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ABSTRACT 

Considerable progress in the understanding of thin film flow over surfaces has been 

achieved thanks to lubrication theory which enables the governing Navier-Stokes 

equations to be reduced to a more tractable form, namely a coupled set of partial 

differential equations. These are solved numerically since the flows of interest in- 

volve substrates containing heterogeneities in the form of wetting patterns and/or 

topography. 

An efficient and accurate numerical method is described and used to solve two 

classes of problem: droplet spreading in the presence of wetting and topographic 

heterogeneities; gravity-driven flow of continuous thin liquid films down an inclined 

surface containing well defined topographic features. The method developed, em- 

ploys a Full Approximation Storage (FAS) multigrid algorithm, is fully implicit and 

has embedded within it an adaptive time-stepping scheme that enables the same to 

be optimised in a controlled manner subject to a specific error tolerance. 

Contact lines are ubiquitous in the context of droplet spreading and the well- 

known singularity which occurs there is alleviated by means of a disjoining pressure 

model. The latter allows prescription of a local equilibrium contact angle and three- 

dimensional numerical simulations reveal how droplets can be forced to either wet 

or dewet a region containing topography depending on the surface wetting charac- 

teristics. The growth of numerical instabilities, in the contact line region, which can 

lead to the occurrence of non-physical, negative film thicknesses is avoided by using 

a Positivity Preserving Scheme. 

A range of two- and three-dimensional problems is explored featuring the gravity- 

driven flow of a continuous thin liquid film over a non-porous inclined flat surface 

containing topography. Important new results include: the quantification of the 

validity range of the lubrication approximation for step-up and step-down topo- 

graphies; description of the "bow wave" triggered by localised topography and an 

explanation, in terms of the local flow rate, of the accompanying "downstream 

surge": an assessment of linear superposition as a means of examining free surface 

respoýiise to topographies. In addition, the potential of local mesh refinement as a1 
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means of reducing computational time is highlighted. 

Finally, more complex liquids composed of a non-volatile resin dissolved in a solvent 

and allowed to evaporate are considered. An evaporation model based on the well- 

mixed approximation is utilised. Results show that localised topographies produce 
defects in dried continuous films which persist far downstream of the topography, 

while with respect to droplet motion, solvent evaporation is found to be responsible 
for contact line pinning and thus a reduction in spreading. 
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1.1 Background 

1.1.1 Coating flows 

Often unnoticed, thin liquid films frequently appear in nature and as part of many 

manufacturing process. For example, they feature in the human body in the form of 

tear films in the eye or as a protective linning in the lungs (Oron et al. (1997)). In- 

dustrial applications include, for instance, the deposition of coatings and inks, direct 

patterning of functional layers during microchip production, spreading of pesticides 

and the flow of oil in heat exchangers and the coating of paper (de Gennes (1985), 

Peurrung and Graves (1993)). Coated films can be composed of a single or sev- 

eral superimposed layers. Photosensitive film is a typical application combining 

many layers of light-sensitive emulsions, dye-forming and image-modifying chemic- 

als. When part of a manufacturing process, the deposited liquid film is generally 

subsequently dried or cured to leave a solid layer on the substrate. The function of 

this layer might be to protect, simply decorative or even to record information. 

A familiar film deposition process is that of decorative painting. This may seem 

quite a simple example, however it requires a good understanding of the underlying 

physics and control of the governing parameters. A paint too thin will lead to poor 

coverage of the surface area while one too thick will be difficult to apply. If the 

surface tension is too low, it may lead to a poor levelling of the painted layer leaving 

"brush-marks" . 
Another well studied cause of non-uniformity in painted layer is the 

solutal Marangoni effect resulting from composition variations of the paint giving 

rise to surface tension gradients (Overdiep (1986), Evans et al. (2000)). 

This already rather long list of undesired effects is a consequence of considering the 

fluid properties only but of course, the overall homogeneity of the substrate will also 

strongly affect the quality of the coated film. For example, a small speck of dust 

or topographic feature on a surface is known to deform a coated free surface over 

distances orders of magnitude greater than the size of the submerged defect itself 

(Pozrikidis and Thoroddsen (1991), Gaskell et at. (2004)). Also, when the paint is 

applied on curved substrates, the liquid layer is known to thin at outside corners 
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and thicken at inside ones (Weidner et al. (1996)). 

Coating imperfections may also arise when a substrate's chemical composition is 

heterogeneous, yielding wettability variations. The appearance of "reticulation" 

(formation of a defect pattern) resulting from non-uniform wettability has been 

studied by Schwartz et at. (2000) and Podgorski et al. (1999) who explored the 

formation of dry patches on an inclined non-wettable surface. 

The number of mechanisms that may lead to poor quality coating or complete fail- 

ure of the film deposition process, even for a basic application such as painting, 

illustrates and highlights the difficulty faced by the coating engineer. Moreover in- 

dustrial applications usually involve multiple interconnected coating passes and de- 

mand concerning coating quality and high speed application for productivity reasons 

is continually being pushed to the limit. Hence, the question that coating engineers 

often have to answer is: What is the optimal operating window for a given coating 

device? In other words, what are the optimal parameters to achieve a successful 

film deposition of prescribed thickness, free of instability and at the highest possible 

speed? 

The answer to these questions lies essentially in the theory of fluid mechanics. In 

the pioneering work of Landau and Levich (1942), a rigorous mathematical analysis 

of the viscous, surface tension and static pressure forces in liquid film deposition, 

as it occurs in dip coating, was derived. The theoretical approach adopted by these 

authors proved that significant insight into interfacial phenomena and valuable pre- 

dictive relationships could be obtained by formal analysis. However, until approxim- 

ately three decades ago, the development of new coating technologies outpaced the 

research in this area and the understanding was mostly empirical (Ruschak (1985)). 

Since then, the growing scientific interest, the availability of more advanced math- 

ematical methods and more potent computers have enabled substantial progress in 

understanding the governing principles underpinning the application of thin liquid 

coatings. An exhaustive review of the history of coating science is given in Kistler 

and Schweizer (1997). 

Of course, the motivation behind a better understanding of liquid film deposition 
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and coatings in general is not only to avoid the different failure modes exposed 

previously but also to achieve a desired goal. The recent invention of self-cleaning 

glass* for windows is a good example of successful research in the coating area. A 

durable, long-lasting coating is fused into the glass at high temperatures during the 

manufacturing process. The coating uses the sun's ultraviolet light to break down 

and loosen organic dirt and causes water to sheet off of the surface, so that rain or 

a light water spray can easily rinse the loosened dirt away with minimal spotting 

and streaking. 

In microfluidic applications there is a growing interest in selectively coating or "ink- 

ing" chemically patterned surfaces for use as chemical microreactors. The study of 

Darhuber et al. (2000(a)) explores how this could be achieved in the context of 

dip coating. In Schwartz and Eley (1998), the effect of wettability contrasts on the 

spreading of a droplet was investigated and later extended by Gaskell et al. (2003) 

to account for the presence of a topography. For inkjet printing, the requirement is 

that the impact of droplets is as small and focused as possible. Sometimes, instead 

of requiring a smooth, level dried coated layer, the goal might be to produce an 

effect such as the hammer tone finish often produced for metallic substrates. 

From a fluid mechanics point of view, coating processes develop as a balance between 

viscous and surface tension forces; in some configurations, other body forces such as 

centrifugal of thermocapillary forces may also be relevant to drive the flow. Coating 

flows generally share a number of characteristic features regardless of the specific 

application: 

" They are low Reynolds number flows so that the effect of inertia can often 

be ignored and are therefore referred to as creeping flows. An additional 

consequence is the absence of turbulence which is particularly convenient for 

modelling purposes. 

" They have at least one free surface and for multi-layer coating, internal in- 

terfaces. When the fluid is bounded by two free surfaces, it is called a free 

film. 

url: http: //NN-NN, w-ppg. com/gls-residential/gls-sunclean/faq. htm 
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" They possess static and dynamic contact lines, the latter when liquid displaces 

a gas (usually air) from a solid web or substrate. 

" They are small scale flows because of their thin nature which make them prone 

to long-range interaction forces. 

Although the Navier-Stokes equations, dictating the motion of fluids, have been 

known for more than two centuries and result from basic conservation considerations, 

exact analytical solutions are scarce and restricted to simple geometry and parameter 

ranges. The presence of a free surface and a dynamic contact line are additional 

complicating features of coating flows. Because the location of the free surface is 

unknown a priori, it needs to be determined during the solution process like the 

other dependent variables namely the velocity and pressure field. Moreover since 

the boundary conditions that apply at such an interface are highly nonlinear, it is 

crucial to be able to represent them accurately. In fact, it is this requirement that 

proved to be the major obstacle to the analysis of coating systems and it was only 

with the advent of powerful computers in the early 1980's, when Finite Element 

methods for coating flows were being developed at the University of Minnesota 

(Kistler and Scriven (1983)), that expert users were first able to explore the effect 

of process operating parameters on the flow. 

Since then, various other numerical methods have been developed to track inter- 

faces. They include the boundary-element method, the marker-and-cell method, 

the volume-of-fluids method or the phase field method - see Scardovelli and Zaleski 

(1999) for a complete review. The free surface difficulty is "technical" in the sense 

that although solutions are difficult to find, the governing equations are known. In 

contrast, the difficulty associated with the dynamic contact line is theoretical be- 

cause the exact nature of the flow in its vicinity is still a matter of dispute due to 

the breakdown of the usual no-slip boundary condition between the liquid and the 

substrate at the contact line (Huh and Scriven (1971)). There is a clear mismatch 

between the continuum description of the liquid in the Navier-Stokes equations and 

the molecular scale of the contact line region. Because several instabilities in coat- 

ing flows are linked to the presence of a dynamic contact line, it is essential for any 
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predictive model to capture accurately its macroscopic effects. Several approaches 

to relieve this singularity are discussed in Chapter 2. 

1.1.2 The thin film approximation 

In spite of these complicating features, significant progress has been possible by 

taking advantage of the creeping nature of coating flows, the usual small ratio of the 

typical film thickness and the characteristic length in the substrate direction. Under 

these assumptions, the flow field is nearly rectilinear, the streamlines being almost 

parallel to the substrate. An analysis of the leading order terms in the Navier-Stokes 

equations reveal that the evolution of the film can be described by a coupled set 

of second order partial differential equations in terms of the film thickness and the 

pressure across the film, or equivalently by a single fourth order partial differential 

equation in terms of the film thickness alone (Myers (1998)). These equations are 

often called the lubrication approximation because of the similarity they have with 

the equation first derived by Reynolds (1886) to calculate the pressure in lubricated 

slipper bearings. 

The lubrication approximation, also referred to as the long-wave approximation, re- 

duces considerably the complexity of the free boundary problem by effectively trans- 

forming the initial problem, where the velocity and pressure are unknown fields in a 

three-dimensional fluid domain, to one where the film thickness and depth-averaged 

pressure are unknown variables depending on the substrate location only. A clear 

drawback of this approximation is therefore the impossibility to have multivalued 

film thickness. For coating applications, this formulation is particularly convenient 

because the film thickness and overall shape of the free surface are normally the key 

factors to assess the quality of the deposited film. Nevertheless, from a knowledge of 

the film thickness and the pressure, the velocities can also be inferred if necessary. 

Although much more tractable than the Navier-Stokes equations, the lubrication 

equations still represent a considerable challenge when it comes to solving them 

either analytically or numerically. Firstly, they are highly non-linear equations and 

can only be linearised in a few particular cases. Furthermore, the lubrication equa- 
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tions are degenerate in the sense that the coefficient of the highest derivative tends 

to zero as the film thickness approaches zero (Myers (1998)). This issue is most 

severe when a dynamic contact line is present since the film thickness decreases as 

the contact line is approached leading to a change in the intrinsic nature of the 

governing equations. This is a consequence of the contact line paradox mentioned 

above: the incompatibility between the no-slip condition and the dynamic contact 

line. Thus, although the lubrication approximation simplifies the representation of 

the free-surface, it does not releave the singularity at the contact line. 

Another complicating feature of the lubrication approximation is that the maximum 

principle which guarantees that the solution is bounded from above and below by its 

initial data is not applicable (Bertozzi (1998)). This means that given a strictly pos- 

itive initial profile, the film thickness can change sign leading to unrealistic negative 

film thicknesses. This lack of positivity-preserving property can have disastrous con- 

sequences when numerical solutions are sought, yielding possible instabilities and 

eventually blow-up of the solution. 

Finally, the lubrication approximation, like any other approximation, is only valid 

within a certain parameter range. Although experience suggests that it is robust 

and has a tendency to deliver good results (in agreement with experiment) in para- 

meter regimes on the outer limits of the expected range of validity (O'Brien and 

Schwartz (2002)), the limited applicability of the lubrication approximation needs 

to be kept in mind and the validity window quantified whenever possible. Under 

certain conditions, usually involving further assumptions, a simplified geometry or 

taking advantage of the presence of symmetry, analytical treatment is possible. In 

which case, valuable insight can be gained on the asymptotic behaviour of the liquid 

film, on its stability or its possible self-similar properties. The available mathemat- 

ical methods for thin film flows have recently been reviewed by Kistler and Schweizer 

(1997) and Myers (1998). 
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1.1.3 Focus of the present work 

The lubrication approximation is the basis of the work presented in this thesis and 
is derived formally in Chapter 2. More specifically, the lubrication approximation is 

applied to two quite different flow conditions: droplet spreading and gravity-driven 

continuous thin liquid films in the constant flux configuration on heterogeneous 

substrates. The study of the former is relevant to inkjet printing for example when 
the droplet has impacted on the substrate but also from a more general point of 

view as a "benchmark" problem for dynamic wetting. The latter, which consists 

of a liquid film on an inclined plane, occurs in some regions of slide and curtain 

coating. Heterogeneities considered are of two kinds: wettability patterns and/or 

topographic features. These might be desired, in order to achieve selective coating, 

or unwanted such as a speck of dust on the substrate. 

The presence of heterogeneities introduces singularities in the lubrication approx- 

imation and a numerical approach as a means of solution is almost inevitable. In 

order to capture accurately the liquid film behaviour in the vicinity of a singularity 

such as a wetting line for instance, fine computational mesh resolution is necessary. 

For example, when modelling a dynamic contact line assuming that a precursor film 

precedes it (see Chapter 2), the mesh resolution in the wetting line region needs to 

be of the same order as the precursor film thickness as discussed by Bertozzi (1998). 

If the flow is unidirectional or axisymmetric, i. e. the lubrication approximation only 

depends on one spatial coordinate and the time, fine mesh resolution in the sin- 

gularity region can be achieved at little computational cost (by today's standard). 

Many local mesh refinement algorithms are available and "relatively" easy to imple- 

ment (Bertozzi (1995)). For multidimensional situations the problem becomes more 

severe and complex, and much more computationally intensive. Quoting Schwartz 

and Eley (1998), "Resolution of wetting-layer thickness in the nanometre range is 

not possible for multidimensional problems; nor is it practically possible to resolve 

substrate variations on the micron scale, in macroscopic simulations". 

Hence, one of the main thrusts of the work presented in this thesis is to apply existing 

numerical techniques and develop new ones to improve the efficiency, robustness and 
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accuracy of numerical methods applied to the lubrication approximation. The scope 

of this thesis is however not purely numerical since the resultant numerical schemes 

are notably applied to industrially relevant coating flows but also to interesting 

features associated with the spreading of a droplet and the flow of a gravity-driven 

film over a substrate with wettability patterns and/or topographic features. 

In order to obtain a discrete analogue of the lubrication approximation, the Finite 

Difference method is certainly the most popular (Weidner et at. (1997), Diez and 

Kondic (2002)) although the Finite Element method was the one used by Peurrung 

and Graves (1991) and Grun and Rumpf (1998). Efficiency in solving the set of non- 

linear algebraic equations resulting from the discretisation process can be improved 

in different ways. Firstly, explicit time marching methods for which the solution at 

a given time step depends exclusively on the solution at the previous time step are 

known to impose a stringent upper bound on the size of possible time increments 

in order to avoid instability (Bertozzi (1998)). Explicit schemes were used in the 

"early days" of numerical simulation of the lubrication approximation by Schwartz 

(1989) and Stillwagon and Larson (1990) but they become obsolete when fine mesh 

resolution is required due to their poor numerical efficiency. This lead Schwartz 

and co-workers to develop a semi-implicit numerical scheme for which the solution 

at a given time step depends only "moderately" on the one at the previous time 

step (Moriarty and Schwartz (1993), Weidner et al. (1997)). These authors used 

an alternating-direction-implicit (, ADZ) technique to solve the discrete analogue of 

the lubrication approximation. These techniques use alternating sweeps in each 

direction so that only a banded system of equation needs to be solved to update the 

solution. The approach of Schwartz and co-workers presented a great enhancement 

since time increments can be as much as a factor 105 larger than the characteristic 

maximum step for stability of the explicit method. Nevertheless, the numerical 

scheme adopted by them is still partly explicit and since a formal stability analysis, 

such as that of Von Neumann, of the numerical scheme is impossible because of its 

non-linear nature, its stability cannot be guaranteed. Furthermore, the convergence 

rate of ARE schemes, although very good, is not optimal in the sense that it is not 

independent of the number of unknowns - 'Mottenberg (2001). 
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Accordingly, the tack followed in this thesis builds on earlier research performed in 

the Engineering Fluid Mechanics Research group at the University of Leeds (Daniels 

et al. (2000)) and consists of using a fully-implicit numerical scheme and multigrid 

solver which is known for its optimal efficiency (Trottenberg (2001)). Because the 

scheme is fully implicit, the method is stable. The idea of multigrid techniques 

in concise terms is to smooth the whole spectrum of the error components on a 
hierarchy of computational grids with variable mesh densities. The principles of 

multigrid methods are introduced in Chapter 3. 

Other than Daniels et al. (2000), no reported attempt to apply Mutilgrid tech- 

niques to the lubrication approximation have been found in the literature however 

they have been used successfully in a related area of research: elastohydrodynamic 

lubrication (Ehret et al. (1997), Goodyer (2001)). The governing equations in elast- 

ohydrodynamic lubrication (EHL) bear resemblance with the lubrication approxim- 

ation because they result from the same basic assumptions first stated by Reynolds 

(1886). However, the fluid domain in EHL applications is bounded by two solid 

surfaces which are in relative movement and therefore differs from the free surface 

flow of interest. 

The benefits of being able to use larger time increments in numerical simulations 

should not however be at the cost of a poorer accuracy. This is another area where 

progress is possible. The implementation of an adaptive time stepping procedure 

should allow the optimal time step to be inferred automatically and combine ef- 

ficiency and accuracy. As a consequence, small/large time increments should be 

automatically selected when the solution varies rapidly/slowly. Most previously 

reported adaptive time stepping schemes in the context of the lubrication approx- 

imation rely on some "empirical" criteria such as the rate of change of the numerical 

solution (Schwartz et al. (2000), Bielarz and Kalliadasis (2003)) to choose a suitable 

time step and make no attempt to optimise a guess for the next time increment, 

which may lead to unnecessary failure of the solution at that time step. 

In contrast, the adaptive time stepping scheme developed and described in Chapter 

3 bases time increment selection on an a robust estimate of the local truncation error 

so that the unavoidable accumulation of error at each time step remains bounded 
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and does not lead to an inaccurate solution at a given time. A further important 

efficiency gain is the use of local mesh refinement. Because, regions requiring flue 

resolution generally represent a small portion of the total computational domain. 

the possibility to tune the mesh density accordingly can result in significant savings 

in computational time. 

For the one-dimensional lubrication approximation, Bertozzi (1995) implemented 

successfully a local mesh refinement algorithm. In the two-dimensional case, Diez 

and Kondic (2002) proposed a numerical scheme to allow calculations on nonuni- 

form grids but at the cost of a lower order of accuracy. A further advantage of 

the multigrid method used in this work is that it naturally extends to allow local 

mesh refinement as demonstrated in the landmark work of Brandt (1977). Although 

this was not the main focus of this thesis, sample results will be shown to reveal 

the potential of such methods. Finally, the Positivity Preserving Scheme derived 

by Zhornitskaya and Bertozzi (2000) is implemented in the present work since it 

enhances considerably the robustness of the numerical scheme by preventing the oc- 

currence of unphysical film thicknesses even on under-resolved computational grids. 

In fact, this scheme proves to be essential to capture the motion of wetting lines 

over topographic features. 

An additional motivation for the work contained in this thesis are the experimental 

results recently obtained by Deere and Baret (2003) concerning the flow of gravity- 

driven thin liquid films over a square trench topography located on an inclined plane. 

These results provide a rare opportunity to validate the numerical prediction of flow 

in a three-dimensional fluid domain and to obtain a quantitative estimate of the 

validity of the lubrication approximation. 

1.2 Outline of the thesis 

The next two chapters are essentially descriptive. In Chapter 2, by expanding the 

Navier-Stokes equation in terms of the small aspect ratio of the film, and retain- 

ing the leading order terms, a formal derivation of the lubrication approximation is 

presented. The scalings relevant to the flow configurations of interest, i. e. droplet 
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spreading and gravity-driven thin liquid films, are then introduced and the range 

of the various associated dimensionless groups is given. For compactness, the lub- 

rication approximation is presented in a general form with coefficients that need 

prescribing depending on the flow conditions. A review of the possible approaches 
to handle the singularity at a dynamic contact line follows, with particular emphasis 

on the disjoining pressure model adopted in this work and as used extensively by 

Schwartz and co-workers - Schwartz and Eley (1998) and Schwartz (1998). 

Chapter 3 is devoted to a description of the numerical approach used to solve the 

lubrication approximation. After an introductory discussion, going in depth into the 

numerical difficulties associated with the lubrication approximation and the history 

of multigrid methods, the spatial and temporal discretisations are detailed together 

with the adaptive time stepping procedure and Positivity Preserving Scheme. The 

Full Approximation Storage (. FAS) form of the multigrid method, which is well 

suited to non-linear problems, is outlined in a pseudo-code formalism along with the 

necessary modifications to implement the Multi-Level Adaptive Technique (MCAT) 

which enables local mesh adaptivity. 

Chapter 4 is concerned with the validation and evaluation of the performance of 

the proposed numerical schemes. This necessary stage is achieved by applying the 

methods to differential equations with known analytical solutions. The adaptive 

time stepping scheme is first applied to an ordinary differential equation for which 

the analytical solution is known and of the same form as Tanner's closed form solu- 

tion for the film thickness of an axisymmetrically spreading droplet (Tanner (1979)). 

The results establish the ability of the scheme to give a good estimate of the local 

truncation error and therefore a good guess of the optimal time increment. Then, 

the accuracy and performance of the combination of the adaptive time stepping 

scheme with the multigrid algorithm are assessed by considering solutions of the 

transient heat diffusion equation. The adaptive time stepping scheme is tested un- 

der conditions for which the heat transfer coefficient varies rapidly with time. The 

final results of this chapter investigate the benefits of using local mesh refinement in 

a region where the heat transfer coefficient varies discontinuously. Overall. Chapter 

4 provides insight to and establishes clearly the benefits of the proposed numerical 
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methods before applying them with confidence to the lubrication approximation 

Chapters 5,6 and 7 focus on solving numerically the lubrication approximation. 
Chapter 5 concentrates on droplet spreading. Initially, the efficiency of the numer- 
ical method is investigated by performing a parametric study of the convergence 
history of the numerical solutions and, importantly, results are compared with pre- 

viously reported data. Results are found to obey Tanner's law of spreading (Tanner 

(1979)) when the droplet is far from equilibrium and to agree well with the res- 

ults of Schwartz and Eley (1998). The numerical results are further validated in 

the extreme case where the spreading of the droplet is induced mostly by grav- 

ity. A self-similar solution first derived by Nakaya (1974) is available in this case. 

The effect of the disjoining pressure on the spreading behaviour of droplets is also 

explored by comparing solutions for a fully and a partially wetting droplet. The 

chapter concludes by presenting simulations for a range of new problems including 

droplet spreading over heterogeneous substrates. 

In Chapter 6, gravity-driven thin liquid films over topographies are considered. 

Firstly, flow over step-up, step-down topographies and trenches are investigated. 

For these cases, the cross flow invariance implies that the flow is effectively two- 

dimensional and solutions to the full Navier-Stokes equations were possible using 

the Finite Element method, Wilson (2003), which enables the effect of inertia to be 

quantified. Moreover, the comparison of the lubrication approximation and Navier- 

Stokes results for a range of inlet flow rates and step heights provides a quantitative 

picture of the range of validity of the lubrication approximation. With a clearer 

idea on the accuracy of the lubrication approximation, flow over localised topo- 

graphies giving rise to three-dimensional free surface disturbances is investigated. 

The numerical results for the flow over a square trench are found to be in excel- 

lent agreement with the experimental results published recently by Decre and Baret 

(2003) and show the characteristic "horseshoe"-shaped "bow wave". Additional res- 

ults concerning the effects of the spanwise aspect ratio and the normal component of 

gravity are presented. Moreover, by comparing the solution of "equal-but-opposite" . 

topographies the suggestion of Decre and Baret (2003) that the free surface response 

can be inferred by means of the linear superposition principle is assessed, Gaskell 
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et al. (2003(b)). Finally, the benefit of using local mesh adaptivity is demonstrated 

and interesting features are revealed when the inlet flow rate varies periodically. 

The latter results relate to, and extend, the recently published study of Bielarz and 

Kalliadasis (2003). 

In the penultimate chapter the lubrication approximation is extended to account for 

evaporation in a binary mixture composed of a solvent and a resin. Assuming that 

only the solvent is allowed to evaporate and that the well-mixed approximation is 

applicable, the conservation law governing the solvent concentration is derived. The 

well-mixed approximation simply states that the solvent diffusion is rapid enough 

so that it is uniform across the liquid layer (Howison et al. (1997)). The imple- 

mentation of this additional equation in the multigrid algorithm is then described 

emphasizing the flexibility of multigrid methods to incorporate additional physics. 

With a rheology of the binary mixture that depends on the local solvent fraction, 

results are shown for the two flow configurations of interest: droplet spreading and 

a gravity-driven thin liquid film. 

The thesis concludes with a short chapter summarizing the work presented and 

suggesting extensions and avenues for future research. 
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2.1 Introduction 

As emphasised in the introduction, the modelling of free-surface flows presents a 

considerable theoretical and computational challenge. For the flows of interest in 

this thesis, the fluid domain is bounded by a non-porous substrate and a free-surface. 

The former may be flat or exhibit asperities of height S with respect to the origin of 

the coordinate system - see Figure 2.1. In the context of thin liquid films, the small 

aspect ratio, c, of the characteristic film thickness, Hol and the characteristic length 

in the streamwise direction, Lo, may be exploited to reduce the general governing 

Navier-Stokes equations to a more tractable pair of second order nonlinear partial 

differential equations in terms of the film thickness, H, and the pressure across the 

film, P. 

In this chapter the time-dependent lubrication approximation for a three-dimensional 

fluid domain is derived following the same formalism as Williams (1998) and the 

different scalings resulting from various driving forces are introduced. The disjoining 

pressure model adopted to describe contact line regions is then explained followed 

by a derivation of the various energies associated with each force in play. 

2.2 Governing equations 

In a three-dimensional Cartesian coordinate system (X, Y, Z) attached to the sub- 

strate inclined at an angle a to the horizontal, where X denotes the down-slope 

coordinate, Y, the cross-slope coordinate and Z the coordinate normal to the sub- 

strate (see Figure 2.1), the conservation of momentum and mass for an incom- 

pressible, isothermal Newtonian fluid with constant viscosity, p, yield the following 

time-dependent Navier-Stokes equations, viz. 

p 
(au 

+ U. VU = -VP + µ02U + pg , 
(2.1) 

V. U = 0, (2.2) 
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n 

Y 

1/11 

FIGURE 2.1: Sketch of the geometry and notations. 

where U= (U, V, W) is the fluid velocity, T is the time and g= g(sin a, 0, - cos a) 

is the acceleration due to gravity. Following Stillwagon and Larson (1990), the 

non-porous substrate surface is described by the topography function S(X, Y) and 

the fluid is subject to the no-slip and no-penetration boundary condition along this 

surface, viz. 

U=V=W=O on Z= S(X, Y) . 
(2.3) 

The free-surface is located at T (X, Y, T) = S(X, Y) + H(X, Y, T) and the kinematic 

boundary condition there requires that 

, )T -+U-ax +Výy =W on Z=ýY(X, Y, T). (2.4) 

Since the topography function S(X, Y) is not a function of time, eq. (2.4) is equi- 

valent to 
ýT+USX+Výy=W 

on Z=W(X, Y, T). (2.5) 
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which using eq. (2.2) and Liebnitz' Rule* may be rewritten as 

OH 
+a Udz +aV dz =o. OT ax (fW (is 

(2.6) 

The proof of the equivalence of the integral and differential forms of the kinematic 

boundary condition is reported in Appendix B. Considering the normal and tan- 

gential stress at the free-surface provides additional boundary conditions. The com- 

ponents of the stress tensor for a Newtonian fluid are 

Eid 
= -Po 

Sji +/ aU2 au] 
ax; axi 

(2.7) 

Providing the air above the liquid film exerts negligible shear stress on the free- 

surface, the continuity of the tangential stress states that 

t. E. n =0 on Z =(X, Y, T) . (2.8) 

The normal stress must balance the capillary pressure resulting from the constant 

surface tension a and the disjoining pressure II(H) caused by long-range inter- 

molecular forces, accordingly 

n. E. n = o, n + ll(H) on Z= q'(X, Y T) 
, 

(2.9) 

where i is the free-surface curvature given by the sum of principal curvatures in 

the orthogonal directions. Following Kistler and Schweizer (1997), the curvature is 

given by 

192 xp [1 
+ aqj 2] + a2W I 1+(ax) all, 2] 

_2 
alp aw aw 

ax ýYý aY J ayax äY ax 
2.10 

aq, 
3/2 

1+()2+ 
axaq, 

2I 

Liebnitz' Rule: Given f (x, z), a(x) and b(x), where f and ä are continuous in x and z, and a 
and b are differentiable functions of x, 

fb ä dz -ä 
(fä fdz) +f(x, a)ex - f(x, b)er 
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The detail and importance of the disjoining pressure term in droplet spreading flows 

is discussed later - see §2.5.2. 

The normal vector to the free-surface n pointing outward is 

n= 
(-Px, -Wy, 1) 

(2.11) 
(qfX2 + gYy2 + 1) 1/2 

and the tangential vectors at the free-surface in the X and Y directions are respect- 
ively 

tx = 
(1' °' p") 

and ty = 
(0,1, T'') 

(1 + qfX2)1/2 (1 + xpý, 2)1/2 

Combining eqs. (2.9) and (2.11) yield 

-P+02[UX(W 
2-1)+Vy(qjýý2-1)+(Uy+VX)lpý. WYX-(UZ+Wx) - 

(Wy + VZ) Ty] = Qi + II(H) on Z=W (X, Y, T) 
, 

(2.13) 

where 0= (1 + WX2 + Wy2)1/2. Similarly, substituting eq. (2.12) in eq. (2.8) 

yields the following two equations 

µ[(1 - lYx2) (Uz + Wx) +2 (Wz - Ux) Tx - (Uy + Vx) Ty 

-(Wy+VZ)WX'y] =0 on Z=W(X, Y, T), (2.14) 

µ4i - qfy2) (VZ + Wy) +2(WZ - Vy) Ty - (VX + Uy) WX 

-(WX+UZ)TxWy]=O on Z=T(X, Y, T). (2.15) 

Equations (2.1), (2.6), (2.13), (2.14) and (2.15), along with inflow and outflow 

boundary conditions, describe the hydrodynamics of thin films. 

In the next section, scalings are introduced and the lubrication approximation cor- 

responding to the leading-order terms of the asymptotic expansion of the governing 

equations in terms of E is presented. 
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2.3 The lubrication approximation 

The choice of scaling is not unique and depends on the type of flow under consider- 

ation. In the present work two, quite different, flows are investigated: 

" droplet spreading; 

" the gravity-driven flow of continuous thin liquid films. 

For the first, a commonly used set of scalings (Schwartz and Eley (1998), Schwartz 

(1998)) is 
C, U° = 

L0 
, TO = 

µL0 
L° TO OIE3 

(2.16) 

To is proportional to that derived by Orchard (1962) for the levelling of surface 

disturbances and Ho, Lo are the characteristic droplet thickness and extent of the 

substrate, respectively. 

For the second, a natural choice of characteristic film thickness is that for the case 

of fully developed thin film flow down an inclined plane with constant flux, Qo, per 

unit width (Aksel (2000)), viz. 

3µQo 1ý3 
Ho = pg sin a 

(2.17) 

while following Bertozzi and Brenner (1997), Lo is chosen to be proportional to the 

capillary length, L, viz 

ýHo 1/3 
= 

Ho 
(2.18) Lo = ßL, where L, = 3pg sin a (6Ca) 1/3 

Here, Ca = 
U°, is the capillary number expressing the ratio of viscous stresses 

to that of surface tension. Note that the present definition of the capillary length 

differs from the usual definition (L, = Q/pg) and is sometimes referred to as the 

dynamic capillary length (Decre and Baret (2003)). The characteristic velocity Uo 

is taken to be the surface velocity of the fully developed film, namely 

Wo 1 <i Uo-2Ho. ý-" 
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Constants Droplet spreading. Gravity-driven thin film. 
Grl o sin a 2 

C2 Bo cos cti -61 3Ca1 3cota 

C3 1 3 
C4 1 0 

TABLE 2.1: Definition of the constants Cl, C2, C3 and C4 for the two types of flow. 

The characteristic pressure and time scale are respectively Po = PgL 2S'n a and To = 
L 
Uo . 

Introducing either set of scalings in equations (2.1), (2.13), (2.14) and (2.15), and 

retaining the leading-order terms (those up to O(E2, E2Re)) gives, in s(x, y) <z 

O(x, y) t), 

a2u ap 
az2 ax 

Ci 

a2v ap 
az2 ay 
ap 

= , -C2 äz 

with boundary conditions, 

u=v=w=0 
auOv0 

äz äz 

p= -(; 3,722b - C4H(h) 

on z=S (X, y, t) , 

on z= b(x, y, t) , 

on z= O(x, y, t) . 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

The lower case notation denotes dimensionless variables defined by, 

H 
y, t) =H, 0(x, y) =H s(x, y) =H1 (X, y) _ 

(L, Y) (2.26) 
0000 

z=Z' p(x, y, t) =P' 
(u, v, Ew) = (U, ViW) 

1, 
t=T 

00 

The scaling-dependent constants, C1, C2, C3 and C4, are as reported in Gaskell et 

al. (2003(a)), Gaskell et al. (2003(b)) and summarised in Table 2.1. Because of the 

absence of wetting lines for gravity-driven thin liquid films, the disjoining pressure 

term can be neglected, thus C4 = 0. Bo = PgLO2 is the Bond number measuring the 
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relative importance of gravitational to surface tension forces within such flows. 

Equations (2.20) and (2.21) are integrated twice with respect to z over the film 

thickness (s <z< 'b) subject to the above boundary conditions to yield 

u= 
ý' 

- Cl (z - s) 
2 ((z 

- s) -h (2.27) 

v= 
ap 

(z - s) 
((z 

- s) -h . (2.28) 
y 

The time-dependent lubrication equations are obtained by combining eqs. (2.27) 

and (2.28) with the dimensionless counterpart of eq. (2.6), 

at ax 

3 

ax 
Cl +a 

h3 a 
(2.29) 

ay 3 ay 

Integrating eq. (2.22) with respect to z and setting the integration constant using 

eq. (2.25), yields the pressure field throughout the droplet/film, 

P= -C3V2,0 - C4II(h) + C2(ß - z) . (2.30) 

The form of eq. (2.29) ensures that the z dependence in eq. (2.30) has no influence 

on the evolution of the droplet/film thickness and it is therefore omitted from sub- 

sequent analysis. Previous studies reviewed in Oron et al. (1997) have substituted 

eq. (2.30) into eq. (2.29) to yield the fourth order time-dependent lubrication equa- 

tions purely in terms of the droplet height/film thickness, h. However in the present 

work it is found to be advantageous to solve the lubrication equations as the two 

coupled nonlinear equations for h and p, eqs. (2.29) and (2.30) respectively, since 

the second order differential operators are simpler to discretise and to incorporate 

in the Full Approximation Storage multigrid solver - see Chapter 3. 

The terms multiplying each constants Cl, C2, C3 and C4 correspond to the various 

forces in play. C1 and C2 are associated with the components of the gravity tangent 

and normal to the substrate respectively, C3 with the surface tension and C4 with 

the disjoining pressure. The literature reports situations where the domination of 

one term with respect to the others allows an analytical solution to be found. For 
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example, for surface tension-driven droplet spreading, only the surface tension term 

will differ from zero providing the droplet if far from equilibrium and Schwartz 

and Eley (1998) derived a similarity solution for the droplet profile which takes the 
following form: 

h= 115f r 

ti/lo 
) (2.31) 

where f is the solution of a third-order nonlinear ordinary differential equation and r 
is the radial coordinate in a cylindrical coordinate system. If, in turn, the spreading 
is driven mostly by the normal component of gravity, the dominating term will be 

C2('b - z) in eq. (2.30) and neglecting the other terms, Nakaya (1974) was able to 

extract a self-similar solution. This solution is described in detail in Chapter 5 since 
it is used for validation purposes. 

For viscous flow down a slope, the similarity solution found by Huppert (1982) states 
that for long-time, h(x, t) behaves like (t )1/2 providing the flow is driven by the 

tangential component of the gravity only. 

2.4 Governing parameters 

2.4.1 Gravity-driven flow of continuous thin liquid films 

Motivated by the experimental work of Decre and Baret (2003), many of the results 

presented in subsequent chapters focus on the continuous flow of a 100 µm thick wa- 

ter film down a plane inclined at 30°. Liquid properties are taken asp = 0.001 Pas. 

p= 1000 kg m-3 and u=0.07 N m-1 and the substrate extends over 100 capillary 

length (ß = 100). Table 2.2 summarises the associated scalings and dimensionless 

groups. The constant Cal/3 cot a, appearing in C2, which measures the relative 

importance of the normal component of gravity (Bertozzi and Brenner (1997)), is 

more commonly referred to N in the literature and this notation is adopted from 

here onwards. 

A wide range of gravity-driven flow over topography is investigated in Chapters 6 

and 7. When comparing with Decre and Baret (2003), topographies typically ext end 
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Scalings, dimensionless groups Equation Value 
Qo - 

Ho pgsina Qo -3 1.635 x 10-6 m2/s 
Uo 13 Uo = 2H 2.452 x 10-2 m/s 

aH0 
1/3 

3pg sin a 7.8 x 10-4 m 
Lo Lo = /3L, 7.8 x 10- m 
7'o To =Ü 3.18 s 
po Po = pg o sin a 1.913 x 102 Pa 

Eý 1.28x10-3 
Ca Ca = 

ýEo 
3.5 x 10-4 

N N= Cal 3 cot a 1.2 x 10-1 

TABLE 2.2: The value of scalings and dimensionless groups for the flow of a 100 pm thick 
water film down a plane inclined at 300. 

over 1.54L, (1.2 mm) in the streamwise direction with a spanwise length ranging 

from 1.54L, to 7.7L, (1.2 mm to 6 mm) and a depth equal to 0.25Ho (25 µm). The 

extent of the topography is chosen to be of the same order as the capillary length 

in order to test the potential nonlinear effects (Decre and Baret (2003)). Indeed, as 

discussed by Stillwagon and Larson (1990) and further developed in Kalliadasis et al. 

(2000), when the ratio of topography extent and the capillary length is small, the 

free surface tends to respond to the topography as a localised, singular perturbation, 

whereas large values of this ratio lead to well separated non-interacting step-up or 

-down. 

2.4.2 Droplet spreading 

The choice of characteristic droplet thickness, Ho, and substrate extent, Lo, is not 

arbitrary. It is defined with respect to a reference state of the droplet. The reference 

state as defined in Schwartz (1998) is a stationary paraboloidal droplet with central 

height Ho and base radius Ro located at the centre of a square, flat substrate of 

extent Lo, characterised by a constant equilibrium contact angle e0. Within the 

small slope assumption, the contact angle satisfies Oo - 2H0/Ro (Schwartz and 

Eley (1998)) showing that, for a given equilibrium contact angle, Ho and Ro can 

not be chosen independently. In a cylindrical polar coordinate system centred on 
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(b) 

FIGURE 2.2: Footprint of a reference droplet (white disk) on the substrate in physical 
(Figure (a)) and dimensionless (Figure (b)) coordinate systems. 

the symmetry axis of the droplet, the reference droplet profile is given by 

H(R) = max Ho 1- 
(R)2) 

, H* (2.32) 
0 

where H* is the precursor film thickness which will be discussed in depth in the 

next section. The substrate extent Lo is chosen so that the droplet base diameter 

Do satisfies Do = 2R0 =4 L0. This choice of scaling ensures that the substrate is 

large enough to capture the expansion of the droplet from its initial state to the 

reference (or equilibrium) state and avoid interferences between the contact line 

and the boundary of the substrate. For clarity, Figure 2.2 shows the footprint of 

the reference droplet on the substrate in both physical and dimensionless coordinate 

systems. The reference droplet profile in terms of dimensionless variables is 

h(r) = max 1- 
(ROLO)2, 

h*) max 1- r2, h* 
, 

(2.33) 

where r is the distance from the centre of the substrate (x, y) = (0.5,0.5). In 

subsequent numerical results, initial droplet profiles are paraboloids with central 

height Hi and radius Ri. The volume of the initial paraboloidal droplet Vd satisfies 

Vd =2 HAR,, and its conservation imposes that 2 

2 HiRz2 =2 HoRo2 (2.34) 
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Scalings, dimensionless groups Equation Value 
Lo Lo = Ro 2.667 x 10- m 
Ho Ho =ý 8.727 x 10-5 m 
E E_a 3.272 x 102 

Po Po = LE 8.59 x 10-1 Pa 
To To= fILO 1.089s 
Uo Uo =T 2.449 x 10-3 m/s 
Bo Bo = eg Lo 9.997 x 10-1 

TABLE 2.3: The value of scalings and dimensionless groups for the spreading of a droplet 
of characteristic base radius 1 mm and equilibrium contact angle 10°. 

Thus, the initial droplet profile will be given by 

H(R) = max 
(Hi (, 

_ 
(R)2) 

H* (2.35) 

and taking as an example Hi = 5Ho yields the following dimensionless counterpart 

of eq. (2.35), 

h(r) = max 
(5 

1- 
320 

r2 , 
h* (2.36) 

A more quantitative picture is achieved by taking a particular example. Consider 

a water droplet at equilibrium on a flat, horizontal substrate with a base radius 

of 1 mm and an equilibrium contact angle of 10°. Keeping the water properties 

identical to those defined in the previous section, Table 2.3 summarises the scalings 

and dimensionless groups. Note that because of the small-slope assumption in the 

derivation of the lubrication approximation and the parabolic velocity profile, the 

range of possible equilibrium contact angle is restricted to small values. To the 

best of the author's knowledge, a quantitative estimate of the limiting equilibrium 

contact angle beyond which the lubrication approximation is no longer valid has 

never been attempted. 

2.5 Contact lines 

Contact, or wetting, lines are ubiquitous in the context of droplet spreading and 

as such the means by which the same are modelled in terms of the lubrication 
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VAPOUR 

R0 

FIGURE 2.3: Droplet at equilibrium with corresponding surface energies (force per unit 
length). 

approximation is discussed below. 

2.5.1 Static wetting 

Definitions 

The wetting or non-wetting of a solid by a liquid is governed by the surface energies 

between the solid and the vapour phase, o,,,, the solid and the liquid phase, Qsc, 

and the liquid and vapour phases, a. A force balance at the contact line, see Figure 

2.3, defined as the triple juncture of the solid-vapour, solid-liquid and liquid-vapour 

interface, yield the well-known Young equation (Adamson (1982)): 

cos Oo = 
Osv - Osl (2.37) 

Q 

where e0 is the equilibrium contact angle (see Figure 2.3). Following the definitions 

of Law (2001), when 0° < e0 < 90°, the substrate is partially wetted by the liquid 

while when 90° < Oo < 180° the substrate is partially dried by the liquid. In the 

limit when e0 = 0, the liquid is said to completely wet the substrate while at the 

opposite extreme, when e0 = 180°, we have complete drying of the substrate by 

the liquid. 

Throughout this thesis, it is assumed that the value of the equilibrium contact angle 
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is known and fixed for a particular solid/liquid/vapour system, although it should 

be noted that the value of the equilibrium contact angle is not necessarily uniquuce 

for a particular solid/liquid/vapour system. For example, little droplets can remain 

stuck on inclined surfaces showing that, despite the equilibrium state of the droplet, 

different values of the equilibrium contact angle can coexist along the contact line: 

large ones at the front and smaller ones at the rear. This phenomenon, known as, 

contact angle hysteresis, is not explored in this work. 

Quere (2002) reviews various mechanisms which affect wetting. These include sharp 

edges on the substrate where the singularity of the solid slope leaves the contact 

angle undetermined, chemical discontinuities at the surface where the contact angle 

can fluctuate between its value on one side of the boundary to its value on the other. 

The roughness of the substrate is also known to influence the wetting by increasing 

the hysteresis (the range of possible contact angle). 

2.5.2 Dynamic wetting 

The contact line paradox 

Problems arise when the contact line is in motion, i. e. a liquid for example spreads 

to displace air. The dynamics of a contact line are still a matter of intense research 

and no universally agreed description of the underlying physics is available to date. 

The difficulty arises from the incompatibility between the usual no-slip condition 

at the solid-liquid interface and the moving contact line leading to a multivalued 

velocity field. This paradox was formally reported by Huh and Scriven (1971) as 

they found that a logarithmically divergent force would be required to displace the 

contact line leading them to the vivid conclusion that "not even Heracles could 

sink a solid". Ever since, there have been two main approaches to alleviate this 

singularity: 

1. allowing for a small amount of slippage effective at small scales in the the 

contact line region (slip-model); 

2. introduction of a very thin precursor film ahead of the contact line maintained 
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in equilibrium by long-range intermolecular forces (disjoining pressure model). 

These methods are reviewed by Oron et at. (1997) and by Bertozzi (1998). Blake 

and Haynes (1969), for example, proposed a molecular-kinetic theory to describe 

the macroscopic behaviour of the wetting line by considering the overall statistics 

of the individual molecular displacements which occur within the three-phase zone. 
However, this approach is not considered in this thesis. 

Slip-model 

Typically, slip at the wetting line is introduced by replacing the no-slip boundary 

condition by 

u=Aaz I 
(2.38) 

at the substrate. Here A represents the slip length and is numerically small so that 

the slip is negligible except near the contact line where äZ is large. In addition to 

the slip condition, Greenspan and Mc Cay (1981) argued that a constitutive law 

relating the dynamic contact angle also called apparent contact angle, O, to the 

contact line speed, U j, is required in order to obtain a well-posed mathematical 

model. The experimental and theoretical studies of Dussan V. (1979) showed that 

this constitutive law takes the form, 

Ucl = Ka(E) - Qa)"'' 
, 

e> ea 
, 

(2.39) 

Ucl = -Kr(er - Q)m 
, 

e< Or 
, 

(2.40) 

where Ka,, K, and m are positive constants and ea, Or are the advancing and 

receding contact angle respectively. Using this approach for a completely wetting 

axisymmetric droplet (Oa, = 0) driven purely by surface tension and with m=1, 

Greenspan (1978) found that the base radius of the droplet R(T) satisfies a power 

law of the form: 

R-Tq (2.41) 

with q= Ehrhard and Davis (1991) took m=3 instead leading to q= io in 

good agreement with the experimental results of Tanner (1979). The success of 
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this approach is however restricted to configurations with a high degree of svvm- 
metry (O'Brien and Schwartz (2002)) and the extension to spreading problems with 
complex wettability patterns is not straightforward. For this reason, the disjoining 

pressure model detailed in the next section was adopted. 

The disjoining pressure model 

The disjoining pressure model relies on the assumption that a very thin precursor 
film precedes the contact line so that the film effectively spreads on a prewetted 

surface. The presence of this precursor film has been reported experimentally for 

various solid/liquid/vapour systems when the liquid completely wets the solid. A 

review of these experiments can be found in de Gennes (1985). The asymptotic thick- 

ness, H*, of the precursor film depends on the interaction potential for a particular 

solid/liquid/vapour system and is constrained by the stability criteria discussed by 

Mitlin (1994). Outside of this stability window, a uniform film cannot exist and 
dewetting of the substrate leading to the formation of holes occurs. It is generally 

thought that H* lies in the range of 1 to 100 nm (Schwartz and Eley (1998), Ehrhard 

and Davis (1991)). From an hydrodynamic point of view, the presence of this pre- 

cursor film releases the singularity at the contact line and Deryagin (1955) was the 

first to suggest that the gradients in disjoining pressure resulting from long-range 

interaction forces may be responsible for the motion of contact lines. The difficulty 

associated with this model is the need to derive the exact form of the disjoining pres- 

sure for each particular solid/liquid/vapour system, although Teletzke (1983) was 

able to derive a disjoining pressure term applicable to most fluid-solid systems. By 

including molecular, electrostatic and structural forces, he found that the disjoining 

pressure could be written as 

11(H) _ 
An 

(2.42) 
H 

i 

although, the constants A, are still system-dependent. 

Following Schwartz (1998), the form of the disjoining pressure adopted for the 
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present work is taken to be 

H* n (H*)u]a 
11(H) =B-- (2.43) 

[(H) 

H 

where B, n and m are positive constant with n>m>1. The first and second 
terms on the right-hand side of eq. (2.43) characterise the liquid-solid attraction 

and liquid-solid repulsion respectively. In the literature, various pairs of exponents 
(n, m) have been used. The pair (9,3) corresponding to attractive, Van der Waals, 

and repulsive, hard sphere, potentials was used by Mitlin and Petviashvili (1994), 

while Churaev and Sobolev (1995) and Teletzke (1983) used the pair (3,2). Figure 

2 
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FIGURE 2.4: Normalised disjoining pressure for (n, m) _ (3,2) and (n, m) = (9,3). 

2.4 shows the form of the normalised disjoining pressure with the pairs of exponents 

(3,2) and (9,3). These curves reveal a single stable energy minimum at the precursor 

film thickness H* since if H< H*, the positive pressure will tend to restore the film 

thickness to H* while if H> H*, the negative pressure will have the same effect. 

In Schwartz's approach the constant B is obtained by performing a force balance 

in the contact line region when the contact line is at equilibrium, and to assume 

that B remains constant even when the contact line is in motion. The calculations, 

detailed in Schwartz (1998) and reported in Appendix A, yield 

B_ 
(n-1)(m-1)0'(1-cos60).: (n-1)(m-1)QOo2, 

(2.44) 
H* (n - m) 2H* (n - rn) 
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where the small-argument approximation to cos Oo is used for the approximate 

equality. Using the scalings defined in the previous section for droplet spreading, 

the dimensionless counterpart of eqs. (2.43) and (2.44) is 

ý(h) _ 
(n - 1) (m - 1)(1 - cos 60) h* n_ (h*)m] 

(2.45) h*(n-m)62 hh' 

or 
* [()fl (! i*)m] ý(h) _ 

(n2h1)(m ý1)ý02 
_, (2.46) 

when the small-argument approximation to cos e0 is used. The former form of 

the disjoining pressure (eq. (2.45)) is the one used in this thesis. However, it is 

interesting to note that, in the latter form of the disjoining pressure (eq. (2.46)), 

the ratio 02/62 can be merged by taking further advantage of the small-slope 

approximation. Remembering that e0 = 2H0/Ro, E= Ho/Lo and Ro = 3L0/8, the 

ratio 60 2/1E2 is constant and equal to 256/9. This additional simplification is made 

in Schwartz and Eley (1998) and Schwartz (1998) offering the advantage of solving 

governing equations which are independent of the choice of the reference state. It 

should be noted that Schwartz and co-workers use Ro as the in-plane characteristic 

length in which case, 0o 2/E2 = 4. 

By imposing a spatially dependent value of the equilibrium contact angle, e0 in eq. 

(2.45), complex wettability patterns may be reproduced. A drawback of this model 

is that the choice of H* is arbitrary and the spreading rate depends on its value. 

Thicker precursor films tend to over predict the spreading rate. However, for small 

enough H*, Schwartz (1998) was able to predict closely the rate of expansion for 

water droplets on glass in agreement with the experimental results of Lelah and 

Marmur (1981). 

Interestingly, the dynamic contact line stability analysis performed by Spaid and 

Homsy (1995) showed that the features of the free surface are relatively independent 

of the choice of contact line model. Furthermore, their stability results using both 

contact line models agree quantitatively when the slip length, A, is numerically 

equal to the precursor film thickness, H*. From a computational point of view, the 

benefit of using the disjoining pressure model was also outlined in Hocking (1992) 
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and further emphasised in Diez et al. (2000) where it was shown that larger time 
increments were achievable, hence reducing the total computational time. This 

computational benefit motivates further the choice of the disjoining pressure model 
in the present work. 

2.6 Domain boundary conditions 

The solution to equations (2.29) and (2.30) is sought on a square domain with 
(x, y) E S2 = (0,1) x (0,1) and in order to obtain a well-posed mathematical prob- 
lem, boundary conditions are necessary at the substrate boundary. Two types of 
boundary condition have been applied in this work depending on the problem con- 

sidered. 

I. For droplet spreading, symmetry boundary conditions are imposed at the edge 

of the substrate, viz 
Op ah 
On än 

(2.47) 

where n is the normal to the substrate boundary. As explained in the previous 

section, the parameters are chosen so that all of the spreading occurs within 

the domain so that the effect of the boundary conditions is very weak. 

2. For gravity-driven thin liquid films in the constant flux configuration, the 

boundary conditions result from the assumptions that the flow is fully de- 

veloped upstream and downstream, that is: 

h(x = 0, y) =1 
ah 

,A 
1x=o =0 and 

and choosing 

0 and 
aP 

ly=o 
aply=l 

=- ay =Wy 

-I x=i = 
HH HX=, =0, (2.48) 

ah 
ly=o = 

Oh 
(2.49) 1y=1 =0, ay Oy 

along the boundary parallel to the mainstream flow insures, according to eq. 

(2.28).. a zero flux in the direction normal to the boundary. 
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2.7 Energy considerations 

In this section, the expression of the energies associated with each driving force is 

reported for later use. Much insight about the dominant driving forces during the 

motion of thin films is gained by monitoring the corresponding energy variations. For 

example, the energy budget applied to a droplet spreading, freely and spontaneously. 

on a homogeneous substrate states that the rate of viscous dissipation is equal to 

the rate of decrease of the energy stored in the form of surface tension and disjoining 

energy. Since the viscous dissipation is proportional to the square of the speed of 

motion, rapid decrease of the potential (or stored) energy corresponds to episodes 

of rapid motion. 

Different methods purely based on energy balance have been developed to investigate 

droplet spreading and thin film flows. For example, the "Overall Energy Balance" 

(OEB) method proposed by Gu and Li (1998) successfully reproduced the dynamics 

of silicon liquid droplets spreading on a soda-lime glass plate after the adjustment 

of a single parameter. Darhuber et al. (2001) calculated static equilibrium ink 

surface profile with SURFACE EVOLVER which is an energy minimisation software 

tool that computes liquid equilibrium conformations given the volume, geometric 

boundary conditions, and surface energies associated with the liquid-air, liquid-solid, 

and air-solid interface (Brakke (1992)). 

In the cases considered throughout this thesis, the three different forces which con- 

tribute to the total potential energy of the system are the surface tension, the 

disjoining pressure and gravity. Those energies are found by considering the work 

done for a very small displacement of the free surface and then integrating over 

the whole surface area. Each component of the energy is written in integral form 

(Schwartz and Eley (1998)) as follows 

1. Surface tension energy, E, 

E, 
2 
01 ff 

pH. pH dA , 
(''.. )0) 

where dA denotes an elementary surface area. 
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2. Disjoining pressure energy, Ed 

_Q2 
m-1 H* 1 n-1 H* m-1 

Ed 
2jf 

e0 l+n 
-mH n-m H 

dA, (2.51) 

which for the pair of exponent (3,2) takes the simpler form 

Ed Oö 
(i_ 

H dA. (2.52) _ 
0, ff 2 

3. Energy associated with the normal component of the gravity, EL 

El =2 pg cos aJJ 
(H2 

- H*2) dA 
. 

(2.53) 

4. Energy associated with the tangential component of the gravity, Ell 

Ell = pgsin aJ J X(H - H*) dA. (2.54) 

In the following, all the energies will be made dimensionless by scaling with respect 

to7 o, hö. 
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3.1 Introduction 

Within its validity range, the lubrication approximation derived in the previous 
chapter provides a robust tool to investigate thin film flows with the benefit of 
reducing considerably the number of unknowns (U, V, W, P and H for the Navier- 
Stokes equations against h and p for the lubrication approximation). Despite this 

simplification, analytical solutions not requiring further assumptions are scarce and 
restricted to two-dimensional or axisymmetric configurations. A review of the pos- 
sible analytical approaches can be found in Myers (1998). In the absence of general 

analytical treatment, the governing equations have to be solved numerically. 

There are, however, several major computational obstacles to overcome to success- 
fully solve the lubrication equations (eqs. (2.29) and (2.30)), principally due to the 

stiffness introduced by surface tension and the need to resolve short length scales 

close to wetting lines. These features lead to impractical restrictions on the choice 

of stable time increments, At, when explicit time stepping numerical schemes are 

employed, At < O(04) in terms of the spatial resolution 0, Bertozzi (1998). Sev- 

eral authors have eased the severe restriction on time step noted above by employing 

semi-implicit schemes incorporating alternating-direction implicit (, ADZ) algorithms 

which, for three-dimensional flows, use alternating sweeps in each direction so that 

only banded systems of equations need be solved at each time step, Weidner et al. 
(1997). These schemes, often referred to as time-splitting, Christov et al. (1997), 

have been used widely by Schwartz and co-workers to analyse a range of problems 

including, for example, that due to the effects of substrate curvature and surface 

tension gradients on the thinning of a coating on a curved substrate (Weidner et al. 

(1996)), droplet motions on heterogeneous substrates with materials having widely 

different equilibrium contact angles (Schwartz and Eley (1998), Schwartz (1998)) 

and gravity- and surface shear stress-driven thin coating flows (Eres et al. (2000)). 

An additional difficulty comes from the fact that accurate representation of the 

wetting line and, in particular, avoidance of negative film thicknesses in their vicinity 

requires that the spatial resolution should be of the same order of magnitude as 

h*. Because the precursor film is so thin (in the range of 1 to 100 nm), it is 

LEEDS UNIVERSITY UBRARY 
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currently not feasible to use realistic h* in the computations. For example, for 

a droplet of typical thickness 1 mm and a 100 nm thick precursor film, a spatial 

resolution of order 10-4 would be necessary which is achievable for two-dimensional 

simulation but still out of reach without local mesh refinement for three-dimensional 

calculations. This and related issues are discussed in detail by Bertozzi (1998) and 

have led to the development of new numerical schemes which ensure that the film 

thickness remains positive without requiring excessive mesh refinement near wetting 

lines, Zhornitskaya and Bertozzi (2000). Furthermore, as mentioned in the previous 

chapter, h* is the principal determinant of spreading rate, Schwartz (1998), so that 

the inability to use a sufficiently small h* in computations leads to a systematic over- 

prediction of spreading rate. However, this difficulty can normally be compensated 

for by using an analytic correction, Schwartz and Eley (1998). 

In contrast to employing time-splitting to solve the time dependent lubrication equa- 

tions, the present work utilises a fully implicit multigrid approach. 

The key advantage of multigrid methods is the efficiency. Fedorenko (1964) was 

the first to establish the optimal efficiency of the method as he proved that for 

the standard five-point finite difference discretisation of the Poisson equation on a 

square computational domain, the work required to reach a given precision is O(N), 

where N is the total number of unknowns. By comparison, , 
ADZ schemes require 

O(Nlog(N)log(E)) operations, where E is a stopping criterion (Trottenberg (2001)). 

The pioneering work of Brandt (1977) provided a practical framework for the multi- 

grid technique and he developed the . 
TAS version of multigrid for nonlinear partial 

differential equations. His work also outlined the principle of mesh adaptivity, an- 

other important feature of multigrid techniques. In the meantime, Hackbusch (1981) 

developed a formal framework giving rigorous convergence proofs. 

Ever since, multigrid techniques have been applied to increasingly difficult systems 

of partial differential equations and are now commonly used to solve the discretised 

equations arising from a wide variety of flow problems - see for example Spitaleri 

and Corinaldesi (1997), Chou (2000), Liao and Mashayek (2001) - for which major 

improvements in efficiency and robustness are now being achieved, Thomas et al. 
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(2003). Multigrid techniques have also been applied with success in an area of 

research related to thin film flows: elastohydrodynamic lubrication (Ehret et al. 
(1997), Goodyer (2001)). 

In this chapter, spatial and temporal discretisation are first introduced with a partic- 

ular emphasise on the Positivity Preserving Scheme (PPS) derived by Zhornitskaya 

and Bertozzi (2000) and our own adaptive time-stepping scheme, Gaskell et a]. 
(2003(a)). The implementation of the Full Approximation Storage (. FAS) variant 

of the multigrid method for nonlinear equations, Brandt (1982), is then described 

along with the treatment of boundary conditions. 

3.2 Spatial discretisation 

Problems are solved on a square computational domain with (x, y) E S2 = (0,1) x 

(0,1) using the multigrid approach described below. The finest grid level (i. e the 

actual grid on which the solution is desired) has (2kf + 1) nodes in each direction so 

that the spatial co-ordinates of its grid points are given by x2 = 
(Z 1) and yj 2f 21 

in terms of the fine grid density parameter k f. In this work kf E [6,10] corresponding 

to grids at the finest level with between 65 and 1025 nodes in each direction. For 

clarity, Figure 3.1 shows a typical cell of the mesh centred on the vertex (i, j). 

Equations (2.29) and (2.30) are approximated spatially using central differences as 

in Weidner et al. (1997) or Kondic and Diez (2001), leading to the following second 

order accurate discretisations 

3h2, ß 
_1 

h3 h3 
at p2 3l i+ J 

,j 
(Pi+l, j -p2, ß) -3 i- 2j (pi, j - Pi-1, j) + 

h h3 
3 12, 

E+2 
(Pi, ý+i - pi, j) -3 lzj-2 (Pij - pi, j-i) - 

C1h 2j ( hi+l, j - hi-1j 
+ O(A2) (3.1) 

i, 20 
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A 

i 
i-1, j 

a 
i, j+1 I 

i, j+ 1/2 I 

i-1/2, jI1, j i+1/2, j I i+1, j 

---r --- --- , ---- 
I i, j-1/2 I 

I 
I 
I 

i, j-1 

A 

FIGURE 3.1: A typical cell of the mesh centred on the vertex (i, j). 

pi, j + Q2 (hi+1, j + si+l, j) + (hi-l, j + si-1,7) + (hi, 7+1 + si, 7ý-1) + 

(n - 1)(m - 1)(I - COs Oe) 
(hi, j-1 +s 

, j-1) - 4(hij + sij )+ C4 
*2X h (n - m)E 

h* n 7h* m 
- -C2(hi, j+si, j)+O(02) =0, (3.2) 

hi, j hi, j 

for any interior point (i, j) in the computational domain, where 0= 2-kf is the spa- 

tial increment. Two different schemes have been used for the mid-point interpolation 

of the prefactors IF(h) = 33 in eq. (3.1). The first one, and the most commonly used, 

is referred to the Standard Scheme (SS) in Kondic and Diez (2001) and simply con- 

sists of a linear interpolation of the pre-factor between the two neighbouring nodes, 

Viz 

h3 
_1 

h3 h3 
3 1Z±2, ý =23 lifl, j +3ki' (3.3) 

h3 1 %t3 tt3 

3 
Izýý 

23 
li, j±1 +3 IZj (3.4) 

The second one, based on the work of Zhornitskaya and Bertozzi (2000), is a Posit- 
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ivity Preserving Scheme (PPS). Their study proved rigorously the consistency and 
stability of this scheme along with its positivity preserving nature even on underre- 
solved grids. The PPS is defined as follows 

h3 h2+i, j - hz, ý 
3 

ýi+2, 
ý - (3.5) 

9i+1, j - 92, E 

where g' = r(h), which gives 

32 h2 hz, ý hi+ 
(3.6) 3 i2+2, 

ý =3 hi+i, j + hi, j 
h3 

_2 

hi2 h27+1 

3 l2, j+2 =3 hi, j+i + hi, j ' (3.7) 

in agreement with Diez and Kondic (2002). Similar expressions can easily be found 

for the other pre-factors. 

Solving eqs. (3.1) and (3.2) in the entire computational domain is equivalent to 

solving simultaneously a set of (2'f + 1)2 nonlinear ordinary differential equations 

where the time, t, is the independent variable. The choice of temporal discretisation 

is critical to the success and efficiency of the solution procedure and the next section 
describes the approach adopted. 

3.3 Temporal discretisation 

Ideally, time-stepping schemes for the numerical solution of time-dependent flows 

should be both efficient and accurate. The former ensures that small time steps are 

avoided when the solution varies slowly while the latter should enable the error to 

be controlled throughout the solution process. Most previous numerical studies of 

lubrication-type flows have focussed on increasing the efficiency of the solution and, 

in particular, overcoming the stability requirement for explicit schemes that the time 

step At should be O(&4) - an impractical restriction when even moderate spatial 

resolution is employed. The use of time-splitting algorithms is a clear improvement 

as time steps several orders of magnitude larger than O(04) can be used successfully. 

A standard temporal discretisation scheme is the so-called Ot-scheme, as used by 
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Diez and Kondic (2002) for example, defined as 

hnt1- etn-{-1F(hn+1 P7+1 hn-ß-1 n+1 n+l n+1 
i, j W'?,, 3 ' i±1, jI Pif lj ' 

hi, 
j f l' Pi, 7 f1I= 

h%13 + (e - 1)Otn+1F(hi, j 
,, Pij hfl jý Pzflj, hi, jf1, P2,7fl) (3.8) , 

where F(hi, j, pi, j, hifi, j, pifl, j, hi, j±i, pi, j±l) corresponds to the right-hand side of 

equation (3.1), 0< Ot < 1, and the superscript n denotes data at the nth time 

step. Here, Ot =0 gives the forward Euler scheme (explicit, O(Otn+1)), Ot =1 
equates to the backward Euler scheme (implicit, O(Otn+l)), and Ot =2 yields the 
Crank-Nicholson scheme (implicit, O((Otn+l)2)). Throughout the thesis, Ot = 11 
has been used. 

The use of these schemes alone give little control as to accuracy and it is only 

recently that an estimate of the local truncation error has been used to test whether 

the equations are being solved to a specified error tolerance, Diez and Kondic (2002) 

and Kondic and Diez (2001). Their scheme, however, does not attempt to optimise 

the time step for a given error tolerance. 

Hence, the goal of the present section is to address this issue and provide an efficient 

alternative to existing schemes by using time-stepping based on local error estimates 

from an implicit, second order method which reduces to Heun's method, Chapra and 

Canale (1998), in the case of a fixed time step. This uses an estimate of the local 

truncation error, obtained from the difference between this solution and an explicit 

predictor, to increase the time step in a controlled manner whilst at the same time 

minimising the computational expense associated with repeated time step failure. 

The predictor stage is fully explicit, second order accurate in time and proceeds by 

solving 

n+l = 62h 1+(1 
- 

ß2) tti 
j-i-Otn+l(1-ý0)F(hi jP jý 

h f1, 
j, P f1j, hi 

jf1, p jf1) , Z'3Predict 

(3.9) 

where ,Q= 
°ötn 1. As demonstrated in Appendix C, the local truncation error (LT E) 
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for the predictor stage is given by 

(LTEpredict)i, 
j = 

(ptn+1)2 ptTh(1 + ß) 3 hZ j 
6 at3 

lt=tp 
I (3.10 

where the third derivative term is evaluated at a time tp E (t,,, to+l). The solution 

stage consists of solving eq. (3.8) with Ot =2 for which the local truncation error 
is 

(LTE)2 j= 12 
(Otn+i)3 

a3t3, jIt=tc 
, tc E (tn, to+i) " 

(3.11) 

As described in Chapra and Canale (1998), the assumption that the third order 

derivative term varies only a small amount over the time step enables the local 

truncation error to be estimated as 

(LTE) -- -1 (Ot' 
_ hn+l 1 (3.12) 

z'ý 1+2 (1+Qa) \ 
ie. % i, jPredict 

Following Dormand (1996), this expression is used to obtain an estimate of the 

overall truncation error by finding its Euclidean norm, JILTEII, which is then used 

to specify the next time step, Otn+2, via 

1 

Otn+2 = 0.90tn+1 
Tol 

IILTEII 
(3.13) 

if JILTE11 < Tol, whereas if JILTE11 > Tol the iteration is restarted with half the 

current time step. 

The implicit system of algebraic equations (3.2) and (3.8) are solved at each time 

step using the FAS multigrid method described below. 

3.4 The Full Approximation Storage (. ß7A8) multigrid 

algorithm 

The key idea of multigrid is to use a simple iterative technique as a smoother, not 

as a solver, to reduce high frequency errors on the computational grid while lower 

frequency errors are smoothed out on a succession of coarser computational grids. :1 
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hierarchy of grids is defined, G', G...... GL say, where the grid spacing is halved from 

one grid to the next and where GO denotes the coarsest grid and GL the finest. The 

G0 30 G 1= 5x5 G2= G1= 9x9 

k 
c= 

1 kf= 3 

FIGURE 3.2: Hierarchy of grids showing 3 grid levels (G°, G1 and G2) with k, =1 and 
L=2. 

coarsest grid level G° has (2kc + 1) nodes in either direction so that the finest grid 

level GL, i. e. the one on which the final solution is actually desired, has (2kf + 1) 

nodes in either direction in terms of the fine grid parameter introduced above, where 

kf=L+k, Figure 3.2 illustrates the grid hierarchy for three grid levels (G°, G1 

and G2) with k, =1 and L=2. Note that the grid spacing associated with each grid 

level Gk is uniform and equal in both directions and simply given by Ok =2k. 

The nonlinear discretised equations (3.2) and (3.8) are solved using a combination 

of the Full Approximation Storage (. SAS) method and Full Multigrid technique, 

Brandt (1982) and Wesseling (1992). Figure 3.3 illustrates the structure of the 

solution process for four grid levels. An important advantage of this technique is 

that an initial guess to the solution at a given level is provided by the interpolation 

of the solution on the next coarser level. At all but the coarsest level a fixed number 

of V-cycles (Ny, ) are applied. At the coarsest level an exact nonlinear solver may 

be applied or a large number of smoothing iterations may be taken: this work uses 

the former approach, based on Newton's method. At the very beginning of the full 

multigrid cycle the solution from the previous time step is used to provide a starting 

point for the multigrid procedure. In order to explain clearly the steps taken during 

a single V-cycle, the governing equations (3.2) and (3.8), at the grid level k, may be 
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G3 G 3,1 G 3,2 G 3' ý 
" 

G2 

G1 

Go 

, 
"" 

, 
i 
, 

Ncyc 

": smoothing 

exact solution 
ýý : Full Multigrid interpolation 

" " 

"" 

0 

FIGURE 3.3: Description of the Full Multigrid technique for 4 grid levels. 

rewritten in the following way: 

£k (hfl+1 
pm+1) = fk (Akn'Pkn) (3.14) 

£k (hk+i 
pn+i) = 01 (3.15) 

where the film thicknesses and pressure at the nth time step to are known and are 

given by h_ {h ýk } and pk = {pick }, and f/ corresponds to the right-hand side of 

eq. (3.8). 

Given ho'+l and po'+l as an initial guess to the solution of equations (3.14) and 

(3.15), the computed values after completion of the V-cycle are. hl'+l and plk+l 

Each V-cycle within the solution process may be defined in a recursive way using 

precisely the same pseudo-code formalism as in Trottenberg (2001): 

In functional notation this V-cycle from level k may be written as 

(h+1 
� pin+1) = FASCYC (k, hoi+l, pon+i 1 k' fh fý, npre, npost) 

The function FASCYC may be broken down into three distinct stages: 

G3,0 
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1. Presmoothing stage: 

" Apply npre times a Red-Black Gauss-Seidel scheme to a linearised form 

of equations (3.14) and (3.15) so that, in functional notation: 

(n+1+i) = RELAXnpre (hok+l, 
Pok+l, fý , fý ) 

2. Coarse grid correction stage: 

" Compute the defects: 

h= h (h- n+l p_ p n+l n+1 dk fk 
,C -k , P0 n+1 

k), 
dpk = fk Ck 

(hOk 
, 1ý0k 

) 

(Note that in our problem, from equation (3.15), fL=0. However this 

is not the case in general for k<L, as shown below. ) 

9 Restrict the defect to the next coarse grid level using a half-weighting 

restriction operator, Rk-1: k 

) Ih 
-i = Rý-i ýdh) 

, 
do-1 - Rk k-i (dP 

" Restrict hok+l and pok+l in the same way: 

nß-1 k_1 n+1 n+l k-1 - n+l hog-1 - Rk ýhok ) 
Poi-1 - Rk ýPok 

" Compute the right-hand side at the next coarser level: 

_ 
n+1 

fk 
1= 

dk-1-ý--'Ck-1 
(hOk-1' 

k-1) ' 
fk-1 = 

-1+Ck-1 \ k-1'1jOk±1) 

(3.16) 

" Compute an approximate solution wk_1, wß_1 of the coarse grid equation 

on Gk-1: 

h 'C-i 
(L 

_1) - 
ft- (3.17) 

'Ck-1 
h wk-11 

1 
wk-1 =p - 

fk-1 
' 

(3.18) 

If k=1: find the exact solution using the coarse grid solver (see below). 

If k>1: solve eqs. (3.17) and (3.18) by performing the FAS cycle using 

n+l 
Lk-1 and pok±i as an initial approximation: 

ig 
(-1, 

w ^pk-1) _ 

FASCYC (k 
- 1, hö +l, 

o"+lj k1 ---k 1 fk-l, fk_l, nprel npost) 
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" Compute the corrections: 

-h �h ---n+1 - ^P n+l vk-1 = wk-1 - hok-1 
I vk-1 = wk-1 - Pok-1 

" Interpolate the corrections using the bilinear interpolation operator, Iý_ 1: 

vk = I/-1 (%_) 
1 
vk = I1-1 (vk-i) 

" Compute the corrected approximation on Gk: 

hick+l = 
hPk+l 

+P n+l = 1- on+1 +v 
- 

ck 
-k 

k 

3. Postsmoothing stage: 

" Apply rtpost times the relaxation scheme: 

(n+i n+l) = RELAXThP (hock n+l n+l hý 
, pi ,t 1k 

-k , Pock ifk, 
fkJ 

The relaxation scheme consists of one step of a Newton iteration solved with a fixed 

number of sweeps (np,. e or npost) of Red-Black Gauss-Seidel. The linearised form 

of equations (3.14) and (3.15) is obtained by computing the local Jacobian only, 

so that each relaxation sweep (in the pre-smooth stage for example) proceeds by 

solving: 

n 
I 

(3.19) ank 
Ah + n+l 

AP = fk - £k (ho k +l' 
k+lj ähtlk aý't3k 

'9f-p Oh + 
an+i 

AP = fý -G(! P-k+l'Pok+ll (3.20) 
ahUk apUk 

n+l 
for Oh and Op. Hence a new approximation to the solution is given by: ho2, jk _ 

nß-1 n+1 n+1 hoi, jk + Oh' POi, ýk - ý'oi, ik +LP. 

At the coarsest level (GO, k=1), the discretised equations are solved using a Newton 

iteration scheme. The iteration is defined in terms of the Jacobian matrices: 

orp OLP 
OL 1, A= ado+1' 

B- aL ach 
apn0 

D-a%tn+1 (3.21) 

Given wh wö as first approximations to solutions of the coarse grid equations (3.17) 

and (3.18), then increments to wö, wö, Owö and 4 respectively, are obtained by 
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solving the linearised Newton iteration equations: 

AOwö +B AWh 0= fö - Gö (, 4, (3.22) 

C Owö +D 02Un 
= fö Gö (h1 

w4) . (3.23) 

Solutions of these equations are obtained as follows. Setting Awö =0 in (3.22), an 
initial approximation to 4 is: AwP =4 (fo 

- Gö (wö, wö) ), while the equation 

for Owö is obtained by eliminating Ow-0 from equations (3.22) and (3.23), viz 

D- CA-1B Owh fh £h (w, 
w) - COwp (3.24) 

Equation (3.24) is solved to yield Owö and wö, w are updated according to Wh -+ 

wö +A Wh and 14 wö + Owö - A-1Bt w0 respectively. The iteration proceeds 

until the norm 
lf0 0\ 0'_O/_n Ifö -E0 O'_ö)12, where n is the number of unknowns 

in one direction, is sufficiently small. In this work it is found that a relative reduction 

in the residual of just 10-3 (compared to the initial residual from the solution at 

the previous time step) is sufficient, however much greater accuracies are easily 

obtainable if required. 

3.5 Treatment of the boundary conditions 

The boundary conditions described in the previous chapter (eqs. (2.47), (2.48) and 

(2.49)) are all Neumann conditions apart from the upstream boundary condition for 

gravity-driven thin film flow which is a Dirichlet condition. 

A first approach to implement the Neumann boundary conditions was to introduce 

"ghost nodes" outside the computational domain as denoted by Q shapes in Figure 

3.4. The idea is then to solve eqs. (3.2) and (3.8) on the boundary nodes (o in Figure 

3.4) as for any interior node (" in Figure 3.4) while the extra unknowns introduced 

at the ghost nodes are found by solving a discrete analog of the Neumann boundary 

conditions. For example, imposing a zero film thickness and pressure gradient along 

the "west boundary" imposes the following extra set of equations to be satisfied at 
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the ghost nodes 

Pi, j - Po, j 
=0 and 

hlj 
O 
-h0'ß 

=0 for 1<j<(2k1+1), (3.2,5) 

when backward differencing is used. The index i=1 denotes boundary nodes while 
i=0 denotes ghost nodes. Analogous expressions can be found for the north, smith 

and east boundaries. The advantage of this approach is the ease of implementation 
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FIGURE 3.4: Computational grid with "ghost nodes". 

as the same discrete equations need to be solved at boundary and interior nodes. 

However, the introduction of ghost nodes and corresponding extra set of discrete 

equations destroys the structure of the Jacobian matrix A in the sense that this 

matrix becomes non-diagonal when the additional equations at the ghost nodes are 

included with a consequent increase in the computational work for the calculation 

of A-1 in eq. (3.24). For the droplet spreading results presented in Chapter 5, this 

treatment of the boundary condition was implemented. 

Alternatively, the Neumann boundary condition can be eliminated. The procedure 

consists in eliminating from eqs. (3.2) and (3.8) the unknowns lying outside the 

computational domain using a discrete analog of the Neumann boundary condition. 
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For example, along the west boundary, the zero film thickness and pressure gradient 

imposes that 

P2, ß - P0, ß 
_0 and 

h2, - h0, 
=0 for 1<j: 5(2 kf + 1) . 

(3.26) 
20 20 

Therefore, along the west boundary, poj and h0, ß may be eliminated and replaced 

by p2, ß and h2j respectively. In contrast to the previous approach, the governing 

equations at boundary nodes will now differ slightly from those at interior nodes but 

because no additional equations are introduced the Jacobian matrix A corresponds 

to the identity matrix. The inversion of A required in eq. (3.24) is therefore trivial 

reducing the total computational work. This treatment of the boundary condition 

was used for the case of gravity-driven thin films. 

In order to impose a constant film thickness at the inlet boundary for gravity-driven 

thin liquid films (eq. (2.48)), eq. (3.8) is simply replaced by 

hl, j-1=0 for 1<j<(2kf+1). (3.27) 

3.6 Local mesh refinement 

The need for fine spatial resolution is often restricted to a relatively small portion 

of the computational domain where a singularity occurs or strong gradients of the 

solution are expected. For example, in the presence of a contact line, Bertozzi (1998) 

mentions that the spatial resolution should be of the same order of magnitude as the 

precursor film thickness. The mesh density should also increase when flow over steep 

topography is considered in order to capture accurately the substrate variations. In 

order to minimise the computational work, ideally the mesh should only be refined 

locally where required. Despite the obvious potential of local mesh adaptivity to 

handle the multi-scale physics in thin film flows and in particular dynamic contact 

lines, studies using such techniques are very scarce. Bertozzi (1995) developed a very 

efficient self similar adaptive mesh scheme achieving local resolution of order 2-65 

to investigate finite time singularities when a thin film dewets and forms a "hole". 

However, her approach is restricted to one-dimensional computational domains. In 
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principle, there are two types of adaptive approaches, 'Iýrottenberg (2001): 

" predefined refinement corresponding to grid structures where the refinement 

is determined in advance; 

" self-adaptive refinement for which grid refinement is carried out dynamically 

during the solution process. 

The multilevel adaptive method for hurricane track prediction discussed by Fulton 

(1997) is a good example of the latter approach. In this thesis, only the former 

approach has been developed. It should be stressed at this point that local mesh 

refinement is not the main thrust of the work in this thesis. Most of the results 

presented in subsequent chapters are obtained on uniform meshes. Nevertheless, 

the sample results obtained with local mesh refinement highlight the potential of 

such methods and call for further development. 

For two- or three-dimensional computations, a major difficulty faced by local mesh 

adaptivity methods is the data structure. Complex tree structures are often neces- 

sary to handle the data structure in the context of Finite Element methods. In con- 

trast, local mesh refinement is fully compatible with the multigrid structure as the 

solution is achieved through a hierarchy of computational grids. The idea is to have 

finer grid levels only covering the part of the domain where refinement is desired. In 

this work, the Multilevel Adaptive Technique (. MCAT) first introduced by Brandt 

(1977) was implemented. The reason for this choice is that the concepts of the stand- 

ard multigrid technique can be relatively easily extended to account for mesh re- 

finement. Prior to describing the technique, notations are introduced. The grid hier- 

archy is now defined by (Go, G1 GL GL+1 GL+2 GL+L' GL+L'+1 GL+L'+2 '.. 
)- 

Again, the mesh resolution doubles from one grid to the next but while the grids 

G°, G1, 
.., 

GL cover the entire computational domain ("global grids"), 

L+L'+1 L+L'+2 GL+1 GL+2', GL+L only cover a portion of it and G, G,.., a por 

tion of this portion. Figure 3.5 illustrates the grid hierarchy for L=0 and L' = 1. 

Each grid is recursively defined by the indices of its "south-west" and "north-east" 

corners, (Isw, J8 ) and (Ine, Jne) respectively, on the coarser grid level ('`parent 
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grid"). For convenience, the local indices (i, 3) on each grid vary from (0,0) to 
(Zne, jne) where ine = 2(Ine - ISZ1) and jne = 2(Jne - Jsw). For the example given 

on Figure 3.5, (Isw, Jsw) = (1,1), (Ine, Jne) = (3,3) and (ine, jne) = (4,4). But 

the non-global grids don't all have to have the same number of points, as in this 

example. 

The solution is sought on the "composite grid" which is the composition of each 

individual grid. Composite grids are denoted by 

(o, a1,.., aL, aL+1aL+2 GL+L' GL+L'+1 GL+L'+2 ) 
as shown on Figure 3.5. 

(I 
,J) ne ne 

(I ,J) sW sW 

G G °+i 

(I 
ne 

ti 
ne 

-0+1+1 

0 
ne 'j ne 9 

(0,0) 

G 
0+1+1 

G° 

FIGURE 3.5: Grid hierarchy with 2 concentric local refinements. The upper three meshes 
are the composite grids, G°, G°+1 and G°+1+1. The lower three meshes represent each grid 

level, G°, G°+1 and G°+1+1. 

The main components of the multigrid technique described in §3.4 remain identical. 

Of course, the grid transfer operators (interpolation and restriction) are modified so 

that data is transfered only in the region where the grids overlap. The smoothing 

stage is unchanged for interior nodes on any grid (denoted by " shapes on the 

grid G°+' in Figure 3.5 for example). If the grid only covers a subregion of the 

computational domain, the boundary nodes common to that grid and its parent 
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grid (denoted by o shapes on the grid G°+' in Figure 3.5) are treated as Dirichlet 

boundary conditions, i. e., the value of the unknowns at those points is equal to 

the value on the coarser level. Standard linear interpolation is used to compute 

the value of the unknowns at the remaining boundary nodes sometimes referred to 

"hanging nodes" (denoted by O shapes on the grid G°+' in Figure 3.5). An essential 

modification to the multigrid algorithm is that the right-hand side is only modified 

according to eqs. (3.16) on the coarse grid points common to interior points on the 

"child grid" (® on grid G° on Figure 3.5). 
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4.1 Introduction 

The main goal of the present chapter is to develop a knowledge of the behaviour 

of the proposed numerical method when applied to well understood and widely 

documented problems and to develop an appreciation of their robustness and the 

computational benefits. 

The adaptive time-stepping scheme is first applied to an ordinary differential equa- 

tion (ODE) for which the corresponding analytical solution is known, and is of the 

same form as Tanner's closed form solution for film thickness at the centre of an 

axisymmetrically spreading droplet, Tanner (1979). The combination of the ad- 

aptive time-stepping scheme with the multigrid method described in the previous 

chapter is then used to solve the two-dimensional transient heat diffusion equation. 

The parabolic nature of this second-order partial differential equation makes it an 

ideal candidate to assess the numerical method since the lubrication equations (eqs. 

(2.29) and (2.30)) form a fourth-order parabolic equation when combined. Further- 

more, the availability of analytical solutions for the transient heat-equation means 

that the accuracy of numerical solutions may be assessed easily. 

Severe tests of the behaviour of the adaptive time-stepping scheme were carried out 

by imposing a strongly time-dependent diffusivity. The chapter ends with some 

results for the solution of the two-dimensional steady-state heat equation with a 

step-change in diffusivity modelled using local mesh refinement. 

4.2 A first order ODE with constant coefficients 

The accuracy of the estimate of the Local Truncation Error (LTE). equation (3.12), 

is first demonstrated by comparing it with the true local error for solution of the 

following ODE 

dt +5t0, h(to) ho (4.1) 
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FIGURE 4.1: Analytical solution of equation (4.1) for the initial condition h(to = 10-3) = 5. 

The analytical solution of this equation, 

h(t) = ho 
t 0.2 

(4.2) 

is of exactly the same form as Tanner's Law (1979) for film thickness at the centre 

of an axisymmetrically spreading droplet. Figure 4.1 shows the analytical solution 

for the initial condition h(to = 10-3) = 5. The numerical solution of equation (4.1) 

is obtained by applying the adaptive time-stepping scheme described in §3.3. The 

function F in eqs. (3.8) and (3.9) however take a much simpler form given by 

F(hn 'tT1) 
I hn 
5 tn 

(4.3) 

If h72 is the numerical solution of equation (4.1) obtained at time t', then the true 

local truncation error of the scheme over the next time step, LTEtheo, is the dif- 

ference between h'+1, the numerical solution obtained at time to+l, and the cor- 

responding analytical solution for the same initial condition h(t') = hT1, namely 

hn(tn/tn+l)o. 2 Figure 4.2(a) demonstrates that the estimate consistently over pre- 

diets the true error since LTE"°�, >1 and that decreasing the tolerance increases LTEtheo 

the accuracy of the estimate to the extent that for Tol < 10-4 the estimated local 

0t 

0123456 
t 
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FIGURE 4.2: Accuracy of the Local Truncation Error estimate and performance of the 
adaptive time-stepping scheme applied to the ODE (eq. (4.1)). 
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Tol ß 
10- 1.6 
10- 1.3 
10- 1.15 
10- 1.075 
10- 1.045 

TABLE 4.1: Values of /3 = °ötn 1 for various tolerances. 

error is within 30% of its true value. The over prediction of the true local error 

is better than under prediction since it will err on the side of caution, whilst the 

almost fixed ratio of the true and estimated errors ensures that the step size will be 

controlled reliably. The log-log map of the points (LTE,,,,,, m, LTEtheo) at each time 

step (Figure 4.2(b)) illustrates the previous conclusions in a different way as the 

groups of points corresponding to different tolerances come closer to the "identity 

line" corresponding to LTEnum, = LTEtheo (black solid line on Figure 4.2(b)) as 

the tolerance decreases. Figure 4.2(b) also confirms that the time-stepping scheme 

ensures that the local truncation error is kept below the prescribed tolerance. 

The next figure, 4.2(c), shows the evolution of the time step, A t'+', with time. 

Interestingly, all curves have a slope very close to one regardless of the value of 

the tolerance. A closer look at the ratio of two successive time-steps, ,ß 
otn+1 = otn , 

explains this feature. For a given tolerance, this ratio is almost constant and reported 

in Table 4.1. Considering ý constant, the time, to+', after n iterations is 

to+l = Ot° (1 -f- 0+ /32 + ß3 + ... + on) 
, 

(4.4) 

which, in terms of a geometric series formula, may be rewritten as 

n+l 
to+l = OtO 

1 
1-0 

(4.5) 

Replacing OtOßn+l by Otn+l yields 

Otn+l = (Q - 1)tß'+' + Ot° . 
(4.6) 

The form of equation (4.6) explains why the gradient of the curves on the log-log 
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graph on Figure 4.2(c) is approximately equal to one for all tolerances. 

The ultimate goal in controlling the local truncation error is to obtain a numerical 

solution as close as possible to the solution of the continuous problem defined bY (4.1) 

for the least possible amount of work. The accumulation of local truncation error 

inevitably degrades the numerical solution but the control of the local truncation 

error should limit this discrepancy. This is exactly what can be seen in Figure 

4.2(d) which shows the normalised total error (often referred to as global error), 
I h(h(tn hn 

, as a function of time. For large tolerances, the total error increases as 

the numerical solution proceeds but for small enough tolerances (Tol < 10-4), the 

total error increases only very slowly as time increases which is an attractive feature 

of the time-adaptive scheme. Equally significantly, we see that by controlling the 

local truncation error via the Tol parameter it is possible to control the total error 

successfully, which is the ultimate goal of local truncation error control. 

4.3 Solution of the transient, two-dimensional heat dif- 

fusion equation 

4.3.1 Governing equation, discretisation and brief description of 

the solution procedure 

The combination of the multigrid algorithm described in the previous chapter with 

the adaptive time-stepping scheme is next applied to the transient two-dimensional 

heat diffusion equation, namely 

au 0 (C(xYt)) au +a (c( 
X, y, t) 

au 
, (4.7) ät - ax ax ay ay 

for (x, y) E S2 = (0,1) x (0,1) and t>0. C(x, y, t) is the diffusivity in m2s-1 and 

u(x, y, t) the temperature. Equation (4.7) is solved subject to the following initial 

and boundary conditions 
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u(x, 0, t) = u(x, 1, t) =0, 

u(0, y, t) = u(1, y, t) =0, 

u(x, y, 0) = xy(x - 1) (y - 1) . 

Equation (4.7) is discretised in space using central differences on a square compu- 

tational domain leading to 

öuij 
-1 Ot ui+l, j (Ci+1, j - 

Ci-l, j + 4Ci, j) 402 

[ 

ui-l, j (Ci+1, j - Ci-l, j - 4Ci, j) + ui, j+l 
(CC, j+l - Ci, j-1 + 4Ci, j) - 

ui, j-i (CZ, j+1 - CZ, j-1 - 4C2, ß) - 16Ci, jui, j 
I+ O(02) , (4.8) 

for any interior point (i, j). This form of the discretisation naturally appears when 

expanding the spatial partial derivatives in eq. (4.7). Notations are identical to 

those given in §3.2. The only modification to the time-adaptive scheme described 

in §3.3 is the function F in eqs. (3.8) and (3.9) which will now correspond to the 

right-hand side of eq. (4.8). For comparison purposes, results are also obtained using 

the backward Euler scheme (Ot =1 in eq. (3.8)). 

The discretisation of eq. (4.7) introduces an additional source of numerical error 

to the local truncation error discussed in the previous section, that due to spatial 

discretisation. In order to obtain a reliable and efficient time-stepping scheme, the 

spatial error should dominate the local truncation error, Shampine (1994). How- 

ever, reducing the local truncation error much below the spatial discretisation error 

constitutes a waste of computational time. A goal of this section is therefore to 

determine, through numerical experiments, the appropriate values for the tolerance, 

Tol, in order to satisfy these constraints. 

The system of algebraic equations defined by eqs. (4.8) is solved with the com- 

bined Full Approximation Storage (. SAS) method and the Full Multigrid technique 

described in §3.4. The only two components of the algorithm that change are the 

relaxation scheme and the coarse grid solver. The relaxation stage consists of a Red- 
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Black Gauss-Seidel scheme which proceeds by updating the values of ui 1 according 

to the following equation: 

On+l 
u2 jl1A new 1+ QQtO't+l G' 

+ 
402 U+ n+I 

, jold 
(CZ-+"j 

- Ci-lj + 4Ci, j) - 

uz 117o1d 
(Ci+1, j - Ci-1j 

- 4Ci, j) +u +11old (Ci, j+1 - Ci, 
ý-1 + 4Ci, j) - 

n+1 
i, j 1 old 

(C, 
+1 - C2, 

ß-1 - 4Ci, j) (4.9) 

where fk at the finest grid level is the right-hand side of eq. (3.8) with the aforemen- 

tioned modification to the function F. The following results were all obtained with 

two presmoothing and postsmoothing stages (npr. e = npost = 2) and five V-cycles at 

the intermediate and finest grid levels (Ny, = 5). Because the coarsest grid level, 

G°, is a 3x3 one, and the boundary conditions are of Dirichlet type, the coarse grid 

solver is trivial as only one unknown needs to be solved for at the centre of the 

computational domain (x, y) = (0.5,0.5). 

4.3.2 Results with C=1 

The case with diffusivity C=1 can be solved using the separation of variables 

method (see Appendix D), which yields 

00 00 
-_ 16 

u(xI yI t) - 
T6 

Y1-3 1)n 1 

m31)m 
sin(n7rx) sin(m7ry) exp(-anent) , 

n=1 m=1 
(4.10) 

with 

CYnm = fl 7i'2 + m2712 

Numerical results are compared with this analytical solution which is shown in 

Figure 4.3 calculated with nm, Q, x = mm,, x = 20 in eq. (4.10) at t=0.1. Figure 4.4(a) 

shows the maximum relative total error defined as max 
u(xi, yj, 0.1)-Un' 1 

as a 
u(xl, yj, 0.1) 

function of the tolerance. All curves display the same trend. Initially, a decrease 

in the tolerance successfully increases the accuracy of the numerical solution as the 

maximum relative total error decreases. All the curves then reach a "saturation 

threshold" beyond which a further decrease in the tolerance degrades the numerical 
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7 

FIGURE 4.3: Analytical solution of the transient two-dimensional heat equation (eq. (4.7)) 
with unit diffusivity at t=0.1. 

solution as shown by the increase of the maximum relative total error. This threshold 

depends on the grid resolution. For example, when numerical solutions are sought 

on a 33x33 grid, the optimal tolerance is around 5x 10-3 while on a 257x257 grid it 

is in the region of 5x 10-4. This feature is clearly a result of the spatial discretisation 

error which is much larger on a 33x33 grid than on a 257x257 grid (around 82 = 64 

larger since the spatial error is O(02)). The spatial discretisation error will therefore 

start to dominate over the local truncation error for larger tolerances on a 33x33 

grid than on a 257x257 grid. Next, Figure 4.4(b) shows how substantial increase 

in the time-step can be achieved on a 129x129 mesh while consistently keeping the 

local truncation error below the prescribed tolerance (Tol = 10-4 in that case). 

Tables 4.2 and 4.3 show the total computational time for the simulation to reach 

the final time t=0.1 for the adaptive time-stepping scheme and the backward Euler 

method with fixed time-steps, respectively. Runs were performed on a SG Origin 

200 with a MIPS R10000,180 MHz processor running with the IRIX operating 

system. On all but the 33x33 mesh, the adaptive time-stepping scheme outperforms 

the backward Euler scheme, i. e., greater accuracy is achieved in less CPU time. For 

example, on a 257x257 mesh, the adaptive time-stepping scheme with a tolerance of 
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FIGURE 4.4: Performance of the adaptive time-stepping scheme applied to the transient 
two-dimensional heat equation (eq. (4.7)). 

Grid Tolerance CPU time (s) Relative TEma, x Ntot 
G4: 33x33 10- 1.059 0.54 25 
G4: 33x33 5.10- 1.287 0.056 34 
G: 33x33 10- 3.062 0.138 105 
G: 33x33 5.10- 5.17 0.155 193 
G4: 33x33 10- 16.334 0.17 893 
G5: 65x65 10-2 4.43 0.265 26 
G: 65x65 5.10- 5.327 0.15 34 
G5: 65x65 10- 15.276 0.02 105 
G: 65x65 5.10- 27.72 0.033 193 
G: 65x65 10- 95.46 0.037 893 

G6: 129x129 10- 23.133 0.091 35 
G: 129x129 5.10- 25.19 0.082 39 
G: 129x129 10- 70.209 0.0048 105 
G: 129x129 5.10- 128.9 0.0062 193 
G: 129x129 10- 550.95 0.0098 893 
G: 257x257 10- 128.4 0.027 59 
G7: 257x257 5.10- 137.37 0.027 61 
G: 257x257 10- 296.26 0.01 107 
G7: 257x257 5.10- 567.9 0.0014 193 
G: 257x257 10- 2519.37 0.0026 893 

TABLE 4.2: Efficiency and accuracy of the adaptive time-stepping scheme applied to the 
transient two-dimensional heat equation (eq. (4.7)) for various grid levels and tolerances. 
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Grid Otn+ CPU time (s) Relative TEma, x G: 33x33 10-2 0.712 1.18 
G 33x33 10- 2.8 

- 
0.095 

G4 33x33 4 10- 13.205 0.025 
G: 65x65 10- 2.853 1.05 
G: 65x65 10- 11.734 0.014 
G: 65x65 10- 91.512 0.027 

G: 129x129 10-2 11.98 1.01 
G: 129x129 10- 48.826 0.029 
G 6: 129x129 10- 560.6 0.008 
G7: 257x257 10-2 47.814 1.011 
G 7: 257x257 10- 206.6 0.032 
G7: 257x257 10- 2581.5 0.003 

TABLE 4.3: Efficiency and accuracy of the backward Euler scheme applied to the transient 
two-dimensional heat equation(eq. (4.7)) for various grid levels and time step sizes. 

5.10-4 gives a better accuracy than the backward Euler scheme with fixed time-steps 

equal to 10-4 in just a fifth of the total computational time. 

4.3.3 Results with spatial- and time-dependent diffusivity 

The ability of the adaptive time-stepping scheme to cope with steep changes in the 

diffusivity is now tested by imposing the following two spatial- and time-dependent 

difiusivities 

12t7r 
Ci, j = 10 cos ui with tf = 0.1 , 

(4.11) 
tf 

tb CZ, ý = exp- - exp-oot (4.12) 

Numerical solutions are obtained on a 129x129 mesh with a tolerance of 10-4 

The cyclic variation of the diffusivity defined by eq. (4.11) can be seen on Figure 

4.5(a) for (x, y) = (0.5,0.5). The evolution of the time-step closely mirrors the 

evolution of the diffusivity: when the diffusivity peaks the time-step is lowest and 

vice-versa. This behaviour is expected as large diffusivity is associated with rapid 

changes in the solution and therefore, smaller time-steps are required in order to 

maintain the accuracy of the numerical solution. Figure 4.5(a) also confirms the 

validity of the adaptive time-stepping as the local truncation error in invariably 
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(a) Variation of the time-step and the Local 
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defined by eq. (4.11). 
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FIGURE 4.5: Variation of the time-step and the Local Truncation Error for strongly spatial- 
and time-dependent diffusivity in the transient two-dimensional heat equation (eq. (4.7)). 

kept below the tolerance. In Figure 4.5(b), the very steep initial increase of the 

diffusivity due to the first exponential term in eq. (4.12) is accompanied by a sharp 

decrease of the time-step. The time-step then steadily increases as the diffusivity 

slowly decays. Again, the local truncation error plotted on Figure 4.5(b) is bounded 

at all times by the tolerance, Tol. 

Having outlined the robustness of the proposed numerical scheme and the computa- 

tional benefits of the time-stepping adaptivity, the next section focuses on another 

form of adaptivity which is also important to improve the efficiency of numerical 

schemes: local mesh refinement. 

4.4 Local mesh refinement and the steady-state two- 

dimensional heat equation 

The Multilevel Adaptive Technique 
. 

4, C AT described in §3.6 was implemented to 

solve the steady-state counterpart of the two-dimensional heat equation (eq. (4.7) ) 

0 002 004 006 008 o1" 
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subject to the following boundary conditions 

u(x, 0) =0 and u(x, 1) =1, 

u(0, y) = u(1, y) =0. 

A step change is imposed to the x-independent diffusivity so that C(y) satisfies 

C(y) = Co for y< ys -2, 

C(y) = ACo -2 
y- (ys - 2) 3 

+3 
y- (ys 2) 2+ 

Co 
f 'Y 

for ys -2<y< Ys +2, 

C(y) =Co+ /Co for y> ys +2, (4.13) 

where OCo and ys are the amplitude and the y-coordinate of the step-change re- 

spectively and 7 controls the steepness of the step. An obvious advantage of this 

"benchmark" problem is that the region where local mesh refinement is required is 

known prior to solving the governing equation. This region encompasses the com- 

putational domain where the diffusivity changes steeply. Numerical solutions are 

obtained on a variety of composite grids and compared with the solution on a uni- 

form 513x513 grid in order to assess the potential computational savings, the correct 

implementation of the MCAT and its accuracy. The contours of temperature for 

the uniform 513x513 grid with ys = 0.5, Co = 0.01, OCo = 0.1 and ry = 0.01 are 

shown in Figure 4.6. The discontinuity of the partial derivative of the temperature 

in the y-direction can clearly be seen on that figure at y=0.5. 

Composite grids are defined so that the local spatial resolution in the region where 

the diffusivity faces a step change is the same as that on the uniform grid, i. e, 

0= 2-9. 

Two types of refinement were considered. The first consists of a unique mesh refine- 

ment delimited by A=(0,0.34375) and D=(1,0.65625) in Figure 4.7, performed at a 

particular grid level. For the second, also illustrated in Figure 4.7, a first refinement 

again delimited by A and D is followed by a second refinement enclosed in the first 
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FIGURE 4.7: Composite grid G2+1+3 

one, delimited by B=(0,0.421875) and C=(1,0.578125) and performed at a finer grid 

level. Of course, by varying the positions of the points A, B, C, D and the grid levels 

at which the refinement is performed, an infinite number of composite grids can be 
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built. The goal of this section however is not to find the optimal composite grid but 

to demonstrate the potential of the technique. Seven composite grids in total were 

considered and the corresponding variation of the mesh density in the y-direction 
for each of these grids is shown in Figure 4.8, along with the number of grid points. 
Grids are denoted according to the notation introduced in §3.6 and the coarse grid 
level Go is invariably a 9x9 grid. 
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FIGURE 4.8: Variation of the mesh density in the y-direction for the composite grids con- 
sidered. Grids are shown in ascending order of the total number of mesh-points in the 

y-direction. 

All the multigrid calculations were performed with two presmoothing and posts- 

moothing stages (npre = npost = 2) and the number of V-cycles at the intermediate 

and finest grid varies dynamically to ensure that the Euclidean norm of the resid- 

ual decreases below 10-8. The coarse-grid solver simply proceeds by applying the 

steady-state counterpart of the Red-Black Gauss-Seidel scheme defined by eq. (4.9) 

until convergence. 

The correct implementation of the MEAT can be judged by looking at Figures 

4.9 and 4.10 showing the temperature profile in the y-direction at x=0.5 on the 

uniform and composite grids. In Figure 4.9 the profiles are obtained for composite 

grids having only one mesh refinement (grid 62+4, d3+3, d4+2 and d5+1), while 
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Figure 4.10 shows numerical results on composite grids with two concentric mesh 

refinements (grid d2+1+3, G3+1+2 and G4+1+1). At first glance, the profiles are al- 

most undistinguishable and only a by zooming into the discontinuity region (shown 

in the encapsulated graphs in Figures 4.9 and 4.10) is the difference between the 

uniform and composite grid results revealed to be no more than 0.25%. Not surpris- 

ingly the "worst" but still acceptable accuracy is for the composite grids 62+4 and 
62+1+3. On those two grids, the first mesh refinement is performed on G2, the 33x33 

grid, which is too coarse to provide a very accurate Dirichlet boundary condition 

for boundary nodes of the child grid. Better accuracy is achieved by performing the 

first mesh refinement on finer grid levels at the cost of larger computational time 

(indicated in the caption of Figures 4.9 and 4.10). For example, when the local 

mesh refinement is performed on G5, the 257x257 grid, the numerical solution on 

the composite grid, 65+1, lies almost exactly on the uniform grid solution. The 

CPU time is reduced by approximately 45% in that case compared to the uniform 

grid solution. When two levels of refinement are used the CPU time decrease even 

further to the extent that a reduction of almost an order of magnitude is achieved 

when the solution is sought on G2+1+3 
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FIGURE 4.9: Temperature profiles at x=0.5 obtained on a uniform and various composite 
grids with local mesh refinement at one grid level. 
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4.5 Concluding remarks 

Based upon the results of this chapter, a number of conclusions can be drawn. The 

proposed adaptive time-stepping scheme successfully controls the local truncation 

error as shown by the comparison with the true local error for the solution of the 

ODE, eq. (4.1). 

When applied to the transient two-dimensional heat equation, this scheme outper- 

forms the backward Euler scheme as better accuracy can be achieved in significantly 

less computational time. However, the tolerance needs to be prescribed carefully. 

If the value of this tolerance is too large, the accumulation of the local truncation 

error at each time-step degrades the numerical solution leading to potentially large 

total error as shown by Figure 4.2(d). On the other hand, if this tolerance is smaller 

than a "saturation threshold", the interference of spatial discretisation error spoils 

slightly the benefit of controlling the local truncation error and the accuracy of the 

numerical solution decreases a little (see Figure 4.4(a)). The value of the optimal 

tolerance decreases when solutions are sought on finer and finer meshes. Finally, 

the application of the MCAT to the steady-state heat-equation with a step-change 
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in the diffusivity shows that the computational time can be reduced by almost 

an order of magnitude when two concentric local mesh refinements are performed 

without significant loss of accuracy. Of course, even greater computational savings 

can be achieved if the singularity is local instead of spanning through the whole 

computational domain. 

No attempt is made in this work to combine adaptivity in time with adaptivity 

in space but this would be the next natural step to enhance the efficiency of the 

numerical method. In particular, mesh refinements could be applied to regions where 

the local truncation error is the greatest. Building on the better understanding and 

greater confidence in the proposed numerical schemes, the next chapters focus on a 

range of thin film spreading problems. 
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5.1 Introduction 

The focus of this chapter is the efficient numerical solution of flows involving droplet 

spreading through the use of the fully-implicit, time-adaptive multigrid algorithm 

described in Chapter 3. Such flows are of enormous significance in many branches 

of science and commerce, industrial applications including, for example, the depos- 

ition of coatings and inks, direct patterning of functional layers during microchip 

production, spreading of pesticides and the flow of oil in heat exchangers (de Genres 

(1985), Peurrung and Graves (1993)). The same also arise in other diverse areas of 

science ranging from biology, where they form membranes on mammalian lungs and 

tear films in the eye, to geology where they feature in lava flows (Oron et al. (1997)). 

Most previous theoretical studies of droplet spreading have been restricted to flow 

on flat homogeneous substrates and have focussed on the accurate representation 

of the dynamic contact line. Various approaches to the latter have been proposed 

including, for example, fluid slip models (Greenspan (1978), Ehrhard and Davis 

(1991)), models with precursor films (Schwartz and Eley (1998), Glasner (2003)), 

diffuse interface models (Pismen and Pomeau (2000)) or chemical activation (Blake 

and Haynes (1969)) but no single model has had universal acceptance. Despite these 

efforts, the models invariably rely on the adjustment of at least one parameter. 

Possibly because the dissipation mechanism in the contact line region is unclear, 

studies exploring industrially relevant spreading problems with complex wettability 

patterns and substrate features are few. Schwartz and co-workers have chosen to 

tackle such problems numerically using the lubrication approximation combined 

with the disjoining pressure model adopted here. Schwartz and Eley (1998) explored 

the spreading of a droplet on an heterogeneous substrate composed of two different 

materials having widely different equilibrium contact angles. The specific geometry 

they considered is a uniform substrate upon which lies a cross of higher contact angle 

material. In order to support the numerical results, they performed an experiment 

consisting in monitoring a droplet of glycerin spreading on a glass slide upon which 

a cross of Teflon tape was applied. In spite of the fact that the equilibrium contact 

angles of the glycerin on glass and Teflon (380 and 1140 respectively) are far too large 
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for the lubrication approximation to be applicable, their numerical results revealed 

good qualitative agreement. The break-up of the droplet in four satellite droplets 

in the four quadrants delimited by the cross was remarkably well reproduced by 

the simulation. In Schwartz (1998), spreading over heterogeneous substrates with 

periodic arrays of high contact angle patches was investigated and revealed that 

the droplet can find different stable positions, depending on the previous history of 

motion, for large wettability contrast. 

Darhuber and co-workers also devoted many studies to the equilibrium shape of 

liquid microstructures on chemically heterogeneous substrates. Using a combina- 

tion of experiment and simulations, the latter relying on total energy minimisation, 

they investigated the selective deposition of liquids on hydrophilic regions, chemic- 

ally defined on a hydrophobic surface, by means of dip coating in Darhuber et al. 

(2000(a)). Darhuber et al. (2000(b)) examined morphological aspects of microfluidic 

droplets deposited on flat but chemically patterned substrates having hydrophilic 

and hydrophobic regions. They explored a range of wettability patterns, volumes 

and surface energies and found that the computed droplet conformations closely 

resemble those obtained experimentally. A drawback of the total energy minimisa- 

tion method used by these authors is that only equilibrium conformations can be 

computed leaving the droplet dynamics unknown. 

The recent development of Lattice Boltzmann models also deserves a special men- 

tion. They bridge the gap between the traditional continuum approach and mo- 

lecular dynamics and are therefore well suited to probing the behaviour of fluids on 

mesoscopic length scales. Because Lattice Boltzmann models incorporate a diffuse 

interface, the singularity at the contact line is removed. However, the limitation of 

a diffuse interface is that it is difficult to model large domains because of the mag- 

nitude of the computational demand (Briant et al. (2002)). In Dupuis et at. (2003), 

the ability of the Lattice Boltzmann approach to model the spreading of a droplet 

on a substrate comprising hydrophilic and hydrophobic stripes is demonstrated. 

Finally, the experimental work of Cubaud (2001) covers a wide range of flows on 

substrates having wetting heterogeneities. Flows with topographic and wettability 

heterogeneities considered at the end of this chapter has recently been studied, 
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Gaskell et al. (2003(a)). 

In the context of the lubrication approximation, most previous numerical approaches 

utilised a semi-implicit Alternating Direction Implicit (ADZ) scheme to solve the dis- 

cretised governing equations (Weidner et al. (1997), Bielarz and Kalliadasis (2003)). 

Developed originally for second-order elliptic and parabolic systems, the ADZ tech- 

nique uses alternating sweeps in each direction and only a banded system of equa- 

tions needs to be solved to update the discrete values. For higher order elliptic 

equations, Yanenko (1971) developed a version of the ADZ technique called "time- 

splitting" which was first exploited by Schwartz and co-workers to solve the dis- 

crete counterpart of the lubrication approximation. In contrast to employing time- 

splitting to solve the time dependent lubrication equations. the present work utilises 

a fully implicit multigrid approach. 

In his chapter, the efficiency and accuracy of the numerical method are first demon- 

strated by comparison with a series of analytical and previously-reported numerical 

results for spreading flows. The spontaneous motion of a droplet over a cross of 

poorly wetting material is then considered and results show good qualitative agree- 

nient with those of Schwartz and Eley (1998). Next, the effect of the disjoining 

pressure on the wetting behaviour of droplets is explored by comparing numerical 

solutions for partially and completely wetting droplets. Finally, new results are 

presented which show how the method can be readily applied to simulate flows 

over substrates with topographic and/or wettability inhomogeneities. All solutions 

were obtained using the multigrid approach described above with the Positivity 

Preserving Scheme described in 3.2 where the coarsest grid level G° is 17x17. 

Figure 5.1 is a schematic diagram of the flow of a droplet, H(X, Y, T), over a to- 

pographic feature, S(X, Y), of amplitude So and lengths LT and WT with respect 

to the reference coordinates (X, Y), on a substrate inclined at an angle a to the 

horizontal. Its aspect ratio A= WT/LT. 
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(O, ( 

FIGURE 5.1: Schematic snap-shot of the flow of a droplet, H(X, Y, T), over a topography, 
S(X, Y), on a substrate inclined at an angle a to the horizontal, showing a section through 

the droplet, in the X-Z plane and the parameters defining the topography. 

5.2 Numerical efficiency 

The efficiency of the multigrid and time-stepping procedures are demonstrated by 

considering droplet spreading on a horizontal substrate for a partially wetting system 

where the equilibrium contact angle Oo >0 and the effects of gravity are neglected 

(Bo = 0). For the particular case of a spreading axisymmetric droplet, centred 

initially at (x, y) = (0.5,0.5), the film thickness at the droplet centre, ho (t), is given 

by Tanner (1979), 

ho (t) _K for t>0, (5.1) 

where K and ,3 
(= 0.2) are spreading constants, a result later verified by experi- 

ments of Lelah and Marmur (1981) which found 0.16 </<0.32. The axisymmet- 

ric lubrication equations for this problem were subsequently solved numerically by 

Schwartz and Eley (1998) using time-splitting. They investigated the influence of 

the precursor film thickness h* on the spreading rate parameters K and 0 in equa- 

tion (5.1). Here, this flow is studied by solving the lubrication equations (2.29) and 

(2.30) for the particular case of c=0.005, (n, m) _ (3,2), with the initial droplet 

profile given by equation (2.36). An equilibrium contact angle of e0 = 1.53° was 

chosen so that ho(t) -4 1 at large times. Note that, apart from the initial profile, 

no axisymmetry is imposed in the three-dimensional numerical solutions reported 

here. 
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The following sequence of figures elucidates the effect of the multigrid parameters 

on the convergence of the solutions by plotting the relative residuals at the finest 

grid level, which are defined as the ratio of the residual at the finest grid level after a 

given number of fine grid V-cycles compared to the initial residual at the beginning 

of the time step. 

The effect of the number of V-cycles (Ny, ) at intermediate grid levels (0 <k< L) 

on the relative residuals where the finest grid level is 129x129 (i. e. L= 3) and the 

fixed (for this comparison) time step is 10-9 is shown in Figure 5.2(a). It clearly 

demonstrates the benefit of using at least one V-cycle at the intermediate level 

as the relative residuals are reduced by almost two orders of magnitude compared 

to the case where no intermediate V-cycle is used. More than one V-cycle does 

not improve noticeably the convergence of the solution at the finest level in these 

calculations, however using a higher order interpolation scheme for the Full Multigrid 

interpolation (such as bicubic interpolation instead of bilinear interpolation) might 

increase the benefit of using more intermediate V-cycles. 

The initial increase in relative residuals is due to the fact that at the beginning 

of the solution process the initial guess, which corresponds to the solution at the 

previous time step, satisfies (3.15) exactly since the right-hand side of equation (3.15) 

does not change. Thus, after a first cycle, despite a reduction of the residuals for 

equation (3.14), the residuals of equation (3.15) can only increase. The magnitude 

of this initial increase in relative residuals is critical to the success of the solution 

procedure and therefore a larger number of presmoothing sweeps is performed for 

the first V-Cycle (fpTe = 4) while two presmoothing sweeps only are found to be 

sufficient for subsequent V-cycles. The parameter npost is set to 2 regardless of the 

cycle number. 

The effect of the grid size at the finest level is explored next for a fixed number of 

intermediate V-cycles (Ny, = 3) and Otn+l = 10-9. Figure 5.2(b) shows that for 

all grids with L ranging from 3 (129x129) to 5 (513x513) the ratio of consecutive 

residuals after the completion of each V-cycle is effectively independent of the finest 

grid level. Closer analysis of the data reveals that this ratio takes a value of ap- 

proximately 1/20. Figure 5.2(c) shows that (fixed) time step size has little effect on 
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number of unknowns. Flow conditions: partially wetting droplet with Bo = 0, e=0.005, 
Oo = 1.53°, h* = 0.04 and (n, m) = (3,2) 
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the convergence history until a threshold value At,,,,,, =5x 10-8 is reached. The 

initial increase in relative residuals becomes steeper and above this threshold value 

the solution procedure fails. This limiting value of the time step depends on both 

the mesh density and how advanced the solution is: as finer and finer grids are used, 
Otr-tax decreases and at later times, Otmar increases. This limiting time step is not 

related to some stability issue but to the ability of the coarse grid solver to converge 

to the exact solution. Indeed, at the coarsest level, the Newton iteration scheme 

does not guarantee the convergence to the exact solution if the initial guess is poor. 

Using a globally convergent method such as the Newton method with a backtrack- 

ing algorithm would undoubtedly improve the robustness of the solver. Note that 

these calculations are for very early times where the spreading motion is most active 

and the demands on the multigrid solver are most severe. An additional advant- 

age therefore of the adaptive time-stepping scheme described previously is that the 

time-step selected is always smaller than this limiting time step since no restart of 

the solution procedure is ever necessary. In light of the above, all subsequent results 

were obtained using 5 V-cycles at each level. Although clearly over-cautious, this 

has only a small additional computational cost since most of the computational time 

is spent performing cycles at the finest level. 

Figure 5.2(d) shows how the CPU time for a typical time step depends on grid 

density and demonstrates that one of the most important potential advantages of 

multigrid methods, namely that CPU time varies linearly (i. e. the slope of the line in 

Figure 5.2(d) -- 1) with the total number of unknowns, is achieved by the solver. As 

noted above, when allied to ever-increasing computational power, this feature of the 

solver is particularly important when small-scale phenomena need to be simulated 

efficiently and accurately. 

Figure 5.3(a) illustrates how the time step varies as a function of h*, showing that 

when the effects of the choice of initial profile become negligible, the time-stepping 

scheme enables substantial efficiency gains to be realised. Furthermore the value 

of /?. * has only a marginal influence, in the sense that the larger h* values permit 

larger time steps to be used near the equilibrium state. Interestingly, in this log-log 

graph the variation of the time-step appears to mirror the evolution of the droplet 
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FIGURE 5.3: Simulation parameters for (a), (b), (c): Bo = 0, E=0.005, (n, m) = (3,2), 
Oo = 1.53° and Tol = 10-4 
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h* K 3 Rescaled K 
0.05 0.353 0.196 0.615 
0.04 0.362 0.194 0.627 
0.02 0.385 0.191 0.661 
0.01 0.407 0.187 0.691 

0.005 0.41 0.187 0.696 

TABLE 5.1: The effect of precursor film thickness h* on spreading rate parameters obtained 
using a 257x257 grid with Tol = 10-4. 

thickness shown in Figure 5.3(c). When the droplet thickness at its centre decreases 

according to Tanner's power law, the time step increases also following a power law. 

In a technical report, Gresho and Kay (2002) discuss an adaptive time-stepping 

scheme based on a similar idea to the one presented in X3.3. The main differ- 

ence between their scheme and the present one is in the predictor stage, which 

uses a second-order Adams-Bashforth method. Applied to diffusion and advection- 

diffusion problems they established that the scheme was also adequate to "follow 

the physics" and qualified the scheme as "a candidate best method in the context 

of low order finite element approximation in space". In the light of their experience, 

the adaptive time-stepping scheme used here also appears to "follow the physics". 

The accuracy of the solutions is considered next. Figure 5.3(b) investigates the 

effect of grid size on the droplet thickness ho(t) for simulations where h* = 0.04 and 

Tol =1x 10-4, where Tol is the specified error tolerance. It shows that the solu- 

tion converges with respect to the spatial discretisation as the grid is progressively 

refined; the solutions on the three finest grid levels differing by only approximately 

1%. The influence of the precursor film thickness h* is shown next, in Figure 5.3(c), 

where solutions are obtained with a finest grid level of 257x257 and the adaptive 

time stepping with Tol = 10-4. It shows that after an initial phase the droplet 

thickness ho(t) obeys the expected power law relationship ho(t) = K/ta where the 

coefficients K and 0 are shown in Table 1. Figure 5.3(c) reveals that, at a given 

time, the thinner the precursor film thickness, the larger the droplet thickness at its 

centre. Note that, owing to a different time scaling in the present study, in order to 

compare these results with those of Schwartz and Eley (1998) the K values must be 

multiplied by the factor 0.059-0. The ß values are found to be close to the expected 
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FIGURE 5.4: Droplet free surface profiles (symbols) and fitted parabolas (solid lines) at 
different times for h* = 0.01. 

value of 0.2, Tanner (1979), and the values of K also compare well with the values 

K=0.61 (h* = 0.05) and 0.68 (h* = 0.005) obtained by Schwartz and Eley (1998). 

Due to the form of the curvature term in eq. (2.30) which only involves second order 

spatial derivatives, it can be anticipated that the initially paraboloidal droplet will 

retain its paraboloidal shape during the spreading. This is confirmed by Figure 5.4 

where the droplet free surface profiles at different times are fitted with parabolas 

for h* = 0.01. The fitted parabolas satisfy the following equation 

h(x) = Ao(x - 0.5)2 + Al , (5.2) 

and the values of the constants AO and Al are reported in Table 5.2. The self- 

similarity of the droplet shape confirms the idea of Tanner (1979) that the spreading 

consists of a succession of steady states. After each elementary displacement of the 

contact line, surface tension is strong enough to restore the droplet to its energy 

minimizing shape (a paraboloid in our case). 

Having established that the droplet remains paraboloidal during the spreading and 

that the thinner the precursor filin thickness, the larger the droplet thickness at its 
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t Ao Al 
1.35 x 10- -74.38 3.268 
4.76 x 10- -46.75 2.591 
1.87 x 10- -27.75 1.995 
7.4 x 10- -16.49 1.54 
3.4 x 10- -9.32 1.189 
1.71 x 10- -6.96 1.003 

TABLE 5.2: Value of the fitting constants for eq. (5.2). 

centre, it can be concluded in virtue of the conservation of the droplet volume that. 

at a given time, the thinner the precursor film thickness, the smaller the droplet 

radius. Hence, as previously mentioned, thinner precursor films slow the motion of 

the contact line down because of the increasing viscous dissipation. 

5.3 Influence of the disjoining pressure on the spreading 

behaviour 

In the contact line model employed, the disjoining pressure is responsible for the 

partially wetting behaviour of the droplet. The goal of this section is an attempt 

to shed some light on how the disjoining pressure affects spreading by comparing 

numerical results for completely and partially wetting droplets. The flow conditions 

are identical to those defined in the previous section, i. e. negligible gravity (Bo = 0), 

E=0.005, (n, m) = (3,2), h* = 0.01. The spreading of the droplet develops as a 

balance between the surface tension which tends to reduce the droplet's curvature 

and viscous stresses which resist its motion. For the partial wetting case, the small 

but non-zero equilibrium contact angle is Oo = 1.53° while for the complete wetting 

case, e0 =0 by definition. Again, numerical solutions are obtained on a 257x257 

grid with Tol = 10-4 and the initial profile given by equation 2.36. 

Figure 5.5(a) shows that the effect of disjoining pressure only becomes important 

in the later stage of spreading as curves showing the droplet thickness at the centre 

(ho(t)) for the partially and completely wetting droplets are indistinguishable up to a 

dimensionless time of approximately 2x 10-4. Beyond this time. while h0 carries on 
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FIGURE 5.5: Droplet thickness and pressure for a partially and a completely wetting droplet 
(Oo = 1.53° and Oo =0 respectively). Simulation parameters: Bo = 0, f=0.005, (n, m) _ 

(3,2), h* = 0.01, Tol = 10-4 and 257x257 grid. 
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decreasing for the completely wetting droplet, according to equation (5.1). it starts 

to level off and finally reaches a plateau at h0 =1 for the partially wetting droplet. 

Figure 5.5(b) confirms that for t<2x 10-4, the effect of disjoining pressure is 

negligible since the droplet thickness and pressure profiles along y=0.5 are almost 

identical at t=1.76 x 10-4. For times larger than 2x 10-4, significant differences 

appear in the droplet thickness and pressure profiles, as shown in Figures 5.5(c), 

5.5(d), as discussed below. 

Due to the axisymmetry of the droplet, profiles are symmetric with respect to 

x=0.5, thus the description will focus on x>0.5 where the droplet notion is 

in the direction of increasing x. The x-coordinate of the main features of the pres- 

sure profile are denoted by x1, x2, X3, X4 on Figure 5.5(c). For the partially and 

completely wetting droplets the pressure across the film is positive and decreases 

slowly from x=0.5 to x= x1. In this range of the x-coordinate, the value of the 

pressure is slightly higher in the partial wetting case because the contact line is not 

so advanced as in the complete wetting case, yielding larger values of the curvature 

in the bulk of the droplet. From x= x1 to x= X3, the pressure across the film 

experiences a sharp decrease and becomes negative at x= x2. This change of sign 

in the pressure across the film corresponds to the inflection point highlighted in the 

analysis of Tanner (1979). Figures 5.5(c) and 5.5(d) reveal that the effect of the 

disjoining pressure is to reduce substantially the amplitude of the pressure drop at 

x= x3. Furthermore, because in the case of complete wetting the contact line is 

further advanced, the minimum is shifted towards larger x. At X= X3, which coin- 

cides with the contact line region, the free surface curvature changes rapidly from its 

value in the bulk of the droplet to its value in the precursor film leading to a sharp 

increase in the pressure. For the completely wetting droplet, the pressure peaks at 

x= where it is positive and then decays toward zero. In the partial wetting case, 

this peak is considerably reduced when t=7.96 x 10-4 and completely disappears 

when t=3.8 x 10-3. 

These differences in the pressure profiles when the droplet completely or partially 

wets the substrate are accompanied by rather different behaviour of the free surface 

profiles in the contact line region. Zooming into the contact line region as shown 



0.012 

0.011 

L 0.01 

0.009 

86 

0.012 

0.0� 

0.01 

rncreasin9 
r 

0.009 

0.008 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(a) Magnification of the contact line region 
for the partially wetting droplet along y= 
0.5. 

0.008 L---IL- 
0 0.1 

il I 

i ýý 
i 

ý ýý 
ýýC 

P 
dsý 

9ý 

02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
x 

(b) Magnification of the contact line region 
for the completely wetting droplet along y= 
0.5. 

FIGURE 5.6: Magnification of the contact line region for a partially and completely wetting 
droplets (Oo = 1.53° and Oo =0 respectively). Simulation parameters: Bo = 0, E=0.005, 

(n, m) _ (3,2), h* = 0.01, Tol = 10-4 and 257x257 grid. 

in Figures 5.6(a) and 5.6(b), reveals that oscillations develop ahead of the contact 

line when the droplet completely wets the substrate. As pointed out by Bretherton 

(1961), the interfacial profile of a meniscus advancing over a pre-wet film has a 

minimum thickness. This result is confirmed by the presence of the depression 

ahead of the apparent contact line shown in Figure 5.6(b). This depression appears 

to grow in amplitude and to diverge as the contact line advances which could lead 

to the formation of a singularity at later times. This result seems counter-intuitive 

as in the absence of disjoining pressure, surface tension alone should tend to reduce 

the curvature of the free surface and prevent the occurrence of singularities. The 

reliability of the numerical results at such small length scale in the precursor film 

region might be questionable. 

These oscillations can also be observed during the initial stage of the spreading in 

the case of partial wetting but they are of smaller amplitude and are damped in the 

final stage due to the effects of the disjoining pressure. The disappearance of these 

ripples ahead of the contact line was also observed by Hirasaki and Yang (2000) and 

attributed to the disjoining pressure. 

From the knowledge of the droplet thickness and pressure, it is easy to calculate the 
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free surface velocity according to equation (2.27). Figure 5.7 shows the free surface 

velocity along y=0.5 at different times. When the droplet completely wets the 

substrate, the free surface velocity changes sign twice. This is most obvious in Figure 

5.7(d) where, for increasing x, the free surface velocity is first positive, then negative 

and finally positive again. Although the lubrication approximation does not allow 

recirculation flows, these sign changes in the surface velocity suggest the presence of 

recirculations having the pattern shown in Figure 5.8. In fact, the recirculation in 

the bulk of the droplet is expected and has been observed experimentally, Yarnold 

(1938), Veretennikov et al. (1998). 

In contrast, the literature does not report recirculations in the precursor film. A 

likely reason is that the possibility to generate recirculations at length scales on the 

order of the nanometre seems doubtful. Nevertheless, the possible presence of these 

recirculations is a natural explanation for the decrease in film thickness observed in 

the precursor film ahead of the contact line (Bretherton (1961)) since the counter- 

rotating recirculations would tend to pull the free surface downward. Further away 

from the contact line, the recirculations have the opposite effect and create a slight 

bump in the free surface. When the droplet only partially wets the substrate, the 

disjoining pressure appears to reduce gradually this back-flow as the amplitude of 

the negative part of the free surface velocity tends towards zero. These results 

and observations suggest that recirculations play a role in the wetting behaviour of 

droplets. By preventing the formation of the recirculations in the precursor film, the 

disjoining pressure causes the droplet to stop spreading when the dynamic contact 

angle reaches its equilibrium value. It is worth noting however that the presence 

of the precursor film in the case of partial wetting is a matter of dispute and that 

the observed behaviour could be model-specific since the disjoining pressure model 

is only one of a number of possible wetting models. 

Finally, the contrast between partially and completely wetting droplets is highlighted 

by monitoring the variations of the energies defined in §2.7. Figure 5.9 shows that in 

the partial wetting case, the increasing disjoining pressure energy balances exactly 

the decreasing surface tension energy at tN2x 10-3. The corresponding total energy 

decreases and reaches a minimum in the later stages of the spreading when the 



88 

OW 

400 

200 

0 

_200 

IW 

so 

60 

40 

20 

0 

-20 

0.5 06 07 08 09 1 'V 05 06 07 08 09 1 
xx 

(a) Free surface velocity along y=0.5 at (b) Free surface velocity along y=0.5 at 
t=1.76 x 10-4. t=7.85 x 10-4. 

20 

10 

0 

-10 

_ýIn 

75 

5 

25 

0 

-25 

05 06 07 08 09 1 0.5 06 07 08 09 

xx 

(c) Free surface velocity along y=0.5 at (d) Free surface velocity along y=0.5 at 
t=3.8x10-3. t=0.1. 

FIGURE 5.7: Free surface velocity at various times for a partially and completely wetting 
droplets (00 = 1.53° and e0 =0 respectively). Simulation parameters: Bo = 0, f=0.005, 

(n, rn) = (3,2), h* = 0.01, Tol = 10-4 and 257x257 grid. 
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FIGURE 5.9: Variations in surface tension, disjoining pressure and total energy with time 
for the partially and completely wetting droplets. 

droplet approaches its equilibrium configuration. On the other hand, for complete 

wetting, because the spreading is driven by surface tension only, the total energy is 

simply equal to the surface tension energy. This monotonically decreases and does 

so until the droplet effectively becomes a flat thin film. 
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5.4 Flow over a cross-shaped wetting heterogeneity 

Following Schwartz and Eley (1998), numerical simulations have been performed for 

a droplet moving on a substrate composed of two different materials. The wettabil- 
ity pattern consists of a cross of poorly wetting (Oo = 6.87°) material on a substrate 

of otherwise uniform wettability, e0 = 1.53°. The combined experimental and nu- 

merical study of Schwartz and Eley (1998) reveals that the droplet located initially 

near the centre of the cross spontaneously moves and that the strong wettability 

contrast causes it to break-up into four smaller droplets lying in the four quad- 

rants delimited by the cross. This change in topology of the droplet is particularly 
demanding numerically and makes this flow a good test of the numerical scheme 

presented in Chapter 3. The results presented are for the case of negligible gravity 
(Bo = 0) and c=0.005, (n, m) = (3,2) and h* = 0.04. The vertical strip of the 

cross is delimited by x=0.4 and x=0.49375 while the horizontal one is confined 
between y=0.4 and y=0.49375, in agreement with Schwartz and Eley (1998). 

A steep arctangent function was used to smoothly increase the equilibrium contact 

angle from its value on the substrate to its value on the cross and calculations were 

performed on a 257x257 grid with Tol = 10-4. The droplet, initially centred at 
(x, y) = (0.5,0.5), is given by the following initial parabolic profile, 

h(r) = max 
(2 

1- 
198 

r2 , 
h* (5.3) 

The contours of droplet thickness are shown in Figure 5.10 and display the behaviour 

reported by Schwartz and Eley (1998). Note that the definition of the problem 

implies that the plane defined by y=x is a symmetry plane and the contours of 

droplet thickness confirm that the numerical results respect this symmetry. 

The initially connected contact line recedes along the strips of the cross (Figure 5.10 

(b)) and merges at the centre of the cross causing the formation of a first satellite 

droplet (Figures 5.10 (c) and 5.10 (d)). Because the droplet is initially positioned 

off-centre with respect to the cross and the proportion of liquid initially covering thc, 

bottom-left quadrant is the lowest, this first satellite droplet is small. Figure 5.10 
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(d) shows that after the break-up of the droplet, the strongly distorted contact line 

relaxes and moves rapidly towards the upper-right quadrant. In Figure 5.10 (e), the 

receding contact line splits the remaining droplet further into three satellite droplets, 

leading to the final configuration of four droplets one in each of the four quadrants 
delimited by the cross, Figure 5.10 (f). Interestingly, the liquid "pumped'' from 

the cross because of the strong wettability contrast causes the maximum droplet 

thickness to increase in the upper-right quadrant (Figures 5.10 (e) and 5.10 (f)). 

Figure 5.11, showing the free surface at t=2.33 x 10-3, illustrates very clearly the 

four satellite droplets separated by the cross of poorly wetting material. 

After the breaking-up, each droplet carries on its motion independently and, as 

noted by Schwartz and Eley (1998) tends towards a more circular shape in order to 

reduce its surface tension energy. This is most clearly observed for the small droplet 

in the bottom-left quadrant. The associated free surface and disjoining pressure 

energies are plotted in Figure 5.12(a) and reveal three regions of steeper gradient 

corresponding, according to Schwartz and Eley (1998), to the rapid contraction of 

the contact line, followed by the separation of the first satellite droplet and the 

simultaneous separation of the other two droplets from the bulk. These rapid vari- 

ation in total energy match precisely the local minima of the time step shown in 

Figure 5.12(b). Thus, each disconnection of a satellite droplet is associated with a 

decrease of the time step. This result supports further the idea that the adaptive 

time-stepping scheme suitably captures the physics by reducing the time step when 

rapid changes in the solution occur. 

5.5 Large Bond Number spreading of an axisymmetric 

droplet 

Comparison is now made between numerical predictions and corresponding analyt- 

ical solutions for the case of axisymmetric spreading flow of a completely wetting 

droplet over a horizontal substrate when gravitational effects dominate over surface 

tension ones, so that the Bond number, Bo, is large. In this case the lubrication 

equations for the droplet thickness h can be reduced to the following second-order 
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FIGURE 5.10: Contours of droplet thickness for the spreading of a droplet over a cross 
of poorly wetting material at different times: (a) t=4.8 x 10-6, (b) t=6.5 x 10-4, (c) 
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FIGURE 5.11: Free surface profile for the spreading of a droplet over a cross of poorly 
wetting material, at t=2.33 x 10-3. 
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(a) Droplet thickness at the centre of a 
completely wetting droplet ho(t): com- 
parison between the numerical predic- 
tions and the similarity solution (5.6). 
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FIGURE 5.13: Simulation parameters for (a), (b): Bo = 1066, Vd = 0.261, finest grid level 
equals 129x129 and Tol = 2.5 x 10-3 
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(5.4) 

in terms of r, the radial distance from the centre of the substrate (x, y) = (0.5,0.5). 

The idealised case where the initial droplet profile is in the form of a Dirac delta 

function, given by 

00 
h(r, t=0) =0 forr>0and 27 f rhdr = Vd, (5.5) 

0 

where Vd is the volume of the droplet, has been analysed previously in Nakaya 

(1974). The latter study showed that equation (5.4) could be solved analytically by 

defining the similarity variable =r8, to yield 
(BOvd3t) 

1 

h() = 0.753 
t 
Bdo 4 (0.799 _e2)3 (5.6) 

Figure 5.13(a) compares numerical predictions of the droplet thickness at its centre, 
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ho(t), as a function of time with the similarity solution (5.6) for the case Bo = 
1066 and Vd = 0.261. The former are obtained on a 129x129 grid with Tol = 
2.5 x 10-3, h* = 0.04 and, since the droplet completely wets the substrate, the 

disjoining pressure term (2.45) is zero. The simulation uses the initial profile (2.36) 

since it is both sharply peaked and mimics, to some extent, the initial conditions 

in the analytical solution whilst at the same time guaranteeing that ho(t) changes 

substantially before the droplet flows out of the computational domain (0 <, r<2). 

As expected, the agreement between the simulation and similarity solution is initially 

poor (for t<3x 10-7), due to the differences between the initial conditions in the 

two solutions, but improves at later times and eventually becomes very good beyond 

this initial phase where the maximum film thickness ho(t) decreases in proportion to 

t- 4 
at later times. Similar agreement is also seen in Figure 5.13(b), which shows the 

development of the thickness profile across the droplet, where the agreement at later 

times is very good everywhere except near the contact line. The latter discrepancies 

are caused by the small, but non-zero, surface tension in the simulations which acts 

to reduce curvature in its vicinity. 

5.6 Droplets spreading over topography 

The remaining results concern examples of the flow of droplets over topographic 

features which have not been studied before. These results were obtained with the 

PT'S (see §3.2) and the coarsest grid level G° is 17x17. Consider first the previous 

problem of axisymmetric flow of a completely wetting droplet at high Bond number 

extended to the case of a completely enveloped circular topography. It can be 

shown that the similarity solution (5.6) for the flow in the absence of a topography 

is only slightly modified by such a presence since the governing equation (5.4) simply 

becomes 
A_ Bo ä 

rh3 
ä(h + s) (5 7) 

öt 3r Or Or ' 
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where .s= s(r) is the topographic profile. Since s(r) does not vary with time it is 

easy to show that the similarity solution with a topography is given by 

Vd 
h() = 0.753 

t Bo 
(0.799 

- e2) 3- 8(r) , (5.8) 

1 

3 
where, once again, =r 

(BOvd3t) 

The topography s(r) is given by 

s(r) = so 
T(r) - T(2) 

T(0) - T(2 ) 
(5.9) 

where so is its height and, following Stillwagon and Larson (1988), T(r) is an arctan- 

gent function 

T (r) = tan-1 1-r 
2y rt 

(5.10) 

where the parameter -y controls the steepness of the topography and rt is its radius. 

Figure 5.14 shows a comparison between numerical predictions of the droplet thick- 

ness (h) profile across the film and the similarity solution (5.8) for the particular 

case of a topography with so = 0.2, -y = 0.2 and rt = 0.1, the former having been 

obtained with a finest grid level of 129x129, Tol = 2.5 x 10-3 and h* = 0.04. As in 

the related case without a topography, results are obtained for the case Bo = 1066 

and Vd = 0.261 while the droplet thickness profile (2.36) is modified so that the 

initial free surface profile is the same in both cases, i. e. 

h+s =maw 
(5 

1- 
320 2, s(r) + h* 

. 
(5.11) 

The figure shows similar behaviour to that reported in Figure 5.13(b) for the case 

without a topography. 

Next, droplet spreading over substrates containing three-dimensional, rectangular 

topographies is explored. The extent of the topography is specified with respect to 

the reference point (x1, yl) = XLö 1 as indicated in Figure 5.1. Following Peurrung 

and Graves (1993) the topography s(x, y) is defined in terms of transformed co- 
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solution (5.8). 

ordinates, (x*, y*) say, with the origin at the centre of the topography and given 

by 

x=x- xl - 0.51t; y* =y- yl - 0.5wt. (5.12) 

The topography s(x, y) is taken as 

so 1 x* - lt/2 1 -x* - lt/2 
s(x, y) =b tan- 

lt'Y 
+ tan- 

ltry x 
o 

w/2 *-wt 2 
tan-1 

(y* t+ tan-1 (5.13) 
ltd' lt'Y 

where ry controls its steepness and 

b0 =4 tan-1 tan-1 (5.14) 
Y Y (p-). 

In the results which follow the initial droplet profiles are of the same form as equation 

(2.36) but modified to take account of the three-dimensional topography, namely 

320 2 h+s=maw 
(5 

1- 
9r , s(x, y)-{-h (5-15) 
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where r is the radial distance from the centre of the substrate. 

It is important to note that since the lubrication approximation is formally valid only 
for flows for which the free surface slope is small, its accuracy could be affected by 

the steep slopes of the topographies under consideration. However, previous studies 

that have compared the predictions of lubrication theory in such instances with 

experimental data and/or more detailed computations have shown that any failure 

of the lubrication theory is usually confined to small regions of the free surface: 

Peurrung and Graves (1993), Mazouchi and Homsy (2001), Gaskell et al. (2003(b)). 

Figures 5.15 and 5.16 show the evolution of the free surface (h + s) profiles and 

associated contours for the flow of a completely wetting droplet over a topographic 

peak (so = 0.5) and trough (so = -0.5) respectively with lt = 0.2, A=1, (xl, yl) = 
(0.3,0.3) and 'y = 0.01. In the former case, the droplet spreads axisymmetrically 

until it meets the edge of the topography when it experiences an additional pressure 

gradient that causes it to spread preferentially from the topography to the substrate 

in a direction normal to the edge of the topography. Since the droplet meets the 

bottom left hand corner of the topography last of all, liquid in this region is the last 

to experience the additional pressure gradient, causing a small cusp in the contact 

line in this region. In the case of spreading over a trough, Figure 5.16, the edge 

of the topography presents an adverse pressure gradient which reduces the speed 

of contact line advancement across its edges and, since liquid near the bottom left 

hand corner is again the last to experience this adverse pressure gradient, the droplet 

swells slightly in its bottom left hand region. 

Figures 5.17 and 5.18 show free surface profiles and associated contours for the flow 

of a droplet over a topography defined by so = 0.5, lt = 0.5, A=1, (x1, yl) = (0,0) 

and -y = 0.01 where the wettability on the topography differs from that of the rest 

of the substrate. In the former case the liquid fully wets the substrate (Oo = 0°) 

while only partially wetting the topography (Oo = 11.5°). In Figure 5.17 it is evident 

that the droplet recedes from the topography in order to increase its contact angle 

towards the equilibrium value of 11.5° whereas it advances on the substrate in order 

to lower its contact angle towards the equilibrium value of 0°. Taken together these 

effects cause the droplet to flow off the topography, as shown in Figure 5.17(c). 
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FIGURE 5.15: Free surface (h+s) profiles (left) and associated contours (right) for a droplet 
spreading over a topographic peak with s0 = 0.5, lt = 0.2, A=1, (xi, yl) = (0.3,0.3) and 
-y = 0.01: (a) t=3x 10-7, (b) t=1x 10-5, (c) t=1x 10-3. The density of the finest 

mesh is 257x257, h* = 0.02 and Tol = 10-4. 

Figure 5.18 shows the effect of interchanging the wettabilities of the topography 

and substrate. In this case the contact line on the topography advances further 

across it so as to reduce the contact angle towards the equilibrium value of 0°, while 

that on the substrate recedes, the net effect of which is to cause the droplet to flow 

up (climb) onto the topographic peak, Figure 5.18(c). 
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FIGURE 5.16: Free surface (h+s) profiles (left) and associated contours (right) for a droplet 
spreading over a topographic trough with so = -0.5, lt = 0.2, A=1, (xl, yl) = (0.3,0.3) 
and ry = 0.01: (a) t=3x 10-7, (b) t=1x 10-5, (c) t=1x 10-3. The density of the finest 

mesh is 257x257, h* = 0.02 and Tol = 10-4. 

The final figure, Figure 5.19, considers the flow of a fully wetting droplet down a 

plane inclined at 28.6° to the horizontal over a topographic peak defined by so = 0.5, 

lt = 0.2, A=1, (xi, yl) = (0.6,0.4) and -y = 0.01. As expected, the gravitational 

force causes the droplet to spread over and eventually engulf the topography. The 

VU 01 02 03 04 05 06 07 08 09 10 
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FIGURE 5.17: Free surface (h+s) profiles (left) and associated contours (right) for a droplet 
spreading over a topographic peak with d=0.5, w=0.5, A=1, (xl, yl) = (0.0,0.0) and 
-y = 0.01, with e0 = 11.5° on the topography and Oo = 0° on the rest of the substrate: (a) 
t=1.2 x 10-5, (b) t=5x 10-5, (c) t=5x 10-4. The density of the finest mesh is 257x257, 

h* = 0.02 and Tol = 10-4. 

results also show that the droplet spreads more quickly along the edges of the to- 

pography causing the contact line downstream of it to become heart-shaped, Fig- 

ure 5.19(b). Indeed similar behaviour has been reported in recent experiments on 

gravity-driven flows over fully-submerged topographies by Decre and Baret (2003). 
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FIGURE 5.18: Free surface (h+s) profiles (left) and associated contours (right) for spreading 
of a droplet over a topographic peak with so = 0.5, lt = 0.5, A=1, (xi, yl) = (0.0,0.0) and 
-y = 0.01, with e0 = 0° on the topography and e0 = 11.5° on the rest of the substrate: (a) 
t=1.2 x 10-5, (b) t=1x 10-4, (c) t=5x 10-4. The density of the finest mesh is 257x257, 

h* = 0.02 and Tol = 10-4. 

At later tinges the branches of the contact line behind the topography coalesce and 

form a straight contact line perpendicular to the direction of spreading, Figure 

5.19(c). 
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FIGURE 5.19: Free surface (h + s) profiles (left) and associated contours (right) for the 
motion of a fully-wetting droplet, down a plane inclined at 28.6° to the horizontal, over 
a topographic peak with so = 0.5, lt = 0.2, A=1, (xl, yl) = (0.6,0.4) and -y = 0.01. 
Dotted lines indicate the inclination of the substrate with respect to the horizontal: (a) 
t=1.3 x 10-5, (b) t=1.6 x 10-4, (c) t=2.6 x 10-4. The density of the finest mesh is 

257x257 and Tol = 10-4. 
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5.7 Concluding remarks 

The numerical solution of the time-dependent lubrication equations for the case of 
droplet spreading is complicated by the need to overcome, in an efficient way, the 

severe restrictions encountered in relation to the use of permissible time increments 

consequent on two main factors: stiffness introduced by surface tension and the need 

to resolve short length scales close to wetting lines. 

The answer here, has been to develop and employ an efficient, fully implicit, rnul- 

tigrid solver embodying adaptive time-stepping selection, the latter optimising the 

choice of time step in a controlled manner subject to a specified temporal error 

tolerance. A variety of previously reported analytical and numerical results, to- 

gether with a series of new ones concerning the motion of droplets on heterogeneous 

substrates, have been used to validate successfully the approach. 

Moreover, the present work found that the choice of spatial discretisation is im- 

portant when simulating flows over topographies and, more specifically, that it is 

better to use the PPS scheme when the contact line moves perpendicular to a dry 

topographic boundary since the SS scheme may yield negative film thickness. For 

example, in Figures 5.15,5.16 and 5.19 (but not in Figures 5.17 and 5.18) the SS 

scheme fails for this reason when the contact line tries to move over the dry topo- 

graphic corners. The experience of the present work suggests that a possible reason 

for this behaviour could be due to the fact that in such instances the effective spa- 

tial resolution in the direction of motion of the contact line, 0' say, may be closer 

to a value of 0' = 0/ cos 6 where 0 is the actual spatial resolution and 6 is the 

angle that the face of the topography makes with the horizontal. Consequently, as 

suggested by Bertozzi (1998), the effective spatial resolution for steep topographies 

with 6 close to 2 may be insufficient to prevent the occurrence of negative film 

thicknesses when the SS scheme is used. In light of the above, the present work 

suggests that the PPS scheme is preferable for flows over topographies since the 

additional computational overhead is negligible and no discernible differences with 

results from the SS scheme have been found for flows when the latter scheme is also 

effective. 
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The technological requirement for the simulation of flows past ever smaller topo- 

graphic and wetting heterogeneities, and combinations of the same, makes the ef- 

ficiency of such a numerical formulation extremely attractive, particularly where 

high resolution and hence fine meshes are essential. Firstly, time-step selection is 

efficient and enables the relatively small time steps required, for example, at the 

beginning of a simulation or when the flow is evolving quickly to be increased in a 

controlled and accurate manner when conditions permit. Second, the benefit of the 

multigrid solver is such that its fully implicit nature ensures that the larger time 

step estimates given by the adaptive time-stepping selection procedure can actually 

be used in practice, while also offering the attractive feature that the CPU time 

taken to solve the discretised equation set, at each time step, is simply 0(N) where 

N is the number of unknowns. 



Chapter 6 

Gravity-driven flow of 

continuous thin liquid films on 

substrates with topography 

Contents 

6.1 Introduction .......................... 107 

6.2 Problem specification and mathematical formulation 
.. 109 

6.2.1 Full-width topography ........................ 110 

6.2.2 Localised topography ........................ 113 

6.3 Method of solution ...................... 113 

6.3.1 Finite element formulation 
..................... 113 

6.3.2 Modifications to the multigrid algorithm .............. 115 

6.4 Results and discussion 
.................... 117 

6.4.1 Flow over full-width spanwise topographies ............ 117 

6.4.2 Flow over localised topography ................... 123 

6.4.3 Mesh adaptivity ........................... 139 

6.4.4 Time-dependent inlet flow rate ................... 142 

106 



107 

6.1 Introduction 

The behaviour of thin liquid films, whether forced to spread or deposited as a distinct 

pattern on the surface of a non-porous substrate, is of enormous significance to 

many manufacturing processes. Much is known about the deposition of such films 

on flat homogeneous surfaces, see for example Kistler and Schweizer (1997), but 

considerable interest has been generated of late concerning the case of thin liquid 

films that are forced (gravitationally or centrifugally) to flow over, or encounter, 

surfaces containing topographical features. The latter may be regular and desired 

(patterned) or unwanted (a random scratch or speck of dust). Similarly, many 

manufactured products, particularly in the electronics sector (micro-devices, sensors, 

printed circuits, displays, etc. ) usually involve the successive deposition of several 

thin liquid layers, combined with photolithography at each stage. Therefore, in the 

subsequent formation of the desired component/ surface each layer is influenced by 

the one deposited and cured previously which, if non-uniform, presents the current 

wet layer with a surface that may lead to variations in coating thickness or even 

instabilities. Whatever the situation, increasing demands concerning quality and 

finish have promoted the need for better understanding of the mechanisms leading 

to free-surface non-uniformities and how to control/suppress the occurrence of their 

attendant undesirable defects. 

Most previous investigations have concerned thin film flows over two-dimensional 

topography. Important early examples are the combined theoretical and experi- 

mental studies of Stillwagon and Larson (1987,1988,1990) and Pritchard et al. 

(1992) who considered radial outflow during spin coating and gravity driven flow 

down an inclined plane, respectively. Both sets of authors demonstrated lubrication 

theory to be surprisingly accurate for modelling purposes even for cases where it is 

not strictly valid. Stillwagon and Larson (1990) are credited with being the first 

to obtain a one-dimensional analytical expression for the free surface profile over a 

trench by solving a linearised form of the lubrication approximation. This analyt- 

ical expression was in good agreement with experiment in the two cases for which 

the linearity assumption is valid. In the first case, the free surface remains almost 
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flat and in the second, the free surface conforms to the underlying substrate. Roy 

and Schwartz (1997) extended the one-dimensional lubrication approach to general 

curved substrates by expressing the problem in an orthogonal coordinate system 

that naturally fits the substrate but this approach is not applicable to steep edged 

topographies. Following a different tack, Decre et al. (1999) revisited the flow stud- 

ied by Stillwagon and Larson (1990) and presented a Green's function formulation to 

the problem. The second order term contained therein has the effect of locating the 

capillary ridge further upstream of the topography, the deeper the trench becomes. 

More recently, Kalliadasis et al. (2000) returned to the problem of the flow over 

a trench under the action of an external body force, solving the assumed govern- 

ing one-dimensional long wavelength, or lubrication, approximation numerically as 

a means of analysing further the case of trench depths comparable with, or lar- 

ger than, the associated unperturbed film thickness. Their results show that deep 

trenches produce an asymmetry, with the step down leading to a comparatively 

more pronounced capillary ridge than the step up. They also explored the effect of 

gravity, showing that it could result in the disappearance of capillary ridges. The 

stability of the latter was considered in a subsequent article, Kalliadasis and Homsy 

(2001). The picture was essentially completed by Mazouchi and Hornsy (2001) who 

solved the corresponding Stokes problem numerically using a boundary element 

method and compared the results with those obtained using lubrication theory. 

They demonstrated the importance of the capillary number, Ca, and in particular 

that increasing it leads to a diminution or flattening of the capillary ridge, with the 

free-surface correspondingly conforming more to the topography of the substrate. 

Not surprisingly, flow over three-dimensional topography has received considerably 

less attention both experimentally and theoretically, each representing a significant 

challenge in its own right. The work of Pozrikidis and Thoroddsen (1991) is an 

early and important contribution in this respect for the case of gravity driven flow 

of full liquid films over a particle-like topography. Using a boundary element forniu- 

lation to solve the governing Stokes equations numerically they showed even a small 

particle to result in a significant upstream and downstream disturbance to the free- 

surface profile of the film, in qualitative agreement with the one-dimensional cases 
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cited above. That is, a standing "bow wave" capillary ridge upstream of the particle 

together with an exponentially decaying, "horseshoe"-shaped capillary wake down- 

stream. Other work of note is that of Peurrung and Graves (1991,1993) for the case 

of spin coating over topography. Their experimental and numerical results are found 

to be in qualitative agreement. Hayes et al. (2000) formulated a Green's function 

for the linearised two-dimensional lubrication equations for the flow over a shallow 

topography which allowed the surface responses to arbitrary finite topographies to 

be calculated. 

The motivation for the work presented in this chapter is provided by the recently 

reported painstaking quantitative experimental results of Decre and Baret (2003) 

for the case of gravity driven flow of thin water films over topography. Building on 

earlier work (Messe and Decre (1997); Decre et al. (1998,1999); Lucea et al. (1999)), 

they used phase-stepped interferometry to obtain detailed free-surface maps for thin 

films of water flowing down an inclined plate containing a range of topographies. In 

all cases, results compare well with those of earlier studies and, in the case of flow 

over three-dimensional topography, with the results of Hayes et al. (2000) for the 

linearised problem. A consequence of the latter is that linear superposition may be 

used to construct an approximate free surface response to a complex topography 

from knowledge of the responses to regular elementary topographies. 

6.2 Problem specification and mathematical formula- 

tion 

The case of flow of a continuous film of liquid, flux Qo, over a plane surface (lateral 

extent L and span width W) inclined at an angle a to the horizontal arises as part 

of many manufacturing processes, with the case of flow over a smooth homogeneous 

surface being surely now recognised as a classical problem in fluid mechanics. 

In the problems of interest here, the inclined substrate contains well-defined topo- 

graphical features of amplitude So and form S(X. Y). with lateral extent LT and 

span width 11"r, centred at (XT, I 'A. These features may completely span the do- 
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FIGURE 6.1: Schematic diagram of a three-dimensional thin film flowing over a substrate 
inclined at angle a to the horizontal, showing the coordinate system and parameters defining 

the topography. 

main (in which case WT =W and LT « L, leading to two-dimensional flow), or be 

localised (i. e. WT «W and LT « L, giving three-dimensional flow). The former 

problem reduces conveniently to solving for the flow in a streamwise cross-sectional 

plane only, provided WT is sufficiently large for end effects to be negligible. In both 

cases the topography may be a protrusion (So > 0) or a depression (So < 0) as 

sketched in Figure 6.1. These will often be referred to as "peaks" and "trenches" 

respectively. 

6.2.1 Full-width topography 

The associated two-dimensional flow is analysed by solving the steady-state counter- 

part of the Navier-Stokes and continuity equations (eqs. (2.1) and (2.2)) numerically, 

Gaskell et al. (2003(b)), and solutions are compared against both theoretical and 

experimental results of other authors, and also those obtained from solving the cor- 

responding lubrication formulation discussed in §2.3. Apart from generating new 

results, this analysis is fundamental to determining the validity of the lubrication 

approximation as a suitable means of solving three-dimensional flow over localised 

steep-sided topography. Throughout this chapter, the numerical solutions to the 
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Navier-Stokes equations, used for comparison purposes, were performed and kindly 

provided by Dr M. Wilson but for completeness, the governing equations and bound- 

ary conditions are reported here. 

Scaling velocities, axial coordinates and pressure with respect to UO, Ho as defined 

in §2.3 for gravity driven thin films and RUo/Ho respectively, and noting the abseiice 

of any Y dependence, allows equations (2.1) and (2.2) to rewritten in the form: 

Reu. Vu = V. T + Ste', 

D. u = 0, 

(6.1) 
(6.2) 

where u= (u, w) is the non-dimensional velocity in the dimensionless x-z plane, 

Re = pUoHo/µ = 3pQo/2µ is the Reynolds number, T= -pI + Vu + (Vu)' is 

the non-dimensional Newtonian stress tensor, and St = pgHö /µUo = 2/ sin a is the 

Stokes number. 

The boundary conditions which close the problem are shown in Figure 6.2. On the 

substrate the no-slip condition u=w=0 is applied and at the inflow and outflow 

planes a fully-developed velocity profile is assumed: 

u= 2Stsina(2z - z2), w=0. (6.3) 

On the free surface the usual stress and kinematic conditions are imposed along 

with the condition that the dimensionless film thickness is equal to one, i. e the 

fully-developed thickness, at each end of the domain. 

Full-width topographies only depends on the streamwise coordinate x. When solv- 

ing the lubrication approximation, they are defined by means of a cubic function, 

bridging two regions of the substrate of different height, as follows, 
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FIGURE 6.2: Schematic diagram showing the boundary conditions for finite element analysis 
of flow over a one-dimensional (span-wise) topography. 
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for xt-2 <x<xt+2 

s(x) = so for x> xt +2 , 
(6.4) 

where xt is the streamwise coordinate of the topography and -y controls the steepness 

of the topography. The form of (6.4) ensures that the substrate function, s(x), is 

never multivalued and approximates sharp edges in the limit of ry -+ 0. Expression 

(6.4) defines a step-up or a step-down topography and trenches or peaks are simply 

defined as a combination of both. 

In the framework of the Navier-Stokes equations, the definition of the substrate 

function is no longer an issue and therefore topographies are completely sharp, i. e. 

corners are perfect right angles. 

dt 
n. a =; n. u =0 Ea-; 

Cu= St sin a (2z -z 
')) 

2 
w=0 
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6.2.2 Localised topography 

Three-dimensional steady flow over localised topography is analysed using the lub- 

rication approximation derived in §2.3 with the values of C1, C2, C3 and C4 cor- 

responding to the gravity driven thin liquid film. Localised topography, s(x, y), is 

defined via arctangent functions (eqs. (5.13) and (5.14)), enabling the steepness of 

the topography sides to be controlled easily. For comparison purposes later it is con- 

venient to define a coordinate system (x*, y*) = , 
3(x - xt, y- yt) whose origin is at 

the centre, (xt, yt), of the topography and for which the norm of the unit vectors is 

the capillary length since Lo = ßL, Another coordinate system, (x+, y+), is used in 

this chapter whose origin is the same as the one for the (x, y) coordinate system but 

for which the norm of the unit vectors is the capillary length, i. e. (x+ y+) = 3(x y) 

For clarity, the different coordinate systems are shown on Figure 6.3. 

Moreover, to allow comparison with Decre and Baret (2003), h*(x*, y*) = [h(x*, y*) + 

s(x*, y*) - 1]/so is defined so that the free surface is represented in terms of the 

variations with respect to the asymptotic film thickness scaled with respect to the 

topography height. It follows that, if the absolute value of h* is greater than 1, it 

means that the free surface variation is greater than the height of the topography. 

6.3 Method of solution 

6.3.1 Finite element formulation 

The finite element (FE) method, Wilson (2003), used to solve equations (6.1) and 

(6.2) in two dimensions subject to the given boundary conditions is described briefly 

for completeness. It employs a Bubnov-Galerkin weighted residual formulation that 

has been applied successfully to a wide variety of incompressible flow problems. 

The free surface of the film is parametrised by a "spinal" algebraic mesh genera- 

tion algorithm, Kistler and Scriven (1983), and the two-dimensional flow domain i 

tessellated using V6/P3 triangular elements (Gaskell et al. (1995); Summers et al. 

(2004)) giving a piecewise quadratic velocity field and a piecewise linear pressure 
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FIGURE 6.3: Square solution domain of lateral extent Lo = 100L, with a topography (filled 

square) in different coordinate systems: (a) (X, Y), physical; (b) (x, y), dimensionless (com- 
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field. The free surface kinematic condition n. u =0 (n is the normal to the fr(, (, 

surface) is used to determine the free surface location while the free surface stress 

conditions enter the FE formulation via a boundary integral arising in the weak 

form of equation (6.1) - see Kistler and Scriven (1983) for further details. 

The nonlinear weighted residual equations are solved, Wilson (2003), using Newton 

iteration coupled to a Frontal algorithm (Hood (1976)) and is ideally suited to the 

long, thin nature of the computational domain. Since the film profiles are of primary 

interest, the accuracy of these was used as the main criterion in establishing the 

minimum density and extent of the computational mesh. The number of elements in 

the mesh was systematically doubled until the maximum change in the film profiles 

on consecutive meshes was less than 0.05% when measured in the way described 

in §6.4.1. For each mesh the locations of the inflow and outflow boundaries were 

checked to confirm that they had a negligible effect on the solution. The step 

up/down and trench problem utilised 5650 and 5900 elements, respectively; in each 

case 701 spines were used to parametrise the free surface position. For the Ca values 

used in the simulations, a computational domain extending 150 film-thicknesses 

upstream of the topography and 100 downstream was found to be sufficient. 

6.3.2 Modifications to the multigrid algorithm 

In contrast to the droplet spreading flows explored in the previous chapter, the prob- 

lems of interest here are steady-state. In spite of this, for centrifugally-driven films, 

Stillwagon and Larson (1990) found it more convenient to obtain the quasisteady 

solution by integrating the time-dependent lubrication equation to steady-state us- 

ing explicit time integration. A probable reason for this choice is that the effect 

of the nonlinearity is not as severe as in the steady-state case since at each time 

step, the quality of the initial guess provided by the solution at the previous time 

step is much better. In this work, solving the steady-state counterpart of eqs. (2.29) 

and (2.30) was found to be a lot less time consuming than using time marching, 

particularly for the mesh densities adopted. The equivalence of both approaches 

is illustrated in Figure 6.4 for the flow over a trench considered in §6.4.1. Start- 

ing from a flat free surface, the time-dependent solution converges exactly towards 
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FIGURE 6.4: Free surface profile for flow over a one-dimensional trench, demonstrating the 
progression of the transient solution towards the solution of the steady-state equation. 

the steady-state solution for large time. Interestingly, the time-dependent solution 

reveals that the topography sheds a wave which propagates downstream. 

For two-dimensional flows, uniform 257x257 meshes were used. Beyond this mesh 

density, no distinction in the free surface profiles could be made. For three-dimensional 

flows, unless otherwise stated, the numerical solutions presented in this chapter were 

obtained on a uniform 1025x1025 mesh and the computational domain covers 100 

capillary lengths in each direction. This choice of computational domain ensures 

that the mesh resolution is sufficient in the topography region and that the free 

surface relaxes to its undisturbed shape downstream of the topography. A total of 

approximately 15 V-cycles were found to be necessary to reduce residuals to within 

the spatial discretisation error, 10-6. The number of required V-cycles is signific- 

antly larger than in the time-dependent case but as discussed above this is likely to 

be due to the lack of a good initial guess of the solution. The convergence history 

of solutions for the flow over a trench considered in §6.4.1 is shown on Figure 6.5 

for various mesh densities. For all but the finest mesh density (1025x1025), the plot 

confirms the expected trend that the convergence rate is independent of the mesh 

density. For the 1025x1025 grid, the convergence rate displays a slight degradation. 
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FIGURE 6.5: Convergence history of solutions for the flow over a trench considered in §6.4.1 
for various mesh densities. 

However, the efficiency loss is negligible in that case since no additional V-cycle is 

required to achieve the desired reduction in residuals compared to solutions obtained 

on coarser meshes. The avoidance of negative film thicknesses was not found to be 

an issue for the flows investigated here and therefore, the Standard Scheme was used 

to calculate the prefactors, equation (3.3). 

6.4 Results and discussion 

6.4.1 Flow over full-width spanwise topographies 

First, in order to validate the FE method, comparisons are made with the theoretical 

predictions of Mazouchi and Homsy (2001) who used the boundary element (BE) 

method to study the Stokes flow of a thin liquid film over a one-dimensional trench. 

In fact, the trench was wide enough to ensure that the flow could be considered as 

that over a step down topography followed by flow over an effectively independent 

step up. In this case the substrate was vertical, i. e. a= 90°. Figure 6.6 compares 

Mazouchi and Homsy's computed free surface profile, for Ca = 0.005 and 0.05, with 
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FIGURE 6.6: Comparison of film profiles calculated by the FE method, Wilson (2003), with 
the boundary element profiles of Mazouchi & Homsy (2001). The trench has depth 2H0 and 

width 40H0. 

corresponding solutions found using the FE method, Wilson (2003) with Re set to 

0. Note that, due to a different choice of velocity scale, the capillary number used 

throughout the present work is one half of that defined by Mazouchi and Homsy 

(2001). It is clear from the figure that excellent agreement is achieved between the 

FE and BE predictions when Re = 0. 

Also shown in the Figure are two FE-generated profiles indicating the effect that 

increasing Re to 10 has on the free-surface shape. The most noticeable, is a signi- 

ficant increase in the amplitude of the capillary wave upstream of each step face, 

however there is also a very slight shortening of the wavelength of the disturbances. 

Recently, Bielarz (2002) and Bielarz and Kalliadasis (2003) explored the effect of 

inertia on the free surface disturbance caused by a topography. Rather than solving 

the full Navier-Stokes equations, they included inertia in the form of an extra term 

in the lubrication approximation dependent on the film thickness and a modified 

Reynolds number. This approach has, of course, the benefit of fitting conveniently 

into the lubrication approximation framework but the range of applicability is con- 

strained since for large value of the modified Reynolds number, the free surface 

blows up in finite time. As explained by Bielarz and Kalliadasis (2003), this singu- 
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FIGURE 6.7: Comparison between numerical predictions and Decre & Baret's (2003) ex- 
perimental free surface profile data for the flow of water over one-dimensional topographies: 
(a) flow over a step up with Ho = 100 µm, so = 0.2, and Re = 2.45; (b) flow over a step 
down with Ho = 100 pm, so = 0.2, and Re = 2.45; (c) flow over a trench with Ho = 105 
µm, so = 0.19, width 1.2 mm, and Re = 2.84. Legend: experimental data of Decre & 

Baret (2003); --- lubrication theory; -"-"- finite elements; """ topography. 

larity formation is due to the fact that the long-wave approximation breaks down 

for large values of the modified Reynolds number. The results reported in Bielarz 

(2002) and Bielarz and Kalliadasis (2003) focused on the flow over a mound and 

revealed that inertia increases the maximum height of the ridge which confirms the 

trend observed here. 

Deere and Baret's (2003) recent experimental study of thin water films flowing 

down an inclined plane with topographies is another valuable source of data to 

compare numerical predictions against. Figure 6.7 presents a comparison of FE and 
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FIGURE 6.8: Contours illustrating the maximum error between the lubrication theory and 
Navier-Stokes film profiles for a range of step heights and flow rates in flow over a step up 
topography. Example flow structures for so =1 are presented on the right. The upper 
picture corresponds to a flow rate of 10-5 m3 s-1 (Ho = 180 µm), where the lubrication 
results have an error of 14%, and the lower to Qo = 10-7 m3 s-1 (Ho = 40 µm), where the 

lubrication error is 7%. 

lubrication solutions for free surface profiles with those found experimentally by 

Decre and Baret (2003) for the cases of flow over a small one-dimensional step down, 

a step up and a trench, Gaskell et al. (2003(b)). The Reynolds number was 2.45 for 

the steps and 2.84 for the trench. Note that in this and all subsequent comparisons, 

liquid properties are taken asp = 0.001 Pas, p= 1000 kg m-3 and o, = 0.07 N m-1, 

and, unless otherwise stated, the inclination angle is set to a= 30°. In all three 

cases the FE and lubrication solutions are seen to be practically indistinguishable 

(see below), to agree well with experiment and to reproduce accurately the main 

features of the film thickness profiles, such as the characteristic free surface trough 

and capillary ridge just upstream of the step topographies and the free surface 

depression characteristic of flow over the trench. These free surface variations result 

from the competition between the pressure generated by the topography which tends 

to conform the free surface to the underlying substrate and the surface tension which 

tends to reduce the overall curvature of the free surface. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
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FIGURE 6.9: Contours illustrating the maximum error between the lubrication theory and 
Navier-Stokes film profiles for a range of step heights and flow rates in flow over a step down 
topography. Example flow structures for Isol = 1.0 are presented on the right. The upper 
picture corresponds to a flow rate of 10-5 m3 s-1 (Ho = 180 µm), where the lubrication 
results have an error of 15-16%, and the lower to Qo = 10-7 m3 s-1 (Ho = 40 pm), where 

the lubrication error is 10-11%. 
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Since the FE solutions do not have the inherent limitations of those based on lubric- 

ation theory, they can be used to assess the accuracy of the long-wave approximation 
in relation to flow over topography. These limitations include, for example, the slope 

of the free surface which needs to be small for the lubrication approximation to be 

valid. Hence, one would expect that the lubrication approximation breaks down in 

the immediate vicinity of a sharp step. However, as mentioned by Mazouchi and 

Homsy (2001), for small capillary flows the free surface is so strong that it mitigates 

the free surface response to the pressure gradients produced by the step, leading to 

a solution that in fact has a small slope. Figures 6.8 and 6.9 show contours which 

quantify the discrepancy between the the FE and lubrication theory solutions as 

step height and flow rate are varied for flow over both step up and step down topo- 

graphy. The difference is defined as the maximum distance between the predicted 

lubrication film thickness and its Navier-Stokes counterpart, measured normal to 

the lubrication profile. This measure is preferred to one based on a r. m. s. distance 

since both profiles satisfy the same boundary conditions far upstream and down- 

stream of the topography so that the latter measure would be unduly influenced 

by the long asymptotic regions of the domain where the two profiles are practically 

indistinguishable. For both step up and step down topography the position of the 

maximum difference between corresponding profiles is near the top of the steeply 

sloping part of the profile, as indicated by the arrows in Figures 6.7(a) and (b). The 

difference in the predictions of the height (depth) of the capillary ridge (trough) is 

typically much smaller, roughly 1/4 of the maximum difference. Note that the ver- 

tical scales in Figures 6.8 and 6.9 indicate both the value of the Reynolds number 

and corresponding flow rate; Ca therefore also varies (from 5.4 x 10-5 to 1.2 x 10-3) 

as the flow rate increases. 

In both cases the contours are as expected; they show that as the step height 

increases, the maximum flow rate (and Re) for a given error decreases. There 

are, however, interesting differences between the two configurations. When the 

step height is a small fraction of the asymptotic film thickness, for a given error a 

larger flow rate can be achieved over a step down topography than over a step up. 

However, for a given flow rate, the difference between lubrication theory and the FE 
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analysis generally increases more rapidly in the flow over a step down topograplhy. 
Interestingly, no lubrication solution beyond Isol = 0.8 were obtainable for the step- 
down case using the steady-state multigrid lubrication solver; equilibrium solutions 
for Isol > 0.8 were determined using the time-dependent variant of the method 
detailed in Chapter 3. A final noteworthy difference is that for flow over a step up 
topography, fluid inertia has only a minor influence on the extent of the eddy region. 

while it has a much more pronounced effect for flow over a step down - see the 

streamline plots in Figures 6.8 and 6.9. 

6.4.2 Flow over localised topography 

The comparison of results obtained with the lubrication theory and with Dr M. 

Wilson's FE code support the consensus that lubrication theory provides remarkably 

good solutions to "thin film" problems, even when it is applied to situations where 
it is strictly-speaking not valid - such as the flow over steep topographies considered 

here. The lubrication formulation is now used to explore free-surface responses to 

localised peaks and trenches with reference to Decre and Baret (2003) experimental 

measurements for the trench cases. 

An asymptotic film thickness Ho = 100 um gives Ca = 3.5 x 10-4, N=0.12 and 

L, = 0.78 mm as shown in §2.4. The small value of N indicates that the normal 

component of gravity will have little effect on the free-surface shape. The topography 

steepness parameter in equations (5.13) and (5.14) is set to 'y = 0.05, a value below 

which it is found to have no discernible effect on the numerical predictions. The 

Reynolds number for the flow is 2.45 and the topography depth is so = 0.25. Figures 

6.8 and 6.9 therefore suggest that Navier-Stokes solutions would differ only slightly 

from the lubrication theory predictions, Gaskell et al. (2003(b)). 

Consider the case of flow over a square trench located at (x+t, y+t) = (30.77,50) with 

Isol = 0.25 and wt = 1.54. Decre and Baret (2003) have already demonstrated that 

streamwise and spanwise profiles of the free surface produced by this flow agree 

well with those predicted by the linear lubrication theory of Hayes et al. (2000). 

Hence it is not surprising that the experimental data is also well-matched by the 
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predictions of the present formulation, as demonstrated in Figures 6.10 and 6.11, 

which compares corresponding streamwise and spanwise profiles respectively. The 

agreement of the spanwise profiles appears to be poorer than for the streamwise 

profiles. A possible explanation provided in Decre and Baret (2003) is that the free 

surface profile is measured over a period of up to an hour. During that time, small 

fluctuations of the flow rate or unsteady variations lead to a build-up of noise in the 

measured profile. This is however taken into account in their error budget and doe. 

not exceed 0.3 µm. 

A complete three-dimensional visualisation of the free surface is given in Figure 

6.12(a), clearly showing the characteristic "horseshoe"-shaped "bow wave" and the 

deeper depression over the trench itself, followed by a peak which Decre and Baret 

(2003) refer to as the "downstream surge". This latter feature does not have an equi- 

valent in the flow over one-dimensional topographies, and Decre and Baret (2003) 

admitted that its cause is not properly understood. A possible explanation, Gaskell 

et al. (2003(b)), is provided by considering the flow rate into and out of the trench. 

Since the trench is finite in length and width, fluid will enter the trench both in the 

streamwise direction (over the upstream wall) and in the spanwise direction (over 

the side walls). Since in a steady flow the fluid entering the trench must then leave 

it (over the downstream wall), the downstream surge simply rises to allow the fluid 

to exit the trench across a shorter width than that across which it entered. In the 

one-dimensional case there is no difference in the widths over which fluid enters and 

leaves the trench and therefore no cause for a downstream ridge. 

Figure 6.12(b) gives the view corresponding to flow over an "equal-but-opposite'' 

square peak topography, where the free surface appears to be a straightforward 

inversion of that over the trench. Decre and Baret (2003) did not consider peak- 

type topographies, but the plot in Figure 6.12(b) is very similar to Figure 3 in Hayes 

et al. (2000) which gives the free surface produced in response to a Dirac delta 

peak topography. Note that the downstream surge is now replaced by a depression 

(though this is not visible from the viewpoint in Figure 6.12(b)). The above flow- 

rate argument can explain this feature too: fluid which passes over the top of the 

topography ascends the peak in the streamwise direction over the upstream wall, 
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but is shed off the topography symmetrically by spanwise components over the 

side walls, leading to a reduced flow rate per unit width over the middle of the 

downstream wall and the consequent reduction in film thickness there. 

Figures 6.12(c) and (d) show contour plots of free-surface height for the two topo- 

graphies. The contour values are chosen to be equal in magnitude but opposite in 

sign, and show that the patterns produced are indeed very similar, but the surfaces 

are not quite mutual inverses. Again, the figures compare well with Decre and Baret 

(2003) Figure 7 and Figure 8 in Hayes et al. (2000) respectively. 

The flows can be explored in more quantitative detail by examining the positions of 

spanwise local extrema in film thickness calculated by finding where öh* /öy* = 0. 

Figure 6.13(a) shows the extrema from the trench and peak flows on the same plot, 

from which it is easy to see that the patterns produced are extremely close in shape 

but that there is a slight downstream shift between the two. This feature will be 

considered again later. 

Guided by the form of Hayes et al. 's (2000) linear lubrication theory, Decre and 

Baret (2003) noted the self-similar behaviour of the film thickness far downstream 

of the topography. As a result, the downstream spread of the extrema can be fitted 

by a power-law of the form 

y* = K(x*)0.25 (6.5) 

While this expression does indeed describe the behaviour far enough downstream of 

the topography, it is of course not valid close to the origin (i. e. the topography) and 

can not describe the shape of the bow wave upstream of the topography. Compu- 

tations suggest an alternative fitting function which takes the form 

y+ = +A1 cosh-' 
(X+A0 A2 

+ y+ ti 
(6.6) 

0 

where x+ and y+ are the unshifted coordinates with origin as shown in Figure 6.3. 

For the case of flow over a square trench, Figure 6.13(b) shows the location of the 

spanwise free surface extrema together with fitting curves following equation (6.6). 

The fitting parameters are given in Table 6.1 and, as can be seen, the curves fit 
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Curve Ao Al A2 K 
1 7.0 8.7 15.0 9.50 
2 4.5 5.3 21.4 6.50 
3 2.4 2.3 27.9 3.28 

TABLE 6.1: Curve fitting parameters for equations (6.5) and (6.6) corresponding to the 
curves labelled in Figure 6.13 

the data extremely well over the entire solution domain, 0< x+, y+ < 100. Note 

that in this figure, curves 1 and 3 correspond to spanwise local minima and curve 

2 to the spanwise maxima of the upstream capillary ridge (cf Figure 6.12(a)). The 

data points to the left of curve 1 in Figure 6.13(a, b) correspond to very slight ridges 

and depressions which cannot be resolved in Figure 6.12(a) and are not considered 

further. 

The two expressions (6.5) and (6.6) are compared in Figure 6.13(c). From approx- 

imately 10 capillary lengths downstream of the topography, the two sets of curves 

are practically indistinguishable. However, the clear distinction between the plots 

is that the proposed inverse function, (6.6), describes the positions of the spanwise 

extrema upstream of the topography and thus over the entire flow domain. 

The function (6.6) provides useful insight into the behaviour of the capillary waves 

since the latter are predicted to meet the centreline y+ = y+t = 50 at x+ = 

AO + A2 or, in physical coordinates, X0 = (Ao + A2)L,. As the topography is 

centred at (XT, YT) = (30.77,50)L,, it follows that the distance, d say - see Fig- 

ure 6.13(b) - between the point where the capillary wave intersects the centreline 

and the topography will be proportional to the capillary length and is given by 

d=L, 130.77 - (A0 + A2) 1. This means that waves upstream of the topography 

are shifted further upstream when L, increases while those downstream of it are 

shifted further downstream. The former prediction is consistent with Mazouchi 

and Homsy's (2001) finding, for one-dimensional topographies, that as the capillary 

number decreases (i. e. L, increases via equation (2.18)) the capillary ridge moves 

further upstream. 

While providing a very good description of wave spread, it should be noted that the 

function (6.6) does, however, have the disadvantage of requiring three parameters 
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rather than one to provide a fit, and of course it does not predict the streamwise 
decay in amplitude available from the self-similar asymptotics. 

Kalliadasis et al. (2000) demonstrated that for the flow over one-dimensional steps 

up and down, increasing the normal component of gravity could reduce or even sup- 

press entirely the capillary trough/ridge, making the free surface conform much more 

closely to the topography. In the present formulation, the parameter controlling the 

relative strength of this gravity component is N= Calla cot a= Ho cot a/ (6'/'L, ), 

which is of course most strongly influenced by the inclination angle. Figure 6.14 

shows, via three-dimensional views and streamwise profiles of the free surface, the 

effect of increasing N on the response to the above square trench. Consistent with 
Kalliadasis et al. (2000), increasing N reduces and eventually eliminates the curved 

upstream capillary ridge, and dramatically reduces the depth of the depression over 

the trench itself. However, the size of the downstream surge is not reduced by in- 

creasing N: in fact this peak in the free surface is higher for intermediate values of 

N. This behaviour is consistent with the flow-rate argument above since increasing 

N does not change the fact that fluid is pouring into the trench from three sides 

but must exit via a single side, Gaskell et al. (2003(b)). 

Returning to the a= 30°, N=0.12 flow, Figure 6.15 demonstrates the effect of 

increasing the aspect ratio, A, of the trench by extending its spanwise length. The 

viewpoint chosen for these visualisations is on the opposite side of the topography to 

that in Figures 6.12 and 6.14, giving a reverse view of the free surface disturbance. 

When A is increased to 5 (Figure 6.15(b)), the depth of the depression over the 

trench is greatly increased and the height of the curved capillary ridge upstream 

of the topography is also increased. The central downstream surge is still clearly 

present, though it decays in amplitude more slowly than that following the square 

trench. Increasing A to 8.33 widens the upstream ridge, and introduces a bifurcation 

in the downstream surge such that two smaller surges lie either side of the centreline 

of the topography, see Figure 6.15(c). As A increases further, the free surface 

appears to become flat in the central region just downstream of the trench; coupled 

with the flattening of the top of the upstream ridge (Figure 6.15(d)), this shows 

that the flow near to the centreline y* =0 approximates closely that over a one- 
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top-right to bottom-left) over trenches, showing the effect of trench aspect ratio on the 

downstream surge. (a) A=1; (b) A=5; (c) A=8.33; (d) A= 15. 

dimensional trench, Gaskell et a]. (2003(b)). The above observations are clarified 

by overlaying the centreline profiles as in Figure 6.16. 

Decre and Baret (2003) showed that their measured profiles for the square trench 

agreed well with linear lubrication theory, but tested the linearity of their results fur- 

ther by comparing the measured profile for the trench of aspect ratio 5 with a linear 

superposition of five suitably-shifted square-trench profiles. The result was that the 

superposition profile approximated fairly well the measured profile, indicating that 

nonlinear effects are small. The same test can be made using numerical solutions, 

and the result is given in Figure 6.17, which also includes the experimental data 

for comparison purposes. The plot shows that the linear superposition of numerical 

solutions is indeed very close to the direct solution for the A=5 trench, except 

in the bottom of the trench where it over-predicts the depth of the depression. In 
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contrast, the superposition of the experimental data agrees very well with the rne<is- 
ured profile in terms of the depression depth, but is not so close near the walls of 
the trench. Note that while they exhibit a discrepancy in the trough depth, the full 

numerical solution and the numerical superposition are both still in good agreement 

with the experimental data. 

The near-linearity of the results in Figure 6.17 and in Decre and Baret (2003) sup- 

ports the observation by those authors that linear superposition of the responses 
to elementary topographies can reliably construct the response to more complex 

topographies at least for flow conditions similar to those considered here. The 

accuracy of the linear superposition is perhaps most rigorously tested by adding to- 

gether the solutions corresponding to a pair of equal but opposite topographies, i. e. 

a trench and a peak, since if the response of the free surface to topographic features 

is linear, the resulting surface should be planar, Gaskell et al. (2003(b)). From the 

analysis of Stillwagon & Larson (1990), such a linear response is to be expected in 

the limits of very small Ca, when the free surface is almost planar, or larger Ca if 

the height (depth) of the topography is much smaller than the film thickness (i. e. 

1801 « 1). 

Figure 6.18(a) shows the surface constructed by adding together the two surfaces in 

Figure 6.12(a) and (b), i. e. the responses to equal but opposite square topographies 

located at the same position. Recall that in this case so = 0.25. It has already 

been noted in the discussion of the results in Figures 6.12 and 6.13 that, although 

these two free surfaces are very close to being inverses of each other, there are slight 

differences in features such as the positions of the spanwise extrema. Hence it is 

not surprising that the surface in Figure 6.18(a) is not planar. However, the three- 

dimensional visualisation does not give a true impression of the scale of the features 

remaining in the surface; Figure 6.18(b) shows the streamwise profiles through the 

centreline for the two topographies together with their sum. From this it can be 

seen that although there is still a disturbance in the surface, its amplitude is only 

about 7% of that in the original profiles. By way of comparison, Figure 6.18(c) 

shows the streamwise profiles and their sum when so is reduced to 0.1. In this case, 

where the response is expected to be more linear, the variation in the coils tructeecd 
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profile is indeed reduced - to below 2%. 

The linearity was further tested for the flow over topography with a more complex 

geometry. The topography considered is illustrated on Figure 6.19(a) and has aT 

shape. It effectively corresponds to the superposition of 8 elementary topography 

blocks. These elementary blocks are square trenches of lateral extent 1.54 L, and 

depth 0.25 Ho as in the previous results. The free surface contours, shown in Fig- 

ure 6.19(b), obtained numerically for the union of all the elementary topographies, 

reveal that the T-shaped topography still generates a "horse-shoe" capillary wave 

despite its much larger spanwise extent of the topography. The contours also high- 

light the tendency of the free surface to conform to the underlying topography since 

they form a distinct T. The linearity is assessed by comparing the streamwise free 
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FIGURE 6.19: (a): sketch of the computational domain and the T-shaped topography (not 
to scale); (b): Free surface contours for the flow over the T-shaped topography 

surface profile obtained for the T-shaped topography (union of all the element- 

ary topography blocks) and by superposing the response of each of the elementary 
blocks at a given spanwise location. Figures 6.20(a), (b), (c) and (d) represent- 

ing the streamwise free surface profiles for increasing distance from the topography 

centreline (dashed lines on Figure 6.19(a)) confirm the ability of the linear super- 

position principle to capture accurately the free surface features. In fact close to the 

topography centreline (Figures 6.20(a) and (b)), the profiles are barely distinguish- 

able. The agreement between the profiles decays for spanwise locations further away 

from the topography centreline but still remains in an acceptable range (approxim- 

ately 7.5% of the maximum film thickness variation). The discrepancy associated 

with linear superposition occurs in the corners delimited by the T where the slope 

of the free surface changes rapidly. 

Finally in this section, an example is given in Figure 6.21 of an attempt to reduce 

the free surface disturbance caused by a square peak topography by modifying the 

topography surrounding the peak, Gaskell et al. (2003(b)). In this case, a simple 

shallow ditch is created around the peak; the topography sizes are given in the figure. 

The streamwise profile along the centreline (Figure 6.21(b)) shows that although the 

composite topography produces a deeper depression in the free surface, the overall 

disturbance is smaller (the r. m. s. deviation over the whole domain is 0.62% for the 

peak alone and 0.26% for the peak with a ditch). In addition, the film thickness 

relaxes more quickly to equilibrium downstream of the ditch. The contour plots 
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(Figure 6.21(c), (d) also show that the region of maximum disturbance is smaller for 

the composite topography, despite its greater lateral extent 

The minimisation of free-surface disturbances is of great interest in the manufac- 

turing processes mentioned in §6.1, and the modification of base-layer topographies 

may offer a useful alternative to other means of free-surface control such as localised 

heating (Gramlich et al. (2002)). This emphasises Decre and Baret (2003)'s closing 

remarks that the inverse problem of determining topographies given a desired free 

surface shape would be a useful and interesting future research area. 

6.4.3 Mesh adaptivity 

The results presented so far in this chapter have all been obtained using regular 

grids. In this short section the potential of local mesh refinement is illustrated for 

the case of flow over step down and square topographies discussed above. Of course, 

a significant advantage here is that the qualitative behaviour of the free surface is 

known in advance and therefore the parts of the domain requiring refinement are 

easily determined. Thus, the intent of the present section is merely to validate the 

implementation of the MGA% discussed in Chapter 3 applied to the lubrication 

equations. Ideally, the local mesh refinement should be coupled with an algorithm 

which automatically locates the regions of strong gradient (say) where refinement is 

required. 

The performance of the MLAT scheme is assessed by comparing the solutions on 

various composite grids with the solution on a uniform grid, G4, having 257 mesh 

points in either direction for the flow over a step down. The composite grids are 

generated so that the mesh density at the finest grid level is identical to to that of the 

uniform grid. The coarsest grid level, G°, is a 17x17 grid and the local refinement 

delimited by the dashed lines on Figure 6.22(a) is performed on G1, G2, G3 so that 

the composite grids are 01+3,02+2 and G3+1 respectively according to the notation 

introduced in Chapter 3. For clarity, the streamwise variations of the mesh density 

for the various grids are plotted on Figure 6.22(b). The streamwise free surface 

profiles obtained on the uniform and composite grids are seen to be indistinguishable 
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FIGURE 6.22: Performance of the MCAT applied to the step down topography considered 
in §6.4.1. 

on Figure 6.22(a). The total CPU time required to reach convergence, shown in the 

legend of Figure 6.22(a), confirms that substantial computational time can be saved 

without observable loss of accuracy. The most favourable case is for grid G1+3, for 

which the computational time is reduced by almost a factor two with respect to the 

uniform grid. 

The flow over a step down topography is particularly well suited to mesh adaption 

because the film thickness is uniform in a rather large portion of the computational 

domain. The flow over the localised trench explored in §6.4.2 presents a greater 

challenge since the capillary wave triggered by the topography expands downstream 

of the topography in the spanwise direction. For that reason, numerical solutions 

were sought on a composite grid having the two refinement patches shown in Figure 

6.23. Again, the coarsest grid level, Go, is 17x17. The first refinement is applied on 

the 65x65 grid, G2, and covers a domain ranging from upstream of the topography 

to the downstream end of the computational domain in order to capture accurately 

the capillary wave. The second mesh refinement, performed at the next grid level, 

covers the topography region delimited by the red dashed lines on Figure 6.23 where 

the steepest variations of the free surface are expected. At the finest grid level, the 

spatial increment, 0, is equal to 1/512. Using the notation introduced previously, 

-20 -10 0 10 20 
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FIGURE 6.23: Mesh density of the composite grid, d2+1+2 used to solve the flow over a 
square trench described in §6.4.2. The red dashed line delimit the topography 

the composite grid is therefore denoted, G2+1+2. The streamwise free surface profiles 

along the topography centreline shown on Figure 6.24(a) obtained on the uniform 

and locally refined mesh appear to match perfectly but the spanwise profiles shown 

on Figure 6.24(b) reveal a slight discrepancy at y* = 0. This difference between the 

two profiles is however smaller than 1% of the maximum film thickness variation and 

is put into perspective when it is taken into account that calculations on the locally 

refined grid only took a third of the computational time required on the uniform 

grid. 

In this section, the potential of MCAT has been highlighted. However, much more 

work is required to achieve an automatic and robust spatially adaptive algorithm. 

6.4.4 Time-dependent inlet flow rate 

As pointed out by Bertozzi and Brenner (1997), the fingering instability for moving 

contact-line problems is linked to the presence of the capillary ridge. This is due to 

the response of the free surface to pressure build-up in the vicinity of the contact 

line as a result of the kinematic requirement that the streamwise velocity gradually 
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decays as the contact point is approached and then reverses as fluid leaves the con- 

tact region, Goodwin and Homsy (1991). Because of the presence of this capillary 

ridge for thin film flows over step down topographies, Kalliadasis and Homsy (2001) 

suggested an analogy with moving contact line problems and analysed the linear sta- 

bility of the ridge with respect to disturbance in the spanwise direction. Their main 

result was that the topography-driven ridge is stable for a wide range of pertinent 

parameters. In a recent study, Bielarz and Kalliadasis (2003) explored further the 

interaction of free surface disturbances with topographies in an attempt to identify 

possible unstable regimes. They solved numerically the time-dependent lubrication 

problem using a semi-implicit , 
ADZ scheme and introduced disturbances to the free 

surface of various kind; including, step change of the inlet film thickness ("impulse 

response"), periodic forcing of the film thickness, or adding a drop of liquid on the 

top of the capillary ridge. The study confirms that flows over topographies are re- 

inarkably stable and that the free surface ultimately recovers its undisturbed shape 

even when inertia effects are included through a modified Reynolds number in the 

lubrication equation. Only for extremely large value of long-range attractive Van 

der Waals interaction and large disturbances can the film become unstable. This 

instability takes the form of a point rupture at the pinch where the deviation height 

G' 
G" " 
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of the steady-state free surface is a minimum 

Bielarz and Kalliadasis (2003) concentrate mainly on full-width spanwise topograph- 
ies, i. e. two-dimensional flows and the following results extend their work by ex- 
ploring the effects of fluctuating flow rate on flows over localised topography. The 

topography is a square cavity of lateral extent 5L, and depth 0.25H0. As previously 

was the case, the fluid considered is water with asymptotic film thickness 100 µiii on 

a substrate inclined at 30° so that L, = 0.78 mm. The extent of the computational 
domain is chosen to be 100L,. The time-dependent computations are performed on 

a 257x257 mesh. 

The fluctuating flow rate is represented by a sinusoidal variation of the inlet film 

thickness: h(x = 0, y) =1+0.2 sin 
(ý'-t) 

tsin 
() 

where f= 1/Lt is the frequency 
y 

of the perturbation and Ly is the wave length in the spanwise direction. The amp- 
litude of the fluctuation is 0.2 and equation (2.17) implies that the corresponding 
flow rate variation is - 73%. The flow rate is only allowed to fluctuate when the free 

surface has reached a steady state so that the results do not depend on the choice 

of initial conditions. 

First, fluctuations uniform in the spanwise direction are considered and results are 

presented for two values of the frequency: f=5 Hz and f= 20 Hz in Figure 6.25. 

This figure shows, as expected, that the high frequency fluctuations (f = 20 Hz) are 

damped much quicker than the low frequency ones (f =5 Hz). The surface tension 

is responsible for this feature as high frequency fluctuations generate high curvature 

regions which are quickly smoothed by surface tension (Orchard (1962)). 

Fig. 6.25 (d), (f) and (h) illustrate how the cavity may act as an amplifier of the 

film thickness variations for low frequency of the perturbation. The peaks of the 

travelling wave upstream and downstream of the topography clearly exceed the inlet 

amplitude of the film thickness variations (straight solid lines in the figures). Ana- 

logous results were found by Kondic and Bertozzi (1999) where small perturbations 

of the precursor film thickness were found to be largely amplified by an advancing 

contact line although the value of the amplification factor were found to be much 

larger in that case. Furthermore, for low frequency of the perturbation, the shape 
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FIGURE 6.25: Profiles of film thickness variations along the centreline (y* = 0) for two 
different frequencies (f = 20 Hz for the figures on the left and f=5 Hz for the figures on 
the right) at different times for the flow over localised topography: (a) and (b): t=0.1, (c) 

and (d): t=0.2, (e) and (f): t=0.3, (g) and (h): t=0.4. 

of the initial sine wave is strongly distorted downstream of the topography. 

Another feature which can be observed from fig. 6.25 (c), (e) and (g) is the forma- 

(f) 
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tion of a "bump" 
. 

The speed of this advancing "bump" appears to be constant and 
is approximately equal to 2U0. Remembering that Uo corresponds to the surface 

velocity, the front propagates at twice this value. The formation of this "bump", 

which may be thought of as a solitary wave, is not related to the presence of the 

topography since it also appears on flat substrates. Bielarz and Kalliadasis (2003) 

found that free surface disturbances travel at a dimensionless speed of 3. Since 

the reference velocity used here is 3/2 greater than the one used in Bielarz and 

Kalliadasis (2003), the results obtained are in agreement with their findings. 

Fig. 6.26 illustrates the structure of the advancing "bump" (indicated by the arrow) 

and how it propagates downstream. The disturbances created by the finite size 

topography are convected by the front far downstream due to the fluctuations in 

the flow rate. 
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The addition of a spanwise component in the disturbance yields a rather complex 
free surface structure as can be seen from Figure 6.27. The flow rate varies again at a 
20 Hz frequency and the wave length of the spanwise variation is 0.5. This spanwise 

perturbation is particularly interesting because in the absence of a perturbation, the 

free surface is symmetric with respect to the topography centreline in the streamwise 

direction and the imposed perturbation is antisymmetric with respect to this line. 

The analysis of the complete sequence on Figure 6.27 is tedious but insight can 
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FIGURE 6.27: Free surface contours at various times for the flow over a localised trench and 
inlet flow rate fluctuating at f= 20 Hz and Ly = 0.5: a: t=0.05, b: t=0.15, c: t=0.25 and 

d: t=0.35. Range considered: 0.98 <h+s<1.02 

be gained by focusing on a particular peak and trough denoted by (p) and (t) 

respectively on Figure 6.27. Clearly when the peak and trough, advected by the 

mean flow, collide with the capillary ridge, their response is quite different. The 

peak (p) appears to expand in the streamwise direction as it passes the topography 

while the trough (t) is contracted as can be seen on Figure 6.27(b). Despite this 

contrast in behaviour no phase change is observed in the sense that perturbations 
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initially aligned in the spanwise direction are still aligned in the spanwise direction 

far downstream of the topography (see Figure 6.27(d)). The appearance of a front 

discussed in the previous case without spanwise variations can also be seen on Figure 

6.27(d). 
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7.1 Introduction 

In many coating processes, the liquid deposited is composed of a resin which contains 
the functional coated material dissolved in a volatile solvent. The evaporation of 
the solvent and the associated increase in viscosity of the liquid ultimately leaves a 

solid resin film adhering to the substrate. The main reason why a solvent is used 
is therefore to increase the coatability of the resin. Typical examples of solvent- 
based liquids are paints or photoresistent films used in the lithographic stages of 

microelectronic manufacturing. Solvent evaporation affects the dynamics of thin 

films and the quality of the coating in many ways because fluid properties generally 

depend on the solvent fraction. For example, Overdiep's experiment (Overdiep 

(1986)) reveal that the free surface of some solvent-based high-gloss alkyd paints 

unexpectedly undergo reversal after the levelling of disturbances; that is initial peaks 

in the free surface become troughs and vice-versa. This result clearly contradicts 

Orchard's theory of levelling (Orchard (1962)) which predicts that disturbances of 

the free surface should decay under the action of constant surface tension until 

complete flatness of the film is reached. To explain this apparent discrepancy in 

the theory, Overdiep suggested that surface tension gradients induced by solvent 

concentration variations are responsible for the observed reversal. Based upon this 

idea Overdiep developed an improved model for the free surface levelling and derived 

an equation for the optimal choice of parameters to achieve perfect levelling. Eres 

et al. (1999) tackled the reversal problem by solving numerically the lubrication 

with concentration-dependent surface tension and confirmed Overdiep's suggestion, 

as their numerical results compared favourably with experiments. 

As mentioned previously, the solvent concentration also has a direct effect on the 

viscosity of the resin/solvent mixture and much work has been done in the context 

of spin coating to quantify this effect. Meyerhofer (1978) is credited with the first 

attempt to model the effects of solvent evaporation and variable viscosity on the 

thickness of dried films during spin coating. The model is effectively one-dimensional 

since it relies on the assumption that the film thickness and solvent concentration 

are uniform across the entire substrate and only vary with time. Meyerhofer*s 
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main conclusion is that the thinning of thin films occurs in two stages. The first 

stage is convection dominated and the effect of evaporation is negligible, but during 

the second stage only evaporation is responsible for the thinning of the film. BY 

considering these two stages separately, Stillwagon and Larson (1990) computed the 
free surface profiles of dried film during spin coating over topographies. Meyerhofer's 

approach was later improved by Bornside et al. (1989) who considered variation of 
the solvent concentration across the film. However, they limited their analysis to 

one-dimensional flows. 

Solvent evaporation can also affect the motion of the contact line. Despite its indus- 

trial importance, until the recent work of Parisse and Allain (1996,1997), little effort 

was directed towards the fundamental understanding of the shape and composition 

changes due to solvent evaporation during the spreading of a droplet. Their study 

revealed that after an initial expansion, the radius of the contact base between the 

drop and the solid plate remained constant. As soon as evaporation begins, the 

resin deposits and adheres to the plate leading to a strong anchoring of the wetting 

line. This phenomenon is known as contact line pinning and a common consequence 

of it is the brown ring left when a drop of coffee dries on a counter top. This ring 

formation is due, according to Deegan et al. (1997) and Deegan (2000), to the capil- 

lary flow in which pinning of the contact line of the drying drop ensures that liquid 

evaporating from the edge is replenished by liquid from the the bulk of the droplet. 

The resulting outward flow carries all the dispersed material to the edge. 

For modelling purposes, a key parameter is the diffusivity of the solvent as pointed 

out by Howison et al. (1997). If the diffusion of solvent is sufficiently rapid the 

leading-order distribution of solvent across the film is uniform, leading to the so- 

called well-mixed assumption. This assumption fits naturally in the lubrication 

formalism for which all quantities are depth averaged and has been used successfully 

to predict reticulations such as hole formation in drying films (Schwartz et al. (2000) 

and Evans et al. (2000)). If the well-mixed assumption breaks down then variations 

of the solvent concentration across the film need to be taken into account and so 

remaining in the framework of the lubrication approximation is impossible unless 

the fluid parameters (viscosity, surface tension) are assumed constant across the 
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film, see van de Fliert (2001). 

In this chapter, an evaporation model based on the well-mixed assumption is first de- 

scribed. The governing equations are then solved in the context of a gravity-driven, 

evaporating thin film assuming that composition variations affect the viscosity only 
and therefore Marangoni effects can be ignored. An analytical solution is derived 

for the long-time behaviour of the film on a flat substrate when a steady-state is 

reached. This analytical solution is used to validate the numerical results and to 

confirm the assumption made by previous authors (Stillwagon and Larson (1990), 

Lawrence (1988)) that the presence of a full-width spanwise topography does not 

affect the composition of the resin/solvent mixture. Results are presented for the 

case of evaporating flow over localised topographies for which, in contrast to full- 

width spanwise topographies, composition variation can be observed downstream of 

the topography leading to possible defects in the dried film. Finally, the model is 

applied to fully-wetting droplet spreading with results capturing the pinning of the 

wetting line for high values of the evaporation rate. 

7.2 Description of the evaporation model 

In this section, the model described in Chapter 2 is extended to account for coin- 

position changes in the solvent/resin mixture. Although for results presented sub- 

sequently only the viscosity varies with the solvent concentration, modifications to 

the lubrication approximation (2.29) and (2.30) are presented in the more general 

form for which surface tension is also a function of the solvent concentration. The 

effect of surface tension gradient is introduced in the lubrication approximation 

through the continuity of the shear stress at the free surface. Accordingly, eqs. 

(2.24) are modified as follows, 

öu 
_ 

C50& DV C5 0& 

Oz Ox and 
z= 

on z =(ýý y, t) , 
(7.1) 

µµy 

where a- and µ are the dimensionless surface tension and viscosity respectively, scaled 

with the reference surface tension oo and viscosity µo. The constant C5 is scaling 
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dependent: for droplet spreading flows C5 = 1/E2; while for gravity driven films 
C5 = E/Ca. The velocity profiles as given by eqs. (2.27) and (2.28) now have the 
following form, 

u=µ 
'9p 

- Cl(z8) 2(z-s) 
- h+ 

C5aý(z-s) 
, (7.2) 

µ ax 
v=1ýpZ 

2(z-8)-h 
+~ 

ýý(z-s). 
(7.3) 

µyµy 

The corresponding components of the flux vector, Q, defined as 

(QX, Qy)T =f (u, v)T dz are: 

__ _h 
ap h2 a& () Qx 

3µ ax - Ci + C5 
2µ ax ' 7.4 

h3 (, 9p h2 a& 
Qy =- 3µ ay + C5 2µ ay (7.5) 

which when combined with the conservation of mass equation, modified to account 

for the mass loss due to evaporation, yield the lubrication approximation in its 

general form, 

ah 
=a 

h3 ap h2 a& a h3 aP h2 a& 1()] 

3µ 

(Dx 
- Cl - C5 

2µ ax + ay 3µ ay - C5 2µ ýy -e. (7.6) 
at ax 

In (7.6) e= E/(EUo) is the constant dimensionless evaporation rate. This restricting 

assumption could be improved by using a composition dependent evaporation rate 

as in Weidner et al. (1996) and Schwartz et al. (2000). The pressure across the film 

is unchanged in this model and is still given by eq. (2.30). Note however that the 

values of C1, C2, C3 and C4 are now defined in terms of the reference values of the 

viscosity, µo, and surface tension, Qo. 

An additional equation is required to describe the evolution of the solvent concen- 

tration, cs. Howison et al. (1997) showed that the well-mixed approximation is valid 

providing the solvent diffusion, D, satisfies D» E2LOU0. In the following, it will 

be assumed that this condition holds. At leading order, the conservation of mass of 

solvent (Howison et al. (1997)) reads: 

a (hcs) 
at + V. (c, Q) -- -e + d0. (hVcs) 
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where d= D/LOUD is the dimensionless solvent diffusion. Making the additional 
assumption that lateral diffusion in eq. (7.7) is largely dominated by convection, 

which is true if D« LOUo, and combining eqs. (7.7) and (7.6) yields, 

acs [h2 OP h a& acs h2 Op h a& acs 
+ at = 3µ cox - 

cl cý 
2µ Ox cox 

+ 
3µ cry 

c' 
2µ ay ay 

e(csh -1) (7.8) 

For gravity driven thin liquid films, a fixed solvent concentration, co, is imposed at 
the inlet (x = 0) and the initial solvent concentration profile is uniform, also equal 
to co, in the entire computational domain. In the case of droplet spreading, the 

gradient of the solvent concentration across the boundary is set to zero and initial 

solvent concentration is constant and equal to co. Equations (7.6), (2.30) and (7.8) 

constitute the governing equation bearing in mind that Marangoni effects resulting 
from surface tension gradients are not considered here. 

7.3 Solution methodology 

The multigrid algorithm described in Chapter 3 is extended to solve the addi- 

tional solvent concentration equation. An advantage of the multigrid method is 

that providing the relaxation scheme and coarse grid solver are suitably modified, 

the algorithm remains essentially unchanged. The following subsection describes 

the discretisation scheme adopted. 

7.3.1 Discretisation scheme 

Solutions are sought on a square computational domain with (x, y) E S2 = (0,1) x 

(0,1) using a uniform mesh having (2'f + 1) nodes in each direction. The discrete 

analogue of eq. (7.6) is the intuitive extension of eq. (3.1) since the only difference, 

apart from the additional evaporation term, is the presence of the composition- 
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dependent viscosity in the prefactor; that is F(h) = L. Thus, 
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(7.9) 
3µ -2 

for any interior point (i, j) in the computational domain where, as mentioned previ- 

ously, 0= 2-kf is the spatial increment. The Standard Scheme described in §3.2 

was implemented for the mid-point interpolation of the prefactors leading to, 

33h3 h 
lif 1= 

1µ 
Ii±1, j +µ 1Z, ß (7.10) 3µ2, ý -2 3` 3A 

with analogous expressions for 3µ 2 The discretisation of eq. (2.30) is unchanged 

and given by eq. (3.2) while the discrete form of the solvent concentration equation 

(eq. 7.8) is obtained using central differences, viz 
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e hi, j 

for any interior point (i, j) in the computational domain. 

The adaptive time-stepping scheme described in §3.3 is employed for the results, 

concerning droplet spreading, presented subsequently to march the solution forward 

in time. Note however that, because the time derivative now appears in both eqs. 

(7.9) and (7.11), the time step selection is based on the equation having the largest 

estimated truncation error. This ensures that both equations are solved with the 

same prescribed error tolerance. 
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7.3.2 Relaxation scheme and coarse grid solver 

The relaxation scheme adopted here consists of a non-linear Gauss-Seidel scheme 

with a single local Newton iteration for each update. It is most clearly described by 

rewriting the discrete system of governing equations (7.9), (3.2) and (7.11) at the 

finest grid level L in the following condensed form: 

Gh L ([+' 
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where fL and fLs correspond to the right-hand side of eq. (3.8) with Ot =2 when 

F=a and F= aý2 z respectively. at at 

This nonlinear system of equations is linearised by computing the local Jacobian, 

J, only: i. e. for a particular grid level k, 

J= k' k' 
Lk c(7.15) 
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Thus, given an initial guess (ho 1, pond 1, cso2 1) to the solution, the Newton iter- 

ation proceeds by solving 
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for (Oh, Op, Oc8). Hence a new approximation to the solution is given by: h0,3 -_ 

hon i +Oh, po?, ýn+1 = POn j1 +Op and c80 ýn+i = csoi 1 +Oc,. The local Jacobian 
i, J 

matrix J is 3x3 and its inversion is eased by the fact that the equation governing 

the pressure across the film, (3.2), does not explicitly depend on the solvent concen- 

tration. 

In order to find the exact solution at the coarsest grid level the approach described 
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in §3.4, for which the complete Jacobian matrices were computed, becomes too 

computationally expensive. To give an idea, for a 17x17 coarsest grid level. this 

would involve handling nine 287x287 matrices. For this reason, it was found to be 

preferable to apply the previously described relaxation scheme until the norm of the 

residuals becomes smaller than 10-10, an arbitrary small number. 

7.4 Results and discussion 

The evaporation model described in the previous section is applied to the two dif- 

ferent types of flow investigated in the previous chapters: droplet spreading and 

gravity-driven thin films. 

7.4.1 Gravity-driven, evaporating thin liquid films 

Continuous, evaporating film over a flat substrate 

The problem of a pure liquid film draining down a flat, inclined plane in the con- 

stant flux configuration is trivial in the absence of evaporation, yielding a liquid 

film of uniform thickness. This behaviour can no longer be expected when the 

composition of the resin/solvent mixture induces viscosity variations. Because of 

the increasing solvent loss and associated increase in viscosity when the fluid travels 

further and further downstream, intuition suggests that, faced with a greater viscous 

resistance, the free surface should rise. Making the same assumptions as Huppert 

(1982) who investigated the fingering instability in gravity-driven thin films down a 

slope, a simple analytical solution for the film thickness, the solvent concentration 

and therefore the viscosity can be found providing a convenient way to validate the 

numerical results. Huppert (1982) assumed that the effects of the surface tension 

and the component of the gravity normal to the substrate could be neglected so 

that the fluid motion is dictated by a balance between the tangential component of 

the gravity driving the liquid and viscous stresses. In that case, Huppert derived 

a simple similarity solution which describes the evolution of the free surface as a 

function of time. 
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While Huppert considered the evolution of a constant amount of liquid leading 

necessarily to a time-dependent problem, a steady-state solution can be expected in 

the present configuration since the film is fed by a constant flux at the inlet. Taking 

these assumptions into account, eqs. (7.6) and (7.8) reduce to: 

3 

- dx 
h3µ 

-e=0, (7.17) 

-C1h 
2 dc, s+e(cs-1) =0, (7.18) 

3µ dx h 

where the constant C. is equal to 2 for gravity-driven thin film (see Chapter 2) and 

the partial derivatives can be replaced by total derivatives since, on a flat substrate, 

the film thickness and solvent concentration no longer vary in the spanwise direction. 

The first equation (eq. (7.17)) is trivial to integrate yielding, 

3 3_ 
=-e2+Ki 

µ 
(7.19) 

and given that upstream, h(x = 0) = µ(x = 0) = 1, the constant of integration Kl 

is easily determined and equal to 1/3. Combining eqs. (7.19) and (7.18) gives the 

following ODE: 
2 dcs 

+ e(cs - 1) =0 (7.20) ex -2 dx 3 

The solution of this ODE is also easily found and has the following form: 

cs= 
K22 

+(7.21) 
ex -3 

where the integration constant, K2, is imposed by letting c, (x = 0) = co, giving 

s 
-co) 3(1 +1. 2 

ex -3 

(7.22) 

For a given dependence of the viscosity on the solvent concentration (µ(c8)), the 

film thickness is obtained through eq. (7.19), 

x1 
1/3 

h= 3µ -e2 +3 (7.23) 

Equation (i 
. 
22) reveals that the solvent evaporates completely (cs = 0) at x=3 fQ 
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FIGURE 7.1: Variation of the viscosity with the solvent concentration for different values of 
a. 

or X=E QO'O in terms of dimensional quantities. This result simply asserts the 

conservation of the solvent, since Qoco is the inlet flux of solvent and EX is the 

amount of solvent lost through evaporation. The film thickness at this location is 

h= (µ(cs = 0)(1 - co))1/3 and tends to infinity since, in the absence of solvent, the 

resin is solid and therefore has an infinite viscosity. Following Schwartz et al. (2000), 

the viscosity is assumed to depend exponentially on the solvent fraction, obeying: 

µ= µoea(c0-cs) > 
(7.24) 

so that the viscosity is effectively infinite for small solvent concentrations. The para- 

meter a, chosen to be equal to 70 for the present case, as in Schwartz et al. (2000), 

and controls the sensitivity of the viscosity to solvent concentration variations. 

The viscosity is plotted on Figure 7.1 as a function of the solvent concentration for 

different values of a and co = 0.7. Note that, in this model, the viscosity depends on 
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the variation of the solvent concentration from its initial value. The graph shows that 
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FIGURE 7.2: Theoretical streamwise profiles of film thickness, solvent concentration and 
viscosity (eqs. (7.23), (7.22) and (7.24)) for a gravity-driven film on a flat substrate with 

various evaporation rates (: e=0.05; ---: e=0.1; ---: e=0.2). 

for a= 70, a small decrease in the solvent concentration leads to a sharp increase 

of the viscosity. The theoretical profiles of film thickness, solvent concentration and 

viscosity given by eqs. (7.23), (7.22) and (7.24) respectively are plotted on Figure 7.2 

for different values of the evaporation rate, co = 0.7 and a= 70. As expected, the 

decrease of solvent concentration induces an increase of the resin/solvent mixture 

viscosity which in turn leads to a rise in the film thickness as the film flows further 

and further downstream. For the largest value of the evaporation rate (e = 0.2), 

the film thickness increases dramatically and of course, in practice, the formation 

of a solid plug would stop the flow and induce instabilities not encompassed in the 

simple analysis given above. 

The analytical solutions for an evaporation rate of 0.05 shown in Figure 7.2 are 

compared with numerical results for an evaporating thin film down a plane inclined 

at an angle of 30° to the horizontal. Following on from previous work, the base 
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FIGURE 7.3: Comparison the streamwise profiles of film thickness, solvent concentration 
and viscosity obtained numerically at t=1, t=2 and t=4 and analytically (eqs. (7.23), 

(7.22) and (7.24)) for a gravity-driven film on a flat substrate. 

property are those of water, i. e. µo = 0.001 Pas, p= 1000 kg m-3, Q=0.07 N m-1. 

The inlet flow rate is imposed so that the asymptotic film thickness, Ho, is effectively 

equal to 100 µm according to eq. (2.17). Numerical simulations are obtained on a 

computational domain that is 50 capillary lengths long, using a finest grid level of 

257x257 and a coarsest one of M. Fixed time-steps equal to 5x 10-3 are used 

along with the Crank-Nicholson scheme described in §3.3. The use of the adaptive 

time-stepping scheme was not found to be necessary because of the possibility to 

use large time-steps. The initial conditions are a film of uniform thickness (h(x, t= 

0) = 1) and uniform solvent concentration (cs(x, t= 0) = co = 0.7). Unless stated 

otherwise, these flow conditions and numerical parameters are used to obtain the 

results which follow for the case of gravity-driven thin liquid films. 

Figure 7.3 shows the profiles of film thickness, solvent concentration and viscosity 

obtained at different times (t = 1, t=2 and t= 4) and confirms that, after a trail- 
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sient initial stage, the film reaches a steady-state. Indeed, from t=2. onwards, the 
time-dependent simulation is indistinguishable from the steady-state analytical one. 
Far downstream, a slight discrepancy between the solvent concentration profiles ob- 
tained numerically and analytically can be observed. This discrepancy is magnified 
for the viscosity profiles because of the exponential dependence of the viscosity on 

the solvent concentration. However, it does not cause the numerical free surface 

profile to deteriorate since it matches well the analytical one proving the validity of 

the numerical approach. 

This apparently trivial problem illustrates the difficulty of modelling such flows due 

to the stiffness introduced by the viscosity. A slight error in the solvent concentration 

leads to a much larger error in the viscosity which in turn induces a poor estimate 

of the fluxes (eqs. (7.4) and (7.5)), and therefore an inaccurate value of the film 

thickness and solvent concentration. Hence, one can easily understand how errors 

can build up to result in a poor numerical solution. 

Continuous, evaporating film over a full-width spanwise topography 

The previous chapter revealed that flow over step-up topographies without solvent 

evaporation produce a depression in advance of the step followed by a film thickness 

increase and an exponential recovery downstream of the step. On the other hand, 

trenches of small extent create a capillary ridge ahead of the free surface depression 

over the trench. The question of interest in this section is whether these disturbances 

of the film thickness will be amplified by the solvent evaporation. The goal is to 

validate the assumption made by previous authors that the evolution of the film 

profile can be divided into two stages, with fluid flow dominating the first stage and 

solvent evaporation the second (Stillwagon and Larson (1990), Lawrence (1988)). 

In the first, or flow, stage of the model, the film profile over a feature is assumed 

to be controlled by a balance of the driving force and the capillary force within 

the lubrication approximation. This stage persists until solvent evaporation snakes 

the film viscous enough that fluid rearrangement over a substrate feature is no 

longer possible. In the second, or shrinkage, stage, the film shrinks without flow 

by further evaporative drying. The transition between the two stages is assumed 1 
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to occur abruptly at a given solvent concentration. This two stage decomposition 

necessarily implies that during the first stage, the topography and associated free 

surface disturbance does not affect the composition of the resin/solvent mixture. 

The flow over a step up is considered first. Numerical results are obtained for a step 
height of 0.5 (half the asymptotic film thickness) and -y = 0.05 in eq. (6.4). The 

profile of the topography can be seen on Figure 7.4. The flow conditions and numer- 
ical parameters are identical to those described in the previous section. As in the 

related case without topography, Figure 7.4 shows that, as the viscosity increases, 

the film thickness increases with downstream location. Despite this increase in the 

film thickness, the same free surface features can be observed as in the case without 

evaporation. These features appear to be simply shifted vertically. 

Figure 7.4 also displays the fictitious "resin/solvent interface" defined by hr+s where 
hr = (1 - c8) h. This interface, which represents the dried film profile if all the solvent 

evaporated instantaneously, is fictitious since the resin and solvent phase are mixed 

and therefore not delimited by an interface. Nevertheless it still provides insight 

about the effect of the topography on the composition of the resin/solvent mixture. 

Because this interface displays the same characteristic features as the free surface, 

the effect of the topography on the composition of the mixture can be anticipated 

as small. A more quantitative picture can be achieved by comparing the numerical 

results with the analytical solutions for a flat substrate (eqs. (7.23), (7.22) and 

(7.24)) derived above. Although this analytical solution can not be expected to be 

valid in the topography region, significant differences far from the topography would 

reveal that the topography has an effect on the composition of the mixture. In other 

words, for the flow over a step-up topography, the film thickness only departs from 

the film thickness for the flow over a flat substrate in the step region. Hence, any 

differences between the solvent concentration profile for the flow over the step-up 

and the flow over a flat substrate could be attributed to the presence of the step-up. 

The good match for the solvent concentration and viscosity shown in Figure 7.5 

confirms that the presence of the step-up does not have any observable influence on 

the composition of the resin/solvent mixture. It is therefore not surprising that the 

film thickness obtained numerically and analytically also agree well away from the 
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FIGURE 7.4: Streamwise profile of the free surface, the "resin /solvent interface", the topo- 
graphy and the viscosity for the flow over a step-up. 

step region. 

The analysis performed for the step-up is next applied to a span-wise trench to- 

pography of lateral extent four capillary lengths and depth equal to 0.7H0. The 

profile of the topography can be seen in Figure 7.6 along with the computed free 

surface profile and the resin/solvent interface. The free surface reveals the exact 

same features as highlighted in Chapter 6 (the case without evaporation) although 

they are shifted vertically because of the increasing viscous resistance as the fluid 

flows further downstream. The expected dried film profile given by the resin/solvent 

interface in Figure 7.6 conforms much more to the substrate feature than the free 

surface although a slight ridge can still be seen upstream of the topography. 

The good agreement of the solvent concentration and viscosity profiles with the 

corresponding analytical ones for a flat substrate gives further evidence that, for 

two-dimensional flows, the topography does not affect noticeably the composition 

of the resin/solvent mixture (see Figure 7.7). 
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FIGURE 7.6: Streamwise profile of the free surface, the "resin /solvent interface", the topo- 
graphy and the viscosity for the flow over a trench. 

Continuous, evaporating film over a localised topography 

The key observation of the previous subsection is that for a two-dimensional flow 

field, the presence of a topography (a step-up or a trench) does not seem to affect the 

composition of the resin/solvent mixture. For a localised topography, the results of 

Chapter 6 show that the associated free surface profile is more complex, developing 

a series of capillary waves. How these modify the map of the solvent concentration 

is clearly the question of interest. 

The topography considered is a square trench of extent 5 capillary lengths (lt = 

wt = 0.1 since the computational domain is 50LC x 50L, ) and the same depth as 

the asymptotic film thickness (so = -1). It is centred at (xt, yt) = (0-35,0.5). The 

topography steepness parameter in equations (5.13) and (5.14) is set to -y = 0.05. 

Numerical results, after reaching steady-state, are shown in Figure 7.8 for e= 

0.01. The free surface (7.8 (a)) displays similar features to its non-evaporating 
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counterpart: the upstream ridge, the tails on each side of the topography and the 
downstream surge in the middle. The pressure, on the other hand, forms two steep 

peaks on the upstream and downstream walls of the topography separated by a 

pressure drop across it (Figure 7.8 (c)). In the same way that the pressure gradients 
induced by the topography deform the free surface, they also affect the solvent 
transport. This is clearly seen in Figure 7.8 (d) showing a rear-view of the solvent, 

concentration. As well as an expected solvent concentration decrease further and 
further away from the inlet, two grooves initiated by the side walls of the topography 

develop downstream of the topography. The solvent concentration between these two 

grooves is higher than the asymptotic value away from the topography centreline. 

The pattern of the viscosity shown in Figure 7.8 (d) reveals an opposite trend 

because of the chosen dependence of the viscosity on the solvent concentration (eq. 

(7.24)). 

Considering the spanwise profiles downstream of the topography in Figure 7.9 provides 

a more quantitative picture. The amplitudes of film thickness and pressure variation 

clearly decay for larger distances from the topography. This decay is accompanied 

by a shift of the extrema towards larger spanwise locations. This is what produces 

the "horseshoe" shape. In contrast, the shape of the grooves observed in the solvent 

concentration and viscosity profiles seem invariant in the streamwise direction and 

no spanwise shift of the extrema is seen. Moreover the spanwise distance between 

these grooves, between 5 and 10 capillary lengths, appears to be dictated by the 

spanwise width of the topography (5 capillary length). While full-width spanwise 

topography did not appear to affect the composition of the resin/solvent mixture, 

the presence of a localised topography produces significant variations of the solvent 

concentration. These can lead to undesirable defects in the remaining solid coating. 

The dried film free surface defined by the "resin/solvent interface", as before, is 

shown in Figure 7.10. It clearly shows a depression downstream of the topography 

delimited by two grooves in the resin layer due to the non-uniformity of the solvent 

concentration. As highlighted in Chapter 6, trenches and peaks have opposite (but 

not symmetric) effects on the free surface. Hence, it comes as no surprise that the 

depression in the dried film layer shown in Figure 7.10 for the flow over a square 
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FIGURE 7.8: Equilibrium free surface (a), viscosity (b), pressure across the film: rear-view 
(c) and solvent concentration: rear-view (d) for the flow of an evaporating thin film over a 

square trench for an evaporation rate of 0.01. 
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FIGURE 7.9: Spanwise profiles of film thickness, pressure, solvent concentration and viscos- 
ity at 5,10 and 15 capillary length downstream of the topography for the flow over a square 

trench topography and an evaporation rate of 0.01. 

s 

FIGURE 1.10: Dried film free surface for the flow over a square trench topography and an 

evaporation rate of 0.01. 
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r 

FIGURE 7.11: Dried film free surface for the flow over a square peak topography and air 
evaporation rate of 0.01. 

trench is replaced by a surge in Figure 7.11 when flow over a peak is considered 
instead. The dimension and steepness of the peak are the same as for the trench 

and its height is half the asymptotic film thickness. 

7.4.2 Evaporating droplet spreading 

The results presented in this section are restricted to fully-wetting droplets (()0 _ 

0) for which the action of gravity can be neglected (Bo = 0). This implies that 

Cl = C2 =0 in table 2.1 and that the lubrication approximation is effectively free 

of parameters. As in Chapter 5, the initial profile of the droplet is an axisyminetric 

paraboloid, centred at (x, y) = (0.5,0.5), satisfying the following equation, 

h(r) = maw 51- 
320r2 

, h* (7.25) 

where r is the radius of the footprint of the droplet on the surface of the substrate and 

the precursor film thickness, h* = 0.01. The initial solvent concentration is assumed 

uniform across the droplet with co = 0.7. The viscosity follows the exponential law 

given by eq. (7.24) with a= 70. Numerical results are obtained on a finest grid 
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for various evaporation rates. 

FIGURE 7.12: Variation of the droplet thickness ho(t) and radius R as a function of time 
and comparison with the expected behaviour for pure liquids (Tanner's law). 

level having 129 nodes in each direction and a 9x9 coarsest grid level. The adaptive 

time-stepping scheme is used with Tol = 10-3. 

The effect of solvent evaporation is best illustrated by comparing the numerical result 

with Tanner's predictions for the evolution of pure liquid droplets (Tanner (1979)). 

For all values of the evaporation rate Figure 7.12(a) shows that, up to t=3x 10-3, 

the film thickness at the centre of the droplet, ho(t), follows a power law. A closer 

analysis reveals that, in this range, the film thickness is inversely proportional to 

t0.2 as predicted by Tanner's law (eq. (5.1)). Moreover, the fitted curve in Figure 

7.12(b) confirms that the droplet radius, R, expands as t0-' for t<3x 10-3, which 

is also in agreement with Tanner's analysis. The initial discrepancy between the 

fitted curve and the numerical results is representative of the time it takes for the 

dynamics of the droplet to be no longer affected by the initial conditions. The droplet 

radius curves on Figure 7.12(b) are not smooth (they have a saw tooth appearance) 

because the wetting line, defined as the point where the film thickness first becomes 

greater than the precursor film thickness, always corresponds to a node on a discrete 

mesh. The radius can be defined without ambiguity because the three-dimensional 

calculations conserve the initial axisymmetry of the droplet. For t>3x 10-3, 

solvent evaporation effects become more important leading to a departure from the 
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FIGURE 7.13: Droplet free surface profiles at different times for e=0.1 and e=0.01. 

power laws for the two largest values of the evaporation rate (e = 0.1 and e=0.05). 

The droplet thickness and radius reach a plateau; reminiscent of the spreading of 

partially wetting droplets shown in Chapter 5. This interruption of the spreading 

corresponds to contact line pinning mentioned in the introduction of this chapter. It 

can be anticipated that this pinning of the wetting line would also occur for smaller 

values of the evaporation rate but for radii of the droplet too large to be captured 

in the computational domain. Comparing the evolution of the droplet free surface 

profiles for e=0.1 and e=0.01 Figure 7.13 emphasises the behaviour contrast 

induced by solvent evaporation. The droplet profiles match for both evaporation 

rates up to t=2x 10-3. After this time, they can clearly be distinguished. While 

the contact line motion slows down and eventually stops for e=0.1, the droplet 

carries on spreading for e=0.01. 

Intuitively, the contact line pinning is easily understood. Evaporation, which dom- 

inates in the contact line region, induces solvent loss and therefore an increase in the 
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FIGURE 7.14: Droplet free surface and viscosity profiles at t=2x 10-4 (Figures (a) and 
(b)), t=2x 10-2 (Figures (c) and (d)) and t=5x 10-2 (Figures (e) and (f)) for e=0.1, 

e=0.01 and no evaporation. 

viscosity. This viscosity rise is responsible for the pinning of the contact line. This 

reasoning is confirmed when looking at Figure 7.14 which shows the free surface and 

viscosity profiles at different times and various evaporation rates. The free surface 

profiles for e=0.01 and no evaporation are indistinguishable in Figures 7.14 (a), 

(c), (e) because the small evaporation rate does not induce substantial variations 

in the viscosity. 

On the other hand, for e=0.1 the viscosity is seen to increase dramatically in the 

contact line region and in the precursor film from Figure 7.14 (b), (d) and (f). At 

the latest time (t =5x 10-2), the viscosity may be considered to be essentially 

infinite, causing the pinning of the contact line. Interestingly, the viscosity displays 

a sharp peak indicated by the arrows in Figure 7.14 (d) and (f). This peak is a 

result of the slight depression in the precursor film highlighted in Chapter 5. In this 

region of lower film thickness, the amplitude of the solvent fraction decrease will be 
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FIGURE 7.15: Variation of the droplet volume Vd and the solvent concentration in the 
precursor film. 

greater than in the remainder of the precursor film, for a given solvent loss, leading 

to a larger value of the viscosity. 

Solvent evaporation is necessarily accompanied by a decrease of the overall volume 

of the droplet, Vd, while the volume of the resin, delimited by the "resin/solvent 

interface" and the substrate, should remain constant since the resin is only trans- 

ported by the mean flow and not allowed to evaporate by the model. A check on the 

conservation of resin shows that the volume of the resin does not vary by more that 

0.04% during an entire simulation. The variation of the droplet volume is shown 

in Figure 7.15(a) for e=0.1, e=0.05 and e=0.01. This graph shows that the 

droplet volume decreases linearly with time and that, as expected, the magnitude 

of the slope is greater for larger evaporation rates. Figure 7.15(b) illustrates the 

variation of the solvent concentration in the precursor film with time for e=0.1. 

Two stages can clearly be distinguished. At early times, the solvent concentration 

decreases slowly but when t>5x 10-3, the decrease is much steeper. This reveals 

the limitation of the model adopted here. Since the evaporation term is assumed 

to be a positive constant in eqs. (7.6) and (7.8), nothing prevents the solvent con- 

centration from becoming negative which is clearly unphysical. This shortcoming 

could be overcome by employing a more realistic evaporation term which tends to 

zero as the solvent concentration goes to zero. 
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FIGURE 7.16: Variation of the time-step At'+1 and the local truncation error LTE, ti,, for 

eqs. (7.9) and (7.11) for the droplet spreading with e=0.1. 

The presence of these two distinct stages introduces numerical difficulties which 

become apparent as shown in Figure 7.16. The graph reassuringly confirms that the 

Local Truncation Errors (LTEThum) for eqs. (7.9) and (7.11) are kept below the Tol 

equal to 10-3. The LTETh,,, m, for the overall mass conservation equation (eq. (7.9)) 

dominates over the one for the solvent conservation equation (eq. (7.11)) during 

most of the simulation leading to a steady increase of the time-step size. However. 

the LTEnum, for the solvent conservation equation rises sharply from t-5x 10-3 

(roughly the characteristic time when evaporation effects become important) and 

has the same magnitude as the one for the overall mass conservation at t' 0.1. 

Beyond this time, the probable occurrence of negative solvent concentration in the 

precursor film leads to the failure of the multigrid solver to carry on the simulation. 

Overcoming this difficulty, in order to be able to predict the final dried profile, is 

left as future work. 
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7.5 Concluding remarks 

In this chapter, evaporating thin liquid films composed of a mixture of a non-volatile 

resin and an evaporating solvent were considered. The model used is based on the 

well-mixed assumption and follows the approach of Howison et at. (1997). The ef- 
fects of surface tension gradients and lateral diffusion of solvent are neglected in 

the model adopted and the evaporation rate is assumed to be constant. The latter 

assumption is shown to be quite restrictive and an important improvement, left as 
future work, would be to use a more realistic composition-dependent evaporation 

rate such as those described in Weidner et al. (1996) or Schwartz et at. (2000). 

The additional partial differential equation governing the solvent concentration is 

successfully implemented in the multigrid algorithm as shown by the good agree- 

ment between the numerical and analytical results for the flow of a thin film over 

an inclined, flat substrate. The numerical results confirmed the assumption made 
implicitly by other authors (Stillwagon and Larson (1990), Lawrence (1988)) that 

full-width spanwise topographies giving rise to two-dimensional flows did not affect 

the composition of the resin/solvent mixture. The solvent evaporation and associ- 

ated viscosity rise was seen to induce an increase of the film thickness for larger and 

larger downstream locations. This film thickness increase did not however remove 

the free surface features characteristic of the flow of non-evaporating thin films over 

full-width spanwise topographies. These appeared to be simply shifted vertically. 

In contrast, localised square trenches or peaks triggered important non-uniformities 

of the solvent concentration in the wake of the topography. These non-uniformities 

persist far downstream of the topography and result in defects of the final dried 

profile in the form of a depression for the trench and a surge for the peak. Finally, 

the effect of solvent evaporation on the spreading of droplets was investigated. Nu- 

merical results showed that after an initial stage during which the spreading obeys 

Tanner's (1979) predictions, the contact line slows down and eventually pins for 

large values of the evaporation rate. This contact line pinning is caused by the 

solvent evaporation in the contact line region yielding large values of the viscosity. 
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8.1 Summary 

The key outcomes of this thesis are twofold: 

1. A new numerical approach for the solution, in an efficient, robust and accurate 

manner, of both transient and steady-state forms of the nonlinear lubrication 

equations, both with and without the effects of evaporation. 

2. Application of the above to industrially relevant thin film flow over heterogen- 

eous substrates. More specifically: 

" droplet spreading over substrates containing topographic and wetting het- 

erogeneities; 

" the gravity-driven flow of continuous thin liquid film over topography. 

The underpinning governing equations, together with important flow parameters, 

issues concerning the modelling of contact lines and boundary conditions are presen- 

ted in Chapter 2. This is followed, Chapter 3, by a comprehensive description of the 

numerical approach used to solve these equations which, in brief, is a fully-implicit 

Full Approximation Storage (FAS) Mutligrid algorithm which has embedded within 

it an adaptive time-stepping scheme that enables the same to be optimised in a 

controlled manner subject to a specific error tolerance. 

The validity and correct implementation of the numerical method was first assessed, 

Chapter 4, by considering a number of problems, described by ordinary and partial 

differential equations, with known analytical solutions. 

Applied to a first order ODE, (4.1), with constant coefficients the adaptive time- 

stepping scheme and associated two-stages solution process (explicit predictor stage 

and implicit solution stage) proved successful in estimating the Local Truncation 

Error (LTE) for small enough values of the prescribed error tolerance. As a con- 

sequence, the time-step selection was shown to be optimal taking the largest possible 

value while guaranteeing control of the LTE. 

The transient two-dimensional heat equation was solved next. The presence of 

spatial truncation error implies that the value of the prescribed error tolerance 
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needs to be chosen carefully in order to balance it and the (temporal) LTE. With 

an appropriate choice of the tolerance, the adaptive time-stepping scheme is found 

to outperform the backward Euler scheme (fixed time-steps) in terms of required 
CPU time and accuracy. 

In Chapter 5, the efficiency and accuracy of the numerical method was explored 
further by solving the lubrication equations for the case of droplet spreading, in 

some cases for which corresponding analytical solutions are available for validation 

purposes. 

Droplet height at the centre of a partially wetting droplet, spreading over an ho- 

mogeneous, flat substrate, was found to satisfy the power law predicted by Tanner 

(1979). Moreover, the value of the coefficient in this power-law matched well those 

found by Schwartz and Eley (1998). For the spreading of a fully wetting droplet 

driven by gravity, the self-similar solution first derived by Nakaya (1974) proved a 

valuable source for validation purposes. Again, droplet profiles obtained numeric- 

ally were found to be in good agreement, over the bulk of the droplet, with the 

corresponding analytical ones. 

In addition, for the first time, the spreading of a droplet over a substrate with 

topographic and wettability features was solved numerically. Results include the 

spreading of a fully wetting droplet over a square trench and peak and the wetting 

and dewetting of a square peak by a droplet due to contrast in wettability between 

the topography and the rest of the surrounding substrate. The flow of a fully wet- 

ting droplet down an inclined plane and over a square peak was also considered. 

Of course, in the absence of possible comparison with experimental data, estimat- 

ing to what extent these results match reality is difficult. It may be anticipated, 

however, that the over large value of the precursor film thickness used in the com- 

putations will over predict the spreading rate as discussed by Schwartz and Eley 

(1998). Nevertheless, these solutions provide useful qualitative insight. 

Although direct comparison, with existing schemes such as ADZ, of the performance 

of the numerical method utilised, is difficult due to the lack of reported data, t1 w 

evidence suggests it possesses the following benefits: 
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1. The efficiency of the scheme is optimal in the sense that the CPU time taken 

to solve a discretised equation set, at each time step, is simply O(N) where 
N is the number of unknowns. This allows unprecedented (to the best of 
the author's knowledge) fine mesh densities to be used for the solution to the 

two-dimensional lubrication approximation. 

2. The adaptive time-stepping scheme allows optimal selection of the time-step, 

taking the largest possible value while guaranteeing the control of the LTE. 

The scheme also "follows the physics". This is most clearly demonstrated when 

solving the transient two-dimensional heat equation - the rapid fluctuations 

of the diffusivity is mirrored by the time-step variations. It is also clear for the 

case of a droplet spreading over a cross of poorly wetting material. The break- 

up of the droplet into four satellite droplets, in the four quadrants, delimited 

by the cross is seen to coincide with episodes of a decrease in the time-step. 

3. The fully-implicit nature of the multigrid ensures that the larger time-step 

estimates given by the adaptive time-stepping selection procedure can actually 

be used in practice. 

4. A significant improvement in robustness was achieved by using the PPS de- 

veloped by Zhornitskaya and Bertozzi (2000). This scheme proved to be es- 

sential in order to solve droplet spreading over topographies. A possible ex- 

planation for the necessity of using this scheme, based on the effective spatial 

resolution, is also provided. 

5. Local mesh refinement is fully compatible with the multigrid algorithm. The 

potential of the ML A% is illustrated for the two-dimensional heat equation 

with a step-change in the diffusivity, and for the flow of a thin film over a 

step-down topography and a localised square trench as discussed later. 

6. A further useful attribute is that further physics and additional equations can 

be incorporated in the multigrid solver without requiring modifications to the 

algorithm. For example, the addition of a solvent concentration equation into 

the multigrid solver, as reported in Chapter 1, illustrates this desirable feature. 
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The flow of a gravity-driven thin liquid film was explored in depth in Chapter 6. 
Step up and step down geometries were used to test the accuracy of the lubrication 

analysis, relative to corresponding Navier-Stokes calculations, over a range of step 
heights and flow rates (and hence Reynolds number). Contours of constant error 

revealed that even when the step height is equal to the film thickness and the flow 

rate is such that Re = 15 (with Ca ý- 10-3), the maximum error between the 

predicted profiles is only about 15%. This lends support to the general experience 
that lubrication theory can provide good predictions even when topographies are 

steep. 

The discussion of three-dimensional flow focused mainly on that over a square trench, 

calculated using lubrication theory. The predicted free surface shapes agree well 

with the experiments of Decre and Baret (2003), and particular thought was given 

to the cause of the "downstream surge" which is not present in the flow over one- 
dimensional topographies. A simple explanation for the elevated surface behind 

the trench is that fluid flows into the trench across a greater width (i. e. over the 

upstream and side walls) than that across which it must exit. The normal component 

of gravity was shown to suppress the upstream free-surface disturbance, as expected 

from the one-dimensional analysis of Kalliadasis et al. (2000), but it does not inhibit 

the downstream surge. Three-dimensional rear-view visualisations of the free surface 

show how the downstream surge separates into two as the aspect ratio of the trench 

is increased and how the flow over the centre of the trench approaches the one- 

dimensional case. 

The positions of the spanwise local extrema in film thickness produced by flow past 

a square trench and an equal but opposite square peak were plotted as a function of 

the lateral coordinates, and an inverse hyperbolic cosine function was demonstrated 

to fit these loci extremely well even upstream of the topography. This gives a 

complete description of the spread of the bow wave, but does not capture the rate 

of decay in amplitude. The equal square peak and trench were used to test the 

linearity of the free surface responses by superimposing their individual responses 

to see if the surface produced was planar. While not being perfectly so, there is 

only a slight deviation of the order of 7% of the individual disturbances when the 
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topography depth is a quarter of the film thickness. Reducing the relative depth of 
the topography to 0.1 resulted in an even smaller deviation of the order of 2%. 

The superposition principle was further tested for a more complex, T-shaped topo- 

graphy. Even in that case, where nonlinear effects might be expected to be more 

important, free surface profiles obtained by linear superposition were still in good 

agreement with those obtained numerically. An example was also given of a modi- 

fication to a square peak topography which substantially reduces the free-surface 

disturbance. Such modifications of essential topographic features may help to min- 

imise troublesome free-surface features at later stages in manufacturing processes. 

Chapter 6 concludes with results exploring the effect of perturbations at the inlet 

boundary. These perturbations, produced by imposing periodic variations of the 

inlet film thickness, propagate downstream at a velocity found to be approximately 

equal to twice the free surface velocity, in agreement with Bielarz and Kalliadasis 

(2003). High frequency perturbations are found to be damped more rapidly than 

low frequency ones and produced a solitary wave of almost constant amplitude 

that travels far downstream, propagating free surface defects produced by the topo- 

graphy. 

Finally, evaporating thin liquid films were considered in Chapter 7 in the context 

of droplet spreading and gravity-driven films. The former reveal that the increase 

in viscosity induced by the solvent evaporation in the contact line region lead to a 

decrease of the droplet base expansion rate and eventually the pinning of the contact 

line in a way reminiscent of partially wetting droplets of pure liquids. The latter 

emphasised the contrast between the response of the flow to full-width spanwise 

and localised topographies. The presence of a step-up or a trench leading to a two- 

dimensional flow field did not appear to affect the composition of the resin/solvent 

mixture. Nevertheless, the solvent loss as the fluid travels further and further down- 

stream leads to a viscosity increase and as a consequence a rise of the free surface. 

This rise is more and more pronounced for large values of the evaporation rate. Loc- 

alised topographies, on the other hand, were found to produce two distinct grooves 

in the solvent concentration downstream of the topography. This nonuniformity of 

the solvent concentration was shown to induce defects in the final dried profile for 
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a trench and a peak topography. 

8.2 Suggestions for future work 

Several aspects of the work reported above would benefit from further investigation. 

The first relates to the accurate modelling of wetting lines and closure of the gap 
between the macroscopic description of the droplet and the molecular scale of the 

contact line region. Due to the requirement that the mesh resolution should be of 

the same order as the precursor film thickness, it was impossible to use realistic 

values of the latter. To emphasise this difficulty, consider the following example. 

The largest values of the precursor film thickness are generally thought to be in the 

range of 100 nm. For a droplet of typical thickness 1 mm, the above requirement 

imposes that the mesh resolution should be of O(10-4). The bulk of the results for 

droplet spreading presented in Chapter 5 were obtained on a 257x257 mesh having 

a mesh resolution of 3.9 x 10-3. Hence, a more than one order of magnitude increase 

in the mesh resolution still needs to be gained. A means of achieving this would 

be to parallelise the multigrid solver in order to share the computational workload 

on several processors, since a number of stages in the multigrid algorithm can be 

suitably performed independently on different processors, for example the pointwise 

relaxation procedure or the evaluation of the residuals. One can anticipate that 

large amount of computational time might be saved allowing finer mesh resolution 

to be used. An alternative, which would undoubtedly require more work but could 

be the answer to the multiple-scale physics involved in dynamic wetting, would be to 

optimise the local mesh refinement algorithm so that regions of fine mesh resolution 

are restricted to the contact line. Allied with adaptive time-stepping, much greater 

efficiency could be achieved and realistic values of the precursor film thickness used 

in computations. 

In this work, spreading driven by gravity and by surface tension were essentially 

explored independently. However, depending on the droplet volume, the two regimes 

can coexist during the spreading. It would be an interesting study to investigate 

the transition between the initial surface tension-driven stage and the final gravity- 
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driven one. Moreover, the effect of topographic features on the speed of droplets 

sliding down an inclined plane could be explored further as a potential means to 

slow the sliding motion down. 

The validity of the lubrication approximation has been quantified for two-dimensional 

flow over a step-up and a step-down topography for a range of step heights and flow 

rates. A useful extension would be to perform a similar analysis for localised topo- 

graphies giving rise to three-dimensional flows. The necessity to compute accurately 

the three-dimensional free surface shape using the Navier-Stokes equations is, how- 

ever, still an obstacle in realising this goal. 

The inverse problem, mentioned by Decre and Baret (2003), consisting of optimising 

the topography shape in order to reduce the free surface disturbance is also a problem 

deserving further attention. Performing numerical simulations would require an 

efficient algorithm to reduce the penalty function (measure of how flat the free 

surface is for a given topography) since each takes a large amount of computational 

time to execute. 

Much more work still remains to be done in the area of evaporating and drying of thin 

films. In industrial applications, much of the interest usually concerns the ultimate 

profile of the dried film. The pinning of the contact line due to solvent evaporation 

was successfully reproduced in Chapter 7 but it would be interesting to be able to 

predict the next stage when the thinning of the droplet is essentially due to the mass 

loss caused by solvent evaporation. Parisse and Allain (1996) observed that during 

the latter, a solid foot forms near the contact line and with time its size increases. 

However, it is arguable that solvent diffusion and solutal Marangoni effects become 

important and should therefore be included in the governing equations. 



Appendix A: Force balance in 

the contact line region at 

equilibrium 

A diagram of the edge of a drop at static equilibrium is shown on figure 1. 
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FIGURE 1: Contact region, at the edge of the drop, at equilibrium 

Following the same approach as Schwartz (1998), it is useful to review the basic 

force balance and its relationship to the equivalent line tensions using the disjoining 

pressure model described in §2.5.2. Because the analysis is local to the drop edge, 

only a 2-dimensional problem needs to be considered. The point labelled A in fig. 1 

is assumed to be sufficiently far from the substrate that its height H when measured 
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in units of H*, is effectively infinite and II(H) is zero there. The inclination at A 

has become constant at the equilibrium contact angle e0: thus the pressure jump 

caused by the curvature of the surface is also zero. Therefore, the total pressure at 
A is zero. Similarly, at point B on the precursor film, the inclination O and its rate 

of change are both zero, and II(H) is also zero there. 

Performing an integrated force balance in the X direction on the region enclosed by 

the dashed line on figure 1 and recognising that the total pressure is zero on the 

vertical faces at A and B, we have 

0= 
00 

P(H)dH=aJHýdH- H(H)dH. (1) 
fH 

* 

L. 

where S is the arc length measured along the free surface. But ds = sin O; thus, 

0=a cos OI° - (2) 
L11H, 

or 

a cos ®0 =a- Ed(oo) 
, 

(3) 

where Ed(H) is the local disjoining energy density and Ed(oo) is equivalent to the 

so-called spreading coefficient. Equation (3) is the disjoining-model equivalent of 

the Young's equation (2.37). 

Using the two-term disjoining model, the constant B in eq. (2.43) may be replaced 

in favour of e0 using eq. (2) and 

B= 
(n 

* 
1)(m - 1) 

cos Oo) -- 
(n - 1)(m - 1) 

ae02 (4) 
H (n - m) 2H* (n - m) 

where the small-argument approximation to cos 00 is used for the approximate 

equality. 



Appendix B: Equivalence of the 

differential and integral forms of 

the kinematic boundary 

condition 

The integral form of the kinematic boundary condition at the film free surface 

requires that 

OT + OX 
f 

UdZ + ý, J VdZ = 0. (5) 
ss 

Using Liebnitz' Rule (see Chapter 2), the second term of this equation may be 

rewritten as 

X 
dz -U 

ýI 
ZS +UI Z_ý (6) X (fsUdz = f 

Similarly, for the third term, 

aV 
dz =Sv dZ - vas l Z-S +va 

qf l Z=ý aY 
(fS 

ay aY aY 

Noting that, 
W 

0=aw äZ 
dZ - 11' Z= +W lz-s (8) 

s 
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and dropping terms involving U, V and W at Z=S from eqs. (6), (7) and (8) 

because of the no-slip boundary condition (eq. (2.3)), eq. (5) is equivalent to: 

OH 
T+ 

au 
+ 

OV 
+ 

aw 
dz _W aý aý 

OT 
(19x 

a az I z=ý + (U) 
ax I Z=ý + (\V) 

aY I Z=ý (9) 
s 

Because of the incompressibility assumption, the integral term in eq. (9) vanishes 

so that finally, we obtain 

aH+Ua 
+Va =W on Z=W(X, Y, T), (10) 

aT ax ay 

which is precisely the differential form of the kinematic boundary condition at the 

film free surface given in Chapter 2. Hence, the equivalence of the differential and 

integral forms of the kinematic boundary condition is proven. 



Appendix C: Derivation of the 

adaptive time-stepping scheme 

and Local Truncation Error 

estimate 

For the sake of simplicity and clarity, the adaptive time-stepping scheme and LTE 

estimate are derived for the following ODE, 

du 
_F (u, t) 

dt 
(11) 

The derivation is readily applicable to equations of the form of eq. (3.1). The 

solution of eq. (11) is sought at the discrete times t1, t2,... , to defined recurrently 

by to+l = to + Otn+l as seen on Figure 2. In order to obtain the explicit predictor 

n n+1 Qt 

- ý -I t 

t 

-------------- ---------------- 
n_I n o+l 

t t t 

FIGURE 2: Discrete time points and time intervals. 

(eq. (3.9)), 26n+1 predict) to the solution u at t= to+l, eq. (11) is expanded in Taylor 

series in the neighbourhood of to leading to 
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un+l = un + Otn+l 
Ö2l 

n+ 

(Otn+1)2 a2u (Otn+1)3 33u 
4 

at 
ýt 

2J (Oi2 
stn +l6 Öi3 stn + (tn+')12) 

, un-1 = un - 
Otn 

Öu 
In+ 

(Otn)2 322.4 
I 

(Otn)3 03u 

at t2 Öt2 t'ý 6 Öt3 
It n+0 (Otn4ý (13) 

The second order derivatives are eliminated from eqs. (12) and (13) by calculating 
(Otn)2 x eq. (12)-(Otn+l)2 x eq. (13) and after rearrangement, the following second- 

order accurate explicit scheme is obtained: 

un+i Predict = ß2un-1 + (1 
- 

02) U+ Din+l(1 + ß)F (un, tn) +0 (Ot2) 
, 

(14) 

with the associated LTE, 

(Otn+112 Otn(1 + /3/ \ 53u 
LT EPredict =`161 at3 

I t=tp tp E (tn, to } 1) , 
(15) 

where 0 is the ratio of successive time steps. The solution stage uses the et-scheine 

described in Chapter 3 with Ot =2 (implicit, O((Atn+1)2)), defined as 

Otn+i 
un+l = un +2 (F (un tn) +F (fin+l to+l)) } (Ot2) 

, (16) 

for which the LTE is equal to (Chapra and Canale (1998)) 

3 

LTE = 12 (Otn+i)3 
at3 

I t=tc ' tc E (tn, to+1) " 
(17) 

Hence, given the true solution to eq. (11) at t= t', the solution at t= t'+l will be 

given by 

(Otn+l)2 Otn(l + 0) 33u 
/lö 

U 
(tn+1) 

= un+1 Predict +6 Öt3 
I 
t=tp l) 

1 a3u (191 u( 
`tn+') - uni 1- 

12 
(Otn+1)3 

Öt3 
It__t, 

ý 
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Assuming negligible variation of the third order derivative for tE (tn, tn+l), this 

can be estimated using eqs. (18) and (19) leading to 

alu un+l - un+l Predict 
at3 

ItE(tn, 
tn+1) 

Otn+13 
± 

(Otn+1)2ýtn(1+Q) 
(20 

12 
/6 

Finally, replacing eq. (20) in eqs. (15) and (17) gives an estimate for the LTE for 

the solution stage: 
u n+l - un+l LT E Predict ý21 

1+2ýß1 ' 

and the predictor stage: 

un+1 - un+l predict r 
1 

LT Epredict =Q (22) 1+ 
2(1+Q) 

An interesting corollary result is that the estimate for the LTE of the predictor stage 

is proportional to the estimate for the LTE of the solution stage according to, 

LT Epredict = 
2(1+0) 

LTE. 
13 

(23) 

Therefore, for fixed time steps, the magnitude of the LTE for the predictor stage is 

4 times greater than the one for the solution stage. 



Appendix D: Analytical solution 
to the transient, 

two-dimensional heat diffusion 

equation 

The solution to the transient two-dimensional heat diffusion equation, namely 

au 
__ 

a au a au 
at ax ax ay ay 

(24) 

for (x, y) E S2 = (0,1) x (0,1), t>0 and constant k is sought using separation 

of variables. Equation (24) is solved subject to the following initial and boundary 

conditions 

u(X, O, t) = u(x, lit) =0, 

u(0, y, t) = u(1, y, t) =0, 

u(x, y, 0) = xy(x - 1) (y - 1) . 

Letting u(x, y, t) = X(x)Y(y)T(t) and replacing into eq. (24) yields 

T' Y"_ X" (25) 
kT YX 
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Both side of eq. (25) must equal the same constant. which we will call -A. Then: 

X" 
x= -A, 

T' Y" 
kT Y- -A. 

The last equation may be rewritten as !T+A and again. both sides of t lei", 

equation must equal the same constant, -µ. Hence, 

Y// 

T' 
+A IST=-µ. 

Having separated the variables, solving eq. (24) is equivalent to solving 

X"+AX =0, Y"+µY=O, T'+(A+µ)kT=O. (26) 

Considering now the boundary conditions. Since u(0, y, t) = X(O)Y(y)T(t) =0, 

we conclude X (O) =0 and similarly, using other boundary conditions, we obtain 

X(1) = Y(0) = Y(1) = 0. 

The problems for X and Y are therefore: 

x" + ax =0; x(O) = x(1) = 0, (27) 
Y' + µY =0; Y(O)=Y(I)=O, (28) 

which admit respectively the following eigenvalues and eigenfunctions: 

An = n2IT 2; Xn(x) = sin(nrx) for n=1,2, ... 

/gym, = m27r2 ; Y7z(y) = sin(miry) for m=1.2, ... 

The equation for T is: 

V+ k(M2ir2 + n27r2)T =01 (29) 

and its solutions are constant multiples of e-kanmt in which a,,,,, = m27r 2 +n'7-, 2 for 

n, m= (1,2,... ). 
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We can now form functions 

Unm = Cnm sin(m7rx) sin(m7ry)e-ka,,,,, t 00) 

which satisfy eq. (24) and its boundary conditions for any m and n positive hit cgers. 
In order to satisfy the initial condition, a linear superposition is tried, 

u(x, y, t) = °O 
1 

E°°_i C,,, sin(n7rx) sin(m7ry)e-kanmt 

The initial condition requires that 

u(x, y, 0) = xy(x - 1)(y - 1) _ J: °O 
1 

E°°=1 C,,, sin(n7rx) sin(m7ry) , 

which is the Fourier sine expansion of u(x, y, 0) on the domain S2 = (0,1) x (U. 1). 

The coefficients of such an expansion are 

Cnm = 4f6 
.% 

xy(x - 1) (y - 1) sin(n7rr, ) sin(m7T? 7)dkd7] ; n, m 

Performing this integration yields, 

Cram 
n3m 

16 

7rg 
[1 - (-1)n] [1 - (-1)rr'] (31) 

Finally, the solution to eq. (24) with initial and boundary conditions is: 

00 0() 
u(xl y, t) - 

1s 
L 

[l - (3 1)n] [l -( I)m] 
sin(n7rx) sin(miry) exp(-ka�r,, t) 

n=1 m=1 (32) 
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