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Abstract 

 

In articulatory speech synthesis, the 3-D shape of a vocal tract for a particular speech 

sound has typically been established, for example, by magnetic resonance imaging (MRI), 

and this is used to model the acoustic output from the tract using numerical methods that 

operate in either one, two or three dimensions. The dimensionality strongly affects the overall 

computation complexity, which has a direct bearing on the quality of the synthesized speech 

output.  

The digital waveguide mesh (DWM) is a numerical method commonly used in room acoustic 

modelling. A smaller space such as a vocal tract, which is about 5 cm wide and 16.5-18 cm 

long in adults, can also be modelled using DWM in one, two and three dimensions. The latter 

requires a very dense mesh requiring massive computational resources; these requirements 

are lessened by using a lower dimensionality (two rather than three) and/or a less dense mesh. 

The computational cost of 2-D digital waveguide modelling makes it a practical technique for 

real-time synthesis in an average PC at full (20 kHz) audio bandwidth. This research makes 

use of a 2-D mesh with the advantage of the availability and flexibility of existing boundary 

modelling and the raised-cosine impedance control to study the possibilities of using it for 

English consonant synthesis. 

The research was organized under the phonetic ‘manner’ classification of English consonants 

as: semi-vowel, nasal, fricative, plosive and affricate. Their production has been studied in 

terms of acoustic pressure wave propagation. Meshing topology was fixed to being a 4-port 

scattering 2-D rectilinear waveguide mesh for ease of understanding and mapping to the tract 

shape. 

As the characteristic of consonant production requires vocal tract articulation variations that 

are quite unlike vowels, this research adopts the articulatory trajectories using 

electromagnetic (mid-sagittal) articulograph (EMA) data from mngu0 to guide the change of 

cross-sectional vocal tract area. Generally, articulatory trajectories have been used to improve 

the accuracy of speech recognition and synthesis in recent decades. This research adopts the 
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trajectories to control coarticulation in consonant synthesis to demonstrate that a 2-D digital 

waveguide mesh (DWM) is able to simulate the formant transition accurately. The formant 

transitions in the results are close acoustically to natural speech and are based on controlling 

articulation for four places of articulation. Positions of lip, tongue tip, tongue body and 

tongue dorsum are inversely mapped to their corresponding cross-sectional areas. Linear 

interpolation between them enabled all tract movements to be modelled. The results show 

that tract movements are best modelled as non-linear coarticulation. 
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Chapter 1  

Introduction 

Speech production has been studied for hundreds of years. A variety of approaches 

have been used, from the physical, biological and mechanical to the electronic, in the attempt 

to understand and to mimic human speech production. Focusing on what occurs in the vocal 

tract, one approach to understanding what happens during speech production involves the 

study of acoustic phonetics which is an area of analysing and describing the acoustic 

characteristics of the speech signal in relation to speech production. In this work, the acoustic 

output is calculated by simulating pressure propagation in the vocal tract using the two-

dimensional digital waveguide mesh (2-D DWM).  

Motivation 

In early attempts to study speech production, mechanical blowing instruments were adjusted 

to mimic the sound of a human vowel [1]. Today, directly mimicking human speech 

production is not such a common approach due to its complexity, and the general market 

requirement for text-to-speech synthesis. Computer and computational performances are now 

of sufficiently high quality to enable speech synthesis by various other approaches, including 

concatenative speech synthesis, HMM (hidden Markov model-based speech synthesis), and 

deep neural network-based speech synthesis [2]. However, the study of speech production 

physically is still essential in biological or medical research to evaluate the output from a 

compromised vocal tract [3]. Therefore, sound simulation is an approach to be considered. It 

can be done by applying numerical methods to simulate the physics of the output acoustic 
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signal. Finite-difference time-domain (FDTD), finite volume and other numerical methods 

can work successfully for the simulation [4], but they require very high computational 

resources to produce natural-sounding speech. The idea is to explore whether there is any 

possibility of synthesizing sound by considering the underlying physics with an acceptable 

level of accuracy but with sufficient speed to work in real-time, and this makes the 2-D 

DWM a good choice with which to experiment. Mullen’s research looked at this between 

2004 and 2006 in relation to evaluating the 2-D DWM for real-time vowel synthesis [5]. He 

also conducted an experiment on smoothing the signal propagation when articulating by 

weighting the impedance by cosine function. Here, this approach is extended to include the 

remaining consonant phones of English and to establish whether this numerical method is 

practical enough to be used in articulatory speech synthesis. 

Hypothesis 

The hypothesis of this research is that articulatory-based English consonant synthesis can be 

achieved using a 2-D digital waveguide mesh (DWM). A 2-D DWM will be used in the 

simulation of wave propagation in a virtual oral tract coupled as appropriate to a virtual nasal 

tract. More functions such as dynamic tube shaping, additional noise sourcing in the middle 

of the tract and duration controlling will also be implemented. The proposed system should 

be able to synthesize vowels, nasals, fricatives, plosives, affricates and semi-vowels. To 

achieve this, a list of research subtopics has been drawn up as follows: 

  - Simulating the tracts using a more precise area function for more dense 

scattering junctions from existing MRI data (to be more precise in wave propagation 

simulation). 

  - Inserting white noise injection (to be used for fricatives and plosives). 

  - Adopting articulation trajectories for synthesizing consonant-vowel (CV) 

sounds. 

 After all of these milestones and the characteristics of English consonants have been 

studied, the proposed system will be evaluated by comparing the results’ characteristics with 

their theoretical acoustic characteristics. A perception test will be performed on a set of 

synthesized CV sounds in order to explore a percentage of perceptibility on formant 

transition. 
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Proposed Approach 

 This research proposes a study of using 2-D DWM in synthesizing English 

consonants. Firstly, the nasal model is attached to the existing oral tract to enable simulation 

of all consonants involved in speech production. Secondly, an external noise source is 

implemented behind the appropriate place of constriction and, finally, the articulation is 

developed by adopting experimental data for articulatory trajectories into the area function. In 

addition, articulatory details relating to specific configurations for each manner of articulation 

of English consonants are included.  

The setting of the proposed system works separately for each manner of articulation to 

analyse the resulting acoustic output characteristics. Therefore, the set of target 

characteristics for each manner and place of articulation of English consonants is studied. The 

centre frequencies of bursts, range of frication frequencies, formant transitions, and anti-

formant frequencies will be considered as appropriate to synthesize the representative 

acoustic characteristics of English consonants.  

Scope 

 This proposed work studies the 2-D DWM acoustic pressure propagation for English 

phonemes, but does not cover tones, intonation, stress or duration. In addition, the vowel 

synthesis part will use Jack Mullen’s synthesizer [5].  

 The proposed system will be tested in terms of its resonation. The set of appropriate 

articulatory characteristics this research will analyse includes the centre frequency of bursts, 

formant transition, anti-formant frequencies and range of frication frequency response which 

are the results from tube resonances. It should be noted that some of the acoustic 

characteristics which are not from resonation, such as the voice onset time, will not be 

included in this research.    

The proposed system will consolidate the previous successful system with noise 

source in the vocal tract and add a nasal tract system, together with appropriate timing 

controls, into a laboratory prototype of an articulatory English speech synthesizer. The target 

performance of the proposed system is compared to some well-known synthesizers after 

Childers [6].  
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Table 1.1. Target performance of the proposed articulatory speech synthesis instrument 

compared with some successful articulatory speech synthesizers (adapted from Childers [7]). 

  
Flanagan Maeda Childers 

Proposed 

Synthesizer 

Model of excitation Self-

oscillating 

two-mass 

A slit LF LF 

Jitter and Shimmer 

models included 

No No Yes No 

Noise source at the 

glottis 

No No Yes Yes 

Noise source in the vocal 

tract 

Every section No Centre of, or 

downstream or 

upstream from, 

or distributed 

along the 

constriction 

Downstream 

from the 

constriction 

Excitation in the vocal 

tract 

No No Yes Yes 

 

Overall, this research reports on experiments to characterize the acoustic outputs of English 

consonant synthesis using the 2-D DWM technique. Previous research by Jack Mullen [5] 

provides the starting point, and this is modified for each type of English phone. The results 

from this study show the system’s accuracy, in both spectral and perceptual terms, in 

synthesizing speech sounds and demonstrates its capacity to implement a synthesizer for 

English phones.  
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Chapter 2 

Speech Synthesis 

In general human speech communication, the information to be communicated is sent 

from the sender’s brain via signalling articulators through the nervous system to the muscles. 

The speech is produced and transferred through the air around the speaker, then the listener’s 

ears perceive the air vibrations and signal the nervous system  the receiver’s brain before 

being translated into information. This process is called the speech chain [7]. 

The speech chain encapsulates the processes from the speaker’s intention all the way through 

to the listener’s understanding. There are ten stages in the chain: intention, meaning, 

utterance, articulatory plan, articulation, sound, auditory response, word sequence, meaning 

and understanding [8]. Speech synthesis intervenes in the process of transformation from 

utterance to articulatory plan to articulation and to sound. 

In the mid-19th century, Alexander Ellis started to use the Roman alphabet to describe 

phonetic symbols in his pronunciation transcription work for any language [9]. Paul Passy 

published the first IPA alphabet in 1888 [10] and then in 1946 the first speech visualization 

sound spectrograph was invented at Bell Laboratories [8, 11]. The first British English 

synthesized speech by rule was generated in 1964 [12]. In 1970, Gunnar Fant published his 

ground-breaking work on the physics of speech sound production: Acoustic Theory of Speech 

Production [13]. Subsequently electronic tools for articulatory studies were invented: 

electropalatography (EPG) for measuring the degree of tongue-palate contact in 1972 [14, 

15]; magnetic resonance imaging (MRI) for imaging the articulators in 1974 [16];  
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laryngography for measuring vocal fold contact in 1977 [17]; electromagnetic articulography 

(EMA) for recording mid-sagittal position of articulators  in 1992 [18]; and dynamic/real-

time MRI in 2010 [19]. 

Before exploring the details of speech synthesis, a general overview of the physics of sound 

is provided in the next section on sound waveforms.  

2.1 Sound Waveforms 

Sound is an audible waveform that is created by one or more vibrating objects that 

initiate a sequence of pressure changes to particles in the surrounding medium (air, solid, 

liquid). If the frequency of vibration is in the audible range (normally 20 Hz to 20 kHz but 

changing with age and noise abuse [20]), then the disturbance is heard as sound. The 

movement of particles during sound transmission is in the same direction as the propagation 

of the sound itself, and it is therefore called a longitudinal wave.  

 

 

 

 

 

 

 

Figure 2.1. A snapshot of the movement of molecules simulation during sound transmission. 

The pressure moves longitudinally with the velocity. If we set up a recording system 

and record a sequence of sound pressures along with their time stamp, we can plot the 
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fluctuation of the pressure against time in the x axis which is an ordinary representation of 

sound (waveform view). 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 2.2. (a) Speech waveform of phone /u/ on Wavesurfer – an Open Source tool for 

sound visualization and manipulation by KTH [21] and (b) An example of a 100 Hz 

waveform. 

In the waveform view, it clearly shows important wave characteristics such as the 

period (T), cycle, etc. In a simple periodic wave which has only uniform pressure movement, 

the period of the wave is the distance between a repeating feature on the waveform such as 

positive peak, negative peak or zero crossing; a cycle is from the time between the repeating 

features. The fundamental frequency is the number of cycles per second. For a complex 

periodic wave, the waveform contains more than one frequency component. Joseph Fourier 

demonstrated mathematically that any wave shape can be synthesized as a combination of 

sine waves with appropriate amplitudes, frequencies and phases which are known as Fourier 

components [22].  

Time (seconds) 
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If we let the simulation in Figure 2.1 continue, and a set of repeating force is given, 

the pressure propagation can be plotted in the time domain. A time gap between each push is 

called a period (T) and the distance between the repeating pulses is called the wavelength ().  

For example, if the object on the left-hand side of the figure vibrates and pushes the particles 

every 5 milliseconds (ms), the period of the sound of the simulation will be 5 ms. The 

wavelength varies according to the velocity of sound and equals to  

  = c T 2.1 

where c is the velocity of sound. The velocity of sound depends on the medium itself 

and the temperature. For example, the velocity of sound in air at 20 degrees centigrade at sea 

level is 344 m/s. Looking back at the previous simulation, if we assume that it occurs in the 

air at sea level, the wavelength would be equal to 344 x 0.005 = 1.72 m. Moreover, a number 

of periods of sound in a second equals its frequency (f) which is calculated by  

 f = 1 / T 2.2 

Therefore the velocity of sound could be calculated by  

 c = f  2.3 

and the frequency can also be calculated by 

 f = c T = c /  2.4 

Further details of the velocity of sound in other mediums can be found in Howard and 

Angus, 2009 [23].  

 The velocity also has an important relationship with pressure (p) – a 90o phase 

difference relationship.  If we look at the particles in Figure 2.1 more closely, when they start 

moving from the left-hand side to the right by being pushed by an object on the left, the 

velocity rises because the particles are moving apart but the pressure becomes lowest (as the 

particles at A in Figure 2.1). After the particles have been moving for a while the velocity 

reaches a maximum and the pressure becomes positive (at B in Figure 2.1). Increased density 

then makes the particles move more slowly which, in turn, causes a decrease in the velocity. 

When the pressure reaches the maximum the velocity reaches zero (at C in Figure 2.1) the 

particles begin moving back, which makes the velocity negative and the pressure becomes 
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lower and lower because the particles are moving apart again (at D in Figure 1). This 

situation makes the pressure have a 90⁰  phase lag compared with the velocity (Howard and 

Murphy, 2008 [20], Johnson, 2003, [23]). 

 

 

 

 

 

 

Figure 2.3. Plotted relationships between pressure and velocity (90⁰  phase difference). 

Considering the relationship between pressure and velocity in terms of the density and 

springiness of the propagating medium, a medium molecule moves faster in low density and 

weak spring for a given pressure amplitude. The relationship is 

 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
= 𝑍𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 2.5 

 

where 𝑍𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 is known as the acoustic impedance. Considering the propagation through a 

medium, the velocity depends on springiness and density of the medium. 

𝑣 =  √
𝐸

𝜌
 2.6 

where E is Young’s modulus value measuring the force needed to compress a medium (Nm-2) 

and 𝜌 is the density of the medium. In air, Young’s modulus and the density has to be 

considered as a gas. The velocity of sound needs to be considered in the adiabatic gas law 

equation which considers pressure in a volume of the gas as a constant (𝛾) and Young’s 

modulus for air is given by 
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𝐸𝑔𝑎𝑠 = 𝛾𝑃 2.7 

where P is the pressure of the gas (N m-2) and 𝛾 is 1.4 for air. For density of a gas, it is given 

by 

𝜌𝑔𝑎𝑠 =
𝑚

𝑉
=

𝑃𝑀

𝑅𝑇
 2.8 

where m is the mass of the gas (kg), M is the molecular mass of the gas (kg mole-1), R is the 

gas constant (8.31 J K-1 mole-1) and T is the absolute temperature (K).  

Then the velocity of sound in the gas can be considered after temperature T and constant 𝛾, R 

and M . 

𝑣𝑔𝑎𝑠 = √
𝐸𝑔𝑎𝑠

𝜌𝑔𝑎𝑠
= √

𝛾𝑅𝑇

𝑀
 2.9 

Assuming 𝛾 can be ignored, equation 2.5 can be rewritten by dividing equations 2.7 by 2.6 

as: 

𝑍𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 = √𝜌2 (
𝐸

𝜌
) = 𝜌𝑐  kg m-2 s-1 2.10 

Then the impedance can be considered in a specific context such as a tube as 

𝑍𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝑡𝑢𝑏𝑒 =
𝜌𝑐

𝐴𝑡𝑢𝑏𝑒
  kg m-4 s-1 2.11 

where 𝐴𝑡𝑢𝑏𝑒is the tube area. This equation will be considered later in Chapter 4 for acoustic 

simulation in a tube. 
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2.2 Harmonics and Resonance 

In complex periodic waves, components are based on a fundamental frequency (f0) 

such that each has a frequency that is an integer multiple of f0 and its own amplitude and 

phase. Figure 2.4 shows an example of the harmonics of a 100 Hz f0 wave. All of them are 

0.03 seconds long. The top wave shows the first harmonic at 100 Hz. The following two 

show the second and third harmonics at 200 and 300 Hz respectively, with lower amplitude.  

The harmonic number is called after the integer that is used to multiply with f0. The last 

waveform results from mixing the top three sine waves. Their amplitudes are 0.5, 0.43 and 

0.4. The relation between frequency and amplitude can also be plotted and is known as a 

power spectrum. 

 

 

 

 

 

 

  

 (a) (b) 

Figure 2.4. (a) An example of the 1st, 2nd and 3rd harmonics of 100 Hz sine wave and their 

sum. (b) A spectrum of waveforms in (a). 

The power spectrum plot (spectrogram) shows the amplitude of frequencies analysed 

from the waveform, usually using fast Fourier transform (FFT) algorithm or a linear 

prediction coefficient (LPC). The plot depicts the resonances found in analysing sound. 

Generally, in a speech sound, the complication of source and resonation causes some peaks 

and/or dips in its resonances. The peak resonance/frequency is known as a formant. The 

formant frequencies are named according to the order in which they appear from low to high 

frequency: the peak at the lowest frequency is considered as the natural frequency of that 
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sound and called F0, then the next peak (in higher frequency) is called F1 and then F2 and so 

on. These formants are one of the most important characteristics of speech sound and allow 

us to distinguish different vowels. 

The resonation occurs when a travelling wave hits a boundary and then reflects back 

to create one or more complete loops. The standing wave or resonance then requires a 

suitable wavelength to travel a suitable distance between two boundaries. For example, the 

first or the lowest resonance of a wave travelling between two hard boundaries is when a 

wave with wavelength  travels distance L where L = /2. The wavelength of the lowest is 

then equal to 2L which has c/2L of frequency (from equation 1.4) where c is the velocity of 

sound. The other wavelengths which correspond to the same proportion of L would also be 

resonated, such as , 3/2, 2 and vice versa.  In the same way, a travelling wave between 

bound-unbound boundaries will have the resonance at wavelength /4, 3/4, 5/4 and so on, 

and therefore the resonance frequency could be at (2n + 1)/4L where n is 0, 1, 2, 3,..,  [23].  

 

 

 

   

 

 

   

Figure 2.5. On the left are the first two resonances between two hard boundaries. On the right 

are the first two resonances in a one-sided open tube. 

In the time domain, the waveform can be written as a function of amplitude 𝑥(𝑡) at time t. 

For a representation of sine wave, the function can be written as 

𝑥(𝑡) = sin(𝑡) = cos (𝑡 −  
𝜋

2
) = cos(𝑡 + ∅) 2.12 

when ∅ is [−
𝜋

2
, 

3𝜋

2
]. 
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From the sine wave in Figure 2.2, a single frequency periodic wave equation can be written 

as  

𝑥(𝑡) = 𝑥(𝑡 + 𝑇) = 𝑥(𝑡 + 2𝑇) = 𝑥(𝑡 + 3𝑇) = ⋯ 2.13 

The repetition can be considered in terms of frequency F instead of period T with the angular 

frequency 𝜔 which equals to  

𝜔 = 2𝜋𝐹 =  
2𝜋

𝑇
 2.14 

It can then be written as 

 𝑥(𝑡) = 𝐴 cos (𝜔𝑡 + ∅) 2.15 

In general, for a periodic wave which contains more than one frequency, the lowest frequency 

is called the fundamental frequency F0 and the period of one cycle is called the fundamental 

period T0 = 1/F0. Then the angular frequency ω0 of F0 equals to 1/(2πT0) and the harmonic 

frequency is in a series of F0, 2F0, 3F0, … 

Equation 2.15 can be expanded to a combination form of multiplication of fundamental 

frequency for a general periodic wave as 

𝑥(𝑡) =  𝑎0 cos(0 × 𝜔0𝑡 + ∅0) + 𝑎1 cos(1 × 𝜔0𝑡 + ∅1) + 𝑎2 cos(2 × 𝜔0𝑡 + ∅2) + ⋯ 2.16 

Considering the first term as a constant because cos(Ø0) is a constant, then equation 2.16 can 

be written as 

𝑥(𝑡) =  𝐴0 + ∑ 𝑎𝑘cos (𝑘𝜔0𝑡 +  ∅𝑘)∞
𝑘=1  2.17 

Equation 2.17 is a specific form of the Fourier series which is often used to analyse a periodic 

wave/signal. Note that for non-periodic signals, the Fourier transform is used instead [2].  



   Chapter 2 Speech Synthesis 

26 

 

2.3 Acoustic Representation in the Human Voice 

 The human voice, whether in speech, singing or exclamation, works as a carrier in 

delivering a message from a speaker to a listener. Frequencies, formants, duration, tone or 

even a short pause all carry some meaning in human perception. To adjust these attributes the 

human vocal apparatus, including all organs from the diaphragm up to the mouth and nostrils, 

is involved in modifying the power source, sound source and sound modifiers. The power 

source in speech is the human breath. Muscles around the ribs work together with the 

diaphragm, sucking air into the lungs and slightly pushing air back out through the glottis and 

vocal tract. Any constriction in the tract establishes the sound source which can be classified 

as voiced, voiceless or mixed, depending on the manner of the constriction. Figure 2.6 from 

Howard, 2008 [23] shows ideal sound sources (voiced and voiceless) with their spectra. 

 

 

 

 

 

 

 

 

Figure 2.6. Idealized voiceless sound source (upper) and voiced sound source (lower) and 

their spectra (right) from [20]. 

These two types of sound source are classified by a repetition pattern of the waveform which 

is caused by cyclic vibrations of the vocal folds. The upper non-repetitive wave is an example 

of an idealized voiceless sound source with equal amplitude across the frequency range, 

while the lower example shows the repetition of the voiced sound source. A period (T0) in the 

voiced sound is the time taken for a pattern of pressure fluctuation or for a cycle of vocal 

folds vibration.  
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The sound modifier in a human vocal system is the vocal tract. The shape or volume of each 

part in the tract resonates at different frequencies, and therefore the frequencies of the output 

voice have different amplitudes. There are peaks in the spectrum which are called formants, 

and the relationship between the formant frequencies and the tract shape is explained by 

perturbation theory (see more detail in Chapter 4 section 4.2).  

2.4 Introduction to Speech Synthesis 

Human speech communication is the transfer of information from one person to 

others via speech. The transfer process from a speaker’s brain to the arrival of the message in 

the listener’s brain is known as the speech chain [7]. Each part of the chain can be 

implemented by various simulation methods or devices but, in terms of speech synthesis, it 

takes place only in a part of the speaker’s role as a generator of speech. 

There have been several attempts to synthesize speech in the past. The first 

mechanical speaking machine was recorded by Charles Darwin in 1806, based on his 

grandfather’s experiment in 1771 mentioned in [8]; there is not much detail of its 

engineering. The second that was fully recorded was Kratzenstein's vowel resonators [24]. 

Christian Gottlieb Kratzenstein, professor of physiology at the Imperial Academy of St 

Petersburg successfully resonated vowel-like sounds at a constant pitch when his equipment 

was activated by a reed in 1779. Twelve years later, the first recorded success in synthesizing 

connected speech was achieved by von Kempelen in Vienna [25].  
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Figure 2.7. Structure of Wheatstone's reconstruction of von Kempelen's speaking machine 

from Flanagan, 1972. 

In 1845 Joseph Faber introduced a device which was suitable for singing synthesis 

[26]. It was a model of the tongue and a pharyngeal cavity whose shape could be controlled 

via a key board. In the next century, R. R. Riesz’s talking mechanism successfully produced 

the word ‘cigarette’ in 1937. His device was shaped like the human vocal tract with rubber 

and metal with ten control keys to support two hands. It is a mechanical articulatory speech 

synthesizer that can produce fairly good speech with a well-trained operator. A few years 

later, the first commercial electronic device, the VODER, was developed and introduced by 

Homer Dudley (1939) [27] which produced human-like speech and created considerable 

based on articulatory synthesis interest in the artificial speech production research area. In 

1989, the talking machine by Martin Riches was introduced. It contains 32 pipes with air 

valves, wind chests, magazine bellows, blower and a computer which operated as a user 

interface to control valve movements for each wind chest (a picture of the machine can be 

found in [8]). Figure 2.8 shows some milestones of speech synthesis from its beginning until 

now after Sami Lemmetty [28] and some more recent milestones from [2, 6]. 
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Figure 2.8. Some milestones in speech synthesis adapted from [28]. 

All of the speech synthesis methods are usually classified into three groups: 

- Articulatory synthesis, which attempts to model the human speech production system 

directly. 

- Formant synthesis, which attempts to model pole and zero frequencies of the speech 

signal by source-filter modelling. 

- Concatenative synthesis, which attempts to concatenate different lengths of 

prerecorded samples from natural speech. 

The concatenative methods including HMM-based [29] are the most commonly used in 

today’s text-to-speech synthesis system. The approaches that are used in today’s market 

speech synthesizers are HMM-based + STRAIGHT, hybrid HMM-based + unit selection, 

parallel HMM, and deep neural network-based (more details can be found in [30, 31]). 

However, the articulatory method still has the potential for higher quality implementations, 

especially better co-articulation, in the future. 
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2.5 Introduction to Articulatory-based Speech Synthesis 

Articulatory speech synthesis is used to transform the articulation to sound in the 

speech chain. It involves understanding the articulator movements from the sound generators 

to speech signals at the lips and nostrils. The articulators of the human speech apparatus can 

be sketched in a mechanical view as in Figure 2.9 after Childers [6]. A balloon on the left-

hand side represents the lungs which push pressure Ps to the mechanical vocal fold model 

where the pressure flow vibrates. UG represents the velocity of the propagated pressure from 

the glottis. It passes through the oral tract and/or the nasal tract and is then released at the 

nostrils and lips. 

 

 

 

 

 

 

Figure 2.9. A mechanical model after [6]. 

In the upper vocal tract the articulation perturbs the source from the glottis. To 

simulate the articulation, Childers described the modelling as two separated parts (the 

articulatory model and the acoustic model), as shown in Figure 2.10 [6]. For the articulatory 

model, the vocal tract is viewed as a structure of small ducts with corresponding cross-

sectional areas that are used as parameters to represent the vocal tract characteristics in the 

acoustic modelling. Each cross-sectional area is basically used as an electrical transmission 

line by simulating the shape of the vocal tract with sometimes the area function changing by 

time for the articulation. Steps for co-articulation are specified by changes of the articulators 

from frame to frame over the synthesizing process. All of the data for mid-sagittal distance 

modelling are observed by photography, x-ray technology or magnetic resonance imaging 

(MRI) [6, 32]. 
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Figure 2.10. A model of articulatory speech synthesis after [6]. 

In practice the first articulatory synthesizer, named DAVO (Dynamic Analogue of the 

VOcal tract), was introduced in 1958 by George Rosen from the Massachusetts Institute of 

Technology. DAVO uses the transmission line for acoustic modelling [33]. Figure 2.11 

shows a block diagram of its control system in (a) and a photograph of DAVO the synthesizer 

in (b). In figure 2.11b, the principal unit arrays are allocated in racks. From left to right they 

are: rack 1 – the function generators; rack 2 – the timer with time-selection matrix; rack 3 – 

the buzz and noise generators and part of the configuration matrix; rack 4 – the configuration 

matrix; rack 5 – the transmission line; and rack 6 – power supplies for the transmission line 

[33]. 
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Figure 2.11. (a) Block diagram of the control system and (b) Image of Dynamic Analogue of 

the VOcal tract (DAVO) - the first articulatory synthesizer from George Rosen [33] 
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2.6 Tube models and Wave Scattering 

From the mechanical to the electronic and/or computerised versions, the human vocal 

tract has been modelled in terms of a resonator. The tube model represents the tract using 

cross-sectional areas as parameters. From the parameters, various simulations of the sound 

propagation have been observed to help the understanding of acoustic behaviour in speech – 

resonance, formants and some aspects of the relation are between articulatory configurations 

and their acoustic consequences.   

 

 

 

 

 

 

Figure 2.12. Approximated tube models of vocal tract shapes for vowels /a/, /i/ and /u/. 

The Kelly-Lochbaum model [34] is one of the very first digital speech synthesis 

models that uses the idea of a transmission delay line to simulate acoustic wave propagation 

in the vocal tract by matching the resonance function at the spatial coordinate x into the delay 

function. The coordinate x in his model can be viewed as an index of each tube in the series 

of N concatenated tubes. The series of tubes that is used in visualization of the vocal tract 

modelling is shown in Figure 2.12. In the figure, N is 8 and each of them is an equal length of 

; hence, for the total length L, the production of N has to be L. In a situation when N is big 

and  is small, the simulation becomes more accurate but at a high computational cost.  

In each spatial tube, the simulation concerns velocity and pressure of the travelling 

wave in terms of u(x,t) and p(x,t), respectively. At the position x at time t, two acoustic states 

are considered as a summation of their left-travelling and right travelling components with 

pressures usually denoted as pr and pl  and velocities as ur and ul. Figure 2.13 shows the 

solution for the travelling wave from [35]. The travelling wave components are assumed to 
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be implemented in the discrete-time T which can represent the state of wave components in 

every  or, in other words, it is used to represent travelling pressure for each of the durations 

/c in the figure where c is the speed of sound. Then the pressure at either end is the 

summation of the leftward- and rightward-travelling components and travels through the pair 

of digital delay lines as in Figure 2.13(b). 

 

 

 

 

 

 

(a) (b) 

Figure 2.13. (a) An acoustic tube and (b) A representation of the travelling wave solution 

after Bilbao [35]. 

Figure 2.13 shows the simulation in a single uniform acoustic tube but the vocal tract 

model considers the simulation in a series of concatenated tubes with each of them 

representing a different size of cross-sectional area; hence the acoustic behaviour at the 

junction has to be discussed. Figure 2.14 (after [35]) clearly depicts a situation at a junction 

(a) where the areas of tube are different. The subscription i is used to index tubes in the 

series, while A is the area and R is the reflection parameter. 
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 (a) (b) 

Figure 2.14.  (a) The junction between the ith and (i+1)th acoustic tubes in the Kelly-

Lochbaum vocal tract model and (b) The resulting scattering junction for pressure waves 

after Bilbao [35].  

Based on the assumption of summation between left- and right-travelling components, 

the general solution for components at position i can be written as  

 pi = pi
l + pi

r  ui= Yi(pi
l - pi

r) 2.18 

pi+1 = pi+1
l + pi+1

r  ui+1= Yi+1(pi+1
l - pi+1

r) 2.19 

where Yi is the admittance of the ith tube which is defined by 

Yi = Ai/c. 2.20 

The equation for Kelly-Lochbaum’s model in Figure 2.14 can also be written as the 

scattering components at a junction.  

 pi
l = Ripi

r + (1-Ri)pi+1
l  pi+1

r = (1+Ri)pi
r - Ripi+1

l  2.21 

where Ri is 

 𝑅𝑖 =
𝑌𝑖 − 𝑌𝑖+1 

𝑌𝑖 + 𝑌𝑖+1 
 2.22 

The reflection parameter is a level of admittance between two tubes, which means that 

the left- and right-travelling components are part-reflected and part-transmitted through each 

junction according to the reflection parameter R. Note that R is [0, 1] which means no 

pi = pi + 1 

ui = ui + 1 Area Ai Area Ai + 1 
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1 + Ri 

1 - Ri 

pi+1

pi+1
r  



   Chapter 2 Speech Synthesis 

36 

 

reflection when 0 and fully transmitted when 1 [35]. Here, from the above equations, the 

simulation can then be exited at one end (i=0) by periodic and/or non-periodic signal and then 

pass the signal through the model and radiate the output signal at the other end. 

2.7 Vocal tract modelling with some examples 

Vocal tract modelling has been discussed in two ways: the parametric and the 

articulatory models.  The direct parametric model bypasses the articulatory model in Figure 

2.10 and uses the vocal tract area function (as in Kelly-Lochbaum) in vocal tract simulation 

and then calculates the corresponding acoustic characteristics. This is very different from the 

articulatory models which are based on the concept that all parameters physically correlate 

with human articulatory structures and replicate observed articulatory movement [36]. 

The parametric vocal tract model is based on the observed vocal tract area. The most 

straightforward simulation of the tract is to model the tract physically (using resin or acrylic). 

An example of this straight simulation is Arai’s work.  He proposed two types of modelling – 

the cylinder-type and plate-type models, which are 50 mm diameter sculpted acrylic cylinders 

as in Figure 2.15 (a) and 10 mm radius curve in a step-wise fashion as in Figure 2.15 (b), 

respectively [37].  

 

 

 (a) (b) 

Figure 2.15. Arai vocal tract models from [37]. 

The step-wise modelling in Figure 2.15 (b) uses sets of concatenated 10 mm radius 

acrylic plate to model the vocal tract. In this step-wise fashion, each acrylic plate is 75 mm x 
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75 mm x 10 mm with a hole in the centre. The model is set by placing appropriate plates side-

by-side. The holes in the plates then form a tube.  

Another example of the articulatory model is the articulatory synthesizer included 

within Praat [38]. The system is based on Functional Phonology [39], which makes use of the 

actions of relevant muscles whose function is to vary the shape of the vocal tract. Together 

with timing control, the tensions of these muscles become input variables to the system that 

control sequentially the movement of the articulators. 

The algorithm in Praat articulatory speech synthesizer was introduced in 1993 by Paul 

Boersma in Berlin 1993 [40].  

In the Praat model, there are 27 concatenated tubes with flexible walls, time-varying 

lengths of tract regions but fixed length in the sub glottal region. The glottis consists of two 

tubes. The mesh points are then at the central cross sections of the tubes in Figure 2.16. 

Boersma simulates the physics of air particles through the momentum density p 

(kg/m2s), the mass line density e (kg/m), mass flow J (kg/s), the continuous pressure Q 

(N/m2) and the resistance of Hagen-Poiseuille R in the lungs, bronchi, trachea, glottis and 

vocal tract. The springiness at the walls are considered in terms of the mass of wall m, the 

mean excess pressure in tube p, the spring force F and the tissue stiffness. All equations are 

shown in the paper [38] with updating steps through the simulation and more details are 

given in Chapter 3 Section 3.12 of [39]. With the inclusion of all of these physical properties, 

his model can generate a glottal source and also noise turbulence anywhere in the vocal tract. 

Table 2.1 shows a system comparison between Boersma’s Praat articulatory synthesis and 

Mullen’s 2-D DWM articulatory synthesis. 
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Table 2.1. Comparison between using 2D-DWM and that in Praat. 

 Boersma’s Praat Mullen’s 2-D DWM 

Modelling Model the momentum 

density, the mass line density, 

the mass flow and the 

continuous pressure 

Model the pressure  

Sound source generator Simulate glottal source and 

noise turbulent generator 

Use external sound source; 

currently the LF model 

Meshing Concatenated tubes - based 

on Mermelstein [40]  

Rectilinear (four ports 

connected at a junction) 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 2.16. (a) Twenty seven concatenated tubes for the pharyngeal and oral cavities and (b) 

the simplified mid-sagittal view of our model of the speech apparatus (not drawn to scale) of 

Praat from [39]. 

Praat mathematically uses finite difference to implement the time varying of the 

aerodynamics and myoelastics of the concatenated tubes ( [39] page 91). The mass e, the 

momentum p, the mass flow J and the continuous pressure Q are derived step by step in 

Chapter 3 Section 3.12 of [39] and give the final output in Pa (N/m2) at 40 centimetres from 

the head as  
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𝑠𝑜𝑢𝑛𝑑(𝑡) =  
4𝜋

0.4
(∑

𝐽𝑀+
𝑛 − 𝐽𝑀+

𝑛−1

∆𝑡𝑀=𝑛𝑜𝑠𝑒,𝑙𝑖𝑝 + ∑ 1000 𝜌0∆𝑥𝑚
𝑛

𝑚=𝑒𝑣𝑒𝑟𝑦 𝑡𝑢𝑏𝑒 ∆𝑧𝑚
𝑛 ∆𝑦𝑚

𝑛−
1

2) 2.25 

where Boersma claims the novelties of his Praat synthesizer to be: 

- The entire speech apparatus is modeled in the same way. 

- Tube lengths can vary as functions of time, so that we can faithfully 

model speech sounds that crucially depend on longitudinal movements. 

- The meshing algorithm is resistant to the wildest movements. 

In 2009, Professor Atsuo Takanishi of Waseda University presented his WT-7RII 

Waseda Talker No. 7 Refined II. It is a robot talker that has a human-like speech production 

mechanism from lung to lips including nasal cavity. Professor Takanishi claims that it can 

produce sounds with similar acoustic characteristics to its adult male model [41]. 

   

Figure 2.17. Waseda Talker from [41] 

The Takanishi lab research team developed the anthropomorphic talking robot 

Waseda Talker with the aim of addressing the difficulty of simulating articulation through a 

combination of speech science and humanoid robot technology. They modelled the vocal 

cords and vocal tract in three-dimensional models and claimed that they could produce more 

human-like speech production at that time (2009). Its mechanical form contains all speech 

production models from lung through to the lips and nasal cavity [41]. The size is the same as 

an adult male model (no details of the model were provided). They adopted EMA data to 

control the articulation when producing continuous speech. However, they mentioned the 

limitation of motors in the robot in that they cannot work fast enough to capture all human 
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speech production. A video recording of its movement and synthesized sound can be found in 

[41]. 

In September 2013, Peter Birkholz published his updated version of VocalTractLab v 

2.1, a vocal tract simulator, on www.vocaltractlab.de. His software tool is currently available 

free of charge. It can demonstrate the vocal tract mechanism in speech production in a three-

dimensional model. The model simulates the surfaces of articulators and vocal tract walls 

together with their interaction with both volume flow and pressure distribution. The software 

is very flexible and lets users control parameters themselves, such as vocal tract control 

points with panels showing graphs of the volume velocity transfer function, vocal tract input 

impedance and spectrum of the glottal source. The software can also show the animation of 

the acoustic simulation (similarly to Praat but with more nasal details). The timing scale 

parameter control in the software makes it capable of synthesizing an utterance (multiple 

phones). There are more features allowing the user to control the synthesizer which can be 

found in the software manual [42]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18. Screenshot example of VocalTractLab v.1 from [42].
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Chapter 3 

2-D Digital Waveguide Mesh 

 In the first two chapters the general concept of speech synthesis with some successful 

examples was described. In this chapter the specific methodology used in this research, a 

physical wave model known as the digital waveguide mesh (DWM) is described. 

3.1 Digital Waveguide Mesh (DWM) 

 The waveguide mesh is one of the simulation techniques that use the scattering 

principle to solve a set of time-dependent partial differential equations (PDEs) as described in 

[35]. It implements the finite-difference approximation to fit a numerical grid followed by 

recursion in a specific set of initial and boundary conditions with possible external 

excitations. Bilbao also comments on the great general benefit of the meshing system which 

is the network formulation that allows direct access to a measure of the system’s energy 

carried by waves on a large network of lumped elements. 

Twelve years before Bilbao, Julius O. Smith III described the digital waveguide 

method in [43, 44] as a way of avoiding a high computational cost because it does not need 

multiplication at each grid point in space. In the waveguide, each travelling wave component 
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arises from solving the wave equation in a medium. For example, in a model for a stringed 

instrument, the travelling wave component travels along a string to the left or right at a speed 

c which is equal to 

 𝑐 =  √
𝐾

𝜖
 3.1 

when 𝐾 is defined as string tension and 𝜖 is defined as linear mass density. The well-known 

d'Alembert solution for the wave equation (first published by Jean le Rond d'Alembert in 

1747) was preferred to solve the travelling wave equation as 

 𝑦(𝑥, 𝑡) = 𝑦𝑟(𝑥 − 𝑐𝑡) + 𝑦𝑙(𝑥 + 𝑐𝑡)  3.2 

for arbitrary functions 𝑦𝑟 and 𝑦𝑙of a coordination x and t where c is a constant. The equation 

3.2 is then the solution proven by twice differentiating with respect to x and t. 

𝑦𝑥 = 𝑦𝑟′(𝑥 − 𝑐𝑡) + 𝑦𝑙′(𝑥 + 𝑐𝑡) 

𝑦𝑥𝑥 = 𝑦𝑟′′(𝑥 − 𝑐𝑡) + 𝑦𝑙′′(𝑥 + 𝑐𝑡) 

and 

𝑦𝑡 = −𝑐𝑦𝑟′(𝑥 − 𝑐𝑡) + 𝑐𝑦𝑙′(𝑥 + 𝑐𝑡) 

𝑦𝑡𝑡 = 𝑐2𝑦𝑟′′(𝑥 − 𝑐𝑡) + 𝑐2𝑦𝑙′′(𝑥 + 𝑐𝑡) 

 

hence  𝑦𝑡𝑡 = 𝑐2𝑦𝑥𝑥. 3.3 

In the digital domain, the d'Alembert solution has to be considered on a sample-by-

sample basis to represent the travelling wave. Amplitude at a time instant is sampled every T 

seconds. The sampling period T is related to the sampling frequency f by 

 𝑓 =
1

𝑇
  3.4 

This means that this digital system contains f samples per second. Meanwhile, in the view of 

a travelling object, for a temporal sampling interval T, sound could travel 𝑋 metres. 

 𝑋 = 𝑐𝑇 3.5 

For example, in air at a room temperature of 20 degrees Celsius where the speed of sound c is 

 𝑐 = 331 + 0.6𝑇𝑒𝑚 3.6 
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in which Tem is the temperature in degrees Celsius, we then get 343 m/s for sound 

components that are travelling in a space. In this case, if we consider a sample of sound for a 

system operating at a sampling rate of 44100 Hz, the spatial sampling interval will be equal 

to 343/44100 = 0.0077 meters or 7.77 millimetres or a spatial sampling rate at 128 samples 

per metre. That means we need 128 delays to simulate the travelling sound wave for a metre 

in a single one-way delay line. Therefore, a total of 256 delays is needed for the bi-directional 

delay lines. 

In a simulation, the travelling waves are referred to as left and right according to their 

direction. Some texts use superscript “l” and “r” to distinguish them, while others use “-” and 

“+”. In this research I will use “-” and “+”. To get an output from a position x at time t in the 

delay line, both directions of the travelling waves are summed up as 

 𝑦(𝑥, 𝑡) = 𝑦+ (𝑡 −
𝑥

𝑐
) + 𝑦− (𝑡 +

𝑥

𝑐
) 3.7 

In a diagram view, the two delay lines can be drawn as upper and lower rails, as 

shown in Figure 3.1. Pairs of delay lines represent samples at a position x. 

 

 

 

 

 

 

 

Figure 3.1. Bi-directional digital delay line diagram from [45]. 

The bi-directional delay line represents the ideal lossless one-dimensional waveguide. The 

simulation is band limited to half of the sampling frequency (Nyquist frequency).  

From the point of view of tube modelling, each tube is cT metres long and McT 

metres in total.  Each transmission pair of the travelling waves are considered as input and 

output to their neighbours.  The Kelly-Lochbaum digital speech synthesis model [34] 

established the first successful one-dimensional acoustic modelling using this technique for 
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considering variations of cross-sectional area parameters along the vocal tract shape. This 

idea of modelling is depicted at Figure 3.2. 

 

 

 

 

Figure 3.2. Example of concatenated tubes for Kelly-Lochbaum vocal tract modelling. 

The acoustic behaviour in each individual tube is considered in terms of a volume velocity 

u(x,t) and pressure deviation p(x,t). The cross-sectional area A is involved in the acoustic state 

as in equations 3.8 and 3.9. 

 
𝜌

𝐴

𝜕𝑢

𝜕𝑡
+

𝜕𝑝

𝜕𝑥
= 0 3.8 

 
𝐴

𝜌𝑐2

𝜕𝑝

𝜕𝑡
+

𝜕𝑢

𝜕𝑥
= 0 3.9 

where ρ is defined as the air density.  Here, the pressure scales the volume velocity by the 

tube admittance Y which is  

 𝑌 ≡
𝐴

𝜌𝑐
 3.10 

Therefore, the composition of pressure p(x,t) could be reconsidered as 

 𝑝(𝑥, 𝑡) = 𝑝+ (𝑡 −
𝑥

𝑐
) + 𝑝− (𝑡 +

𝑥

𝑐
) 3.11 

and those of the volume velocity as 

 𝑢(𝑥, 𝑡) =  −𝑌𝑝+ (𝑡 −
𝑥

𝑐
) + 𝑌𝑝− (𝑡 +

𝑥

𝑐
) 3.12 

Along the waveguide, the conservation of mass is applied at every junction to describe the 

continuity of the scattering equation. In the acoustic analogue view, Kirchhoff’s laws for a 

parallel connection are applied from 1 to M element. 

 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑀 = 𝑝𝐽 3.13 

 𝑢1 + 𝑢2 + ⋯ + 𝑢𝑀 = 0 3.14 
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3.2 Multi-Dimensional Digital Waveguide Mesh  

In 1993, Van Duyne and Smith [46] modelled membranes and plates using the digital 

waveguide mesh. The model propagated the travelling wave through nodes (delay units) and 

scattered them in various directions depended on the number of concatenating ports or 

topology. The efficiency of interesting topologies has been discussed in [47]. In general, all 

travelling wave components are considered as incoming and outgoing components to and 

from a scattering node or junction. To notify the direction, superscript ”+” denotes the 

incoming and “-“ denotes the outgoing travelling components. At a junction the outgoing is 

calculated by 

 𝑝𝑖
− =  𝑝𝐽 − 𝑝𝑖

+ 3.15 

where i is the concatenating port index and J is the node index. Meanwhile a junction 

pressure 𝑝𝐽 is calculated by 

 𝑝𝐽 =
2 ∑

𝑝𝑖
+

𝑍𝑖

𝑛
𝑖=1

∑
1

𝑍𝑖

𝑛
𝑖=1

 3.16 

where n denotes the number of ports per node. The topologies have been named after the 

number of the concatenating port – for example, rectilinear (n = 4), hexagonal (n = 3) or 

triangular (n = 6). 

In the time domain, the wave components travel through the mesh by time step. At 

every step T the outgoing components move towards their neighbour. The stepping also 

means that the components have been travelling for a distance. The inter-nodal distance or 

spatial sampling distance interval d is calculated by 

 𝑑 =  
𝑐√𝑁

𝑓
 3.17 

where N is the number of dimensions and f is the sampling frequency which is equal to 1/T. 

In 2-D, we construct a mesh with termination at a border that has to be pre-identified. 

The easiest design is to put single port nodes there; then we can have reflection coefficients to 

control the border conditions, such as an open or rigid end. The coefficient can then be 

identified by a ratio of the difference between the local admittance and the boundary; 

therefore it is bounded in between -1 and 1. 
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 𝑟 =
𝑌−𝑌𝐵

𝑌+𝑌𝐵
 3.18 

Increasing the number of dimensions makes the simulation lose computational efficiency, 

since it requires more multiplication and division at every node and also contains some 

dispersion error which strongly depends on meshing topology [47]. However, the rectilinear 

mesh is the most commonly used for 2-D modelling, since it is easy to fit into a space and the 

indexing is straightforward in practice; it is therefore used in this thesis. The boundary 

flexibility will be discussed in the following section. 

3.3 2-D Digital Waveguide Mesh 

 This section describes the 2-D mesh in terms of its construction and modification. To 

construct the mesh in 2-D, topology has a direct effect on the model’s efficiency but this 

research focuses only on the rectilinear. Therefore, all details from this point relate to the 

rectilinear meshing. The others are examined in [46, 47, 48].  

      3.3.1 Meshing and Scattering  

The construction of a 2-D rectilinear mesh makes a four-port connection to a node. The ports 

are labelled north, south, east and west. Figure 3.3 shows the construction in which nodes or 

delay units align in rows and columns together with one-port terminator nodes at the borders. 

 

 

 

 

 

 

 

 

 

Figure 3.3. Construction of rectilinear 2-D DWM. 
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The wave propagation is simulated by equations 3.15 and 3.16. The scattering goes through 

nodes which are called junctions. The acoustic wave components scatter to and from the 

junctions. In the simulation that runs in a homogeneous medium the impedances can be set as 

a constant and the equation 3.16 can be simplified to  

 𝑝𝐽 =  
2

𝑛
∑ 𝑝𝑖

+𝑛
𝑖=1  3.19 

This could be found in a room acoustic simulation or a single pipe organ. Computation 

efficiencies can be found in [47] for all topologies. 

In terms of geometry, the impedance Z concerns the resistance between tension and 

mass displacement in the medium which is calculated from density  and Young’s modulus 

of elasticity which can be calculated by the speed of sound and the density. Considering the 

tension and mass displacement in tubes or concatenated tubes for the vocal tract simulation, 

the impedance can be written as  

 Ztube  =  1/Ytube  =  c/Atube  3.20 

Equation 3.20 shows that Z is used in terms of its inverse – acoustic admittance Y – which 

adds another meaning to equation 3.10. According to our proposal, the waves travel through a 

variation of concatenated tubes. The cross-sectional area function has become the main 

concern. 

Looking back to Figure 3.2, it depicts a variation of cross-sectional area functions. 

The diameter of each tube is represented in a function of the width 𝑊(𝑥) across the y-axis of 

the mesh which is a measure of  cross-sectional area described by the 1-D area function; 

therefore the width of the tract is proportional to r, the radius of the equivalent cylinder in the 

1-D model.  

   𝑊(𝑥)  = 2√
𝐴(𝑥)

𝜋
   

               = 2𝑟 3.21 

From another point of view, the area function is cylindrically related to the power of 𝑟. 

Mullen, 2006 [49], considered area or sphere rather than radius or diameter. The following 

equation demonstrates his consideration of circle equation as the width; then the width is 

proportional to 𝑟2. 
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 𝑊(𝑥) =  𝐴(𝑥) = 𝜋𝑟2 3.22 

Translating the area function into the distance across the mesh will always place 

restrictions on the minimum width allowed. In any narrow channel, its width must be at least 

two waveguides across, because in 2-D mesh a central line needs two attached boundary 

junctions on either side in the narrowest construction. The narrowest can also be a complete 

stop for plosives. The minimum two junctions can possibly work as a stop by increasing their 

admittance parameters (to stop the transmitting). Then an increase of those parameters can be 

given to release the burst. This practical dynamic control clarifies the obstructing ability in 2-

D DWM (an example of synthesized sound can be found in [5]). 

 

 

 

 

 

 

 

Figure 3.4. Raised impedance hills causing a constriction in a straight tube  

and plotted raised cosine impedance hills. 

Figure 3.4 shows raised impedance on the edges of the straight tube. The upside-down 

bell-shape contours represent the impedance hill where Zmax is the maximum impedance 

value which is calculated from the cross-sectional area at x.  The impedance value at the point 

of constriction x is separated into Zx,1 … n for different y positions. The maximum impedance 

value of a constriction x,  Zmax, is at Zx,1 and Zx,n and the minimum Zmin is at Zx,n/2 which is 

called Ztube in Mullen’s work. The implementation of a cosine smoothing hill for Z(x,y) is 

then defined as 

 𝑍(𝑥, 𝑦) =  𝑍𝑥 −  
(𝑍𝑥− 𝑍𝑚𝑖𝑛)

2
 [1 + cos (2𝜋(

𝑦

𝑤
−

1

2
))] 3.23 
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The highest impedance is called Zstop. This is the impedance for a modelling of a complete 

cut-off of the air-flow [49]. 

 

      3.3.2 Boundary Management in vocal tract modelling 

Vocal tract widths are used to bound the 2-D mesh. The bounding in this sense is 

about local area function concerns, rather than reflection. A straight tube itself has a 

frequency related to the length (1-D), but the constricted tube has a frequency related to the 

size and position of the resonant cavities (2-D); therefore, the accuracy of the modelling of 

the constriction area affects the frequency response or the movement of formants.  

Human vocal tract shapes are normally captured during speech production according 

to articulator movements. The capturing is done by image technologies such as MRI, CT or 

X-ray etc. Figure 3.5 is captured from [49] which perfectly illustrates an idea of the process 

of 2-D spatial sampling into a 2-D rectilinear waveguide mesh modelling from the 1-D area 

function of a static /i/ vowel shape. 

 

 

 

 

 

 

 

Figure 3.5. The 2-D widthwise /i/ vowel waveguide model from Mullen [49]. 

Figure 3.5 shows 2-D meshing in [49]. A rectilinear meshing with one-port junctions 

at boundaries is performed from a cross-sectional area function. The diffusion at the 

boundaries in 2-D  DWM has been studied in [47, 48, 49, 50], yet these studies did not 

simulate for rough boundaries in a small space in a low sampling frequency. Here, in 

consideration of the simulation for air in small ducts, the diffusion has been considered as 
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constants of reflection at the walls. In general, as mentioned in equation 3.18, the reflection 

has been considered as in a form of ratio between local and boundary admittance. For 2-D 

they were considered as walls, lips and glottal (𝑟𝑤𝑎𝑙𝑙, 𝑟𝑙𝑖𝑝 and 𝑟𝑔𝑙𝑜𝑡𝑡𝑎𝑙 respectively). 

In a narrow view of human speech simulation, the wall reflection coefficient affects 

the formant bandwidth but the lip and glottis reflection coefficients do not [49]. In [51], 

experiments in wall reflection coefficients were conducted. The results support [49] the claim 

that the higher the wall reflection coefficient, the lower the resulting formant bandwidth. A 

small formant bandwidth leads to a greater potential distinction between different vowels by 

reducing the overlap between adjacent formants when they are close in frequency.  

In detail, the wall or the area data move or change in order to understand the meaning 

of using a variety of the coefficients in movements. Hence, the effect of the wall reflection 

coefficient to English diphthongs was explored. The system is then set to test the effect of 

movement by simulating the wave propagation using white noise as the sound source to allow 

tracking of all the changing resonant frequencies. The reflection coefficients are varied as 

follows: 0.90, 0.92, 0.94, 0.96, 0.98 and 1.0. Figure 3.6 shows formant bandwidths of eight 

synthesized diphthongs overlaid using a Hamming window with the following parameters: 

length 0.049 seconds, 0.7 pre-emphasis, 0.01 second of a frame interval and LPC order 12. 

The data presented in the figure are the average of the formant bandwidths when the tract is 

changing its size. 
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Figure 3.6. The formant bandwidth of eight synthesized English diphthongs using various 

wall reflection coefficients (0.90, 0.92, 0.94, 0.96, 0.98 and 1.0). 

Figure 3.6 shows the results of speech analysis for the bandwidths of F1, F2 and F3. 

They are decreasing when the coefficient is getting slightly higher. This means that the 

damping in the time domain or the absorption of the sound energy by the moving boundaries 

could also be controlled by fixing the wall reflection coefficient. Meanwhile, the 

distinctiveness of each monophthong end-point component in each diphthong can be reduced 

by increasing the formant bandwidth or decreasing the coefficient. 
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The effect of changing waveguide size on the bandwidth was explored in order to 

understand the effect of using a more dense mesh. The results show the same trend of 

decreasing of the bandwidth when the reflection coefficient is increased in all waveguide 

sizes tested. Figure 5 shows the analysis results overlaid using 0.049 seconds of Hamming 

window length with 0.7 pre-emphasis, 0.01 second of a frame interval and LPC order 12 on 

the frequency analysis. 

 

 

 

 

  

(a)                        (b) 

 

 

 

  

      (c) (d)   

Figure 3.7. Formant bandwidth results from different waveguide sizes using wall reflection 

coefficients of 0.90, 0.94 and 0.98. (a) waveguide size = 2.2 cm, (b) waveguide size = 1.1 cm 

(c) waveguide size = 0.55 cm (d) waveguide size = 0.275 cm. 

All in all, to manipulate a synthesizer when producing English using 2-D DWM, the 

junction pressure and reflection coefficient play the main roles. The vocal tract modelling for 

English consonants needs tract movement in articulation. This study will apply the rectilinear 

2-D meshing with additional functions to study the movement of articulators in the synthesis. 
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Chapter 4  

Acoustics of  

English Consonants 

The English, language is formed as mixed 24 consonants and 20 vowels sounds, 

concatenated and pronounced in spoken utterance. They are phonetically classified in terms 

of their voice, manner and place of articulation. This chapter gathers acoustic characteristics 

from linguistic and voice science literature to depict the desired target characteristics in the 

outputs, with some spectrograms visualizing those characteristics. The consonants are 

transcribed in the SAMPA (Speech Assessment Methodologies Phonetic Alphabet) 

transcription of John Wells, 1989. Figure 4.1 shows them in groups according to their manner 

of articulation. This research uses SAMPA rather than the IPA (International Phonetics 

Association) alphabet, since SAMPA uses ASCII characters and is therefore unambiguous as 

a computer font representation.  

In each manner of articulation, phone members have similar acoustic characteristics 

which will be used as the target acoustic output in this research. For the sake of clarity, this 

chapter is divided into sections. Section 4.1 describes those acoustic characteristics which can 

be found in human speech sound, while section 4.2 describes the theory of perturbation which 

explains how the resonance frequencies change with articulation. Details of the vocal 
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apparatus are given in section 4.3 and the acoustic characteristics that can be found in each 

manner of articulation are described in detail in section 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. English phonemes using the SAMPA transcription after [20]. 

   4.1 Acoustic Representation in the Human Voice 

The human voice is usually measured according to three main characteristics – 

loudness, frequencies and timbre [52]. Loudness is perceived from the size of pressure 

variation, pressure amplitude usually being calculated in decibels (dB). The frequencies are 

perceived in the ear at the cochlea which is about 3.2 cm in length but responds to a 20 – 

20,000 Hz range of frequencies. The combination of frequencies can be graphically plotted in 

English Phonemes 

Vowels Consonants 

Monophthong Diphthong 

i neap /nip/ 

I jib /dZIb/ 

E red /rEd/ 

{ anchor /{Nk@/ 

A hard /hAd/ 

Q locker /lQk@/ 

O port /pOt/ 

U foot /fUt/ 

u food /fud/ 

V rudder /rVd@/ 

3 stern /st3n/ 

@ tiller /tIl@/ 

eI weigh /weI/ 

aI light /laIt/ 

OI oilskin /Oilskin/ 

@U row /r@U/ 

aU boq /baU/ 

i@ pier /pI@/ 

E@ fare /fE@/ 

U@ fuel /fu@l/ 

p rope /r@Up/ 

b buoy /bOI/ 

t tide /taId/ 

d deck /dEk/ 

k cabin /k{bIn/ 

g galley /g{li/ 

T thwart /TwOt/ 

D weather /wED@/ 

f fog /fQg/ 

v van /v{n/ 

s sea /si/ 

z zenith /zEnIT/ 

S ship /Sip/ 

Z treasure /trEZ@/ 

h heeling /hilIN/ 

tS chain /tSeIn/ 

dZ jibe /dZaIb/ 

m mast /mAst/ 

n main /meIn/ 

N rigging /rIgIN/ 

w winch /wIntS/ 

r rain /rein/ 

l lee /li/ 

j yacht /jQt/ 

Plosive Fricative 

Affricate 

Nasal 

Semi-vowel 



   Chapter 4 Acoustics of English Consonants 

55 

 

a spectrogram which also shows the relative amplitude of each frequency; we can then 

observe the overtone frequencies easily. In [52], Ladefoged called these overtones the 

formants. He also mentioned that the appearance of formants comprises the major acoustic 

components of speech which are counted in order from low to high frequency. Table 4.1 

shows the correlation with their auditory correlate from his book [53]. 

Table 4.1. The correlation of the appearance of formants and their auditory correlates  

after [53]. 

Acoustic variable Auditory correlate 

Frequency of 1st formant First natural mode of resonance of the 

vocal tract 

Frequency of 2nd formant Second natural mode of resonance of 

the vocal tract 

Frequency of 3rd formant Third natural mode of resonance of the 

vocal tract 

Amplitude of 1st formant Loudness of the first formant 

Amplitude of 2nd formant Loudness of the second formant 

Amplitude of 3rd formant Loudness of the third formant 

Centre frequency of the semi-random noise Pitch of the voiceless components 

Amplitude of the semi-random noise Loudness of the voiceless components 

Fundamental frequency of voiced sounds Lowest natural mode of the voice 

 

The formants are sometimes known as resonances of the vocal tract.  To put it simply, 

the longer the vocal tract the lower the resonant frequencies. Shaping the tract obstructs the 

node or antinode of resonance which then affects the formant frequencies. Perturbation 

theory describes the effects of the disturbance. 
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   4.2 Perturbation Theory 

Constriction or obstruction of any part of the vocal tract causes changes in the 

acoustic output, depending on where it occurs and its extent. These effects theoretically 

correspond to changes in the resonant frequencies in the vocal tract. The first three formants 

vary most markedly during vowels (higher formants exhibit little variation), thereby 

characterizing the acoustics of an individual vowel. The first and second resonances are in the 

same situation as the one-sided open tube in Figure 4.2, and the third resonance occurs in the 

same way following at 5/4 of the wavelength. For example, at room temperature the 

resonation of the first three formants in an average male vocal tract for a relaxed neutral 

vowel which has a length of approximately 17.5 cm are at 

F1 =  
1

4
(

𝑐

𝐿
) = 491 Hz 

F2 =  
3

4
(

𝑐

𝐿
) = 1,474 Hz 

F3 =  
5

4
(

𝑐

𝐿
) = 2,457 Hz 

These are the formants for the neutral schwa vowel /@/ that does not have any constriction or 

expansion along the vocal tract. In perturbation theory, nodes and antinodes of the waveform 

are considered. An antinode is the place where the pressure various between a maximum and 

minimum value, such as at the glottis, while a node is the place where the pressure does not 

vary. Places of constriction and expansion will affect where nodes and antinodes of each 

formant are, and the changes occur according to the following principles from [20]: 

- A constriction near a pressure node decreases that formant’s frequency. 

- A constriction near a pressure antinode increases that formant’s frequency. 

- Lengthening the vocal tract decreases all formant frequencies.  

- Shortening the vocal tract increases all formant frequencies.  
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Figure 4.2. Approximate places of nodes and antinodes in the vocal tract from [20]. 

   4.3 Vocal Tract Apparatus and Articulation 

The human voice results from the vocal sound propagation system which involves 

several muscles around the lungs, trachea, glottis, pharynx, velum and articulators (jaw, lips, 

palate, tongue and teeth) in shaping each part of the vocal system. The figure below shows 

the approximate locations of the organs in cross section in the upper part of the human body 

(from Holmes [12]) and the lungs (from Howard [20]). 

 

 

 

 

 

 

 

 

 (a)  (b)  

Figure 4.3. (a) Vocal organs from Holmes [12] (b) Lungs from Howard [20]. 

Lung Lung 

Rib Rib 

Diaphragm 

A1,2,3 

N1,2,3 
A3 A3 

N3 

N2 

A2 N3 



   Chapter 4 Acoustics of English Consonants 

58 

 

Air is sucked into the lungs by the contraction of muscles around the rib cage (intercostals) as 

well as the diaphragm.  The contracting of the intercostals and diaphragm causes the lung 

volume to increase and, if the airway is open, additional air enters the lungs (breathing in). 

The resting after the contraction lifts the diaphragm, deflates the lungs and pushes the air 

back out. The air flows through a gap between vocal folds called the glottis. Adduction of the 

vocal folds decreases the size of the glottis and increases the speed of the trans-glottal air 

flow. The physical consequence of the increase in velocity caused by lowering of the pressure 

is called the Bernoulli effect [54]. This effect describes the physics of the vocal folds’ 

movement which causes them to accelerate towards each other until they collide, causing a 

vocal fold closure, then come apart again by the air pressure pushing from the lungs. The 

folds can be seen as an oscillating pendulum. More details of these processes are described in 

[20]. However, if we consider the whole vocal system, the air stream starts flowing in/out 

through the trachea and larynx, at which time the muscles in the larynx are stretched and 

relaxed, lengthening/shortening the vocal folds and thereby altering the fundamental 

frequency. The vibrating of the vocal folds generates a periodic air stream called the voiced 

sound source, while the open vocal folds cause a non-uniform stream when the flow hits an 

obstacle or wall in the vocal tract which is called the voiceless source [20]. The sound source 

is then perturbed by articulators along the oral and/or nasal tract and emerges through the lips 

and/or nostrils. 

In the mid-sagittal plane of the vocal tract, the articulators may be considered to 

consist of an upper and lower part. The upper consists of upper lip, upper teeth, alveolar 

ridge, hard palate, soft palate (velum) and uvula, as shown in Figure 4.3. The lower 

comprises the lower lip, tip, blade, front, centre, back and root of the tongue, and the 

epiglottis. These places have been used to specify the articulatory gestures in linguistic terms 

as the “place” of articulation [52].  
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   4.4 Acoustic properties of English Consonants 

Producing consonants involves shaping the vocal apparatus and/or rapidly moving its 

elements [53]. The tree in Figure 4.1 has already shown all of the English consonants in 

groups according to the manner of articulation. In each group, a similar gesture of specific 

articulators is involved in the production of the members of that group, as described in Table 

4.2 from Ladefoged [53]. However, phoneticians have considered phones according to their 

place of articulation. Table 4.3 shows the associated place of articulation of each English 

consonant in relation to its each manner of articulation category. 

Table 4.2. English manner of articulation and its details from [53] 

Manner Description 

Nasal Closure of the vocal tract and lowering of the velum 

such that air can go out through the nose, but not 

through the mouth. 

Plosive Complete closure of the vocal tract. Air is blocked 

from going out through the nose (velum is raised) and 

the mouth. 

Fricative Constriction of the vocal tract so that a noisy 

airstream is formed. Different fricatives have 

different places of articulation where the constriction 

occurs. 

Affricate A stop followed by a fricative made at the same place 

of articulation. 

Semi-

vowel 

Approximant Constriction of the vocal tract to a smaller extent than 

that required for a noisy airstream. 

Lateral The tongue touching the roof of the mouth but 

without contacting the teeth at the sides. 
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Table 4.3. English consonants in a table of place and manner of articulation after [53] 

 Bilabial Labio-

dental 

Dental Alveolar Post-

alveolar 

Palatal Velar 

Nasal m   n   N 

Plosive p b   t d   k g 

Fricative  f v T D s z S Z   

Affricate     tS dZ   

Semi-

vowel 

Approximant w   r  j w 

Lateral    l    

 

Note that the consonant /w/ appears in two places of articulation because it involves lip 

rounding and constriction at velar at the same time. The following subsections describe the 

categories of consonants in more acoustic detail, in terms of the manner of their articulation. 

 

      4.4.1 Nasal 

A nasal consonant involves a closure of the vocal tract such that air can go out 

through the nose, but not through the mouth; it then has a basic resonance due to the nasal 

cavity. The main acoustic property is therefore a nasal murmur which is within the 200 to 300 

Hz range for males. Another property is formed by the anti-formants which come from the 

resonance in the oral cavity which acts as an acoustic side branch cavity.  A range of 

frequencies from the oral cavity is cancelled in the acoustic output because the energy of 

these frequencies is absorbed in the resonant oral cavity. The frequencies of anti-formants in 

the spectrum depend on the length of the mouth cavity. For instance, if the mouth cavity in 

/m/ is about 8 cm long (as in the adult male), then its resonant frequencies are at 1,100 Hz 

and 3,300 Hz which we could therefore expect to see an anti-formant in the spectrum of /m/ 

at around 1,100 Hz. The figure below shows the positions of articulators for the bilabial stop 

/b/ and nasal /m/.  
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 (a) (b) 

Figure 4.4. (a) The position of articulators in the vocal tract (b) The position of the 

articulators for the bilabial stop of /b/ and /m/. 

Figure 4.4(b) shows the different positions of the velum for bilabial plosive and nasal. 

The bilabial involves the two lips. In plosives, the place affects the centre frequency of the 

burst and the formant transitions, while in nasal consonants the place affects the inverted 

formants or anti-resonance frequencies. For the English /m/ these are at approximately 1 kHz 

for a vocal tract of 17.5 cm in length, and approximately 3.5 kHz and 5 kHz for /n/ and /N/ 

[20].  

 

      4.4.2 Plosive 

The plosive is a type of manner of articulation that involves complete closure of the 

oral tract, unlike the nasal consonants that involve the addition of the nasal cavity by 

lowering the velum to allow air to flow through the nasal cavity while the oral cavity is 

completely closed. After the complete closure the articulators suddenly come apart, the air 

flow being released as a small burst, such as /b/ in “by”, the lips being completely closed and 

stopping the air flow before the burst. There are three voiced plosives – /b/ as in “by”, /d/ as 

in “dye” and /g/ as in “guy” – and three unvoiced plosives – /p/ as in “pie”, /t/ as in “tie” and 

/k/ as in “key”. All plosives have three main acoustic properties: the centre frequency of the 

burst, the formant transition and voice onset time. The centre frequency of the burst changes 

/m/ 
/b/ 

blade 
lip 

teeth 

lip 

hard palate 

alveolar ridge soft palate 

(velum) 

pharynx  

wall 

tip front 

centre 

back 

root 

epiglottis 

TONGUE 
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with the place of articulation: it is at around 500 Hz to 1.5 kHz for bilabial (/b/ and /p/); 4 

kHz for alveolar (/d/ and /t/); and around 1.5 kHz to 4 kHz for velars (/g/ and /k/) [20]. The 

formant transition refers to the way in which formants change as the tract shape changes. The 

change or transition is considered from the frequency of the formant during the hold stage of 

the plosive, which is called the locus frequency, to the slight move from the locus to the 

formants of the following vowel. The most prominent change is found in the F2 transition. 

The transition is rising, almost stable and falling for bilabial, alveolar and velar, respectively. 

The last acoustic property is the voice onset time (VOT) which refers to the period of time 

between the plosive burst and the onset of vocal fold vibration of the adjacent vowel. Figure 

4.5 shows voicing for plosives from Ogden [55]. Specifically, it shows the vibration period of 

the vocal fold when the vocal tract is articulating for plosives, when C represents the closing, 

H the holding and R the releasing phase, and the dotted lines represent the vocal fold 

vibration period. 

 

 

 

 

 

 

Figure 4.5. Voicing pattern in plosives from Ogden [55]. 

 

The voicing pattern in plosives in Figure 4.5 shows different voicing periods, with the 

dashes representing voicing time. The top graph shows the status of the closing articulator. 

The voicing period is considered after the stage of closing articulator, such that in voiceless, 

aspirated the voicing occurs only when the articulator is apart. The VOT strongly depends on 

the type of plosive. The time is marked with “+” if the voicing begins before the release stage 

and “-“ if it does on the other way round. All time interval details are included in Table 4.4.  

Figure 4.6 shows these properties in recorded speech from [56, 57]. The centre 

frequencies of bursts are quite short but spread over a wide band. The locus of F2 shows 

Time 

Fully voiced 

Partially voiced, e.g. [b d g] 

Voiceless, unaspirated 

Voiceless, aspirated 

Voiceless, preaspirated 

C H R 
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various transitions depending on the place of articulation and the adjacent vowel, which in 

this example is /A/. The red arrows show the locus of F2. For the transition, F2 is rising in 

bilabial /b/ and /p/, slightly falling in alveolar /d/ and /t/, and steeply falling in palatal /g/ and 

/k/. 

 

 

 

 

 

(a) 

 

 

 

 

 

 (b) 

Figure 4.6. The spectrogram of (a) voiced plosive /b/, /d/ and /g/ and (b) voiceless plosive /p/, 

/t/ and /k/ from [56, 57]. All are analysed using Hamming windows laid over 512 points of 

FFT window length on Wavesurfer. 

      4.4.3 Fricatives 

During the production of a fricative, there is a narrowed constriction in the vocal tract 

that causes turbulence when the fast-moving volume flow hits inert air at the end of the 

constriction. Shadle, 1991, mentioned in Johnson 2012 [58], states that the fricative sourcing 

can be classified into two types, obstacle and no-obstacle. The obstacle is the teeth in the 

production of /s/ and /S/ or the lips in /f/, while /h/ involves the wall source only and is 

therefore classified as no-obstacle. The flow that releases from the constriction forms a 

voiceless excitation source. It is then resonated by the volume of the acoustic cavity. The 

energy of frequencies of labiodental and dental fricatives (/f/, /v/, /T/ and /D/) is thin and lies 

over a wide range of high frequencies, whilst the alveolar and palatal have greater energy at 
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above 3.5 kHz and 2.5 kHz, respectively. There are also voiced and voiceless fricatives. In 

addition to the turbulent noise in fricatives which is generated at the place of constriction, the 

vocal folds vibrate during voiced fricatives. To explore voiceless and voiced fricatives we can 

simply pronounce, with a finger touching the Adam’s apple,  /T/ in “thwart”, /f/ in “fog”, /s/ 

in “sea” and /S/ in “ship” (voiceless) and   /D/ in “weather”, /v/ in “van”, /z/ in “zenith” and 

/Z/ in “treasure” (voiced), as four pairs of voiceless and voiced fricatives. The finger will feel 

vibration when pronouncing the voiced ones. Double sound sources in voiced fricatives effect 

a repeating on-and-off turbulence as the vocal folds open and close. Figure 4.7 shows the 

range of friction noise analysed from recorded speech, voiced on the top and voiceless on the 

bottom. 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 4.7. The spectrogram of (a) voiced fricative: /v/, /D/, /z/ and /Z/ and (b) voiceless 

fricative: /f/, /T/, /s/ and /S/  from CSTR diphone corpus [56, 57] analysed using Hamming 

windows overlaid on 512 FFT window points on Wavesurfer.  
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      4.4.4 Affricates 

Affricates are the fast concatenation of plosive and fricative gestures. Therefore their 

acoustic characteristics can be roughly identified sequentially as plosive, formant transitions 

and fricative, but they are shorter than when they are pronounced alone. There are two 

affricates in English: /tS/ as in “chain” and /dZ/ as in “jibe” [20, 53, 52]. Figure 4.8 shows 

examples of recorded /tS/ and /dZ/ in a carrier vowel /A/ and /@/. 

 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 4.8. Spectrogram of /tS/ (top) and /dZ/ (bottom) fricatives from CSTR diphone corpus 

[56, 57] analysed using Hamming windows overlaid on 512 FFT points on Wavesurfer. 

 

      4.4.5 Semi-vowels 

Also known as “approximant”, this manner of articulation does not involve any 

closure in the vocal tract or additional noise source or nasalization, but it does involve a 

narrowing in the tract though not as tight as in fricatives. The semi-vowels /w/, /j/, /r/ and /l/ 

are all voiced. The first three are central but /l/ is lateral.  



   Chapter 4 Acoustics of English Consonants 

66 

 

As /w/ and /j/ are central approximants, /w/ involves a lip rounding and a raising of the back 

of the tongue. This articulation is similar to that for the vowel /u/. For /j/, the front of the 

tongue is raised but not sufficiently high to block the sound which is also like the articulation 

for pronouncing the vowel /i/. Hence, the major acoustic properties of this group of 

consonants are like their similar vowels. Figure 4.9 shows their formants which are vowel-

like. 

 

 

 

 

 

Figure 4.9. The formants of /j/ on the left and /w/ on the right from [56, 57] analysed on 

Wavesurfer using LPC order 12 overlaid on 0.049 s long Hamming windows. 

In summary, this research attempts to synthesize the English consonants following these 

acoustic properties. Therefore, the centre frequency of burst, formant transition, voice onset 

time and anti-formants are summarized in Table 4.4, gathered from various works [20, 53, 

59, 6, 32].  

Table 4.4. Some characteristics of English consonants, based on [20, 53, 59, 6, 32]. 

 Centre 

frequency of 

burst 

Formant 

transition 

Voice onset time Anti-formant 

Plosive Bilabial Approximately 

500 Hz to 1.5 

kHz 

F2 frequency 

increase from 

stop release into 

following vowel 

Relatively short; 

prevoicing likely 

for voiced bilabial 

plosives (V+ 

around 5 ms, V- 

around 75 ms) 

- 



   Chapter 4 Acoustics of English Consonants 

67 

 

 Centre 

frequency of 

burst 

Formant 

transition 

Voice onset time Anti-formant 

Plosive Alveolar Approximately 

4 kHz 

F2 frequency 

decrease from 

stop release into 

following vowel 

except for the 

high-front 

vowels 

Intermediate 

between bilabials 

and velars 

(V+ around 10 

ms, V- around 85 

ms) 

- 

Plosive Velar Approximately 

1.5 kHz to 4 

kHz 

F2 and F3 have 

a wedge-shaped 

pattern in which 

they are initially 

nearly fused but 

separate in 

frequency 

during the 

transition 

Longest values 

across the 3 

places of stop 

production; long 

lags likely for 

voiceless velars. 

(V+ around 15, 

V- around 90 ms) 

- 

Nasal Bilabial - F2 locus 

frequencies are 

around 1.2 kHz 

- Approximately 

1 kHz 

Nasal Alveolar - F2 locus 

frequencies are 

around 1.8 kHz 

- Approximately 

3.5 kHz 

Nasal Velar - F2 locus 

frequencies are 

around 2.1 kHz 

- Approximately 

5 kHz 

Fricative 

Labiodental 

- F2 locus 

frequencies are 

around 1 kHz 

- - 



   Chapter 4 Acoustics of English Consonants 

68 

 

 Centre 

frequency of 

burst 

Formant 

transition 

Voice onset time Anti-formant 

Fricative Dental - F2 locus 

frequencies are 

around 1.4 kHz 

- - 

Fricative 

Alveolar 

- Depends on 

context vowel. 

Significant noise 

energy around 4 

kHz 

- - 

Fricative Palatal - Depends on 

context vowel. 

Significant noise 

energy around 

2.5 kHz 

- - 

Glottal Fricative - No formant 

transitions 

- - 

Affricate - Only small 

formant 

transition into 

the fricative 

- - 

Semi-vowel - Formants are 

close to their 

associated 

vowels 

- - 



 

69 

 

 

Chapter 5 

2-D Digital Waveguide Mesh 

for English Consonants 

Digital waveguide mesh synthesis is one of the numerical methods for wave 

propagation simulation. It has been widely used in room acoustic studies and has also been 

shown to be capable of simulating the acoustics of a small cavity such as the vocal tract [5, 

60]. In [61], Mullen described his 2-D DWM vocal tract modelling with a linear dynamic 

impedance function that could synthesize diphthongs successfully. In this research we extend 

its capability to consonant synthesis, using non-linear articulatory trajectories based on real 

measurements of human speech production. Tools, data and system configurations for 

consonant studies are described in this chapter. 

5.1 Tools and data 

     5.1.1 Mullen's 2-D Digital Waveguide Mesh 

 

 The two-dimensional digital waveguide mesh (2-D DWM) was used for vocal tract 

tube simulation to model pressure propagation of sound in the tract. The implementation 

involved cosine function impedance modelling across the tract to manage the articulation [5]. 
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The waveguide architecture, including the number of connecting ports at a junction, is 

considered according to the ease of area function mapping and capability to attach another 

lattice for the nasal branch; therefore, a rectilinear DWM is used in this research. Rectilinear 

meshing in this research is in 2-D and represents vocal tract width on the y-axis and length on 

the x-axis. The area function is discretized as W(x) which is a cross-sectional radius function 

that controls impedance which represents constriction in the tract. As mentioned in Chapter 4, 

consonants involve at least a constriction and/or articulation in the vocal tract; therefore this 

chapter describes the implementation of a system that can handle each manner of articulation 

using 2-D DWM. 

The joining of two discontinuous tubes results in changes in impedance (or 

admittance) in the simulation. Using a 2-D model to represent the relationship in a static 

rectangular 2-D DWM, the changing of the area function would have a small effect in the 

cross-sectional plane. A constriction is applied by raising the impedance in order to 

encourage cross-tract reflection. The cross-sectional area is inversely proportional to the 

impedance value. Equation 5.1 shows the impedance function from [5] at a junction node at 

coordinate (x, y) where w is the width of the tract and y is the position of a corresponding 

waveguide junction node along the width and x is the position of a corresponding node along 

the length of the vocal tract. 

𝑍𝑐(𝑥, 𝑦) = 𝑍𝑥
𝐴 −

(𝑍𝑥
𝐴−𝑍𝑚𝑖𝑛

𝐴 )

2
[1 + cos (2𝜋 (

𝑦

𝑤
−

1

2
))] 5.1 

 

 

 

 

 

Figure 5.1. Raised impedance hills causing a constriction in a straight tube and plotted raised 

cosine impedance hills on either side of the constriction after [5]. 
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Figure 5.1 shows raised impedance similar to those in Figure 3.4, but here 

superscripts indicate the calculating source of value. There are two superscriptions of 

impedance Z, c and A. They denote the type of impedance. A denotes one that is calculated 

from the Area function and c denotes one that is already weighted by Cosine impedance 

afterwards. The half circular contours represent the impedance hill 𝑍𝑥,𝑦
𝑐  at the point of 

constriction x. 𝑍𝑥,0…𝑛
𝑐  represents cosine-weighted impedance values at different y positions 

and the maximum impedance value of a constriction x is 𝑍𝑥,0
𝑐  which equals 𝑍𝑥

𝐴 and the 

minimum is 𝑍𝑥,𝑛/2
𝑐  or 𝑍𝑚𝑖𝑛

𝑐  which equals the smallest impedance 𝑍𝑚𝑖𝑛
𝐴 , as the implementation 

of cosine smoothing the impedance hill. The highest impedance is called Zstop which happens 

when the area function is 0. This is the impedance for the modelling of a complete cut-off of 

the air-flow.  

 

Jack Mullen’s 2-D DWM Synthesizer 

 Jack Mullen’s articulatory synthesizer was written in C++. It is a dialog box 

application with MFC and the PortAudio – an open source audio I/O library. Mullen 

simulates the vocal tract using a 17.5 x 5 cm rectilinear (4 ports connected at node) and 

hexagonal (3 ports connected at node) DWM with 0.92 reflecting values at the walls, 0.97 at 

the glottis end and -0.9 at the lips. Some parameters are adjustable before the user starts the 

pressure propagation, such as the voiced:noise ratio, the power of area function, sampling rate 

and waveguide dimension (1-D/2-D), but the tract shape is able to be modified at run time. 

The most important parameter is the effect of changing the shape and it is also available for 

dynamic real-time synthesis. In common PC performance, users could perceive real-time 

continuous synthesized speech at a sampling rate of 22 kHz. The following figure is a screen 

capture of Mullen’s application. 
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Figure 5.2. A screen capture of Mullen’s software. 

 The source code is written in Object-Oriented C. Each class works independently. 

VocalModelDlg is a class for the dialog box. It contains all handler modules as well as start 

and end points of the application data flow. As an overview of the application, the following 

class diagram shows data member association of some important classes of the application. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Class diagram of Jack Mullen’s synthesizer. 

CNasalTract

CNasalTract2D

CVocalModelDlg

CVocalSystem

#m_VocalSystem

CVocalSystemData

#m_SystemData

#m_SystemData

#m_SystemData

#m_Dlg

CVocalTract
#m_VocalTract

#m_SystemData

CVocalTract2DWaveScat #m_NasalTract



   Chapter 5 2-D Digital Waveguide Mesh for English Consonants 

73 

 

CVocalSystem is the class that contains all vocal tract data of each vowel. 

CVocalSystemData is the class for the wave propagation management which constructs the 

DWM as user input (1-D/2-D, the sampling frequency and the power of area function). 

During propagation, the output out is sent via PortAudio’s sound card buffer writer. 

As mentioned before, the structure of Mullen’s work is based on object-oriented 

programming. His ‘VocalTract’ class acts as a parent class from which all tract meshing 

classes have the same structure and inheritable properties. VocalTract2DWaveScat is a class 

that inherits from VocalTract which contains the implementation for 2-D rectilinear wave 

scattering. This class is implemented with functions to simulate wave propagation in the 

vocal tract under rectilinear scattering. The nasal tract class is the same. It inherits from 

VocalTract and also has rectilinear scattering function. The interconnection between them is 

implemented based on velopharyngeal port scattering. There was no need to implement any 

new classes; rather some part of their function was altered to enable the synthesis of 

consonants.  Therefore the changes made were to connect them under the proposed 5 port 

scattering junction following equations 3.15 and 3.16 for nasal synthesis in Scattering(), some 

changes in Timestep() for noise source injection and some changes in getSample() for 

articulation control. All changes appear with comments in the source code in Appendix 1. 

 

     5.1.2 Voiced and unvoiced source 

Due to the limitation of DWM, two types of sound sources are used to excite the 

system. In this research, the voice source is simulated from the Liljencrants-Fant (LF) model 

[62] with the fundamental frequency set to 130 Hz with male vocal tract shapes and 

articulatory trajectories that were captured from male subjects with small pitch variation. To 

set up the sound source, four main parameters for the LF model for modal voice were 

adopted from Mullen’s work [5] of which tc, tp, te and ta, are 1.000, 0.600, 0.780 and 0.028, 

respectively, where tc is the parameter for the fundamental period, tp is the parameter for the 

maximum glottal flow, te is the parameter for the abrupt glottal closure and ta is the parameter 

for the effective duration of the return phase. In terms of voice quality, tp, te and ta can be 

adjusted to proper values; for example, for breathy voice the glottal flow (tp) has to be longer 

(higher value than for modal) but the closure (te and ta) has to be shorter. Figure 5.4 shows 

the fluctuation of glottal pressure source for modal voice from modelling. 
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Figure 5.4. 88k voiced excitation source used in this research. 

Another type of source is for unvoiced sounds which make use of frication and this 

uses white noise. It is generated using the random function in C seeded by a run-time value 

returned from function time() and is used as a monopole source only here.  

 

 

 

 

 

 

 

Figure 5.5. 88k white noise used in this research. 

 

     5.1.3 Vocal tract shape and articulatory trajectory corpus 

 

In this research, the vocal tract shapes are extracted from Magnetic Resonance Image 

(MRI) and the articulation is done after the trajectory of articulators from Electro Magnetic 

Articulograph (EMA). The articulograph enables a speaker’s articulator movements to be 

tracked when a speaker speaks a sentence or phrase. Figure 5.6 shows an image of a model in 

the Electro Magnetic Articulograph recording machine (Carstens AG500). Coils are attached 
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to articulators inside and at his mouth. It records the position of coils when the speaker 

speaks a sentence/phrase. They can cause a speaker to feel uncomfortable when speaking so 

the speaker has to spend some time getting used to having the coils attached before starting a 

recording. The MRI detects those parts of the human body that contain hydrogen protons, 

which are those rich in water in their soft tissues, and hence bones and teeth are not detected 

which are two disadvantages of the method. However, there are pros and cons to all human 

body tissue imaging methods. One of the advantages of MRI is that it doesn't involve 

radiation exposure such as X-rays or CT [63], hence many researchers in this area use MRI. 

The MRI data set that was recorded in Speed's work in 2012 [59] is used. There is 

only one set in his data that contains almost all the English consonants (except /l/ and /r/), and 

that is for the subject pseudo named Jack. This set was recorded from a male speaker [59], 

which coincidently and conveniently is the same gender of the speaker in the published 

articulograph data set called mngu0 distributed on-line by CSTR in the University of 

Edinburgh. Although these two data sets are for different male speakers, they are both 

British. Therefore the data sets are used in this attempt to synthesize English consonants by 

matching the four recorded trajectories, lower lip, tongue tip, tongue body and tongue dorsum 

are mapped to relevant cross-sectional areas manually. 
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Figure 5.6. Image of a model in Carstens AG500 electromagnetic articulograph from [64]. 

Vocal tract MRI data from [60] are used in this research. The data set contains tract 

shape from five participants who are English speakers with a phonetic or professional singer 

background. Jack, Jill, Jasmine, Jim and Jeff were the names used for the speakers to hide 

real participant names and keep identities anonymous. The male subject Jack is mainly used 

in this work since it is the only subset that contains all English consonant images. They were 

scanned using a General Electric 3.0T HDx Excite MRI Scanner at the York Neuroimaging 

Centre (YNiC). The subjects were required to hold their articulators in a static position for a 

given sound for 16 seconds. The data was then processed using ITK-Snap [65]  to extract the 

tract shape followed by the cross-sectional area data using VTK [66]. Figure 5.7 shows 

examples of cross-sectional images from the corpus. Figure 5.7 (a) shows Jack’s vocal tract 

images when he holds his tract for pronouncing /b/, /d/ and /g/ respectively, and (b) shows 

Jim’s images when he holds his apparatus for pronouncing /m/, /n/ and /N/. The vela of the 

participants also shows the use of the nasal tract in different manners of articulation. 

To track the dynamic articulation of the tract shape, articulatory trajectories are 

adopted from an EMA corpus called mngu0.  mngu0 is an EMA-published articulatory corpus 

recorded from two speakers reading 460 British TIMIT utterances by CSTR, University of 

Edinburgh. It consists of more than 1,354 phonetically diverse utterances recorded at 
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Ludwig-Maximilians-Universitӓt at München, using a Cartsens AG500 electromagnetic 

articulograph [67]. Using the machine, six coils are placed in the mid-sagittal plane, as shown 

in Figure 5.8. An extra one is placed on the subject’s nose for head-movement correction. 

The AG500 tracks sensor coils in 3-D space with two angles of rotation which means five 

measurements per sensor coil pulse with two reliability indicators for each coil. The recorded 

data was manipulated and distributed in Matlab format. 

 

 

 
 
 
(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b)          
 
 
 
 
 
 
 
 

 

Figure 5.7. (a) Cross-sectional MRI from Jack pronouncing /b/(left), /d/(mid) and /g/(right) 

and (b) Cross-sectional MRI from Jim pronouncing /m/(left), /n/(mid) and /N/(right). 
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Figure 5.8. Sensor coil locations from [67]. 

The data set contains approximately 1,715 distinct diphones of which 512 are paired with 

plosives. In our research we extract CV pairs from the corpus to obtain their trajectories. 

Table 5.1 shows the number of CV diphones found. 

 

Table 5.1. Number of diphones found paired with corresponding phone. 

Diphone paired with 

corresponding phone 

Number 

found in 

mngu0 

 

Diphone paired 

with corresponding 

phone 

Number 

found in 

mngu0 

/p/ 645  /f/ 579 

/b/ 734  /v/ 436 

/t/ 1707  /s/ 1006 

/d/ 896  /z/ 487 

/k/ 791  /S/ 217 

/g/ 325  /Z/ 94 

/m/ 856  /h/ 672 
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Diphone paired with 

corresponding phone 

Number 

found in 

mngu0 

 

Diphone paired 

with corresponding 

phone 

Number 

found in 

mngu0 

/n/ 939  /tS/ 210 

/N/ 91  /dZ/ 266 

/j/ 198    

/w/ 972    

 

Table 5.2. Number of distinct diphones found paired with corresponding phone (CV). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diphone trajectories are used in the simulation for naturalness evaluation. Examples 

of trajectories are shown in Figure 5.9. Black, grey, black dash and grey dash represent 

normalized trajectories of lower lip, tongue tip, tongue body and tongue dorsum, respectively. 

These trajectories will be used to control coarticulation between phone and adjacent vowel in 

this research. Figure 5.9 shows an example of normalized articulatory trajectories. 

Distinct 

diphone pair 

(CV) 

Number found in 

mngu0 
 

Distinct 

diphone 

pair (CV) 

Number 

found in 

mngu0 

/p/ 19  /f/ 18 

/b/ 19  /v/ 18 

/t/ 19  /s/ 19 

/d/ 17  /z/ 17 

/k/ 19  /S/ 19 

/g/ 19  /Z/ 12 

/m/ 18  /h/ 18 

/n/ 19  /tS/ 18 

/N/ 17  /dZ/ 19 

/j/ 17    

/w/ 17    
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Figure 5.9. Examples of articulatory trajectories from /b/ to /i/, /d/ to /i/ and /g/ to /i/ in which 

the black line is normalized lower lip trajectory, grey line is normalized tongue tip trajectory, 

black dash line is normalized tongue body trajectory, and grey dash line is normalized tongue 

dorsum trajectory. 
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Normalized position 

Normalized position 
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The movement of trajectories (as shown in Figure 5.9) demonstrate that articulators 

move non-linearly. For example, the movement of the lower lip (black line) and the tongue 

tip (grey line) in the left graph shows a different glide from their source position for phone /b/ 

as compared to phone /i/. The lower lip starts moving down steeply before the tongue tip 

even reaches the high position and slowly drops to the position for the vowel /i/. These show 

a non-linear changing of the tract shape. Therefore, in this research we called the adoption of 

the changing a non-linear articulation of the simulation. 

The main use of recorded trajectories rather than linear interpolation between source 

and target phone tract shape is to support the idea of improving the naturalness of the 

movement of areas at four places of recorded articulation. It has been proved in [61] that 

different tract shapes have different acoustic resonances. Therefore changing the tract shape 

as a function of articulation can produce resonances similar to those in recorded speech for 

appropriate articulatory gestures. These are shown and compared in the next chapter. 

 5.2 The simulation 

This section describes the setting of the simulation for consonants using the 2-D 

digital waveguide mesh. Vowel settings have been evaluated in [45]. This research modifies 

the system to control the articulation of the non-vowel sounds. Specific requirements and 

settings for each phonetic manner of articulation are described in the following subsections.  

 

     5.2.1 Semi-vowels 

 

The semi-vowel manner of articulation is similar to that for vowels (the details are 

described in Chapter 4). The semi-vowels in English are /y/, /w/, /r/ and /l/. To form them, 

two articulators have to be articulated close to each other but not so close as to generate 

friction noise or a closure. In the lateral /l/ and rhotic /r/, the constriction is formed by raising 

the tongue tip against the alveolar ridge. This creates two separated air spaces; we can feel 

them on the left and right when we hold the tongue for /l/, and above and under when we hold 

the tongue for /r/. As there is no MRI of /r/ and /l/ in our MRI data set, this research focuses 

only on the semi-vowels /j/ and /w/. As mentioned in Chapter 4, in the articulation for /j/ the 

vocal tract needs to be shaped as for the vowel /i/ but the articulation needs to be faster than 

for a diphthong that contains /i/. Similarly for /w/, the tract needs to be shaped as for /u/ but 
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articulated faster than a diphthong that contains /u/. The constrictions are located at high-front 

position and high-back, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10. Constriction of /i/ (left) and /u/ (right) in MRI from [60] for synthesizing /j/ and 

/w/, respectively. 

 

The articulatory trajectories for the semi-vowels are used along with cross-sectional 

area data extracted from the MRI corpus. A series of cross-sectional areas are extracted from 

the MRI. Each tract area in the series is paired with the area of a target phone of the same 

location in the vocal tract for the articulation process. The trajectories then work 

correspondingly within the gap between those areas to guide the change.  Figure 5.11 (a) 

shows the changing cross-sectional area for synthesizing /jA/ and /wA/. Each line shows the 

trajectory at each waveguide junction for one articulator, which is mapped to cross-sectional 

area data during synthesis. Four solid lines show cross-sectional areas that change according 

to the position of recorded articulators in mngu0, lower lips, tongue tip, tongue body and 

tongue dorsum. Dashed lines show examples of linear change on an area trajectory where 

there is no articulatory guide line. Note that the articulatory trajectory data are recorded in the 

oral space only, and therefore there is no trajectory guide line in the pharyngeal space (only 

lower lip, tongue tip, tongue body and tongue dorsum positions recorded); hence, linear 

interpolation is applied from the position of velar to glottal.  
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 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (c) 
 
 
 
 
 
 
 
 

Figure 5.11. (a) Area function changing after trajectory adoption in /jA/. (b) Vocal tract shape 

ladder from /j/ to /A/. (c) Vocal tract shape ladder from /w/ to /A/. 
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The middle and bottom plots in Figure 5.11 (b and c) show the articulation from 

another perspective. They were generated by implementing the trajectories from the 

corresponding areas extracted from MRI data. Plot (b) shows the ladder of articulation from 

/j/ to /A/ in 0.005 s steps as in plot (c), which also shows another set of the articulatory 

trajectories from /w/ to /A/.  

To control articulation in the tract, all trajectories are mapped one-to-one to area 

functions. Imagine that the vocal tract is mid-sagittally filled in by a rectilinear 2-D mesh, the 

x-axis representing vocal tract length and the y-axis representing vocal tract width. Then node 

junctions in the rectilinear mesh are strung together vertically and horizontally by 

waveguides. Here, the impedance values are equal in each waveguide in the vertical string 

but vary along the horizontal direction when the vertical waveguide string represents 

waveguides that are connected together vertically at position x in the vocal tract. The cosine 

function acts as an impedance weight hill which is mapped on to waveguides differently in 

each vertical waveguide string, highly weighted at the boundaries and lightly at the middle, as 

shown in Figure 5.1.  

 
 

     5.2.2 Nasals 

 

For nasals, an additional branch is needed to model the nasal cavity.  Nasal tract wave 

propagation simulation is done by adding a nasal tract branch to let the pressures propagate 

through the velopharyngeal port. In the simulation, the pressures have to be scattered in both 

directions from the vocal tract to the nasal branch and vice versa. The port is set to be 10.0 

cm away from the glottis with a 5.0 cm width for a connection that it has to make with the 

vocal tract. The 10 cm distance from the glottis is averaged from the MRI data set of /m/, /n/ 

and /N/ which are slightly different, varying in the degree of the lowering velum (less than 

0.52 cm difference in the data set). For the ease of computation with slight effects from using 

waveguide sizes 2.2, 1.1 and 0.55 cm in the synthesis, which are larger than the variation of 

the port location, the distance is approximated and fixed at 10.0 cm for all nasalization.  The 

actual port size is controlled by the impedance function of the first waveguides that 

attach/connect to the vocal tract junctions (shown in a red circle in Figure 5.12). Here, the 

system consists of two tube models – one for the vocal tract and another for the nasal. The 

model for the vocal tract has one end attached to the sound source (glottis) and another end 
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for giving output speech (mouth). The addition of the nasal tract requires another model with 

one end attached to the vocal tract at the velopharyngeal port and another end as nostrils. For 

1-D digital waveguide simulation, the attachment is simply simulated by adding a nasal 

waveguide chain to the vocal main line at the junctions of the velopharyngeal port, while in 

2-D a construction, the attachment has to be considered in the X or Y axis. Figure 5.12 shows 

a 2-D example of attaching a nasal model in the Y axis which is 5 cm wide; therefore the 

attachment is done by a conversion of 4-port to 5-port junctions.   

 

 

 

 

 

 

 

Figure 5.12. Tract structures when running the rectilinear 2-D mesh on 22 kHz. 

The size and number of waveguides came from a frequency dependent dispersion 

equation from Savioja and Lokki, 2001. 

𝑓𝑠 =  
𝑐√𝑁

𝑑
      5.2 

where c is the speed of sound, N is a number of dimensions of the waveguide mesh, d is the 

waveguide length and fs is the sampling frequency. In our simulation, fs is 22 kHz, c is 343 

m/s, N is 2, then d is 0.022 m (2.2 cm). The vocal tract is 17.5 x 5 cm2 so the simulation 

needs 8 x 3 waveguides which contains 14 junctions (as shown in Figure 5.12). The nasal 

tract is 11 x 5 cm2 and therefore it needs 5 x 2 waveguides (8 junctions). 

To evaluate the proposed system nasalization performance, synthesizing English 

nasals was done within two settings. The first was done by making a simple closure at a point 

in the oral tract together with opening the velopharyngeal port to let pressure propagate 

through the nasal tract. At the closure, the cross-sectional area is set to 0 by pulling a slider 

Port junctions 

Vocal tract mesh 

Nasal tract mesh 

Glottis Mouth 

Nostrils 
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on the application interface down to the minimum. Then the other cross-sectional areas are 

set to values of tract shape for the vowel /3/. The second was done by setting the vocal tract 

area according to real nasal cross-sectional area data. Neither settings involve articulation; 

therefore the velopharyngeal port parameter is set open by using 1.0 as a covariance. The 

results will be shown and discussed in the next chapter. 

 

 

 

 

 

 

Figure 5.13. Vocal tract shape (left) and nasal tract shape (right). 

The two settings are used to work with cross-sectional area data that is extracted from 

the MRI corpus [60] as shown in Figure 5.7. The extracted area data is shown in Figure 5.13. 

The left-hand figure shows tract shape differences.  The black and grey lines show tract shape 

extracted from the MRI but the shape in grey was adjusted from the original shape of the 

vowel /3/ by putting a closure at the lips. The resonances from these two shapes are shown 

and discussed in the next chapter. The right graph shows extracted nasal tract shape depicted 

using extracted cross-sectional area through the tract from the MRI. All area data in this 

research are obtained by  

- filling the tract by 3-D mesh using an automatic segmentation tool in itk-SNAP v. 

2.2 [68], 

- storing the extracted tract shape mesh in Visualization Toolkit (VTK) file format 

[69], 

- and extracting cross-sectional areas using a slicing tool (written by Matthew Speed, 

2012) [60]. 
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In the filling process, the complicated shape of the soft tissues, turbinates and cartilages was 

ignored and counted as nasal space. This nasal tract shape is used throughout the experiments 

in this research. 

 

     5.2.3 Plosives 

 
For plosives, there is no air escaping through the nose, so the oral tract is the only 

space we are concerned with. The name “plosive” describes the bursting noise resulting from 

the plosive release (e.g. lip closure release in /b/ or /p/). A plosive has three main phases of 

articulation: closing, hold and release [55]. During the hold phase, the pressure behind the 

closure builds up, then a sudden release causes the burst of noise, or plosion, on release. The 

DWM modelling in this research has a limitation of simulating pressure propagation only and 

not the flow; therefore it cannot simulate the bursting noise. Hence, this research uses white 

noise as the bursting noise source to verify the output acoustic resonance instead. In addition, 

further details and more research in plosive noise source generation and simulation can be 

found in [70, 71]. 

This research mimics the burst using an extra noise source injection at the place of 

constriction which is located at  

𝑥𝑚𝑖𝑛 = min 𝐴(𝑥)  5.3 

 

where x is junction index along the tract length, A is the cross-sectional area function 

and 𝑥𝑚𝑖𝑛 is the index that points to the minimum area. 

Figure 5.14 shows an example of projection of tract simulation under cosine 

admittance control for the phone /d/, where the red arrow locates the closure. 
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Figure 5.14. An example of impedance function mapping from MRI vocal tract image to 

cosine impedance hills in plosive simulation. 

At closure, the lowest admittance/highest impedance is involved. The area function is 0, so 

the impedance reaches its maximum, 1/admittancemin. Note that this research set the 

minimum admittance as 0.0001 kg-1m4s to avoid division by zero; therefore, the maximum 

impedance is 10000 kg m-4s-1 for attempts to block the air flow at the closure. 
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Moving from the physical configuration to the dynamic setting and looking back to 

the three main acoustic properties for the plosive manner of articulation – the centre 

frequency of the burst, the VOT and formant transitions – the frequency of the burst is a 

result of the burst being modified by the local front and back cavities which relates to the 

place of articulation. It then depends on the physical setting in the modelling, while VOT is 

the result of setting the voice source injection at the glottis. The formant transition shows the 

frequency response of the coarticulation between plosive and adjacent phone. Considering 

one of the examples of articulatory trajectories from mngu0 for /b/ with following vowel /A/, 

/u/ and /i/ in Figure 5.15, the example shows normalized trajectories of four places of 

articulation – lower lip, tongue tip, tongue body and tongue dorsum – as described in section 

5.15. The coarticulation in the figure shows a rapid change of area function after plosion, then 

a short period of almost steady shape for the vowel, then change again for the coming phone. 

The movement after the plosion results in the formant transitions.  
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Figure 5.15. Normalized articulatory trajectories for /b-A/ (top), /b-i/ (mid) and /b-u/ 

(bottom). 
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     5.2.4 Fricatives 

 

The manner of articulation for fricatives involves holding the constriction of 

articulators long enough to create friction noise. However, as mentioned in the discussion on 

plosives, concerning the limitation of DWM’s inability to simulate the sound source, this 

research uses an extra noise source injected into the system at constriction for fricative 

production instead. Shadle modelled the physics of frication in her research in 1985 [70]. The 

two types of friction production for fricatives caused after obstruction in the tract are named 

obstacle and no-obstacle in her report. To model them, she used a dipole source in her 

transmission-line model for obstacle involved and just a source-tract interaction for no-

obstacle involved. Her results show significant results for obstacle which contains /f/, /v/, /s/ 

and /z/. Later, Narayanan and Alwan claimed that source types have to be broken into 

monopoles, dipoles and quadrupoles, and injected them in different places, such as, dipole at 

the teeth and monopole at the constriction exit [71]. In 2000, Jackson used inverse filtered 

(coloured) white noise based on Shadle's regression curve [70] as the frication-noise source 

for his fricative study [71]. However, in this work, white noise is the only noise source used. 
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Figure 5.16. Vocal tract shape for /S/ in 2-D (top) and cosine weighed impedance converted 

from area function (bottom). 

Meshing and cosine impedance control are also used for fricative synthesis. Figure 

5.16 shows an example of the tract shape for /S/ (top) and its cosine admittance mapping 

(bottom). The coarticulation between fricative and carrier affects formant transition as usual 

(more details can be found in [72]). Therefore, articulatory trajectories from mngu0 are also 

used to project the coarticulation in time frames. 

Another important setting is the reflection coefficient at boundaries. Voiced and 

voiceless fricatives cause a different termination at the glottis. When the glottis is held open 

for a voiceless fricative, the reflection coefficient at the glottis is set at the same value as for 

open end at lips, -0.9. On the other hand, for a voiced fricative the vocal folds vibrate 

periodically to generate the voice source; the model assumes that it is essentially a rigid end 
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at the glottis and therefore the reflection coefficient is set to 0.97. These values were verified 

and adopted from Mullen, 2006 [49].This causes different tract resonance properties, which is 

discussed in the next chapter. Moreover, as we did not focus on source generation but on 

filtering in the vocal tract, the naturalness of our results is poor for this manner of 

articulation. More details on how specific the source is, such as position-dependence gain, 

low-pass filtering etc., can be found in Steven, 1998 and Birkholz, 2014 [73, 74]. 

 

     5.2.5 Affricates 

 
As described in many books on linguistics, for example [72, 58, 20], affricates can be 

seen as a combination of a plosive and a fricative which is articulated quickly enough to 

produce a short burst followed by a short period of holding for frication; therefore the 

coarticulation between them plays the most important part. In this research, the friction 

behaviour is the main acoustic characteristic of this manner is which is not convincing 

enough because we did not use a proper friction source but white noise only (as discussed in 

5.2.4). Consequently, the error can be accumulated from both plosive and fricative parts and 

so we have to leave the evaluation for naturalness of synthesized affricates and focus instead 

on the range of resonance frequencies. Their spectrogram is shown and discussed in the next 

chapter.  

Resonances of friction from the tract are studied in this work rather than naturalness 

from affricate characteristics in mngu0. The spectrogram of recorded WAV files in mngu0 

shows roughly segmentable timing for burst and friction, and then the simulation starts in the 

same way as the other manners. 

The cosine impedance area function works along the tract. The reflection coefficient 

reflects the pressure wave differently at four boundaries (glottis, lips and two more tube 

boundaries along the 2-D mesh). The articulatory trajectories create steps for tract change for 

articulation. The ladder between plosive and fricative is short but practical because the tract is 

just open for bursting and then keeps the constriction for slightly longer for frication before 

continuing the articulation to the adjacent vowel. Figure 5.17 shows interpolation between 

plosive and fricative parts and continues to the adjacent vowel. 
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Figure 5.17. Tract shape interpolation when synthesizing /tS/ from plosive (very front) and 

fricative parts and continuing to the adjacent vowel /A/ (very back). 

In summary, this chapter has described the tools, data, configurations and settings 

needed in each type of consonant synthesis experiment using 2-D DWM. Mullen’s 2-D 

DWM is used as the wave propagation modelling tool. The LF model and white noise are 

used as sound sources. MRI from [60] is used as the tract shape image source. The 

articulatory trajectories from mngu0 are used to guide the articulation. Images of changing 

tract shape in steps are plotted to show the articulation in the simulation. The synthesized 

sounds and their spectrograms will be shown and discussed in the next chapter.  
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Chapter 6  

Evaluation and Results 

The evaluation of the performance of the proposed system was conducted from two 

perspectives, objective and subjective. To evaluate and show the objective accuracy, the 

frequency response of the outputs from the proposed system are considered, comparing the 

acoustic properties of the synthetic sounds with those from natural speech. The subjective test 

gathers perceptual responses from audio engineers and phoneticians. 

 

  6.1 Objective evaluations 

Objective evaluation experiments have been carried out separately following the 

phonetic manners of articulation for English: nasals, semi-vowels, plosives, fricatives and 

affricates. 

      6.1.1 Nasals 

 

 The two main characteristics of nasals, which are anti-formants (zeros) and the nasal 

murmur, were introduced in Chapter 4. This chapter looks at those characteristics in the 

synthesized speech output from the 2-D DWM. In this experiment on English nasals, acoustic 

pressure variations are propagated through both nasal and oral cavities, but are blocked from 

emerging from the mouth, due to a complete closure at the appropriate place of articulation. 
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This blocking causes absorption at the resonant frequencies of the oral cavity, which are the 

nasal anti-formants. The size of the oral cavity depends on the place of constriction, which 

affects the frequencies of the anti-formants. Therefore, evaluation of the absorption is 

achieved by making closures in the oral tract. Figure 6.1 shows absorption results from 

making a constriction at the bilabial, alveolar and velar place of articulation by closing the 

slider No. 15, 13 and 11 which can be seen as the first set of results in attempting to simulate 

/m/, /n/ and /N/, respectively. This experiment is initialized by setting the tract shape as for 

producing /3/ and then recording nasalized /3/, nasalized /3/ with a bilabial closure, nasalized 

/3/ with an alveolar closure and nasalized /3/ with a velar closure.  

 

 

 

 

 

 

 

 

Figure 6.1. A spectrogram of four examples of synthesized speech of nasalized /3/ and 

nasalized /3/ tract shape with bilabial, alveolar and velar closure. From left to right: the first is 

from the open mouth; the second is from adding a closure at slider No. 15 for bilabial; the 

third is from closing at slider No. 13 for alveolar; and the last is from closing at slider No. 11 

for velar. 

In Figure 6.1, three black arrows indicate anti-formants on a narrow-band 

spectrogram. Note that the velar one does not show any anti-formant because the branch 

tubes are too small and the anti-formant is shifted to be at a high frequency. The anti-

formants can be viewed more clearly in the long-term average spectrum (LTAS) analysis 

shown in Figure 6.2, which is based on the use of a Hamming window and 0.98 pre-

emphasis. The figure shows three anti-formants indicated by the black arrows, which support 
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the results in Figure 6.1.  For the murmur, Figure 6.2 shows the first peak at around 130 Hz 

which is the fundamental frequency (F0) of the voice source; the second peak at around 260 

Hz (which is the second harmonic) corresponds approximately to the expected nasal murmur 

(around 300 Hz) as described in [20]. Therefore, the murmur of synthesized speech in this 

experiment is firstly assumed to be the peak that we can see at 260 Hz, because this is the 

harmonic in the output which is closest in frequency to the expected 300 Hz nasal murmur. 

 

 

 

 

 

 

 

 

Figure 6.2. FFT long-term analysis of the synthesized speech in Figure 6.1. 

The effects of nasalization in the proposed system are shown again here, a set of four 

selected vowels (/A/, /3/, /i/, /u/) having been synthesized in nasalized and non-nasalized 

conditions with neither additional constriction in the oral tract nor extra noise excitation 

source. Figure 6.3 shows their frequency analysis results.  
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Figure 6.3. FFT of four nasalized and non-nasalized 22 kHz synthesized vowels: /A/ on the 

top left, /3/ on the top right, /i/ on the bottom left and /u/ on the bottom right. 

The results show that peaks at 260 Hz appear in both nasal and non-nasalized vowels. 

Based on the nasal murmur characteristic, which is nasal formants relating to the nasal plus 

pharyngeal cavity, the F1 of nasal murmur should have higher amplitude followed by less 

amplitude caused by damping [58]. The damping of the resonance is caused by absorption in 

the complex nasal wall in the nasal cavity. Cox explained the results of damping as follows: 

"The most general effect of adding nasal resonance to oral resonance is an overall loss of 

power." in [75]. Kent and Read drew the idealized damped amplitude of nasal vowels 

compared to non-nasalized vowels in Figure 5-34 in [32]. However, 2-D DWM is used to 

propagate pressure only, not absorption. The managing of the wall reflection coefficient as in 

[76] can cause a slightly different bandwidth but not enough for nasal damping; hence, the 

energy of nasal murmur still exists in the system and is carried out through the end of the 

nasal tract. Therefore, we can see the second formant of nasal murmur at around 1 kHz in all 

results which can be predicted by (3 x 343) / (4 x 0.22), 3c/4L, which equals 1,169 Hz. 

In detail, these first two sets of results were synthesized using a 22 kHz sampling rate, 

which means the waveguide length is 0.022 m. The oral cavity is 0.075 m in length in these 

vocal tract simulations, which means that it is simulated by the last three waveguides (0.022 x 
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3 = 0.066 m) (Note that width is not discussed here, because resonation considers the length 

of the tract only.) Of these three, the last represents the pressure propagation at the lips, the 

penultimate represents the alveolar, and the one before that represents the palatal 

approximately. These three places were the places of closure mentioned in the first set of 

results in Figure 6.1. The LTAS of the first attempt (shown in Figure 6.2) shows three anti-

formants, two of which are from bilabial closure (2,080 Hz and 4,750 Hz) and the third from 

alveolar closure (3,460 Hz). They are the results of absorption in the oral cavity. When 

closing slide No. 15 for bilabial closure, the oral tract is two waveguides long which equals to 

0.044 m; therefore, for this quantization, we can expect to see anti-formants at (1 x 343)/(4 x 

0.044) = 1,559 Hz and (3 x 343)/(4 x 0.044) = 4,677 Hz, and we get 2,080 Hz and 4,750 Hz 

from the effects of using /3/ tract shape rather than a uniform tube. In the same way, closing 

slide No. 13 for an alveolar closure, the oral tract is 0.044 m in length; hence, we can expect 

to see an anti-formant at (1 x 343)/(4 x 0.022) = 3,897 Hz, for which we get 3,460 Hz. 

We next evaluate the proposed system in a more dense mesh. This next experiment is 

another attempt to synthesize English nasals with a more dense mesh, by changing the 

sampling rate from 44.1 kHz to 88.2 kHz and 176.4 kHz. The results from the 88.2 kHz 

version are selected to be shown here. The resonances from using real tract shapes of /m/, /n/ 

and /N/ are shown in Figure 6.4. The long-term spectrum shows anti-formants at around 

1,300 Hz in /m/, 3,000 Hz in /n/ and 6,400 Hz in /N/. 

 

 

 

 

 

 

Figure 6.4. Long-term analysis of synthesized /m/, /n/ and /N/ from 88 kHz of sampling 

frequency. 
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The next figure shows comparisons between LTAS results and those from the Praat 

articulatory synthesizer [38]. Usually Praat is used as a speech tool for studying, analysing 

and modifying human speech; however, it also has a function to synthesize human speech 

using the articulatory synthesis method. The synthesizer has flexible walls for forcing and 

passing pressures and velocities with a GUI for controlling tensions of vocal tract muscle 

apparatus. Here, Boersma labels his methodology as functional phonology [39]. LTAS of 

three English nasals from Praat are shown together with results from our synthesizer 

(Mullen). The abbreviations fm, af/m/, af/n/ and af/N/ stand for theoretical murmur frequency, 

anti-formant of /m/, anti-formant of /n/ and anti-formant of /N/, respectively [20].  
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Figure 6.5. FFT shapes of noisy nasalized synthesized speech from articulatory synthesizer in 

Praat: (a) for /m/, (b) for/n/ and (c) for /N/.  
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     6.1.2 Semi-vowels 

 

The evaluation of semi-vowel synthesis was considered by setting up the system 

according to the configurations in section 5.2.1 and then recording the output for acoustic 

analysis. One characteristic of a semi-vowel is that it is similar to a diphthong but with a 

quicker articulatory transition; the acoustic characteristics of this set are shown in terms of 

resonance change caused by movement of the articulators, or change in area function 

(formant transition). Two semi-vowels are considered in this work, /j/ and /w/; therefore, the 

formant transitions between /i/ and an adjacent vowel and /w/ and an adjacent vowel are 

discussed here. 

 
 

 

 

 

 

 

 

 

 

Figure 6.6. Formant transitions in synthetic /jA/ using Wavesurfer wide band spectrogram 

analysis. 

The spectrogram in Figure 6.6 came from adopting the articulation according to articulatory 

trajectories from mngu0 [77], so the duration of /j/ depends on trajectory data. For 

synthesizing /jA/, it uses 0.334 sec for the trajectories. Figure 6.7 shows the spectra of the 

beginning and end of the synthesized /j-A/.  
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Figure 6.7. Spectra of the beginning (black) and end (grey) part of the synthesized /j-A/. 

We can see that, at the beginning of the spectrogram, the first formant starts at 344 Hz and 

then rises to 648 Hz for /A/ while the second starts at 1,944 Hz and then falls to 1,316 Hz for 

/A/, similarly to the third formant which starts at 2,875 Hz and then falls down to 2,632 Hz. 

The figures are shown in Table 6.1 in a comparison to synthesized sound from holding the 

area function steady for individual /i/ and /A/, their first, second and third formants 

respectively being 344, 1,944 and 2,855 Hz for /i/ and 688, 1,316 and 2,632 for /A/ which are 

the same as those at the beginning and end of the synthesized sound. 

Table 6.1. Formant frequencies comparison between those from vowel and semi-vowel 

synthesis for /jA/. 
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The transition between /i/ and /A/ plays the most important part here. As discussed in [20], 

theoretically we can consider the two semi-vowels /j/ and /w/ as their closest vowels (/i/ and 

/u/ respectively but articulated more quickly, so these transition durations are seen as the 

duration of formant transitions in the spectrogram and they show up as smooth transitions due 

to the dynamic articulatory changes in the 2-D DWM. Hence, these results confirm that the 

system could support a synthesis of /j/ by including appropriate articulatory trajectories and 

changing the resonance frequencies relevant to the area at the corresponding position 

smoothly (see perturbation theory in Chapter 4 for details of the corresponding position).  

More details about the perception of the acoustic behaviour of the synthesized sound will be 

shown and discussed in the subjective evaluation section later.  

The spectrogram of two studied semi-vowels are plotted in Figure 6.8. It presents the 

spectrogram comparison between recorded speech (left) and synthetic (right). The top two are 

the spectrograms of /jA/ and the bottom those of /wA/; the synthetic in each pair adopted the 

trajectories that recorded synchronizing with the recorded ones. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.8. Spectrogram of recorded /j/ and /w/ (left) and synthesized /j/ and /w/ (right). 

The figure shows the similarities of formant transitions, which relate to vocal tract 

shape variations. From close comparisons, Figure 6.9 pairs the formants from synthesized 

and recorded sound together. According to the adoption of trajectories of one to a different 

subject who gave his vocal tract shape scanned in MRI, all tract shapes are not the same but 

similar in the process of articulating for the same phone; therefore, the comparison will show 
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the similarity of transitions only, not the formants. The left shows those of /wA/ and the right 

shows those of /jA/. All formant transitions in /jA/ are similar: F1 moves up, F2 moves down 

at a slower rate than in real speech, and F3 moves down at the same rate. In /wA/, F1 and F3 

move slightly upwards, while F2 is slightly different which is a result of the different tract 

shape at the beginning in that the proposed system did not put an extension for round lips 

which makes it unrounded (F2 in an unrounded vowel is higher than in a rounded [78]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Formant transition comparison between that of synthesized (dashed line) and real 

(solid line). 
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In addition, the adoption of articulatory trajectories is done in discrete timing control. 

The trajectory was adopted in length/duration as it was recorded. For more information about 

phone duration in the mngu0 corpus that was used as the articulatory trajectory guideline, we 

examine the duration behaviour more closely. There are 198 and 972 diphones which pair 

with /j/ and /w/ respectively. In these there are 5 pairs of /j/ followed by /A/, 3 followed by /i/ 

and 284 followed by /u/. Figure 6.10 shows their durations. 

 

 
 

Figure 6.10. Average recorded duration in mngu0 of /j/ followed by /A/, /i/ and /u/ are 

labelled as /j-A/, /j-i/ and /j-u/ while those of /w/ are labelled as /w-A/, /w-i/ and /w-u/. 

The figure shows the variation in phone durations when it pairs with different vowels. 

The average duration for /j/ and /w/ in the corpus is calculated but not used, because the real 

articulation will have to be modified for the average duration and we want to move our area 

function after the real articulation to evaluate our system’s performance. However, all these 

attempts to use articulatory trajectories recorded from one subject to guide articulation 

simulation for another subject’s vocal tract shape show successful results for semi-vowel 

simulation. 
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     6.1.3 Plosives 

 

Three main acoustic properties – centre frequency of the burst, formant transition and 

voice onset time – are evaluated separately because they relate to different stages in plosive 

production. The burst length is controlled by the release stage, formant transitions are 

controlled by articulatory trajectories after the release and/or closing stage, and the VOT is 

controlled by timing the voice source onset from the glottis.  

Although 2-D DWM does not simulate flow which makes it unable to simulate/generate the 

sound source, the effect from quickly opening the tract in our simulation with a pressure 

source injection at the glottis could generate a small burst. The first set of results arises from 

an attempt to try to see the burst.  

 
 
 
 
 
 
 
 
 
 
 

Figure 6.11. Spectrograms of bursts from different lengths of hold stage, 0.02, 0.03 and 0.07 

seconds (indicated by arrows), analysed using Wavesurfer [79]. 

Figure 6.11 shows the small or transient bursts resulting from different lengths of hold 

stage, 0.02, 0.03 and 0.07 seconds, respectively. The pressure source is accumulated behind 

the closure while the cosine impedance function allows a small leakage but still blocks the 

pressure flow.  The results show that the longer the duration of closure, the stronger the 

burst’s energy. It also depends on other factors, such as amplitude of the source. However, 

Ogden [55] mentioned that in real speech frication is caused by narrow constriction after 

sudden release. Limitations on frication in 2-D DWM are discussed in section 6.1.4 

(fricative). Therefore, in plosive an extra noise injection is needed when the system is set to 

mimic a recorded plosive from real speech, the additional noise source being used to hold the 

energy slightly longer, as it appears in the spectrogram of real speech.  
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Figure 6.12. Spectrogram of a recorded chunk of /tA/ from mngu0 sentence No. 0455 (right). 

Synthetic waveform of /tA/ with additional noise source injected at the place of burst and its 

spectrum (left) analysed using Wavesurfer. 

The result in Figure 6.12 comes from an attempt to carry the frication energy from an 

extra noise source injection.  The system is set to mimic the spectral frequency of the burst 

from recorded /tA/ (right). White noise was injected after the closure position, according to 

[80]’s work on frication production, immediately after the tract was opened. The result shows 

a similar range of frequency, which resulted from front cavity resonances. The dissimilarity 

of the range of frequency could come from different tract shape and position of articulation 

from a different source (speaker). 

In this section, the range of frequencies plays the most important role and it is 

resonated from the front cavity. The next set of results then shows resonances from different 

places of articulation which affect the frontal cavity size according to the recorded MRI tract 

shape for /p/, /t/ and /k/. Figure 6.13 shows the frequency range results. 
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Figure 6.13. Spectrogram of the burst from different places of articulation: /p/ (left), 

 /t/ (mid) and /k/ (right). 

The resonance spread over almost all frequencies for /p/, about 6 kHz for /t/ and 4.5 

kHz for /k/. This is a slightly unexpected range according to [20] who suggests that the centre 

frequency of burst for an alveolar (/t/) should be a little above 4 kHz and for /k/ should be 

between 1.5 kHz and 4 kHz. However, the results conform with the discussion on vocal tract 

filter functions in Johnson, 2012. He mentioned that the spectrum of bursts from labial stops 

has no formant peaks and that energy is spread diffusely, and that of alveolar has higher 

frequency peaks than that of palatal because of the shorter front cavity. 

Another characteristic of plosives, formant transitions, was investigated with 

reference to Johnson’s F1 and F2 transition chart of plosive formant transitions in Figure 

6.14. Three sets of results are shown in Figure 6.15. Those making use of /i/, /A/ and /u/ as 

the following vowel show comparative results. The results were analysed using a narrow-

band spectrogram. Those for /b/ all show a small rise at the start for all formants. Those for 

/d/ show a small rise for the first formant and a rise in a transition to /i/ but falling in 

transition to /A/ and /u/. The first formant transitions for /g/ are all rising while the second are 

all falling. These are similar to the ideal plot of formant transition in [20]. 
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Figure 6.14. Johnson’s F1 and F2 transition patterns adapted from Delattre et al., 1955 [81] 

(adapted from [58]).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. Examples of formant transition from synthesizing /b-i/, /b-A/, /b-u/, /d-i/, /d-A/, 

/d-u/, /g-i/, /g-A/ and /g-u/. 
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The ideal plot shown in Figure 6.16 [20] depicts the effects of changing places of 

articulation that change the loci of the second formant. Our results also show that bilabial /b/ 

second formant’s loci are lower than their formant frequency, while those of alveolar /d/ are 

either lower for a front vowel or higher for a back vowel, and those of velar are higher than 

their formant frequency whether they are followed by a front or a back vowel. 

 

 

 

 

 
 
 

Figure 6.16. Ideal plot of formant transition from Howard, 2008 [20]. 

 

The comparisons between formant transitions from real and synthesized speech are 

plotted in Figure 6.17. Dashed lines represent those of synthesized speech while solid lines 

represent those of natural speech. All F1 and F2 transitions are similar to real speech, but F3 

varies in the synthesized sounds where its transitions are not as fluctuated as in natural 

versions. F2 in transitions with the vowel /u/ are more different from real ones because of the 

unrounding effect. 
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Figure 6.17. Formant transitions comparison between those from real speech (solid line) and those from synthesized sound (dashed line).
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     6.1.4 Fricatives 

 

To pronounce a fricative, the glottis has to be held open, letting air flow through the 

tract and being constricted at place(s) in the mouth, except in the case of /h/. Turbulent 

airflow is produced at the constriction and then filtered by the vocal tract. The vocal folds are 

open for voiceless fricatives but vibrate for voiced fricatives. This means that the glottis is 

represented as closed or open end in the simulation, as appropriate. 

As mentioned in Chapter 5, this work does not implement any friction source 

simulation (details on frication simulation can be found in Badin, 1989 [82]; Shaddle, 1991 

[80]; Jackson, 2000 [71]; Birkholz, 2014 [74]). Therefore, frication is simulated using white 

noise injection only, without filtering or band pass before injection. The resonances primarily 

came from the front cavity only, because the coupling between front and back cavities is 

weak. Comparing resonance frequency from our system with the ideal from Stevens, 1989 

mentioned in (Johnson, 2012 [58]), yields the results shown in Figure 6.18. 

The comparison between Figure 7.4 after Stevens, 1989 in Johnson, 2012 to our 

resonance frequencies in Figure 6.18 shows a similar frequency response to that which 

appeared in Stevens. A constriction is set at a time at different distances from the mouth: 0.0 

cm, 1.5 cm, 2.2 cm, 3.5 cm and 5.9 cm. The response is a peak at 6.5 kHz from constriction 

at 1.5 cm, a peak at 4 kHz from constriction at 2.2 cm, a peak at 2.65 kHz from constriction 

at 3.5 cm and two peaks at 1.8 kHz and 5 kHz from constriction at 5.9 cm.  
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Figure 6.18. Fricative spectra from Stevens, 1989 mentioned in Johnson, 2012 (top) and 

fricative spectra from the proposed system (bottom). Note that the vertical scale is slightly 

different between the two graphs. 

 

Another impulse response test from a constriction was set according to real tract 

shape. Figure 6.19 shows the responses when the tract was set as for /f/, /T/, /s/, /S/ and /h/.  
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Figure 6.19. Fricative spectra from the proposed system using tract shape from recorded MRI 

data. 

Comparing the results in Figure 6.19 with the theoretical ones in [20], the alveolar /s/ 

in the figure exhibits a peak of energy at around 5.7 kHz and the palatal /S/ at around 3.7 kHz 

while Howard mentioned that the alveolar should be around 4 kHz and the palatal at above 

2.5 kHz. Moreover, comparison of the results with the real human speech  shows similarities 

of a prominent band of frequencies in /s/, /z/ and /S/, /Z/. Those of /s/ and /z/ have a 

prominent range of frequency at 4.7-7 kHz, and 1.9-5 kHz in /S/ and /Z/ which is shown in 

Figure 6.20. 
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Figure 6.20. Spectrogram comparison of /s/ and /S/ from real and synthesized speech.
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     6.1.5 Affricates 

 

The affricate is a combination of a stop followed by a fricative, according to 

Ladeforged in [53]. The plosive part has acoustic characteristics similar to those in /t/ and /d/ 

[20] but the place of articulation is actually at post-alveolar [55] or further back to palatal 

[32]. The frication part is shorter than when fricatives are pronounced on their own [20], [53]. 

Comparing the frication part to that of the fricative pronounced alone, the rise time, which 

refers to the rising amplitude of the frication part, is clearly perceived [58], [32].  

 In our experiment, we attempted to control the frication amplitude with the tract 

shape for /t/ articulated to /A/, according to articulatory trajectories from mngu0. The results 

show similar spectra for the frication parts but not for the plosive parts, as shown in Figure 

6.21. This is a result of the limitation of the model, which is unable to simulate pre-voicing 

before the release stage. The pre-voicing was recorded while the tract was shut completely, 

but sound was transmitted through the tract walls. Perceptual test results are shown in the 

next section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.21. Spectrogram of affricate /dZ/ with real speech on the left and synthesized from 

MRI + mngu0 on the right. 
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6.2 Subjective test results 

 

The subjective test was designed to evaluate the accuracy of the output from the 

system in regard to human perception. The test was designed to: 

- evaluate the accuracy of the resonator in synthesizing English consonants; 

- evaluate participants’ perception of pairs of consonant-vowel (CV) English diphones; 

- evaluate the accuracy of applying articulation using discrete time configuration; and 

- evaluate the naturalness of the proposed system.  

Two experiments were conducted separately: one to evaluate human perception of the 

synthesized English consonants and the other to evaluate that of synthesized consonant-

vowels. In the first experiment participants were asked to score the synthesized consonants 

by perceiving synthesized sounds one by one and selecting the consonant they thought the 

sound resembled. All synthesized English consonants were involved, with the exception of 

/tS/. 

This test is for consonants only. It was conducted online. The link and instruction 

were sent via email as follows. 

=========== 

Instructions 

=========== 

- There will be 21 short sounds you will perceive. Please evaluate them if they sound 

similar to any English consonant.  

- In each page you will see the sound player on the top and a list of consonants under 

it.  

- Please play the sounds as many times as you like then choose the consonant(s) you 

think it sounds similar to then click submit and then click the Next at the bottom of the page. 

The web pages are shown in Appendix 2. All participants were asked to use their 

personal headphones. All of them could use headphones except one who listened to the 
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sounds from a laptop speaker. The environment was his/her office, hotel room or home. The 

test begins with filling participant’s personal information and then the participants were given 

6 short sample sounds without an answer to give them idea how short the test sounds are and 

then the test starts. 

Eight native English acoustic engineers and two forensic phoneticians participated in 

this experiment.  They were five males and five females, aged 30 years on average. The 

experiment was conducted online. The selected consonant for each sound is used as the score, 

so 10 is the maximum and 0 the minimum score for the question of what does this sound like. 

Figure 6.22 shows the scores grouped by manner of articulation. 

 

 

 

 

 

 

 

 

 

Figure 6.22. Scores of each synthesized consonant, grouped by manner of articulation. 

The results show that almost all the synthesized consonants, with the exception of /t/ 

and /Z/, were perceived. Comparing between manners, semi-vowel obtained the highest 

average score which is 6.5 out of 10, followed by plosive 4.3, nasal 2.6, affricate 2.0 and 

fricative 1.7 on average. This indicates that synthesizing English semi-vowels was the most 

successful while those consonants that involve plosion (plosives and affricates) were better 

perceived when voiced and less well when voiceless. The voiceless plosives involved white 

noise injection to carry the friction energy in the frication part of the manner of articulation. 

White noise is used here and, as mentioned in the previous section, white noise is not good 
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enough to be a frication sound source which relates to the lower scores in voiceless fricatives 

[70, 74]. Moreover, the low scores for /t/ and /d/ are the result of the adoption of the 

trajectory from the most extreme position of the tongue tip for alveolar plosives which led to 

a score of 0 for /t/ and 1 for /d/. In addition, /t/ was mostly marked as /f/ while /d/ was mostly 

taken as /w/.  

White noise is also used for the frication sound source in fricative and affricate 

synthesis. The use of white noise is believed to be part of the reason for the low scores in all 

fricatives, except /f/, which has a wide range of frequency (some suggestions for the 

improvement of the noise sourcing are given in the future work section). Here, in another set 

of results for nasals, the anti-formant, which is the main acoustic characteristic in nasals, 

works best for /n/; set to around 3 kHz in this synthesized sound, it was perceived by four 

participants (the biggest score for nasals) while /m/ and /N/ were picked up by two 

participants only. These are the results of the complication in having too similar an anti-

formant energy in /m/ and too high an anti-formant in /N/ (the anti-formants are shown in 

Figure 6.4). Even so, within the nasal set, the most participants could perceive was that there 

were anti-formants in the sounds; they then marked them as nasal but were confused about 

the place of articulation.  

In summary, Table 6.2 shows all perception results grouped by their manner of 

articulation. The scores are from the responses by subjects. Each column represents each 

synthesized sound while each row represents scores from the answers. Correct identification 

is shown alone the X=-Y diagonal of this table, while the other cells in the confusion matrix 

show non-correct responses or the confusions. The average scores of these results will be 

shown in percentage and compared to another set of results in Table 6.2 summery of all 

results of the listening tests. 
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Table 6.2. Perception results confusion matrix grouped by manner of articulation.

 

Plosive Fricative Affricate Nasal 
Semi-
vowel 

p b t d k g T D f v s z S Z h dZ m n Ng w j 

/p/ (as in pet) 5 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

/b/ (as in bat) 3 8 2 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

/t/ (as in time) 2 0 0 0 0 0 1 0 0 0 2 0 0 0 1 1 0 0 0 0 0 

/d/ (as in dine) 4 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 

/k/ (as in kind) 3 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

/g/ (as in game) 2 0 0 2 3 7 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

/th/ (as in thin) 0 0 1 0 0 0 2 0 0 0 1 1 3 0 0 1 0 0 0 0 0 

/dh/ (as in thine) 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 2 0 1 0 0 0 

/f/ (as in fog) 0 0 3 0 0 0 2 0 4 1 3 0 1 0 3 0 0 0 0 0 0 

/v/ (as in van) 0 0 0 2 0 0 0 0 1 1 0 0 0 1 0 1 2 1 1 3 0 

/s/ (as in sea) 0 0 0 0 0 0 1 0 2 0 2 0 2 0 1 0 0 0 0 0 0 

/z/ (as in zoo) 0 0 0 0 0 0 1 1 1 0 1 2 2 1 0 1 0 0 0 0 0 

/sh/ (as in ship) 0 0 0 0 0 0 0 0 1 0 1 0 4 0 1 0 0 0 0 0 0 

/zh/ (as in treasure) 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

/h/ (as in heel) 0 0 0 0 0 0 0 0 2 1 0 0 0 0 2 0 0 0 0 0 0 

/dZ/ (as in jibe) 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 2 0 0 0 0 0 

/m/ (as in mast) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 

/n/ (as in none) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 2 0 0 

/ng/ (as in ring) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 

/w/ (as in wall) 0 3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 

/y/ (as in yacht) 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 1 1 0 8 

None of them 0 0 1 0 2 0 4 6 3 4 2 7 2 4 4 2 3 3 1 3 2 
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 However, in much phonetic research, the perception of consonants also depends on the 

context and coarticulation [55, 83]; therefore, another experiment was conducted to examine 

how participants responded to different coarticulation. 

Another perception test for consonant-vowel was conducted under office environment 

in a laboratory office or quiet zone in a library to convey the real environment of real 

conversation. Participants perceived the sounds via SONY stereo headphones MDR-XD200 

through CX20672 HD Audio Codec audio output supporting sample rates of up to 96 kHz, 

16-24-bit resolution [83].  

Three experimental sound lists were randomly generated from 70 sounds. Each list 

contained 18 sounds from (3 nasal + 3 voiced-plosive) x 3 vowels, 14 sounds from (9 

fricative + 3 unvoiced-plosive + 2 semi-vowel) x 1 vowel, and 3 individual vowels in 2 sets 

of synthesized and recorded versions. Fricatives and unvoiced-plosives enable an evaluation 

of how participants perceive them, even though the noise source is just unfiltered white noise. 

The recorded sounds were cut from mngu0 WAV files while the synthesized ones adopted 

coarticulation from it. Participants were then asked to label sounds in SAMPA transcription 

according to the SAMPA table from [20] or in IPA according to the IPA chart (2005) [82]. 

The participants were also asked to award naturalness scores (0 for totally robotic to 10 for 

natural-like human speech) to each sound. 

In this test participants were asked to label the sounds they perceived after listening to 

a pair of synthesized and recorded diphones. The phone pairs in this experiment were 

consonant-vowel (CV) for testing the resonance of the articulation of the proposed model. An 

adjacent vowel works as a carrier which makes the overall sound more like real syllables in 

natural speech. The sounds are pairs of all studied English phones with the three vowels /u/, 

/i/ and /A/. These three vowels are located at corners of the cardinal vowel chart, which is an 

ideal oral articulation chart for all possible vowels in the world’s languages, and represents 

extremes of articulation in two perspectives – front-back and open-close, for which /u/ is 

front and narrow, /i/ back and narrow and /A/ back and open. The consonant set contains 

nasals /m, n, N/, plosives /p, b, t, d, k, g/, fricatives /f, z, T, D, s, z, S, Z, h/, semi-vowels /j, w/ 

but not /r, l/ or /tS, dZ/ as described in the previous section.  
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Twelve subjects participated in this experiment; some of whom had also done the 

previous experiment but some of whom had not. They were eight males and four females, 

aged between 23 and 34 years (mean: 27.75 years).  Four had a strong phonetic background 

and three had taken courses in phonetics, while the rest had no phonetic experience but were 

British with a musical or audio engineering background. 

The first set of analysed results shows the subjects’ perception of vowels in CV 

chunks taken from mngu0. In a comparison of the subjects’ perception to phone label 

provided in the mngu0 corpus, it shows that 75% of the participants perceived the recorded 

vowel /A/ and labelled it as /A/, the same as it is labelled in the .lab file, while 100% 

perceived /i/ and put it as /i/, and 50% perceived /u/ and put it as /u/. It shows that the chunks 

of vowel used in this research can be perceived confusingly when they are presented alone. 

However, their trajectories together with their leading part (from studying consonants) are 

used in this research. In addition, Figure 6.23 shows the percentage of participants who 

labelled chunks of sound cut from mngu0 as they were labelled in the database. 

 

Figure 6.23. Number of participants who labelled phones from recorded speech correctly. 

This chart shows the ability of participants to perceive each recorded English phone from 

hearing chunks of recorded speech. 
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Despite the fact that consonants and vowels in the mngu0 corpus were not perceived 

100% correctly according to their labels, their recorded articulatory trajectories were used as 

articulatory guidelines in this research. As described in the previous chapter, vocal tract shape 

and articulatory trajectories are mixed from two sources, vocal tract shape from [60] and 

articulatory trajectories from mngu0. All the studied phones, as well as /A/, /i/ and /u/ MRI 

data from the subject named Jack in [60], are used. In Speed’s work, he claimed that, using 

them in his 3-D DWM vowel synthesizer to reproduce the vowels, his subjective accuracy 

was that 20 out of 20 participants perceived and labelled synthesized /A/ correctly as /A/, 

while 14 of them labelled /i/ as /i/ and 10 labelled /u/ as /u/. In this experiment, the same 

vocal tract shape extracted from the same MRI data is used to resynthesize the phones, and 4 

out of 12 participants perceived /A/ as /A/, while 7 out of 12 perceived /i/ as /i/ and 6 out of 

12 perceived /u/ as/ u/, using 2-D DWM.  

Moving from the analysis of the participants’ perception of vowels to that of consonants, the 

synthesized consonants were put in this listening test with a carrier, an adjacent vowel, in CV 

format. /A/, /i/ and /u/ are used in nasals and voiced-plosive synthesis, and only /A/ is used 

for unvoiced plosives, fricatives and semi-vowels. Even though many phonetics researchers 

have mentioned that using the carrier can strongly affect the perception of consonants, the 

consonants are not usually pronounced alone in real speech. Therefore, the vowel carrier 

under the implementation of articulatory simulation is involved in this perception test. Figure 

6.23 shows the first set of percentages of participants who perceived and labelled synthesized 

nasal phones as they were produced by nasal models for /m/, /n/ and /N/. 
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Figure 6.24. Percentage of participants who were able to label synthesized nasal in different 

vowel carrier. 

The results in the figure show that /m/ was perceived when it was produced with the 

vowels /A/, /i/ and /u/, but /n/ was perceived only when it was synthesized with the back 

vowels /A/ and /u/ while /N/ was perceived only when it was produced with the open-back 

vowel /A/. With these different vowel carriers, these results indicate the accuracy of the 

proposed model in resonating formant transition when the nasal tract is attached. Kent and 

Read [32] describe how the transitions in nasals also affect the listener’s perception and have 

similar characteristics as those in plosives [32]. The results then not only show how 

participants perceive nasal consonants themselves, but also how well the nasal characteristics 

work with adjacent vowel carriers. The place of articulation is then discussed here.  From the 

results, participants perceived /m/ from the model with bilabial closure correctly when it was 

followed by the close-back vowel /u/; the next most accurate was for the open-back /A/ at 

58.2% while the least accurate was for the close-front /i/ at 41.7%. Then the alveolar for /n/ 

and velar for /N/ work only for back vowels. These indicate that the anti-formants in 

synthesized /n/ and /N/ (shown in Figure 6.4) cannot be perceived and/or F2 transition to 

close vowels /i/ and /u/ are not realistic enough to be perceived. These results also add up 
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indicates that, when they are synthesized with the proper coarticulation, they can be 

perceived more accurately. 

Without nasalization, from slowly releasing the blockage to suddenly releasing the 

phone type plosive, Table 6.3 shows how accurate the model is when it is used in producing 

English plosives with an adjacent vowel carrier. The table shows the percentage of 

participants who perceived them with loci and formant transition for voiced plosives /b/, /d/ 

and /g/ and unvoiced plosives /p/, /t/ and /k/, and then labelled them correctly. Voiced 

plosives were produced with /A/, /i/ and /u/, but unvoiced were produced only with /A/. This 

was because the unvoiced was not the focus of this perception test as the noise source is not 

focused on this research. Instead resonance and then white noise is used for the plosion 

excitation and is definitely not sufficiently accurate for a perception test. However, as testing 

how participants perceive them is still of interest, /A/ is used as a carrier for unvoiced 

plosives. 

Table 6.3. Percentage of participants who perceived each plosive grouped by carrier vowel. 

 

/b/ /d/ /g/ /p/ /t/ /k/ 

/A/ 0.0% 8.3% 91.7% 8.3% 33.3% 50.0% 

/i/ 58.3% 0.0% 83.3% - - - 

/u/ 75.0% 0.0% 75.0% - - - 

 

From the overall view of the results in this table, we can see percentages of perception in all 

plosives which means that all synthesized plosives are perceivable but differently so, 

depending on the vowel carrier. The table shows that /g/ had the highest number of 

participants who could perceive it accurately, giving the best response when it is synthesized 

with /A/ then /i/ then /u/, while /b/ was identified best when it was produced with close 

vowels /i/ and /u/ only (not /A/), and /d/ was best identified when it was produced with /A/ 

only.  

In table 6.3, there are three sounds that are not correctly perceived at all (0.0% shown 

in the table) which are /bA/, /di/ and /du/. If we take a look at them a bit more closely in their 
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formant transitions in Figure 6.17, their F2 moves in different direction comparing to those in 

real speech even if their F1 move in the same direction and almost in same frequencies. 

These support Delattre et al.'s theory on plosive perception that all of the F1, F2 transitions 

play an important part in that if there is anything in the sound that tends to cue another sound 

then there will be confusion. Moreover, there are some differences in F3 transitions but they 

don't have much effect on perception comparing to F2, to the different F3 transitions in /gA/ 

in Figure 6.17 that got 91.7% correct perception in table 6.3. 

/bA/, /di/ and /du/ were not perceived. The confusion matrix is shown in Table 6.4. In 

detail, four participants mistook /b/ when it was produced in /bA/ for /d/, while one 

participant mistook /d/ in /di/ for /D/, and three participants mistook /d/ in /du/ for /g/.  

Table 6.4. Confusion matrix of number of participants marking the studied phone  

/b/ in /bA/, /d/ in /di/ and /d/ in /du/ as a different one. 

 

/p/ /b/ /t/ /d/ /k/ /g/ /dh/ Not perceived any consonant 

/b/ in /bA/ - - - 1 - - 1 10 

/d/ in /di/ - - - - - - 1 11 

/d/ in /du/ 1 1 - - 1 2 - 7 

 

These indicate that there are some errors in /bA/, /di/ and /du/. When we examined 

their formant transitions more closely, we found that there were F2 locus errors in them. The 

locus of /bA/ was slightly too high (higher than F2 frequency) which does not match to its 

theoretical locus that should be lower than F2 frequency. Moreover, it is more similar to the 

transition in /d/ (the theoretical locus is shown in Figure 6.16), and therefore it was perceived 

as /d/. In the same way, the F2 locus in the synthesized /du/ was not high enough to be 

perceived as /d/, but was at a low frequency as for /g/ and therefore was perceived as /g/. In 

/di/, the locus was correct but the burst was too thin which caused an overly slow opening of 

the oral closure. These thin energy and wrong locus frequencies may indicate the 

disadvantage of adopting some trajectories from continuous speech, in that they can mislead 

articulatory trajectories for CV synthesis which directly affect the acoustic characteristics and 

therefore lead to the wrong perceived sound. 
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For fricatives, only the vowel /A/ was used as a carrier and only /f/, /v/, /T/, /S/ and /h/ 

were perceived. Almost all of the unvoiced fricatives were perceived by different numbers of 

participants, with the exception of /s/. /h/ and /f/ were picked up the most because of their 

acoustic properties that cover a wide range of frequencies. All the other fricative properties 

were described by resonance in the frontal cavity from constriction [58], [84], [70], [85]. /T/ 

and /S/ were perceived by a few participants which means that some participants can perceive 

low frequency resonance from the frontal cavities in synthesizing /T/ and /S/, but not /s/ 

which involved the shortest front cavities and resonated friction noise in high frequencies.  

/v/ was the only voiced fricative perceived. This means that the voicing source with 

coarticulation implementation could not synthesize a proper voiced fricative acoustic 

property accurately when one of them (/v/) that involves a wide range of frequencies from 

labiodental constriction was perceived accurately but all others that resonate a narrower range 

of frication frequencies were not picked up by listeners (/D/, /z/, /Z/ were not labelled). 

However, comparing with the results from the previous experiment, synthesizing them alone, 

without a carrier, can be perceived by some participants.  

 

Figure 6.25. Perceivable synthetic fricative chart. 

The last set of results is the number of participants who can perceive /j-A/ and /w-A/. 

Ten of the twelve picked up /j/, while five of them perceived /w/. This result shows that faster 

articulation for synthesizing a semi-vowel with an adjacent open vowel /A/ affects human 
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perception slightly differently. Oral tract articulation from the shape for front-close vowel /i/ 

to back-open /A/ was more successful than that from back-close vowel /u/ to /A/ for 41.6% of 

participants.  

In addition, all participants were asked to score the naturalness they thought they 

perceived from 0 to 10, when 0 means totally robotic and 10 means real speech. The CV cut 

chunks from 16 kHz recorded speech obtained 5.81 out of 10.0 while the synthesized CVs 

which were also down sampled to 16 kHz obtained 4.49 out of 10.0, on average. The low 

scores of those from real speech (the cut chunks) is a result of too short a length of CV with 

unclear boundary cut from continuous speech. The below middle score from synthetic speech 

is a result of robot-like characteristics. These results indicated that another set of studying 

sounds and their articulatory trajectories (pairs of CV) is needed for more precise comparison 

in the perception test. However, the lower score of the synthetic ones compared to the real 

ones indicates that the sounds of the proposed system are more robot-like than natural.  

Figure 6.26 shows the collative of the results of the listening tests. C, CV and real 

show the average percentage of accuracy in each test. C is for the results from consonant 

perception test, CV is for consonant-vowel and real is for real speech. The figure shows that 

the semivowel gets the highest accuracy in total than the plosive, nasal, fricative and 

affricate, respectively. The black error bars indicate standard deviation in each case. This 

shows the success of semivowel recognition in both C and CV tests in getting not much 

different percentage of accuracy as same as nasal (but in lower percentage). On the other 

hand, plosive and fricative get bigger different percentage. This could be an effect of using 

different source of tract shape and trajectories and also am extra noise source in vocal tract, 

which is the main acoustic characteristic of both plosive and fricative. 
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Figure 6.26. Summary of the results of the listening tests. 
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Chapter 7  

Conclusions and Future Work 

 

A two-dimensional digital waveguide mesh has been used as a numerical method to 

simulate wave propagation for English consonant production. It was used with specific 

configurations for acoustic consonant production. According to [55], consonants are 

produced by articulations in the vocal tract, and this research has demonstrated 2-D DWM 

acoustic performance when the cross-sectional areas of the vocal tract are changed. The 

manner of articulation enabled the grouping together of English phones with similar 

articulation. The acoustic behaviours for each manner became the main target in this study. 

Generally, 2-D DWM has been used with some additional configurations such as: 

- attaching a side branch for nasal studies;  

- injecting a secondary noise source at the place of constriction for fricative and 

plosive studies;  

- implementing the articulatory trajectories to study semi-vowels and all other 

consonants in the case of CV synthesis.  
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The simulation itself has adopted the cosine impedance function from [5] to smooth 

the formant transition during articulations. The articulation in this research was implemented 

by a vocal tract area change sequence based on recorded articulator position changes. 

7.1 Conclusion 

 

In semi-vowel synthesis, the model was set as for synthesizing diphthongs but the 

transition was faster and the results show that the modelled formant transitions are similar to 

those found in natural speech and also that more than two thirds of participants can identify 

them correctly. However, the perception test also shows that responses from some English-

speaking participants identify the synthesized semi-vowels, plosives, nasals and some 

fricatives more reliably when they are synthesized with an adjacent /A/ and /i/ but less 

reliably when with an adjacent /u/. 

For fricatives, the synthesis was set up with an additional noise source (white noise) 

around the place of constriction, at junctions behind the place of constriction. The objective 

results showed similarities in terms of frequency range compared to those in natural speech in 

all attempts. However, the use of white noise did not create a natural frication source. 

Objectively, the results show that 2-D DWM has resonances in its fricative outputs which can 

be associated to the size of the front cavity or tube, but the subjective results indicate that 

these properties are not clear enough to be perceived reliably by English speakers. The 

fricatives /f/, /T/, /S/, /h/ and /v/ were perceived most reliably. 

For plosives, the main acoustic features, stop gap, transient, frication interval, VOT 

and formant transition, are summarised in Chapter 4. The stop gap and transient burst 

relationship was examined. The result shows that the longer closure causes the stronger burst, 

but that nevertheless aspiration was not generated. Hence, an additional noise source (again, 

white noise) is injected at the place of constriction/closure to hold the frication energy for the 

aspiration interval. VOT was not examined in detail but voice source was turned on for 

voiced plosive after an appropriate voice onset time but turned off for unvoiced synthesis. 

The formant transition was examined by synthesizing voiced plosives with three vowels /i/, 

/u/ and /A/ to vary target vowel formant frequencies. The results show that all transitions 

have similar trajectories to those appear in natural speech apart from the results from /u/. It is 



   Chapter 7 Conclusions and Future Work 

133 

 

 

suggested that synthesizing /u/ requires proper modelling of lip rounding which is outside the 

scope of this research.  

 

For affricates, the acoustic properties are similar to plosive and fricative together (see 

Chapter 4). The articulation plays a more important part here, as does the nature of the 

frication source. The lack of MRI images for the affricates was a limitation (the place of 

articulation has to be post-alveolar closure and then post-alveolar constriction [55] but we 

only have alveolar plosives /t/ and /d/). However, the simulation was done using the alveolar 

place of articulation and this gives comparable acoustic properties which have been 

discussed. Therefore, for affricates, more accurate vocal tract shape and frication sound 

source are needed in future work.  

For nasals, the branch tube is attached by a modification of junction topology at the 

velopharyngeal port location (shown in Figure 5.11). The results show that the branch tube 

absorbs acoustic energy at its anti-formant frequency in spectrograms not far from the 

expectation frequency.  

The results in Figure 6.6 show convincing anti-formants when applying real tract 

shapes /m/, /n/ and /N/. The subjective results showed that most participants could perceive 

/m/, /n/ and /N/ when they were synthesized with adjacent /A/ and all participants could 

perceive /m/ when it was with /u/.  

In addition, given the additional noise source injection location along the x-axis, on 

the y-axis the noise source is injected equally into all y junctions which means that the noise 

source is scattered at the place of injection. A more precise dipole source as described in 

Shadle, 1991 and Peter, 2014 could also be implemented and injected at boundary junctions 

only, as future work.  

From the view of acoustic phonetics, the muscle gesture at the articulators has not 

been discussed or included in this research (readers can find an example of muscle control for 

great success in articulatory speech synthesis in Functional Phonology [39]). Only cross-

sectional areas were extracted and used to guide the tract shape for each English phone. 

Articulatory trajectories were adopted from mngu0 [67] and implemented in the simulations 
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mainly to enable formant transformations. This can also help to guide the speed of the release 

stage in plosion generation.   
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7.2 Future work 

 

There are several points that can be considered for continuing this work in the future, 

such as: 

 Increasing the number of dimensions to three 

Speed successfully evaluated his 3-D DWM vowel synthesizer in 2013 [60]. His work 

successfully generated similar sounds to recorded ones from the same subject who gave 

his/her tract shape scanned at a sampling rate of 176.8 kHz. There are possibilities of 

applying his 3-D synthesizer for consonants. In addition, to get more human-like sounds the 

system could also include a frication source (e.g. Birkholz [74]).  

 A more accurate frication source 

An appropriate frication noise source is essential for fricative, plosive and affricate synthesis. 

The noise characteristics vary by place of articulation and the nature of the source (obstacle 

or wall) [80]. However, Peter, 2014 [74] claims that the place of articulation cannot always 

rely on the area function during dynamic articulatory speech synthesis. Further studies in 

friction source implementation can be found in (Shadle, 1991, Badin, 1995, Peter, 2014).  

 Using a more accurate vocal tract shape and articulation from the same subject 

In this work, I applied vocal tract shapes that were scanned under support from York 

Neuroimaging Centre (YNiC) using a General Electric 3.0T HDx Excite MRI Scanner to the 

articulatory trajectories from another subject which was recorded at Ludwig-Maximilians-

Universität München using Cartsens AG500 electromagnetic articulograph. The two subjects 

are both native English speakers but more accurate tract shape from the same subject is 

strongly needed. Then we can use trajectories to indicate coarticulation in the vocal tract 

properly. For the target sound recording, they can be done from the same subject in an MRI 

scanner just before the start to reduce background noise, then the vocal tract shape can be 

scanned and then the articulatory trajectories can be recorded separately.  

As MRI technology is improving, real-time MRI (rtMRI) is also very helpful in 

guiding articulatory trajectories in the vocal tract. Kim [86] claims that he can evaluate the 

distance between tissue boundaries in the USC-EMO-MRI corpus more precisely; hence, we 
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can use this set of data to control articulation as well. Note that the quickest sampling rate in 

recording rtMRI is 400 Hz using the NDI Wave Speech Research System which is quick 

enough even for capturing plosive gestures (at least 200 Hz for plosive [55, 32]). 

In addition, in the case of plosive simulation, the tract is meant to be completely shut 

which requires the cosine function to be weighted to near zero value (it cannot be zero to 

avoid dividing by zero in the calculation). Then the release acts quickly after the closed phase 

which causes a sudden increase in the weighted cosine parameter. However, the allowance of 

the leakage of propagated pressure is spread over the tract width as cosine shape with the 

most pressure at the middle of the tract.  
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////////////////////////////////////////////////////////////// 

// Scatter algorithm 

// Anocha June 2011: revise for velopharyngeal 5 port scattering 

////////////////////////////////////////////////////////////// 

 

void CVocalTract2DWaveScat::Scatter() 

{ 

 UInt16 x, y; 

 

 for(x=0; x<m_iXSizeMax; x++) 

 { 

  for(y=0; y<m_iYSizeMax; y++) 

  { 

    

   if(x==m_iVelumIndex)  // Anocha 5 port scattering 

   { 

    m_Pressure = 2*( (  m_PNPlus[x][y] / m_ZNorth[x][y]  

          + m_PEPlus[x][y] / m_ZEast[x][y]  

          + m_PSPlus[x][y] / m_ZSouth[x][y]  

          + m_PWPlus[x][y] / m_ZWest[x][y]  

          + m_PVelarInput[y] / m_ZVelar[y])  

        

       / (   1/m_ZNorth[x][y] + 1/m_ZEast[x][y]  

        + 1/m_ZSouth[x][y] + 1/m_ZWest[x][y]  

        + 1/m_ZVelar[y]) ); 
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    if(fabs(m_Pressure)>1.0) 

     m_Pressure=m_Pressure; 

 

     

   } 

 

   else      // 4 port scattering 

   { 

    m_Pressure = 2*( (  m_PNPlus[x][y] / m_ZNorth[x][y]  

          + m_PEPlus[x][y] / m_ZEast[x][y]  

          + m_PSPlus[x][y] / m_ZSouth[x][y]  

          + m_PWPlus[x][y] / m_ZWest[x][y]  )  

         

       / (   1/m_ZNorth[x][y] + 1/m_ZEast[x][y]  

        + 1/m_ZSouth[x][y] + 1/m_ZWest[x][y] ) ); 

   } 

 

   m_PNMinus[x][y] = m_Pressure - m_PNPlus[x][y]; 

   m_PEMinus[x][y] = m_Pressure - m_PEPlus[x][y]; 

   m_PSMinus[x][y] = m_Pressure - m_PSPlus[x][y]; 

   m_PWMinus[x][y] = m_Pressure - m_PWPlus[x][y];    

    

   // nasal output to tract 

   if(x==m_iVelumIndex) 
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    m_NasalTract->setInputFromTract( (m_Pressure-m_PVelarInput[y]), y); 

  } 

 }  

 

 if(m_bNasal) m_NasalTract->Scatter(); 

 

} 
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////////////////////////////////////////////////////////////// 

// Timestep algorithm 

// Anocha : revise for extra noise source injection and lip radiation 

////////////////////////////////////////////////////////////// 

 

void CVocalTract2DWaveScat::Timestep() 

{ 

 UInt16 x, y; 

 Float32 input; 

 Float32 noise; 

 UInt16 fricJunc = m_vCurrentVowel->m_iImpMaxIdx ; 

 

  

 noise = m_SystemData->amp_coef * m_SystemData->extraNoise_coef *getNoiseExternalInputSample(); 

 input = m_SystemData->amp_coef * getInputSample(); 

  

 

 for(x=0; x<m_iXSizeMax; x++) 

 { 

  for(y=0; y<m_iYSizeMax; y++) 

  {  

 

   if(x==0) 

    m_PWPlus[x][y] = m_fGlottalRef * m_PWMinus[x][y] + input; 

   else{    
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    ////  Adding extra noise source at the most constricted junction 

    if(m_SystemData->extraNoise_coef != 0.0 && x== (fricJunc+fricJuncCnt))  

     m_PWPlus[x][y] = m_PEMinus[x-1][y] + (m_SystemData->extraNoise_coef * noise); 

    else 

     m_PWPlus[x][y] = m_PEMinus[x-1][y]; 

   } 

 

 

   if(x==m_iXSizeMax-1) 

    m_PEPlus[x][y] = m_fAirRef * m_PEMinus[x][y]; 

   else 

    m_PEPlus[x][y] = m_PWMinus[x+1][y]; 

 

 

 

   if(y==0) 

    m_PSPlus[x][y] = (x > m_iLipIdx)?m_fAirRef:m_fWallRef * m_PSMinus[x][y]; 

   else 

    m_PSPlus[x][y] = m_PNMinus[x][y-1]; 

 

   if(y==m_iYSizeMax-1) 

    m_PNPlus[x][y] = (x > m_iLipIdx)?m_fAirRef:m_fWallRef * m_PNMinus[x][y]; 

   else 

    m_PNPlus[x][y] = m_PSMinus[x][y+1]; 
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   // velar inputs  

   if(m_bNasal && x==m_iVelumIndex) 

   { 

    m_PVelarInput[y] = m_NasalTract->getOutputToTract(y); 

   } 

 

  } 

 } 

 

 if(m_bNasal) m_NasalTract->Timestep(); 

} 
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////////////////////////////////////////////////////////////// 

// Main sample increment function  

// Anocha 10 May 2012 : revise for separate oral and nasal output channel and articulation 

////////////////////////////////////////////////////////////// 

 

Float32 CVocalTract2DWaveScat::getSample() 

{ 

 

 Scatter(); 

 Timestep(); 

 

 

 // Anocha : add m_bOral m_bNasal 

 if(m_bOral) 

  setPressureOut(0,(Float64)(getOutput())); 

 else 

  setPressureOut(0,0.0); 

 if(m_bNasal) 

  setPressureOut(1, m_NasalTract->getOutput()); 

 else 

  setPressureOut(1,0.0); 

 

 

 if(m_bSliding)   Slide(); 

 if(m_bManualSliding) ManualSlide(); 
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 if(m_bVelumSliding)  VelumSlide(); 

 

 // Anocha nasal and oral output channel separatoin 

 Float64 pressure=0.0f; 

 for(int i=0; i<2; i++) 

 { 

/*  //Anocha: comment out for overclip protection 

  if(getPressureOut(i)>0.5f) 

   setPressureOut(i, 0.5f); 

 

  if(getPressureOut(i)<-0.5f) 

   setPressureOut(i, -0.5f); 

*/ 

  if(m_SystemData->getCh()==1) 

   pressure += getPressureOut(i); 

  else 

   pressure = getPressureOut(i); 

    

  if(m_SystemData->getWriteWav()) 

  { 

   if(m_SystemData->getCh()==1 && i==0) continue;  

   m_DataOut->DumpData(&(pressure), 1); 

   pressure = 0; 

  } 

 } 
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 if(( m_SystemData->samplecnt == smpStep * m_SystemData->artcnt) //Anocha smpStep = m_SystemData->getFs/m_artFs; //Anocha for mngu0, m_ArtFs is 200 

   + m_iTimeHold + m_iTimeShift 

  ) 

 { 

   Articulate(artShp[m_SystemData->artcnt], 1.0/m_artFs); 

  

   if ((double)m_SystemData->samplecnt/(double)m_SystemData->getFs == fricStartTime) 

    m_SystemData->extraNoise_coef = m_fExtraNoiseAmp; 

  

   if ((double)m_SystemData->samplecnt/(double)m_SystemData->getFs >= fricStopTime) 

    m_SystemData->extraNoise_coef = 0.0f; 

  

 } 

 

 m_SystemData->samplecnt ++; 

   

 

 

 if(m_bMute)  return 0; 

 else   return 1;//pressureOut;// Anocha change for 2 channel array  

 

  

} 
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////////////////////////////////////////////////////////////// 

// Articulation 

////////////////////////////////////////////////////////////// 

void CVocalTract2DWaveScat::Articulate(VowelType tractShape, Float32 time){ // time is 0.005 s for articulation from mngu0  

 

  m_SystemData->m_Dlg->m_VocalSystem->setVowelSlide(tractShape, time);    

} 
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Synthesized English consonant sound samples using 2-D 

Digital Waveguide Mesh. 

  Synthesized sound Cut chunk from continuous speech 

/A/ track1_1.wav track1_2.wav 

/i/ track2_1.wav track2_2.wav 

/u/ track3_1.wav track3_2.wav 

/bA/ track4_1.wav track4_2.wav 

/bi/ track5_1.wav track5_2.wav 

/bu/ track6_1.wav track6_2.wav 

/dA/ track7_1.wav track7_2.wav 

/di/ track8_1.wav track8_2.wav 

/du/ track9_1.wav track9_2.wav 

/gA/ track10_1.wav track10_2.wav 

/gi/ track11_1.wav track11_2.wav 

/gu/ track12_1.wav track12_2.wav 

/pA/ track13_1.wav track13_2.wav 

/tA/ track14_1.wav track14_2.wav 

/kA/ track15_1.wav track15_2.wav 

/fA/ track16_1.wav track16_2.wav 

/sA/ track17_1.wav track17_2.wav 

/TA/ track18_1.wav track18_2.wav 

/SA/ track19_1.wav track19_2.wav 

/vA/ track20_1.wav track20_2.wav 

/zA/ track21_1.wav track21_2.wav 

/DA/ track22_1.wav track22_2.wav 
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  Synthesized sound Cut chunk from continuous speech 

/ZA/ track23_1.wav track23_2.wav 

/hA/ track24_1.wav track24_2.wav 

/mA/ track25_1.wav track25_2.wav 

/mi/ track26_1.wav track26_2.wav 

/mu/ track27_1.wav track27_2.wav 

/ni/ track28_1.wav track28_2.wav 

/Ni/ track29_1.wav track29_2.wav 

/jA/ track30_1.wav track30_2.wav 

/wA/ track31_1.wav track31_2.wav 
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