molecular plant-microbe interactions : MPMI, 2, 262-272, 1989. 

Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U.: Experimental study on the ice nucleation 

ability of size-selected kaolinite particles in the immersion mode, J. Geophys. Res., 115, 

D14201, 10.1029/2009jd012959, 2010. 

Ma, H. Y., Köhler, M., Li, J. L. F., Farrara, J. D., Mechoso, C. R., Forbes, R. M., and Waliser, 

D. E.: Evaluation of an ice cloud parameterization based on a dynamical-microphysical lifetime 

concept using CloudSat observations and the ERA-Interim reanalysis, Journal of Geophysical 

Research: Atmospheres, 117, D05210, 10.1029/2011JD016275, 2012. 

Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B. A.: Efficiency of immersion mode ice 

nucleation on surrogates of mineral dust, Atmos. Chem. Phys., 7, 5081-5091, 10.5194/acp-7-

5081-2007, 2007. 

Mason, B.: The Physics of Clouds, Clardendon Press, Oxford, UK, 1971. 

McFarquhar, G. M., Zhang, G., Poellot, M. R., Kok, G. L., McCoy, R., Tooman, T., Fridlind, 

A., and Heymsfield, A. J.: Ice properties of single-layer stratocumulus during the Mixed-Phase 

Arctic Cloud Experiment: 1. Observations, J Geophys Res-Atmos, 112, 2007. 

Meyers, M. P., Demott, P. J., and Cotton, W. R.: New Primary Ice-Nucleation 

Parameterizations in an Explicit Cloud Model, J. App. Meteorol., 31, 708-721, 1992. 

Mohler, O., Field, P. R., Connolly, P., Benz, S., Saathoff, H., Schnaiter, M., Wagner, R., 

Cotton, R., Kramer, M., Mangold, A., and Heymsfield, A. J. A.: Efficiency of the deposition 

mode ice nucleation on mineral dust particles, Atmos. Chem. Phys., 6, 3007-3021, 10.5194/acp-

6-3007-2006, 2006. 

Morrison, H., and Grabowski, W. W.: Comparison of Bulk and Bin Warm-Rain Microphysics 

Models Using a Kinematic Framework, J. Atmos. Sci., 64, 2839-2861, doi:10.1175/JAS3980, 

2007. 

Morrison, H., and Grabowski, W. W.: A Novel Approach for Representing Ice Microphysics in 

Models: Description and Tests Using a Kinematic Framework, J. Atmos. Sci., 65, 1528-1548, 

doi:10.1175/2007JAS2491.1, 2008. 

Morrison, H., de Boer, G., Feingold, G., Harrington, J., Shupe, M. D., and Sulia, K.: Resilience 

of persistent Arctic mixed-phase clouds, Nature Geosci, 5, 11-17, 2012. 

Murray, B. J., Broadley, S. L., Wilson, T. W., Bull, S. J., Wills, R. H., Christenson, H. K., and 

Murray, E. J.: Kinetics of the homogeneous freezing of water, Phys. Chem. Chem. Phys., 12, 

10380-10387, 10.1039/c003297b, 2010. 



181 

 

Murray, B. J., Broadley, S. L., Wilson, T. W., Atkinson, J. D., and Wills, R. H.: Heterogeneous 

freezing of water droplets containing kaolinite particles, Atmos. Chem. Phys., 11, 4191-4207, 

10.5194/acp-11-4191-2011, 2011. 

Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice nucleation by particles 

immersed in supercooled cloud droplets, Chem Soc Rev, 41, 6519-6554, 10.1039/c2cs35200a, 

2012. 

Myhre, G., Shindell, D. T., Breon, F. M., Collins, W., Fuglestevdt, J., Huang, J., Koch, D., 

Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., 

and Zhang, H.: The Physical Science Basis. Contribution of Working Group I to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University 

Press, Cambridge, United Kingdom and New York, NY, USA., 2013. 

Nasiri, S. L., and Kahn, B. H.: Limitations of Bispectral Infrared Cloud Phase Determination 

and Potential for Improvement, Journal of Applied Meteorology and Climatology, 47, 2895-

2910, 10.1175/2008JAMC1879.1, 2008. 

Niedermeier, D., Hartmann, S., Clauss, T., Wex, H., Kiselev, A., Sullivan, R. C., DeMott, P. J., 

Petters, M. D., Reitz, P., Schneider, J., Mikhailov, E., Sierau, B., Stetzer, O., Reimann, B., 

Bundke, U., Shaw, R. A., Buchholz, A., Mentel, T. F., and Stratmann, F.: Experimental study of 

the role of physicochemical surface processing on the IN ability of mineral dust particles, 

Atmos. Chem. Phys., 11, 11131-11144, 10.5194/acp-11-11131-2011, 2011. 

Phillips, V. T. J., Choularton, T. W., Illingworth, A. J., Hogan, R. J., and Field, P. R.: 

Simulations of the glaciation of a frontal mixed-phase cloud with the Explicit Microphysics 

Model, Q. J. R. Meteorol. Soc., 129, 1351-1371, 2003. 

Phillips, V. T. J., Donner, L. J., and Garner, S. T.: Nucleation Processes in Deep Convection 

Simulated by a Cloud-System-Resolving Model with Double-Moment Bulk Microphysics, J. 

Atmos. Sci., 64, 738-761, 10.1175/JAS3869.1, 2007. 

Phillips, V. T. J., DeMott, P. J., and Andronache, C.: An Empirical Parameterization of 

Heterogeneous Ice Nucleation for Multiple Chemical Species of Aerosol, J. Atmos. Sci., 65, 

2757-2783, doi:10.1175/2007JAS2546.1, 2008. 

Popovicheva, O., Kireeva, E., Persiantseva, N., Khokhlova, T., Shonija, N., Tishkova, V., and 

Demirdjian, B.: Effect of soot on immersion freezing of water and possible atmospheric 

implications, Atmos. Res., 90, 326-337, doi.org/10.1016/j.atmosres.2008.08.004, 2008. 

Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L., Heymsfield, A. J., Twohy, 

C. H., Prenni, A. J., and Prather, K. A.: In situ detection of biological particles in cloud ice-

crystals, Nature Geosci, 2, 398-401, 10.1038/ngeo521, 2009. 

Prenni, A. J., Demott, P. J., Rogers, D. C., Kreidenweis, S. M., McFarquhar, G. M., Zhang, G., 

and Poellot, M. R.: Ice nuclei characteristics from M-PACE and their relation to ice formation 

in clouds, Tellus B, 61, 436-448, 10.1111/j.1600-0889.2009.00415.x, 2009a. 

Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Heald, C. L., Martin, S. T., Artaxo, P., 

Garland, R. M., Wollny, A. G., and Poschl, U.: Relative roles of biogenic emissions and 

Saharan dust as ice nuclei in the Amazon basin, Nature Geosci, 2, 402-405, 2009b. 



182 

 

Prospero, J. M., Bullard, J. E., and Hodgkins, R.: High-Latitude Dust Over the North Atlantic: 

Inputs from Icelandic Proglacial Dust Storms, Science, 335, 1078-1082, 2012. 

Pruppacher, H. R., and Klett, J. D.: Microphysics of Clouds and Precipitation, 2 ed., Kulwer 

Academic Publishers, Dordrecht, 1997. 

Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable 

macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos. 

Chem. Phys., 12, 2541-2550, 10.5194/acp-12-2541-2012, 2012. 

Randall, D., Khairoutdinov, M., Arakawa, A., and Grabowski, W.: Breaking the Cloud 

Parameterization Deadlock, B. Am. Meteorol. Soc., 84, 1547-1564, 10.1175/BAMS-84-11-

1547, 2003. 

Reisin, T., Levin, Z., and Tzivion, S.: Rain Production in Convective Clouds As Simulated in an 

Axisymmetric Model with Detailed Microphysics. Part I: Description of the Model, J. Atmos. 

Sci., 53, 497-519, doi:10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2, 1996. 

Richardson, M. S., DeMott, P. J., Kreidenweis, S. M., Cziczo, D. J., Dunlea, E. J., Jimenez, J. 

L., Thomson, D. S., Ashbaugh, L. L., Borys, R. D., Westphal, D. L., Casuccio, G. S., and 

Lersch, T. L.: Measurements of heterogeneous ice nuclei in the western United States in 

springtime and their relation to aerosol characteristics, J Geophys Res-Atmos, 112, 2007. 

Riechers, B., Wittbracht, F., Hutten, A., and Koop, T.: The homogeneous ice nucleation rate of 

water droplets produced in a microfluidic device and the role of temperature uncertainty, Phys. 

Chem. Chem. Phys., 10.1039/C3CP42437E, 2013. 

Riihimaki, L. D., and McFarlane, S. A.: Frequency and morphology of tropical tropopause layer 

cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep 

convection?, Journal of Geophysical Research: Atmospheres, 115, D18201, 

10.1029/2009JD013133, 2010. 

Rogers, D. C., DeMott, P. J., Kreidenweis, S. M., and Chen, Y. L.: Measurements of ice 

nucleating aerosols during SUCCESS, Geophys. Res. Lett., 25, 1383-1386, 1998. 

Rogers, D. C., DeMott, P. J., and Kreidenweis, S. M.: Airborne measurements of tropospheric 

ice-nucleating aerosol particles in the Arctic spring, J Geophys Res-Atmos, 106, 15053-15063, 

2001. 

Sassen, K.: Indirect climate forcing over the western US from Asian dust storms, Geophys. Res. 

Lett., 29, 2002. 

Sear, R. P.: Generalisation of Levine's prediction for the distribution of freezing temperatures of 

droplets: a general singular model for ice nucleation, Atmos. Chem. Phys., 13, 7215-7223, 

10.5194/acp-13-7215-2013, 2013. 

Shipway, B. J., and Hill, A. A.: The Kinematic Driver model (KiD), Met Office, 2011. 

Shipway, B. J., and Hill, A. A.: Diagnosis of systematic differences between multiple 

parametrizations of warm rain microphysics using a kinematic framework, Q. J. R. Meteorol. 

Soc., n/a-n/a, 10.1002/qj.1913, 2012. 



183 

 

Shupe, M. D., Walden, V. P., Eloranta, E., Uttal, T., Campbell, J. R., Starkweather, S. M., and 

Shiobara, M.: Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and 

Macrophysical Properties, Journal of Applied Meteorology and Climatology, 50, 626-644, 

10.1175/2010JAMC2467.1, 2010. 

Slawinska, J., Grabowski, W. W., and Morrison, H.: The impact of atmospheric aerosols on 

precipitation from deep organized convection: A prescribed-flow model study using double-

moment bulk microphysics, Q. J. R. Meteorol. Soc., 135, 1906-1913, 10.1002/qj.450, 2009. 

Steinke, I., Möhler, O., Kiselev, A., Niemand, M., Saathoff, H., Schnaiter, M., Skrotzki, J., 

Hoose, C., and Leisner, T.: Ice nucleation properties of fine ash particles from the 

Eyjafjallajökull eruption in April 2010, Atmos. Chem. Phys., 11, 12945-12958, 10.5194/acp-11-

12945-2011, 2011. 

Straka, J. M.: Cloud and Precipitation Microphysics, Boundary-Layer Meteorol, 135, 177-178, 

10.1007/s10546-009-9454-7, 2010. 

Sun, J., and Ariya, P. A.: Atmospheric organic and bio-aerosols as cloud condensation nuclei 

(CCN): A review, Atmos. Environ., 40, 795-820, doi.org/10.1016/j.atmosenv.2005.05.052, 

2006. 

Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit Forecasts of Winter 

Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New 

Snow Parameterization, Monthly Weather Review, 136, 5095-5115, 10.1175/2008mwr2387.1, 

2008. 

Tompkins, A. M.: Organization of Tropical Convection in Low Vertical Wind Shears: The Role 

of Water Vapor, J. Atmos. Sci., 58, 529-545, 10.1175/1520-

0469(2001)058<0529:OOTCIL>2.0.CO;2, 2001. 

Uttal, T., Curry, J. A., Mcphee, M. G., Perovich, D. K., Moritz, R. E., Maslanik, J. A., Guest, P. 

S., Stern, H. L., Moore, J. A., Turenne, R., Heiberg, A., Serreze, M. C., Wylie, D. P., Persson, 

O. G., Paulson, C. A., Halle, C., Morison, J. H., Wheeler, P. A., Makshtas, A., Welch, H., 

Shupe, M. D., Intrieri, J. M., Stamnes, K., Lindsey, R. W., Pinkel, R., Pegau, W. S., Stanton, T. 

P., and Grenfeld, T. C.: Surface Heat Budget of the Arctic Ocean, B. Am. Meteorol. Soc., 83, 

255-275, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2, 2002. 

Vali, G., and Stansbury, E. J.: Time-Dependent characteristics of the heterogeneous nucleation 

of ice, Canadian Journal of Physics, 44, 477 - 502, 10.1139/p66-044, 1966. 

Vali, G.: Nucleation terminology, J. Aerosol Sci., 16, 575-576, doi.org/10.1016/0021-

8502(85)90009-6, 1985. 

Vali, G.: Freezing Rate Due to Heterogeneous Nucleation, J. Atmos. Sci., 51, 1843-1856, 

doi:10.1175/1520-0469(1994)051<1843:FRDTHN>2.0.CO;2, 1994. 

Vali, G.: Repeatability and randomness in heterogeneous freezing nucleation, Atmos. Chem. 

Phys., 8, 5017-5031, 10.5194/acp-8-5017-2008, 2008. 

Vardiman, L.: The Generation of Secondary Ice Particles in Clouds by Crystal–Crystal 

Collision, J. Atmos. Sci., 35, 2168-2180, 10.1175/1520-

0469(1978)035<2168:TGOSIP>2.0.CO;2, 1978. 



184 

 

Verlinde, J., Flatau, P. J., and Cotton, W. R.: Analytical Solutions to the Collection Growth 

Equation: Comparison with Approximate Methods and Application to Cloud Microphysics 

Parameterization Schemes, J. Atmos. Sci., 47, 2871-2880, 10.1175/1520-

0469(1990)047<2871:asttcg>2.0.co;2, 1990. 

Verlinde, J., Harrington, J. Y., McFarquhar, G. M., Yannuzzi, V. T., Avramov, A., Greenberg, 

S., Johnson, N., Zhang, G., Poellot, M. R., Mather, J. H., Turner, D. D., Eloranta, E. W., Zak, B. 

D., Prenni, A. J., Daniel, J. S., Kok, G. L., Tobin, D. C., Holz, R., Sassen, K., Spangenberg, D., 

Minnis, P., Tooman, T. P., Ivey, M. D., Richardson, S. J., Bahrmann, C. P., Shupe, M., DeMott, 

P. J., Heymsfield, A. J., and Schofield, R.: The mixed-phase Arctic cloud experiment, B. Am. 

Meteorol. Soc., 88, 205-+, 2007. 

Welti, A., Lüönd, F., Kanji, Z. A., Stetzer, O., and Lohmann, U.: Time dependence of 

immersion freezing, Atmos. Chem. Phys. Discuss., 12, 12623-12662, 10.5194/acpd-12-12623-

2012, 2012. 

Westbrook, C. D., and Illingworth, A. J.: Evidence that ice forms primarily in supercooled 

liquid clouds at temperatures > -27C, Geophys. Res. Lett., 38, 10.1029/2011gl048021, 2011. 

Westbrook, C. D., and Illingworth, A. J.: The formation of ice in a long-lived supercooled layer 

cloud, Q. J. R. Meteorol. Soc., 139, 2209-2221, 10.1002/qj.2096, 2013. 

Whale, T. F., Murray, B. J., O'Sullivan, D., Umo, N. S., Baustian, K. J., Atkinson, J. D., and 

Morris, G. J.: A technique for quantifying rare ice nucleation events, In prep., 2014. 

Winiwarter, W., Bauer, H., Caseiro, A., and Puxbaum, H.: Quantifying emissions of primary 

biological aerosol particle mass in Europe, Atmos. Environ., 43, 1403-1409, 

doi.org/10.1016/j.atmosenv.2008.01.037, 2009. 

Wright, T. P., and Petters, M. D.: The role of time in heterogeneous freezing nucleation, Journal 

of Geophysical Research: Atmospheres, 118, 3731-3743, 10.1002/jgrd.50365, 2013. 

Wright, T. P., Petters, M. D., Hader, J. D., Morton, T., and Holder, A. L.: Minimal cooling rate 

dependence of ice nuclei activity in the immersion mode, Journal of Geophysical Research: 

Atmospheres, 118, 10,535-510,543, 10.1002/jgrd.50810, 2013. 

Zobrist, B., Koop, T., Luo, B. P., Marcolli, C., and Peter, T.: Heterogeneous Ice Nucleation 

Rate Coefficient of Water Droplets Coated by a Nonadecanol Monolayer, The Journal of 

Physical Chemistry C, 111, 2149-2155, 10.1021/jp066080w, 2007. 

 

 

  



185 

 

The end. 


