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Abstract

The Earth’s atmosphere is often compared to a low temperature combustion system

in which solar energy drives radical oxidation of trace gases. The OH radical is the key

daytime radical oxidant and reacts rapidly with the majority of the anthropogenic and

biogenic volatile organic compounds (VOCs) released to the atmosphere. Over the past two

decades, field campaigns in remote regions, characterised by high concentrations of

hydrocarbons, such as isoprene, but relatively low concentrations of NOx (NO + NO2) have

highlighted significant discrepancies between measured and modelled concentrations of

OH; with modelled OH concentrations underestimating the measured daytime values by up

to an order of magnitude. Consequently, a number of experimental and theoretical studies

have sought novel OH generating reactions that are currently not implemented into

atmospheric models. One such suggestion is that under low NOx conditions (sub 100 pptv),

certain peroxy radical species, formed following the addition of O2 to radicals produced

through OH initiated VOC oxidation, might undergo unimolecular dissociation reactions that

regenerate OH. In this thesis, a number of OH initiated oxidation systems have been studied

which produce radical intermediates that recycle OH in the presence of O2. These systems

have been investigated experimentally by monitoring the OH directly using laser flash

photolysis coupled with laser induced fluorescence (LFP – LIF). By monitoring the OH

kinetics directly, it is possible to quantify the yield of OH recycled in the presence of O2 as a

function of pressure, temperature, and O2 concentration from the ratio of rate coefficients

measured in the presence and absence of O2; this OH cycling methodology was used

extensively in the work presented here.

The first experimental work presented in this thesis focused on the OH initiated

oxidation of a series of alkynes (acetylene, propyne, and 2-butyne). These reactions proceed

initially via OH addition across the alkyne triple bond, to generate an adduct that exists in

two energetically distinct conformations. These adducts react rapidly with O2 to generate a

bicarbonyl species and recycle OH, or an organic acid and acyl radical as first generation

products; with product branching ratios dictated by the stereochemistry of the adduct at

the point of reaction with O2. The nascent adduct forms following the OH + alkyne reaction

with excess energy. It is widely accepted that at pressures relevant to the troposphere, any
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excess energy in reaction products is dissipated through inelastic collisions prior to the

onset of secondary bimolecular chemistry. However, experimental and theoretical work

presented here suggests that under atmospheric conditions, a significant fraction of the

total product yield associated with the OH + alkyne/O2 systems, form before the internal

quantum states of the adducts have fully relaxed. The product branching observed for the

OH + alkyne/O2 system is said to be influenced by chemical activation, whereby the

exothermicity of an initial reaction is utilised by the products to undergo secondary

reactions not accessible to the thermalised products.

Attention then turns to OH oxidation reactions that proceed via a hydrogen-atom

abstraction channel. Abstraction reactions are often considered to deposit the majority of

the available reaction exothermicity into the newly formed bond, particularly if the reaction

involved has an early transition state. Experimental evidence presented here suggests that

some atmospherically relevant carbonyl reactions, that are considered to proceed via direct

hydrogen-atom abstraction, partition a significant fraction of the reaction exothermicity into

the radical fragment. The OH + acetaldehyde, CH3CHO, reaction is considered an archetypal

abstraction reaction. The acetyl, CH3CO, produced is known to react with O2 at low

pressures to generate OH, with a unity yield at zero pressure. However, the pressure

dependent OH yields observed for the OH + CH3CHO/O2 system suggest that ~15% of the

CH3CO produced through the OH + CH3CHO reaction dissociates promptly to CH3 + CO.

CH3CO fragmentation requires more than 50% of the total exothermicity of the OH +

CH3CHO reaction to be channelled into the CH3CO.

The second hydrogen-abstraction channel considered here is the OH + glyoxal,

(HCO)2, reaction that results in production of the HC(O)CO radical. HC(O)CO chemistry is

governed by a competition between unimolecular dissociation, and bimolecular association

with O2. Recent calculations have suggested that the HC(O)CO + O2 reaction proceeds

directly to OH + CO + CO2. This channel has been verified here through experiment, with OH

yields associated with the OH + (HCO)2/O2 reaction quantified for the first time as a function

of pressure (5 – 80 Torr), temperature (212 – 295 K), and O2 concentration. The OH yields

increase with O2 concentration under all experimental conditions, as the bimolecular

HC(O)CO + O2 reaction increasingly competes with unimolecular HC(O)CO decomposition,
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but converge on a limiting yield under high O2 conditions, suggesting that a fraction of the

HC(O)CO produced following the OH + (HCO)2 reaction dissociates promptly to HCO + CO.

In the final experimental section of this thesis a laser system was developed to

detect HCO via LIF. Attempts were made to monitor both prompt and growth HCO signal

following the Cl + (HCO)2 reaction, and quantify the rate of thermal HC(O)CO decomposition

as a function of pressure at low temperatures (212 K). However, rapid HCO removal was

observed at the low experimental temperatures required. Further experimental evidence

suggested that HCO reacts rapidly with (HCO)2 and other aldehydes at 212 K. Quantitative

studies focused on the reaction of HCO with formaldehyde, HCHO, and acetaldehyde,

CH3CHO, with rate coefficients of (3.44 ± 0.15) and (1.24 ± 0.05) × 10-11 cm3 molecule-1 s-1

measured, respectively.
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Chapter 1 Introduction

The opening chapter of this thesis provides a brief introduction to atmospheric

chemistry, and the importance of the hydroxyl radical, OH, in removing atmospheric trace

gas species. Attention then turns to recent OH field measurements which may suggest

significant misunderstanding with regard to volatile organic compound (VOC) oxidation in

remote atmospheric regions. The second half of this chapter highlights the importance of

kinetic studies to atmospheric science and provides a concise introduction to gas-phase

kinetics and the development of theoretical methods used to describe these reaction

systems. This chapter concludes with an overview of the subsequent chapters presented in

this thesis.

1.1 Basic Atmospheric Chemistry

A number of significant environmental concerns, such as photochemical smog, global

climate change, and stratospheric ozone depletion, relate directly to perturbations in the

chemical composition of the atmosphere. Resolving these issues requires a detailed

understanding of the ways in which chemical emissions are processed in the atmosphere.

Trace gases of both anthropogenic and biogenic origin, are for the most part removed from

the Earth’s troposphere via radical-chain oxidation.1 The initial step in these radical-

mediated pathways is predominantly through reaction with the hydroxyl radical, OH. The

primary source of tropospheric OH is through photolysis of ozone in the presence of water

vapour:

O3 + hν  → O(1D) + O2 (P1)

O(1D) + H2O → 2OH (R1)

The OH radical is the dominant day-time tropospheric oxidant and reacts rapidly

with the majority of volatile organic compounds (VOCs) emitted to the atmosphere.

Saturated hydrocarbons (such as methane, CH4) react with OH to generate alkyl radicals and
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water vapour, subsequent pressure-dependent addition of molecular oxygen, O2, produces

the respective alkyl peroxy radical. The initial steps in the atmospheric oxidation of CH4 are

given below, where M represents an atmospheric third body, typically a nitrogen or oxygen

molecule, which removes excess energy from the nascent peroxy radical through collisional

deactivation:

OH + CH4 → CH3 + H2O (R2)

CH3 + O2 + M → CH3O2 + M (R3)

The chemistry which follows peroxy radical formation is largely dictated by the

concentration of various oxides of nitrogen that are present. Consequently the chemistry

associated with polluted industrial regions, where NO and NO2 (collectively termed NOx) are

relatively abundant, differs markedly from remote, clean regions where NOx concentrations

are relatively low. Alkyl radicals react rapidly with NO to produce alkoxy radicals and NO2.

The alkoxy radical can then react with O2 to form a carbonyl species and an HO2 radical.

Continuing with the simple methane oxidation example, equations describing the reaction

of the methylperoxy with NO (R4), and subsequent reaction of the methoxy radical with O2

(R5) are given below:

CH3O2 + NO → CH3O + NO2 (R4)

CH3O + O2 → HCHO + HO2 (R5)

The HO2 radical produced during methane oxidation (R5) can then react with NO to

complete the oxidative chain process and regenerate OH (R6):

HO2 + NO → OH + NO2 (R6)

The OH and HO2 radicals are often collectively termed HOx. The NO2 produced during these

atmospheric degradation cycles is the only recognised means of generating ground-level

ozone, a significant pollutant:

NO2 + hν  → NO + O(3P) (P2)

O(3P) + O2 + M → O3 + M (R7)
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The cyclic radical reactions and first generation products associated with the atmospheric

oxidation of a generic unsaturated hydrocarbon, RH, are highlighted in Figure 1.

Figure 1: Schematic of the atmospheric oxidation steps for a general saturated hydrocarbon RH in

the presence of NOx.

In the absence of NO, peroxy radicals can undergo self- and cross-peroxy radical reactions,

forming organic peroxides and acids; the major atmospheric sinks of methylperoxy and HO2

radicals are given below:

CH3O2 + HO2 → CH3OOH + O2 (R8)

HO2 + HO2 → H2O2 + O2 (R9)

In remote regions these radical termination channels are important radical loss processes;

although recent experimental and theoretical studies have shown cross reactions of

carbonyl containing RO2 species with HO2 also generates OH.2, 3

Alkenes and alkynes also react rapidly with OH, but via addition across the

unsaturated bond, which generates hydroxyl substituted radicals. Subsequent reaction of

alkene derived HO-adducts with molecular oxygen yields peroxy radicals, with subsequent

chemistry analogous with that of the peroxy radicals derived from alkanes. Unlike other RO2

species, the peroxy radicals formed following reaction of the alkyne derived HO-adduct
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radicals with molecular oxygen are unstable with respect to two product forming channels,

leading to dicarbonyl + OH or organic acid + acyl radical.4-6

Acetylene is the most abundant alkyne in the troposphere, and has been detected in

both urban and remote regions, and at high altitudes.7-9 It is released primarily through

biomass burning and automobile exhaust,10-14 and is consequently used as an atmospheric

marker of anthropogenic activity.15 OH initiated oxidation of acetylene is studied in detail in

chapter 3 of this thesis, and results in the formation of either glyoxal, (HCO)2, and OH, or

formic acid and a formyl radical.4 Acetylene oxidation represents a significant source of

atmospheric (HCO)2, second only to isoprene oxidation, and accounts for 20% of the global

(HCO)2 budget.16 (HCO)2 has been implicated as a likely precursor of secondary organic

aerosol (SOA), which can potentially influence atmospheric chemistry, air quality and

climate.17-19 The total continental source of (HCO)2 is constrained by satellite measurements

to range from 94 to 108 tg yr-1,20 however, only around 50% of the total (HCO)2 budget is

accounted for by recognised sources.16, 21 (HCO)2 has recently been detected in the marine

boundary layer (MBL), in concentrations ranging from 25 to 140 pptv, although the source

remains uncertain.22, 23

1.2 HOx Concentrations in Remote Forested Regions

Due to its decisive role in the removal of atmospheric trace gases, the oxidative

capacity of Earth’s atmosphere is largely governed by the atmospheric concentration of OH.

Accurate future predictions of stratospheric ozone recovery, or changes in global mean

surface temperature demand detailed accounts of the atmospheric lifetimes of the

significant species involved, including CFC replacements (HCFCs and HFCs) and greenhouse

gases (CH4, O3). Accurate derivations of these lifetimes are dependent on the accurate

quantification of both the atmospheric OH radical concentration and the relevant rate

coefficients.

In remote forested regions large quantities of VOCs such as isoprene (C5H8) are

released from the biosphere (~1000 TgC yr-1).24 Biogenic hydrocarbons are known to react

rapidly with OH, indeed, the OH + C5H8 reaction proceeds with a near gas kinetic rate
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coefficient of (1.11 ± 0.23) × 10-10 cm3 molecule-1 s-1 under ambient conditions;25 and

therefore act as efficient OH sinks. In the absence of appreciable NOx, atmospheric global

models predict that biogenic VOCs should rapidly sequester OH, reducing the oxidising

capacity of the atmosphere in these regions and thereby extending the atmospheric

lifetimes of less reactive hydrocarbons, such as CH4. However, several recent field

measurements in pristine forested environments contradict these model predictions, and

report OH concentrations far higher than those simulated by chemical models.26-31

Furthermore, the disparity between measurement and prediction is observed to correlate

with isoprene emission;29 suggesting either a significant fault in the current understanding

of VOC oxidation in clean air masses, or systematic errors in HOx field measurements in

these environments. The latter has been suggested by Mao et al.,32 following the

comparison of recent OH field measurements made above a Californian forest using two

different detection techniques. OH was detected by on-resonance laser induced

fluorescence (LIF) using either the traditional fluorescence assay by gas expansion (FAGE)

technique, or by chemical modulation based on the signal difference with and without the

addition of a highly reactive OH scavenger prior to LIF detection. The diurnal OH

concentrations measured by Mao et al. using chemical modulation were consistently

between 40 and 60% lower than the values measured by FAGE.32 Mao and co-workers

concluded that the chemical modulation technique provided a quantitative measure of the

real atmospheric OH concentration, based partly on their ability to model the daytime OH

concentrations measured using this technique, and that the high bias observed using their

FAGE instrument was a result of an unknown OH source within the FAGE cell. It is

worthwhile to note there is also indirect evidence that indicates elevated OH concentrations

in remote forested regions. Recent (HCO)2 measurements above the tropical rainforest in

Borneo, using differential optical absorption spectroscopy (DOAS), have reported peak

concentrations of ~1.6 ppb.33 Modelling studies have shown (HCO)2 concentrations of this

magnitude are consistent with (HCO)2 production via isoprene oxidation using the elevated

OH concentrations reported in this region using the FAGE technique; indicating that the

uncertainty rests in our understanding of radical chemistry in these regions.
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In an effort to resolve the discrepancy between measured and modelled OH

concentrations in clean air regions rich in biogenic VOCs, the scientific community has

recently re-examined its understanding of VOC oxidation under low NOx conditions, and

sought novel OH forming channels currently not implemented into atmospheric models.

One such reaction, the aforementioned OH product channel following reactions of HO2 with

RO2 radicals was first proposed by Lelieveld et al.,28 and recently observed directly by Dillon

and Crowley,3 and inferred by product studies;2, 34-37 although these radical propagating

channels have only been observed for RO2 species containing acyl, carbonyl, hydroxyl or

alkoxyl functionalities.

An alternative suggestion described OH regeneration though epoxide formation

during isoprene oxidation.38 Conventional chemistry for isoprene oxidation under low NOx

conditions predicts the formation of hydroxyl-hydroperoxides from the cross reaction of

isoprene derived peroxy radicals with HO2. Paulot and colleagues proposed that oxidation of

these hydroxyl-hydroperoxides by OH results predominantly in the formation of epoxides

and OH. Theoretical calculations supporting epoxide formation were performed alongside

chamber experiments, during which both the isoprene derived hydroxyl-hydroperoxides and

the epoxides were identified as ion-molecule clusters using chemical ionisation mass

spectrometry (CIMS).

Theoretical studies of the OH initiated oxidation of isoprene have also been carried

out to investigate the potential for OH recycling. Density functional theory (DFT) calculations

carried out independently by da Silva et al.39 and Peeters et al.,40 have reported the

possibility of OH formation following decomposition of alkoxy radicals formed following

intramolecular rearrangement of certain peroxy radicals derived from isoprene; although

the isomerisation rate is not expected to compete with peroxy radical loss through reactions

with NO and HO2.39 In addition, Peeters and co-workers suggested that isomerisation of

other isoprene derived peroxy radicals could lead to the formation of resonance stabilised

alkoxy radicals which might react with oxygen to generate HO2 and an unsaturated

hydroperoxy-aldehyde (HPALD); these carbonyl species are expected to then photolyse

rapidly in daylight to give further OH, and thereby increase the concentration of both OH

and HO2.40-42
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All of the suggestions proposed in the literature to explain the systematic model

underestimation of OH concentrations in remote forested regions have recently been

assessed by Whalley et al.,31 using HOx measurements made over Borneo during the OP3

campaign in 2008 to determine the current understanding of oxidation chemistry in pristine

environments. OH and HO2 concentrations were measured using the fluorescence assay by

gas expansion (FAGE) technique. The mean diurnal OH concentration profile constructed

from 25 days of OH measurements is shown by the solid black line in Figure 2. Whalley and

co-workers carried out simultaneous field measurements of both the OH concentration and

the total OH reactivity, and by treating OH in photo-stationary steady state, were able to

compare their measured OH concentrations with values calculated from their total OH

reactivity measurements and the various recognised, and postulated OH sources reported in

the literature.

OH concentrations calculated assuming OH is formed solely from ozone photolysis in

the presence of water vapour are plotted as the yellow line in Figure 2, while the brown line

also includes other known OH sources, such as the reactions of HO2 with NO (R10) and

ozone (R11), the reaction of ozone with isoprene, C5H8, (R12), and peroxide photolysis.43-46

HO2 + NO → OH + NO2 (R10)

HO2 + O3 → 2O2 + OH (R11)

C5H8 + O3 → OH + coproducts (R12)

The OH concentrations calculated using all established OH sources underestimate the

observed OH concentration by an order of magnitude at midday (Figure 2); and highlight a

significant missing photochemical OH source, consistent with previous studies.

Including OH generation following OH initiated oxidation of C5H8, as suggested by the

calculations of da Silva and Peeters et al.,39, 40 and experimentally by Paulot and

co-workers38 brings a marked improvement in the agreement between the measured and

modelled OH concentrations (Figure 2); although the green line showing the OH

concentrations calculated using an OH yield of unity associated with C5H8 oxidation

chemistry, still fails to satisfactorily reconcile the measured and calculated OH profiles.
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Stavrakou et al. have suggested that rapid photolysis of the co-products generated

using the Peeters et al. oxidation mechanism, could generate up to 3 OH radicals for every

isoprene molecule oxidised.47 While the OH concentrations calculated using an OH yield of

2.7 brings the measured and modelled OH concentrations in closer agreement (blue line in

Figure 2), the Peeters et al. mechanism is found to introduce a high bias in the modelled HO2

concentration; suggesting that if the isoprene chemistry proposed by Peeters and co-

workers is significant in these regions, then additional chemistry is required to convert HO2

to OH.30, 31

Figure 2: Comparison of measured OH concentrations over Borneo measured during the OP3

campaign in 2008 (black line) with values calculated using the photostationary steady state

approximation constrained to the measured total OH reactivity, k’total, for the loss term and with

various OH source terms included.  The grey shading represents the 1σ standard deviation of the 

averaged OH profile.31
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It has been suggested that including an unknown reagent that can convert HO2 to OH

can reconcile the measured and modelled HOx concentrations in remote forested regions.48

Indeed, Whalley et al.31 found that by including an unknown species X that reacts rapidly

with HO2 to generate OH, they were able to model both OH and HO2 concentrations

observed during the OP3 campaign, without including novel isoprene chemistry (pink line in

Figure 2). However, their satisfactory HOx simulation required a species X concentration of

0.74 ppbv and an HO2 to OH conversion rate comparable to NO. Currently, only carbonyl

containing peroxy radical species have been shown through experiment to convert HO2 to

OH,3, 34-36 and none generate OH in sufficient yield to model the HOx concentration

observed during the OP3 campaign. In conclusion, none of the mechanistic alterations

proposed in the literature were found to result in a satisfactory simulation of the observed

HOx concentrations, as reactions are required that increase the OH-to-HO2 ratio.

It is possible that under low NOx conditions, a number of peroxy radicals derived

from OH initiated VOC oxidation, either convert HO2 to OH, or decompose and recycle OH

directly, and that collectively, these reactions significantly increase the OH-to-HO2 ratio.

Recent calculations by da Silva has suggested that HC(O)CO radical, produced following the

OH initiated oxidation of (HCO)2 (R13) reacts with O2 to generate OH directly (R14).49 A

detailed investigation of glyoxal oxidation is presented in chapter 6 of this thesis.

OH + (HCO)2 → HC(O)CO + H2O (R13)

HC(O)CO + O2 → CO2 + CO + OH (R14)

The uncertainty associated with measured and modelled HOx concentrations in

remote forested regions highlights a recent area of scientific research that has demanded

the concerted efforts of field studies, laboratory experiments, and theoreticians. While the

issues surrounding VOC oxidation chemistry in remote forested regions remain unresolved,

the efforts to date suggest reactions are required that either convert HO2 to OH, or that

recycle OH without also generating HO2. The majority of work presented in this thesis

centres on OH recycling chemistry, and involved quantifying OH yields based on the detailed

kinetic study of elementary reactions. The remainder of this chapter provides a brief

introduction to chemical kinetics.
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1.3 Chemical Kinetics

Kinetics is a field of chemistry concerned primarily with quantifying the rates at

which reactions proceed. Reactions are fundamental to all chemistry and an understanding

of kinetics is essential for a wide range of significant issues, from the catalysts used in

industrial synthesis, to the atmospheric processes related to tropospheric air quality,

stratospheric ozone recovery, and global climate change. Experimental kinetic studies

provide reaction rate coefficients which in turn can provide insight into the mechanism by

which reactions proceed. Rate coefficients are required as primary inputs in the Master

Chemical Mechanism (MCM), a model developed at the University of Leeds to describe the

chemical degradation of tropospheric organic compounds and provide accurate information

concerning the role of specific organic compounds in ground level ozone formation in

relation to European air quality policy development (http://mcm.leeds.ac.uk/MCM/).

For the theoretical reaction:

A + B → Products (R15)

The rate equation can be expressed as follows:

– βαk
dt

d
][][=

][
BA

A
(E1)

where [A] and [B] are the concentrations of reactants A and B, respectively, and α and β are

experimental quantities known as the order of reaction with respect to reactants A and B,

and the proportionality constant, k, is known as the reaction rate coefficient. An elementary

reaction is one in which one or more chemical species react directly to from products in a

single step. The term molecularity refers to the number of reactants species involved in an

elementary step. All the reactions considered in this thesis are either unimolecular or

bimolecular (involve one or two reactant species, respectively) elementary reactions for

which molecularity and order are identical.
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1.4 Temperature Dependence

A great many chemical reactions demonstrate positive temperature dependence,

such that experimental rate coefficients are observed to increase with temperature. This

temperature dependence can be explained by the existence of an energy barrier between

the reactants and products that must be overcome prior to reaction. At higher

temperatures more thermal energy is supplied to the system and an increased fraction of

collisions occur with sufficient energy to form products. This temperature dependence was

empirically quantified by the famous Arrhenius equation:

k(T) = A exp(-Eact/RT) (E2)

where the activation energy, Eact, can be considered as the energy required to reach the

reaction transition state (J mol-1), k(T) is the temperature dependent rate coefficient, A is a

pre-exponential factor, R is the gas constant (8.315 JK-1 mol-1), and T is temperature (K).

Not all reaction rate coefficients exhibit positive temperature dependence. Many

reactions do not exhibit a significant activation energy on path to products and may even

have wells in energy such that reactants pass through an energy minimum on route to

products. Negative temperature dependent kinetic behaviour has recently been observed at

the University of Leeds for the reactions of OH with oxygenated organic compounds.50-53

Rate coefficients for the reactions of OH with methanol, acetone and dimethyl ether were

all observed to increase significantly as temperatures decrease below 100 K, relative to their

well established room temperature values. Experimental and theoretical evidence support

the formation of hydrogen bound complexes prior to products in these systems; with

stabilisation into the pre-reactive complex increasingly favoured at low temperatures.

1.5 Theories of Chemical Reactions

1.5.1 Collision Theory

Collision theory was the first theory proposed to explain and quantify the rates of

gas-phase chemical reactions, and follows the same assumptions made in deriving the

kinetic theory of gases. Collision theory was devised independently by Trautz and by Lewis



12

in the early 1900s and treats molecules as impenetrable spheres, and assumes that no

molecular interaction occurs prior to collision. The collision theory expression adopts the

same form as the Arrhenius equation, with an exponential term that defines the fraction of

collisions that occur with enough energy to overcome the barrier to reaction, but quantifies

the Arrhenius pre-exponential A-factor in terms of the collision frequency. The collision

frequency, Z, can be calculated from the collision cross section and the average speed of the

reactants. The collision cross section, σ, for the reaction is given by:

2

maxbπσ  (E3)

where bmax represents the maximum separation between the centres of two reacting

molecules which still results in collision; for collision between two reactants A and B, with

radii rA and rB, respectively, bmax = rA + rB. The average speed of the reactants ῡ is then

determined from the Maxwell-Boltzmann distribution of kinetic energies:

ῡ 
2

1

8












TkB (E4)

where µ is the reduced mass, mAmB/(mA + mB), and occurs in the equation because we are

interested in the relative speed of approach. Combining the collision frequency with the

fraction of molecules which collide with sufficient energy to react, gives the collision theory

expression for the bimolecular rate coefficient, kCT:

kCT = )/exp(
8

act

2

1

2

max RTE
Tk

b B 









 (E5)

= Z exp(-Eact/RT)

While the collision theory expression conforms to that of the empirical Arrhenius

equation and provides some physical significance to the pre-exponential A-factor and the

importance of reactants colliding, it completely ignores the internal energies of the

reactants involved, and the manner by which a reaction complex evolves on route to

products. In addition, it makes no account of the importance of the orientation of the

collision leading to products, or of the intermolecular forces involved during reaction. A
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more sophisticated theoretical model known as Transition State Theory (TST), developed in

the 1930s by Wigner and Pilzer54 and later by Eyring,55, 56 is required to accurately predict

reaction rates.

1.5.2 Transition State Theory (TST)

Transition State Theory (TST) has long been synonymous with the theoretical

treatment of elementary reactions, with reactants passing through an activated complex on

route to products, across a path defined by the potential energy surface of the reaction.57

Returning to the hypothetical bimolecular reaction:

A + B → Products (R15)

the differential rate law for product formation can be expressed as:

]][[=
][

15 BA
Products

k
dt

d
(E6)

TST assumes that the reaction between species A and B proceeds through an activated

complex, or transition state, and that this activated complex can dissociate by unimolecular

decay either back to reactants or into products; as shown in the fictional reaction scheme

presented below:

A + B → AB† (ka)

AB† → A + B (k-a)

AB† → Products (kb)

The overall rate of forming products is given by:

]AB[
oducts]Pr[ †

b
k

dt

d
 (E7)

As this model assumes a pre-equilibrium exists between the reactants and the activated

complex, the concentration of AB† can be expressed in terms of the equilibrium constant K†

for the formation of AB† from reactants A and B as follows:
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[AB†] = K†[A][B] (E8)

Substituting equation E8 into equation E7 it follows that:

k15 = kbK
† (E9)

The equilibrium constant, K†, can be re-written in terms of the molecular partition functions

of species A and B and the AB activated complex, giving:

)/Hexp( †

BA

AB

b15 RT
QQ

Q
kk 








 (E10)

where QA, QB and QAB correspond to the molecular partition functions of species A, B and

the activated complex AB†, respectively.

One of the vibrational frequencies of the activated complex is not a true vibration as

it corresponds to translation about the reaction coordinate. This degree of freedom can be

defined using vibrational partition function q* in which the vibrational frequency ν tends

towards zero:

hν

Tk

TkhνTkhν
q B

BB )/1(1

1

)/exp(1

1
* 





 (E11)

The rate constant is now given by:

)Hexp( †

BA

†

ABBb

15 /RT
QQ

Q

hν

Tkk
k 








 (E12)

where Q†
AB is now one less degree of freedom corresponding to the reaction coordinate.

The frequency v corresponds to its decomposition to products, and therefore is equal to the

first-order rate coefficient kb. Consequently the TST expression for the experimental rate

coefficient k15 is given by:

)Hexp()( †

BA

†

ABB

15 /RT
QQ

Q

h

Tk
Tk 








 (E13)
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Equation E13 is in canonical form and expresses the rate coefficient as a function of

temperature, k15(T). Properties of the reactants and transition state can be determined from

spectroscopic or thermodynamic data, if available, or from electronic structure calculations.

1.5.3 Barrierless Reactions

Conventional TST assumes that the reaction flux passing through the transition state

does so once, and does not cross back over to reactants; consequently TST is often

considered to provide an upper limit of the true reaction rate coefficient. The no-recrossing

assumption is valid for reactions where the activation barrier is high compared with the

thermal energy available to reactants; for these reactions the transition state can be located

from the stationary point along the intrinsic reaction coordinate, and equation E13 can be

used to derive accurate rate coefficients. However, none of the reactions investigated in this

thesis have appreciable barriers between reactants and products, moreover, some, such as

the association of the HO-C2H2 radical with O2, proceed to products across a barrierless

potential energy surface; these reactions rely on variational transition state theory (VTST) to

locate the transition state.58 By treating the effective frequency with which activated

complexes are converted to products as kBT/h; equation E9 can be re-written in the form:

k15 = 








h

Tk
B Kǂ (E14)

where Kǂ denotes the equilibrium constant for formation of the activated complex, with the

imaginary frequency corresponding to the reaction coordinate removed. The equilibrium

constant Kǂ can be expressed in terms of the Gibbs energy of activation, Gǂ, as follows:

ΔGǂ = -RT ln Kǂ (E15)

It follows from equations E14 and E15 that the rate coefficient k15 can be written in terms of

the change in Gibbs free energy as follows:

k15 = 








h

Tk
B exp(–ΔGǂ/RT) (E16)
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At constant temperature, the change in free energy is dependent on the changes in

enthalpy and entropy according to equation E17:

ΔGǂ = ΔHǂ – TΔSǂ (E17)

The VTST method defines the transition state by varying the reactant parameters to give the

maximum ΔGǂ. For a barriered reaction surface the enthalpy term in equation E17 will

dominate, and the maximum ΔGǂ value becomes closely approximated by ΔHǂ. For

barrierless surface the entropic term in equation E17 becomes significant. There is often a

negative change in entropy associated with formation of an activated complex. For

bimolecular reactions, the complex forms following the association of two species,

corresponding to a loss of three translational, and at least one rotational degree of freedom.

The VTST method adjusts the location of the transition state to give the maximum ΔGǂ. The

variable calculations involved in VTST demand a highly detailed potential energy surface for

the reaction of interest; consequently, the calculations are often limited by the level of

theory used to calculate the reaction surface.

1.5.4 Pressure Dependent Reactions

Under certain conditions, some reaction rate expressions depend on pressure as well

as temperature. Unimolecular decomposition and bimolecular association reactions are

prevalent in gas-phase chemistry, and rate coefficients for both these classes of reaction

depend critically on pressure, and, furthermore, have reaction orders that vary with

pressure. Unimolecular decomposition reactions are intuitively expected to demonstrate

first-order kinetics, although under certain pressure regimes second-order behaviour is

observed. A qualitative explanation for this kinetic dichotomy was provided in 1921 by

Frederick Lindemann. The mechanism proposed almost a century ago by Frederick

Lindemann to explain gas-phase decomposition reactions formed the basis for much of our

current understanding of gas-phase chemical kinetics. For the hypothetical unimolecular

reaction:

A → Products (R16)
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the rate of product formation can be expressed by the following rate law:

][= 16 A
[Products]

k
dt

d
(E18)

The Lindemann model breaks reaction R16 down into a series of elementary reactions, and

defines the phenomenological rate coefficient, k16, in terms of the rate constants assigned

to each of the elementary steps. The Lindemann model provides a qualitative description

for the unimolecular decomposition of A (R16) using the following reaction scheme:

A + M → A# + M (kc)

A# + M → A + M (k-c)

A# → Products (kd)

where species A can collide with bath gas molecules, M, to give the energised intermediate

A# (kc). This intermediate can then either dissociate to products (kd) or be stabilised through

further bath gas collisions to give A (k-c). If the energised intermediate A# is considered

highly reactive, then after a short induction period, the concentration of A# is expected to

reach a steady state, at which point the rate of change in [A#] can be considered zero, for as

soon as A# is formed it reacts and is removed. Under these conditions, the steady state

concentration of intermediate A# can be expressed as follows:

]M][A[
]M[

]A[
d-C

C













kk

k
ss

# (E19)

The rate of product formation can be expressed as follows:

]A[
oducts]Pr[ #

d
k

dt

d
 (E20)

where substitution of equation E19 into E20 gives:

]M][A[
]M[

oducts]Pr[

d-C

Cd













kk

kk

dt

d
(E21)
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To a first approximation, equation E21 can be seen to conform to two extreme limits at high

and low pressure. At the so called high-pressure limit, collisional deactivation dominates the

removal of intermediate A# and the k-c[M] term in the denominator of equation E21

becomes much greater than kd; consequently the rate law reduces to:

]A[
oducts]Pr[

C

Cd











-k

kk

dt

d
(E22)

with a first-order rate coefficient independent of total pressure. At extreme low pressures

bimolecular excitation of reactant A becomes rate limiting and the kd term in the

denominator of equation E21 becomes much greater than k-c[M]; under these conditions

the rate law reduces to:

]M][A[
oducts]Pr[

C
k

dt

d
 (E23)

and the overall rate coefficient is pressure dependent.

The high and low pressure limiting behaviour of the Lindemann mechanism can be

described generally by equation E24:






x

0

x

x ]M[1
]M[

kk

k (E24)

where 

xk and 0

xk denote the pressure dependent reaction rate coefficient kx at the high

and low pressure limit, respectively, and [M] is the total gas number density. Equation E24 is

used in chapter 6 to describe the unimolecular dissociation of the HC(O)CO radical produced

following the reaction of OH with (HCO)2:

HC(O)CO + M → HCO + CO + M (R17)

While the Lindemann mechanism provides a qualitative explanation of pressure

dependent kinetics, its quantitative description is limited by neglecting the effect of the

internal energy distribution within reactant molecules. The total energy of a polyatomic

molecule is distributed amongst translational, rotational and vibrational modes. The
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Lindemann model fails to account for the contribution made by this internal vibrational

energy to the rate of activation and, consequently, systematically underestimates the

bimolecular rate kc. In addition, certain reactions will require reactant energy to be

partitioned in specific modes before products form rapidly. Therefore a distinction must be

made between reactant molecules with sufficient energy to undergo reaction, and those

which yield products rapidly due to energy residing in a reactive mode.

1.5.5 Association Reactions

A second important class of pressure dependent gas-phase reactions involve three

different chemical species. These processes are referred to as association or termolecular

reactions, and involve the formation of an energetically activated complex which requires

collisional stabilisation from a third body; these reactions are significant to atmospheric,

combustion and interstellar chemistry. A detailed kinetic study of the OH initiated oxidation

of acetylene, C2H2, is presented in chapter 3 of this thesis, and for which the initial step is an

association reaction between OH and the alkyne (R18):

C2H2 + OH + M →  HO–C2H2 + M (R18)

Orders for association reactions characteristically depend on pressure, being third

order at low pressures and second order at high total pressures. A Lindemann scheme can

be applied to reaction R18 to provide a qualitative explanation of the pressure sensitive

kinetics:

C2H2 + OH → HO–C2H2* (ke)

HO–C2H2* → OH + C2H2 (k-e)

HO–C2H2* + M → HO–C2H2 + M (kf)

In this scheme OH adds across the C2H2 triple bond to generate an energetically activated

HO–C2H2* intermediate (ke), which can either dissociate back to reactants (k-e) or be

stabilized through collisions with bath gas molecules (kf[M]). The rate of adduct formation

can be expressed as follows:
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]M][*HCHO[
]HC[HO

22f

22 


k
dt

d
(E25)

Treating the activated intermediate HO–C2H2* in steady state (d[HO–C2H2*]/dt = 0) allows

[HO–C2H2*] to be defined as:

[HO–C2H2*]ss = 









ef

e

]M[ kk

k
[OH][C2H2] (E26)

Substituting equation E26 into E25 yields the following expression for the observed rate

coefficient k18:
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kk
k [OH][C2H2][M] (E27)

Equation E27 can be seen to conform to two extreme pressure limits; analogous to the

Lindemann description of unimolecular dissociation kinetics. At the high pressure limit,

equation E27 reduces to:

∞
18k = kf[OH][C2H2] (E28)

Under these conditions the formation of the association complex is rate determining, the

rate adduct formation is independent of total pressure, and second order kinetics are

observed. At limiting low pressures equation E27 reduces to:

0
18k = 









e

ef

k

kk
[OH][C2H2][M] (E29)

Under low pressure conditions the rate of adduct formation is dependent on the equilibrium

established between OH and C2H2, and the activated association complex. The rate of

adduct formation scales with pressure and third order kinetics are observed.

1.5.6 Development of the Lindemann Theory

The first flaw in the Lindemann model was addressed by Cyril Hinshelwood who

treated the internal vibrational modes of the hypothetical molecule A as being s equivalent
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simple harmonic oscillators, all of frequency v, and used statistical methods to determine

the probability of molecule A being energised to A# following a collision.

The degeneracy, gυ, for a set of molecules distributing υ vibrational quanta amongst

s oscillators can be expressed as follows:

 
)!1(!

!1






sυ

sυ
gυ (E30)

For a polyatomic molecule with υ quanta of vibrational energy and s harmonic oscillators of

frequency ν, the fraction of molecules in state υ is given by the Boltzmann distribution:

nυ/N = gυ exp(-υhν/kBT)/Q (E31)

where the vibrational partition function, Q, now becomes (1 – (exp(-hν/kBT))-s.

Hinshelwood invoked the strong collision assumption which infers the state of the molecule

after a collision is totally uncorrelated to its state prior to collision, and that the probability

of any collision deactivating A# was unity, consequently the bimolecular rate of deactivation,

k-c, in the Lindemann reaction scheme becomes equal to the collision frequency, Z. As

collisions promote equilibrium, the probability of forming state υ following a collision is

given by the Boltzmann distribution for that state, therefore the rate of activation to state υ,

kc (υ), is given by:

kc (υ) = Zgυ exp(-υhν/kBT)/Q (E32)

Since chemical energies are generally much greater than the thermal energy (kBT) available,

the major contribution to the vibrational partition function comes from states below the

critical energy for reaction, consequently, the probability of deactivating the energised

intermediate A# upon collision is effectively one. The overall rate of activation, kc, is given by

summing kc (υ) over all energy levels with energy greater than the minimum energy required

for reaction, E0:

kc = ∑
∞

=mυ
υZg exp(-υhν/kBT)/Q (E33)
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where mhν = E0. Hinshelwood developed equations for the case in which the energy levels

can be assumed to be continuous (kBT > hν); under these conditions Equation E33 becomes:

dkc = Zρ(E) exp(-E/kBT) dE/Q (E34)

where ρ(E) dE is the number of energy levels in the range E-(E + dE), ρ(E) is the density of

states, and dkc is the rate of activation into this energy region. The total rate of activation is

then determined by integrating equation E34 over all energies greater than E0:

kc = (Z/(s – 1)!)(E0/kBT)s-1exp(-E0/kBT) (E35)

Equation E35 differs from the collision theory expression for the rate of activation by the

factor:

)!1(

)/( 1

B0





s

TkE s

(E36)

Under most conditions, the minimum energy required for reaction (E0) is much larger than

the available thermal energy (kBT), and consequently the Hinshelwood modification leads to

a significant increase in the theoretical rate of activation. In addition, the increased rate of

activation, ka, will be more pronounced for larger molecules with have a greater number of

vibrational modes (s); this is exactly what is required to overcome the first failure in the

simple Lindemann model.

Building on the earlier work by Hinshelwood, Rice, Ramsperger and Kassel modified

the Lindemann mechanism further with quantitative efforts that focused on the rate at

which the energised intermediate A# dissociates.59-61 The Rice, Ramsperger and Kassel (RRK)

theory distinguishes the generally energised intermediate A# from the activated complex A‡,

which possesses sufficient energy in the required degree of freedom to dissociate promptly

to products; adopting the following reaction sequence to describe the transition from the

energised molecule A# to products:

A# → A‡ (kd)

A‡ → Products (k‡)
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The first-order rate coefficient k‡ is of the order of a vibrational frequency, while kd is

significantly slower. Applying the steady state approximation to A‡ it can be shown that:

kd = k‡[A‡]/[A#] (E37)

The degeneracy, gυ, for a set of molecules distributing υ vibrational quanta amongst s

oscillators can be expressed by equation E30. Assuming that formation of the activated

complex A‡ requires that at least m quanta of the total vibrational energy be partitioned in

one specific mode, then the options for distributable quanta reduces to (υ – m). It follows

that the degeneracy for a set of molecules partitioning υ quanta of vibrational energy

amongst s oscillators, while retaining m quanta in one specific mode can be expressed as

follows:
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The probability, P‡ that a molecule with υ vibrational quanta has at least m in the reactive

mode is simply the ratio of E38/E30:
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The quantum states involved are very large, allowing the application of Sterling’s

approximation to the factorials in equation E39, then from subsequent use of a Taylor

expansion it can be shown that:

P‡ =
1S








 

υ

mυ
(E40)

Since E = υhν and E0 = mhν, equation E40 can be re-written in terms of energies:

1S

01












E

E
P E

E0 (E41)

RRK theory assumes that the molecular vibrations are coupled, and that energy can flow

freely from one vibrational mode to another, and that energy randomization takes place
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sufficiently rapidly for the vibrational energy to be distributed statistically; therefore it

follows that:

kd(E) = k‡
1S

01












E

E
(E42)

where kd(E) denotes the dependence of kd on the energy of the reacting molecule. Energy

dependence in kd is expected given that as the energy of the system increases, so does the

probability of partitioning adequate quanta for reaction in the reactive mode. In addition,

equation E42 shows kd to decrease as the number of oscillators s increases. Again this is

expected as for a given energy, increasing s provides more modes in which to partition the

energy, thereby reducing the probability that a certain number of quanta will reside in one

specific mode.

1.5.7 Rice, Ramsperger, Kassel and Marcus (RRKM) Theory

The Hinshelwood – RRK treatment of unimolecular reactions has proven a defining

stage in developing our physical understanding of reaction kinetics. Further development at

the time was limited by the computational technology available, forcing gross

approximations to be made; specifically that all molecular vibrations are identical and

oscillate at low frequencies.

More recent developments, which date from the work of Marcus,62 were reliant on

computational methods and can result in stronger agreement between theory and

experiment. This approach is named after the theoreticians responsible Rice, Ramsperger,

Kassel and Marcus, and often abbreviated simply to RRKM Theory.

In RRKM theory the real frequencies of the molecule are used to evaluate ρ(E), using

direct count methods. The energy dependent unimolecular dissociation rate coefficient, kd

(E), is adapted from equation E42 to give the famous, energy resolved, RRKM rate equation

for unimolecular reactions, k(E):

)(

)(
=)(

Eρh

E'W
Ek (E43)
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where ρ(E)is the density of states of the reactant molecule at energy E, h is Planck’s

constant, and W(E’) is the sum of states at the activate complex for energy E. E’ is the

energy that remains in the activated complex after surmounting the reaction barrier, thus

E’ = E – E0, and W(E’) is simply the number of ways of distributing throughout the activated

complex (Figure 3).

Figure 3: Potential energy surface for a decomposition reaction at total energy E. Reaction requires a

minimum amount of energy, E0, to be partitioned within the reactive mode, the remainder, E’, is

distributed throughout the activated complex.

1.6 Energy Grained Master Equation (EGME)

TST can be used to provide an accurate, quantitative description of a reaction rate at

thermal equilibrium, when relaxation is fast compared to the timescale of reaction. Equally,

when relaxation is slow compared with the reaction rate, energy resolved, RRKM theory

becomes suitable. However, much of the chemistry considered in this thesis occurs over the

intermediate relaxation regime, and demands the use of an Energy Grained Master

Equation (EGME) to accurately describe the kinetics. This approach requires a detailed
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potential energy surface (PES) for the reaction to be calculated, from which all the

stationary points (transition states and energy wells) that separate the reactants,

intermediates, and products are partitioned into energy grains of set energy width. A typical

EGME description of the stationary points of a PES for a typical gas phase reaction is

provided in Figure 4, for which the initial step is a bimolecular association reaction, which is

followed by a sequence of unimolecular reactions involving two potential energy wells, and

an irreversible product channel.

Figure 4: Representation of the energy grained master equation model for an association reaction

between reactants A and B, with two wells and an irreversible product channel.

The population of any given energy grain can change as a function of time due either to

collisional stabilization or activation, or from chemical reaction, into or out of the grain. An

accurate theoretical description of these systems requires both the energy resolved

microcanonical rate coefficients, k(E), and a collisional energy transfer model. These are
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combined to construct a Master Equation (ME) model of the system that describes the

evolution of each grain population. The coupled differential equations describing the

relative change in population of each energy grain are then solved using numerical matrix

methods. The energy grained master equation solver MESMER (Master Equation Solver for

Multiple Energy-well Reactions) developed at the University of Leeds was used to fit

experimental data sets presented in chapters 3, 4 and 5.63 The relevant microcanonical rate

coefficients were calculated using RRKM theory, and an exponential down model

implemented into the MESMER code was used to calculate collisional energy transfer

probabilities.

1.7 Chemical Activation

It has been shown that bimolecular association reactions result in formation of a

nascent energised complex, and that in the absence of an additional exit channel, this

energy is dissipated by molecular collisions which promote a thermal distribution of

quantum states. However, when additional exit channels are available, then this excess

energy can drive further chemistry. In cases such as this, where the energy is provided by

virtue of the energy change involved in a preceding chemical reaction, the process is known

as chemical activation. Reaction of these activated species can influence both the kinetics

and product branching of chemical systems under both laboratory and atmospheric

conditions. Figure 5 shows hypothetical potential energy surfaces for two chemically

activated reactions where the activated complex forms as a result of a preceding exothermic

(Fig. 5a) or endothermic reaction (Fig. 5b). Figure 5 shows clearly that if the critical energy

for generating the chemically activated intermediate species is (E0)1, and the difference in

zero point energies between reactants and the activated species is ΔE0, then the

intermediate will form with a minimum excess energy Emin = (E0)1 – ΔE0, where ΔE0 is

negative or positive depending upon whether the reaction is exothermic or endothermic. If

the critical energy required for a subsequent reaction (E0)2 is less than Emin then reactant

molecules can proceed directly to products provided the excess energy is not removed

through inert bath gas collisions.
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Figure 5: Chemical activation by an exothermic (a) and endothermic (b) reaction; Xǂ represents the

activated complex for the activating reaction, and Yǂ represents the activated comlpex for

subsequent reaction of the chemically activated species (Redrawn from Robinson and Holbrook).64
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Several studies have reported chemical activation to influence the product branching

associated with a unimolecular exit channel in systems where the unimolecular path must

compete with collisional stabilisation.65-68 These effects are often limited to low pressure

conditions when thermal equilibrium is attained less rapidly. Chemical activation has been

reported to influence the products observed following reaction of the methoxymethyl

radical, CH3OCH2, with O2 (R19):66, 68

CH3OCH2 + O2 → 2HCHO + OH (R19a)

→ CH3OCH2O2 (R19b)

In a recent study, Eskola et al., generated CH3OCH2 by 248 nm photolysis of CH3OCH2Br (P3),

and monitored the kinetics and yield of OH produced following reaction R19 over a range of

temperatures (195 – 600 K) and pressures (5 – 500 Torr) by LIF.69

CH3OCH2Br + hν → CH3OCH2 + Br (P3)

The OH yields measured by Eskola et al. for reaction R19 were pressure dependent, with OH

produced near exclusively as pressure is reduced close to zero. Eskola and co-workers

complemented their experimental results with theory and argued convincingly that reaction

R19 proceeds via a chemically activated association complex that can either dissociate to

2HCHO + OH (R19a), or become stabilised through inert bath gas collisions (R19b); an

analogous chemical scheme has been used to describe OH production following the acetyl +

O2 reaction (R20).65

CH3CO + O2 → OH + co-products (R20a)

→ CH3C(O)O2 (R20b)

While chemical activation has been shown to facilitate unimolecular exit channels,

the role of activation in bimolecular exit channels is less well established.70 Oxygen is the

dominant bimolecular reaction partner for radicals produced in the atmosphere, where

reactions are generally thought to involve thermally equiliberated reactants. However, in

chapters 3 and 4 strong evidence is used to argue that the product distributions observed

following the OH initiated oxidation of alkynes are strongly dependent on the internal
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energy of the HO-alkyne adduct at the point of reaction with O2, and that under

atmospheric conditions, a significant fraction of the total product yield is formed before the

internal quantum states of the adducts have fully relaxed.

All of the chemically activated species discussed in the preceding section have been

generated following an association reaction; far less attention has focused on the possibility

of energising a reactive intermediate via an abstraction channel. Hydrogen atom

abstractions by OH result in formation of the thermodynamically stable H2O molecule, and

consequently dominate OH abstraction chemistry in the atmosphere. The widely accepted

Polanyi rules state that abstraction reactions channel the exothermicity predominantly into

the newly formed bond,71 consequently, secondary chemistry associated with the H2O co-

fragment is not expected to be influenced by chemical activation. However, this established

rule is inconsistent with a study of the reaction of OH with methyl glyoxal, CH3C(O)CHO

(R21), by Baeza-Romero et al.72 Reaction R21 proceeds via hydrogen atom abstraction at the

aldehydic hydrogen:

OH + CH3C(O)CHO → CH3C(O)CO + H2O (R21)

Baeza-Romero studied the OH kinetics associated with reaction R21 and in the presence of

O2 observed pressure dependent OH regeneration consistent with acetyl + O2 chemistry,

suggesting a significant fraction of the nascent CH3C(O)CO population dissociates to give

CH3CO + CO following reaction R21. The role of chemical activation in abstraction channels

is discussed in chapters 5 and 6.

1.8 Electronic States in Atoms and Molecules

Fluorescence detection techniques rely on the transition of an electron between

states in the species of interest. The quantum mechanical model of an electron orbiting a

nucleus is defined using a wavefunction. There are essentially three elements to an

electronic wavefunction; some fundamental physical constants (c, h, π etc); parameters

specific to the system such as an electrons radial distance from the nucleus; and a set of

four quantum numbers (n, l, ml and ms). The principle quantum number, n, determines the

orbitals distance from the nucleus and therefore the orbital energy level of the electron and
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can take integer values from 1 to ∞. The orbital quantum number, l, governs the shape and

angular momentum of an orbital, and can take any integer value between 0 and (n – 1).

Each value is assigned to a particular type of atomic orbital; such that values 0, 1, 2 and 3

correspond to s, p, d and f-orbitals, respectively. The orbital magnetic quantum number, ml,

determines the direction of the orbital and the electron’s behaviour in a magnetic field, and

can take integer values ranging from +l to –l. Finally, the spin magnetic quantum number,

ms, identifies the orientation of the intrinsic motion of an electron about its axis relative to

those of other electrons in the system, and can take values ±½ only.

For an open-shell atom there will be several possible ways in which the valence

electrons can be arranged in the outer sub-shell, each unique configuration is known as a

microstate, and defined by four unique quantum numbers in accordance with the Pauli

Exclusion Principle. Individual microstates may have different energies as each represents a

different spatial distribution of electrons within the atom, subject to different inter-

electronic repulsions; for simplicity, each state can be represented in abbreviated form by a

term symbol.

1.8.1 Angular momentum

An object orbiting on a circular path acquires angular momentum, defined as the

product of its mass and angular velocity (degree rad s-1). An electron orbiting a nucleus

possesses both orbital and spin angular momentum, both of which are quantised, vector

properties. The magnitude of the orbital angular momentum, I, of an electron can be

calculated from the orbital quantum number, l, as follows:

I = )1( ll (E44)

where ħ is the reduced Planck constant, h/2π. The direction of the orbital momentum is

dependent on the magnetic quantum number, ml. Once a reference direction has been

specified, quantum law dictates that the orbital momentum can point such that the

magnitude of its component vector in the reference direction can take values of mlħ only;

providing (2l + 1) possible orientations. When several valence electrons are present in an
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atom, their orbital momenta combine to give a resultant total orbital momentum, L. The

magnitude of this vector can be calculated as follows:

L = )1( LL (E45)

where L is the total orbital momentum quantum number, and can take positive integer

values only, including 0. The value of L depends on the relative direction of the component

momenta, and allow (2L + 1) possible orientations of L. Historically, upper-case Roman

letters are used to express L, analogous to the lower-case Roman letters used to denote

atomic orbitals; such that L values 0, 1, 2 and 3 are signified by the letters S, P, D and F,

respectively.

1.8.2 Spin Angular Momentum

In addition to the momentum associated with orbital motion, the electron itself

acquires spin momentum, s, due to its intrinsic rotation about its own axis. The magnitude

of the spin momentum of a single electron can be calculated using the spin quantum

number, s, which takes the value +½ only, as follows:

s = )1( ss = 0.866 ħ (E46)

As with orbital momentum, quantisation limits the possible orientations of s such that it can

only adopt one of two directions, distinguished by the spin magnetic quantum number, ms

(spin up or spin down). The value of ms signifies the component of its spin momentum in the

reference direction. When several electrons are present in the valence shell of an atom,

their spin momenta combine to give a resultant total spin momentum, S. The magnitude of

this vector can be calculated as follows:

S = )1( SS (E47)

where S is the total spin momentum quantum number, which can take positive integer or

half integer values, including 0; depending on the number of electrons contributing to the

atomic spin momentum, and the relative direction of the component spin momenta. The

quantity (2S + 1) is known as the multiplicity of a term, and terms for which (2S + 1) equals



33

1, 2, 3 and 4 are referred to as singlets, doublets, triplets and quartets, respectively. The

multiplicity is of particular significance to spectroscopists as selection rules forbid transitions

occurring between states of different multiplicity.

1.8.3 Total Electronic Angular Momentum and Term Symbols

The combination of the orbital and spin momenta provide an atom with a total

angular momentum, J. Electronic orbital and spin motions can be considered classically as

rotating charges that generate magnetic fields, and therefore allow weak field interactions

referred to as spin-orbit coupling. If the spin-orbit coupling is weak then the field interaction

only becomes significant when both the orbital and spin momenta are operating

collectively; as defined by the quantum numbers L and S, respectively. When more than one

electron is present in the valence shell of an atom, the total angular momentum, J, can be

calculated by first adding the individual orbital angular momentum to give L, then adding

the individual spin angular momenta to give S, with final summation of L and S to give J.

This method is known as the Russell-Saunders coupling scheme, and has proved a suitable

approximation for light atoms (atomic number, Z < 35).

As with the component orbital and spin momentum vectors, the magnitude of the

resultant total angular momentum, J, can be calculated as follows:

J = )1+(JJ (E48)

where J is the total angular momentum quantum number, and can take positive values only,

including 0.

Degenerate states are grouped together into terms. Given that there are (2L + 1) possible

orientations of L, and (2S + 1) possible orientations of S, it follows that the total number of

states for any term given L and S is (2L + 1)(2S + 1). Each term may be represented in

abbreviated form by a term symbol which conventionally takes the form:

Term Symbol = (2S + 1)LJ
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1.8.4 Diatomic Term Symbols

Many of the rules used to assign term symbols to electrons in atoms can be applied

to electrons in molecules. For diatomic molecules the reference direction used to assign the

atomic orbital angular momentum vector is specified by the bond axis. In addition, the

electric field generated along the bond axis by the two nuclei, make different I components

of molecular orbital angular momentum different in energy. The axial component of angular

momentum is denoted by the symbol λ, and can take either positive integer values or is

zero. Greek letters corresponding to the letters s, p, d,... are used to designate the λ state of

an electron in a molecule:

lZ = 0, ±1, ±2, ±3,...

λ = 0, 1, 2, 3,...

σ, π, δ, Ф,...

The axial component of the total orbital angular momentum is of greatest significance due

to strong orbital-axial coupling, and is denoted by the symbol Λ, and calculated simply from

the sum of the individual axial components, λ:

Λ = iλ∑

with Λ state values of 0, 1, 2,... designated by the capital Greek letters Σ, Π, Δ,...

Electron spin momentum are not strongly affected by the force field generated between the

two nuclear charges, therefore the notation used to describe electronic spin momentum in

atoms, also applies to electronic spin in molecules.

The majority of kinetic experiment work presented here involved monitoring the OH

radical by laser induced fluorescence (LIF). The OH radical has a total of nine electrons, with

the ground state configuration:

(1sσ)2 (1sσ*)2 (2sσ)2 (2pπ)3

Conventionally, the electronic ground state of a species is assigned the prefix X and

consequently this configuration of OH corresponds to a X2Π term. Absorption at ~282 nm
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results in excitation to the v’ = 1 level of the first upper electronic OH state, conventionally

assigned the prefix A. This transition corresponds to excitation of an electron from the 2sσ 

orbital to the unpaired 2pπ orbital; leaving the unpaired electron in the 2sσ orbital with no 

axial component of angular momentum (Λ = 0), and therefore corresponds to a A2Σ term.

1.9 Overview of this Thesis

The majority of the experimental work presented in this thesis focuses on reaction

systems initiated by OH that result in formation of reactive intermediates which potentially

recycle OH in the presence of O2. By monitoring OH directly by laser induced fluorescence

(LIF) it is possible to quantify the OH yield for these systems directly from the ratio of rate

coefficients measured with and without O2. A summary of the following chapters presented

in this thesis is provided below:

Chapter 2 introduces the laser flash photolysis laser induced fluorescence (LFP-LIF)

technique used throughout this thesis to quantify bimolecular gas-phase reaction kinetics.

Some alternative radical detection techniques and kinetic methods are also briefly

discussed. Finally the details of the specific apparatus used throughout this thesis are

provided.

Chapter 3 gives a detailed experimental and theoretical study of the association

reaction between OH and acetylene, C2H2. The resulting HO-C2H2 adducts react rapidly with

O2 to generate either glyoxal, (HCO)2, and recycle OH, or formic acid and a formyl radical.

Experimental and theoretical evidence confirm that the branching between the bicarbonyl

and organic acid channels in controlled by the stereochemistry of the adduct and the point

of reaction with O2.

Chapter 4 build on the work presented in chapter 3 and reports an experimental

study of the reaction of OH with the propyne and 2-butyne. The OH yields are determined

as a function of pressure and temperature using OH cycling methods. The OH yields

measured for the higher alkynes considered in this chapter demonstrate qualitatively similar

behaviour to the OH + C2H2/O2 system.
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In chapter 5, experiments were carried out to quantify the acetyl, CH3CO, yield

associated with the OH + acetaldehyde, CH3CHO, reaction by investigating the pressure

dependent OH yield associated with the subsequent reaction of CH3CO with O2. Stern-

Volmer analyses of the OH yields measured suggest that ~15% of the acetyl formed

following reaction of OH with acetaldehyde dissociates to CH3 + CO. These indirect

measurements were complemented by a photoionisation mass spectrometry (PIMS) study

that confirmed CH3 and CO as primary products of the OH + CH3CHO reaction.

Recent theoretical and experimental evidence have suggested the HC(O)CO radical

produced following the reaction of OH with glyoxal, (HCO)2, can react with O2 and generate

OH. In chapter 6 experiments generating HC(O)CO via reaction of chlorine atoms with

(HCO)2 in the presence of O2 confirm this. Experimental OH yields for the OH + (HCO)2/O2

system are quantified for the first time as a function of pressure and temperature.

In Chapter 7 attention turns to developing a laser system suitable for formyl radical,

HCO, detection. The system is characterised by measuring room temperature rate

coefficients for the reactions of HCO with O2, NO and NO2. This chapter reports, for the first

time, experimental evidence suggesting that the HCO radical reacts rapidly with a range of

aldehyde species. Bimolecular rate coefficients for the reaction of HCO with HCHO and

CH3CHO are quantified and the reaction products inferred from the observed temperature

dependence.

The final chapter provides a summary of all the experimental work presented in this

thesis, together with its scientific significance.
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1 Chapter 2 Experimental Techniques

This chapter begins by introducing the laser flash photolysis, laser induced

fluorescence (LFP-LIF) technique, used throughout this thesis, for quantifying gas-phase

reaction rate coefficients. A brief introduction to the principles of laser action and the ways

in which laser light has transformed experimental gas-phase kinetic studies is provided.

Some alternative techniques for detecting short lived radical species and quantifying rate

coefficients are also discussed. The final section of this chapter provides details of the

specific apparatus and method of data collection and analysis used during this work.

2.1 Laser Flash Photolysis - Laser Induced Fluorescence (LFP-LIF)

Many of the elementary reactions which drive atmospheric chemistry involve

extremely short lived radical and atomic species. Meaningful kinetic experiments require

sensitive detection techniques and accurate resolution over microsecond or shorter

timescales. The development of laser, optical and electronic technologies have led to

significant advances in the field of chemical kinetics. Laser light has several properties which

complement its use as an experimental radiation source. The high degree of

monochromacity associated with laser radiation allows specific electronic and rovibrational

states to be probed selectively; furthermore, the appropriate laser medium can provide

light with sufficient energy to cleave chemical bonds and initiate chemistry with extremely

accurate time resolution.1 Kinetic studies involving radical species often couple pulsed laser

flash photolysis with laser induced fluorescence (LFP – LIF) as a means of initiating chemistry

and monitoring radical concentration profiles with accurate resolution over short

timescales. The flash photolysis technique of initiating chemistry using a short pulse of

intense light was pioneered by R. G. W. Norrish and G. Porter in Cambridge during the late

1940s.2 This method extended the experimental timescale resolution from the millisecond

to the microsecond range, and earned the co-workers the Nobel Prize for Chemistry in 1967.

The flash lamps used as the light source in early flash photolysis experiments have been in

the main superseded by short pulse duration lasers that allow experimental measurements
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on the sub-nanosecond timescale. The improved time resolution is not the only advantage

of using pulsed laser radiation as the light source in flash photolysis experiments. High pulse

energies mean a significant quantity of radical species can be generated using low

experimental precursor concentrations, helping limit the contribution made by precursor

reactions to the overall chemistry inside the reaction cell. Operating lasers at high pulse

repetition rates allow data to be collected quickly. The data acquisition rate is limited only

by the requirement that a fresh sample of gas be present in the cell for each photolysis laser

pulse, so as to avoid the effects of secondary chemistry.

The LFP – LIF method involves premixing the reagent and a suitable radical precursor

before the mixture is flowed into a reaction cell at the desired experimental pressure. A

photolysis laser pulse is fired through the cell generating radical species in situ and defining

the experimental time, t0. At a preset time following the photolysis laser pulse, a dye laser

pulse is fired through the cell to electronically excite the radical. The excited electron can

return to the ground state with conserved multiplicity via emission of a photon

(fluorescence). The fluorescent photon can either oscillate at the same frequency as the

light absorbed during the transition between electronic states (on-resonant), or at a lower

frequency (off-resonant) following collisional stabilisation within the excited electronic

state. The fluorescent emission can be monitored using a photomultiplier tube (PMT). As

the fluorescence signal is proportional to the radical concentration, a radical concentration

profile can be built as a function of time by varying the delay time between the photolysis

and probe laser pulses. A schematic diagram of LFP-LIF apparatus setup for monitoring OH

radicals in the presence of acetylene, C2H2, is provided in Figure 1.

The UV-visible LIF technique is often used to detect short-lived radical and atomic

species of atmospheric importance; such as OH (chapters 3 – 6 of this thesis), HCO (chapter

7 of this thesis), Cl, NO, NO3, O(1D).3-11 A typical experimental OH radical decay trace in the

presence of C2H2 is provided in Figure 2.
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Figure 1: Schematic diagram of laser flash photolysis, laser induced fluorescence (LFP-LIF) apparatus

for the study of OH radicals with acetylene, C2H2.

Figure 2: Typical OH decay trace measured in the presence of 2.12 × 1016 molecules cm-3 of C2H2 at

295 K under 25 Torr of N2 using the LFP-LIF technique.
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The ability to tune dye laser emission mean these systems offer extreme selectivity

when used as probe light sources, as a wavelength corresponding to a transition between

specific rovibrational states within the electronic bands of individual species can be

generated. The full range of commercial dyes offer an output range of 320 nm – 1 µm,

although the conversion efficiency depends on the specific dye and pump light source. This

wavelength range, coupled with conventional frequency conversion techniques, provide the

probe light required to monitor a variety of transient atmospheric species. Moreover, the

dye can be replaced with another type in order to generate light of a different wavelength

without the inconvenience of replacing the laser; although this process may also require

changing other optical components of the laser.

Low radical concentration ([R] < 1 × 1012 molecule cm-3) are often required during

kinetic studies in order to simplify the chemistry, maintain pseudo-first-order conditions,

and avoid unwanted radical-radical chemistry. Consequently, sensitive detection techniques

are necessary to monitor time resolved radical concentration profiles. Fortunately, the

defined spatial profile of laser light can be exploited to improve the sensitivity of radical

detection. Conventionally the photolysis and dye laser beams enter the reaction cell at right

angles to one another; with the PMT housed above the cell perpendicular to both laser

beams. Fluorescent emission occurs in random directions and this orthogonal arrangement

helps distinguish the fluorescence signal from the background scattered probe light. The

signal-to-noise ratio can be further increased by monitoring the off-resonant fluorescence

through an interference filter and averaging the signal over several photolysis laser pulses;

this approach allows the signal observed using fluorescent techniques to be measured

relative to a near zero background.

2.2 The Principles of Laser Action

2.2.1 Absorption and Emission of Radiation

Quantum theory stipulates that atoms and molecules possess distinct sets of energy

levels. The relative populations of these states at equilibrium can be described
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mathematically using the Maxwell-Boltzmann distribution. For a non-degenerate system at

absolute temperature, T:

m

n

N

N
= exp(-ΔE/kBT) (E1)

where Nn and Nm are the populations of the higher and lower energy states, respectively;

∆E is the difference in energy between the two states, and kB is the Boltzmann constant,

1.381 × 10-23 J K-1. Light also exists in discrete energy quanta known as photons. The energy

of a photon, E, is proportional to its frequency, ν, by Plank’s constant, h (E = hν). When a

photon of light is absorbed by an atom or molecule the energy of the photon can be

transferred and result in excitation, provided the energy of the photon exactly matches the

energy difference between the lower and excited atomic or molecular quantum states

involved in the transition, ΔE = hν. This process is known as stimulated absorption. Einstein

derived a mathematical expression for the rate of stimulated absorption between lower and

excited states m and n, respectively, as follows:

Stimulated Absorption transition rate = Nm ρν Bmn (E2)

where ρν is the photon energy density at frequency ν, and the constant of proportionality

Bmn is the Einstein coefficient of stimulated absorption from state m to n. The subsequent

relaxation from the excited state n to the lower energy state m can be accompanied by

spontaneous emission of a photon of frequency ν. Spontaneous emission occurs in random

directions at a rate proportional to the population of the excited state n:

Spontaneous Emission transition rate = Nn Anm (E3)

where Anm is the Einstein coefficient of spontaneous emission from state n to m.

Alternatively, species populating the excited state n can return to the lower energy state m

when a photon of frequency ν stimulates the emission of a second photon of identical

frequency to that initiating the transition. This process requires an external photon to

initiate radiation and is therefore referred to as stimulated emission. The stimulated

emission transition rate is proportional to the population of the excited state and the

photon energy density at frequency ν, as follows:
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Stimulated Emission transition rate = Nnρν Bnm (E4)

where Bnm is the Einstein coefficient of stimulated emission from state n to m. A positive

feedback operates during stimulated emission such that the likelihood of emission is

enhanced if additional photons of similar frequency are already present. Furthermore,

stimulated emission occurs in the direction of the applied light beam, which consequently

becomes amplified in intensity. It is this emission process that results in the light generated

by lasers; the term itself is an acronym for Light Amplification by the Stimulated Emission of

Radiation. Figure 3 provides an illustration of the radiative processes associated with

transitions between lower (E1) and higher (E2) energetic states.

Figure 3: Schematic diagram of the radiative transitions associated with stimulated absorption (a),

stimulated emission (b) and spontaneous emission (c).

Einstein demonstrated that at thermal equilibrium the constants of proportionality

for stimulated absorption and emission, Bmn and Bnm respectively, are equal; and

furthermore, that the constants of proportionality for spontaneous and stimulated emission

are mathematically related as follows:

Anm = 







3

3

nm

c

πh8
B (E5)
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Consequently the probability of stimulated emission decreases significantly as light

frequencies increase; due to the onset of spontaneous emission. The rate of change in

photon density, Nν, along the laser axis can be closely approximated by the difference

between the rates of stimulated emission and absorption (equations E4 and E2); as

spontaneous emission radiates in random directions, its contribution to light travelling along

the laser axis can be considered negligible.

dt

dNν = (Nn-Nm)Bρν (E6)

If we consider a beam of laser light, travelling through a cell containing a laser

medium. As light passes through the medium its speed will slow to velocity c’:

η
c

c
=' (E7)

where c is the speed of light in a vacuum, and η is the refractive index of the medium. If we

consider the intensity of light propagating along the laser axis in terms of irradiance, Iν,

defined as the light energy of frequency ν, per unit cross sectional area, per second (J/m2s),

then Iν may be expressed in terms of either the photon energy density, ρν or the photon

density, Nν at frequency ν as follows: 

Iν = ρνc’ (E8)

Iν = Nνhνc’ (E9)

Rearranging equation E9 for Nν, and differentiating with respect to time, t provides an

alternative expression for the rate of change in Nν:

dt

dI

hνdt

dN ν











'c

1ν (E10)

Equating the right hand sides of equations E6 and E10, and expressing ρν in terms of Iν and

c’, it can be shown that the rate of change in Iν is equal to:

dt

dI
ν = (Nn-Nm) BIνhν (E11)
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It follows that an exponential increase in irradiance, Iν is allowed only when the population

of the excited state, Nn, exceeds that of the lower energy state, Nm. This non-equlibrium

behaviour is known as a population inversion, and is essential in order to achieve laser

action. Energy is required to perturb the system from equilibrium, in a process typically

referred to as pumping.

2.2.2 Population inversion

A population inversion is unattainable with the simple two level model used so far to

describe the interaction of radiation with a laser medium. Optically pumping the system will

promote species from the lower to the excited state, but stimulated absorption will

eventually reach equilibrium with the relaxation processes spontaneous and stimulated

emission. Directly pumping from lower to excited states can potentially result in equally

populated lower and excited states, but not allow the non-equilibrium conditions required

for laser action. A population inversion requires indirect means of populating the excited

state involved in the lasing transition, which in turn requires additional energy levels. The

simplest example is provided by a three-level laser system. Figure 4 illustrates the energy

levels and transitions involved in a three-level laser system. Using an appropriate pumping

mechanism to excite from the ground state (E0) to the second excited state (E2), subsequent

relaxation populates the first excited (E1) state. Provided the rate of laser emission is slow

compared to relaxation from the E2 to the E1 state, a population inversion forms between

the E1 and E0 states involved in lasing, and is maintained by further pump transitions. One of

the problems with a three-level laser system is that the lasing transition acts to populate the

ground state, and therefore disrupts the population inversion. This problem can be

overcome by introducing a fourth state to the system (Figure 4). In a four-level laser system

the lasing transition occurs not between an excited state and the ground state, but between

two excited states. Provided relaxation from the lower of the two states involved in lasing

and the ground state is fast, a population inversion between the lasing states is retained. A

range of substances have been shown to provide the non-equilibrium conditions demanded

by laser action, and are collectively referred to as the active medium.
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Figure 4: Schematic diagram of the energy levels and transitions involved in a three and four level

laser system.

2.2.3 Optical Cavity

Optically pumping the active medium has been shown to provide a population

inversion, and the onset of spontaneous emission between lasing states provides photons at

the frequency required for stimulated emission. However, the rate at which light intensity is

amplified is proportional to the initial intensity (equation E11), which, when relying on

spontaneous emission, is not expected to be very great; therefore an optical cavity is

employed to improve the light intensity traversing the active medium (Figure 5). This can be

achieved by placing parallel mirrors at either end of the active medium, so that light

travelling along the axis perpendicular to the mirrors is reflected back and forth indefinitely,

growing in intensity with each pass. In practice only one of the end-mirrors is fully reflective;

the other is partially transmissive in order to allow laser output from the resonator.
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Figure 5: Schematic diagram of an optically pumped laser cavity.

Various chemical media have proven suitable for generating laser light, and

encompass solid, liquid and gaseous phases. A range of laser systems were used to generate

the radiation required during the experimental work presented in this thesis; specifically, a

KrF (Lambda Physik, Compex) and a XeCl (Lambda Physik, LPX 100) excimer laser, a Nd: YAG

laser (Spectra-Physics, Quanta-Ray GCR 100-series), a dye laser (Spectra-Physics, Quanta Ray

PDL-3) operating on either Rhodamine6G or pyromethene 597, and a second dye laser

(Lambda Physik, FL 2002) operating on Coumarin 307 dye.

2.2.4 Excimer or Exciplex Laser (Lambda Physik, Compex or LPX 100)

Exciplex lasers rely on an electronically excited diatomic complex, known as an

exciplex, to generate laser light; though they are often referred to as Excimer lasers. The

complex must only exist as a stable bound species when in the excited state; the ground

state must be repulsive, with no significant potential energy minimum. Potential energy

curves for the KrF states involved in laser action are illustrated in Figure 6.
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Figure 6: Schematic energy level diagram for the KrF laser.

The KrF excimer system consists of a gaseous mixture of krypton, fluorine and neon

contained within a sealed cavity at a pressure of 2.5 – 3 Bar. An electrical discharge is used

to generate krypton and fluoride ions, which react to form KrF* in accordance with the

following reaction scheme:

Kr + e- → Kr+ + 2e- (R1)

F2 + e- → F- + F (R2)

Kr+ + F- + Ne → KrF* + Ne (R3)

The electronically excited KrF* complex has a short lifetime of approximately 2.5 ns, and

decays by photon emission to the ground state. The repulsive force operating between the

atoms in the ground state cause the complex to rapidly dissociate to its constituent atoms

within a few picoseconds. Consequently, the ground state never becomes significantly

occupied and a population inversion exists between the ground and the higher energy

excited states of the complex.
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The excimer radiation is pulsed, and typically achieves pulse durations of 10 – 20 ns

with repetition frequencies ranging from 1 to several hundred Hz. Excimer lasers can run on

a variety of combinations of rare gas and halide to give different output wavelengths, the

main gas mixtures and corresponding wavelengths and energies are listed in Table 1.

Exciplex Wavelength / nm Photon Energy / kJ mol
-1

ArF 193 621

KrCl 222 540

KrF 248 483

XeCl 308 389

XeF 351 342

Table 1: Excimer laser wavelengths and energies

The photon energies generated using excimer lasers are comparable to typical bond

dissociation energies (300 – 500 kJ mol-1); absorption of a photon at these wavelengths can

often result in chemical bond cleavage. Consequently, kinetic studies often use an excimer

laser as photolytic light source to generate labile radical species from stable chemical

precursors. A KrF excimer laser was used as photolytic light source in all the experimental

work reported in this thesis, with the majority of the reaction systems investigated involving

chemistry initiated through reaction with the OH radical. The OH radical was generated

predominantly through the photolysis of tertiary-butyl hydroperoxide, t-C4H9OOH, at 248

nm (Photolysis P1), although alternative radical precursors were also used.

t-C4H9OOH + hν → OH + coproducts (P1)
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2.2.5 Nd: YAG laser (Spectra- Physics, Quanta-Ray GCR 100-series)

The Nd: YAG is a solid-state laser which uses neodymium ions embedded in a yttrium

aluminium garnet crystal as lasing medium. The energy levels of the Nd3+ ions are split

through interaction with the crystal field, allowing transitions between components of the

4F3/2 and 4I11/2 states forbidden in the free-state (Figure 7).

Figure 7: Schematic energy level diagram for a Nd: YAG laser.

A population inversion is achieved by optically pumping the Nd: YAG laser with high-

pressure xenon flash lamps. The 4F3/2 levels become populated from non-radiative decay

from higher energy levels following excitation from the flash lamps. The 4F3/2 → 4I11/2

transition occurs with 1064 nm photon emission. Since the 4I11/2 state is not the lowest lying

energy level it rapidly decays to the 4I9/2 ground state; it is this transition that maintains the

population inversion between the 4F3/2 and 4I11/2 states involved in lasing.
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The wavelength range accessible using conventional laser light sources can be

greatly extended by exploiting a non-linear optical process known as frequency doubling or

second harmonic generation. Two photons of frequency ν are absorbed by a non-linear

media and one photon of frequency ν’ is emitted. This concerted two photon process can

only take place in crystalline material that lack a centre of symmetry, and a KDP (KH2PO4)

doubling crystal is often used. The 1064 nm laser light generated by the Nd: YAG laser was

frequency doubled to 532 nm, and then used to pump the Rhodamine6G (Pyrromethene

597) dye used to generate OH (OD) probe radiation.

2.2.6 Q-Switching

When pumping the active medium of a laser, the population inversion will ultimately

reach a steady-state, dependent on the pumping rate to, and decay rate from the upper and

lower energy states involved in lasing. During this time, the laser beam grows until it

reaches a saturation intensity; provided the gain is high enough to overcome cavity loss

processes and the gain duration is long enough. For most solid-state lasers, including Nd:

YAG lasers, the lifetime of the upper lasing state is longer than the time required for the

population inversion to reach steady-state, consequently the laser output achieves its

saturation intensity long before the population inversion has attained its maximum

potential. However, a technique known as Q-switching allows the active medium to achieve

the optimum population inversion before laser oscillation within the cavity; this process

results in production of pulsed laser light with high pulse energies and short pulse durations.

The Q-factor of a laser is proportional to the ratio of energy stored to the energy dissipated

within the cavity per optical cycle; a high Q-factor corresponds to low energy loss per round-

trip of radiation, while a low Q-factor signifies significant energy loss from the system per

optical cycle. If a shutter is housed within the laser cavity that acts to increase the radiative

loss within the cavity per cycle (low Q-factor), then a significant population inversion can be

achieved within the active medium before the onset of stimulated emission. If light is then

allowed to resonate within the cavity, the energy stored in the medium can be released as a

single nanosecond pulse of highly intense light (high Q-factor). The term Q-switching refers

to a process whereby the Q-factor of the laser cavity is first reduced and then rapidly
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increased. The electro-optical shutter used during this work used a Pockels cell combined

with a polarizer and quarter wave plate; a schematic diagram of how the Q-switch operates

is presented in Figure 8. Light coming from the Nd: YAG crystal is horizontally polarized by

the polarizer and then rotated to circularly polarized light by the quarter wave plate

following the first pass. At zero volts the Pockels cell is transparent and the reflected light is

converted to vertically polarized light following the second pass through the quarter wave

plate, and subsequently reflected by the polarizer and no oscillation within the cavity

occurs. When the maximum population inversion has built within the Nd3+ ions (~285 µs

after the flash lamps fire) a voltage is applied to the Pockels cell. With voltage applied the

Pockels cell add 45 degrees rotation with each pass, which combined with the quarter wave

plate convert the initially horizontal beam to vertically and then back to horizontally

polarized light. The horizontal light is transmitted by the polarizer allowing oscillation within

the laser cavity.

Figure 8: Schematic of the Q-switch used in the Nd: YAG cavity to enable short high power laser

pulses; denoting horizontal (H), circular (C) and vertically (V) polarized light.
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2.2.7 Dye Laser (Spectra-Physics, Quanta Ray PDL-3 and Lambda Physik, FL 2002)

Dye lasers use an organic dye as laser medium, usually dissolved in a suitable solvent

such as water or an alcohol. Dye lasers can be used to provide tuneable laser radiation

across a wavelength range of several 10 nm. Tuneable laser output is desirable for

spectroscopic application as it allows selective excitation of specific ro-vibrational

transitions of many chemical species. Many dyes have been used successfully to generate

laser light and all share two common properties, a strong absorption band in the ultraviolet

or visible spectral region, and a broad fluorescent spectrum at longer wavelengths.

Typically, these conditions are satisfied by large, polyatomic, conjugated molecules with

extensive electron delocalization and substantial vibrational modes of freedom. There are

two sets of electronic energy levels within which excitation and relaxation can occur,

referred to as the singlet and triplet energy manifold. In the singlet states the spin of the

excited electron is antiparallel with the spin of the remaining molecule (2S + 1 = 1), while in

the triplet states the spins are parallel (2S + 1 = 3). The energies of the extensive vibrational

modes of these molecules become broadened and overlap in solution, such that an energy

continuum exists for each electronic state. Electronic excitation can result in excitation from

the ground singlet state continuum S0 to the first excited singlet state S1. Subsequent rapid

non-radiative decay to the lowest energy level of the S1 continuum occurs within 20 ps; and

precedes radiative transitions from the S1 state to lower states within the S0 continuum.

Further decay within the S0 continuum follow the radiative transition, and ensure a

population inversion is maintained between the S1 and S0 states involved in lasing. In

essence the dye laser represents a simple four-level system, though this simple system is

complicated by competing processes (Figure 9); the most significant being intersystem

crossing, whereby energy is transferred from the excited singlet state S1 to the ground

triplet state T1. The rate for this formally spin-forbidden transition is slow but significant, as

it acts to disrupt the population inversion of the lasing states. The T1 state can decay to the

S0 state by phosphorescent emission or non-radiative intersystem crossing; although both of

these processes are also formally spin-forbidden and occur slowly. Alternatively, the T1 state

population may advance to higher energy states within the triplet manifold by absorbing

light at the frequencies involved in lasing. The effects of Intersystem crossing can be limited

by operating dye lasers in pulsed mode with pulse durations shorter than the time taken for
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a significant population to build in the T1 state. In addition to the processes described

previously, the lasing transition must also compete with both non-radiative internal

conversion between S1 and S0 states, and radiative excitation from the S1 state to higher

energy states within the singlet manifold. All competing processes act to reduce the laser

efficiency. Furthermore, the heat released following non-radiative decay transitions can

rapidly degrade the dye. Fortunately these problems can be significantly reduced by

continuously circulating the dye through the amplified region of the laser cavity. This

process not only delivers singlet state molecules and purge triplet state molecules from the

beam path, but also allows effective cooling to take place.

Figure 9: Jablonski diagram for a laser dye. The solid vertical arrows show the transitions involved in

laser action, and the dashed arrows illustrate some of the competing transitions.

The effect of solvent interactions on the energy levels of the singlet states of the dye

molecule result in fluorescent emission over a range of wavelengths. Monochromatic
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tuneable laser emission requires dispersive optics within the laser cavity, such as a

diffraction grating or etalon. The experimental set up of the Quanta Ray PDL – 3 laser used

during this work is presented in Figure 10. A diffraction grating was used to tune the output

of the oscillator. In order to maximise the effect of the grating and minimise the wavelength

output bandwidth, a prism telescope is used to expand the incident beam across the

grating. The output of the oscillator is then amplified by a subsequent dye cell, such that the

optical loss in the dispersive oscillator has minimal effect on the overall laser power. The

doubled output of a pulsed Nd: YAG laser can be used to stimulate both the oscillator and

amplifier dye cells by including a beam splitter; only 10 to 20 percent of the pump laser light

is used to drive the oscillator, the remainder is used to pump the amplifier cell.

Figure 10: Set up of the Quanta Ray PDL-3 dye laser

A solution of Rhodamine6G in methanol pumped using the secondary harmonics of a

ND: YAG laser is often used as it offers both high efficiency (~ 20 %) and a broad tuning

range (570 – 660 nm). The Quanta-Ray PDL – 3 used during the work presented in this thesis

operated on either Rhodamine6G or pyrromethene 597 dyes; the dye laser output was

doubled to ~282 and ~287 nm using a KDP crystal and used to probe OH and OD radicals,

respectively. The Lambda Physik, FL 2002 laser used during this work operated on Coumarin

307 dye; the doubled output allowed electronic excitation of HCO radicals at ~258 nm.
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2.3 OH Spectroscopy

The majority of experimental work presented in this thesis involved monitoring the

OH radical via off-resonance laser induced fluorescence (LIF), with excitation taking place at

~282 nm (A2Σ(v = 1) ← X2Π(v = 0), Q1(1) ) with the fluorescence being observed at ~308

nm. Schemes detailing the pertinent transitions involved in on- and off-resonance OH

fluorescence are presented in Figure 11.

Figure 11: Schematic energy level diagram showing the transitions relevant to off- (A) and on-

resonant (B) fluorescence of the OH radical following the A – X electronic transition. Collisional

energy transfer processes are presented in blue.

2.4 Detection Technique – Photomultiplier Tube

A photomultiplier tube (PMT) is an instrument used to sensitively detect light or

fluorescence by significantly amplifying the incident signal. The PMT consists of a

photosensitive cathode, several dynodes and an anode, housed inside a glass vacuum tube.

Incident photons strike the photocathode which emits electrons in accordance with the

photoelectric effect. The electrons are then directed towards a series of dynodes by the
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focusing electrode. Each dynode in the series is held at slightly higher voltage than the

electrode preceding it. As the incident electrons move towards the first dynode they are

accelerated by the electric field. Upon striking the dynode, more low energy electrons are

emitted by secondary emission, which in turn are then accelerated towards the second

dynode. A positive feedback operates, generating large numbers of electrons which

eventually reach the anode plate, resulting in a large and easily detected surge in current.

The pulse current signal is typically detected within a nanosecond of the photon striking the

photocathode using this apparatus. A schematic diagram of the inner workings of a PMT is

provided below:

Figure 12: Schematic diagram of a photomultiplier tube (PMT).

2.5 Alternative Detection Techniques

Excimer lasers are used extensively as the photolysis light source in flash photolysis

experiments, owing to their short pulse duration, ability to operate at high repetition rates,

defined spatial profile, and associated photon energies. However, once a transient species

of interest has been generated, a variety of different techniques can be used for detection.

The following section discusses the merits and shortcomings of some alternative radical

detection techniques.
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2.5.1 Ultraviolet and Infrared Absorption

Absorption techniques provide an important means of detecting short lived radical

species. Broadband lamps can be used to generate light at a frequency absorbed by the

reactant radical. The light is passed through the reaction cell, and a monochromator is used

to direct only light of frequency pertinent to radical absorption to a PMT for detection. An

excimer laser can be used to generate radicals in the cell. After the excimer laser fires the

light intensity detected by the PMT will immediately decrease owing to absorption from the

radicals formed, then the signal starts to build as radicals in the cell are lost through

reaction. The intensity of incident and absorbed light are related by the Beer-Lambert law:

Iabs = I0(1-exp(-σcl)) (E12)

where Iabs is the measured change in light intensity, I0 is the incident light intensity, σ is the

wavelength specific radical absorption cross section, c is the radical concentration and l is

the optical path length. If the exponent term in equation E12 is small, then the exponential

term can be expanded giving:

Iabs ≈ I0σcl (E13)

If the absorption cross section and path length are known then the radical concentration

can be calculated directly. This allows a complete decay trace to be compiled using absolute

radical concentrations in real time following each photolysis laser pulse, and for data

acquisition to occur far more efficiently using absorption detection, than by using

fluorescent methods. However, care must be taken when using absorption techniques to

ensure that only the species of interest absorbs at the monitored wavelength. A schematic

diagram illustrating the apparatus required to study the recombination of methyl, CH3,

radicals is provided in Figure 13.
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Figure 13: Schematic diagram of laser flash photolysis, absorption spectroscopy apparatus required

for the study of CH3 radical recombination kinetics.

Experimental investigations of radical-molecule kinetics, during which the radical

species is observed directly, tend to generate the radical species in low concentrations to

minimise the contribution of radical-radical chemistry to the observed kinetics. Absorption

techniques demand accurate measurement of the light intensity passing through the

reaction cell both prior to, I0, and following the onset of radical absorption, Iabs, which under

low radical concentrations will correspond to a small perturbation in light intensity.

Therefore absorption detection techniques often result in a poor signal-to-noise ratio when

compared to fluorescent detection methods which monitor the radical signal relative to a

near zero background.

In addition to the broadband flash lamps described previously, laser radiation can

also be used as the probe light source in absorption experiments. The output of a dye laser

can be tuned to a specific absorption line without the need of a monochromator. Moreover,

a multipass instrument can be constructed by fitting highly reflective mirrors at either side

of the absorption region, to magnify the experimental path length and greatly improve the

sensitivity of the absorption technique.
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2.5.2 Mass Spectrometry

Mass spectrometry (MS) is a powerful analytical technique that identifies molecules

based on the mass-to-charge ratio of charged particles. All MS measurements rely on a

familiar series of distinct stages; a gaseous sample is introduced through an inlet, ions are

generated and then filtered based on their specific mass-to-charge ratios, before finally

being detected. A range of different techniques have proven suitable for generating ions

from a parent molecule in MS studies, including collision with a beam of high energy (~70

eV) electrons, photoionisation using a high energy (vacuum UV) laser pulse, and chemical

ionisation which generates ions through collision of the analyte with the ions of a reagent

gas. The ionisation process can result in significant fragmentation of the parent molecule,

and samples containing complex mixtures of gaseous species often demand soft ionisation

techniques to limit complications in the resulting mass spectra.

A quadrupole can be used to selectively detect ions by only offering ions of certain

mass an undisturbed path to the detector.12 The ions are filtered as they pass through a

radio frequency (RF) quardupole field generated by four parallel metal rods by applying an

oscillating electric field. Ions can be selectively provided with a clear trajectory to the

detector by adjusting the direct voltage applied to the RF field, while all others are lost

through collision with the surface of the rods.

A time-of-flight (TOF) instrument is often used to distinguish the ions generated in a

MS experiment.13 The TOF analyser uses an electric field to accelerate the ions through the

same potential towards a detector. Provided the ions are all of the same charge, the kinetic

energies will be identical and the time taken for each ion to reach the detector will depend

only on their mass. The TOF technique allows all the ions generated to be observed, and

therefore can offer an experimental advantage over the ion selective quadrupole filter.

In chapter 5 of this thesis, laser flash photolysis is coupled with photoionisation mass

spectrometry (LFP-PIMS) to investigate the products of the OH and Cl-atom initiated

oxidation of acetaldehyde. A brief description of this method is provided here. The flows of

radical precursor, substrate and bath gas are allowed to mix and pass into a stainless steel

flowtube. An excimer laser positioned such that the laser beam irradiates the length of the

flowtube is fired, generating a uniform concentration of radicals along the flowtube. A 1 mm
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diameter pin hole located in the wall of the flowtube allows a sample aliquot of gas to exit

the flowtube and pass into a vacuum chamber, maintained at a pressure of less than 10-5

Torr using a diffusion pump. At some known time following the excimer laser pulse, a VUV

laser pulse is fired through the vacuum chamber, photoionising species present in the

vacuum chamber. The ions generated following the VUV laser pulse are focused into a TOF

mass spectrometer and detected via dynode detectors. Ion signals can be monitored on a

digital oscilloscope before being passed to a PC for analysis. A schematic diagram of the LFP-

PIMS apparatus is provided in Figure 14.

Figure 14: Schematic diagram of the flash photolysis, photoionisation mass spectrometry (PIMS)

apparatus.

2.6 Alternative Kinetic Techniques

2.6.1 Discharge Flow

In the discharge flow technique transient reactants are generated indirectly, for

example OH radicals can be produced by initially generating hydrogen atoms from the
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microwave discharge of a mixture of molecular hydrogen in helium diluents, the hydrogen

atoms react rapidly in the presence of NO2 to give OH (R4):

H + NO2 → OH + NO (R4)

The flow of each radical precursor is controlled such that pseudo-first-order conditions in

the OH are maintained. The OH radicals are then passed into a flow tube. The substrate is

introduced to the flow tube via a mobile injector, and at a well defined distance down the

flow tube, the OH is detected by laser induced fluorescence (LIF). If the flow velocity of the

gas mixture, v, and the distance between mobile injection and OH detection, d, are known,

the reaction time, t, can be calculated from equation E14:

v

d
t = (E14)

A schematic diagram of the discharge flow apparatus is provided in Figure 15.

Figure 15: Schematic diagram of a discharge flow apparatus for the study of OH reactions with laser

induced fluorescence (LIF) detection.
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The injection site is then adjusted so that the OH signal corresponding to a different

reaction time can be detected. Repeating this method allows an OH decay trace in the

presence of the substrate to be constructed as a function of reaction time. The slope of a

linear plot of the natural logarithm OH signal against time provides the pseudo-first-order

rate coefficient, k’. Repeat experiments using various substrate concentrations allow the

bimolecular rate coefficient to be determined from a linear plot of k’ against substrate

concentration. The discharge flow technique has been used to study OH kinetics following

reaction with NO, NO2, and a range of hydrocarbons.14-16

A significant limitation in the discharge flow technique is the time taken to achieve a

uniform concentration of reactants in the flow tube following expulsion from the injector tip

(typically a fraction of a millisecond at 1 × 102 Pa); consequently, discharge flow experiments

do not provide a viable method of measuring rate coefficients for reactions which occur on

a faster timescale than this. Traditional flow tube experiments were constrained to total

pressures lower than 20 Torr in order to achieve a stable gas flow velocity across the entire

cross section of the flow tube, and to temperatures greater than 250 K to avoid

complication through heterogeneous chemistry associated with flow tube walls. Recent

developments with this technique have shown by incorporating fast and turbulent flow

conditions, both the experimental temperature (T > 180 K) and pressure range (70 – 760

Torr) achievable using the flow tube method can be greatly extended.17, 18 Flash photolysis

experiments generate radical species in situ and therefore require detection methods that

operate on the same timescale as the photolytic light source. Discharge flow methods

generate radicals indirectly, and consequently offer greater flexibility in the methods used

to generate radicals; furthermore, the detection technique employed is only limited by the

rate of reaction and are less susceptible to secondary chemistry.

2.6.2 Shock Tube

The shock tube technique is often used to study reaction kinetics and mechanisms

under conditions relevant to combustion.19 Conventional shock tube (ST) apparatus consists

of a rectangular or circular metal tube, in which gas at low (driven) and high pressure

(driver) can be separated by a diaphragm. The inert driver gas is maintained at high pressure



68

on one side of the diaphragm, while a dilute reactant gas mixture is partitioned at low

pressure on the other. The diaphragm is burst causing a shock wave to propagate through

the low pressure region and eventually reflect off the end wall of the ST. Gases behind the

incident and reflected shock waves are subject to rapidly elevated pressures and

temperatures. These extreme conditions can be used to initiate chemical processes

significant to combustion, using apparatus which also allows the reactants and/or products

to be monitored directly using a range of detection techniques. The opening of the

diaphragm has a large effect on the development of the shock wave, and the conditions

generated behind the incident and reflected shock waves are dependent on both the

manner by which the diaphragm breaks and on the ratio of the driver-to-driven gas

pressures. The variability introduced through rupturing the diaphragm results in significant

uncertainty in the postshock conditions generated using conventional ST apparatus;

consequently each ST experiment must be considered as a unique event, making signal

averaging of repeat experiments under near identical conditions impossible.

The experimental limitations associated with the shock waves generated by breaking

conventional ST diaphragms can be largely avoided following the design and development

of a novel diaphragmless shock tube (DFST) by Dr Robert Tranter and colleagues at Argonne

National laboratories, in which the conventional diaphragm breaker assembly is replaced

with a fast valve system.20 The DFST has been shown to generate highly reproducible shock

waves, making a wide range of defined postshock conditions routinely achievable. The DFST

design has recently been implemented into a miniature shock tube for use at synchrotron

facilities, which can operate at high repetition rates (4 Hz) and generate experimental

temperatures above 600 K and pressures of up to 100 bar.21

2.6.3 Relative Rates Method

This robust technique monitors the competitive loss rates of both the substrate, for

which the rate coefficient is desired, and a reference species, for which the rate coefficient

is known, through reaction with a common reactant, such as OH.22, 23 If the only

experimental sinks for both substrate and reference species is through reaction with OH,

then a linear plot can be constructed based on the relative loss of both reference and
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substrate species with a slope equal to the ratio of rate coefficients. For the theoretical

relative rates system:

OH + substrate → Products (R5)

OH + reference → Products (R6)

If the concentration of OH inside the reactor is in steady state, then the integrated rate laws

can be written in the form:
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where kS and kR are bimolecular rate coefficients for reactions of substrate and reference

species with OH, respectively, and [OH]ss is the steady state concentration of OH. If sample

aliquots are removed from the reactor at various times following the onset of reaction, and

the concentrations of both substrate and reference species determined relative to their

initial concentrations, then equations E15 and E16 can be combined to give the linear

expression:
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Relative concentrations of substrate and reference species are often determined by gas

chromatography,23 and provided the reference rate coefficient is known, the substrate rate

coefficient can be determined using the experimental gradient of equation E17.

Soresnon and co-workers recently used the relative rate technique to measure room

temperature rate coefficients for the reaction of OH with C2H2 (R8) at pressures ranging

from 25 to 8000 Torr.22 Removal of C2H2 was measured relative to the loss of dimethyl

ether, CH3OCH3 (R9), using either Fourier transform infrared (FTIR) spectroscopy or gas

chromatography, flame ionisation detection (GC-FID). The relative rate plot based on the

measurements by Soresnon and co-workers is presented in Figure 16.
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C2H2 + OH + M → HO-C2H2 + M (R8)

CH3OCH3 + OH → CH3OCH2 + H2O (R9)

Figure 16: Plot of the competitive loss C2H2 and CH3OCH3 following exposure to OH radicals at 296 K

in 750 Torr of O2 (◊), 400 Torr of air (△), 200 Torr of air (▲), and 25 Torr of O2 (●) using equation

E17. 22

Figure 16 shows strongly linear behaviour can be achieved using the relative rate

technique, provided that only one reactant is responsible for the removal of both the

substrate and reference molecule. The relative rates technique avoids the often arduous

task of monitoring highly reactive species, such as radicals, as this method only requires the

relative change in concentration of the typically stable co-reagent to be measured. Another
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advantage of relative rate measurements is that they are typically conducted at pressures

and temperatures directly pertinent to the troposphere. A major disadvantage of this

technique is that some knowledge of the reaction mechanism is required to ensure there is

no influence from secondary chemistry. In addition this technique relies on an alternative

method to measure the reference rate coefficient absolutely, the uncertainty in which

provides the major source of error in relative rate measurements.

2.7 Details of the Apparatus and Kinetic Methods used during this Work

Clearly, kinetic studies require the concentration of the co-reagent to be known,

which in turn require an accurate measure of the pressure and temperature inside the cell.

The following sections provide details of the specific apparatus used during this work, such

as the reactors, and the means of measuring temperature and pressure inside the cell, and

the pressure on the vacuum glass line used to prepare gas sample bulbs.

2.7.1 Reaction Cells

The experimental work presented in this thesis was carried out at temperatures

ranging from 195 to 498 K. Two different reaction cells were required in order to achieve

this experimental temperature range. Schematic diagrams of both the high and low

temperature reaction cells are given in Figures 17 and 18, respectively.

High temperature experiments were carried out using a stainless steel reactor which

could be heated to 700 K using cartridge resistance heaters mounted within the reactors

metal casing. A commercial temperature controller was used to vary the current applied to

the resistance heaters, and calibrated using a K-type thermocouple positioned in the centre

of the reactor.
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Figure 17: Schematic of the high temperature (295 – 498 K) reactor used in this thesis.

Subambient temperatures were achieved by cryogenically cooling a second, low

temperature, stainless steel reactor, which had been welded into a bath. Temperatures

ranging from 195 to 273 K were achieved by filling the bath with a suitable coolant. The

windows of the cell were heated electrically to avoid condensation, and the walls of the

bath were insulated using polystyrene. The temperature inside the bath was measured

using a K-type thermocouple. All of the subambient temperature experiments carried out

and presented in this thesis were undertaken at total bath gas pressures of 80 Torr or

below, at these pressures the temperature inside the reactor is indistinguishable from the

temperature of the bath.
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Figure 18: Schematic of the low temperature (195 – 295 K) cell used in this thesis

2.7.2 Gas Flows

The concentration of reactant molecules present in the reaction cell for each

experiment was calculated from the total number density of gas molecules present and

from the concentrations and relative flow rates of the gases used. The former was

calculated using the ideal gas law. Reagent sample bulbs were prepared on a glass vacuum

line with concentrations determined barometrically. Mass flow controllers (MKS) were used

to regulate the flows of each gas into the cell. Each of the MFCs were connected to a digital

readout box and calibrated by monitoring the displacement of bubbles through a flowtube.

The MFCs were arranged such that the bath gas (N2 and/or O2) flushed both the precursor

and substrate gas into a stainless steel gas mixing manifold before the gas flowed into the

reaction cell, to ensure all the gases were well mixed prior to photolysis. The gas flow into
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the reaction cell was kept sufficient to ensure a fresh gas sample was present in the cell for

each photolysis laser pulse.

2.7.3 Pressure Readings

Pressures of between 2 and 300 Torr in the reactor (Leybold CERAVAV and MKS

Baratron), and pressures up to 1300 Torr in the vacuum line were measured using

capacitance manometers. These gauges contain a two plate capacitor; variations in pressure

perturb one of the plates and alter the capacitance. Careful calibration allows the backing

pressure to be determined from the capacitance reading. The low (sub mTorr) pressures of

the vacuum line were measured using Pirani thermal-conductivity type gauges. These

gauges contain a filament heated by constant current. The thermal conductivity of a gas

scales with pressure, and these gauges monitor the change in temperature based on the

change in resistivity of the wire.

2.8 Experimental Gas-Phase Kinetics

The final section of this chapter introduces the isolation method and the means of

data analysis used throughout this thesis to determine bimolecular rate coefficients.

2.8.1 Isolation Method

The principal aim of chemical kinetics is to quantify the rate at which a chemical

reaction proceeds. The following section describes the isolation method used during this

work to measure bimolecular rate coefficients. For the theoretical unimolecular elementary

reaction:

A → Products (R7)

The reaction is first-order with respect to A and the rate law can be expressed in the form:

– ][=
][

A
A

k
dt

d
(E18)
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As this reaction proceeds, the decrease in concentration of species A may be temporally

resolved by integrating the differential rate law (E18) between an initial time 0 and a

subsequent time t, when concentrations of species A are [A]0 and [A]t, respectively. For a

first order reaction, the integrated rate law is:

[A]t = [A]0 exp(-kt) (E19)

Consequently, first-order decay is an exponential process. The dimensionless nature of the

quotient term of the integrated rate law means absolute measurements of reactant or

product concentrations are unnecessary, and that any detectable property proportional to

concentration, such as fluorescence, may be used to quantify the rate coefficient.

Experimentally determining the rate equation for elementary reactions involving

multiple reactants can become complicated due to the concentrations of several chemical

species changing simultaneously. These complications can be limited by the isolation

method. If the experimental conditions are controlled so that all but one of the reactants

are present in great excess, then their concentrations can be considered effectively constant

throughout the course of the reaction. Under these conditions the rate equation can be

simplified and shown to conform to pseudo-first-order kinetics. If we consider the

theoretical bimolecular elementary reaction (R8):

A + B → Products (R8)

The differential rate law can be written as follows:

– ]][[=
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A
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d
(E20)

If the concentrations of reactants A and B are controlled such that species B is in great

excess over A, then the rate equation can be simplified to:
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(E21)
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where k’ = k[B]. Under pseudo-first-order conditions species A decays exponentially, and the

pseudo-first-order rate coefficient, k’, can be determined by fitting experimental decay data

for species A using equation E19.

The majority of experiments reported in this thesis involved monitoring OH decay in

the presence of a stable co-reagent under pseudo-first-order conditions. Typical initial OH

concentrations, [OH]0, inside the reaction cell can be calculated using an approximation of

the Beer-Lambert law:

Iabs = I0(1-exp(-σcl)) (E12)

which for low optical densities is closely approximated by:

Iabs ≈ I0σcl (E13)

The excimer laser power was measured regularly, and was typically ~60 mJ cm-2 pulse-1 or

lower. The energy per photon of 248 nm excimer laser light, ε, can be calculated as follows:
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If the incident excimer laser light intensity, I0, is expressed as fluence:
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If the optical path length is assumed to be 1 cm, then [OH]0 can be estimated using the

following expression:

[OH]0 = σ(248 nm)Ф(248 nm)[C4H9OOH]I0 (E24)

where σ(248 nm) andФ(248 nm) represent the absorption cross section and OH quantum yield for

C4H9OOH at 248 nm, and [C4H9OOH] is the experimental concentration of t-butyl

hydroperoxide inside the reaction cell. A recent photochemical study reported an OH

quantum yield close to unity for t-butyl hydroperoxide at 248 nm, and an absorption cross

section of 2.20 × 10
-20 cm2 molecule-1 at 296 K.24 Typical experimental concentrations of
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t-butyl hydroperoxide inside the reaction cell were 2.0 × 1014 molecule cm-3, giving an initial

OH concentration, [OH]0, of:

)cmmolecule1049.7()cmmolecule100.2()moleculecm1020.2(]OH[ 3-163-141-220

0
 -

= 3.30 × 1011 molecule cm-3

Experimental co-reagent concentrations inside the cell typically ranged from 1013 – 1016

molecule cm-3, and ensured pseudo-first-order conditions in OH were maintained.

2.8.2 Data Collection and Analysis

It has been mentioned that the LFP-LIF technique build an experimental decay trace

by varying the time delay between the photolysis and probe laser pulses. The laser timing

for all experimental results reported in this thesis were controlled using either in-house

software written in Delphi by Peter Halford-Maw (School of Chemistry, University of Leeds),

or by a custom-written LabVIEW programme. The time delay between the photolysis and

probe laser pulses was varied such that a typical OH decay profile consisted of 250 time

points, each averaged between 2 and 10 excimer laser shots, depending on the signal-to-

noise ratio.

The fluorescence signal was collected by a PMT (EMI 9813) mounted above the

reaction cell, perpendicular to both laser beams. The PMT signal was amplified using a fast

pre-amplifier (Stanford Research Systems DC – 300MHz) and then transferred to a digital

oscilloscope (Lecroy LT262), and a boxcar (SR250) which integrated the relevant portion of

the signal. The power of the probe laser light was measured using a photodiode placed

behind the exit window of the reaction cell, the signal from which was also transferred to

the boxcar. Outputs from the digitised boxcar were plotted on a personal computer using

the commercial software package Origin 7.5. A temporary barrier placed between the probe

laser beam and the cell window, allowed both the laser power and the fluorescence signal

to be corrected for a zero baseline using the mean measurement recorded before the probe

light first enters the cell. The OH fluorescence could then be normalised for perturbations in

laser power, and plotted as a function of time. Pseudo-first-order decay coefficients are then
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derived from non-linear least squares analysis of the experimental data fit in Origin using

equation E19. Typical raw experimental OH decay data measured in the presence of glyoxal,

(HCO)2, and corresponding laser power measurements are included in Figure 19, together

with the normalised decay trace and residuals to the exponential fit through the data.

Figure 19: Typical raw experimental signal of both OH fluorescence and laser power (a); pseudo-first-

order OH decay measured in the presence of excess (HCO)2 (6.66 × 1014 molecule cm-3) at 295 K

under 40 Torr of nitrogen, normalised for laser power, the fit using equation E19 corresponds to a

pseudo-first-order decay coefficient of (7000 ± 75) s-1 (b); the corresponding residuals to the

exponential fit (c).
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By varying the experimental concentration of the excess co-reagent, several pseudo-

first-order decay coefficients can be measured, which when plotted as a function of the co-

reagent concentration, yield a straight line bimolecular plot with a gradient equal to the

bimolecular rate coefficient of interest. An example bimolecular plot for the reaction of OH

with (HCO)2 is presented in Figure 20.

OH + (HCO)2 → HC(O)CO + H2O (R9)

Figure 20: Bimolecular plot for the OH + (HCO)2 → HC(O)CO + H2O reaction at room temperature in

40 Torr of nitrogen, for which a bimolecular rate coefficient of (9.95 ± 0.10) × 10-12 cm3 molecule-1 s-1

was observed (where the error bar is purely statistical at the 2σ level).  
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Chapter 3 Kinetic Study of the OH + Acetylene

Reaction in the Presence and Absence of O2

3.1 Abstract

This chapter provides a detailed kinetic study of the OH (OD) + acetylene, C2H2,

reaction using N2, and various O2/N2 mixture bath gas, over a range of pressures (5 – 300

Torr) and temperatures (212 – 498 K), by monitoring OH (OD) via laser induced fluorescence

in excess C2H2. The OH (OD) + C2H2 reaction results in the formation of an association

adduct, and rate coefficients measured for this reaction depend on the efficiency of bath

gas collisions at quenching the excited vibrational quantum-states of the adduct. The

pressure dependence of the OH + C2H2 rate coefficients measured here lie in excellent

agreement with the falloff behaviour reported by other studies. Full master equation (ME)

analysis of the room temperature OH + C2H2 rate coefficients measured here predicts a

limiting high-pressure rate coefficient of (9.10 ± 0.45) × 10-13 cm3 molecule-1 s-1, in good

agreement with values published by other groups. The adduct formed following reaction

between OH (OD) and C2H2 react rapidly with O2 to give either glyoxal + OH (OD), or formic

acid + HCO as first generation oxidation products. The branching ratios associated with this

reaction have been quantified experimentally as a function of pressure, temperature and

oxygen fraction, f-O2. The experimental measurements have been analysed using a detailed

model which combines ME simulations with variable reaction coordinate transition state

theory (VRC-TST). This concerted approach has shown that the product branching observed

following reaction between the adduct and O2 depends critically on the vibrational

quantum-state excitation of the adduct at the point of O2 addition. Significantly, under

atmospheric conditions approximately 25% of the total adduct + O2 reactive flux occurs

before the quantum-states of the adduct have fully relaxed. An extensive isotope study has

also been carried out in order to clarify the mechanism responsible for glyoxal + OH

formation.
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3.2 Background and Previous Work

Acetylene, C2H2, is an important species in both combustion and atmospheric

chemistry, and produced primarily through automobile combustion and biomass burning.1-4

Alkynes are neither readily soluble or photolabile in the atmosphere, so the only significant

loss process is through reaction with OH radicals.5 The slow rate of reaction with OH gives

C2H2 an atmospheric lifetime of approximately 15 days (using a mean [OH] of 1 × 106

molecule cm-3 and a k1 value of 7.8 × 10-13 cm3 molecule-1 s-1 at 760 Torr and 295 K)6;

explaining its detection in both remote regions and at high altitudes,7-9 and its use as a

marker for anthropogenic emissions.10 At temperatures relevant to the atmosphere, the

first step of OH initiated oxidation of C2H2 is pressure dependent OH-addition across the

triple bond (reaction R1):

C2H2 + OH + M → HO-C2H2 + M (R1)

The resulting adducts react rapidly with oxygen. However, unlike many RO2 species, the

resulting peroxy radicals are unstable with respect to formation of two product channels

leading to glyoxal, (HCO)2, + OH (reaction R2a) or formic acid + HCO (reaction R2b):

HO-C2H2 + O2 → (HCO)2 + OH (R2a)

→ HCOOH + HCO (R2b)

Acetylene oxidation contributes significantly to the global (HCO)2 budget, the second

most important after isoprene oxidation at 20%.11 (HCO)2 has been implicated as a likely

precursor of secondary organic aerosol (SOA),12-14 which can potentially influence

atmospheric chemistry, air quality and climate. The HCO radicals produced through reaction

R2b will react rapidly with O2 to give HO2 + CO (reaction R3):15

HCO + O2 → HO2 + CO (R3)

Therefore the branching ratio associated with reaction R2 will affect the partitioning of HOx

(OH + HO2) radicals, both through direct OH formation (reaction R2a) and through

secondary chemistry of the HCO radicals, produced both directly (reaction R2b) and

following photooxidation of (HCO)2.16 The formic acid, HCOOH, produced following C2H2

oxidation is also of atmospheric importance. Carboxylic acids are ubiquitous in all phases
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within the troposphere,17 where they contribute to rain acidity in both urban and remote

regions,18, 19 affect atmospheric chemistry sensitive to pH, and modify the hygroscopic

properties of particulates.20 There is currently significant uncertainty in the atmospheric

budgets of organic acids, particularly in regions affected by biomass burning.21

The pressure dependence of reaction R1 has been investigated by several groups at

room temperature, and shown reasonable agreement in falloff behaviour and values for the

high pressure limiting rate coefficient of ~1 × 10-12 cm3 molecule-1 s-1.22-28 Schmidt et al.

conducted a kinetic flash photolysis study of the OH + C2H2 reaction monitoring OH directly

by LIF; biexponential decays were observed in the presence of O2 and attributed to fast

reaction of the adduct with O2 that generate glyoxal and recycle OH.22 Zetzsch and co-

workers have carried out several studies of the OH + C2H2/O2 system, using flash photolysis

with either resonance fluorescence or long path absorption detection techniques.28-30 Siese

and Zetzsch confirmed biexponential OH decays in the presence of trace amounts of oxygen,

and derived rate coefficients for both reactions R1 and R2 from the decay profiles; k2 was

found independent of pressure with an approximate value of (4.2 ± 0.5) × 10-12 cm3

molecule-1 s-1 at 295 K.29 Bohn et al. then quantified room temperature OH yields, ФOH, for

reaction R2 in excess O2 as a function of total pressure, f-O2, and bath gas.28 These authors

reported ФOH independent of total pressure, with an ФOH of (0.70 ± 0.04) under atmospheric

conditions (f-O2 = 0.21), but strongly dependent on f-O2; decreasing from (0.83 ± 0.02) to

(0.57 ± 0.04) as f-O2 increase from 0.01 to 1, respectively. These authors argued that

because the nascent adduct forms following reaction R2 with excess internal energy, the

negative dependence of ФOH with f-O2 results from less OH generated through reaction of

O2 with the chemically activated adduct. Bohn et al. conducted experiments using either N2

or He bath gas, and observed a more marked dependence of ФOH with f-O2 during

experiments in He. N2 is a more efficient third body than He; therefore this observation is

consistent with product yields dependent on the degree of thermalization of the nascent

adduct.28 The results of Bohn et al. are in good agreement with an earlier atmospheric

chamber study with FTIR stable product detection by Hatakeyama et al., which reported

glyoxal (0.7 ± 0.3) and formic acid (0.4 ± 0.1) as primary products of the NOx free OH

initiated oxidation of acetylene.31 Hatekayama et al. also performed isotopic studies; in the



85

OD + C2H2/O2 system both HCOOH and HCOOD were observed, although the authors noted

that isotopic exchange at the labile OH group could be responsible for this observation.

Schmidt et al. also performed isotope experiments during which they observed OD

formation in the OH + C2D2/O2 system, which suggests the mechanism involves isotopic

exchange.22 At a similar time, Liu et al. attempted to observe either OD formation in the

reaction of OH + C2D2/O2, or OH formation in the OD + C2H2/O2 reaction at 323 and 653 K in

1 atm of argon, using resonance absorption detection.32 No evidence of isotope exchange

was reported by Liu and co-workers, in contrast to the results of Schmidt et al., although

evidence of OH recycling in the OH + C2H2/O2 system was provided by a systematic slowing

of the rate of OH decay following the introduction of O2 to their flow system. Sorenson et al.

have studied reaction R1 from 25 – 8000 Torr at 298 K in N2, O2 and synthetic air using the

relative rate technique, which is insensitive to OH recycling.24 The high-pressure limiting rate

coefficient, k1
∞, was determined as (9.69 ± 0.30) × 10-13 cm3 molecule-1 s-1, and k1 at

atmospheric pressure was measured as 8.5 × 10-13 cm3 molecule-1 s-1; most relevant for the

work presented here is that they showed the efficiencies of N2 and O2 as third bodies to be

identical.

Theoretical treatment of reaction R1 by Yeung et al., Glowacki and Pilling, and Barker

and co-workers, have all reported that the HO-C2H2 adduct exists in two energetically

distinct conformations, with the OH group either cis- or trans- to the radical orbital (herein

referred to as cis-adduct and trans-adduct isomers, respectively), and the cis-adduct

approximately 5 kJ mol-1 more stable than the trans.33-35 Theory suggests reaction of the

cis-adduct with O2 proceeds on an energetically downhill path to (HCO)2 + OH products. The

initial step is a 1, 5-hydrogen shift of the peroxy radical to give a QOOH intermediate

species, which dissociates promptly over a small barrier to give (HCO)2 + OH. The peroxy

radical is stabilised through hydrogen bonding between its OH and peroxy substituents, yet

still lies higher in energy than the transition state leading to QOOH formation (Figure 1);

consequently this is the most facile product channel available to the HO-C2H2 adduct in the

presence of O2. Significantly, the mechanism proposed by theory suggests the proton of the

OH that initiates oxidation is identical to that of the OH regenerated. The theory is therefore

at odds with experimental evidence by Schmidt et al., which reported isotope exchange in
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the OH + C2D2/O2 system.22 The pathway to HCOOH + HCO products is more mechanistically

tortuous than the bicarbonyl forming channel, and associated with reaction of the trans-

adduct with O2. The initial step is isomerisation of the peroxy radical to give a three-

membered cyclic intermediate, which following concerted C-C and O-O bond cleavage and

β-fragmentation yields HCOOH + HCO products.   

Figure 1: Main stationary points on the potential energy surface for the HO-C2H2 + O2 reaction.35

This chapter reports an extensive kinetic study of the OH + C2H2 reaction which aims

to build on previous work by Zetzsch and co-workers by quantifying ФOH for the OH +

C2H2/O2 reaction as a function of total pressure, temperature, and oxygen concentration.

The observed ФOH are examined using a theoretical model that combines ab initio quantum

chemistry with stochastic master equation (ME) simulations and variable reaction

coordinate transition-state theory (VRC-TST).27 The kinetics of reaction R2 are investigated

by analysing the biexponential OH decay traces observed in the presence of trace amounts
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of O2. Finally, isotope studies are used to elucidate the reaction mechanism associated with

acetylene oxidation, and resolve the conflicting observations reported in the literature.36

3.3 Experimental

This work has been carried out using conventional slow flow, laser flash photolysis,

laser induced fluorescence (LIF) apparatus. The flows of radical precursor, acetylene, and

bath gas (N2 and/or O2), were regulated via calibrated mass flow controllers, and introduced

into a stainless steel, 6-way cross reactor through a mixing manifold. The total pressure in

the reactor (5 – 300 Torr) was regulated via a needle valve in the exhaust line to the pump

and measured using a capacitance manometer. Temperatures above 298 K were obtained

using cartridge resistance heaters inserted in the walls of the central region of the reactor,

and temperatures close to the reaction zone were measured using K-type thermocouples.

Subambient temperatures were obtained using a different 6-way cross stainless steel

reactor, which had been welded into a metal bath such that just the end flanges of the cell

arms protrude through the walls of the bath. The bath was filled with iced water, salted ice

water, and chloroform/dry ice to achieve temperatures of 273, 253, and 212 K, respectively.

OH radicals were generated from the excimer laser pulsed photolysis of t-butyl

hydroperoxide at 248 nm (Lambda Physik Compex).

t-C4H9OOH + hν → OH + coproducts (P1)

Photolysis energies were typically 30 – 100 mJ pulse-1; the laser beam had an area of ~ 1 cm2

and was introduced through one of the arms of the reactor. The laser was typically operated

at 10 Hz although some studies were carried out at lower pulse repetition rates to ensure

that fresh gas was present for each photolysis pulse.

Materials used: Acetylene (BOC, > 99.5%), nitrogen (BOC oxygen free), and oxygen (Air

Products, high purity, 99.999%) were all used direct from the cylinder, t-C4H9OOH (Sigma

Aldrich, 70% v/v aqueous), deuterated nitric acid (Sigma Aldrich, 65 wt.% in D2O, 99 atom %

D), acetone-d6, (Sigma Aldrich, 99.9%), hydrogen, (BOC, 99.999%), deuterium, (Air Products,

99.999%).
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OH (OD) radicals were detected by off-resonance LIF with excitation taking place at

~282 (287) nm (A2Σ(v = 1) ← X2Π(v = 0), Q1(1) ) with the fluorescence being observed at

~308 (313) nm through an interference filter (Corion, 310 ± 10 nm) by a photomultiplier

tube mounted perpendicular to the plane of the probe and photolysis lasers. Probe

radiation was generated from a YAG pumped (Spectra Physics GCR-150) dye laser (Spectra

Physics PDL-3) operating either with Rhodamine6G for OH detection or with a mixture of

Rhodamine6G and Pyrromethene 597, which allowed access to both OH and OD probe

radiation. The photomultiplier signal was integrated using a boxcar averager (SRS) and

digitised before being sent to a personal computer for data analysis. The time delay

between the photolysis and probe laser pulses was controlled by homemade software and

was varied to build up a time profile of the OH signal following photolysis. Kinetic traces

were typically 200 – 400 data points each averaged 2 – 10 times depending on the signal-to-

noise ratio.

The reactions were carried out under pseudo-first-order conditions such that the

concentration of acetylene was always in great excess over the OH. Under these conditions,

with nitrogen as bath gas, OH removal is determined by reactions R1 and R4:

OH → loss (R4)

where reaction R4 accounts for the reaction of OH with the precursor or diffusion out of the

observation region of the reactor. The time dependence of the OH signal If is given by

If(t) = If(0)exp-k’t (E1)

where If(0) and If(t) are the OH signals at times zero and t, respectively, and k’ is the

observed pseudo-first-order rate coefficient (k’ = k1[Acetylene] + k4). It follows that a plot of

k’ against [Acetylene] should be linear with a gradient equal to k1; a typical experimental OH

decay trace and bimolecular plot for the OH + C2H2 reaction in N2 bath gas are shown in

Figure 2.
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Figure 2: Typical bimolecular plot for the OH + C2H2 → HO-C2H2 reaction at 295 K and 10 Torr total

pressure in pure nitrogen; corresponding to an experimental k1 value of (3.79 ± 0.03) × 10-13 cm3

molecule-1 s-1. The inset shows a typical experimental OH decay trace measured in the presence of

C2H2 (1.11 × 1016 molecule cm-3) using pure N2 bath gas; the fit to equation E1 corresponds to a

pseudo-first-order decay coefficient of (4610 ± 30) s-1.

3.4 OH + C2H2 Pressure Dependence in Nitrogen Bath Gas

A detailed investigation of the pressure dependence of reaction R1 has been carried

out at room temperature, with rate coefficients measured between 5 and 300 Torr in pure

N2. A plot of the experimental rate coefficients as a function of bath gas pressure is provided

in Figure 3, with values reported by other studies included for comparison. The k1

measurements presented here demonstrate similar falloff behaviour to those reported by

Bohn et al.,28 and Wahner and Zetzsch,23 both of whom used laser flash photolysis with laser

resonance absorption detection, and to measurements by Sorenson et al. who studied the

kinetics of reaction R1 using the relative rates technique.24 McKee et al. investigated



90

reaction R1 by monitoring OH decay in excess acetylene using cavity ring-down

spectroscopy (CRDS) in N2.25 While there is good agreement between different studies on

the value of k1 at atmospheric pressure, the experiments by McKee et al. report k1 to fall off

more rapidly with decreasing pressure than measurements by other groups suggest (Figure

3).

Figure 3: Pressure dependence of the bimolecular rate coefficient, k1, for the OH + C2H2 reaction

measured during this work in pure N2 (■), by Sorensen et al. in air (●);24 Wahner and Zetzsch in N2

(▲);23 McKee et al. in N2 (♦);25 and Bohn et al. in N2 (◄).28 The solid line shows the best fit though

the data points collected during this work using MESMER at 295 K using N2 bath gas.37

If the cavity used by McKee and co-workers was not leak-tight then this would explain a

systematic underestimation in the k1 measurements, as the O2 entering the cavity would

react rapidly with the HO-C2H2 adduct and recycle OH (R2a). Furthermore, any inward flow

of laboratory air into the cavity would be exacerbated at low pressures but ease as the

pressure within the cavity approaches one atmosphere and the pressure gradient across the
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hole of the cavity is minimised. However, if O2 was present in the cavity during experiments

by McKee et al., then it would likely be made apparent by either biexponential OH decays,

or a more marked decrease in k1 values, neither of which were observed during their study.

Therefore the reason for the discrepancy between the falloff behaviour for the OH + C2H2

reaction reported by McKee et al. and by other studies remains unclear.

One dimensional master equation (ME) analysis of the k1 values measured during

this work has been carried out using the freely available, open source program, MESMER.37

The energy well depth of the HO-C2H2 adduct, relative to the reactants, was calculated by Dr

David Glowacki using high-level electronic structure theory as -130.7 kJ mol-1. Furthermore,

rotational constants and vibrational frequencies for all stationary points across the PES were

derived from ab initio calculations using CBS-QCI/APNO//6-311+G(3df, 2p) model chemistry.

The activation energy, Eact, was fixed as 5 kJ mol-1, in good agreement with experimental

and theoretical values reported by other studies,25, 26, 38 while the Arrhenius A-factor and

∆Edown values were allowed to float during the simulation. The best fit through these

experimental data was achieved using an A-factor of (6.99 ± 0.34) × 10-12 cm3 molecule-1 s-1,

and a ∆Edown of 433 ± 63 cm-1; the energy transfer parameter lies within the expected range

for N2 bath gas. The best fit through the experimental data points following full ME analysis

is shown as the solid line in Figure 3, and predicts a k1
∞ value of (9.10 ± 0.45) × 10-13 cm3

molecule-1 s-1, consistent with values of (8.11 ± 0.82) and (8.30 ± 0.80) × 10-13 cm3 molecule-1

s-1, reported by Liu et al.,32 and Schmidt et al.,22 respectively, using Ar bath gas, and in

excellent agreement with the values of 9.0 × 10-13 cm3 molecule-1 s-1 reported by Wahner

and Zetzsch in N2,23 and (9.69 ± 0.30) × 10-13 cm3 molecule-1 s-1 measured by Sorenson et al.

during a smog chamber/ photoreactor study.24 A summary of k1
∞ values reported in the

literature is presented in Table 1. Fulle et al. studied reaction R1 in He bath gas using high

pressure apparatus between 1 and 130 Bar;39 extrapolation of their measurements yields a

k1
∞ value of 1.8 × 10-12 cm3 molecule-1 s-1, significantly greater than the results from all other

studies. It has been suggested that additional OH removal processes were operating during

the experiments of Fulle et al., resulting in a systematic overestimation of k1. The proposed

additional OH sinks include reaction with trace gas impurities in the acetylene, or with the

HO-C2H2 adduct, or with radicals produced from 193 nm photolysis of acetylene.
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Nevertheless, given the level of agreement between all other studies of reaction R1 (Table

1), it is reasonable to assume the error lies with the work of Fulle et al. Moreover, the

consistency between the falloff behaviour reported here with that observed during other

studies, support the credibility of the experimental kinetic technique employed here.

Reference Pressure Gas Temperature / K Experimental

Technique

k1
∞ / 10

-13
cm

3

molecule
-1

s
-1

This Study Nitrogen 295 FP-LIF (9.10 ± 0.45)

Sorenson et al.,

2003

Air 296 Relative Rate (9.69 ± 0.30)

McKee et al., 2007 Nitrogen / He / SF6 298 FP-CRDS (8.56 ± 0.15)

Bohn et al., 1996 Nitrogen 296 UV-Laser long path

absorption

(10.7 ± 0.7)

Wahner and

Zetzsch, 1985

Nitrogen 298 CW-UV-laser

absorption

9.0

Liu et al., 1989 Argon 300 Pulsed Radiolysis

UV absorption

(8.11 ± 0.82)

Schmidt et al., 1985 Argon 295 FP-LIF (8.3 ± 0.8)

Michael et al., 1980 Argon 298 FP-RF (7.76 ± 0.73)

Fulle et al., 1997 Helium 300 FP-LIF 18.0

Table 1: Comparison of limiting high-pressure rate coefficients, k1
∞, for the OH + C2H2 reaction at

room temperature with values published in the literature.

3.5 Branching Ratios from Kinetic Studies in Excess O2

The rate of OH removal in the presence of acetylene in pure N2 bath gas is defined as

follows:

]OH[]OH][HC[
]OH[

4221
kk

dt

d
 (E2)
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Under pseudo-first-order conditions equation E2 simplifies to:

OH]['
]OH[

1
k

dt

d
 (E3)

where k1’ = k1[C2H2] + k4. As the OH concentration at time t, [OH]t, is proportional to the

corresponding OH signal, If(t), integrating equation E3 with respect to time yields equation

E1. Therefore the gradient of a bimolecular plot of k1’ against [C2H2] is equal to k1, an

example of which can be seen in the upper line in Figure 4. In the presence of molecular O2,

the HO-C2H2 adduct will react with O2 to regenerate OH via reaction R2a. For the reaction of

OH with acetylene in the presence of O2:

]OH[]O][adduct[]OH][HC[
]OH[

42a2221
kkk

dt

d
 (E4)

Provided the [O2] is in excess, the [adduct] can be treated in steady state, such that

]O][adduct[]OH][HC[
22221

kk  . Under these conditions the biexponential solution for

equation E4 reduces to the single exponential solution of:

]OH[
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The effective bimolecular rate coefficient for OH loss in the presence of O2 will be reduced

compared with its value in nitrogen (k1) due to OH regeneration via reaction R2a, as shown

by the lower lines in Figure 4. The rate coefficient for OH loss in the presence of nitrogen is

kN2 = k1, and with O2 present kO2 = k1(1 – k2a/k2). The yield of OH, ФOH, is given by:

ФOH

b2a2

a2

kk

k


 (E6)

and therefore:

ФOH

2N

2O1
k

k
 (E7)
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Figure 4: Bimolecular Plots for the OH + C2H2 → Products reaction at 10 Torr total pressure and 295

K: in pure N2 bath gas (■), 2% O2 and 98% N2 (●), and in 94% O2 and 6% N2 (▲). Error bars are purely

statistical at the 1σ level.  

3.6 Error in OH Yield Measurements

Linear-least squares analyses of the bimolecular plots provide the experimental rate

coefficient uncertainty at the 1σ level. The purely statistical errors in the experimental OH 

yield, ФOH, were calculated by propagating the fractional errors in the nitrogen and oxygen

rate coefficients as follows:

Experimental ФOH Error = ФOH ×
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k
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3.7 Experimental OH yields for the OH + C2H2/O2 Reaction

Room temperature ФOH have been measured for the OH + C2H2/O2 reaction using the

ratio of rate coefficients measured in the presence and absence of O2 (equation E7), as a

function of total pressure (10 – 75 Torr), and O2 concentration. The slopes of the least

squares linear fits through the bimolecular plots shown in Figure 4 give experimental rate

coefficients of (3.92 ± 0.05) × 10-13 cm3 molecule-1 s-1 in pure N2 bath gas, and effective rate

coefficients of (8.08 ± 0.21) and (15.11 ± 0.23) × 10-14 cm3 molecule-1 s-1 using oxygen

fractions, f-O2, of 0.02 and 0.94, respectively; measurements made in the presence of O2

correspond to respective experimental ФOH of (0.79 ± 0.02) and (0.61 ± 0.01). The

dependence of the observed ФOH on total pressure and O2 concentration are presented in

Figure 5.

Figure 5: Dependence of the OH Yield, ФOH, for the OH + C2H2/O2 reaction at 295 K as a function of

oxygen fraction, f-O2, at total pressures of 10 (■), 25 (●), and 75 Torr (▲). The error bars are purely

statistical at the 1σ level. The line shows the fit obtained from the ME/VRC-TST calculations (details 

are included in the text).27
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The ФOH is independent of total pressure but strongly dependent on f-O2, with greatest ФOH

observed under low f-O2 conditions, consistent with the results of Bohn et al.28

Furthermore, the ФOH observed here are in excellent agreement with values reported by

other studies (Table 2), measured at total pressures ranging between 2 and 760 Torr.

Reference Experimental

Technique

Temperature /

K

Pressure /

Torr

Bath Gas f-O2 ФOH

This Study Pulsed Flash

Photolysis –

Laser Induced

Fluorescence

295 10 N2/O2 mix 0.02 0.79 ± 0.02

0.20 0.71 ± 0.05

0.94 0.61 ± 0.01

25 N2/O2 mix 0.02 0.78 ± 0.02

0.21 0.70 ± 0.01

0.86 0.61 ± 0.02

75 N2/O2 mix 0.01 0.82 ± 0.03

0.09 0.75 ± 0.01

0.86 0.61 ± 0.01

Hatakeyama

et al.
31

End Product

Analysis

297 ± 2 760 Synthetic Air 0.21 0.70 ± 0.30

Bohn et al.
28

Pulsed Laser

Photolysis – UV

long path

absorption

296 ± 2 760 N2/O2 mix 0.01 0.82 ± 0.04

Synthetic Air 0.21 0.70 ± 0.04

O2 1 0.57 ± 0.04

Zhang and

Peeters
40

Discharge Flow

- MS

288 2 He/O2 mix 0.06 0.75

Table 2: Literature values for room temperature OH yields for the OH + C2H2 reaction in the presence

of oxygen.
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The independence of the ФOH on total pressure is consistent with PES calculations

for the HO-C2H2 + O2 reaction which report no deep energy wells on either stable product

path into which an intermediate could stabilise (Figure 1), such that following peroxyl radical

formation, the reactions proceed on an irreversible downhill energy path to products

regardless of pressure. Bohn et al. proposed that the stable product branching ratios

observed for the OH + C2H2/O2 reaction depend on the degree of thermalisation of the

nascent HO-C2H2 adduct,28 here we confirm this hypothesis by complementing experimental

measurements with theory.27

As discussed previously, potential energy surface calculations for the OH + C2H2/O2

system confirm that the glyoxal + OH product path is attributed to reaction of the cis-adduct

conformer with O2, while formic acid + formyl radical are formed following reaction of the

trans-adduct isomer with O2 (Figure 6). At 298 K the nascent HO-C2H2 adduct forms with

approximately 146.6 kJ mol-1 excess energy. At these energies the cis- and trans-adduct

isomers interconvert rapidly over a relatively small barrier of approximately 17 kJ mol-1, and

exist in near equal populations (Figure 6, short time dashed line).

Under low f-O2, this excess energy is dissipated through stabilizing collisions with

bath gas molecules, and the adduct conformers can be considered in thermal equilibrium

prior to reaction with O2 (Figure 6, long time solid line). At 298 K thermal equilibrium the cis-

to-trans adduct population ratio is ~0.78:0.22. As the product branching ratio is controlled

by the stereochemistry of the HO-C2H2 adduct at the point of O2 addition, the thermal

distribution of conformers is consistent with the experimental ФOH of ~0.80 observed using

low f-O2 (Figure 5). Under high f-O2 reactive collisions with O2 occur under non-equilibrium

conditions, with a cis-to-trans adduct population ratio closer to 1, bicabonyl and acid

channel branching ratios of ~0.5 are expected. In reality not all collisions with O2 are

reactive, some collisional deactivation does occur resulting in experimental ФOH closer to

0.6. Significantly, under atmospheric conditions (f-O2 = 0.21) ФOH of ~0.70 are observed,

indicating that quantum state relaxation is in an intermediate regime, with a substantial

fraction of the HO-C2H2 population intercepted by O2 before relaxation is complete.
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Figure 6: Acetylene atmospheric oxidation mechanism, including a schematic of the potential energy

surface for the OH + C2H2 addition step, and an illustration of the vibrationally quantum state

distribution (denoted by *) in the nascent cis- and trans-adduct isomers as they relax to thermal

equilibrium. All energy units are in kJ mol-1.27

3.8 Temperature Dependent OH yields for the OH + C2H2/O2 Reaction

Experimental ФOH have been measured for the OH + C2H2/O2 reaction for the first

time as a function of temperature. Experiments were conducted at 10 Torr total pressure,

and at temperatures ranging from 212 – 498 K. At each temperature, ФOH were measured as

a function of f-O2, with checks made to ensure ФOH remained independent of pressure. The

temperature dependence of the ФOH observed for the OH + C2H2/O2 reaction, using 0.01,
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0.20 and 0.9 f-O2 are plotted in Figure 7, and present further evidence of the effect of

chemical activation on the product branching ratio associated with acetylene oxidation.

OH yield measurements made at f-O2 of 0.01 demonstrate the most marked

dependence on temperature, with ФOH increasing from ~0.6 at 498 K to ~0.9 at 212 K.

Under low O2 conditions, the cis- and trans-adduct conformers are in thermal equilibrium

prior to reaction with O2. As temperatures decrease the thermal distribution of conformers

shifts in favour of the more stable cis-adduct which reacts with O2 to give OH. Therefore the

ФOH observed under these conditions correspond to the temperature-dependent fraction of

cis-adduct present at thermal equilibrium.

Figure 7: Variation of the OH Yield, ФOH, for the OH + C2H2/O2 reaction with temperature at oxygen

fractions, f-O2, of 0.01 (■), 0.20 (●), and 0.90 (▲). The error bars are purely statistical at the 1σ level. 

The lines show the results obtained from the corresponding ME/VRC-TST calculations.27
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In contrast, OH yield measurements made at f-O2 of 0.90 are relatively insensitive to

temperature with respect to measurements made using f-O2 of 0.01, with ФOH increasing

from ~0.6 at 498 K to ~0.65 at 212 K. Under high O2 conditions, reactive collisions between

the HO-C2H2 adduct and O2 occur before the internal quantum states of the nascent adduct

have fully relaxed, resulting in ФOH measurements that are near independent of the thermal

distribution of conformers. Under near atmospheric conditions (f-O2 = 0.20) the observed

ФOH are not yet at the thermal limit, and a significant fraction of the HO-C2H2 adduct

ensemble are intercepted by O2 before the internal quantum states are in thermal

equilibrium (Figure 7).

3.9 Theoretical Treatment of the OH + C2H2/O2 Reaction

A theoretical description of the OH + C2H2/O2 system has been provided by Drs David

Glowacki and Stephen Klippenstein using a model that combines ab initio quantum

chemistry with stochastic master equation (ME) simulations and variable reaction

coordinate transition state theory (VRC-TST). In VRC-TST both the definition and value of the

reaction coordinate are optimized when calculating the reactive flux from reactants to

products, this approach has proven effective at calculating rate coefficients for barrierless

association reactions with a strictly loose transition state, and therefore offers a suitable

method for calculating rate coefficients for the HO-C2H2 adduct + O2 reaction.41-43 Within

this scheme, the reactant modes are divided into internal vibrational modes that occur in

both the association fragments and association complex, known as conserved modes, and

transitional modes, which include rotational modes and translational motion of the

fragments, and change from free rotation and translation at infinite separation of the

fragments, to vibrational motion and overall rotation upon formation of the association

complex. The transitional modes are treated through Monte Carlo integration of the

classical phase space representation, while the conserved modes are treated as direct sums

over the quantum harmonic oscillator energies. The consideration of various pivot points for

the transitional mode fragment rotations yields a range of reaction coordinate definitions.

Minimization of the calculated transition state partition function with respect to the
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intermolecular separation and the pivot point locations yields the VRC-TST prediction for the

rate coefficient.

The successful implementation of the VRC-TST approach requires accurate potential

energies for the intermolecular interaction of the reactants (HO-C2H2 and O2) at arbitrary

orientations for separations ranging from 2 to 4 Angstroms. Second order multireference

perturbation theory employing a complete active space wavefunction (CASPT2) provides an

efficient and accurate means for calculating these interaction energies. Here they employed

direct CASPT2(7e, 5o) samplings with a modest basis set (aug-cc-pVDZ) to obtain the

orientation dependence for these interaction energies.

Higher-level calculations along the minimum energy path (MEP) yield a one-

dimensional correction to these orientation dependent energies. Here, these correction are

broken down into three separate terms: (i) a correction for limitations in the basis set, (ii) a

correction for limitations in the CASPT2(7e,5o) method, and (iii) a correction for the effect

of relaxation of the fragment geometries. The basis set corrections were obtained from

basis set extrapolation of CASPT2(7e,5o) evaluations with basis the aug-cc-pVTZ and aug-cc-

pVQZ basis sets of Dunning.44 A higher order correction to the CASPT2(7e,5o) method was

obtained from Davidson corrected internally-contracted multi-reference configuration

interaction (CI+QC)45, 46 calculations with a (9e,7o) active space, where the extra orbital

correlates with the OO sigma bond. The geometry relaxation correction is obtained from

constrained optimizations with the CASPT2(7e,5o)aug-cc-pVDZ method. These electronic

structure calculations were all performed with MOLPRO.47

There are two possible channels available for the O2 association reaction with each

HO-C2H2 conformer, with O2 adding either cis or trans to the carbon-carbon bond of each

isomer. Fully corrected one-dimensional MEP energies have been calculated for each of the

four possible channels as a function of C-O separation, and show cis O2 addition to the

trans-adduct to be the most energetically favoured path; the remaining three additions

have similar MEP potentials. The favoured energetics result in a significantly greater

addition rate at low temperatures for the trans-adduct conformer. As the C-O separation

approaches 2 Angstroms, the MEP potential for cis O2 addition to the cis-adduct conformer

approaches that of cis O2 addition to the trans-adduct. Consequently, the rate coefficients
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for trans- and cis-adduct associations with O2 converge at higher temperatures. Theoretical

values for the rate coefficients k2a and k2b, calculated using VRC-TST, are shown in Figure 8

as a function of temperature.

Figure 8: VRC-TST thermal rate coefficients for the O2 association reaction with cis- (■) and trans-

adduct conformers (●) based on CASPT2(7,5)/aug-cc-pVDZ orientation samplings coupled with one-

dimensional corrections along the MEP based on CI+QC(9,7)CBS estimates which include geometry

relaxation effects.27

3.9.1 Master Equation (ME) Model

The energy grained master equation (ME) has been described previously in chapter

1. Here the model begins with the bimolecular OH + C2H2 reaction to give either the cis- or

trans-adduct. The rotational and vibrational energy levels of each species are partitioned

into grains with an energy width no larger than a few kJ mol-1. Within the energy resolved

state space the adduct conformers can undergo several processes, they can interconvert to

the complementary isomer; transfer energy through inelastic bath gas collisions;
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redissociate back to reactants; or react with O2. A differential equation is constructed to

describe the grain populations within each species, and model the rates of collisional energy

transfer into and out of each grain, as well as the probability that a population will undergo

reactive processes. The whole set of coupled differential equations are solved using matrix

methods to define the energy resolved, microcanonical rate coefficients that describe the

conversion between reactants, intermediates and products; and ultimately provide rate

coefficients on the macroscopic or phenomenological level. All RRKM and ME calculations

reported in this work were carried out using the MESMER programme.37 Microcanonical

rate coefficients for isomerisation and dissociation reactions were calculated using RRKM

theory as:

)(

)(
)(

Eh

EW
Ek


 (E9)

where W(E) is the sum of states at the transition state, h is Planck’s constant, and ρ(E) is the

reactant density of states.

Collisional energy transfers were treated using an exponential down model

parametrized with the temperature independent ∆Edown. Reaction of the cis- and trans-

adduct isomers was incorporated into the model as “irreversible bimolecular sinks”, as both

reactions proceed rapidly to products, and effectively determine the product identity. It was

assumed during the ME simulations performed here that the barrierless association kinetics

of O2 with the cis- and trans-adduct are independent of any internal vibrational excitation

within the adduct radicals or O2, and the equilibration of any rotational excitation within the

radicals is very fast as a consequence of interactions with the bath gas. This allowed the

pseudo-first-order irreversible rate coefficients, cisk loss and transk loss , to be calculated as follows:
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where VRC-TST denotes a rate coefficient obtained from the aforementioned VRC-TST

calculations, and [O2] is calculated based on the experimental pressure and f-O2.
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Sums and densities of states for calculating the ME matrix elements were calculated

using vibrational harmonic oscillator approximations and by treating all molecules and

transition state structures as either 2D classical rotors or 3D asymmetric classical rotors. For

OH, C2H2, and the trans-adduct, rotational constants, vibrational frequencies, and energies

from B3LYP/6-311+G(3df,2p) geometry optimizations and vibrational analysis. For the OH +

C2H2 association transition state, microcanonical rate coefficients were calculated utilising

the inverse Laplace transform (ILT) method. For the cis- and trans-adduct isomers and the

transition state connecting them geometry optimizations and vibrational analysis at both

the B3LYP/6-31G(2df,p) and B3LYP/6-311+G(3df,2p) levels of theory were performed.

Subsequently, UCCSD(T)-ROHF single point energy calculations were extrapolated to the

infinite basis set limit using the cc-pVTZ and cc-pVQZ basis sets.

Full ME simulations of the OH + C2H2/O2 system have been run in order to determine

theoretical stable product yields and investigate the time-dependent energy distributions of

the cis- and trans-adduct conformers. Initially, the irreversible bimolecular sinks were

included in the model, and all population initialized in OH + C2H2. Steady state product yields

were then determined following addition of O2 at f-O2 of 0.01, 0.10, and 0.90 at 298 K and

760 Torr, giving respective ФOH of 0.751, 0.718, and 0.630. Under these model conditions,

the adduct conformers are kept in approximate steady state owing to their rate of

formation being slow relative to their rates of removal; consequently their concentrations

never accumulate appreciably. In order to demonstrate the time-dependent energy

distributions of the adduct conformers a second simulation was ran for which all initial

population was placed in the cis- and trans-adducts. The initial energy was chosen as the

average nascent adducts energy after crossing the OH + C2H2 association barrier; at 298 K

this energy is 146.6 kJ mol-1 above the cis-adduct minimum. At f-O2 of 0.01, 0.10, and 0.90

the steady state product yields determined following addition of O2 to the adduct

conformers were identical to within three decimal places to the yields obtained with all

population initialized in OH + C2H2. Significantly, these simulations allow relaxation of the

nascent cis- and trans-adduct energy distribution to be visualised, and simultaneously give

the product yields. The results of ME/VRC-TST calculations at 298 K and 760 Torr are shown
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in Figure 9. The three-dimensional plots show the evolution of cis- and trans-adduct

rovibrational quantum states as a function of time and energy.

Figure 9: Results from ME-VRC/TST calculations at 298 K and 760 Torr showing evolution of the

vibrational state distributions in cis- and trans-adduct isomers, as a function of both energy and

time. (A and B) show results with f-O2 = 0.01 for cis- and trans-adduct, respectively, (C and D) show

results with f-O2 = 0.90 for cis- and trans-adduct, respectively.27
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By definition, the nascent adduct forms at short times with a high degree of internal

vibrational energy, under these conditions the populations of cis- and trans-adducts are

essentially identical (Figure 9). The system reaches thermal equilibrium at ~17 ns, where the

relative populations of the cis- and trans-adducts shifts in favour of the more stable cis-

adduct. For f-O2 ~0.01 (Figure 9, A and B), the majority of O2 addition takes place under

equilibrium conditions over the following 10 µs in which cis-adduct accounts for ~79% of the

total adduct population. Under high O2 conditions, using f-O2 of ~0.90 (Figure 9, C and D),

approximately 70% of the adduct population is lost through association with O2 before

vibrational deactivation is complete at ~17 ns; with total adduct removal complete within

~100 ns.

A final set of simulations was run for which all initial population was placed in the

cis- and trans-adduct isomers, with 146.6 kJ mol-1 excess energy, at 298 K and 760 Torr, but

for which the irreversible bimolecular sink O2 association reactions were turned off. This

allows the average energy of the adduct isomers to be calculated as a function of time, and

consequently, the time taken for the cis- and trans-adduct isomers to achieve thermal

equilibrium to be determined (upper panel of Figure 10). By comparing this profile with

species profiles obtained under identical conditions but with the irreversible bimolecular

loss channels turned on, it is possible to determine the fraction of the cis- and trans-adduct

populations that are intercepted by O2 prior to complete vibrational deactivation under

atmospheric conditions (f-O2 = 0.21). At atmospheric f-O2 ~25% of the total cis- and trans-

adduct populations undergo reactive collisions with O2 before their vibrational quantum

states have fully relaxed (lower panel Figure 10).
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Figure 10: Schematic of the ME/VRC-TST results used to determine the fraction of each adduct

conformer intercepted by O2 before complete of vibrational deactivation at 298 K and 760 Torr. The

top panel shows the average adduct energy as a function of time with the irreversible bimolecular

loss channels turned off. As indicated, the system reaches thermal equilibrium at ~17 ns. The bottom

panel shows the species profiles obtained from a separate simulation with the loss channels turned

on at 298 K and 760 Torr using f-O2 of 0.21. The profiles shows that upon completion of vibrational

deactivation ~25% of the total cis- and trans-adduct population has gone to O2 addition products.27

3.9.2 Master Equation Sensitivity Analysis

The model described above was used to simulate experimental ФOH measured as a

function of total pressure, oxygen concentration and temperature; the ME/VRC-TST fits

through these data points are shown in Figures 5 and 7. The quality of the fitting proved

particularly sensitive to two of the model parameters, ∆Edown and the relative energy of the

trans-adduct isomer with respect to the cis-adduct (Etrans – Ecis). Consequently, a detailed

sensitivity analysis of χ2 with respect to these model parameters was undertaken, with:

 2 
OHi

obs OH i
ME

OHi
obs











2

i

 (E12)
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where OHi
obs is the experimentally observed ФOH at some pressure, temperature, and f-O2.

OHi
ME is the theoretical ФOH calculated using ME/VRC-TST under the same conditions, and i

is an index that runs over all experimental data points. The results of the sensitivity analysis

show a broad minimum in the relevant parameter space, with ∆Edown values ranging

between 300 – 425 cm-1, and using a conformer energy difference (Etrans – Ecis) of between

3.3 – 3.6 kJ mol-1 (Figure 11).

Figure 11: χ2 surface showing the fitting produced by the ME model to the experimental data points

(shown in Figures 5 and 7) as both ∆Edown and the Etrans – Ecis adduct energy difference are varied.27

The optimum ∆Edown value range of between 300 and 425 cm-1 predicted when simulating

experimental ФOH is consistent with the 433 ± 63 cm-1 value used to model OH + C2H2 falloff

kinetics (Figure 3). Furthermore, the energy difference between the trans- and cis-adduct

isomers, favoured at between 3.3 and 3.6 kJ mol-1, agrees with the values of 4.56 – 5.89 kJ

mol-1 (depending on the level of theory) determined from electronic structure calculations

to well within the chemical accuracy target of 4 kJ mol-1. The ME/VRC-TST fits through

experimental data points shown in Figures 5 and 7 used a ∆Edown value of 310 cm-1 and a

Etrans – Ecis adduct energy difference of 3.5 kJ mol-1.
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3.10 Biexponential OH decay Traces Kinetics of the adduct + O2

The nature of the OH decay observed in the presence of acetylene is known to be

highly sensitive to trace amounts of O2.22, 29, 36 Under low O2 conditions, the reaction of the

adduct with O2 can no longer be considered fast relative to formation of the adduct, under

certain concentration regimes the OH decay becomes biexponential as both the OH loss

through addition, and that generated through secondary chemistry are observed on the

same timescale. This kinetic behaviour has been described by previous groups and can be

confirmed here by experiments conducted at room temperature and 10 Torr total pressure

(Figure 12).

Figure 12: Experimental OH decays in the presence of acetylene with and without trace amounts of

O2 at 295 K and 10 Torr total pressure: oxygen free conditions (■), 2.30 × 1014 molecule cm-3 (▲), 5.1

× 1014 molecule cm-3 (■), and 1.02 × 1015 molecule cm-3 of O2 (♦); each fit using equation E15.36
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In the presence of acetylene using pure N2 bath gas, OH loss follows pseudo-first-order

kinetics defined by single exponential decay (black squares in Figure 12); in contrast,

biexponential decays are observed when trace amounts of O2 are introduced to the reaction

cell. Biexponential decay traces provide quantitative kinetic information concerning both

the addition, and subsequent adduct + O2 reaction. Under pseudo-first-order conditions the

rate of change in the concentrations of OH and the HO-C2H2 adduct can be defined using the

following coupled differential equations:
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where k5 accounts for effective pseudo-first-order loss of the HO-C2H2 adduct via diffusion:

adduct → Loss (R5)

The solution to equations E13 and E14 defines the time dependent [OH]t profile by the

following function:
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OH decay traces were monitored at room temperature and 10 Torr total pressure,

with experimental conditions controlled such that the acetylene concentration was fixed at

~1.34 × 1016 molecule cm-3 for all decay traces with and without O2. This allowed k1’ for all

biexponential decay traces to be fixed as the pseudo-first-order decay coefficient obtained

from single exponential analysis of the OH decay observed in the absence of O2 (black

squares Figure 12). The gradient of a straight line plot of the total pseudo-first-order rate

coefficient for the HO-C2H2 adduct + O2 reaction, k2’ (k2a’ + k2b’ + k5) against O2 concentration

gives the bimolecular rate coefficient for the HO-C2H2 adduct + O2 reaction, k2. The

bimolecular plots derived from biexponential analysis of the OH decay traces observed for

the OH + C2H2/O2 reaction at 10 Torr total pressure and temperatures of 295 and 212 K are

presented in Figure 13, and correspond to respective k2 values of (6.15 ± 0.27) and (19.29 ±

0.12) × 10-12 cm3 molecule-1 s-1. Siese and Zetzsch quantified k2 directly by monitoring

biexponential OH decays at room temperature and pressures ranging from 12 – 200 Torr of

argon, and found k2 to be pressure independent with a value of (4.2 ± 0.5) × 10-12 cm3

molecule-1 s-1;29 but did not investigate the temperature dependence.

The room temperature k2 value measured here is in reasonable agreement with the

result reported by Siese and Zetzsch, and with the value calculated by Dr Klippenstein using

VRC/TST of 3 – 4 x 10-12 cm3 molecule-1 s-1 (Figure 8).27 The VRC/TST calculations predict k2

to increase with decreasing temperature, in qualitative agreement with the measurements

presented here. However, the theory predicts k2 to increase only fractionally as

temperatures decrease from 295 to 212 K, whereas the experimental measurements

suggest k2 is far more sensitive to temperature, increasing by a factor of 3 over the same

temperature range (Figure 13). The aforementioned ME/VRC-TST calculations suggest that

under atmospheric conditions ~25% of the vibrationally hot adduct population are

intercepted by O2 before the internal quantum states are quenched through bath gas

interactions; the experimental k2 measurements presented here suggest this likely

represents a lower limit.
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Figure 13: Temperature dependence of the bimolecular rate coefficient, k2, for the HO-C2H2 + O2 →

products reaction, measured at 10 Torr total pressure and 295 (■) and 212 K (●), corresponding to k2

values (6.15 ± 0.27) and (19.29 ± 0.12) x 10-12 cm3 molecule-1 s-1, respectively. The error bars are

purely statistical at the 2σ level.

3.11 Isotopic Studies on the OH + C2H2/O2 System

As mentioned previously, there is currently conflicting evidence in the scientific

literature concerning the mechanism by which OH is regenerated in the OH + C2H2/O2

reaction. The mechanism proposed by Maranzana and Barker,34 and the experimental and

theoretical work presented in this chapter, suggest that hydrogen atom exchange should

not occur in the OH regeneration channel; a schematic of this reaction path is provided in

Figure 14. However, the experimental evidence of Schmidt et al.22 and Hatakeyama et al.,31

suggest isotope exchange does occur. The OD formation reported by Schmidt et al. during

the OH + C2D2/O2 reaction suggest either conversion of the HO-C2H2 adduct to a vinoxy

intermediate prior to O2 association, a path shown by Maranzana et al. to have a barrier
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height some 20 kJ mol-1 higher than the entrance channel of the OH + C2H2 reactants,34 or

significant proton scrambling in one of the intermediates. Here we conduct an extensive

isotopic study of the OH + C2H2/O2 system which aims to elucidate the mechanism

responsible for OH generation and resolve the conflicting results reported in the literature.

Figure 14: Theoretical pathways leading to glyoxal and formic acid production through the OH

initiated oxidation of acetylene.
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3.11.1 Pressure Dependence in the OD + C2H2 Reaction

At ambient temperatures OD reacts with acetylene via pressure dependent OD-

addition across the triple bond (reaction R6).

OD + C2H2 + M → DO-C2H2 + M (R6)

The room temperature kinetics of reaction R6 has been studied by monitoring OD

decay in the presence of excess acetylene using pure N2 bath gas, with OD generated via

248 nm photolysis of deuterated nitric acid (P2):

DNO3 + hv → OD + NO2 (P2)

A typical room temperature experimental OD decay trace and bimolecular plot for the OD +

C2H2 reaction in N2 bath gas is shown in Figure 15; corresponding to a k6 value of (5.39 ±

0.08) × 10-13 cm3 molecule-1 s-1 at 10 Torr total pressure.

Figure 15: Typical bimolecular plot for the OD + C2H2 → DO-C2H2 reaction at 295 K and 10 Torr total

pressure in pure nitrogen; corresponding to an experimental k6 value of (5.39 ± 0.08) × 10-13 cm3

molecule-1 s-1. A typical experimental OD decay trace and fit to equation E1 and corresponding to a

pseudo-first-order decay coefficient of (1239 ± 285) s-1 is included in the insert.
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The pressure dependence of reaction R6 has been studied at total pressures ranging

between 5 and 240 Torr of N2. Experimental falloff data for the reaction of both OH and OD

with acetylene are presented in Figure 16, together with literature values for the OH + C2H2

reaction.

Figure 16: Pressure dependence of the bimolecular rate coefficients k1 (■) and k6 (●) for the

respective addition of OH and OD radicals to acetylene in pure N2 bath gas at 295 K, measured

during this work; included are the pressure dependent bimolecular rate coefficients, k1, for the OH +

C2H2 reaction measured by Sorensen et al. in air (●); Wahner and Zetzsch in N2 (▲), McKee et al. in

N2 (♦), and Bohn et al. in N2 (▲). The solid lines show the best fit though the experimental k1 (black)

and k6 (red) values measured here using MESMER at 295 K using N2 bath gas.

These results clearly demonstrate that in the falloff region, acetylene reacts faster with OD

than OH at any given pressure. In order to explain this difference in reactivity, consideration

must be given to the isotopic effect on the internal energy of the adducts, and in particular
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to their vibrational energies. To a first approximation, molecular vibrations can be described

as simple harmonic oscillations; with equally spaced, non-degenerate quantum states, and

energy levels defined by:
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where ν is the vibrational quantum number, and νq is the vibrational frequency of mode q

defined by:
















q

q

q
c2

1

M

k


 (E17)

where kq is the force constant for the mode, and Mq is the effective mass of the mode. The

effective mass depends on both the nature of the vibration (eg. a symmetric or asymmetric

stretch) and the atoms involved. This approximation states that the normal vibrational

modes of the DO-C2H2 adduct that involve the deuterium atom, should oscillate at lower

energies than the equivalent vibrations of the HO-C2H2 adduct, consequently, the successive

vibrational states of the deuterated isotopologue lie closer in energy; or alternatively, the

density of vibrational states (number of vibrational quantum states per unit energy) is

greater for the DO-C2H2 adduct than the HO-C2H2 adduct. The Lindemann-Hinshelwood

mechanism for association reactions in the falloff region defines two channels available to

the nascent adduct, either collisional stabilization through interaction with bath gas

molecules, or dissociation back to reactants; formally, this mechanism can be described as a

competition between bimolecular quenching, and unimolecular dissociation. RRKM theory

states unimolecular rate coefficients are inversely proportional to the density of states

(equation E9). As both reactions R1 and R6 involve cleavage of a C-C bond and formation of

a C-O bond, the net energy released following addition of OH and OD to acetylene is

expected to be near identical. However, the greater density of states associated with the

DO-C2H2 adduct means there are more quanta available to distribute this energy, therefore

it is less likely that sufficient energy will be partitioned in the C-O mode in order to

dissociate back to reactants. Consequently, the DO-C2H2 dissociates back to reactants at a
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slower rate than the HO-C2H2 adduct, and therefore a greater proportion of the DO-C2H2

adduct population become stabilized through collisions with bath gas molecules.

At limiting high pressure k1 and k6 are dependent on the respective rates at which

OH and OD associate with acetylene, and independent of the dissociation rates of the

resulting adducts. It therefore follows that at infinite pressure k1 and k6 should converge on

the same high pressure limiting rate coefficient. One dimensional master equation (ME)

analysis of the k6 values measured here has been carried out using MESMER.37 The energy

well depth of the DO-C2H2 adduct relative to the reactants, and the activation energy were

estimated to be -130.7 kJ mol-1 and 5 kJ mol-1, respectively, identical to the values used to fit

the observed pressure dependence in the rate coefficient, k1, for the OH + C2H2 reaction.

The Arrhenius A-factor and ∆Edown values were allowed to float during the simulation. The

vibrational frequencies for the DO-C2H2 adduct were calculated by Dr R Shannon from ab

initio calculations using the b3lyp/6-311+G(3df, 2p) level of theory. Vibrational frequencies

and rotational constants for OD were obtained from experimental values published in the

literature.48 The best fit through these experimental data was achieved using an A-factor of

(7.91 ± 0.44) × 10-12 cm3 molecule-1 s-1, and a ∆Edown of 449 ± 83 cm-1; the energy transfer

parameter lies within the expected range for N2 bath gas, and agrees well with the value of

433 ± 63 cm-1 used to fit the pressure dependence in k1. The best fit through the

experimental data points following full ME analysis is shown as the solid red line in Figure

16, and predicts a k6
∞ value of (10.30 ± 0.57) × 10-13 cm3 molecule-1 s-1. This value is in

reasonable agreement with the k1
∞ value of (9.10 ± 0.45) × 10-13 cm3 molecule-1 s-1 predicted

using MESMER, although it does not agree within the combined statistical uncertainties, but

is in excellent agreement with the k1
∞ values of (9.69 ± 0.30) and (10.7 ± 0.7) × 10-13 cm3

molecule-1 s-1 reported by Sorenson et al.24 and Bohn et al.,28 respectively, where

experimental measurements extended to higher pressures.

3.11.2 Kinetic OD Yields

Room temperature OD yields, ФOD, have been measured for the OD + C2H2/O2

reaction using the ratio of rate coefficients measured with and without O2 present at 10 Torr

total pressure as a function of f-O2; using the same approach used previously to quantify
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ФOH for the OH + C2H2/O2 system (Equation E7), with OD generated by the photolysis of

deuterated nitric acid at 248 nm. The principle being that if no isotope exchange occurs on

route out to glyoxal + OD products and all the OD reacting with acetylene is recycled as OD,

then we would expect ФOD measurements to demonstrate a similar dependence on f-O2 as

ФOH measured for the OH + C2H2/O2 system. However, if isotope exchange does occur and a

significant fraction of the OD reacting with acetylene is recycled as OH then ФOD

measurements derived from OD decays with and without O2 should underestimate the

glyoxal branching ratio as they are blind to the fraction of OD regenerated as OH.

Bimolecular plots for the OD + C2H2 reaction in pure N2 (black squares) and using 0.01 (red

circles) and 0.90 f-O2 (blue triangles) are presented in Figure 17.

Figure 17: Bimolecular Plots for the OD + C2H2 → Products reaction at 10 Torr total pressure and 295

K: in pure N2 bath gas (■), 1% O2 and 99% N2 (●), and in 90% O2 and 10% N2 (▲). Error bars are

purely statistical at the 1σ level. 
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The slopes of the least squares linear fits through the bimolecular plots shown in

Figure 17 give experimental rate coefficients of (5.24 ± 0.11) × 10-13 cm3 molecule-1 s-1 in

pure N2 bath gas, and effective rate coefficients of (9.88 ± 0.23) and (16.58 ± 0.04) × 10-14

cm3 molecule-1 s-1 using oxygen fractions, f-O2, of 0.01 and 0.90, respectively; with

measurements made in the presence of O2 corresponding to respective experimental ФOD of

0.81 ± 0.03 and 0.68 ± 0.02. Room temperature ФOD measured for the OD + C2H2/O2

reaction as a function of f-O2 at 10 Torr, together with ФOD measured for the OH + C2H2/O2

reaction under the same conditions are presented in Figure 18. The good agreement

between the two measurements for the OH + C2H2/O2 and OD + C2H2/O2 shown in Figure 18,

with, if anything, ФOD measurements slightly higher than the corresponding ФOH value,

suggest that no significant isotope exchange is occurring.

Figure 18: Room temperature ФOH for the OH + C2H2/O2 reaction (■) and ФOD for the OD + C2H2/O2

reaction (●) at 10 Torr total pressure as a function of f-O2.
36
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More qualitative experiments were then carried out during which OH was probed for

directly following photolytic generation of OD in excess C2H2 and O2. Intriguingly, OH was

detected under a range of conditions, using various OD precursors, with 248 nm photolysis

used in each case; specifically, deuterated nitric acid (P2), ozone photolysis in the presence

of deuterium (P3, R7), and acetone-d6 in the presence of O2 (P4, R8):

O3 + hv → O(1D) + O2 (P3)

O(1D) + D2 → OD + D (R7)

CD3C(O)CD3 + hv → CD3CO + CD3 (P4)

CD3CO + O2 → OD + co-products (R8)

The sensitivity of the apparatus to OH and OD fluorescent detection will likely differ

as they will depend on several factors specific to each radical; the off resonance

fluorescence passes through an interference filter before detection via PMT, this filter could

bias passage of one radical’s fluorescence over the other; furthermore, the bath gas may

physically quench the fluorescence of one radical more efficiently than the other, making

the relative detection sensitive to the boxcar integration gate settings. Therefore in order to

quantify ФOH for the OD + C2H2/O2 reaction, the relative response factor of the experimental

setup for OH and OD detection must first be quantified. Ozone photolysis in combination

with reaction with either D2 or H2 was used to calibrate the relative sensitivity of the

apparatus to OD and OH. Initial room temperature experiments were undertaken using

deuterated nitric acid, DNO3, as the photolytic OD source, in f-O2 of 0.01 at 10 Torr total

pressure. In order to minimise acidic hydrogen atom exchange before the precursor reaches

the photolysis cell, D2O was bubbled through the cell overnight to condition the walls of the

gas lines. Figure 19 shows a typical radical profile observed during the OD + C2H2/O2

reaction, with OH formation occurring on a similar timescale to OD decay; significantly, no

OH growth was observed in the absence of O2. OH growth profiles were fitted using the

following biexponential function:
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where the terms [OH]g and [OH]phot represent respective OH signal heights due to growth

and photolysis of isotopic impurities in the precursor, and the pseudo-first-order rates of OH

growth and loss are defined by the coefficients kg’ and kl’, respectively. All OH growth

profiles were fit using the kg’ values derived from single exponential analysis of the OD

decay trace.

Figure 19: Experimental radical profiles during the OD + C2H2/O2 reaction showing OD decay (■) and

OH growth (▲) occurring on the same timescale at 10 Torr and 295 K; included is the OH profile in

the absence of O2 (♦).36

Experimental [OH]g values were corrected for the difference in radical sensitivity at 10 Torr

allowing isotope exchange yields to be calculated from the ratio of OH-to-OD signal heights.

However, ФOH measured during these experiments varied considerably from 0.1 to 0.6, and

are neither consistent with each other or with the kinetic ФOD measured under similar

conditions (Figure 18).
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A second set of room temperature experiments were conducting using acetone-d6

as the OD source, using f-O2 of 0.06 at 5 Torr total pressure. Radical signal heights were

again corrected for the difference in sensitivity under these conditions, and suggest ФOH

between 0.4 and 0.5. While repeat experiments using acetone-d6 as the OD precursor are

more precise than those using DNO3, they remain inconsistent with the kinetic ФOD

measured at 10 Torr. Furthermore, the OH growth observed during these experiments

occurs on a significantly shorter timescale than OD removal; inconsistent with the proposed

chemistry.

A final set of isotope experiments was conducted using ozone photolysis in excess

deuterium as OD source at 295 K and 50 Torr total pressure, with the f-O2 varied between

0.01 and 0.1. OH growth was observed on the timescale of OD removal during these

experiments, with an ФOH of between 0.4 and 0.5. These results are again inconsistent with

the kinetic ФOD measured at 10 Torr.

During this extensive investigation of isotope exchange during the OD + C2H2/O2

reaction, OH production was observed, but with widely differing yields (0.1 – 0.6), and for

some precursors (acetone-d6) with poor temporal correlation between OD loss and OH

production, suggesting that the OH source is secondary chemistry. OH production using

acetone-d6 as OD precursor shows a strong dependence on the excimer laser pulse

repetition rate, suggesting OH formation occurs through product photolysis. Figure 20

shows an example of the OD and OH profiles observed when the excimer laser pulse

repetition rate was reduced to 1 Hz. In this case, the small OH production is all prompt, and

there is no evidence of OH growth on the timescale of OD removal, consistent with the

kinetic results presented above, the experimental results of Liu et al.,32 and the potential

energy surface calculations by Maranzana et al.,34 and Glowacki and Pilling.35

The production of OH on timescales comparable with OD loss for experiments using

either DNO3 or O3 in excess deuterium as OD precursor can be explained by the production

of O(3P) in the reaction cell, produced from the photolysis of NO2 impurites in the DNO3, or

following collisonal relaxation of the O(1D) produced following O3 photolysis. O(3P) reacts

with acetylene on a timescale comparable to OD + C2H2 at low pressures to give HCCO and
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3CH2 (reaction R9);49, 50 both products reacts rapidly in excess O2 to give OH (Reactions R10

And R11):51, 52

O(3P) + C2H2 → HCCO + H (R9a)

→ 3CH2 + CO (R9b)

HCCO + O2 → OH + 2CO (ФOH = 0.10) (R10)

3CH2 + O2 → OH + products (ФOH = 0.32) (R11)

Experimental details in the paper by Schmidt and co-workers are limited, but HNO3 was

used as a photolytic OH precursor in at least some of their experiments. The secondary

chemistry described above could explain their detection of OD in the OH + C2D2/O2 system.22

Figure 20: Radical profiles of OD (■) and OH (▲) observed during the OD + C2H2/O2 reaction using

acetone-d6 as OD precursor at 295 K and 10 Torr total pressure, using an f-O2 of 0.07, with the

excimer laser operating at a pulse repetition rate of 1Hz. Included is the OH profile observed in the

absence of acetylene (▼).36
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3.12 Conclusions

The radical chemistry responsible for the degradation of atmospheric trace gases is

predominantly initiated by OH via either addition or H-atom abstraction, depending on the

nature of the radical co-reagent. These bimolecular processes are known to yield nascent

products with excited vibrational quantum-states.25, 53 Exciting reagent vibrational modes

has been shown to influence bimolecular reaction products under single collision

conditions.54-57 However, it is widely accepted that at pressures relevant to the troposphere,

reactions between radicals and molecules take place in the ground energetic state only.

Acetylene, C2H2, is the dominant alkyne in the atmosphere, and removed primarily through

reaction with OH radicals. The reaction proceeds by preliminary adduct formation between

OH and C2H2, with subsequent O2 addition. The first generation oxidation products are

glyoxal + OH, or formic acid + HCO. The work presented in this chapter provides a complete

description of the OH + C2H2 reaction in the presence of varying amounts of O2 and N2. A

combination of experiment and theory has been used to demonstrate that the stable

product branching ratios depend critically on the excited vibrational quantum-state

distribution of the adduct at the point of O2 addition. Significantly, this work has also shown

that under atmospheric conditions more than 25% of the total adduct + O2 reactive flux

occurs under non-thermal conditions. Finally, an extensive isotopic study of the OD +

C2H2/O2 has been carried out in order to clarify the mechanism responsible for the glyoxal +

OH product channel, and resolve conflicting reports in the literature.
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1 Chapter 4 Experimental OH Yields following OH

initiated Oxidation of Higher Alkynes

4.1 Abstract

This chapter builds on the work presented previously for the OH + C2H2/O2 system by

investigating the OH initiated oxidation of the higher alkynes propyne, C3H4, and 2-butyne,

C4H6. A kinetic study of the OH + C3H4 (R1) and OH + C4H6 (R4) reactions has been carried out

using N2, or various N2/O2 mixture bath gas, over a range of pressures (2 – 75 Torr) and

temperatures (212 – 498 K), by monitoring OH via laser induced fluorescence in excess

alkyne co-reagent. The reactions of OH with both C3H4 and C4H6 result in the formation of an

association adduct. The room temperature rate coefficient for the OH + C3H4 reaction is

close to the high pressure limit above 25 Torr with ∞
1k (295 K) = (4.20 ± 0.48) × 10-12 cm3

molecule-1 s-1. The room temperature rate coefficient for the OH + C4H6 reaction is

independent of pressure over this experimental pressure range with ∞
4k (295 K) = (1.85 ±

0.21) × 10-11 cm3 molecule-1 s-1; a negative temperature dependence in k4 was observed over

the experimental temperature range of this study. The alkyne-OH adducts formed following

reactions R1 and R4 react rapidly with O2 to generate a bicarbonyl species and recycle OH,

or an organic acid and acyl radical as first generation products. The product branching ratios

of these reactions have been quantified experimentally for the first time as a function of

pressure, temperature and oxygen concentration. The OH yields, ФOH, for the higher alkyne

systems show qualitatively similar behaviour to that observed for the OH + C2H2/O2 system;

with ФOH independent of pressure but critically dependent on the experimental

temperature and oxygen fraction, f-O2. These results are consistent with alkyne oxidation

product yields governed by the stereochemistry of the alkyne-OH adduct at the point of

reaction with O2, and suggest that under atmospheric conditions a significant fraction of the

total product yield is formed through reaction of the vibrationally excited alkyne-OH adduct

with O2. The atmospheric implications of this study are briefly discussed.
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4.2 Background and Previous Work

While acetylene is the dominant alkyne released through automobile exhaust and

biomass burning1, higher chain alkynes such as propyne, C3H4, and 2-butyne, C4H6, are also

produced during these processes.2, 3 Both propyne and 2-butyne have been detected in

remote and polluted regions in sub ppb concentrations.4-11 Alkynes are primarily removed

from the troposphere through reaction with OH. The asymmetry across the propyne triple

bond means OH addition can occur at two sites:

C3H4 + OH + M → HOC(CH3)=CH + M (R1a)

→ HOCH=CCH3 + M (R1b)

Reaction R1 is at limiting high pressure at pressures and temperature relevant to the

troposphere and proceeds with a rate coefficient, k1, ~5.71 × 10-12 cm3 molecule-1 s-1,12, 13

giving an atmospheric lifetime of approximately two days (using a mean OH concentration

of 106 molecule cm-3). The resulting adducts react rapidly with oxygen to give methylglyoxal

and OH (R2a, R3a) or an organic acid and acyl radical (R2b, R3b):13-15

HOC(CH3)=CH + O2 → CH3C(O)CHO + OH (R2a)

→ CH3COOH + HCO (R2b)

HOCH=CCH3 + O2 → CH3C(O)CHO + OH (R3a)

→ HCOOH + CH3CO (R3b)

Methylglyoxal has been suggested as a likely precursor of secondary organic aerosol (SOA),

with implications for atmospheric air quality and climate.16 For 2-butyne, a similar reaction

sequence has been reported to result in formation of biacetyl and OH (R5a), or acetic acid

and acetyl (R5b):13-15

C4H6 + OH + M → HOC(CH3)=CCH3 + M (R4)

HOC(CH3)=CCH3 + O2 → CH3C(O)C(O)CH3 + OH (R5a)

→ CH3COOH + CH3CO (R5b)
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Organic acids are ubiquitous in all phases within the troposphere,17 where they contribute

to rain acidity, in both urban and remote regions,18, 19 influence chemistry sensitive to pH,

and modify the hygroscopic properties of particulates.20 There is currently significant

uncertainty in the atmospheric budgets of organic acids, particularly in regions affected by

biomass burning;21 alkyne oxidation could be a significant source.

The branching between bicarbonyl and organic acid products in reactions R2, R3 and

R5 will clearly affect the HOx budget through primary production of OH. However,

secondary chemistry associated with the co-products will also influence the atmospheric

HOx budget. The methylglyoxal produced through reactions R2a and R3a is removed

primarily through reaction with OH (R6):22

CH3C(O)CHO + OH → CH3C(O)CO + H2O (R6a)

→ CH2C(O)CHO + H2O (R6b)

or by UV photolysis (P1):23

CH3C(O)CHO + hν → CH3CO + HCO (387 nm) (P1a)

→ CH4 + 2CO (all wavelengths) (P1b)

→ CH3CHO + CO (all wavelengths) (P1c)

→ CH3C(O)CO + H (380 nm) (P1d)

Reaction channel R2b and photolysis channels P1a and P1d are HOx generating as the

formyl radical and hydrogen atom produced are rapidly converted to HO2 in the

atmosphere.24

Under atmospheric conditions the CH3C(O)CO radical produced in reactions R6a and

P1d rapidly dissociates to CH3CO and CO (R7).25 Furthermore, reaction R6 is sufficiently

exothermic (~120 kJ mol-1) that near 40% of the nascent acetyl produced in reaction R6a

dissociate further to CH3 and CO. At atmospheric pressure acetyl reacts with O2 to form a

peroxy radical (R7a):26

CH3CO + O2 + M → CH3C(O)O2 + M (R7a)
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The acetylperoxy radical can react with NO2 to form peroxyactylnitrate (PAN),27 a secondary

pollutant and constituent of photochemical smog (R8).

CH3C(O)O2 + NO2 + M → CH3C(O)O2NO2 + M (R8)

PAN is thermally unstable and dissociates back to the acetylperoxy and NO2 within a few

hours at room temperature, but has a moderate to long lifetime at lower temperatures

(~50 hours at 273 K).28 This means PAN can transport and release NO2 far from its source

and potentially influence ozone formation and air quality in remote unpolluted regions.

Clearly the products of alkyne oxidation have significant ramifications for both the

oxidising capacity of the troposphere and air quality. Accurately quantifying the branching

ratios for reactions of the adducts with oxygen (R2, R3 and R5) is fundamental in

understanding these consequences. Despite the atmospheric implications, there have been

only two kinetic product studies on the OH-initiated oxidation of propyne and 2-butyne in

the presence of oxygen.

Hatakeyama et al. studied the kinetics and products of the reactions of OH with

acetylene, propyne and 2-butyne in an atmosphere of synthetic air at room temperature in

a chamber study.13 These authors observed glyoxal (0.7 ± 0.3) and formic acid (0.4 ± 0.1) as

primary products of the OH-initiated oxidation of acetylene, with a bicarbonyl yield

consistent with that reported by other groups. For 2-butyne the corresponding products of

biacetyl (0.87 ± 0.07) and acetic acid (0.12 ± 0.01) were detected. The carbon balance

reported by Hatakeyama and co-workers suggests the bicarbonyl and acid forming channels

are the only primary products of the OH-initiated oxidation of 2-butyne. For propyne only

formic acid was detected (R3b), but the carbon balance associated with propyne oxidation

dropped below unity with a methylglyoxal yield of (0.53 ± 0.03) reported.13

More recently, Yeung et al. studied the kinetics of the reactions of OH with

acetylene, propyne and 2-butyne in 100 Torr of nitrogen with added oxygen at 298 K using

turbulent flow chemical ionization mass spectrometry, with quantitative studies focusing on

2-butyne.14 This investigation reported biacetyl (0.86 ± 0.11) and acetic acid (0.14 ± 0.11) as

major products of the OH + 2-butyne reaction in the presence of oxygen, consistent with

Hatakeyama et al.13 In addition, Yeung and co-workers reported evidence of formic acid
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production in the OH + C3H4/O2 system (R3b) via observation of the dimer, but, unlike

Hatakeyama et al., also reported evidence of acetic acid production for the propyne system

(R2b).14 Yeung and co-workers determined the branching ratios for reaction R5 based on the

rates of product formation following addition of oxygen to their flow tube system. The

biacetyl and acetic acid yields reported by Yeung et al. are in excellent agreement with

those reported by Hatakeyama et al. However, the chamber study by Hatakeyama et al. was

conducted using one atmosphere of synthetic air, with an oxygen fraction, f-O2, of 0.21.13

Conversely, the experiments by Yeung and co-workers were carried out using oxygen

concentrations ranging between 3 × 1013 and 3 × 1014 molecule cm-3, which in 100 Torr of

nitrogen correspond to sub 30 ppm oxygen levels (f-O2 < 3 × 10-6).14 Experimental and

theoretical evidence has shown the bicarbonyl and acid yields associated with the OH +

acetylene/O2 system are critically dependent on the f-O2 present.29-31 If this behaviour

extends to higher chain alkynes, such as 2-butyne, then the agreement between the biacetyl

and acetic acid yields observed during the experiments of Hatakeyama et al. and Yeung et

al. is unexpected. Yeung and co-workers were also able to quantify the bimolecular rate

coefficient for reaction of the 2-butyne-OH adduct with O2 (R5) by modelling the time

dependence of biacetyl and acetic acid formation observed as a function of oxygen

concentration.14 Their analysis suggests a k5 value of (7.04 ± 0.60) × 10-13 cm3 molecule-1 s-1

and constrains the lifetime of the 2-butyne-OH adduct to less than 300 ns at one

atmosphere of air. However, this value is an order of magnitude lower than other radical +

O2 reactions,24, 26, 32 including previous work on the HO-C2H2 + O2 reaction.29-31

The potential energy surface (PES) for the OH + C4H6/O2 system was constructed

following electronic structure calculations by Maranzana et al.,33 and indicates the

mechanism for the OH-initiated oxidation of 2-butyne shares many similarities with that for

acetylene; with dicarbonyl and organic acid product forming channels strongly

thermodynamically favoured and product branching governed by the stereochemistry of the

alkyne-OH adduct at the point of reaction with O2. The adduct formed following reaction of

OH with 2-butyne exists in two energetically distinct isomeric forms; with the OH group

either cis- or trans- to the carbon radical orbital. The cis-adduct is estimated to be between

5 and 7 kJ mol-1 more stable than the trans,15, 33 depending on the level of theory.
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Association between the cis-adduct conformer and oxygen occurs with a concerted 1, 5-

hydrogen shift from the hydroxyl group to the terminal peroxyl oxygen. The resulting

hydroperoxylalkeneyloxyl radical is highly unstable and dissociates promptly at the energies

it is formed to give biacetyl and OH products.33 This product path proceeds down a steep

free energy profile and is the dominant source of biacetyl and OH in the OH + C4H6/O2

system.

Acetic acid + acetyl radical products follow association between the trans-adduct

and oxygen,33 where ring closure of the resulting peroxyl adduct radical leads to formation

of a 3-memebered alkyl dioxiranyl cyclic radical species. Successive O-O bond cleavages and

β-fragmentations of this cyclic intermediate result in formation of acetic acid and an acetyl 

radical.

The calculations by Maranzana et al. suggested two further intramolecular hydrogen

shift paths were possible following association between the trans-adduct and oxygen,33

although full master equation (ME) analysis by these authors suggested these represent

minor channels which collectively account for less than 8% of the total OH + C4H6/O2

product yield.34 Both paths begin with a hydrogen transfer from one of the methyl groups to

the terminal peroxyl oxygen. In one path, hydrogen atom transfer occurs with concerted

generation of OH and an enolic α, β-unsaturated carbonyl. In the second path, the resulting 

allyl radical undergoes a second hydrogen atom transfer from the OH group to the carbon

radical centre, with concerted OH loss to give biacetyl. The mechanism proposed by

Maranzana and co-workers is provided below in Figure 1.
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Figure 1: Schematic mechanism for the OH-initiated oxidation of 2-butyne.33

The kinetic study of the OH + C4H6/O2 system by Yeung et al.14 included a theoretical

component, in which these authors derived a PES for the general OH + alkyne/O2 system, for

which the energies at various stages of oxidation depended very little on the identity of the

parent alkyne (Figure 2).

The surface calculated by Yeung and co-workers for the general alkyne system lies in

excellent agreement with the surface proposed by Maranzana et al.33 for the specific 2-

butyne system. However, it is worthwhile to note that neither Hatakeyama et al.13 or Yeung

et al.14 detected the enolic α, β-unsaturated carbonyl proposed by Maranzena et al.33 as a
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potential product of OH-initiated oxidation of 2-butyne, suggesting the biacetyl + OH, and

acetic acid + CH3CO paths described above are likely exclusive product channels for the OH +

C4H6/O2 system.

Figure 2: Diagram of the relative energies of the reactants, intermediates and products associated

with the OH initiated oxidation of alkynes (redrawn from Yeung et al.)

Full ME analysis of the OH + C4H6/O2 reaction was carried out by Maranzana et al.,34

using their PES for this system, in order to simulate the experimental product yields

reported by Hatakeyama et al.13 and Yeung et al.14 The quality of their fits was found to be

highly sensitive to the model energy transfer parameter, ∆Edown, consistent with recent ME

analysis of experimental glyoxal yields for the OH + C2H2/O2 system by Glowacki et al.31

Excellent agreement with the biacetyl yield (~0.86) reported through experiment could be
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achieved under atmospheric conditions,34 but only when using a ∆Edown value of 900 cm-1

which exceeds the normal range for a nitrogen bath gas. However, when attempting to

simulate the product yields reported by Yeung et al.,14 Maranzana and co-workers34 used

atmospheric oxygen fractions (f-O2 = 0.21), despite the fact that the experiments by Yeung

et al. were carried out using considerably lower oxygen concentrations.14

The work presented here aims to build on the detailed kinetic and mechanistic study

of the OH + acetylene/O2 system (chapter 3), by measuring product branching ratios for the

reactions of OH with propyne and 2-butyne for the first time as a function of pressure,

temperature and oxygen concentration, using OH recycling methods. In addition, directly

observing equilibrium behaviour associated with the OH + alkyne/O2 systems has allowed

the bimolecular rate coefficients for the alkyne-OH + O2 (R2 and R5) reactions to be

determined as a function of temperature.

4.3 Experimental

All the measurements discussed in this chapter were carried out using the exact

same slow-flow, pulsed laser photolysis, laser induced fluorescence apparatus described in

chapter 3 and therefore the details are not repeated here. Bimolecular rate coefficients for

the reactions of OH with propyne (R1) and 2-butyne (R4) were determined by monitoring

OH decay under pseudo-first-order conditions such that the experimental alkyne

concentration (typically ranging between 1014 and 1015 molecule cm-3) were always in great

excess over OH (~1011 molecule cm-3) using pure nitrogen bath gas. OH radicals were

generated from the excimer laser pulsed photolysis of t-butyl hydroperoxide at 248 nm (P2):

(CH3)3COOH + hν  → OH + co-products (P2)

and detected by off-resonance fluorescence at ~308 nm, following excitation at ~282 nm.

Under these conditions OH removal is governed by reaction with the respective alkyne (R9)

and a relatively small loss through reaction with the precursor and diffusion out of the

probed region of the reactor (R10):

OH + alkyne → HO-alkyne (R9)
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OH → Loss (R10)

Under these conditions the observed OH signal decays exponentially, and the time

dependent OH signal, If(t), is defined by the following equation:

If(t) = If(0) exp-k’t (E1)

where If(0) is the initial OH signal intensity, and k’ is the observed pseudo-first-order decay

constant equal to k[alkyne] + k9. It follows that a bimolecular plot of k’ against [alkyne]

yields a straight line with a gradient equal to the bimolecular rate coefficient for the OH +

alkyne reaction. An example bimolecular plot associated with the OH + C3H4 reaction in pure

N2 bath gas is provided in Figure 3, with a typical OH decay trace included in the inset.

Figure 3: Typical bimolecular plot for the OH + C3H4 reaction at 295 K under 10 Torr of nitrogen;

corresponding to a k1 value of (3.88 ± 0.03) × 10-12 cm3 molecule-1 s-1 (where the error is purely

statistical at the 2σ level). The inset shows a typical experimental OH decay trace in the presence of 

propyne (1.27 × 1015 molecule cm-3) using pure N2 bath gas that corresponds to a pseudo-first-order

decay constant of (5140 ± 50) s-1.
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4.4 Kinetics of the Reactions of OH with propyne and 2-butyne

Room temperature rate coefficients have been measured for the OH + C3H4 reaction

at total pressures ranging between 2 and 75 Torr using pure nitrogen bath gas; a plot of the

rate coefficients as a function of nitrogen pressure for propyne is presented in Figure 4.

Reaction R1 demonstrates a typical pressure dependence for an association reaction. Above

25 Torr (~8 × 1017 molecule cm-3) the reaction would appear to be at or close to the high

pressure limit with a ∞
1k = (4.20 ± 0.48) × 10-12 cm3 molecule-1 s-1 obtained from averaging

all of the ten independent measurements at 25 and 75 Torr (the error is statistical (2σ) 

combined with an estimated 10% systematic error).

Figure 4: Pressure dependence of the bimolecular rate coefficients, k1, for the OH + C3H4 reaction

using pure nitrogen bath gas at 295 K. The error bars include both the statistical (2σ) and estimated 

systematic errors (10%).
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Few experimental studies have reported rate coefficients for reaction R1; therefore

comparison with literature values is limited. Boodaghians et al.12 measured rate coefficients

for the OH + C3H4 reaction using helium diluent at 298 K and total pressures ranging from 2

to 6 Torr using discharge-flow coupled with resonance fluorescence OH detection and

reported a k1 value of (3.05 ± 0.07) × 10-12 cm3 molecule-1 s-1. This result is in good

agreement with low pressure measurements undertaken in this laboratory by Taylor et al.,35

who measured a rate coefficient of (3.11 ± 0.09) × 10-12 cm3 molecule-1 s-1 at 299 K under

approximately 1 Torr of nitrogen using the pulsed laser photolysis, laser induced

fluorescence technique. The values of k1 reported here are consistent with the low pressure

direct measurements by Boodaghians et al.12 and Taylor et al.35 While the rate coefficient

reported by Boodaghians and co-workers12 is lower than the values obtained at comparable

total pressures in this work, their experiments were conducted in helium bath gas, a less

efficient third body than nitrogen. No pressure dependence was observed by Boodaghians

et al.,12 but the expected variation in the rate coefficient in this region would only be 10 -

20%.

Hatakeyama et al.13 and Atkinson and Aschmann36 have carried out relative rate

studies of the OH + C3H4 reaction at room temperature in one atmosphere of synthetic air

and reported values of (5.71 ± 0.18) and (6.21 ± 0.31) × 10-12 cm3 molecule-1 s-1, respectively.

These indirect measurements are both slightly higher than the estimate for the high-

pressure limiting rate coefficient for reaction R1 presented here. Both Hatakeyama et al.13

and Atkinson and Aschmann36 used the reaction of OH with cyclohexane as the reference

reaction; using the latest recommendation of Atkinson37 for this rate coefficient slightly

reduces their rate coefficients for reaction R1 to 5.25 and 5.74 × 10-12 cm3 molecule-1 s-1,

respectively.

For the reaction of OH with 2-butyne, bimolecular rate coefficients were measured

using pure nitrogen bath gas at total pressures ranging between 5 and 25 Torr and

temperatures ranging between 212 and 498 K. The observed rate coefficients, k4, were

found independent of pressure over this range, with a room temperature ∞
4k (295 K) value

of (1.85 ± 0.21) × 10-11 cm3 molecule-1 s-1 obtained by averaging all nine room temperature

measurements (the error includes both the statistical error (2σ) and an estimated 10% 
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systematic error). The rate coefficients measured for reaction R4 exhibit a negative

temperature dependence with k4 increasing from (1.34 ± 0.33) to (2.81 ± 0.65) × 10-11 cm3

molecule-1 s-1 as temperatures decrease from 498 to 212 K, respectively.

Only two previous studies have reported rate coefficient measurements for the OH +

C4H6 reaction. Boodaghians et al.12 measured rate coefficients for the OH + C4H6 reaction

directly at temperatures ranging from 253 to 343 K in 5 Torr of helium using the discharge-

flow coupled with resonance fluorescence technique. These authors reported a k4 value of

(2.46 ± 0.19) × 10-11 cm3 molecule-1 s-1 at 298 K, and also observed a negative temperature

dependence over their experimental temperature range, consistent with the measurements

presented here. The relative rate study by Hatakeyama et al.13 was conducted at room

temperature under one atmosphere of synthetic air, and reported a rate coefficient, k4, of

(3.01 ± 0.28) × 10-11 cm3 molecule-1 s-1. Hatakeyama and co-workers used the reaction of OH

with cyclohexane as reference and again using the latest recommendation of Atkinson37 for

this rate coefficient slightly reduces their room temperature rate coefficient for reaction R4

to (2.77 ± 0.24) × 10-11 cm3 molecule-1 s-1. The rate coefficients reported by these groups are

in reasonable agreement and suggest the OH + C4H6 reaction to be at the high pressure limit

by 5 Torr, consistent with the measurements presented here. An Arrhenius plot of the k4

values reported here is provided in Figure 5 with values published by other groups included

for comparison.
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Figure 5: Temperature dependence of the bimolecular rate coefficients, k4, measured during this

work for the OH + C4H6 reaction using pure nitrogen bath gas over a range of temperatures from 212

to 498 K (■). Included for comparison are the direct measurements of k4 by Boodaghians et al.12 (●)

at temperatures ranging between 253 and 343 K using helium bath gas, and the room temperature

measurement by Hatakeyama et al.13 (▲) using synthetic air bath gas.

4.5 Product Yields for the OH initiated oxidation of Propyne and 2-Butyne

The principal focus of this study is to quantify the experimental OH yield, ФOH,

following the reactions of OH with propyne and 2-butyne in the presence of oxygen, as a

function of pressure and temperature. In the presence of molecular oxygen, OH is rapidly

regenerated through reaction of the alkyne-OH adduct with O2 (R2 and R5). If the

concentration of oxygen is such that reactions R2 and R5 are fast compared to formation of

the respective OH + alkyne reaction, then, under these conditions, the rate of OH removal is

determined by the fraction of the alkyne-OH adduct + O2 reaction that does not recycle OH.

The bimolecular rate coefficient for OH loss in the presence of oxygen, kO2, will be reduced

compared to that measured in pure nitrogen, kN2 (see lower traces in Figure 6).
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Figure 6: Bimolecular plots for the OH + C3H4 → Products reaction at 295 K and 10 Torr total

pressure: using pure nitrogen bath gas (■), 48% nitrogen and 52% oxygen (●), and 2% oxygen and

98% nitrogen (▲). Error bars are purely statistical at the 2σ level.

Assuming that both oxygen and nitrogen remove excess energy from the nascent

alkyne-OH adduct with similar efficiencies following a collision, then the OH yield (branching

ratio for the bicarbonyl channel) can be calculated from the ratio of rate coefficients

measured in the presence and absence of O2, as follows:

OH

2N

2O 1 
k

k
(E2)

Experimental OH yields, ФOH, have been measured following the reactions of OH

with propyne and 2-butyne as a function of oxygen fraction, f-O2, and total pressure; the

results are presented in Figure 7.
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Figure 7: (a) Dependence of the OH yield for the OH + C3H4/O2 reaction as a function of oxygen

fraction, f-O2, and total pressure at 295 K and 5 (■), 10 (●), 25 (▲) and 75 Torr (▼). (b) Dependence

of the OH yield for the OH + C4H6/O2 reaction as a function of oxygen fraction, f-O2, and total

pressure at 295 K at 5 (■), 10 (●) and 25 Torr (▲).
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The room temperature ФOH are independent of total pressure over the 5 to 75 Torr

of N2/O2 range, but demonstrate a similar qualitative dependence on f-O2 as was observed

for the OH + acetylene system (Chapter 3); with the ФOH decreasing from ~0.76 (propyne)

and ~0.80 (2-butyne), to ~0.56 (propyne) and ~0.62 (2-butyne) as f-O2 increases from ~0.01

to 1. The pressure independent ФOH observed for the OH + 2-butyne/O2 system during this

work are consistent with the biacetyl and acetic acid yields reported by Hatakeyama et al.13

and Yeung et al.14 Furthermore, the dominance of the OH + bicarbonyl yield for both alkyne

systems at f-O2 lower than 0.21 is also consistent with the results of Hatakeyama et al.13 and

Yeung et al.14

The dependence of the ФOH on the f-O2 observed during the OH initiated oxidation of

both propyne and 2-butyne are consistent with theoretical treatment of these systems by

Yeung et al.14 and Maranzana et al.33 The theory suggests that both initial alkyne-OH

adducts exist in two energetically distinct conformations, separated by a barrier of less than

10 kJ mol-1, and that regardless of the initial OH addition site (ie. Markovnikov or anti-

Markovnikov OH addition for propyne) the conformer characterised by the carbon radical

orbital arranged cis to the OH group is always more stable (5 – 7 kJ mol-1) than the

corresponding trans isomer. Reactions R1 and R4 are exothermic by approximately 120 and

96 kJ mol-1,14, 33 respectively. Consequently, the nascent adducts formed following reactions

of OH with propyne and 2-butyne with sufficient energy to rapidly interconvert. Under low

oxygen conditions, non-reactive interactions between the alkyne-OH adduct and bath gas

molecules remove this excess energy and the adduct conformers can be considered in

thermal equilibrium before a reactive collision with oxygen occurs. The thermal distribution

favours the more stable cis-adduct stereoisomer which reacts with oxygen to give biacetyl

and regenerate OH, hence higher ФOH are observed under low oxygen (thermal) conditions

(Figure 7).

Conversely, under high oxygen conditions, reactive collisions between the alkyne-OH

adduct and oxygen occur before the adduct has been collisionally deactivated. This serves to

reduce the experimental ФOH as an increasing fraction of the total alkyne-OH adduct

population is removed through reaction of the less stable trans-adduct isomer with O2,

which yields an organic acid and acyl radical. Significantly, this work has shown that under
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atmospheric conditions (f-O2 = 0.21) oxygen intercepts a significant fraction of the total

alkyne-OH adduct population before these systems are in thermal equilibrium.

The experimental investigation of the OH + 2-butyne/O2 system by Yeung et al.14 was

carried out using extremely low oxygen concentrations (f-O2 < 3 × 10-6) in 100 Torr of N2.

The biacetyl + OH yield (0.86 ± 0.11) reported by these authors is in excellent agreement

with the ФOH of ~0.8 measured under low f-O2 conditions during this study (Figure 5b). The

indirect measurements of Hatakeyama et al.13 were carried out using one atmosphere of

synthetic air and reported a biacetyl + OH yield of (0.87 ± 0.07). This value is slightly higher

than the yield of (0.74 ± 0.03) measured here using an f-O2 of 0.2 (Figure 7). The

methylglyoxal + OH yield reported by Hatakeyama and co-workers13 for the OH +

propyne/O2 system of (0.53 ± 0.03) is inconsistent with the (0.70 ± 0.03) value measured

here using similar f-O2 (Figure 7a). Hatakeyama et al.13 reported formic acid as the only

stable co-product to methylglyoxal, although the reported carbon balance for this reaction

is less than unity; the normalized methylglyoxal yield would be 0.79.

The acetyl co-product of reactions R3b and R5b could influence these measurements

via secondary chemistry and potentially provide some insight into the product yields. At low

pressures, acetyl is known to react with oxygen and generate OH (R7b):38

CH3CO + O2 → lactone + OH (R7b)

The OH yield following the reaction of acetyl with oxygen (R7b) is pressure dependent,39 in

contrast to the OH yield for the OH + alkyne/O2 system, and so any pressure dependence of

the OH yield could quantify the acetyl yield.

Experimentally, no significant pressure dependence was observed in the OH yield

from either alkyne system (Figure 7), although previous work on the acetyl + O2 reaction

suggests a pressure dependent OH yield should be observed for reaction R7b at pressures

below 75 Torr.39 In order to rationalize the present observation of no secondary OH

formation through reaction R7b, Dr Robin Shannon investigated the energy distribution in

the acetyl radical assuming a statistical energy distribution following reaction R5b, using

MESMER.40 The energy distribution of the nascent acetyl radicals formed from the OH + 2-

butyne/O2 system was calculated using a prior distribution model implemented in
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MESMER,25 and the total available excess energy from the OH + 2-butyne reaction was

taken from the PES of Maranzana et al.33 The nascent acetyl radical energy distribution

calculated via a prior analysis was then allowed to either react with oxygen (R7) or

dissociate (R11):

CH3CO → CH3 + CO (R11)

The PES and molecular parameters presented in Carr et al.39 were used for most

species involved in these calculation, but the transition state corresponding to acetyl

decomposition (R11) was taken from Lee and Bozzelli41 and Huynh and Violi.42 For the

barrierless association between the acetyl radical and O2 a rate coefficient of 6.2 × 10-12 cm3

molecule-1 s-1 was assumed, consistent with the calculations of Carr et al.,39 but it was found

that increasing this rate coefficient to 6.2 × 10-11 cm3 molecule-1 s-1 affected the calculated

OH yield by less than 0.1%.

The calculations show that under the experimental conditions of this study (5 – 75

Torr of oxygen) over 99.9% of the acetyl formed from reaction R5b dissociates, accounting

for the lack of any pressure dependence in the observed OH yield in the OH + 2-butyne/O2

system. Repeating the calculations for a pressure of 760 Torr of air showed that 99% of the

acetyl dissociates; at such pressures any reaction of acetyl with oxygen would lead

exclusively to the stabilized acetylperoxy radical (R7a). Given that the overall exothermicity

of the OH + propyne/O2 system is similar to the corresponding 2-butyne system, the prior

distribution would predict that an even greater fraction of the acetyl formed in reaction R3b

would dissociate, again consistent with the observations of no pressure dependence in the

OH yield (Figure 7a). Due to the prompt acetyl dissociation, this study provided no

information on the organic acid branching for either alkyne system.

The OH yields, ФOH, associated with the reactions of OH with propyne and 2-butyne

in the presence of oxygen have been measured as a function of temperature (212 – 498 K).

The temperature dependent ФOH measured under 10 Torr total pressure using fixed f-O2

(0.04, 0.20 and 0.80) are plotted in Figure 8.
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Figure 8: (a) Temperature dependence of the OH yield for the OH + C3H4/O2 reaction measured at 10

Torr total pressure using 0.04 (■), 0.20 (●), and 0.80 oxygen fractions, f-O2 (▲). (b) Temperature

dependence of the OH yield for the OH + C4H6/O2 reaction measured at 10 Torr total pressure using

0.04 (■), 0.20 (●) and 0.80 oxygen fractions, f-O2 (▲).
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Both alkyne systems show a marked increase in the ФOH as temperatures decrease

with yields of ~0.5 at 498 K increasing to ~0.9 at 212 K (Figure 8). As the f-O2 increase, the

temperature dependence of the ФOH decreases until the yield becomes effectively

independent of temperature under high oxygen conditions. The results are qualitatively

similar to that of the corresponding OH + acetylene/O2 system with the ФOH at low and

atmospheric f-O2 decreasing with increasing temperature.

These observations are again consistent with OH-initiated alkyne oxidation product

yields dependent on the stereochemistry of the alkyne-OH adduct at the point of reaction

with oxygen. As experimental temperatures decrease, the thermal distribution of the cis-

and trans-adduct conformers shifts in favour of the more stable cis-isomer; consequently

greater ФOH are observed under low f-O2 (thermal), low temperature conditions. As

temperatures increase, so does the thermal distribution of the less stable trans-adduct

conformer; resulting in a reduced ФOH. Significantly, the temperature dependent ФOH

measured here show that under atmospheric conditions (f-O2 = 0.21) the ФOH observed are

not yet at the thermal limit, and provide further evidence that under conditions relevant to

the troposphere, oxygen intercepts a significant fraction of the total alkyne-OH adduct

population before the internal quantum states have fully relaxed.

4.6 Kinetics of the Alkyne-OH Adduct + O2 Reaction

Under low oxygen concentrations ([O2] < 4 × 1015 molecule cm-3) the reaction of the

alkyne-OH adduct with O2 can no longer be considered fast compared to the rate of adduct

formation, and under these conditions, as was demonstrated for the OH + C2H2/O2 system in

chapter 3, biexponential OH decay traces are observed (see inset of Figure 9). This

biexponential behaviour allows the kinetics of the alkyne-OH adduct + O2 reaction (R2 + R3

and R5), which is lost in excess oxygen, to be quantified. For the general OH + alkyne/O2

system the following reaction scheme can be applied:

OH + alkyne → alkyne-OH (R12)

alkyne-OH + O2 → OH + co-products (R13a)
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→ Products (R13b)

alkyne-OH → Loss (R14)

OH → Loss (R10)

where reactions R14 and R15 represent respective loss of the alkyne-OH adduct and OH

through reaction with the precursor and diffusion out of the probed region of the reactor.

Under low oxygen conditions, the time dependent OH profile is defined by equation E3:
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OH decay traces were recorded at total pressures of 10 Torr and temperatures of

295 and 212 K, with experimental conditions controlled such that the concentration of

either propyne or 2-butyne inside the reactor was maintained at (~1.35) and (~1.41) × 1015

molecule cm-3, respectively, for all decay traces, both with and without oxygen. This allowed

k’12 to be fixed as the pseudo-first-order decay coefficient obtained from single exponential

analysis of the OH decay profile in the absence of oxygen when fitting the biexponential OH

decays observed in the presence of trace amounts of oxygen using equation E3. The

gradient of a straight line plot of the total pseudo-first-order rate coefficient, k’ (k13 + k14),

against oxygen concentration gives the bimolecular rate coefficient for the alkyne-OH

adduct + O2 reaction. A typical bimolecular plot for the HO-C4H6 + O2 → Products reaction is
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provided in Figure 9. Bimolecular rate coefficients for the reactions of oxygen with the

alkyne-OH adducts of acetylene, propyne, and 2-butyne, measured at 295 and 212 K under

10 Torr of nitrogen bath gas are listed in Table 1.

The alkyne-OH adducts of acetylene and 2-butyne both react with oxygen at similar

rates at room temperature with rate coefficients of (6.15 ± 0.27) and (6.45 ± 0.22) × 10-12

cm3 molecule-1 s-1, respectively. As mentioned previously in chapter 3, the acetylene-OH +

O2 rate coefficient measured at room temperature is reasonably consistent with theoretical

and experimental values that range from (3 – 5) × 10-12 cm3 molecule-1 s-1.29, 31 However, the

room temperature k5 value of (7.04 ± 0.60) × 10-13 cm3 molecule-1 s-1 measured by Yeung et

al.14 is significantly lower than the (6.45 ± 0.22) × 10-12 cm3 molecule-1 s-1 value measured

here (Table 1).

Figure 9: Bimolecular plot for the HO-C4H6 + O2 → Products reaction at 10 Torr pressure and 295 K,

corresponding to a k5 value of (6.45 ± 0.22) × 10-12 cm3 molecule-1 s-1. A typical biexponential OH

decay trace is included in the inset, with OH monitored in the presence of ~1.41 × 1015 molecule cm-3

of 2-butyne and ~8.3 × 1014 molecule cm-3 of oxygen; under these conditions a pseudo-first-order

rate coefficient of (8940 ± 540) s-1 was observed.
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Reaction Temperature / K k 10
12

/ cm
3

molecule
-1

s
-1

HO-C2H2 + O2 → Products 295 (6.15 ± 0.27)

212 (19.29 ± 0.12)

HO-C3H4 + O2 → Products 295 (8.01 ± 0.17)

212 (10.41 ± 0.32)

HO-C4H6 + O2 → Products 295 (6.45 ± 0.22)

212 (15.08 ± 0.53)

Table 1: Temperature dependence of the rate coefficients measured for alkyne-OH + O2 reaction.

Biexponential behaviour is observed when OH loss through reaction with the alkyne

occurs on a similar timescale to OH production through reaction of the alkyne-OH adduct

with oxygen. In order to ascertain the credibility of the k5 rate coefficient reported by Yeung

and co-workers,14 the numerical programme KINTECUS43 was used to generate an OH

profile for the OH + 2-butyne/O2 system under the exact experimental conditions used

when recording the biexponential OH decay trace shown in the inset of Figure 9, but using

the k5 rate coefficient reported by Yeung et al.14 The corresponding simulated OH decay

profile is presented in Figure 10 (blue line), included is a second OH decay profile simulated

using the k5 rate coefficient reported here (red line); all fitting parameters are listed in table

2. Figure 10 shows clearly that the biexponential behaviour observed during this study (inset

of Figure 9) is inconsistent with the 2-butyne-OH + O2 rate coefficient reported by Yeung et

al.14
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Figure 10: Experimental OH decay profile associated with the reaction of OH with 2-butyne (1.41 ×

1015 molecule cm-3) in the presence of trace oxygen (8.3 × 1014 molecule cm-3). Simulated OH decay

profiles under identical conditions are included using a k5 rate coefficient value of either 7.03 × 10-13

cm3 molecule-1 s-1 (blue line), determined by Yeung et al.,14 or 6.45 × 10-12 cm3 molecule-1 s-1 (red

line), measured here.

Reaction

Fitting Routine

Red Line Blue Line

OH + C4H6 → HO-C4H6 1.64 × 10
-11

cm
3

molecule
-1

s
-1

1.64 × 10
-11

cm
3

molecule
-1

s
-1

HO-C4H6 + O2 →

OH + CH3C(O)C(O)CH3

5.55 × 10
-12

cm
3

molecule
-1

s
-1

6.05 × 10
-13

cm
3

molecule
-1

s
-1

HO-C4H6 + O2 →

CH3COOH + CH3CO

9.03 × 10
-13

cm
3

molecule
-1

s
-1

9.84 × 10
-14

cm
3

molecule
-1

s
-1

OH → Loss 2400 s
-1

2400 s
-1

Table 2: Model parameters used to fit biexponential OH decay trace presented in Figure 10.
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The rate coefficients for the reactions of oxygen with all the alkyne-OH adducts

considered in this study increase as temperatures decrease from 295 to 212 K (Table 1). The

room temperature propyne-OH adduct + O2 rate coefficient increases by approximately 25%

as the temperature decreases to 212 K. However, rate coefficients for the reactions of the

acetylene-OH and 2-butyne-OH adducts with oxygen increase by more than a factor of two

over the same temperature range. The trend in reaction rate sensitivity to temperature

observed for the propyne-OH adduct and the symmetric alkyne-OH adducts is difficult to

explain in terms of steric or inductive effects of the methyl group substituents of the carbon

radical centre. It is possible that subtle differences in the PES for the OH + propyne/O2

system result in this reaction being less sensitive to temperature than either of the

corresponding acetylene and 2-butyne systems.

4.7 Conclusions

Experimental OH yields, ФOH, have been measured for the OH + propyne/O2 and

OH + 2-butyne/O2 systems for the first time as a function of pressure, temperature and

oxygen concentration. ФOH for both systems were found to be independent of pressure

between 5 and 75 Torr, but strongly dependent on the fraction of oxygen, f-O2, present.

These results are qualitatively similar to analogous studies of the OH + C2H2/O2 system, and

consistent with previous theoretical studies of alkyne oxidation which suggest that product

branching is governed by the stereochemistry of the alkyne-OH adduct at the point of

reaction with oxygen. Under thermal conditions, ФOH for both the propyne and 2-butyne

systems depend critically on temperature, with the highest yields (~0.90) observed at low

temperatures (212 K). Significantly, this work has shown that under atmospheric conditions

a fraction of the total product yield of OH initiated oxidation of alkynes results from the

reaction of chemically activated alkyne-OH adduct radicals with oxygen.

The room temperature ФOH measured here for the OH + 2-butyne/O2 system are in

reasonable agreement with the biacetyl (OH co-product) yields reported by other groups for

this reaction.13, 14 However, the results from this study suggest the OH + methylglyoxal yield

for the OH + propyne/O2 system is more dominant under atmospheric conditions than
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previous work by Hatakeyama et al.13 suggested. ME calculations have shown that under

atmospheric conditions, the acetyl co-fragment of organic acid production in reactions R3b

and R5b will promptly dissociate. Propyne and 2-butyne are not currently included in

atmospheric models such as the Maser Chemical Mechanism,44 but this study suggests that

any chemical model of the OH initiated oxidation of propyne or 2-butyne under atmospheric

conditions should include the chemically activated dissociation of acetyl; consequently the

OH initiated oxidation of propyne and 2-butyne will not be an additional source of PAN.
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1 Chapter 5 Products of the OH + Acetaldehyde

Reaction

5.1 Abstract

A kinetic study of the reaction of OH with acetaldehyde, CH3CHO, has been carried

out using either pure N2 or O2/N2 mixture bath gas over a range of pressures (1 – 60 Torr)

and temperatures (212 – 468 K), using pulsed laser flash photolysis with laser induced

fluorescence OH detection. The title reaction proceeds predominantly via abstraction of the

aldehydic hydrogen resulting in formation of an acetyl radical, CH3CO, and H2O. At low

pressures the CH3CO radical reacts with oxygen to generate OH with near unity yield. OH

recycling in the OH/CH3CHO/O2 system has been investigated as a function of pressure and

temperature, with OH yields measured from the ratio of rate coefficients measured with

and without oxygen present. Stern-Volmer analyses of the OH yields measured between 212

and 385 K are linear with an intercept greater than 1, indicating that ~16% of the total

product yield for the title reaction generate products which do not react with O2 and recycle

OH at low pressures. These kinetic measurements have been complemented by a direct

investigation of the products of the OH + CH3CHO reaction using laser flash photolysis

coupled to photo-ionization time-of-flight mass spectrometry (PIMS), which detect methyl

radicals (CH3) as primary products with a yield of ~15% at 295 K in 1 – 2 Torr of helium bath

gas. Strong experimental evidence indicates that the source of methyl radicals is from

prompt dissociation of chemically activated acetyl products and hence is consistent with

previous studies which have shown that abstraction is the sole route for the OH + CH3CHO

reaction. However, the observation of a significant methyl product suggests that energy

partitioning in this reaction is different from the typical energy barrier mechanism where

reaction exothermicity is channelled preferentially into the newly formed bond. The

implications of the observations in atmospheric and combustion chemistry are briefly

discussed.
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5.2 Background and Previous Work

Acetaldehyde, CH3CHO, is one of the most abundant carbonyl compounds in the

troposphere, where it has significant roles in both atmospheric photochemistry and air

quality. Acetaldehyde is a recognised hazardous air pollutant,1 and produced extensively

during the atmospheric photochemical degradation of a great many volatile organic

compounds (VOCs).2-7 The dominant anthropogenic source of acetaldehyde is direct

emission following incomplete combustion of fossil and oxygenated fuels, while primary

biogenic sources include biomass burning, live and decaying plants, and seawater.8 The

concentration of acetaldehyde in the troposphere ranges from sub ppb in remote regions,9

to tens of ppb in polluted cities.10-13 During daylight hours, acetaldehyde is removed

primarily through reaction with OH,14 via hydrogen atom abstraction at either the aldehydic

(R1a) or methyl group (R1b):

OH + CH3CHO → CH3CO + H2O (R1a)

→ CH2CHO + H2O (R1b)

but also by UV photolysis (P1):15

CH3CHO + hν (λ < 345 nm) → CH3 + HCO (P1a)

→ H + CH3CO (P1b)

→ CH4 + CO (P1c)

Acetaldehyde has an atmospheric lifetime of ~18.5 hours at 298 K with respect to reaction

R1 (using a k1 value of 1.5 × 10-11 cm3 molecule-1 s-1, as recommended recently by IUPAC,14

and an average OH radical concentration of 1 × 106 molecule cm-3). Under atmospheric

conditions, the acetyl radical, CH3CO, produced following reaction R1a rapidly reacts with O2

to produce an acetylperoxy radical (R2a):

CH3CO + O2 + M → CH3C(O)O2 + M (R2a)

In polluted regions, the acetylperoxy radical can temporarily sequester NO2 in the form of

peroxyacetylnitrate (PAN):



161

CH3C(O)O2 + NO2 + M → CH3C(O)O2NO2 + M (R3)

a secondary pollutant present in photochemical smog,16 and a known irritant.17 The only

significant loss process for PAN is thermal decomposition that regenerates NO2 (R4):

CH3C(O)O2NO2 → CH3C(O)O2 + NO2 (R4)

Reaction R4 is strongly temperature dependent such that PAN decomposes within an hour

at 298 K, but has a lifetime of several months at 250 K.18 Consequently, in the middle and

upper troposphere, PAN can be transported over long distances before decomposing, and

release NO2 far from its source. The subsequent photolysis of NO2 drives ground level ozone

production, and therefore potentially affects air quality in remote unpolluted regions.19

Several groups have investigated the temperature dependence of reaction R1, and

collectively reported non-Arrhenius behaviour over the 200 – 900 K temperature range. All

studies report k1 to increase as temperatures decrease below ~350 K. However, as

temperatures increase above ~550 K, a positive temperature dependence is observed. It is

widely accepted that the positive temperature dependence observed in the high

temperature range, reflects a switch in the dominant hydrogen atom abstraction site; with

the acetyl group (R1a) favoured at low and medium temperatures, and the methyl group

(R1b) favoured at higher temperatures. Taylor et al. interpreted the negative temperature

dependence below ~350 K as evidence of a mechanism involving OH addition to the

carbonyl group, followed by dissociation of the adduct complex by elimination of either a

methyl radical (R1c) or H-atom (R1d):20

OH + CH3CHO → HCOOH + CH3 (R1c)

→ CH3COOH + H (R1d)

Taylor and co-workers investigated the OH + CH3CHO reaction mechanism using a quantum

RRK model, and suggested the addition-elimination paths dominated reaction R1 at room

temperature; although there is no experimental evidence to support this conclusion.

Cameron et al. used pulsed laser photolysis with either UV transient absorption

spectroscopy or resonance fluorescence techniques to quantify the primary radical products

of reaction R1.21 At room temperature the dominant product path leads to CH3CO + H2O
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formation with a yield of (0.93 ± 0.18). Cameron et al. were unable to detect CH3 or H-atoms

as primary products of reaction R1, and placed upper limits of 0.03 and 0.02 for respective

yields of reactions R1c and R1d, based on the detection limits of their apparatus. However,

the acetyl UV spectrum is broad, featureless and overlaps with the sharper CH3 spectrum;

therefore there is potential for incorrect assignment of absorptions, especially if vibrational

excitation is present in the radical species. Vandenberk and Peeters quantified product

branching ratios for the OH + CH3CHO reaction at 298 K using a fast-flow reactor coupled

with molecular beam sampling mass spectrometry (MBMS).22 These authors quantified the

contribution of H-atom abstraction to reaction R1 as (0.89 ± 0.06) based on their

experimental H2O yield. Furthermore, they were unable to detect HCOOH as a primary

product of reaction R1, and placed an upper limit branching ratio of 0.03 for channel R1c.

Tyndall et al. studied the OH + CH3CHO reaction in 1 atm of synthetic air at 298 and 251 K,

using a photoreactor equipped with FTIR stable product analysis.23 They found no evidence

of carboxylic acid formation following reaction R1, in agreement with the results of

Cameron et al.21 and Vandenberk and Peeters,22 and reported a total carboxylic acid yield

(R1c and R1d) of less than 10%, based on experimental detection limits. Butkovskaya et al.

studied the OH + CH3CHO reaction in 200 Torr of N2 at 298 and 248 K, using a high pressure

turbulent flow reactor (HPTFR) coupled with chemical ionisation mass spectrometry

(CIMS).24 These authors reported hydrogen atom abstraction as the dominant path for

reaction R1 with an experimental H2O yield of (0.98 ± 0.05); with approximately 5% of total

abstraction yielding the vinoxy radical, CH2CHO (R1b). Wang et al. studied the kinetics and

product yields of reaction R1 at room temperature using pulsed laser photolysis with IR

transient absorption spectroscopy, and reported H2O yields of approximately 100% in close

agreement with previous studies.25 In addition, these authors reported evidence of modest

CH3 production, but failed to detect H-atoms using indirect methods, placing upper limit

yields of 5% for each of the addition-elimination pathways. These experimental findings are

consistent with theoretical treatment of the OH + CH3CHO reaction by D’Anna et al., where

high level ab initio calculations suggest a significant barrier height of 30.9 kJ mol-1 for OH

addition to the carbonyl double bond.26 Furthermore, the calculations by D’Anna et al.

predict the abstraction channels proceed via a hydrogen bonded pre-reactive complex. The

rate of reactions of OH with other carbonyl compounds involving a pre-reactive complex
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have been shown recently to demonstrate strong negative temperature dependences at low

temperatures.27 It is now generally accepted that the major, if not exclusive, reaction

channel for OH + CH3CHO proceeds via hydrogen atom abstraction (R1a and R1b). The study

by D’Anna et al. included an experimental investigation of the OH + CH3CHO reaction under

atmospheric conditions using a smog chamber equipped with FTIR detection.26 OH radicals

were generated from the photolysis of deuterated 2-propyl nitrite:

(CD3)CHONO + hν → (CD3)2CHO + NO (P2)

(CD3)2CHO + O2 → (CD3)2CO + HO2 (R5)

HO2 + NO → OH + NO2 (R6)

These authors observed PAN as the major product of the OH + CH3CHO reaction, consistent

with reactions R1a, R2a and R3, together with HCHO and CO in relatively small yields of

approximately 10%, as the only products. D’Anna and co-workers interpreted these

observations as evidence of a third product channel following abstraction, where a fraction

of the acetyl produced following reaction R1 fragments (R1e):

OH + CH3CHO → CH3 + CO + H2O (R1e)

as HCHO is formed following methyl radical oxidation in the presence of NO:

CH3 + O2 + M → CH3O2 + M (R7)

CH3O2 + NO → CH3O + NO2 (R8)

CH3O + O2 → HCHO + HO2 (R9)

The enthalpy of reaction R1a is approximately -123 kJ mol-1,28 while the activation

energy for acetyl decomposition is near 71 kJ mol-1.29 Therefore reaction R1a occurs with

sufficient exothermicity for the nascent CH3CO radical to dissociate to CH3 + CO in a

chemically activated process; although this channel requires a significant fraction of the

total reaction exothermicity to be partitioned into the CH3CO fragment. Classically,

hydrogen atom abstraction reactions are thought to partition the majority of the available

energy into the newly formed bond,30 and in the case of OH initiated hydrogen abstraction
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channels, into the H-O bond of the H2O molecule. However, the pre-reactive complex

associated with the OH + CH3CHO reaction could facilitate a more statistical energy

distribution between the CH3CO and H2O products. Experimental evidence of H-atom

abstraction reactions partitioning reaction exothermicity into spectator bonds has been

provided by recent studies conducted at the University of Leeds; namely the reactions of OH

with glyoxal and methylglyoxal.29, 31 The OH + glyoxal system is discussed in detail in chapter

6 of this thesis. Briefly, the OH + glyoxal reaction proceeds via hydrogen atom abstraction,

the resulting HC(O)CO radical forms with sufficient energy that a significant fraction of the

population promptly dissociates to HCO + CO. Similar behaviour was observed by Baeza-

Romero et al. when studying the OH + methylglyoxal reaction, which also proceeds via

aldehydic hydrogen abstraction.29 The resulting CH3C(O)CO radical forms with sufficient

energy not only to dissociate to CH3CO + CO, but for a fraction of the acetyl radical formed

to dissociate further to CH3 + CO.

This chapter aims to investigate the significance of chemical activation in the acetyl

produced following the reaction of OH with acetaldehyde. At low total pressures acetyl

reacts with O2 to generate OH (R2b):32

CH3CO + O2 → OH + lactone (R2b)

Kinetic OH yields, ФOH, for reaction R2b have been measured as a function of total

pressure (1 – 60 Torr) and temperature (212 – 385 K). Stern-Volmer analysis of the ФOH

measured allows the fraction of the total product yield for reaction R1 that does not recycle

OH in the presence of oxygen at low pressure be quantified. This work was carried out in

concert with a separate study of the OH + CH3CHO reaction using laser flash photolysis

coupled with photo-ionization time-of-flight mass spectrometry (PIMS), conducted at the

University of Leeds by Neil Howes and Dr Mark Blitz, which identified CH3CO and CH3 as

primary products of reaction R1.
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5.3 Experimental

The slow-flow laser flash photolysis, laser induced fluorescence (LFP-LIF) apparatus

used to study the kinetics of the OH + CH3CHO reaction at 212 and 295 K is identical to that

described in chapter 3. The same kinetic technique was used for experiments carried out at

385 K, but using a different high temperature LFP-LIF apparatus that has been used in two

recent publications;33, 34 the details of this apparatus are provided here. The flows of t-butyl

hydroperoxide, acetaldehyde, and bath gas (N2 and/or O2) were regulated via calibrated

mass flow controllers, mixed, and flowed into a stainless steel, 10-way cross reactor. The

total pressure inside the reactor was monitored using a baratron pressure gauge, and

controlled via a needle valve between the reactor and rotary pump. The temperature of the

reactor was controlled using cartridge heaters inserted into the body of the reactor, and

measured using thermocouples located above and below the reaction zone.

OH radicals were generated by pulsed excimer laser photolysis (Lambda Physik 2101, at 248

nm) of t-butyl hydroperoxide:

C4H9OOH + hν → OH + co-products (P3)

The photolysis laser pulse was introduced through one of the arms of the reactor, and

typically operated at 5 Hz. Tests were carried out at lower excimer laser pulse repetition

rates to ensure that a fresh sample of gas was present inside the reactor for each photolysis

laser pulse. OH radicals were detected by off-resonance LIF, with ~282 nm probe radiation

generated using a NdYAG pumped (Powerlite Precision II 8010) dye laser (Sirah PRSC-DA-24)

operating with Rhodamine6G. The off-resonance fluorescence at ~308 nm was observed

through a filter using a PMT mounted mutually perpendicular to both the photolysis and

probe laser beams. The time delay between the photolysis and probe laser pulses was

controlled using LabVIEW software, and was varied to build up a time profile of the OH

signal following photolysis. Kinetic traces were typically 250 data points each averaged 2 –

10 times depending on the signal-to-noise ratio. Acetaldehyde was degassed thoroughly by

several freeze-pump-thaw cycles, and diluted into a blackened glass sample bulb in N2. The

concentration of acetaldehyde in the sample bulbs was determined barometrically.
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Materials used: nitrogen (BOC oxygen free), oxygen (Air Products, high purity, 99.999%),

t-butyl hydroperoxide (Sigma Aldrich, 70% v/v aqueous), acetaldehyde (Sigma Aldrich, >

99.5%).

The reactions were carried out under pseudo-first-order conditions with acetaldehyde

concentrations (> 1 × 1013 molecule cm-3) in great excess over OH (~1 × 1011 molecule cm-3).

In N2 bath gas the OH decay is governed by reactions R1 and R11:

OH + CH3CHO → CH3CO + H2O (R1a)

→ CH2CHO + H2O (R1b)

OH →   Loss (R10)

where reaction R10 accounts for reaction with t-butyl hydroperoxide and diffusion from the

probed region of the reactor. Under these conditions the observed OH signal decays

exponentially, and the time dependent OH signal, If(t), is defined by the following equation:

If(t) = If(0) exp-k’t (E1)

where If(0) is the initial OH signal intensity, and k’ is the observed pseudo-first-order decay

constant equal to k1[CH3CHO] + k10. It follows that a plot of k’ against [CH3CHO] yields a

straight line with a gradient equal to the bimolecular rate coefficient k1; an example of such

a plot is provided in Figure 1, with a typical experimental decay trace included in the inset.
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Figure 1: Bimolecular plot for the OH + CH3CHO reaction at 212 K at pressures ranging from between

1 and 10 Torr; least squares linear analysis through all data points yields a bimolecular rate

coefficient of (2.07 ± 0.02) × 10-11 cm3 molecule-1 s-1; a typical experimental OH decay trace at 212 K

fit using equation E1 is included in the inset.

5.4 OH + CH3CHO Temperature Dependence in Nitrogen Bath Gas

The temperature dependence of the OH + CH3CHO reaction has been investigated

using the pulsed laser photolysis, laser induced fluorescence technique, at 212, 295, 385,

and 468 K, using pure N2 bath gas at total pressures ranging from 1 – 60 Torr. The observed

rate coefficient, k1, was found to be independent of total pressure at all temperatures

(Figure 1), consistent with a reaction proceeding exclusively via hydrogen atom abstraction,

and not via OH addition to the carbonyl group, as proposed by Taylor et al.20 The

experimental k1(T) measurements were highly reproducible with values of (2.07 ± 0.21),

(1.36 ± 0.14), (1.29 ± 0.13), and (1.16 ± 0.12) × 10-11 cm3 molecule-1 s-1 at temperatures of

212, 295, 385, and 468 K, respectively, obtained by fitting least squares linear regression

through all pressure data at each temperature; the uncertainty in k1(T) was estimated at

10% and includes both statistical and systematic errors. A comparison between the present

results and literature data is presented in Arrhenius form in Figure 2.
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Figure 2: Arrhenius plot of the experimental rate coefficients, k1(T), for the OH + CH3CHO →

Products reaction, measured during this work. k1(T) measurements reported by other studies are

included for comparison. The data of Taylor et al. 1996 were not tabulated in their publication and

were therefore taken from their Arrhenius plot.20 The error bars quoted by Sivakumaran and

Crowley,35 Zhu et al.,36 and Taylor et al., 200637 are purely statistical (2σ). The error bars quoted by 

Atkinson and Pitts,38 and Semmes et al.39 combine both the statistical (2σ) and estimated systematic 

errors.

The room temperature k1 value of (1.36 ± 0.14) × 10-11 cm3 molecule-1 s-1 measured

during this study is in excellent agreement with previous determinations of this rate

coefficient which fall in the range (1.2 – 1.7) × 10-11 cm3 molecule-1 s-1;20, 35-39 and also agrees

well within the combined uncertainty limits with the (1.5 ± 0.1) × 10-11 cm3 molecule-1 s-1

value recently recommended by IUPAC.14 Furthermore, the negative temperature

dependence reported by other studies of reaction R1 at temperatures ranging from

200 – 550 K is consistent with the results presented here. As discussed previously, the

experimental measurements made at 212 and 295 K were carried out using the same
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technique, but different apparatus to the measurements taken at 385 and 468 K. Within this

experimental temperature regime, each set of k1(T) values measured scale similarly with

temperature (Figure 2), the non-linearity observed between measurements taken at 212

and 295 K with those taken at 385 and 468 K is most likely a result of differences in the

specific systematic errors associated with each experimental setup, such as mass flow

controller calibrations and pressure measurements.

5.5 OH Yields from kinetic Analysis of the OH + CH3CHO Reaction with and

without Excess O2

The dominant product channel for the OH + CH3CHO reaction leads to formation of

CH3CO + H2O (R1a). The acetyl radical reacts with oxygen to form a nascent, energetically

excited, acetylperoxy radical, CH3C(O)O2*. This chemically activated peroxy radical can

either be stabilised through collisions with bath gas molecules (R2a), or decompose directly

to generate OH (R2b) and a lactone;40-42 recent ab initio calculations have confirmed these

are the only product channels available to the nascent peroxy radical.43 A schematic of the

competing paths associated with acetylperoxy chemistry is provided below (Scheme 1):

Scheme 1: Generalised mechanism for the reaction of CH3CO with O2

The OH yield, ФOH, associated with reaction R2 can be expressed as follows:
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In the presence of acetaldehyde, using pure nitrogen bath gas and ignoring the relatively

minor contribution from diffusion and reaction with the precursor to total OH removal

(which does not scale with the acetaldehyde concentration and therefore does not

influence the kinetics), OH loss is defined by the following differential rate law:

]][[=
][

- 1 OHCHOCH
OH

3k
dt

d
(E3)

In the presence of molecular oxygen, a fraction of the acetyl formed through reaction R1a

will react with O2 and generate OH. If the O2 concentration is sufficient to make the acetyl +

O2 reaction fast compared with reaction of OH with acetaldehyde (R1), OH loss is

determined by the fraction of reaction R1 that does not go on to recycle OH:
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Consequently, the bimolecular rate coefficient measured using pure nitrogen bath gas, kN2

(see upper black line in Figure 3), will be faster than rate coefficients measured in excess O2,

kO2 (see lower lines in Figure 3), which are subject to rapid OH regeneration. The pressure

dependent OH yield, ФOH, attributed to secondary acetyl chemistry following the OH +

CH3CHO reaction can be expressed as:
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It follows from equations E3 – 5, that the ratio of rate coefficients measured in the presence

and absence of oxygen is:
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Therefore the experimental ФOH can be calculated by:
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As total pressures increase a greater fraction of the nascent acetylperoxy radical population

undergo collisional deactivation, at the expense of the formally direct decomposition

channel, resulting in less OH regeneration; consequently kO2 and kN2 converge at elevated

pressures (Figure 3).

Stern-Volmer (S-V) analysis is often used to parameterize the effect of collisional

deactivation on the branching ratios of chemically activated or formally direct product

paths. Whereby a plot of the reciprocal activated product yield against total pressure yields

a straight line with a gradient equal to the bath gas quenching efficiency and an intercept

equal to the inverse formally direct product yield at zero pressure. For the acetyl + O2

system (Scheme 1), a plot of the inverse ФOH against total pressure, [M], should be linear

with a gradient equal to the k2a/k2b ratio, and an intercept of 1 (E2).

Figure 3: Bimolecular plots for the OH + CH3CHO → Products reaction at 295 K using both pure

nitrogen bath gas (■), and in the presence of excess O2 at total pressures of 10 (♦), 5 (▼), 2 (▲) and

1 Torr (●). A typical OH decay trace at this temperature is included in the inset.
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Blitz and co-workers at the University of Leeds have studied the kinetics and ФOH

associated with the acetyl + O2 reaction extensively.40, 41, 44 In a recent elegant study, Carr et

al. used 248 nm photolysis of acetic acid, CH3COOH, in helium or nitrogen bath gas to

generate CH3CO and OH in equal yields (P4):40

CH3COOH + hν  → CH3CO + OH (P4)

The OH signal was then monitored directly via off-resonance LIF. Following addition of O2 to

the system, the OH profile comprised of both an instant photolytic signal and a slow growth

due to reaction of acetyl with O2 (R2b). The absolute ФOH was then quantified as a function

of total pressure from the observed OH growth by using the photolytic signal as an internal

standard. S-V analysis of the ФOH measured by Carr and co-workers reported k2a/k2b ratios of

(1.31 ± 0.51) and (3.59 ± 0.60) × 10-18 molecule-1 cm3 using helium and nitrogen bath gas,

respectively, at room temperature. These results are consistent with nitrogen being a more

effective third body collision partner for the nascent acetylperoxy radical than helium.

Importantly for the work presented in this chapter, the S-V plots by Carr et al. also reported

unity intercepts, signifying that at zero pressure reaction R2 proceeds exclusively to OH.40

As previously mentioned, the analysis described above requires that the CH3CO + O2

reaction (k2) is fast compared with the reaction between OH and acetaldehyde (k1). During

the work presented here, all the experiments undertaken at 212 K were carried out at

pressures ranging between 1 and 10 Torr. Under these conditions, all pseudo-first-order rate

coefficients, k’, measured in pure nitrogen bath gas were less than 3 × 104 s-1 (Figure 1). ME

analysis of experimental measurements of the pressure- and temperature dependent rate

coefficients for the CH3CO + O2 reaction by Carr et al. suggests a k2 value of 3.18 × 10-12 cm3

molecule-1 s-1 at 1 Torr and 212 K using nitrogen bath gas.41 The minimum O2 concentration

used during all the OH + CH3CHO/O2 experiments at 212 K was ~2 × 1016 molecules cm-3,

corresponding to an acetyl + O2 pseudo-first-order rate coefficient, k’2, of 6.4 × 104 s-1.

Therefore the rate of the CH3CO + O2 reaction, k2, is expected to be at least a factor of two

faster than the OH + CH3CHO reaction; with the k2/k1 ratio increasing further at higher total

pressures as both k2 and the absolute O2 concentration increase. Similar calculations at 295

and 385 K confirm that k2 was at least a factor of two faster than k1 under all experimental

conditions.
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For the OH yields associated with secondary chemistry following the OH +

CH3CHO/O2 reaction (E5), S-V analysis yields the following linear expression:
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With an intercept defined by the reciprocal acetyl yield at zero pressure, and a gradient

equal to
b2a1

a21

kk
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Experimental ФOH have been measured for the OH + CH3CHO/O2 system at 212, 295,

and 385 K, from the ratio of rate coefficients measured in the presence and absence of O2 at

pressures ranging from 1 – 60 Torr using N2 bath gas (E7). S-V plots at each temperature are

presented in Figure 4, with each data set fit using a linear weighted least squares regression

confidence interval (1σ); the results of this linear analysis are tabulated in Table 1. The error 

in the reciprocal ФOH is purely statistical (2σ) and calculated by multiplying the reciprocal 

ФOH by the fractional error of the experimental ФOH.

Figure 4: Stern-Volmer Plots of reciprocal OH yield against total pressure for the OH + CH3CHO →

Products reaction at 212 (▲), 295 (■) and 385 K (●); error bars a purely statistical (2σ). Weighted 

least squares linear regression fits through the data with 1σ confidence intervals are included. The 

magnified intercept is included in the inset.
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Temperature / K k1 / 10
-11

cm
3

molecule
-1

s
-1

Intercept of SV

plot

Maximum and

minimum values of SV

intercept

Gradient / 10
-18

cm
3

molecule
-1

212 (2.07 ± 0.02) 1.20 1.34 (9.09 ± 0.54)

1.06

295 (1.36 ± 0.01) 1.18 1.23 (7.57 ± 0.30)

1.12

385 (1.29 ± 0.02) 1.20 1.36 (4.53 ± 0.27)

1.04

Table 1: Results of linear Stern-Volmer analysis of the experimental OH yields associated with the

OH + CH3CHO/O2 → Products reaction; error bars are purely statistical (1σ).

Across all experimental temperatures the 1σ confidence interval for the intercept do 

not include, and are greater than unity (1.05 – 1.36). An intercept greater than 1 is

consistent with a fraction of reaction R1 generating products which do not recycle OH in the

presence of O2 at low pressures. All temperatures converge on an intercept of 1.18 – 1.20,

suggesting that between 15 and 17% of the total OH + CH3CHO product yield does not

recycle OH at low pressure. The vinoxy radical yield of )%(5.1+2.4
1.7 reported by Butkovskaya et

al.,24 cannot account for the S-V intercepts reported here; particularly given that reaction of

the vinoxy radical with O2 is also likely to generate OH (R11).45-48

CH2CHO + O2 → HCHO + CO + OH (R11a)

→  (HCO)2 + OH (R11b)

The results presented here are consistent with a fraction of the acetyl formed

following reaction R1a, promptly decomposing to CH3 + CO (R1e). Furthermore, these

results show S-V intercepts independent of temperature, suggesting that acetyl fragments

as a result of chemical activation, and does not dissociate thermally over this temperature
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range. In contrast to the intercepts, the S-V gradients reported here do depend on

temperature, decreasing from (9.09 ± 0.54) to (4.53 ± 0.27) × 10-18 cm3 molecule-1 as

temperatures increase from 212 to 385 K, respectively (Table 1). It follows from equation

E8, and the S-V plot intercepts, that the k1/k1a ratio is independent of temperature between

212 and 385 K. Therefore the temperature dependent S-V plot gradients can only be

attributed to the k2a/k2b ratio. As temperatures decrease the nascent activated CH3C(O)O2

radical forms with less energy and consequently is less likely to dissociate prior to collisional

stabilisation, resulting in an increased k2a/k2b ratio.

Groß et al. have very recently studied OH formation following the CH3CO + O2

reaction in helium or nitrogen with added O2, or synthetic air bath gas, at 296 K and

pressures ranging between 20 and 300 Torr, using pulsed laser photolysis-laser induced

fluorescence (PLP-LIF) apparatus.49 These authors generated CH3CO by 248 nm photolysis of

COCl2 in the presence of acetaldehyde (P5, R12).

COCl2 + hν → 2Cl + CO (P5)

Cl + CH3CHO → CH3CO + HCl (R12)

The OH formed following subsequent reaction of acetyl with O2 (R2) was monitored directly

by off resonance LIF. The LIF-system was then calibrated in back-to-back experiments by the

248 nm photolysis of H2O2 as OH precursor (P6).

H2O2 + hν → 2OH (P6)

Comparison of the OH signals observed following COCl2 and H2O2 photolysis allowed the

experimental OH yield associated with the CH3CO + O2 reaction to be quantified directly as a

function of pressure. S-V analysis of the ФOH measurements by Groß and co-workers yields a

straight line with unity intercept and a quenching efficiency of (9.4 ± 1.7) × 10-18 cm3

molecule-1 using nitrogen bath gas.49 This value agrees within the combined uncertainty

limits with the (7.57 ± 0.30) × 10-18 cm3 molecule-1 value reported here. It is worthwhile to

note the unity S-V intercept reported by Groß et al. is to be expected, given that the Cl +

CH3CHO reaction enthalpy is ~-58 kJ mol-1,50 and therefore acetyl radicals produced

following reaction R12 do not possess enough energy to dissociate to CH3 + CO.
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Tyndall et al. studied the Cl + CH3CHO reaction at room temperature using N2 and/or

O2 bath gas at pressures ranging between 1 and 700 Torr, using an environmental

photoreactor equipped with FTIR absorption spectroscopy.51 They measured the kinetics of

reaction R12 relative to the pressure independent Cl + CH3OH reaction (R13).

Cl + CH3OH → CH2OH + HCl (R13)

These authors reported k13/k14 ratios independent of pressure using N2 bath gas, but

observed a significant increase in the k13/k14 ratio with decreasing pressure in the presence

of O2. Tyndall and co-workers suggested these findings provide indirect evidence of OH

formation through reaction R2b, which then reacts with acetaldehyde significantly faster

than it does with methanol. Tyndall et al. quantified ФOH for reaction R2 as a function of

pressure, but did not perform S-V analysis of their results. However, subsequent linear

analysis of the results of Tyndall et al. by Carr and co-workers,41 assuming a zero pressure

intercept of 1, derived a quenching efficiency of 5.9 × 10-18 cm3 molecule-1, in good

agreement with the results presented here.

Talukdar et al. investigated the OH formation associated with reaction R2 in helium,

nitrogen and oxygen diluents at room temperature and total pressures ranging between 20

and 600 Torr.52 These authors used 248 nm photolysis of acetone (P6) and OH and Cl-atom

initiated oxidation of acetaldehyde (R1a, R12) to generate acetyl radicals.

CH3COCH3 + hν  → CH3CO + CH3 (P7)

OH radicals were monitored directly by LIF in the presence of oxygen, allowing the pressure

dependent ФOH for reaction R2 to be determined from either the observed OH profiles or

the modified OH kinetics. S-V analysis of the OH yields measured by Talukdar and co-

workers report a quenching efficiency of (11 ± 2.5) × 10-18 cm3 molecule-1 using nitrogen

bath gas.52 This value is broadly consistent with the result presented here, although these

results have yet to be published in a peer reviewed journal.

Carr and co-workers have published work investigating the kinetics and ФOH of the

CH3CO + O2 reaction twice in recent years,40, 41 using a suitable photolytic acetyl precursor

with LIF OH detection on both occasions. Their first study generated CH3CO using 248 nm
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photolysis of acetic acid (P4) in nitrogen with added oxygen at room temperature.40 This

method was self-calibrating and has been described previously, yielding a quenching

efficiency of (3.59 ± 0.60) × 10-18 cm3 molecule-1. More recently, Carr and co-workers

generated acetyl by 248 nm photolysis of acetone (P7), in nitrogen with added oxygen, and

fitted the resulting OH profile using a bi-exponential function.41 As the LIF signal does not

provide absolute OH concentrations, back-to-back experiments were carried out using

nitrogen diluents, at pressures ranging between 5 and 300 Torr at 298 and 378 K, with OH

yields expressed relative to a reference yield at a fixed pressure close to zero. Plots of the

reciprocal relative OH yield against total pressure were in linear S-V form, allowing the bath

gas quenching efficiency to be determined from the S-V gradient/intercept ratio. Data were

corrected for the effect of pressure on the yield of acetyl following acetone photolysis and

for quenching of the LIF OH signal. This novel approach by Carr and co-workers reported

quenching efficiency of (2.67 ± 1.40) and (2.20 ± 0.81) × 10-18 cm3 molecule-1 in nitrogen at

298 and 378 K, respectively.41 In addition to this published work, Carr also measured the

pressure-dependent OH yield associated with reaction R2 by generating acetyl chemically as

part of his doctoral research at the University of Leeds.53 Linear S-V analysis of the room

temperature OH yields measured following reaction of OH with acetaldehyde (R1) in excess

oxygen using helium bath gas, yields a straight with an intercept of 1.41 ± 0.30 and a

quenching efficiency of (2.9 ± 2.0) × 10-18 cm3 molecule-1, where the errors represent the 2σ 

confidence interval. This intercept suggests 29% of the total product yield following reaction

R1, do not recycle OH in the presence of oxygen at low pressures, and is consistent with the

results presented here. Kovacs et al. measured OH yields for the same system in helium

bath gas at 298 K under low total pressures (1 – 8 Torr) using a discharge flow reactor

coupled with OH LIF detection.54 OH was generated from H + NO2 or F + H2O. S-V analysis

of the OH yields reported by Kovacs and co-workers gives a helium quenching efficiency of

(3.97 ± 0.56) × 10-18 cm3 molecule-1 with an intercept fixed at unity. The acetyl quenching

efficiency of helium measured by Carr is in excellent agreement with the value determined

using the data of Kovacs, particularly when you consider fixing the S-V plot by Carr with an

intercept of 1 increases the gradient to (5.4 ± 1.6) × 10-18 cm3 molecule-1.53 These results

suggest that the gradients of S-V plots associated with the OH yield of the acetyl + O2

reaction are dependent on the method used to generate acetyl, with photolytic acetyl



178

sources (acetic acid and acetone) showing significantly less quenching than chemical acetyl

sources (OH or Cl-atom + acetaldehyde). The 248 nm photolysis wavelength used by Carr

and co-workers corresponds to a total energy of 428 kJ mol-1, while the energy released

following reaction R1 is only ~123 kJ mol-1.28 If the acetyl radicals produced through

photolysis are more vibrationally excited at the point of association with O2 than the acetyl

formed chemically, then this may enhance the reactive flux which bypasses the reactive

intermediate, termed ‘well-skipping’ reactions, and favour direct OH formation (R2b). This

could explain the reduced quenching efficiency reported by studies in which acetyl was

generated photolytically.

5.6 Photoionisation Mass Spectrometry (PIMS) Measurements

The kinetic study described previously provides indirect evidence of the non-acetyl

yield associated with the OH + CH3CHO reaction at zero pressure, but does not formally

identify the reaction products. Direct evidence of the products of the OH + CH3CHO reaction

has been provided by photoionisation mass spectrometry (PIMS) measurements carried out

by Dr Mark Blitz and Neil Howes. The PIMS instrument allows the time-resolved products of

the title reaction to be monitored, with methyl and acetyl radicals assigned by the m/z 15

and 43 ion signals, respectively. Differences in the ionisation potentials of acetyl and vinoxy

radicals allowed Blitz and Howes to definitively assign acetyl with the m/z 43 signal. Figure 5

shows an example of the acetyl and methyl signals recorded during the same experiment,

the time signatures confirm both species originate from the same source.
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Figure 5: Overlaid plots of acetyl (-■-) and methyl radical (-●-) signals from the same experiments

demonstrating they are produced on identical timescales.

Figure 5 in itself does not confirm methyl radicals are primary products of reaction R1, as

methyl radicals are also produced during the acetyl photoionization process. In order to

distinguish the sources of methyl radicals during the PIMS study, the ratio of signal at m/z

15 (methyl): m/z 43 (acetyl) were quantified by generating acetyl both through reaction of

OH (R1) and Cl-atoms (R13) with acetaldehyde. Reaction 12 is insufficiently exothermic to

cause subsequent acetyl fragmentation, therefore the 15: 43 ratio observed following this

reaction is solely due to acetyl fragmentation during the photoionization process. However,

the 15: 43 ratio observed following reaction R1 is higher than that following reaction R12, as

the methyl signal (m/z 15) is produced both by fragmentation and direct methyl production

through reaction R1e (Figure 6).
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Figure 6: Methyl-to-acetyl signal ratios observed following reaction of OH (■) and Cl-atoms (●) with

acetaldehyde at 295 K.

In a final set of experiments, a small amount of oxygen (~10 mTorr) was added to the

system. The fraction of acetyl that survive reaction 1 (R1a) react with oxygen to form

energised acetylperoxy radicals, which, under the low pressure (~ 4 Torr) conditions of the

PIMS flow tube, subsequently dissociate to give OH and a lactone in near 100% yield (R2b);

the lactone is identified using the PIMS instrument by the m/z 42 signal. The OH produced

through reaction R2b then reacts with acetaldehyde, resulting in a chain reaction sequence

which maintains radicals in the system for several milliseconds. Each time the chain is

propagated both acetyl (R1a) and methyl radicals are generated (R1e). Both radical species

are removed through reaction with oxygen, but under the low experimental pressures the

acetyl radicals are lost much faster than methyl radicals, which consequently accumulate in

the system. Figure 7 shows the methyl and acetyl radical concentrations which clearly

behave very differently as a function of time. The solid lines in Figure 7 are fits to these data

using the numerical programme Kintecus.55
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Figure 7: Behaviour of acetyl, methyl and lactone signals in an OH/CH3CHO/O2 system. The solid

points are the experimental data and the lines are a numerical simulation using Kintecus.55

The 15: 43 m/z ratios observed following the reaction of Cl-atoms with acetaldehyde

clearly shows that a fraction of the acetyl ion formed following reaction R12 fragments to 15

(Figure 6). The 15 ion signal is solely from acetyl fragmentation as thermodynamically there

is not sufficient energy to form CH3. If the 15: 43 m/z ratios observed following the reaction

of OH (R1) and Cl-atoms with acetaldehyde (R12) were the same, then there is no acetyl

fragmentation associated with the title reaction (R1e). However, from Figure 6 it can be

clearly seen that the 15: 43 m/z ratio is enhanced in reaction R1 which implies that CH3 is

being formed. To assign the CH3 yield from reaction R1 we need to calibrate the ion signals

from CH3CO and CH3, where we need to assign the relative ionisation cross-sections and the

amount of fragmentation of CH3CO to 15 ion. The latter is simply the observed ratio from

reaction R12. The relative ionisation cross-sections are determined in the following

procedure.
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Acetylchloride photolyses to give either acetyl (P8a) or methyl radicals (P8b) or a

closed-shell stable ketene (P8c) at 248 nm:

CH3COCl + hν → CH3CO + Cl (P8a)

→  CH3 + CO + Cl (P8b)

→ CH2CO + HCl (P8c)

In the presence of enough acetaldehyde, the Cl-atoms produced following acetylchloride

photolysis (P8a, P8b) titrate completely to CH3CO + HCl (R12). Under these conditions the 43

m/z signal profile consists of an instant signal due to acetylchloride photolysis (P8a), and a

growth on top due to reaction R12. The ratio of instant-to-growth signal heights provide the

relative quantum yields of photolysis to channel P8a with respect to P8b. Using this

approach Blitz and Howes were able to determine that acetylchloride photolyses to give

acetyl and methyl in approximately a 5: 4 ratio at 248 nm. In the absence of acetaldehyde,

the prompt 15 m/z signal is attributed to the methyl radicals produced through photolysis

(P8b) and a small contribution from acetyl fragmentation (P8a). By observing the 15 and 43

m/z signals from reaction R12, Blitz and Howes concluded that ~5% of the 43 m/z acetyl

signal fragments to 15 m/z. The absolute CH3 yield from acetylchloride photolysis (P8b) was

determined by comparison to the 15 m/z signal observed using the PIMS instrument via the

photolysis of methyl iodide (P9), known to have a methyl quantum yield of unity.14, 56

CH3I + hν  → CH3 + I (P9)

By knowing the relative concentrations of CH3 and CH3CO from P8, the amount of CH3CO

fragmentation to m/z 15 and the absolute CH3 by comparison to CH3I, the observed ion

signals from 43 and 15 could be used to determine the relative CH3CO and CH3 ionisation

cross-sections. In reaction R1, if the ratio of the 15: 43 m/z signals were equal to 0.05 the

CH3 yield (R1e) is zero and if this ratio is equal to ~0.27 the CH3 yield is 1. In reaction R1 the

observed 15: 43 m/z ratio is ~0.12 (Figure 6) and implies the CH3 yield is 0.15 – 0.20. The

PIMS experiments were carried out using a variety of OH precursors, with coated and

uncoated flowtube walls, using different detectors and a wide range of acetaldehyde
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concentrations to ensure the results were not subject to systematic errors. The PIMS and

kinetic experimental results are presented in Table 2.

Experiment Methyl Yield

248 nm photolysis of O3/H2O as OH source 0.18 ± 0.05

193 nm photolysis of N2O/H2O as OH source 0.18 ± 0.06

193 nm photolysis of N2O/H2O as OH source (Using a different detector) 0.14 ± 0.02

Kinetic experiments based on the zero pressure S-V intercept 0.15 ± 0.04

Table 2: Experimental methyl Yields following reaction of OH with acetaldehyde at room

temperature. The kinetic methyl yield assumes that the vinoxyl radical reacts with oxygen to

generate OH at zero pressure.

5.7 Discussion

The direct methyl yields measured following the OH + CH3CHO reaction using the

PIMS instrument are consistent with the less direct kinetic study results (Table 2), and with

studies that show reaction R1 proceeds exclusively via hydrogen atom abstraction,21, 25, 26

but disagree with the methyl yields determined by other groups.21, 25, 26 While the OH +

CH3CHO reaction has been investigated extensively by other workers, there are

comparatively few studies that focus on methyl production from the title reaction.

Wang et al. used tuneable diode IR absorption to monitor the production of ground

state methyl radicals from reaction R1 at 296 K in ~14 Torr of helium.25 OH was generated

through reaction of O(1D) with excess water (R14):

O(1D) + H2O → 2OH (R14)
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A prompt methyl signal was observed that Wang and co-workers attributed to reaction of

O(1D) with acetaldehyde (R15), with a slower growth on the 100’s of µs timescale through

reaction R1.

O(1D) + CH3CHO → CH3 + co-products (R15)

These authors reported a methyl yield of less than 5% by calibrating with the known methyl

yield following the reaction of O(1D) with methane (R16):

O(1D) + CH4 → CH3 + OH (R16)

However, the methyl profile reported by Wang et al. shows methyl loss occurring on a

similar timescale to its formation. It is not clear from their paper how the significant loss of

methyl radicals, through radical-radical processes or the production of vibrationally excited

methyl radicals, was accounted for and therefore it is possible that Wang and co-workers

underestimate the methyl yield in their analysis.

Cameron et al. used UV absorption (200 – 240 nm) to observe acetyl and methyl

radicals produced in reaction R1.21 The acetyl absorption spectrum is quite broad a

featureless in this region, whereas in contrast the ground state methyl absorption peaks

sharply at ~216 nm. The high concentrations of acetaldehyde (~1016 molecule cm-3) used by

Cameron et al. meant time resolution on the production of acetyl and methyl radicals was

lost in their experiments. Methyl radicals were observed, but Cameron and co-workers

proposed this was due to acetaldehyde photolysis and the maximum yield of methyl radicals

was set at 3% for their 60 Torr experiments using nitrogen bath gas. Uncertainties in the

methyl quantum yield or possible contributions from vibrationally excited species may result

in a low bias in the methyl yield reported in this study.

D’Anna et al. studied the title reaction in synthetic air at 298 K and 760 Torr using a

smog chamber equipped with long path FTIR detection.26 OH radicals were generated by

photolysis of various alkylnitrate isotopologues (P2) which in the presence of O2 generate

OH and NO2 (R5, R6). These authors observed HCHO and CO in 10% yield. At atmospheric

pressure the vinoxy radical produced through reaction R1b reacts with oxygen to form a

stable peroxy radical (R11c) rather than dissociating to radical fragments (R11a, R11b):45-48
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CH2CHO + O2 + M → O2CH2CHO + M (R11c)

In the presence of NO and O2 the following reaction sequence might explain formation of

formaldehyde and CO reported by D’Anna and co-workers:

O2CH2CHO + NO → OCH2CHO + NO2 (R15)

OCH2CHO + O2 → HCHO + CO + HO2 (R16)

However, the vinoxy radical yield (R1b) of )%(5.1+2.4
1.7 reported by Butkoskaya et al.24 is

inconsistent with the 10% yield of HCHO and CO observed in the chamber by study D’Anna

et al.26 Consequently, D’Anna and colleagues proposed that CH3 and CO form directly from

the reaction of OH with acetaldehyde (R1e),26 with HCHO produced following oxidation of

the primary methyl radical; consistent with the radical profiles of Blitz and Howes which

show methyl and acetyl are produced following reaction R1 on identical timescales (Figure

5). The work presented in this chapter, and the results of D’Anna et al., provides compelling

evidence that methyl radical production is a minor channel in reaction R1.

Conventional understanding states the exothermicity of an abstraction reaction is

preferentially partitioned into the newly formed bond.30 Acetyl fragmentation requires

more than 50% of the total exothermicity of the OH + acetaldehyde reaction to be

channelled into the acetyl. The observation of more than 15% fragmentation of the acetyl

radical formed from reaction R1 suggests that the energy is partitioned more statistically

between the CH3CO and H2O products. A completely statistical distribution of energy would

preferentially excite the acetyl fragment (12 modes vs 3 modes) and result in near complete

acetyl fragmentation. The experimental observations presented here suggest that neither

the classical ‘dynamic’ or ‘statistical’ models adequately describe the partitioning of energy

following the OH + acetaldehyde reaction. Butkovskaya and Setser determined the nascent

vibrational distribution in the H2O produced following the title reaction by observing the IR

chemiluminescent spectra.57 Based on their observations they calculate that 52% of the

reaction exothermicity is partitioned into vibrational excitation of the water. These authors

also highlighted a significant difference in the disposal of energy following the reactions of

OH with carbonyls and hydrocarbons; in the latter a greater fraction of the reaction

exothermicity is distributed in the vibrational modes of the water molecule. The reactions of
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OH with glyoxal and methylglyoxal have also recently been shown to contest the classical

‘dynamic’ model with a significant fraction of the reaction exothermicity deposited in the

HC(O)CO and CH3C(O)CO fragments, respectively.29, 31

The methyl radicals formed from the OH + acetaldehyde reaction are only a minor

product channel and therefore unlikely to have significant atmospheric implications,

although a yield of more than 15% could potentially influence PAN and HCHO budgets in

polluted regions. Conversely, the implications of this study for low temperature combustion

could be significant, particularly under the pure oxygen conditions used during oxyfuel

combustion. Aldehydes are known to be important intermediates in the combustion of

alcohols and Kaiser et al. have modelled the chemistry of acetaldehyde oxidation under low

temperature combustion conditions.58 At temperatures below 750 K chain branching can

occur via reactions R2a, R17 and R18.

CH3CO + O2 + M → CH3C(O)O2 + M (R2a)

CH3C(O)O2 + CH3CHO → CH3C(O)O2H + CH3CO (R17)

CH3C(O)O2H → CH3 + CO2 + OH (R18)

Reaction R2a will be in competition with the chain propagation reaction R2b:

CH3CO + O2 → OH + lactone (R2b)

with the likely decomposition products of the lactone being HCHO and CO. MESMER

calculations emphasize the importance of ‘well-skipping’ reactions in such R + O2 systems

and well-skipping will be enhanced with vibrational excitation of the R radical. The results

presented in this chapter indicate significant vibrational excitation of the acetyl fragment

following reaction R1 and, particularly under oxyfuel combustion where there will be less

vibrational relaxation, the fraction of chain branching (R2a, R17-18) versus chain

propagation (R2b) will change, and could potentially influence modelled ignition delays for

ethanol combustion.
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Chapter 6 Kinetic Study of the OH + Glyoxal Reaction

6.1 Abstract

This chapter centres on a detailed experimental kinetic study of the OH + glyoxal, (HCO)2,

reaction using N2, and various O2/N2 bath gas mixtures over a range of total pressures

(5 – 80 Torr) and temperatures (212 – 295 K), by monitoring OH decay via laser induced

fluorescence (LIF) in excess (HCO)2. The following rate coefficients, kOH + (HCO)2 = (9.7 ± 1.2),

(12.2 ± 1.6) and (15.4 ± 2.0) × 10-12 cm3 molecule-1 s-1 (where errors represent a combination

of both the statistical error at the 2σ level and estimates of systematic errors) were 

measured in pure N2 at temperatures of 295, 250 and 212 K, respectively. Rate coefficients

were observed to be independent of total pressure but decreased following the addition of

O2 to the reaction cell, consistent with direct regeneration of OH. OH yields, ΦOH, were

quantified experimentally for the first time as a function of total pressure, temperature, and

O2 concentration. The experimental results have been parameterized using a chemical

scheme where a fraction of the nascent HC(O)CO population promptly dissociates to HCO +

CO, the remaining HC(O)CO either dissociates thermally or reacts with O2 to give CO2, CO,

and regenerate OH. A maximum ΦOH of (0.38 ± 0.03) was observed at 212 K, independent of

total pressure, suggesting that ~60% of the HC(O)CO population promptly dissociates upon

formation. Qualitatively similar behaviour is observed at 250 K, with a maximum ΦOH of

(0.31 ± 0.04); at 295 K, the maximum ΦOH decreases further to (0.29 ± 0.03). From the

parameterization, an ΦOH of 0.19 is calculated at 295 K and 1 atmosphere of air. It is shown

that the proposed mechanism is consistent with previous chamber studies. While the fits

are robust, experimental evidence suggests that the system is influenced by chemical

activation and cannot be fully described by thermal rate coefficients. The atmospheric

implications of the measurements are briefly discussed.



191

6.2 Background and Previous work

Glyoxal, (HCO)2, is an important atmospheric trace gas, and produced in high yields

following the oxidation of both biogenic VOCs, such as isoprene,1 and anthropogenic

hydrocarbons, such as benzene2-4 and acetylene.5-7 (HCO)2 is the simplest and most

abundant α-dicarbonyl in the troposphere and its atmospheric significance stems from its

roles in the formation of secondary organic aerosol (SOA)8-10, as a source of HOx (OH + HO2)

radicals in the troposphere,11-13 and its use as a marker for biogenic emissions.14, 15 (HCO)2 is

removed from the atmosphere within a few hours; during daylight its atmospheric lifetime

is largely determined by the rates of photolysis and reaction with OH:11, 16-18

(HCO)2 + hν →   2HCO (P1a)

→ HCHO + CO (P1b)

(HCO)2 + OH → HC(O)CO + H2O (R1)

Several experimental and theoretical studies have been conducted that focus on

(HCO)2 oxidation. NIki et al.19 studied the Cl initiated oxidation of (HCO)2 in chamber

experiments using various N2/O2 bath gas mixtures at 700 Torr and 298 K, with FTIR product

detection. These authors were the first to consider the subsequent fate of the HC(O)CO

radical and concluded that under atmospheric conditions HC(O)CO chemistry is governed by

a competition between unimolecular decomposition (R2) and bimolecular reaction with O2,

the latter including both a direct abstraction pathway (R3a) and an association channel

(R3b):

HC(O)CO → HCO + CO (R2)

HC(O)CO + O2 → 2CO + HO2 (R3a)

→ HC(O)C(O)O2 (R3b)

Stable product analysis confirmed formation of both CO and CO2 in the presence of O2.

While CO formation is consistent with reactions 2 and 3, CO2 formation is not; Niki et al.

suggested reaction between the HC(O)C(O)O2 radical and HO2 was potentially responsible

(R4), with co-production of radical species HCO and OH:
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HC(O)C(O)O2 + HO2 → HCO + CO2 + OH + O2 (R4)

Orlando and Tyndall20 generated the HC(O)CO radical via both Cl and OH initiated

oxidation of (HCO)2 in an environmental chamber/FTIR system at 700 Torr between 224 and

314 K. Their study reported CO and CO2 production associated with HC(O)CO chemistry in

the presence of O2, in agreement with Niki et al., and adopting the same mechanism

showed the [CO]/[CO2] product ratio scales linearly with the inverse O2 partial pressure,

with a gradient equal to k2/k3b. The analysis by Orlando and Tyndall provides evidence of a

significant barrier to unimolecular decomposition of the HC(O)CO radical (~32 kJ mol-1);

consequently, k3 exhibits a significant temperature dependence. Conversely, k3b is relatively

insensitive to temperature, such that unimolecular decomposition fails to compete with

bimolecular reaction with O2 at 224 K.

More recently, Feierabend et al.17 studied the kinetics of the OH + (HCO)2 reaction,

monitoring OH directly via LIF, and reported the rate of OH decay to slow following addition

of O2 to the reaction cell, but did not quantify the effect. The Feierabend et al. study

confirms that OH production occurs via a primary reaction and not through secondary

chemistry as proposed by chamber studies and is consistent with recent calculations by da

Silva,21 which identified a chemically activated HC(O)CO + O2 channel that proceeds directly

to CO2, CO and OH (reaction R5, Figure 1), and suggested this channel is competitive with

unimolecular dissociation.

HC(O)CO + O2 → CO2 + CO + OH (R5)

Setokuchi22 extended the analysis in a theoretical study that considered the energy

partitioned in the nascent HC(O)CO radical and concluded that under atmospheric

conditions 91% of the HC(O)CO promptly decomposes on formation.

Both proposed mechanisms for the fate of HC(O)CO following reaction with O2 are

effectively HOx neutral, although the Niki et al. mechanism requires a radical-radical

reaction to regenerate OH, whereas the mechanism proposed by da Silva directly

regenerates OH and therefore occurs on a faster timescale, which is independent of the

initial radical (Cl/OH) concentration.
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Figure 1: Schematic of the potential energy surface showing the initial addition of O2 followed by an

internal H transfer and then elimination of CO. The COOOH rapidly dissociates to OH and CO2.

Adapted with permission from da Silva.21

In recent decades, field measurements of OH and HO2 radicals in unpolluted

atmospheres have highlighted a major failure of the current scientific understanding of HOx

chemistry in regions characterized by both low concentrations of nitrogen oxides and high

concentrations of isoprene and other biogenic volatile organics.23-26 Measured OH

concentrations in pristine environments are consistently higher than those predicted by

atmospheric chemical models, and the discrepancy between the observed and modeled OH

concentration correlates with the presence of isoprene. Recent field measurements of

(HCO)2 made over the rainforest canopy in Borneo have reported peak concentrations of

~1.6 ppb, significantly higher than measurements made during other field campaigns in

remote forested regions.27 Furthermore, model analysis has shown that (HCO)2

concentrations ((HCO)2 is a known isoprene oxidation product) of this magnitude are

consistent with the higher than expected OH concentrations reported in the same regions.27

Given the current uncertainty in isoprene oxidation mechanisms28-30 and HOx
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measurements31, 32 and the link between glyoxal and biogenic emissions, there is a clear

need to fully understand OH + (HCO)2/O2 chemistry.

The aims of this work are to conduct a detailed kinetic study of the OH + (HCO)2/O2

system and to confirm OH is produced directly following the HC(O)CO + O2 association

reaction and not through secondary radical-radical chemistry; experimental ФOH can then be

quantified for the first time as a function of temperature, pressure and O2 concentration.

6.3 Experimental

The apparatus used to study the OH kinetics of the OH + (HCO)2/O2 system are

identical to the setup described previously to investigate the OH yields associated with OH +

alkyne/O2 and OH + CH3CHO/O2 chemistry at subambient temperatures; therefore only a

brief description is provided here. The flows of radical precursor, (HCO)2, and bath gas (N2

and/or O2) were regulated via calibrated mass flow controllers, allowed to mix, and flowed

into a stainless steel 6-way cross reactor. The total pressure inside the (5 – 80 Torr) was

controlled by adjusting a needle valve on the exhaust line to the pump and measured using

a capacitance manometer. The bath of the low temperature cell was filled with acetone/dry

ice, chloroform/ dry ice or ortho-xylene/dry ice to achieve subambient temperatures of 195,

212 and 250 K, respectively. Temperatures close to the reaction region were measured

using K-type thermocouples.

Glyoxal was prepared by heating approximately equal masses (~15 g) of glyoxal

trimer dihydrate crystals and P2O5 to 423 K. A small flow of N2 was passed over the heated

sample and through a collection trap submerged in liquid N2. The glyoxal was trapped as

yellow crystals, distilled into a blackened glass sample bulb, and diluted in N2. The

concentration of (HCO)2 in each sample bulb was determined via UV-vis spectroscopy

(Perkin Elmer Lambda 900). Absorption by (HCO)2 was measured between 400 and 500 nm

for each sample prepared using a homemade 10 cm glass cell with 1 nm spectral resolution;

a typical absorption spectra is shown in Figure 2a. The measured absorbance were

converted to base e, then combined with recently recommended absorption cross

sections33 to give the (HCO)2 number density in accordance with the Beer-Lambert law. The
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total gas number density was determined by measuring the total pressure inside the

absorption cell using capacitance manometers. A typical plot of (HCO)2 fraction, f-(HCO)2,

against wavelength is shown in Figure 2b.

Figure 2: Typical UV-vis absorption spectra for an (HCO)2 sample (a) and corresponding glyoxal

fraction, f-(HCO)2, as a function of wavelength (b); analysis of this spectra results in an f-(HCO)2 of

0.033 ± 0.005, the error is statistical at the 1σ level.
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Materials used: nitrogen (BOC oxygen free), oxygen (Air Products, high purity, 99.999%),

t-butyl hydroperoxide (Sigma Aldrich, 70% v/v aqueous), oxalyl chloride (Sigma Aldrich, ≥ 

99%), chloroform (Sigma Aldrich, ≥ 99.8%), o-xylene (Sigma Aldrich, ≥ 98%), acetone (Sigma 

Aldrich, > 99.9%), glyoxal trimer dehydrate (Sigma Aldrich, ≥ 95%) and phosphorus 

pentoxide (Sigma Aldrich, ≥ 98.5%).  

OH radicals and Cl atoms were generated by pulsed excimer photolysis (Lambda

Physik Compex, at 248 nm) of t-butyl hydroperoxide and oxalyl chloride, respectively:

t-C4H9OOH + hv → OH + coproducts (P2)

(COCl)2 + hv → 2Cl + 2CO (P3)

The laser beam was introduced through one of the arms of the reactor. The laser was

typically operated at 10 Hz, although tests were performed to ensure fresh gas samples

were present in the reactor for each photolysis pulse. OH radicals were detected by off-

resonance LIF.

The reactions were carried out under pseudo-first-order conditions with glyoxal

concentrations (> 9 × 1013 molecule cm-3) in great excess over OH (~1 × 1011 molecule cm-3).

In N2 bath gas the OH decay is governed by reactions R1 and R6:

OH + (HCO)2 → HC(O)CO + H2O (R1)

OH →   Loss (R6)

where reaction R6 accounts for reaction with t-butyl hydroperoxide and diffusion from the

probed region of the reactor. Under these conditions the OH decay, an example of which is

shown in the inset of Figure 3, is defined using the following expression:

If(t) = If(0) exp-k’t (E1)

where If(0) and If(t) are OH signal intensities at time 0 and time t, respectively; and k’ is the

observed pseudo-first-order rate coefficient (k’ = k1[(HCO)2] + k6). Accordingly, the gradient

of a linear plot of k’ against [(HCO)2] provides the bimolecular rate coefficient k1; an example

of which can be seen in Figure 3.
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Figure 3: Typical bimolecular plot for the OH + (HCO)2 → HC(O)CO + H2O reaction measured at 295 K

under 20 Torr total pressure of pure N2; corresponding to an experimental k1 value of (9.37 ± 0.08) ×

10-12 molecule cm-3 s-1. The outer lines show the confidence intervals at the 2σ level. A typical 

experimental OH decay trace measured in the presence of 1.67 × 1014 molecule cm-3 of glyoxal is

included in the inset, the fit to equation E1 corresponds to a pseudo-first-order rate coefficient of

(2030 ± 20) s-1.

6.4 OH + (HCO)2 Temperature Dependence in Nitrogen Bath Gas

Rate coefficients, k1(T), were determined under pseudo-first-order conditions in OH

over the temperature range 212 – 295 K at total pressures ranging from 5 to 80 Torr in N2

bath gas. k1(T) was found to be independent of total pressure, consistent with a reaction

proceeding via H-atom abstraction at either aldehydic group. The experimental k1(T)

measurements are highly reproducible, with values of (9.7 ± 1.2), (12.2 ± 1.6) and (15.4 ±

2.0) × 10-12 molecule cm-3 s-1 at temperatures of 295, 250 and 212 K, respectively, obtained

by averaging all independent measurements (> 11) at each temperature. The errors

represent the statistical error at the 2σ level combined in quadrature with an estimated 10% 
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systematic error. The only previous experimental investigation of the temperature

dependence of k1 reported in the literature is that by Feierabend et al.17 These authors

measured k1(T) over a range of total pressures (45 – 300 Torr) and temperatures (210 – 390

K) in both N2 and He bath gas and found experimental rate coefficients independent of bath

gas or total pressure. The work by Feierabend et al. yields a k1(296 K) of (9.15 ± 0.80) × 10-12

molecule cm-3 s-1; furthermore, k1(T), was found to demonstrate a negative temperature

dependence with slightly non-Arrhenius behaviour over their experimental temperature

range. Plum et al.34 measured k1(296 K) by a relative rate method in air, using OH +

cyclohexane reaction as reference, and reported a value of (11.5 ± 0.4) × 10-12 molecule cm-3

s-1, assuming the reference reaction occurs at a rate of 7.57 × 10-12 molecule cm-3 s-1. Figure

4 shows the temperature dependent k1(T) values measured during this work, alongside the

other k1(T) values reported in the literature.

Figure 4: Temperature dependence of the OH + (HCO)2 rate coefficient, k1(T), measured between 5

and 80 Torr total pressure using N2 bath gas (■); the error bars include both statistical (2σ level) and 

estimated systematic error. The k1(T) values measured by Feierabend et al.17 (●) and the room

temperature k1(296 K) relative rate value reported by Plum et al.34 (▲) are included for comparison.
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Feierabend and co-workers pointed out that using the recently recommended room

temperature rate coefficient for the OH + cyclohexane reaction of 7.17 × 10-12 molecule

cm-3 s-1 reduces the Plum et al. k1(296 K) value to (10.9 ± 0.4) × 10-12 molecule cm-3 s-1. The

experimental k1(T) values reported here are in reasonable agreement with values reported

following other studies and gives confidence in our understanding of the OH + (HCO)2

system using an inert bath gas.

6.5 Generation of OH from the HC(O)CO + O2 Reaction

Preliminary experiments to demonstrate primary OH production were conducted

generating the HC(O)CO radical via Cl-atom initiated oxidation of (HCO)2 in the presence of

O2 over a range of total pressures (5 – 20 Torr) and temperatures (195 and 295 K); OH

production could then be monitored directly by LIF.

Cl + (HCO)2 → HC(O)CO + HCl (R7)

OH growth was observed under all experimental conditions, a typical OH profile is presented

in Figure 5. Tests were carried out that confirmed OH growth was not observed in the

absence of Cl-atom precursor or O2.

While these experiments do not allow the rate or yield of OH to be quantified, they

do provide insight as to which of the two proposed pathways is likely responsible for OH

formation. Niki et al.19 proposed that reaction of HC(O)C(O)O2 radicals with HO2 could

potentially result in OH formation (reaction R4) in a reaction scheme that also involved self

reaction of the HC(O)C(O)O2 peroxy radicals (R8) and unimolecular decomposition of the

resulting HC(O)C(O)O alkoxy radical (R9):

2HC(O)C(O)O2 → 2HC(O)C(O)O + O2 (R8)

HC(O)C(O)O → HCO + CO2 (R9)

Conversely, da Silva21 proposed OH radicals form directly following reaction of HC(O)CO

radicals with O2 in a chemically activated pathway (reaction R5); in excess O2 this channel is

consistent with observed OH formation on the microsecond timescale.
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Figure 5: Experimental OH profile (open circles) following the Cl + (HCO)2 reaction in the presence of

1.04 × 1017 molecules cm-3 O2 at 295 K and 10 Torr total pressure, using initial Cl-atom and (HCO)2

concentrations of 0.1 and 2.7 × 1014 molecules cm-3, respectively. Two model simulations are

included. The red solid line using the OH pathways proposed by da Silva21 and the Cl + (HCO)2 rate

coefficient reported by Niki et al.,19 the blue dashed-dot line shows a simulation based on the Niki et

al. mechanism for OH formation.

The numerical program KINTECUS35 was used to simulate the observed OH profile for

the Cl + (HCO)2/O2 reaction at 295 K and 10 Torr total pressure, as defined by either the Niki

et al.19 or da Silva21 mechanism as shown in Figure 5. It is worthwhile to note that

calculations by da Silva could not locate a transition state corresponding to the direct H-

atom abstraction channel associated with the HC(O)CO + O2 reaction (R3a).

The initial Cl-atom concentration, [Cl]0, generated inside the reactor was estimated using:

[Cl]0 = σ248 nm ΦCl, 248 nm F[(COCl)2]
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to be of the order of ~1 × 1013 molecule cm-3 under our experimental conditions, where

σ248 nm and ΦCl, 248 nm are the absorption cross section and Cl-atom quantum yield for oxalyl

chloride photolysis at 248 nm,36 F is the photolysis laser fluence, and [(COCl)2] is the

concentration of precursor in the reactor.

Radial-radical reactions are too slow to contribute to the observed OH profile given

the magnitude of the estimated initial Cl-atom concentration in the reactor, and hence the

Niki et al. reaction scheme fails to reproduce the experimental time-dependent OH profile,

even when rate coefficients used for reactions R4 and R8 are allowed to achieve the gas-

kinetic collision rate (Table 1). The blue dashed-dot line in Figure 5 shows the simulation

based on the Niki et al. mechanism for OH formation where there is a clear induction period

prior to OH generation and peak OH concentrations that occur much later than the

experimental observation. The red line in Figure 5 shows the fit through the experimental

data using the da Silva mechanism, with k5 fixed at 5 × 10-12 molecule cm-3 s-1, typical of

many radical + O2 rate coefficients at limiting high pressure.37-40 The rate coefficients used in

each fitting routine are listed in Table 1. Direct observation of OH following the Cl +

(HCO)2/O2 reaction provides strong evidence that reaction of HC(O)CO with O2 proceeds

directly to OH + CO + CO2, as proposed by recent theoretical calculations by da Silva.21
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Mechanism Reaction Rate coefficient, k / cm
3

molecule
-1

s
-1

Reference

da Silva

Cl + (HCO)2 → HC(O)CO + HCl 3.8 × 10
-11

Niki et al.

HC(O)CO + O2 → CO2 + CO + OH 5.0 × 10
-12

N/A

OH + (HCO)2 → HC(O)CO + H2O 9.15 × 10
-12

Feierabend et al.

HC(O)CO → HCO + CO 1.9 × 10
6

cm
3

molecule
-1

s
-2

N/A

HCO + O2 → HO2 + CO 5.5 × 10
-12

Atkinson et al.

OH → Loss 295 cm
3

molecule
-1

s
-2

N/A

Niki et al.

Cl + (HCO)2 → HC(O)CO + HCl 3.8 × 10
-11

Niki et al.

HC(O)CO → HCO + CO 1.9 × 10
6

cm
3

molecule
-1

s
-2

N/A

HC(O)CO + O2 → 2CO + HO2 5.0 × 10
-12

Orlando and Tyndall

HC(O)CO + O2 → HC(O)C(O)O2 5.0 × 10
-12

Orlando and Tyndall

HC(O)C(O)O2 + HO2 →

HCO + CO2 + O2 + OH

1 × 10
-10

N/A

OH + (HCO)2 → HC(O)CO + H2O 9.15 × 10
-12

Feierabend et al.

2HC(O)C(O)O2 →

2HC(O)C(O)O + O2

1.0 x 10
-10

N/A

HC(O)C(O)O → HCO + CO2 3.8 × 10
8

cm
3

molecule
-1

s
-2

N/A

HCO + O2 → HO2 + CO 5.5 × 10
-12

Atkinson et al.

OH → Loss 295 cm
3

molecule
-1

s
-2

N/A

Table 1: Rate coefficients used to fit the experimental OH profile observed following the Cl +

(HCO)2/O2 reaction at 295 K and 10 Torr total pressure (Figure 5); using an initial (HCO)2

concentration of 2.7 × 1014 molecule cm-3 in the presence of 1 × 1017 molecules cm-3 O2.

6.6 Experimental OH Yields for the OH + (HCO)2/O2 Reaction

In excess O2 the rate of OH decay slows relative to that measured in pure N2 due to

rapid OH regeneration through reaction R5; example bimolecular plots measured in N2

(upper line) and in the presence of O2 (lower line) are presented in Figure 6. Provided the
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rates of reactions R2 and R5 are fast compared to the OH + (HCO)2 reaction, then HC(O)CO

can be considered in a steady state; OH loss is determined by the fraction of total HC(O)CO

removal that does not recycle OH and is defined by the following rate law:

-
dt

d ]OH[
= k’1[OH] – k’5[HC(O)CO] + k6[OH] (E2)

where k’1 = k1[(HCO)2] and k’5 = k5[O2]. As HC(O)CO is in steady state:

k’1[OH] = (k’5 + k2)[HC(O)CO] and

-
dt

d ]OH[
= k’2[OH] 
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The bimolecular rate coefficient measured in the presence of O2, kO2, is slower than the

bimolecular rate coefficient measured in pure N2, kN2, where (kN2 = k1), by a factor:
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Therefore, the experimental ΦOH can be determined by the ratio of rate coefficients

measured in the presence and absence of O2:
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Figure 6: Bimolecular plots for the OH + (HCO)2 → products reaction at 212 K and 40 Torr; in pure N2

(■) and in the presence of 869 mTorr of O2 (●), corresponding to rate coefficients (16.68 ± 0.07) and

(11.45 ± 0.12) × 10-12 molecule cm-3 s-1; giving an experimental ΦOH of 0.31. The outer lines show the

confidence intervals at the 2σ level.   

OH yields, ΦOH, for the OH + (HCO)2/O2 system have been quantified over a range of

experimental temperatures (212 – 295 K) and pressures (5 – 80 Torr) using equation E5.

Figure 7 shows the experimental ΦOH data plotted as a function of total pressure and O2

fraction, f-O2, at 295 K. As mentioned previously, the statistical error (2σ level) of rate 

coefficients measured in pure N2, k1, was combined with an estimated 10% systematic error,

reflecting the precision in the (HCO)2 concentration, the pressure gauges and the mass flow

controllers. The scatter observed in k1(T) measurements (Figure 4) does not influence the

experimental ΦOH measurements, as these are based on the relative change in k1 following

addition of O2 to the reactor (equation E5) and not on absolute k1 values. Furthermore, OH

decay traces using pure N2 bath gas were recorded at the beginning and end of each day of

experiments to ensure that the k1(T) measurement had remained constant. The purely

statistical error (2σ level) in experimental ΦOH measurements was considered to be low bias;
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therefore an additional 2% error was assigned to each ΦOH value to account for the

observed experimental scatter.

The experimental ФOH are observed to increase with f-O2 at a given pressure as

reaction R5 becomes increasingly competitive with thermal dissociation (reaction R2).

However, the ΦOH tends to a limiting value. This observation is consistent with a fraction of

the HC(O)CO population forming following reaction R1 with sufficient energy to promptly

dissociate, in contrast to the mechanism proposed by da Silva, which treats the HC(O)CO

radcal at thermal equilibrium. The fate of the remaining HC(O)CO population is determined

by a competition between thermal decomposition (R2) and bimolecular association with O2

to give OH (R5).

Figure 7: Experimental OH yields, ΦOH, for the OH + (HCO)2/O2 reaction at 295 K as a function of

oxygen fraction, f-O2, at total pressures of 5 (■), 10 (●), 20 (▲), 40 (◀) and 80 Torr (▼) total pressure.

The dashed line shows the predicted ΦOH dependence on f-O2 at 760 Torr. The error bars include

both the statistical (2σ level) and estimated systematic errors. Included are fits through each total 

pressure data set using the extended Lindemann-Hinshelwood model (See text for details).
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In order to determine the limiting OH yields and to determine the ΦOH as a function

of pressure at atmospheric oxygen fractions (f-O2 = 0.21), the data have been parametrized

with a model based on a simple Lindemann-Hinshelwood (LH) mechanism that allows for

prompt dissociation of a fraction of the chemically activated HC(O)CO radical. Unimolecular

dissociation and bimolecular association reactions potentially have rate coefficients that

show a dependence on pressure and a Lindemann-Hinshelwood mechanism can be used to

provide a qualitative description of reaction R2 (Scheme 1):

Scheme 1. Reaction scheme to describe unimolecular decomposition of the HC(O)CO radical

where HC(O)CO# represents the chemically activated HC(O)CO radical, ka and k-a signify the

rates of activation and deactivation of the HC(O)CO radical, respectively, through collisions

with bath gas molecules, M, and kd represents the rate of unimolecular dissociation of the

activated HC(O)CO# radical. Treating the HC(O)CO# radical in a steady state, then it follows

that:

][

][
2

M

M

ad

da

kk

kk
k


 (E6)

At limiting high pressure k2 tends towards the unimolecular rate coefficient, k2
¥ :

k2
¥ =

kakd

k-a

At limiting low pressure k2 tends towards the bimolecular rate coefficient, k2
0 :
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k2
0 = ka

Inverting both sides of equation E6 It follows that:

1

k2

=
1

k2
0[M]

+
1

k2
¥

multiplying through by [M] and equating to k2 it follows that:

k2 =
[M]

1

k2
0

+
[M]

k2
¥

(E7)

A similar Lindemann-Hinshelwood expression can be used to describe the pressure

dependence in the bimolecular HC(O)CO + O2 association reaction R5. The Lindemann-

Hinshelwood model captures the physical steps involved in reaction but inadequately

accounts for the internal energy of the molecule.41 Here, Lindemann-Hinshelwood forms are

assigned to the pressure dependence of both the HC(O)CO decomposition and bimolecular

association with O2 rate constants. This model is flexible enough to adequately parameterize

these data, but it is concluded that system is more complex and that limited physical

significance is assigned to the fitting parameters. Complications arise because the HC(O)CO

radical is formed with excess energy (exothermicity of reaction R1 ~129.7 kJ mol-1)22, and

undergoes subsequent chemistry before this excess energy is removed. In this work a model

is developed to parameterize the system based on thermal rate constants and prompt

dissociation, which allows the ΦOH to be predicted under atmospheric conditions; evidence

suggesting the role of chemical activation in this system is also discussed.

The fraction of prompt HC(O)CO dissociation is accounted for in this analysis by the

OHlimit parameter, which signifies the fraction of total HC(O)CO that survives the OH +

(HCO)2 reaction. How close the OH yield system is to the OHlimit depends on k2 and k5[O2],

and is given by:
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If Lindemann-Hinshelwood forms are assigned to k2 and k5, then equation E8a gives:
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where the A and B parameters are related to the pressure dependence in the HC(O)CO + O2

association reaction, while the C and D parameters are related to the pressure-dependent

decomposition channel.

The pressure- and oxygen-dependent experimental ΦOH have been fitted at each

experimental temperature independently, using equation E8b. These ΦOH only identify the

ratio k2/k5; hence, there is no unique solution for each temperature data set. In order to

constrain the fit, the parameters B and D, which are related to the high-pressure limiting

rates of HC(O)CO association with O2 and decomposition, respectively, have been fixed. The

B parameter was fixed at a value of 5 × 10-12 cm3 molecule-1 s-1. It was also assumed that the

B parameter was independent of temperature. High pressure limiting rate coefficients for

HC(O)CO decomposition were calculated using an RRKM/master equation analysis with the

open source MESMER computer programme42 by Dr Robin Shannon. The zero-point energy

corrected barrier height for decomposition was obtained by performing geometry

optimizations of HC(O)CO and the decomposition transition state and subsequent harmonic

frequency analysis at the bb1K/aug-cc-pVDZ level of theory followed by single-point energy

calculations at the CCSD(T)/aug-cc-pVTZ level of theory using the Gaussian09 suite of

programs. Collisions between the nitrogen bath gas and HC(O)CO were parameterized using

a Lennard-Jones model parameterized with a temperature independent ΔEd. Molecular

densities of states were obtained assuming a rigid rotor-harmonic oscillator model, and one

vibration within the transition state was treated as a hindered rotation. Furthermore, the

energy partitioned in the products following reaction R1 has been investigated by Dr

Shannon by incorporating a prior distribution model in MESMER;43 with initial calculations

assuming the exothermicity was distributed statistically between the HC(O)CO and H2O

products. However, it was found that a non-statistical energy distribution is required for

theoretical ΦOH to match those observed experimentally, with over 90 kJ mol-1 partitioned in
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the H2O. This result provides quantitative evidence that a significant fraction of the

exothermicity following reaction R1 is channelled into the HC(O)CO radical fragment,

inconsistent with the widely accepted rules of abstraction reaction dynamics.44

Room temperature ΦOH measurements are presented in Figure 7 as a function of

total pressure and oxygen fraction, f-O2; together with analysis using the extended

Lindemann-Hinshelwood model (E8b). Figure 7 shows that equation E8b adequately

parameterizes the data set; Figures 8 and 9 show this to also be the case at the lower

experimental temperatures. Both experimental and theoretical studies have indicated that

at ambient temperatures and pressures k2 is in its pressure-dependent regime, close to the

low pressure limit.20, 21, 45 Therefore, as the total pressure is increased, more O2 is required

for the bimolecular reaction channel (reaction R5) to effectively compete with dissociation

(Figure 7). The analysis of all the ambient temperature ΦOH measurements suggests an

OHlimit of (0.29 ± 0.03) at 295 K.

In contrast to the data at 295 K, the experimental ΦOH measurements at 250 K are

independent of total pressure but strongly dependent on oxygen concentration; reaching an

OHlimit of (0.31 ± 0.04). All of the data collected at 250 K are plotted in Figure 8.

Qualitatively similar behaviour to Figure 8 is observed at 212 K (Figure 9), although

less O2 is required to titrate all available HC(O)CO to OH, consistent with an Arrhenius

temperature dependence in k2. The OHlimit at 212 K increases further to (0.38 ± 0.03),

suggesting an increasing fraction of the nascent HC(O)CO population form with energy in

excess of the threshold to dissociation as the temperature increases. The parameters used

to fit each temperature data set are presented in Table 2.



210

Figure 8: Experimental OH yields, ΦOH, for the OH + (HCO)2/O2 reaction at 250 K as a function of

oxygen concentration at total pressures of 5 (■), 10 (●), 20 (▲), 40 (◀) and 80 Torr (▼). The errors

include both the statistical (2σ) and estimated systematic errors.

Figure 9: Experimental OH yields, ΦOH, for the OH + (HCO)2/O2 reaction at 212 K as a function of

oxygen concentration at total pressures of 5 (■), 10 (●), 20 (▲), 40 (◀) and 80 Torr (▼). The error

bars include both the statistical (2σ level) and estimated systematic errors.
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Parameter

Temperature (K)

295 250 212

OHlimit 0.29 ± 0.03 0.31 ± 0.04 0.38 ± 0.03

A (12.0 ± 4.8) × 10-30 cm3

molecule-1 s-1

(14.0 ± 9.6) × 10-31 cm3

molecule-1 s-1

(12.9 ± 7.85) × 10-31 cm3

molecule-1 s-1

B 5 × 10-12 cm3 molecule-1 s-1 5 × 10-12 cm3 molecule-1 s-1 5 × 10-12 cm3 molecule-1 s-1

C (5.6 ± 1.2) × 10-13 s-1 (3.4 ± 1.2) × 10-14 s-1 (5.4 ± 1.6) × 10-15 s-1

D 2.6 × 109 s-1 3.0 × 108 s-1 2.4 × 107 s-1

Table 2: Parameters used to model experimental OH yields, ΦOH, for the OH + (HCO)2/O2 reaction as

a function of total pressure and temperature.

6.7 Ambient OH yields

The parameters used to describe the observed ΦOH for the OH + (HCO)2/O2 system

under the experimental conditions considered here have been used to predict the ΦOH

dependence on temperature and total pressure using an f-O2 of 0.21 and suggest that at

total pressures relevant to the troposphere the ΦOH predicted at 295, 250 and 212 K are

0.19, 0.30 and 0.38, respectively (Figure 10); the ΦOH predicted at 295 K using an f-O2 of 1

are included in Figure 9 (dashed black line) and confirm a significant contribution from both

chemically activated and thermal HC(O)CO dissociation under tropospheric conditions. At

760 Torr and 295 K, the ΦOH calculated here, based on experimental measurements, of

~0.19 is approximately a factor of two greater than that predicted from calculations by

Setokuchi.22 da Silva21 calculates a significantly higher ΦOH of 0.36 under tropospheric

conditions, with very little stabilization to HC(O)C(O)O2, and with decomposition accounting

for the vast majority of the balance of 0.64. However, as noted before, da Silva considered

only a thermal distribution of HC(O)CO radicals.
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Figure 10: OH yields, ΦOH, as a function of total pressure at 295 (black line), 250 (red line), and 212 K

(blue line) and atmospheric oxygen fractions (f-O2 = 0.21); included are ΦOH predicted at 295 K in

pure O2 (dashed line).

6.8 Evidence for Nonthermal Rate Behaviour

As the experimental ΦOH are essentially independent of pressure at 250 and 212 K

(Figures 8 and 9), both k2 and k5 might be assumed to be at their high-pressure limits at

these temperatures; indeed, master equation calculations performed as part of this work

and by da Silva,21 suggest that k5 should be pressure independent at just a few Torr total

pressure. However, satisfactory fits through the 250 and 212 K data sets constraining k2 to

the high-pressure limiting values of 3 × 108 and 2.4 × 107 s-1 (Table 2), respectively, require

k5 values of 1 × 10-8 and 5 × 10-9 cm3 molecule-1 s-1 at 250 and 212 K, respectively, which

exceed the gas-kinetic collision rate by several orders of magnitude. Alternatively, given that

k5 is calculated to be pressure independent at all experimental pressures and temperatures,

attempts were made to fit the complete data set by allowing only k2 to be pressure
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dependent, but poor quality fits were obtained. Our experimental results indicate that

pressure dependence in both k2 and k5 is required to fit the data.

However, if both k2 and k5 are allowed to vary according to the Lindemann-

Hinshelwood mechanism, then the A parameter (Table 2) shows anomalous behaviour if it

interpreted as the low-pressure limiting rate constant for k5. Low-pressure rate constants

for association reactions increase as the temperature decreases due to the increased

lifetime of the activated adduct, whereas the data presented here predicts the opposite

behaviour for A. This observation suggests that the system is not described by thermal rate

constants.

Further evidence for nonthermal behaviour comes from a consideration of the ratio

of k2/k5. It follows from equation E8a that the OHlimit/ΦOH ratio should scale linearly with the

inverse O2 concentration, with a gradient equal to k2/k5 and an intercept of 1. Figure 11

shows such a plot at 295 K at selected pressures.

Figure 11: Ratios of the observed OHlimit/ΦOH ratio following glyoxal oxidation as a function of the

inverse O2 concentration at total pressures of 5 (■), 40 (◀) and 80 Torr (▼) and 295 K; the small error

bars are purely statistical (2σ level); the larger error bars include the estimated systematic error.  
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The k2/k5 ratios derived following linear analysis of the ΦOH observed at all

experimental pressures at 295 K are presented in Figure 12 as a function of total pressure.

The solid line in Figure 12 is the ratio of thermal rate coefficients calculated in MESMER by

Dr R. Shannon. Given that k5 is essentially at the high-pressure limit under all experimental

conditions, Figure 12 maps out the pressure dependence of k2. As the total pressure is

increased above 20 Torr, the observed k2/k5 ratio increases with total pressure, indicating

that k2 increases more rapidly with total pressure than k5 as predicted by calculations.

However, below 20 Torr, the k2/k5 ratio appears pressure independent, suggesting that k2 is

faster than expected under these conditions due to the effect of chemical activation.

Figure 12: The observed k2/k5 pressure dependence on total pressure (5 – 80 Torr) at 295 K. The solid

line is the k2/k5 calculated using MESMER based on thermal rate coefficients for k2 and k5 suggesting

a linear dependence to pressures of ~1 Torr.
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Similar linear behaviour of the OHlimit/ΦOH ratio with inverse O2 concentration was observed

at all experimental pressures at 250 and 212 K. The k2/k5 ratios derived following linear

analysis of all experimental ΦOH measurements at 250 and 212 K are plotted in Figures 13

and 14, respectively, as a function of total pressure. The observed k2/k5 ratios appear

independent of total pressure at both subambient temperatures considered here. The k2/k5

ratios calculated in MESMER based on thermal rate coefficients both underestimate the

magnitude of the ratio (by up to an order of magnitude), and predict linear pressure

dependence between 1 and 100 Torr; providing further evidence that this system cannot be

described by thermal rate coefficients. k2/k5 ratios are observed to scale with temperature,

as expected under the assumption that k5 lacks significant temperature dependence and

HC(O)CO dissociates over a barrier.

Figure 13: The observed k2/k5 pressure dependence on total pressure (5 – 80 Torr) at 250 K. The solid

line is the k2/k5 calculated using MESMER based on thermal rate coefficients for k2 and k5.
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Figure 14: The observed k2/k5 pressure dependence on total pressure (5 – 80 Torr) at 212 K. The solid

line is the k2/k5 calculated using MESMER based on thermal rate coefficients for k2 and k5.

6.9 Linear Dependence of [CO]/[CO2] Products as a Function of 1/[O2]

Orlando and Tyndall20 carried out an extensive investigation of HC(O)CO chemistry

over a range of temperatures (224 – 317 K) at near atmospheric conditions, during chamber

experiments coupled with FTIR product detection. Analysis by these authors was based on

the mechanism proposed by Niki et al.19 and reported a strong linear dependence of the

[CO]/[CO2] ratio on the inverse O2 partial pressure (Figure 15). The data presented here

show a similar behaviour (Figure 11), as OHlimit/ ΦOH is directly related to [CO]/[CO2]; to

assert the credibility of the mechanism proposed here, similar behaviour must be predicted.
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Figure 15: Observed [CO]/[CO2] ratios from glyoxal oxidation as a function of inverse O2 partial

pressure and temperature at 700 Torr total pressure; with data obtained from the photolysis of

Cl2/glyoxal/O2/N2 mixtures (squares), from the photolysis of Cl2/glyoxal/NO/O2/N2 mixtures (circles),

from the photolysis of C2H5ONO/glyoxal/NO/O2/N2 mixtures (triangles), from the photolysis of

Cl2/glyoxal/NO2/O2/N2 mixtures. (Redrawn from Orlando and Tyndall20).

In the mechanism suggested here, the HCO radicals that form following prompt and thermal

dissociation of the HC(O)CO radical will be rapidly converted to HO2 and CO in excess O2 via

reaction R10:

HCO + O2 → CO + HO2 (R10)

Defining the term α as the fraction of the HC(O)CO population that decomposes promptly

before the possibility of reaction with O2, it follows that:
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where subscripts ‘prompt’ and ‘thermal’ refer to the mechanism for HC(O)CO chemistry.

Assuming the [CO]/[CO2] ratios observed by Orlando and Tyndall are defined by equation

E12:
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Therefore, the mechanism proposed here does predict a linear dependence of [CO]/[CO2]

ratios with inverse O2 partial pressures (with a gradient equal to 2k2/(k5(1-α)) and an

intercept equal to (1+α)/(1-α), consistent with experimental measurements by Orlando and

Tyndall. These authors reported the intercept to increase with temperature from (2.8 ± 0.4)

to (3.1 ± 0.4) from 224 to 317 K, respectively; although these results were not deemed

statistically significant. These observations suggest that α increases with temperature, as

defined by equation E13d, or alternatively that OHlimit decreases with temperature,

consistent with the results presented here. Orlando and Tyndall observed the slopes of

[CO]/[CO2] vs 1/[O2] plots to increase with temperature (Figure 15), which they attributed

to a strongly Arrhenius temperature dependence of k2. The gradient predicted using the

mechanism proposed here (equation E13d) is again consistent with the observed increased
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gradient with temperature, given that both k2 and α are shown to increase with

temperature, and k5 is presumed to lack a strong temperature dependence. Orlando and

Tyndall observed [CO]/[CO2] ratios independent of inverse O2 partial pressure at 224 K and

concluded that unimolecular dissociation is unable to compete with bimolecular reaction

with O2 under these conditions. Given that the minimum O2 concentration used during

these experiments is estimated to be ~6.5 × 1017 molecule cm-3, more than enough to titrate

all available HC(O)CO out to CO2 via reaction R5, these results are also in strong agreement

with the results presented here.

It is worthwhile to note that during the work of Orlando and Tyndall,20 experiments

were conducted in the presence of NO2 to ascertain whether or not glyoxal derived peroxy

radicals, HC(O)C(O)O2, could react with NO2 to give an acyl peroxynitrate species, analogous

to the peroxy acetylnitrate (PAN) formed through reaction of acetyl peroxy radicals with

NO2 (reaction R11); no experimental evidence for formation of the PAN like species,

HC(O)C(O)O2NO2, could be found even at the lowest experimental temperatures.

CH3C(O)O2 + NO2 + M → CH3C(O)O2NO2 + M (R11)

These observations are again consistent with HC(O)CO + O2 chemistry occurring via an open

channel out to OH, rather than through stabilization into the HC(O)C(O)O2 peroxy well.

6.10 Comparison of the OH/Glyoxal/O2 and OH/Methyl-glyoxal/O2

Systems

It is interesting to contrast the work presented here with a previous experimental

study on the reaction of OH with methylglyoxal by Baeza-Romeo et al.,43 which was also

conducted at the University of Leeds. The OH + methylglyoxal reaction is predicted to occur

exclusively via abstraction of the aldeydic H-atom, and the resulting peroxy radical formed

following the addition of O2, CH3C(O)C(O)O2, might be expected to undergo a similar

internal abstraction to CH2C(O)C(O)O2H with subsequent fragmentation to give OH + CO2 +

HCHO. However, while OH recycling in the presence of O2 was observed, the pressure

dependence of the observed OH yield closely matched that of acetyl + O2.46, 47
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The difference in mechanism relates to the much faster rate of decomposition of

CH3C(O)CO relative to HC(O)CO. The decomposition kinetics of the R-CO carbonyl radicals

have been calculated by Mereau et al.45 The thermal decomposition of CH3C(O)CO at one

atmosphere is calculated to be a factor of 40 faster than that of HC(O)CO. As the total

pressure is lowered, HC(O)CO will enter the falloff regime before CH3C(O)CO further

increasing this ratio. Jagiella and Zabel48 measured a rate coefficient of 1.1 × 108 s-1 for

CH3C(O)CO decomposition (measured relative to reaction with O2 assuming kO2 = 5 × 10-12

cm3 molecule-1 s-1) where CH3C(O)CO was formed by the endothermic reaction of Br atoms

with methylglyoxal. At the typical experimental O2 concentrations of the OH + methylglyoxal

study, ~1016 – 1017 molecule cm-3, thermal decomposition will be a factor of 200 – 2000

times faster than peroxy radical formation. Additionally, as discussed by Baeza-Romero and

co-workers, the CH3C(O)CO is formed from the significantly exothermic OH reaction with

methyglyoxal and hence prompt dissociation dominates. OH recycling is the result of the

reaction of O2 with the acetyl, CH3CO, radicals formed through decomposition of the

CH3C(O)CO radical.46

6.11 Atmospheric Implications

The dominant processes responsible for the atmospheric removal of (HCO)2 are

photolysis and reaction with OH. The HC(O)CO radicals that form following reaction with OH

either dissociate to HCO + CO or react with O2 to give CO2, CO and OH directly. The HCO

radicals produced through photolysis and decomposition react rapidly with O2 to give HO2

and CO. The dissociation channel is net HOx neutral as OH is consumed in generating the

HC(O)CO radical, and HO2 is then generated through secondary chemistry. The bimolecular

channel also consumes OH in generating the HC(O)CO radical but produces OH through

reaction with O2. While both the unimolecular and bimolecular channels are net HOx

neutral, the HC(O)CO + O2 reaction recycles OH as OH without conversion to HO2, and

therefore acts to increase the OH/HO2 ratio. Chemical models require reaction channels

such as this to resolve the discrepancy between measured and modeled HOx concentrations

in remote pristine environments. Reaction with OH typically accounts for 14 – 23% of total

(HCO)2 removal under tropospheric conditions,18 of which only a fraction (Figure 10) directly
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regenerates OH through reaction of HC(O)CO with O2. Therefore, this chemistry only

contributes marginally to increase OH concentrations in pristine forested environments, and

the very large missing OH source reported in the literature remains unresolved.

The Master Chemical Mechanism (MCM)49 used to describe the chemical

degradation of tropospheric volatile organic compounds, currently defines HC(O)CO

chemistry using the mechanism proposed by Niki et al.19 The MCM currently treats the

HC(O)C(O)O2 + HO2 reaction as comprising three competing channels. In addition to the OH

forming channel proposed by Niki et al. are peracid and ozone forming channels, analogous

to acetylperoxy + HO2 chemistry.50, 51 The work presented here suggests that the MCM

should be amended to include direct OH formation following the HC(O)CO + O2 reaction,

with limited formation of HC(O)C(O)O2 from OH initiated oxidation of glyoxal.

As mentioned previously, chemical activation is known to influence the product

distributions observed following OH initiated oxidation of alkynes, through chemistry

initiated via OH addition.5, 37 Here, it has been shown that the influence of chemical

activation may be extended to the OH + (HCO)2/O2 reaction, with chemistry initiated by an

H-abstraction channel.



222

6.12 References

1. Carter, W. P. L.; Atkinson, R., Development and evaluation of a detailed mechanism for the
atmospheric reactions of isoprene and NOx. International Journal of Chemical Kinetics 1996, 28, 497-
530.
2. Atkinson, R.; Aschmann, S. M.; Arey, J.; Carter, W. P. L., Formation of ring-retaining products
from the OH radical-initiated reactions of benzene and toluene. International Journal of Chemical
Kinetics 1989, 21, 801-827.
3. Tuazon, E. C.; Macleod, H.; Atkinson, R.; Carter, W. P. L., Alpha-dicarbonyl yields from the
NOx-air photooxidations of a series of aromatic-hydrocarbons in air. Environmental Science &
Technology 1986, 20, 383-387.
4. Tuazon, E. C.; Atkinson, R.; Macleod, H.; Biermann, H. W.; Winer, A. M.; Carter, W. P. L.;
Pitts, J. N., Yields of glyoxal and methylglyoxal from the NOx-air photooxidations of toluene and m-
xylene and p-xylene. Environmental Science & Technology 1984, 18, 981-984.
5. Glowacki, D. R.; Lockhart, J.; Blitz, M. A.; Klippenstein, S. J.; Pilling, M. J.; Robertson, S. H.;
Seakins, P. W., Interception of Excited Vibrational Quantum States by O2 in Atmospheric Association
Reactions. Science 2012, 337, 1066-1069.
6. Hatakeyama, S.; Washida, N.; Akimoto, H., Rate constants and mechanisms for the reaction
of OH (OD) radicals with acetylene, propyne, and 2-butyne in air at 297 +/- 2K. Journal of Physical
Chemistry 1986, 90, 173-178.
7. Schmidt, V.; Zhu, G. Y.; Becker, K. H.; Fink, E. H., Study of OH reactions at high-pressures by
excimer laser photolysis - dye laser fluorescence Berichte Der Bunsen-Gesellschaft-Physical
Chemistry Chemical Physics 1985, 89, 321-322.
8. Hastings, W. P.; Koehler, C. A.; Bailey, E. L.; De Haan, D. O., Secondary organic aerosol
formation by glyoxal hydration and oligomer formation: Humidity effects and equilibrium shifts
during analysis. Environmental Science & Technology 2005, 39, 8728-8735.
9. Kroll, J. H.; Ng, N. L.; Murphy, S. M.; Varutbangkul, V.; Flagan, R. C.; Seinfeld, J. H., Chamber
studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds.
Journal of Geophysical Research-Atmospheres 2005, 110.
10. Liggio, J.; Li, S. M.; McLaren, R., Reactive uptake of glyoxal by particulate matter. Journal of
Geophysical Research-Atmospheres 2005, 110.
11. Salter, R. J.; Blitz, M. A.; Heard, D. E.; Kovacs, T.; Pilling, M. J.; Rickard, A. R.; Seakins, P. W.,
Quantum yields for the photolysis of glyoxal below 350 nm and parameterisations for its photolysis
rate in the troposphere. Physical Chemistry Chemical Physics 2013, 15, 4984-4994.
12. Salter, R. J.; Blitz, M. A.; Heard, D. E.; Pilling, M. J.; Seakins, P. W., New Chemical Source of
the HCO Radical Following Photoexcitation of Glyoxal, (HCO)2. Journal of Physical Chemistry A 2009,
113, 8278-8285.
13. Salter, R. J.; Blitz, M. A.; Heard, D. E.; Pilling, M. J.; Seakins, P. W., Pressure and temperature
dependent photolysis of glyoxal in the 355-414 nm region: evidence for dissociation from multiple
states. Physical Chemistry Chemical Physics 2013, 15, 6516-6526.
14. Wittrock, F.; Richter, A.; Oetjen, H.; Burrows, J. P.; Kanakidou, M.; Myriokefalitakis, S.;
Volkamer, R.; Beirle, S.; Platt, U.; Wagner, T., Simultaneous global observations of glyoxal and
formaldehyde from space. Geophysical Research Letters 2006, 33.
15. Volkamer, R.; Molina, L. T.; Molina, M. J.; Shirley, T.; Brune, W. H., DOAS measurement of
glyoxal as an indicator for fast VOC chemistry in urban air. Geophysical Research Letters 2005, 32.
16. Feierabend, K. J.; Flad, J. E.; Brown, S. S.; Burkholder, J. B., HCO Quantum Yields in the
Photolysis of HC(O)C(O)H (Glyoxal) between 290 and 420 nm. Journal of Physical Chemistry A 2009,
113, 7784-7794.



223

17. Feierabend, K. J.; Zhu, L.; Talukdar, R. K.; Burkholder, J. B., Rate Coefficients for the
OH+HC(O)C(O)H (glyoxal) Reaction between 210 and 390. Journal of Physical Chemistry A 2008, 112,
73-82.
18. Fu, T. M.; Jacob, D. J.; Wittrock, F.; Burrows, J. P.; Vrekoussis, M.; Henze, D. K., Global
budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary
organic aerosols. Journal of Geophysical Research-Atmospheres 2008, 113.
19. Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P., An FTIR study of the Cl-atom initiated
reaction of glyoxal. International Journal of Chemical Kinetics 1985, 17, 547-558.
20. Orlando, J. J.; Tyndall, G. S., The atmospheric chemistry of the HC(O)CO radical. International
Journal of Chemical Kinetics 2001, 33, 149-156.
21. da Silva, G., Hydroxyl radical regeneration in the photochemical oxidation of glyoxal: kinetics
and mechanism of the HC(O)CO + O2 reaction. Physical Chemistry Chemical Physics 2010, 12, 6698-
6705.
22. Setokuchi, O., Trajectory calculations of OH radical- and Cl atom-initiated reaction of glyoxal:
atmospheric chemistry of the HC(O)CO radical. Physical Chemistry Chemical Physics 2011, 13, 6296-
6304.
23. Carslaw, N.; Creasey, D. J.; Harrison, D.; Heard, D. E.; Hunter, M. C.; Jacobs, P. J.; Jenkin, M.
E.; Lee, J. D.; Lewis, A. C.; Pilling, M. J.; Saunders, S. M.; Seakins, P. W., OH and HO2 radical chemistry
in a forested region of north-western Greece. Atmospheric Environment 2001, 35, 4725-4737.
24. Ren, X. R.; Olson, J. R.; Crawford, J. H.; Brune, W. H.; Mao, J. Q.; Long, R. B.; Chen, Z.; Chen,
G.; Avery, M. A.; Sachse, G. W.; Barrick, J. D.; Diskin, G. S.; Huey, L. G.; Fried, A.; Cohen, R. C.; Heikes,
B.; Wennberg, P. O.; Singh, H. B.; Blake, D. R.; Shetter, R. E., HOx chemistry during INTEX-A 2004:
Observation, model calculation, and comparison with previous studies. Journal of Geophysical
Research-Atmospheres 2008, 113.
25. Pugh, T. A. M.; MacKenzie, A. R.; Hewitt, C. N.; Langford, B.; Edwards, P. M.; Furneaux, K. L.;
Heard, D. E.; Hopkins, J. R.; Jones, C. E.; Karunaharan, A.; Lee, J.; Mills, G.; Misztal, P.; Moller, S.;
Monks, P. S.; Whalley, L. K., Simulating atmospheric composition over a South-East Asian tropical
rainforest: performance of a chemistry box model. Atmospheric Chemistry and Physics 2010, 10,
279-298.
26. Whalley, L. K.; Edwards, P. M.; Furneaux, K. L.; Goddard, A.; Ingham, T.; Evans, M. J.; Stone,
D.; Hopkins, J. R.; Jones, C. E.; Karunaharan, A.; Lee, J. D.; Lewis, A. C.; Monks, P. S.; Moller, S. J.;
Heard, D. E., Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest.
Atmospheric Chemistry and Physics 2011, 11, 7223-7233.
27. MacDonald, S. M.; Oetjen, H.; Mahajan, A. S.; Whalley, L. K.; Edwards, P. M.; Heard, D. E.;
Jones, C. E.; Plane, J. M. C., DOAS measurements of formaldehyde and glyoxal above a south-east
Asian tropical rainforest. Atmospheric Chemistry and Physics 2012, 12, 5949-5962.
28. Peeters, J.; Nguyen, T. L.; Vereecken, L., HOx radical regeneration in the oxidation of
isoprene. Physical Chemistry Chemical Physics 2009, 11, 5935-5939.
29. Taraborrelli, D.; Lawrence, M. G.; Crowley, J. N.; Dillon, T. J.; Gromov, S.; Gross, C. B. M.;
Vereecken, L.; Lelieveld, J., Hydroxyl radical buffered by isoprene oxidation over tropical forests.
Nature Geoscience 2012, 5, 190-193.
30. Wolfe, G. M.; Crounse, J. D.; Parrish, J. D.; St. Clair, J. M.; Beaver, M. R.; Paulot, F.; Yoon, T.
P.; Wennberg, P. O.; Keutsch, F. N., Photolysis, OH reactivity and ozone reactivity of a proxy for
isoprene-derived hydroperoxyenals (HPALDs). Physical Chemistry Chemical Physics 2012, 14, 7276-
7286.
31. Fuchs, H.; Bohn, B.; Hofzumahaus, A.; Holland, F.; Lu, K. D.; Nehr, S.; Rohrer, F.; Wahner, A.,
Detection of HO2 by laser-induced fluorescence: calibration and interferences from RO2 radicals.
Atmospheric Measurement Techniques 2011, 4, 1209-1225.
32. Stone, D.; Whalley, L. K.; Heard, D. E., Tropospheric OH and HO2 radicals: field
measurements and model comparisons. Chemical Society Reviews 2012, 41, 6348-6404.



224

33. Volkamer, R.; Spietz, P.; Burrows, J.; Platt, U., High-resolution absorption cross-section of
glyoxal in the UV–vis and IR spectral ranges. Journal of Photochemistry and Photobiology A:
Chemistry 2005, 172, 35-46.
34. Plum, C. N.; Sanhueza, E.; Atkinson, R.; Carter, W. P. L.; Pitts, J. N., OH radical rate constants
and photolysis rates of alpha-dicarbonyls Environmental Science & Technology 1983, 17, 479-484.
35. Ianni, J. C., Kintecus, Windows Version 2.80, 2002, www.kintecus.com.
36. Ghosh, B.; Papanastasiou, D. K.; Burkholder, J. B., Oxalyl chloride, ClC(O)C(O)Cl: UV/vis
spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm. Journal of Chemical
Physics 2012, 137.
37. Lockhart, J.; Blitz, M. A.; Heard, D. E.; Seakins, P. W.; Shannon, R. J., Mechanism of the
Reaction of OH with Alkynes in the Presence of Oxygen. Journal of Physical Chemistry A 2013, 117,
5407-5418.
38. Romero, M. T. B.; Blitz, M. A.; Heard, D. E.; Pilling, M. J.; Price, B.; Seakins, P. W., OH
formation from the C2H5CO+O2 reaction: An experimental marker for the propionyl radical. Chemical
Physics Letters 2005, 408, 232-236.
39. Siese, M.; Zetzsch, C. Addition of OH to Acetylene and Consecutive Reactions of the Adduct
with O2. Part 1-2, 1995.
40. DeSain, J. D.; Jusinski, L. E.; Ho, A. D.; Taatjes, C. A., Temperature dependence and deuterium
kinetic isotope effects in the HCO(DCO)+O2 reaction between 296 and 673 K. Chemical Physics
Letters 2001, 347, 79-86.
41. Pilling, M. J.; Seakins, P. W., Reaction kinetics. Oxford University Press: Oxford, 1995; p
xiii,305p.
42. Glowacki, D. R.; Liang, C. H.; Morley, C.; Pilling, M. J.; Robertson, S. H., MESMER: An Open-
Source Master Equation Solver for Multi-Energy Well Reactions. Journal of Physical Chemistry A
2012, 116, 9545-9560.
43. Baeza-Romero, M. T.; Glowacki, D. R.; Blitz, M. A.; Heard, D. E.; Pilling, M. J.; Rickard, A. R.;
Seakins, P. W., A combined experimental and theoretical study of the reaction between
methylglyoxal and OH/OD radical: OH regeneration. Physical Chemistry Chemical Physics 2007, 9,
4114-4128.
44. Polanyi, J. C., Some concepts in reaction dynamics Science 1987, 236, 680-690.
45. Mereau, R.; Rayez, M. T.; Rayez, J. C.; Caralp, F.; Lesclaux, R., Theoretical study on the
atmospheric fate of carbonyl radicals: kinetics of decomposition reactions. Physical Chemistry
Chemical Physics 2001, 3, 4712-4717.
46. Blitz, M. A.; Heard, D. E.; Pilling, M. J., OH formation from CH3CO+O2: a convenient
experimental marker for the acetyl radical. Chemical Physics Letters 2002, 365, 374-379.
47. Carr, S. A.; Glowacki, D. R.; Liang, C. H.; Baeza-Romero, M. T.; Blitz, M. A.; Pilling, M. J.;
Seakins, P. W., Experimental and Modeling Studies of the Pressure and Temperature Dependences
of the Kinetics and the OH Yields in the Acetyl + O2 Reaction. Journal of Physical Chemistry A 2011,
115, 1069-1085.
48. Jagiella, S.; Zabel, F., Thermal stability of carbonyl radicals - Part II. Reactions of
methylglyoxyl and methylglyoxylperoxy radicals at 1 bar in the temperature range 275-311 K.
Physical Chemistry Chemical Physics 2008, 10, 1799-1808.
49. Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J., Protocol for the development of
the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic
volatile organic compounds. Atmospheric Chemistry and Physics 2003, 3, 161-180.
50. Dillon, T. J.; Crowley, J. N., Direct detection of OH formation in the reactions of HO2 with
CH3C(O)O2 and other substituted peroxy radicals. Atmospheric Chemistry and Physics 2008, 8, 4877-
4889.



225

51. Hasson, A. S.; Tyndall, G. S.; Orlando, J. J., A product yield study of the reaction of HO2

radicals with ethyl peroxy (C2H5O2), acetyl peroxy (CH3C(O)O2), and acetonyl peroxy (CH3C(O)CH2O2)
radicals. Journal of Physical Chemistry A 2004, 108, 5979-5989.



226

1 Chapter 7 Some Known and Novel HCO Chemistry

7.1 Abstract

In the final experimental chapter of this thesis a laser system is developed to detect

the formyl, HCO, radical. The system was characterised by measuring room temperature

rate coefficients for the reactions of HCO with O2, NO and NO2, and for the reaction of

chlorine atoms with glyoxal, (HCO)2. Bimolecular rate coefficients for the reactions of HCO

with O2 and NO were measured in 10 and 30 Torr of nitrogen, and were found independent

of pressure with respective values of (5.27 ± 0.01) × 10-12 cm3 molecule-1 s-1 and (1.30 ±

0.03) × 10-11 cm3 molecule-1 s-1. The HCO + NO2 reaction was studied under 10 Torr of

nitrogen with a room temperature rate coefficient of (6.99 ± 0.16) × 10-11 cm3 molecule-1 s-1.

The kinetics of the Cl + (HCO)2 reaction were studied directly for the first time with a rate

coefficient of (3.88 ± 0.12) × 10-11 cm3 molecule-1 s-1 measured at 295 K under 5 Torr of

nitrogen. All the room temperature rate coefficient measurements based on HCO detection

were found to be in good agreement with existing literature values.

Experimental attempts were made to quantify the rate of thermal decomposition of

the HC(O)CO radical produced following the reaction of Cl atoms with (HCO)2. However, at

the low temperatures required by these experiments (T = 220 K), rapid HCO removal was

observed. Further experiments provided evidence that HCO reacts rapidly with a range of

aldehyde species. Quantitative kinetic studies focused on the reactions of HCO with

formaldehyde, HCHO, and acetaldehyde, CH3CHO. The HCO kinetics associated with the

HCO + HCHO reaction were studied at 212 K in 10 and 30 Torr of nitrogen, and were found

independent of pressure with a rate coefficient of (3.44 ± 0.15) × 10-11 cm3 molecule-1 s-1.

The rate coefficient for the reaction of HCO with CH3CHO was measured at 212 K in 10 Torr

of nitrogen with a value of (1.24 ± 0.05) × 10-11 cm3 molecule-1 s-1. Significant HCO removal

rates were not observed in the presence of either aldehyde at higher temperatures

suggesting that the thermally unstable HC(O)CO radical is a likely product of both reactions.
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7.2 Background

The formyl radical, HCO, is an important species for atmospheric,1 combustion,2 and

interstellar chemistry.3 It is produced extensively in the troposphere following the radical

propagating oxidation of anthropogenic and biogenic hydrocarbons;4-6 and also produced

directly through aldehyde photolysis.7, 8 The only significant loss process for HCO in the

troposphere is through reaction with oxygen (R1):1

HCO + O2 → CO + HO2 (R1)

HCO is a key intermediate in hydrocarbon combustion, and can be removed through

thermal decomposition (R2) or bimolecular reactions with oxygen (R1), OH radical (R3), or

hydrogen atoms (R4):9

HCO + M → H + CO + M (R2)

HCO + OH → CO + H2O (R3)

HCO + H → CO + H2 (R4)

The chain branching reaction of hydrogen atoms (R5) with oxygen is of central importance

to combustion chemistry:

H + O2 → OH + O (R5)

Thermal decomposition of HCO generates hydrogen atoms (R2) and is therefore chain

propagating, while bimolecular reactions (R1, R3 and R4) are chain terminating. Therefore

the competition between the unimolecular and bimolecular reaction channels of HCO will

control the chain branching rate, and consequently influence a number of important

characteristics of combustion, such as the autoignition thresholds and delays.10

Development in the scientific understanding of combustion phenomena requires complex

combustion models, which in turn rely on detailed kinetic mechanisms. Improvements in

the efficiency of combustion processes require detailed chemical kinetic mechanisms with

well characterised elementary reactions.

The HCO radical has also been detected in the interstellar medium and dense

clouds.11 Recent theoretical work has suggested the chemistry of this radical may provide a



228

means of generating more complex organic molecules such as amino acids and simple

sugars in these environments.12, 13

Gas-phase spectroscopic detection techniques for the HCO radical are desirable

owing to its importance in both atmospheric and combustion chemistry. Ramsay and

co-workers were first to detect the HCO radical in the early 1950s, using conventional

absorption in the visible spectral region.14, 15 Since then various laser based methods have

been used to probe the A – X system, including intracavity dye laser absorption (IDLA)

spectroscopy,16-18 resonance enhanced multiphoton ionisation (REMPI),19 cavity ring-down

spectroscopy (CRDS),20 and degenerate four-wave mixing techniques.21 Laser induced

fluorescence (LIF) has also been used for this system,22, 23 but rapid predissociation of the A

state results in a very low fluorescence quantum yield. Fortunately, the development of

non-linear optic technologies (specifically beta barium borate (BBO) crystals in the 1990s),

has made shorter wavelength laser radiation accessible, allowing LIF measurements of HCO

in the B – X system. Several experimental studies have monitored HCO using off-resonance

LIF in the B – X system, following excitation at approximately 258 nm.24-27

The Dainton Laboratory at the University of Leeds routinely use laser flash photolysis

coupled with LIF detection of OH to study the kinetics and mechanisms of reactions relevant

to atmospheric and combustion chemistry. In this chapter a laser system was developed in

order to detect HCO directly using the laser flash photolysis, laser induced fluorescence

(LFP-LIF) technique. The system was tested by measuring well established rate coefficients

for the reactions of HCO with O2, NO and NO2. The aim of this work was to build on the work

presented in Chapter 6 and use the LFP-LIF technique to monitor the HCO produced

following the reaction of OH with glyoxal, (HCO)2 (R6), and to then quantify the rate of

HC(O)CO decomposition experimentally for the first time as a function of pressure (R7):

OH + (HCO)2 → HC(O)CO + H2O ΔrH298 K = -129.7 kJ mol-1 28 (R6)

HC(O)CO + M → HCO + CO + M (R7)
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7.3 Experimental

This work has been carried using conventional slow-flow, laser flash photolysis, laser

induced fluorescence apparatus. Experiments were conducted using the same stainless

steel, 6-way cross reactor described in chapter 3. The flows of radical precursor, co-reagent,

and nitrogen (used as bath gas), were regulated via calibrated mass flow controllers, and

introduced into the reactor through a mixing manifold. HCO was generated by pulsed

excimer laser (Lamda Physik Compex) 248 nm photolysis of either glyoxal (P1), or oxalyl

chloride (P2) in the presence of formaldehyde (R8):

(HCO)2 + hν →  2HCO   (λ < 417 nm)      (P1a) 

→  HCO  +  H  +  CO   (λ < 334 nm)     (P1b) 

→ H2 + 2CO (P1c)

→ HCHO + CO (P1d)

(COCl)2 + hν → 2Cl + 2CO (P2)

Cl + HCHO → HCO + HCl (R8)

HCO was detected by off-resonant LIF in the (B – X) system following excitation at

~258 nm. The fluorescence was filtered through a Schott glass filter (250 ± 10 nm) and

observed using a photomultiplier tube (PMT) mounted perpendicular to the planes of both

the photolysis and probe laser beams. Probe radiation was generated using the doubled

output of an excimer (Lambda Physik, LPX 100, XeCl, 308 nm) pumped dye laser (Lambda

Physik, FL 2002) operating on Coumarin 307 dye. An interference filter (248 ± 10 nm) was

placed between the reactor window and the PMT in order to avoid bleaching the PMT with

probe radiation. The PMT output was digitized and transferred to a personal computer for

analysis. The time delay between the photolysis and probe laser pulses was controlled using

LabVIEW and was varied to build up a temporal profile for the HCO radical. Kinetic traces

were typically 200 – 400 data points each averaged 2 – 10 times depending on the signal-to-

noise ratio.
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The formaldehyde, HCHO, was prepared by pyrolysis of paraformaldehyde, without

further purification, passed into a glass sample bulb and diluting in pure nitrogen.

Formaldehyde sample bulbs were typically used within two days of preparation. NO and

NO2 were purified prior to use by several freeze-pump-thaw cycles in liquid nitrogen, then

transferred to an evacuated blackened glass sample bulb on a vacuum line, and diluted in

nitrogen. The concentration of NO or NO2 in each sample bulb was determined

barometrically. Glyoxal was prepared using the method described in chapter 6, and diluted

in nitrogen on a glass vacuum line. The concentration of glyoxal in each sample bulb was

determined by UV-vis absorption spectroscopy.

Materials: nitrogen (BOC oxygen free), oxygen (Air Products, high purity, 99.999%),

paraformaldehyde (Sigma Aldrich, 95%), acetaldehyde (Sigma Aldrich, > 99.5%), acetone

(Sigma Aldrich, > 99.9%), carbon monoxide (Argo International Ltd, 99.5%), nitric oxide (BOC

Special gases, 99.5%), nitrogen dioxide (Sigma Aldrich, 99.5%), oxalyl chloride (Sigma

Aldrich, ≥ 99%), chloroform (Sigma Aldrich, ≥ 99.8%), glyoxal trimer dehydrate (Sigma 

Aldrich, ≥ 95%) and phosphorus pentoxide (Sigma Aldrich, ≥ 98.5%).  

7.4 Room temperature kinetics of the Reactions of HCO with O2, NO

and NO2

Room temperature rate coefficients were measured for the reactions of HCO with

oxygen (R1), NO (R9) and NO2 (R10) by monitoring the HCO decay by LIF under pseudo-first-

order conditions in HCO, using nitrogen bath gas at total pressures of 10 and 30 Torr. HCO

radicals were generated by the reaction of chlorine atoms with formaldehyde (R8), with

chlorine atoms formed following 248 nm photolysis of oxalyl chloride (P2).

HCO + NO → HNO + CO (R9)

HCO + NO2 → H + CO2 + NO (R10a)

→ HNO + CO2 (R10b)

→ HONO + CO (R10c)
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→ OH + CO + NO (R10d)

Following the near instant growth through reaction R8, HCO decays exponentially in

the presence of excess O2 and NO (see inset of Figures 1 and 2), with a decay coefficient

dependent on its rate of reaction with the experimental co-reagent and its rate of diffusion

from the probed region of the reactor (R11):

HCO → Loss (R11)

Pseudo-first-order HCO decay coefficients were measured by fitting the decay component of

the experimental HCO profile in the presence of excess O2 or NO using equation E1:

If(t) = If(0) exp-k’t (E1)

where If(0) and If(t) are HCO signal intensities at time 0 and time t, respectively; and k’ is the

observed pseudo-first-order rate coefficient (k’ = k[co-reagent] + k11).

In the presence of excess NO2, HCO removal is governed by its reaction with NO2

(R2) and diffusion from the probed region of the reactor (R11). The reaction of HCO with

NO2 is known to generate OH radicals (R10d) and hydrogen atoms (R10a),29 with the latter

rapidly converted to OH in excess NO2 (R12):30

H + NO2 → OH + NO (R12)

The OH produced will react with HCHO and provide a secondary source of HCO (R13),

resulting in biexponential HCO decay traces in the presence of excess NO2:

OH + HCHO → HCO + H2O (R13)

Consequently, pseudo-first-order HCO decay coefficients were measured by fitting the decay

component of the experimental HCO traces in the presence of NO2 using equation E2:
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7.4.1 Kinetics of the Reactions of HCO with O2 and NO

Bimolecular rate coefficients measured for reactions R1 and R9 were found to be

independent of pressure using nitrogen bath gas at total pressures of 10 and 30 Torr,

consistent with both reactions proceeding via hydrogen atom abstraction. Bimolecular plots

showing all pseudo-first-order decay measurements across this experimental pressure range

are presented in Figures 1 and 2. Linear least squares analysis of each data set yields room

temperature k1 and k9 values of (5.27 ± 0.01) × 10-12 cm3 molecule-1 s-1 and (1.30 ± 0.03) ×

10-11 cm3 molecule-1 s-1, respectively, where the quoted errors are purely statistical at the 2σ 

level.

Reaction R1 has been studied extensively elsewhere owing to its importance to both

atmospheric and combustion chemistry. The majority of direct kinetic measurements of

reaction R1 report k1 values ranging between (4 – 6) × 10-12 cm3 molecule-1 s-1 at room

temperature. Gill et al. generated HCO by flash photolysis of acetaldehyde and monitored

its decay in the presence of oxygen using IDLA spectroscopy.18 These authors reported a k1

value of (4.2 ± 0.7) × 10-12 cm3 molecule-1 s-1 at 298 K. More recently, DeSain and co-workers

investigated the kinetics of reaction R1 in 8 to 30 Torr of helium using laser flash photolysis

and laser induced fluorescence (LIF) HCO detection.24 These authors generated HCO using a

variety of sources (photolytic and chemical), and reported a k1 value of (5.63 ± 0.31) × 10-12

cm3 molecule-1 s-1 at 296 K.

Several publications in the literature include kinetic studies of both reaction R1 and

R9. Shibuya et al. used flash photolysis of acetaldehyde as HCO source and measured room
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temperature bimolecular rate coefficients for reactions R1 and R9 by monitoring HCO

directly via vis-UV absorption spectroscopy.31 Their study reported k1 and k9 values of (5.6 ±

0.9) and (8.5 ± 1.0) × 10-12 cm3 molecule-1 s-1, respectively.

Figure 1: Bimolecular plot for the HCO + O2 reaction at 295 K and 10 (■) and 30 Torr (●) total

pressure using N2 bath gas corresponding to a k1 value of (5.27 ± 0.01) × 10-12 cm3 molecule-1 s-1. A

typical experimental HCO decay trace is included in the inset, measured in the presence of 6.95 ×

1014 molecule cm-3 of O2 and corresponding to a pseudo-first-order decay constant of (3550 ± 50) s-1.

Reilly and co-workers investigated reactions R1 and R9 by photolysing formaldehyde

to generate HCO and then monitoring the decay in the presence of O2 and NO using the

IDLA technique.32 The analysis of these authors yielded k1 and k9 values of (4.0 ± 0.8) × 10-12

cm3 molecule-1 s-1 and (1.4 ± 0.2) × 10-11 cm3 molecule-1 s-1, respectively, at room

temperature in 10 Torr of pure formaldehyde. Veyret and Lesclaux measured rate

coefficients for reactions R1 and R9 using flash photolysis of formaldehyde or acetaldehyde

as HCO source, and monitored the radical via extracavity dye laser absorption spectroscopy

(EAS).33 These authors measured k1 and k9 at 298 K in 45 and 500 Torr of nitrogen and
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reported values of (5.6 ± 0.6) × 10-12 cm3 molecule-1 s-1 and (1.23 ± 0.12) × 10-11 cm3

molecule-1 s-1, respectively, independent of total pressure.

Figure 2: Bimolecular plot for the HCO + NO reaction at 295 K and 10 (■) and 30 Torr (●) total

pressure using N2 bath gas corresponding to a k9 value of (12.96 ± 0.29) × 10-12 cm3 molecule-1 s-1. A

typical experimental HCO decay trace is included in the inset, measured in the presence of 1.24 ×

1015 molecule cm-3 of NO and corresponding to a pseudo-first-order decay constant of (17655 ± 300)

s-1.

More recently, Nesbitt and co-workers investigated the kinetics of reactions R1 and

R9 using a discharge flow system equipped with photoionization mass spectrometry (PIMS)

at 298 K under 1 Torr of helium.34 Their study measured k1 and k9 values of (4.0 ± 0.6) × 10-12

cm3 molecule-1 s-1 and (1.3 ± 0.2) × 10-11 cm3 molecule-1 s-1, respectively. Ninomiya et al. also

studied the kinetics of reactions R1 and R9 under 4 to 10 Torr of nitrogen at 298 K using

pulsed photolysis of acetaldehyde to generate HCO and cavity ring-down spectroscopy

(CRDS) to monitor the radical.20 These authors reported k1 and k9 values of (5.9 ± 0.5) × 10-12

cm3 molecule-1 s-1 and (1.9 ± 0.2) × 10-11 cm3 molecule-1 s-1, respectively.
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Nadtochenko et al. studied reaction R9 at room temperature using flash photolysis

of acetaldehyde coupled with IDLA radical detection.35 The bimolecular rate coefficient, k9,

was measured as (1.2 ± 0.4) × 10-11 cm3 molecule-1 s-1 in pure acetaldehyde at total pressures

ranging from 20 to 90 Torr. DeSain and co-workers investigated reaction R9 using the laser

flash photolysis, CW LIF method.25 These authors generated HCO both photolytically and

chemically during their study, and reported a k9 value of (1.81 ± 0.10) × 10-11 cm3 molecule-1

s-1 at 296 K under 10 Torr of helium. In a kinetic study by Dammeier et al., k9 was measured

at room temperature in 40 Torr of argon using a slow flow reactor equipped with frequency

modulation (FM) spectroscopy, with HCO generated by excimer laser photolysis of glyoxal at

193 nm.36 These authors reported a k9 value of 1.35 × 10-11 cm3 molecule-1 s-1 under their

experimental conditions.

With the exception of the early study by Shibuya et al.,31 all previous experimental

investigations of the HCO + NO reaction report room temperature k9 values ranging

between (1.2 – 1.9) × 10-11 cm3 molecule-1 s-1, consistent with the (1.30 ± 0.03) × 10-11 cm3

molecule-1 s-1 value measured here. The room temperature k1 value of (5.27 ± 0.01) × 10-12

cm3 molecule-1 s-1 reported here lies in excellent agreement with the value of (5.1 ± 0.15) ×

10-12 cm3 molecule-1 s-1 recently recommended by IUPAC 37 and with the existing literature

values, and gives confidence in the experimental HCO detection system.

7.4.2 Kinetic Study of the HCO + NO2 Reaction

The room temperature rate coefficient for the HCO + NO2 reaction has been

measured in 10 Torr of nitrogen using laser flash photolysis coupled with LIF HCO detection.

HCO was again generated by the reaction of chlorine atoms with formaldehyde, with

chlorine atoms generated by 248 nm excimer photolysis of oxalyl chloride (P2). The resulting

biexponential HCO decay traces recorded in excess NO2 were fit using equation E2. Linear

least squares analysis of the fast pseudo-first-order decay coefficients measured, plotted

against the NO2 concentration yields a k10 value of (6.99 ± 0.16) × 10-11 cm3 molecule-1 s-1

(Figure 3).
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Figure 3: Bimolecular plot for the HCO + NO2 → Products reaction at 295 K under 10 Torr of N2,

corresponding to a k10 value of (6.99 ± 0.16) × 10-11 cm3 molecule-1 s-1, where the error is purely

statistical at the 2σ level. Included is a typical biexponential HCO decay trace measured in the 

presence of 4.48 × 1013 molecule cm-3 of NO2, corresponding to a pseudo-first-order HCO decay

coefficient of (3865 ± 340) s-1.

Several groups have studied the kinetics of reaction R10 using both direct and

indirect techniques. Timonen et al. studied the kinetics of reaction R10 under pseudo-first-

order conditions, in helium bath gas, using a flow tube equipped with a PIMS instrument,

generating HCO radicals by 308 nm excimer photolysis of acetaldehyde.38 These authors fit

experimental HCO decay profiles using a single exponential function to obtain a room

temperature k10 value of 5.6 × 10-11 cm3 molecule-1 s-1. In a subsequent study, Guo and co-

workers also generated HCO by excimer laser photolysis of acetaldehyde at 308 nm, and

monitored HCO directly via UV-vis absorption spectroscopy under pseudo-first-order

conditions, in up to 700 Torr of SF6 bath gas.39 These authors reported a k10 value of (5.7 ±

0.9) × 10-11 cm3 molecule-1 s-1, where the error bar includes both statistical and estimated
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systematic errors. More recently, Dammeier et al. measured k10 at room temperature under

40 Torr of argon in a slow flow reactor equipped with frequency modulation spectroscopy,

with HCO generated by 193 nm excimer laser photolysis of glyoxal (P1).36 These authors

reported a k10 value of (5.15 ± 2.0) × 10-11 cm3 molecule-1 s-1 at 295 K. The k10 values

measured by Guo et al.39 and Dammeier et al.36 are both in excellent agreement with the

earlier study by Timonen et al.,38 and are consistent within the combined uncertainties with

the (6.99 ± 0.16) × 10-11 cm3 molecule-1 s-1 value reported here.

Ninomiya et al. measured k10 releative to their direct measurement of the rate of

reaction between HCO and Cl2 (R14) at room temperature and total pressures ranging

between 4 and 10 Torr of nitrogen, using CRDS:20

HCO + Cl2 → HC(O)Cl + Cl (R14)

Their experimental k14 value of (7.6 ± 0.7) × 10-12 cm3 molecule-1 s-1, is in good

agreement with direct measurements of the same reaction by Timonen and co-workers38

who reported a value of 7.2 × 10-12 cm3 molecule-1 s-1. Ninomiya et al. measured a k10 value

of (6.4 ± 0.3) × 10-11 cm3 molecule-1 s-1, relative to their own k14 measurement.20 The k10

value reported in this chapter is within 25% of both direct and indirect measurements

published in the literature. The room temperature rate coefficients measured for the

reactions of HCO with O2, NO and NO2 during this work are listed in table 1.

Reaction Rate coefficient k / cm
3

molecule
-1

s
-1

HCO + O2 → HO2 + CO (5.27 ± 0.01) × 10
-12

HCO + NO → HNO + CO (1.30 ± 0.03) × 10
-11

HCO + NO2 → Products (6.99 ± 0.16) ×10
-11

Table 1: Room temperature rate coefficients for the reaction of HCO with O2, NO and NO2; the error

bars are purely statistical at the 2σ level.
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7.5 HC(O)CO Decomposition Kinetics

As mentioned in the introduction to this chapter, the immediate aim of developing

an HCO detection system was to monitor the HCO produced from thermal dissociation of

the HC(O)CO radical (R7), and to quantify the unimolecular rate coefficient k7 from the

recorded HCO growth profiles as a function of pressure and temperature. The HC(O)CO

radical is produced following the reaction of glyoxal, (HCO)2, with chlorine atoms (R15) and

OH radicals (R6).6, 40

Cl + (HCO)2 → HC(O)CO + HCl ΔrH298 K = -62.8 kJ mol-1 28 (R15)

Chlorine atom initiated oxidation of glyoxal is less exothermic than OH initiated oxidation,

consequently less prompt fragmentation of the nascent HC(O)CO radical occurs following

reaction R15 than R6. Recent trajectory calculations by Setokuchi suggested 47% of the

HC(O)CO population forms following reaction R15 with sufficient energy to promptly

dissociate.28 In a relative rates study of the Cl + (HCO)2 reaction, Niki et al. reported a k15

value of (3.8 ± 0.3) × 10-11 cm3 molecule-1 s-1 at room temperature;40 nearly a factor four

faster than the OH + (HCO)2 reaction at room temperature.6 The differences in the kinetics

and enthalpies of reactions R15 and R6 make tha anticipated prompt and slow HCO signal

more easily distinguishable when generating the HC(O)CO radical through Cl-atom initiated

oxidation of (HCO)2 (R15), rather than oxidation by OH (R6).

The numerical integrator programme KINTECUS 41 was used to simulate the HCO

profiles following the Cl + (HCO)2 reaction under 5 Torr of nitrogen at 295, 250 and 212 K

(Figure 4); all the reactions and corresponding rate coefficients used are listed in Table 2.

The model treated the Cl + (HCO)2 reaction as independent of temperature between 295

and 212 K and used the k15 value of 3.8 × 10-11 cm3 molecule-1 s-1 reported by Niki et al.40 in

each simulation. The fraction of the HC(O)CO population that promptly dissociate to HCO +

CO following reaction R15 was taken from trajectory calculations by Setokuchi.28 The

unimolecular rate coefficients used to describe thermal dissociation of HC(O)CO were

calculated using the parameters used to fit the OH yields measured as a function of

temperature and pressure for the OH + (HCO)2/O2 system described in chapter 6.6
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Figure 4: Simulated HCO profiles following the Cl + (HCO)2 reaction at 295 (black), 250 (red), and 212

K (blue) under 5 Torr of nitrogen. The green line shows the model HCO profile at 212 K under 10 Torr

total pressure. These model profiles are all based on initial (HCO)2 and Cl-atom concentrations of 3 ×

1014 molecule cm-3 and 1 × 1013 molecule cm-3, respectively.

The HCO profiles presented in Figure 4 suggest that at room temperature and 5 Torr

total pressure the HC(O)CO produced following reaction R15 dissociates too fast to

distinguish the prompt and thermal HCO forming channels. However, as temperatures

decrease to 250 and 212 K, the rate at which HC(O)CO thermally dissociates slows

sufficiently to be able to differentiate prompt and thermal HC(O)CO decomposition.
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Temperature / K Pressure / Torr Reaction Rate coefficient

295 5

Cl + (HCO)2 → HC(O)CO + HCl 2.01 × 10
-11

cm
3

molecule
-1

s
-1

Cl + (HCO)2 → HCO + CO + HCl 1.79 × 10
-11

cm
3

molecule
-1

s
-1

HC(O)CO → HCO + CO 91654 s
-1

HCO → loss 150 s
-1

250 5

Cl + (HCO)2 → HC(O)CO + HCl 2.01 × 10
-11

cm
3

molecule
-1

s
-1

Cl + (HCO)2 → HCO + CO + HCl 1.79 × 10
-11

cm
3

molecule
-1

s
-1

HC(O)CO → HCO + CO 6566 s
-1

HCO → loss 150 s
-1

212 5

Cl + (HCO)2 → HC(O)CO + HCl 2.01 × 10
-11

cm
3

molecule
-1

s
-1

Cl + (HCO)2 → HCO + CO + HCl 1.79 × 10
-11

cm
3

molecule
-1

s
-1

HC(O)CO → HCO + CO 1230 s
-1

HCO → loss 150 s
-1

212 10 Cl + (HCO)2 → HC(O)CO + HCl 2.01 × 10
-11

cm
3

molecule
-1

s
-1

Cl + (HCO)2 → HCO + CO + HCl 1.79 × 10
-11

cm
3

molecule
-1

s
-1

HC(O)CO → HCO + CO 2460 s
-1

HCO → loss 150 s
-1

Table 2: Model parameters used to simulate HCO profiles following the Cl + (HCO)2 reaction under 5

and 10 Torr of N2 as a function of temperature.
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An experimental study of the Cl + (HCO)2 reaction was carried out under a range of

temperatures (212 – 295 K) and pressures of nitrogen (5 – 100 Torr) using laser flash

photolysis coupled with LIF HCO detection, with chlorine atoms generated by 248 nm

excimer photolysis of oxalyl chloride (P2). At room temperature HCO growth was observed

but was attributed to the rate determining Cl + (HCO)2 reaction and not to HC(O)CO

decomposition. Indeed, the room temperature HCO growth profiles observed following

reaction R15 were fit using equation E3:

     bexpexp]HCO[]HCO[
gl

lg

g































 tktk

kk

k
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(E3)

where [HCO]t is the observed HCO signal at time t, [HCO] is the HCO signal height, kg and kl

are the pseudo-first-order rate coefficients defining HCO growth and loss, respectively, and

b is the baseline signal.

Biexponential analysis of the room temperature HCO growth profiles using equation

E3 was used to quantify the Cl + (HCO)2 reaction directly at room temperature under 5 Torr

of nitrogen. A bimolecular plot of the observed pseudo-first-order growth coefficients

against (HCO)2 concentration is presented in Figure 5, corresponding to a k15 value of (3.88 ±

0.12) × 10-11 cm3 molecule-1 s-1; a typical HCO profile fitted using Equation E3 included in the

inset.
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Figure 5: Bimolecular plot for the Cl + (HCO)2 → HCO + CO reaction at 295 K under 5 Torr of nitrogen,

corresponding to a k15 value of (3.88 ± 0.12) × 10-11 cm3 molecule-1 s-1; the quoted error is purely

statistical at the 2σ level. Included in the inset is a typical experimental HCO growth profile 

measured in the presence of 3.83 × 1014 molecule cm-3 of (HCO)2 corresponding to a pseudo-first-

order growth constant of (17500 ± 800) s-1.

The bimolecular rate coefficient reaction R15 measured directly during this work is in

excellent agreement with the relative k15 value of (3.8 ± 0.3) × 10-11 cm3 molecule-1 s-1

reported by Niki and co-workers.40

HCO growth profiles were not observed as temperatures were decreased under any

experimental pressure, instead the HCO signal was observed to decay rapidly within a few

hundred microseconds; a typical HCO decay profile observed in the presence of ~3 × 1014

molecule cm-3 of (HCO)2 at 212 K under 10 Torr of N2 is provided in Figure 6. Rapid removal

of HCO was unexpected under these experimental conditions, and one possible explanation

was that HCO was reacting with CO present as impurities in the glyoxal bulb to generate the

HC(O)CO radical (R16):
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HCO + CO + M → HC(O)CO + M ΔrH298 K = -2.85 kJ mol-1 42, 43 (R16)

The significance of reaction R16 in the Cl + (HCO)2 reaction system was investigated

by monitoring HCO decay profiles at 212 K under 10 Torr of nitrogen in the presence of

varying amounts of CO (5.2 – 58.8 × 1014 molecule cm-3), with HCO radicals generated

rapidly following the reaction of chlorine atoms with formaldehyde, HCHO (R8). However,

while the pseudo-first-order decay constants did not exhibit a dependence on the

experimental CO concentration, they were observed to scale with the HCHO concentration.

Three reaction channels following reaction of HCO with HCHO (R17) were postulated,

resulting in formation of either HC(O)CO and molecular hydrogen (R17a), carbon monoxide

and a hydroxymethyl radical (R16b), or glyoxal and a hydrogen atom (17c). The standard

enthalpies, ΔrH298 K, of reactions R17a – R17c were calculated using the thermodynamic

properties published in the literature.42, 43

HCO + HCHO → HC(O)CO + H2 ΔrH298 K = -4.8 kJ mol-1 42, 43 (R17a)

→  CH2OH + CO ΔrH298 K = -62.9 kJ mol-1 42 (R17b)

→ (HCO)2 + H ΔrH298 K = 71.5 kJ mol-1 42 (R17c)

Channel R17c can be quickly ruled out due to the endothermicity of this path. Channels

R17a and R17b are both exothermic, with channel R17b the most thermodynamically

favoured product path. However, if reaction R17b is the dominant channel responsible for

HCO removal, then HCO would be expected to decay in the presence of HCHO at ambient

temperatures, inconsistent with experimental observations. Therefore it is reasoned that

reaction R17a is the dominant process responsible for HCO removal in the presence of

HCHO, and that at room temperature the HC(O)CO produced rapidly dissociates to generate

CO and recycle HCO (R7),6 leaving experiments reliant on HCO detection blind to the HCO

consumed following reaction R17a.
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Figure 6: Experimental HCO decay profile observed in the in the presence of ~3 × 1014 molecule cm-3

of (HCO)2 at 212 K under 10 Torr of N2. Included is an exponential decay fit through these data using

equation E1, corresponding to a pseudo-first-order decay coefficient of (10300 ± 265) s-1.

7.6 Kinetics of the HCO + HCHO Reaction

The kinetics of the HCO + HCHO reaction were investigated using laser flash

photolyis, coupled with LIF HCO detection at 212 K, using 10 and 30 Torr of nitrogen bath

gas. HCO radicals were generated by the reaction of chlorine atoms with formaldehyde (R8),

with chlorine atoms formed following 248 nm excimer laser photolysis of oxalyl chloride

(P2). Quantitative kinetic measurements demand that the concentration of HCHO is known.

The concentration of HCHO in the sample bulb could not be accurately determined

barometrically as CO was also produced following pyrolysis of paraformaldehyde; moreover,

the HCHO produced was partially lost to the walls of the gas sample bulb on consecutive

days of experiments. Consequently, the HCHO concentration was determined kinetically by

fitting the HCO growth profiles observed following the Cl + HCHO reaction at room

temperature using equation E3 (inset of Figure 7). The pseudo-first-order growth constants
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were then plotted against an estimation of the experimental HCHO sample bulb

concentration. The HCHO sample bulb concentration could then be adjusted iteratively until

the linear bimolecular plot gave a gradient equal to the Cl + HCHO rate coefficient value

recommended by IUPAC (k8(298 K) = 7.2 × 10-11 cm3 molecule-1 s-1).44

Figure 7: Bimolecular plot for the Cl + HCHO reaction at 295 K and 10 Torr total pressure used to

characterize the experimental HCHO bulb concentration. A typical experimental HCO growth profile

is included in the inset, measured in the presence of 8.72 × 1013 molecule cm-3 of HCHO

corresponding to a pseudo-first-order growth constant of (7340 ± 350) s-1.

A bimolecular plot showing all pseudo-first-order HCO decay coefficients measured in the

presence of HCHO at 212 K under 10 and 30 Torr of nitrogen is presented in Figure 8. Linear

least squares analysis through all data points yields the pressure independent bimolecular

rate coefficient, k17, (3.44 ± 0.15) × 10-11 cm3 molecule-1 s-1 at 212 K. A typical experimental

HCO decay profile is included in the inset of Figure 8.
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Figure 8: Bimolecular plot for the HCO + HCHO → Products reaction at 212 K under 10 (■) and 30

Torr (●) of nitrogen; corresponding to a k17 value of (3.44 ± 0.15) × 10-11 cm3 molecule-1 s-1. Included

in the inset is a typical HCO decay profile measured at 10 Torr total pressure in the presence of 2.14

× 1014 molecule cm-3 of HCHO corresponding to a pseudo-first-order decay constant of (7435 ± 180)

s-1.

7.7 Kinetics of the HCO + CH3CHO Reaction

Building on the experimental evidence supporting rapid reaction between HCO and

formaldehyde, a second set of experiments were carried out to investigate whether or not

HCO will react with acetaldehyde, CH3CHO. HCO radicals were again generated by the

reaction of chlorine atoms with formaldehyde (R8), with chlorine atoms produced following

248 nm excimer laser photolysis of oxalyl chloride (P2). HCO decay profiles were measured

in the presence of between (0.5 – 5) × 1014 molecule cm-3 of CH3CHO at 212 K, under 10 Torr

of nitrogen. Once again, the pseudo-first-order HCO decay coefficients were observed to

scale with the aldehyde concentration (Figure 9), giving a bimolecular rate coefficient for
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the HCO + CH3CHO reaction of (1.28 ± 0.07) × 10-11 cm3 molecule-1 s-1. A bimolecular plot

intercept of ~6000 s-1 is expected given that HCHO is required to generate HCO.

Figure 9: Bimolecular plot for the HCO + CH3CHO → Products reaction at 212 K under 10 Torr of

nitrogen, corresponding to k18 value of (1.24 ± 0.05) × 10-11 cm3 molecule-1 s-1. A typical experimental

HCO decay trace measured in the presence of 3.87 × 1014 molecule cm-3 is included in the inset. The

experimental HCHO concentration used to generate HCO was (1.6 ± 0.1) × 1014 molecule cm-3 and

consistent with the intercept observed.

Further kinetic experiments of the HCO + CH3CHO reaction were carried out at

higher temperatures (295 and 250 K), although no evidence of the HCO removal rate

increasing with the acetaldehyde concentration was found; suggesting that HC(O)CO (or

alternate HCO precursor) is also produced following the reaction of HCO with acetaldehyde

(R18):

HCO + CH3CHO → HC(O)CO + CH4 (R18)
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In order to determine whether the HCO + aldehyde chemistry presented in this

chapter extends to ketone carbonyl species, additional experiments were carried out

generating HCO in the presence of acetone at 212 K in 10 Torr of nitrogen. However, the

observed exponential HCO decay constants were independent of the experimental acetone

concentration; suggesting that HCO reactivity is limited to aldehydic carbonyl species.

7.8 Discussion

The formyl radical, HCO, has been successfully generated and monitored using

pulsed laser flash photolysis coupled with laser induced fluorescence. Room temperature

rate coefficients for the reactions of HCO with O2 and NO have been measured at pressures

of 10 and 30 Torr of N2, both were found independent of pressure with values of (5.27 ±

0.01) × 10-12 cm3 molecule-1 s-1 and (1.30 ± 0.03) × 10-11 cm3 molecule-1 s-1, respectively, in

good agreement with existing measurements reported in the literature. The HCO + NO2

reaction was studied at room temperature under 10 Torr of N2. Biexponential HCO decays

were observed, consistent with secondary chemistry associated with the HCHO used as

radical precursor. Analysis of the observed HCO decay traces yield a room temperature rate

coefficient of (6.99 ± 0.16) × 10-11 cm3 molecule-1 s-1. In addition, the Cl + (HCO)2 reaction has

been studied directly for the first time by monitoring the HCO produced following thermal

dissociation of the nascent HC(O)CO radical, a rate coefficient of (3.88 ± 0.12) × 10-11 cm3

molecule-1 s-1 was measured at 295 K, under 5 Torr of N2; in excellent agreement with the

only previous, relative measurement by Niki et al.40

HCO chemistry has long been considered to be largely restricted to reactions with

other radicals, open shell species such as O2, NO and NO2, or halogen molecules. The work

presented in this chapter has shown for the first time that the HCO radical will also react

rapidly with a range of closed-shell aldehyde species. Bimolecular rate coefficients have

been measured for the reactions of HCO with formaldehyde (R17) and acetaldehyde (R18)

under pseudo-first-order conditions in HCO, using nitrogen bath gas, with values of (3.44 ±

0.15) and (1.24 ± 0.05) × 10-11 cm3 molecule-1 s-1, respectively. HCO pseudo-first-order rate

coefficients were not observed to scale with the experimental concentration of either

aldehyde at temperatures greater than 220 K, suggesting the thermally unstable HC(O)CO
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radical as a likely product of reactions R17 and R18. In addition, HCO was not observed to

react with acetone at 212 K, suggesting a reaction mechanism reliant on an aldehydic

hydrogen atom.

HCO is produced extensively following the atmospheric oxidation of a range of

volatile organics and through aldehyde photolysis,1 but is rapidly titrated to HO2 and CO in

the troposphere through reaction with oxygen (R1). Therefore the novel HCO reactivity

towards aldehyde species observed during this work has no significant implications on the

chemistry of Earth’s atmosphere. However, HCO, formaldehyde and acetaldehyde have all

been detected in the interstellar medium (ISM).11, 45 Experimental and theoretical studies

have long sort reactions relevant to these environments which unravel how carbon-bearing

molecules form in the ISM;12, 46-49 the novel HCO chemistry described in this chapter could

offer a way of building longer carbon-carbon chained molecules from short chained

reactants in these environments.
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Chapter 8 Summary and Future Work

8.1 Synopsis

The Earth’s atmosphere is often compared to a low temperature combustion system

in which solar energy drives radical oxidation of trace gases. During daylight hours, this

complex chain propagating chemistry is initiated predominantly through reaction with OH,

resulting in the production of a wide range radical species.1 Chemical reactions are known to

generate species with excess energy, depending on the relative difference in energy

between reactants and products. This excess energy is generally assumed to be removed

under atmospheric conditions through non-reactive collisions, leaving the products of an

initial reaction in thermal equilibrium prior to the onset of secondary chemistry. However, in

chapters 3 – 6 of this thesis evidence is provided that suggests the product branching

associated with OH oxidation chemistry, initiated by both addition and abstraction channels,

is influenced by chemical activation.

Chapter 3 provides a complete description of the OH initiated oxidation of acetylene,

C2H2, using a combination of experiments and theory. Briefly, the adduct formed following

reaction of OH with C2H2, exists in two energetically distinct conformations. Subsequent

rapid reaction of the adduct with O2 results in formation of either glyoxal, (HCO)2, and OH or

formic acid and HCO, depending on the stereochemistry of the adduct at the point of

association with O2.

C2H2 + OH + M → HO-C2H2 + M (R1)

HO-C2H2 + O2 → (HCO)2 + OH (R2a)

→ HCOOH + HCO (R2b)

Reaction channel 2a dominates under atmospheric conditions, and is associated

with reaction of the lower energy adduct conformer. Experimental OH yields, ФOH, for the

OH + C2H2/O2 system have been measured as a function of pressure and temperature in the

presence of varying amounts of N2 and/or O2 bath gas; and modelled using master equation
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(ME) analysis and variable transition state theory (VRC-TST) calculations. The nascent adduct

forms with ~146.6 kJ mol-1 excess energy at 298 K, allowing the adduct conformers to

interconvert rapidly over a relatively small barrier of ~17 kJ mol-1. Under low O2 conditions

the excess energy is dissipated through non-reactive collisions and the adduct conformers

exist in thermal equilibrium prior to a reactive collision with O2. High ФOH are observed

under thermal conditions as the distribution of adduct conformers shifts in favour of the

more stable isomer prior to reaction with O2. Under high O2 conditions, reactive collisions

occur before the excess energy has been removed; lower ФOH are observed as an increased

fraction of the total reactive flux is channelled through the less stable conformer to yield

HCOOH + HCO. Theoretical analysis of the experimental ФOH measurements presented in

chapter 3 suggests that under atmospheric conditions, ~25% of the total adduct + O2

reaction flux occurs under non-thermal conditions.2 Qualitatively similar behaviour is

observed following the OH initiated oxidation of propyne and 2-butyne (chapter 4).3

The Lindemann model of association reactions is reliant on the formation of a

nascent chemically activated complex. Consequently, the product branching observed for

systems that include unimolecular or bimolecular exit channels for the activated complex,

with critical energy barriers below the energy at which the complex is formed, are

potentially influenced by chemical activation. In contrast, the widely accepted Polanyi rules

state that abstraction reactions partition reaction exothermicity exclusively into the newly

formed bond.4 Consequently, the secondary chemistry of a radical produced following

oxidation initiated by a hydrogen atom abstraction channel is not expected to be influenced

by chemical activation. However, chapters 5 and 6 of this thesis provide evidence of two

atmospherically important hydrogen atom abstraction reactions which channel a significant

fraction of the reaction exothermicity into the radical fragment.

The reaction of OH with acetaldehyde, CH3CHO, is considered to proceed via an

archetypal abstraction channel (R3a). In chapter 5, direct and indirect evidence is presented

which suggests ~15% of the acetyl population is produced following reaction with sufficient

energy to dissociate directly to CO and CH3 (R3b).

OH + CH3CHO → CH3CO + H2O (R3a)
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→ CH3 + CO + H2O (R3b)

Prompt decomposition of a fraction of the nascent CH3CO population could potentially

influence the PAN and HCHO budgets in polluted regions.

The reaction of OH with glyoxal, (HCO)2, is an important sink for (HCO)2 in the

atmosphere (R4); and proceeds via hydrogen atom abstraction that gives HC(O)CO and H2O

(R4a).

OH + (HCO)2 → HC(O)CO + H2O (R4a)

→ HCO + CO + H2O (R4b)

Initial investigations concluded that subsequent HC(O)CO chemistry was governed by a

competition between unimolecular dissociation (R5) and bimolecular reaction with O2;5, 6

with the latter proceeding via both an abstraction and association channel. However,

experimental evidence presented in chapter 6 suggests that the HC(O)CO radical reacts

directly with O2 to generate OH (R6),7 consistent with recent calculations.8

HC(O)CO → HCO + CO (R5)

HC(O)CO + O2 →  CO2 + CO + OH (R6)

The OH yield associated with the OH + (HCO)2/O2 system were quantified for the first time

as a function of pressure, temperature and O2 concentration; and suggest an OH yield of

~19% under tropospheric conditions.7 Significantly, the OH yields were observed to

converge on a maximum limiting yield, consistent with ~60% of the nascent HC(O)CO

population being produced following reaction R4 with sufficient energy to promptly

dissociate (R4b). In chapter 7 an HCO laser detection system was developed in an effort to

confirm both prompt and growth HCO signal following the reaction of Cl atoms with (HCO)2

(R7), and determine the rate of thermal dissociation of HC(O)CO, at low experimental

temperatures.

Cl + (HCO)2 → HC(O)CO + HCl (R7)
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However, the experiments were flawed due to unexpected chemistry rapidly removing HCO

from the system; further experiments were carried out that suggests the HCO radical reacts

rapidly with a range of aldehydes (R8, R9, and R10):

HCHO + HCO → HC(O)CO + H2 (R8)

CH3CHO + HCO → HC(O)CO + CH4 (R9)

(HCO)2 + HCO →  HC(O)CO + HCHO (R10)

The chemical systems investigated in this thesis provides strong evidence that

chemical activation can influence the product branching associated with both bimolecular

and unimolecular exit channels, following chemistry initiated by both OH addition and

abstraction channels.

8.2 Implications

8.2.1 Combustion Chemistry

The similarity between atmospheric and combustion chemistry has been mentioned

previously. The OH generating channels associated with the reactions of O2 with HO-C2H2

(R2a) and HC(O)CO (R4a) both involve initial peroxy radical isomerisation to give a carbon

centred radical containing a hydroperoxide function, these species are generally termed

QOOH. There is a growing awareness that peroxy (RO2) to QOOH isomerisation reactions are

important under low NOx conditions for certain radicals in the troposphere.9 The chemistry

of RO2 and QOOH species is of great importance in low temperature combustion (T < 900 K),

as they control both chain propagation and branching, and therefore the nature of the

radical pool prior to ignition.10 Consequently, the formation and reactions of RO2 and QOOH

species are central to autoignition chemistry. Recent renewed interest in autoignition stems

from the next generation of engine design, such as Homogenous Charge Compression

Ignition (HCCI) engines, where ignition is controlled by chemistry.11-13 HCCI combustion

relies on compression heating premixed fuel/air mixtures and results in lower particulate

and NOx emissions than conventional diesel engines. HCCI development requires careful
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control of the combustion process and therefore demands a detailed understanding of the

chemistry.

Several experimental and theoretical studies have reported the product branching

following association reactions between O2 and combustion relevant species, such as cyclic,

acyclic, and oxygenated alkyl radicals, to be influenced by chemical activation.14-18 The

product branching observed in these systems is often defined in terms of the competition

between the unimolecular formally direct decomposition, and bimolecular collisional

deactivating channels available to the nascent activated association complex. Recent studies

have shown that for some systems, the influence of chemical activation persists to the

pressures experienced inside the cylinder of an internal combustion engine. The pressure

dependent branching of key combustion reactions is essential for auto-ignition modelling,

yet pressure dependent chemically activated channels are rarely treated rigorously by

models.10

The reaction of the β-hydroxyethyl radical, HOCH2CH2, with O2 (R10) is important in

the combustion of ethanol and ethylene, and has been investigated by Zador et al. using

both experiment and theory.17 Calculations carried out during the study by Zador and co-

workers concluded that reaction R11 proceeds across a barrierless entrance channel

followed by a multi-well potential energy surface, consistent with previous theory.18 In

addition to pressure dependent peroxy radical formation (R11a), Zador and co-workers

reported two chemically activated channels, resulting in formation of either formaldehyde

and OH (R11b), or a vinyl alcohol and HO2 (R11c).

HOCH2CH2 + O2 + M → HOCH2CH2O2 + M (R11a)

HOCH2CH2 + O2 → 2HCHO + OH (R11b)

→ CH2CHOH + HO2 (R11c)

Zador and co-workers reported a marked pressure and temperature dependence in the

product branching of reaction R11, consistent with a competition between the formally

direct and deactivating channels. The impacts of chemical activation for O2 association
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reactions is likely to become most evident under the pure oxygen conditions used during

oxy-fuel combustion,19 when the bath gas can also act as a reactive collision partner.

It is worthwhile to note that the nascent HOCH2CH2 radical produced following OH

addition to ethylene (R12), forms with approximately 130 kJ mol-1 excess energy;20, 21 under

conditions relevant to oxy-fuel combustion, it is unlikely that this excess energy will be

dissipated before subsequent reaction with O2.

C2H4 + OH + M → HO-C2H2 + M (R12)

8.2.2 Atmospheric Chemistry

The reactions of ozone with olefins have long been considered to proceed via 1, 3 –

cycloaddition across the double bond to give a primary ozonide, which then decomposes to

give a carbonyl and a carbonyl biradical species, known as a Criegee intermediate.22 The

formation of a Criegee species was first proposed by Rudolph Criegee in 1949, but these

species have only recently been observed directly.23 Nascent Criegee intermediates are

known to form with substantial excess energy (~300 kJ mol-1),24 and it has been proposed

that bimolecular reactions could intercept the activated intermediate before this energy is

dissipated.25 For non-thermal kinetics to influence atmospheric chemistry requires high

reactivity and significant mixing ratios of co-reagent, these conditions are usually only met

by O2. Several recent experimental studies have investigated the kinetics of the simplest

Criegee species, CH2OO, following its reaction with a range of co-reagents,23, 26-28 although

there is no evidence supporting reaction with O2, CH2OO has been shown to react slowly

with H2O (R12):

CH2OO + H2O → HCHO + H2O2 (R12)

The thermal rate coefficient for reaction R12 has recently been contested with experimental

values ranging from (9 – 400) × 10-17 cm3 molecule-1 s-1,23, 27 and a theoretical study of

reaction R12 has reported a significant barrier of ~126 kJ mol-1.29 However, if the nascent

CH2OO biradical forms with significant excess energy, formally direct product formation

might become possible for reaction R12 in high concentrations of H2O.



259

8.3 Future Work

The work presented in this thesis has shown that, under atmospheric conditions, the

chemically activated radicals formed following the addition of OH across an alkyne triple

bond are intercepted through bimolecular reactions with O2 before the internal quantum

states of the nascent adduct have fully relaxed. Future experiments would build on work by

Zador et al., and investigate whether the influence of chemical activation extends to the

product branching observed during OH initiated oxidation of alkenes.

Initial experiments would aim at determining the significance of the OH forming

channel reported by Zador and co-workers for the OH + C2H4/O2 system. If the association

reaction of O2 with HOCH2CH2 (R11) was found to generate OH, then OH yields could be

quantified as a function of pressure, temperature, and O2 concentration from the ratio of

rate coefficients measured in the presence and absence of O2. Preliminary room

temperature experiments, carried out under 10 Torr total pressure, suggest that OH is

recycled in the OH + C2H4/O2 system, with pseudo-first-order OH decays observed to slow

following the addition of ~1.35 × 1017 molecule cm-3 of O2 to the reaction cell (Figure 1). The

bimolecular rate coefficients of (3.64 ± 0.05) and (4.48 ± 0.04) × 10-12 cm3 molecule-1 s-1

measured in the presence and absence of O2, respectively, correspond to an experimental

OH yield of 0.19 ± 0.01 under these conditions. This analysis assumes that O2 and N2 quench

the nascent HOC2H2 radical with equal efficiencies, and a relative rate study of reaction R12

could be carried out in order to test this assumption. The calculations by Zador et al.

reported an active HO2 forming channel (R11c) associated with reaction R11. The yield of

HO2 could be determined by quantifying the OH yield following addition of NO to the

reaction cell. If channel R11c is significant, then a higher experimental OH yield would be

expected as NO titrates the HO2 quantitatively to OH.
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Figure 1: Room temperature bimolecular plots measured for the OH + C2H4 → Products reaction

carried out under 10 Torr of pure N2 bath gas (■), and in the presence of ~1.35 × 1017 molecule cm-3

of O2 (●), and correspond to bimolecular rate coefficients of (4.48 ± 0.04) and (3.64 ± 0.05) × 10-12

cm3 molecule-1 s-1, respectively; (where the errors a purely statistical at the 2σ level). A typical OH 

decay trace measured in the presence of ~7.29 × 1014 molecule cm-3 of C2H4 in pure N2 bath gas,

corresponding to a pseudo-first-order decay coefficient of (3925 ± 30) s-1 is included in the inset.
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