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Abstract 

This thesis concerns the investigation into the structure and function of the 38.6 kDa 

FAD-containing flavoprotein Stenotrophomonas maltophilia flavin-containing 

monooxygenase, SMFMO, which was encoded from a gene from the marine bacterium 

Stenotrophomonas maltophilia. The enzyme was found to catalyse the asymmetric 

oxidation of prochiral sulfides and the regioselective Baeyer-Villiger oxidation of 

bicyclo[3.2.0]hept-2-en-6-one. SMFMO was unusual amongst FPMOs as it 

demonstrated an ability to employ either NADH or NADPH as nicotinamide cofactor in 

order to reduce the flavin for catalysis. In an effort to determine the residues responsible 

for the cofactor promiscuity of SMFMO the structure of SMFMO was determined and 

revealed that the cofactor promiscuity of SMFMO may be due to the substitution of an 

arginine residue, responsible for the recognition of the 2’-phosphate on the NADPH 

ribose in related NADPH dependent FMOs, with a glutamine residue in SMFMO. In an 

attempt to explore the cofactor determinants in SMFMO, the two residues Gln193 and 

His194 in the cofactor binding site of SMFMO were mutated in order to mimic the 

cofactor binding site of the NADPH-dependent FMO, mFMO, from Methylophaga 

aminisulfidivorans sp. SK1, in which structurally homologous residues Arg234 and 

Thr235 bind the 2’-phosphate on NADPH. mFMO possesses an asparagine residue 

which is thought to be involved in the stabilisation of the flavin hydroperoxide 

intermediate, in SMFMO this residue is replaced by Phe52. Mutation of the Phe52 

residue revealed that this residue is a determinant in enantioselectivity. The natural 

variants of SMFMO, PFMO from Pseudomonas stutzeri and CFMO from Cellvibrio 

sp., also had the ability to use both nicotinamide cofactors equally to reduce the flavin. 

The structure of PFMO revealed that the residues Gln194 and Glu195, structurally 

homologous to Gln193 and His194 in SMFMO, were orientated away from the 2’-

phosphate site and thus the Glu195 would not repel the negatively charged phosphate as 

originally thought.  
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Chapter 1: Introduction 

1.1 Enzymes within chemistry 

1.1.1 The history of enzymes 

Enzymes have been employed by humans for thousands of years in the form of 

fermentation in order to produce and preserve foodstuffs such as beer, wine and bread.
1
 

However, it was not until the 19
th

 century when milestones in biocatalysis where 

reached. In 1858 Louis Pasteur discovered that treating an aqueous solution of racemic 

tartaric acid ammonium salt with a culture of the mould Penicillium glaucum, led to the 

consumption of (+)-tartaric acid over the consumption of (-)–tartaric acid,
2
 a process 

which is considered a forerunner in enzyme catalysed kinetic resolution which is widely 

recognised in academia and industry today.
1b

 Emil Fischer’s carbohydrate work in 1894 

discovered that the enzyme ‘invertin’ acts only upon α-D-glucosides, however, the 

enzyme ‘emulsin’ acts only upon β-D-glucosides. He recognised the ability of an 

enzyme to be selective and hypothesised the ‘lock and key’ characteristic of 

stereoselective enzyme catalysis.
3
 Another landmark for biocatalysis was reached in 

1897 by Eduard Büchner who observed that cell-free extracts of yeast containing no 

living cells were able to carry out the fermentation of sugar to alcohol and carbon 

dioxide, which proved that biological transformations do not necessarily require living 

cells.
1b, 4

  

The appreciation that enzymes actually mediate biological catalysis allowed the growth 

of biochemistry, however, it was not until the end of the 20
th

 century that enzymes as 

catalysts in organic chemistry gained importance.  

 

1.1.2 Biocatalysts within organic chemistry 

Over the last twenty to thirty years the use of enzymes as catalysts in chemical synthesis 

has increased, one reason being an enzymes ability to obey the twelve principles of 

green chemistry.
5
 Biocatalysts are natural products that possess no toxicity issues, are 

biodegradable and are generally employed in aqueous media. The majority of 

biocatalysts work at ambient reaction conditions that produce non-toxic side products 
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that are easily disposed of thus reducing the risk of hazards. In addition, biocatalysts are 

catalytic and are highly specific catalysing chemo, regio and stereoselective reactions.
6
 

Enzymes have the ability to act as chiral catalysts owing to the chiral environment of an 

enzyme’s active site. The chirality of the active site ensures that the enzyme is naturally 

able to bind one enantiomer of the prochiral substrate over the other thus catalysing 

chiral functionalization of prochiral substrates and kinetic resolutions.
1a, 6

 The fact that 

enzymes have the ability to resolve racemic mixtures of chemicals into their optically 

active compounds has become increasingly important in drug discovery. Due to the 

unique specificity of an enzyme, biocatalysts are capable of regioselective reactions in 

addition to stereoselective reactions and are able to functionalise one chemically 

equivalent site on a compound from many. An example of a regio and stereoselective 

reaction by a biocatalyst is the oxidative hydroxylation of the steroid progesterone to the 

11α-product by the fungi Rhizopus arrhizus or Aspergillus niger (Figure 1.1), a 

compound that can be chemically altered to form the popular products cortisone and 

hydrocortisone.
1b, 7

  The hydroxylation only occurs at the 11 position of the steroid and 

only in the α-orientation. Later it was discovered that hydroxylations of this nature are 

catalysed by cytochrome P450 enzymes.
1b, 8

 This biocatalytic and semi-synthetic route 

offered a viable alternative to the 40-step synthesis of hydrocortisone proposed by 

Robert Woodward and co-workers in 1952.
9
 

 

 

Figure 1.1 Regio- and stereoselective hydroxylation of progesterone to the 11α product 

by Rhizopus arrhizus or Aspergillus niger strains. 

 

Natural products have played a huge role in modern medicine and isolation of such 

compounds has led to the discovery of biologically active compounds from quinine, 

morphine and penicillin to the potent anti-cancer drug taxol isolated from yew bark 

(Figure 1.2).  
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Figure 1.2 Structures of the natural products quinine, morphine, penicillin and taxol. 

 

The structures of such compounds are so complex that synthesis by a chemical route is 

not feasible due to cost. However, the natural products were originally synthesised in 

nature using enzyme catalysed biosynthetic pathways and efforts to isolate such 

enzymes in order to produce natural products in vitro are of considerable interest in the 

biotechnology industry. An example of this is the production of penicillins using a 

naturally occurring enzyme penicillin acylase (Figure 1.3).
1a

 

 

 

Figure 1.3 Example of the industrial production of semi-synthetic penicillins using 

penicillin acylase. E.g. for Penicillin V, R= PhOCH2. 

 

Within the chemical and pharmaceutical industries biocatalysis is emerging the method 

of choice for the synthesis of chiral compounds, as enantiomerically pure amino acids, 

amino alcohols, amines, alcohols and epoxides are extremely important classes of 

compounds in the pharmaceutical and agricultural industry.
10

 



4 

1.2 Biocatalysis using monooxygenases 

The specific and efficient insertion of one oxygen atom into an organic compound is a 

difficult reaction to accomplish by chemical routes.
11

 Chemical catalysts such as per-

acids are employed to achieve oxygen insertion but the ‘green’ nature and unique 

specificity of enzymes that perform monooxygenations are unparalleled.
11-12

 Such 

enzymes are called monooxygenases and are of increasing interest due to a wide range 

of reactivities and selectivities. Unfortunately, a small number of monooxygenases have 

been explored due to difficulties of enzyme expression and isolation. In addition, the 

majority of these enzymes depend on expensive coenzymes.
11

 However, many of these 

issues have been improved due to better expression systems and coenzyme regeneration, 

thus exploring monooxygenases for their synthetic value has increased.
11, 13

  

A popular example of a monooxygenase is the heme-containing family, P450 

monooxygenases (EC 1.14.13, EC 1.14.14 and EC 1.14.15).
11, 14

 P450s are relatively 

abundant and have been shown to catalyse a number of specific oxygenations. An 

interesting property of P450s is the ability to catalyse the specific hydroxylation of 

unactivated carbon atoms.
1a

 Regioselective hydroxylations that are catalysed by P450 

have been employed to alter steroids and sterols. The best known example of the P450 

family is P450cam, which catalyses the hydroxylation of camphor (Figure 1.4).  It was 

shown that the reaction proceeds with retention of stereochemistry at the site of oxygen 

insertion.
1a, 8, 15

 

 

 

Figure 1.4 Stereospecific hydroxylation of camphor catalysed by P450cam. 

 

In addition to P450 monooxygenases, there are other monooxygenase classes such as 

non heme-dependent monooxygenases (EC 1.14.16), copper-dependent 

monooxygenases (EC 1.14.17 and EC1.14.18) and flavin-dependent monooxygenases 

(EC 1.13.12 and EC 1.14.13) which all rely on the presence of cofactor in some way.
1a, 
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11, 14
 In the past 10 years few monooxygenases that are independent of cofactor have 

been discovered.
11

 For example, the monooxygenase ActVa-Orf6 in Streptomyces 

coelicolor
16

 and the quinol monooxygenase YgiN from E. coli
17

 both oxidise 

multiringed aromatic compounds without the aid of cofactor.   

Many monooxygenase belong to the flavin-dependent family and have been attracting 

attention as selective oxidation catalysts in order to be used for the synthesis of 

expensive chemical building-blocks or pharmaceuticals, owing to their wide range of 

oxygenation reactions and enantio and regioselective properties.
11, 18

 

 

1.3 Flavoprotein monooxygenases 

1.3.1 Introduction  

Flavoprotein monooxygenases or FPMOs are a class of oxidative enzymes that have 

important roles in eukaryotic metabolism pathways
19

 and in the production of secondary 

metabolites in lower organisms.
20

 In addition, they have the potential to acts as green 

catalysts for applications in asymmetric organic synthesis.  Flavoprotein 

monooxygenases catalyse a wide range of reactions (Figure 1.5) including 

hydroxylations, epoxidations
21

, Baeyer-Villiger oxidations
22

 and sulfoxidations.
23

  

 

 

Figure 1.5 Reactions that are catalysed by Flavoprotein Monooxygenases.  

 

As with many enzymes, the specific oxidation reaction and selectivity depend on the 

physical properties and chemical nature of the monooxygenase’s active site. Although, 
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owing to sequence and structural homology several FPMOs subclasses can be 

classified, revealing that each subclass is only able to catalyse a limited range of 

oxidation reactions. This suggests that the structural fold of the FPMO dictates what 

type of oxygenation reaction is catalysed.
11

 

 

1.3.2 The mechanism of a FPMO 

In chemical synthesis molecular oxygen cannot be employed as an oxidant as the 

concerted reaction between O2 and carbon in organic compounds is spin-forbidden, due 

to a pair of degenerate electrons in the anti-bonding orbital (π*).
1a

 In many cases, 

enzymes have discovered a way to utilise molecular oxygen as a substrate and 

oxygenate a compound. However, the oxygen must be activated by the enzyme in some 

way in order to allow the reaction.  

 The Pauli exclusion principle and Hund’s rule state that electrons must occupy orbitals 

of increasing energies thus electrons occupy orbitals with the lowest energy first. In 

addition, a maximum of two electrons can occupy one molecular orbital and all orbitals 

at one energy level must be filled before pairing of electrons. Following this principle 

reveals that the ground state of molecular oxygen exists as a triplet (
3
Σg

-
) with two 

degenerate unpaired electrons of parallel spin in the π2p* anti-bonding orbital, which 

prevents O2 from reacting with other molecules which are generally in singlet state. O2 

can be activated to form two excited singlet states O2*(
3
Σg

+
) and O2*(

1
Δg) which are 

higher in energy and less stable than the ground state O2 and differ in spin and 

occupancy of the π* anti-bonding orbitals. In the excited states a spin flip occurs so the 

π* anti-bonding electrons are of opposite spin (Figure 1.6).  The excited O2*(
3
Σg

+
) has 

one electron in each of the π* orbitals with opposite spins but is short lived and relaxes 

to the lowest-lying O2*(
1
Δg) excited state which is recognised as singlet oxygen and 

possess a pair of electrons in the same anti-bonding orbital with opposite spins and 

high-energy making it extremely reactive.
24
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Figure 1.6 Molecular orbital diagrams illustrating the triplet ground state (
3
Σg

-
) and 

singlet excited states (
3
Σg

+
 and 

1
Δg) of molecular oxygen. 

The triplet ground state can be excited to the singlet states for reaction. The O2*(
1
Δg) is 

the common excited state in which the electrons in the anti-bonding orbitals (in red) 

undergo a spin flip and orbital transfer.  

 

To activate the molecular oxygen enzymes often use a transition metal such as iron 

which may or may not be bound to an organic cofactor, for example, heme in P450 

monooxygenases. In the case of FPMOs however, a purely organic cofactor is used for 

oxygenation reactions.
11

  

FPMOs depend on a flavin cofactor (Section 1.3.3) which must be reduced for reactivity 

with molecular oxygen. The electron rich flavin intermediate is able to use O2 as a 

substrate and transfer one electron to the oxygen,
25

 forming superoxide and the flavin 

radical. A spin inversion then occurs resulting in the formation of reduced oxygen.
26

 For 

the majority of FPMOs, a covalent adduct between the C4α of the flavin and molecular 

oxygen occurs forming the reactive intermediate C4α –hydroperoxyflavin. Peroxyflavins 
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are unstable and typically decay to form hydrogen peroxide and oxidised flavin (Figure 

1.7).  

 

Figure 1.7 Reaction of flavin with molecular oxygen in oxidases.  

Peroxyflavin is unstable and will break down to form hydrogen peroxide and oxidised 

flavin.  

 

Flavoprotein monooxygenases however are able to stabilise such a species and it can be 

used to insert a single oxygen atom into an organic compound.
27

 Depending on the 

protonation state of the peroxyflavin intermediate, either a nucleophilic or electrophilic 

attack on the substrate is carried out (Figure 1.8).
11
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Figure 1.8 General mechanism of oxygenation reactions catalysed by flavoprotein 

monooxygenases. 

The bound flavin is reduced by NADPH and reacts with O2 to give (hydro)peroxyflavin 

which undergoes a nucleophilic or electrophilic attack on the substrate. 

  

1.3.3 Cofactors and their roles 

Many enzymes, including FPMOs depend on small molecules, known as cofactors, to 

aid catalysis. FPMOs depend on a riboflavin-derived flavin cofactor. The structure of 

riboflavin consists of an isoalloxidine heterocyclic ring, which contains the C4α carbon 

atom responsible for oxygenation. FPMOs can depend on one of two flavins: flavin 

mononucleotide (FMN) in which the riboflavin is attached to a phosphorylated ribitol 

sidechain or flavin adenine dinucleotide (FAD) were the riboflavin has a diphosphate 

linkage attached to an adenosine molecule (Figure 1.9). An obvious property of 

riboflavin is that it has a bright yellow colour, a characteristic that is observable in 

FPMOs in solution.
1a
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Figure 1.9 Structures of flavin mononucleotide (FMN) and flavin adenine dinucleotide 

(FAD), cofactors present in FPMOs. 

 

FPMOs can be broadly classified into two major subgroups, external flavoprotein 

monooxygenases which require external cofactors such as NAD(P)H to reduce the 

flavin (EC 1.14.13) or internal flavoprotein monooxygenases in which the flavin is 

reduced by the substrate (EC 1.13.12). A known example of an internal FPMO is lactate 

monooxygenase, in which lactate is oxidised to pyruvate and the flavin is reduced.
28

 

However, examples of internal FPMOs are extremely rare.  In addition, there is another 

group of flavoenzymes that contain flavin but it is not directly involved in the 

oxygenation reaction and the oxygen atom that is inserted is from water, for example 

vanillyl-alcohol oxidase.
11

  

The majority of FPMOs contain a non-covalently bound FMN or FAD, although in 

some cases the flavin is covalently bound. For example in vanillyl-alcohol oxidase the 

FAD is covalently linked to a histidine through the 8α- methyl group of FAD to the N3 

atom of the histidine.
29

 However, for the majority of internal and external FPMOs the 

flavin moiety is bound non-covalently.
1a, 11

  

External flavoprotein monooxygenases depend on one of two nicotinamide cofactors to 

reduce the flavin, nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine 

dinucleotide phosphate (NADPH), which bears a 2’-phosphate on the adenosine moiety 

(Figure 1.10).
1a, 6
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Figure 1.10 Structures of nicotinamide cofactors NADH and NADPH employed by 

FPMOs to reduce flavin. 

 

The redox-active part of the cofactors is the nicotinamide heterocyclic ring. NAD(P)
+
 is 

the oxidised form which is a pyridinium salt and can be reduced to a 1,4-dihydro-

pyridine NAD(P)H (Figure 1.11).
1a

  

 

 

Figure 1.11 Diagram illustrating the oxidised and reduced forms of the nicotinamide 

cofactors. 

 

In whole cell biotransformations, the organism generally produces and recycles such 

small molecule cofactors. In biotransformations involving isolated enzymes however, 

the cofactors may need to be added separately. As NAD(P)H is not bound to the 

enzyme it needs to be added in stoichiometric amounts, leading to high expense, or 

more commonly, recycled using and appropriate auxiliary enzyme and auxiliary 

substrate.  

NADH retails at £148.50 per 250 mg which is approximately a third of the price when 

compared to NADPH (£364 per 250 mg).
30

 Therefore, NADH is more economically 
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interesting for use as cofactor in FPMOs; however, FPMOs that employ NADPH as 

cofactor rarely use NADH as efficiently, if at all.
6
  

 

1.3.4 Classification of FPMOs 

Classification of flavin-dependent enzymes has be carried out using specific criteria, 

such as the kind of chemical reaction catalysed, the characteristics of redox substrates, 

homology in sequence or topology of 3D structure.
31

 In 2006, a review by van Berkel 

and Fraaije grouped external flavoprotein monooxygenases into six classes, A-F. The 

distinction between the different subclasses was based on sequence similarity and 

specific structural features which are reflected in sequence similarity and conserved 

sequence motifs.
11

  

Class A flavoprotein monooxygenases are encoded by a single gene and have a tightly 

bound FAD cofactor. This type of FPMO can employ either NADH or NADPH as 

nicotinamide cofactor to reduce the flavin. This type of enzyme are typically involved in 

the microbial degradation of aromatic compounds by ortho- or para- hydroxylation of 

the aromatic ring.
32

 They have limited substrate scope with typical substrates being 

aromatic compounds that contain an activating hydroxyl or amino group. The first 

enzyme of this subclass to be characterised was salicylate 1-monooxygenase (EC 

1.14.13.1) from Pseudomonas putida in 1972.
33

 However, the most extensively studied 

Class A FPMO is 4-hydroxybenzoate 3-monooxygenase (EC 1.14.13.2) from 

Pseudomonas, involved in the degradation of aromatic compounds.
27, 34

 In addition to 

hydroxylations, enzymes belonging to this subclass are also involved in the catalysis of 

epoxidations reactions and Baeyer-Villiger oxidations. The latter involving the bacterial 

enzyme MtmOIV found to be involved in the biosynthesis of mithramycin, an 

anticancer drug and calcium reducing compound.
35

 Class A FPMOs have been found to 

be structurally composed of one dinucleotide binding domain binding FAD.
11

  

Class B are encoded by a single gene and possess a tightly bound FAD. Such enzymes 

depend on NADPH to reduce the bound flavin and keep the NADPH/NADP
+
 cofactor 

bound during catalysis. In this subclass the flavin-containing monooxygenases are 

referred to as multi-functional as they are able to oxidise (hetero)-atoms in addition to 

carbon atoms. Three sequence-related FPMOs where found to make up this subclass: 

flavin-containing monooxygenase (FMOs), microbial N-hydroxylating 
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monooxygenases (NMOs) and Baeyer-Villiger monooxygenase (BVMOs).
36

 Class B 

FPMOs will be discussed further in Section 1.4. 

 Class C FPMOs are encoded by multiple genes encoding one or two monooxygenase 

components and a reductase component. The monooxygenases employ FMN as cofactor 

which is generated by reductase. The reductase can utilise either NADPH or NADH as 

nicotinamide cofactor. Bacterial luciferases (EC 1.14.14.3) are the most 

comprehensively studied monooxygenase of this subclass and are useful for the 

oxidation of long chain aliphatic aldehydes.
37

 Several BVMOs also fall under this 

subclass such as, 2,5-diketocamphane 1,2-monooxygenase and 3,6-diketocamphane 1,6-

monooxygenase (EC 1.14.15.2) from Pseudomonas putida ATCC 17453, involved in 

the degradation of the compound camphor.
38

 The structural core of class C 

monooxygenases subunits have been shown to display TIM-barrel fold.
37

 

Class D FPMOs are encoded by two genes which encode a monooxygenase and a 

reductase. This type of enzyme employs reduced FAD as flavin cofactor which is 

generated by the reductase which can use either NADPH or NADH as nicotinamide 

cofactor. Monooxygenases in this subclass are shown to be restricted to one type of 

oxygenation, hydroxylation. As with class A FPMOs, the substrate scope of class D 

FPMOs is limited to aromatic compounds such as, 4-hydroxyphenylacetate, phenol
39

 

and 4-nitrophenol.
40

 The best known monooxygenases in this subclass is 4-

hydroxyphenylacetate 3-monooxygenases (EC 1.14.13.3) from E. coli W
41

 and 

Acinetobacter baumanii.
42

 There is no structure available for this subclass but sequence 

homology suggests a structural resemblance to acyl-CoA dehydrogenase fold.
11

 

Similar to class D monooxygenases, class E FPMOs are also encoded by two genes 

encoding a monooxygenase and a reductase which generates reduced FAD. This 

subclass can utilise either nicotinamide cofactor, NADH or NADPH. The two-

component monooxygenase subclass is represented by styrene monooxygenase from 

Pseudomonas sp. VLB120 which catalyses the conversion of styrene onto (S)-styrene 

oxide at an enantiomeric excess higher than 99 %.
43

 A recombinant E. coli system was 

developed that expressed StyA (monooxygenase) and StyB (reductase)
44

 and the whole-

cell biocatalyst allowed for a wide range substrate scope that also gave access to chiral 

aryloxides.
45

 The system was successfully scaled up and it allowed approximately 400 g 

of (S)-styrene oxide to be produced at pilot scale.
46

 Class E FPMOs are relatively rare as 

a very limited number of monooxygenases falling under this subclass are known. 
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Sequence analysis indicates the presence of one dinucleotide domain indicating a 

possible evolutionary link with the class A FPMOs.
11

 However, the structure of a class 

E styrene monooxygenase (3IHM) was found to exist as a homodimer in which each 

monomer forms two domains, an FAD domain and what is likely to be the styrene 

binding domain.
47

   

Class F FPMOs are also two-component monooxygenases which are encoded by two 

genes encoding a monooxygenase and a reductase. This subclass uses reduced FAD 

which is generated by the reductase that can employ either NADH or NADPH as 

nicotinamide cofactor. Enzymes in this subclass catalyse halogenation reactions. The 

most extensively studied flavin-dependent halogenase is tryptophan 7-halogenase.
48

 The 

reaction catalysed by class F FPMOs does not result in an oxygenated product, 

however, the proposed catalytic mechanism is similar to that of a flavoprotein 

monooxygenase. The structure of such monooxygenases was found to have two 

domains, a helical domain and a FAD binding domain, which is compatible with a 

‘monooxygenase’ type of catalytic mechanism.
11, 49

 

 

1.4 Class B flavoprotein monooxygenases 

 As discussed above class B FPMOs is comprised of three sequence-related 

monooxygenases, FMOs, NMOs and BVMOs. Each member of these families are 

single-component FAD-dependent enzymes and rely on NADPH as nicotinamide 

cofactor. The protein sequences of such monooxygenases possess two Rossmann-fold 

motifs (GXGXXG) which are responsible for two binding domains for FAD and 

NADPH. 

 

1.4.1 Baeyer-Villiger monooxygenases 

1.4.1.1 The Baeyer-Villiger reaction 

Over a century ago in 1899, it was discovered that a mixture of sodium persulfate and 

concentrated sulfuric acid (Caro’s acid) could oxidize menthone to its corresponding 

lactone (Figure 1.12).
50
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Figure 1.12 Menthone oxidation using Caro’s acid. 

 

This reaction became known as the Baeyer-Villiger reaction and upon replacement of 

the persulfuric acid with an organic peracid it is now one of the most successful and 

frequently used reactions in organic synthesis. The oxidation reaction’s success is 

largely due to the fact that a range of carbonylic compounds can be converted into their 

subsequent esters or lactones via an oxygen-insertion process. The reaction tolerates a 

great proportion of functional groups and can be regio and stereo selective. In addition, 

its success can also be attributed to the variety of oxidants that can be successfully 

employed (Figure 1.13).
50b, 51

  

 

 

Figure 1.13 Baeyer-Villiger oxidation reaction involving a peracid. 

 

Many efforts were made in order to understand the mechanism of the reaction 

discovered by Adolf Baeyer and Victor Villiger and the accepted mechanism was 

proposed by Criegee in 1948.
52

 This two-step mechanism precedes via a nucleophilic 

attack by a per-oxo species on a ketone’s carbonyl group which results in the formation 

of the tetrahedral “Criegee” intermediate. The intermediate then undergoes a 

rearrangement to produce the subsequent ester or lactone. For the migrating step to 

occur, stereoelectronic requirements must be fulfilled, which are:  the migrating group 

R
M 

must be antiperiplanar to the peroxy bond (O-O) and antiperiplanar to the lone pair 

of the hydroxyl group (Figure 1.14).
12, 22c, 50b
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Figure 1.14 The reaction mechanism for a chemical Baeyer-Villiger oxidation. 

The peracid acts as a nucleophile and attacks the ketone to form an intermediate which 

rearranges to give the product and carboxylic acid. 

 

A large number of peracids can be used as oxidants in the BV reaction such as 

trifluoroperoxyacetic acid, m-chloroperoxybenzoic acid, peroxyacetic acid and 

hydrogen peroxide. However, the use of such peracids leads to disadvantages within the 

BV reaction, including the formation of the corresponding carboxylic acid which then 

needs to be disposed of. In addition, these acids are expensive and hazardous thus 

diminishing their commercial availability. Hydrogen peroxide is a little different to the 

other peracids as it is perceived to be a much “greener” approach to the BV reaction. It 

is a cheap, safe and clean oxidant producing water as a side product. Unfortunately, this 

water can cause a problem in which the resulting ester is hydrolysed leading to a lower 

substrate scope. Furthermore, due to its lower oxidative activity a catalyst must be used 

which can lead to further disadvantages. Thus, attention turned to a much greener 

approach in the form of Baeyer-Villiger monooxygenases.
22, 50b

 

 

1.4.1.2 The biocatalytic Baeyer-Villiger reaction 

Class B BVMOs catalyse the Baeyer-Villiger oxidation of ketones (or aldehydes) to its 

corresponding ester. In addition, owing to the advanced regio- and stereoselectivity 

nature of enzymes, BVMOs can also catalyse the asymmetric oxygenation of racemic 

chiral ketones to useful asymmetric lactones (Figure 1.15).
11, 22
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Figure 1.15 BVMO catalysed Baeyer-Villiger reactions. 

 

As with the many FPMOs, the enzyme catalysed Baeyer-Villiger reaction is initiated by 

the reduction of FAD by NADPH followed by an immediate oxidation by molecular O2 

to give a flavin peroxidate anion, which is thought to be the active catalyst in the 

oxygen-insertion process.
53

 In the absence of substrate the peroxide lives in its most 

stable reduced form. The peroxide acts as a nucleophile and attacks the carbonyl group 

of the ketone substrate forming the tetrahedral ‘Criegee intermediate’. Rearrangement 

of the intermediate forms the desired lactone product and hydroxyflavin. The loss of 

H2O regenerates FAD and the product and cofactor are released (Figure 1.16).
22a
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Figure 1.16 The catalytic cycle of a class B Baeyer-Villiger monooxygenase. 

NADPH reduces the flavin which reacts with molecular oxygen to produce 

peroxyflavin. The peroxyflavin attacks the ketone to form an intermediate that 

undergoes a rearrangement to yield the corresponding lactone. 

 

The accepted mechanism of BVMOs today stems from the results generated for the 

BVMO cyclohexanone monooxygenase from Acinetobacter calcoaceticus NCIMB 

9871 (CHMO9871) and proposed steps and rate constants by Walsh et al. in 1982 and 

more recently by Massey et al. in 2001.
53-54

 

 

1.4.1.3 Known Baeyer-Villiger monooxygenases 

Numerous class B BVMOs have been cloned and characterised.
36, 55

 Cyclohexanone 

monooxygenase (CHMO) was the first BVMO to show catalytic potential and since 

1976 when Trudgill et al. originally isolated and characterized CHMO from 

Acinetobacter sp. NCIMB 9871 (E.C. 1.14.13.22) it has become the most studied 

BVMO to date.
11, 56 

Currently over one hundred substrates have been identified for this 

enzyme. CHMO has been shown to accept heteroatom compounds in addition to a wide 

range of carbonylic compounds (Figure 1.17).
22b
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Figure 1.17 An example of a Baeyer-Villiger reaction catalysed by CHMO. 

The BV reaction of the ketone produces the lactone which spontaneously rearranges to 

give the final product. 

 

Its ability to accept such a vast array of compounds along with its high regioselective 

and enantioselective properties has allowed CHMO and thus BVMOs to become very 

desirable green oxidative biocatalysts. A number of CHMO homologs have been 

discovered and overexpressed allowing comparative biocatalytic studies which revealed 

that although sequence similarity can be high between the homologs, the 

regioselectivity can vastly differ.
57

 In addition, directed evolution studies by Reetz et al. 

identified that the enantioselectivity of CHMO can be dramatically improved by 

mutating a single amino acid.
58

 The structure of CHMO from a mesophilic species of 

Rhodococcus complexed with NADP
+
 and FAD was solved (Figure 1.18).  
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Figure 1.18 Structure of the class B BVMO, CHMO from Rhodococcus complexed 

with FAD and NADP
+
 (3GWF). 

The protein back bone is shown in ribbon format. The NADP
+
 and FAD are shown in 

cylinder format with carbon atoms in green. 

 

The structure is shown to consist of two domains, including both FAD and NADPH 

binding domains, with the active site present in a cleft at the domain interface. In 

addition, it was found that the conserved BVMO motif is on the surface of the enzyme 

away from the implied active site and it was suggested that this fingerprint sequence 

may be involved in conformational changes of the protein during the catalytic cycle.
59

 

Since the discovery of CHMO, many BVMOs have now been discovered and 

characterised such as, cyclopentanone monooxygenase (CPMO) from Comamonas sp. 

NCIMB 9872 (EC 1.14.13.16),
55

 4-hydroxyacetophenone monooxygenase (HAPMO) 

Pseudomonas fluorescens ACB (EC 1.14.13.84)
60

 and phenylacetone monooxygenase 

(PAMO) from the thermophile Thermobifida fusca (EC 1.14.13.92).
61

 

PAMO was discovered by genome mining and its gene was discovered in the genome 

of the thermophile Thermobifida fusca which allowed PAMO to be relatively 

thermostable.
61b

 In addition, PAMO has been shown to tolerate solvents which are 

positive characteristics as other BVMOs can be limited due to instability.
11, 62

 The main 

substrate scope for this enzyme are aromatic ketones although, aromatic sulfides, 
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sulfoxides, aliphatic ketones and organoboron compounds are also oxidised by this 

enzyme.
61b, 63

 In 2004, PAMO was the first monooxygenase in this subclass for which 

the crystal structure was determined (Figure 1.19).
61a

  

 

 

Figure 1.19 Structure of the class B BVMO, PAMO from Thermobifida fusca 

complexed with FAD (1W4X). 

The protein back bone is shown in ribbon format. The FAD is shown in cylinder format 

with carbon atoms in green. 

 

The structure was found to possess two Rossmann-fold domains binding the FAD and 

NADPH cofactor. Within the structure the dinucleotide binding domains are flanked by 

two helical domains. Both CHMO and PAMO structures are very similar and possess 

unique characteristics for this type of FPMO.
11

 

 

1.4.1.4 Conserved motifs 

In 2002, Fraaije and co-workers published findings identifying an amino acid sequence 

named the ‘BVMO motif’ (FXGXXXHXXXW(P/D)), which is highly conserved 

throughout Bayer-Villiger monooxygenases. Two other conserved regions known as 

Rossmann motifs (GXGXXG) were also found to be present throughout the BVMO 
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family and were reported to aid binding of the ADP moiety present in each cofactor. 

The length of BVMOs generally falls between 500 and 550 amino acids with a 

molecular weight around 60 kDa. The first Rossmann sequence lies near the N-terminus 

whilst the second is approximately 200 amino acids away. The BVMO motif sequence 

is said to be located closely upstream to the second Rossmann motif and it is this 

BVMO motif that allows for the identification of new BVMOs from sequenced 

genomes.
36

 

 

1.4.2 Flavin monooxygenases 

Flavin monooxygenases (FMOs) (EC 1.14.13.8) formerly named ‘mixed-function 

oxidases’ were originally acknowledged in liver enzymes. FMOs are present in all 

mammals and other eukaryotic organisms. In humans several isoforms exist, with each 

allowing a specific substrate and tissue localisation. Within the human genome, six 

FMO genes and five pseudo-genes have been identified.
11

 Of these, FMO3 is 

recognised as the most important isoform in the liver as it plays an important role in the 

detoxification of drugs, biodegradation of aromatic compounds
64

 and other xenobiotics 

in the human body.
65

 It has been reported that mutations in FMO3 cause the inheritable 

disease trimethylaminuria (TMAU) or ‘fish odour syndrome’ due to the build-up of 

trimethylamine in body fluids.
65

  FMOs are said to complement the activity of the 

cytochrome P450 system and catalyse the oxygenation of carbon bound reactive 

heteroatoms such as, nitrogen, sulfur, phosphorus, selenium or iodine.
11, 66

 All 

mammalian FMOs have a strong membrane association with poor water solubility
64

 and 

so far no structure of a mammalian FMO is available.
67

  

 

1.4.2.1 Known FMOs 

In addition to mammalian FMOs, non-mammalian eukaryotic FMOs have also been 

identified. Such FMOs were isolated from yeast from Saccharomyces cerevisiae which 

was shown to be involved in the oxidation of biological thiols such as glutathione.
68

 It 

was revealed that the yeast FMO is required for proper folding of the disulphide 

containing proteins by generating an oxidising environment in the endoplasmic 

reticulum.
69

 Another yeast FMO from Schizosaccharomyces pombe has also been 

identified which was used in the oxidation of methimazole. Crystal structures of the 
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yeast FMO from S. pombe were determined and revealed a two domain structure, a 

FAD binding domain and NADPH binding domain. In addition, structures of the yeast 

enzyme bound to substrate revealed that the substrate binds to the same site as the 

nicotinamide cofactor.
70

 A plant FMO was also identified from Arabidopsis which was 

found to catalyse the hydroxylation of tryptamine involved in the biosynthesis of 

auxin.
71

 

The first bacterial FMO was cloned by Choi et al. from the methylotropic bacterium 

Methylophaga sp. strain SK1 and named mFMO. Overexpression and characterisation 

of mFMO revealed the enzyme was dependent on NADPH as nicotinamide cofactor and 

had the ability to oxidise a variety of amines. It was also found that mFMO could 

readily oxidise indole as large amounts of indigo were formed by the recombinant E. 

coli cells expressing the enzyme.
72

 In addition, mFMO fused with phosphite 

dehydrogenase (PTDH) has recently been employed for the asymmetric oxidation of a 

range of prochiral sulfides to give predominantly the (S)-sulfoxide product with 

moderate to high enantiomeric excess (Figure 1.20).
73

   

 

 

Figure 1.20 Sulfoxidation reactions of a range of prochiral sulfides catalysed by PTDH-

mFMO.  

 

Structural studies allowed for the structure of mFMO to be discovered and although 

smaller than class B BVMOs at 53 kDa the overall structure was relatively similar. The 

mFMO structure was found to possess two distinct domains, a larger FAD binding 

domain and a smaller NADP
+
 binding domain (Figure 1.21).

67
 In addition, the 

molecular determinants responsible for the binding of the 2’ribose phosphate of 

NADPH in mFMO, and those which discriminate between NADPH and NADH have 

been identified.
74
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Figure 1.21 Structure of the class B FMO, mFMO from Methylophaga sp. strain 

SK1complexed with FAD (2XLT). 

The protein back bone is shown in ribbon format. The FAD is shown in cylinder format 

with carbon atoms in green. 

 

1.4.2.2 The catalytic mechanism of FMOs 

FMOs can act on a range of non-polar substrates that contain soft nucleophile 

heteroatoms.
64

 As with class B BVMOs, class B FMOs are single component 

polypeptides that use NADPH as nicotinamide cofactor to reduce the bound FAD,
75

 

forming FADH2, which reacts with molecular oxygen to yield the C4α-

hydroperoxyflavin intermediate. In the case of sulfides, this intermediate undergoes a 

nucleophilic attack by the sulphur atom. The intermediate is responsible for the 

insertion of the oxygen atom into the substrate, which allows for the production of the 

hydroxyflavin intermediate. The loss of water allows for the restoration of cofactor.
64, 67

 

An extraordinary feature of the FMOs catalytic cycle is the ability to stabilise the 

hydroperoxyflavin intermediate until a substrate is present.
67, 76

 It is thought that 

NADPH is essential for intermediate stabilisation and thus remains bound throughout 

the catalytic cycle and thus prevents the enzyme from working as a NADPH oxidase, 

which would produce hydrogen peroxide and oxidised flavin (Figure 1.22).
67, 77

 

However, recent reports suggest that structural changes in the active site weaken the 
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binding of NADP
+
 and interactions between the peroxyflavin and residues present in the 

active site accelerate the cofactors release and also stabilise the hydroperoxyflavin until 

substrate is introduced.
74

 In the absence of substrate the FMO returns to its oxidised 

form releasing hydrogen peroxide.
78

 

 

 

Figure 1.22 The catalytic cycle of a class B Flavin Monooxygenase. 

FAD is reduced by NADPH and reacts with O2 to form the reactive hydroperoxyflavin 

intermediate which undergoes a nucleophilic attack from the substrate (S) and oxygen 

insertion occurs (S-O). 

 

1.4.2.3 Conserved motifs 

Similar to class B BVMOs, FMOs possess two Rossmann motifs (GXGXXG) which are 

responsible for the recognition of the ADP moiety in FAD and the nicotinamide 

cofactor NADPH. FMOs also have an amino acid sequence that is individual to FMOs 

(FXGXXXHXXXY/F), known as the ‘FMO motif’ and thus can be used to distinguish 

between class B BVMOs and FMOs. The ‘FMO motif’ can be used to identify possible 

new FMOs however, in contrast to eukaryotic FMOs bacterial FMOs are quite rare.
11, 36
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1.4.3 N-hydroxylating monooxygenases 

Microbial N-hydroxylating monooxygenases (NMOs) catalyse the N-hydroxylation of 

long chain primary amines and include the ornithine hydroxylase from Pseudomonas 

aeruginosa (PvdA),
79

 the ornithine hydroxylase from Aspergillus fumigatus (SidA),
80

 

and the lysineN(6)-hydroxylases.
81

 NMOs play a role in the biosynthesis of certain 

bacterial and fungal siderophores.
11

 Cloning and sequencing of several NMO genes 

revealed that the monooxygenases share sequence homology with FMOs
82

 and rely on 

NADPH for catalysis.  

The NMO PvdA catalyses the FAD-dependent hydroxylation of the ornithine side chain 

amine using NADPH as the electron donor and molecular oxygen (Figure 1.23), 

however the FAD is not stably bound.
79c

  

 

 

Figure 1.23 Reaction scheme for the hydroxylation of ornithine by the NMO PVdA 

from Pseudomonas aeruginosa. 

 

Recently two structures of PvdA have been determined with the FAD in both oxidised 

and reduced form and are the first structures of a class B NMO. PvdA is comprised of 

three domains, two Rossmann-like domains for the recognition of FAD and NADPH 

and a substrate binding domain (Figure 1.24). The structures possess bound NADPH 

and substrate (hydroxy-ornithine) in a solvent-exposed active site. Structural and 

biochemical evidence suggest that NADP
+
 remains bound throughout the oxidative half 

of the reaction, which is said to stabilise the flavin intermediates.
83
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Figure 1.24 The three domain structure of PvdA from Pseudomonas aeruginosa 

complexed with FAD and NADPH (3S5W, 3S61). 

The protein back bone is shown in ribbon format. The FAD and NADPH are shown in 

cylinder format with carbon atoms in green. 

 

A recent report by Robinson et al. involving a class B NMO, SidA, suggests a novel 

role for NADP
+
 in the reaction of flavin-dependent monooxygenases, in which the 

nicotinamide cofactor donates a proton from the 2’-hydroxyl of the nicotinamide ribose 

to the peroxyflavin to form the hydroperoxyflavin.
84

 

Members of the NMO family have been studied less compared to BVMOs and FMOs 

partly owing to their low affinity for FAD which limits mechanistic studies.
85

 In NMO 

sequences, only the histidine residue is conserved in the sequence region corresponding 

to the BVMO and FMO sequence motifs.
36, 86

 In addition, the Rossmann motifs in 

NMOs are not the typical GXGXXG as in the other class B FPMOs, but exist as GXG. 

For example in the case of PvdA, the motif sequence is GXGXXN.
83

 

 

1.4.4 The drawback of class B FPMOs 

From an industrial application point of view, a major drawback of class B FPMOs is the 

dependence of the enzymes on NADPH as nicotinamide cofactor. NADPH is more 
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expensive than its non-phosphorylated neighbour NADH and using structural analysis 

of the interactions between the active site and the phosphate of NADPH attempts have 

been made to investigate and engineer the cofactor preference of class B BVMOs.
87

 

However, progress in this area has been unsuccessful, indicating that engineering an 

NADPH dependent enzyme to employ NADH is not a simple task. Recently, NADH-

dependent FMO activity has been reported in a group of enzymes from Rhodococcus 

jostii RHA1 in which the enzymes were able to employ either NADH or NADPH as 

nicotinamide cofactor yielding similar conversion rates and enantioselectivities.
18

   

Other than enzyme engineering, the cofactor associated drawback can be eliminated by 

cofactor recycling systems for both NADPH and NADH such as, glucose-6-phosphate 

dehydrogenase or formate dehydrogenase which regenerate the cofactor without 

interfering with the oxygenation reaction.
13

 Thus, the cofactor does not have to be 

employed in stoichiometric amounts.  

Another example of reducing cofactor costs is that involving the class E 

monooxygenase StyA were the reductase component (StyB), NAD and the formate 

dehydrogenase NADH recycling system was replaced by pentamethyl-cyclopentadienyl 

rhodium bipyridine [Cp*Rh(bpy)(H2O)]
2+

. The redox-catalyst receives electrons from 

the oxidation of formate to carbon dioxide and is able to regenerate reduced FAD 

directly.
88

 In addition the flavin can also be reduced by direct electrochemical reduction 

using an electrode.
11

  

In addition, the use of whole cells rather than isolated enzyme has the advantage of in 

cell cofactor regeneration.
11

 

 

1.5 Applications of class B FPMOs 

 Class B FPMOs are capable of preforming a range of oxygenation reactions under mild 

conditions and producing only water as side product which is of great demand in many 

industrial processes. The products produced by these enzymes act as important 

intermediates in enantioselective organic synthesis and drug discovery.  

Cyclohexanone monooxygenase is an excellent example of class B FPMOs being used 

at an industrial scale. In 2005, Hilker and co-workers established that E. coli cells 

expressing CHMO could be used to produce industrial important lactones at kilogram 



29 

scale. The study demonstrated the scale up of the Baeyer-Villiger oxidation of racemic 

bicyclo[3.2.0]hept-2-en-6-one (Figure 1.25) in which high yields were obtained by 

using a resin-based in situ substrate feeding and product removal methodology, a 

glycerol feed control and an improved oxygenation device. The method allowed both 

regioisomeric lactones ((-)-(1S, 5R) and (-)-(1R, 5S)) to be obtained in almost 

enantiopure form (ee >98 %) and good yield.  The study represented the first Baeyer-

Villiger bio-oxidation reaction at kilogram scale and opened the way for further 

(industrial) upscaling of important monooxygenase reactions.
89

 

 

 

Figure1.25 Whole cell Baeyer-Villiger oxidation of racemic bicyclo[3.2.0]hept-2-en-6-

one catalysed by CHMO. 

 

The class B BVMO, CHMO, can also be used in the synthesis of modern drugs, for 

example esomeprazole. Esomeprazole is a proton pump inhibitor which is prescribed 

for the treatment of dyspepsia, peptic ulcer disease (PUD), gastroesophageal reflux 

disease (GORD/GERD) and Zollinger-Ellison syndrome. Esomeprazole is the (S)-

enantiomer of the racemic omeprazole (Figure 1.26). 
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Figure 1.26 Reaction scheme illustrating the sulfoxidation of racemic omeprazole to 

enantiomeric products. 

 

Typically esomeprazole is synthesised by chemical asymmetric oxidation of sulfides to 

sulfoxides using a Kagan-Sharpless type oxidation which gives esomeprazole in 

approximately 94 % enantiomeric excess.
90

 In an effort to increase efficiency, 

enantiopurity and decrease the number of processing steps, a recent patent was released 

employing mutants of CHMO to produce esomeprazole and other prazole compounds.
91

  

Class B FPMOs have great potential for use as biocatalysts in industry. Together with 

newly developed engineering strategies and structural analysis, selected FPMOs could 

be engineered for increased efficiency in catalysis by ensuring effective cofactor 

consumption, oxygen transfer and product recovery and therefore enable more 

applications for flavoprotein monooxygenases as biocatalysts.  

In addition to being highly suitable for biocatalysts, BVMOs can also be of medical 

relevance. For example, it has been reported that the etaA gene of Mycobacterium 

tuberculosis is responsible for activating thiocarbamide prodrugs
92

 and mutations in this 

gene allows M. tuberculosis to become drug-resistant. Heterologous expression of EtaA 

revealed that it represents a BVMO oxidising various ketones.
93

 In addition, studies 

have shown that the efficiency of antitubercular prodrugs can be increased by designing 

drugs for the upregulation of the etaA gene.
94

 As BVMOs are widespread within 

bacteria and no BVMOs are present in human, plant or animal genomes, BVMOs could 

be a very appealing (pro)drug target.
22c
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Chapter 2: Preliminary Investigation of SMFMO 

This thesis focuses on the characterisation of an unusual FMO from the marine 

bacterium Stenotrophomonas maltophilia. Prior to the commencement of this work, 

preliminary experiments were performed.  

Initial screening and preparation of genomic DNA was achieved by Plymouth Marine 

Laboratories (PML Applications Ltd). Sequencing and assembly of genomic DNA was 

carried out at the GenePool Genomics and Bioinformatics Facility at the University of 

Edinburgh. Cloning, expression and purification were performed by Dr Jared 

Cartwright (Technology Facility, University of York). Initial gas chromatography 

assays and crystallisation experiments were performed by Dr Gideon Grogan prior to 

the start of this Ph.D. 

 

2.1 Identification and isolation of SMFMO gene 

Stenotrophomonas maltophilia flavoprotein monooxygenase (SMFMO) was encoded 

within the marine bacterial strain Stenotrophomonas maltophilia (PML168), isolated 

from a rock pool on Wembury Beach. Initial screening of PML168 indicated that the 

strain had general alkaline phosphomonoesterase, alkaline phosphodiesterase, 

carboxyesterase, epoxide hydrolase, halocarboxylic acid dehalogenase/dehydrogenase, 

peroxidase, laccase and lactone hydrolase enzymatic activities.
95

 In addition, PML168 

was notable for performing Baeyer-Villiger oxidation of the substrate 3-acetyl indole, 

described in Figure 2.1. This industrially relevant enzymatic activity prompted the 

analysis of the Stenotrophomonas maltophilia genome sequence, which revealed an 

interesting 357 amino-acid (38.6 kDa) enzyme (SMFMO, UNIPROT B2FRL2). The 

enzyme sequence contains two Rossman fold motifs (GXGXXG) responsible for the 

binding of the ADP moiety of the FAD and NADPH
96

 and an amino acid motif 

distinctive of an FMO (FAGIQLHSAHY),
11, 36

 shown in Figure 2.2. 
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Figure 2.1 Baeyer Villiger oxidation of 3-acetyl indole to yield the corresponding ester. 

PML168 was notable for performing the oxidation of 3-acetyl indole in the presence of 

molecular oxygen. 

 

 

 

Figure 2.2 Stenotrophomonas maltophilia (SMFMO) amino acid sequence. 

The two Rossman motifs are indicated in green and the ‘FMO motif’ is indicated in red. 

 

2.2 Cloning, expression and purification 

The gene encoding SMFMO, codon optimised for use within E. coli, was synthesised 

by Geneart (Regensburg, Germany). The gene was amplified by PCR and cloned into 

the pET-YSBLIC-3C vector using the LIC procedure described in Section 3.1.1 – 3.1.5. 

The resulting recombinant plasmid was employed to transform E. coli XL1-Blue cells 

(Novagen) and the resulting plasmid recovered using miniprep, as described in Section 

3.1.6, was used for gene expression (Section 3.2). The expressed 38.6 kDa protein was 

purified using nickel-affinity chromatography and gel filtration (Section 3.3, Figure 2.3) 

yielding SMFMO that is bright yellow in colour. 
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Figure 2.3 SDS-PAGE gel showing pure recombinant SMFMO at 38.6 kDa.  

The enzyme was purified using nickel affinity chromatography followed by gel 

filtration.  Lane 1: Low molecular weight markers from BioRad. Lane 2: SMFMO after 

purification. 

 

2.3 Enzyme assays 

Preliminary gas chromatography analysis, described in Section 3.4, of SMFMO with the 

commercially available substrate 15 demonstrated that the enzyme possessed class B 

FPMO-type activity, when supplied with a nicotinamide cofactor NADH or NADPH 

(Figure 2.4). Interestingly, the enzyme was able to oxidise the thioether substrate using 

either cofactor. A second substrate, 1, was also employed and revealed that SMFMO 

had the ability to catalyse a Baeyer-Villiger oxidation, illustrated in Figure 2.4. 

Similarly, activity was observed when using either NADH or NADPH as nicotinamide 

cofactor to reduce the flavin. 
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Figure 2.4 Sulfoxidation and Baeyer Villiger oxidation reactions catalysed by SMFMO. 

Initial assays established that SMFMO had the ability to catalyse the oxidation of 15 

and 1 to their corresponding products, in the presence of either NADH or NADPH. 

 

2.4 Crystallisation and structure determination 

Crystallisation conditions for SMFMO were established (Section 3.7) and were 

successful in producing yellow needle like protein crystals (Figure 2.5). The crystals 

allowed for a 2.7Å dataset to be obtained and the structure to be solved but poor quality 

of the density maps meant that building of the structure proved difficult. 

 

 

Figure 2.5 Initial yellow SMFMO protein crystals obtained by Gideon Grogan. 

Crystals were obtained using conditions containing lithium sulphate (1.8 M) and protein 

(4 mg mL
-1

). 
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2.5 PhD project Aims 

The ability for SMFMO to use either NADH or NADPH as nicotinamide cofactor in 

oxidation reactions gave this enzyme unique characteristics within class B FPMOs, 

along with its smaller molecular weight. The gene was easily expressed and protein 

purification was simple, thus, allowing for a complete investigation into the nature of 

SMFMO and its structure. 

 

The aims of the PhD project were: 

 

1. Express the SMFMO gene and purify the protein to yield pure isolated protein at 

a high concentration. 

2. Characterise the kinetic ability of SMFMO to reduce the flavin using either 

NADH or NADPH as nicotinamide cofactor. In addition, determine if SMFMO 

conforms to Michaelis-Menten enzymatic behaviour using UV-spectrometry 

assays. 

3. Characterise the activity of SMFMO and thus the enzymes ability to oxidise 

substrates in the presence of either nicotinamide cofactor using biochemical 

techniques such as, gas chromatography (GC) or chiral GC. 

4. Determine the substrate specificity of SMFMO by utilising a library of 

commercially-available ketones to be screened against the target enzyme for 

activity with both NADH and NADPH. 

5. Screen the activity of SMFMO against a range of prochiral sulfides employing 

either nicotinamide cofactor to reduce the flavin. 

6. Determine the structure of SMFMO and characterise the enzyme using structural 

analysis. 

7. Engineer SMFMO to investigate the cofactor promiscuity of the enzyme using 

mutagenesis techniques such as, site-directed mutagenesis. In addition, obtain a 

structure of the SMFMO variants for structural analysis. 
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8. Evolve SMFMO to investigate the binding properties of the active site and 

improve the enantiomeric excess of the successful reactions using mutagenesis 

techniques such as, site-saturation mutagenesis. 

9. Study closely related enzymes to SMFMO for possible putative NADH-specific 

FPMOs. 
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Chapter 3: Methods 

All chemicals were purchased from Sigma-Aldrich. The SMFMO gene was a gift from 

Jared Cartwright (Technology Facility, University of York) and all other genes were 

synthesised by GeneArt. The pET-YSBLIC-3C plasmid was obtained from a YSBL 

stock. All primers were synthesised by MWG Biotech. Competent cell strains were 

purchased from Novagen. All plasmids obtained from cloning and mutagenesis were 

sequenced by the Genomics Laboratory (Technology Facility) and GATC Biotech. 

 

3.1 Gene Cloning 

3.1.1 Polymerase chain reaction (PCR) 

A polymerase chain reaction (PCR) is generally utilised to increase the amount of DNA 

for a specific gene of interest in a short amount of time. The ability DNA has to 

reversibly unwind from double to single stranded DNA at increased temperatures is 

exploited within the PCR. Forward and reverse oligonucleotide primers are employed, 

which are designed to anneal to the coding and non-coding strands of the separated 

template DNA.  

A PCR is carried out using a thermal cycler which mediates the rapid rise and fall in 

temperature needed throughout the reaction. The reaction mixture is initially heated to 

95
o
C allowing the template DNA to essentially melt from double to single strands. The 

reaction temperature is then lowered to ~50
o
C enabling the primers to anneal to the 

single strands of the template. The ‘annealing temperature’ is usually lower than the 

melting temperature (Tm) of the primers. The reaction mixture is then heated to 72
o
C, 

the ‘extension temperature’, at which DNA polymerase is at its optimum activity. The 

DNA polymerase uses the deoxynucleotide triphosphate monomeric units (dNTPs) 

present in the reaction mixture to synthesise the new strands of DNA in the 5´ to 3´ 

direction. Newly synthesised DNA can then be used as template DNA within the PCR. 

This melt-anneal-extend cycle is repeated approximately 30 times in order to amplify 

the gene of interest. One cycle is shown in Figure 3.1. 
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Figure 3.1: Diagram of the melt-anneal-extend cycle within the polymerase chain 

reaction (PCR).  

 

PCR Method 

Unless stated all PCRs were carried out using the following method. To a thin walled 

Eppendorf tube (500 µL) the components of the PCR (Table 3.1) were added. Milli-Q 

water was added to give a total volume of 50 µL. The DNA polymerase was added last 

and the reaction mixture was thoroughly mixed with a pipette. 
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Table 3.1 Components of PCR reaction used to amplify target genes. 

Component Component concentration Volume /µL 

DNA template 25 ng µL
-1

 1 

Forward primer 20 µM 1 

Reverse primer 20 µM 1 

dNTPs 2 mM 5 

KOD (Hot Start) polymerase buffer  5 

DMSO  1 

MgSO4 25 mM 3 

KOD (Hot Start) polymerase  1 

 

The PCRs were placed in the thermal cycler and ran using the programme described in 

Table 3.2 

 

Table 3.2 PCR programme used to amplify target genes. 

Step Temperature /
o
C Time /s Cycles 

Initial denature 94 120 1 

    

Denature 94 30  

Anneal 50 30 35 

Extend 72 30  

    

Final extend 72 180 1 

Hold 4 - - 
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3.1.2 Ligation independent cloning (LIC) 

Ligation-independent cloning is a method that is independent of ligase activity and 

allows complementary strands of DNA to anneal spontaneously.
6
 Within LIC special 

nucleotide ends known as ‘LIC ends’ are added to the primers used in the gene of 

interest (G.O.I) amplification step. The primers are particularly easy to design as no 

restriction sites need to be incorporated and only the LIC extensions need to be added. 

After the gene of interest is amplified it is cleaned and incubated with T4 DNA 

polymerase and dATP. The polymerase acts as a 3´-5´ exonuclease, in which it digests 

nucleotides from the 3´ends of the DNA sequence until it reaches an ‘A’ base.
97

 At this 

point the polymerase ceases digestion exposing a single strand on each end of the gene. 

Similarly, the LIC vector is digested with a restriction endonuclease (BseRI) which 

yields a linear plasmid with two base pair overhangs. The product is then treated with 

T4 DNA polymerase and dTTP. Once again, the polymerase digests nucleotides from 

the 3´ends until a ‘T’ base is reached. This allows the gene and vector to have 5´-single 

stranded overhangs that are complementary to one another. Incubation of the gene and 

vector allows for the spontaneous annealing of the complementary ‘sticky ends’, thus, 

resulting in the desired recombinant plasmid (Figure 3.2). 
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Figure 3.2 Diagram outlining the ligation-independent cloning (LIC) process. 

The gene of interest is amplified with LIC primers by PCR. Both gene and linearised 

vector are incubated with T4 DNA polymerase and corresponding dATP/dTTP, yielding 

complementary overhangs which anneal spontaneously at room temperature to give the 

desired recombinant plasmid. 

 

The pET-YSBLIC 3C vector 

The pET-YSBLIC vector is derived from the pET-28a vector (Novagen), which was 

designed to allow the fast production of any protein. The pET-28a plasmid contains a 

kanamycin antibiotic resistance marker, cloning site, lacI gene which encodes the lac 

repressor protein, T7lac promoter and a lac operator used to block transcription. Within 

the cloning site an N-terminal His6 tag is encoded and a human rhinovirus 3C protease 

cleaving site. For the pET-YSBLIC vector the cloning site has been altered to include a 
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LIC site with a BseRI cleavage site. The T7lac promoter and lac operator control the 

expression of the gene within the plasmid. 

The desired gene must be expressed in a strain of E. coli (DE3) that has been altered to 

encode the gene for T7 RNA polymerase, which is under the control of the lacUV5 

promoter and lac operator system switching on induction when lactose is present. 

Isopropyl β-1-thiogalactopyranoside (IPTG) is a non-metabolisable allolactose analogue 

and is used in place of lactose to give overexpression of recombinant enzymes (Figure 

3.3). 

 

 

Figure 3.3 Diagram illustrating IPTG induced gene expression in the pET system. 

IPTG binds to the lac repressor and is released from the lac operator. E. coli RNA 

polymerase can then bind to the lac promoter initiating the production of T7 

polymerase, resulting in the subsequent expression of the target protein. 

 

If IPTG is absent from the growth medium, the primary carbon source is glucose and 

the lac repressor is bound to the lac operator, therefore transcription of the T7 

polymerase gene and the desired gene is blocked. In the presence of IPTG, the lac 

repressor is released from the lac operator in the E. coli genome. E. coli RNA 

polymerase can now bind to the lac promoter and catalyse the production of T7 RNA 

polymerase. The T7 polymerase can then bind to the T7 promoter within the pET 

plasmid, thus initiating the transcription and translation of the desired protein. 

 

3.1.3 Agarose gel electrophoresis 

Preparation of LIC insert 

The desired gene was amplified using PCR as described in section 3.1.1. 
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The PCR products were purified by agarose gel electrophoresis. The bands 

corresponding to the amplified gene were cut out and a GenElute™ gel extraction kit 

(Sigma-Aldrich™) was used to recover the amplified gene of interest. 

 

Preparation of 1 % agarose gel 

To agarose (0.6 g) 1 × TAE buffer (60 mL) was added and heated in a microwave for 70 

s until all the solid had dissolved. Once cool, Sybr® Safe DNA stain (2 µL, 10,000 x 

concentrated in DMSO, Invitrogen) was added and swirled to mix. The mixture was 

then poured into an agarose cast and the desired comb size was inserted. The gel was 

then allowed to set for 1 h. 

 

Table 3.3 Agarose gel electrophoresis buffers 

Buffer Component Concentration 

TAE buffer pH 8.0 Tris 40 mM 

 Acetic acid 20 mM 

 EDTA 1 mM 

 

Sample preparation 

DNA samples were mixed with 6× agarose gel loading buffer (New England Biolabs®) 

in a 1:5 ratio and loaded on to the gel. A DNA ladder was prepared by mixing 1 kb 

DNA ladder (1.5 µL) with 6 x loading dye (1 µL) and water (4 µL). 

 

Agarose gel running conditions  

The gel was run at 100 V, 400 mA for 1 h. After the run the gel was removed from the 

tank and placed under a transilluminator or Safe Imager for analysis. 
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3.1.4 LIC T4 polymerase reactions 

Insert LIC T4 pol reaction 

To a thin walled Eppendorf tube (0.5 mL) the following components were added: 

 

Table 3.4 Components for LIC T4 polymerase reactions 

Component Concentration Volume /µL 

DNA insert 0.2 pmol 5 

10 × T4 buffer  2 

dATP  25mM 2 

DTT  100 mM 0.5 

T4 DNA polymerase  0.5 

 

Water was added to make the final volume of the reaction 20 µL. The reagents were 

mixed and incubated first at 22
o
C for 30min followed by incubation at 75

o
C for 20 min 

using a PCR machine. 

 

3.1.5 LIC annealing reaction 

Pure T4 treated linearised pET-YSBLIC-3C vector was sourced from Laila Roper 

within the Grogan group. 

To an Eppendorf tube the previously T4 treated insert (3 µL) and pure T4 treated 

linearised pET-YSBLIC-3C vector (1.5µL, 4.0 pmol) were added and the mixture was 

incubated at room temperature for 10 min. EDTA (1.5 µL, 25 mM) was added and the 

mixture was incubated for a further 10 min. 

 

3.1.6 Transformation and miniprep  

E. coli XL10 Gold Ultra-competent cells were gently thawed on ice. Cells (75 µL) were 

aliquoted into a pre-cooled Eppendorf tube (0.5 mL) along with β-mercaptoethanol (4 

µL) and the mixture was swirled every 2 min for 10 min. The LIC annealing reaction (6 
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µL) was added and the sample was left on ice for 30 min. The sample was subjected to 

‘heat shock’ at 42
o
C for 45 s and returned back to ice. LB (500 µL) was added and the 

sample was incubated at 37
o
C for 2 h. After incubation, the mixture was centrifuged (3 

min, 5000 rpm) and the pellet was resuspended in supernatant (300 µL). The mixture 

was then spread between two kanamycin (30 µg mL
-1

) LB agar plates and incubated at 

37
o
C overnight. 

 

A colony from the previous plates was picked and placed in a sterile vial containing LB 

medium (5 mL) and kanamycin (30µg mL
-1

). The mixture was incubated overnight at 

37
o
C with shaking. A GenElute™ plasmid Miniprep kit (Sigma-Aldrich®) was used to 

retrieve the DNA. 

 

3.1.7 Restriction Digest 

To an Eppendorf tube (0.5 mL) mini-prep DNA (7 µL), NcoI (NEB) (1 µL), NdeI 

(NEB) (1 µL) and 10 × NEB buffer 2 (1 µL) were added and incubated at 37
o
C for 2 h. 

Each reaction mixture (10 µL) was loaded onto a 1 % agarose gel and analysed (section 

3.1.3). 

 

3.2 Protein Production 

3.2.1 Transformation with SMFMO plasmid 

The pET-YSBLIC-3C vector containing the B2FRL2 gene (1 µL) was added to E. coli 

competent cell strain BL21 (DE3) (25 µL) and placed on ice for 20 min. The mixture 

was placed in a water bath (42
o
C) and heat shocked for 45 s before resting on ice for a 

further 5 min. LB media (1 mL) and incubated at 37
o
C, 90 min. After incubation, the 

mixture was centrifuged (3 min, 5000 rpm) and the pellet was resuspended in 

supernatant (300 µL). The mixture was then spread between two kanamycin (30 µg mL
-

1
) LB agar plates and incubated at 37

o
C overnight. 
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3.2.2 Preparation of starter culture 

A colony from the previous transformations was picked and placed a sterile vial 

containing LB medium (5 mL) and kanamycin (30 µg mL
-1

) before incubating at 37
o
C, 

180 rpm overnight. 

 

3.2.3 Small scale expression tests 

Starter culture (50 µL) was used to inoculate LB medium (3 × 5 mL) containing 

kanamycin (30 µg mL
-1

). The mixture was incubated at 37
o
C until OD600nm = 0.6. The 

cultures were induced with IPTG and incubated separately at 16
o
C, 30

o
C and 37

o
C 

overnight with shaking. Controls were also set up in the same way but without the 

induction of IPTG. 

 

Analysis of soluble and insoluble fractions 

After incubation the cell cultures were centrifuged (10 min, 5000 rpm) and the 

supernatant was discarded. The resulting cell pellet was resuspended in Milli-Q water (1 

mL). The cells were lysed by sonication (3 × 30 s) and centrifuged (10 min, 5000 rpm). 

The supernatant (soluble fraction) was decanted into a clean Eppendorf tube and the 

pellet (insoluble fraction) was resuspended in Milli-Q water (500 µL). Both soluble and 

insoluble fractions were analysed by SDS-PAGE. 

 

3.2.4 Sodium dodecyl sulphate-polyacrylamide electrophoresis (SDS-PAGE) 

12% SDS-PAGE gel preparation  

The 12% resolving gel was prepared using sterile de-ionised water (3.2 mL), resolving 

buffer (2.5 mL) and acrylamide (4.5 mL). APS (50 µL, 10 % w/v) and TEMED (8.5 

µL) were added before mixing and pouring into a gel frame. A small amount of butan-

1-ol was added in order to even out the top of the gel and remove any bubbles.  The gel 

was left to set for 15 min. Once set, the butan-1-ol was removed. The stacking gel was 

prepared by mixing deionised water (3.2 mL), stacking buffer (1.3 mL), Acrylamide 

(0.5 mL) and bromophenol blue (10 µL). APS (25 µL, 10 % w/v) and TEMED (8.5 µL) 

were then added and mixed thoroughly before pouring into the gel frame. A plastic gel 
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comb was added immediately to the stacking solution and allowed to set for 15 min. 

Solutions used are shown in Table 3.5. 

 

Sample preparation 

Samples were prepared by mixing protein sample (10 µL) with SDS-PAGE loading 

buffer (10 µL). The samples were heated to 95
o
C for 5 min. A Bio-Rad low molecular 

weight marker was also prepared. 

 

Running of SDS-PAGE gel 

The gel was removed from the frames and placed in a gel tank. The tank was filled with 

running buffer and the prepared samples and markers were loaded on to the gel using a 

needled syringe. The gel was run for 55 min at 200 V. 

 

Staining of Gels 

Once run, the gel was removed from the gel tank and placed in a plastic tub. Coomassie 

blue stain was added to the tub until the gel was covered and heated in a microwave on 

high for 40 s. The stain was decanted and the gel was rinsed lightly with water. 

 

Destaining of Gels 

Destain was added to the tub until the gel was covered and heated in a microwave on 

high power for 40 s. A tissue was then folded and placed on top of the gel and the tub 

was covered with a lid. The tub was placed on a rocker overnight and after destaining 

the gel was photographed and stored in water. 
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Table 3.5 Solutions for SDS-PAGE 

Solution Component Concentration 

Resolving buffer pH 8.8 Tris 1.5 M 

 SDS 0.1 % w/v 

   

Stacking Buffer pH 6.8 Tris 0.5 M 

 SDS 0.4 % w/v 

   

SDS-PAGE loading buffer Tris-HCl (pH 8.0) 60 mM 

 Glycerol 10 % w/v 

 SDS 2 % w/v 

 Bromophenol blue 0.02 % w/v 

 β-mercaptoethanol 10 % w/v 

   

Running buffer Tris 25 mM 

 Glycine 200 mM 

 SDS 0.1 % w/v 

 

3.2.5 Large scale gene expression 

Transformation and starter cultures were prepared as previously described (Section 

3.2.1, Section 3.2.2). 
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Lysogeny broth medium preparation (LB) 

LB was prepared by dissolving the following components (Table 3.6) in distilled water 

(1 L). The media was transferred to 2 L baffled Erlenmeyer flasks and autoclaved.  

 

Table 3.6 Components for lysogeny broth (LB) medium 

Component Concentration /g L
-1

 

Sodium Chloride 10 

Yeast extract 5 

Tryptone 10 

 

Gene expression 

Starter culture (5 mL) was added to LB media (500 mL) containing kanamycin (500 

µL) and incubated at 37
o
C, with shaking at 180 rpm. Once the OD600nm reached approx. 

0.6 the cultures were induced with IPTG (1 mM) and incubated overnight at 16
o
C, with 

shaking at 180 rpm. The following day the cells were collected by centrifugation (15 

min, 5000 rpm) and the supernatant was discarded. The cell pellet was resuspended in 

Buffer A (100 mL). 

 

3.3 Protein purification 

General buffers used throughout protein purification are listed in Table 3.7. All buffers 

were filtered and degassed before use. 
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Table 3.7 Buffer used throughout protein purification 

Buffer Component Concentration /mM L
-1

 

A pH 7.0 Tris/HCl 50 

 NaCl 300 

   

B pH 7.0 Tris/HCl 50 

 NaCl 300 

 Imidazole 30 

   

C pH 7.0 Tris/HCl 50 

 NaCl 300 

 Imidazole 500 

 

3.3.1 Cell lysis by sonication 

Cell pellets derived from 2 L of culture were resuspended in buffer A (100 mL) and 

transferred to a 200 mL glass beaker. The cells were then sonicated on ice (3 × 30 s with 

30 s intervals). The sonicated extract was centrifuged (35 min, 18,000 rpm) and the 

pellet was discarded. The supernatant was -filtered using a Millex syringe filter (0.45 

µm pore size followed by 0.22 µm) into a sterile pot and the filtered protein was kept on 

ice. 

 

3.3.2 Nickel (Ni
2+

) affinity chromatography 

Expression using the pET-YSBLIC-3C vector gives rise to a N-terminal His6 tag, which 

can be used to purify a protein using Ni
2+

 affinity chromatography. Polymer beads 

within the column are charged with nickel ions and the crude protein extract is loaded. 
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The His6 tagged protein will chelate the nickel ions, resulting in the binding of the 

protein to the charged beads. Other proteins, which are not hexahistidine tagged, are 

eluted without binding. After washing with buffer, the bound protein is eluted with an 

increasing concentration of imidazole. 

 

Preparation of Ni
2+

 column  

The Ni
2+

 column (5 mL, HisTrap column, GE Healthcare) was prepared by following 

the series of steps in Table 3.8. 

 

Table 3.8 Steps for preparation of Ni
2+

 column 

Step Solvent Volume /mL 

1 dH2O 20 

2 EDTA (0.1 M) with NaCl (0.5 M) 20 

3 NaCl (0.5 M) 20 

4 dH2O 20 

5 NiSO4 20 

6 dH2O 20 

7 Buffer A 20 

 

The crude protein extract was loaded onto the prepared column followed by buffer A 

(20 mL). 

 

AKTA-FPLC 

The AKTA-FPLC pumps were washed with H2O and the Ni
2+

 column was attached. 

The bound protein was eluted with an increasing gradient of imidazole, from 30 mM to 

500 mM (0 - 100 % Buffer C). The FPLC was programmed to collect 4 mL fractions at 



52 

a flow rate of 1 mL min
-1

 until 150 mL of gradient buffer had been collected. Fractions 

determined to contain protein according to the FPLC chromatogram were analysed by 

SDS-PAGE (Section 3.2.4). The protein fractions were combined and centrifuged (5000 

rpm) using a Centricon® concentrator tube (10 kDa MWCO) until the volume reached 

~ 2 mL. 

 

3.3.3 Size exclusion chromatography (SEC) 

After nickel affinity chromatography further purification was needed in order to obtain 

pure protein free of nonspecific aggregates. SEC exploits columns packed with inert 

polymer beads that contain small pores. Once a protein is loaded onto the column it is 

eluted using an uncharged buffer. Large proteins are unable to enter the small pores, and 

must travel around the beads and therefore elute first. Smaller proteins enter the pores 

which hinder their route through the column and thus they are eluted last. 

A Superdex® 75 gel filtration column (16 mm × 60 cm) from GE Healthcare was 

employed for all purifications. 

 

Preparation of gel column 

The column was equilibrated overnight with filtered H2O (120 mL) followed by buffer 

A (120 mL). 

 

Sample loading and gel filtration 

A protein injection loop (2 mL) was attached to the AKTA-FPLC and washed with H2O 

(10 mL) and buffer A (10 mL) using a syringe. The Ni
2+

 purified protein (~ 2mL) was 

injected on to the loop and loaded onto the column. The FPLC was instructed to collect 

4 mL fractions at a flow rate of 0.5 mL min
-1

 until 120 mL of buffer A had been 

collected. The fractions displaying high UV absorbance at 280 nm were analysed by 

SDS-PAGE (Section 3.2.4).  
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Protein concentration 

The fractions containing pure protein as identified by the SDS-PAGE analysis were 

combined and concentrated using a Centricon® concentrator tube (10 kDa MWCO) and 

spun in a centrifuge (5000 rpm) until the concentration of protein reached 3 mg mL
-1

. 

The concentration of protein was determined using a UV spectrophotometer measuring 

absorbance. Using the Beer- Lambert equation A= ε.c.l where ε is the absorption 

coefficient (estimated using the EXPasy ProtoParam tool) and l is 1 cm the 

concentration of protein can be calculated. The purified protein was snap frozen using 

liquid nitrogen (500 µL aliquots) and stored at -80
o
C for later use.  

 

3.3.4 His6-tag cleavage 

The pET-YSBLIC-3C vector contains a sequence that encodes a protease cleavage site 

(Leu-Glu-Val-Leu-Phe-Gln/Gly-Pro-Ala) which is recognised by the human rhinovirus 

3C protease (HRV 3C). The HRV 3C protease can be used to remove a protein 

histadine tag. 

 

Protease digestion 

Protein (0.5 mL, 3 mg mL
-1

) was diluted with buffer A to a concentration of 1 mg mL
-1

. 

HRV 3C protease (3.5 µL, 1 mg per 100 mg of protein) was added to the protein and 

mixed. The mixture was stored at 4
o
C overnight. 

The following day samples of the cleaved and uncleaved protein were analysed by SDS-

PAGE (Section 3.2.4). 

The cleaved protein was purified using nickel affinity chromatography (Section 3.3.2). 

 

3.4 Enzyme assays 

Isolated protein was used in all activity assays, unless otherwise stated. For 

spectrophotometric assays a GCB-DBUV spectrophotometer (Cintra10) was used. 

Kinetic constants were determined using the method employed for MtmOIV by Röhr 

and co-workers.
35a
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3.4.1 Spectrophotometric assays 

UltraViolet-Visible (UV-Vis) spectrophotometry is exploited within analytical 

chemistry to determine characteristics of different solutions ranging from transition 

metal ions to biological macromolecules.  

During a UV-Vis experiment a UV-Vis spectrophotometer is utilized and the intensity 

of light passing through the sample is measured. This is then compared to the initial 

intensity of light before passing through a sample and the observed value is known as 

the transmittance (%T), where T =
 

  
. Absorbance, A, is the usual measurement obtained 

from a UV-Vis experiment and is derived from the transmittance of a particular sample: 

A = -    (
  

    
) 

The Beer-Lambert law states that the absorbance of a solution is directly proportional to 

the concentration of the absorbing species and the path length. 

A =       
  

 
  = ε. C. l 

A = measured absorbance 

I0 = Intensity of incident light at a given wavelength (λ) 

I = Transmitted intensity 

l = Path length 

C = Concentration of sample 

ε = Molar absorption or extinction coefficient for a given solvent, temperature and 

pressure. 

 

For a given path length, the Beer-Lambert law can be used to determine the 

concentration of the absorbing species in a particular solution. 

Using UV-Vis spectroscopy, time courses can be carried out in which the absorbance is 

measured every second throughout a reaction. This is extremely useful for determining 

kinetic data for enzymes as the concentration between two different time points can be 

determined. 
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Enzyme kinetics 

The introduction of substrate into an enzyme’s active site allows for the formation of an 

enzyme-substrate complex. The enzyme then catalyses the chemical reaction through an 

array of transition states and an enzyme-product complex is formed. The complex 

dissociates to give free enzyme and product. Other substrate molecules can then bind 

and the catalytic process can continue. 

    
  
→ [[  ] → [  ] → [  ]]  

  
→      

At some point within an enzymatic reaction, all the enzymes active sites will be 

occupied with substrate. In other words, the enzymes active sites are saturated and the 

enzyme is working at its maximum velocity or Vmax. Thus, Vmax has the units of moles 

or substrate converted (product evolved) per unit time. 

For an enzyme with a certain substrate, the maximal rate (Vmax) allows for the 

determination of the Michaelis-Menten constant or KM, where, KM is the concentration 

of substrate at which the enzyme catalyses its reaction at half Vmax. The KM value can be 

taken as an approximate indication for how tightly the enzyme binds its substrate. A low 

number implies that the enzyme has a greater affinity for its substrate, whilst, a high 

number represents a lower affinity.  

   
     [ ]

   [ ]
 

         [  ] 

 

Another kinetic term that is encountered within Michaelis-Menten kinetics is kcat. kcat is 

the turnover number of an enzyme, corresponding to the number of molecules turned 

over by one molecule of enzyme per second, which gives it the units of s
-1

. In addition, 

kcat/KM, known as the specificity constant, is often used to give the most accurate 

measure of catalytic efficiency. The specificity constant can be used to compare the 

catalytic properties of two enzymes, such as mutants or the effect of two different 

substrates on the enzyme. 

 



56 

3.4.2 NADH/NADPH oxidation assays 

Buffer A was used as a blank and the instrument was set to a time scan (10 min). To a 

quartz cuvette (1 mL), buffer A (Table 3.7, 50 µmol) and varying concentrations of 

NAD(P)H (1 mM stock) were added and placed within the instrument and the run 

started. After 50 s, enzyme was added (3.9 nmol) and the decrease in absorbance at 340 

nm was monitored. The concentrations of cofactor are described in Table 3.9. 

 

Table 3.9 Components of NADH/NADPH reduction assays 

Run NADH / µM NADPH /µM 

1 2.5 - 

2 5 - 

3 10 10 

4 20 20 

5 40 40 

6 60 60 

7 80 80 

8 100 100 

9 120 120 

 

3.4.3 Bicyclo[3.2.0]hept-2-en-6-one (substrate 1) oxidation assays 

Buffer A was used as a blank and the instrument was set to a time scan (10 min) at a 

wavelength of 340 nm. To the cuvette (1 mL), buffer A (50 µmol), NAD(P)H (250 µM) 

and varying concentrations of bicyclo[3.2.0.]hept-2-en-6-one were added and placed 

within the instrument and the run started. After 50 s, enzyme was added (3.9 nmol) and 

the decrease in absorbance at 340 nm was monitored.
87b

 A repeat was taken for every 
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run. The concentrations for substrate for NADH assays and NADPH assays are 

described in Table 3.10 and 3.11. 

 

Table 3.10 Bicyclo[3.2.0]hept-2-en-6-one concentrations (NADH) 

Run Substrate /mM 

1 0.010 

2 0.025 

3 0.050 

4 0.075 

5 0.100 

6 0.150 

7 0.200 

8 0.250 

 

Table 3.11 Bicyclo[3.2.0]hept-2-en-6-one concentrations (NADPH) 

Run Substrate /mM 

1 0.5 

2 2 

3 6 

4 10 

5 18 

6 20 
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3.4.4 Biotransformations 

For each reaction the appropriate enzymatic system was used to recycle cofactor. For 

NADH, formate dehydrogenase in the presence of sodium formate was utilised. For 

NADPH, glucose-6-phosphate dehydrogenase in the presence of glucose-6-phosphate 

was employed as the recycling system.
13

 Buffer A used throughout is described in Table 

3.7. The substrates employed for reactions are shown in figure 3.4. 

 

 

Figure 3.4 Test substrates used in SMFMO characterisation. 

 

For substrates 1, 2, 3, 6, 8, 9, 15 the following reactions were carried out. 

NADH  

To a round bottomed flask (10 mL) containing buffer A (5 mL) substrate (5 mg in 100 

µL of EtOH), NADH (5 mg), formate dehydrogenase (5 mg), sodium formate (6.8 mg) 

and enzyme (1 mL at 5 mg mL
-1

) were added and stirred for 24 h at room temperature 

(r.t).  
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NADPH 

To a round bottomed flask (10 mL) containing buffer A (5 mL) substrate (5 mg in 100 

µL of EtOH), NADPH (5 mg), glucose-6-phosphate-dehydrogenase (0.14 mg), glucose-

6-phosphate (0.52 mg) and enzyme (1 mL at 5 mg mL
-l
) were added and stirred for 24 h 

at r.t.  

 

For each cofactor experiment, aliquots (500 µL) were taken at time points t=0, t=0.5, 

t=1, t=2, t=4, t=6, t=8 and t=24 h and the organic layer was extracted using ethyl acetate 

(EtOAc) (500 µL). The organic layer was transferred to a glass screw top vial (2 mL, 

Agilent Technologies) and stored at 4
o
C before analysis by GC. 

 

For substrates 4, 5, 7, 10, 11, 13, 14, 16 - 20 the following reactions were employed. 

NADH 

To a screw cap glass vial (5 mL) containing buffer A (1 mL) substrate (1 mg in 50 µL 

of EtOH), NADH (1 mg), formate dehydrogenase (1 mg), sodium formate (1.2 mg) and 

enzyme (200 µL at 5 mg mL
-1

) were added and placed in an incubator (r.t.) with 

shaking for 24 h.  

 

NADPH 

To a screw cap glass vial (5 mL) containing buffer A (1 mL) substrate (1 mg in 50 µL 

of EtOH), NADPH (1 mg), glucose-6-phosphate-dehydrogenase (0.14 mg), glucose-6-

phosphate (0.52 mg) and enzyme (200 µL at 5 mg mL
-1

) were added and placed in an 

incubator (r.t.) with shaking for 24 h.  

 

For each cofactor, a sample after 24 h (500 µL) was taken and the organic layer was 

extracted using EtOAc (500 µL). The organic layer was transferred to a glass screw top 

vial (2 mL, Agilent Technologies) and analysed by GC. 
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3.4.5 Gas chromatography analysis 

For all GC analysis, an Agilent HP-6890 gas chromatograph (Agilent Technologies) 

was used. The injector temperature was set at 250 
o
C and the detector at 320 

o
C. Helium 

was employed as the carrier gas at a pressure of 83 kPa. All sample vials used were 

screw top vials (2 mL) fitted with a PTFE/red silicone septa screw top (Agilent 

Technologies). 

 

Achiral GC analysis 

The gas chromatograph was fitted with a HP-5 column (30 m × 0.32 mm × 0.25 µm). 

The gradient programmes used for analysing the biotransformation reactions are shown 

in Table 3.12. 
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Table 3.12 Gradient programmes preformed for achiral GC analysis 

Substrate 
Gradient 

(
o
C) 

Run 

Time 

(min) 

Retention Time of 

Substrate 

(min) 

Retention Time of 

Product 

(min) 

1 130 4 1.80 3.10 

2 240 10 2.87 - 

3 180 10 2.27 - 

4 
100 to 250 at 10 

o
C 

min
-1

 
15 2.80 - 

5 
100 to 250 at 10 

o
C 

min
-1

 
15 1.90 - 

6 
80 to 150 at 10 

o
C 

min
-1

 
7 1.99 - 

7 
100 to 250 at 10 

o
C 

min
-1

 
15 2.50 - 

8 
80 to 150 at 10 

o
C 

min
-1

 
7 1.99 - 

9 
80 to 150 at 10 

o
C 

min
-1

 
7 2.00 - 

10 
100 to 250 at 10 

o
C 

min
-1

 
15 2.10 3.00 

11 
100 to 250 at 10 

o
C 

min
-1

 
15 2.30 - 

13 180 10 1.90 3.00 

14 150 10 2.30 5.10 

15 150 10 2.40 4.60 

16 150 10 2.00 3.30 

17 180 10 2.20 3.00 

18 180 10 2.20 3.00 

19 180 10 2.20 3.00 

20 180 10 3.60 - 
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Chiral gas chromatography 

Ketone compound 

For substrate 1 columns BGB 173 and BGB 175 (both 30 m × 0.25 mm × 0.25 µm, 

BGB Analytik) were employed. The enantiomers of the substrate were resolved on the 

BGB 175 column using a linear temperature gradient of 100 
o
C to 127 

o
C at 2 

o
C min

-1
. 

Enantiomers of the lactone products were resolved on the BGB 173 column with a 

temperature gradient of 90 
o
C to 34 

o
C at 1

 o
C min

-1
. 

 

Sulfide compounds 

For substrates 13-19 the BGB 175 column was employed. The gradient programmes 

used for resolving the enantiomers of the sulfoxide products are described in Table 3.13. 

 

Table 3.13 Gradient programmes for resolving enantiomers of sulfoxide products 

Substrate Gradient /
o
C Run Time /min 

13 180 30 

14 140 155 

15 180 20 

16 180 30 

17 180 30 

18 180 30 

19 180 30 

 

3.4.6 Gas chromatography-mass spectrometry (GC-MS) 

For all GC-MS analysis, an Agilent 7890A GC system fitted with an Agilent 7695 auto-

sampler was employed, along with an Agilent 5975C inert XL MSD with triple axis 

detector. A HP-5 column (30 m × 0.32 mm × 0.25 µm) was also fitted. Helium was 
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employed as the carrier gas at a pressure of 83 kPa. The gradient programmes for 

analysing the m/z for the product peaks are given in Table 3.14. 

 

Table 3.14 Gradient programmes for analysing the m/z for oxidation products 

Substrate Gradient /
o
C Run Time /min 

1: 100 10 

13 150 10 

14 120 30 

15 120 20 

16 120 30 

17 150 10 

18 150 10 

19 150 10 

 

3.4.7 Cyclohexanone monooxygenase (CHMO) –Assignment of configuration. 

Absolute configurations of sulfide products were assigned through comparison with 

products of biotransformations using cyclohexanone monooxygenase (CHMO), along 

with results reported for the enzyme.
23a, 98

 

 

Transformation with CHMO plasmid 

Transformation was carried out according to Section 3.2.1. E. coli B834 (DE3) cells 

were transformed with pMMO4 plasmid which was a gift from M. Mihovilovic. 

Ampicillin (100 µg ml
-1

) was employed as antibiotic throughout CHMO expression. 
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Gene expression 

Starter culture and protein production was carried out in accordance to Section 3.2.5. 

 

Biotransformation of sulfide library  

The filtered supernatant was concentrated using a Centricon® concentrator tube (10K) 

and spun in a centrifuge (4500 rpm, 15 min) until the volume reached a third of the 

original volume. To a screw cap glass vial (5 mL), NADPH (1 mg), glucose-6-

phosphate-dehydrogenase (0.14 mg), glucose-6-phosphate (0.52 mg), sulfide (1 mg in 

50 µL of EtOH) and cell lysate (1 mL) were added and placed in an incubator (30 
o
C) 

with shaking for 24 h. A t=24 sample (500 µL) was taken and the organic layer was 

extracted using ethyl acetate (500 µL). The organic layer was transferred to a GC vial (2 

mL) and ran on the BGB 175 column using the gradient programmes for of the sulfides 

previously described (Table 3.13). 

 

3.5 Mutagenesis 

3.5.1 Site-directed mutagenesis (SDM) 

Site-directed mutagenesis (SDM) is a tool which enables the active sites and 

mechanistic pathways of enzymes to be investigated rationally. For example, if the 

hydrophobic properties of a phenylalanine were to be investigated it could be mutated 

into tyrosine. In a SDM reaction, template DNA (recombinant plasmid containing the 

target gene) is utilised. In addition, oligonucleotide primers containing the desired 

mutation, dNTPs and polymerase are also required. During the SDM PCR, the template 

DNA is denatured or melted and the designed mutant primers anneal to the gene. The 

polymerase uses the dNTPs to amplify the whole plasmid and the mutant plasmid is 

constructed containing nicks. However, the original template still remains and needs to 

be removed. The template DNA is methylated due to a bacterial source, for example a 

mini-prep from E. coli, and the mutant plasmid is not, thus incubation with the 

restriction endonuclease DpnI can digest the template DNA. After digestion, 

transformation of the SDM product into an E. coli cloning strain will repair the nicked 

plasmid. 
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Figure 3.5 Diagram illustrating a method for site-directed mutagenesis (SDM). 

Template DNA is melted, the mutant primers anneal and the whole plasmid is amplified 

resulting in a nicked mutant plasmid. DpnI digestion removes template DNA and the E. 

coli cell is transformed by the mutant plasmid, repairing the nicks. 

 

SDM primer design 

A forward and reverse primer was designed for each mutation. Primers were designed 

using HiTel primer design software. All SDM experiments were carried out using a 

Qiuckchange
TM

 kit (Stratagene). 
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Table 3.15 Primers designed for SDM 

Mutant Forward Reverse 

F52N 
GCATTCTCTGCATCTGAAT

AGCCCAGCGGGCTGG 

CCAGCCCGCTGGGCTATTCA

GATGCAGAGAATGC 

F52A 
CATTCTCTGCATCTGGCGA

GCCCAGCGGGCTG 

CAGCCCGCTGGGCTCGCCAG

ATGCAGAGAATG 

N173F 
CAATTATCGGTGGCGGTTT

TTCTGGCGCACAGATCC 

GGATCTGTGCGCCAGAAAA

ACCGCCACCGATAATTG 

N173Y 
CAATTATCGGTGGCGGTTA

TTCTGGCGCACAGATCC 

GGATCTGTGCGCCAGAATAA

CCGCCACCGATAATTG 

N173H 
GCAATTATCGGTGGCGGTC

ATTCTGGCGCACAGATCC 

GGATCTGTGCGCCAGAATGA

CCGCCACCGATAATTGC 

Q193R 

GAAACGACTTGGATCACAC

GTCACGAGCCGGCCTTTCT

GGC 

GCCAGAAAGGCCGGCTCGT

GACGTGTGATCCAAGTCGTT

TC 

Q193E 

GAAACGACTTGGATCACAG

AACACGAGCCGGCCTTTCT

G 

CAGAAAGGCCGGCTCGTGTT

CTGTGATCCAAGTCGTTTC 

H194T 
GACTTGGATCACACAGACC

GAGCCGGCCTTTCTGG 

CCAGAAAGGCCGGCTCGGTC

TGTGTGATCCAAGTC 

QH193RT 
GACTTGGATCACACGTACC

GAGCCGGCCTTTCTG 

CAGAAAGGCCGGCTCGGTA

CGTGTGATCCAAGTC 

 

PCR method 

To a thin walled Eppendorf tube (0.5 mL) the components of Table 3.16 were added 

and mixed thoroughly. 
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Table 3.16 SDM reaction components 

Component Volume /µL Concentration 

DNA template 1 48 ng µL
-1

 

Forward primer 0.5 20 µM 

Reverse primer 0.5 20 µM 

dNTPs 5 2 mM 

10 × turbo CX buffer 5  

DMSO 1  

Pfu turbo
TM

 (HS) DNA polymerase 1  

 

Water was added to make the final volume of the reaction 50 µL. The PCR tubes were 

placed in a thermal cycler and ran using the programme described in Table 3.17. 

 

Table 3.17 SDM PCR programme 

Step Temperature /
o
C Time /min Cycles 

Initial denature 95 5 1 

    

Denature 95 1  

Anneal 50 1 30 

Extend 72 10  

    

Final denature 95 72 s 1 

Final extend 72 5 1 

Hold 4 - - 
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DpnI digestion 

Once the PCR was completed, 10 × NEB buffer 2 (5 µL) and DPN I (1 µL, 20 k U mL
-

1
) were added to the reaction mixture and incubated at 37

o
C for 5 h. 

 

Mutagenesis transformation and miniprep 

The digested PCR mixture (1.5 µL) was transformed into E. coli XL10 Gold Ultra-

competent cells (45 µL) and minipreped as described in Section 3.1.6. 

 

3.5.2 Site saturation mutagenesis (SSM) 

In addition to single rational mutagenesis, it may be useful to mutate a single residue to 

a number of different amino acids ranging from hydrophobic to hydrophilic, acidic to 

basic, small to bulky. This method is known as saturation mutagenesis and employs 

primers with ‘NNK’ and ‘NDT’ codons which replace the targeted codon. For NNK (N: 

adenine/cytosine/ guanine/thymine; K: guanine/thymine) 32 codons are utilised and 

allows for all twenty amino acids. For NDT, however, (D: guanine/thymine; T: 

thymine) only 12 codons are involved and therefore the number of amino acids 

available is reduced to 12 (Phe, Leu, Ile, Val, Tyr, His, Asn, Asp, Cys, Arg, Ser, Gly) 

but still cover a diverse chemical space.
99

 

 

SSM primer design 

Degenerate primers were designed to have a NDT codon at the desired site of mutation 

(Table 3.18). HiTel primer design software was used to design the primers. For all SSM 

reactions a Quickchange® Lightning Multi Site-Saturated Mutagenesis kit (Stratagene) 

was employed. 
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Table 3.18 Primers designed for SSM 

Mutation Primer 

F52X GGCATTCTCTGCATCTGNDTAGCCCAGCGGGCTGG 

N173X GCAATTATCGGTGGCGGTNDTTCTGGCGCACAG 

S174X CGGTGGCGGTAATNDTGGCGCACAGATCCTGGC 

F283X GGTGTACGGGCNDTCGTCCGGCTCTGTC 

 

PCR method 

To a thin wall Eppendorf tube (0.5 mL) the components of Table 3.19 were added and 

mixed thoroughly. 

 

Table 3.19 SSM reaction components 

Component Volume /µL Concentration 

DNA template 1 48 ng µL
-1

 

primer 0.5 20 µM 

Quickchange Lightening Multi 10× buffer 2.5  

Quickchange solution 0.75  

dNTPs 1 2 mM 

DMSO 1  

Milli-Q water 17.25  

Quickchange Lightening Multi enzyme blend 1  

 

The PCR tubes were placed in a thermal cycler and ran using the programme described 

in Table 3.20. 
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Table 3.20 SSM PCR programme 

Step Temperature /
o
C Time /s Cycles 

Initial denature 95 120 1 

    

Denature 95 20  

Anneal 55 30 30 

Extend 65 420  

    

Final denature 95 72 1 

Final extend 65 300 1 

Hold 4 - - 

 

DpnI digestion 

Once the PCR was completed, 10 × NEB buffer 2 (5 µL) and DpnI (1 µL, 20 k U mL
-1

) 

were added to the reaction mixture and incubated at 37
o
C for 5 h. 

 

Mutagenesis transformation and miniprep 

The digested PCR mixture (1.5 µL) was transformed into E. coli XL10 Gold Ultra-

competent cells (45 µL) and minipreped as described in Section 3.1.6. 

 

3.6 Chemical synthesis of sulfoxides 

Unless otherwise stated, all reactions utilised oven dried glassware and magnetic 

stirrers. Solvents and liquid reagents were transferred using a syringe. All sulfides were 

commercially available. Evaporation of organic solvents was achieved by rotary 

evaporation with a water bath temperature of 41
o
C. Filtration was carried out using a 

Buchner funnel with a high vacuum. Thin layer chromatography was carried out in 100 

% ethyl acetate using ultra-violet, all product spots were UV active. 
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Procedure 

 

Figure 3.6 Reaction of a sulfide in glacial acetic acid with H2O2 to yield corresponding 

sulfoxide. 

 

To a solution of corresponding sulfide (2.0 mmol) in glacial acetic acid (2 mL) 

hydrogen peroxide (8 mmol) was added drop wise whilst stirred at room temperature for 

50 min. TLC (EtOAc) indicated reaction completion. The reaction mixture was 

neutralised with sodium hydroxide (NaOH, 2 M), washed with water (25 mL) and 

extracted twice with dichloromethane (3 × 10 mL). The combined organic layers were 

then washed with saturated sodium bicarbonate solution (25 mL) and brine (25 mL) and 

dried over sodium sulphate.
100

 Removal of the dried organic solvent yielded the 

corresponding sulfoxide. The pure sulfoxide products were identified using thin layer 

chromatography, 
1
H and 

13
C NMR and mass spec. 

 

3.7 Protein crystallisation 

Protein structures can be determined by subjecting crystals of a protein to X-ray 

crystallography. A crystal is a 3D ordered array of molecules and the X-rays are 

diffracted by the electrons in the structure to give a 3D map highlighting the distribution 

of electrons. If the order of the crystal is poor the X-rays will not be diffracted to a high 

resolution and thus the data will not give a detailed structure. However, a well ordered 

crystal will diffract the X-rays with high resolution leading to a detailed structure. The 

diffraction pattern is visualised as a series of spots or reflections due to the constructive 

and deconstructive effects. Each reflection provides information on all the atoms in the 

structure and each atom is responsible for the intensity of each reflection. 

To achieve protein crystals, crystallisation screens containing many different conditions 

are set up. If a screen is successful the ‘hit’ can be scaled up using the hanging drop 

vapour diffusion method. At the beginning of the scale up the concentration of the 

precipitant in the drop is half that of the well. Equilibration then occurs through the 
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vapour phase and the concentration of the well remains the same. The drop loses water 

vapour to the well until the concentration of the precipitant is equal to that of the well. If 

such conditions are favourable during this process the protein will become 

supersaturated and will be driven out of solution in the form of crystals. 

 

Crystallisation of SMFMO 

Pure SMFMO was subjected to crystallisation trials using a range of commercially 

available screens in 96-well plates employing 300 nL drops at a range of protein 

concentrations (3, 4, 6 and 10 mg mL
-1

). The best crystals were obtained using the Clear 

Strategy Screen
101

 in conditions containing lithium sulphate (1.8 M) and protein (4 mg 

mL
-1

). Larger crystals for diffraction analysis using optimised conditions were prepared 

using the hanging-drop vapour diffusion method in 24-well plate Linbro dishes and 

using crystallisation drops of 2 mL with protein (4 mg mL
-1

). The best crystals were 

routinely obtained in crystal drops containing lithium sulphate (0.9 M) in bis-tris 

propane buffer (100 mM) at pH 5.6. 

 

Crystallisation of Q193R/H194T mutant 

The crystallisation conditions for the double mutant were similar to that for the wild 

type. The crystals used for diffraction experiments were obtained from hanging crystal 

drops set up in 24-well plates. The reservoir contained 0.9 M lithium sulphate in 100 

mM bis-tris propane buffer at pH 5.6.  The protein concentration used was 3 mg mL
-1

. 

 

Crystals were tested for diffraction using a Rigaku Micromax-007HF generator fitted 

with Osmic multilayer optics and a MARRESEARCH MAR345 imaging plate detector. 

The crystals that diffracted to a resolution of greater than 3 Å were flash-cooled in 

liquid nitrogen in a cryogenic solution containing the mother liquor containing also 10% 

w/v glycerol and retained for data collection at the synchrotron. 
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Chapter 4: Characterisation of SMFMO 

4.1 Introduction 

Flavoprotein monooxygenases (FPMOs) are of potential interest for their ability to 

catalyse asymmetric organic reactions, such as Baeyer-Villiger oxidations and 

heteroatom oxidations. The biocatalytic synthesis of enantiopure products has become 

increasingly attractive owing to the enzymes selectivity and green reaction conditions. 

FPMOs commonly use NADPH as cofactor which, from an industrial application point 

of view, is a drawback to these enzymes as NADPH is expensive. NADH however, is 

cheaper and efforts have been underway to find FPMOs that can utilise the cheaper, 

non-phosphorylated cofactor.  

SMFMO sparked initial interest due to the enzymes ability to use either NADH or 

NADPH as cofactor to catalyse oxidation reactions. Additionally, the 38.6 kDa protein 

was found to be much smaller than typical class B bacterial FMOs and a BLAST search 

of the Swissprot database revealed closest sequence homology to shorter putative flavin 

monooxygenases from strains such as Pseudomonas. In addition, SMFMO had 

sequence homology with the pyridine nucleotide disulphide oxidoreductase enzyme 

family, such as thioredoxin reductases (TrxRs). The TrxRs homology prompted a 

sequence-based search of the RCSB Protein Structure database which also highlighted 

that the closest sequence homology to proteins with solved structures also included 

TrxRs, from Thermus thermophilius (2ZBW) and Helicobacter pylori (2Q0K
102

), along 

with BVMOs PAMO (1W4X
61a

) and CHMO from Rhodococcus (3GWD
59

), and FMOs 

from S. pombe (2V8) and Methylophaga spp (2XVI
74

, 2XLT
103

), shown in Figure 4.1.  
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Figure 4.1 Sequence alignments of four related flavin-containing enzymes. 

PAMO = phenylacetone monooxygenase from Thermobifida fusca; SMFMO = 

Stenotrophomonas maltophilia Flavin-containing Monooxygenase; 2ZBW = TrxR-like 

protein from Thermus thermophilus; 2XVI = 2XLT = mFMO from Methylophaga 

aminisulfidivirans.  Sequences in red and blue show the Rossman motifs and sequences 

in green indicate the BVMO/FMO motif region. 

 

A phylogenetic tree (Figure 4.2) possessing representative sequences of FMOs, BVMOs 

and TrxRs was used to analyse SMFMO and indicated that the 38.6 kDa enzyme is as 

closely related to TrxRs as it is to BVMOs and FMOs, as the SMFMO branch is placed 

within the middle of all three enzyme families. 
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Figure 4.2 A phylogenetic tree indicating the position of SMFMO in relation to some 

BVMOs, FMOs and flavin-binding TrxRs for which structure and/or function has been 

identified. 

TrxRs: 3F8P= TrxR from Sulfolobus solfataricus (Uniprot Q8X236); 3CTY= TrxR 

from Thermoplasma acidophilum (Uniprot Q9HJI4); 2A87= TrxR from Mycobacterium 

tuberculosis (Uniprot P52214); 2Q7V= TrxR from Deinococcus radiodurans (Uniprot 

Q9RSY7); 2Q0K= TrxR from Helicobacter pylori (Uniprot P56431); 3R9U= TrxR 

from Campylobacter jejuni (Uniprot Q0PBZ1); 3LZX= Ferredoxin-NADP
+
 

oxidoreductase from Bacillus subtilis (Uniprot O05268); 2ZBW= TrxR-like protein 

from Thermus thermophilus (Uniprot Q5L28); FMOs: 1VQW= Flavin-containing 

monooxygenase from Schizosaccharomyces pombe (Uniprot Q9HFE4); 2XLT= FMO 

from Methylophaga aminisulfidivirans (Uniprot Q83K4);  BVMOs: HI-31 CHMO= 

Cyclohexanone monooxygenase from Rhodococcus sp. HI-31 (3GWD, Uniprot 

C0STX7); AcCHMO= Cyclohexanone monooxygenase from Acinetobacter 

calcoaceticus (Uniprot Q9R2F5); MO14= ro03437 from Rhodococcus jostii RHA1 

(Uniprot Q0SB46); MO3= ro03247 from Rhodococcus jostii RHA1 (Uniprot Q0SBN6); 

PAMO= phenylacetone monooxygenase from Thermobifida fusca (Uniprot Q47PU3); 

CPMO= Cyclopentanone monooxygenase from Comamonas sp. (Uniprot Q8GAW0). 
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SMFMO’s ability to use either NADH or NADPH along with its unusual size prompted 

further investigation into this enzyme. 

 

4.2 Aims 

To express the gene encoding SMFMO, and purify the enzyme, in order to characterise 

its activity and substrate specificity using biochemical techniques, such as UV 

spectrophotometry and gas chromatography. 

 

4.3 Materials and methods 

4.3.1 Gene expression and protein purification 

SMFMO was expressed in E. coli strain BL21 (DE3) as described in Section 3.2.5. 

SMFMO was purified using Ni
2+

 affinity chromatography followed by size exclusion 

chromatography described in Section 3.3. 

 

4.3.2 Enzyme assays 

Kinetic assays 

Kinetic studies of SMFMO where carried out in accordance with Section 3.4.2 and 

Section 3.4.3. Kinetic parameters were calculated using the GraFit data analysis 

software. 

Biotransformations with SMFMO 

Biotransformations were carried out as described in Section 3.4.4 using a range of class 

B FPMO ketone substrates and prochiral sulfides (Figure 4.8). Biotransformations were 

analysed by GC and GC-MS described in Sections 3.4.5 and 3.4.6. 

 



77 

4.4 Results  

4.4.1 Gene expression and protein purification 

The SMFMO gene in the pET-YSBLIC-3C vector was expressed in BL21 (DE3) cells 

as described in Section 3.2.5 with a total volume of 8 L LB media. After expression the 

protein was purified. 

 

SMFMO purification via Ni
2+

 affinity chromatography 

The SMFMO protein was purified successfully by Ni
2+

 affinity chromatography 

described in Section 3.3.2, shown in the chromatogram below (Figure 4.3). 

 

 

 

Figure 4.3 Chromatogram for SMFMO purification by Ni
2+

 affinity chromatography. 

Protein absorbance at 280 nm is indicated by the blue trace. 

 

The protein eluted as a single peak (from 65-95 mL). The fractions eluted were yellow 

in colour, signifying that FAD is present in the protein. The fractions were analysed by 

SDS-PAGE (Section 3.2.4) to confirm the presence of pure protein. The gel can be seen 

below (Figure 4.4). 
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Figure 4.4 SDS-PAGE gel of SMFMO purification after Ni
2+

 affinity chromatography. 

Lane 1: Bio-Rad low molecular weight marker, lane 2: soluble protein fraction, lane 3: 

flow through after column loading, lanes 4-5: flow through after buffer A wash, lanes 6-

7: collected fractions after FPLC run. The protein can be seen as a thick dark band at 38 

kDa in lanes 10-13. 

 

The SMFMO protein can be seen as a dark band at 38 kDa in lanes 10 to 13. The 

fractions containing protein were pooled and concentrated to a volume of 2 mL (Section 

3.3.2). 

 

SMFMO purification by size exclusion chromatography 

The SMFMO protein underwent further purification by size exclusion chromatography 

(Section 3.3.3), shown in the chromatogram below (Figure 4.5). 
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Figure 4.5 Chromatogram of SMFMO purification by size exclusion chromatography. 

Protein absorbance at 280 nm is indicated by the blue trace. 

 

The protein eluted as a single peak (from 55-70 mL). Using a calibration curve provided 

by GE Healthcare, the position of the elution peak gave the molecular weight at ~80 

kDa, indicating that SMFMO is a dimer in solution. The fractions eluted were bright 

yellow in colour, indicating FAD was still present within the purified protein. The 

corresponding fractions were analysed by SDS-PAGE (Section 3.2.4). The gel can be 

seen in Figure 4.6. 

 

 

Figure 4.6 SDS-PAGE gel of SMFMO purification by size exclusion chromatography. 

Lane 1: Bio-Rad low weight molecular marker, lane 2-8: collected fractions after FPLC 

run. The protein can be seen at 38 kDa. 
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The SMFMO protein can be seen as a dark band on the gel at 38 kDa. The gel shows 

the protein is pure as no other bands are present in the lanes. The fractions were 

combined to give ~21 mg of pure protein (Section 3.3.3). 

 

4.4.2 Kinetic assays 

Cofactor utilisation by SMFMO 

In preliminary experiments, it was observed that SMFMO was able to utilise either 

NADH or NADPH as cofactor in the oxidation of standard FPMO substrates. Kinetic 

studies of cofactor utilisation by SMFMO were performed as described in Section 3.4.2, 

using a constant concentration of 1 in the presence of increasing concentrations of either 

cofactor. The results are shown in Figure 4.7. 

 

 

Figure 4.7 Kinetics of cofactor (NAD(P)H) utilisation by SMFMO. 

Kinetic parameters calculated: NADH: Vmax 11.2 × 10
-2

 µM s
-1

, KM 23 µM; NADPH: 

Vmax 8.4 × 10
-2

 µM s
-1

, KM 27 µM. 

 

For the NADH assay, the KM was 23 µM and Vmax 11.2 × 10
-2

 µM s
-1

. Similarly for the 

NADPH assay, the KM was calculated to be 27 µM and Vmax 8.4 × 10
-2

 µM s
-1

 (Table 

4.1). The KM and Vmax values obtained for NADH and NADPH in the assay were 

comparable, indicating that the enzyme is able to use either cofactor to reduce the bound 



81 

flavin with equal capability. In addition, the values are also comparable to those of the 

NADPH oxidase activity of the FMO mFMO from Methylophaga (13  M and 0.06 s
-

1
).

67
  

 

Transformation of substrate 1 by SMFMO 

It was established that SMFMO was able to utilise both NADH and NADPH as cofactor 

to reduce the bound FAD in the absence and presence of constant concentrations of 1. 

Kinetic studies of SMFMO in the presence of varying concentrations of 1 were 

performed as described in Section 3.4.3, using a constant concentration of either 

cofactor.  

The studies will indicate if the ketone oxidation would conform to Michaelis-Menten 

kinetics, indicating that the preliminary studies observed by GC are indeed genuinely 

‘enzymatic’. The results are shown in the graphs below (Figure 4.8 and Figure 4.9). 

 

 

Figure 4.8 Kinetics of substrate 1 transformation by SMFMO using NADH as cofactor. 
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Figure 4.9 Kinetics of substrate 1 transformation by SMFMO using NADPH as 

cofactor. 

 

Kinetic constants for 1 oxidation were calculated, shown in Table 4.1.  

Michaelis-Menten behaviour was observed for both NADH and NADPH assays with 

respect to 1. The KM for the ketone substrate in the presence of NADH was calculated to 

be 70 µM, approximately 42-fold lower than that observed for NADPH (KM 3.2 mM). 

The kcat/KM for NADH was 51 M
-1

 s
-1

, 17-fold higher than that calculated for NADPH 

(3 M
-1

 s
-1

). Such results lead to the assumption that the binding of NADH assists the 

transformation of the ketone substrate to a greater extent, and thus the protein has a 

greater affinity for 1 when NADH is utilized.  

 

 

 

 

 

 



83 

Table 4.1 Kinetic constants for SMFMO using NADH or NADPH as cofactor, with 1 

as substrate. 

Assay 

KM 

(µM) 

Vmax 

(µM s
-1

) 

kcat 

(s
-1

) 

kcat/KM 

(M
-1

 s
-1

) 

NADH 

(100 µM 1) 
23.7 ± 9.1 11.2 ± 1.5 × 10

-2
 0.029 1223 

NADPH 

(100 µM 1) 
27.3 ± 5.3 8.4 ± 0.6 × 10

-2
 0.022 806 

1 

(250 µM NADH) 
70.0 ± 30.0 1.4 ± 0.2 × 10

-2
 3.6 × 10

-3
 51 

1 

(250 µM NADPH) 
3200 ± 900 3.3 ± 0.3× 10

-2
 8.5 × 10

-3
 3 

 

4.4.3 Substrate selectivity and enantioselectivity 

A range of class B FPMO ketones (Figure 4.10) was tested as substrates for SMFMO, 

using NADH or NADPH as nicotinamide cofactor with the appropriate recycling 

system, described in Section 3.4.4. The reactions were analysed using gas 

chromatography described in Section 3.4.5. 

Controls were set up, involving the same assays tested but in the absence of enzyme. 

For each of the samples, NADH and NADPH, no lactone was produced thus indicating 

that SMFMO catalyses the conversion of 1 to its corresponding lactone. 
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Figure 4.10 Range of ketone and sulfide substrates used in SMFMO characterisation. 

 

SMFMO Baeyer-Villiger activity was found to be restricted to the strained, fused 

bicyclic system of 1, with the remaining more simple aliphatic and alicyclic substrates 

such as 5, 8 and 12 not transformed with either cofactor. Conversion of 1 was notably 

higher when NADH was utilised as cofactor with 93 % conversion observed compared 

to 15 % with NADPH over 24 hours (Figure 4.11).  
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Figure 4.11 GC trace for t=24h for NADH and NADPH biotransformation. 

Utilising 1 as substrate. NADH is represented by the solid blue line and NADPH by the 

dashed blue line. Substrate peak ~1.8 min and lactone product peak ~3 min.  

 

The NADH-dependent biotransformation of 1 was regioselective, giving a yield of 

regioisomers in the ratio 5:1, favouring the expected 2-oxa lactone over the 3-oxa 

lactone. Enantioselectivity was poor, but was measured, with 8 % ee for the (1R,5S) 

lactone and 36 % ee for the (1S,5R) lactone (Figure 4.12). Chiral GC analysis of the 

residual ketone substrate showed it to be racemic.  
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Figure 4.12 NADH-dependent transformation of 1. 

For NADPH, using glucose-6-phosphate dehydrogenase and glucose-6-phosphate as the 

recycling system, the conversion of the substrate was 15 %. 

 

A range of prochiral sulfides were tested (Figure 4.10) as substrates for SMFMO as 

described in Section 3.4.4. SMFMO displayed more promiscuous substrate selectivity 

with the prochiral sulfide substrates and conversions were observed for the majority 

investigated, as shown in Table 4.2. Substrate 20 was not transformed. The 

sulfoxidation reactions by SMFMO were additionally confirmed by GC-MS, example 

shown in Figure 4.13.  
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Figure 4.13 GC-MS spectra for NADH t=24 h with substrate 15. 

The spectra shows m/z peaks for both substrate 15 (138) and corresponding sulfoxide 

product (154). 

 

The m/z peak for substrate 15 was present at 138 and an m/z peak at 154 for the 

sulfoxide product peak, verifying that the substrate was actually converted to the 

sulfoxide. For all reactions the m/z peak of the substrate and product could be seen. 

For each of the successful transformations, greater conversions were observed when 

NADH was employed as cofactor, example shown in Figure 4.14. 

 



88 

 

Figure 4.14 Chiral GC trace at t= 24 h for the oxidation of substrate 15 by SMFMO. 

NADH is shown in graph a), NADPH in graph b). 

 

The GC trace also indicates that the enzyme favours one enantiomer over the other with 

an ee of 25 % for NADH and 44 % for NADPH. This is interesting as the results 

suggest that the enzyme had a “greater preference” for one enantiomer with NADPH 

than NADH, therefore indicating that the substrate binding is different depending on 

which cofactor is used.  

However, an argument against such findings may lie in the accuracy of the chiral GC 

measurements particularly where the ees for each cofactor are concerned as the results 

were not repeated. This is particularly the case for substrate 16 when NADPH is 

employed as the conversion is only 1 %, and without repeat results it’s difficult to 

determine if this conversion of sulfide to sulfoxide is due to SMFMO or actually present 

within the sulfide starting material. 
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Table 4.2 Results of biotransformations of prochiral thioether substrates by SMFMO. 

 

Absolute configurations were assigned by comparison with the sulfoxide products 

produced using CHMO.
23a, 98

 For 18 a configuration could not be assigned. 

 

4.5 Discussion 

The flavoprotein monooxygenase SMFMO catalyses the asymmetric oxidation of 

thioethers and is unusual amongst FPMOs as it has the ability to use either nicotinamide 

cofactor, NADH or NADPH, in order to reduce the bound flavin. The KM, Vmax and kcat 

values were comparable for both NADH and NADPH, with KM in the region of 20-30 

µM, indicating that the enzyme had the ability to use either cofactor with equal 

capability, and are comparable with the NADPH oxidase activity of the flavo 

monooxygenase mFMO from Methylophaga (13 µM, 0.06 s
-1

).
67

 However, for the 

ketone substrate in the presence of 250 µM cofactor Michaelis-Menten behaviour was 

observed, with the KM value for the ketone substrate in the presence of NADH 

approximately 42 times lower, and the kcat/KM 17 times greater than for NADPH. This 

suggests that the transformation from ketone to lactone is variable depending on what 

Substrate 

Conversion 

NADH 

% 

Conversion 

NADPH 

% 

ee 

NADH 

% 

ee 

NADPH 

% 

Sulfoxide 

Configuration 

NADH 

Sulfoxide 

Configuration 

NADPH 

13 27 2 71 57 R R 

14 32 10 24 38 R R 

15 90 33 25 44 R R 

16 8 1 21 34 R n.d. 

17 6 0.2 15 0 S n.d. 

18 18 2 30 25 n.d. n.d. 

19 40 9 80 82 R R 

20 0 0 0 0 - - 
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cofactor is used. The Vmax value for substrate 1 with NADH is noticeably smaller than 

that usually observed for BVMOs acting on ketones but is in the range of the FPMO 

MtmOIV, when conveyed in the same terms (5 nmol min mg
-1

 SMFMO versus 147 

nmol min mg
-1 

MtmOIV),
35a

 and in this case MtmOIV was acting on its natural 

substrate.  

The enzyme catalysed the Baeyer-Villiger conversion (93 %) of 5 mM 1 in the presence 

of sub-stoichiometric concentrations of NADH with the appropriate cofactor recycling 

system, to give the 2-oxa and 3-oxa lactone products in a ratio of 5:1, however with 

poor enantioselectivity. The conversion with NADPH was 15 %. Recently a group of 

FMOs related to SMFMO have been explored, encoded in the genome of Rhodococcus 

jostii RHA1.
18

 The study reveals a set of enzymes that have the ability to use either 

NADH or NADPH as cofactor. FMO-E, FMO-F and FMO-G were found to catalyse the 

oxidation of 1, with conversions similar to that of SMFMO. As with SMFMO, the 

enzymes are equally not very enantioselective in the formation of the 2-oxa lactone, but 

FMO-F and FMO-G yield >65 % ee for the 3-oxa lactone. SMFMO also catalysed the 

NADH-dependent transformation of prochiral aromatic thioethers, with preference for 

the (R) enantiomer. The type II FMOs from R. jostii RHA1 converted substrate 16 with 

similar enantioselectivity to SMFMO. SMFMO also catalysed the NADH-dependent 

transformation of prochiral aromatic thioethers, with preference for the (R)- enantiomer 

and the best case being the conversion of 19 with 80 % ee. In most cases, specifically 

16, the enantioselectivity was poorer than for CHMO
23a, 98

 or mFMO
73

, however, 

SMFMO had a much greater ee for substrate 19 and in the opposite enantiomeric series. 

The preferred absolute configuration of sulfoxide products by SMFMO was the (R)-

enantiomer, similar in most cases to that encountered for chloroperoxidase. 

Interestingly, the R. jostii RHA1 enzymes had almost identical conversions and 

enantioselectivities of substrates when either NADH or NADPH was used as cofactor. 

SMFMO however, had much higher conversions for all substrates when NADH was 

employed albeit with poorer ees than for NADPH in most cases. The higher ees when 

NADPH is employed may suggest that binding of the substrate is different depending 

on which cofactor is used. Thus, NADPH allows for the substrate to bind in a specific 

way which is preferable within the reaction therefore yielding a higher ee.  
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Together with the type II FMOs from R. jostii RHA1, SMFMO represents a new class 

of class B FPMOs that can employ both NADH and NADPH. Further comparison 

between the two similar enzymes will be discussed in subsequent chapters. 

 

4.6 Conclusion 

SMFMO is found to accept both NADH and NADPH as coenzyme, and has identified a 

single-component FPMO capable of NADH-dependent oxygenation reactions. This is in 

divergence to that of usual BVMOs and FMOs that typically prefer NADPH as 

nicotinamide cofactor. The unusual relaxed coenzyme specificity of SMFMO is 

attractive for biocatalytic applications as NADH, is much cheaper than its 

phosphorylated neighbour.  

In conclusion, further investigation into SMFMO could highlight a possible platform for 

developing NADH-dependent FPMOs for asymmetric oxygenation reactions. 

 

  



92 

 

 

 

 

 

 

 

  



93 

Chapter 5: Structure determination of SMFMO 

5.1 Introduction 

In an effort to understand why SMFMO has the ability to use either NADPH or NADH 

as nicotinamide cofactor, and thus determine possible avenues for developing NADH-

dependent FPMOs for asymmetric oxygenation reactions, the structure of SMFMO had 

to be solved.  

Within the flavoprotein monooxygenase family the BVMO phenlyacetone 

monooxygenase (PAMO) from the thermophile Thermobifida fusca, complexed with 

FAD, was the first to have its structure determined (Figure 5.1).
61a

 

 

 

Figure 5.1 Tertiary structure of PAMO complexed with FAD. 

Protein backbone is shown in ribbon format, with β-strands in purple and  -helices in 

blue. The FAD molecule is shown in cylinder format with carbon atoms in green. 

 

The PAMO structure revealed the overall fold of a BVMO for the first time and 

illustrated the position and conformation of FAD, which remains present throughout 
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catalysis. The structure of a second BVMO, CHMO from a mesophilic species of 

Rhodococcus sp., complexed with NADP
+
 and FAD was also determined (Figure 5.2).

59
 

 

 

Figure 5.2 Tertiary structure of CHMO complexed with FAD and NADP
+
. 

The protein backbone is shown in ribbon format, with β-strands in orange and  -helices 

in blue. The FAD and NADP
+
 molecules are shown in cylinder format with carbon 

atoms in green. 

 

The structure was shown to consist of two domains, including both FAD and NADPH 

binding domains, with the active site present in a cleft at the domain interface. In 

addition, it was found that the conserved BVMO motif is on the surface of the enzyme, 

away from the implied active site. It was suggested that this fingerprint sequence may 

be involved in conformational changes of the protein during the catalytic cycle.
59

 

Recently a structure of CHMO complexed with FAD, NADP
+
 and its substrate, 

cyclohexanone has been determined and highlights how NADP
+
 has the ability to rotate 

in the active site in order to allow substrate access to the reactive flavin peroxyanion.
104
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Structure determination is an important piece of the puzzle when it comes to 

characterising proteins. Obtaining structures of enzymes allows for their unique features 

to be identified visually and therefore the reasons behind their enzymatic characteristics, 

for example, can be explored. By comparing defined structures of proteins, such as 

PAMO, with new unique enzymes such as SMFMO allows, for example, the rational 

design of mutants to investigate the residues responsible for enzymatic activity. 

Therefore, in order to obtain a structure for SMFMO and thus investigate the possible 

molecular determinants for cofactor promiscuity, SMFMO was subject to 

crystallisation.  

 

5.2 Aims 

The aim of this chapter was to further investigate the unique characteristics of SMFMO 

using structural approaches.  

 

5.3 Materials and methods 

5.3.1 Calibrated size exclusion  

A Superdex® 75 gel filtration column (10 mm × 30 cm) from GE Healthcare was 

employed. 

Preparation of gel column 

The column was equilibrated with filtered H2O (60 mL) followed by buffer A (60 mL). 

Sample loading and gel filtration 

A protein injection loop (0.5 mL) was attached to the AKTA-FPLC and washed with 

H2O (5 mL) and buffer A (5 mL) using a syringe. Purified SMFMO (0.5 mL) was 

injected on to the loop and loaded onto the column. The FPLC was set up to run buffer 

A (60 mL) at a flow rate of 0.5 mL min
-1

. 
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5.3.2 Liquid chromatography – mass spectrometry (LC-MS) 

LC-MS analysis was carried out by Karl Heaton (Chemistry Department, University of 

York) using boiled extracts of SMFMO against standard samples of FAD and FMN, 

following an established procedure.
105

  

 

5.3.3 Crystallisation studies 

SMFMO was subjected to crystallisation using conditions described in Section 3.7. Data 

processing and structure solution for SMFMO was conducted by Dr Gideon Grogan. 

Collection and refinement statistics are shown in Table 5.1.  
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Table 5.1 Data collection and refinement statistics for SMFMO complexed with FAD 

and sulfate (figures in brackets refer to the highest resolution shell). 

 
SMFMO complexed with FAD and sulphate 

Collected 3
rd

 March 2010 

Beamline ESRF Id142 

Wavelength (Å) 0.933 

Space group P32 

Unit cell (Å) a = 84.002; b = 84.002; c = 103.324 

Resolution (Å) 72.75-2.72 (2.79-2.72) 

Unique reflections 20682 (1548) 

Completeness (%) 100 (100) 

Rmerge 0.13 (0.55) 

Multiplicity 3.8 (3.3) 

<I/σ(I)> 7.5 (2.4) 

Protein atoms 5056 

Rcryst/Rfree (%) 18.6 /23.9 

r.m.s.d. 1-2 bonds (Å) 0.017 

r.m.s.d. 1-3 bonds (
o
) 1.963 

Average B factor (Å
2
) 36 

 

 

5.4 Results  

5.4.1 Calibrated size exclusion chromatography  

The SMFMO protein was subjected to size exclusion chromatography (Section 5.3.1). 

Once eluted a graph of appropriate molecular weights (logMW) was plotted against 

appropriate elution volumes (GE Healthcare Life Sciences) (Figure 5.3). Taking the 
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elution value of SMFMO to be ~9 mL, the molecular weight was calculated to be 75, 

683 Da, suggesting the enzyme is a dimer as a SMFMO monomer is 38 kDa in size. 

 

 

Figure 5.3 Calibrated size exclusion chromatography logMW against elution volume 

graph. 

 

5.4.2 LC-MS 

Using boiled extracts of SMFMO against standards of possible flavin cofactors, FMN 

and FAD (Section 5.3.2), LC-MS data was obtained which is shown in Figure 5.4. 
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Figure 5.4 LC-MS data for SMFMO and flavin standards FMN and FAD. 

The FAD has a m/z peak at 786 and FMN gives a m/z peak at 457. SMFMO produces a 

m/z peak at 786 also, indicating that FAD is present in SMFMO.  

 

The LC-MS data for the boiled standard sample for FAD gave a m/z peak at 786 with 

high intensity which was expected as the molecular weight of FAD is 785.55 g mol
-1

. 

For the standard FMN sample a m/z peak at 457 was present which again was expected 

as the molecular weight of FMN is 456 g mol
-1

. For the boiled extract of SMFMO a m/z 
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peak at 786 was present with similar intensity to that obtained for the standard FAD 

sample. In addition, m/z peaks at 393 and 439 were also present in the LC-MS traces for 

both SMFMO and FAD. However, no m/z peaks present in the standard FMN trace 

were present in the SMFMO trace. 

The LC-MS analysis data of boiled enzyme extract against boiled, standard samples of 

FAD and FMN validated the presence of FAD in SMFMO. Thus confirming, SMFMO 

is yellow in colour due to the bound flavin. 

 

5.4.3 Structure determination of SMFMO 

To investigate the molecular determinants of cofactor promiscuity in SMFMO, the 

enzyme was subjected to crystallisation. The screens were successful and yellow needle 

like crystals were produced (Figure 5.5), similar to those formed in the preliminary 

trials. Interestingly, crystals only appeared in the wells containing sulfate ions. The 

crystals were subjected to X-ray diffraction and a 2.6 Å dataset was collected as 

described in Section 3.8. The previous 2.7 Å together with the 2.6 Å dataset allowed for 

the structure of SMFMO to be solved, built and refined to a resolution of 2.72 Å 

(Section 5.3.3). 

 

 

Figure 5.5 Native SMFMO crystals obtained from preliminary Li2SO4 conditions. 

Conditions: [Li2SO4]: 0.9 M, Buffer: btp pH5.6. 
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Overall structure of SMFMO 

Crystals of SMFMO grew in the P32 space group, with two molecules, ‘A’ and ‘B’, 

representing one dimer in the asymmetric unit (Figure 5.6), which is in accordance with 

the SEC results. There was electron density for most amino acids in each monomer 

from Met1 to Ala352 with a stretch of missing density corresponding to twenty two 

amino acids from positions Ala212 to Gly233 (ATERWKAQQEGREPDLPPGGFG) 

that could not be modelled. It is thought that the missing residues may be owing to the 

flexibility of a loop that sits over the active site containing the bound flavin (Figure 5.7). 

The SMFMO dimer was made up of two monomers, sharing an interfacial area of 

approximately 680 Å
2
. Analysis of SMFMO using PISA

106
 found that the interactions 

that stabilise the dimer included four hydrogen bonds between the backbone carbonyl of 

residue Ala146(A) and the NH of Arg101(B) (3.48 Å) and the NH2 of Arg110(B) (2.46 

Å), the main chain carbonyl of Gly147(A) interacts with the NH2 of Arg101(B) (3.28 

Å) and between NH2 of residue Arg101(A) and backbone carbonyl of Gly47(B) (3.85 

Å).  

 

 

Figure 5.6 Quaternary structure of SMFMO showing the two subunits A and B. 

Protein backbone is shown in ribbon format, β strands in blue and   helices in pink. The 

FAD molecules shown in each subunit shown in cylinder format, with carbon atoms in 

green. The N and C termini for both subunits are also illustrated.  
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Each SMFMO monomer consisted of fourteen alpha helices: α1 (residues Gln13-

Arg24), α2 (Gly40-His44), α3 (Ala55-Trp57), α4 (Arg75-Lys88), α5 (Trp131-Glu133), 

α6 (Leu142-Ser144), α7 (Ser152-His154), α8 (Ala159-Phe161), α9 (Asn173-Val182), 

α10 (Arg206-Phe209), α11 (Pro239-Ala246), α12 (Ser288-Leu290), α13 (Asp324-

Asn326) and α14 (Val336-Tyr350) and fifteen beta strands: β1 (residues Asp2-Ile9), β2 

(Tyr29-Leu32), β3 (Val93-Leu94), β4 (Val99-Phe105), β5(Arg108-Ala113), β6 

(Gln118-Ser126), β7 (Ile148-His151), β8 (Arg165-Ile169), β9 (Glu187-Ile191), β10 

(Ala252-Val253), β11 (Arg258-Ser260), β12 (Gly263-Gln265), β13 (Glu271-Ala273), 

β14 (Ala276-Trp279) and β15 (Val317-Leu319). The secondary elements for SMFMO 

are summarised in Figure 5.8. The β-strands form three distinct beta sheet motifs A (β1- 

β6, β15), B (β7- β 10, β14) and C (β11- β13). At the N terminus of SMFMO there is a 

high β-strand presence with the largest of the β – sheets (A) surrounding the terminus. 

The C terminus on the other hand is highly helical, as shown by the tertiary structure in 

Figure 5.7. The secondary structure of SMFMO also illustrates the missing structure 

between helices α10 and α11, representing the missing residues corresponding to the 

flexible loop amino acids 212 to 233. 
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Figure 5.7 Tertiary structure of SMFMO monomer A with complexed FAD. 

The protein backbone is shown in ribbon format with β-strands in blue and α-helices in 

pink. The FAD molecule is shown in cylinder format with the carbon atoms in green. 

The N and C termini are also illustrated.  
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Figure 5.8 Diagram illustrating secondary structure of SMFMO. 

The α-helices are shown as red cylinders and the β-strands are shown as blue arrows. 

 

Active site of SMFMO 

A monomer of SMFMO consists of two domains, a FAD binding domain and what is 

thought to be the substrate binding domain. Each monomer of SMFMO has a molecule 

of FAD present within the active site. The FAD is bound in the catalytic site by 11 

hydrogen bonds, shown in Figure 5.9. The side chain N-H of Gln13 interacts with the 

oxygen (O2’, 2.8Å) closest to the tricyclic ring present in the riboflavin moiety. Gln13 

also hydrogen bonds to the phosphate oxygen (O1P, 3.05 Å). Hydrogen bond 

interactions between the gamma oxygen and main chain nitrogen of residue Ser14 and 

the phosphate carbonyl and hydroxyl oxygens (O1P and O2P, 2.66 Å) also occur. 

Residues Gln13 and Ser14 are part of the Rossman motif in SMFMO, present in α1, and 

are responsible for the binding of the ADP motif in FAD. Other hydrogen bonding 
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interactions involved in securing FAD in the active site are the backbone N-H of Ala41 

to the phosphate carbonyl (O1A, 2.65 Å), side chain oxygens of Glu35 to ribose O-H 

(O2B, 3.75 Å), the backbone N-H and carbonyl oxygen of Val99 to the nitrogen and N-

H on the adenine moiety (N6A, 3.08 Å), the main chain N-H of Leu333 to the carbonyl 

on the tricyclic ring (O2, 2.72 Å) and the backbone N-H of residue Phe52 (O4, 2.92 Å). 

 

 

Figure 5.9 Illustrating the residues involved in binding FAD in the active site of 

SMFMO. 

 

Within FAD the moiety of most interest is that of the tricyclic ring, as it possesses the 

C4 carbon atom that reacts with molecular oxygen to become the active catalyst in the 

oxidation reactions. This prompted the search for residues within 4 Å of this moiety in 

order to find what other residues are present within the active site, Figure 5.10. 
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Figure 5.10 The FAD environment within the active site of SMFMO.   

The peptide backbone is shown in pink. Amino acid residues within a 4 Å distance of 

the FAD are shown in cylinder format with the carbon atoms in pink. The FAD is 

shown cylinder format with carbon atoms in grey, surrounded by the Fo-Fc density map 

in blue contoured at a level of 3σ, generated in the absence of FAD. 

 

It was found that active site of SMFMO is predominantly hydrophobic with residues 

such as tryptophan (Trp46, Trp42), leucine (Leu49, Leu51) and phenylalanine (Phe52) 

surrounding the tricyclic ring, with the residues Leu5l and Phe52 sitting closest to the 

C4 carbon atom. The tryptophan residue in position 42 sits close to the dimethylbenzene 

ring of FAD which may help to stabilise the FAD through π-π interactions.  

 

5.5 Discussion 

The structure of SMFMO was analysed by the DALI server
107

 and showed that 

SMFMOs monomeric tertiary structure of SMFMO is most similar to that of the 

putative FMO 3D1C from Staphylococcus aureus MU50 (16% sequence identity; rmsd 

2.4 Å over 358 Cα atoms), the BVMO cyclohexanone monooxygenase (3GWF
59

, 20 %, 

rmsd 3.7 Å over 316 Cα atoms) and the thioredoxin reductase enzymes from Thermus 
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thermophilus (2ZBW, 22 %, rmsd 7.1 Å over 289 Cα atoms). SMFMO also shares 

structural motifs with known FMOs such as mFMO from the methylotrophic bacterium 

Methylophaga sp. strain SK1
103

 (2XLT, 19 %, rmsd 2.5 Å over 293 Cα atoms; 2XLP 19 

%, rmsd 2.5 Å over 292 Cα atoms), shown in Figure 5.11. mFMO has been employed to 

catalyse the asymmetric oxidation of a range of prochiral sulfides to give the majority of 

(S)-enantiomers with moderate to high ee, in contrast to SMFMO. Structural studies of 

mFMO have revealed the molecular determinants responsible for the binding of the 2’ 

ribose phosphate of NADPH, and those discriminating between NADPH and NADH 

(2XLT/P
103

, 2XVJ
74

), and these structures will be used in comparison with SMFMO to 

further investigate the cofactor promiscuity in SMFMO. 

 

Figure 5.11 Tertiary structure of SMFMO monomer A superimposed with mFMO 

monomer B. 

Protein backbone is shown in ribbon format. SMFMO is shown in pink with the FAD 

carbon atoms in gold. mFMO is shown in green with the FAD carbon atoms in grey. 

The superimposition of SMFMO and mFMO was achieved using the ccp4mg 

programme. 

 

The superimposition of SMFMO with mFMO indicates that the active site of both 

flavoproteins are in similar positions and some helices and beta sheets are conserved 

within both structures, owing to the conserved FMO motif and two Rossman motifs 

responsible for binding the ADP moiety of the FAD and NADPH, typically observed in 
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class B FMOs. Figure 5.11 also confirms that SMFMO is significantly smaller than the 

class B bacterial FMO
11

, with mFMO being noticeably larger towards the C terminus 

than SMFMO. 

Each SMFMO monomer is complexed with FAD, however, the structure of SMFMO 

complexed with NAD(P)H in the active site could not be determined. Interestingly, the 

putative binding sites of the nicotinamide cofactor phosphates, including the 2-hydroxyl 

ribose phosphate, distinguishing NADPH from NADH, are occupied with sulfate, 

present in the crystallisation conditions. Superimposition of SMFMO with the NADPH 

dependent mFMO structure (2XLT
103

) complexed with FAD and NADPH (Figure 

5.12), found that the residues apparently responsible for phosphate binding in mFMO 

Arg234 (and Thr235) are replaced by glutamine Gln193 (and His194) in SMFMO. The 

relaxation in nicotinamide cofactor in SMFMO may be attributed to the removal of the 

interactions between the positively charged arginine and negatively charged oxygens on 

the phosphate.  
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Figure 5.12 Superimposition of NAD(P)H binding site of mFMO(2XLT) and SMFMO. 

NADP ribose 2’-phosphate recognition site in mFMO (2XLT: back-bone, side chains 

shown in green and NADP carbon atoms in grey), superimposed with structurally 

homologous regions of SMFMO (pink) bound to sulfate, illustrating replacement of 

Arg234 and Thr235 in NADPH-dependent mFMO with Gln193 and His194 in 

SMFMO. 

 

Within the FPMO family NADP
+ 

has been found to stabilise the flavin peroxidate 

species formed after flavin reduction and thus reaction with oxygen.
103

 In the previous 

findings SMFMO favours NADH for catalysis rather than NADPH indicating that such 

stabilisation may be better achieved by the nonphosphorylated cofactor. In mFMO the 

oxygenating species is reportedly stabilised by Asn78, and activity is removed upon 

mutation to serine.
103

 Within SMFMO this position is occupied by the large, non-polar 

Phe52 (Figure 5.10). However, reports suggest that hydrophobic residues in this region 

can be tolerated by flavin-dependent oxygenases and activation depends on the context 

of the active site.
108

 

It is more difficult to explain why SMFMO is able to catalyse the Baeyer-Villiger 

oxidation of substrate 1. The hydroperoxidate known to be the oxidising species in BV 

reactions is thought to be stabilised by an arginine residue that is conserved in all 

BVMOs, Arg337 in PAMO, but this is not present in SMFMO. 
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5.6 Conclusion 

The structure of SMFMO was solved and analysis of the structure allowed a basis for 

cofactor promiscuity in SMFMO to be proposed. In addition, the residues immediately 

surrounding the flavin coenzyme were identified, therefore allowing the determinants of 

enantioselectivity of sulfoxidation by SMFMO to be investigated. 
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Chapter 6: Investigation into the cofactor 

promiscuity of SMFMO 

6.1 Introduction 

The ability of SMFMO to catalyse asymmetric sulfoxidation reactions and the BV 

oxidation of substrate 1, using either NADH or NADPH as cofactor, prompted the 

investigation into the structure of SMFMO. The structure of SMFMO was found to 

exist as a dimer, with one molecule of FAD in each subunit. The structure was observed 

to be similar to mFMO, a monooxygenase which also had the ability to catalyse 

sulfoxidation reactions.
103

 NAD(P)H could not be observed in the active site of 

SMFMO, however sulfate ions from the crystallisation conditions were bound to the 

NAD(P)H phosphate binding sites, identified by superimposition of SMFMO with the 

mFMO-NADPH complex (2XLT
103

)(Figure 5.12). The superimposition highlighted that 

the cofactor promiscuity in SMFMO may be due to the substitution of two residues in 

mFMO, Arg234 and Thr235 (responsible for binding the 2’ phosphate on the NADPH 

ribose) for a glutamine (Gln193) and histidine (His194) in SMFMO. In addition, the 

structures of phenylacetone monooxygenase (PAMO
61a

) and cyclohexanone 

monooxygenase (CHMO) from Rhodococcus
59

 revealed that both had an 

arginine/threonine couple (PAMO: Arg217, Thr218; CHMO Arg209, Thr210) present 

in the cofactor binding pocket that are essential for binding the NADP ribose 2’-

phosphate. Therefore mutants Gln193Arg, His194Thr and the double mutant 

Gln193Arg/His194Thr were constructed in order to investigate if these residues were in 

fact responsible for phosphate binding and thus responsible for cofactor specificity in 

SMFMO. 

In addition, there is evidence to suggest that glutamate is partly responsible for NADH 

specificity in FDH enzyme and upon mutation to a glutamine this specificity is altered 

to also accept NADPH. Therefore the mutant Gln193Glu was constructed in an effort to 

produce a NADH-specific enzyme. 
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6.2 Aims 

The aim of this chapter was to use site-directed mutagenesis to obtain the SMFMO 

mutants Gln193Arg, His194Thr Gln193Arg/His194Thr, express the mutant genes, and 

purify the enzymes, in order to characterise their activity and substrate specificity by 

biochemical techniques used in the characterisation of SMFMO. 

 

6.3 Materials and Methods 

6.3.1 Site directed mutagenesis 

Site-directed mutagenesis reactions were carried out with two sets of primers, forward 

and reverse, using the method described in Section 2.5.1. Primers for the SMFMO 

mutants Gln193Arg, His194Thr, Gln193Arg/His194Thr and Gln193Glu can be found in 

Table 3.15. The double mutant was obtained by site-directed mutagenesis on the 

Gln193Arg SMFMO mutant. 

 

6.3.2 Expression and purification 

The SMFMO mutants were expressed in E. coli strain BL21 (DE3) as described in 

Section 3.2.5. SMFMO was purified using Ni
2+

 affinity chromatography followed by 

size exclusion chromatography described in Section 3.3. 

 

6.3.3 Enzyme assays 

Kinetic assays 

Kinetic studies of mutants Gln193Arg, His194Thr and Gln193Arg/His194Thr were 

carried out in accordance to Section 3.4.2. Kinetic parameters were calculated using the 

GraFit data analysis software. 

Biotransformations with SMFMO 

Biotransformations were carried out as described in Section 3.4.4 using substrates 1 and 

13 – 19. Biotransformations were analysed by GC and GC-MS described in Sections 

3.4.5. 
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6.3.4 Crystallisation studies 

Pure SMFMO mutant Gln193Arg/His194Thr was crystallised using conditions 

described in Section 3.7. Data processing and structure solution for SMFMO was 

conducted by Dr Gideon Grogan. Collection and refinement statistics are shown in 

Table 6.1.  
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Table 6.1 Data collection and refinement statistics for Q193R/H194T double mutant of 

SMFMO (figures in brackets correspond to data corresponding to the highest resolution 

shell). 

 

Q193R/H194T double mutant of SMFMO  

Collected 7
th

 June 2011 

Beamline Diamond IO3 

Wavelength (Å) 0.97630 

Resolution (Å) 59.78-2.60 (2.65-2.60) 

Space group P32 

Unit cell (Å) a = 170.54; b = 170.54; c = 101.80 

 α = β = 90.00; γ = 120 

No. Molecules in the asymmetric unit 8 

Unique reflections 102,301 (6014) 

Completeness (%) 97.8 (99.4) 

Rmerge (%) 0.15 (0.56) 

Rp.i.m 0.12 (0.44) 

Multiplicity 4.8 (4.6) 

<I/σ(I)> 4.6 (2.1) 

CC1/2 0.99 (0.71) 

Overall B factor from Wilson plot (Å
2
) 43 

Rcryst/Rfree (%) 25.5/29.5 

r.m.s.d. 1-2 bonds (Å) 0.011 

r.m.s.d. 1-3 bonds (
o
) 1.675 

Average main chain B (Å
2
) 50 

Average side chain B (Å
2
) 51 

Average water B (Å
2
) 34 

 



115 

6.4 Results  

6.4.1 Site-directed mutagenesis 

The selected residues in SMFMO, Gln193 and His194, were individually mutated to the 

residues responsible for phosphate binding in mFMO, Arg234 and Thr235, to yield 

individual SMFMO genes with the mutations Gln193Arg, His194Thr and 

Gln193Arg/His194Thr. Residue Gln193 was also successfully mutated to glutamate. 

Site-directed mutagenesis was carried out as described in Section 3.5.1 and 6.3.1. A 

sample from the reactions was run on an Agarose gel (Figure 6.1). 

 

 

Figure 6.1 An agarose gel of SDM using SMFMO. 

Lane 1: NEB 1 kb ladder, lane 2: SDM reaction for SMFMO mutant Gln193Arg, lane 3: 

SDM reaction for mutant His194Thr. A clear band can be seen at ~6 kb for the 

His194Thr reaction and a much fainter band for Gln193Arg, outlined in red. 

 

For SDM reactions Gln193Arg, His194Thr, Gln193Arg/His194Thr and Gln193Glu, a 

clear band of amplified DNA can be seen at ~6 kb (double mutant and Gln193Glu not 
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shown), illustrating that the reactions were a success. The reactions were digested with 

DpnI and transformed as described in Section 3.5.1. 

The resulting colonies were used to inoculate cultures and the DNA was extracted using 

a mini-prep kit. Samples of the extracted DNA were sequenced in order to confirm the 

SMFMO mutation was present and that the rest of the gene sequence was conserved. 

All three SMFMO mutants were obtained successfully. 

 

6.4.2 Expression and purification of SMFMO mutants 

The SMFMO gene, containing the desired mutation, in the pET-YSBLIC-3C vector was 

expressed in E. coli BL21 (DE3) cells as described in Section 3.2.5 with a total volume 

of 1L LB media. After expression the protein was purified. All three mutants 

Gln193Arg, His194Thr and Gln193Arg/His194Thr were purified using Ni
2+

 affinity 

chromatography followed by size exclusion chromatography (Figure 6.2) which was 

successful in yielding pure yellow protein with a molecular weight of ~38 kDa. The 

expression of the mutants proved similar to that of the wild type SMFMO yielding ~3 

mg of protein per litre of medium. 
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Figure 6.2 SDS-PAGE gel of purification by size exclusion chromatography for 

SMFMO variants Gln193Arg, His194Thr and Gln193Arg/His194Thr. 

Lane 1: Bio-Rad low weight molecular marker, lane 2-8: collected fractions after gel 

filtration. The mutant proteins can be seen at ~38 kDa 

 

The SMFMO variant Gln193Glu resulted in a mutant that could not be expressed in the 

soluble fraction of the E. coli BL21 (DE3) cells. A band at ~38 kDa can be seen in the 

insoluble fraction on the SDS-PAGE gel but the band is absent in the soluble fraction 

(Figure 6.3). The expression of the Gln193Glu mutant was also poor compared to that 

of the wild type and Gln193Arg, His194Thr and Gln193Arg/His194Thr mutants. 
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Figure 6.3 SDS-PAGE gel of expression in E. coli BL21 (DE3) cells for SMFMO 

variant Gln193Glu. 

Lane 1: Bio-Rad low weight molecular marker, lane 2: soluble fraction, lane 3: 

insoluble fraction. The mutant protein can be seen at ~38 kDa in the insoluble fraction 

but the band is not present in the soluble fraction 

 

6.4.3 Kinetic assays with SMFMO mutants 

It has been found that SMFMO has the ability to use either NADH or NADPH as 

nicotinamide cofactor to reduce flavin with equal capability. For the NADH assay, the 

KM was 23 µM and Vmax 11.2 ×10
-2

 µM s
-1

. Similarly for NADPH assay, the KM was 

calculated to be 27 µM and Vmax 8.4 ×10
-2

 µM s
-1

. The results were comparable, 

indicating that the enzyme was able to utilize either cofactor to reduce the bound flavin 

(Figure 4.7). 

To investigate the ability of the mutant enzymes to use either NADH or NADPH to 

reduce FAD, UV- spectrophotometry assays were carried out as described in Section 

3.4.2, using increasing concentrations of either cofactor.  

The single mutations Gln193Arg and His194Thr were investigated first. For the 

Gln193Arg mutation a preference for NADH as cofactor over NADPH was very clear 

(Figure 6.4). The graph shows that this particular mutation decreases the ability of 

SMFMO to use NADPH. 
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Figure 6.4 Kinetics of cofactor (NAD(P)H) utilisation by SMFMO mutant Gln193Arg. 

 

For the His194Thr mutation, however, the graph indicated a similar trend to that of the 

wild type SMFMO with both cofactor curves lying in a comparable fashion (Figure 

6.5). The mutant seems to mimic that of the wild type in which both cofactors can be 

utilized equally. 
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Figure 6.5 Kinetics of cofactor (NAD(P)H) utilisation by SMFMO mutant His194Thr. 

 

To investigate these finding further the double mutation Gln193Arg/ His194Thr was 

introduced. It can be seen from the data that the mutants seem to coincide with one 

another with the double mutant’s preference for NADH to reduce the flavin over 

NADPH (Figure 6.6). 
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Figure 6.6 Kinetics of cofactor (NAD(P)H) utilisation by double mutant Gln193Arg/ 

His194Thr. 

 

For each mutant the kinetic graphs demonstrated Michaelis-Menten behaviour, similar 

to that of the wild type, for both NADH and NADPH assays the kinetic parameters were 

calculated in order to explore the effects each SMFMO variant had on cofactor 

oxidation, the results are shown in Table 6.2. 
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Table 6.2 Kinetic parameters of nicotinamide cofactor oxidation by SMFMO and 

SMFMO variants Gln193Arg, His194Thr and Gln193Arg/His194Thr. 

SMFMO 

variant 

KM 

NADH 

(µM) 

Vmax 

(µM 

s
-1

) 

kcat 

NADH (s
-1

) 

kcat/KM 

NADH 

(M
-1

 s
-

1
) 

KM 

NADPH 

(µM) 

Vmax 

(µM 

s
-1

) 

kcat 

NADPH (s
-1

) 

kcat/KM 

NADPH 

(M
-1

 s
-1

) 

Wild-type 
23.7 ± 

9.1 

11.2 

± 1.5 

× 10
-

2
 

0.029±0.003 1223 27.3±5.3 

11.2 ± 

1.5 × 

10
-2

 

0.022±0.002 805 

Gln193Arg 
21.2± 

4.3 

11.9 

± 1.0 

× 10
-

2
 

0.031±0.003 1476 8.3±1.6 

2.65 ± 

0.2 × 

10
-2

 

0.007±0.0005 875 

His194Thr 
14.1 ± 

2.9 

4.82 

± 0.4 

× 10
-

2
 

0.012±0.0008 857 4.2±0.7 

4.09 ± 

0.1 × 

10
-2

 

0.012±0.0004 3000 

Gln193Arg/ 

His194Thr 

12.8 ± 

6.9 

4.05 

± 0.7 

× 10
-

2
 

0.01±0.002 769 4.1±2.8 

0.8 ± 

0.1× 

10
-2

 

0.003±0.0003 743 

 

The mutation of Gln193 to arginine resulted in an SMFMO variant with a fourfold 

reduced KM for NADPH (8.3 µM compared to 27.3 µM). The turnover, kcat (0.007 s
-1

), 

was lower than that of the wild type when NADPH was employed (0.022 s
-1

), which 

resulted in the catalytic efficiency (kcat/KM, 875 M
-1

 s
-1

) of Gln193Arg to be comparable 

with that of the wild type. When NADH was employed as cofactor for the Gln193Arg 

variant the binding (KM, 21.2 µM) and efficiency (kcat/KM, 1476 M
-1

 s
-1

) was similar to 

that of the wild type (23.7 µM, 1223 M
-1

 s
-1

). Variant His194 to threonine resulted in a 

mutant with a sevenfold reduced KM for NADPH (4.2 µM), compared to the wild type, 

which resulted in an increased catalytic efficiency (kcat/KM, 3000 M
-1

 s
-1

) for this 

enzyme with NADPH. Compared to SMFMO, binding of NADH for His194Thr was 

also marginally improved (KM, 14.1 µM), however, the mutation led to a drop in 

turnover rates. Therefore, the His194Thr variant led to reduced catalytic efficiency with 

NADH and increased catalytic efficiency with NADPH, resulting in an overall change 

of ratio (kcat/KM NADH/ kcat/KM NADPH) from 1.5:1 to 1:3.5. Interestingly, the double 

mutant Gln193Arg/His194Thr gave a combination of effects, in which the lower KM and 

lower kcat of mutants Gln193Arg and His194Thr combine to give a mutant of lower 
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catalytic efficiency overall with both cofactors (NADH kcat/KM, 769 M
-1

 s
-1

, NADPH 

743 M
-1

 s
-1

).  

 

6.4.4 Structure determination of double mutant Gln193Arg/His194Thr 

The mutants Gln193Arg, His194Thr and Gln193Arg/His194Thr were subject to 

crystallisation in order to obtain a structure and thus, eliminate the possibility that the 

mutation of Gln193 to arginine and His194 to threonine had caused any major structural 

changes in the active site. The crystallisation screens for mutants Gln193Arg and 

His194Thr were unsuccessful. However, for the double mutant Gln193Arg/His194Thr 

the screens were successful and yellow needle like crystals were produced (Figure 6.7), 

similar to those produced for the wild type and also in the same conditions ([Li2SO4]: 

0.9 M, Buffer: bis-tris propane pH5.6). 

 

 

Figure 6.7 Crystals obtained for SMFMO variant Gln193Arg/His194Thr. 

Crystallisation conditions were the same as for SMFMO: ([Li2SO4]: 0.9 M, Buffer: btp 

pH5.6.  

 

The crystals were subjected to X-ray diffraction and the structure of the mutant 

Gln193Arg/His194Thr was solved and refined to a resolution of 2.6 Å, described in 

Section 6.3.4. The native SMFMO structure was found to exist as a dimer, with two 

molecules in the asymmetric unit, the double mutant however revealed eight monomers, 

arranged as four dimers in the unit cell (Figure 6.8). The difference in structures could 

be credited to less symmetry within the crystal thus leading to a difference in packing 

within the unit cell. Therefore, for the native structure the symmetry may be much 
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higher than that of the mutant, leading to only two subunits in the unit cell rather than 

eight. 

 

 

Figure 6.8 Structure of SMFMO mutant Gln193Arg/His194Thr. 

Protein backbone is shown in ribbon format, beta sheets in blue and alpha helices in 

pink. FAD molecules shown in each subunit shown in stick format. 

 

Similar to the wild type, omit maps after refinement in the absence of flavin clearly 

revealed residual density for the FAD in the active sites of each mutant monomer. As 

with SMFMO, each subunit was largely complete apart from stretch of missing density 

corresponding to twenty four amino acids from positions Glu210 to Asp234, which 

could not be modelled. In order to investigate if the mutations of the Gln193 and His194 

residues had affected the cofactor 2’ phosphate binding region of the enzyme  in any 

way, subunit ‘A’ from the wild type and subunit ‘H’ from the Gln193Arg/His194Thr 

mutant structure were superimposed (Figure 6.9).  
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Figure 6.9 Superimposition of nicotinamide cofactor binding site in SMFMO and 

mutant Gln193Arg/His194Thr structures. 

The wild type SMFMO is shown in worm format in pink. The double mutant is shown 

in worm format in purple. The sulfate ions, for both wild type and mutant, are illustrated 

in yellow. 

 

The superimposition of the cofactor binding region of the wild type and the mutant 

revealed very little movement of the backbone and the position of the sulfate ion is 

conserved in both wild-type and double mutant (rmsd 0.42 Å over 330 Cα atoms). 

Interestingly, similar to the wild type SMFMO, the two mutant residues Arg193 and 

Thr194 are pointing inwards towards the sulphate ion. The arginine and threonine of the 

double mutant are closer to the sulfate ion compared to the glutamine and histadine of 

the wild type. The Gln193Arg/His194Thr mutant has bond distances of 3.36 and 3.89 Å 

from the NH of the arginine side chain to the oxygen on the SO4 and 4.20 Å from the 

threonine side chain hydroxyl. The wild type however has bond distances of 4.20 Å 

from the NH on the glutamine side chain to the sulfate ion oxygen and 4.77 and 5.37 Å 

from the NH on the histidine side chain. Although the bond distances to the sulfate ion 

of the mutated residues arginine and threonine are nearer than those of the wild type, 

they are not significantly closer to generate a NADPH-specific mutant.  
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6.5 Discussion 

The SMFMO variants demonstrated that the strength of NADPH binding can be 

attributed to the nature of the residue at position 193 and 194. However, a straight 

mutation of the Gln193 and His194 to those found in NADPH dependent FMOs 

(Arg234 and Thr235 in mFMO) does not engineer absolute NADPH specificity in 

SMFMO. This may be due to a steric effect in the cofactor binding site, as residual 

space is still available and can still accommodate the smaller NADH ribose 2’ hydroxyl. 

However, in mFMO the residual space is also present so it is difficult to determine why 

NADH binding is disfavoured and NADPH binding is favoured in this enzyme. To our 

knowledge, the activity of mFMO with NADH has not been reported as of yet, so it 

may be possible that some activity of mFMO with NADH exists. In addition, the 

arginine/threonine residues in the cofactor binding site in mFMO are conserved 

throughout other NADPH-dependent flavoproteins, for example the BVMOs PAMO
61a

 

and CHMO.
59

 A study into the nicotinamide cofactor binding site of PAMO revealed 

that the residue Arg217 was essential for NADPH binding as the mutations to alanine 

and leucine reduced the catalytic efficiency dramatically. The mutation of the residue 

Thr218 to alanine, however, did not have a significant effect.
87a

 The substitution of 

His220 to glutamine in PAMO resulted in a variant with an increased catalytic 

efficiency with NADH but the mutant Gln220 residue is not structurally homologous 

with Gln193 in SMFMO. While the SMFMO variant Gln193Arg did not dramatically 

alter cofactor specificity, there is widespread evidence that glutamine is a determinant in 

cofactor promiscuity. For example, formate dehydrogenases (FDHs) are mostly NAD
+
 

dependent, however mutational
109

 and genomic
110

 studies have revealed enzymes that 

are cofactor promiscuous or NADPH-specific which is partly due to the mutation of a 

glutamate or aspartate residue in NADH-specific enzymes that repel negatively charged 

phosphate, for a glutamine, which has no charge. This finding prompted the Gln193 

residue in SMFMO to be exchanged with a glutamate residue in an effort to produce a 

strict NADH-specific enzyme. Unfortunately the mutation Gln193Glu in SMFMO 

resulted in a variant which could not be expressed within the soluble fraction of the E. 

coli cells (shown in Section 6.4.2). The His194Thr variant had a much greater effect on 

NADPH binding in SMFMO. The increased contribution of the threonine residue to 

NADPH binding could be owing to the bond distances from the Thr235 side chain to 

the ribose 2’ phosphate oxygen in mFMO, for example, in the 2XLT structure the 
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Thr235 is closer (2.6 Å) compared to those for the Arg234 side-chain NH atoms with 

the corresponding phosphate oxygens (3.2-3.5 Å).  The sequence alignment of the FMO 

motif regions of SMFMO, mFMO
103

 and PAMO
61a

 with the group of cofactor 

promiscuous Rhodococcus jostii RHA1 FMOs
18

 using ClustalW2
113

 revealed possible 

residues responsible for the cofactor promiscuity in such enzymes (Figure 6.10). 

 

 

Figure 6.10 Sequence alignment of flavin containing enzymes with SMFMO. 

SMFMO = Stenotrophomonas maltophilia Flavin-containing Monooxygenase; mFMO 

from Methylophaga aminisulfidivirans; PAMO = phenylacetone monooxygenase from 

Thermobifida fusca; FMO A-G = Rhodococcus jostii RHA1 FMOs. The residues 

responsible for phosphate binding in SMFMO, mFMO and PAMO are highlighted in 

yellow. The residues that may be responsible for cofactor phosphate recognition for the 

group of FMOs from Rhodococcus jostii RHA1 are highlighted in yellow.  

 

Structural alignment of SMFMO, PAMO and mFMO revealed that the residues 

responsible for cofactor binding in SMFMO were Gln193 and His194 (an Arg/Thr 

couple in mFMO and PAMO). Sequence alignment of the Rhodococcus jostii RHA1 

FMOs, that can utilise both NADH and NADPH as cofactor giving identical 

conversions and enantioselectivities of substrates, found that FMO E, G and F had an 

arginine and serine couple (FMO E: Arg370, Ser371; FMO F: Arg369, Ser370; FMO G: 

Arg379, Ser380), which is not too dissimilar to the arginine and threonine residues 

responsible for phosphate binding in mFMO and PAMO. SMFMO however is much 

smaller than the FMOs E, F and G, with the three being closer in sequence to BVMOs. 

FMO D is similar in size to SMFMO, and has two arginine residues that may be 

responsible for phosphate binding (Arg206 and Arg207), however it is difficult to 

pinpoint the positions in the Rhodococcus FMOs without a structural alignment. Thus, 

further structural and mechanistic studies of SMFMO and the group of FMOs identified 

by Riebel et al. could help determine further cofactor specificity determinants in this 

group of enzymes.  
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6.6 Conclusion 

The SMFMO mutants Gln193Arg, His194Thr and Gln193Arg/His194Thr allowed for 

the cofactor promiscuity of SMFMO to be investigated. The mutation of the histidine 

residue to threonine proved to have the greater effect in producing an NADPH-specific 

enzyme, however, SMFMO was still able to utilise NADH. A structure of SMFMO 

complexed with NAD(P)H could help shed some light on the enzymes ability to use 

both cofactors.  
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Chapter 7: Investigation into the 

enantioselectivity of SMFMO 

7.1 Introduction 

Mutagenesis studies towards the active site of BVMOs like PAMO and CHMO and 

FMOs such as mFMO has highlighted residues that have effects on the activity and 

enantioselectivity of these enzymes.
58b, 111

 SMFMO was found to oxidise substrates with 

moderate to low enantioselectivity, the best case being that of substrate 19 with 80 % -

(R) ee with NADH and 82 % -(R) with NADPH. The structure obtained for SMFMO 

revealed the environment surrounding the flavin, particularly the tricyclic ring 

environment which possesses the C4 carbon atom that reacts with molecular oxygen to 

give the reactive intermediate, (hydro)peroxy flavin, that goes on to oxidise substrates. 

The structure of SMFMO allowed for a structure-informed approach to the analysis of 

the active site, in order to improve or alter SMFMOs enantioselectivity, when NADH 

was employed as cofactor. Cho and co-workers revealed a structure that highlighted the 

active site of the FMO mFMO. The mFMO structure had been determined in complex 

with the substrate indole, which sits close to the FAD, in order to undergo an 

oxygenation reaction to generate indoxyl.
74

 To investigate the active site determinants 

for enantioselectivity in SMFMO, the active site was superimposed with flavin-binding 

site of the indole bound mFMO structure (2XVJ
74

), Figure 7.1.  
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Figure7.1 Superimposition of the flavin binding site of SMFMO with the flavin binding 

site of mFMO in complex with indole (2XVJ) illustrating the sites picked for mutation 

to investigate the enantioselectivity of SMFMO. 

The protein backbone is shown in worm format with SMFMO in pink and mFMO in 

green. The FAD for SMFMO is shown in cylinder format with carbon atoms in pink. 

The FAD and indole for mFMO are shown in cylinder format with carbon atoms in 

green. The FAD is surrounded by the Fo-Fc density map in blue contoured at a level of 

3σ, generated in the absence of FAD. 

 

The selected residues for mutagenesis were Phe52, Asn173, Ser174 and Phe283 as these 

residues were close to the indole ligand (within 4 Å) and also the C4 position in the 

tricyclic ring of the flavin which is the site of formation of the reactive hydroperoxy 

flavin intermediate. In mFMO residue Asn73 is thought to stabilise the flavin 

hydroperoxide, as mutation results in an inactive enzyme. Therefore residue Phe52 in 

SMFMO was also mutated to asparagine in an effort to see what effect this would have 

on the activity of SMFMO. Substrates chosen for the investigation of enantioselectivity 

in SMFMO were substrates 13 and 15. Substrate 13 was selected as the conversion with 

SMFMO and NADH was 27 % with 71 % -(R) ee, whereas 15 had a conversion of 90 % 

with 25 % -(R) ee, thus allowing for an improvement in enantioselectivity to be 
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monitored. Substrate 19 was not chosen as the ee for this substrate when NADH was 

employed was already high making it difficult for an increase in ee to be observed.  

 

7.2 Aims 

The aim of this chapter was to use mutagenesis techniques, SSM and SDM, to obtain 

mutants of the selected residues in order to investigate the effects such mutations had on 

the enantioselectivity of SMFMO when NADH is employed as nicotinamide cofactor. 

 

7.3 Materials and methods 

7.3.1 Mutagenesis 

SDM 

SDM reactions were carried out with two sets of primers, forward and reverse, using the 

method described in Section 3.5.1. Primers for the SMFMO mutants Phe52Asn, 

Phe52Ala, Asn173Phe, Asn173His and Asn173Tyr can be found in Table 3.15. 

Site saturation mutagenesis 

SSM reactions were carried out with the NDT primer for each specific residue, using 

the method described in Section 3.5.2. Primers for the SMFMO mutants Phe52X, 

Asp173X, Ser174X and Phe283X can be found in Table 3.18. 

7.3.2 Expression and purification 

The SMFMO mutants were expressed in E. coli strain BL21 (DE3) as described in 

Section 3.2.5. Mutants Phe52Asn and Phe52Val were purified using Ni
2+

 affinity 

chromatography followed by size exclusion chromatography described in Section 3.3. 

 

7.3.3 Enzyme assays 

Biotransformations with SMFMO variants 

The expressed mutants were sonicated (3×30 s) and the cell lysate (1 mL) was used in 

the biotransformations of sulfides 13 and 15, carried out as described in Section 3.4.4. 

For the mutant Phe52Val, isolated protein was used in the biotransformations (Section 
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3.4.4) of sulfides 13–19 (Figure 4.10). Biotransformations were analysed by GC 

described in Section 3.4.5. For Phe52Asn isolated protein was used for the 

biotransformations of substrates 1 and 15. 

 

7.4 Results 

7.4.1 Mutagenesis 

The selected residues in SMFMO, Phe52X, Asn173X, Ser174X and Phe283X, were 

individually mutated using primers with an NDT codon, yielding possible variants with 

the mutations Phe, Leu, Ile, Val, Tyr, His, Asn, Asp, Cys, Arg, Ser, Gly.
99

  

Site-saturation mutagenesis was carried out as described in Section 3.5.2 and 7.3.1. A 

sample from the reactions was run on an Agarose gel to illustrate that the reactions were 

a success. The reactions were digested with DpnI and transformed as described in 

Section 3.5.1. 

The resulting colonies were used to inoculate cultures and the DNA was extracted using 

a mini-prep kit. Samples of the extracted DNA were subjected to restriction digest 

(Section 3.1.7) to confirm insert was present (Figure 7.2) and sequenced in order to 

confirm the SMFMO mutation was present and that the rest of the gene sequence was 

reserved (Figure 7.3). Colonies were continuously picked until many of the mutations 

were obtained. 

 

 

Figure 7.2 Agarose gel of restriction digest for Asp173X DNA samples. 

Lane 1: NEB 1 kb ladder, lane 2-10: Restriction digest reactions for SMFMO mutant 

Asn173X. A clear band can be seen at ~6 kb for the pET-YSBLIC-3C vector and a band 

at ~1.1 kb for the mutant SMFMO insert, outlined in red. 
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For SSM reactions Phe52X, Asn173X, Ser174X, clear bands at ~1.1 kb and ~6 kb were 

present, illustrating that a DNA insert was present within the complete pET-YSBLIC-

3C vector.  
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Figure 7.3 Sequence alignment of wild type SMFMO and Phe52Asn mutant. 

Phe52Asn mutation is highlighted in yellow. 
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The SMFMO variants obtained successfully are shown in Table 7.1. 

 

Table 7.1 Table of NDT mutations. *Obtained by site-directed mutagenesis.  Green 

indicates successful mutations, red indicates unsuccessful mutations, purple indicates 

native amino acid. 

NDT Library Phe52X Asn173X Ser174X Phe283X 

Phe Phe Phe Phe Phe 

Leu Leu Leu Leu Leu 

Ile Ile Ile Ile Ile 

Val Val Val Val Val 

Tyr Tyr Tyr Tyr Tyr 

His His His* His His 

Asn Asn* Asn Asn Asn 

Asp Asp Asp Asp Asp 

Cys Cys Cys Cys Cys 

Arg Arg Arg Arg (Q118R) Arg 

Ser Ser Ser Ser Ser 

 

For the Phe52X mutant SSM gave only four of the eleven available mutations. The 

Phe52Asn mutant was obtained by SDM. For the Asn173X variants eight mutants were 

obtained. The variant Asn173His was obtained by SDM. However, the Asn173Tyr and 

Asn173Phe mutants could not be obtained by SSM or SDM. For the point mutation 

Phe283X SSM reactions proved unsuccessful.  

 

7.4.2 Expression and purification of SMFMO variants 

Phe52X, Asp173X and Ser174X expression 

The SMFMO gene, containing the desired mutation, in the pET-YSBLIC-3C vector was 

expressed in BL21 (DE3) cells as described in Section 3.2.5 with a total volume of 100 

mL LB media. The expressed mutants were sonicated and the lysate was analysed by 

SDS-PAGE in order to find if the expressed mutants were soluble (Figure 7.4). 
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Figure 7.4 SDS-PAGE gel of soluble fractions for SMFMO mutants Phe52X, Asn173X 

and Ser174X. 

Clear expression of mutants can be seen at ~38 kDa for mutants and SMFMO but not 

for the LIC control. 

 

For each SMFMO mutant soluble expression could be seen at ~38 kDa. A similar band 

was seen for the SMFMO control but was absent in the soluble fraction of LIC 

expression. 
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Large scale Phe52Asn and Phe52Val expression and purification 

The SMFMO gene, containing the desired mutation, in the pET-YSBLIC-3C vector was 

expressed in BL21 (DE3) cells as described in Section 3.2.5 with a total volume of 2 L 

LB media. After expression the protein was purified. 

 

 

Figure 7.5 Chromatogram and SDS-PAGE gel of SMFMO mutant Phe52Val 

purification by size exclusion chromatography. 

Protein absorbance at 280 nm is indicated by the blue trace. Lane 1: Bio-Rad low 

weight molecular marker, lane 2-7: collected fractions after FPLC run. The protein can 

be seen at 38 kDa. 

 

Both mutants Phe52Asn and Phe52Val were purified using Ni
2+

 affinity 

chromatography followed by size exclusion chromatography (Figure 7.5) which was 

successful in yielding pure yellow protein with a molecular weight of ~38 kDa, as 

shown on the SDS-PAGE gel for mutant Phe52Val. The mutants eluted between 55-70 

mL in accordance with the wild type indicating the mutants are dimers. The expression 

of the mutants proved similar to that of the wild type SMFMO yielding ~3 mg of 

protein per litre of medium. 
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The mutation Phe52Ala in SMFMO resulted in a variant which could not be expressed 

within the soluble fraction of the E. coli cells (Figure 7.6). 

 

 

Figure 7.6 SDS-PAGE gel of expression for SMFMO mutant Phe52Ala. 

Lane 1: Bio-Rad low weight molecular marker, lane 2: insoluble fraction of Phe52Ala 

expression, lane 3: soluble fraction of Phe52Ala expression. The protein can be seen at 

~38 kDa in the insoluble fraction. 

 

A band at ~38 kDa can be seen in the insoluble fraction on the SDS-PAGE gel but the 

band is absent in the soluble fraction. In an effort to salvage any soluble expression Ni
2+

 

affinity chromatography purification was attempted. Unfortunately, no protein peak was 

present on the chromatogram. 

  

7.4.3 Biotransformations with SMFMO variants Phe52X, Asn173X and Ser174X 

It was found that SMFMO had the ability to convert substrates 13 and 15 with 

respective conversions and ees of 27 % (71 % -(R)) and 90% (25 % -(R)) when NADH 

was employed as cofactor. The expressed mutants Phe52X, Asn173X and Ser174X 

were sonicated and the lysate was used in the biotransformations of substrates 13 and 15 

in order to investigate the mutants’ ability to oxidise the substrates and also their 



139 

enantioselectivity towards them, when NADH was used as cofactor. The results are 

shown in Table 7.2. 

 

Table 7.2 Conversions and enantioselectivity of SMFMO mutants Phe52X, Asn173X 

and Ser174X towards substrates 13 and 15. 

 

The mutations of Asn173 and Ser174 resulted largely in variants of low activity. The 

conversions of substrate 13 to its sulfoxide were zero in most cases. When 15 was 

SMFMO 

Variant 

Conversion 

of 13 (%) 

ee for sulfoxide 

product of 13 (%) 

Conversion 

of 15 (%) 

ee for sulfoxide 

product of 15 (%) 

SMFMO 27 71 –(R) 90 25 –(R) 

LIC 0 - 0 - 

N173G 0 - 4 12 –(S) 

N173S 0 - 3 8 –(R) 

N173R 0 - 1 3 –(R) 

N173V 0 - 2 - 

N173L 0 - 2 - 

N173I 0 - 2 4 –(R) 

N173H 0 - 1 6 –(R) 

N173D 0 - 1 3 –(R) 

S174R 0 - 4 - 

S174G 0 - 0 - 

S174I 0 - 1 11 –(R) 

S174N 0 - 0.5 16 –(R) 

S174C 3 48 –(R) 14 37 –(R) 

S174D 0 - 2 12 –(R) 

S174F 0 - 1 1 –(R) 

S174L 0 - 0 - 

S174V 0 - 1 12 –(R) 

F52V 28 racemic 17 32 –(S) 

F52R 1 46 –(S) 4 38 –(R) 

F52L 24 67 –(R) 14 24 –(R) 
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utilised as substrate the conversions were much lower than those observed for the wild 

type when NADH is used as cofactor. However, for the Ser174Cys mutation higher 

conversions could be seen and the ee for the sulfoxide for substrate 15 was similar to 

that of the wild type (37 % versus 25 %), which can be expected as the mutation was 

conservative, both similar polar amino acids. The Phe52 mutants were found to be more 

active, with the mutation to hydrophobic leucine producing a mutant with increased 

conversions which was also reasonably enantioselective with both substrates (67 % and 

24%), with the same configuration –(R) as that of the wild type. The mutant Phe52Asn 

was found to have similar conversions for substrate 15 that of wild type SMFMO (86 

%) but diminished the enantioselectivity for both NADH and NADPH causing the 

mutated enzyme to give a racemic product (not shown in Table 7.2). Interestingly, the 

Phe52 mutant with the smaller hydrophobic group, valine, gave an oxidised product for 

substrate 15 with inverted absolute configuration (-(S)) compared to the wild type 

enzyme (-(R)). This observation insinuated that when less sterically hindered amino 

acids are utilized the active site maybe be more available in some way. In order to 

demonstrate this effect, Phe52 was mutated to the much smaller alanine, but 

unfortunately the mutant was not expressed well, and the cell extracts that contained the 

mutant did not appear yellow, suggesting that a side chain of minimum size is needed in 

this position to maintain flavin binding, in addition to the flavin hydrogen bonding to 

the main chain NH of residue Phe52. 

 

Further investigation into the phenyalanine52 residue 

Using the Phe52Val mutant the inversion of stereochemistry when compared to the wild 

type was investigated. Isolated Phe52Val mutant protein was used in the 

biotransformations of the sulfide library (substrates 13-19, Figure 4.10) used in the 

characterisation of SMFMO, with NADH as cofactor. The results can be seen in Table 

7.3. 
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Table 7.3 Biotransformations of sulfides by SMFMO mutant Phe52Val compared to 

biotransformations of equivalent substrates using wild type SMFMO. 

Substrate 

Conversion (%) 

WT SMFMO 

ee (%) 

WT SMFMO 

Conversion (%) 

Phe52Val 

ee (%) 

Phe52Val 

13 27 71 –(R) 79 11 –(S) 

14 32 24 –(R) 91 7 –(S) 

15 90 25 –(R) 77 32 –(S) 

16 8 21 –(R) 69 8 –(S) 

17 6 15 –(S) 69 19 –(S) 

18 18 30 –(R) 20 41 –(S) 

19 40 80 –(R) 24 28 –(R) 

 

With the Phe52Val mutant it was found that the conversions of the sulfides into their 

corresponding sulfoxides were increased save for substrate 15. Whilst the 

enantioselectivity in most cases was poor the absolute configurations of products for the 

mutant ((S)-enantiomer) was opposite to those obtained for the wild-type ((R)-

enantiomer). However, for substrate 19 the (R)-selectivity was maintained although 

significantly reduced compared to that obtained for the wild type (28 % ee compared to 

80 % ee). In addition, for substrate 17 the (S)-selectivity was maintained with similar ee 

to that of the wild type. 

 

7.5 Discussion 

It was found that mutations at residues Asn173 and Ser174 produced variants with little 

activity when tested for their ability to oxidise substrates 13 and 15. Neither of these 

residues interact with the flavin however superimposition of mFMO complexed with 

NADPH (2XLT) indicates that residues Asn173 and Ser174 may be in proximity to the 

nicotinamide ring of NADPH. Interestingly, position 173 is occupied by Tyr212 in 
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mFMO (Figure 7.7) which is thought to act as a ‘backdoor’ residue in order to protect 

the active site from bulk solvent.
103

 The mutation of Asn173 to a tyrosine residue 

however could not be obtained.  

 

 

Figure 7.7 Superimposition of SMFMO with the flavin binding site of mFMO (2XLT) 

illustrating that the ‘backdoor’ residue Tyr212 of mFMO is occupied by Asn173 in 

SMFMO. 

Protein backbone is shown in ribbon format with SMFMO in pink and mFMO in green. 

The FAD for SMFMO is shown in cylinder format with carbon atoms in gold. The FAD 

and NADPH for mFMO are shown in cylinder format with carbon atoms in grey. 

 

The mutations at residue Phe52 proved more successful, more specifically the mutation 

to valine in which the absolute configuration of sulfoxide products was inverted in most 

cases compared to those obtained with the wild type. The role of Phe52 in SMFMO is 

somewhat different when compared to structurally homologous residues in other 

FPMOs. In mFMO an asparagine residue is present
73

 and mutation of this residue, even 

to a conservative serine, produced an inactive enzyme. It has been proposed that Asn73 

in mFMO is involved in the stabilisation of the flavin hydroperoxide, as mutation of this 

residue knocks out the enzymes ability to oxygenate substrates.
103

 However in other 

cases, mutation of the residue at this position has had little or no effect on the activity of 

the enzyme.
108

 In SMFMO, Phe52 was found to have an effect on substrate binding, as 

the mutation to a smaller residue, Phe52Val, resulted in a variant with altered 

enantioselectivity. In other FPMOs the selectivity in regards to sulfoxidation has also 
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been altered by mutagenesis. For example, the structure guided mutagenesis of PAMO 

allowed for the Met446 active site residue mutant, Met446Gly, which catalysed the 

oxidation of methyl-p-tolyl sulfide to its (R)-enantiomer with 92 % ee compared to 6% 

for the wild type.
111

 A non-structure based investigation of CHMO from Acinetobacter 

calcoaceticus was performed by Reetz et al. in which directed evolution was used to 

generate mutants which were enantiocomplementary when methyl-p-methyl benzyl 

thioether was employed as substrate. For example, the CHMO variant Phe432Ser 

allowed for the (R)-sulfoxide enantiomer with 98.7 % ee and the double mutant 

Phe16Leu/Phe227Ser variant gave the (S)-product with 95.2 % ee.
58b

 It can be seen that 

a number of different residues, in the proximity of the active site or remote, in FPMOs 

have been valuable in regards to mutations to alter or improve enantioselectivity. 

 

7.6 Conclusion 

The mutagenesis study of SMFMO found that residue Phe52 had no absolute 

requirement but however had an interesting effect on the active sites recognition of 

substrates when mutated to a much smaller amino acid, thus, resulting in inverted 

enantioselectivity. The mutation of residues Asn173 and Ser174 resulted in enzymes 

with low activity indicating that both residues are important within the active site. The 

role residues Phe52, Asn173 and Ser174 play in SMFMO and structurally homologous 

residues in other FPMOs is still under investigation.  
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Chapter 8: Investigation into putative NADH 

specific enzymes 

8.1 Introduction 

SMFMO is interesting amongst FPMOs as it is one of the only enzymes, in addition to 

the group of enzymes from Rhodococcus jostii RHA1
18

 and the BVMO mekA from 

Pseudomonas veronii MEK700
112

, that can utilise the cheaper nicotinamide cofactor 

NADH to oxidise prochiral sulfides, albeit with poor enantioselectivity. The residues 

Gln193 and His194 were found to be the determinants of cofactor promiscuity in 

SMFMO, in particular residue His194. In an effort to find novel FPMOs with the 

potential to be NADH specific a BLAST search was conducted, looking for naturally 

occurring mutants of SMFMO in positions Gln193 and His194. From the search two 

enzymes were selected, a monooxygenase from Pseudomonas stutzeri NF13 (PFMO) 

and pyridine nucleotide-disulfide oxidoreductase from Cellvibrio sp. BR (CFMO) 

(Figure 8.1). 
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Figure 8.1 Sequence alignment of SMFMO, PFMO and CFMO highlighting the 

residues in line with residues Gln193 and His194 of SMFMO.  

PFMO= monooxygenase from Pseudomonas stutzeri NF13; CFMO= pyridine 

nucleotide-disulfide oxidoreductase from Cellvibrio sp. BR. Rossman motifs are shown 

in red and FMO motif shown in red. 

 

As with SMFMO, proteins PFMO and CFMO contain two Rossman motifs for the 

binding of the ADP moiety in FAD and NAD(P)H, and an amino acid motif typical of a 

FMO.
11

 Both PFMO and CFMO are of similar size to SMFMO, with PFMO being 358 

aa (39.6 kDa) in length and CFMO 361 aa (39.4 kDa) compared to the 357 aa (38.6 

kDa) of SMFMO. A sequence alignment obtained using ClustalW2
113

 revealed a 60.78 

% sequence identity between PFMO and SMFMO and a 58.26 % sequence identity 

between CFMO and SMFMO. 

PFMO and CFMO proved interesting as they did not have the usual arginine/threonine 

couple present in other FPMOs which is responsible for phosphate binding.
59, 61a, 103

 

PFMO was selected as it was found to possess a glutamine (Gln194) and glutamate 

(Glu195) at the position where SMFMO has the cofactor determinant residues Gln193 

and His194. The PFMO residues sparked interest due to the glutamate residue as the 

Gln193Glu mutant could not be obtained for SMFMO. PFMO is a variant of SMFMO 

that could be a strict NADH-dependent enzyme because of the glutamate residues 

ability to repel negatively charged phosphate. CFMO was found to be also a variant of 

SMFMO at positions 193 and 194, with CFMO possessing polar residues threonine 
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(Thr202) and serine (Ser203). The selected targets are different compared to the NADP 

ribose 2’-phosphate recognition site in SMFMO (when superimposed with mFMO, 

residues Gln193 and His194) and the natural mutants could prove to be novel NADH-

dependent FMOs. 

 

8.2 Aims 

The aim of this chapter is to clone, express and characterise the selected targets PFMO 

and CFMO in order to identify if the variants obtain NADH-specific activity. 

 

8.3 Materials and methods 

8.3.1 Obtaining of PFMO and CFMO genes 

The genes coding a monooxygenase from Pseudomonas stutzeri NF13 (PFMO) and a 

pyridine nucleotide-disulfide oxidoreductase from Cellvibrio sp. BR (CFMO) were 

codon optimised for E. coli and purchased from Geneart in vector pMA-T. The gene 

sequences for the targets are shown in Figure 8.2. 
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Figure 8.2 The codon optimised gene sequence for PFMO and CFMO. 
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8.3.2 Ligation independent cloning 

Both the PFMO and CFMO genes were cloned into the pET-YSBLIC-3C vector using 

the LIC protocol described in Section 3.1.2. Each gene was amplified using the protocol 

in Section 3.1.1. The primers used for each gene in the PCR are shown in Table 8.1. 

 

Table 8.1 Primers used in PCR for PFMO and CFMO gene amplification 

Gene Forward primer Reverse primer 

PFMO 
CCAGGGACCAGCAATGCCTC

CGATTCTGG 

GAGGAGAAGGCGCGTTACGGAC

GACGGCTCGG 

CFMO 
CCAGGGACCAGCAATGGATA

CACCGGTTATGG 

GAGGAGAAGGCGCGTTAGGCGCT

ATCCAGATACTG 

 

Pure T4 treated linearised pET-YSBLIC-3C vector was sourced from Laila Roper 

within the Grogan group. The insert was treated with T4 polymerase as detailed in 

Section 3.1.4 and the vector and insert were annealed together as described in Section 

3.1.5. 

 

8.3.3 Expression and purification 

The target genes in the pET-YSBLIC-3C vector were expressed in E. coli BL21 (DE3) 

cells. 

Expression tests 

Small scale expression was carried out as described in section 3.2.3 and the soluble and 

insoluble fractions were analysed by SDS-PAGE (Section 3.2.4). 

Large scale expression and purification 

The target genes were expressed as described in Section 3.2.5 and the proteins were 

purified using Ni
2+

 affinity chromatography followed by size exclusion chromatography 

described in Section 3.3. 
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8.3.4 Enzyme assays 

Kinetic assays with PFMO and CFMO 

Kinetic studies were carried out in accordance to Section 3.4.2. Kinetic parameters were 

calculated using the GraFit data analysis software. 

Biotransformations with PFMO and CFMO 

Biotransformations were carried out as described in Section 3.4.4 using a range of 

prochiral sulfides (Figure 4.8). Biotransformations were analysed by GC and GC-MS 

described in Sections 3.4.5 and 3.4.6. 

 

8.3.5 His6-tag cleavage of PFMO 

The His6-tag present in PFMO was cleaved using 3C protease as described in Section 

3.3.4. 

 

8.3.6 Crystallisation studies 

Pure PFMO and CFMO was subjected to crystallisation trials using a range of 

commercially available screens in 96-well plates employing 300 nL drops at a range of 

protein concentrations (3, 10 and 20 mg mL
-1

). The best crystals for PFMO were 

obtained using the Clear Strategy Screen conditions containing 35 % w/v tacsimate pH 

7.0 and His6-tag cleaved protein (20 mg mL
-1

). The best crystals for CFMO were 

obtained using the Clear Strategy Screen conditions containing 1.5 M ammonium 

sulfate and protein (20 mg mL
-1

).
101

 Larger crystals for diffraction analysis using 

optimised conditions were prepared using the hanging-drop vapour diffusion method in 

24-well plate Linbro dishes and using crystallisation drops of 2 mL with protein (20 mg 

mL
-1

). For PFMO, the best crystals were obtained in crystal drops containing 35 % w/v 

tacsimate at pH 7.0. For CFMO, the best crystals were obtained in crystal drops 

containing 1.5 M ammonium sulfate and propan-2-ol (10 µL). Crystals were tested for 

diffraction using a Rigaku Micromax-007HF generator fitted with Osmic multilayer 

optics and a MARRESEARCH MAR345 imaging plate detector. Those crystals that 

diffracted to greater than 3 Å resolutions were flash-cooled in liquid nitrogen in a 

cryogenic solution containing the mother liquor containing also 10 % w/v glycerol and 

retained for data collection at the synchrotron. Data processing and structure solution 
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for PFMO and CFMO was conducted by Dr Gideon Grogan. Collection and refinement 

statistics are shown in Table 8.2. 

 

Table 8.2 Data collection and refinement statistics for PFMO and CFMO 

 CFMO PFMO 

Date 12-03-14 12-03-14 

Beamline Diamond i24 Diamond i24 

Wavelength (Å) 0.96862 0.96862 

Resolution (Å) 22.44 – 2.39 (2.45-2.39) 35.94-1.83 (1.88-1.83) 

Space Group C2 P3221 

Unit Cell 

a = 115.41; b = 95.09; c = 

92.37 

α= β = 90.0; γ= 126.3 

a = b = 63.56; c = 

189.82 

α= β= 90.0; γ= 120.0 

No. of molecules in the asymmetric 

unit 
2 1 

Unique reflections 31344 (2329) 41893 (3176) 

Completeness (%) 98.1 (98.4) 100 (99.9) 

Rmerge (%) 0.09 (0.50) 0.112 (0.62) 

Rp.i.m. 0.09 (0.50) 0.054 (0.30) 

Multiplicity 3.2 (2.9) 9.8 (9.9) 

<I/σ(I)> 9.0 (2.1) 14.9 (3.8) 

CC1/2 0.99 (0.76) 100 (0.90) 

Overall B factor from Wilson plot 

(Å
2
) 

25 13 

Rcryst/Rfree (%) 24.8/28.7 16.5 (20.5) 

r.m.s.d. 1-2 bonds (Å) 0.014 0.02 

r.m.s.d. 1-3 bonds (°) 1.659 2.26 

Avge main chain B (Å
2
) 38 19 

Avge side chain B (Å
2
) 40 22 

Avge water B (Å
2
) 31 24 
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8.4 Results 

8.4.1 Ligation independent cloning 

Amplification of target genes 

LIC primers were obtained for both PFMO and CFMO and the genes were amplified by 

PCR. The PCR results were observed by agarose gel electrophoresis (Figure 8.3) 

 

 

Figure 8.3 Agarose gel of gene amplification by PCR for PFMO and CFMO genes. 

Lane 1: NEB 1 kb ladder, lane 2: PCR product for CFMO gene, lane 3: PCR product for 

PFMO gene. 

 

A bright band at 1 kb can be seen for the PFMO gene and the CFMO gene. The PCR 

products were cut out and purified by gel extraction yielding 5 µg of PCR product for 

PFMO and 5.5 µg for CFMO. 

 

T4 polymerase reaction 

Pure T4 treated linearised pET-YSBLIC-3C vector at a concentration of 5.4 µg was 

sourced from Laila Roper within the Grogan group. The gene inserts were treated with 

T4 polymerase as described in Section 3.1.4 and 8.3.2. 
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LIC annealing, transformation and mini-prep 

The treated vector and insert for PFMO and CFMO were annealed together by 

incubation at room temperature as described in Section 3.1.5. The resulting reaction was 

transformed into E. coli XL10 Gold Ultra-competent cells and the next day 4 colonies 

were picked for each target gene and mini-prepped to recover the DNA.  

 

Restriction digest  

A sample for each of the DNA samples for PFMO and CFMO were digested with the 

restriction endonucleases NcoI and NdeI (Section 3.1.7) to confirm gene insertion. The 

results are shown in Figure 8.4. 

 

 

Figure 8.4 Agarose gel for PFMO and CFMO restriction digest experiments. 

Lane 1: NEB 1 kb ladder, lanes 2-5: restriction digest for the four colonies picked for 

CFMO gene, lane 6-9: restriction digest for the four colonies picked for PFMO gene. 

The insert for each successful reaction is boxed in red. 

 

The restriction digest experiment for PFMO shows that in three of the cases the gene 

insert was present. The insert can be seen just above the 1 kb (boxed in red) with the 

remaining vector at ~6 kb. For CFMO one of the experiments had successfully inserted 

the gene insert with the band at ~1 kb (highlighted in red) and the vector at ~6 kb. 
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DNA sequencing 

For PFMO reactions corresponding to lanes 6 and 7 in Figure 8.4 were submitted for 

sequencing. For CFMO the reaction corresponding to lane 5 was also sequenced. DNA 

sequencing confirmed that the gene sequences for PFMO (lane 6) and CFMO had 100 

% sequence identity with their gene sequences. The PFMO reaction yielded a DNA 

concentration of 4.3 µg and the CFMO gave a DNA concentration of 4.1 µg. 

 

8.4.2 Expression and purification of PFMO and CFMO 

The target genes in the pET-YSBLIC-3C vector were expressed in E. coli BL21 (DE3) 

cells. 

 

Expression testing 

Expression testing at different temperatures after IPTG induction was carried out to 

determine the favourable conditions for gene expression of soluble recombinant protein. 

The expression cultures were incubated at 37
o
C until OD600nm reached approx. 0.6 and 

then induced with IPTG. The cultures were then incubated overnight at 16, 30 and 37
o
C 

as described in Section 3.2.3.  

The soluble and insoluble fractions were analysed using SDS-PAGE, Figure 8.5. 
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Figure 8.5 SDS-PAGE gels for expression testing for PFMO and CFMO. 

Lane 1: Bio-Rad low weight molecular marker, lane 2: soluble PFMO fraction for 16
o
C 

incubation, lane 3: insoluble PFMO fraction for 16
o
C incubation, lane 4: soluble PFMO 

fraction for 30
o
C incubation, lane 5: insoluble PFMO fraction for 30

o
C incubation, lane 

6: soluble PFMO fraction for 37
o
C incubation, lane 7: insoluble PFMO fraction for 

37
o
C incubation, lane 8: soluble PFMO fraction for 16

o
C incubation without IPTG 

induction, lane 9: insoluble PFMO fraction for 16
o
C incubation without IPTG induction, 

lane 10: soluble CFMO fraction for 16
o
C incubation, lane 11: insoluble CFMO fraction 

for 16
o
C incubation, lane 12: soluble CFMO fraction for 30

o
C incubation, lane 13: 

insoluble CFMO fraction for 30
o
C incubation, lane 14: insoluble CFMO fraction for 

37
o
C incubation, lane 15: soluble CFMO fraction for 37

o
C incubation, lane 16: soluble 

CFMO fraction for 16
o
C incubation without IPTG induction, lane 17: insoluble CFMO 

fraction for 16
o
C incubation without IPTG induction. Soluble expression for both 

PFMO and CFMO is outlined in red. 

 

The expression testing revealed the favoured expression conditions for PFMO were 

expression at 37
o
C followed by incubation at 30

o
C after IPTG induction. This system 

gave the greatest soluble expression of PFMO as indicted by a band at ~39 kDa (boxed 

in red). For CFMO the favoured expression was similar to that of SMFMO, expression 

at 37
o
C followed by incubation at 16

o
C after IPTG induction, giving the greatest soluble 

expression of CFMO as indicted by a band at ~39 kDa (boxed in red). For both proteins 

the majority of the expression however was insoluble. Controls set up in the absence of 

IPTG induction confirmed over-expression did not occur without induction. 
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Large scale expression and purification 

PFMO 

The gene was expressed in a total volume of 2 L LB media using the expression 

conditions obtained from expression testing. The protein was purified using Ni
2+

 affinity 

chromatography followed by size exclusion chromatography (Figure 8.6). 

 

 

Figure 8.6 Chromatogram and SDS-PAGE gel of PFMO purification by size exclusion 

chromatography. 

Protein absorbance at 280 nm is indicated by the blue trace. Lane 1: Bio-Rad low 

weight molecular marker, lane 2-8: collected fractions after FPLC run. The protein can 

be seen at ~39 kDa. 

 

The protein eluted as a single peak (between 60-75 mL). Using a calibration curve 

provided by GE Healthcare, the position of the elution peak gave the molecular weight 

at ~40 kDa, indicating that PFMO is a monomer in solution. The fractions eluted were 

bright yellow in colour, indicating FAD was present within the purified protein and the 

fractions analysed by SDS-PAGE confirmed a protein band at ~39 kDa. The fractions 

were combined to give ~15 mg of pure protein. 
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CFMO 

The CFMO gene was expressed in a total volume of 2 L LB media using the expression 

conditions obtained from expression testing. The protein was purified using Ni
2+

 affinity 

chromatography followed by size exclusion chromatography (Figure 8.7). 

 

 

Figure 8.7 Chromatogram and SDS-PAGE gel of CFMO purification by size exclusion 

chromatography. 

Protein absorbance at 280 nm is indicated by the blue trace. Lane 1: Bio-Rad low 

weight molecular marker, lane 2-4: collected fractions between 40-55 mL, lane 5-10: 

collected fractions between 60-75 mL. The protein can be seen at ~39 kDa. 

 

CFMO eluted as a large peak (from 40-70 mL) with shouldering. Fractions collected 

between 40-60 mL were colourless; however SDS-PAGE gel indicated a protein band at 

~39 kDa. The fractions collected between 60 -75 mL were bright yellow indicating 

FAD was present within the purified protein and the fractions analysed by SDS-PAGE 

confirmed a protein band at ~39 kDa. The shouldering effect indicates the protein exists 

in two different oligomeric states. The elution profiles of standard proteins run on the 

Superdex® 75 gel filtration column assigned the shouldering peak between 40-55 mL as 

a trimer and the main peak between 60-75 mL as a monomer. The yellow fractions were 

pooled to give ~40 mg of pure protein. 
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8.4.3 Kinetic assays 

SMFMO has the ability to use either NADH or NADPH as nicotinamide cofactor with 

comparable capability.  

To investigate the ability of the target enzymes, PFMO and CFMO, to use either NADH 

or NADPH to reduce FAD, UV- spectrophotometry assays were carried out as 

described in Section 3.4.2, using increasing concentrations of either cofactor. 

Similar to SMFMO, PFMO could utilise both cofactors to reduce the bound flavin, 

illustrated in Figure 8.8. 

 

 

Figure 8.8 Kinetics of cofactor (NAD(P)H) utilisation by PFMO. 

 

Similar to SMFMO and PFMO, CFMO was also able to use either cofactor to reduce 

the flavin (Figure 8.9). 
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Figure 8.9 Kinetics of cofactor (NAD(P)H) utilisation by CFMO. 

 

For both enzymes, PFMO and CFMO, the kinetic graphs demonstrated Michaelis-

Menten behaviour, similar to that of SMFMO. For both NADH and NADPH assays the 

kinetic parameters were calculated in order to explore the effects PFMO and CFMO had 

on cofactor oxidation, the results are shown in Table 8.3. 
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Table 8.3 Kinetic constants for SMFMO, PFMO and CFMO using NADH or NADPH 

as cofactor. 

Assay 

KM 

(µM) 

Vmax 

(µM s
-1

) 

kcat 

(s
-1

) 

kcat/KM 

(M
-1

 s
-1

) 

NADH 

(SMFMO) 

23.7 ± 9.1 11.2 ± 1.5 × 10
-2

 0.029 1223 

NADPH 

(SMFMO) 

27.3 ± 5.3 8.4 ± 0.6 × 10
-2

 0.022 806 

NADH 

(PFMO) 

15.5 ± 2.3 6.5 ± 0.2× 10
-2

 0.0341 2273 

NADPH 

(PFMO) 

16.9 ± 1.8 8.0 ± 0.2× 10
-2

 0.0424 2510 

NADH 

(CFMO) 

3.22 ± 0.75 2.9 ± 0.1 × 10
-2

 0.015 4711 

NADPH 

(CFMO) 

5.04 ±0.57 4.0 ± 0.08 × 10
-2

 0.0211 4184 

 

For the enzyme PFMO the binding constant, KM, was found to be comparable when 

either NADH (15.5 µM) or NADPH (16.9 µM) was used as nicotinamide cofactor. The 

turnover, kcat, and catalytic efficiency, kcat/KM, when NADH was employed was also 

similar to that for NADPH (NADH: kcat = 0.0341 s
-1

, kcat/KM = 2273 M
-1

 s
-1

 versus 

NADPH: 0.0424 s
-1

, kcat/KM = 2510 M
-1

 s
-1

), indicating that the enzyme has the ability to 

utilise either cofactor with equal capability in order to reduce the bound flavin. The 

values observed for KM with PFMO were noticeably smaller than those produced for 

SMFMO with both cofactors. The Vmax values for PFMO were also lower than those for 

SMFMO, especially the value for the NADH assay, which was approximately 2 fold 

lower for PFMO (6.5 × 10
-2 

µM s
-1

 for PFMO compared to 11.2 × 10
-2 

µM s
-1

 for 

SMFMO).  
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The turnover value for PFMO (0.034 s
-1

) when NADH was employed was higher than 

that observed for SMFMO (0.029 s
-1

), thus, the higher turnover and lower KM led to a 2 

fold increase in catalytic efficiency for PFMO (2273 M
-1

 s
-1

) compared to that observed 

for SMFMO (1223 M
-1

 s
-1

). Similarly for the NADPH assay, the turnover value for 

PFMO (0.042 s
-1

) was double that observed for SMFMO (0.022 s
-1

), thus, the higher 

turnover and lower KM  led to a 3 fold increase in catalytic efficiency for PFMO (2510 

M
-1

 s
-1

) compared to that observed for SMFMO (806 M
-1

 s
-1

). The results for PFMO 

suggest that the enzyme can utilise both cofactors for reduction of the flavin more 

efficiently than SMFMO. 

The enzyme CFMO, had binding constants that were similar when both cofactors were 

used, with the greater binding for NADH (3.22 µM) than that for NADPH (5.04 µM). 

The turnover rate for the NADH assay (0.015 s
-1

) was smaller than for NADPH (0.021 

s
-1

), thus giving a higher catalytic efficiency for CFMO when NADH (4711 M
-1

 s
-1

) is 

employed compared to that for NADPH (4184 M
-1

 s
-1

). However, the small difference 

between the catalytic parameters when either cofactor is employed suggests that CFMO 

can also utilise both cofactors with equal capability.  

CFMO had the ability to bind NADH and NADPH with increased affinity compared to 

PFMO and SMFMO. When NADH was employed as cofactor the KM values for CFMO 

were 5-fold lower than that observed for PFMO and had 8-fold decrease when 

compared with the binding constant for SMFMO. The turnover value for CFMO (0.015 

s
-1

) was half that observed for PFMO (0.034 s
-1

) and SMFMO (0.029 s
-1

), thus, the 

lower turnover and lower KM led to an approximate 4 fold increase in catalytic 

efficiency for CFMO (4711 M
-1

 s
-1

) compared to that observed for SMFMO (1223 M
-1

 

s
-1

) and an approximate 2-fold increase to that observed for PFMO (2273 M
-1

 s
-1

), when 

NADH was utilised as cofactor. When NADPH was employed as cofactor the KM 

values for CFMO were 3-fold lower than that observed for PFMO and had 5-fold 

decrease when compared with the binding constant for SMFMO. The turnover value for 

CFMO (0.021 s
-1

) was half that observed for PFMO (0.042 s
-1

) and lower than for 

SMFMO (0.029 s
-1

), thus, the lower turnover and lower KM led to an approximate 5-fold 

increase in catalytic efficiency for CFMO (4184 M
-1

 s
-1

) compared to that observed for 

SMFMO (860 M
-1

 s
-1

) and an approximate 1.5-fold increase to that observed for PFMO 

(2510 M
-1

 s
-1

), when NADPH was utilised as cofactor. The results indicate that CFMO 
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can utilise both NADH and NADPH as nicotinamide cofactor for reduction of flavin 

more efficiently than SMFMO and PFMO. 

 

8.4.4 Biotransformation of prochiral sulfides using PFMO and CFMO 

SMFMO had the ability to catalyse the oxidation of a range of prochiral sulfides 13–19 

to their corresponding sulfoxides, in the presence of NADH or NAPDH with the 

appropriate cofactor recycling system. To investigate PFMOs and CFMOs ability to 

catalyse the oxidation of substrates 13-19 and their enantioselectivity towards them with 

either NADH or NADPH as nicotinamide cofactor biotransformations were set up in the 

presence of NADH or NADPH (Section 3.4.4) and the extracted products were analysed 

by GC as detailed in Section 3.4.5. The results are shown in Table 8.4 and Table 8.5. 

 

Table 8.4 Results of biotransformations of prochiral thioether substrates by PFMO. 

 

 

 

 

 

Substrate 

 

Conversion 

NADH 

% 

Conversion 

NADPH 

% 

ee 

NADH 

% 

ee 

NADPH 

% 

Sulfoxide 

Configuration 

NADH 

Sulfoxide 

Configuration 

NADPH 

13 61 28 30 24 R R 

14 - -   - - 

15 97 78 47 32 R R 

16 99 73 14 4 R S 

17 13 - 10 - S - 

18 10 2 18 11 n.d. n.d. 

19 50 22 85 57 R R 
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Table 8.5 Results of biotransformations of prochiral thioether substrates by CFMO. 

 

The results for PFMO revealed that the conversions of sulfides 13-19 to their 

corresponding sulfoxides and the enantiomeric excess of the products are higher when 

NADH is employed as nicotinamide cofactor compared to those obtained for the 

NADPH reactions. Substrate 14 was not converted with either cofactor. The highest 

conversion rate was seen for substrate 16, 99 % for NADH and 73 % for NADPH, 

however ee was poor (14 % -(R) for NADH and 4 % -(S) for NADPH). The greatest ee 

values were found for substrate 19 with 85 % -(R) for NADH and 57 % -(R) for 

NADPH, albeit with moderate to low conversions (50 % for NADH and 22 % for 

NADPH, highlighted in Figure 8.10. PFMO gave the (R)-configuration for the majority 

of sulfoxide products except for substrate 16 when NADPH was employed as cofactor 

and 17 when NADH was used, which gave the (S)-enantiomers. 

Substrate 

 

Conversion 

NADH 

% 

Conversion 

NADPH 

% 

ee 

NADH 

% 

ee 

NADPH 

% 

Sulfoxide 

Configuration 

NADH 

Sulfoxide 

Configuration 

NADPH 

13 17 6 54 43 R S 

14 - - - - - - 

15 65 32 22 32 R R 

16 64 38 58 64 R R 

17 - 11 - 3 - R 

18 17 3 19 25 n.d. n.d. 

19 14 47 66 77 R R 
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Figure 8.10 Chiral GC trace at t= 24 h for the oxidation of substrate 19 with PFMO. 

The trace for the NADH reaction is shown in blue and the trace for NADPH is shown in 

red. 

 

In the majority of cases PFMO had greater conversions of sulfides to sulfoxides for 

each cofactor and poorer ee compared to those observed for SMFMO. For substrate 16 

the conversions with PFMO (99 % for NADH and 73 % for NADPH) were 

considerably higher than the conversions for SMFMO (8 % for NADH and 1 % for 

NADPH), however the ees for PFMO (14 % -(R) for NADH and 4 % -(S) for NADPH) 

were noticeably smaller than those produced when SMFMO was employed as enzyme 

(21 % -(R) for NADH and 34 % -(n.d.) for NADPH). In the case of substrate 18 the ee 

for PFMO with both cofactors were 2-fold lower than those observed for SMFMO. 

Interestingly for substrate 19, the conversion rates for PFMO with both NADH and 

NADPH (50 % for NADH and 22 % for NADPH) were higher than that for SMFMO 

(40 % for NADH and 9 % for NADPH), with the ee in the case of PFMO and NADH 

(85 % -(R) for NADH) being higher than that observed for SMFMO (80 % -(R) for 

NADH). However the ee for PFMO and NADPH (57 % -(R) for NADPH) was poorer 

than that observed for SMFMO (82 % -(R) for NADPH). In addition, both PFMO and 

SMFMO produced sulfoxide products of the same (R)-configuration except for 

substrate 17, in which the configurations was (S) with both enzymes. 
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Similar to PFMO, the results for CFMO revealed that the conversions of sulfides 13-18 

to their corresponding sulfoxides and the enantiomeric excess of the products are higher 

when NADH is employed as nicotinamide cofactor compared to those obtained for the 

NADPH reactions. Substrate 14 was not converted with either cofactor. The highest 

conversion rate was seen for substrate 16, 64 % for NADH and 38 % for NADPH, with 

moderate ee (58 % -(R) for NADH and 64 % -(R) for NADPH). As with PFMO, the 

greatest ee values for CFMO were found for substrate 19 with 66 % -(R) for NADH and 

77 % -(R) for NADPH, again with low to moderate conversions (14 % for NADH and 

47 % for NADPH, Figure 8.11). CFMO gave the (R)-configuration for the majority of 

sulfoxide products except for substrate 13 when NADPH was employed as cofactor 

which gave the (S)-enantiomers. 

 

 

Figure 8.11 Chiral GC trace at t= 24 h for the oxidation of substrate 19 with CFMO. 

The trace for the NADH reaction is shown in blue and the trace for NADPH is shown in 

red. 

 

When NADH was employed as nicotinamide cofactor CFMO gave lower conversion 

rates for the majority of sulfide substrates compared to SMFMO. In the case of substrate 

16 however, CFMO had a conversion rate of 64 % which is considerably higher than 

that observed for SMFMO (8 % for NADH). In addition for 16 the ee was greater for 

CFMO (58 % -(R) for NADH) compared to that of SMFMO (21 % -(R) for NADH). 
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Interestingly, when NADPH was employed as nicotinamide cofactor CFMO gave 

higher conversion rates for the all the sulfide substrates compared to SMFMO, except 

14. A high conversion difference between CFMO and SMFMO was again observed for 

substrate 16 with 38 % for CFMO with NADPH and 1 % for SMFMO with NADPH. 

Similar to NADH, the ee when NADPH was employed as cofactor approximately 

doubled for CFMO (64 % -(R) for NADH) compared to the ee for SMFMO (34 % -(R) 

for NADH). SMFMO gave the highest ees when 19 was employed as substrate (80 % -

(R) for NADH and 82 % -(R) for NADPH), for CFMO however the ees for 19 were 

noticeably poorer (66% -(R) for NADH and 77 % -(R) for NADPH), although from all 

the substrates 19 gave the highest ee for CFMO, PFMO and SMFMO. Interestingly, 

both CFMO and SMFMO produced sulfoxide products of the same (R)-configuration 

except for substrate 13, in which CFMO gave the (S)-configuration which was opposite 

to that observed for SMFMO.  

 

8.4.5 Structure determination  

To investigate the ability of PFMO and CFMO to use either NADH or NADPH as 

cofactor to reduce the flavin, the enzymes were subject to crystallisation. The screens 

were successful for both PFMO and CFMO, producing yellow cubic crystals (Figure 

8.12). The crystals were subject to X-ray diffraction allowing for a 1.83 Å dataset for 

PFMO and a 2.39 Å dataset for CFMO to be collected. The collected datasets allowed 

for the structures of both enzymes to be solved, built and refined to a resolution of 1.88 

Å for PFMO and 2.45 Å for CFMO. 
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Figure 8.12 PFMO and CFMO crystals obtained from Clear Strategy Screen conditions. 

a) PFMO crystals with crystallisation conditions: 35 % w/v tacsimate at pH 7.0 b) 

CFMO crystals with crystallisation conditions: 1.5 M ammonium sulfate and propan-2-

ol (10 µL). 

 

Overall structure for PFMO 

Crystals of PFMO grew in the P3221 space group, with one molecule representing a 

monomer in the asymmetric unit (Figure 8.13). There was electron density for each 

amino acid in the monomer from residue Met1 to Pro354 with no chain breaks.  

Electron density was also present for residues Gly-2, Pro-1 and Ala0 at the N-terminal 

which are present after His6-tag cleavage. 
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Figure 8.13 Structure of PFMO showing one molecule in the asymmetric unit. 

Protein backbone is shown in ribbon format, β strands in blue and α helices in coral. 

The FAD molecule is shown in cylinder format, with carbon atoms in green. The N and 

C terminus for the subunit is also illustrated. 

 

The PFMO monomer consisted of thirteen alpha helices: α1 (residues Gln14-Leu23), α2 

(Gly41-His45), α3 (Ala56-Trp58), α4 (Arg77-Tyr91), α5 (Arg143-Leu145), α6 

(Ser153-His155), α7 (Ala160-Phe162), α8 (Gly173-Ser184), α9 (Arg207-Ala219), α10 

(Phe240-Glu247), α11 (Asp289-Leu291), α12 (Asp323-Thr325), α13 (Leu332-Leu350) 

and sixteen beta strands: β1 (residues Leu5-Ile10), β2 (Tyr30-Leu33), β3 (Ile95-Gln96), 

β4 (Thr103-Leu107), β5 (Leu110-Ala115), β6 (Gln118-Ser127), β7 (Ala149-His152), 

β8 (Arg166-Val170), β9 (Glu188-Ile192), β10 (Arg259-Phe260), β11 (Gly264-Glu266), 

β12 (Arg272-Asn274), β13 (Ala277-Trp280), β14 (Val305-Glu306), β15 (Thr308-

Val310) and β16 (Leu316-Leu318). The β-strands form four distinct sheets A (β1- β6, 

β16), B (β7- β9, β13), C (β10- β12) and D (β14- β15). At the N-terminus of PFMO 

there is a high β-strand presence whereas the C-terminus is highly helical. The 

secondary elements for PFMO are summarised in Figure 8.14. 
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Figure 8.14 Diagram illustrating secondary structure of PFMO. 

The α-helices are shown as red cylinders and the β-strands are shown as blue arrows. 

 

Active site of PFMO 

The PFMO monomer consists of two domains, a FAD binding domain and what is 

believed to be the substrate binding domain. The monomer has a molecule of FAD 

present in the active site which is bound by eight hydrogen bonds. The side chain N-H 

of Gln14 interacts with the oxygen (O2’, 2.81 Å) closest to the tricyclic ring present in 

the riboflavin moiety. In addition, Gln14 also hydrogen bonds to the phosphate oxygen 

(O1P, 3.21 Å). Hydrogen bond interactions between the main chain nitrogen of residue 

Ala15 and the phosphate oxygen (O1P, 2.92 Å) also act to secure the FAD in place. 

Residues Gln14 and Ala15 are part of the Rossman motif in PFMO, present in α1, and 

are responsible for identifying the ADP moiety in FAD. Other hydrogen bond 

interactions binding the FAD in place are the side chain N-H of Gln36 to the ribose 

hydroxyl (O3B, 2.95 Å), the main chain nitrogen of Ala42 to the phosphate carbonyl 
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(O1A, 2.85 Å), the backbone N-H of residue Phe53 to the flavin carboxyl (O4, 2.84 Å), 

the carbonyl oxygen of Val101 to the N-H on the adenine moiety (N6A, 2.98 Å) and the 

backbone N-H of residue Leu332 to the carbonyl on the tricyclic ring (O2, 2.89 Å). 

 

Overall structure of CFMO 

Crystals of CFMO grew in the C2 space group, with two molecules ‘A’ and ‘B’, 

representing one dimer in the asymmetric unit Figure 8.15.  

 

 

Figure 8.15 Quaternary structure of CFMO showing the two subunits A and B. 

The protein backbone is shown in ribbon format with monomer A in lilac and monomer 

B in blue. The FAD molecules in each subunit are shown in cylinder format with the 

carbon atoms in green. 

 

There was electron density for the majority of amino acids in each monomer from Ser13 

to Ala361 with a stretch of missing density corresponding to eight amino acids from 

positions Gln236 to Asp243 (QPVGGLGD) that could not be modelled. It is believed 

that the missing residues are part of a flexible loop that sits over the active site 

containing the bound FAD (Figure 8.16). The CFMO dimer was made up of two 

monomers, sharing an interfacial area of approximately 1207 Å
2
. Analysis of CFMO 
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using PISA
106

 found that the interactions that stabilise the dimer included six hydrogen 

bonds between the backbone nitrogen of Trp108(A) and the side chain oxygen of 

Glu124(B) (2.79 Å), the side chain N-H of Gln320(A) interacts with the backbone 

carbonyl of Ile145(B) (3.23 Å), the backbone N-H of Ile145(A) and the backbone 

carbonyl of Gly303(B) (3.60 Å), the side chain N-H of Arg293(A) and the main chain 

carbonyl of Ile305(B) (2.48 Å), the main chain carbonyl of residue Gly303(A) interacts 

with the backbone N-H of Ile145(B) (3.67 Å) and between the backbone carbonyl of 

Ile145(A) and the side chain N-H of residue Gln320(B) (3.13 Å). 

 

 

Figure 8.16 Structure of CFMO monomer A with complexed FAD. 

The protein backbone is shown in ribbon format with β-strands in blue and α-helices in 

lilac. The FAD molecule is shown in cylinder format with carbon atoms in green. The N 

and C termini are also illustrated. 

 

Each CFMO monomer consisted of twelve alpha helices: α1 (residues Gln23-Leu32), 

α2 (Gly50-His54), α3 (Ser65-Trp67), α4 (Arg85-Tyr99), α5 (Ser161-His163), α6 

(Ala158-Phe170), α7 (Gly181-Val191), α8 (Arg215-Glu230), α9 (Pro248-Glu255), α10 
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(Ala397-Leu302), α11 (Glu331-Thr333), α12 (Val343-Leu358) and seventeen beta 

strands: β1 (residues Ser13-Ile19), β2 (Phe39-Leu42), β3 (Val103-Gln104), β4 (Ala111-

Asn114), β5 (Leu119-Val122), β6 (Gln127-Ser135), β7 (Ala157-His160), β8 (Lys174-

Val178), β9 (Asp196-Val200), β10 (Ala261-Val262), β11 (Arg267-Thr269), β12 

(Gly272-Val274), β13 (Gly280-Ala282), β14 (Ala285-Trp288), β15 (Leu313-Ala314), 

β16 (Arg317-Leu318) and β17 (Leu324-Leu326). The β-strands form four distinct 

sheets A (β1- β6, β17), B (β7- β10, β14), C (β11- β13) and D (β15- β16). At the N-

terminus of PFMO there is a high β-strand presence whereas the C-terminus is highly 

helical. The secondary elements for CFMO are summarised in Figure 8.17. 

 

 

Figure 8.17 Diagram illustrating secondary structure of CFMO. 

The α-helices are shown as red cylinders and the β-strands are shown as blue arrows. 
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Active site of CFMO 

Each CFMO monomer consists of two domains, a FAD binding domain and what is 

believed to be the substrate binding domain. Each monomer has a molecule of FAD 

present in the active site which is bound by nine hydrogen bonds. The side chain N-H of 

Gln23 interacts with the oxygen (O2’, 2.56 Å) closest to the tricyclic ring present in the 

riboflavin moiety. In addition, Gln23 also hydrogen bonds to the phosphate oxygen 

(O1P, 2.84 Å). Hydrogen bonding between the backbone nitrogen of residue Ala24 and 

the phosphate carbonyl (O1P, 2.84 Å) also act to secure the FAD within the catalytic 

site. Residues Gln23 and Ala24 are part of the Rossman motif in CFMO, present in α1, 

and are responsible for identifying the ADP moiety in FAD. Other hydrogen bond 

interactions securing the FAD in place are the backbone N-H of Ala51 to the phosphate 

carbonyl (O1A, 2.82 Å), the main chain N-H of residue Phe62 to the flavin carboxyl 

(O4, 2.75 Å), the carbonyl oxygen of Val109 to the N-H on the adenine moiety (N6A, 

2.64 Å), the side chain N-H of residue Arg141 to the ribose hydroxyl (O2B, 3.09 Å) and 

between the backbone N-H of residue Leu340 to the carbonyl on the tricyclic ring (O2, 

2.75 Å) and hydroxyl oxygen (O2’, 3.72 Å). 

 

8.5 Discussion 

The structure of PFMO was found to be similar to that of SMFMO (4A9W
114

, 60 % 

sequence identity, rmsd 0.9 Å over 327 Cα atoms), illustrated in figure 8.18.  
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Figure 8.18 Superimposition of the PFMO monomer and SMFMO monomer A. 

The protein backbone is shown in ribbon format. PFMO is shown in lilac with FAD 

carbon atoms in green. SMFMO is show in pink with FAD carbon atoms in gold. The 

superimposition was achieved using the ccp4mg programme. 

 

The superimposition of PFMO and SMFMO indicates that the active sites of both flavo-

proteins sit in the same position indicated by the aligned FAD ligands. The majority of 

α-helices, β-strands and loops are conserved within both structures, which could be 

attributed to the conserved Rossman motifs and FMO motif. Interestingly, the amino 

acids corresponding to the missing loop in SMFMO from Ala212 to Gly233 

(ATERWKAQQEGREPDLPPGGFG) are present in PFMO. In PFMO the 

corresponding residues Ala213 to Gly234 that are part of the α-helices, α9, and the loop 

to α10. In SMFMO, the majority of α10 and the entire loop to α11 are missing. It is 

thought that this loop is flexible and therefore can move to sit over the bound flavin in 

the catalytic site.  

The variant of SMFMO, PFMO, possessed a glutamate residue (Glu195) at the cofactor 

determinant positions in SMFMO and it was hypothesised that the Glu195 would repel 

the phosphate in NADPH and thus PFMO would be NADH specific. Interestingly this 
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was not the case; PFMO had the ability to use either NADH or NADPH as nicotinamide 

cofactor to reduce the flavin with equal capability, with comparable catalytic 

efficiencies. Owing to higher turnover rates and lower KM PFMO had 2 fold increase in 

catalytic efficiency for NADH and a 3 fold increase for NADPH compared to the 

kcat/KM observed for SMFMO with either cofactor. As the structure of PFMO 

complexed with NAD(P)H has not yet been determined, the structure PFMO was 

superimposed with the structure of  the nicotinamide binding site in SMFMO (Figure 

8.19). 

 

 

Figure 8.19 Superimposition of the nicotinamide binding site in SMFMO and PFMO 

structures.  

The SMFMO structure is shown in worm format in pink with the sulfate ion in yellow. 

The PFMO structure is shown in worm format in lilac. 

 

Superimposition of the nicotinamide cofactor binding site in SMFMO and PFMO 

revealed that the residues thought to be responsible for cofactor promiscuity in 

SMFMO, Gln193 and His194, sat in the same position as those in PFMO, Gln194 and 

Glu195. However, both Gln194 and Glu195 residues seem to be pointing away from the 

site in which the 2-hydroxyl phosphate would sit in NADPH (in SMFMOs case: the 

position of the sulfate ion) indicating that the glutamate residue would not actually 
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interact with the phosphate and therefore could not repel it. Thus, allowing PFMO to 

utilise either NADH or NADPH as cofactor. Superimposition of PFMO with the 

NADPH dependent mFMO structure (2XLT
103

) complexed with FAD and NADPH 

(Figure 8.20), found that residues possibly responsible for phosphate binding in mFMO 

Arg234 and Thr235 are indeed replaced by Gln194 and Glu195 in PFMO. As with the 

superimposition with SMFMO the Glu195 residue is pointing away from the phosphate 

indicating that it does not repel the phosphate in NADPH therefore allowing PFMO to 

utilise either cofactor. As with SMFMO the relaxation in nicotinamide cofactor in 

PFMO may be due to the removal of the interactions between the positively charged 

arginine and negatively charged oxygens on the phosphate. A variant of SMFMO with a 

glutamate at position 193 in SMFMO may have granted a NADH specific FMO 

however one could not be found. 

 

 

Figure 8.20 Superimposition of the NAD(P)H binding site of mFMO and PFMO. 

NADP ribose 2’-phosphate recognition site in mFMO (backbone shown in worm format 

in green and NADPH in cylinder format with carbon atoms in green), superimposed 

with structurally homologous regions of PFMO (shown in worm format in lilac). 
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Similar to PFMO, the monomeric tertiary structure of CFMO was found to be similar to 

that of SMFMO (4A9W, 59 % sequence identity, rmsd 0.9 Å over 325 Cα atoms), 

shown in Figure 8.21. 

 

 

Figure 8.21 Superimposition of CFMO monomer A and SMFMO monomer A. 

The protein backbone is shown in ribbon format. CFMO is shown in blue with FAD 

carbon atoms in green. SMFMO is show in pink with FAD carbon atoms in gold. The 

superimposition was achieved using the ccp4mg programme. 

 

The superimposition of CFMO and SMFMO indicates that the active sites of both 

flavoproteins sit in the same position indicated by the aligned FAD ligands. Within both 

structures the extent of α-helices, β-strands and loops are conserved, which could be 

attributed to the conserved Rossman motifs and FMO motif. The amino acids 

corresponding to the missing loop in SMFMO from Ala212 to Gly233 

(ATERWKAQQEGREPDLPPGGFG) are partly present in CFMO. In CFMO the 

corresponding residues Ala221 to Gly242 are part of the α-helices, α8, and the loop to 

α9. However eight amino acids from positions Gln236 to Asp243 (QPVGGLGD) are 

not modelled, leaving an incomplete loop to α9. It is thought that this loop is flexible 
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which sits over the bound flavin in the active site. However as with SMFMO and 

CFMO its flexibility results in amino acids that cannot be modelled.  

CFMO was found to be another variant of SMFMO that possessed a threonine residue 

(Thr202) and a serine residue (Ser203) at the cofactor determinant positions in SMFMO 

(Gln193 and His194). This variantled to the hypothesis that the smaller hydrophilic 

residues Thr202 and Ser203 present in CFMO would allow the enzyme to have 

increased NADH specificity. As with PFMO this was not the case; CFMO had the 

ability to utilise either NADH or NADPH as nicotinamide cofactor with equal 

capability, with comparable catalytic efficiencies and binding constants. Owing to lower 

turnover rates and significantly lower KM CFMO had 4 fold increase in catalytic 

efficiency for NADH and a 5 fold increase for NADPH compared to the catalytic 

efficiency observed for SMFMO with either cofactor. Interestingly, CFMO was able to 

use either NADH or NADPH as nicotinamide cofactor for the reduction of flavin more 

efficiently than SMFMO and PFMO. As the structure of CFMO complexed with 

NAD(P)H has not yet been determined, the structure CFMO was superimposed with the 

structure of  the nicotinamide binding site in SMFMO (Figure 8.22).  Superimposition 

of the nicotinamide cofactor binding site in SMFMO and CFMO revealed that the 

residues thought to be responsible for cofactor promiscuity in SMFMO, Gln193 and 

His194, sat in the same position as those in CFMO, Thr202 and Ser203. Both Thr202 

and Ser203 residues are much smaller to the Gln193 and His194 residues present in 

SMFMO thus opening up the nicotinamide binding site. The larger cofactor site could 

therefore allow CFMO to utilise either NADH or its larger phosphorylated neighbour 

NADPH as cofactor.  
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Figure 8.22 Superimposition of the nicotinamide binding site in SMFMO and CFMO 

structures.  

The SMFMO structure is shown in worm format in pink with the sulfate ion in yellow. 

The CFMO structure is shown in worm format in blue. 

 

Superimposition of CFMO with the NADPH dependent mFMO structure (2XLT
103

) 

complexed with FAD and NADPH (Figure 8.23), found that residues possibly 

responsible for phosphate binding in mFMO Arg234 and Thr235 are also replaced by 

Thr202 and Ser203 in CFMO. The Thr234 residue in mFMO is partially conserved with 

the Ser203 in CFMO, which sits further than 4 Å away from the ribose 2’ phosphate in 

NADPH and therefore will potentially have no interaction with the cofactor. As with the 

superimposition with SMFMO the Thr202 is much smaller than the Arg234 residue in 

mFMO which may allow CFMO to utilise either cofactor. In FPMOs such as mFMO
103

, 

PAMO
61a

 and CHMO
59

 the arginine residue is essential for the recognition of the 2’ 

phosphate in NADPH therefore the relaxation in nicotinamide cofactor in CFMO may 

also be due to the removal of the interactions between the positively charged arginine 

and negatively charged oxygens on the phosphate. 
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Figure 8.23 Superimposition of the NAD(P)H binding site of mFMO and CFMO. 

NADP ribose 2’-phosphate recognition site in mFMO (backbone shown in worm format 

in green and NADPH in cylinder format with carbon atoms in grey), superimposed with 

structurally homologous regions of CFMO (shown in worm format in blue). 

 

Both enzymes PFMO and CFMO had the ability to catalyse the oxidation of a range of 

prochiral sulfides using either NADH or NADPH as cofactor. The successful reactions 

are summarised in Table 8.6 and Table. 8.7.   

 

Table 8.6 Summary of results for biotransformations for SMFMO, PFMO and CFMO 

when NADH is used as cofactor. 

Substrate  
Conversion  

% 
  ee %   Configuration  

 SMFMO PFMO CFMO SMFMO PFMO CFMO SMFMO PFMO CFMO 

13 27 61 17 71 30 54 R R R 

15 90 97 65 25 47 22 R R R 

16 8 99 64 21 14 58 R R R 

19 40 50 14 80 85 66 R R R 
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Table 8.7 Summary of results for biotransformations for SMFMO, PFMO and CFMO 

when NADPH is used as cofactor. 

Substrate  
Conversion  

% 
  ee %   Configuration  

 SMFMO PFMO CFMO SMFMO PFMO CFMO SMFMO PFMO CFMO 

13 2 28 6 57 24 43 R R S 

15 33 78 32 44 32 32 R R R 

16 1 73 38 34 4 64 R R R 

19 9 22 47 82 57 77 R R R 

 

The reactions involving PFMO allowed for greater conversion of substrate to product 

using either cofactor, when compared to SMFMO and CFMO. However, the 

conversions utilising NADH were slightly higher. In most cases the ees were lower for 

PFMO than those observed for SMFMO
114

, CHMO
23a, 98

 and mFMO
73

, however, PFMO 

had a greater ee for substrate 19 when NADH was employed. For substrates 13, 15 and 

16 the enantioselectivity was higher when NADH was used as cofactor suggesting that 

PFMO may have a ‘greater preference’ for one enantiomer with NADH than NADPH 

and thus substrate binding is different depending what cofactor is used. The (R)-

enantiomer was the preferred configuration for the sulfoxide products for PFMO similar 

to SMFMO. 

CFMO on the other hand had greater conversions of substrates when NADPH was 

employed and lower conversions using NADH, when compared to SMFMO, except in 

the case of substrate 16. However, the conversions utilising NADH were noticeably 

higher for CFMO. As with PFMO, the ees for the majority of the substrates were lower 

for CFMO than those observed for SMFMO, CHMO and mFMO. Compared to 

SMFMO, substrate 16 allowed for much greater ees when either NADH or NADPH 

was used as cofactor suggesting that enantiomeric excess may be dependent on substrate 

structure. The ee for each substrate were similar regardless of cofactor indicating that, 

unlike PFMO and SMFMO, substrate binding may not depend on that cofactor is used, 

similar to the behaviour of the type II FMOs from R. jostii RHA1.
18

 However, in the 

case of substrate 13 the (S)-enantiomer is preferred when NADPH was employed 

suggesting that cofactor may actually play a role in substrate binding. For the majority 
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of products the (R)-enantiomer was the preferred configuration for CFMO similar to 

PFMO and SMFMO. 

NADP
+
 has been reported to stabilise the flavin peroxidate species within the FPMO 

family.
103

 As with SMFMO, PFMO and CFMO favour NADH for catalysis rather than 

NADPH suggesting that such stabilisation is achieved by NADH in these enzymes. In 

mFMO it was found that residue Asn78 stabilises the oxygenating species and mutation 

of this residue was found to knock out activity.
103

 However, in other cases mutations in 

this position had little effect on activity.
108

 PFMO and CFMO have a large, hydrophobic 

phenylalanine in this position (Phe53 and Phe62). SMFMO was also found to possess a 

phenylalanine at this position (Phe52) and mutagenesis studies revealed that this residue 

was not an absolute requirement but did have an interesting effect on active site 

recognition of sulfide substrates, as the mutation to the smaller amino acid valine 

altered the enantioselectivity.
115

 

 

8.6 Conclusion 

PFMO and CFMO are variants of SMFMO and were found to accept either NADH or 

NADPH as cofactor in order to reduce the flavin. The structures of PFMO and CFMO 

were solved which allowed for a basis for cofactor promiscuity for each enzyme to be 

suggested and avenues for future rational investigation studies to be proposed. 
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Chapter 9: Conclusion and future work 

The over-expression of SMFMO when utilising E. coli BL21 (DE3) cells proved to be 

very successful in yielding yellow protein that purifies well by nickel affinity and size 

exclusion chromatography.  

Kinetic studies found that SMFMO had the ability to employ either NADH or NADPH 

as nicotinamide cofactor to reduce the non-covalently bound flavin with equal 

capability. The only ketone yet to be transformed by SMFMO was the strained 

bicyclo[3.2.0]hept-2-en-6-one substrate. Both NADH and NADPH could be used as 

cofactors however, NADH allowed for a much greater conversion but enantioselectivity 

was poor for both. SMFMO had much more success with the monooxygenation of 

prochiral sulfides to the corresponding sulfoxides. Both cofactors could be employed 

although, greater conversion were obtained with NADH as cofactor. In the majority of 

cases, the sulfoxides products had low-moderate enantiomeric excess. The low substrate 

scope with respect to ketones but tolerance for sulfides indicates SMFMO behaves more 

like an FMO than a BVMO, which was expected as SMFMO possesses the ‘FMO 

motif’. Such results are interesting as the majority of BVMOs and FMOs utilize 

NADPH as cofactor and for SMFMO, NADH seems to be the cofactor of choice which 

is attractive for biocatalytic applications as NADH is cheaper than NADPH.  

Structural studies allowed for the structure of SMFMO to be determined and analysis 

and comparison of the active site and cofactor recognition site with known NADPH-

dependent FMOs identified determinants for cofactor promiscuity and enantioselectivity 

in SMFMO. The mutational studies identified SMFMO residues Gln193 and in 

particular His194 as determinants for cofactor promiscuity and suggests avenues for the 

engineering of other FPMOs for NADH specificity. The residue Phe52 was found to 

have an interesting effect on the active sites recognition of sulfides in SMFMO, such 

that upon the mutation to a smaller amino acid side-chain the enantioselectivity of the 

sulfoxide product is altered. Therefore, the investigation into the nature and role of this 

residue in SMFMO and structurally homologous residues in other FPMOs, such as 

Asn78, is still ongoing.  

The SMFMO variants, PFMO and CFMO were also found to accept either NADH or 

NADPH as nicotinamide cofactor to reduce the flavin for catalysis.  
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In addition to the BVMO mekA
112

 and the groups of FMOs from R. jostii RHA1,
18

 

SMFMO is interesting amongst the FPMOs as it one of the only enzymes to 

demonstrate acceptance of NADH as nicotinamide cofactor. The characterisation of 

SMFMO, PFMO and CFMO has identified single-component class B FPMOs capable 

of NADH-dependent monooxygenation reactions and determined the structural basis for 

possible residues responsible for relaxed cofactor specificity in these enzymes. This will 

help highlight other related enzymes in the database and possible platforms for 

developing NADH-specific FPMOs. 

In an effort to shed more light on the cofactor acceptance of these enzymes, future work 

could involve the possible attempts to co-crystallise SMFMO, PFMO and CFMO with 

either cofactor and/or substrate. This would allow for the interactions between cofactor 

and binding site and the substrate and active site to be determined, thus providing solid 

evidence for rational mutagenesis in order to make the enzymes fully NADH-specific 

with high enantioselectivity. In addition, another future investigation could be the 

mutation of the Gln194 residue on PFMO to glutamate, as this could not be achieved for 

SMFMO. The cofactor determinant residues in PFMO would then be Glu194 and 

Glu195, which could allow for strict NADH-dependence as the two glutamates may 

repel the negatively charge phosphate in NADPH.  
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Appendix One: Investigating the NADH recycling 

system 

Introduction 

FPMOs require a nicotinamide cofactor in order to reduce the bound FAD for catalysis, 

however to reduce costs a cofactor recycling system is employed. The cofactor 

recycling system comprises of an auxiliary enzyme and auxiliary substrate that do not 

interfere with the reaction taking place. In the case of SMFMO, NADH was found to be 

employed as cofactor in addition to NADPH. The recycling system often used to 

regenerate NADH is formate dehydrogenase (FDH) along with sodium formate (NaF). 

In an effort to determine the best ratio of SMFMO to FDH and therefore the best ratio 

for catalysis, FDH was cloned, expressed and purified in order to be employed in 

biotransformations alongside FMO. 

 

Methods & Materials 

The gene coding the formate dehydrogenase from Pseudomonas sp. (strain 101) 

(Achromobacter parvulus T1) was codon optimised for E. coli and purchased from 

Geneart in vector pMA-T. The gene sequences for the targets are shown in Figure A1.1. 

http://www.uniprot.org/taxonomy/33067
http://www.uniprot.org/taxonomy/33067
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Figure A1.1 The codon optimised gene sequence for FDH. 

 

LIC 

The FDH gene was cloned into the pET-YSBLIC-3C vector using the LIC protocol 

described in Section 3.1.2. Each gene was amplified using the protocol in Section 3.1.1. 

The primers used are shown in Table A1.1. 

 

Table A1.1 Primers used in PCR for FDH gene amplification 

Gene Forward primer Reverse primer 

FDH 

CCAGGGACCAGCAATGGCCA

AAGTTCTGTGTGTGCTGTATG

ATGATC 

GAGGAGAAGGCGCGTTACACGG

CTTTTTTGAATTTTGCTGCTTCTT

CGC 

 

The insert was treated with T4 polymerase as detailed in Section 3.1.4 and the vector 

and insert were annealed together as described in Section 3.1.5. 
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Expression and Purification 

The pET-YSBLIC-3C vector containing the FDH gene was expressed in E. coli BL21 

(DE3) cells (Section 3.2.5) and the protein was purified using Ni
2+

 affinity 

chromatography followed by size exclusion chromatography described in Section 3.3.  

 

Biotransformations  

Varying NADH concentrations 

To a screw cap vial (5 mL) containing buffer A (1 mL) substrate 15 (5 mM), NaF (0.5 

M), SMFMO (200 μL at 3 mg mL
-1

), FDH (278 μL at 2.5 mg mL
-1

) and varying 

concentrations of NADH (0.1, 0.2 and 0.5 mM) were added and placed in an incubator 

(r.t.) for 24 h. 

For each reaction time points at t= 1, 2 , 4, 6 and 24 h were taken and the product was 

extracted using EtOAc (Section 3.4.4) and analysed by GC (Section 3.4.5). 

 

Varying SMFMO:FDH ratio 

To a screw cap vial (5 mL) containing buffer A (1 mL) substrate 15 (5 mM), NaF (0.5 

M), NADH (0.5 mM) and varying amounts of SMFMO and FDH (ratios 

(SMFMO:FDH) 1:4, 1:2, 1:0.5, 1:0.25, 1:0.1) were added and placed in an incubator 

(r.t.) for 24 h. 

For each reaction time points at t= 1, 2 , 4, 6 and 24 h were taken and the product was 

extracted using EtOAc (Section 3.4.4) and analysed by GC (Section 3.4.5). 

 

Results 

Cloning, expression and purification 

The FDH gene was cloned into the pET-YSBLIC-3C and expressed in E. coli BL21 

cells, with a total volume of 2 L, successfully. The resulting 44 kDa protein was 

purified by Ni
2+

 affinity chromatography followed by size exclusion chromatography 

(Section 3.3) yielding pure FDH in high concentrations (25 mg). 
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Biotransformations 

Varying NADH concentrations 

SMFMO had the ability to employ NADH as cofactor to reduce the bound flavin. In 

order to investigate the amount of NADH needed to allow for greater substrate 

conversion, varying concentrations of the cofactor were employed in the 

biotransformation of substrate 15.  The results can are shown in Figure A1.2 

 

 

Figure A1.2 Graph illustrating the concentration of sulfoxide product from the 

oxygenation of substrate 15 when varying amounts of NADH cofactor is utilised at 

different time points. 

 

Between 1 and 6 h the concentration of product is similar for each NADH 

concentration. After 24 h the concentration of the sulfoxide product is similar for both 

the 0.5 mM and 0.1 mM NADH concentrations. In addition, for the 0.2 mM NADH 

reaction the concentration of product is still above 1 mM. The control biotransformation 

utilised 0.5 mM of NADH in the absence of the FDH recycling system and the 

concentration of sulfoxide product plateaued after 4 h. The results indicate that the 

recycling system is effective and as little as 0.1 mM of cofactor can be utilised to reduce 

the flavin.  
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Varying SMFMO:FDH ratios 

In an effort to investigate the most effective SMFMO to recycling system ratio, and thus 

regenerate the NADH cofactor efficiently for catalysis a number of biotransformations 

were carried out utilising various ratios of enzyme to FDH. The results are shown in 

Figure A1.3.  

 

 

Figure A1.3 Graph illustrating the concentration of sulfoxide product from the 

oxygenation of substrate 15 when varying SMFMO to FDH ratios are utilised at 

different time points. 

 

Between 1 and 6 h the concentration of the sulfoxide product is similar for all 

SMFMO:FDH ratio biotransformation reactions indicating that the conversion of sulfide 

15 to its corresponding sulfoxide is not dependent on the SMFMO:FDH ratio. However, 

after 24 h the concentrations for the sulfoxide products was greatest for the 1:1 ratio of 

SMFMO and FDH. 
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191 

Appendix Two: Fusion of SMFMO and cofactor 

recycling enzyme FDH 

Introduction 

As FDH and NaF were found to be an appropriate recycling system for NADH in 

biotransformations involving SMFMO the attempted fusion of SMFMO and FDH was 

attempted. This would allow for the expression of both genes within the same vector, 

thus eliminating the separate expression and protein purification for both SMFMO and 

FDH.  

 

Methods & Materials 

Fusion-cloning 

The fusion cloning of SMFMO and FDH was achieved by Jared Cartwright 

(Technology Facility, University of York).   

 

Expression using chaperones 

The E. coli BL21 (DE3) cells expressing the Gro7 plasmid containing two chaperone 

genes, groES and groEL, was obtained from Claudia Spandolf with the Grogan group.  

Starter cultures containing the chaperone genes were set up as described in Section 3.2.2 

with the addition of chloramphenicol (30 μg mL
-1

). Fresh LB media was inoculated with 

starter culture (1:100) and incubated at 37
o
C for 1 h 45 mins. After incubation the 

culture was centrifuged (5 min, 4000 rpm) and the pellet was resuspended in ice cold 

CaCl2 (50 mM, half the culture volume) and left on ice for 30 min. The mixture was 

centrifuged (10 min, 1500 rpm) and the pellet was resuspended in ice cold CaCl2 (50 

mM, 1/50
th

 original culture volume). The cells (200 μL) were then added to a pre-cooled 

Eppendorf tube. To the cells the vector containing the FDH-SMFMO and SMFMO-

FDH fusions (2 μL) was added and left on ice for 30 mins. The mixture was heat 

shocked for 90 s and returned to ice for 2 min. SOC media (800 μL) was then added to 

the mixture and incubated at 37
o
C for 1 h. After incubation 100 μL of the mixture was 

plated onto a LB agar plate containing kanamycin and chloramphenicol (30 μg mL
-1

). 
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The remaining mixture was centrifuged (5 min, 4000 rpm) and the pellet was 

resuspended in 150 μL of supernatant and plated onto a second LB agar plate. The 

plates were incubated at 37
o
C overnight. 

Expression tests were carried out as described in Section 3.2.3 with the addition of 

chloramphenicol (30 μg mL
-1

) and arabinose (125 μL). 

Large scale expression was carried out in accordance with Section 3.2.5 with the 

addition of chloramphenicol (30 μg mL
-1

) and arabinose (1:40). 

Purification of the FDH-SMFMO and SMFMO-FDH fusion proteins was carried out as 

described in Section 3.3. 

 

Results 

The SMFMO-FDH fusion was cloned into the pET-YSBLIC-3C vector. The SMFMO 

and FDH were fusion-cloned in both orientations (FDH-SMFMO and SMFMO-FDH) 

and a short thirteen amino acid linker region was included 

(SerLeuSerThrProProThrProSerThrProProThr) to help stabilise the final constructs 

(Figure A2.1).  
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Figure A2.1 Protein sequences of FDH-SMFMO and SMFMO-FDH fusion constructs. 

SMFMO is shown in pink, FDH is shown in blue and the amino acid linker is shown in 

black. 

 

Expression of both FDH-SMFMO and SMFMO-FDH genes was attempted in E. coli 

Bl21 (DE3) cells which expressed a protein approximately 82 kDa (FDH plus SMFMO) 

however the expression was insoluble. E. coli Rossetta (DE3) 2 pLys cells were also 

employed to express the fusion-cloned genes however, expression was unsuccessful as 

no band at 82 kDa was present on the SDS-PAGE gel.  

The unsuccessful expression systems led to the use of chaperone proteins groES and 

groEL. The chaperone proteins were used to assist the expression of the FDH-SMFMO 

and SMFMO-FDH fusion proteins. Expression tests indicated that both fusion proteins 

were expressed as bands at 82 kDa were present. The expression was scaled to 1 L LB 

media and the protein was purified. At the purification stage the SMFMO-FDH fusion 
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protein proved unsuccessful as no peak was present on the chromatogram after 

purification by Ni
2+

 affinity chromatography. The FDH-SMFMO fusion protein 

purification proved more successful as after Ni
2+

 affinity and size exclusion 

chromatography pure pale yellow protein was obtained at a concentration of 2.3 mg. 

The expression of the FDH-SMFMO fusion protein was scaled to 8 L LB media and the 

protein was purified (Figure A2.2). 

 

 

Figure A2.2 Chromatogram for FDH-SMFMO purification by size exclusion 

chromatography. 

Protein absorbance at 280 nm is indicated by the blue trace.  

 

The protein eluted at approximately 55 mL. Using the calibration curve provided by GE 

Healthcare, the position of the elution peak gave the molecular weight at ~109 kDa, 

indicating that the 82 kDa fusion protein is still linked to part of the chaperone protein. 

In addition, other peaks present on the chromatograph indicate aggregates are present. 

The fractions corresponding to the peak were pale yellow in colour, indicating that FAD 

was still present within the fusion protein. The fractions were analysed by SDS-PAGE 

(Section 3.2.4). The gel can be seen in Figure A2.3. 
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Figure A2.3 SDS-PAGE gel of FDH-SMFMO fusion purification by size exclusion 

chromatography. 

Lane 1: Bio-Rad low weight molecular marker, lane 2-8: collected fractions after FPLC 

run. The protein can be seen at ~82 kDa. 

 

The FDH-SMFMO protein can be seen as a dark band on the gel at ~82 kDa. The gel 

shows other impurities at lower molecular weights suggesting that the protein is impure. 

The fractions were combined to give ~4.3 mg of FDH-SMFMO fusion protein (Section 

3.3.3). 

In an attempt to investigate if the fusion protein was able to catalyse the oxygenation of 

sulfides in addition to cofactor recycling biotransformation reactions were set up with 

substrate 15 as described in Section 3.4.4. The SMFMO and FDH were replaced by the 

FDH-SMFMO fusion protein at the same concentration. Unfortunately, after 1 h an egg 

white like precipitate occurred indicating that the protein was unstable and had become 

denatured. GC analysis of the time samples also suggested that the enzyme was unstable 

as the substrate conversion after 24 h was only 14 %, whereas for wild type SMFMO 

the conversion was 90 %. 

Future work in this area could include, repeating the biotransformation with cell extract 

to investigate if any oxidation of the sulfide occurs. In addition to the fusion proteins, 

the co-expression of SMFMO and FDH could be attempted. 
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List of abbreviations 

13
C Carbon NMR 

1
H  Proton NMR 

A Measured absorbance 

Å Angstrom, 1x10
-10

 m 

APS Ammonium persulfate 

B factor Displacement parameter 

btp Bis-tris propane 

BV Baeyer-Villiger 

BVMO Baeyer-Villiger monooxygenase 

C Concentration  

CC1/2 Pearson correlation coefficient  

CFMO Cellvibrio sp. flavin-containing monooxygenase 

CHMO Cyclohexanone monooxygenase 

Cα Alpha carbon 

dATP Deoxyadenosine triphosphate 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTPs Deoxynucleotide triphosphate monomeric units 

DTT Dithiothreitol 
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dTTP Thymidine triphosphate 

E Enzyme 

E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetic acid 

ee Enantiomeric excess 

EP Enzyme-product complex 

ES Enzyme-substrate complex 

et al. Et alia (and others) 

EtOAc Ethyl acetate 

EtOH Ethanol 

FAD  Flavin adenine dinucleotide 

FC Calculated structure factor 

FDH Formate dehydrogenase 

FMN Flavin mononucleotide 

FMO Flavin-containing monooxygenase 

FO Observed structure factor 

FPLC Fast protein liquid chromatography 

FPMO Flavoprotein monooxygenase 

g Gram 

G.O.I Gene of interest 

GC Gas chromatography 
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GC-MS Gas chromatography-mass spectrometry 

h Hour 

HRV 3C Human rhinovirus 3C 

I Transmitted intensity 

I0 Intensity of incident light  

<I/σ(I)> Measure of intensity above an average signal to noise ratio 

IPTG Isopropyl β-1-thiogalactopyranoside 

kb Kilo base 

kcat Turnover number 

Kcat/KM Specificity constant 

kDa Kilo Dalton 

KM Michaelis-Menten constant (binding constant) 

kPa Kilo Pascal 

l Path length 

LB Lysogeny broth 

LC-MS Liquid chromatography-mass spectrometry 

Li2SO4 Lithium sulfate 

LIC Ligation independent cloning 

m meter 

M Molar  

m- Meta  
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m/z Mass/charge 

mA Milli amps 

mFMO Methylophaga Flavin-containing MonoOxygenase 

mg Milli gram 

MgSO4 Magnesium sulfate 

min Minutes 

mL Milli litre 

mM Milli molar 

MW Molecular weight 

n.d. Not determined 

NADH Nicotinamide adenine dinucleotide  

NADPH Nicotinamide adenine dinucleotide phosophate 

NaF Sodium formate 

NaOH Sodium hydroxide 

ng Nano gram 

nm Nano meter 

NMO N-hydroxylating Monooxygenase 

nmol Nano moles 

NMR Nuclear magnetic resonance 

o- Ortho  

o
C Degrees Celsius 
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OD600nm Optical density at 600 nm 

P Product 

p- Para  

PAMO Phenylacetone monooxygenase 

PCR Polymerase chain reaction 

PFMO Pseudomonas stutzeri flavin-containing monooxygenase 

PhOCH2 Phenoxymethyl- 

PML Plymouth Marine Laboratories 

pmol Pico moles 

r.t Room temperature  

Rfree Measure of agreement between observed and calculated data from a 

randomly chosen test set 

Rmerge Measure of discrepancy between observed reflections 

rmsd Root mean square deviation 

RNA Ribonucleic acid 

Rp.i.m Measure of data quality after averaging of multiple measurements 

rpm Revolutions per minute 

s Seconds 

S Substrate  

SDM Site directed mutagenesis 

SDS Sodium dodecyl sulphate 
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SDS-

PAGE 

Sodium dodecyl sulphate-polyacrylamide electrophoresis 

SEC Size exclusion chromatography 

SMFMO Stenotrophomonas maltophilia flavin-containing monooxygenase 

SSM Site saturation mutagenesis 

t Temperature  

TEMED Tetramethylethylenediamine 

TrxRs Thioredoxin reductases 

UV-Vis Ultraviolet-visible 

V Volts  

Vmax Maximum velocity (maximum absorption) 

w/v Weight to volume 

YSBL York Structural Biology Lab 

α Alpha  

β Beta  

γ Gamma  

ε Extinction coefficient 

μg Micro gram 

μL Micro litre 

μM Micro moloar 

μmol Micro moles 
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σ Sigma  

 

The following substrates 1-20 were employed for biotransformations. 

 

 

 

Substrate 1 Bicyclo[3.2.0]hept-2-en-6-one 

Substrate 2 3-acetylindole 

Substrate 3 1-indanone 

Substrate 4 Acetophenone 

Substrate 5 Cyclohexanone 

Substrate 6 2-methylcyclopentanone 

Substrate 7 Cycloheptanone 
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Substrate 8 Cyclobutanone 

Substrate 9 3-methylcyclopentanone 

Substrate 10 5-norbornen-2-one 

Substrate 11 Norcamphor 

Substrate 12 Octan-2-one 

Substrate 13 Ethyl-phenyl sulfide 

Substrate 14 Benzyl-methyl sulfide 

Substrate 15 Methyl-p-tolyl sulfide 

Substrate 16 Thioanisole 

Substrate 17 ortho-chloro thioanisole 

Substrate 18 meta-chloro thioanisole 

Substrate 19 para-chloro thioanisole 

Substrate 20 para-nitro thioanisole 
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