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Abstract 

 

Gamma-hexachlorocyclohexane (ɣ-HCH), commonly referred to as lindane, is one of 

the most widely studied and ubiquitously detected organochlorinated contaminants 

within the environment.  Mainly used as a pesticide, it is highly resistant to chemical, 

biological and natural photolytic light degradation which enables it to remain intact for 

long periods of time.  Concerns over its toxicity, persistence and long-range transport 

have necessitated an environmentally appropriate and cost-efficient remediation 

strategy to remove it from the ecosystem, especially in developing countries where 

consumption and production of Lindane can have a serious effect on health, 

economics and arable land use.  Phytoremediation, using plants and their respective 

enzymes, is an eco-friendly, practical and cost efficient biotechnology for the 

treatment and removal of lindane.  This thesis aims to develop a detailed 

understanding of transgenic Arabidopsis thaliana expressing an HCH-

dehydrochlorinase (LinA) protein, from Sphingobium japonicum UT26, and its ability 

to take up, dechlorinate and mineralize the persistent organic pollutant.  

 

This investigation of transgenic phytoremediation utilizes Gateway® cloning 

technology, Agrobacterium-mediated transformation, enzymatic activity assays, 

along with metabolomic and proteomic techniques to show that transgenic A. 

thaliana can express the bacterial protein and is capable of removing lindane from its 

environment to either sequester it or metabolize it in vitro. However, this work also 

establishes that in vivo, the transgenic plant displays similar growth characteristics to 

the wild type and is unable to survive on any of the lindane concentrations previously 

estabilished as being toxic to A. thaliana.. Therefore, additional investigations into 

the metabolome and interactome of transgenic A. thaliana, and other plants 

exhibiting an innate ability to uptake lindane, as well as the controlled expression of 

engineered proteins, need to be studied before confirming the effectiveness of 

phytoremediation as a suitable technology for the removal of lindane from the 

environment. 
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Persistent organic pollutants (POPs) are natural or anthropogenic compounds that 

are resistant to chemical, biological and natural photolytic light degradation allowing 

them to remain intact within the environment for long periods of time (Wang, et al., 

2005).  These ubiquitous contaminants and their products are of considerable 

interest due to their toxicity, their ability to accumulate in the fatty tissues of living 

organisms, and their subsequent negative impact on the environment and human 

health. 

 

ɣ-Hexachlorocyclohexane (ɣ-HCH) is one of the most studied and frequently 

detected POPs within the environment.  Also known as Lindane, and henceforth 

referred to as such, it is a highly chlorinated organic compound which has mainly 

functioned as a pesticide with insecticidal properties (Bhatt, et al., 2009). 

Additionally, it has been used in agricultural, livestock and human treatments and as 

a component in industrial solvents (Safe, 1998).  It is estimated that global lindane 

usage from 1950 to 2000 was approximately 1.75 million tonnes (Li, 1998; U.S. 

Environmental Protection Agency , 2006a).  Usage as a pesticide continues in a few 

third world nations and it is still used for pest and vector control in several developed 

countries (Kumari, et al., 2002). 

 

There are several pathways for lindane to enter the environment.  Air releases can 

occur during manufacturing, application and disposal as well as through volatilization 

after application (Shen, et al., 2004).  Further releases into the air, soil and water are 

also possible from production sites, expired stockpiles and open dump sites, which 

may not be properly controlled or maintained (Loibner, et al., 1998). Due to its high 

lipid solubility and hydrophobicity, lindane can bioaccumulate easily in the food chain 

and rapidly bioconcentrate starting in microorganisms and working up through 

insects, fish, birds and mammals (IPCS, 1991).  Concerns have been raised over its 

persistence and long-range transport as residues have been reported in both human 

samples; human blood, breast milk and adipose tissue; and environmental samples; 

soil, vegetation samples, drinking water, food products and bottled water from North 

America, The Arctic, Southern Asia, the Western Pacific, and Antarctica (Joint WHO 

Convention Task Force on the Health Aspects of Air Pollution, 2003; United Nations 

Environment Programme, 2006). 
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Lindane works as an ingested stomach poison by inhibiting γ-aminobutyric acid 

(GABA) neurotransmission; the main inhibitory neurotransmitter in mammalian and 

insect central nervous systems (Waffard, et al., 1989).  Respiratory; cardiovascular; 

haematological; hepatic; endocrine; carcinogenic and reproductive effects, along 

with tumours and death have also been reported following exposure and inhalation 

(Willett, et al., 1998).  

 

As the toxicity, distribution and persistence of lindane is well established, it is 

imperative to develop a method by which it can be safely and quickly removed from 

the environment.  Although expensive and potentially dangerous, the standard 

practice typically used in its remediation involves physical removal or chemical and 

thermal transformation (Sutton & Hunter, 1989).  Hydrolysis is the most common and 

important abiotic method.  Climate conditions, water content, pH, oxygen levels and 

bacterial presence can also influence the degradation of the otherwise persistent 

compound (International Programme on Chemical Safety, 1992).   Bioremediation is 

a low-cost, low-technology, and relatively low-disturbance alternative technique that 

uses microorganisms (indigenous or foreign); fungi; and / or plants 

(phytoremediation) and their enzymes to biologically degrade organic waste to a 

non-toxic state, or to levels below threshold concentration limits (Vidali, 2001). 

 

Microbial bioremediation of lindane has been observed under both aerobic and 

anaerobic conditions (Pal, et al., 2005).  Despite positive results being reported in 

laboratory studies, few reports are available for in situ treatment of contaminated 

sites.  In recent studies where bacteria have been used for decontamination in field 

studies, bioaugmentation occurred at relatively low concentrations, requiring both 

long-term inoculations and nutrient application (Raina, et al., 2008).  

 

Increasing attention has been given to phytoremediation; an aesthetically, 

environmentally and economically-friendly bioremediation technology with additional 

environmental advantages including biofuel production and carbon sequestration.  

This green technology is in situ, solar driven with no requirement for external carbon, 

nitrogen or energy sources, immoboilizes hazardous compounds and contributes to 

soil stabilisation (Susarla, et al., 2002).  However, as plants often lack the catabolic 
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enzymes necessary for complete degradation and mineralization of these 

compounds when compared to microorganisms, there is potential for accumulated 

toxins to be released back into the environment or food chain.   

 

Thus far, owing to the limitations of natural microbial bioremediation and 

phytoremediation, no such method for the clean-up of lindane on a global scale has 

been realized.  Improving plants for phytoremediation will likely result from 

transferring genes known to be involved in xenobiotic degradation from other plants, 

microbes and eukaryotes, specifically those that can be used to improve the uptake 

and degradation of lindane.   

 

The catabolic genes and Lin enzymes involved in lindane degradation have been 

extensively studied in the Gram-negative soil bacterium, Sphingobium japonicum 

UT26 (Nagata, et al., 1999).  HCH dehydrochlorinase (LinA) mediates the initial 

transformation of lindane in a specialized pathway by catalysing the first two 

dehydrochlorination steps of lindane to 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-

TCDN), followed by  its spontaneous conversion to 1,2,4-trichlorobenzene (TCB) 

(Nagata, et al., 1999).  

 

Preliminary results from a single proof of concept study have shown that the model 

plant Arabidopsis thaliana modified with the linA gene from S. japonicum UT26 is 

able to grow in the presence of normally toxic lindane concentrations, and remove it 

from the medium whereas the wild type plant is not (De Lorenzo Prieto & Gonzalez 

Pastor, 2007).  However, this cause and effect study does not consider the effects of 

varying concentration on lindane uptake and degradation, the amount of lindane that 

is being accumulated within the transgenic plants following its removal is not 

quantified, nor does it investigate LinA enzyme activity and changes to the global 

proteome.   

 

This research proposes to advance on the above feasibility study and develop a 

mechanistic understanding of the transgenic A. thaliana_linA plant degradation 

pathway with a goal in mind to improve environmental remediation efficiency,  

degradation and mineralization of lindane to CO2 and H2O; to remove the potential 
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accumulation of lindane and its toxic intermediates and their subsequent re-release 

into the environment and entry into the food chain; as well as eliminating the need for 

post-phytoremediation clean-up technologies in future commercial applications.   

 

The hypothesis of this thesis is that the development of a single gene-modified 

plant for the phytoremediation of lindane is enhanced by naturally occurring enzymes 

present in the native plant xenobiotic degradation pathway, such as Cytochrome 

P450s, which are capable of breaking down the less toxic intermediate, 1,2,4-TCB, 

for subsequent metabolization.   

 

The aims of this work were: 

 

1. To transform A. thaliana with the linA gene from S. japonicum UT26 and 

develop a single gene-modified plant for further investigating the 

phytoremediation of lindane; 

 

2. To observe the growth and characteristics of A. thaliana, modified with linA, 

on control, sub-threshold and toxic concentrations of lindane and 1,2,4-TCB 

(relative to wildtype A. thaliana); 

 

3. To investigate the removal and accumulation of Lindane, 1,2,4-TCB and other 

potential intermediates from growth media and in A. thaliana, modified with 

linA, respectively; and 

 

4. To measure quantitative changes in the global proteome of A. thaliana, 

modified with linA, ascertaining whether protein regulation has been affected 

at the individual level within the plant xenobiotic degradation pathway or within 

any other metabolic pathway(s).  

 

Background literature, research methodology, experimental results, conclusions and 

recommendations from this investigation are presented as follows:  
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Chapter 2 – describes the properties of the POP, lindane; its abiotic environmental 

remediation; the role of bacterial genes in its bioremediation; and the alternative 

green method of phytoremediation.  

 

Chapter 3 – addresses aims 1 and 2 and explores the general phenotypic 

characteristics of wild type A. thaliana; its suitability for transformation with linA, its 

subsequent transformation with linA; the ability of wild type and transgenic plants to 

grow under control and lindane stress conditions; and LinA enzyme activity under 

control and lindane stress conditions. 

 

Chapter 4 – examines the suitability of plant tissue cultures compared to whole plant 

systems for in situ laboratory studies; and the removal and accumulation of lindane, 

1,2,4-TCB and other potential intermediates from growth media in wild type and 

transgenic A. thaliana using Liquid/Liquid separation and Gas Chromatography (GC) 

to achieve aim 3. 

 

Chapter 5 – focuses on aim 4 and investigates changes to the global proteome and 

metabolic pathways by comparing wild type and transgenic plant proteins in 

response to control and lindane stress conditions using techniques such as isobaric 

tagging for relative and absolute quantitation (iTRAQ); Hydrophilic Interaction Liquid 

Chromatography (HILIC) separation; and Mass Spectrophotometric (MS) analysis.  

 

The methods relevant to each chapter’s experimental results are located within the 

relevant chapter.  Major conclusions and recommendations for future work are 

discussed in Chapter 6.  
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2.1.  Introduction to Persistent Organic Pollutants 

 

POPs are carbon-based compounds that are resistant to chemical, biological, 

and natural photolytic light degradation (Wang, et al., 2005). They are deemed 

persistent as they remain intact for long periods and over time become widely 

dispersed geographically; accumulate in the fatty tissue of micro- and macro-

organisms; and biomagnify as they move higher up the food chain.  Although there 

are a few naturally occurring sources of POPs, most are anthropogenic; created by 

humans in industrial processes, either intentionally or unintentionally as by-products 

(Alcock, et al., 2004).  The majority of POPs were originally designed as long-lasting 

pesticides while others were created for use in the production of solvents, polyvinyl 

chloride (PVC) and pharmaceuticals (Ritter, et al., 2001).   

 

As a result of their indiscriminate use within the environment over the last several 

decades and long-range transport through air and water and owing to their lipophilic 

and semi-volatile characteristics, POPs are now widely distributed throughout 

substantial parts of the globe including remote areas where they have never been 

used (Macdonald, et al., 2000).  POPs are generally hydrophobic and can 

bioaccumulate in the fatty tissues of living organisms, including fish, birds and 

humans.  At higher levels of the food chain, POPs are found at elevated 

concentrations as a result of biomagnification posing a significant risk to the 

environment and human health (Vassilev & Kambourova, 2006).  Exposure to POPs 

can take place through dietary intake, environment or from industrial accidents.  It 

can have developmental and carcinogenic effects; can cause death and illness 

including neurobehavioural disorders and cancers; and can disrupt the endocrine, 

reproductive and immune systems (Wania & Mackay, 1996). 

 

Initially, twelve POPs, referred to as the ‘Dirty Dozen’, were recognized by the 

Stockholm Convention on Persistent Organic Pollutants as causing adverse effects 

to humans and the ecosystem (Table 2.1) (Stockholm Convention, 2008a). The 

Convention, which came into force on 17 May 2004, requires its Parties to take 

measures to eliminate or reduce the release of POPs into the environment.  As of 
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2014, ten additional compounds have been added to the Convention with a further 

five under consideration (Table 2.2) (Stockholm Convention, 2008b). 

 

Table 2.1  Stockholm Convention on Persistent Organic Pollutants (17 May 2004). 
 

Pesticides  Industrial Chemicals Industrial By-products 

DDT 
 
Aldrin 
 
Chlordane 
 
Dieldrin 
 
Endrin 
 
Heptachlor 
 
Hexachlorobenzene 
 
Mirex 
 
Toxaphene. 

 
Polychlorinated biphenyls  Polychlorinated benzodioxins           

(dioxins)  
 
Polychlorinated  
dibenzofurans (furans)  
  

Information compiled from Stockholm Convention Website (Stockholm Convention, 2008a) 

 

Table 2.2  New Persistent Organic Pollutants and those proposed for listing. 
 

Ammeded  
8 May 2009 

Ammended 
29 May 2011 

Proposed for Listing 
(as of April 2014) 

Hexachlorocyclohexane 
(α-HCH) 
 

β- HCH  
 

Lindane 
 

Hexa- and hepta- 
bromodiphenyl ether 
 

Tetra- and  penta- 
bromodiphenyl ether 
 

Chlordecone  
 

Hexabromobiphenyl 
 
Pentachlorobenzene (PCB) 
 
Perfluorooctane sulfonic acid* 

Endosulfan 

 

Short chained chlorinated 
paraffins 
 

Hexabromocyclododecane 

 

Hexachlorobutadiene 

 

Pentachlorophenol 

 

Chlorinated naphthalenes 

*including its salts and perfluorooctane sulfonyl fluoride 
 

Information compiled from Stockholm Convention Website (Stockholm Convention, 2008b) 
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2.2.  Hexachlorocyclohexane 

 

1, 2, 3, 4, 5, 6 - Hexachlorocyclohexane (HCH) is one of the most studied and 

frequently detected contaminants within the environment. HCH does not occur as a 

natural substance and it exists only through the photochlorination of benzene (IARC, 

1979).  This reaction is catalyzed by visual or ultraviolet light, X-rays or γ-rays to 

yield a mixture of isomers consisting of α-HCH, β- HCH, ɣ-HCH (lindane), δ-HCH, ε-

HCH and other inerts (Kirk-Othmer, 1985).  First prepared in 1825, HCH is a highly 

chlorinated organic compound with insecticidal properties as discovered by Imperial 

Chemical Industries Ltd. (ICI) in 1942 (Li, et al., 1998).  Since its inception it has 

been used for soil protection, agricultural applications, household pest control, 

lumber preservation, treatment of lice and scabies, rodent baits, as an element of 

rocket fuel and as a fire retardant (Safe, 1998). 

 

HCH (also known as benzene hexachloride) is the collective name for the eight 

isomers of 1,2,3,4,5,6-hexachlorocyclohexane (Willett, et al., 1998).  Figure 2.1 

shows the structure of its five important and stable isomers which differ in their axial-

equatorial positions around the benzene ring.  The orientation of the chlorine atoms 

around the ring decides the differences in their physico-chemical properties and of 

these, lindane is the only isomer that confers insecticidal properties (Table 2.3) 

(Bhatt, et al., 2009).  

 

 

Figure 2.1  Structure of 1, 2, 3, 4, 5, 6–hexachlorocyclohexane (HCH) isomers 

 
Reproduced from Bhatt, et al. (2009) 
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Table 2.3  The physical and chemical properties of various hexachlorocyclohexane isomers 

 

Properties α-HCH β-HCH ɣ-HCH (Lindane) δ-HCH ε-HCH 

Molecular Weight  
(g/mol) 
 

290.83 290.83 290.83 290.83 290.83 

Physical State Crystalline  
solid,  
monoclinic prisms 
 

Crystalline 
Solid 

Crystalline  
solid,  
monoclinic prisms 

Fine plates no data 

Melting Point °C 

 

159-160 309-315 112-113 138-142 219-220 

Boiling Point °C 

 

288* 60** 323*
 

60*** no data 

Vapour Pressure 

(mm Hga) 

 

4.2x10
-5

 * 3.6x10
-7

 **** 4.2x10
-5

 **** 3.5x10
-5

 no data 

Solubility in Water  

(mg/l) 

 

10 5 10**** 5-10 no data 

Henry’s Law Constant 

 

6.86x10
-6

 4.5x10
-7

 3.5x10
-6

 2.1x10
-7

 no data 

Log Kow 

 

3.8 3.78 3.72 4.14 no data 

Log Koc 3.57 3.57 3.0-3.57 3.8 no data 

 
All data is given for isomers at standard state (25 °C, 100 kPa) unless otherwise noted. 

* At 760 mm Hga ** At 0.5 mm Hga *** At 0.355 mm Hga **** At 20 °C 
 

Information compiled from Bhatt, et al. (2009); Philips, et al. (2005); and Kutz, et al. (1991) 

 

HCH is commercially available as either technical HCH or lindane.  Technical HCH is 

predominantly made up of the isomers α, β, γ and δ and relatively small quantities of 

the ε-isomer.  Table 2.4 gives the composition of technical HCH according to 

different sources as presented by Breivik, et al. (1999).  The varying proportions of 

the different isomers may be attributed to technical differences in the production 

process. Lindane is a formulation containing more than 90% of the γ-isomer, with 

several countries using it in its pure form at almost 100% (International Register of 

Potentially Toxic Chemicals, 1983).  
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Table 2.4  Relative comparison of isomers in technical hexachlorocyclohexane (HCH) 

 

Isomer % 

α 
 

β 
 
γ 
 
δ 
 
ε 

55-80 
 

5-14 
 

8-15 
 

2-16 
 

1-5 

 

Commercially, both formulations were used as pesticides, with technical HCH being 

more widely used as an inexpensive alternative to the controversial and 

subsequently banned organochlorine insecticide, dichlorodiphenyltrichloroethane 

(DDT) (International HCH & Pesticides Association, 2006).  Between 1948 and 1997, 

roughly 10 million tonnes of technical HCH were released into the environment (Li, 

1998).  However, due to its decreasing effectiveness and banned use in most 

western countries by the 1970s, it was gradually replaced by lindane (Baumann, et 

al., 1980). 

  

2.3.  Lindane 

 

Lindane is a chemical variant of HCH and is also commonly known as gamma-

hexachlorocyclohexane (γ-HCH), gammaxene, and Gammallin.  Treatment of HCH 

with acetic acid or methanol and subsequent fractional crystallization, concentrates 

the γ-isomer to the requisite percentage found in lindane (IARC, 1979).  The 

subsequent use of nitric acid is employed to remove odour (SRI, 1987).  The 

manufacture of lindane, which took place in a number of countries, including the 

United States, India, Japan, China, Brazil, and several European nations, is a 

relatively inefficient process with only a 10-15% yield (United Nations Environment 

Programme, 2006).  For each ton of γ-isomer extracted from crude HCH, 

approximately 6-10 tonnes of residual α-, β-, δ-, and ε-isomers remain and are 

disposed of as waste (International Programme on Chemical Safety, 1992).  Lindane 

was supplied in a number of different formulations including emulsifiable 

concentrates, soluble concentrates, dusts, ready-to-use liquids, pressurized liquids, 
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aerosol sprays, granules, and as a smoke generator (Meister, et al., 1998).  Although 

exact information regarding production, sales and usage is difficult to obtain due to a 

lack of official reporting in manufacturing, it is estimated that global lindane usage 

from 1950 to 2000 amounted to approximately 600 000 tonnes, with India and 

possibly Russia being the only countries to still produce it (U.S. Environmental 

Protection Agency, 2006a).   

 

The majority of the lindane produced was sold separately or jointly with other 

insecticides, fungicides, fertilizers, or wood preservatives and used in agriculture as 

a pesticide to treat food crops and forestry products (Haye, 1982).  It also had uses 

in seed, soil, livestock and pet treatment, as well as pharmaceutical applications for 

the management of lice and scabies (Dutta & Schafer, 2003).  In November 2006, 

the use of lindane was banned outright in 52 countries and severely restricted in 33 

others and by 2009, the Stockholm Convention on Persistent Organic Pollutants 

implemented an international ban on lindane used in agriculture treatments 

(Commission for Environmental Cooperation, 2006).  A specific exemption remains 

in place and allows for its continued use in alternative remedies for head lice and 

scabies until 2014 (Stockholm Convention on Persistent Organic Pollutants, 2009).  

However, its use as a pesticide continues in a few third world nations.  As a long-

established pesticide with no patents remaining, it is comparatively inexpensive and 

its environmental persistence is often seen as advantage (in pest control) rather than 

a hindrance (Weinberg, 2008).  

 

2.4.  Environmental Fate and Persistence of Lindane  

 

Considering the global usage of 10 million tonnes of technical HCH represents 

approximately 1.15 million tonnes of the lindane isomer (mean value), and combining 

this figure with the 600 000 tonnes of pure lindane released equates to a severe 

case of global contamination at 1.75 million tonnes.  Depending on the target, 12 - 

90% of lindane used in agriculture volatilizes into the atmosphere, and is then 

susceptible to long-range transport.  Its subsequent removal from the air by wet or 

dry deposition contaminates new areas containing water or soil where it can re-enter 

the food chain (USEPA, 2006b).  Due to its high lipid solubility and hydrophobicity, 
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lindane isomers can bioaccumulate easily in the food chain and rapidly 

bioconcentrate in microorganisms, invertebrates, fish, birds and mammals (IPCS, 

1991).  Residues of lindane have been recorded in soil, vegetation samples, drinking 

water, food products and bottled water from North America, the Arctic, Southern 

Asia, the Western Pacific and Antarctica raising concerns over its persistence 

(United Nations Environment Programme, 2006).  Table 2.5 highlights the 

occurrence of HCH isomers in environmental samples from various parts of the 

world.         

 

Table 2.5  Hexachlorocyclohexane (HCH) residuals reported in countries across the globe. 

 
n/d = No Data (the isomer was not individually analyzed and does not imply absence) 

*Total HCH was directly measured and not calculated by summing the individual isomer data. 
 

Information compiled from Abhilash and Singh (2009a) and Lal, et al. (2008) 

 

Over time, lindane may be transformed into a variety of other volatile chemicals 

including ɣ -pentachlorocyclohex-1-ene, g-3,4,5,6-tetrachlorocyclohex-1-ene, α-HCH, 

β-HCH and δ-HCH (Bintein & Devillers, 1996; Cornacoffet, et al., 1988).  It may also 

be broken down into less toxic substances by microorganisms existing within soil, 

Country Location / Type / 

Site 

Hexachlorocyclohexane isomers (mg / kg) Total 

HCH α-HCH β-HCH Lindane δ-HCH ε-HCH 

Brazil Rio de Janeiro 6200 7320 140 530 n/d 14190 

Canada Disposal site 18000 1800 4000 1300 n/d 25100 

Germany Contaminated soil 1.33 15.43 0.02 0.24 n/d 17.02 

Disposal Site no data no data no data no data n/d 182000* 

Contaminated soil no data no data no data no data n/d 3.8* 

Disposal Site no data no data no data no data n/d 9140* 

Spain Accident / Spill 25 15 2.2 0.5 n/d 42.7 

Industrial area 45815 34830 47.6 343 n/d 81036 

 15550 140 447 73.7 77.2 16238 

Industrial area 13375 6512.5 11.3 9.9 n/d 19904.6 

India Disposal site 77940 44850 990 no data n/d 125280 

Hiranki, Dehli 0.0009 0.0111 0.1878 no data n/d 0.1998 

Barkhalsha 0.00098 0.0084 0.2018 0.0010 n/d 0.2122 

Production Area 38.1 463.4 3.5 7.79 n/d 508.70 

USA Manufacturing Area no data no data no data no data n/d 83628* 
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sediment and water.  However, for all practical purposes, the process is slow and 

dependent on uncontrollable environmental conditions (Agency for Toxic Substances 

and Disease Registry, 2005).  Climatic conditions such as temperature; organic and 

inorganic matter; soil texture; moisture levels; pH; oxygen levels and bacterial 

presence influence the biotic and abiotic degradation and half-life rates of the 

otherwise persistent lindane isomer (IPCS, 1991).  However, the rates of 

biotransformation and elimination increase rapidly when lindane exposure is 

discontinued (Commission for Environmental Cooperation, 2006).  Table 2.6 shows 

the half-life of lindane under several distinct conditions. 

 

Table 2.6  Lindane half-life under distinct conditions 

 

Condition Half-life Reference 

Soil (hydrolysis half-life) 330 - 5765 hours
 

Dorfler, et al. (1991) 

Sediment
 

90 days
 

Bintein & Devillers (1996) 
 

River
 

3-30 days
 

ATSDR (2005) 
 

Lake
 

30-300 days
 

ATSDR (2005) 
 

Groundwater
 

< 151 days
 

Mackay & Leinonen (1975) 
 

Aerobic biodegradation  
(unacclimated soil die-away study) 
 

744 - 9912 hours
 

Howard, et al. (1991) 

Anaerobic biodegradation  
(unacclimated flooded soil die-away study)

 
142 - 734 hours

 
Howard, et al. (1991) 

 

2.5.  Releases to the Environment  

 

There are several pathways for lindane to enter the environment. Traditionally, most 

releases are related to its production and its subsequent use as pesticide. 

 

2.5.a.  Atmospheric Residues 

 

The largest source of lindane released into the air occurs during agricultural use and 

aerial application; during manufacturing and disposal; and through volatilization from 

soil and plant foliage after application (Shen, et al., 2004).  Volatilsation of lindane 

from contaminated soil subjected to wind erosion may inadvertently see it distributed 
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back into the atmosphere (Lewis & Lee, 1976).  In addition, it is possible that 

releases into the atmosphere may have occurred during production as is suggested 

by its presence from samples taken in the proximity of manufacturing plants (Agency 

for Toxic Substances and Disease Registry, 2005; USEPA, 1998).  Levels of lindane 

in the atmosphere are sensitive to environmental and weather conditions.  Under 

drought conditions, the volatilization rate of lindane from soil is reduced, resulting in 

lower atmospheric concentrations (Sang, et al., 1999).  Although it has a high vapour 

pressure, evaporation of lindane from water sources is highly dependent on warmer 

temperatures and is therefore not considered to significantly contribute to 

atmospheric levels (Mackay & Leinonen, 1975). 

 

2.5.b.  Water Residues  

 

When compared to most other organochlorine compounds, lindane is more water-

soluble and has a propensity to persist in the water table.  Surface water can 

become contaminated as dissolved chemicals on land are absorbed to particulates 

and atmospheric depositions (Tanabe, et al., 1982).  The major atmospheric 

contributors to surface waters are wet and dry deposition, as well as gas exchange 

across the air-water interface.  

 

Agricultural run-off is the principal route of lindane to surface water.  However, it can 

also be released to groundwater through soil leachate.  Despite its low mobility in 

soils, studies suggest that lindane does have the ability to migrate to groundwater 

(Sandhu, et al., 1978).  While in the water column, lindane may be adsorbed and 

desorbed to and from sediment and other soil particles at rates dependent on the 

physical characteristics of the sediment as well as its organic carbon content.  It can 

also be recycled back into the water column due to bacterial activity in sediment 

samples (Fendinger, et al., 1992).   

 

Alongside surface run-off and atmospheric deposition, single identifiable localized 

source discharges also contribute significantly to surface water contamination.  

Although not considered to be a major contributor, lindane, as a second line 

pharmaceutical, may also enter the water system when it is applied as a shampoo or 



  Literature Review   

18 

 

lotion and subsequently washed off in the shower to be treated with the sewage at a 

wastewater treatment facility.  

 

2.5.c.  Soil Residues 

 

Releases of lindane to the soil can occur by direct application or by direct and 

indirect releases during production, storage, and / or disposal.  It generally tends to 

remain on the upper layer of the soil with very little movement to the lower soil layers 

(Martijn, et al., 1993).  Lindane can then be adsorbed to soil particles, volatilized to 

the atmosphere, taken up by biological organisms or leached into surface and 

groundwater.  Concentration levels are highly variable and dependant on crop type, 

agricultural usage patterns, exposure time, moisture levels, temperature, and 

seasonal variation (Samuel & Pillai, 1990). 

 

In soils and sediments, biotransformation is the primary degradation method, 

whereas the major mechanism of lindane removal from soil is volatilization. High 

temperatures and flood-like conditions are considered to be instrumental to increase 

the volatilization rate of lindane from soil surfaces (Rudel, 1997; Bintein & Devillers, 

1996).  Studies simulating municipal landfills indicated that lindane does not volatilize 

or leach from its surface after application, suggesting that co-disposal of lindane with 

municipal waste should result in negligible releases (Reinhart & Pohland, 1991).   

 

Further releases into the air, soil and water are also possible from date-expired 

stockpiles, production sites and open dump sites which may not be properly 

controlled or maintained (IPCS, 1991).  

 

2.5.d.  Plant Residues 

 

There are several pathways through which lindane may enter plants.  These include 

partitioning from contaminated soil to the roots, shoots and other arial parts, through 

atmospheric deposition onto the leaf surface and directly via uptake through the 

stomata.  Metabolism of lindane in plants is not well understood and is dependent on 

the individual plant and its lipid content as well as the surrounding environmental 
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conditions (Ullman, 1972).  Lindane residues have been found in bark samples and 

numerous and common edible plants, including carrots, lettuce, cauliflower and 

spinach.  Plants with higher lipid contents, such as carrots, tend to also have higher 

quantities (Simonich & Hites, 1995).  

 

2.5.e.  Residues in Laboratory Animals and Wildlife  

 

After direct experimental exposure, lindane and pentachlorobenzene (PeCB) 

residues have been observed in liver, adipose, blood, brain and muscle tissue of 

mice, rats and rabbits, with the highest concentrations in the liver (DeJongh & 

Blaauboer, 1997; Srivastava & Raizada, 2000).  In foetuses and newborns, lindane 

and PeCB were found to be concentrated in the brain, along with a number of 

different organs throughout the body (Cerón, et al., 1995; Khanna, et al., 1991). 

 

After exposure, lindane accumulates in organ tissues and is then excreted over time, 

accounting for decreasing concentrations after the source of exposure has been 

removed.  In rats exposed to 60 parts per million (ppm) body weight (bw), starting 

concentrations were 8.64 and 437 parts per billion (ppb) in the liver and adipose, 

respectively, and had decreased to 0.56 and 11 ppb after seven days (Junqueira, et 

al., 1997).  Similar results have been observed in rabbits (Cerón, et al., 1995).  

Alternatively, continuous exposure studies over three generations in mink showed 

that exposure to lindane at 1 ppm bw/day resulted in higher lindane concentrations 

of 4.42 ppm in the adipose tissue of third-generation females (Beard & Rawlings, 

1998). 

 

Deer exposed to lindane in the natural environment through pesticide use on crops 

and plants were also found to accumulate lindane in their fatty tissues and in higher 

concentrations than those from forest habitats (Bro-Rasmussen, 1996; Krynski, et 

al., 1982).  Lindane has also been detected in the fat tissue of Japanese northern 

female fur seals, as well as in the breast muscle tissue of double-crested cormorants 

in the North American Great Lakes (Iwata, et al., 1998).  Along the Danube River 

delta, lindane has also been found to increase in concentration in birds (and their 

eggs) that are higher up the food chain (Walker & Livingstone, 1992).   
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2.5.f.  Arctic Residues 

 

Lindane is the most frequently found pesticide in the arctic land and water, resulting 

from its volatilization after application in other countries and subsequent long-range 

transport by air masses and water currents (Takeoka, et al., 1991).  Following 

atmospheric transport, lindane partitions from air into water at low temperatures due 

to its low Henry’s Law constant of 0.03 (Gilman, et al., 1997).  Lindane is also one of 

the most abundant organochlorines found in arctic air as shown in measurements 

taken from Canadian, Russian, Norwegian and Icelandic arctic locations from 1992-

1995 (de March, et al., 1998).  A summary of lindane concentrations present in 

various components of the Arctic environment is presented in Table 2.7.   

 

Table 2.7  Concentration of lindane in the arctic environment 
 

Sample Type Lindane Concentration 

(parts per trillion) 

Air Vapour 3.7x10
-15

 

Snow Melt 0.428 

Ice 0.186 

Sea Water 0.610 

Sediment 15.000 

 

 

Lindane has been detected in all of the levels of the Arctic food web. Higher 

concentrations have been found at higher trophic levels as found in the lichen, 

caribou and wolf food chain as observed in several different Canadian Arctic herds 

(Elkin & Bethke, 1995).  Lindane has also been found in high levels in marine food 

chains throughout the Arctic region, including ringed seals from the Kara Sea, Larga 

seals from the Sea of Okhotsk and northern fur seals (Nakata, et al., 1998; Tanabe, 

et al., 1994). 

 

 

 

 

 

 



  Literature Review   

21 

 

2.6.  Human Exposure 

 

Most of the adverse human health effects associated with lindane are linked to 

agricultural applications and chronic, occupational exposure (Persistent Organic 

Pollutant Review Committee, 2007).  Besides exposure of workers and 

environmental contact through residues which persist in the environment, new data 

reveal that people may be exposed to lindane at unexpectedly high levels.  As 

determined by the Codex Alimentarius, the Acceptable Daily Intake (ADI) for lindane 

is 0.001 mg/kg of body weight.    Published data show that consuming an average 

local diet anywhere in the world, will cause a person to exceed the ADI for lindane 

between 3.8 and 12 times.  Europe has the highest consumption of lindane through 

food, with a theoretical maximum daily intake reaching 0.742 mg, or 1237% of the 

ADI (Codex Alimentarius Commission, 1998). Persons living in arctic regions who 

depend on traditional and available foods such as fish and other marine mammals 

are also at a higher risk of exposure (Table 2.8). 

 

Table 2.8  Lindane residues found in various countries and foods 

 

Country Food Residue  
ppm 

MRL 
ppm 

Reference 

China Cereals 
Vegetables and Fruit 
Meat and Poultry 
Aquatic Products 
Eggs and Egg Products 
Milk and Milk Products 

0.013 
0.005 
0.008 
0.011 
0.045 
0.018 

0.3 
0.2 
0.4 
2.0 
1.0 
0.1 
 

Zhang, et al. (1997) 

Hong Kong Milk 0.068 n/d 
 

Wong & Lee (1997) 

Nigeria Cereals 0.008-0.017 0.5 
 

Osibanjo & Adeyeye (1995) 

Ireland Milk and Milk Products 
Animal Feed 

<0.1 
0.0001 

n/d 
n/d 
 

Downey, et al. (1975) 

France Fish 0.011-0.029 n/d 
 

Bintein & Devillers (1996) 

Greece Milk and Milk Products 0.0008-0.007 0.01 Mallatou, et al. (1997) 
 

Canadian Arctic Marine Animal Blubber 
Polar Bear Fat 
Fish Flesh, Liver and Eggs 
Caribou 

0.145-0.163 
0.144 
0.005-0.012 
0.003 

n/d 
n/d 
n/d 
n/d 

Kuhnlein, et al. (1995) 

 

n/d = No data given by authors 
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Aside from environmental samples, lindane has been found in human blood, fatty 

tissues and breast milk and in higher concentrations in people who have been 

occupationally exposed through spraying (Dua, et al., 1998).  The presence of 

lindane in human breast milk has been reported in a number of countries throughout 

the world, including Australia, Canada, France and the US (United Nations 

Environment Programme, 2006).  Lindane residues are also detectable in cow’s milk, 

suggesting that susceptible children are exposeded to it right from birth. Surveys of 

cow’s milk carried out by the UK-MAFF Working Party on Pesticide Residues 

(WPPR) have detected lindane in all of the 216 samples tested with more than 4% 

exceeding the WHO Maximum Residue Limit (MRL) of 0.01 ppm (EPTISA, 2007). 

 

2.7.  Mode of Action and Toxic Effects of Lindane 

 

Lindane is a neurotoxin that works as an ingested stomach poison with some 

fumigant actions, killing insects that consume it or inhale its vapours.  The pesticidal 

mode of action is attributed to its ability to bind the γ-aminobutyric acid (GABA) 

receptor-chloride channel complex thereby inhibiting GABA neurotransmission 

(Waffard, et al., 1989).  GABA is the main inhibitory neurotransmitter in mammalian 

and insect central nervous systems and is also responsible for the regulation of 

muscle tone in humans (Watanabe, et al., 2002).  This binding activates calcium 

channels resulting in elevated intracellular calcium levels.  The increased calcium 

concentration induces the protooncogene c-fos, which is associated with epileptic 

and seizure activity (Agency for Toxic Substances and Disease Registry, 2005).  

Although a specific organ or body system of toxicity has not been well defined, the 

main target of acute exposure appears to be the nervous system as identified by 

experimental animal studies and human exposure reports (Agency for Toxic 

Substances and Disease Registry, 2005).  

 

The acute toxicity of HCH has been investigated in a diverse range of species and 

via numerous routes of application.   Reports have shown that toxicity levels and 

symptoms are dependent on a multitude of factors. Younger and elderly respondents 

are generally more sensitive than healthy adult subjects.  In children, a dose 

equivalent to 62.5 mg/kg has proved fatal whereas in adults, fatality occurred at a 



  Literature Review   

23 

 

much higher dose of 300 mg/kg when ingested orally (Chen, 1968).  At lower, single, 

ingested doses of 17 mg/kg, human subjects start to display severe symptoms of 

toxicity (Brooks, 1990).  Neurological symptoms of acute exposure and toxicity 

include behavioural disorders, numbness, tingling, headaches, nausea, dizziness, 

vomiting, diarrhoea, muscular weakness and convulsions (Willet, et al., 1998). 

Effects of lindane poisoning in animals include restlessness, increased respiratory 

rate and frequency of urination, intermittent muscular spasms, salivation, grinding of 

teeth, loss of balance, convulsions, gasping, biting, collapse and death (Stringer & 

Johnston, 2001).  

 

As lindane has been widely used for over 50 years, its long-term health effects have 

been extensively studied. Following exposure and inhalation, the reported chronic 

effects include nervous disorders, renal and liver damage. Chronic effects also 

include respiratory, cardiovascular, haematological, hepatic, endocrine, carcinogenic 

and reproductive effects, shortened lifespan, lowered fertility, changes in appearance 

and behaviour; along with tumours and death (Stringer & Johnston, 2001). While 

lindane is generally not considered to be genotoxic, animal studies have shown that 

lindane can accumulate in their reproductive organs, resulting in changes to foetal 

immune system development (Watterson & Watterson, 2003). 

 

Although adverse reactions resulting from second-line lindane pharmaceuticals often 

occur due to misuse, undesirable side effects have also been reported when used 

properly (Food and Drug Administration, 2003a; FDA, 2003b)  Findings range from 

skin irritation with burning sensations, itching, dryness and rash being the most 

common symptoms to seizures and in rare cases, death.   Warning labels strongly 

advise that such treatments should be used with caution in infants, those weighing 

less than 110 lbs (50 kg), the elderly, and those with other skin diseases such as 

dermatitis and psoriasis due to the elevated risk of neurotoxicity (FDA, 2003c). 
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2.8.  Detection of Hexachlorocyclohexane 

 

2.8.a.  Chromatography 

 

Gas-Liquid Chromatography (GC) is the most common and effective method for 

measuring lindane in environmental samples with efficiency dependent on the 

solvent extraction techniques.  Recovery rates range from 40% (vapour phase 

extraction) to 100% (solid phase extraction), with sensitivity in the low ppb and parts 

per trillion (ppt) ranges (Noegrohat & Hammers, 1992; Czuczwa & Stevens, 1989; 

Lopez-Vila, et al., 1990). 

 

In chromatography, a mixture of substances is dissolved in a mobile phase of gas or 

liquid and is passed through a stationary phase in order to separate the analyte of 

interest from other compounds based on their differential partitioning between the 

phases.  The most common form of chromatography used for separation is column 

chromatography.  Specifically, in GC, the mobile phase is a gas, like helium, and the 

stationary phase is a high boiling point liquid absorbed onto a solid.  A compound will 

travel at a speed dependent on how much of its time is spent moving with the gas as 

opposed to the liquid (Clark, 2007).  Small quantities of the analyte are automatically 

injected into the machine and carried into the column as a carrier gas (Figure 2.2).  

The gaseous mixture is passed down a column packed with an inert substance 

impregnated with a non-volatile solvent.  Within the column a molecule may remain 

in the gas phase, may dissolve in the liquid on the surface of the stationary phase or 

it may remain in stationary phase (Roberts & Caserio, 1977). 

 

 

Figure 2.2  A flow scheme for gas-liquid chromatography 

Reproduced from Columbia University (2007)  
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Different substances dissolve in the solvent to differing degrees. Those that are most 

soluble pass down the column most slowly as they spend more of their time 

absorbed into the stationary phase.  As described by Leathard and Shurlock (1970), 

the retention time of a particular compound will vary depending on: 

 

 a higher boiling point of the compound which will result in a long retention 

time; 

 a higher solubility in the liquid phase which will result in a high retention time; 

and 

 a higher column temperature which will shorten the retention times for 

everything in the column meaning better separation is achieved the lower the 

temperature of the column.  

 

2.8.b.  Separation by Solvent Extraction 

 

Before being subjected to GC, a substance of interest must be separated from the 

rest of the mixture in which it was originally found.  A separation process transforms 

a mixture of substances into distinct products which differ in their physico-chemical 

properties such as charge, size or structure.  Separation processes may be 

classified as either mechanical or chemical and any combination of processes may 

be employed to achieve separation depending on the raw mixture as well as its 

physical state(s). Solvent extraction is also referred to as liquid-liquid extraction 

or partitioning.  It is used to separate compounds from one liquid phase into another 

liquid phase based on the relative solubility in two different liquids incapable of 

mixing, such as water and an organic solvent (Figure 2.3) (Cusack, et al., 1991).  

 

A substance of interest is preferentially separated from a mixture by dissolving it in 

an appropriate solvent (Lau, et al., 2010).  Polar solutes dissolve more efficiently in 

more polar solvents, and less polar solutes in less polar solvents.  Lindane is 

relatively insoluble in water (7 ppm) but very soluble in the organic solvent 

chloroform (2400 ppm) ( Hazardous Substances Data Bank, 2001). 
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Figure 2.3  Pear-shaped funnel used in solvent extraction 

 

The distribution ratio (D) or efficiency of extraction is equal to the concentration of 

a solute in the organic phase divided by its concentration in the aqueous phase and 

is dependent on the temperature, the chemical concentrations, and a large number 

of other parameters within the system.   A value greater than 1 indicates preferential 

solubility in the organic phase and the larger the value, the less solvent is then 

required for a given degree of extraction (Abdel-Latif, 2003).  In the case of 

chloroform and water, the distribution ratio (D) would then be equal to 342.86 (2400 

ppm / 7 ppm).  When considering the suitability of chloroform and water to extract 

lindane, the efficiency of extraction (D) is much greater than 1, indicating a 

preference for the chloroform phase, with reasonably small amounts of the solvent 

needed for extraction.   

 

The extraction capabilities of a solvent are dependent on the chemical structure of 

itself and the solute.  Factors affecting solvent efficiency are selectivity, boiling point, 

density, interfacial tension, corrosiveness, flammability, viscosity toxicity, stability, 

availability, compatibility, and cost (Robbins, 1980).  Disadvantages of the process 

may include emulsion formation, loss of compounds and low efficiency.   However, in 

general, the whole process is relatively simple with controlled recovery, large 

selectivity and flexibility (Abdel-Latif, 2003).  The effectiveness of liquid-liquid 

extraction to separate lindane using different organic solvents was investigated by 
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Patil, et al. (2013). Results are summarized in Table 2.9 and support the validity of 

using the organic solvent chloroform to extract lindane. 

 

Table 2.9  The efficiency of different organic solvents to extract lindane 

 

Organic Solvent Recovery Efficiency (%) 

n-hexane 14 

Ethylene dichloride 7 

Chloroform 96 

 

2.9.  Abiotic Transformation of Hexachlorocyclohexane  

 

Hydrolysis, catalyzed by hydroxide and hydrogen ions, is the most common and 

important method in the abiotic transformation of lindane to innocuous intermediates 

(Agency for Toxic Substances and Disease Registry, 2005). In basic aqueous 

solutions, lindane undergoes trans-dehydrochlorination of its axial chlorines to give 

the intermediate 1,3,4,5,6-pentachlorocyclohexane.  This compound further reacts 

with water resulting in 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene and 3 

molecules of hydrochloric acid (Kollig, 1993).  In the presence of a catalyst such as 

palladium, the reaction may result in the final products of benzene and chlorine 

(Schuth & Reinhard, 1998).  Water solubility, hydrolysis and photolysis rate 

constants of lindane were determined by Saleh, et al. (1982) in three different natural 

water-sediment systems, as well as in a Milli-Q water system. The aqueous solubility 

of lindane ranged from 7.9 to 8.4 mg/L in surface waters, while in the Milli-Q water, 

solubility was 9.2 mg/L.  Milli-Q hydrolysis data followed first-order kinetics with kh 

values of 74x10−4 h−1 (pH 9) and 7.4x 10−1 h−1 (pH 5) (Saleh, et al., 1982).  

 

At a temperature of 25 ± 1 °C, the hydrolysis reactions determined in surface water 

samples from a eutrophic pond, a dystrophic reservoir and an oligotrophic rock 

quarry followed first-order kinetics with rate constants of 7.5x10-3 hr-1 (pH 9.3),  

8.99x10-4  hr-1 (pH 7.3) and 1.07x10-3 hr-1 (pH 7.8) and corresponding hydrolysis half-

lives of 92, 771, and 648 hours, respectively.  Hydrolysis experiments in Milli-Q water 

at pH values of 5, 7 and 9 yielded half-lives of 936, 4331 and 95 hours, respectively 

(Saleh, et al., 1982).  The experimental hydrolysis half-life in the natural eutrophic 
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pond (pH 9.3) was comparable to the experimental value of 95 hours from Milli-Q 

samples (pH 9).  It is therefore theorized that hydrolysis at alkaline pH values is 

expected to be important in the fate of lindane, while hydrolysis at acidic and neutral 

pH values is not.  

 

The same natural water samples demonstrated first order aqueous photolysis of 

lindane in direct sunlight experiments.  The rate constants were 4.1x10-3, 3.9x10-4, 

and 4.5x10-4 h-1 with corresponding half-life values of 169, 791 and 1540 hours, 

respectively (Saleh, et al., 1982).  Improvements in the photolysis rate were recorded 

in natural water at pH 9.3, perhaps due to an addition alkaline hydrolysis reaction.  

After 50 days exposure to sunlight, the concentration of lindane in purified Milli-Q 

water dropped from 1480 to 1130 pg/mg with a rate constant of 2.24x10-4 h-1 

(Malaiyandi, et al., 1982).  

 

2.10.  Biodegradation of Hexachlorocyclohexane  

 

Microbial biodegradation of lindane has been observed under both aerobic as well as 

anaerobic conditions by several microorganisms (Bhatt, et al., 2009; Lal, et al., 2008) 

(Table 2.10).  Aerobic degradation of α- and γ-isomers was originally detected in 

Pseudomonas as observed by Matsumura, et al. (1976). However, in 1990, 

Sphingomonas indicum B90A was the first species shown to degrade all of the 

isomers (Dogra, et al., 2004). The catabolic genes and enzymes involved in lindane 

degradation have been extensively studied in Sphingomonas paucimobilis UT26, 

Sphingomonas paucimobilis B90A and Sphingomonas paucimobilis Sp+ (reclassified 

as Sphingobium japonicum UT26, Sphingobium indicum B90A and Sphingobium 

francense Sp+ respectively) (Pal, et al., 2005).   The lin genes for HCH degradation 

were first characterized in Sphingomonas paucimobilis UT26, a soil-dwelling 

bacterium which uses lindane as its sole carbon and energy source under aerobic 

conditions (Imai, et al., 1991).  The sequential degradation of lindane occurs through 

several reactions catalyzed by LinA, LinB, LinC, LinD, LinE and LinF enzymes, the 

first 4 of which can be seen in Figure 2.4 (Nagata, et al., 2007).    
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Table 2.10  Hexachlorocyclohexane (HCH) degrading microbes 

 

Ability to Degrade Microbe 

α-,β-,γ- and δ- HCH Sphingobium japonicum UT26 

 Sphingobium indicum B90A 

 Sphingobium francense Sp+ 

 Pseudomonas aeruginosa sp. ITRC-5 

 Microbacterium sp. ITRC-1 

 Sphingomonas sp. BHC-A, MI1205, γ
4-2 

and γ
1-7

 

 Sphingomonas sp. DS2, DS2-2 and DS3-1 

 Pseudomonas fluorescens biovar, biovar I and biovar II 

 Pseudomonas sp. 

 Vibrio aginolyticus 

 Flavobacterium sp. 

 Burkholderia pseudomallei 

 Bacillus sp. 

α- and Lindane Rhondanobacter lindaniclasticus 

 Pandoraea sp. 

 Pseudomonas sp. 

 Sphingomonas sp.  

Lindane Steptomyces sp. M7  

 E. coli 

 Pseudomonas sp. 

 Trametes hirsutus (white rot fungi) 

 Phanerochaete chrysosprium 

 Cyanthus bulleri 

 Phanerochaete sordid 

 

Information compiled from Lal, et al., (2008) and Bhatt, et al. (2009)
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Figure 2.4  The enzymes and intermediates in the degradation pathway of lindane in Sphingomonas 
paucimobilis UT26. 

  

Reproduced from Bhatt et al. (2009)  
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Initially, γ-pentachlorocyclohexane (ɣ-PCCH) is formed via a dechlorination step and 

is then converted to 1,3,4,6-tetrachloro1,4-cyclohexadiene (1,4-TCDN) by LinA.  This 

is then converted by the hydrolytic dehalogenase, LinB, to 2,5-dichloro-2,5-

cyclohexadiene-1-ol (2,5-DDOL) via 2,4,5-trichloro-2,5-cyclohexadiene-1-ol (2,4,5-

DNOL).  The dehydrogenase enzyme, LinC, then converts 2,4,5-DNOL to 2,5-

dichlorohydroquinone (2,4 DCHQ), which is subsequently transformed to 

hydroquinone (HQ) via the dechlorination of chlorohydroquinone (CHQ) under LinD.  

Mineralization of HQ occurs via two pathways: 1) The nitrophenol pathway or 2) by 

the dioxygenase enzyme LinE to form maleylacetate (MA) (Nagata, et al., 1999). MA 

is then converted to β-ketoadipate by MA reductase, LinF and metabolized by the β-

ketoadipate degradation pathway found in many soil bacteria and fungi (Harwood & 

Parales, 1996).  

 

The linA, B and C genes, found in the UT26 genome, are constitutively expressed 

whereas linD and linF, which form an operon, are regulated and induced by a LysR-

type transcriptional regulator, called LinR, in the presence of CHQ, HQ, and 2,5-

DCHQ  compounds (Nagata, et al., 1999).  The LinA enzyme does not exhibit 

homology to any known proteins whereas LinB, a chlorohydrolase, is similar to the 

haloalkane dehalogenases present in soil bacteria strains found in environments 

contaminated with halogenated compounds (Imai, et al., 1991; Marek, et al., 2000).  

LinC is homologous to members of the short-chain alcohol dehydrogenases while 

LinD has similarities with, and is also enhanced in the presence of glutathione S-

transferases (GSTs) (Neidle, et al., 1992; Miyauchi, et al., 1998).  

 

2.11.  Remediation of Lindane in the Environment 

 

As the toxicity, distribution and persistence of lindane is well established, it is 

imperative to develop a method by which it can be safely and quickly removed from 

the environment.    
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2.11.a.  Physical and Chemical Remediation 

 

Although potentially hazardous and expensive, the standard practice typically used 

in the remediation of lindane involves the excavation and removal of contaminated 

soils to a landfill (Baczynski & Pleissner, 2010).  Workers are at a high risk of 

exposure via direct contact or vapours on site.  Care must be taken to avoid the 

accidental movement of lindane from the contaminated site to uncontained areas off-

site either through volatilization of the excavated soil (to be treated) during 

excavation and transport; or from the tyres of transport vehicles in contact with 

contaminated soil on-site moving off-site for processing.  Off-site physical 

treatments, such as thermal desorption and incineration offer sufficient degradation 

of lindane but the transport of hazardous materials, large infrastructure of treatment 

plant, high processing costs and toxic by-products, including the asphyxiant 

phosgene gas, render it impractical (Nagpal & Paknikar, 2006).  More efficient 

chemical methods, including microwave-induced degradation with NaOH-modified 

sepiolite and hydrogen peroxide, may also be used to bring about the complete 

destruction or transformation of lindane (Salvador, et al., 2002).  However, these 

energy-intensive and complex engineering processes are highly corrosive, may 

result in incomplete pollutant removal and are environmentally unfriendly with the 

emission of greenhouse gases, destruction of soil structure and / or severe 

landscape alteration (Campos, et al., 2008). 

  

2.11.b.  Bioremediation 

 

Bioremediation, which uses indigenous or foreign microorganisms, fungi, plants 

(phytoremediation) and their enzymes to biologically degrade organic waste to an 

non-toxic state, or to sub-threshold concentration levels, is a low-cost, low-

technology, and relatively low-disturbance alternative technique (Vidali, 2001).   

Substantial work on the bioremediation of lindane has been successfully reported in 

laboratory studies using microbes and fungi, although few reports are available for in 

situ treatment of contaminated sites (Salaam & Das, 2012).  In recent studies where 

bacteria have been used for decontamination in field studies, high mortality rates 

were observed, requiring long-term inoculations and nutrient application (Mertens, et 
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al., 2006).  Moreover, bioaugmentation using single species only occurred at 

relatively low concentrations to a maximum of 34 µM (10 mg/kg) (Raina, et al., 

2008). The survival and degradation abilities of lindane-degrading strains is 

dependent on several parameters including the depth and  extent of contamination; 

the concentration of the contaminants, nutrients, oxygen and toxic substrates; soil 

type and properties; and presence of other soil microbes (Federal Remediation 

Technologies Roundtable, 1997). 

 

Based on the disadvantages of microbial degradation, increasing attention has been 

given to phytoremediation; an aesthetically-, environmentally- and economically-

friendly bioremediation technology with other environmental advantages including 

biofuel production and carbon sequestration.  This green technology is in situ; solar 

driven with no requirement for external carbon, nitrogen or energy sources; 

immoboilizes hazardous compounds; and contributes to soil stabilization (Pilon-

Smits, 2005). Phytoremediation is a highly efficient process and is approximately ten 

fold cheaper than alternative physical methods (National Risk National Risk 

Management Research Laboratory (USEPA), 2000).  However, as plants often lack 

the catabolic enzymes necessary for complete degradation and mineralization of 

these compounds when compared to microorganisms, there is potential for 

accumulated toxins to be released back into the environment or food chain.  

Consequently, disposal of these plants is often necessary, requiring further physical 

or chemical treatment (Abhilash, et al., 2009). 

 

2.12.  Phytotechnologies  

 

The action of plants on POPs is diverse; they may be immobilized, stored, 

volatilized, transformed and mineralized or any combination of the above.  As such, 

various phytotechnologies have been devised to remediate POPs.  

 

2.12.a.  Phytoextraction 

 

Phytoextraction (also known as phytoaccumulation or phytosequestration) is the 

uptake of contaminants by plant roots and subsequent movement of the 
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contaminants to above-ground plant parts (Figure 2.5). The removal of contaminants 

is generally achieved by harvesting the plant but importantly, when compared to the 

excavation of soil or sediment, phytoextraction reduces the amount of material to be 

disposed of.  Harvested biomass is analyzed, processed and disposed of either by 

landfilling or incinerating (Vishnoi & Srivastava, 2008). 

 

 

Figure 2.5  Phytoextraction 

Reproduced from Interstate Technology & Regulatory Council (2001) 

 

Natural phytoextraction uses plants that naturally take up and accumulate extremely 

elevated level of contaminants in their stems and leaves and is usually conducted by 

planting (or transplanting) selected plant species in the contaminated soil.   Induced 

phytoextraction uses fast-growing plants in the contaminated soil that have had 

amendments added to the soil to increase bioavailability of the toxins to the plants.  

Another approach is the use of plants that trap the contaminants in their root 

systems and are then harvested whole (including the roots) using methods similar to 

those employed for below-ground crops such as potatoes, beets, carrots and 

peanuts (Greger & Landberg, 1999).   

 

Accumulation of contaminants in the above-ground parts of the plants may pose a 

risk to animals eating these plants and the environment.  Although this technology 

takes longer than other remediation methods and several crop cycles are usually 

required to remove all the contaminants to the desired levels, removal rates are 
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highly dependent on the specific soil chemistry at the site.  Phytoextraction is 

typically less costly than excavation with an estimated cost ranging from $16 to $62 

USD per cubic yard of soil treated (Purakayastha & Chhonkar, 2010). 

 

With regards to lindane, phytoextraction is generally not favoured as it is 

hydrophobic and will, in theory, bind to soil particles and plant roots preventing its 

uptake.  The majority of reports concerning lindane contamination of above ground- 

plant parts state that this accumulation is mainly due to atmospheric deposition, with 

little contribution of translocation from roots to shoots (Burken, 2003).  However, 

several species of plant grown in lindane-contaminated soil, including Capsicum 

annuum (chilli) and Coriandrum sativum (coriander) were reported to contain lindane 

in their arial parts, accounting for 23 and 30% loss, respectively, of the initial soil 

concentration (Barriada-Pereira, et al., 2004).  These findings support potential 

remediation of contaminated sites by careful selection of those plants capable of 

enhanced hydrolysis and increased xenobiotic uptake via the transpiration flux. 

 

2.12.b.  Phytostabilization  

 

Phytostabilization is the immobilization of a contaminant in soil through absorption 

and accumulation by roots, adsorption onto roots, or precipitation within the root 

zone of plants (Figure 2.6).  It is also used to prevent movement of toxins through 

leaching, erosion, and soil dispersion (Abhilash, et al., 2009)   During 

phytostabilization, proteins and enzymes are released by the roots into the adjacent 

soil, resulting in changes to the chemistry of the contaminants, which become 

insoluble; immobilized in the soil or on the root surface; and less toxic (Kuang, et al., 

2003).   

 

No process residuals are expected and the above-ground biomass is not expected to 

have any significant concentrations of contaminants or secondary products to 

dispose of.  However, as the contaminants are left in place, a long-term monitoring 

plan has to be implemented to ensure continuing effectiveness of the stabilizing 

conditions. 
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Figure 2.6  Phytostabilization 

Reproduced from Biology Online (2008a) 

 

Phytostabilization typically costs less than excavation, although actual costs depend 

on site-specific conditions such as depth of contamination, soil condition, need for 

soil conditioning and tilling. Costs are estimated at about $3,000 (USD) per acre 

(Brookhaven National Laboratory, n.d.) 

 

2.12.c.  Phytodegradation 

 

Phytodegradation, or phytotransformation, occurs when contaminants external to the 

plant or those that are taken up by plants are broken down, or degraded, using 

naturally occurring metabolic processes within the plant, or via enzymes released by 

the plants. (Figure 2.7)  Additionally, the release of any compounds, or exudates, 

that cause transformation within the rhizosphere, may result in degradation occurring 

outside of the plant.  However, any degradation within the rhizosphere caused by 

microorganisms is considered rhizodegradation.  Phytodegradation is usually limited 

to the root zone, or sometime below when the root exudates are soluble, non-

sorbed, and transported below the root zone (Pivetz, 2001).  
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Figure 2.7  Phytodegradation 

Reproduced from Biology Online (2008b) 

 

Rhizospheric degradation of contaminants by way of plant exudates can take place 

in microorganism-free environments meaning that phytodegradation can happen in 

soils where biodegradation cannot.  Uptake is dependent on solubility, 

hydrophobicity, and polarity but can also be influenced by the age of contaminant, 

the type of plant along with a number of other physical and chemical soil 

characteristics.  In general, organic compounds with a log Kow ranging from 0.5 up to 

3.5 can undergo phytodegradation within the plant, whereas external 

phytodegradation does not rely on uptake, and so the log Kow is of no consequence 

(Newman, et al., 1998).  As lindane has a Kow above 3.0, degradation is more likely 

to occur outside of most plants. 

 

The disadvantages associated with phytodegradation include the formation of toxic 

intermediates, or degradation products, and difficulties confirming contaminant 

destruction though the presence or identity of metabolites within a plant. 

 

2.12.d.  Phytovolatilization 

 

Phytovolatilization is the release of a contaminant, or a broken down metabolite from 

plants to the atmospheric environment through uptake, transpiration, plant 

metabolism, and plant transpiration (Figure 2.8).  Factors such as wind, temperature, 

isolation, humidity and precipitation can affect the rate of transpiration within a plant. 
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Figure 2.8  Phytovolatilization 

Reproduced from Pilon-Smits (2005) 

 

Phytodegradation often occurs alongside phytovolatilization with transformed, less 

toxic compounds being released to the atmosphere where faster and natural 

degradation processes such as photodegradation can take place (Suthersan, 2001).  

Conversely, phytovolatilization may lead to the release of toxins back into the 

atmosphere where they can accumulate in vegetation and subsequently re-enter the 

food chain or raw building materials (Biology Online, 2008b).   

 

With respect to lindane, each chlorine atom released from the cyclohexane ring 

structure reduces the toxicity by several-fold suggesting that its immobilization and 

degradation using any number of phytotechnologies, individually or in combination, 

has the potential to remediate and stabilize the surrounding environment.  

 

2.13.  Applying Phytoremediation Technologies 

 

A number of issues must be considered before applying phytoremediation 

technologies to a polluted site: detailed site characterisation, including pollution level; 

uptake of pollutants by site-suitable plant species (the critical factor in scientific 

studies and commercial applications); the fate of the pollutant in the plant and 
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environment; the total cost of cultivation (planting, irrigation, management) and soil 

amendment; and the total time estimated for remediation.   Where phytotechnologies 

have been employed as a remediation strategy, further considerations regarding the 

collection and fate of plant biomass (disposal, energy or fibre production) and 

pollution level of any remaining plant material (specifically underground plant 

material, which is expensive and difficult to remove) are crucial at the post-harvest 

stage.  

 

2.13.a.  Uptake and Translocation of Organochlorines by Plants  

 

Understanding of the uptake, transport and degradation mechanisms along with the 

physico-chemical properties of the compounds and enzymes involved is essential to 

enhance phytotechnologies.  The removal of POPs from the soil by plants was first 

elucidated after observing that organic pollutants vanish faster from vegetative soil 

samples than from uncultivated soil (Alkorta & Garbisu, 2001).  This was further 

confirmed using plant-mediated degradation of petroleum contaminants in controlled 

field studies (Banks, et al., 2003).  As lindane and most other POPs are 

anthropogenic and thus foreign to natural plant processing systems, passive 

diffusion and advection are the usual and principal uptake processes from 

contaminated soil to root surfaces (Trapp, et al., 1994).  The degree of uptake and 

distribution appears to be inversely proportional to water solubility or directly 

proportional to the octanol-water partition co-efficient (Kow) and is dependent on:   

 

 Physico-chemical compound properties such as vapour pressure, water 

solubility, and molecular weight (Gerhardt, et al., 2009); 

 Environmental soil characteristics including the water content, temperature as 

well as the organic and mineral matter content; and  

 Plant characteristics such as the type and size of root system, leaf 

morphology, as well as the lipid, fibre, carbohydrate and water content and 

quality (Trapp, 2002). 

 

Normally, chemicals in solution (soil or directly from aqueous environments) enter 

plant roots through cell wells, where the major transport processes of water include 
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osmosis and bulk flow (Campos, et al., 2008).  Bulk flow of water in the xylem is 

driven by a hydrostatic pressure gradient induced by evapo-transpiration of water 

vapour from the foliage to the atmosphere (Mengel, et al., 2001).  Movement of 

chemicals into the xylem is dependent on the chemical polarity and molecular 

configuration as some chemicals may become attached and / or metabolized in the 

endodermis before reaching the xylem.  Those that do are transported in the 

transpiration stream or sap, during which time they may degrade, interact with other 

compounds / enzymes, partition into a number of different plant parts or they may 

eventually be released through stomatal pores in the leaf back into the atmosphere 

(Paterson, et al., 1990).  

 

Compounds, or toxins, of intermediate solubility are transferred to the shoots more 

efficiently than others, and as a result, those that are highly hydrophobic (log Kow 

above 4), such as lindane, tend to bioconcentrate in below-ground plant parts such 

as roots where they are readily bound to lipids in the cell wall and the lipid bilayer by 

Hemicellulose (Mengel, et al., 2001). Some organics, with a log Kow between 0.5 and 

3.5, display both hydrophobic and hydrophilic properties and are able to move 

through the lipid bilayer for subsequent transportation to the xylem and translocation 

to the shoot. Others, with a log Kow less than 0.5, are too hydrophilic to pass through 

membranes and thus, will never enter into the plant.  Non-polar molecules with 

molecular weights less than 500 kDa will bind to the root surfaces, whereas polar 

molecules, such as lindane, have the potential to enter the root and be translocated 

(Pilon-Smits, 2005).  However, the predicted partitioning of lindane and binding with 

lipids using the log Kow is markedly lower than its actual measured sorption in roots 

and shoots (Burken, 2003).  

 

Translocation of POPs from soil to the shoot tissues via the transpiration stream is 

generally small for hydrophobic compounds like lindane (Burken & Schnoor, 1998). 

Soil properties such as organic content influence how well the chemicals are sorbed 

to the soil, making them less available for root uptake and affecting the overall 

soil/plant (Scheunert, 1985).   Chemicals with a high vapour pressure may volatilize 

into the atmosphere where they may subsequently enter the plant through stomata in 

above-ground plant parts such as the foliage and stem (Bacci & Gaggi, 1986).  
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2.13.b.  Transformation of Organochlorines by Plants  

  

Plants often lack the catabolic enzymes necessary for complete degradation and 

mineralization of lindane and other xenobiotics when compared to microorganisms.  

However, the fate of contaminants entering a plant ultimately depends on their 

chemical structure, external temperature as well as the plant variety and its 

vegetative phase (Kvesitadze, et al., 2009).  Plants demonstrate three main 

physiological and biochemical processes to defend against the potentially harmful 

effects of contaminants:  excretion, functionalization (followed by conjugation and 

compartmentalisation) and decomposition or mineralization. 

 

2.13.b.i.  Excretion 

 

Excretion, a rare and simple process, involves the translocation and emission of 

highly mobile and concentrated untransformed xenobiotics through the apoplast 

(Sandermann, 1992).  Alternatively, once a xenobiotic enters plant tissue, it can 

often be transformed into innocuous products by a variety of biochemical reactions 

which can be further categorized into three biochemical processes according to the 

“Green Liver Model”: functionalization, conjugation and compartmentalisation (Figure 

2.9) (Sandermann, 1994).  

 
 

Figure 2.9  The main pathways of contaminant degradation in plant cells in accordance with 
Sandermann’s green liver concept 

Reproduced from Sandermann (1994) 
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2.13.b.ii.  Green Liver Model 

 

Functionalization involves the addition of a hydrophilic hydroxyl, carboxyl or amino 

functional group to a hydrophobic organic xenobiotic molecule following enzymatic 

oxidation, reduction or hydrolysis (Kvesitadze, et al., 2004). The consequential 

change in reactivity and polarity results in an increased affinity of the molecule to 

enzymes and further conversion.   

 

Conjugation is a basic phytoremediation course of action and consists of the 

coupling of a contaminant with a functional group to native cell compounds such as 

proteins, peptides, amino acids, organic acids, mono-, oligo-, polysaccharides and 

lignin to form peptide, ether, ester, thioether or other types of covalent bonds 

(Kvesitadze, et al., 2004).  The formation of less toxic conjugates bound with non-

toxic cellular compounds allows them to remain in the plant cell without instigating 

damage to cell homeostasis. Conjugate formation also promotes internal 

mobilization and activation of enzymes responsible for additional transformation.  

 

Although conjugation is a well-used pathway in plant self-defence, it is energetically 

and physiologically detrimental to other plant processes. Conjugate formation may 

result in the depletion of cellular compounds important to life and as basic molecular 

structure of xenobiotics is maintained, toxicity is only partially reduced (Dearing, et 

al., 2005). 

 

Compartmentalization is generally the final phase of conjugate processing. Soluble 

conjugates are primarily accumulated in vacuoles, while insoluble conjugates are 

shuffled out of the cell via exocytosis in the apoplast and accumulate in the cell well 

(Sandermann, 1994).  In a process known as storage excretion, plants cells are able 

to remove contaminant conjugates through an ATP-dependent glutathione pump 

which actively transports toxic residues away from vitally important structures, 

including nuclei and mitochondria (Coleman, et al., 1997). 

 

Transformations of contaminants during functionalization, conjugation and 

compartmentalization are catalyzed by a number of enzymes also involved in regular 
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plant cell metabolism.  Table 2.11 lists the enzymes that are directly involved in the 

transformation process of xenobiotic contaminants. 

 

Table 2.11  Degradation pathway and enzymes of xenobiotics in plants 

 

Phase I –  
Conversion/Transformation 

Phase II –  
Conjugation 

Phase III –  
Compartmentalization 

 
Oxidation, reduction and 
hydrolysis to form a more 
polar, chemically active and 
water soluble compound, for 
phase II reactions.  
 
Cytochrome P450s 
containing peroxidases are 
key in oxidative processes 
and deciding the plant's 
tolerance to xenobiotics.  
 
Nitroreductase for 
degradation of nitroaromatics 
and laccase for breaking 
aromatic ring structures. 

 
Organic pollutants or 
Phase I metabolites are 
directly conjugated with 
enzymes, sugars or 
amino acids resulting in 
less toxic hydrophilic 
compounds.  
 
Enzymes such as 
glutathione-S-
transferases (GSH), 
glucosyl transferase 
(GT) and N-malonyl 
transferases are 
associated with Phase 
II conjugation reactions. 

 
Conjugated xenobiotics are removed from 
cytosol, transported and sequestered in 
vacuoles or bound to insoluble cellular 
structures.  
 
ATP-driven vacuolar transporters are the 
main enzymes involved. 
 
 

 

Information compiled from Pilon-Smits (2005) and Susarla et al. (2002) 

 

Depending on the structure, concentration and exposure time of the contaminant, 

along with the energy demands placed on the cell, activation of other enzymes 

participating indirectly in the detoxification of contaminants, may also be induced 

(Chrikishvili, et al., 2006). 

 

2.13.b.iii.  Degradation and Mineralization 

 

The most important process of organic contaminant decomposition or mineralization 

in plants is oxidative degradation by Cytochrome P450-containing monooxygeneses, 

peroxidases and phenoloxidases.  

 

Cytochrome P450-containing monooxygenases are mixed-function enzymes located 

in the membranes of the endoplasmic reticulum and are integral in the hydroxylation 

of organic compounds (Schuler, 1996).  Nicotinamide adenine dinucleotide 

phosphate (NADPH) and / or nicotinamide adenine dinucleotide (NADH) reductive 

equivalents are used in the activation of molecular oxygen and subsequent 
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incorporation of one of its atoms into a non-polar, lipophilic organic compound (XH).  

This later results in the formation of a hydroxylated product (XOH) and a water 

molecule (using a second atom of oxygen) (Figure 2.10) (Sharma & Vanden Born, 

1970). 

 

Figure 2.10  Microsomal monooxygenase system 

Reproduced from Kvesitadze, et al. (2009) 

 

In response to stress, plant peroxidase activity increases and catalyzes a number of 

free radical reactions. As a consequence, the compound that is directly oxidized by 

peroxidase goes on to oxidize other compounds, including most organic xenobiotics 

(Kvesitadze, et al., 2009).  Plant peroxidases have a high affinity and wide substrate 

specificity to organic xenobiotics of different chemical structures and are ubiquitously 

distributed within plants existing in plasmalemma, cell walls, tonoplasts, cytoplasm, 

plastids and intracellular membranes of endoplasmic reticulum (Stiborova & 

Anzenbacher, 1991).  

 

Phenoloxidases are ubiquitous within plant organelles and catalyze both 

monooxygenase and oxygenase reactions. Phenoloxidases are involved in the 

oxidation of aromatic xenobiotics and have been found to oxidize benzene and 

toluene first by their hydroxylation and then by further oxidation to quinine 

(Martinova, 1993). Alternatively, in situations where it is not a substrate for the 

phenoloxidase, the xenobiotic may experience co-oxidation whereby a 

corresponding endogenous phenol is oxidized to form compound(s) with a high 

redox potential.. This activates the formation of oxygen radicals, such as a super 
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oxide anion radical (O2-) or a hydroxyl radical (OH) which enables phenoloxidase to 

indirectly participate in contaminant degradation (Guillén, et al., 2000). 

 

Only a few toxic molecules undergo direct degradation.  Over 80% are conjugated 

then compartmentalised in vacuoles and apoplasts followed by the deep oxidation of 

the toxic molecules (Sandermann, 1994).  

 

2.13.c.  Selecting Plants for Phytoremediation  

 

Selecting plants for phytoremediation is a complex task. Factors to consider include 

soil properties, climate, root type and how effective different species respond to the 

different types of pollutants.  Climate is a major concern as a plant that grows well in 

one geographical environment and area may perform as well in another. The amount 

of sun, wind, rain and man-made stress conditions like road salt or vehicle fumes 

can adversely affect the growth of a specific plant.  Likewise, soil type is significant 

since plants normally prefer a specific type of soil, such as rubble, clay or sand 

(Xiujin, et al., 1987).  For phytoremediation to work effectively, plants need to thrive 

in the designated given environment.  Table 2.12 lists the diverse assortment of 

plants and plant varieties that are often used to remediate different types of 

contaminants 

 

Root type is another consideration; plants with smaller roots are better at covering a 

larger surface area within the soil when compared to most trees which typically have 

much larger roots.  However, some plant species with natural remediation capability 

are too small or have too limited a root system to remove significant amounts of the 

contaminant.  Alternatively, excluder plants able to fix atmospheric Nitrogen are of 

practical use to aid in restoring contaminated soils allowing the colonization of plants 

and microbes capable of remediation (Walker, et al., 2007) 
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Table 2.12  Phytoremediative plant species 

 

Pollutant  Phytoremediative Plant Species  

 
Heavy Metals  
(Zn, Cd, Cr, Cu, Pb) 
 

 
Alpine Pennycress, cabbage, Pelargonium Geranium, Sunflower. 
 

Aromatics 
(benzene, toluene, zylene) 

Alpine Pennycress, Barley, Cabbage, Crucifer, Dandelions, 
Grasses (Rye, Fescue, Bermuda, Sorghum), Hop,  Indian Mustard, 
Nettle, Pelargonium, phreatophyte trees (poplar, willow, 
cottonwood, aspen), Rape Seed, , Sunflowers                   
 

Wood Preservatives 
(arsenic, PAH) 

Brake Fern, Indian Mustard, fibrous rooted grass (Rye, Fescue, 
Bermuda, Sorghum), phreatophyte trees (poplar, willow, 
cottonwood, aspen) 
 

Leachates 
(PCBs, pesticides, herbicides) 

Grass (Rye, Fescue, Bermuda, Sorghum), legume (Clover, Alfalfa, 
Cowpea) Mulberry, Osage Orange, phreatophyte trees (poplar, 
willow, cottonwood, aspen) 
 

Radiation Indian Mustard, Pigweed, Sunflower 
 

Petroleum Alfalfa, grasses (Rye, Fescue, Bermuda, Sorghum), Hybrid Poplar, 
Indian Mustard, Juniper 
 

Explosives Elodea, grasses (Rye, Fescue, Bermuda, Sorghum), legume 
(Clover, Alfalfa, Cowpea), parrot feather, phreatophyte trees 
(poplar, willow, cottonwood, aspen), reed canary grass, water star 
grass  
 

Nitrates Grasses (Rye, Fescue, Bermuda, Sorghum), legumes (Clover, 
Alfalfa, Cowpea), Indian Mustard, phreatophyte trees (poplar, 
willow, cottonwood, aspen), Bullrush, Cattail, Coontail, Pondweed, 
Arrowroot, Duckweed; Algae, Stonewort, Parrot Feather, Eurasian 
Water Milfoil, Hydrilla, Sweet Flag, Water Hyacinths, Water Lilies 

 

Washington State University Extension (2012) 

 

An essential key to the success of phytoremediation is understanding how plants 

take up water, as this will help develop a better appreciation of how the contaminants 

in the water will also reach the plant. Plants with many and/or deep roots pump large 

quantities of water during the growing season, decreasing the flow of contaminated 

surface toward streams, lakes, groundwater and potable drinking water supply 

sources. Trees are believed to be more advantageous than annual crops as they 

have a larger root system and are more amenable to varying soil and climatic 

conditions.  Additionally, their long-term cultivation does not rely on large inputs of 

fertilizers and/or pesticides and requires no tillage thereby reducing the negative 

impact on air quality (Mench, et al., 2010). Poplars (Populus sp.) and willows (Salix 

sp.) are the most common tree species used for phytoremediation as they have 
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extensive deep reaching roots, grow rapidly, take up large quantities of water 

alongside a wide variety of contaminants including inorganic and organic 

compounds, pesticides, ammonia and radio-nuclides (Aronsson, 1996; Hinckley, et 

al., 1994). Additionally, the increased tree cover resulting from phytoremediation can 

reduce greenhouse gas emissions, urban heat effects and airborne particulates.  

Poplars and willows have been used extensively in Europe and North America, 

operationally and demonstratively, as vegetative filters for cleaning polluted drainage 

water, vegetative landfill caps, wastewater treatment and reuse as well as soil 

remediation and biomass production for energy use (Aronsson & Perttu, 2001; 

Elowson, 1999). 

  

A key consideration in selecting the appropriate plant for phytoremediation is 

whether or not it is native to the geographical area where the clean-up is potentially 

going to be used.  Naturally occurring vegetation found on contaminated sites are 

often the best candidates (Conesa, et al., 2006).  This is particularly significant for 

sites near natural areas that need to be protected as there is the potential for a non-

native plant species to break away from a phytoremediation site and take root 

nearby, threatening the livelihood of native bacterial, animal and plant species of 

interest. 

 

Monitoring studies have identified several plant species with the ability to remove 

lindane from the soil. Solanum torvum (Turkey berry), Withania somnifera (Indian 

ginseng), Cynara scolymus L. (artichoke), Erica sp. (Heather), Cystisus striatus 

(Portuguese broom), Holcus lanatus (Yorkshire fog), Capsicum annuum (chilli) and 

Coriandrus sativum (coriander) can accumulate considerable amounts of lindane 

isomers in their root, shoot and stem matrix (Abhilash & Singh, 2009a; Pereira, et al., 

2008; Kidd, et al., 2008; Barriada-Pereira, et al., 2004). 

 

2.13.d.  Economics of Phytoremediation 

 

Phytoremediation is an attractive remediation alternative, commercially and 

environmentally, due to its low cost, ecological sensitivity and low energy 

consumption when compared with other treatment methods.  Aesthetically, the 
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plants used in phytoremediation projects also serve to enhance public acceptance 

and improve the visual landscape architecture in areas that are usually very 

industrial and barren (Susarla, et al., 2002)  

 

In some cases, a plant can chemically change a pollutant into something less toxic 

leaving no further concerns.  In others however, the plants used for phytoremediation 

absorb and accumulate high levels of contaminants, or metabolites, so that they 

become toxic to themselves, other organisms and the environment and eventually 

must be harvested and properly disposed of to prevent revolatilization of pollutants 

or their entry into the food chain.  Still, this approach generates much less waste for 

disposal than traditional excavation.  If further remediation is necessary, the process 

can be reapplied.   

 

A major obstacle in carrying out of phytoextraction is the disposal of vast quantities 

of hazardous biomass and / or contaminated plant material.  Composting has been 

shown to generate soluble organic compounds that can enhance metal solubility and 

significantly reduce the volume of harvested biomass (Hetland, et al., 2001). 

Alternatively, weight loss of contaminated plant biomass by compaction is also a 

viable option as it will decrease the cost of transportation to hazardous waste 

disposal facilities. Nonetheless, both methods will still require that any leachate be 

collected, treated and disposed of appropriately (Blaylock & Huang, 2000).   

 

Another promising method to make use of plant biomass is through a 

thermochemical conversion process. Combining phytoextraction with biomass 

combustion and generation could be used commercially as an energy source but 

only under controlled and confined conditions.  The gases and particulates released 

in the environment are potential hazards and any loss of energy or heat produced in 

the process should be monitored and prevented.  Gasification is a complex process 

where biomass material undergoes a series of simultaneous chemical changes to 

yield clean and combustive gas at high thermal efficiencies (Raskin, et al., 1997).  

Pyrolysis, whereby material is decomposed under anaerobic conditions, might also 

be used for contaminated plant material. As the high cost of installation and 

operation for the above processes can be a limiting factor for treatment (especially 
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when employed solely for plant disposal), it is likely to be more advantageous to co-

process the plant biomass in existing firing and treatment facilities (Iyer, et al., 2002). 

 

Estimating the performance and cost of phytoremediation is a difficult task.  Existing 

data suggest the initial outlay will likely be high due to implementation, monitoring 

and other regulatory requirements with a rapid decline in cost over time as efficiency 

and experience are gained. Phytoremediation costs will vary depending on treatment 

strategy but is often predicted to be less expensive than comparable technologies 

(Chappell, 1997).  Table 2.13 gives estimates of phytoremediation costs in relation to 

conventional technologies.  

 

Table 2.13  Estimated costs of comparative remediation technologies 

 

Contaminant Phytoremediation (USD) Conventional Technologies (USD) 

Metals $80/cubic yard $250/cubic yard 

Petroleum Hydrocarbons $70000 $85000 

Lead (10 acres) $500000 $12000000 

Radionucleotides (water) $2-$6 / 1000 gallons None listed 

Various (1 hectare/15 cm depth) $2500-$15000 None listed 

 

Reproduced from Vanek, et al. (2010) 

 

Expectations for phytoremediation should also be realistically adjusted as it is 

considered a lengthy process when compared to traditional engineering approaches. 

Projects and applications are dependent on rates of plant growth, biological activity, 

contaminant properties and bioavailability, climatic conditions and are also likely to 

require multiple growing seasons. 

 

2.13.e.  Laboratory in vitro Model Systems 

 

The interactions between plant cells and xenobiotics in the environment may be 

investigated using several experimental systems (Doran, 2009):  

 

  cell extracts; 

  undifferentiated plant cell cultures such callus and cell suspensions; 
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  differentiated organ cultures such as roots and shoots; 

  explants such as  leaf disks and excised roots; 

  whole plants in hydroponic culture; 

  whole plants in potted soil under greenhouse cultivation; and  

  whole plants in the field 

 

While each system shares several common features, they also possess important 

unique properties (Figure 2.11).  Plant tissue culture is performed in micoogranism-

free media and so entails the growth of plant cells and tissues, in vitro.  It is a very 

useful and convenient technique for phytoremediation studies.  Established in vitro 

cultures can reproduce indefinitely and only when needed, whereas whole plants 

have a limited lifespan with each individual plant being replaced after every 

experiment.  Consequently, the length of time necessary to investigate and observe 

an experimental hypothesis can be greatly decreased using tissue cultures as 

opposed to intact plants (Doran, 2009).     

 

Figure 2.11  Properties of plant tissue cultures, plants in hydroponic culture and plants in the field. 
 

Reproduced from Doran (2009) 
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Plant tissue cultures also offer the advantage of being able to determine and 

distinguish the metabolic capabilities of plant enzymes independent of rhizospheric 

bacteria (Chaudhry, et al., 2005).  Studies can be carried out under easily 

manipulated and controlled conditions with respect to medium, nutrients and 

additives to facilitate substance availability, transport and uptake.  Isolation of 

reaction products may require fewer purification steps and permit the recovery of 

metabolites and intermediates of higher purity in suitable quantities for further 

analysis.    The relative homogeneity and standardized conditions of plant tissue 

cultures helps to reduce variability and their ability to propagate without light 

removes photochemical reactions which may influence substrate metabolism, toxicity 

and the activity of mineralization in plants, which is particularly important when 

assessing the capability of plant cells to degrade organic pollutants to water and CO2 

(Van Aken, et al., 2004). 

 

Hairy roots, when compared to dedifferentiated tissues, or even shooty teratomas, 

are of particular importance in phytoremediation research.  As they are more closely 

related in function and structure to the organs of whole plants, they offer a superior 

level of legitimacy and similarity with respect to their biological behaviour and 

properties when in direct contact with pollutants.  Their simple culture requirements 

and straight-forward initiation from already transformed plant-material, or direct 

transformation via the Ri plasmid make hairy roots useful for screening genetic 

transformants prior to whole plants phytoremediation studies (Aird, et al., 1998).  

 

However, as the conditions required by plant tissue cultures are highly aseptic due to 

bacterial or fungal contamination which can negatively affect cell viability, it is not 

commercially feasible for time scales over 28 days or large-scale phytoremediation 

applications (Oksman-Caldentey & Barz, 2002).  The necessity for sterile conditions 

makes phytoremediation of soil or waste containing unidentified microorganisms, as 

well as growth in bioreactors, realistically impractical and uneconomical.  The cost of 

in vitro cell culture production is exponentially higher than whole plant agricultural 

production and when plant tissue cultures from bioreactors are applied to polluted 

site, the disruption, excavation and transport of the contaminated soil negates the 

advantages of using whole plants for in situ phytoremediation.  Factors such as 



  Literature Review   

52 

 

culture shaking to encourage oxygen transfer, medium composition, age, plant 

morphology, timing of pollutant addition and growth inhibitor / inducer levels can all 

have an effect on the transformation of xenobiotics in plant tissue cultures. However, 

similar concerns can also arise when using whole plants (Doran, 2009). 

 

In theory, the chemicals metabolized in vitro will be subjected to the same enzymatic 

conditions in the parent plant.  Thus, the principal purpose of plant tissue cultures in 

phytoremediation studies is to understand the enzymatic capacity and reactions that 

operate in whole plants, independent of microflora influences and 

compartmentalization of metabolites in other plant structures, and to minimize the 

initial expense of greenhouse or field trials 

 

2.14.  Enhancing Phytoremediation 

 

The future of phytoremediation is in the research and development phase with many 

technical barriers which still need to be addressed to enhance the clean-up process 

and make it a commercially viable option. 

 

2.14.a.  Supplementation 

 

Phytoremediation works best when supplemented by non-biological remediation 

technologies. A simple way to improve the process is to fine-tune the growth 

conditions by supplying the plant and soil with agronomic amendments such 

fertilizer, water, nutrients and other agents, or by modifying the planting pattern.  This 

can be a very effective tool for enhancing and optimizing plant development and 

remediation capability.   

 

To provide the most efficient and cost-effective remediation, the applicability of other 

clean-up techniques in conjunction with phytoremediation must also be assessed. 

On its own, phytoremediation may prove inadequate due to inherent limitations such 

as plant survival and proximity to the toxic contaminant.  Excavation of polluted soil, 

combining it with uncontaminated earth and spreading the mixture out over a larger 

area can then be followed by the use of plant-based remediation over the sites to 
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provide a successful clean-up (Margaretich, 2003). Endophyte-assisted 

phytoremediation is an additional and hopeful new field to improve remediation by 

utilizing microorganisms that exist within plants to provide protection by degrading 

pollutants, increasing stress tolerance and improving plant growth and development 

(Weyens, et al., 2009).  One method of ensuring the overall efficiency and success 

of microbe-assisted phytoremediation is to inoculate plants with strains of plant 

growth-promoting bacteria (PGPB) to improve their growth and stress tolerance 

through the production of phytohormones (such as indoleacetic acid (IAA) and 

cytokinins) or other plant rhizodeposits (Becerra-Castro, et al., 2011). 

 

2.14.b.  Pollutant Bioavailability 

 

To optimize phytoremediation, it is imperative that the processes affecting 

bioavailability are well appreciated and understood.  The oxidation state of a 

molecule can affect its solubility, bioavailability, uptake by plants and toxicity.  Soils 

favour elements in their oxidized forms whereas aquatic environments favour 

reduced forms.  In soils, the bioavailability of cations is generally inversely correlated 

so that lower pH levels tend to favour cation bioavailability. Other physical conditions 

such as temperature and moisture can also have an effect.  Higher temperatures 

tend to hasten physical, chemical and biological processes and precipitation will 

increase plant growth and water-soluble pollutant migration. Ageing of pollutants 

decreases the bioavailable faction making them more recalcitrant and difficult to 

phytoremediate (Olson, et al., 2003). 

 

2.14.c.  Transgenic Phytoremediation  

 

A promising approach to improve the ability of plants to tolerate, accumulate and 

degrade xenobiotic pollutants is by identifying unique genes from other microbes, 

fungi, plants and mammals which are capable of those desired actions.  Isolated 

genes can then be transformed into chosen plants using Agrobacterium-mediated or 

direct DNA methods, such as particle gun bombardment, or gene transfer (Eapen, et 

al., 2007). Another option is to modify and regulate the appropriate intrinsic or 

transgenic enzymes or transporters involved in metabolic rate limiting steps. In 1986, 
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the first transgenic plants for phytoremediation of heavy metal-contaminated soil 

were developed using Nicotiana tabaccum expressing a yeast metallothionein gene 

to pass on higher tolerance to cadmium (Hooda, 2007). Tobacco was also the first 

plant modified to target organic pollutants like explosives and halogens in 1999 

(Hooda, 2007).  

 

Historically, most transgenic phytoremediation research has been performed on 

laboratory model plants and plant tissues such as Nicotiana tabaccum, A. thaliana, 

Solanum lycopersicum and Solanum tuberosum, as they have limited space 

requirements and require only light, air, water along with a few minerals to complete 

their short life cycle. More importantly, they possess a manageable, sequenced 

genome that can easily be manipulated through genetic engineering offering the 

ability to test hypotheses quickly and efficiently enabling rapid research progression 

(Members of the Multinational Arabidopsis Steering Committee, 2002).   However, 

their relatively small biomass and shorter life span restricts their use for on-site 

remediation.  For this reason, the knowledge gained from laboratory experiments is 

often then applied to initiate improvements in other plants with increased economic 

and cultural importance.    

 

Particular interest has focused on the genetic manipulation of trees such as willow 

and poplar due to their extensive root systems, robust growth, larger biomass and 

tolerance to both organic and inorganic pollutants (Burken & Schnoor, 1998).  

Although several reports are available documenting the successful development of 

transgenic trees, Agrobacterium-mediated transformation of forest trees remains a 

challenging obstacle (Han, et al., 2000).  Work to date has largely looked at the 

transformation of constitutively expressed single genes or traits.  Table 2.14 gives an 

example of some of the most likely candidate genes for transgenic phytoremediation.  

To facilitate advancement in the field of transgenic phytoremediation, a systems-

wide approach using multiple genes involved in the complete pathways for 

metabolism and targeted co-ordinate expression in root, uptake, translocation, and 

sequestration or under certain conditions needs to be developed (Dowling & Doty, 

2009; Dhankher, et al., 2002).  With government and environmental regulations 

restricting the use of transgenic plants, future advancements of phytoremediation are 
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likely to employ genetic use restriction technologies (GURTs) causing second 

generation seeds to be sterile and prevent the spreading of transgenes and 

genetically modified organisms (GMO) in the environment (Hills, et al., 2007).  

Genetic engineering of the chloroplast genome to obtain high expression without the 

risk of GMO dispersal via pollen has also been suggested as a possible solution to 

aggressive GMOs and interbreeding (Ruiz, et al., 2003). 

 

Table 2.14  Candidate genes for transgenic phytoremediation 

 

Gene Source Action Pollutant 

Cytochrome P450s Mammalian Degradation/ tolerance Wide range of organics  

Pentaerythritol 
tetranitrate reductaste 

Bacteria Degradation Explosives, nitroesters 
and nitoaromatics 

Mn-peroxidase  C. versicolor Degradation PCP 

Nitroreductase E. coli Degradation TNT 

Biphenyl chlorophenyl 
dioxygenase (BphA ) 

B. xenovorans Degradation PCBs 

Atrazine 
chlorohydrolase (atzA) 

Bacteria Degradation Atrazine 

Glutathione synthesases Endogenous / 
other plant sources 

Tolerance Wide range of organics 

XplA Bacteria Degradation RDX 

NaDPH dependent 
nitroreductase 

Bacteria Degradation Explosives 

HCH dehydrochlorinase 
(linA) 

S. japonicum UT26 Degradation Pesticide HCH 

Laccase Fungus Degradation Phenols 

Gshl E. coli Tolerance Cd 

Cup1  A. thaliana  Tolerance Zn, Cu  

TaPCSl  Wheat  Tolerance Cd 

merA Gram –ve bacteria Tolerance / Volatilization Hg 

APs  A. thaliana  Hyperaccumulation Se  

ACC Bacteria Tolerance Cd, Co, Cu, Mg, Ni, PB , 
Zn 

FRE1 / FR2 S. cerevisiae Hyperaccumulation FRE2 

Citrate synthase P. aeruginosa Chelation Increase Citrate levels 

 

Compiled from Hooda (2007); Abhilash, et al.(2009); Eapen et al.(2007) and Campos, et al. (2008)
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To increase crop production and maximize land use, cultivation in barren areas of 

high xenobiotic contamination will be necessary.  The use of transgenic crops is 

often curtailed for ethical reasons and it is generally preferable to use transgenic 

plants that are poisonous or unprofitable (weeds) and are not eaten by insects, 

animals or humans to prevent any metabolic product reaching the food chain.  

However, the ethical and environmental risks associated with genetically modified 

crops will have to be considered and minimized to meet the mounting requirements 

of the growing global population.  The insertion of Cytochrome P450 genes with the 

ability to catalyze the oxidation and subsequent metabolism of organic substances, 

has already been shown to improve herbicide resistance, degradation and residual 

agrochemical clean-up ability while retaining normal morphological and physiological 

traits in food crops such as rice (Kawahigashi, et al., 2008).  Transgenic plants 

utilizing model plant systems that have been engineered to rapidly transform and 

detoxify POPs could be used in phytoremediation applications to assess feasibility 

and risk parameters prior to field testing and commercialization if issues such as cost 

and public acceptability are overcome.  

 

2.14.c.i.  Arabidopsis thaliana as a Model Organism 

 

A. thaliana is generally preferred in laboratory-based studies for transgenic plant 

development.  It has limited space requirements and requires only light, air, water 

and a few minerals to complete its fast life cycle which produces numerous self-

progeny. Typically, the average growth span of A. thaliana from germination to 

senescence (changes to its biology as it ages after maturing) is approximately 7 to 8 

weeks (Table 2.15).  More importantly, it possesses a small, sequenced genome that 

can be easily and rapidly manipulated through genetic engineering compared to 

most other plants.  An extensive toolkit for its manipulation has been developed 

including efficient mutagenesis; simple transformation technology; DNA, RNA, 

protein, and metabolite isolation; along with numerous detection methods (National 

Science Foundation, 2013).  Thus, A. thaliana offers the ability to test hypotheses 

quickly and efficiently with the gained knowledge being used to initiate improvements 

in other plants with increased economic and cultural importance.   
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Table 2.15  Timeline of Arabidopsis thaliana growth stages 

 

Stage 
Number 

Days after 
sowing 

Description 

0.0 n/a Seed germination 

0.1 3.0 (on plates) Seed imbibitions 

0.5 4.3 (on plates) Radicle emerges from seed coat 

0.7 5.5 (on plates) Hypocotyl and cotyledon emerge from seed coat 

1   Rosette growth 

1.0 6.0 (on plates) Cotyledons fully open 

1.02 10.3 (on plates) 
12.5 

2 rosette leaves are greater than 1 mm in length 

1.03 14.4 (on plates) 
15.9 

3 rosette leaves are greater than 1 mm in length 

1.04 16.5 4 rosette leaves are greater than 1mm in length 

1.05 17.7 5 rosette leaves are greater than 1mm 

1.06 18.4 6 rosette leaves are greater than 1mm 

1.07 19.4 7 rosette leaves are greater than 1mm 

1.08 20.0 8 rosette leaves are greater than 1mm 

1.09 21.1 9 rosette leaves are greater than 1mm 

1.10 21.6 10 rosette leaves are greater than 1mm 

1.11 22.2 11 rosette leaves are greater than 1mm 

1.12 23.3 12 rosette leaves are greater than 1mm 

1.13 24.8 13 rosette leaves are greater than 1mm 

1.14 25.5 14 rosette leaves are greater than 1mm 

3   Rosette Growth 

3.20 18.9 Rosette is 20% of final size 

3.50 24.0 Rosette is 50% final size 

3.70 27.4 Rosette is 70% final size 

3.90 29.3 Rosette growth is complete 

5   Inflorescence emergence 

5.10 26.0 First flower buds are visible in the rosette, plant has not yet bolted 

6   Flower production 

6.00 31.8 First flower is open, petals are at 90 degree angle to the pistil 

6.10 35.9 10% flowers to be produced are open 

6.30 40.1 30% flowers to be produced are open 

6.50 43.5 50% flowers to be produced are open 

6.90 49.4 Flowering complete, flowers are no longer produced. 

8   Silique or fruit ripening. Seed pods become brown and then shatter. 

8.00 48.0 First silique or seed pod shatters. 

9   Whole plant senescence begins. Plant starts to lose pigment 
becoming brownish. 

9.70   Senescence complete 

 
Reproduced from TAIR (2006) 
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2.14.c.ii.  Agrobacterium-mediated Transformation 

 

A number of techniques are available to transfer DNA into plant cells including 

particle bombardment, electroporation and viral transformation (or transduction). 

However, Agrobacterium-mediated transformation is the easiest and most utilized 

method (Gelvin, 2003).  Agrobacteria are soil-borne, bacterial plant pathogens and 

genetic transformation results from the transfer of a large tumour-inducing (Ti) 

plasmid and its integration into the plant nuclear genome. Ti plasmids are 200 to 800 

Kb in size, with the actual transferred DNA (T-DNA) regions being approximately 10 

to 30 Kb in size (Barker, et al., 1983).   

 

Processing and export of T-DNA from the Ti plasmid to the plant cell is governed by 

virulence (vir) genes on the Ti plasmid, which are stimulated by wounded plant cells 

that secrete the low-molecular weight molecules, acetosyringone and hydroxy-

acetosyringone (Garfinkel & Nester, 1980).  T-DNA contains the oncogenic genes, 

encoding the enzymes that cause tumour formation and the genes involved in opine 

synthesis. Once synthesized, opines are excreted by tumour cells and provide a 

source of carbon and nitrogen for Agrobacterium (Hooykaas, et al., 1984).  

Regulation of the vir genes involves a series of integrated transcriptional actions.  

The series begins with the constitutively expressed virA gene that encodes a 

transmembrane protein to detect the presence of acetosyringone.  A regulatory 

protein, VirG, then sends a signal to virB, C, D and E when plant inducible factors.  

The DNA binding protein, VirE2, sheaths the T-strand during transfer to the plant 

cell; cleavages at the 25 bp direct repeats borders of the T-DNA are conducted by 

VirC and VirD2 endonucleases; and VirB is involved in directing T-DNA transfer at 

the bacterial cell surface (Gelvin, 2003). 

 

T-DNA is enclosed by highly homologous 25 bp T-DNA border sequences, referred 

to as TL and TR, flanking the region in a directly repeated orientation.  These 

sequences allow the T-DNA to be processed from the Ti plasmid by the activity of 

the VirD2 border-specific endonuclease.  Deletion of the TL border does not affect 

transformation.  However, manipulation and deletions of the TR border prohibits the 

transfer of genes required for oncogenic activity and as a result, the transformation 

phenotype is not detected (de la Riva, et al., 1998). 
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Cleavage of the 25-bp T-DNA border requires VirD1/VirD2 proteins, and occurs 

mainly by cutting the T-DNA ’lower strand’, between nucleotides 3 and 4 of the 

border sequence.  The 5' end of the T-strand relates to the TR border while the TL 

border relates to the 3’ end.   This single T-strand is transferred to the plant cell as a 

DNA/protein complex where it binds to one strand of the plant DNA and a torsional 

change occurs in the plant DNA resulting in another cut.  A homologous strand is 

produced as each of the T-strands is ligated to the plant DNA (Stachel, et al., 1986) 

(Figure 2.12).  Rearrangement and duplication of target DNA is a product from the 

repair and replication of the staggered nick in the plant DNA.  Besides being AT-rich, 

the target DNA site does not appear to have any other specific characteristics 

(Gelvin, 2003). 

 

 

Figure 2.12  Agrobacterium-mediated transfer of T-DNA into the plant genome 

Adapted from Zupan, et al. (2000) 

 

Exploiting the fact that tumour formation in plants is the result of a transformation 

and T-DNA integration, T-DNA genes are only transcribed in plant cells and that any 

DNA between the T-DNA borders can be transferred to plant cells has resulted in the 

construction and use of non-virulent bacterial vector strains for plant transformation 

(Hooykaas, et al., 1984). 
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2.14.c.iii.  Gateway® Recombination Cloning Technology 

 

Traditional restriction enzyme cloning technology involves a number of steps which 

can take considerable time and effort.  The efficiency is highly variable and 

dependant on using restriction enzymes that do not cut within the gene of interest, 

how clean the DNA sample is and the size of the fragment.  Gateway® Technology 

is a rapid, cost-effective and highly efficient universal cloning method that avoids 

typical cloning limitations by exploiting the site-specific recombination properties of 

bacteriophage lambda and its ability to integrate and cut itself into and out of the 

bacterial chromosome (Katzen, 2007).   The reaction is 99% efficient, works without 

the need for restriction enzymes, ligase or subcloning and is able to successfully 

maintain the fragment orientation and overall reading frame. 

 

The Gateway system proceeds under the direction of the BP and LR clonase 

reactions. The BP reaction is catalyzed by the phage integrase and the integration 

host factor.  This reaction transfers a DNA or PCR fragment, flanked by two attB 

sites, into a donor vector (pDONR) carrying two attP sites.  The DNA fragment is 

subsequently inserted into the donor by matching the attB and attP sites (Hartley, et 

al., 2000).  This recombination results in an entry clone, pENTR, flanked by two attL 

sites (Figure 2.13).  Entry clones, as a rule, are generally not used for direct 

transformations as the attL sites are too long (96 bp) to be placed as spacers 

between sequences, but are instead used as the key substrates in the LR reaction.   

 

The LR reaction is catalyzed the enzyme integrase, the integration host factor, and 

the phage excisionase. The LR clonase mix shuffles the DNA fragment from pENTR 

into a destination vector (pDEST) carrying two attR sites. The DNA fragment is then 

inserted into another new expression clone (pEXPR) after recombination of the attL 

and attR sites and once again flanked by attB sites (Figure 2.14). The resulting 

expression clones are used to test gene function(s) (Karimi, et al., 2007). 
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Figure 2.13  Schematic representation of the Gateway® Technology BP reaction. 

Adapted from Karimi, et al. (2007) 

 

 

 

Figure 2.14  Schematic representation of the Gateway® Technology LR reaction. 

Adapted from Karimi, et al. (2007) 
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2.14.c.iv.  Directional Cloning using Gateway® Technology  

 

The pENTR™ Directional TOPO® Cloning Kit allows blunt-end PCR products to be 

directionally cloned into a Gateway® entry vector at  greater than 90% efficiency, 

with no ligase, post-PCR procedures, or restriction enzymes required.  In the 

Invitrogen system, PCR products are directionally cloned by adding four bases to the 

forward primer (CACC).  An overhang in the cloning entry vector (GTGG) invades 

the 5′ end of the PCR product, anneals to the added bases, and stabilizes the PCR 

product in the correct orientation (Figure 2.15). 

 

 

The enzyme Topoisomerase I, from Vaccinia virus, binds DNA at CCCTT specific 

sites and cuts the phosphodiester backbone in one strand.  Reversing the reaction 

and releasing topoisomerase is also possible as a covalent bond is formed between 

the 3′ phosphate of the cleaved strand and a tyrosyl residue (Tyr-274) of 

topoisomerase I which can then react with the 5′ hydroxyl of the original cleaved 

strand (Invitrogen by Life Technologies, 2012). 

 

 

Figure 2.15  Directional cloning using Gateway® Technology. 
 

Reproduced from Invitrogen pENTR™ Directional TOPO® Cloning Kit User Guide (2012)  
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2.15.  Transgenic Phytoremediation of Lindane 

 

Preliminary results from a single proof of concept study have shown that the model 

plant A. thaliana modified with linA from S. japonicum UT26 is able to grow in the 

presence of 34 μM (10 mg/kg) lindane, a normally toxic concentration, and remove it 

from the media, contrary to the wild type plant (which does not contain the linA gene) 

(Figure 2.16) (De Lorenzo Prieto & Gonzalez Pastor, 2007).   

 

 

 
Figure 2.16  Growth of wild type Arabidopsis thaliana (1) and Arabidopsis thaliana modified with linA  

(2, 3 and 4) in the presence of 34 μM (10 mg/kg) Lindane 

 

 

2.15.a.  Constructing Transgenic A. thaliana   

 

Transgenic plants for lindane degradation were created by De Lorenzo Prieto & 

Gonzalez Pastor (2007) as summarized below.  

 

The linA gene (Figure 2.17) was amplified by Polymerase Chain Reaction (PCR) and 

the resulting PCR fragments were digested with the restriction enzymes, BamHI and 

EcoRI, and cloned into the vector pCAMBIA3500 (Figure 2.18).  Agrobacterium 

tumefaciens was then transformed with the above vector and transformants were 

selected using kanamycin.  Wild type plants of A. thaliana (Col-0 variety) were 

transformed by immersing their flowers in a medium containing stationary phase 

cells from Agrobacterium tumefaciens containing the pCAMBIA3500-linA construct.   
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Figure 2.17  Sequence of the linA gene (Imai, et al., 1991). 

 

 

Figure 2.18  pCAMBIA3500-linA construct  

 

Seeds were collected from mature plants and re-sown in soil. Transgenic plants 

were selected for using the herbicide phosphinothricin, with a success rate of 

approximately 1%. The surviving transgenic plants were grown until maturity, at 

which time seeds were collected.  Seeds were subsequently planted on lindane-

containing Murashige and Skoog (MS) agar media to select for lindane-resistant 

transformed lines.  After several generations of selection, three transgenic lines were 

obtained. 

 

RNA was extracted from transgenic plants to determine whether or not the linA gene 

was being transcribed correctly using reverse transcriptase-PCR (RT-PCR). 

Furthermore, the RNA between the three transgenic lines was quantified using 

realtime-PCR by incorporating a fluorophore into the double strand and comparing 

the Ct (threshold cycle) value of amplification between the linA and actin genes by 

measuring the fluorescence.  Differences in the actual quantity of starting cDNA 

material from each transgenic line were normalized by comparing the ratios of linA to 

Actin.  The resulting values were very similar and indicated comparable levels of 

transcription Table 2.16 . 
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Table 2.16  Relative transcription levels of the linA gene 

 

Transgenic Line Ct-linA/Ct-actin  

linA-wt (5.1) 681 

linA-CtHIS (2.1) 711 

linA-CtHIS (10.1) 766 

 

Information compiled from De Lorenzo Prieto & Gonzalez Pastor (2007) 

 

 

2.15.b.  Degradation Capability of Transgenic A. thaliana  

 

Wild type and transgenic plants were grown on lindane-contaminated MS-agar 

media for six weeks after which time the amount of lindane remaining was 

determined (De Lorenzo Prieto & Gonzalez Pastor, 2007).  The ability of the 

transgenic lines to degrade lindane was ascertained following EPA Method 3550 

(USEPA, 2007a), which consists of a first phase polar solvent extraction, solvent 

concentration and subsequent clean-up using a nitrogen flow packed column. The 

extract obtained was then analyzed using gas chromatography with an electron 

capture detector (GC / ECD) based on EPA Method 8081B (USEPA, 2007b). 

Results indicated that the transgenic lines were able to significantly reduce the 

amount of lindane present in the plates by approximately 98% (Table 2.17).  The 

authors claim that other preliminary studies have confirmed that lindane is not 

present in the aerial parts of the plant.  However, no supporting data is given. 

 

Table 2.17  Reduction of lindane after 6 weeks of growth 

 
 Lindane present after 

6 weeks (mg/kg) 
Standard Deviation Reduction 

(%) 

Control (no cultivation) 3.187 0.360 n/d 

Wild type  2.910 0.158 n/d 

linA-wt (5.1) 0.038 0.022 98.8 

linA-CtHis (2.1) 0.044 0.025 98.6 

linA-CtHis (10.1) 0.041 0.028 98.7 

 

n/d = No data given by authors 

Information compiled from De Lorenzo Prieto & Gonzalez Pastor (2007) 
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2.15.c.  Limitations of Transgenic A. thaliana Study 

 

In the study, the authors concede that a more robust plant, with a larger root system 

and the ability to resist and/or accumulate higher concentrations of lindane would be 

better suited for actual on-site field applications.  It is also noted that confinement of 

actual soils to be treated, preventing dispersion of transgenic plants, hybridization 

with other wild type plants and competition with other plants in the environment is a 

major concern and problem when developing transgenic phytotechnologies.  

However, in the areas where these technologies might be applied, the sites of 

remediative interest are generally already self-contained. 

 

Although the previous study is the only one of its kind to demonstrate proof of 

concept and that phytoremediation with linA is feasible, it is not well characterized.  

Whereas a mechanistic study analyzes biological or chemical events associated with 

novel observations and ultimately provides information concerning the molecular, 

cellular or physiological processes responsible in the cells and organisms, the De 

Lorenzo Prieto and Gonzalez Pastor study (2007) is cause and effect and therefore 

lacking in several key principles.  The effects of varying the concentration of lindane 

on the uptake and degradation reactions have not been investigated, nor has the 

amount of lindane, or its metabolites, accumulating in plant, been measured. In 

addition, although the literature states that the transgenic plants have the ability to 

significantly reduce the amount of lindane present in the media by 98%, starting 

concentration(s) have not been stated and translation of the protein has not yet been 

demonstrated. Investigating and varying these parameters, along with quantifying 

changes to the global proteome, will elucidate the role of the LinA enzyme allowing 

for further developments in the transgenic phytoremediation of lindane.  

 

2.16.  Proteomics 

 

Proteomics is the large-scale study of proteins, the molecules that are the main 

components of an organism’s cellular metabolic pathways.  The proteome refers to 

the entire set of proteins and unlike the genome which is relatively static, the global 

proteome changes constantly in response to different intra- and extracellular 
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environmental stressors (James, 1997).   A typical proteomic workflow may include 

the following 6 steps: 

 

 Extraction and isolation of protein from cells, without altering the protein 

sample in its identity or quantitative composition. 

 Protein fractionation or separation to reduce the complexity of the protein 

sample. 

 Tryptic digestion of proteins into peptides for easier detection.  

 Peptide separation using liquid chromatography. 

 Peptide detection using mass spectrometry. 

 Data interpretation to determine protein sequence. 

. 

2.16.a.  Two-dimensional Liquid Chromatography Separation  

 

Two-dimensional liquid chromatography (2D-LC) is used to reduce the complexity of 

trypsin digested protein extracts, or peptides, before undergoing tandem mass 

spectrometry (MS/MS).  LC can purify, quantify and identify the distinct compounds 

within a mixture by utilizing a number of different stationary phases, a pump that 

moves the analyte and mobile phase(s) through the column, and a detector that 

gives a unique retention time or ultraviolet-visible spectroscopy  (UV-Vis) data (if 

equipped) for the analyte (Snyder, et al., 2009).  

 

There are two variants of LC according to the polarity of the stationary phase and 

solvent. Normal phase LC (NP-LC) uses a polar stationary phase and a non-polar, 

non-aqueous mobile phase, whereas reverse phase LC (RP-LC) has a non-polar 

stationary phase and an aqueous, moderately polar mobile phase which operates on 

the principle of Van der Waals dispersion forces.  Polar molecules are highly soluble 

in the solvent and do not need to need to break hydrogen bonds as they move in 

between the molecules of the mobile phase.  Therefore, retention time is shorter for 

polar molecules, while non-polar molecules elute more slowly (Buszewski & Noga, 

2012).   Although RP-LC is the most commonly used form for separation of peptide 

samples due to a lack of reproducibility of retention times in NP-LC and its 



  Literature Review   

68 

 

compatibility with MS, NP-LC methods are currently undergoing a resurgence   

(Faiers, 2007).   

 

2.16.a.i.  Hydrophilic Interaction Liquid Chromatography 

 

Hydrophilic interaction liquid chromatography (HILIC) is a special case of normal 

phase chromatography that gives another method to separate small polar 

compounds on polar stationary phases.  Like NP-LC, HILIC uses polar stationary 

phases, while the mobile phase is like those utilized in the RP-LC mode (Guo & 

Gaiki, 2005). Ion chromatography (IC) is another feature of HILIC that analyzes 

charged substances.  Figure 2.19 shows how HILIC and other areas of 

chromatography are able to expand and meet the many requirements of separation 

technology.  

 

HILIC rises above many of the limitations, including poor solubility, often found in 

NP-LC and is able to analyze compounds that always elute near the void in reverse-

phase chromatography; it can be easily coupled to mass spectrometry (MS) in the 

electrospray ionization (ESI) mode.  It is well established as an effective separation 

mode for uncharged highly hydrophilic and amphiphilic compounds that can not be 

retained in RP-LC and also do not have enough charge to allow effective retention in 

IC (Cubbon, et al., 2007).  

 

 

 
Figure 2.19  HILIC combines the characteristics of the three major methods in liquid chromatography 

Reproduced from Buszewski & Noga (2012) 
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2.16.b.  Mass Spectrometry  

 

Mass spectrometry (MS) is an analytical technique that measures the mass-to-

charge ratio (m/z) of charged particles (Sparkman, 2000).  It can be 

used qualitatively to identify unknown compounds and quantitatively to determine the 

amount of a compound in a sample. A typical MS sequence is as follows (Figure 

2.20): 

 

 Sample vaporization 

 Sample ionisation to form charged particles (ions) 

 Ion acceleration into highly focused beam 

 Ion deflection/separation in an analyzer using electromagnetic fields.  The 

lighter and higher charged ions are more highly deflected.  

 Ion detection by beam of ions passing through the machine 

 Ion signal processed into mass spectra 

 Output from a chart recorder represented as a ‘stick diagram’ and shows the 

relative current produced by ions of varying mass/charge ratio (m/z) (de 

Hoffman & Stroobant, 2002). 

 

 

 

Figure 2.20  A full diagram of a mass spectrometer 

Reproduced from Clark (2000) 
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2.16.b.i.  Tandem Mass Spectrometry  

 

Tandem MS or MS/MS employs two stages of mass analysis to selectively examine 

the fragmentation of particular ions in a mixture of ions.  The goal of MS/MS is to 

obtain more structural information on a particular ion species when fragmentation is 

obscured by other compounds present in the mixture; introduced either by the ion 

source or by the matrix; or when the original ionization method yields few structurally 

diagnostic fragments (De Hoffmann, 1996).  Instruments may be made up of two 

mass spectrometers assembled in tandem or may comprises analyzers capable of 

storing ions to exploit a sequence of events in time allowing the selection of one ion 

fragment  by ejecting others (Figure 2.21). 

 

Figure 2.21  Tandem MS/MS schematic 

Reproduced from Murray (2006) 

 

Three main scan modes are available using MS/MS. In product scans, ions of a 

given m/z are selected by the first MS and induced to fragment for analysis by the 

second MS allowing ion fragments from a specific compound in a mixture to be 

recorded.  Precursor scans select ions in the second MS with a specific m/z value 

after fragmentation in the first MS and neutral loss scans allow the selective 

recognition of all ions that have lost a neutral fragment after fragmentation using both 

MS together (Busch, et al., 1998).  The m/z values of the resulting fragment ions are 
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matched to theoretical information in a database to generate peptide identifications 

and ultimately protein identifications.  

 

2.16.c.  Isobaric Tags for Relative and Absolute Quantitation  

 

The development of in vitro peptide labelling techniques, such as isobaric tags for 

relative and absolute quantitation (iTRAQ), had made it possible to quantify relative 

changes to the global proteome of a (transgenic) organism under conditions of 

metabolic stress using two-dimensional liquid chromatography (2D-LC) separation 

coupled to tandem mass spectrometry (MS/MS) (Leitner & Lindner, 2006).   

 

iTRAQ is a quantitative, non-gel based strategy that works in tandem with MS/MS 

and has the advantage of allowing up to 8 different conditions to be analyzed in one 

experiment (Leitner & Lindner, 2006).  The protocol follows a collection of up to eight 

different reagents for quantitative protein analysis whereby isobaric mass labels are 

placed at the N-termini and lysine side chains in a peptide digest mixture. The entire 

system consists of a charged N-methylpiperazine-based reporter group, a peptide N-

hydroxysuccinimide ester reactive group and a neutral mass balance carbonyl group 

(Sachon, et al., 2006). The total mass of reporter and balance components of the 

system are kept constant at 145.1 Da using differential isotopic enrichment with13C, 

15N, and 18O atoms. The different groups appear in the range of m/z 113 to 119 

and 121 in tandem mass spectra.  A multiplex collection of similar but differentially 

labelled peptides will appear as one ion signal in MS.  The groups will then emerge 

as distinct ions (m/z 113–119, 121) after collision-induced dissociation (CID) MS/MS 

analysis of the precursor ion, (Sachon, et al., 2006).  The relative quantification of 

the peptides is deduced from the relative intensities of the reporter ions ultimately 

making it possible to quantify relative changes to the global proteome.  Figure 2.22 

shows a typical iTRAQ workflow. 

 



  Literature Review   

72 

 

 

 

Figure 2.22  iTRAQ workflow 

 

2.16.d.  Proteomic Studies in A. thaliana 

 

Proteomic studies are essential to understanding the dynamic and complex features 

underlying the molecular mechanisms responsible for growth, development, and 

environmental interactions in A. thaliana. Several methods have been successfully 

used in identifying proteins and their function.  

 

Following the advent of the deoxyribronucleic acid (DNA) chip (or microarray), 

protein microarray technology emerged.  The presence of specific sequences can be 

determined using probe-target hybridization to characterize protein abundance and 

function.  In one proof of concept study using A. thaliana protein microarrays, 173 

known and novel potential calmodulin (CaM) and calmodulin-like proteins (CML) 

targets were identified.  This information provided a resource for the scientific 

community in the form of new testable hypotheses in the area of CaM/Ca2+-regulated 

processes (Popescu, et al., 2007).  The challenges of protein microarrays include 

generating large or amplified amounts of protein, the wide variety of physic-chemical 

properties, differences in size, structural stability, functional integrity, 
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immobilization without affecting function and variability due to post-translational 

modifications (Chandra, et al., 2011).  

 

Advances in plant proteomics were made using two-dimensional gel electrophoresis 

(2DE) and MS.  2DE begins with separation using one-dimensional electrophoresis 

(1DE) followed by a second separation in a direction 90 degrees from the first. The 

proteins may be separated according to their protein mass, the protein-complex 

mass in the native state, and the isoelectric point (O'Farrell, 1975).  Although 2DE is 

more effective at separating proteins than 1DE, the resolution of protein spots on a 

2D gel is limited by factors such as abundance, size, and other electrophoretic 

properties (Jung, et al., 2000).  In order to improve the sensitivity, the global 

proteome has to be fractionated into sub-proteomes.  Park (2004) summarizes a 

number of studies investigating the proteomes of A. thaliana and its subcellular 

compartments and organelles. 

 

When compared to traditional 2DE, iTRAQ is less labour intensive, covers a larger 

percentage of the proteome and is able to identify low abundance proteins.  This is a 

distinct advantage when analysing plant proteomes which are typically over-

abundant in Ribulose-1,5-bisphosphate carboxylase oxygenase, (RuBisCO), a 

ubiquitously found enzyme involved in carbon fixation.  iTRAQ has successfully been 

used to quantify the relative changes in protein abundance in several A. thaliana 

studies in response to toxicity (heavy metals, e.g. zinc) and nutrient deficiency (iron) 

(Fukao, et al., 2011; Lan, et al., 2011).  To date, there have been no proteomic 

studies examining the effect of lindane on A. thaliana.  

 

2.17.  Hypothesis Development  

 

Considering the enzymes known to be involved in bacterial lindane degradation and 

the plant xenobiotic degradation pathway, the single gene transfection of linA into A. 

thaliana should result in the intermediates: γ-PCCT 1,4-TCDN and 1,2,4-TCB when 

grown on lindane-contaminated medium (Figure 2.4).  The direct absence of the 

LinB enzyme, which is not homologous to any known plant proteins, should hinder 

subsequent degradation into any other metabolites found in the S. japonicum UT26 

degradation pathway.   
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However, Cytochrome P450, well characterized for its part in the oxidative 

degradation of environmental xenobiotic toxins, has been implicated in 1,2,4-TCB 

degradation, as seen in a study involving white-rot fungus Trametes versicolor 

(Marco-Urrea, et al., 2009).  In cell cultures containing the Cytochrome P450 

inhibitors, piperonyl butoxide (PB) and 1-aminobenzotriazole (ABT), a decrease in 

the degradation of 1,2,4-TCB was observed.  To confirm that the reduction of 1,2,4-

TCB metabolism was not a by-product of non-specific growth inhibition, differences 

in the fungal dry weight of each treatment were measured (Table 2.18).    

 

Table 2.18  Effect of different 1,2,4-trichlorobenzene (TCB) concentrations and Cytochrome P450 
inhibitors (1-aminobenzotriazole (ABT) and piperonyl butoxide (PB)) on 1,2,4-TCB degradation by 

white-rot fungus Trametes versicolor. 
 

 Initial 1,2,4-TCB 
(μM) 

1,2,4-TCB Degraded 
(μM) 

Degradation  
(%) 

Fungal Dry Weight 
(mg) 

Control Medium   0.905±0.108 0.674±0.095 74 34.8 ± 1.2 

 1.694±0.042 1.035±0.108 61 n/d 

 2.261±0.369 1.306±0.028 58 n/d 

 3.194±0.089 1.565±0.078 49 n/d 

Medium + ABT 0.905±0.108 0.155±0.015 17 35.5 ± 1.7 

Medium + PB 0.905±0.108 0.114±0.012 13 33.5 ± 0.2 

 
n/d = No data given by authors 

 
Information compiled from Marco-Urrea, et al. (2009) 

 

PB and ABT did not affect cell yields of T. versicolor, suggesting that Cytochrome 

P450 is responsible for the initial oxidation and degradation of 1,2,4-TCB. In 

Bjerkandera adjusta DSM3375, it has been shown that Cytochrome P450 inhibitors 

had a negative effect on 2,4,6-trinitrotoluene metabolism but did not affect the 

mineralization of [14C] glucose (Eilers, et al., 1999). This result explains and 

supports the observation that fungal cell growth, but not 1,2,4-TCB degradation, still 

proceeded in the presence of the inhibitors. 

 

This protein and Cytochrome P450s from the A. thaliana xenobiotic plant 

degradation pathway, share a conserved core region, the cypX superfamily, which is 

involved in secondary metabolite biosynthesis, transport, and catabolism.  Within the 

family, sequence conservation is relatively low and only 3 motifs or residues are 
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found to be absolutely conserved.  However, their overall physical characteristics 

remain highly conserved. A haem-binding loop constitutes the conserved core, which 

is composed of a four-helix bundle, a meander, helices J and K, and two sets of 

beta-sheets containing a conserved cysteine (Marchler-Bauer, et al., 2013).  

  

It is therefore hypothesized that A. thaliana modified with only linA will result in the 

stable intermediate, 1,2,4-TCB, to be subsequently degraded in the plant xenobiotic 

degradation pathway via Cytochrome P450 and other catabolic enzymes (Figure 

2.23).   

 

 

 

Figure 2.23  The hypothesized metabolism of lindane in Arabidopsis thaliana transformed with linA 
from Sphingobium japonicum UT26.  

 
Modified from Bhatt, et al. (2009) and Sandermann (1994) 

 

 

This hypothesis will be tested by following and advancing aspects of the study by De 

Lorenzo Prieto and Gonzalez Pastor (2007), starting with transforming A. thaliana 

with the linA gene from S. japonicum UT26.  Growth will be observed under 

conditions of lindane; 1,2,4-TCB; and 1,2,4-TCB / P450 Inhibitor stress.  The 

presence of lindane and 1,2,4-TCB will be measured from the growth media and 
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within plant tissues after pre-determined growth periods.  Finally, changes to the 

global proteome will be quantified and compared using iTRAQ and MS analytic 

techniques.   Methodology, results and discussion will be detailed in the following 

chapters. 
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2.18.  Conclusion 

 

The development of an effective lindane-remediation strategy, to safely and quickly 

remove the highly toxic, ubiquitous and persistent organic pollutant from the 

environment is paramount.  Phytoremediation is an aesthetically, environmentally 

and economically-friendly biotechnology using plants that are able to sequester and 

transform organic waste to a non-toxic state, or to sub-threshold levels below 

concentration limits.  Efficiency of the natural plant processes can be greatly 

enhanced by genetic manipulation, exploiting the enzymes of lindane-degrading 

bacteria.  This alternative green technology is in situ, solar driven, low-cost, and 

relatively low-disturbance making it a prime choice for remediation of lindane in both 

developed and developing countries.   

 

The single gene transfection of linA, from the bacterium S. japonicum UT26, into the 

model plant A. thaliana should result in a plant expressing the LinA protein for the 

purpose of lindane dehydrochlorination.  Since LinA does not require any cofactors 

and the removal of every individual chlorine atom from the cyclohexane ring 

decreases the harmful effects several-fold, it is worth considering its potential in the 

development of a transgenic phytoremediation technology for lindane. 
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Chapter 3.       
 
 
 
 
 

Transformation and Characterization of Arabidopsis thaliana 
Modified with linA 
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3.1.  Introduction 

 

In Chapter 2, it was established that the persistent organic pollutant, lindane, is 

ubiquitously found within the physical and geographical environment and negatively 

impacts a wide range of microorganisms, invertebrates, fish, birds and mammals 

(IPCS, 1991).  As the toxicity, distribution and persistence of lindane is well 

established, it is imperative to develop a method by which it can be safely and 

quickly removed from the environment.  Current standard remediation practices, 

including physical removal and chemical transformation, require large infrastructure, 

are costly and potentially dangerous (Sutton & Hunter, 1989).  Hydrolysis is the most 

common and important abiotic method while bioremediation, which uses indigenous 

or foreign microorganisms, fungi, plants (phytoremediation) and their enzymes to 

biologically degrade organic waste to a non-toxic state, or to sub-threshold levels 

below concentration limits is a low-cost, low-technology and relatively low-

disturbance alternative technique (Vidali, 2001). 

 

Thus far, owing to the limitations of natural microbial bioremediation and 

phytoremediation, no such method for the clean-up of lindane on a global scale has 

been realized.  Despite positive results being reported in laboratory studies, in recent 

studies where bacteria have been used for decontamination in field studies, 

bioaugmentation occurred at relatively low concentrations of HCH, requiring both 

long-term inoculations and nutrient application (Raina, et al., 2008).  In 

phytoremediation, the majority of plants do not have the full set of metabolic 

enzymes for complete degradation and mineralization of these compounds when 

compared to microorganisms.  Improving plants for phytoremediation will likely result 

from transferring genes known to be involved in xenobiotic degradation from other 

plants, microbes and eukaryotes, specifically those that can be used to improve the 

uptake and degradation of lindane.   

 

Preliminary results from a single proof of concept study have shown that the model 

plant Arabidopsis thaliana modified with linA from the bacterium Sphingobium 

japonicum UT26 is able to grow in the presence of normally toxic lindane 

concentrations, and remove it from the media whereas the wild type plant is not (De 
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Lorenzo Prieto & Gonzalez Pastor, 2007).  However the study does not consider the 

effects of different lindane concentrations with respect to its uptake and degradation 

within the plant, nor does it account for the mass balance of lindane within the plant 

and / or media environment.  Therefore, in this chapter, the feasibility of transgenic 

A. thaliana to grow on, and ultimately remediate lindane-contaminated environments, 

was assessed by cloning the linA gene from S. japonicum UT26, a known lindane-

degrader, using Gateway® Technology, and subsequently transforming it into A. 

thaliana by means of Agrobacterium-mediated transformation.    

 

A. thaliana was chosen as the host organism, not only to reproduce and build on the 

initial findings from the previous research, but also because of its limited space 

requirements, short life cycle and small, fully sequenced genome and associated 

protein databases (National Science Foundation, 2013).  Gateway® Technology was 

not used by De Lorenzo Prieto & Gonzalez Pastor ( 2007), but is used in this thesis 

as it is a rapid, cost-effective and 99% efficient universal cloning method that avoids 

typical cloning limitations while successfully directing and maintaining PCR fragment 

orientation and overall reading frame (Katzen, 2007). 

 

By exploiting the known facts pertaining to Agrobacterium-mediated transformation; 

the host properties of A. thaliana; the effectiveness of Gateway® Technology 

Cloning; and the enzymatic potential of LinA, aims 1 and 2 of this thesis are 

addressed.  Transforming A. thaliana with linA and then observing its growth and 

characteristics on control, sub-threshold and toxic concentrations of lindane and 

1,2,4-TCB examines the hypothesis of this thesis and the development of a single 

gene-modified plant for the phytoremediation of lindane, and its intermediates, that 

may be enhanced by naturally occurring enzymes present in the native plant 

xenobiotic degradation pathway.  This work will build upon the current understanding 

of transgenic phytoremediation in lindane-contaminated environments and will lend 

itself to advancing the mechanistic understanding in future work. 
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3.2.  Methods 

 

3.2.a.  Growth of Wild Type A. thaliana on Agar  

 

3.2.a.i.  Seed Sterilization 

 

Approximately 100 µl wild type (w/t) A. thaliana Columbia-0 (Col-0) seeds (Professor 

Andrew Fleming, Department of Animal and Plant Science, University of Sheffield) 

were placed in a 1.5 ml eppendorf tube.  800 µl Reverse Osmosis (RO) purified 

water and 200 µl Economy Bleach (Ottimo Supplies) were added to the reaction tube 

followed by 0.5 µl Tween-20 Ultrapure (Sigma) to give 0.05% (v/v).  The mixture was 

incubated for 10 minutes with occasional vortexing.  Seeds were then spun down in 

a bench-top centrifuge on short spin until it reached 5000 rpm.  The liquid was 

removed from the tube and washed with 1µl RO water and repeated twice more for a 

total of 3 washes.  After the final wash, the liquid was removed and 300 µl of RO 

water was added to the tube, which was then covered in foil, placed in the fridge at 4 

°C and left for 4 days to stratify or break dormancy.  

 

3.2.a.ii.  Growth of w/t A. thaliana on Lindane 

 

7 square (120/120/17 mm) Petri dishes (Greiner Bio-one) were prepared with 0.8% 

½ MS Plant Agar (Duchefa Biochemie) and differing concentrations (0, 4, 34, 68, 

102, 136 and 170 μM of 97% lindane (Sigma Aldrich) to analyze the growth capacity 

of w/t A. thaliana on lindane contaminated-media.  0 μM was used as a control, 4 μM 

was chosen as it is the highest allowable environment limit, 34 μM is the threshold 

for bacterial degradation and 170 μM is the threshold for degradation by a bacterial 

consortium (Raina, et al., 2008; Ministerie van Volkshuisvesting, 2000; Elcey & 

Kunhi, 2010).  An additional 7 plates were prepared with the same molar 

concentrations of ≥ 99% - 1,2,4-TCB (Sigma Aldrich).  Sterilized seeds were 

resuspended in 0.11% - ½ MS Plant Agar and using a 6x6 point grid template, 36 

sterilized seeds were transferred onto each plate using a 100 µl pipette tip to control 

distribution.    Each plate was sealed with micropore tape and placed in a growth 
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cabinet at 22 °C with 16 hours of light and 8 hours of dark.  Growth was observed 

after 28 days.  All growth experiments were done in triplicate. 

 

3.2.a.iii.  Threshold Toxicity Growth of w/t A. thaliana on 1,2,4-TCB  

 

To determine the upper threshold of 1,2,4-TCB toxicity on the growth on w/t A. 

thaliana, plates and seeds were prepared as above, with 1,2,4-TCB concentrations 

ranging from 100 μM up to 1 M (increasing by a factor of 10). Due to the highly toxic 

and fumigant properties of 1,2,4-TCB, plates were placed in a well-ventilated growth 

room, where no other experimental procedures were taking place.  Growth was 

observed after 28 days.  

 

3.2.a.iv.  Growth of w/t A. thaliana on 1,2,4-TCB and 1-aminobenzotriazole  

  

1 mM 1-aminobenzotriazole (ABT), a P450 inhibitor, was added to 1,2,4-TCB-spiked 

plates to ascertain whether or not inhibition of w/t A. thaliana growth occurred.  

Plates with concentrations that are not normally detrimental to growth were prepared 

as above and growth was observed after 28 days.  

 

3.2.b.  Verification of linA from pUC18-EcoRI-SD-linA-HindIII Plasmid  

  

3.2.b.i.  Minipreparation of Plasmid DNA 

 

The linA gene was obtained in plasmid form, using the pUC18-EcoRI-SD-linA-HindIII 

vector (Professor Yuji Nagata, Graduate School of Life Sciences, Tohoku University) 

(Figure 3.1).  The vector was transformed into competent cells to verify its activity 

based on its ability to confer ampicillin resistance (Figure 3.2).  1 µl of plasmid DNA 

was added to Library Efficiency® Chemically Competent (Escherichia coli) DH5α 

cells (Invitrogen) and left on ice for 30 minutes. Cells were then heat-shocked at 42 

°C for 60 seconds, followed by the addition of 1 ml Lennox Luria-Bertani (LB) Broth 

(Fischer Scientific).  Cells were incubated for 1 hour at 37 °C with shaking at 180 

rpm and then centrifuged at 3500 rpm for 1 minute.  All but 100 µl of the supernatant 
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was removed and the pellet resuspended.  The suspension was then evenly spread 

onto 100 µg/ml ampicillin-LB agar (Sigma) selective plates and incubated overnight 

at 37 °C without shaking.    

 

GAATTCTAAGGAGGATACAAAATGAGTGATCTAGACAGACTTGCAAGCCGGGCC 

GCGATTCAGGACCTCTACTCTGACAAGCTCATTGCCGTAGACAAGCGCCAAGAG 

GGCCGTCTCGCTTCTATTTGGTGGGATGATGCAGAGTGGACCATTGAGGGAAT 

CGGCACCTACAAGGGCCCGGAAGGCGCCCTCGATTTGGCCAATAACGTACTCT 

GGCCAATGTTTCACGAATGTATTCATTATGGAACCAATCTGCGCTTGGAATTTGT 

GAGCGCGGACAAGGTAAATGGTATTGGCGACGTCCTTCTCCTTGGAAATCTCGT 

CGAAGGTAATCAGTCGATTCTTATCGCTGCGGTCTTCACGGATGAGTATGAGCG 

CCGTGACGGGGTGTGGAAGTTCTCTAAGCGCAACGCATGCACGAACTATTTCAC 

CCCGCTGGCCGGCATTCATTTCGCACCGCCCGGCATTCATTTCGCACCGTCCG 

GCGCATAATCTAAGCTT 

  

Figure 3.1  Sequence of EcoRI-SD-linA-HindIII insert from pUC18 plasmid. 
The EcoRI site is yellow, SD sequence highlighted grey, linA underlined and HindIII pink 

 

 

 

Figure 3.2  The plasmid construct pUC18-EcoRI-SD-linA-HindIII 

Modified from Invitrogen pENTR™ Directional TOPO® Cloning Kits Manual (2012) 

 

6 colonies were then streaked onto an ampicillin-LB selective sectioned agar plate 

and incubated overnight at 37 °C without shaking. A single colony from the freshly 

streaked plate was then inoculated into 5 ml ampicillin-LB medium and incubated 
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overnight 37 °C with shaking at 180 rpm. Cells were harvested by centrifugation at 

8000 rpm for 3 minutes and all traces of supernatant removed.  Plasmid mini-preps 

were prepared using the QIAprep Spin Mini-prep Kit as per the guidelines set out in 

the QIAprep Spin Mini-prep Kit Protocol.  

 

3.2.b.ii.  Verifying the Presence of linA  

 

To verify the presence of linA in the plasmid construct pUC18-EcoRI-SD-linA-HindIII, 

restriction analysis was carried out by combining and incubating the following at 37 

°C for 1 hour after which it was visualized on a 1% agarose gel:  

  

 10x EcoRI buffer (BioLabs)               2 µl  

 Nuclease Free water (Ambion)            11 µl  

 Plasmid DNA (>20 ng / DNA band)             4 µl  

 EcoRI (20 u/µl) (BioLabs)                  1 µl  

 HindIII (10 u/µl) (Promega)                2 µl  

  

3.2.b.iii.  PCR of linA from pUC18-EcoRI-SD-linA-HindIII Plasmid  

  

linA primers were designed to enable directional cloning using the pENTR™ 

Directional TOPO® Cloning Kits (Invitrogen).  The forward PCR primer contained the 

sequence, CACC, at the 5′ end of the primer  as they are designed to base  pair with 

the overhang sequence, GTGG, in  the pENTR™ TOPO® vector.   The primers used 

to amplify the linA sequence are shown in Table 3.1. 

 

Table 3.1  Primers used to amplify linA sequence from vector pUC18-EcoRI-SD-linA-HindIII 

 

Oligo Name Sequence (5’ – 3’) Tm (°C) MW (g/mol) GC Content (%) 

For_LinA CACCATGAGTGATCTAGACAGA   58.4 6752 45.5 

Rev_LinA TTATGCGCCGGACGGTGCGAAATG  66.1 7433 58.3 

 

PCR was carried out using the plasmid DNA obtained from the above mini-prep.  

The reaction was set up as described below and visualized on a 1% agarose gel:  
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 10x Buffer for HotStart Polymerase (TOYOBO/Novagen)  5 µl  

 MgSO4 (25 mM) (TOYOBO/Novagen)        3 µl  

 dNTPs (2 mM) (TOYOBO/Novagen)           5 µl  

 For_linA (10 µM) (Eurofins)               1.5 µl  

 Rev_LinA (10µ M) (Eurofins)              1.5 µl  

 KOD DNA Polymerase (2.5 u/µl) (TOYOBO/Novagen)     1 µl  

 Plasmid DNA (~10 ng)                   1/ 2 µl  

 Nuclease free Water (Ambion) (up to 50 µl total volume)  31 / 32 µl  

 

The PCR reaction was repeated 2 additional times to increase the yield of PCR 

product, all of which was loaded onto a 1% agarose gel.  The desired band was then 

isolated and purified from the gel using a microcentrifuge as per the guidelines set 

out in the QIAquick Gel Extraction Kit Protocol (Qiagen) with the final elution being 

carried out in 30 µL of buffer to concentrate the sample.  Sequencing was carried out 

(Core Genomics Facility, University of Sheffield) and the results were aligned against 

the known sequence as given previously in Figure 3.1.   

  

3.2.c.  DNA Cloning of linA  

  

3.2.c.i.  pENTR/D-TOPO Topoisomerase Reaction  

  

Blunt-end PCR fragments were cloned into the pENTR/D-Topo Gateway entry vector 

(Invitrogen). Purified PCR product concentrations were verified using gel 

electrophoresis quantification. The reaction was set up as described below using a 

1:1 and 2:1 molar ratio of purified PCR product : TOPO vector  

 

Purified PCR elute products samples 1 and 2, were determined as being 

approximately 120 ng/5 µl or 24 ng/µl and 200 ng/5 µl or 40 ng/µl, respectively.   A 

1:1 molar ratio of purified PCR product : pENTR/D-Topo Gateway entry vector was 

calculated as follows: 
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 D-Topo Vector ~ 2.5 kb 

 purified PCR Product ~ 0.5 kb  

 D-Topo Vector (20 ng/µl) is therefore 5 times the size of the PCR Product and 

a 1:1 molar ratio is 4 ng/µl PCR Product : 20 ng/µl DTopo Vector 

 

Blunt-end cloning of the purified PCR products into the pENTR/D-Topo Gateway 

entry vector (Invitrogen) was carried out using 2:1 and 1:1 molar ratios of purified 

PCR product : TOPO vector as follows:  

  

 2:1 molar ratio 

o 0.5 µl Purified PCR product (sample 1) ~ 12 ng (~ 2 to 3 mol) 

o 1 µl pENTR/D-Topo Gateway entry vector   = 20 ng (1 mol)  

  

 1:1 molar ratio  

o 0.5 µl 5x dilution Purified PCR product (sample 2) ~ 4 ng (1 mol)  

o 1µl pENTR/D-Topo Gateway entry vector   = 20 ng (1 mol)  

 

The reaction was carried out as per the guidelines set out in the Invitrogen pENTR™ 

Directional TOPO® Cloning Kits User Manual. 

  

 Salt Solution (1.2 M NaCl / 0.06 M MgCl2)             1 µl  

 Purified PCR Product  (4 - 12 ng/μl)         0.5  µl  

 Sterile water                  up to 5 µl  

 TOPO vector (20 ng/μl)                1 µl   

  

The 6 µl reaction mixture was gently stirred with a pipette tip and incubated at room 

temperature for 3 hours.   2 µl of the reaction mixture was used to transform ½ vial 

(25 µl) of One Shot® TOP10 (Invitrogen) and α-select™ Gold Efficiency (Bioline) 

chemically competent cells.  

 

The reaction was gently stirred with a pipette tip and incubated on ice for 30 minutes. 

Cells were then heat-shocked for 30 seconds at 42 °C and immediately transferred 

to ice.  250 µl of room temperature LB was added to the mixture and incubated 1 
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hour at 37 °C with shaking at 200 rpm.  50 and 225 µl from each transformation were 

spread on room temperature kanomycin-LB agar plates and incubated overnight at 

37 °C without shaking.   

  

Individual colonies selected on kanamycin-LB plates were subsequently cultured 

overnight in kanamycin-LB at 37 °C with shaking at 200 rpm. Plasmid mini-preps 

were prepared using the QIAprep Spin Mini-prep Kit as per the guidelines set out in 

the QIAprep Spin Mini-prep Kit Protocol.  Insertion of the PCR fragment into the 

TOPO vector was verified by PCR using the For_LinA and Rev_LinA primers, DNA 

sequencing and single restriction enzyme analysis as follows:  

  

 10x Multicore buffer (Promega)              1 µl  

 Nuclease free water (Ambion)              6 µl  

 Plasmid DNA  (114.2 ng/µl)                  2 µl  

 EcoRI (12 u/µl) (Promega)                   1 µl  

  

3.2.c.ii.  LR Clonase Reaction  

  

Plasmid mini-prep stocks containing the entry clone with verified insertions were 

used to shuttle the desired linA gene insert to the secondary destination plasmid; 

Ctapi (Dr. Lee Hunt, Animal and Plant Sciences, University of Sheffield).   Vector and 

mini-prep concentrations were determined by biospectrophotmetric DNA 

quantification (Eppendorf).  This reaction was mediated by the Gateway® LR 

Clonase™ enzyme mixture (Invitrogen) and set up as described below: 

 

 TOPO_linA entry clone (114.2 ng/µl)       3 µl  

 Ctapi destination vector (150 ng/µl)        2µl  

 TE buffer, pH 8.0                up to 8 µl  

 5x LR Clonase II enzyme mix           2 µl   

  

1 µl of the reaction mixture was used to transform ½ vial (25 µl) α-select™ Gold 

Efficiency (Bioline) chemically competent cells.  Selection was carried out using 
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spectinomycin-LB, plasmid mini-preps were prepared and insertion of the linA gene 

into the Ctapi destination vector was verified by PCR, DNA sequencing as well as 

single restriction enzyme analysis.  

    

3.2.d.  Electrotransformation of Agrobacterium   

  

50 µl of electrocompetent Agrobacterium tumefaciens GV3101::pMP90 RK cells 

(Professor Andrew Fleming, Department of Animal and Plant Sciences, University of 

Sheffield) were thawed on ice and 5 µl of plasmid DNA obtained from Ctapi 

destination vector were added.  The DNA and cells were mixed and chilled on ice for 

5 minutes before being transferred to a pre-chilled 2 mm electroporation-cuvette 

(Biorad).  The cuvette was transferred to the electroporator which was set to 2.5 kV.  

Immediately after electrotransporation, 1 ml low-salt LB (Sigma Aldrich) was added 

to the cuvette.  The resulting bacterial suspension was transferred to a culture tube 

containing 3 ml low-salt LB which was incubated for 2 hours at 28 °C with shaking at 

200 rpm.  50 and 200 µL of the transformed cells were spread on low-salt LB agar 

plates containing kanomycin, spectinomycin, rifampicin and gentamycin (KSRG) 

which were incubated at 28 °C without shaking for 3 days.  Selected colonies were 

transferred to 3 ml low-salt KSRG-LB and cultured for 2 days at 28 °C with shaking 

at 200 rpm.  A glycerol stock of the positive bacterial suspension was prepared for 

storage.  Plasmid mini-preps were prepared and presence of the linA gene was 

verified by PCR as well as single restriction enzyme analysis.   

 

3.2.e.  Transformation of A. thaliana by Floral Dipping  

 

3.2.e.i.  Germination and Growth of A. thaliana on Soil  

  

A 5 x 7 inch rectangular planting tray with drainage holes was filled above the rim 

with pot and bedding compost (Levington M3 Scotts), and packed down until flush.  

The tray was then placed inside a larger 9 x 14 inch tray without holes and both were 

filled with water to wet the soil.  Using a creased piece of paper to control and visual 

distribution, approximately 60 unsterilized A. thaliana seeds were evenly sown on the 

soil surface.  The tray was placed in a transparent plastic bag, sealed with masking 



 Transformation of A. thaliana   

90 

 

tape to make it air-tight and stored for 5 days at 4 °C to vernalize, or hasten 

development of the seeds.  The tray was then moved to the growth cabinet for 24 

hours before opening the plastic bag and leaving it another 24 hours after which time 

the transparent bag was removed completely.  Once the seedlings had 4 leaves, at 

approximately 7 days after planting (dap), they were replanted into individual pots, 

segregated and protected using aracon tubes and maintained until flowering.   The 

first flower bolts were removed to promote branching for future use in the floral dip 

transformation of A. thaliana. 

 

3.2.e.ii.  Floral Dipping  

 

The Arabidopsis floral dipping technique used for A. thaliana transformation was 

performed as described by Clough and Bent (1998).  5 ml of low-salt KSRG-LB broth 

was inoculated with 50 µl from the 3 ml Agrobacterium suspension and grown 

overnight at 28 °C with shaking at 200 rpm.  500 µl from this new suspension was 

added to 50 ml low-salt LB (antibiotic free) and grown overnight at 28 °C with 

shaking at 200 rpm.  The 50 ml suspension was then centrifuged in a Beckman 

centrifuge for 10 minutes at 4000 g to harvest the cells.  The resulting pellet was 

then resuspended in 25 ml - 5% Sucrose (Sigma) solution containing 0.05% Silwet 

(Lehle Seeds); a non-phytotoxic wetting agent.  The optical density (OD) verified to 

be approximately 0.8 at 600 nm using an Eppendorf Biospectrophotometer and the 

solution was subsequently aliquotted into 1.5 ml Eppendorf tubes.   

  

Previously grown A. thaliana flowers were then individually dipped in the sucrose 

solution and held for 5 to 10 seconds (Figure 3.3a).  Dipped plants were placed in a 

dark box for 24 hours, to facilitate transfection in conditions of high humidity. 

Transformation was repeated after 5 days using 200 ml sucrose - Agrobacterium 

solution, into which the entire plant was dipped and held for approximately 1 minute 

(Figure 3.3b).  Plants were maintained until seeds produced.  
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Figure 3.3  Floral dipping techniques for Arabidopsis thaliana transformation with Agrobacterium. 
Panel (a) illustrates the initial single flower dipping method (ensuring all flower bolts are dipped) 

 while (b) shows the subsequent whole plant dipping method (5 days later). 

  

3.2.e.iii.  Harvesting of Seeds (T0)  

  

Each plant was cut at its base, discarding the pot, soil and roots.  Shoots from 2 

plants were carefully removed from the protective aracon tubes, placed on white 

sheets of paper and gently pressed to release and capture seeds. The seeds, 

siliqua, petals and other plant material were passed through a sieve 5 times to 

separate out the seeds which were stored in a 50 ml falcon tube with pin-sized holes 

through the lid to avoid fungal infection and decrease humidity.  The procedure was 

repeated with remaining plants, two at a time.  

  

3.2.e.iv.  Selection of Transformants (T1, T2 and T3) 

 

Approximately 100 µl of T0 seeds were sterilized as previously described (Chapter 

3.2.a.i).  After 4 days, the seeds were divided into 6 – 15 ml falcon tubes and made 

up to 4 ml with RO water.  8 ml of hot 0.7% - ½ MS Plant Agar was added to each 

tube.  The agar and seeds were quickly mixed and poured onto 0.8% - ½ MS Plant 

Agar selective plates containing the antibiotic BASTA (20 µg/ml) (Sigma Aldrich) as 

well as Cefatoxime (CEF) (25 µg/ml) (Mrs. Marian Bauch, Animal and Plant 

Sciences, University of Sheffield) to suppress Agrobacterium growth.  The seed 

mixture was evenly spread on the plates by gently swirling.  The selective plates 

were then sealed with micropore tape and placed in a growth cabinet at 22 °C with 
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16 hours of light and 8 hours of dark for 7 days.  After formation of secondary leaves, 

transformants were transferred to antibiotic-free soil and maintained until seeds were 

produced.  Harvesting and selection of seedlings was repeated, without the use of 

CEF on selection plates, until a homozygous line was obtained (T3).   

 

3.2.f.  DNA Extraction 

 

Plant DNA was extracted from plant leaves using the REDExtract-N-AMP™ Plant 

PCR Kits (Sigma Aldrich) as per the instructions found in the technical bulletin.  Plant 

material was collected into a supplied 2 ml collection tube using the lid of the tube to 

punch a leaf disk directly into the tube without the use of forceps and eliminating any 

possible contamination. Briefly, the DNA was extracted in 100 μL of the Extraction 

Solution at 95 °C  for 10 minutes, followed by the addition of 100 μL of the Dilution 

Solution to neutralize any inhibitory substances.   

 

An aliquot of the PCR-ready, diluted extract was combined with the REDExtract-N-

AMP™ PCR ReadyMix (containing buffer, salts, dNTPs and Taq polymerase), 

For_LinA and Rev_LinA primers.  PCR was carried out according the REDExtract-N-

AMP™ Plant PCR Kits Protocol (Sigma Aldrich) and amplified DNA was loaded 

directly onto an agarose gel without the addition of loading buffers.  DNA sequencing 

was used to confirm the linA insert from samples with banding at approximately 475 

bp. 

 

3.2.g.  RNA Isolation 

 

3.2.g.i.  RNA Extraction 

 

50-100 mg of leaf tissue was collected in a 1.5 ml eppendorf tube and immediately 

frozen with liquid nitrogen.  The frozen tissue was ground using a small pestle.  500 

μL of TRIzol® Reagent (Ambion) was added to the ground tissue and the mixture 

was homogenized on ice.  An additional 500 μL TRIzol® Reagent was added and the 

solution was incubated at room temperature (RT) for 5 minutes to permit complete 

dissociation of the nucleoprotein complex.  0.2 ml of chloroform was added to the 
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tube which was then shaken by hand for 15 seconds.  The mixture was incubated at 

RT for 2 minutes before being placed in a centrifuge for 15 minutes at 12000 rpm.  

The mixture separated into 3 distinct phases at this point: 

 

 A colourless upper aqueous phase; 

 An interphase; and  

 A lower red phenol-chloroform phase  

 

The aqueous phase of the sample, containing the RNA, was removed and placed in 

a new, ice-cold 1.5 ml tube.  500 μL of 100% isopropyl alcohol was added to mixture 

which was then incubated at RT for 10 minutes and placed in a centrifuge for 15 

minutes at 12000 rpm.  The supernatant was removed, leaving only the RNA pellet, 

which was washed with 1 ml of 80% ethanol.  The contents were mixed by vortexing 

and placed in a centrifuge for 5 minutes at 12000 rpm.  The ethanol wash was 

removed and the pellet was air-dried in the tube upside-down at RT for 5 minutes.  

The RNA pellet was resuspended in 20 μL nuclease-free water (Ambion) and stored 

at -80 °C. 

 

3.2.g.ii.  RNA Quantification and DNase Treatment 

 

The RNA was quantified using an Eppendorf Biospectrophotometer and treated with 

DNase as follows: 

 

 RNA (2 μg)        x μl 

 10x DNase I buffer (Life Technologies)    5 μl 

 rDNase I (2 u/μl)  (Life Technologies)    1 μl 

 Nuclease-free water (Ambion)     up to 50 μl 

 

The reaction mixture was incubated at 37 °C for 30 minutes.  5 μl of DNase 

Inactivation Reagent (Life Technologies) was added to the tube and left to incubate 

at RT for 2 minutes.  The tube was placed in a centrifuge for 90 seconds at 13200 

rpm and the RNA supernatant was transferred to a fresh tube (stored at -80 °C). 
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3.2.g.iii.  First Strand cDNA Synthesis 

 

The following reagents were added to a 1.5 ml eppendorf tube: 

 

 DNase treated RNA (~1 μg)     x μl 

 oligo dT18 (0.5 μg/μl) (Life Technologies)    2 μl 

 RNase-free water (Ambion)     up to 15 μl 

 

The reaction mixture was heated to 70 °C for 5 minutes and transferred immediately 

to ice. The reaction tube was then placed in a bench-top centrifuge on short spin 

until it reached 5000 rpm. 

 

3.2.g.iv.  Reverse Transcription 

 

The following reagents were added to a 1.5 ml eppendorf tube: 

 

 cDNA mixture       15 μl 

 5x M MLV reaction buffer (Promega)    5 μl 

 dNTPs (Promega) (10 mM)     1.25 μl 

 M MLV reverse transcriptase (200 u/μl) (Promega)  1 μl 

 RNase-free water (Ambion)     2.75 μl 

 

The reaction mixture was incubated at 42 °C for 2 hours and then placed in a bench-

top centrifuge on short spin until it reached 5000 rpm.   The mixture was stored at -

20 °C. 

 

3.2.g.v.  Polymerase Chain Reaction  

   

PCR was performed on the template cDNA to determine if the linA gene was being 

transcribed into RNA.  The following reagents were combined as follows: 
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 Template cDNA        2 μl 

 10x High Fidelity Buffer (NEB)     2.5 μl 

 MgSO4 (50mM) (NEB)      1 μl 

 dNTPs (10mM) (NEB)      0.5 μl 

 Platinum® Taq DNA Polymerase (5 u/µl) (NEB)   0.2 μl 

 For_LinA primer (10 µM) (Eurofins)    2.5 μl 

 Rev_LinA primer (10µM) (Eurofins)    2.5 μl 

 Nuclease-free water  (Ambion)     13.8 μl 

 

3.2.h.  Protein Analysis 

 

3.2.h.i.  Protein Extraction 

 

3 discs of 1 cm2 were excised from the leaves of the original w/t line; two transgenic 

lines, thus referred to as LinA2 and LinA4; and an untransformed line designated 

linA(-), grown on both lindane-free and sub-threshold lindane (30 µM).  Liquid 

nitrogen was used to flash freeze the plant material which was then immediately 

homogenized using a micropestle.  1 ml of extraction buffer was added to each 

reaction tube which was incubated at 4 °C for 20 minutes with occasional mixing by 

inverting the tube several times.  The suspension was centrifuged at 4 °C at 15000 

rpm for 4 minutes and the supernatant was transferred to a new tube.  Extraction in 

500 μl extraction buffer was repeated on the remaining pellet and the resulting 

supernatants were combined.   Samples were then concentrated using the Amicon® 

Ultra-0.5 Centrifugal Filter Devices, with an optional buffer exchange using 0.5 M 

Triethylammonium bicarbonate (TEAB) (Sigma Aldrich), according the 

manufacturer’s protocol. Protein concentration was quantified using the Bradford 

ULTRA Assay Kit (Westburg) on a Nanodrop 2000 Spectrophotometer (Thermo 

Scientific). 

 

3.2.h.ii.  Western Blotting 

 

Translation of RNA transcripts into protein was determined using The NuPAGE® 

Novex® Bis-Tris Mini Gel protocol with the following modifications: 
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 Extracted protein (< 0.5 μg protein load / band)   20 μl 

 4x NuPAGE LDS Sample Buffer     7.5 μl 

 Deonized water (Millipore)      2.5 μl 

 

Proteins from the samples grown on lindane-free media were incubated at 70 °C for 

10 minutes and cooled to room temperature.   20 μl of the biotinylated protein ladder 

(Cell Signaling) was incubated at 95 °C for 5 minutes and cooled to room 

temperature.  Two pre-cast 4 - 12% mini-gels (Invitrogen) were identically loaded 

with 5 μl pre-stained protein ladder (0.05 – 0.1 mg/ml of each protein marker) (Cell 

Signaling), 10 μl biotinylated ladder, and 20 μl of the sample mixture. Run conditions 

were 50 minutes in 3-(N-morpholino)propanesulfonic acid (MOPS) buffer (1x) 

(Invitrogen) at a current of 60 mA.  Following the run, one gel was placed directly in 

Instant Blue (Expedeon), a Coomassie based protein staining solution.   

 

The protein bands from the unstained gel were transferred to a nictrocellulose 

membrane using an iblot® 7-minute blotting system (Life Technologies) as per the 

manufacturer’s protocol.    Following the transfer, the membrane was incubated in 25 

ml of blocking buffer at RT for 30 minutes and then washed 3 times for 1 minute in 

15 ml wash buffer.  The membrane and 10 μl of primary LinA antibody (Yugi Nagata, 

Graduate School of Life Sciences, Tohoku University) were incubated in 10 ml of the 

primary antibody dilution buffer with gentle agitation overnight at 4°C followed by 3 

washes of 1 minute in 15 ml wash buffer.   The membrane and 5 μl of secondary 

HRP-conjugated anti-rabbit antibody (Cell Signaling) and 10 μl of HRP-conjugated 

anti-biotin antibody (Cell Signaling) were incubated in 10 ml blocking buffer with 

gentle agitation at RT for 1 hour followed by 3 washes of 1 minute in 15 ml wash 

buffer.  HRP-Bound proteins were detected by incubating the membrane in 10 ml 

Immobilon Western Chemiluminescent HRP Substrate (Merck Millipore) for 5 

minutes with gentle agitation. 

 

3.2.h.iii.  Enzyme Activity Assay  

 

Enzymatic activity of the translated protein, LinA, indicated by a release of chloride 

ions (Cl-), was assessed by colorimetric determination using Mercuric(II) Thiocynate 
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(Hg(SCN)2) (Sigma Aldrich).  When Hg(SCN)2 and Cl- ion are combined, an 

absorption at 250 - 280 nm is observed that rises proportionately with chloride 

concentration (Cirello-Egamino & Brindle, 1995).  

 

A 20 ppm stock of Cl- from Sodium Chloride (NaCl) was prepared and diluted, using 

0.5 M TEAB Buffer.  5 μl from a 0.3% solution of Hg(SCN)2  (dissolved in 100% 

acetonitrile) was added to 50 μl of each NaCl concentration and the absorbance was 

recorded to produce a standard curve, at 280 nm, using a Tecan GENios Microplate 

Reader. 

 

5 μl of each protein extract, from samples grown under lindane-free and sub-

threshold, 30 μM, lindane conditions, was diluted 1:10 to a final volume of 50 μl 

using the 0.5 M TEAB Buffer.  5 μl from a 0.3% solution of Hg(SCN)2  (dissolved in 

100% acetonitrile) was added to each sample which was then incubated with 30 uM 

lindane for 1 minute and the absorbance was recorded at 280 nm, using a Tecan 

GENios Microplate Reader, to determine the amount of chorine released.    

 

3.2.i.  Growth of A. thaliana Modified with linA  

 

7 square (120/120/17 mm) Petri dishes (Greiner Bio-one) were prepared with 0.8% 

½MS Plant Agar and differing concentrations (0, 4, 34, 68, 102, 136 and 170 μM of 

97% lindane (Sigma Aldrich) to analyze the growth capacity of w/t and transgenic A. 

thaliana on lindane contaminated-media.  Sterilized seeds were resuspended in 

0.11% - ½ MS Plant Agar and using a 6 x 6 point grid template, 9 seeds from the 

wild type (w/t), transgenic (LinA2 and LinA4) and the negative control (linA(-)) lines 

were transferred onto the same plate in a 3 x 3 pattern (to give a 4 square 

comparison plate) using a 100 µl pipette tip to control distribution.    Each plate was 

sealed with micropore tape and placed in a growth cabinet at 22 °C with 16 hours of 

light and 8 hours of dark.  Growth was observed after 28 days.  
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3.3.  Results  

 

3.3.a.  Growth of w/t A. thaliana on Lindane  

 

At t = 28 days after planting (dap), growth was limited to the plates with 0 and 1 μM 

lindane. Further experimentation examined growth concentrations between 1 μM and 

34 μM (at 5 μM increments) to determine if 34 μM was the toxic threshold.  Equal 

and robust growth was seen for all concentrations up to 30 μM suggesting that 34 

μM lindane is the threshold for toxicity (Figure 3.4).  Equal and robust growth was 

seen for all concentrations of 1,2,4-TCB at t = 28 dap (Figure 3.5).    

 

 

 
Figure 3.4  Growth of wild type Arabidopsis thaliana on increasing concentrations of lindane 

 

 

Figure 3.5  Growth of wild type Arabidopsis thaliana on increasing concentrations of 1,2,4-
trichlorobenze (TCB) 
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3.3.b.  Threshold Toxicity Growth of w/t A. thaliana on 1,2,4-TCB  

 

At t = 28 dap, equal and robust growth was seen for all concentrations up to 1.5 mM 

1,2,4-TCB suggesting a very high toxicity threshold (Figure 3.6). 

 

 

Figure 3.6  Threshold toxicity growth of wild type Arabidopsis thaliana 
on increasing concentrations of 1,2,4-trichlorobenzene (TCB) 

 

 

3.3.c.  Growth of w/t A. thaliana on 1,2,4-TCB and ABT 

 

At t = 28 dap, growth was limited to the plates with 0 and 1 μM 1,2,4-TCB when in 

the presence of the P450 inhibitor, 1 mM ABT.  As growth has previously been 

shown to occur at concentrations up to 1.5 mM 1,2,4-TCB (in ATB-free media), this 

inhibited growth suggests that Cytochrome P450s may be involved in the 

metabolism of 1,2,4-TCB in A. thaliana (Figure 3.7).  

 

 

Figure 3.7  Growth of wild type Arabidopsis thaliana on 1,2,4-trichlorobenzene (TCB) 
 and 1-aminobenzotriazole (ABT) 
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3.3.d.  Verification of linA from pUC18-EcoRI-SD-linA-HindIII Plasmid  

  

3.3.d.i.  Minipreparation of Plasmid DNA 

  

Vector activity of pUC18-EcoRI-SD-linA-HindIII was confirmed based on its ability to 

confer ampicillin resistance.  Successfully transformed competent DH5α cells were 

grown on ampicillin/LB selective plates (Figure 3.8).  

 

 

Figure 3.8  Growth of competent DH5α cells transformed with pUC18-EcoRI-SD-linA-HindIII  

 

The presence of an insert in accordance with the linA gene in the plasmid construct, 

pUC18-EcoRI-SD-linA-HindIII, was verified through restriction analysis using EcoRI 

and HindIII.  As the length of the circular construct is approximately 3.2kb, and the 

linA gene is 471bp, with flanking EcoRI and HindIII restriction sites (Figure 3.2), it 

was expected that the double restriction digest of the construct would result in two 

bands at approximately 471bp and 2.7kb.  Gel electrophoresis revealed two bands of 

expected length in lane 2, confirming the presence of an insert in accordance with 

linA (Figure 3.9). 
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Figure 3.9  Restriction digest analysis of the construct pUC18-EcoRI-SD-linA-HindIII. 
Lane2 containing the plasmid DNA shows a bright band at approximately 2.7 kb and a faint band at 

approximately 471bp when compared against the DNA Ladder in lane 1 and negative control, pUC18 
in lane 3. 

 

3.3.d.ii.  PCR of linA from pUC18-EcoRI-SD-linA-HindIII Plasmid  

  

PCR using the linA primers (Table 3.1) gave amplification products of approximately 

475bp; which was the expected and desired size considering the length of the linA 

gene (471 bp) plus the CACC overhang created from the forward primer (Figure 

3.10).  However, non-specific bands appeared at approximately 850 bp, 1200 bp and 

3200 bp.   

 

To ensure purity, bands of approximately 475bp from all PCR reactions were excised 

and purified from the agarose gel in 2 separate 1.5 ml Eppendorf tubes.  Gel 

electrophoresis confirmed the presence of the desired 475bp product and the 

concentrations were determined as being approximately 120 ng / 5 µl and 200 ng / 5 

µl in samples 1 and 2, respectively, when compared against the DNA Ladder (5 µl)  

and pUC18 negative control (Figure 3.11).  The known concentrations were 

subsequently used to determine the molar ratios for future DNA cloning.  
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Figure 3.10  PCR analysis of the minipreparation plasmid DNA from pUC18-EcoRI-SD-linA-HindIII. 
Lane 3 (1 µl) and lane 4 (2 µl) show similar results with the desired band at approximately 

475bp as well as non-specific bands at 850bp, 1200bp and 3200bp when compared against 
the DNA Ladder in lane 2 and the negative control pUC18 in lane 1. 

 

 

Figure 3.11  Gel electrophoresis of extracted and purified 475 bp bands from all PCR reactions (lanes 
2 and 3) and the negative control pUC18 (lane 4). 

 

 

Sequencing of the purified PCR product was carried out and the results confirmed 

the identity of the linA gene sequence when compared against the expected 

CACC_LinA sequence with 98.8% homology (Appendix Figure A1).   
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3.3.e.  DNA Cloning of linA  

  

3.3.e.i.  pENTR/D-TOPO Topoisomerase Reaction 

 

Blunt-end cloning of the purified PCR products into the pENTR/D-Topo Gateway 

entry vector (Invitrogen) was carried out using 2:1 and 1:1 molar ratios of purified 

PCR product : TOPO vector.   Transformations using the 1:1 molar ratio reaction 

product and α-select™ Gold Efficiency (Bioline) chemically competent cells resulted 

in many well-spaced colonies when 50 µl and 225 µl volumes were plated onto 

kanomycin/LB selective plates (Figure 3.12 c and d).   When the same reaction was 

used to transform One Shot ® TOP10 (Invitrogen) cells, 0 and 3 colonies were 

present on the 50 µl and 225 µl plates, respectively (Figure 3.12 a and b).  The 2:1 

molar reaction did not result in any colonies using TOP10 cells or α-select cells at 

any plated volume (not shown). The theorised resulting plasmid construct, pENTR/D-

TOPO_LinA, is shown in Figure 3.13.  

 

Figure 3.12  Transformations of 1:1 molar ratio pENTR/D-TOPO Topoisomerase reaction 
using competent One Shot ® TOP10 (Invitrogen) (a and b) and  α-select™ Gold Efficiency 

(Bioline) (c and d) at different plating volumes of 50 µl (a and c) and 225 µl (b and d). 
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Figure 3.13  Theoretical and predicted construct, pENTR/D-Topo_LinA, resulting from the Invitrogen 

pENTR Directional TOPO Cloning reaction using the blunt-ended and purified PCR fragment. 
 

Modified from Carr (2009) 

 

Mini-preps were carried out on 2 positive colonies obtained from the 50 µl plate using 

α-select™ Gold Efficiency competent cells (Figure 3.12c).  Insertion of the PCR 

fragment into the pENTR/D-TOPO vector was confirmed using PCR and a single 

restriction enzyme digest (Figure 3.14).  PCR analysis using the For_LinA and 

Rev_LinA primers revealed bands at approximately 475 bp for both samples 1 and 2 

in lanes 4 and 5, respectively. A single restriction digest of the predicted 3.1 kb 

pENTR/D-TOPO construct, using EcoRI would linearise the plasmid to give one 

distinct band. Sample 1 in lane 4 reveals a band at approximately 3.5 kb whereas 

Sample 2 in lane 7 shows a band at approximately 3.1 kb; the desired size.  

Sequencing was carried out confirming the presence of the linA gene on sample 2 

which was used for subsequent cloning reactions (Appendix Figure A2). 
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Figure 3.14  Analysis of Escherichia coli D-Topo_LinA transformants. 
PCR from Samples 1 and 2 gave a desired band at approximately 475bp (lanes 4 and 5) whereas 

only Sample 2 gives the desired band length of 3.1kb after restriction digest (lane 7).  Lanes 1 and 2 
represent PCR and restriction digest, respectively, of the negative control, pUC18 

 

3.3.e.ii.  LR Clonase Reaction  

  

Plasmid mini-prep stocks containing the entry clone D-Topo_LinA were used to 

shuttle the desired linA gene insert to the secondary destination plasmid; Ctapi.  The 

Ctapi destination vector and pENTR/D-Topo_LinA plasmid concentrations were 

determined by biospectrophotometric DNA quantification to be 785 ng/µl and 41.6 

ng/µl, respectively. The protocol requires:  

 

 50-150 ng/µl of pENTR/D-TOPO_LinA entry clone in a volume of 1-7 µl  

 150 ng/µl Ctapi destination vector in a volume of 1 µl  

  

The Ctapi destination vector was diluted 5x to give 157 ng/µl and 3µl from the 

pENTR/D-Topo_LinA plasmid were used in the LR clonase reaction.  The theorized 

and resulting plasmid construct, Ctapi_LinA, is shown in Figure 3.15. 

 

α-select™ Gold Efficiency (Bioline) chemically competent cells were used for  

transformation and selection was carried out using spectinomycin-LB.  Both plating 

volumes of 50 µl and 225 µl gave well-spaced colonies (not shown).   
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Figure 3.15  Theoretical and predicted vector construct, Ctapi_LinA 
 

(created using ApE Software - A Plasmid Editor) 
(http://www.biology.utah.edu/jorgensen/wayned/ape/) 

 

Plasmid minipreparations were carried out on positive colonies and the shuffling of 

the linA PCR fragment from the pENTR/D-TOPO entry vector to the Ctapi 

destination vector was confirmed using PCR and a double restriction enzyme digest. 

PCR analysis using the For_LinA and Rev_LinA primers revealed bands at 

approximately 475 bp for both samples 1 and 2 in lanes 2 and 3, respectively (Figure 

3.16).  As the predicted construct is approximately 10.9 kb, a double restriction 

digest using EcoRI and EcoRV would linearize the plasmid to give 2 distinct bands at 

approximately 3.2 kb and 6.7 kb.  Samples 1 and 2, in lanes 2 and 3, respectively, 

both show bands of  the desired sizes suggesting the presence and correct 

orientation (reading frame) of the of the linA insert (Figure 3.17)  which was 

confirmed by DNA sequence analysis using the For_LinA primer on Sample 1 

(Appendix Figure A3).  
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Figure 3.16  PCR analysis of Escherichia coli Ctapi_LinA transformants. 
Samples 1 and 2 gave a desired band at approximately 475 bp (lanes 2 and 3) compared to the 

negative control, pUC18 in lane 4. 
 

 

 

Figure 3.17  Double restriction digest analysis of Escherichia coli Ctapi_LinA transformants. 
Samples 1 and 2 give desired bands at approximately 3.2 kb and 6.7 kb (lanes 2 and 3) when 

compared to the negative control empty Ctapi plasmid in lane 4. 

 

 

3.3.f.  Electrotransformation of Agrobacterium   

  

Ctapi_LinA minipreparation plasmids from sample 1 were used to transform 

Agrobacterium.   3 days after spreading 50 and 200 µL of the transformed cells onto 

low-salt LB agar plates containing kanomycin, spectinomycin, rifampicin and 
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gentamycin (KSRG) for selection, all plates showed growth (not shown).  Ten 

colonies were selected to be transferred to 3 ml low-salt KSRG-LB broth to be 

cultured.   After 2 days, all culture tubes showed growth.   Plasmid mini-preps were 

prepared from 3 of the culture tubes and the presence of the linA gene was verified 

in all 3 samples by PCR (Figure 3.18).   

 

Figure 3.18  PCR analysis of Agrobacterium Ctapi_LinA transformants. 
Samples 1, 2 and 3 give a desired band at approximately 475bp (lanes 2, 3 and 4) when compared to 

the negative control Ctapi plasmid in lane 5. 

 

3.3.g.  Transformation of A. thaliana by Floral Dipping  

 

3.3.g.i.  Germination and Growth of A. thaliana on Soil  

  

Approximately 60 seedlings were sown on blank soil containing no lindane, which 

exhibited satisfactory growth at t = 7 dap.   At t = 21 dap, plants had between 10 and 

14 rosette leaves greater than 1 mm and by t = 49 dap, rosette growth was 

complete, plant had bolted and produced flowers with no further flower production 

taking place (Figure 3.19).  
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Figure 3.19  Growth of wild type Arabidopsis thaliana (col-0) on soil at 
t = 7, 21 and 49 dap (days after planting) 

 

3.3.g.ii.   Floral Dipping 

 

After transformation, plants were maintained until seeds produced.  14 days after 

initial transformation (dat), seed pods become brown, then shattered, and whole 

plant senescence began.  Plants continued to lose pigment, becoming brownish until 

senescence was complete.    

 

3.3.g.iii.  Harvesting of Seeds (T0)  

  

At 21 dat, seeds were harvested from each plant.   A total volume of approximately 

200 μl of seeds was collected from each plant (Figure 3.20).   

 

 

Figure 3.20  Harvesting of seeds 
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3.3.g.iv.  Selection of Transformants (T1, T2 and T3)  

  

A transformation rate of approximately 15% is expected when using the Bent and 

Clough floral dipping method.  In this experiment, by visual inspection, the 

transformation rate was slightly less at approximately 10% efficiency.  As more than 

100 seeds were spread on each dish in the first selection stage, it still resulted in at 

least 10 transformants per plate which were indicated by their bright green colour 

when compared to their non-transformed, brown, and non-germinating counterparts 

(Figure 3.21).  After 10 days, and at the formation of secondary leaves, 2 

transformants with secondary leaves from each plate were transferred to soil, where 

they were maintained until seeds produced.    

 

 

 

  

Figure 3.21  Selection of Arabidopsis thaliana transformants after Agrobacterium-mediated 
transformation using the floral dip method.  Transformants indicated by green leaf colour and arrow. 

 

 

 

 

 



 Transformation of A. thaliana   

111 

 

3.3.h.  DNA Extraction 

 

PCR results of DNA extraction using the REDExtract-N-AMP™ Plant PCR kit 

indicated a band corresponding to linA at 475 bp in lanes 5-8 containing transformed 

samples designated LinA2(a), LinA2(b), LinA4(a) and LinA4(b).  Lanes 3-4 (also 

containing suspected transformed samples and designated LinA1(a) and LinA1(b)) 

were negative for the linA gene.  As expected, lane 2, which contained DNA from 

wild type A. thaliana (henceforth referred to as w/t), did not amplify any DNA (Figure 

3.22). 

 

 

Figure 3.22  PCR results of DNA extraction using the REDExtract-N-AMP™ Plant PCR kit.  Lanes 5-
8, indicated a band corresponding to LinA at 475 bp.    Lanes 3-4 were negative for the linA gene. 

Tthe wild type in lane 2 did not have a band at ~475 bp. Lane 9 represents the positive control, linA 
PCR product (from Figure 3.11). 

 

Positive samples were confirmed as containing the linA gene by DNA sequencing.  

Negative samples were also sequenced to confirm the absence of the linA gene. 

Appendix Figures A4 and A5 show the results from samples LinA2(b) and LinA4(a) 

which were used for future experimentation and henceforth referred to as LinA2 and 

LinA4, respectively. LinA1(a) was used as a negative control, to show that the 

transformation process itself, had no bearing on the gene activity and is further 

referred to as LinA(-). 

 

 

 

 



 Transformation of A. thaliana   

112 

 

3.3.i.  RNA Isolation 

 

3.3.i.i.  RNA Quantification  

 

The upper aqueous phase containing RNA, from the TRIzol® Reagent (Ambion) 

reaction, was extracted and concentration was determined as shown in Table 3.2 

 

Table 3.2  Biospectrophotometric determination of RNA concentration 

 

 w/t LinA2 LinA4 LinA(-) 

RNA Concentration (μg/ml) 0.43 0.68 0.27 1.33 

μl required to give 1 μg 2.33 1.47 3.70 0.75 

 

 

3.3.i.ii.  RT-PCR 

 

The presence of mRNA and gene expression in the transgenic samples was 

indicated by a band at 475 bp in lanes 4 and 5, corresponding to LinA2 and LinA4 

following RT-PCR (Figure 3.23).   

 

Figure 3.23  Gel electrophoresis of RT PCR.  Lane 2 represents w/t Arabidopsis thaliana, lane 3 
represents the linA PCR product used for cloning as a positive control, lanes 4 and 5 represent the 

transgenic lines LinA2 and LinA4, respectively and lane 6 is the negative line LinA(-) 
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3.3.j.  Protein Analysis 

 

Protein was extracted from each of the wild type, transgenic and negative control 

plant lines to determine the presence and activity of the LinA protein. 

 

3.3.j.i.  Protein Extraction 

 

A standard curve for protein concentration using Bradford ULTRA Assay Kit 

(Westburg) was constructed using Bovine Serum Albumin (BSA).  The measured 

absorbance for extracted proteins was compared against the standard curve to 

determine concentration values as follows in Figure 3.24 and Table 3.3. 

 

  

Figure 3.24  Standard curve for bovine serum albumin (BSA) using the Bradford ULTRA Assay Kit. 
Absorbance (595 nm) corrected for blank. Error bars represent standard deviation (n=3). 

 
Table 3.3  Determination of extracted protein concentration using bovine serum albumin (BSA) 

standard curve (n=3). 

 

 Plants grown in 0 µM lindane Plants grown in 30 µM lindane 

 w/t LinA2 LinA4 linA(-) w/t LinA2 LinA4 linA(-) 

Absorbance (OD595) 0.005 0.009 0.008 0.020 0.013 0.022 0.009 0.030 

Protein Concentration (µg/µl) 0.67 0.78 0.75 1.17 0.91 1.26 0.77 1.70 

Standard Deviation  0.07 0.10 0.07 0.20 0.22 0.17 0.05 0.32 
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3.3.j.ii.  Western Blotting 

 

Proteins were separated using gel electrophoresis as seen in Figure 3.25. 

 

 

 
Figure 3.25  Protein separation using gel electrophoresis. 

 

The antibody-probed proteins all gave unexpected banding at approximately 15 kDa 

and 55 kDa, likely due to non-specific binding with the small and large subunits of 

the highly abundant Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) 

protein.  However, only the transgenic lines, LinA2 and LinA4, in lanes 3 and 4 

respectively, have a band at 17 kDa, equal in size to the LinA protein (Figure 3.26).  

 

Figure 3.26  Western blot of extracted proteins using a LinA antibody.  LinA2 and LinA4, in lanes 3 
and 4 respectively, have a band at 17 kDa, equal in size to the LinA protein, whereas w/t and LinA(-), 

in lanes 2 and 5, respectively, do not. 
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Although not performed in this assay, the use of an A. thaliana specific loading 

control (or housekeeping gene) aside from RuBisCo, such as the phosphatase 2A 

coatomer subunits or the ubiquitin-conjugating enzyme, would have helped to 

normalize the levels of protein detected across the gel so as to aid in the 

interpretation of the Western blot result (Czechowski, et al., 2005). 

 

3.3.j.iii.  Enzyme Activity Assay 

 

Mercury thiocyanate, Hg(SCN)2, will form a complex with chloride ions (Cl-) to absorb 

light at a 250-280 nm and accurately determine unknown Cl- concentrations.  A 

standard curve for Cl- concentration using Hg(SCN)2 was constructed using NaCl as 

a standard.  The measured absorbance for extracted proteins incubated with 30 μM 

lindane was compared against the standard curve to determine the amount of Cl- 

released and the specific activity of the LinA protein as follows in Figure 3.27 and 

Table 3.5.  Sensitivity for the colorimetric method was tested from 0.2 ppm up to 14 

ppm Cl- based on the findings by Cirello-Egamino & Brindle (1995).  The amount of 

Cl- released prior to substrate incubation was also measured as a control to account 

for any spontaneous dissociation (Table 3.4).  1 unit of enzyme was defined as the 

activity required for the release of 1 μM Cl- (0.03 ppm).   

 

 

Figure 3.27  Colorimetric determination of chloride standard curve using mercuric thiocyanate. 
Absorbance (280 nm) corrected for blank.  Error bars represent standard deviation (n=3). 
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Table 3.4  Specific activity of LinA protein prior to substrate incubation (n=3). 

 

 Plants grown in 0 µM lindane Plants grown in 30 µM lindane 

 w/t LinA2 LinA4 LinA(-) w/t LinA2 LinA4 LinA(-) 

Absorbance (OD260) 0.020 0.040 0.044 0.119 0.041 0.084 0.039 0.147 

Cl
- 
released (ppm) 0.31 0.34 0.35 0.49 0.34 0.42 0.34 0.56 

Total Activity (U)  8.76 9.60 9.76 13.78 9.67 11.78 9.58 15.69 

Total Protein (µg) 33.33 38.77 37.26 58.60 45.52 62.88 38.60 85.11 

Specific Activity (U/µg) 0.26 0.25 0.26 0.24 0.22 0.19 0.25 0.19 

Standard Deviation 0.02 0.03 0.03 0.03 0.05 0.03 0.02 0.04 

 

Table 3.5  Specific activity of LinA protein after 1 minute incubation with 30 μM lindane (n=3) 

 

 Plants grown in 0 µM lindane Plants grown in 30 µM lindane 

 w/t LinA2 LinA4 LinA(-) w/t LinA2 LinA4 LinA(-) 

Absorbance (OD260) 0.059 0.306 0.320 0.084 0.144 0.665 0.462 0.214 

Cl
- 
released (ppm) 0.37 1.15 1.23 0.42 0.55 5.96 2.35 0.75 

Total Activity (U)  10.46 32.46 34.69 11.78 15.48 168.20 66.44 21.29 

Total Protein (µg) 33.33 38.77 37.26 58.59 45.52 62.88 38.60 85.11 

Specific Activity (U/µg) 0.32 0.85 0.94 0.21 0.35 2.71 1.73 0.26 

Standard Deviation  0.02 0.10 0.13 0.03 0.08 0.42 0.26 0.05 

 

3.3.k.  Growth of Arabidopsis thaliana Modified with linA  

 

At t = 28 dap, growth was limited to the plates with 0 and 1 μM lindane for all non-

transformed and transformed lines. However, initial growth could be seen for the 

plates at 34 μM, but did not continue after 14 dap (Figure 3.28).  

 

 

Figure 3.28  Growth comparison of wild type (w/t), transgenic (LinA2 and LinA4) and untransformed 
(linA(-)) lines on differing concentrations of lindane.  
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3.4.  Discussion  

 

Initial growth of w/t A. thaliana on lindane-contaminated media indicated the 

threshold toxicity to be at levels above 30 µM compared to 34 µM for a single 

species of bacteria and 174 µM for a bacterial consortium.  The use of A. thaliana for 

the purpose of phytoremediation requires it to out-perform single species microbial 

growth and degradation as a minimum requirement.  Although the bacterial lindane-

degradation pathway in S. japonicum UT26 utilizes a number of different enzymes, 

one in particular, LinA, is completely unique in its structure and function showing no 

homology to any other known proteins.  The first stable metabolic product resulting 

from the action of LinA is 1,2,4-TCB.  Growth of wild type A. thaliana on 1,2,4-TCB-

contaminated media revealed threshold toxicity to be at levels above 1.5 mM, 

considerably higher than wild type A. thaliana and S. japonicum UT26 in the 

presence of lindane.  These findings support the hypothesis that single gene cloning 

of linA and its subsequent transformation into A. thaliana will result in a transgenic 

plant capable of enhanced lindane degradation based on the plant’s natural 

xenobiotic degradation pathways. 

 

Cloning of the linA gene using Gateway® Technology and Agrobacterium-mediated 

transformation into A. thaliana was successful in two lines, LinA2 and LinA4, as 

indicated after DNA extraction from the transformed plants, PCR of the extracted 

DNA using primers specific to the linA sequence and DNA sequence analysis when 

aligned against the known linA gene sequence.  These lines were used for all 

subsequent experiments.  The RT-PCR technique confirmed that the linA gene was 

active and being expressed in the genetically modified plants as indicated by its 

associated band in the agarose gel at the correct molecular length of 475 bp.   

Although RT-PCR can also be used to quantify exactly how active the gene is by 

comparing the unknown mRNA in the transgenic plants against standardized mRNA 

amounts, as seen in the study by De Lorenzo Prieto & Gonzalez Pastor (2007), 

enzyme activity was instead assessed directly by an enzymatic assay in this work.   

 

Translated proteins, from the transgenic samples, were detected by Western Blotting 

using the LinA-antibody as a probe.  As expected, the two confirmed transgenic lines 
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had bands at approximately 17 kDa, which correlates to that of the LinA protein.  As 

the LinA enzyme is known to release Cl- from the lindane molecule, enzymatic 

activity was colorimetrically determined after incubation with 30 μM lindane by 

measuring the amount of Cl- released (Nagata, et al., 1993).  The assay was 

performed on transgenic protein obtained from samples grown on both lindane-free 

and 30 μM lindane agar to determine if enzymatic activity was additive and increased 

in down-stream applications after growth on sub-threshold levels of lindane.  

 

A one-way analysis of variance (ANOVA) was used to compare the specific enzyme 

activity means from each of the samples (significance level p = 0.05).  When the 

means were found to differ from one another, a post hoc test was performed to 

determine which of group means were significantly different from one another.  

Although a number of post hoc tests exist, this work uses the Tukey post hoc test  

(significance level p = 0.05) as it was designed for use in situations with equal 

sample sizes per group and has been shown to accurately maintain alpha levels 

under model conditions assuming normality, homogeneity and independence 

(Stevens, 1999).  

 

No statistically significant difference was found between the specific enzymatic 

activity of protein extracts not incubated with 30 μM lindane from Table 3.4, as 

determined by one-way ANOVA (F(7,16) = 2.4, p = 0.07).  Their averaged means of 

0.207 ± 0.083 U/μg, was therefore used to establish a baseline level of specific 

enzymatic activity.  After incubation with 30 μM lindane, a statistically significant 

difference was found between the groups from Table 3.5 and the mean values from 

Table 3.4 (F(8,23) = 98, p << 0.001  No statistically significant difference was found 

between the non-transformed protein samples isolated from lindane-free and 

lindane-stress environments after incubation, and between the previously 

determined average baseline mean, suggesting that although there is an intrinsic 

ability of non-transformed A. thaliana to release Cl-, it does not increase in the 

presence of lindane.  The intrinsic ability of A. thaliana to release Cl- was not further 

examined in this thesis.   

 



 Transformation of A. thaliana   

119 

 

The specific enzymatic activity was statistically significantly higher after incubation, 

as found in the transgenic lines LinA2 (0.846 ± 0.102 U/μg, p << 0.001) and LinA4 

(0.939 ± 0.131 U/μg, p << 0.001), isolated from lindane-free environments, 

compared to all of the non-transformed lines and baseline mean (0.207 ± 0.083 

U/μg).  There were no statistically significant differences between the LinA2 and 

LinA4 means (p = 0.38).  In the transgenic lines isolated from lindane stress 

environments, the tukey post-hoc test revealed that after incubation, the specific 

enzymatic activity was higher in LinA2 (2.713 ± 0.421 U/μg, p << 0.001) and LinA4 

(1.732 ± 0.260 U/μg, p << 0.001) when compared to all of the non-transformed lines 

and baseline mean.  Additionally, there were statistically significant differences 

between the LinA2 and LinA4 groups (p = 0.026), suggesting that the LinA2 line may 

have a better ability to metabolize organochlorines.  The specific enzyme activity 

assay suggests that transformation with LinA does improve the ability of A. thaliana 

to release Cl-, in vitro.   However, larger sample sizes to determine the most effective 

transgenic line would warrant further investigation for future use in down-stream 

phytoremediation applications. 

 

Regarding the additive effect of the LinA enzyme to release Cl-, the specific 

enzymatic activity determined in protein samples harvested from plants grown on 

sub-threshold levels of lindane-stress was statistically significantly higher after 

incubation as found in the transgenic lines LinA2 (2.713 ± 0.421 U/μg, p = 0.002) 

and LinA4 (1.732 ± 0.260 U/μg, p = 0.009), when compared to their counterparts 

harvested from lindane-free environment, LinA2 (0.846 ± 0.102 U/μg) and LinA4 

(0.939 ± 0.131 U/μg).  These results suggest that initial growth in sub-threshold 

conditions of lindane may increase its subsequent metabolic capabilities. 

 

Although not undertaken in this thesis, the literature states that crude protein extracts 

from S. japonicum UT26, subjected to the same colorimetric assay used in this 

thesis, were found to have a specific enzymatic activity of 37 U/mg (Nagata, et al., 

1993).  This is approximately 105-fold higher than that of A. thaliana, which may 

account for the lack of improved growth on lindane-contaminated media.  As 

previously elucidated, determining the most effective transgenic line, and 

subsequently increasing the metabolic ability of the LinA protein through successive 



 Transformation of A. thaliana   

120 

 

generational growth on sub-threshold stress conditions, may help to increase the 

overall enzyme activity in transgenic plants for future use in down-stream 

phytoremediation applications in situ. 
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3.5.  Conclusion 

 

Despite the small sample size, initial findings from the DNA sequencing, RNA 

transcription, protein expression and the in vitro enzymatic assay supports the first 

aim of the hypothesis to develop a transgenic plant that should have superior growth 

when compared to the non-transformed lines in conditions of lindane-stress.  

However, this was not observed, in vivo.  Phenotypically, A. thaliana transformed 

with the linA gene from S. japonicum UT26 appears to have no advantages with 

respect to growth when cultivated on lindane-contaminated agar and gives an 

identical growth pattern compared to the w/t and non-transformed lines, with 

threshold toxicity remaining below 34 µM. Regardless, the ability, even if limited, of 

the transgenic plant to express the LinA protein and exhibit enzymatic activity in vitro 

is evident from the preceding results.  

 

The next chapter will further examine the ability of transgenic A. thaliana to remove 

lindane from its growth environment and will determine the extent of degradation, by 

measuring lindane and any known metabolic breakdown products accumulating in 

the media and / or plant using Gas Chromatography. 
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Chapter 4.      
 
 

 

 

 
Gas Chromatography of Arabidopsis thaliana Modified with linA 

Grown under Conditions of Lindane-stress 
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4.1.  Introduction 

 

As the toxicity, distribution and persistence of lindane is well established, new 

bioremediation technologies, by which it can be safely and quickly removed from the 

environment, have been investigated.  Bioremediation, which uses indigenous or 

foreign microorganisms, fungi, plants (phytoremediation) and their enzymes to 

biologically degrade organic waste to an innocuous state, or to levels below 

concentration limits is a low-cost, low-technology, and relatively low-disturbance 

alternative technique to traditional physical removal and chemical transformation 

methods (Vidali, 2001). 

 

In studies where bacteria have been used for lindane decontamination in field 

situations, remediation capability was below that of laboratory studies and 

bioremediation occurred at relatively low concentrations, requiring both long-term 

inoculations and nutrient application (Raina, et al., 2008; Macek, et al., 2000; Eapen, 

et al., 2007).  In phytoremediation, the literature states that the majority of plants lack 

the catabolic pathway for complete degradation and mineralization of these 

compounds when compared to microorganisms (Abilash, et al., 2009).  Therefore, no 

such method for the clean-up of lindane on a global scale has been realized using 

natural microbial bioremediation and phytoremediation.  As phytoremediation also 

offers other advantages including soil stabilization, carbon sequestration and biofuel 

production, the development of phytoremediation technologies is of significant 

interest.  Improving plants for phytoremediation will likely result from transferring 

genes known to be involved in xenobiotic degradation from other plants, microbes 

and eukaryotes, specifically those that can be used to improve the uptake and 

degradation of lindane.   

  

Chapter 3 saw the transformation and characterization of two transgenic Arabidopsis 

thaliana lines modified with linA from Sphingobium japonicum UT26.  This work built 

upon preliminary results from a single proof of concept study whereby A. thaliana 

was modified with linA and demonstrated the ability to grow in the presence of 

normally toxic lindane concentrations and remove it from the medium in comparison 

to the wild type (w/t) model plant, which did not (De Lorenzo Prieto & Gonzalez 
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Pastor, 2007).  Although the transgenic lines in this work did not display the same 

growth capabilities as those observed by De Lorenzo Prieto and Gonzalez Pastor 

(2007), specific enzymatic activity was observed in the presence of lindane (refer to 

Chapter 3.4.    However, the ultimate fate and mass balance of lindane in the 

biological system has not yet been elucidated.   

 

This chapter looks to investigate the removal, degradation and accumulation of 

lindane, 1,2,4-TCB and other potential intermediates from growth media and in A. 

thaliana, modified with linA, respectively.  As this study is the first of its kind to date, 

model experiments were carried out in vitro using root tissue cultures grown in liquid 

culture and analysis was conducted by Gas Chromatography (GC).  As lindane 

metabolized in vitro is subjected to the same enzymatic conditions as those in the 

parent plant, the principal purpose of using root tissue cultures in this study is to 

understand the enzymatic capacity of the LinA protein and any other associated 

reactions that operate in whole plants, and to minimize the initial expense and space 

requirements of greenhouse or field trials. 

 

Although other methods of extraction and measurement, such as Solid Phase 

Microextraction (SPME) and Liquid Chromatography (LC), have been employed for 

lindane analysis, for the purpose of this research, which was not to develop or 

optimize these methodologies, the simplest, most common and most effective 

method, GC, was used.  This also allowed a comparison and expansion of the study 

by De Lorenzo Prieto and Gonzalez Pastor (2007) to further develop a mechanistic 

understanding of the transgenic A. thaliana lindane-degradation pathway.  Known 

concentrations of lindane were compared against experimental samples using GC 

analysis and the relative amounts remaining in the growth mediium, and within the 

plant tissues themselves, were quantified after 21 days, to reveal the extent of 

phytoremediation occurring in the wild type and transgenic plants.       
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4.2.  Methods 

  

4.2.a.  Plant Tissue Culture 

 

Approximately 2 x 100 µl A. thaliana w/t, LinA2, LinA4 and LinA(-) seeds (refer to 

Chapter 3.3.k) were placed in individual 1.5 ml Eppendorf tubes (i.e. 2 tubes per cell 

line).  1 ml of 70% Ethanol (Sigma) was added to each of the reaction tubes and 

gently inverted for 1 minute. 800 µl Reverse Osmosis (RO) purified water and 200 µl 

Economy Bleach (Ottimo Supplies) were added to the reaction tubes followed by 0.5 

µl Tween-20 Ultrapure (Sigma) to give a final concentration of 0.05%.  The mixture 

was gently inverted for 10 minutes.  Seeds were then spun down in a bench-top 

centrifuge on short spin until it reached 5000 rpm.  The liquid was removed from the 

tube and washed with 1µl RO water and repeated for a total of 5 washes.  After the 

final wash, the liquid was removed and 300 µl of RO water was added to each of the 

tubes, which were covered in foil, placed in the fridge at 4 °C and left for 4 days to 

stratify or break seed dormancy.  

 

4.2.a.i.  BASTA Selection 

 

After 4 days, the contents of each reaction tube were equally transferred to 2 - 15 ml 

falcon tube and made up to 4 ml with RO water (i.e. 4 tubes per cell line).  8 ml of hot 

0.7% - ½ MS Plant Agar (Duchefa) was added to each tube.  The agar and seeds 

were quickly mixed and poured onto 0.8% - ½ MS Plant Agar selective plates 

containing the antibiotic BASTA (20 µg/ml) (Sigma Aldrich).  The seed mixture was 

evenly spread by gently swirling the plates.  The selective plates were then sealed 

with micropore tape and placed in a growth cabinet at 22 °C with 16 hours of light 

and 8 hours of dark for 14 days (i.e. 4 plates per cell line).   

 

4.2.a.ii.  Root Tissue Culture 

 

For each of the cell lines, 21 x 15 resistant transformants from the BASTA selective 

plates were transferred to 250 ml flasks containing 65 ml autoclave-sterilized 

Gamborg B5 Medium (Sigma) and 2% Glucose (w/v) (Sigma Aldrich).  Root tissues 
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were washed prior to transfer in the PESTANAL® analytical standard grade 

fungicide, Benomyl (Fluka), to prevent fungal contamination.  The Benomyl wash 

was prepared by dissolving it in 50 ml CG-MS grade acetonitrile (Fischer) to a final 

concentration of 0.02% (w/v) at 25 ºC.  Flasks were maintained at room temperature 

on a reciprocating platform set at 60 strokes per minute.   After 7 days, lindane was 

added to the flasks in predetermined concentrations of 0, 4, 34, 68, 102, 136 and 

170 µM.  All experimental conditions were performed in triplicate. 

 

4.2.b.  Liquid-Liquid Extraction of Lindane 

 

4.2.b.i.  Liquid-Liquid Extraction of Lindane from the Growth Medium 

 

At T = 0 days after the addition of lindane, 5 mL of the Gamborg B5 liquid growth 

medium were subjected to liquid-liquid extraction to separate the lindane out.  Prior 

to extraction, aldrin (Sigma Aldrich) was added to the 5 mL mixture as an internal 

standard, allowing a correction factor to account for the loss of any analyte during 

sample extraction. 

 

The mixture was added to a separating funnel, along with 5 ml of the solvent 

Chloroform (Fischer).  The mixture was then homogenized by inverting 5 times and 

the pressure was released from the funnel.  The heavier organic fraction, containing 

the lindane, was collected from the funnel.  The remaining liquid was washed a 

further 2 times with 5 ml of Chloroform, following the same procedure to extract any 

remaining lindane.  The organic fraction was then left to evaporate in a fume 

cupboard and the remaining lindane was resuspended in 1 mL GC-MS grade 

acetonitrile (Fischer). Liquid-liquid extraction was also carried out on all samples at 

t= 7, 14 and 21 days, after the addition of lindane. Samples were stored at -20 °C 

until GC analysis. 

 

4.2.b.ii.  Liquid- Liquid Extraction of Lindane from Plant Tissue  

 

At t = 21 days after the addition of lindane, the plant root tissue cultures were 

removed from the Gamborg B5 Medium, rinsed in RO water and dried to remove any 
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residual lindane. After drying, 5 ml of RO water was added to each sample which 

was then ground to a pulp using a glass micropestle and mortar before being 

subjected to liquid-liquid extraction to separate out the lindane.   Prior to extraction, 

aldrin (Sigma Aldrich) was added to the 5 mL mixture as an internal standard, 

allowing a correction factor to account for the loss of any analyte during sample 

extraction.  The mixture was added to a separating funnel, along with 5 ml of the 

solvent Chloroform (Fischer).  The mixture was then mixed by inverting 5 times and 

the pressure was released from the funnel.  The heavier organic fraction, containing 

the lindane, was collected from the funnel.  The remaining liquid was washed a 

further 2 times with 5 ml of Chloroform, following the same procedure to extract any 

remaining lindane.  The organic fraction was then left to evaporate in a fume 

cupboard and the remaining residue was resuspended in 1 mL GC-MS grade 

acetonitrile (Fischer).  Samples were stored at -20 °C until GC analysis. 

 

4.2.c.  Gas Chromatography of Lindane Extracts 

 

A TRACE GC Ultra Gas equipped with a splitless injector and a flame ionization 

detector (FID) (Thermo Fisher Scientific Inc.) was used in this study.  Separation of 

samples was carried on a fused silica Rtx®-CLPesticides Column (proprietary 

Crossbond® phases) (30 m × 0.25 mm x 0.25 µm) (Restik) capable of achieving 

baseline resolution for more than 20 organo-chorinated analytes and providing 

reliable identification without the use of an MS detector (Restek, 2008). The injection 

volume was set at 10 µl and the carrier gas (Nitrogen) at a flow rate of 2 mL per 

minute. The oven temperature was programmed at 150 °C for 2 minutes with an 

equilibrium time of 2 minutes, followed by a rise of 5 °C per minute up to 220 °C 

(held for 0 minutes) which was then increased to a rise of 30 °C per minute to reach 

a final temperature of 300 °C (held for 0 minutes).  The injector and detector port 

temperatures were maintained at 280 and 320 °C, respectively.  Standard dilutions 

of lindane and 1,2,4-TCB were prepared  to establish the robustness and sensitivity 

of GC as a method of quantification.  The chromatograms from extracted medium 

and tissue samples were compared against the standard curves to determine the 

overall loss and accumulation of Lindane and its metabolite, 1,2,4-TCB after 21 days 

and to evaluate the effectiveness of the transgenic plant lines to remediate Lindane. 
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4.3.  Results 

 

4.3.a.  Suitability of Gas Chromatography for the Separation, Detection and                               
Quantification of Lindane and 1,2,4-TCB  

 

4.3.a.i.  Gas Chromatography of Acetonitrile 

 

A triplicate of blank samples containing only the solvent GC-MS grade acetonitrile 

(Fischer) was used to determine the time for the solvent to peak and to establish a 

baseline chromatogram (Figure 4.1, Table 4.1). 

 

 

Figure 4.1  Chromatogram of the solvent, acetonitrile.   
Error bars represent standard deviation (n=3). 

 

 

 

 

 

 

P
e
a
k
 I

n
te

n
s
it
y
 (

p
A

) 



 Gas Chromatography   

130 

 

Table 4.1  Chromatogram peak values and associated areas of the solvent, acetonitrile. 
Bracketed number represents standard deviation (n=3). 

 

Peak Time 
(minutes) 

Peak Mean 
(pA) 

Area Mean 
(nonsensical units)  

1.40 95686.52 (593.57) 2660949.25 (13256.88) 

3.24 3.52 (0.59) 251.59 (63.08) 

7.55 1.45 (0.81) 3.98 (2.30) 

 

4.3.a.ii.  Gas Chromatography of Lindane 

 

A triplicate serial dilution series of lindane (dissolved in GC-MS grade acetonitrile) 

ranging from 104 mg/L down to 10-1 mg/L was used to determine the sensitivity of 

GC without the use of MS as a method for the detection of lindane (Figure 4.2).  As 

the previous chromatogram of acetonitrile (Figure 4.1) established a base line with a 

large peak at T = 1.40 minutes, it is expected that the calculated area (nonsensical 

units) under this peak should remain relatively constant throughout the serial dilution 

series.  On the contrary, with each serial dilution of lindane, a peak exhibiting a 

similar fold reduction in area would be indicative of the analyte. 

 

The serial dilution series chromatogram of lindane gave three distinct peaks at T = 

1.40 (not shown), 5.80 (not shown) and 11.75 minutes (Figure 4.2).  As expected, 

the peak distinctive of acetonitrile at T = 1.40 minutes remained constant, while the 

other peaks had corresponding fold reductions with respect to the serial dilutions.  As 

the lindane being analyzed was only 97% pure, it is not unusual to have more than 

one peak during compound separation.  However, the peak at T = 5.80 minutes was 

only visible on the chromatograms of the 103 and 104 mg/L concentrations and the 

corresponding areas were only calculated to be 42.74 (SD 13.73) and 428.75 (SD 

38.72), respectively (not shown).  These findings, along with an observable peak and 

corresponding areas for the 1 to 104 mg/L concentrations at T = 11.75 minutes, 

suggest that this peak is a more reliable indicator of lindane, especially at lower 

concentrations (Table 4.2).  
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Figure 4.2  Serial dilution series chromatogram of lindane. 
Error bars represent standard deviation (n=3). 

 

 
Table 4.2  Area comparison between T = 1.40 minutes (acetonitrile) and 11.75 minutes (lindane). 

Bracketed number represents standard deviation (n=3). 
 

Lindane 
Concentration 
(mg/L) 

Area under Peak at  
T = 1.40 minutes 

Area under Peak at  
T = 11.75 minutes 

0  2660921.50 (13256.88) 0.00 (0.00) 

10
-1 

2660949.25 (13256.88) 0.00 (0.00) 

1 2701387.25 (55218.52) 0.82 ( 0.21) 

10 2672017.50 (14783.31) 7.03 (1.81)  

10
2
 2661492.25 (26163.14) 87.15 ( 3.60) 

10
3 

2708379.00 (44505.87) 875.49 ( 21.74) 

10
4 

2664334.50 (58974.45) 8944.22 (171.77)  
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4.3.a.iii.  Gas Chromatography of 1,2,4-TCB 

 

A triplicate serial dilution series of the metabolite; 1,2,4-TCB (dissolved in GC-MS 

grade acetonitrile), ranging from 104 mg/L down to 10-1 mg/L; was used to determine 

the sensitivity of GC without the use of MS as a method for the detection of 1,2,4-

TCB (Figure 4.3).  As the previous chromatogram of acetonitrile (Figure 4.1) 

established a base line with a large peak at T = 1.40 minutes, it is expected that the 

calculated area under this peak should remain relatively constant throughout the 

serial dilution series.  On the contrary, with each serial dilution of 1,2,4-TCB, a peak 

exhibiting a similar fold reduction in area would be indicative of the analyte. 

 

 

 

Figure 4.3  Serial dilution series chromatogram of 1,2,4-trichlorobenzene (TCB). 
Error bars represent standard deviation (n=3). 
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The serial dilution series chromatogram of 1,2,4-TCB gave two distinct peaks at T = 

1.40 and 2.75 minutes.  As expected, the peak at T = 1.40 minutes remained 

constant, while the other peak was visible and had corresponding fold reductions 

from 104 down to 1 mg/L concentrations indicative of the analyte 1,2,4-TCB (Table 

4.3).  A smaller, third peak at T = 3.08 minutes was also seen.  As 1,2,4-TCB is only 

≥ 99% pure, this is not unexpected.  However, the peak intensity and corresponding 

areas remained relatively constant and were deemed unsuitable for as an indicator 

for 1,2,4-TCB. 

 

Table 4.3  Area comparison between T = 1.40 minutes (acetonitrile) and 2.75 minutes (1,2,4-
trichlorobenzene (TCB)). Bracketed number represents standard deviation (n=3). 

 

1,2,4-TCB 
Concentration 
(mg/L) 

Area under Peak at  
T = 1.40 minutes 

Area under Peak at 
T = 2.75 minutes 

0  2661682.25 (33315.60) 0.00 (0.00) 

10
-1 

2678164.25 (29748.24) 0.00 (0.00) 

1 2678164.25 (30318.54) 5.01 (2.05)  

10 2661107.25 (39745.84) 48.62 (3.63) 

10
2
 2668749.25 (29217.35) 540.11 (19.63) 

10
3 

2669726.25 (23513.35) 5026.18 (32.72) 

10
4 

2672467.75 (48137.70) 45960.99 (945.34) 

 

 

4.3.a.iv.  Separation of Lindane, 1,2,4-TCB and Aldrin 

 

To account for any loss of analyte during the liquid-liquid extraction process, the 

organochlorine, aldrin, was added to each sample at a concentration of 102 mg/L 

prior to extraction as an internal standard.  Aldrin is well established as an effective 

internal standard for many organo-chlorinated pesticides, including lindane, in GC 

analysis (Lehotay, et al., 1995).  Additionally, resolution of aldrin is possible with the 

Rtx®-CLPesticides Column used in this work (Restik, 2008).  The chromatograms 

and data  in Appendix Figure A6 and Table A1 show that at 102 mg/L, aldrin has a 

peak at T = 14.37 minutes and a calculated area of 301.60 under the peak.  Figure 

4.4 shows the separation capability of the Rtx®-CLPesticides Column for lindane, its 

metabolite 1,2,4-TCB, and the internal standard aldrin, to give 3 distinct peaks.  

Following extraction, the area of aldrin as calculated from under the peak at T = 
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14.37 minutes, is compared against the known area of 301.60 and a correction factor 

can then be applied to all peak data across the chromatogram. 

 

 

Figure 4.4  Separation of lindane, 1,2,4-trichlorobenzene (TCB) and the internal standard, aldrin. 
Error bars represent standard deviation (n=3). 

 

 

4.3.b.  Gas Chromatography of Liquid-Liquid Extracted Residues 

 

The calculated area for extracted residues as determined by their chromatograms 

was compared against the standard curves to assess the effectiveness of the 

transgenic plant lines to remediate lindane by accounting for its overall loss or 

accumulation of its metabolite, 1,2,4-TCB after 21 days.  Plant tissue was not 

analysed at T=0 as the experimental set-up was limited to a finite amount of starting 

material in order to reduce the possibility of contamination and to allow optimal 

growth.  Lindane concentration in plant tissue at T=0 was therefore assumed to be 0 

µM.  
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4.3.b.i.  Standard Curves of Lindane and 1,2,4-TCB 

 

Standard curves for both lindane and 1,2,4-TCB were constructed (Figure 4.5 and 

Figure 4.6) using experimental design concentrations (Appendix Figure A7, Figure 

A8 and Table A2).  The limit of detection (LOD) was calculated using the formula, 

 

LOD = 3.3 * SD(standard curve) / Slope(standard curve) 

 

 

Figure 4.5  Standard curve of lindane using experimental concentrations (prior to extraction).  
Error bars represent standard deviation (n=3). 

 

 

Figure 4.6  Standard curve of 1,2,4-trichlorobenzene (TCB) using experimental concentrations (prior 
to extraction).  Error bars represent standard deviation (n=3). 
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4.3.b.ii.  GC of A. thaliana w/t Medium and Root Tissue  

 

The extracted organic fractions from A. thaliana w/t at T = 0 (medium) (Figure 4.7) 

and 21 days (medium and ground root tissues) (Figure 4.8 and Figure 4.9) were 

analyzed by GC and compared against the standard curve (Table 4.4). 

 

 
Figure 4.7  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana w/t medium at 

T= 0 days after the addition of lindane.  Error bars represent standard deviation (n=3).  
* Concentration represents starting concentration at T=0 days (prior to extraction) 
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Figure 4.8  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana w/t medium at 
T= 21 days after the addition of lindane. Error bars represent standard deviation (n=3). 

* Concentration represents starting concentration at T=0 days (prior to extraction) 

 

 
 
Figure 4.9  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana w/t root tissue 

at T= 21 days after the addition of lindane. Error bars represent standard deviation (n=3). 
* Concentration represents starting concentration at T=0 days (prior to extraction) 
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Table 4.4  Concentration of Arabidopsis thaliana w/t samples (after extraction) as calculated using the 
standard curves.  Bracketed number represents standard deviation (n=3). 

 

Molarity 
prior to  

extraction  
(µM) 

Area Under the Curve  Molarity After Extraction (µM) 

Media Plant Media Plant 

T= 0  T= 21  T=21  T= 0  T= 21  T=21  

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

34 7.10 (1.58) 7.70 (0.35) 0.00 (0.00) 26.38 (5.87) 28.61 (1.30) 0.00 (0.00) 

68 15.87 (1.24) 14.81 (0.16) 0.00 (0.02) 58.94 (4.61) 55.02 (0.59) 0.00 (0.07) 

102 25.40 (4.10) 23.50 (0.32) 2.33 (0.15) 94.38 (15.23) 87.30 (1.19) 8.66 (0.56) 

136 36.51 (0.66) 36.00 (1.89) 4.61 (0.33) 135.65 (2.45) 133.74 (7.02) 17.13 (1.23) 

170 44.22 (5.51) 43.32 (0.85) 6.70 (0.28) 164.28 (20.47) 160.94 (3.16) 24.89 (1.04) 

 

4.3.b.iii.  Mass Balance of Lindane in the A. thaliana w/t System 

 

To determine if there was any loss of lindane in the system after 21 days, the total 

number of moles of solute was calculated from the 10 µl injection volumes for each 

sample using the following equation,  

 

Number moles of solute = Molarity × Volume 

 

The total number of moles at 21 days was compared against the initial number of 

moles in the system at T = 0 days (Table 4.5). 

 
Table 4.5  Mass balance of lindane after T = 21 days in the Arabidopsis thaliana w/t system. 

Bracketed number represents standard deviation (n=3). 
 

Molarity 
 Prior to 

Extraction 
(µM) 

Number of moles of solute (pmol) Total number of 
 moles of solute  

at  T = 21 
 (pmols) 

 
Gain / 

Loss (-) 
(%) 

Media Plant 

T= 0  T= 21  T=21  

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) n/a 

4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) n/a 

34 0.26 (0.06) 0.29 (0.01) 0.00 (0.00) 0.29 (0.01) 8.42 

68 0.59 (0.05) 0.55 (0.01) 0.00 (0.00) 0.55 (0.01) -6.65 

102 0.94 (0.15) 0.87 (0.12) 0.09 (0.01) 0.96 (0.12) 1.67 

136 1.35 (0.02) 1.34 (0.07) 0.17 (0.01) 1.51 (0.07) 11.22 

170 1.64 (0.20) 1.61 (0.03) 0.25 (0.01) 1.86 (0.03) 13.11 
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4.3.b.iv.  GC of Transgenic A. thaliana LinA2 Medium and Root Tissue  

 

The extracted organic fractions from transgenic A. thaliana LinA2 at T = 0 (medium) 

(Figure 4.10) and 21 days (medium and ground root tissues) (Figure 4.11 and Figure 

4.12) were analyzed by GC and compared against the standard curve (Table 4.6).  

 

 
Figure 4.10  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana LinA2 

medium at T= 0 days after the addition of lindane.  Error bars represent standard deviation (n=3). 
* Concentration represents starting concentration at T=0 days (prior to extraction) 
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Figure 4.11  Chromatogram of lquid-liquid extracted residues from Arabidopsis thaliana LinaA(2) 

medium at T = 21 days after the addition of lindane.  Error bars represent standard deviation (n=3). 
* Concentration represents starting concentration at T=0 days (prior to extraction) 

 

 

 

 
Figure 4.12  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana LinA2 root 

tissue at T= 21 days after the addition of lindane.  Error bars represent standard deviation (n=3). 
* Concentration represents starting concentration at T=0 days (prior to extraction) 
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Table 4.6  Concentration of Arabidopsis thaliana LinA2 Samples (after extraction) as calculated using 
the standard curves.  Bracketed number represents standard deviation (n=3). 

 

Molarity 
 Prior to 

Extraction 
(µM) 

Area Under the Curve  Molarity After Extraction (µM) 

Media Plant Media Plant 

T= 0  T= 21  T=21  T= 0  T= 21  T=21  

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

4 1.52 (0.01) 0.00 (0.00) 0.00 (0.00) 5.66 (0.04) 0.00 (0.00) 0.00 (0,00) 

34 8.42 (0.25) 1.50 (0.01) 1.56 (0.25) 31.30 (0.93) 5.57 (0.04) 5.83 (0.93) 

68 16.78 (0.15) 4.06 (0.15) 12.34 (2.15) 62.34 (0.56) 15.08 (0.56) 45.84 (7.99) 

102 25.31 (1.94) 8.64 (0.80) 17.07 (4.23) 94.02 (7.21) 32.10 (2.97) 63.42 (15.71) 

136 35.70 (1.68) 12.78 (0.82) 24.43 (1.75) 132.64 (6.24) 47.48 (3.05) 90.76 (6.50) 

170 44.10 (0.49) 15.72 (2.01) 31.10 (1.98) 163.84 (1.82) 58.40 (7.47) 115.54 (7.36) 

 

 
 
4.3.b.v.  Mass Balance of Lindane in the A. thaliana LinA2 System 

 

To determine if there was any loss of lindane in the system after 21 days, the total 

number of moles of solute was calculated from the 10 µl injection volumes for each 

sample using the following equation,  

 

Number moles of solute = Molarity × Volume 

 

The total number of moles at 21 days was compared against the initial number of 

moles in the system at T = 0 days (Table 4.7).  

 

Table 4.7  Mass balance of lindane after T = 21 days in the transgenic Arabidopsis thaliana LinA2 
system.  Bracketed number represents standard deviation (n=3). 

 
Molarity 
 Prior to 

Extraction 
(µM) 

Number of moles of solute (pmol) Total number of  
moles of solute  

at T = 21 
 (pmols) 

 
Gain / 

Loss (-) 
(%) 

Media Plant 

T= 0  T= 21  T=21  

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) n/a 

4 0.06 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) -100.00 

34 0.31 (0.01) 0.06 (0.00) 0.06 (0.00) 0.12 (0.00) -63.68 

68 0.62 (0.01) 0.15 (0.01) 0.46 (0.02) 0.61 (0.02) -2.26 

102 0.94 (0.07) 0.32 (0.03) 0.63 (0.11) 0.95 (0.11) 1.59 

136 1.33 (0.06) 0.48 (0.03) 0.91 (0.11) 1.39 (0.12) 4.22 

170 1.64 (0.02) 0.58 (0.07) 1.16 (0.28) 1.74 (0.29) 6.17 
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4.3.b.vi.  GC of Transgenic A. thaliana LinA4 Media and Root Tissue 

 

The extracted organic fractions from transgenic A. thaliana LinA4 at T = 0 (media) 

(Figure 4.13) and 21 days (medium and ground root tissues) (Figure 4.14 and Figure 

4.15) were analyzed by GC and compared against the standard curve (Table 4.8). 

 

 
Figure 4.13  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana LinA4 

medium at T= 0 days after the addition of lindane.  Error bars represent standard deviation (n=3). * 
Concentration represents starting concentration at T=0 days (prior to extraction) 
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Figure 4.14  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana LinA4 

medium at T= 21 days after the addition of lindane.  Error bars represent standard deviation (n=3). 
* Concentration represents starting concentration at T=0 days (prior to extraction) 

 

 
Figure 4.15  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana LinA4 root 
tissue at T = 21 days after the addition of lindane.  Error bars represent standard deviation (n=3). 

* Concentration represents starting concentration at T=0 days (prior to extraction) 
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Table 4.8  Concentration of Arabidopsis thaliana LinA4 samples (after extraction) as calculated using 
the standard curves.  Bracketed number represents standard deviation (n=3). 

 

Molarity 
Prior to  

Extraction  
(µM) 

Area Under the Curve  Molarity After Extraction (µM) 

Media Plant Media Plant 

T= 0  T= 21  T=21  T= 0  T= 21  T=21  

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

4 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 0.00 (0.04) 0.00 (0.04) 0.00 (0.00) 

34 8.47 (0.83) 3.38 (0.15) 0.00 (0.00) 31.47 (3.08) 14.27 (0.56) 0.00 (0.00) 

68 15.41 (0.85) 8.62 (0.20) 11.32 (0.51) 57.56 (3.16) 32.02 (0.74) 42.05 (1.89) 

102 25.28 (2.58) 12.43 (1.12) 15.19 (1.43) 93.93 (9.58) 46.18 (4.16) 56.43 (5.31) 

136 34.33 (0.39) 16.27 (0.98) 23.99 (1.62) 127.54 (1.45) 60.44 (3.64) 89.13 (6.02) 

170 43.83 (2.69) 23.34 (1.98) 28.84 (1.18) 162.84 (9.99) 86.71 (7.36) 107.14 (4.38) 

 

 

4.3.b.vii.  Mass Balance of Lindane in the A. thaliana LinA4 system 

 

To determine if there was any loss of lindane in the system after 21 days, the total 

number of moles of solute was calculated from the 10 µl injection volumes for each 

sample using the following equation,  

 

Number moles of solute = Molarity × Volume 

 

The total number of moles at 21 days was compared against the initial number of 

moles in the system at T = 0 days (Table 4.9).  

 
Table 4.9  Mass balance of lindane after T = 21 days in the transgenic Arabidopsis thaliana LinA4 

system.  Bracketed number represents standard deviation (n=3). 

 
Molarity 
 Prior to 

Extraction 
(µM) 

Number of moles of solute (pmol) Total number of  
moles of solute  

at T = 21 
 (pmols) 

 
Gain / 

Loss (-) 
(%) 

Media Plant 

T= 0  T= 21  T=21  

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) n/a 

4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) n/a 

34 0.32 (0.00) 0.14 (0.01) 0.00 (0.00) 0.14 (0.01) -54.66 

68 0.57 (0.03) 0.32 (0.01) 0.42 (0.02) 0.74 (0.02) 29.40 

102 0.94 (0.10) 0.46 (0.04) 0.56 (0.05) 1.03 (0.07) 9.24 

136 1.28 (0.01) 0.60 (0.03) 0.89 (0.06) 1.50 (0.07) 17.27 

170 1.63 (0.10) 0.87 (0.07) 1.07 (0.04) 1.94 (0.09) 19.04 
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4.3.b.viii.  GC of A. thaliana LinA(-) Media and Root Tissue 

 

The extracted organic fractions from A. thaliana LinA(-) at T = 0 (medium) (Figure 

4.16) and 21 days (medium and ground root tissues) (Figure 4.17 and Figure 4.18) 

were analyzed by GC and compared against the standard curve (Table 4.10). 

 

 
Figure 4.16  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana LinA(-) 

medium at T= 0 days after the addition of lindane.  Error bars represent standard deviation (n=3). 
* Concentration represents starting concentration at T=0 days (prior to extraction) 
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Figure 4.17  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana LinA(-) 

medium at T= 21 days after the addition of lindane.  Error bars represent standard deviation (n=3). 
* Concentration represents starting concentration at T=0 days (prior to extraction) 

 

 

 
 

Figure 4.18  Chromatogram of liquid-liquid extracted residues from Arabidopsis thaliana LinA(-) root 
tissue at T= 21 days after the addition of lindane.  Error bars represent standard deviation (n=3). 

* Concentration represents starting concentration at T=0 days (prior to extraction) 
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Table 4.10  Concentration of Arabidopsis thaliana LinA(-) samples (after extraction) as calculated 
using the standard curves.  Bracketed number represents standard deviation (n=3). 

 

Molarity 
 Prior to 

Extraction 
(µM)) 

Area Under the Curve  Molarity After Extraction (µM) 

Media Plant Media Plant 

T= 0  T= 21  T=21  T= 0  T= 21  T=21  

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

34 8.38 (0.75) 8.19 (0.46) 0.00 (0.00) 31.13 (2.79) 30.43 (1.71) 0.00 (0.00) 

68 15.94 (2.01) 15.66 (0.20) 0.00 (0.00) 59.22 (7.47) 58.18 (0.74) 0.00 (0.00) 

102 24.56 (1.78) 23.22 (0.23) 2.16 (0.15) 91.24 (6.61) 86.26 (0.85) 8.02 (0.56) 

136 35.11 (0.38) 33.64 (1.82) 4.12 (0.21) 130.44 (1.41) 124.98 (6.76) 15.31 (0.78) 

170 43.33 (4.56) 42.81 (0.98) 5.04 (0.19) 160.98 (16.94) 159.03 (3.64) 18.72 (0.71) 

 

 

4.3.b.ix.  Mass Balance of Lindane in the A. thaliana LinA(-) system 

 

To determine if there was any loss of lindane in the system after 21 days, the total 

number of moles of solute was calculated from the 10 µl injection volumes for each 

sample using the following equation,  

 

Number moles of solute = Molarity × Volume 

 

The total number of moles at 21 days was compared against the initial number of 

moles in the system at T = 0 days (Table 4.11).  

 
Table 4.11  Mass balance of lindane after T = 21 days in the Arabidopsis thaliana LinA(-) system.   

Bracketed number represents standard deviation (n=3). 

 
Molarity 
 Prior to 

Extraction 
(µM) 

Number of moles of solute (pmol) Total number of 
moles of solute 

at T = 21 
 (pmols) 

 
Gain / 

Loss (-) 
(%) 

Media Plant 

T= 0  T= 21  T=21  

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) n/a 

4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) n/a 

34 0.31 (0.03) 0.30 (0.02) 0.00 (0.00) 0.30 (0.02) -2.27 

68 0.59 (0.07) 0.58 (0.01) 0.00 (0.00) 0.58 (0.01) -1.75 

102 0.91 (0.07) 0.86 (0.01) 0.08 (0.01) 0.94 (0.01) 3.34 

136 1.30 (0.01) 1.25 (0.07) 0.15 (0.01) 1.40 (0.07) 7.55 

170 1.61 (0.17) 1.59 (0.04) 0.19 (0.01) 1.78 (0.04) 10.42 

 

 

 



 Gas Chromatography   

148 

 

4.4.  Discussion 

 

Although concentrations of 10-1 mg/L were below the limits of detection in this assay, 

the calibration graphs revealed a linear correlation (fold reduction) between both 

1,2,4-TCB and lindane concentration (mg/L) and the calculated area under the peak 

at T = 2.4 and 11.75 minutes, respectively, in the concentration range of 1 to 104  

mg/L.  As the lowest lindane concentration to be used in the experimental protocol 

(at 4 µM)  is greater than the calculated LOD of 3.28 µM and separation was visible 

between lindane, 1,2,4-TCB along with the internal standard aldrin, it was concluded 

that GC carried out using a fused silica Rtx®-CLPesticides Column without the 

subsequent use of MS is a suitable and sensitive enough method for the 

determination of both lindane and its metabolite, 1,2,4-TCB.   

 

While lindane concentrations of 4 µM are within the LOD, the GC did not detect it 

from the w/t, LinA4 and LinA(-) extracts with a starting concentration of 4 µM at T = 0 

days after the addition of lindane (Table 4.4, Table 4.8 and Table 4.10).  Although 

the use of an internal standard was in place to correct for any analyte loss during 

extraction, it cannot correct for an amount that is below the LOD.  This loss was 

ultimately attributed to the extraction process and not from natural attenuation or 

degradation of lindane, as the extraction took place immediately after the addition of 

lindane.  In fact, all of the experimental samples analyzed at T = 0 days after the 

addition of lindane also gave starting concentrations at less than the initial amount 

added to the system (Table 4.4, Table 4.6, Table 4.8 and Table 4.10).  Although the 

internal standard aldrin should correct for any inefficiencies in the extraction process, 

it may be that some of the solute was immediately sequestered to the root tissue and 

was not freely available in the media to be assayed. However, this was not 

measured as the experimental design did not allow for root tissue to be analyzed at 

T = 0 days after the addition of lindane.  As this study is the first of its kind to develop 

a feasible model of transgenic phytoremediation of lindane and its ultimate fate 

within the biological system, the method of GC carried out using a fused silica Rtx®-

CLPesticides Column detection is still a viable and acceptable option.  However, 

future studies involving whole plants and actual field trials (outside of the laboratory) 

would benefit from the investigation into the use of separation methods such as 

SPME (Abdel-Latif, 2003).  
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The only observable and distinct peaks were detected at T = 11.75 minutes, 

indicative of lindane (Figure 4.2).  The calculated areas for each peak at T = 11.75 

minutes, in each condition, for each cell line of A. thaliana, were compared against 

the standard curve of lindane (Figure 4.5) to give the final concentrations remaining 

in the medium and plant tissues at T = 21 days after the addition of lindane.  None of 

the samples assayed at T = 0, 7, 14 or 21 days after the addition of lindane, from 

either the medium and plant tissues, exhibited a peak at T = 2.40 minutes, which is 

where any 1,2,4-TCB residues would appear on the chromatogram (Figure 4.3).   

 

The presence of 1,2,4-TCB would be indicative of lindane metabolism or degradation 

by LinA, abiotic transformants or native plant enzymes.  In samples where a loss of 

lindane from the system has been observed, the absence of 1,2,4-TCB suggests that 

it and any other potential metabolite(s) may be undergoing further degradation, 

supporting the hypothesis that native plant enzymes, such as Cytochrome P450s 

would continue to degrade any organic metabolites.  To determine if there was any 

loss of lindane in the system after 21 days, the total number of moles of solute were 

calculated from the 10 µl injection volumes for each sample and the total number of 

moles at T = 21 days were compared against the initial number of moles in the 

system at T = 0 days (Table 4.12). 

 

Table 4.12  Mass Balance of lindane after T = 21 days from all of the Arabidopsis thaliana systems. 
  

Sample 

Molarity 

Prior to 

Extraction 

(µM) 

w/t LinA2 LinA4 LinA(-) 

Gain / 

Loss  

(%) 

Half-life 

(Days) 

Gain / 

Loss  

(%) 

Half-life 

(Days) 

Gain / 

Loss  

(%) 

Half-life 

(Days) 

Gain / 

Loss  

% 

Half-

life 

(Days) 

0 n/a n/a n/a n/a n/a n/a n/a n/a 

4 n/a n/a -100.00 * / ** n/a n/a n/a n/a 

34 8.42 n/a -63.68 14.41 -54.66 18.43 -2.27 639.40 

68 -6.65 210.39 -2.26 640.44 29.40 n/a -1.75 854.42 

102 1.67 n/a 1.59 n/a 9.24 n/a 3.34 n/a 

136 11.22 n/a 4.22 n/a 17.27 n/a 7.55 n/a 

170 13.11 n/a 6.17 n/a 19.04 n/a 10.42 n/a 

  
* this value was not considered as the 100% loss was most likely due to experimental error and a low 

limit of detection as observed in the other systems at 4 µM.   

 

** sample concentrations measured at 7 days and 14 days (not shown) were also undetectable, 

making the half-life calculation  mathematically impossible to determine 
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Although there appears to be accumulation of lindane in some of the plant tissues of 

the non-transgenic A. thaliana w/t and LinA(-) varieties, the overall amount of lindane 

(pmols) at T = 21 days exceeds the initial amount of solute in the system, which is 

theoretically impossible.  These results suggest that the single wash, prior to liquid-

liquid extraction, did not sufficiently remove solute that was adhering to the outsides 

of the root tissue, thereby resulting in lindane detection.  

 

A. thaliana w/t and LinA(-) both demonstrated an overall loss of lindane in the 

system, for the 68 µM starting concentration samples, of 6.65 and 1.75%, 

respectively (Table 4.12).  Using the formula,  

 

Half-life = (elapsed time x log 2) / log (# molest=0 / # molest=21) 

 

the half-life rates of lindane in these plant cell lines, were calculated as 210.39 and 

854.42 days, respectively (Table 4.12).  The half-life rate of 210.39 days from the w/t 

(Col-0) is comparable to the half-life rates for aerobic microbial biodegradation, 

ranging from 31 to 413 days, as reported by Howard et al. (1991).  However, the lack 

of lindane uptake and degradation in the higher concentration samples suggests that 

the loss of lindane is likely due to inconsistencies in extraction, instrument 

measurement and small sample size.  Regardless of the reason for the loss, intrinsic 

or experimental error; when compared to single species microbial degraders, such 

as S. japonicum UT26 (which have a threshold of 34 µM), the non-transgenic line 

does not exhibit an increased ability to degrade lindane with respect to half-life rates, 

and is not suitable for phytoremediation or warrant further investigation, despite the 

degradation at a higher concentration.  

 

Conversely, in the transgenic A. thaliana LinA2 and LinA4 plant cell lines, there is a 

considerable loss of lindane in the system for samples with a starting concentration 

of 34 µM. The lines were found to have a decrease of 63.68 and 54.66%, 

respectively, at T = 21 days, equating to a half-life rate of 14.41 and 18.43 days; a 

substantial rate increase of approximately 50% when compared to those for aerobic 

microbial biodegradation.  The samples with a starting concentration of 68 µM 

present conflicting data with the LinA2 line showing a reduction of 2.26%, or a half-
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life rate of 640.44 days, whereas the LinA4 line has a net gain of 29.39%; most likely 

related to residues left over from the wash (Table 4.12).   

 

Together, these findings suggest that the transgenic lines have a superior 

degradation capability when compared to microbes at the same concentration, 

warranting further investigation to assess the feasibility of transgenic plants for the 

phytoremediation of lindane. 
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4.5.  Conclusion 

  

A. thaliana transformed with the linA gene from S. japonicum UT26 confers the 

ability to remove lindane from the surrounding medium as observed in the A. thaliana 

LinA2 and LinA4 root tissue culture experiments at concentrations of 34 µM with half-

life rates increases of approximately 50% when compared to microbial lindane-

degraders.  These findings are contrary to those of A. thaliana w/t and the negative 

control LinA(-), which were not able to remove it at improved rates.   

 

However, after 21 days, the combined amount of lindane in the medium and plant 

tissue remained relatively constant when compared to the initial concentration, 

suggesting that although the transgenic plants were capable of removing it from the 

medium, aside from the samples with a starting concentration of 34 µM, they were 

unable to degrade it, and instead, accumulated or sequestered the lindane in their 

root tissues.  

 

When compared to whole plant agar growth observations (refer to Chapter 3.3.l), 

whole plants grown under the same conditions are not able to survive, despite the 

increased protein activity (refer to Chapter 3.3.k.iii) and increased rate of lindane 

degradation in plant tissues.  These findings suggest that other factors controlling 

lindane uptake or those involved in associated metabolic pathways may be inhibiting 

the degradation in vivo. 

 

The next chapter will investigate the ability of the transgenic plants to remove and 

degrade lindane at the level of protein expression.  Proteomic analysis using isobaric 

tags for relative and absolute quantification (iTRAQ) will provide an in-depth 

understanding into the functional processing at a metabolic level and will work to 

establish links between the environmental stress, organism survival and remediation 

capability.  
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Chapter 5.       
 
 
 
 
 

Protein Expression in Wild Type and Transgenic Arabidopsis 
thaliana Grown in Conditions of Lindane-stress 
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5.1.  Introduction 

 

The previous chapters have revealed several differences between wild type (w/t) and 

transgenic Arabidopsis thaliana when grown under conditions of lindane-stress. 

Specifically, changes in LinA enzyme activity, lindane uptake and lindane 

accumulation, can be seen when the plants are in the presence of the 

organochlorinated pollutant.  The most probable explanations for these variations are 

modifications occurring at the level of protein expression within the transgenic plant 

cells. Investigation of such proteomic and related metabolic-pathway alterations are 

beneficial to establish links between the environmental stress, organism survival and 

remediation capability when exploring the use of genetically-modified plants for 

phytoremediation.  

 

Although genetic, enzymatic and phenotypic analyzes can provide information 

regarding gene expression, enzymatic activity and the potential of organisms to 

adapt under conditions of stress; proteomic analysis provides an in-depth 

understanding into the functional processes occurring at a metabolic level. In this 

chapter, the proteomes of w/t and transgenic A. thaliana (modified with linA) when 

grown in the presence and absence of 30 µM lindane (sub toxic threshold) have 

been compared using isobaric tags for relative and absolute quantification (iTRAQ); 

a quantitative, high throughput strategy intended for proteome-wide investigation of 

protein expression levels. 
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5.2.  Methods 

 

5.2.a.  Protein Concentration and Quantification  

 

Wild type and transgenic A. thaliana plant lines, w/t and LinA2 respectively, were 

grown in the presence and absence of lindane, their tissues harvested and protein 

extracted as previously mentioned (refer to Chapter 3.3.k).   Two replicates from 

each of the two phenotypes (w/t and transgenic) were grown under the two distinct 

growth conditions (absence and presence of lindane) and were assayed using the 8 

available isobaric tags.  This allowed comparisons to be made under a distinct set of 

experimental conditions, thereby removing any possible chemical, biological or 

mechanical variation that might be caused by using two different iTRAQ kits. 

 
Extracted proteins were concentrated using the Amicon® Ultra-0.5 Centrifugal Filter 

Device, with a buffer exchange using 0.5 M Triethylammonium bicarbonate (TEAB) 

(Sigma Aldrich), according to the manufacturer’s protocol. Protein concentration was 

quantified using the Bradford ULTRA Assay Kit (Westburg) on a Nanodrop 2000 

Spectrophotometer (Thermo Scientific). As comparatively equal amounts of total 

proteins from each phenotype are integral in maintaining the accuracy of the iTRAQ 

assay when quantifying the relative abundance of peptides, the final amount of 

protein to be labelled for further analysis was determined from the protein sample 

with the lowest concentration.  Total proteins from each sample equating to 30 μg 

were collected, dried and re-suspended in a final volume of 20 μl - 0.5 M TEAB.    

 

5.2.b.  iTRAQ Labelling  

  

2 μl of reducing reagent, 50 mM tris(2-carboxyl)phosphine (TCEP), was added to 

each assay tube. The reaction mixture was vortexed and incubated for 1 hour at 60 

°C.  1 μl of 200 mM methyl methanethiosulfonate (MMTS) cysteine blocking reagent 

was added to each tube, which was vortexed and incubated for 10 minutes at RT.  

The proteins were then digested using trypsin (ThermoScientific) reconstituted in 50 

μl - 500 mM TEAB.  3.75 μl of trypsin and 3.25 μl acetonitrile (Fischer) were added to 

each tube to give a final volume of 30 μl.  The reaction mixture was vortexed and 

incubated overnight (O/N) at 37 °C.  100 μg Cytochrome C (Sigma Aldrich) was also 
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resuspended in 50 μl - 500 mM TEAB and digested with trypsin to be used as a 

control in the experimental analysis. 

 

Room temperature iTRAQ Reagents 8-plex labels (Ab Sciex) were spun for 2 

minutes at 1000 x g and 70 μl of 100% isopropanol (Fischer) was added to each 

label.  The tube was then vortexed to mix and quickly centrifuged to bring the mixture 

back to the bottom of the tube.  The contents of one iTRAQ Reagents – 8 plex tube 

were then mixed with one tube containing the digested protein sample (Table 5.1). 

The mixtures were incubated at room temperature for 3 hours after which time, the 

contents of each iTRAQ Reagents – 8 plex-labelled peptide tube were pooled 

together  split into 2 aliquots, dried in a vacuum centrifuge at room temperature and 

stored at -20 °C. 

 

Table 5.1  List of phenotypes used and the corresponding iTRAQ labels 

 
Phenotype  Replicate 1 iTRAQ label Replicate 2 iTRAQ label 

wild type 113 114 

LinA2 115 116 

wild type + lindane 117 118 

LinA2 + lindane 119 121 

 

 

5.2.c.  HPLC Separation of Dried and Labelled Peptides 

 

The dried peptides were re-suspended in aqueous buffer A (25% acetonitrile in 

water, 0.1% formic acid). Separation was performed on a BioLC HPLC unit (Dionex, 

UK) using a POLYSULFOETHYL A column (PolyLC, USA) 21 cm length, 2.1 mm 

internal diameter and 5 μm pore size. The separation programme consisted of 100% 

buffer A for 5 minutes, 0 – 5% buffer B (25% acetonitrile in water, 0.1% formic acid, 

500 mM potassium chloride) for 1 minute, 5 - 30% buffer B for 30 minutes, 30 - 35% 

buffer B in 5 minutes, 35 – 100% buffer B in 5 minutes, 100% buffer B for 5 minutes, 

and finally 100% buffer A for 10 minutes. A flow rate of 0.2 ml/min was maintained 

with an injection volume of 70 μl. A UV detector (UVD170U) and Chromeleon 

software v6.50 (Dionex/LC packings, The Netherlands) were used to monitor the 
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chromatograms as fractions were collected every 30 seconds using a Foxy Jr. 

fraction collector (Dionex, UK). The fractions were then dried in a vacuum centrifuge 

(Eppendorf) and samples were stored at -20 °C.  

 

5.2.d.  C18 Clean-up  

 

To prevent contaminant interference (by common biological compounds and buffers) 

from affecting the sensitivity and quality of downstream LC-MS applications, the 

HILIC fractions were cleaned using UltraMicroSpin Columns (Nest) according to the 

manufacturer’s guidelines prior to vacuum centrifugation (Eppendorf). 

  

5.2.e.  RPLC-MS analysis 

 

RPLC-MS was conducted using an Ultimate 3000 HPLC (Dionex) coupled to a QStar 

XL Hybrid ESI Quadrupole time-of-flight tandem mass spectrometer (Applied 

Biosystems (now ABSciex)). Samples were re-suspended in 20 µL buffer A (3% 

acetonitrile, 0.1% formic acid) before loading 9 µL onto a Acclaim PepMap 100 C18 

column, 3 µm particle size, 15 cm length, 75 µm diameter, 100 Å pore size (Dionex). 

With a flow of 300 µL min-1, buffer A was exchanged with buffer B (97% acetonitrile, 

0.1% formic acid) to form a linear gradient as follows: 3% B (0 - 5 min), 3 – 35% B (5 

- 95 min), 35 – 90% B (95 - 97 min), 90% B (97 - 102 min), 3% B (102 - 130 min). 

The mass detector range was set to 350 - 1800 m/z and operated in positive ion 

mode. Peptides with +2, +3, and +4 were selected for fragmentation.  

 

5.2.f.  Data Analysis 

 

Peptide fragments were submitted to an in-house Mascot proteomics search engine 

(Matrix Science) for protein identification based on the SwissProt A. thaliana protein 

sequence database.  The raw data output from Mascot was subsequently run 

through IsobariQ to filter the Mascot data for false hits and produce relative tag 

intensities for each individual peptide spectral match (PSM) (Arntzhen 2013).   
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A cluster analysis using principal components analysis (PCA) was carried out on the 

relative tag intensities for each indentified PSM.  As the relative abundance of each 

peptide relates to a specific protein across the different phenotypes and growth 

conditions, the PCA is therefore indicative of variations in the global proteome. 

 

Quantification was obtained at an 80% confidence level from proteins identified by 

two or more peptides using an R-script algorithm (Evans, et al. 2013). An increased 

abundance of protein was indicated by positive fold changes and a decrease in the 

abundance of proteins by a negative fold change. Indentified proteins were mapped 

onto metabolic pathways using KEGG Mapper – Search & Color Pathway, searching 

against the A. thaliana specific pathways ( Kanehisa Laboratories 2014). 
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5.3.  Results  

 

Extracted and concentrated proteins were quantified to ensure an equal amount of 

total protein from each sample was labelled and assayed for further use (Figure 5.1 

and Table 5.2).   

 

5.3.a.  Protein Concentration 

 

 
Figure 5.1  Standard curve for Bovine Serum Albumin (BSA) using the Bradford ULTRA Assay Kit. 

Absorbance (595 nm) corrected for blank 
Error bars represent standard deviation 

 

 
Table 5.2  Determination of extracted protein concentration (after Amicon® concentration) 

using Bovine Serum Albumin (BSA) standard curve 

  
 Plants grown in 0 µM lindane Plants grown in 30 µM lindane 

 w/t(1) w/t(2) LinA2(1) LinA2(2) w/t(3) w/t(4) LinA2(3) LinA2(4) 

Absorbance (OD595) 0.025  0.015 0.010 0.016 0.014 0.041 0.024 0.033 

Concentration (µg/µl) 1.61 0.92 0.57 0.97 0.83 3.02 1.48 2.17 

Standard Deviation 0.20 0.14 0.03 0.08 0.06 0.12 0.10 0.08 

 
 
The protein sample with the lowest concentration, LinA2(1), was used to determine 

final amount of protein needed from each sample.  As the final volume available for 
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collection was 50 µl, a maximum amount of 30 μg of total proteins from each sample 

were collected, dried and resuspended in a final volume of 20 μl - 0.5 M TEAB. 

 

5.3.b.  HPLC Separation 

 

The number of unique peptides obtained in each fraction collected during separation 

was plotted as a function of fraction number to obtain the resolution of the 

chromatographic separation (Figure 5.2). 

 

 
 

Figure 5.2  Number of unique peptides obtained in collected fractions. 
(Fractions were not collected for 40.5 and 41.5 minutes) 

 
 

The relatively even distribution of unique peptides obtained across the different 

collected fractions during the time period of 23.5 to 39.5 minutes indicates an 

efficient separation of peptides during HPLC. 

 

5.3.c.  Principal Components Analysis 

 

A cluster analysis using Principal Components Analysis (PCA) was carried out on 

the relative reporter ion abundance for each of the peptides identified by tandem 

mass spectrometry. The result of the PCA analysis is presented in Figure 5.3. 
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Figure 5.3  Principal components analysis (PCA) of labelled tags from each of the different 

Arabidopsis thaliana phenotypes grown in the presence and absence of 30 µM lindane.  
Purple = wild type in the absence of lindane, green = transgenic in the absence of lindane,  

red = wild type in presence of 30 µM lindane and blue =  transgenic in presence of 30 µM lindane  
 

The PCA shows separation along Principal Component 1 with the biological 

replicates from each phenotype and growth condition clustering together, indicating 

similar protein expression patterns.  The presence of three distinct protein 

expression patterns across the four phenotypes can also be observed.  Specifically, 

the protein expression profile in the w/t plants exposed to lindane is distinctly 

different from its transgenic counterpart (in the same growth condition), suggesting 

that lindane has different effects on plants depending on the presence or absence of 

the linA gene.  No difference was detected in the absence of lindane, between the 

two different plant types, w/t and transgenic.  Likewise, no difference was detected in 

the proteome from the same plant type under differing growth conditions, absence 

and presence of lindane.  

 

5.3.d.  Protein Identification and Quantification 

 

Analysis of isobariQ data identified 304 proteins with two or more unique peptides.  

The abundance of proteins present in the transgenic plants grown in the presence of 

lindane, relative to those from the w/t plants were compared (Figure 5.4).   
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Figure 5.4  Relative abundance of proteins. 

 

The median fold change and functions of the proteins with differential abundance in 

transgenic plants relative to w/t plants, both grown in the presence of lindane, and 

identified at 80% confidence with multiple test correction, as identified from the R-

script algorithm is presented in Figure 5.5 and Table 5.3, respectively. 

 

 
 

 Figure 5.5  Median fold change of proteins with differential abundance in transgenic plants  
relative to wild type plants, both grown in the presence of lindane.  

 (Identified at 80% confidence with multiple test correction). 
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Table 5.3  List of proteins and their functions with differential abundance in transgenic plants  
relative to wild type plants, both grown in the presence of lindane.  

 (Identified at 80% confidence with multiple test correction). 
 

Locus Regulation Full Protein Name Function 

ATPA_ARATH Down ATP synthase subunit 
alpha, chloroplastic 

Produces ATP from ADP in the presence 
of a proton gradient across the 
membrane.  

ATPB_ARATH Down ATP synthase subunit 
beta, chloroplastic  

Produces ATP from ADP in the presence 
of a proton gradient across the 
membrane. The catalytic sites are hosted 
primarily by the beta subunits 

KPPR_ARATH Up Phosphoribulokinase, 
chloroplastic 

Carbohydrate biosynthesis; Calvin cycle 

METE1_ARATH Up 5-methyltetra-
hydropteroyltrigluta-
mate homocystein 
methyltransferase 1 

Catalyzes the transfer of a methyl group 
from 5-methyltetrahydrofolate to 
homocysteine resulting in methionine 
formation. 

ATPG1_ARATH Down ATP synthase gamma 
chain 1, chloroplastic 

Produces ATP from ADP in the presence 
of a proton gradient cross the membrane. 
The gamma chain is believed to be 
important in regulating ATPase activity 
and the flow of protons through the 
membrane proton channel complex 

FLA13_ARATH Up Fascilin-like 
arabinogalactan 
protein 13 

May be a cell surface adhesion protein. 

PATL1_ARATH* Up Pattelin-1 Carrier protein that may be involved in 
membrane-trafficking events associated 
with cell plate formation during 
cytokinesis. Binds to some hydrophobic 
molecules and promotes their transfer 
between the different cellular sites. Binds 
to phosphoinositides. 

E1313_ARATH* Up Glucan endo-1,3-beta-
glucosidase 13 

Hydrolysis of (1->3)-beta-D-glucosidic 
linkages in (1->3)-beta-D-glucans 

PSAA_ARATH Down Photosystem I P700 
chlorphyll a apoprotein 
A1 

Primary electron donor of photosystem I 
(PSI), which transfers its electrons to the            
spectroscopically characterized 
acceptors A0, A1, FX, FA and FB in turn.  

 
* The likelihood of either PATL1_ARATH or E1313_ARATH (based on the peptide sequences) being 

present and regulated within the genome is equally plausible and indistinguishable given the available 
peptide data and algorithm processing power 

 
Information compiled from The UniProt Consortium (2014) 
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The protein response of the transgenic plants in the presence of lindane showed a 

lower abundance of proteins involved in energy production and an increase in the 

expression of the membrane transfer proteins.   

 

5.3.e.  Metabolic Pathways  

 

All identified proteins were mapped onto metabolic pathways and analysis indicated 

that down-regulated proteins were linked to the photosynthetic pathways (Figure 

5.6).  By including insignificant proteins, a broader scope of all interactions that may 

be occurring is possible.  Up-regulated proteins did not map onto any pathways. 

 

 
Figure 5.6  Mapping of regulated proteins onto the photosynthetic pathways. 
Significantly down-regulated proteins are green and insignificant are purple  
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5.4.  Discussion  

 

This chapter sought to understand the differences in the global proteome of w/t and 

transgenic A. thaliana when grown in the absence and presence of lindane. The 

results of the PCA reveal a significant difference in the relative abundance of 

proteins between w/t and transgenic A. thaliana in the presence of lindane (Figure 

5.3).  Only 8 proteins with differential abundance in transgenic plants, relative to w/t 

plants and grown in the presence of lindane, were identified at 80% confidence with 

multiple test correction, from the R-script algorithm (Figure 5.4).  Their regulation and 

functions (Figure 5.5 and Table 5.3, respectively) revealed that under conditions of 

stress, energy generation pathways are found to be down-regulated in the transgenic 

cells.  Specifically, proteins involved in Photosystem (PS) I and ATP-ase pathways 

are highlighted (Figure 5.6).   

 

In a study examining the phytotoxicity mechanisms of A. thaliana, Zhang, et al., 

(2013) reported that lindane increases the detoxification enzymatic activities of 

catalase (CAT) and peroxidase (POD), while inhibiting the activity of superoxide 

dismutase (SOD). Further, in systems relating to photosynthesis, the efficiency of PS 

I and II were also revealed to be down-regulated. Ott, et al., (1999) have also 

observed a decrease in the electron transport rate between PSI and PSII under 

conditions of stress and have suggested that this regulatory function could inhibit 

superoxide formation and aid plants in avoiding reactive oxygen species (ROS) 

toxicity. An over-accumulation of superoxide, outpacing the activity of antioxidant 

superoxide enzymes can trigger programmed cell death (Foyer & Noctor, 2009).  

 

Considering the above studies, it is not surprising that the proteins related to energy 

metabolism are in relatively lower abundance, as the transgenic plant has already 

been shown to have specific enzymatic activity in metabolizing lindane (refer to 

Chapter 3.3.k.iii).  When compared to the w/t plant under conditions of lindane-

stress, less energy is required for survival by the transgenic plant as other metabolic 

and detoxification enzymes are able to control the production and accumulation of 

ROS to ultimately reduce oxidative stress.    
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The up-regulated proteins did not strongly map onto any of the metabolic pathways.  

However, two of the proteins are implicated as having membrane or cell surface 

functions such as adhesion and trafficking. As the transgenic plant is capable of 

breaking down lindane, it is possible that other catalytic processes are occurring 

requiring the binding and movement of proteins and molecules into different cellular 

spaces and pathways.  This hypothesis would support the up-regulation of the two 

remaining proteins, KPPR_ARATH (P25697) and METE1_ARATH (O50008), which 

are both reported to be involved in various pathways of biosynthesis (The UniProt 

Consortium 2014).  

 

However, the relatively small number of differential proteins identified makes it 

difficult to accurately elucidate which pathways are being up- or down-regulated to a 

significant extent.  A number of explanations exist to explain the low number of 

identified peptides: 

 

 The presence of the over-abundant RuBisCO protein in the protein extract 

limited the number of peptides that could be reliably identified.   Although 

the possibility exists to reduce the concentration of RuBisCO from the 

protein extract, the likelihood of further compromising the overall protein 

content is probable.    

 

 Although within the detectable limits of 20 to 100 µg, as defined in the 

protocol, the total amount of labelled protein for each sample was still 

relatively low at 30 µg.  Increasing the total amount of starting protein may 

increase the number of detectable proteins potentially lost during the 

tryptic digestion; repeated rounds of drying and rehydration; and C18 

clean-up processes prior to LC-MS.  

 

 Theoretically speaking, given unlimited MS time and sample, it is possible 

to use a strategy capable of attaining superior coverage when compared 

to that achieved with limited time and / or sample, providing good 

coverage to begin with. However, these limits are highly dependent, with 

diminishing returns over time.  
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5.5.  Conclusion 

 

Despite careful optimisation of each step in the iTRAQ workflow, an optimal 

coverage of the proteome was not achieved. Further improvements, with respect to 

protein extraction; RuBisCo reduction; total protein content; sample size; and MS 

time coverage, warrant further study to realize the full potential of iTRAQ for analysis 

of prospective phytoremediative species. Implementing a second quantitative 

proteomics approach in tandem with iTRAQ, such as traditional two- dimensional gel 

electrophoresis or protein microarrays, may be helpful in identifying additional 

differentially expressed proteins. 

 

Nonetheless, the results from this chapter support the idea that the global proteome 

of wild type A. thaliana is distinctly different from its transgenic counterpart when 

grown in the presence of lindane.  Therefore, the differential protein expression may 

be attributed to the expression of the LinA protein.  It is likely that the effect of 

lindane on the transgenic plants does not induce stress conditions but instead 

triggers a catabolic response which may consequently lead to the biosynthesis and 

activation of other molecules and enzymatic pathways. 
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Chapter 6.                                                                               

Conclusions and Future Work 
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6.1.  Introduction 

 

The aim of this thesis was to develop a single gene (linA)-modified plant for the 

phytoremediation of lindane.  As is evident from the literature review and research 

results in this thesis, the development of an effective remediation strategy to safely 

and quickly remove the highly toxic, ubiquitous and persistent organic pollutant from 

the environment is paramount. Phytoremediation is an aesthetically, environmentally 

and economically-friendly biotechnology using plants that are able to sequester and 

transform organic waste to a non-toxic state, or to sub-threshold levels below 

concentration limits. However, as plants are often deficient in the catabolic enzymes 

for complete degradation and mineralization of these pollutants, there is potential for 

accumulated toxins to be released back into the environment or food chain. 

Improving plants for the phytoremediation of lindane may be achieved by transferring 

genes known to be involved in xenobiotic degradation from other organisms such as 

microbes.   

 

The catabolic genes and enzymes involved in lindane degradation have been 

extensively studied in Sphingobium japonicum UT26 (Pal, et al., 2005).  The first of 

these enzymes, HCH dehydrochlorinase (LinA), mediates the initial transformation of 

lindane in a specialized pathway by catalyzing the first two dehydrochlorination steps 

of lindane to 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN), followed by  its 

spontaneous conversion to 1,2,4-trichlorobenzene (1,2,4-TCB) (Nagata, et al., 

1999).   Preliminary results from a single proof of concept study have shown that the 

model plant Arabidopsis thaliana modified with linA from S. japonicum UT26 is able 

to grow in the presence of normally toxic lindane concentrations, and remove it from 

the media whereas the wild type (w/t) plant is not (De Lorenzo Prieto & Gonzalez 

Pastor, 2007).   

 

This work proposed to build on the above feasibility study and successfully 

developed a mechanistic understanding of w/t and transgenic A. thaliana in response 

to lindane.  Phenotypic growth, enzymatic activity, degradation rates, metabolite 

production and changes to the global proteome under increasing concentrations 
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were studied using a variety of synthetic biological, chemical separation and 

analytical techniques.  The differences seen are summarised below. 

 

6.2.  Growth and Characteristics of A. thaliana Modified with linA 

 

The first and second aims of this thesis were to transform A. thaliana with the linA 

gene from S. japonicum UT26 and to observe the growth and characteristics of 

transgenic A. thaliana on control, sub-threshold and toxic concentrations of lindane 

and 1,2,4-TCB.  Despite the small sample size, initial findings from the DNA 

sequencing, RNA transcription, protein expression and the in vitro enzymatic assay 

confirm the presence of the linA gene, its subsequent transcription and translation, 

and have demonstrated the catabolic activity of the protein to release Cl- from 

lindane.  Together, these results suggest that the transgenic lines should have 

superior growth when compared to the non-transformed lines, when grown in 

conditions of lindane-stress.  However, this was not observed in vivo.  

Phenotypically, A. thaliana transformed with the linA gene from S. japonicum UT26 

appears to have no advantages, with respect to growth, when cultivated on lindane-

contaminated agar and gives an identical growth pattern to the w/t and non-

transformed lines, with threshold toxicity remaining below 34 µM. Regardless, the 

ability, even if limited, of the transgenic plant to express the LinA protein and exhibit 

enzymatic activity, in vitro, supports the theory that A. thaliana, and possibly other 

plants amenable to Agrobacterium-mediated transformation, are capable of 

integrating the linA gene into their genome, to eventually yield a functioning form of 

the LinA protein, for potential use in the phytoremediation of lindane.  

 

6.3.  Uptake and Degradation of Lindane 

 

Chapter 4 aimed to examine the ability of transgenic A. thaliana to remove lindane 

from its growth environment and determined the extent of degradation, by measuring 

lindane and any known metabolic breakdown products accumulating in the medium 

and / or plant, using Gas Chromatography.  A. thaliana transformed with the linA 

gene from S. japonicum UT26 had the ability to remove lindane from the surrounding 

media as observed in the transgenic A. thaliana LinA2 and LinA4 root tissue culture 
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experiments at concentrations of 34 µM.  Half-lives decreased approximately 50% 

when compared the half-life degradation rates of microbial lindane degraders.  

These findings are contrary to those of A. thaliana w/t and the negative control LinA(-

), at the same concentrations, which were not able to remove it at improved rates.  

1,2,4-TCB was not detected in any of the samples after 21 days suggesting that it is 

being further metabolized by naturally occurring plant enzymes into a compound 

undetectable by GC, or at least by the column used for GC in this work.  Although 

this finding supports the hypothesis that naturally occurring enzymes are capable of 

breaking down 1,2,4-TCB, further investigation into other compounds would need to 

be undertaken to confirm this.  

 

 At higher concentrations, the combined final amount of lindane in the medium and 

transgenic plant tissue remained relatively constant (when compared to the initial 

concentration), suggesting that although the transgenic plants were capable of 

removing it from the medium, they were unable to degrade it, and instead, 

accumulated or sequestered the lindane in their root tissues.  When compared to the 

whole plant agar growth observations, plant tissue cultures displayed an improved 

ability to grow in a higher concentration of lindane (34 µM).  These findings suggest 

that other factors controlling lindane uptake or those involved in associated 

metabolic pathways may be inhibiting the degradation in vivo.  

 

6.4.  Changes to the Global Proteome 

 

Chapter 5 reports quantitative changes in the global proteome of A. thaliana, 

modified with linA, ascertaining whether protein regulation has been affected at the 

individual level, within the plant xenobiotic degradation pathway or within any other 

metabolic pathway(s) by employing proteomic analysis using isobaric tags for 

relative and absolute quantification (iTRAQ).  Despite careful optimization of each 

step in the iTRAQ workflow, an optimal coverage of the proteome was not achieved.  

Nonetheless, the results from this chapter supported the idea that the global 

proteome of w/t A. thaliana is distinctly different from its transgenic counterpart when 

grown in the presence of lindane, primarily affecting the enzymes involved in 

Photosystems I and II.  Although undetected in the iTRAQ results, the differential 
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protein expression may be attributed to the expression of the LinA protein itself.  It is 

likely that the effect of lindane on the transgenic plants does not induce stress 

conditions but instead triggers a catabolic response which may consequently lead to 

the biosynthesis and activation of other molecules and enzymatic pathways. 

 

6.5.  General Conclusions 

 

Although other bioremediation tactics have previously been applied to clean up 

lindane from the soil, strategies using w/t organisms have been ineffective and may 

result in the toxic compound being released back into the environment (Bhatt, et al., 

2009).  The development of transgenic plants that actively take up, degrade and 

detoxify lindane may be one way to reduce its ecological impact.  The main purpose 

of this study was to determine whether transgenic plants expressing a bacterial linA 

gene were able to dechlorinate lindane to a less toxic intermediate or proceed to full 

mineralization.  To test this, Agrobacterium-mediated transformation was used to 

introduce a w/t bacterial linA gene into A. thaliana.  

 

Previous efforts to produce a transgenic lindane-degrading plant using the linA gene 

have resulted in plants that are able to remove lindane from its growth media and 

grow at normally toxic concentrations of 34 µM.  However, the resulting metabolites 

were not described.  In this thesis, lindane has been shown to accumulate in the 

transgenic plant root tissues at concentrations of 68 µM and higher while at 34 µM, 

over 50% of the compound is removed from the nutrient medium and is undetected 

in the plant tissues.  The metabolite, 1,2,4-TCB, was also not detected in planta, 

implying additional metabolism or full mineralization utilizing other innate enzymes. 

Metabolism of 1,2,4-TCB is suspected to occur due to the presence of Cytochrome 

P450s (refer to Chapter 3.3) (Marco-Urrea, et al., 2009; Eilers, et al., 1999).  

However, the methods empolyed in this work did not look to confirm the actual 

presence of Cytrochome P450s.  Further investigation into Cytochrome P450s, other 

plausible plant xenobiotic metabolic enzymes and their metabolic products utilizing is 

necessary to fully understand the degradative pathway of lindane in transgenic A. 

thaliana. 
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Results from RT-PCR, western blotting, enzymatic activity and proteomic analyses 

indicated that the linA gene was being expressed in the transgenic plant’s roots and 

shoots, in vitro.  However, in vivo, they failed to display improved growth 

characteristics on lindane-contaminated medium when compared to the w/t.  This is 

likely caused by a lack of adequate protein expression or harmful interactions with 

other molecules.  The conflicting results suggest that the transgenic plant expressing 

the LinA enzyme may be useful in the phytoremediation of lindane-contaminated 

environments but its efficiency and the ultimate fate of the xenobiotic in planta must 

considered for future study.   

 

6.6.  Future Work 

 

The work in this thesis has provided valuable information with respect to the 

feasibility of phytoremediation as a strategy to remove lindane from the environment 

and the specific response of A. thaliana (modified with a bacterial linA gene) in its 

presence.  However, it has also raised a number of new concepts worth considering.   

 

Firstly, the immediate investigation of codon preference would provide insight with 

respect to the complex regulation of proteins.  Codons are used by organisms to 

translate mRNA into proteins.  As seen in the table of codons shown in Figure 6.1, 

the genetic code is redundant with more than 61 codons encoding for 20 different 

amino acids.  Codon preferences exist as a part of the gene expression process in 

organisms and may provide another level to control the expression of proteins. 

Studies in the genetic engineering of plants using bacterial genes have shown codon 

preference to be an important factor in successful protein expression (USDA 

National Institute of Food and Agriculture, 2014; Wang, et al., 2005).  Plants with 

preferential codon usage may lack the tRNA to complement the bacterial codons or 

may make the tRNA at such low levels resulting in few copies within the cell to 

accommodate translation of the desired mRNA. Successful engineering of 

transgenic plants, using bacterial DNA for the phytoremediation of POPs, may 

therefore be enhanced by synthetic coding regions substituting codons preferred by 

plants to those preferred by bacteria.  
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Figure 6.1  Table of codons 

Reproduced from USDA National Institute of Food and Agriculture (2014) 

 

Secondly, future work in this area should focus on determining the most suitable 

plant(s) for the transgenic phytoremediation of lindane.  Withania somnifera, an 

important medicinal plant also known as Indian Ginseng, is likely to be better suited 

for phytoremediation owing to a larger biomass, rapid growth, easier culturing and 

harvesting and an innate ability to amass substantial amounts of lindane in its root, 

shoot and stem matrix (Abhilash & Singh, 2009a).  Recent studies have shown that 

Agrobacterium-mediated transformation of W. somnifera is possible implying that the 

same methodology employed to modify model plant A. thaliana for phytoremediation 

studies may subsequently be applied to improve upon the natural capabilities of W. 

somnifera (Pandey, et al., 2010).  

 

The results presented in this thesis imply that at concentration levels of 34 µM, the 

transgenic plant is successfully able to remove lindane from the medium, without its 

subsequent accumulation. Excluding the enzymes involved in the plant xenobiotic 

degradation pathway, and considering only the actions of LinA, 1,2,4-TCB is the 

compound most likely to be detected after incubation with lindane.  The absence of 

1,2,4-TCB suggests that naturally occurring plant enzymes may be involved in its 

degradation.  The study of molecular interaction networks, referred to as 
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Interactomics, has successfully been adapted for use in the isolation of protein 

heterocomplexes in plants (Rohila, et al., 2004).  Investigating other protein-protein 

interactions involved in plant xenobiotic metabolism, and resulting metabolites, is key 

in establishing the overall efficiency of phytoremediation.  This knowledge will 

provide insight into the potential accumulation of any toxic intermediates which may 

release back into the environment and / or food chain; and ultimately, any plants 

accumulating these toxic intermediates will likely require the use of clean-up 

technologies, post-phytoremediation, off-setting any environmental or economic 

benefits.   

 

Finally, this work is specifically applicable to densely populated and developing 

countries such as India, the largest end-user and manufacturer of lindane in the 

world. Over 6000 tons of lindane were produced by India for domestic usage and 

export from 1997 to 2006, with restricted use still being permitted due to its cost and 

availability (Abhilash & Singh, 2009a).  In North India, where land is predominantly 

used for crop production, lindane-contaminated soils are a serious concern due to its 

large-scale industrial production along with its continued agricultural use as a 

pesticide (Abhilash, et al., 2008).  As several plant species within North India, 

including W. somnifera, have already demonstrated naturally abundant growth on 

lindane-contaminated soils, phytoremediation appears to be well-suited for the clean-

up of these sites to ensure their continued and future use for crop cultivation.   

 

However, due to its high hydrophobicity, the ability of Lindane to be taken up by 

plants is generally considered to be inefficient and difficult.   This accumulation and 

resultant toxicity renders phytoremediation less useful without supplementation and 

optimization by means of rhizoremediation or phytostimulation.  Cytisus striatus is 

another plant that has been proposed as a candidate phytoremedatiative species 

(Kidd, et al., 2008).  In a previous study, two culturable endophytic and rhizosphere 

bacterial species, Rhodococcus erythropolis ET54b and Sphingomonas sp. D4, were 

found to be associated with C. striatus growing on an HCH-contaminated site 

(Becerra-Castro, et al,. 2011).  In 2013, Becerra-Castro, et al. found that when these 

plants were inoculated with the two bacterial species and grown in the presence of 

HCH, a 120–160% increase in root and shoot biomass was observed followed by a 
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decrease in the activity of the anti-oxidative defence enzymes ascorbate peroxidise 

(APOD) and superoxide dismutase (SOD), essentially protecting the plants against 

any toxic effects from the contaminant.  Inoculating C. striatus with this combination 

of bacterial strains showed higher dissipation of HCH isomers and could therefore be 

another promising approach for the remediation of Lindane. 

 

The main findings from this thesis highlight the complex relationship between cross-

kingdom genetic engineering, xenobiotic uptake, protein expression, and in vivo 

versus in vitro assays, to the study of phytoremediation.  The multifaceted 

developmental process in the formation of transgenic plant species has driven 

researchers to employ a laboratory and model-based approach to studying 

phytoremediation.  Although beneficial, the feasibility approaches employed to gain a 

mechanistic understanding of biological systems are often not conclusive enough to 

close in on the differences between experimental lab results and actual application 

in- field studies.  The nature and properties of a laboratory test cannot be considered 

independently of the environment the new technology will eventually be used in.   

While almost impossible to include in the experimental set-up, bench assays tend to 

neglect the impact of other factors such as species competition, chemical exudates, 

external nutrients, pharmacological agents and inclement environmental conditions – 

all of which may seriously alter the experimental outcome.  Therefore, a major shift 

of current research strategies towards actual in-field studies, under containment, 

using whole plants more suited to the phytoremediation of lindane is necessary to 

fully realize a bioremediation method by which it can be safely and quickly removed 

from the environment. 
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