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Abstract

Cardboard honeycombs are used extensively in the packaging industry to protect

objects from abnormally high loading conditions. They provide a substantial amount

of energy dissipation while being lightweight, structurally efficient, cost-effective and

easily disposed of (or recycled) once used. These beneficial properties have also led

to the widespread use of cardboard honeycombs as a method to protect air-dropped

cargo from the shock loading encountered during parachute deployment and impact

with the ground.

When cardboard honeycombs are crushed at the strain-rates typical of a low-

velocity impact event, such as an air drop, the air pressures, which develop within

the honeycomb as a result of a compaction of the entrapped air, are comparable

in magnitude to the stiffness of the cell wall deformation response. Thus, the dy-

namic energy dissipation properties of cardboard honeycombs are dependent on the

mechanics of a coupled air-structure deformation mechanism.

This thesis studies the mechanics of the air-structure deformation mechanism

and investigates how it is affected by variations in the material and geometrical

properties of the cardboard honeycomb cell walls.

During a series of experimental impact tests on cardboard honeycomb samples

of various known geometries, both macroscopic behaviour and the development of

air pressures at four internal locations are measured (Chapter 3). An explicit La-

grangian/ALE numerical model of the cardboard honeycomb and entrapped air is

then developed, using the commercial hydrocode LS-Dyna (Chapter 4). The numer-

ical model is used to study the effects of variations in the cell wall material properties

(Chapter 5), and their meso and macroscale geometrical arrangement (Chapter 6)

on the cardboard honeycomb’s energy dissipating characteristics. A summary of the

experimental and numerical findings is then given (Chapter 7), with consideration

of implications for an end user.
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Chapter 1

Introduction

Air drops allow the rapid delivery of supplies to areas which are difficult or impossible

to access by land. They are heavily relied upon in difficult times such as war or

natural disaster, where masses of people can suddenly be placed in life threatening

situations in need of humanitarian aid. Recent conflicts in Iraq and Afghanistan

have seen the amount of air-dropped supplies increase year on year. The US army

dropped £9 million worth of aid in 2008, a record that was broken in 2009 with £10

million being dropped by the end of August [1].

Humanitarian aid air-drops consist of a compartmentalised delivery system (CDS)

connected to a parachute. The configuration of the CDS is shown in Figure 1.1. The

base is formed using a 1 inch thick plywood panel, known as the skid board. On

top of the skid board there are alternate layers of a cardboard honeycomb energy

dissipating material and the cargo. The layers are wrapped with cellophane and

a parachute is connected to the skid board and placed on top. Depending on the

volume and type of cargo the CDS weight can vary from around 200 to 1000 kg [1,

2].
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Parachute

Cargo

Figure 1.1 The cardboard honeycomb in use as an energy dissipating material to

protect air-dropped cargo [1].

During both parachute deployment and contact with the ground the air-drop is

subject to an impulse causing a sudden change in velocity. The impulse is applied

to the skid board and then transmitted to the layers of cargo and cardboard hon-

eycomb [2–4]. If the force applied to the cargo is too large, it will be damaged. The

cardboard honeycomb protects the cargo by acting as a non-linear spring, reducing

the transmitted peak force by distributing the impulse over a longer time and re-

ducing the total impulse by absorbing kinetic energy through plastic deformation of

its cell walls.

Cardboard honeycombs provide a substantial amount of energy dissipation while

being lightweight, structurally efficient, cost-effective and easily disposed of (or re-

cycled) once used. These properties make them ideally suited to their use as a

sacrificial, non-recoverable energy dissipating material during air-drops; however,

cardboard honeycombs are also used extensively in the packaging industry [5], con-

struction industry [6], and as a method of energy absorption in lightweight cycle

helmets [7].

The energy dissipation characteristics of a honeycomb are dependent on its meso-

scopic response. When cardboard honeycombs are subject to dynamic axial crush-

ing, the internal air pressures generated by compaction of the entrapped air develop

to magnitudes comparable with the load transmitted through the cell wall material
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[8]. The result is a complex coupled air-structure deformation mode, the mechanics

of which are as yet to be understood.

As the relationship between a given cardboard honeycomb’s constitutive struc-

ture and its dynamic macroscopic response is unknown, cardboard honeycombs have

historically been designed via ad-hoc experimental impact tests [9, 10]. Due to un-

foreseen deviations between tightly controlled laboratory conditions and those which

occur during non-perfect in-theatre use, this method generally necessitates inefficient

over-design. Furthermore, due to a large number of material and geometrical pa-

rameters (each of which are variable), without a fundamental understanding of the

mechanisms which drive the macroscopic response, any collected experimental data

is valid solely for the combination of material and geometrical parameters specific

to the tested samples.

1.1 The cardboard honeycomb EDM

Figure 1.2 shows a sample of the cardboard honeycomb EDM situated in its pre-test

position, prior to being rapidly crushed by a hydraulic ram.

Figure 1.2 A square 250 x 250 mm by 70 mm thick square cardboard honeycomb

sample located in the gas gun test rig, which was used to perform impact tests on

cardboard honeycombs of varied geometry, and measure their response (Chapter 3).
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A cardboard honeycomb consists of three parts: a cellular honeycomb core and

two liners (Figure 1.3). Both the core and the liners are composed of sheets of some

type of cardboard material. The top and bottom liners are bonded to the top and

bottom edges of the cellular core.

In Figure 1.3 several macroscopic geometrical parameters are defined along with

a convention for labelling the three Cartesian axes. Height H refers to the thickness

of a cardboard honeycomb sample in the z plane, δx and δy refer to the footprint

widths in x and y dimensions, and ATrib refers to the total footprint area of the cell

walls. Note that: ATrib also corresponds to the area of the top and bottom liner

sheets; and the z axis refers to the direction of loading and collapse.

Figure 1.3 Definition of the basic macroscopic geometrical parameters of a card-

board honeycomb.

To create the cellular honeycomb core, rectangular strips of glue are applied to

sheets of cardboard material. These sheets are then overlaid and offset, ensuring an

alternating glue bond pattern and pulled apart (in the direction of the x axis) to form

the cellular structure shown in Figure 1.4. The glue bond thickness is negligible,

thus each hexagonal cell possesses four cell walls of single thickness t and two cell

walls of double thickness 2t. The length of a cell wall on plan is referred to as L.
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The cross sectional area of structural cell wall material within the footprint

area of ATrib is defined as Ac (also referred to as ACard). Ac can be computed by

multiplying the total length of cell wall by its thickness.

Figure 1.4 Detail of a cardboard honeycomb cellular configuration, and definition

of the basic mesoscopic geometrical parameters.

It is worth nothing at this time, that any reference to pressure or internal air

pressure, unless otherwise stated, will herein refer to overpressure rather than abso-

lute pressure.

1.2 Scope and Outline of the thesis

This thesis presents an investigation into the mesoscopic mechanics which govern

the cardboard honeycomb’s dynamic, macroscopic, response. Consideration is given

to the spatial and temporal development of internal air pressures and their mecha-

nisms of interaction with the cellular structure. By studying the effects of isolated

variations of the cell wall material and geometrical properties on the mesoscopic

mechanisms, a fundamental understanding of the complex air-structure buckling

mode is developed. Additionally, by analysing variations of the cardboard honey-

combs energy dissipating characteristics (caused by variations of the material and

geometrical parameters), conclusions are drawn which will guide more efficient de-

sign and deployment of the cardboard honeycomb energy dissipating material.
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Chapter 2 reviews the current state of knowledge regarding the dynamic axial

crushing response of cardboard honeycombs. Research regarding the response of

other, similar, energy dissipating materials is also discussed and consideration is

given to the cell wall material properties which have been observed to be responsible

for the cardboard honeycombs quasi-static response.

Chapter 3 details a series of experimental impact tests performed on cardboard

honeycomb samples of fixed macroscopic, but varied mesoscopic geometries. In

addition to measurements of macroscopic axial strain and the corresponding to-

tal transmitted stress, simultaneous measurements of air pressures at four internal

locations are made. Exact cellular geometries of all tested samples are recorded,

allowing each recorded experimental response to be attributed to a known cellular

arrangement.

Chapter 4 describes the development of a numerical model capable of capturing

the physics of the dynamically crushed cardboard honeycomb and the entrapped

air. The deformable cell wall structure is modelled using Lagrangian finite shell

elements, the air is represented using a fixed Eulerian background domain and the

coupling between the structure and the air is achieved via penalty contact algo-

rithms. Individual modelling techniques are verified, while addressing stability and

computational efficiency concerns, before being combined to create a full-scale nu-

merical model which is then compared with recorded experimental data.

The numerical techniques developed during Chapter 4 are refined, to a create a

computationally efficient model of an ideal honeycomb structure. During Chapter

5 and Chapter 6 the idealised numerical model is used as a platform to perform

a thorough investigation into the effects of variations of the cell wall material and

geometrical parameters, on the cardboard honeycombs dynamic response. Tables

5.6 and 6.4 display the scope of parameter variations covered by the material and

geometrical parameter studies respectively.

The thesis concludes in Chapter 7 by summarising the main findings from the

experimental and numerical investigations, highlighting implications from the per-

spective of an end user, and identifying key areas of future work.
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Chapter 2

Literature review

This chapter highlights existing research relevant to the impact behaviour of card-

board honeycomb energy-dissipating materials. The concept of energy dissipating

materials (EDMs) is introduced (Section 2.1), and then literature regarding the

behaviour of other energy dissipating materials, of similar structural configuration

to the cardboard honeycomb, is reviewed (Section 2.2). An overview of the re-

search which has advanced the understanding, of the structural mechanics, of axially

crushed honeycombs is given (Section 2.3).

Research which has investigated the response of cardboard honeycombs is out-

lined (Section 2.4), and the small body of existing literature which directly consid-

ers the axial impact response of cardboard honeycombs is identified (Section 2.4.1).

An overview of the understanding of paper/cardboard material properties and the

parameters which have so far been identified to affect the quasi-static cardboard

honeycomb response, is given (Section 2.5). Finally, the void in knowledge, which

this thesis attempts to fill, is identified (Section 2.6).

2.1 Energy dissipating materials (EDMs)

Energy dissipating materials (EDMs) provide protection to objects from higher than

normal loading conditions. They work by dissipating potentially damaging kinetic

energy and by limiting the magnitude of load transmitted to an object. EDMs act
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as viscous non-linear springs, dissipating energy through internal work, and limiting

the load by extending the timebase over which it is applied. The internal work

is often provided by plastic strain of the constitutive material during macroscopic

compaction of the EDM, and at any point during the compaction the transmitted

load is limited by the EDM’s current stiffness, which is a function of the material

properties and their current geometrical arrangement. If the mechanics of the EDM’s

response are known in advance, the magnitude of dissipated energy and transmitted

load, can be tailored to protect against an expected loading event.

It is desirable to maximise the efficiency of an energy dissipating material, i.e.

the amount of energy absorption provided per unit volume, weight or cost. Efficiency

can be increased by maximising the magnitude of plastic strain experienced by the

constitutive material. This can be achieved by arranging the material in such a way

as to encourage a deformation mode which subjects the cell wall to a substantial

amount of plastic work as it propagates. Figure 2.1 shows the pattern of loading,

typically experienced by an object protected by an EDM of this kind, where the

load transmitted to the object (Stress, σ) varies as the EDM is compacted by an

increasing strain ε, and the area under the graph is the energy dissipated (per unit

volume) U(ε) by a given strain.

Three features are of note: the peak stress σPeak, which occurs as a result of the

structure existing in its initial unbuckled, most geometrically stiff configuration; the

plateau stress σPlateau, which is a function of stiffness of the propagating deformation

mode; and compaction, which occurs once the unbuckled cell wall is completely ex-

hausted, adjacent folds begin to touch and bear on each other, allowing the transfer

of additional load through the honeycomb. The compaction strain marks the end of

the useful EDM response and occurs when the plateau stress begins to exceed the

initial peak.
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Figure 2.1 A typical EDM stress vs strain response.

2.2 Overview of axially loaded EDMs

A substantial body of research has been performed into the understanding of the

deformation mechanics for a wide range of structural configurations [11]. Configu-

rations which are of most relevance to this thesis are those, where the material is

arranged with a constant 2 dimensional thin-walled cross section, extruded along a

third axis by a distance much greater than the thickness of the walls. These struc-

tures have extremely high strength to weight ratios due to their efficient geometrical

arrangement and when loaded axially (in the direction of extrusion) they tend to

buckle via a progressive folding mechanism, which subjects a large proportion of the

walls to plastic strain.
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(a) H = 178 mm, φ = 56 mm (b) H = 289 mm, L = 39 mm

Figure 2.2 An illustration of an progressive folding mechanism observed in an

axially crushed circular [12], and square [13] hollow tube. Initial height H, diameter

φ and wall length L are given for scale. Figures taken from publications [12] and

[13].

By analysing the mechanics of experimentally observed progressive buckling

modes, in axially loaded square and circular steel tubes (Figure 2.2), Abramow-

icz and Jones [12–15] developed mathematical models to predict the load transmit-

ted during their dynamic axial crushing response. They found that the deforma-

tion mode was heavily dependent on the tube geometry, particularly the cell wall

thickness to tube diameter ratio. Experimental comparison between statically and

dynamically crushed aluminium alloy 6060, square tubes, was given by Langseth

and Hopperstad [16]. A strain rate effect was observed, with an increased strain

rate causing higher loads to be transmitted by the tubes during their axial crushing

response.

Zhao and Abdennadher [17] showed that the strain rate stiffening effect is also

present in the axial crushing response of tubes constructed from non-strain-rate-

sensitive material (brass), and that the strain rate effect was caused by a micro-

inertia effect from the rapid acceleration of the tube wall material. This micro-

inertia effect refers to the lateral restraint provided by the additional force required
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to rapidly shift the initially-axially-aligned cell walls into their out of plane buckled

state. Due to the high strength to weight nature of the cell wall material used

in cardboard honeycombs, micro-inertial stiffening is not expected to be a driving

mechanism in their dynamic response.

White, Jones and Abramowicz [18, 19] studied the quasi-static axial crushing

response of top-hat and double-hat welded thin-walled sections (tubes constructed

from two welded channels). By considering the mechanics of a progressive folding

element, they were able to make predictions of the rigid-plastic mean crushing loads

exerted by hat sections, of various geometries, during their quasi-static axial crushing

response.

Figure 2.3 shows the geometry of a double top hat section (a), crushed states at

the cusp of Euler buckling (b), and crushing load vs axial displacement of four double

top hat sections, of varied flange length, were quasi-statically crushed [18]. Note the

similarities between the measured responses and the classical EDM behaviour; there

is a well defined peak, a post-peak softening limb and then a plateau.
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(a) Double tophat geometry (b) H = 500 mm; f = 10, 15, 20, 25 mm

(c) Crushing load vs axial displacement

Figure 2.3 The geometry of a double tophat section is shown in (a); (b) shows the

final crushed states of four double top hat sections of varied flange length 10 - 25

mm (left to right); and (c) shows the crushing load vs axial displacement as the top

hat sections shown in (b) were crushed ( ) f = 10 mm, ( ) f = 15 mm, ( ) f =

20 mm, ( ) f = 25 mm. Figures taken from publication [18].

Slender tubes are prone to global Euler buckling. This can be a problem when

using tubes as EDMs, because global buckling, limits, and discourages the efficient
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progressive buckling mode. Reid, Reddy, and Gray [20] found that filling tubes

with polyurethane foam dramatically improved their stability, reducing their sus-

ceptibility to Euler buckling, and encouraged a more symmetrical, efficient, collapse

mode.

The inclusion of polyurethane foam was also observed to provide a significant

enhancement to the quasi-static mean crushing load of tubes. Abramowicz and

Wierzbicki [21] developed an analytical model of axially-loaded progressively-folding

foam-filled tubes, and identified that the added restraint against Euler buckling is

caused by an enhancement of the tube bending resistance. Figure 2.4 shows how the

mean crushing load (P ) transmitted through the honeycomb varied with the foam

density (ρ). Due to the obvious strong correlation between the foam density and the

strength enhancement of the honeycomb, it is likely that the strength enhancement

was due to the stress-strain response of the polyurethane material rather than the

trapped air within its pores.

Figure 2.4 Variation in the quasi-static mean crushing load (P ) as a result of

variation in the internal foam density (ρ), for axially crushed foam filled tubes.

Figure taken from publication [21].
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Cellular structures, such as honeycombs, are effectively an array of multiple small

tubes arranged in a tightly packed configuration. The EDM response of honey-

combs has been studied extensively, especially metallic honeycombs, which are used

extensively in the aerospace and automotive industries. Like tubes, honeycombs

also undergo a progressive folding mechanism when subject to axial compaction.

Wierzbicki [22] considered the mechanics of this buckling mode and derived a math-

ematical model to predict the mean stress transmitted through a hexagonal metallic

honeycomb, when subject to an axial compaction.

Wu and Jiang [23] investigated the quasi-static and axial impact responses of

aluminium 5052 and 5056 honeycombs of various geometries up to impact velocities

of 26 m/s (using a gas gun fired projectile); Wierzbicki’s [22] model was observed

to underestimate the experimentally recorded honeycomb crushing strengths. Wu

and Jiang [23] also noted a strain rate stiffening behaviour for honeycombs, and

that aluminium honeycombs which are thinner in the axial-loading direction, have

a smaller cell size and are constructed from a stronger cell wall material provide

greater energy dissipation.

Zhao and Gary [24] performed a series of high strain rate tests on aluminium

honeycombs. In contrast to previous impact tests, during which loading was applied

directly via a drop-hammer or pneumatically driven projectile, samples were crushed

within a Split Hopkinson Pressure Bar, which provided impact velocities of between

2 and 28 m/s (which was equivalent to a strain rate of between 55 and 777 s−1) for

the 36 mm thick samples. Over these loading rates, the mean crushing strength was

observed to increase by as much as 40 %.

Using the same loading mechanism, Zhao, Elnasri, and Abdennadher [25] per-

formed a series of quasi-static and high strain rate (10 m/s) axial crushing tests on

aluminium 5052 and 5056 honeycombs of varied geometries. A stiffening of between

12 and 25 % was observed, between the quasi-static and impact responses. Zhao,

Elnasri, and Abdennadher [25] attempted to identify the source of the high strain

rate stiffening, and after discounting the effect of internal air pressures, concluded

that the stiffening was provided partly by the strain rate sensitivity of the aluminium
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cell wall material, but mostly by the effect of micro-inertia (as also observed in the

response of tubes [17]).

Yamashita and Gotoh [26] compared the axial crushing response of A5052 alu-

minium honeycomb samples at quasi-static and dynamic (10 m/s = 66.7 s−1) loading

rates. They observed that while the plateau stress during quasi-static crushing is

flat, at dynamic loading rates the plateau stress increases with strain. They deter-

mined that this strain stiffening of the plateau must have been due to the internal

air pressures, as other previously discussed effects cause a stiffening which is con-

stant with strain. The air pressure strain-stiffening was significant in comparison

to the aluminium honeycomb’s structural response, resulting in an increase of the

plateau stress of roughly 50%, from 800 to 1200 kPa, by the time the honeycomb

compacted.

Xu et al. [27] published work aimed specifically at studying the stiffening ef-

fect of the entrapped air on the aluminium honeycomb’s axial crushing response.

Samples consisting of 9 x 9 cells, constructed from A5050 aluminium, were crushed

at velocities ranging from quasi-static to 5 m/s (giving a range of strain rates on

the 50 mm thick samples from 10−3 to 102 s−1). Samples were sealed at both ends

and a varied number of perforations were made, allowing the air to escape from a

controlled number of cells.

Comparison between the response of samples with 0 and 100 % of the cells sealed

(Figures 2.5 (a) and (b)) confirmed the observations of Yamashita and Gotoh [26]:

the internal air pressures do indeed cause a strength enhancement (which increases

with magnitude) during the dynamic axial crushing response of A5050 aluminium

honeycombs. The magnitude of the strength enhancement due to the internal air

pressures was observed to a) increase with loading rate (being non-existent for quasi-

static tests, while being substantial at 102 s−1), and b) increase with the number of

sealed cells.
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(a) 0 % perforated cells (b) 100 % perforated cells

(c) 51 % perforated cells

Figure 2.5 Stress vs strain responses of A5052 aluminium honeycomb samples at

varied strain rates, with (a) 0 % and (b) 100 % of the cells perforated to study the

effect of entrapped air. The samples used to generate the responses in (a) and (b)

had a cell size of 3/16 inch (4.8 mm), and cell walls which were 0.001 inch (0.025

mm) thick: (c) shows one of these samples but with 51 % of the cells perforated.

Figures taken from publication [26].

2.3 Mechanics of an axially crushed honeycomb

In an attempt to quantify the post-peak axial crushing behaviour of honeycombs,

for use as an energy dissipating materials, and identify the parameters which con-
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trol their response, McFarland [28] proposed an analytical model to predict the

magnitude of the mean post-peak crushing stress. McFarland observed that during

buckling, the cell walls undergo a progressive folding mechanism; he assumed that

the folding mechanism propagated primarily via in-plane shear and bending of the

cell walls and he was able to demonstrate some correlation between his model and

existing experimental data on the crushing response of aluminium honeycombs. The

model was semi-empirical, relying on an experimental observation of the buckling

wave length to predict the magnitude of load which would be transmitted by the

honeycomb during progressive buckling. The deformed shapes predicted by the in-

plane shear mechanism did not agree with those observed experimentally, although

this initial mathematical model was still able to make reasonably good predictions

of the mean crushing load [22].

McFarland’s model was superseded in a paper published by Wierzbicki [22], who

proposed a purely analytical model of the progressive folding mechanism, assuming

that the primary energy absorption was provided by rolling of the cell wall over

a moving toroidal surface. Wierzbicki demonstrated good agreement between his

model experimentally recorded responses of axially crushed aluminium honeycombs

(including McFarland’s original experimental data); Wierzbicki’s model correctly

predicted both the transmitted load and final deformed shapes. Findings included,

that the wavelength of each progressive fold is purely a function of the cell wall

thickness and length, and that the plateau stress is a function of the cell walls thick-

ness, length and yield stress.

While the models published by Wierzbicki and McFarland were concerned with

the post-peak plastic progressive folding behaviour of honeycombs (the main deter-

mining factor of their energy absorption capacity), their models disregarded the ini-

tial pre-peak elastic behaviour. Zhang and Ashby [29] published work which looked

at the mechanics of honeycombs in this early pre-peak region, and by considering

the mechanics of the possible buckling mechanisms they were able to develop an

analytical model, which gave predictions of the peak stress transmitted by a given
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honeycomb of known geometry and material properties. Their model was in good

agreement with a series of quasi-static uniaxial crushing tests performed on Nomex

(a meta-aramid) honeycombs.

Zhang and Ashby [29] observed two dominant buckling modes for the Nomex hon-

eycombs subject to uniaxial loading: elastic buckling (Euler buckling) and fracture

(crushing of the cell wall material due to exceedance of the yield stress). The govern-

ing mechanism was dependent on the honeycomb relative density (ρMacroscopic/ρCellwall

i.e. the quotient between the density of the honeycomb unit and the density of the

cell wall material, if there was no air void the relative density would be 1 and the

honeycomb unit would be a solid block of cardboard material).

For honeycombs with a low relative density the quasi-static peak stress was ob-

served to be dependent on elastic buckling of the cell walls; and, for honeycombs with

a high relative density, the quasi-static peak stress was observed to be dependent

on yielding of the cell walls.

2.4 EDM response of cardboard honeycombs

Cardboard honeycombs are used extensively by the armed forces to protect air-

dropped cargo from shock-loading [2, 30]. Considering their extensive use (dating

back to 1957 [9]), the literature pertaining to the cardboard honeycomb EDM re-

sponse is surprisingly sparse.

2.4.1 Cardboard honeycomb response to impact axial load-

ing

Smithson [9] performed an early series of impact tests (commissioned by the U. S.

Army) on various EDMs, with the aim of assessing their capability for use in air

drops. Particular attention was given to the behaviour of cardboard honeycombs, as

they were identified as an attractive solution providing substantial energy absorption

capacity for their cost and weight.
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Circular samples, 610 mm in diameter, of cardboard honeycomb from two manu-

facturers, of varied height and conditioned to a range of various relative humidities,

were subject to impact velocities ranging between roughly 4.5 to 15 m/s. The card-

board honeycomb samples were found to have energy absorption capacities in the

range of 240 to 410 kJ/m3 with the magnitude reducing with increased relative hu-

midity and macroscopic height, increasing with an increase of impact velocity and

macroscopic density. Furthermore, the macroscopic density, and therefore associated

energy absorption capacity, was observed to be highly variable between samples.

Wide variations in the cardboard honeycomb response prompted further investi-

gation into the mechanisms which controlled its EDM properties. Using a purpose

built machine, Ripperger and Briggs [8] developed a fabrication technique whereby

perfectly hexagonal honeycomb samples could be constructed. These “precision”

samples (12 x 12 inch square plan by 3 inch thick, i.e. 305 x 305 x 76 mm) were

subjected to impact tests from a 220 lb (100 kg) mass travelling at 20.3 ft/s (6.2

m/s). Over the course of a year, inadvertent and unintentional changes were in-

troduced to the adhesive type, glue strip widths, and paper weight; no correlation

was observed between these “subtle” variations and the EDM response. Further-

more, the precision samples were observed to be as variable in their response as the

standard non-perfect commercial samples. This led Ripperger and Briggs to con-

clude that manufacturing imperfections were not the main source of the cardboard

honeycomb’s inherent variability.

Ripperger and Briggs [8] hypothesised that the inherent variability was caused

by the development of internal air pressures and their influence on the structural

response; they suggested that the internal air pressures caused the cell walls to

buckle in a non-uniform, and therefore more variable, way. Ripperger and Briggs

proceeded to measure the development of internal air pressure within the honeycomb

during its impact response. Samples were subject to impact velocities of 22 ft/s (6.7

m/s), were 12 x 12 inch (305 x 305 mm) on plan (x and y) and 3 inch (76 mm) thick

(z), were constructed from 80 lb weight paper (118 g/m2) with 1/2 inch cells (12.7

mm), and of the standard commercial type.
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During each test, the pressure was recorded at one of three internal locations

(on plan): in the central cell, in a cell mid-way to the honeycomb perimeter (edge)

and in a cell located at the edge. The exact geometrical locations of the mid-way

and edge cell pressure measurements are not given, nor are visible in the figures

present in the scanned report. It is also not stated which edge is referred too, while

the anisotropic geometry of the honeycomb core (Figure 1.3 and 1.4) would suggest

that this is relevant as not all edges are equal relative to the cellular configuration.

Substantial pressures were measured at the central and mid-way location, the

pressure development in the edge cell was almost non-existent. The example pressure

traces given in the scanned copy of the report made available to the public are

unreadable. However, a table of average air pressures is given, values at the centre

and mid-way locations were similar (ranging between 8 and 26 psi, i.e. 55 and

178 kPa), while the average pressure recorded at the edge location was much lower

(between 4.7 and 7.9 psi, i.e. 32 and 54 kPa) and did not develop until much later.

It was also observed that the pressures in the centre and mid-way cell increased at a

similar rate until 50 % strain, after which the pressure in the mid-way cell plateaued,

while the central cell continued to increase. It was postulated that this plateauing

was a result of blow out or some modification of the cell wall structural deformation

mode during crushing, but no additional evidence was available to confirm this.

Ripperger and Briggs identified that, as the honeycomb is crushed, the proportion

of load transmitted by the air pressures increases. In one particular test, it was noted

that the total transmitted load at a point late in the response was 5450 lb/ft2 (261

kPa), and that if the recorded pressure in the central cell was present in every

cell at that point, the air pressures would be transmitting 4600 lb/ft2 (220 kPa),

a substantial proportion of the total load. Obviously, this was not the case as

the pressure at the edge of the honeycomb was much lower. The exact pressure

distribution and its evolution during the response were not known, and so the total

load transmitted by the internal air pressures remained unknown.

Ripperger and Briggs hypothesised that, at low strains, the cardboard honey-

comb crushing strength is mainly determined by the structural characteristics and
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that at higher strains the crushing strength was mainly determined by the air; they

highlighted the need for further investigation.

Ripperger and Briggs [31, 32] extended their research into the effect of the in-

ternal air pressures on the crushing strength of cardboard honeycomb by:

1. testing samples with and without the top and bottom liner sheets (both pre-

venting and allowing the air to escape)

2. testing rectangular (long and narrow) samples with the glue bonds orientated

parallel and perpendicular to the long side

3. testing samples with edges normal to the plane of the glue bonds covered and

sealed within plastic bags

4. performing burst tests by inflation of specially created single cells with nitro-

gen.

The corresponding findings to each of these studies were:

1. samples with trapped air were approximately 15 % stiffer, their final crushed

shapes were more random and evidence of de-bonding between the double-ply

cell walls was observed

2. there was little effect during the early response, but during the late response

samples with glue bonds orientated parallel to the long side were significantly

stiffer

3. samples with additional restraint to blow out absorbed on average 10 % more

energy and were much less variable than those without any blow out restrains

4. cells burst at roughly 5 psi (34.4 kPa), failure occurred in the glue joint (not

the cell walls) and there was no apparent variation in burst strength between

the two types of tested glue.

The above findings lead Ripperger and Briggs to conclude that the internal air

pressures can provide additional energy absorption capacity if properly utilised (the
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magnitude of which is dependent on the plan area), but may cause a reduction in

the energy absorption if blow out is able to occur easily. Realising the potential of

utilising the internal air pressures, Briggs and Ripperger filed for, and were granted,

a patent for the “paper honeycomb cushioning pad” [33]. This invention consisted

of a standard cardboard honeycomb core, but with additional paper end caps, to

provide resistance to blow out and maximise the retention of the entrapped air.

In the work published by Ripperger and Hannon [34], an investigation of the

effect of variations in moisture content on the cardboard impact response was per-

formed. They concluded that moisture content has no significant effect when below

14 % (exposure of cardboard honeycomb samples to 65 % relative humidity at 80◦

F for 14 days produced moisture contents of 11 % [35]), above 14 % a reduction

in the average crushing stress was observed; the moisture history (historic storage

conditions) had no significant effect, only the moisture content at the time of testing.

Additional findings of note from the work published by Ripperger and Briggs [8,

31, 32, 34] were:

• a significant increase in crushing strength with an increase in plan area

• an increase in the crushing strength when honeycombs were crushed dynami-

cally over when they were crushed quasi-statically,

• when the area of loading was small in comparison to the sample size there was

an enhancement in the crushing strength

• loading at an oblique angle causes a reduction in the crushing strength, but

not when the angle is less than 10◦. At an angle of 20◦ the crushing strength

was reduced by roughly 20 %

• when the glue bonds are orientated parallel to the direction of the horizontal

component of the oblique loading vector, samples were 5 % stronger.

Guo and Zhang [36] performed a series of drop tests on cardboard honeycombs

of various thickness, from which they developed a set of cushioning curves (one of
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which is displayed in Figure 2.6). A cushioning curve is the relationship between

the maximum deceleration experienced by an object (an indication of damage) and

the static stress it exerts (the weight of the protected object over the contact area)

on a given packaging material [37]. Cushioning curves (x axis static stress, y axis

maximum deceleration) are concave and upwards facing. The point of minimum

acceleration on the cushioning curve represents the point at which they are most

efficient (provide the most protection). The cardboard honeycomb cushioning curves

flattened out and reduced in magnitude as the honeycomb thickness was increased,

suggesting that a thicker honeycomb provides more energy absorption over a larger

range of static stresses.

Figure 2.6 A cushioning curve generated by Guo and Zhang [36]. X and Y axes are

labelled “Static stress, σs (104 Pa)” and “Peak acceleration, Gm (g’s)” respectively.

Each line represents the response of samples of one honeycomb thickness T (H in

Figure 1.3) ranging from T=20 (left most curve) mm to T=50 mm (right most

curve). Figure taken from publication [36].

Wang [38] investigated the effect of variations in the cell size (wall length), wall

thickness and sample thickness on the impact response. This was the first publi-

cation which attempted to quantify the effects of specific variations in the cellular

geometry on the cardboard honeycomb impact response. Findings included: a re-

duction in the energy absorbed per unit volume with an increase in the cell size

(increased wall length and as the plan area was fixed, a reduced relative density),
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and a relationship which was fluctuant, but generally positive between the sample

height and energy absorbed per unit volume.

Wang also produced a series of cushioning curves for the tested variables, two

of which are shown in Figures 2.7 (a) and (b). An increase in the sample thickness

caused a flattening and lowering of the cushioning curve, an increase of the cell

wall thickness shifted the curve to the right (increasing the static stress required

for the honeycomb to provide maximum protection), and an increase in the cell

size narrowed and shifted the cushioning curve to the left (reducing the magnitude

and range of static stress over which the honeycomb will provide the minimum

deceleration). These findings by Wang, were in agreement with the initial work

published by Guo and Zhang [36] .

(a) (b)

Figure 2.7 Two cushioning curves published by Wang [38] showing the relationship

between Peak acceleration and Static stress for variations in paper weight (cell wall

thickness) from 127 to 150 g/m2 and (b) honeycomb mesh type A to D (cell size,

see Figure 3.1. Figures taken from publication [38].

No consideration to the effect of internal air pressures was given in the work

published by Wang [38]. It is thought that this omission (when air pressures were

previously shown to play such an important role in the cardboard honeycomb impact

response [31, 33, 34]) may have contributed to the variable unexplained trends.
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2.4.2 Cardboard honeycomb response to quasi-static axial

loading

Majority of the recent literature regarding the energy-dissipating characteristics of

cardboard honeycombs has been concerned with its response to loading rates in

the quasi-static region. At these much slower loading rates the pressurised internal

gasses have substantially more time to escape by venting through the inherently

permeable structure. As a consequence, any internal air pressures which do develop

are insignificant in comparison to the structural response, and so the quasi-static

energy-dissipating characteristics are solely a function of the cardboard structure.

It is worth noting that Aminanda et al. [39] observed that the quasi-static axial

crushing mechanism of paper honeycombs is similar to that of honeycombs consisting

of aluminium and Nomex.

Lu, Sun, and Wang [40] developed a mathematical model to predict the critical

(peak) axial buckling load of cardboard honeycombs by considering the mechan-

ics of two possible mechanisms: peeling of the double cell walls and crushing of

the material. Comparison between their model and crush tests (performed at 10

mm/minute) showed a closer correlation than was predicted by the existing theory

for generic honeycombs. There were no specific material or geometrical parameters

given for the tested honeycomb samples; results were presented as a graph of critical

buckling load vs stretching ratio (degree of expansion).

The main findings from the work published by Lu, Sun, and Wang [40], were

that the quasi-static critical buckling load reduced with an increase in the stretching

ratio, and for low stretching ratios its magnitude was controlled by the peeling

mechanism, while for high stretching ratios its magnitude was controlled by the

crushing mechanism.

Wang and Wang [5] studied the effect of variations in a selection of honeycomb

geometrical parameters on the quasi-static crushing response (2 mm/min). Variables

studied were macroscopic height (10 to 50 mm), weight/thickness of cell wall material

(112 to 180 g/m2 i.e. 0.2 to 0.29 mm) and cell size (5.8 to 14.4 mm, i.e. mesh types
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A to D). Wang and Wang [5] also studied the effect of top and bottom liners and

the effect of stacking multiple thinner honeycombs, rather than using one thicker

honeycomb. All samples were 200 x 200 mm plan area, tested at a constant temp

and humidity of 23◦ C and 50 % relative humidity.

Main observations were that using liners significantly stiffens the full honeycomb

crushing response (in the published figures there is a significant rise of the plateau

stress over the response), and that the energy absorption capacity increased al-

most linearly with the relative density of the honeycomb (the quotient between the

macroscopic density ρm and the density of the cell wall material ρ):

ρm
ρ

=

(
t

Lt1

)
1 + Lt2/Lt1

(Lt2/Lt1 + sin θ) cos θ
(2.1)

where t is the cell wall thickness, Lt1 is the length of the single cell walls, Lt2 is

the length of the double cell walls and θ is the internal expansion angle. Variations

in the cell wall thickness, length and cell size (mesh type) were lumped together as

variations in the relative density. An average cardboard density was calculated by

taking an average density of the material constituting the liners and the cell walls;

comparisons between this average cardboard density and the energy absorption ca-

pacity were made, unsurprisingly there was no obvious trend.

There was attention given to the effect of sample height and the effect of double

stacking on the energy absorbed per unit volume, the response appeared to be

affected, but the exact relationship was unclear. While samples with different cell

wall thicknesses were tested, there were no direct comparisons made between the

response of these samples, although Wang and Wang [5] did identify an increase in

stiffness with increased cell wall thickness.

Energy absorption diagrams are one method used to characterise EDM materials,

they plot the energy absorbed per unit volume (y-axis) against the transmitted

stress (x-axis) for each response [41]. Wang, Wang, and Liao [42] produced a set of

energy absorption diagrams for the quasi-static axial crushing response of cardboard

honeycombs with varied cell wall thickness-to-length ratios (t/L).

A mathematical model of the cardboard honeycomb energy absorption was de-
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veloped by integrating an analytical expression of its macroscopic response. The

mathematical model was used to produce an energy absorption diagram, which was

found to be in good agreement with a similar diagram composed from a set of exper-

imental results. Finally, the energy absorption diagrams were used to identify the

relationship between the total absorbed energy per unit volume (before compaction)

and the honeycomb’s cell wall thickness-to-length ratio. Wang, Wang, and Liao [42]

observed that the energy per unit volume at compaction increases with an increased

cell wall thickness-to-length ratio.

E and Wang [43] studied the effect of relative humidity (RH) on the quasi-static

energy absorption properties of cardboard honeycomb. A series of experimental

crush tests was performed on samples with different cell size (mesh type), a constant

cell wall thickness of 0.19 mm (105 g/m2 recycled cardboard) and plan area of 100 x

100 mm. Samples were conditioned at RHs ranging from 40 % to 95 % and crushed

at the rate of 12 +/- 3 mm/min. It was observed that RHs below 75 % had no

significant effect on the quasi-static plateau stress or energy absorption capacity of

the cardboard honeycomb; for values of RH above 75 % there was a sharp drop

off in both the plateau stress and energy absorption capacity, this drop off was

proportionally more significant for higher cell wall thickness-to-length ratios.

A second publication by E and Wang [44] also studied the effect of relative hu-

midity (RH) and cell wall thickness-to-length ratio, on the quasi-static cardboard

honeycomb crushing response, this paper was more focused towards the development

of an analytical model to incorporate the experimentally observed effects. They de-

rived a piecewise expression for the stress transmitted by the honeycomb structure

during each stage of its EDM response. Integration of the piecewise expression, gave

a theoretical prediction of the energy absorption provided by a cardboard honey-

comb with cell walls of known thickness-to-length ratio, yield strength and elastic

modulus which has been stored at a certain RH. This model was used to produce

energy absorption curves, which were in good agreement with those produced from

experimentally recorded data.
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2.5 Cardboard/paper material properties

The material of interest, consisting of pressed wood pulp, is commonly referred to

by names such as paper, paper-board and cardboard, the definition of each varies.

The general consensus seems to be that paper refers to pressed wood pulp in a thin

and lightweight form (writing/newspaper), while cardboard has some structural sig-

nificance (shoe boxes/egg cartons). The cardboard/paper honeycomb base material

lies within a region where many would class it as one or the other; considering the

common use of the honeycomb as a packaging material, the term cardboard seems to

be most appropriate; and so, “cardboard” will be used as a blanket term to include

all types of “papers” herein.

Cardboard is an inherently variable material, its mechanical properties depend

on the pulp from which it is created, and recycled cardboard might by made from

a range of different pulp. Furthermore, pulp is a natural material and hence its

properties are dependent on many factors which may have influenced the growing

conditions of the tree it was created from. As one would expect, with such a variable

and commonly used raw material, much research has been performed into identifying

various types of papers’ mechanical properties.

The Poisson’s ratio, elastic moduli, and in-plane shear moduli, of a high strength

Kraft paper were determined by studying its acoustic response (wave speed) in each

orthogonal direction [45, 46]. These methods are limited to measurements of the

paper’s elastic characteristics and therefore only relevant for small strains.

As part of the manufacturing process, cardboard is rolled; the act of rolling

tends to orientate the fibres in the rolling direction i.e. machine direction (MD), the

direction orthogonal to this is known as the cross direction (CD). This orientation

of fibres causes cardboard to be stiffer and stronger in the MD than the CD. It’s

full constitutive relationship is orthotropic elastic-plastic. Cardboard also exhibits

parabolic strain hardening, meaning that the curve flattens out with increased strain

(to a constant gradient, less than the elastic modulus) [47, 48].

Mäkelä and Östlund [49] developed an analytical orthotropic elastic-plastic con-
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stitutive model of paper, requiring only simple tensile tests in three directions for

its calibration, capable of predicting the static anisotropic stress-strain response, at

any angle of inclination, between the maximum MD and minimum CD directions.

In the publication by Castro and Ostoja-Starzewski [47], it was shown that it is

often possible to approximate the stress-strain material response of paper, with an

almost linear curve.

Allaoui, Aboura, and Benzeggagh [50] showed that, when subject to cyclic load-

ing, paper undergoes damage, inducing permanent strain. It was also shown that

paper is strain rate dependent, a stiffening effect was visible when the strain rate

was increased from 6× 10−5 s−1 to 12× 10−3 s−1.

Recent published work regarding the mechanical behaviour of cardboard hon-

eycombs have shown that the peak and plateau stresses, transmitted by cardboard

honeycombs during quasi-static crushing, can be expressed with four material pa-

rameters: elastic modulus E, yield stress σY ield, ratio of double to single-ply cell wall

yield stress k and Poisson’s ratio ν [42–44, 51]. No consideration has been given to a)

orthotropy, b) plastic strain hardening, and (since all mathematical predictions have

considered only the quasi-static response) c) strain-rate hardening. Table 2.1 gives

a summary of some experimentally determined values for each material parameter.
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Table 2.1 Summary of experimentally measured cardboard material properties pub-

lished in existing literature, showing elastic modulus E, yield stress σY ield, ratio of

double to single-ply cell wall yield stress k, Poisson’s ratio ν and weight per me-

tre square. Values from publications [42–44, 51] were determined from quasi-static

tensile tests on material from a cardboard honeycomb cell wall.

Publication E (GPa) σY ield (MPa) k ν Weight (g/m2)

[42] 0.89 4.25 - - 127 - 180

[44] 2.44 7.21 - - 105

[43] 2.44 - - - 105

[51] - 5.14 - 7.25 1.30 - 1.57 - 105

[52] - - - 0.16 - 0.33 65

[53] - - - 0.25 - 0.38 130 - 220

2.6 Summary

Research regarding the high strain rate axial crushing response of cardboard hon-

eycombs is sparse. Early work by Ripperger and Briggs identified that during high

strain rate compaction, the air pressures which develop within a cardboard honey-

comb are comparable in significance to the structural response, and therefore the

mechanics which govern its energy-dissipating characteristics are dependent upon

the complex interaction between the entrapped air and the cell walls [8, 31–33].

Other work has mostly focused on the quasi-static response of cardboard honey-

combs [5, 40, 42–44, 51]; with the exception of two publications, which investigated

how the cushioning properties of cardboard honeycombs were affected by variations

in several geometrical parameters. These publications were limited in scope due to

oversimplification and complete omission of the effect of internal air pressures. Fur-

thermore, research into the high strain rate axial crushing of aluminium honeycombs

(much stiffer in comparison to cardboard), has shown that the internal air pressures

cause a significant stiffening effect, in comparison to the structural response, which
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is not present during quasi-static loading [26, 27].

Ripperger and Briggs demonstrated that the internal air pressures are capa-

ble of carrying a significant proportion of load, and that their magnitude is non

uniform throughout the honeycomb structure. No research has yet identified the ex-

act spatial distribution of internal air pressures which develop within the cardboard

honeycomb; thus, the actual contribution of the internal air pressures, to the macro-

scopic response, is as yet, unknown. It follows that there has also been no research

into the mechanisms which drive the development of internal air pressures, and how

the internal air pressures interact with the lightweight, deformable, structure they

are contained within.

There has been no research aimed at quantifying the dynamic response of card-

board honeycombs, by consideration of the mechanics which evolve on the meso-

scopic scale. There is no research capable of predicting the EDM characteristics of

a dynamically loaded cardboard honeycomb, for a known set of material and geo-

metrical parameters. Furthermore, as the mesoscopic mechanics of the air-structure

coupled response are currently unknown, there is no fundamental understanding of

how variations in the material and geometrical parameters, of the cellular structure,

will effect a cardboard honeycombs dynamic EDM properties.
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Chapter 3

Experimental impact testing

This chapter details three phases of testing, which were performed to investigate how

variations in the cardboard honeycomb’s cellular geometry affect its macroscopic

impact response. Phase 1 (Section 3.1) was performed as a precursor to this thesis

and is therefore not the author’s own work; a summary of findings have been included

to give chronological context to the development of knowledge. Phases 2 and 3

(Sections 3.2 and 3.3) were performed by the author. An initial series of impact tests

(Phase 2) was performed, after which the experimental methodology was refined,

before performing a secondary series of impact tests, with greater scope (Phase 3).

Ripperger and Briggs [8] measured the magnitude of internal air pressure, at

three locations within cardboard honeycomb samples during a series of impact tests.

On plan these locations corresponded to a cell in the centre, a cell mid-way towards

a perimeter edge and a cell located at a perimeter edge. They showed that the

magnitude of internal air pressure was a function of the distance from the sample

edge. They also concluded that the internal air pressures must play a significant role

during the cardboard honeycomb impact response and carry a significant proportion

of the load.

The experimental work carried out during phases 2 and 3 was performed to

identify the spatial distribution, and temporal development of internal air pressures

within a honeycomb of known geometry, and to identify how the magnitude and

significance of the internal air pressures is affected by variations of the cellular
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geometry.

During Phase 2 and 3 reference is made to three ”mesh types”. These mesh types

are labels used by cardboard honeycomb manufacturers to identify the density (cell

size) of each cardboard honeycomb mesh. Figure 3.1 shows an approximate 0.5 m

square section of the exposed honeycomb core for the F, D and B mesh types. The

(measured) average cell wall length L̄ for each mesh type is also given.

(a) “F mesh”, L̄ = 24.4 mm. (b) “D mesh”, L̄ = 14.3 mm. (c) “B mesh”, L̄ = 8.0 mm.

Figure 3.1 Images of the exposed cardboard honeycomb core taken during the

Phase 3 sample preparation. All three images show an approximate 0.5 x 0.5 m

square plan area of bare core. The average recorded cell wall length L̄, for each

mesh type, is also given.

3.1 Phase 1 - Drop hammer

Regular occurrences of damage to air-dropped cargo prompted a series of impact

tests on the cardboard honeycomb material. This initial series of tests was carried

out prior to the commencement of this project by Tyas [10] at Blastech Ltd, a

summary of which has been included in this thesis for background. This phase of

testing highlighted the need for further investigation into the dynamic response of

the cardboard honeycomb EDM and was therefore a precursor to this project.
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3.1.1 Overview

Honeycombs with a 1/2 inch and 3/4 inch cell size, two plan areas 150 x 150 mm

and 250 x 250 mm square, and samples with single and double stacks were subject

to impact velocities of 5 ms−1 and 6.5 ms−1 using a drop hammer. It is unclear if

the two if the 1/2 and 3/4 inch samples belonged to one of the mesh types shown

in Figure 3.1 and so their original labels have been maintained. Findings from the

drop hammer tests included:

• Samples with the finer, 1/2 inch cell size, behaved stiffer than the 3/4 inch

samples in both the peak and plateau regions.

• Increasing the plan area increased the peak and plateau stresses.

• Some strain rate sensitivity was apparent from an increase on the initial peak.

• Double stacks gave either a sequential or simultaneous crush response, depend-

ing on the relative strength of the layers.

This initial run of tests was designed to provide a rule of thumb guideline for

use in the field, and therefore had its limitations. The load cell recorded overlying

oscillations on the genuine honeycomb response, disguising the exact behaviour of

the honeycomb EDM. These oscillations had a frequency in the region of 400-900

Hz and could not be removed without removing a proportion of the genuine trace.

Lack of repetition of identical tests limited the study of inherent variations of the

cardboard honeycomb. The actual mesoscale geometry was not recorded, only a

benchmark cell size was known. The significance of internal air pressures was not

investigated.

3.2 Phase 2 - Gas gun

On commencement of this project it was decided that it was necessary to perform

an additional series of experimental impact tests to investigate how the mecha-

nisms driven by the cardboard honeycomb microstructure affect the macroscopic
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behaviour. In an attempt to eliminate the spurious oscillations recorded by the load

cell in Phase 1 and to increase the maximum impact velocity, a move was made to

the gas gun rig shown in Figure 3.2.

Figure 3.2 General arrangement of the gas gun apparatus used during Phase 2 and

3.

3.2.1 Scope of Phase 2

All samples were 70 mm in height and 250 mm x 250 mm plan area. Two mesh

sizes, B and D, were tested (see Figure 3.1). Effort was made to control the impact

velocity, however difficulties using thin diaphragms, as described in Section 3.2.5,

meant that the impact velocity varied between 5.5 and 6.5 ms−1 when using the

thinnest possible (0.1 mm thick) brass diaphragm. Table 3.1 shows the matrix of

tests carried out during this phase, with their mesh type (B or D), impact velocity

(vi) and initial strain rate (ε̇i). Both mesh types were repeated 3 times each, to

study the variability between tests.

Note that throughout this thesis strain rate refers to the engineering strain rate.

i.e. the strain rate as calculated using H (the initial height of the sample). The

initial strain rate ε̇i below refers to the engineering strain rate experienced by the

cardboard honeycomb sample at the moment of impact and is defined by Equation

3.1.
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ε̇i =
vi
H

(3.1)

Table 3.1 Series of performed tests during Phase 2.

Test Ref Mesh vi (m/s) ε̇i (s−1)

EDM1 B 5.56 79

EDM2 B 5.80 83

EDM3 B 5.63 80

EDM4 D 5.47 78

EDM5 D 6.45 92

EDM6 D 5.92 85

3.2.2 Sample preparation

Dufaylite was the sole company capable of providing suitable cardboard honeycomb

in the UK at the time of purchase. On discussion with their technical department

it became apparent that they had previously supplied cardboard honeycomb to the

Ministry of Defence for use in the field. The honeycomb supplied to the Ministry

of Defence and that used during Phase 1 of the experimental work is constructed

from a high grade kraft paper. Being a specialised product, Dufaylite were not

able to supply kraft paper honeycomb unless a substantial order was placed, much

larger than that required for this project. As an alternative, a recycled cardboard

honeycomb was supplied.

The recycled cardboard was expected to be weaker than the kraft paper. How-

ever, as the main goal of the experimental testing was to investigate whether internal

air pressures play a significant role during dynamic collapse of the cardboard hon-

eycomb and to guide the development of a numerical model, the exact material

properties of the cardboard were not important.

The honeycomb arrives in flat pack form from the supplier and a fabrication

process is necessary to produce samples which can be tested. Being required to carry
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out the fabrication, even with the intent of producing highly repeatable samples to

be used in a scientific investigation, gave valuable insight into the inherent variability

of the cardboard honeycomb material. The fabrication process was found to be quite

difficult, taking several iterations to perfect. Eventually the described methodology

was arrived at, consisting of three main tasks:

1. core expansion

2. application of top and bottom liners

3. sample marking and cutting.

The first stage involves expanding the flat packed core to create the hexagonal

cellular structure. Two people were required to apply a substantial amount of force

when expanding the finer B mesh and it was difficult to avoid damage to the top and

bottom of the cell walls when doing so. It was necessary to declare a sacrificial area of

damaged cell walls which would not be used to construct samples for testing. Several

rounds of stretching, with adjusted hand positions, were performed in an attempt

to evenly distribute the lateral expansion force across the honeycomb structure and

to create uniform hexagonal cells.

The standard industrial procedure involves a mechanical jig to expand the card-

board honeycomb core. However, as a mechanical jig is not necessarily always

available in theatre, the described process was followed to instil a level of geomet-

rical variation which would be characteristic of a non-jig constructed cardboard

honeycomb EDM sample.

Figure 3.3 shows the honeycomb core in several stages of the fabrication process.

To prevent the honeycomb core from self-contracting the manufacturer suggested

spraying with water to cause the cardboard to lose its elasticity and hold its ex-

panded shape. Care was taken to ensure that the volume of water used was kept to

a minimum and applied evenly to minimise any influence on the glue used to hold

the adjacent cell walls together. The volume of water was also scaled by the average

relative density of the mesh type in an attempt to keep the ratio of added water
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to volume of cardboard equal. Following spraying, the core was moved away from

any standing water and left to dry thoroughly in a well ventilated, warm, area for a

minimum of 24 hours (1).

Figure 3.3 Various components of the cardboard honeycomb EDM in several stages

of the fabrication process: 1) a drying honeycomb core; 2) a liner sheet immediately

after its first coat of PVA; 3) a liner sheet being applied with a second coat of PVA;

4) a honeycomb core after applying the top liner sheet.

A reel of the same recycled cardboard used to construct the cell walls was also

supplied with the honeycomb core. This was used for the top and bottom liners

and attached with PVA glue. While the honeycomb core was drying, a length of

cardboard was cut from the reel. It was then trimmed to be slightly larger than the

expanded core to allow for overlap.

A 30 cm ruler was used to apply a coat of PVA glue evenly across the surface of

the liner. The cardboard was allowed to absorb this (2), and then a second coat was

applied (3); any excess was scraped off to leave a thin even film across the whole

surface of the sheet. Judgement was required so that enough glue was used to create

the bond between the liner and the end of the cell walls, but not so much that it

would flow into the core and set along the length of the cell walls.

The glue-covered liner was then carefully flipped and placed on the core, taking

care not to tear the, now, wet sheet. Any wrinkles were removed by smoothing with

the palm of a hand to create perfectly flat surface promoting an even and consistent

bond between the liner and the cell walls (4).
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The PVA glue was allowed a minimum of 48 hours to set, until it was dry to the

touch. The core and attached single liner was then flipped and the process repeated

to attach the second liner allowing a further 48 hours drying time.

A grid of 250 mm x 250 mm squares was drawn on one liner with sample numbers

which, when read, aligned the sample with the glue bonds between the cell walls

running top to bottom. The samples were then cut with a sharp cross cut hand

saw. Many samples were constructed, about half of which were deemed unfit for

testing due to flaws in their macrostructure. All samples were labelled with a letter

corresponding to their mesh type and an arbitrary number. Unique of the arbitrary

sample numbers: from the pool of constructed samples a batch of those which were

deemed the best quality (i.e. well bonded glue, homogeneous conforming macroscale

geometry etc) were selected for testing.

3.2.3 Outline of the gas gun apparatus

During each shot, a three stage diving compressor gradually increases the pressure

in a reservoir, as shown in Figure 3.4 (a). Covering the outlet to this reservoir is

a thin metal diaphragm clamped within a magazine by a circular arrangement of

bolts, as shown in Figure 3.4 (b). A rubber O-Ring on both, the front and back face

of the magazine, provided an air tight seal preventing air from leaking around the

magazine from the pressurised reservoir to the outlet.

At a given pressure the diaphragm bursts, allowing the compressed air to expand

along the outlet, shown in Figure 3.4 (a), towards the back face of a piston.
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(a) (b)

Figure 3.4 Detail of gas gun (a) inlet reservoir arrangement and (b) diaphragm

magazine.

The piston, and attached front plate, then accelerates along the barrel shown in

Figure 3.5. Two bore-riders (guides) ensure the piston runs true along the centre

line of the barrel and two O-Rings provide a seal to prevent the compressed air from

escaping between the piston and internal face of the barrel. The combined mass of

the travelling piston and plate was measured as 81.4 kg.

The impact event begins when the front plate strikes the top face of the cardboard

honeycomb sample. The velocity - and therefore strain rate - of the piston at

this point in time can be controlled by adjusting the thickness and material of

the diaphragm.

(a) (b) (c)

Figure 3.5 Detail of gas gun barrel and projectile components. (a) Barrel, (b)

Piston with one white PTFE guide, two black rubber O-Rings and an empty location

slot for the second guide, (c) Front plate with connecting bolts.
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3.2.4 Measurements and data acquisition

For each test, the following data were recorded:

• Total transmitted load by the cardboard honeycomb sample

• Internal air pressures

• Displacement of the front plate

• High speed video.

During the impact event load is transmitted by the honeycomb through the back

plate to the load cell, shown in Figure 3.6 (a). The load cell was custom-built at the

University of Sheffield Blast & Impact Laboratory. It was constructed from a short

length of steel tube section, capped by end plates at either end. Two orthogonal

pairs of Kyowa KSP-2-120-E4 semi-conductor strain gauges were bonded to the outer

surface of the hollow tube, linked in such a way as to eliminate bending effects in the

output strain and record only axial strain. The strain gauge response was recorded

using a Wheatstone bridge circuit. The load-strain gauge output relationships of

the cell was calibrated by tests in a UKAS-accredited compression loading rig; the

output of the calibrated load cell was accurate to within +/-1kN in the range 0-

250kN.

Pressure transducers were placed on the back plate to measure the development

of pressures within the honeycomb during impact (Figure 3.6 (b)). Kulite HEM-

375 pressure transducers, with natural frequency > 400 kHz and ranges of 0-17 bar

for the internal gauges and 0-7 bar for the edge gauge. The pressure gauges act

by using a piezoresistive sensor to record the deformation of a diaphragm under a

change of pressure. The change of resistance is converted to a voltage through an

integral Wheatstone bridge circuit. The gauges were new and the voltage-pressure

relationship was calibrated by the manufacturer to an accuracy of +/− 0.5 % full

scale output (i.e. 0.5 bar on a 100 bar reading). This accuracy would amount to a

worst case error, on the highest measured pressures (≈ 800 bar) of +/− 4 bar.
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(a) (b)

Figure 3.6 Experimental arrangement of the (a) projectile, load cell, and back

plate; and (b) pressure gauges, in relation to the samples tested during Phase 2.

During commissioning of the rig all but two pressure transducers were damaged,

either by the shock produced during impact between the front and back plate, or

bearing of the cardboard directly onto the gauge diaphragms. The two remaining

pressure transducers were placed at positions corresponding to the centre of the

sample and 20 mm from the sample edge, in an attempt to capture the effect of

distance from the sample edge on the development of internal pressures.

To prevent damage to the remaining two pressure gauges, and subsequent re-

placements, arrester blocks were used to slow the impactor once the sample had

compressed to around 35 % of its original length, thus reducing the loading on the

back plate and protecting the pressure gauges from damage. As a consequence, the

response of each sample could only be measured up to a strain of around 65 % as

beyond this the load was transmitted through the arrester rather than the cardboard

honeycomb. However, this approach still yielded useful data over a large proportion

of the range of strain of interest.

An M7 laser distance sensor (manufactured by MEL Microelektronik GMBH)

was used to record the displacement-time history of the impactor (Figure 3.2). The

distance gauge had a bandwidth of 10 kHz, provided a voltage output which varied

linearly with the distance from a reflecting surface, and was calibrated in house to
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an accuracy of +/− 0.5 mm. This displacement-time history was used to calculate

the strain-time history of the sample.

The load cell, pressure gauges, and laser displacement gauge, all produced voltage

time histories, which were recorded by a TiePie HS4 USB Handy Scope attached

to a laptop. A micro switch trigger was used as the scope trigger source which

activated when the front plate began to move. 100 k samples at 195.313 kHz and

16 bit resolution with a 10% pre-trigger ensured that that each impact event was

captured with sufficient temporal and voltage resolution. A script was written using

an analytical computer package to post-process the data from voltage time history

csv files to load, pressure and distance relationships, with sample engineering stress

and strain values calculated from these results and the initial cross-sectional area

and length of the samples.

3.2.5 Results and conclusions from Phase 2

The total transmitted stress vs strain curves for the three tests performed on B and

D meshes are shown in Figures 3.7 (a) and (b). Load recorded after 60% strain has

been omitted, since at slightly greater strains, the load was picked up by the timber

arrester.

The pressure system, for the loading rig was an existing item of equipment, pre-

viously used for dynamic testing where relatively high loads had been used. It was

therefore designed to accommodate much higher pressures than those required to

generate the energy needed to crush the cardboard honeycomb. The magazine which

holds the diaphragm was therefore originally designed to hold thicker diaphragms

than those used during this series of tests. This led to difficulties attaining a suf-

ficient clamping force around the edge of the diaphragm which is thought to have

contributed to the variance of the impact velocities shown in Table 3.1.
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(b) D mesh

Figure 3.7 Stress vs strain relationship for all samples tested during Phase 2.

The traces for both meshes display the typical EDM behaviour with a peak

followed by a plateau region. The peak to plateau stress ratio was much more

pronounced for the D mesh tests. An overlying ringing oscillation, with a frequency

ranging between 890-1150 Hz, was still recorded by the load cell. Figure 3.8 shows

the load cell traces plotted against time rather than strain, highlighting the fact

that the overlying oscillation was imposed from an external dynamic mode, rather

than genuine response of the cardboard honeycomb.
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Figure 3.8 Stress vs time for all tested B mesh samples, illustrating the existence

of an overlying oscillatory response.
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The peak stress was calculated by taking the maximum value for each trace. A

single value for the plateau stress was calculated by taking the mean of values from

20% to 60% strain. Table 3.2 shows the mesh type, initial strain rate ε̇i, peak stress

σPeak and plateau stress σPlateau recorded for the 6 tests performed. Averages for

both the B and D mesh samples are shown in bold.

Table 3.2 Phase 2 - Macroscopic response summary. B Avg and D Avg (stated in

bold text) refer to the mean values of ε̇i, σPeak and σPlateau for three B mesh tests

(EDM1-3) and D mesh tests (EDM4-6) respectively.

Test Ref Mesh ε̇i (s−1) σPeak (kPa) σPlateau (kPa)

EDM1 B 79 355 220

EDM2 B 83 356 227

EDM3 B 80 332 242

B Avg 81 348 230

EDM4 D 78 190 56

EDM5 D 92 190 62

EDM6 D 84 174 61

D Avg 82 185 60

The finer B mesh samples transmitted the greatest stress with an average peak

and plateau of 348 and 230 kPa respectively, compared to the coarser D mesh with

185 and 60 kPa. The spread in σPeak between samples was 24 kPa for the B mesh

and 16 kPa for the D mesh, the spread in σPlateau was 22 kPa for the B mesh and 6

kPa for the D mesh.

A forensic analysis of the crushed samples was performed by removing the top

and bottom liner sheets and observing the cell walls. This showed that:

• de-bonding of the cell walls was very common

• tearing of cell walls was not common. Individual cell walls tended to be folded

but intact
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• samples were very permeable on one plane only, on the other plane the cell

walls were splayed out sideways.

Equation 3.2 relates the pressure P and volume V of a gas before (1) and after

(2) an adiabatic expansion or contraction, i.e. an expansion or contraction of a gas

whereby there is no transfer of heat out of the system. As shown in Figure 3.8,

the impact events last a maximum of 7.5 ms and therefore occur too rapidly for a

significant amount of heat to leave the system.

P1V
γ

1 = P2V
γ

2 (3.2)

Equation 3.2 was used to produce the dashed black lines in Figures 3.9 (a) and

(b), by taking the initial pressure as atmospheric (101.325 kPa), γ as the ratio of

specific heats for air (cv/cp = 1.4) and using strain to calculate the ratio of final

to initial volume. The dashed black lines represent the maximum possible internal

pressure for a given strain, i.e. the internal pressure that would develop, assuming

a perfectly constrained 1 dimensional adiabatic compaction of the air within the

honeycomb.

The solid black lines in Figures 3.9 (a) and (b) show the load cell traces for a

test performed on a B and D mesh sample respectively and the readings recorded

by the central and edge pressure gauges during the two tests are shown in blue and

red.
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(a) B mesh [EDM1]
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(b) D mesh [EDM6]

Figure 3.9 Comparison between maximum possible theoretical internal air pres-

sures and the recorded load cell and pressure gauge traces during compaction of a

B mesh (a) and D mesh (b) sample.

As the dashed black line represents the maximum possible internal air pressure,

any stress to the left of the dashed black line must have been transmitted by the

cell wall structure. This tells us that firstly, the early honeycomb response must

be dependent solely on the failure of the honeycomb cell walls, and secondly, the

pressure gauges must therefore have been picking up the total load, not just the

internal gas pressures. Comparing the similarities between the shape of the central

pressure gauge, shown by the blue line in Figure 3.9, with the load cell trace, further

enforces this conclusion. Due to this, it was decided that further investigation would

be necessary.

3.3 Phase 3 - Gas gun - Further testing

This phase of testing was performed to provide further experimental data on how

variations in the mesoscale geometry affect the macroscopic behaviour of the card-

board honeycomb and to collect experimental data on the spacial and temporal

development of internal pressures within the cardboard honeycomb during impact.

Refinements were made on the experimental methods developed during Phase 2 in
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an attempt to eliminate the issues discussed in Section 3.2.5, such as the spurious

oscillations recorded by the load cell and structural response recorded by the pres-

sure gauges. The scope and level of detail was also increased by introducing a third

mesh type and recording the exact mesoscale geometry of all tested samples.

3.3.1 Scope of Phase 3

All samples were prepared with constant macroscale geometry of 70 mm in height

and 250 mm x 250 mm plan area. The cell walls and liners were constructed from a

0.28 mm thick recycled cardboard with a density of 60.7 kg/m3. Three mesh types

were tested, B, D and F. When referring to a mesh type, the letter refers to the

average cell wall length L̄ and the later the letter, the longer the cell wall. Figure

3.10 shows the mesoscale geometry for a tested sample from each of the three mesh

types.

250 mm

(a) L̄ = 24.2 mm

250 mm

(b) L̄ = 14.3 mm

250 mm

(c) L̄ = 8.0 mm

Figure 3.10 Mesoscale cellular geometry of a tested F (a), D (b) and B (c) mesh

sample. These geometries were extracted using the procedure discussed in Section

3.3.5 and refer to sample numbers F25, D27 and B8 respectively.

Table 3.3 details the matrix of tests performed during this phase of testing.

Sample references indicate the mesh type followed by a unique number used later

to identify the cellular geometry, L̄ the average cell wall length and ε̇avg the average

engineering axial strain rate over the impact event.
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Table 3.3 Series of performed tests during Phase 3.

Test ref Sample ref L̄ (mm) ε̇avg (s−1)

T1 F25 24.7 145

T2 F22 24.3 144

T3 F29 24.2 144

T4 F31 24.3 143

F Avg 24.4 144

T5 D27 14.3 139

T6 D30 14.4 147

T7 D24 14.2 144

D Avg 14.3 143

T8 B8 8.0 134

T9 B11 8.1 136

T10 B10 8.0 135

T11 B14 8.0 202

B Avg 8.0 135

To investigate variability, each mesh type was repeated a minimum of three

times while controlling strain rate, during test number 11 (T11) the strain rate was

increased by doubling the thickness of the brass diaphragm from 0.1 mm to 0.2 mm.

T11 is omitted from B mesh average inter sample strain rate given at the base of

Table 3.3.

To both, increase strain rate constancy across all samples and to reduce the

computational cost of numerical validation, the impact velocity was increased from

that used during Phase 2. The stroke length of the measurable impact event was

also extended to 83% strain, allowing the full EDM response to be recorded.

The exact mesoscale geometry of each sample was recorded, so it was known

exactly what mesoscale geometry produced a given response. During each impact,

time histories were recorded of the total transmitted load and pressures at the 5
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internal locations shown in Figure 3.13 (b). To allow calculation of strain and strain

rate the displacement time history was recorded with both a laser distance gauge

and a high speed video camera.

3.3.2 Amendments to the Phase 2 Methodology

During the sample preparation for Phase 2 it was observed that, even when extreme

care was taken to construct highly uniform samples, there were wide variations in

the cellular structure between samples of the same mesh type. By recording the

mesoscale geometry for all prepared samples it was possible to quantitatively study

exactly what geometrical arrangement produced a given experimental response. The

geometrical analysis for all tested samples is presented in Section 3.3.5. To emphasize

any trends visible in the results a third, coarser, mesh type was introduced.

When commissioning the gas gun rig, several pressure gauges were damaged.

The measures which were put in place to protect the remaining gauges limited

the maximum experimental strain to 60%. While still providing useful data, this

prevented the full EDM response of the honeycomb from being captured. To do so,

the samples must be allowed to strain sufficiently, so that they reach the compaction

region of EDM stress strain curve.

The honeycomb samples had a footprint area of ATrib = 250 x 250 mm = 62500

mm2. The geometrical analysis of the cardboard honeycomb samples (Section 3.3.5)

yielded an upped bound measurement of the cross sectional area of cardboard cell

wall Ac contained within the most dense samples to be ≈ 4000 mm2. Due to the

cellular cross section being prismatic over the axial height H these figures could be

used to approximate that the most dense samples will consist of approximately 6.4

% solid cardboard material and 93.6 % air. Assuming sufficient porosity, and a

perfectly axial compaction, such a sample would consist solely of cardboard at an

axial compaction strain of 93.6 %. To protect the pressure gauges from damage, it

was imperative that this was not allowed to occur.

Ensuring a sufficient safety factor was included and allowing for the possibility of

further testing with deeper samples, it was decided that limiting the strain to 83%
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would protect the pressure gauges while providing sufficient data. A 12 mm thick

steel collar (with an internal perimeter to match the samples external perimeter)

was welded to the back plate. The collar provided a proud rigid surface, which when

struck by the edges of the moving front plate, would halt the projectile once the 70

mm deep sample had reached an axial strain of 83%.

During Phase 2, the pressure gauges recorded load that was being transmitted by

the cardboard structure, meaning that the recorded traces were not representative of

the internal air pressures within the honeycomb. To ensure that the pressure gauges

accurately recorded the internal pressures during this phase, several measures were

employed. A tool, shown in Figure 3.11, was constructed to pierce the bottom liner

of each sample at locations corresponding to the centres of the pressure gauges on

the back plate. The pierced holes were then carefully expanded to be slightly larger

than the pressure gauge diaphragms, by removing a 5 mm disc of the bottom liner

material, while ensuring not to damage the base of the cell walls. If any cell walls

were found to interfere with the 5 mm hole they were carefully adjusted to the side.

The collar was then used to locate the samples so that the holes lined up exactly

with the pressure gauges on the back plate. As an additional precaution, the gauges

were wound back, insetting them by 2 mm into the plate, using washers to ensure

that an air tight seal was maintained.

Right angle

Nails

Figure 3.11 Timber sample base piercing tool, consisting of a right angle to locate

the top left corner of each sample and nails to pierce the base liner.

It was concluded that the overlying oscillations recorded by the load cell during
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Phase 2 may have been the result of a cantilever modal response of the backstop,

which provides a solid surface behind the load cell shown in Figure 3.2 and dia-

grammatically in Figure 3.6. In an attempt to remove this mode and stiffen the

backstop system enough, so as to reduce interference between oscillations in any

other modes with the true response of the cardboard honeycomb samples, a steel

beam section was welded between the top face of the back stop and the reservoir

housing arrangement. This steel beam is visible across the top of the experimental

general arrangement photo shown in Figure 3.2.

With the aim of attaining a close to constant strain rate over the full impact

event, the position of the backstop was adjusted so that full compaction occurred

at the end of the piston’s travel, allowing the driving force, and therefore accelera-

tion, to drop to minimum. The additional travel time also increased the velocity of

the projectile and hence its total kinetic energy on impact with the samples. By in-

creasing the total kinetic energy embodied in the travelling projectile, the proportion

kinetic energy removed by each EDM sample was reduced, and a more homogeneous

crushing rate was encouraged.

The magazine used during Phase 2, shown in Figure 3.4 (b), was historically

used to hold thicker diaphragms than those used during this series of tests. This led

to unwanted variation in the impact velocities, visible when looking at the strain

rates of test EDM4 and EDM5 in Table 3.2. To eliminate this problem, the new

magazine, shown in Figure 3.12, was constructed.

The new magazine consisted of two parts, a cylinder with an external radius

matching the magazine location, shown in Figure 3.4 (a), and a threaded plug. The

cylinder has a recess which is threaded to match the thread on the plug. During each

test a new diaphragm is placed in the threaded recess and the plug is tightened up

using the red bar and spanner shown in Figure 3.12 (b). This allowed the application

of a much greater and regular clamping force around the edge of the diaphragm,

which can be seen in the constancy of the average strain rates (s−1) for tests 1 - 10

in fourth column of Table 3.3.
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(a) (b)

Figure 3.12 Redesigned diaphragm magazine with threaded plug and recess (a)

and tightening method recruiting leverage to provide a large even clamping pressure

around the edge of each diaphragm (b).

3.3.3 Instrumentation and data acquisition

The flat front face of the projectile provided a forced axial displacement on the flat

top face of each sample at velocity v. The back face was held stationary on the back

plate causing the sample to axially compact (strain). As each sample was crushed,

internal load carrying mechanisms transmitted load through the cellular structure to

the back plate, this load was then transmitted through the back plate and recorded

by the load cell shown in Figure 3.13 (a).

Internal air pressures were recorded at the locations shown in Figure 3.13 (b).

Samples are orientated on the back plate, using the label that was added during

construction to ensure that the double cell walls are aligned with the y axis.

Pressure gauges have two ratings, the maximum pressure they are capable of

recording (their sensitivity) and the pressure which, if exceeded, will cause damage.

The damage threshold pressure is normally double the maximum recordable pres-

sure. Matching the sensitivity of pressure gauges with the maximum experimental

pressure, while not exceeding the damage threshold will ensure the best signal to

noise ratio. The highest pressures were expected to occur in the centre of each

sample, a highest possible pressure was estimated but it was unclear exactly what
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pressures would be generated by 83%. Gauges 1 and 2 were rated to 7 and 17 bar,

while gauges 3 and 4 were rated to 35 bar.

The displacement time history of the projectile was recorded using both a laser

displacement transducer aimed at the back face of the front plate, and with high

speed video recorded using a Phantom v4.2 monochrome video camera running at

5000 frames per second with a 10 µs exposure.

Sample

Collar

Back plate

Load cell

Back stop

8
1
.4

k
g

v

Projectile

(a)

PG 1

PG 2

PG 3PG 4

52.5mm

52.5mm

20mm

52.5mm

125mm

125mmx
y

(b)

Figure 3.13 Experimental arrangement of the (a) projectile, load cell, and back

plate; and (b) pressure gauges, in relation to the samples tested during Phase 3.

Comparison with the arrangement used during Phase 2 (Figure 3.6) shows the addi-

tion of a protective steel collar, and the inclusion of two additional pressure gauges

(PG2 and PG4).

Figure 3.14 shows a detail of how the pressure transducers (gauges) were mounted

in the back plate. At each pressure gauge location, a recess was drilled in the back

plate from the far face. A mount hole matching the diameter of the pressure gauge

was then drilled to full depth and threaded. The pressure gauges were then inserted

from the rear and tightened so that an air tight seal was formed; thus, isolating the

indicated void and air contained within each sample.
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Figure 3.14 Detail showing how the pressure transducers were installed in the back

plate.

A diagrammatic representation of the instrumentation arrangement is given in

Figure 3.15. For a constant powering voltage the pressure gauges, strain gauges

(on the load cell) and laser displacement gauge, all produced a change in voltage

proportional to the change in variable they were measuring. The voltages were then

digitally recorded at discrete points in time and converted to pressures, loads and

displacements.

PG 1 PG 2 PG 3 PG 4 LDG

Amp 2
@ 100x/1x

Power
10 VDC

Power
15 VDC

Scope
20k samples @

97.656 kHz 16 bit

Laptop

Load Cell

Amp 1
@ 10000x

Power
5 VDC

Figure 3.15 Instrumentation schematic with the load cell, pressure gauges (PG)

and laser displacement gauge (LDG) highlighted with colour.

Amplifiers were used to distribute power to the instrumentation and to increase

the true signal to electrical noise ratio by providing amplification. One amplifier
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powered the load cell at an excitation of 5 Volts direct current (VDC). A second

amplifier was used to provide 10 VDC to the pressure gauges. A bench power supply

provided a stable source of DC power to the two amplifiers at 5 and 10 VDC.

Initially, semiconductor strain gauges were used to measure the strain of the load

cell wall. The shock generated by abruptly arresting the projectile with the steel

collar was enough to damage the semiconductor gauges. It was necessary to change

to less sensitive, but more robust electrical resistance foil gauges.

The output from the load cell, laser displacement gauge and all four pressure

gauges, was recorded by two combined TiePie HS4 USB Handy Scopes attached

to a laptop. The event was captured with 20 k samples at 97.656 kHz in 16 bit

resolution providing 0.2 s of recording time and 65536 voltage intervals. The scope

was triggered by the laser displacement gauge when the front plate reached set

position prior to impact and a pre trigger of 10% to capture the projectiles pre

impact trajectory.

3.3.4 Post processing methods

Matlab was used as a platform to perform post processing on the raw data. Once

imported, the first step was to apply conversion factors to the traces, converting

them to pressures, load and displacement. Any initial zero shift was also removed

from each channel by subtracting an average of the data points pre impact.

After some research into numerical filtering techniques it was possible to remove

most of the electrical noise, while maintaining the true signal. The noise was com-

posed of frequencies much higher than each true data trace so a low pass filter was

required to remove it, maintaining (passing) the true low frequency components and

removing the noise high frequency components. The most basic, and therefore easily

applicable, low pass filter is a moving average. When applied to this data set, with a

span long enough to remove sufficient noise, a moving average was found to severely

clip the amplitude of genuine peaks and troughs.

Figure 3.16 (a) shows a brick wall low pass filter. This filter passes all frequencies

below a cut off frequency Fc with their original amplitude and stops all frequencies
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above the cut off frequency. A brick wall low pass filter was implemented by decom-

posing each signal into their frequency components using a Fast Fourrier Transform

(FFT), zeroing the amplitude of all frequencies above Fc and then performing an

inverse FFT.

The brick wall low pass filter was much better at maintaining peaks and troughs

than the moving average but it introduced spurious oscillations close to regions

where there was a sharp change in gradient. Research showed that this was the

Gibbs Phenomenon [54], caused when sharply removing frequencies above a certain

value, leaving their now unbalanced counterparts in the passband. Figure 3.17

shows the effect of applying a brick wall filter to a raw trace. Note the emergence

of spurious oscillations as the cutoff frequency (Fc) is reduced below 10kHz.
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Figure 3.16 The brick wall (a) and graduated Butterworth (b) low pass filters.
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Figure 3.17 An example of the Gibbs phenomenon. Showing a raw trace, and the

raw trace after being filtered with several low-pass brick wall filters of varied cut off

frequency Fc.

Butterworth [55] discovered that the use of a graduated low pass filter with

a normalised cut off frequency to 1 radian per second was capable of eliminating

high frequencies without generating numerical ringing via the Gibbs Phenomenon.

Figure 3.16 (b) shows three Butterworth low pass filters, created using Equation

3.3, of varying order n where the gain G of the passed frequency is a function of

the normalised angular frequency ω
ωc

and angular frequency ω is related to normal

frequency F by ω = 2πF .

G(ω) =

√
1

1 + ( ω
ωc

)2n
(3.3)

This filter was implemented using the in built butter function in Matlab. With

slight variation between tests a filter of order n = 5 and cut off frequency Fc = 2

kHz was found remove a sufficient amount of noise, while maintaining the true trace

with little clipping of peaks and no added ringing due to the Gibbs Phenomenon.

A smooth, second order polynomial was fitted to the displacement time data,

allowing the velocity time history to be calculated by differentiation. A displacement

time history was also extracted from the high speed video and compared to the laser
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displacement time history to identify the data point at which impact occurred. The

time and displacement axis were shifted, setting the impact point as the origin which

enabled the calculation of axial strain over the impact event. The total transmitted

stress σ was also calculated by dividing the total transmitted load by the plan area

A = 0.0625 m2.

3.3.5 Geometrical analysis of samples chosen for testing

During sample preparation a photograph was taken of the exposed mesh. A second

photograph was taken once the top liner, with grid, was attached. Using Adobe

Photoshop the two images were corrected for lens distortion and perspective, then

overlaid. Figure 3.18 shows one of the images produced using this process, revealing

the internal geometry of samples B9 to B14. After selecting the batch of samples

to be tested, their geometry was imported into AutoCAD and digitized, allowing a

geometrical analysis to be performed.

Figure 3.18 Overlaid images revealing the internal geometry of samples B9 to B14.
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The cellular geometry of the cardboard honeycomb is created by sticking many

layers of cardboard together with strips of glue. During sample preparation the top

and bottom layers are pulled apart, resulting is a tessellation of hexagonal cells, each

with four single and two double-thickness (glue bonded) cell walls.

Figure 3.19 (a) shows the internal geometry for sample F29 with single cell walls

coloured blue and double cell walls red. The lengths of a single and double cell wall

are indicated by L1t and L2t respectively.

Alternating black and pink lines in Figure 3.19 (b) show each continuous cell

wall. The shaded cells are complete i.e. the air within them is confined by six

complete cell walls. Two adjacent cell walls enclose a strip of cells and complete

cells belonging to the same strip are shaded with the same colour.

It is worth note, that the digitised sample geometries were marginally idealised

by discounting the curvature of the cell walls close to the vertices. This was felt to

be a reasonable omission as any deviation between the photographs and the digitised

geometries was marginal. The inclusion of any curvature in the digitised geometries

would have substantially increased the time taken to carry out the digitisation and

added complexity to any subsequent numerical modelling.
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L1t

L2t

x
y

(a) (b)

Figure 3.19 Cellular structural components of sample F29. (a) Layout of double

(red) and single (blue) cell walls. (b) Layout of adjacent, continuous, cell walls

marked with alternating black and pink lines. All fully sealed (complete) cells are

shaded and those which lie between the same pair of cell walls are shaded with the

same colour, the air within being separated by only glue bonds.

The arrangement of cell walls causes anisotropy (on plan), which can be idealised

by two planes along the x and y axis as indicated by the axis labels in Figure 3.19

(a). The x plane is orientated in the direction of pull used to expand the honeycomb

mesh during construction, the y plane is perpendicular to this. The y plane is also

parallel to the average direction of the glue bonds. During the tests carried out in

Phase 2 all samples exhibited global anisotropic behaviour. Outwards lateral drift

of the cell walls, along the x plane, occurred for all tests, while there was no drift in

the y plane. In addition, a zone of bond failure was visible for almost every pair of

double cell walls and the crushed samples were significantly more permeable along

the y plane when compared to the x plane.

Geometrical variation was introduced by testing samples from three mesh types.

However, even with a tightly controlled construction process, additional inter-sample

variations were introduced.
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An idealised cell is displayed in Figure 3.20 (a), symmetrical about both axis

with four single cell walls of equal length L1t, four double cell walls of equal length

L2t and θ is the angle of expansion. L1t and L2t are pre-set by the manufacturer for

a given mesh type and the angle θ is dependent upon the applied expansion force.

In reality, during expansion of the core, any initial geometrical manufacturing errors

are magnified, causing all six individual angles and cell wall lengths to vary for each

cell. As the expansion load is applied, it is transmitted along the stiffest path, being

continually redistributed through geometrical alterations as the core is pulled apart.

An idealised cellular arrangement is shown in Figure 3.20 (b) where all cells

are aligned with their double cell walls parallel to the y axis. As the honeycomb

structure is a perfect tessellation (no empty space between cells), the aforementioned

variations in the cellular geometry also force variations in the cellular arrangement,

producing an irregular mesh. This irregular mesh causes variations in the meso-scale

geometry between samples cut even from the same honeycomb core.

L2t

L1tL1t

L2tL2t

L1t

L1tL1tL1tL1t

L2t

θ

x
y

(a)

x
y

(b)

Figure 3.20 Idealised honeycomb cellular geometry (a) and layout (b).

Table 3.4 displays a summary of the mesoscale geometrical parameters for the

tested samples including the total cross sectional area of the cardboard cell walls

Ac, average single cell wall length L̄1t, average double cell wall length L̄2t, quotient
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of total length of double cell wall to total length of single cell wall ΣL2t/ΣL1t and

the total number of complete cells ncell. To remove any bias caused by outlying

half-cut cell walls, only complete cells were used in the calculation of L̄1t, L̄2t, and

ΣL2t/ΣL1t. Wide variations between all internal angles for all cells reduced the

significance of stating an experimental value for θ. The total length of cardboard

cell wall ΣL within each sample can be calculated by dividing Ac by the thickness

of the cell wall material t = 0.28 mm.

Table 3.4 Detailed mesoscale geometrical parameters for all samples tested during

Phase 3.

Test ref Sample ref Ac (mm2) L̄ (mm) L̄1t (mm) L̄2t (mm) ΣL2t/ΣL1t ncell

T1 F25 1205 24.7 32.7 15.4 0.41 28

T2 F22 1149 24.3 30.5 17.2 0.49 25

T3 F29 1146 24.2 29.8 17.9 0.53 25

T4 F31 1145 24.3 29.0 19.1 0.60 27

F Avg 1161 24.4 30.5 17.4 0.48 26

T5 D27 1990 14.3 17.3 11.1 0.61 104

T6 D30 1947 14.4 17.0 11.7 0.65 92

T7 D24 1993 14.2 16.4 12.0 0.69 112

D Avg 1977 14.3 16.9 11.6 0.65 103

T8 B8 3776 8.0 8.3 7.7 0.91 367

T9 B11 4032 8.1 8.2 7.9 0.96 400

T10 B10 3832 8.0 8.3 7.7 0.90 361

T11 B14 3569 8.0 8.8 7.1 0.79 353

B Avg 3880 8.0 8.3 7.8 0.92 376

Average values have been calculated for each mesh type. Test T11 was performed

at a higher strain rate and is therefore not a direct comparison with the other 10

tests, so the geometry of sample B14 has been discounted from calculation of the

average B mesh parameters. Any analysis considering T11 will refer to sample B14’s

individual geometry.

63



By fixing the macroscale geometry several mesoscale geometrical parameters are

coupled. A shorter cell wall reduces the cell size, which results in an increase in the

both the number of cells and area of cardboard material (Ac) within the fixed 250

x 250 mm square macroscopic plan area. Ac increases with the ratio 1.0: 1.7: 3.3

across the three mesh types from F: D: B. Ac varied by just 60 mm2 and 46 mm2

for the F and D mesh samples but by a much larger 463 mm2 for the B mesh. L̄ is

very consistent for each mesh and decreases with the ratio 3.1: 1.8: 1.0 from F to

B, an almost direct inverse relationship to Ac.

For all samples, the glued double cell walls L̄2t were shorter than the single

cell walls L̄1t. The quotient between the total length of double and single cell wall

ΣL2t/ΣL1t increased as L̄ decreased with the ratio 1 : 1.4: 1.9. Meaning that the

proportion of bonded double to single cell wall for the B mesh was almost double

that of the F mesh.

The number of complete cells is an inverse function of the area of each cell and

is therefore an inverse square relationship to the cell wall length, increasing with the

ratio 1.0: 4.0: 14.5 from the F mesh to the B mesh. The variation also increases

as the cell size reduces, as more cells will be cut per row and column if the sample

boundary is drawn through their centre.

The highly variable mesh could then be expressed with the idealised geometry

shown in Figure 3.20. Using the average values of L̄1t and L̄2t from Table 3.4, as

constants for L1t and L2t, an algorithm was written to calculate which value of θ

would result in the recorded value of Ac within the 250 mm × 250 mm square.

Idealised geometrical parameters for each mesh type are given in Table 3.5 and the

resulting idealised cellular geometry is displayed in Figure 3.21. The idealised F cell

is also shown tessellated as an idealised F mesh in Figure 3.20 (b), which can be

compared by eye to the geometry of sample F29 shown in Figure 3.19.
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Table 3.5 Mesoscale geometrical parameters of the representative F, D and B mesh

idealised cells.

Mesh Ac (mm2) L1t (mm) L2t (mm) θ◦

F 1161 30.5 17.4 34.5

D 1977 16.9 11.6 36.3

B 3880 8.3 7.8 37.5

30.5
m

m

F

x
y

D

B
16.9 m

m

8.3
m
m

7.8 mm

11.6 mm

17.4 mm

34.5°
36.3°

37.5°

Figure 3.21 Diagrammatic illustration of the representative average F, D and B

mesh idealised cells [To scale].

The relationship between θ and Ac for a known macroscale geometry and given

cell wall lengths could then be computed. Figures 3.22 (a), (b) and (c) display how

Ac varies with θ within a 250 mm × 250 mm square, for the three mesh types tested

in this piece of work. The average geometry of samples selected for testing has been

marked with an X.
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Figure 3.22 Relationship showing how the total cardboard cross sectional area Ac

changes with the expansion angle θ within the 250 x 250 mm square for the F mesh

(a) D mesh (b) and B mesh (c), recorded values of the tested samples are marked

with an x.

3.3.6 Matrix of measured loading rates

Table 3.6 displays the loading rate information for all tests, where vi and vf are

the initial and final velocities over the impact stroke and ε̇i and ε̇avg the initial and

average strain rate.

For T1-7 (all non B mesh samples) there was an increase in the velocity of the
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projectile over the impact stroke, meaning that the projectile must have still been

driven by pressure on its rear face through the impact. For T8-10 the projectile

slowed over the impact stroke, meaning that the B mesh samples must have removed

more kinetic energy from the projectile than was being added by the driving force.

There was sufficient driving force for the high strain rate test T11 to accelerate the

projectile through the B mesh sample.

For each mesh type ε̇avg was extremely consistent. During the F mesh T1-4 and

D mesh T8-10 ε̇avg varied by 2 s−1, while still only varying by 8 s−1 between 139

and 147 for T5 and 7. The greater resistance provided by the B mesh samples was

also visible from a reduced ε̇avg.

Table 3.6 Phase 3 - Detailed loading rate information.

Test ref Sample ref vi (m/s) vf (m/s) ε̇i (s−1) ε̇avg (s−1)

T1 F25 9.58 10.76 137 145

T2 F22 9.48 10.64 135 144

T3 F29 9.46 10.63 135 144

T4 F31 9.45 10.61 135 143

T5 D27 9.48 9.91 136 139

T6 D30 9.70 10.91 139 147

T7 D24 9.48 10.67 135 144

T8 B8 9.86 8.85 141 134

T9 B11 9.72 9.28 139 136

T10 B10 9.96 8.97 142 135

T11 B14 13.70 14.58 196 202

3.3.7 Results - Macroscopic transmitted load

The stress vs strain relationship represents the global response of the cardboard

honeycomb as a unit, the total transmitted load for a given strain being a function

of the stiffness provided by the internal load carrying mechanisms at that point in
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time. The measured stress vs strain relationships, for all tested samples, are shown

in Figures 3.23 (a) F mesh, (b) D mesh, (c) B mesh and (d) T11 - B mesh (higher

strain rate). Refer to Table 3.3 in Section 3.3.1 for the complete test series detail.

(a) F mesh (b) D mesh

(c) B mesh (d) T11 B14

Figure 3.23 Stress vs strain relationship for all samples tested during Phase 3, (a)

F mesh, (b) D mesh, (c) B mesh and (d) a B mesh sample with increased strain

rate.

Pre impact, a gradually rising 1.2 kN load was recorded by the load cell, which

is thought to be the leading pressure wave generated by the rapidly accelerating (a

≈ 250 ms−2) front plate.
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Stiffening the backstop did not remove the overlying oscillations (ringing) en-

countered during the previous two phases. The ringing frequency varied between

680-860 Hz, a reduction on the 890-1150 Hz ringing frequencies observed during

Phase 2. Studying the load cell traces, shown in Figure 3.23 (a), generated when

testing the F mesh samples, provides verification that the ringing was not a genuine

component of the cardboard honeycomb response. Zero load is recorded at 15%,

35% and 55% strain for several tests and at 35% strain for T4 the load cell even

registered a negative (tensile load). There was no bond between the base of each

sample and the back plate, so it was not possible to transfer any tensile force from

the cardboard honeycomb to the load cell. Positive internal air pressures were also

recorded by several of the pressure gauges, so it is known that a compressive load

was being applied to the back plate, finally both the high speed video and laser

displacement gauge verified that the sample was being axially compressed during

the whole impact event.

The spurious oscillations could not be removed through filtering because it con-

sisted of frequency components in the same band as the true data. It is likely that

the origin on the spurious oscillations is due to the dynamics of the sample sup-

porting structure. For any load to be recorded by the load cell, the heavy back

plate must be moved. The net effect of this, at these dynamic loading rates, is that

the inertial response of the back plate would have reduced the rate at which load

was transmitted to the load cell wall. Thus, causing the rising limb of the recorded

load-time histories to appear less steep than the true load-time histories transmitted

through the cardboard honeycomb samples. The subsequent oscillations, following

the initial peak, could then be explained by the oscillatory response of the back

plate and sample supporting structure.

Reducing the mass of the back plate was not an option due to the fact it needed

to posses sufficient structural integrity to remain rigid during the violent impact

event. Attempts were made to quantify the dynamic properties of the back plate

and sample supporting structure, however due to the unknown characteristics of the

connections (welds and bolts) this was found to be a time consuming task, so much
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so that it was deemed to lie outside the scope of this thesis.

All tested samples exhibited the classical EDM behaviour, three regions char-

acterised by a peak stress σPeak, a plateau region and a stiffening limb. The exact

shape of the true trace in the plateau region is unclear due to the overlying oscilla-

tions, although it is not unreasonable to assume they oscillate about the true data.

The average stress between 20% and 60% strain has been used as a single value

to characterise the plateau stress σPlateau transmitted by each sample. Values of

average strain rate ε̇avg, σPeak and σPlateau for all samples are displayed in Table 3.7.

Table 3.7 Phase 3 - Macroscopic response summary.

Test Ref Mesh ε̇avg (s−1) σPeak (kPa) σPlateau (kPa)

T1 F 145 88.9 21.7

T2 F 144 80.7 21.4

T3 F 144 87.6 18.6

T4 F 143 86.6 18.2

F Avg 144 86.0 20.0

T5 D 139 164.3 61.0

T6 D 147 166.1 62.9

T7 D 144 169.6 59.4

D Avg 143 166.7 61.1

T8 B 134 437.2 221.7

T9 B 136 427.4 217.5

T10 B 135 419.5 206.8

B Avg 135 428.0 215.3

T11 B 202 358.6 180.5

Both σPeak and σPlateau increase as the mesh density increases. Average values

of σPeak increase from 86.0 kPa for the most coarse F mesh to 166.7 kPa for the D

mesh and 428.0 kPa for the most dense B mesh. Likewise, σPlateau increases from

20.0 kPa for the F mesh to 61.1 kPa for the D mesh and 215.3 kPa for B mesh
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samples.

T11 was performed at the higher strain rate of 202 s−1, compared with ε̇avg

= 135 s−1 used for the other three B mesh samples (T8-10). When comparing the

recorded stress strain curves of T8-10, Figure 3.23 (c), to T11, Figure 3.23 (d), there

is a reduction of the peak stress from σ̄Peak = 428.0 kPa to 358.6 kPa. Further work

would need to be carried out to identify if there is a strain rate effect contributing

to the reduction in load. The geometrical analysis presented in Table 3.4 shows that

the sample used for T11 had lower values of Ac = 3569 mm2, ΣL2t/ΣL1t = 0.79 and

ncell = 353 than the average values of the samples used in T8-10 of Ac = 3880 mm2,

ΣL2t/ΣL1t = 0.92 ncell = 376, which may account for the reduction in load.

It worth noting that at the higher strain rate, there is more interference on

the true load trace from the spurious oscillations, because the time period of each

oscillation is a greater proportion of the total time taken for each impact event.

This is illustrated in Figure 3.24, which graphs the transmitted stress for all four

B mesh samples against time rather than strain. As the stress vs time graph for

T11 exhibits a similar shape to the lower strain rate tests and strain is not linearly

proportional to time between the two strain rates, the dynamic overlying mode

must be distorting the shape of the recorded stress strain curves in time. It must

therefore be understood that the gradient of the initial rising limb, which defines

time to peak (and associated strain to peak), and stiffening limb are dependent upon

the response in the dynamic mode and not solely representative of the cardboard

honeycomb samples.
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Figure 3.24 Transmitted stress vs time for all B mesh samples, comparison between

the trace recorded by the load cell for T8-10 ε̇avg = 135 and T11 ε̇avg = 202 to

highlight the distortion caused by the overlying oscillatory response.

3.3.8 Results - Mesoscopic internal air pressures

Figures 3.25 (a), (b), (c) and (d) show the recorded internal air pressures and their

locations within each sample for the four F mesh samples, T1-4. An instrumentation

fault resulted in no reading for pressure gauge 2 (PG2) during T1. The pressure

gauge locations were shown in Figure 3.13 (b), their respective distance from the y

and x edges (dy and dx) being, PG1: dy = 20 mm dx = 125 mm, PG2: dy = 72.5

mm dx = 125 mm, PG3: dy = 125 mm dx = 125 mm and PG4: dy = 125 mm dx

= 72.5 mm.

The predominant shape of the traces recorded by gauges 2-4 is a gradual linear

rise in pressure to a plateau beginning at 30% strain, followed by a slight dip, into

an exponential rise which starts around 60% strain. For T1-4, gauge 1 recorded

no marked increase in pressure until an exponential rise beginning between 60-70%

strain. Variations on this shape include a less pronounced dip in T1 and a shorter

plateau in T4.

The magnitude of internal pressure is dependent on the distance from the sample

edge, with the highest pressures being recorded by the central pressure gauge (PG3)
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and lowest pressures by the edge pressure gauge (PG1). The intermediate gauges

(PG2 and PG4) recorded very similar pressures for T2 and T3 and sat between the

pressures recorded by the central and edge gauge for all tests. There was a brief

period, during T4, between 40 and 60% strain, where the pressure recorded by PG3

dropped, equalising with the pressure recorded by PG2.

For T1-3 the central gauge recorded a fairly consistent plateau pressure of 50

kPa while the intermediate gauges recorded a pressure of about half that, around

25 kPa. The maximum pressures were recorded by PG3 at 83% strain reaching 224

kPa for T4. During T3 and T4 the maximum pressure recorded by the edge pressure

gauge PG1 equalled that recorded by the intermediate gauge PG4.
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(a) Test T1, Sample F25.
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(b) Test T2, Sample F22.
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(c) Test T3, Sample F29.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
  0

 25

 50

 75

100

125

150

175

200

225

Strain

P
re

ss
ur

e 
(k

P
a)

 

 

PG1
PG2
PG3
PG4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
  0

 25

 50

 75

100

125

150

175

200

225

Strain

P
re

ss
ur

e 
(k

P
a)

 

 

(d) Test T4, Sample F31.

Figure 3.25 Internal air pressures vs strain and the locations that they were

recorded within all four tested F mesh samples.

For T1-4 the edge pressure gauge was not located within a complete cell, but still

recorded pressure during all four tests. Consequently, during crushing, the buckling

cell walls must have created a sealed volume, trapping the air around PG1, allowing

it to be compressed and increase in pressure. It is also worth noting that due to the

coarse irregular mesh PG1-3 did not always lie within the same strip of cells.

Towards the centre of each sample there is an increase in both the amount of

cell wall material surrounding the internal gas, and the path length to the perimeter
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free air boundary. The amount of cardboard, and how it is distributed, differed

between the x and y plane. On a cross section through the F mesh samples on the y

plane (top to bottom) there were a maximum of 3 complete sealed cells, on a cross

section on the x plane there were between 5 and 6 complete cells. The magnitude

of internal air pressures recorded by the two intermediate gauges (PG 2 and 4)

was similar, which suggests that the number of complete cells between any given

cell and the perimeter is not the controlling factor in the magnitude of air pressure

development.

Assuming a symmetrical internal air pressure distribution, a linear change in

pressure between the gauges and zero pressure at the perimeter, it was possible to

use the traces recorded by gauges 1-3 to plot an estimated internal spacial pressure

distribution for each sample. Figure 3.26 shows contours of internal pressure which

developed at various levels of strain ε, during T2, on a cross section through the

centre of sample F22. Crosses indicate the location of each pressure gauge. Before

40% strain the rate of pressure increase is directly proportional to the distance from

the sample edge, resulting in a triangular pressure distribution through the sample,

with a pressure differential between the all three gauges in the region of 25 kPa.

After 40% strain the rate of pressure increase at the centre dramatically increases

and by 83% strain the pressure differential between the central and intermediate

gauges is 86 kPa, while the differential between the edge and intermediate gauge is

still only 29 kPa. Between 40 and 60% the total pressure across the sample remains

almost constant, after 60% the pressure on all gauges begins to rapidly increase,

including the pressure being recorded by the edge gauge.
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Figure 3.26 Internal pressure distribution, for varying levels of strain on a cross

section through the centre of sample F22, Test T2.

Figures 3.27 (a), (b) and (c) show the recorded internal air pressures for T5-7 and

their locations within the three tested D mesh samples. Three prevailing features

were visible on the traces recorded by the internal pressure gauges for T5-7, a linear

increase, changes in gradient of the linear increase and an exponential increase. The

exponential increase began at around 70% for almost all traces. The changes in

linear gradient were visible on all the internal traces (PG2-4), an example of which

can be seen in T6 on the trace recorded by PG3 at 47% strain.

The general trend was for an increase in the magnitude of pressure with an

increase in distance from the sample perimeter, although Figure 3.27 (b) shows that

from 60 % strain onwards the pressure in the centre and at the intermediate gauges

was very similar. For all three tests the pressure recorded at the sample edge was

lower than the pressures recorded internally. During T6, the edge pressure gauge

increased to 25 kPa but then dropped off, suggesting a venting of the entrapped

pressurised air. For all three D mesh tests, at 70 % strain the pressure began to

increase at the sample edge. The highest pressure which was recorded within the

D mesh samples was during T5 by the central gauge, its magnitude was 248 kPa
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(marginally higher than the maximum 224 kPa recorded within the F mesh samples).

The pressure recorded by the edge pressure gauge (during the late response) was

actually lower than what was recorded during crushing of the F mesh samples, it

is thought that this may somehow be due to interference between the cardboard

structure and the steel collar as the potential exists for localised sealed volumes to

be created at large deformations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
  0

 25

 50

 75

100

125

150

175

200

225

250

Strain

P
re

ss
ur

e 
(k

P
a)

 

 

PG1
PG2
PG3
PG4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
  0

 25

 50

 75

100

125

150

175

200

225

250

Strain

P
re

ss
ur

e 
(k

P
a)

 

 

(a) Test T5, Sample D27.
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(b) Test T6, Sample D30.
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(c) Test T7, Sample D24.

Figure 3.27 Internal air pressures vs strain and the locations that they were

recorded within all three tested D mesh samples.

Figure 3.28 shows the pressure distribution, for various levels of strain, through

the centre of the sample D27 used in T5. At 20 % strain the pressure was equal on

both the central and intermediate gauge forming a region of higher equal pressure

across the central 100 mm. After 20% strain the pressure contour began to take on a

parabolic shape. By 83% the central high pressure region still existed with only a 25

kPa differential pressure between the central and intermediate gauge, outside of the

high pressure region there was a rapid drop off in pressure towards the sample edge.

Between 20 and 60% strain the rate of total pressure increase through the sample

was almost constant, after 60% strain the total pressure began to exponentially

increase. The pressure recorded by the edge gauge steadily increased between 20

and 76.5% strain, but then began to rapidly increase at almost the same rate as was

observed on the traces recorded by the central and intermediate gauges.
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Figure 3.28 Internal pressure distribution, for varying levels of strain on a cross

section through the centre of sample D27, Test T5.

Figures 3.29 (a), (b), (c) and (d) show the recorded pressures and their locations

within the four tested B mesh samples during T8-11. T11 was performed at a higher

strain rate of 202 s−1 than that used during T8-10 of 135 s−1.

The pressure recorded by PG3 during T8, shown by the blue line in Figure 3.29

(a), was clipped to 610 kPa by the amplifier. The predominant shape of the traces

recorded by PG2-4 was a smooth exponential rise from 0 to 83% strain. The gradient

of the exponential rise was dependent on the distance from the sample centre. For

T9, the edge pressure gauge also followed this trend but began decreasing at 45 %

strain, this behaviour was also visible, to a lesser extent, during T8. The pressures

recorded by the two intermediate gauges (PG2 and PG4) were very close for T8

and T9, but began to separate at 65% strain during T10 and 50% strain during

T11. The maximum pressure, recorded by the central gauge, was very consistent

and reached close to 800 kPa for T9-T11.

There was no obvious strain rate effect when comparing T11 to T8-10, the devel-

opment of pressures was very similar between all four tests. It is worth remembering

that the sample used during T11 also had slightly lower geometrical properties than
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the samples used during T8-T10, having a lower values for Ac = 3569 mm2 and ncell

= 353, compared to the averages Ac = 3880 mm2 and ncell = 376, which will affect

the response. The pressure recorded by PG4 during T11 was the highest of the four

B mesh tests, and T11 was the only test which saw a drop in the pressure recorded

by PG2. The usual final exponential rise recorded by PG1 was more gradual and

began earlier than the three lower strain rate tests.
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(a) Test T8, Sample B8.
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(b) Test T9, Sample B11.
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(c) Test T10, Sample B10.
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(d) Test T11, Sample B14.

Figure 3.29 Internal air pressures vs strain and the locations that they were

recorded within all four tested B mesh samples. T11 was performed at the higher

strain rate of ε̇avg = 202 in comparison to ε̇avg = 135 for T8-10.

Figure 3.30 shows contours of internal pressure, for varying values of strain,

through the centre of sample B11. Like the other two mesh types, the rate of

increase in pressure is dependent on the distance from the edge, being highest in

the middle of the sample. The pressure profile develops in a similar manner to that

observed within the F mesh, rather than the parabolic distribution present in the

D mesh samples. The pressure distribution is almost triangular at 20% strain with

a singular gradient from the centre to edge pressure gauge, with increasing strain
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the pressure gradient between the central and intermediate gauge steepens quicker

than the gradient between the intermediate and edge gauge, resulting in a peaked

shape by 83% strain. Comparing the gaps between the contours, the total pressure

can be seen to be rising constantly at an exponential rate.
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Figure 3.30 Internal pressure distribution, for varying levels of strain on a cross

section through the centre of sample B11, Test T9.

To estimate the total load transmitted by the internal pressures, it was necessary

to identify a reasonable 2D pressure distribution across the base of each sample. It

was assumed that the pressure would be equal within each individual cell, meaning

that the pressure would be applied over discrete areas rather than a smooth linear

distribution. The complex cellular geometry was idealised by discretising the 250

mm long cross section into a series of bars. Note that the true honeycomb geometries

are anisotropic in the x and y direction and therefore not symmetrical. For the

purpose of this approximate projection, for each mesh type, a number of bars was

chosen to represent a characteristic value for the number of complete cells which

would form a complete path through the y axis.

The previously extracted linear pressure profiles were then used to identify the

pressure at locations corresponding to the centre of each discretising bar. Figures
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3.31 (a),(b) and (c) show the estimated distribution of pressure on a cross section

through the centre of an F, D and B mesh sample at 83% strain.
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(a) Test T2, Sample F22.

0 125 0
0

50

100

150

200

250

Distance from edge (mm)

P
re

ss
ur

e 
(k

P
a)

(b) Test T5, Sample D27.
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(c) Test T9, Sample B11.

Figure 3.31 Discretization of pressures at 83 percent strain for a sample from each

mesh type.

Similarity in the magnitude of recorded air pressures by gauges 2 and 4 suggested

that the internal air pressure profile took on a degree of symmetry about both the

x and y axis, with the magnitude of pressure being proportional to the distance

from both sample edges. To obtain an estimation of the total load transmitted by

the internal air pressures, the pressure profile derived from pressure gauges 1, 2,

and 3 was projected in two dimensions through the sample, forming a four sided

pyramid-like pressure distribution with its peak located at the sample centre. It was

then possible to calculate the total load by multiplying each individual pressure by

the area it acted upon.

Figures 3.32 (a), (b) and (c) show the estimated total stress transmitted by the

internal air pressures σAir, for tests performed with the F, D and B mesh samples.

Several features were common to the development of σAir within samples of the same

mesh type. The development within the F mesh samples can be characterised by

two regions, a plateau of 10 kPa and an exponential increase beginning between 50

and 60 % strain. For the D mesh samples there were three features, a steady rise to

a plateau of about 40 kPa at 40% strain, a short plateau and finally an exponential

rise beginning at 60% strain, there was no plateau during T7. For the B mesh

samples there were also three visible features: a steady rise to about 75 kPa at 50%
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strain, a dip in pressure and finally the exponential rise beginning at 60% strain.

An estimated σAir vs strain relationship, shown in Figure 3.32 (d), was calculated

for the F, D and B meshes by averaging the values of σAir for a given strain for all

individual tests of each mesh type. The value of σAir was dependent on the mesh

density, with the most load being carried by air pressures in the B mesh samples.

The air pressures carried the least load in the F mesh samples and the D mesh was

between the two. At 80% strain the value of σAir for the F mesh increased to match

that for the D mesh; this is due to the final rapid rise in pressure recorded by the

edge pressure gauge which was characteristic of the F mesh samples.

84



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140

Strain

σ A
ir (

kP
a)

 

 

T1
T2
T3
T4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

120

140

Strain

σ A
ir (

kP
a)

 

 

(a) F mesh
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(b) D mesh
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(c) B mesh
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(d) F, D and B mesh type avg

Figure 3.32 Estimated total stress transmitted by the internal air pressures σAir

vs strain for all individual tests, F mesh (a), D mesh (b), B mesh (c) and mesh type

averages (d).

Figures 3.33 (a), (b) and (c) show the total stress recorded by the load cell σTotal

and the estimated stress transmitted by the internal air pressures σAir for a sample

from the each of the three mesh types. At any value of strain, the difference between

σTotal and σAir (taking into account the spurious oscillations) must be the total stress

being transmitted by the cardboard structure. The internal air pressures act as a

significant load carrying mechanism for all three mesh types. The early response
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is controlled by the cardboard structure, but as the sample is compacted and the

internal pressures develop, the proportion of the total load being carried by the air

pressures significantly increases.

While σAir increased as the cell size was reduced, its proportion of σTotal reduced.

Looking at the response of sample F22 shown in Figure 3.33 (a), at 40% strain almost

all of the stress is being carried by σAir, in comparison to the response of sample

B11 shown in Figure 3.33 (c), where at 40% strain σAir is just less than half of the

σTotal. For all samples, the stiffening limb shown by the sharp increase beginning at

70% strain on the σTotal curves appears to be solely controlled by the exponential

rise in the internal air pressures.

It was observed that the magnitude of internal pressure increases with distance

from the sample edge. It was also observed that within each sample there was a

development of an area of high pressure surrounded by a rapid drop off towards the

sample edge. If the plan area was increased, it follows that the magnitude of internal

pressure would increase, and the area of high pressure would expand, resulting in

an increased value of σAir and an increased proportion of σTotal being carried by air.
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(a) Sampe F22, Test T2
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(b) Sample D27, Test T5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
  0

 50

100

150

200

250

300

350

400

450

Strain

S
tr

es
s 

(k
P

a)

 

 

σ
Total

σ
Air

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
  0

 50

100

150

200

250

300

350

400

450

Strain

S
tr

es
s 

(k
P

a)

 

 

(c) Sample B11, Test T9

Figure 3.33 Total recorded transmitted stress σTotal and proportion transmitted

by the internal air pressures σAir vs strain, for a sample from each mesh type.

3.3.9 Analysis of experimental data

The value of Ac is a function of all mesoscale parameters and is therefore a useful

value to quantify the geometry of each sample. Figures 3.34 (a) and (b) show σPeak

and σPlateau plotted against Ac. Blue crosses indicate experimental values, through

which it was possible to fit two second order polynomials shown by the solid blue

lines. Both lines must pass through the origin because when Ac is equal to zero, no

stress will be transmitted. Equations 3.4 and 3.5 relate σPeak (Pa) and σPlat (Pa)
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to Ac (mm2).
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(b)

Figure 3.34 Peak σPeak (a) and plateau σPlateau (b) transmitted stresses for all

samples vs Ac (blue) and Ac after application of the double to single cell wall quotient

ΣL2t/ΣL1t. Recorded data is indicated with ×.

σPeak = 0.0128A2
c + 59.33Ac (3.4)

σPlateau = 0.0132A2
c + 4.05Ac (3.5)

During the geometrical analysis it was observed that the proportion of double

to single cell wall, expressed by the quotient ΣL2t/ΣL1t, increases as the cell size

reduces. When the quotient was applied to the Ac of each recorded data point, as

shown by the red crosses, it was possible to fit a straight line through the exper-

imental data, suggesting that the second order relationship between stress σPeak,

σPlateau and Ac may be due to the changing proportion of double to single cell wall.

This agrees with the literature, as the static transmitted peak and plateau stresses

are known to be dependent upon the yield stress of the cell wall material [29, 51];

and the bonded double cell wall has been reported to have a greater yield stress due

to the presence of the glue [51]. The red lines are used to simply illustrate a trend in
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the data set, their actual positioning holds little meaning as the material properties

of the single and double cell walls are unknown.

Each cluster of blue data points represents a mesh type, the cluster at 1200

mm2 being the F mesh, 2000 mm2 the D mesh and 3900 mm2 the B mesh samples.

The spread between points in each cluster indicates the effect of the geometrical

variations generated during sample construction. The F and D mesh samples are

very tightly clustered, while the B mesh samples are more spread out, meaning that

the inter-sample variations have little effect on the response for the F and D mesh,

but and have a more pronounced effect the finer B mesh. This is most likely due to

the added difficulty encountered during construction of the B mesh samples, when

having to apply a very large force to expand the core, it was difficult to unify the

magnitude of expansion across the core. Also, since the B mesh core was more dense

than the D and F cores, a given percentage of variation will result in a larger actual

variation of Ac.

Figure 3.35 (a) shows both σPeak (blue) and σPlateau (red) plotted against the

average cell wall length L̄ of each sample, Figure 3.35 (b) also shows σPeak and

σPlateau, but plotted against the number of complete cells, ncell. A negative cor-

relation is visible between the average wall length and the transmitted stresses.

However, the correlation is a much weaker than the correlations observed between

the cross sectional area of cardboard and transmitted stress.
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(b)

Figure 3.35 Peak σPeak (blue) and plateau σPlateau (red) transmitted stresses for

all samples vs the average cell wall length L̄ (a) and number of complete cells ncell

(b). Recorded data is indicated with ×.

Like Ac, the value for ncell is a function of the other geometrical parameters.

Also like Ac, there is a strong positive correlation between ncell and the transmitted

stresses. Equations 3.6 and 3.6, valid over the region 25 < ncell < 400, relate ncell

to σPeak and σPlateau.

σPeak = 937ncell + 6.477× 104 (3.6)

σPlateau = 542ncell + 5.711× 103 (3.7)

If a volume of air, of equal volume to the tested samples (250x250x70 mm3),

was confined at its perimeter by a rigid boundary and axially compressed at the

rates used in this series of tests, the column of air would effectively be undergoing

adiabatic 1D compression. The resulting increase in pressure and therefore stress

transmitted by that volume of air σAir,1D, for a given value of strain ε, is given by

equation 3.8, where atmospheric pressure PAtmospheric = 101.325kPa and the ratio

of specific heat capacities for air cp/cv = 1.4.
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σAir,1D(ε) =
PAtmospheric
(1− ε)cp/cv

− PAtmospheric (3.8)

This equation is displayed graphically by the dashed black line in Figure 3.36

(a), on the same graph the estimated σAir for each of the three tested mesh types

is also shown. At 83% strain, σAir,1D reaches a value of 1109 kPa. The exponential

shape of the σAir,1D curve is echoed in the traces of σAir, with a reduction of gradient

as the cell size is increased. During the impact event, the top and bottom face of

the sample are held flat against the front and back plate and the displacement of

the top face is controlled, meaning that any deficit between σAir and σAir,1D must

either be due an increase in internal volume by expansion of the plan area or a loss

of gas from within the initial volume. Observations of sudden dips in pressure, made

in Section 3.3.8, specifically on the edge pressure gauge and changes in gradient on

all gauges combined with the fact that inspection of the crushed samples showed an

expansion in the x direction, suggest that the deficit is actually caused by both.
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Figure 3.36 Stress which would be transmitted by the internal air pressures if the

honeycomb sample provided 100% lateral confinement σAir,1D and average stress

transmitted by the internal air pressures for the three tested mesh types σAir vs

strain.

If the air within the cardboard honeycomb samples was perfectly confined during
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the crushing event, and the volumetric compressive strain it experienced was solely

due to an axial 1 dimensional axial compression of magnitude ε, σAir would be equal

to σAir,1D. In reality σAir is less than σAir,1D and so the quotient between the actual

and maximum possible air pressures can be defined as the honeycombs confinement

quotient φConf , where

φConf =
σAir(ε)

σAir,1D(ε)
(3.9)

which when combined with Equation 3.8 gives

σAir(ε) =

[
PAtmospheric
(1− ε)cp/cv

− PAtmospheric
]
× φConf . (3.10)

Figures 3.37 (a), (b) and (c) show the recorded σAir curves with coloured solid

lines and the calculated σAir (from Equation 3.10) using dashed black lines for the

three mesh types B, D and F respectively. It was found that by using a maximum

and minimum value of φConf for the B and D meshes, two forms of Equation 3.10

could be generated which were good fits to the early (B mesh: ε < 40% and D

mesh: ε < 30%) and late (B mesh: ε > 70% and D mesh: ε > 75%) regions of the

mesh average σAir curves. Within this envelope, lies a transition period where φConf

reduces with increased strain, i.e. the confinement of the honeycomb reduces, either

from loss of the pressurised air or from outwards lateral expansion of the honeycomb

structure.

Figure 3.37 (c) shows that it was not possible to accurately fit the same model

to the σAir F mesh type average. The early section is very short and the gradient of

the curve in the late section, after 70% strain is much steeper than the transformed

σAir,1D curve. In Section 3.3.8 it was observed that the steep increase is due to the

contribution from the late development of high pressures at the sample edge.

The maximum values of φConf represent the initial confinement provided by the

honeycomb structure, the values for the B and D meshes were 0.667 and 0.417

respectively, meaning that the B mesh structure provided about 50% more confine-

ment than the D mesh structure. Over the transition zone between the two dashed

black lines, the degree of confinement changes due to lateral expansion and venting
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of the internal gas. The transition zone was shorter for the finer B mesh than the D

mesh. This may be due to the finer mesh, with more cardboard cell wall material,

providing less opportunity for air to escape and internal air pressures to adjust the

structure, before the lateral permeability reduces and lateral stiffness increases (due

to folded cell walls), trapping the air, and entering the final stage. During the final

stage φConf reduced to 0.264 and 0.094 for the B and D mesh respectively which is

a 60% reduction in φConf for the B mesh and a 77% reduction for the D mesh.
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(b) D
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(c) F

Figure 3.37 Solid coloured lines show the experimental σAir vs strain for the B (a),

D (b) and F (c) meshes and the black dashed lines show analytical representations

created by applying different values of the confinement quotient φConf to Equation

3.10.

3.3.10 Conclusions from Phase 3

Impact tests on samples of various geometries, has shown the cardboard honeycomb

dynamic response to be sensitive to variations in the geometrical arrangement of

the cell walls. A geometrical analysis of the tested cardboard honeycomb samples

revealed that, even when extreme care was taken during sample preparation to
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produce repeatable samples, variations and manufacturing imperfections were still

present in the cellular geometry. The geometry of individual cells, within each

sample, was observed to vary widely, but when an average cell geometry was taken,

the geometrical variation between two samples of the same mesh type was small.

Any inter-sample variation appeared to be controlled mostly by the expansion

angle, i.e. the amount of force used to expand the flat pack core during sample

construction. One observed trend, was that as the cell size (mesh type) was reduced

from F to B, the proportion of double-ply to single-ply cell wall material increased;

this has potential significance on the cardboard honeycombs impact response be-

cause the increase in proportion of double to single cell wall also means that there is

an increase in the volume of glue (i.e. non-cardboard material) within the cardboard

honeycomb sample.

The overlying oscillations, which have been confirmed as spurious, were still

present on the load cell traces and while they disguised the exact shape of the EDM

stress strain response, it was still possible to extract single values for the peak and

plateau transmitted stresses for each sample.

It was shown that an increase in the cross sectional area of cardboard material,

number of complete cells, and a reduction in the average cell wall length, caused

an increase in both the peak and plateau transmitted stresses; empirical formulae

were presented. It was also observed that the proportion of double to single cell wall

material affected the peak and plateau stresses.

In agreement with the observations made by Ripperger and Briggs [8], the inter-

nal air pressures do indeed act as a significant load carrying mechanism during the

cardboard honeycombs dynamic response. The internal air pressures increase with

strain, the early response is dominated by the structure, whereas the late response

is composed of both load transmitted through the structure and the internal air

pressures.

Simultaneous measurement of the internal air pressures, at three locations on

one plane, allowed the pressure profile, and its evolution with strain, to be observed

(Figures 3.26, 3.28 and 3.30). The magnitude of the air pressure at a point within
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the honeycomb was dependent on the distance from the sample edge, with the

highest pressures occurring in the centre. The rate of pressure increase was also

dependent on the distance from the sample edge, with pressures increasing more

rapidly towards the sample centre. Within the D and B mesh samples, at low degrees

of axial compaction (below 20%) a central plateau of equal pressure was observed.

As axial strain increased, this plateau reduced and the edge-centre pressure gradient

increased in steepness.

As the cell size was reduced, the magnitude of internal pressures increased. The

maximum recorded pressure at the centre of each F mesh sample was around 180

kPa, whereas the maximum recorded pressure at the centre of the B mesh samples

was in the region of 800 kPa. Furthermore, the total stress transmitted by the

air pressures increased as the cell size was reduced (Figure 3.32 (d)); However, the

significance of the internal air pressures (in comparison to the structural response)

reduced with reduced cell size (Figure 3.33).

It was discovered that the total stress transmitted by air pressures within a

sample of cardboard honeycomb can be expressed by applying a reduction coefficient

to the equation of state, which would describe a rapid 1-D compaction of a perfectly

restrained sealed volume of air, where the coefficient represents the total lateral

confinement provided by the cellular structure at a given strain and reduces as the

cross sectional area expands outwards and/or pressurised air escapes via blowout.

It was decided that measuring the high strain rate compressive response of the

cardboard would be an extremely challenging task and therefore outside of the scope

of this thesis. The practicalities themselves posed problems, such as forming solid

samples of the cell wall material, which could actually be tested, would change the

nature of the cardboard and, in doing, so reduce the scientific validity of any results.

Equipment was not available to perform high strain rate tensile testing of the cell

wall material and it was not possible to source samples identical to the single and

bonded cell walls for testing.

Valuable insight has been gained into the mesoscopic mechanics of the dynamic

cardboard honeycomb response. It has been shown that the spatial and temporal
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development of internal air pressures is dependent on the geometrical arrangement

of the honeycomb cell walls. Higher pressures have been observed to occur towards

the honeycomb centre and within samples with a smaller cell size; however, coupled

geometrical parameters such as cell size, wall length, number of cells, and area of

cardboard mean that further research must be performed to isolate the role of each

parameter in determining the magnitude of the response.
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Chapter 4

Development, verification and

validation of a numerical model

To further investigate the high strain rate impact response of the cardboard hon-

eycomb, without the economical and physical limitations imposed by experimen-

tal methods, a numerical model was constructed. The measurements made during

Chapter 3, were limited by the cost and availability of instrumentation, for instance

pressure measurement was limited to four discrete points. Additionally, tests could

only be performed on samples of cardboard honeycomb which could be sourced,

limiting the scope of possible material and geometrical parameters.

By constructing a numerical model, it was possible to view the full spatial and

temporal evolution of the internal air pressure and structural load carrying mech-

anisms, for any given set of material and geometrical parameters, thus yielding a

much more complete view of the cardboard honeycomb high strain rate impact re-

sponse. This chapter details the main tasks which were performed to develop the

modelling capability necessary to capture the axial impact response of a gas-filled

honeycomb structure akin to the cardboard honeycomb.

The numerical modelling platform of choice was LS-Dyna, a commercial, explicit,

finite element package, which specialises in high strain rate non-linear structural dy-

namics; crucially, LS-Dyna also provided the ability to model the rapid compression

and transport of gasses, and their interaction with the cellular structure.
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While the computational technology was readily available, its use requires a high

level of expertise; before each individual modelling technique could be employed it

was essential to ensure that it was verified. In addition, numerical stability and

computational cost were both factors which were incredibly onerous; all utilised

modelling techniques were not only required to be individually accurate, but also to

be compatible with each other. When combined to produce a full scale model, these

techniques needed to be computationally efficient enough to allow the numerical

analyses to be completed within an acceptable time frame.

As complexity was increased through the gradual inclusion of additional numer-

ical components, existing literature was used to provide analytical verification. Sec-

tions 4.1 and 4.2 detail the independent development of the structural (Lagrangian)

and gas (Eulerian) components. In Section 4.3 fluid structure interaction was inves-

tigated to allow the transfer of forces between the Lagrangian and Eulerian compo-

nents. Finally, in Section 4.4, the individually verified components were combined

to produce a full scale, fully coupled model of the cardboard honeycomb and con-

fined air. Two impact events, from Chapter 3, were replicated, and validation was

achieved by comparison between the resulting numerical responses and experimental

data.

4.1 Development of the Lagrangian numerical mod-

elling techniques required to capture the struc-

tural response

This section details the development and analytical verification of a numerical model

capable of capturing the axial buckling behaviour of the honeycomb cell walls. Con-

sideration is given to the mechanisms which contribute to both the peak and plateau

regions of the macroscopic EDM response.

Timoshenko and Gere [56] calculated the Euler critical buckling load PCrit for a

rectangular plate subject to an even uni-axial compressive load along two opposite
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simple supported edges, with the other two free, as

PCrit =
π2D

L2

(
L

H
+
H

L

)2

(4.1)

where L is width of loaded edge and H the height of the plate. D is the flexural

rigidity of the plate (its stiffness in bending), which is a product of its thickness t

and the Elastic modulus E and Poisson’s ratio ν of the plate material

D =
Et3

12(1− ν2)
. (4.2)

Young and Budynas [57] presented Equation 4.3, an adaptation of Equation 4.1,

which describes the critical buckling stress of a plate subject to an even uniaxial

compressive load along two opposite simply supported edges, with the other two

clamped,

σCrit =
5KE

(1− ν2)

(
t

L

)2

(4.3)

where the factor K is dependent on the fixity of the plate edges and, for this

case, is equal to 5.73 when H
L
≥ 2.1 [57].

By assuming each individual cell wall within the honeycomb is a simply sup-

ported top and bottom, and laterally restrained by the adjacent cell walls, and the

displacement of the top of all cell walls is equal (they all reach the buckling load at

the same time), Zhang and Ashby [29] used Equation 4.3 to develop Equation 4.4,

which states the maximum peak stress which will be transmitted by a honeycomb

before the cell walls collapse due to Euler buckling.

σPeakEul =
5KE

(1− ν2) cosα(1 + sinα)

(
t

L

)3

(4.4)

where σPeakEul is the critical buckling stress, i.e. the maximum load transmitted

through the cell walls, prior to buckling, divided by their total contributory area

(as shown in Figure 4.1.) and α = 90− θ where θ is the expansion angle discussed

in Chapter 3 and for a regular hexagon α = 30◦. Equation 4.4 has been used by
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E and Wang [43, 44] to express the peak stress, σPeak, transmitted by cardboard

honeycombs.

In the paper by Zhang and Ashby [29] it was also discussed that the critical

buckling load may be controlled by crushing of the cell wall material, and in that

case

σPeakCru = σY ield
2

cosα(1 + sinα)

(
t

L

)
(4.5)

gives a second expression for the peak stress σPeakCru where σY ield is the yield

stress of the honeycomb cell wall material.

Post buckling, the honeycomb cell walls enter a progressive plastic alternate

folding phase, which causes the drawn out plateau region of the macroscopic stress

strain curve. McFarland [28] assumed that the progressive alternate folding mecha-

nism propagated via in-plane shear of the cell walls. By considering the mechanics

of the in-plane shear mechanism McFarland made an initial prediction of the plateau

stress, transmitted by a honeycomb, during axial progressive buckling.

Later, work by Wierzbicki [22] superseded McFarland’s model by showing that

the main energy dissipation mechanism was not provided by in-plane shear, but

by rolling of the cell walls over a travelling hinge with a toroidal geometry. The

predictions made by Wierzbicki were found to give good correlation with both the

transmitted plateau stresses and deformed shapes observed during experimental

crushing tests on metallic honeycombs; published by McFarland [28] and Magee

and Thornton [58]. The analytical model presented by Wierzbicki predicted that

the average wavelength λ of each fold would be

λ = 1.642
3
√
tL2 (4.6)

and the total number of folds at full compaction nf is given by nf = H/λ.

Additionally, the force transmitted to the base of the cell walls PPlat during each

fold was given as

PPlat = 8.61σ0t
5/3H

1/3 (4.7)
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where σ0 is the stress required to maintain plastic deformation (i.e. the flow

stress of the material). For elastic, perfectly plastic materials σ0 = σY ield.

E and Wang [51] modified the folding mechanism adopted by Wierzbicki to al-

low its application to cardboard honeycombs, by incorporating the observed yield

strength differential between single and double-ply cell wall material (parameter k),

and allowing length variations of the horizontal hinge lines to account for the de-

struction of the glue bond. The result was Equation 4.8 which gives the transmitted

macroscopic plateau stress σPlatAn as a function of the single-ply cell wall yield stress

σY,t1, a quotient of the double to single-ply cell wall yield stress k = σY,t2/σY,t1 and the

thickness to length ratio of the cell walls (t/L), during a quasi-static axial crushing

event

σPlatAn = σY,t1D1 (k)

(
t

L

) 5
3

+ σY,t1D2 (k)

(
t

L

)2

(4.8)

where constants D1 and D2 are calculated using

D1(k) = 1.427(2k + 1)
2
3 (4k + 1)

1
3 , D2(k) = 0.3849(2k − 1). (4.9)

For the honeycomb samples tested by E and Wang [51], the value of k was found

to be dependent on the relative humidity (RH) and varied from 1.572 at 30% RH

to 1.301 at 95% RH with the average value being k = 1.41.

4.1.1 A corner element model

A regular hexagonal honeycomb mesh can be divided into a series of equal sized

segments. Each segment, as shown in Figure 4.1, is centred on a vertex and is

defined by a triangular boundary, which bisects the three adjoining cell walls and

connects the centres of the three surrounding cells.
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Figure 4.1 An illustration of how a regular hexagonal honeycomb structure

(θ = 60◦), can be discretised into a series of identical corner elements, each with a

tributary area Ai.

The three half length cell walls within each segment are comprised of two sheets,

folded at the vertex and bonded along the length of a shared cell wall. This seg-

ment of the cellular structure can be treated as a self contained individual corner

element that is laterally supported by its neighbouring corner elements. For impact

problems where the internal air pressures are not significant, such as is the case,

when considering the early region of the response, all of the load transmitted within

the contributory area Ai is transmitted through the cell wall material. At a given

strain the magnitude of load being transmitted through the corner element Pi(ε) is

dependent on its current axial stiffness; how the axial stiffness changes with strain is

a function of its axial crushing response. The total stress being transmitted by each

segment of the honeycomb is the load Pi(ε) being carried by the corner element cell

walls divided by its contributory area Ai and so the total macroscopic stress being

transmitted by the full honeycomb for a given strain σTotal(ε) is

σTotal(ε) =
n∑
i=1

Pi(ε)

Ai
. (4.10)

where n is the total number of corner elements. Given angle θ and the lengths

of the single L1t and double cell walls L2t, Ai can be calculated with

Ai = L1tL2t sin θ + L2
1t sin θ cos θ (4.11)
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or with equation 4.12 when L1t = L2t

Ai = L2 (sin θ + sin θ cos θ) . (4.12)

The first step to numerically capture the physics involved during compaction of

a whole honeycomb structure was to accurately model the axial buckling response

of a single corner element. A component schematic of a corner element numerical

model is presented in Figure 4.2. A total of four separate parts, identified by their

part identification numbers PIDs, were necessary to model the two connected sheets,

two parts representing the single-ply cell walls (PID 1 and PID 2) and two parts

representing the bonded cell walls (PID 801802 and PID 802801). The notation

used to label each bonded cell wall refers, firstly, to the sheet it belongs to 80(1)802

and secondly the sheet it is bonded to 80180(2).

With the aim of removing any unnecessary initial complication, model param-

eters expressing the physical problem in its simplest form were chosen. Figure 4.2

(a) shows three equal length cell walls, separated by three equal angles of 120◦, rep-

resenting a segment from a regular hexagonal mesh. In Chapter 3 cell wall lengths

were observed to vary between 7.1 and 32.7 mm, for this test a length of L = 10

mm was chosen for the three cell walls. A macroscale height of H = 70 mm was

used, which was consistent with the tested samples.

As was shown in Figure 4.1, the corner element is just one segment of a continu-

ous cellular structure. To realise this numerically, symmetrical boundary conditions

were applied to the ends of each half cell wall (a distance of L/2 from the vertex) by

restraining displacements parallel to the axis running along the length of each cell

wall and by allowing only rotations perpendicular to the same axis. The symmet-

rical boundary conditions were applied along the full height H of the three edges,

effectively reflecting the cellular structure about a plane perpendicular to the end

of each cell wall. The base of the cell walls were restrained, preventing rigid body

translational displacement in the z axis.
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(a) (b)

Figure 4.2 Schematic of the (initial) corner element numerical model, showing: (a)

plan view with mesoscale geometry and (b) side elevation with macroscopic height.

The cell wall material is much thinner in its thickness dimension than the other

two, in plane, dimensions and so the stresses perpendicular to the cell wall surfaces

and their resulting strains are negligible in comparison to the in plane stresses. Shell

element formulations omit the out of plane normal stress σzz, and are therefore

suitable to this problem. This omission of σzz also reduces the computational cost

required to solve the kinematic equations making shell elements a cheaper alternative

to solid elements. Shell elements also carry the advantage of being easier to work

with, making meshing easier, and being able to undergo large deformations while

still maintaining numerical stability.

There are many shell elements formulations available for use within LS-Dyna,

each with their advantages and disadvantages. To model this problem there were

three key criteria:

1. Due to the extreme structural deformations that occur during crushing of the

honeycomb structure, it was necessary for the chosen element formulation to

be highly robust.
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2. It was also desirable to keep the computational cost to a minimum, to allow

for a high volume of elements in the full scale model.

3. The alternate folding progressive collapse mode [22] meant that the elements

close to each vertex would undergo high degrees of warping which must be

accommodated for in their formulation.

The default Belytschko-Lin-Tsay [59] element type is computationally efficient

due to its use of co-rotational coordinates, single point integration and the use of the

standard Cauchy stress within the formulation. Use of the standard Cauchy stress

removes the need for additional conversion calculations, because the constitutive re-

lationships within LS-Dyna are in the format of Cauchy stress vs displacement [60].

The Belytschko-Lin-Tsay element formulation assumes a perfectly flat planar ele-

ment and therefore can’t accurately capture warpage. The solution to this problem

lay in activating the computationally efficient Wong-Chiang modifications, which

allow all four nodes to displace normal to the element mid-plane, and add warping

stiffness terms, which control the magnitude of these non planar displacements [61].

At this point it is worth noting that keywords are the form of input used to call

upon specific subroutines in LS-Dyna; also, each line of a keyword is known as a card

and contains the values necessary for the called upon subroutine. The Belytschko-

Lin-Tsay shell element with the Wong-Chiang modifications (implemented by spec-

ifying ELFORM = 10 on the *SECTION SHELL keyword), with four integration points

through its thickness, was found to give good results at modest cost, while main-

taining numerical stability under extreme deformations.

While being highly efficient, single point integration allows unhindered oscilla-

tions of hourglassing modes, i.e. these are deformation modes which have a net-zero

displacement at the central point and are therefore not resisted by the element for-

mulation [62]. These oscillations can grow exponentially removing a substantial

proportion of energy from the simulation and cause spurious displacements which

interfere with the real kinematics of the objects being modelled.

Hourglass modes can not be fully restrained, as they may contribute to a pro-
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portion of the genuine structural response. Flanagan and Belytschko [62] developed

a stiffness-based hourglass control, which applies resistance to the hourglass forces

to prevent them from growing out of control. This stiffness-based hourglass con-

trol, with a stiffness coefficient of Q = 0.05, was found to keep hourglass energies

to a minimum and was enabled for the shell elements by setting IHQ = 4 on the

*HOURGLASS keyword attached to the parts defining the cell walls.

When developing a numerical model, the choice of mesh size is a compromise

between computational cost and physical accuracy. The computational cost of this

model was relatively low in comparison with the larger scale models discussed later

in the thesis. With this in mind, the opportunity was taken to use a very fine mesh,

it was found that a mesh size of δELv = 0.271 mm vertically gave the smallest mesh,

which still resulted in acceptable simulation times (during this early stage of model

development, where many simulations were required, 24 hours was decided to be

an acceptable simulation time. A thorough discussion of the variation simulation

times is given later in the thesis); this size was increased to δELh 0.278 mm in the

horizontal direction to fit exactly 18 elements in the 5 mm span. Table 4.1 displays

a summary of the corner element model geometrical properties.

Table 4.1 Corner element model geometrical parameters.

H L θ◦ δELv δELh

70 mm 10 mm 60◦ 0.271 mm 0.278 mm

4.1.2 Determination of cardboard material properties

The literature discussed in Sections 2.5 and 2.4 indicated that the mechanics of the

cardboard honeycomb axial crushing response are dependent on the elastic modulus

E, yield stress σY ield, single to double-ply cell wall yield stress ratio k, and the

Poisson’s ratio ν (see Table 2.1). This suggests that the mechanical behaviour of an

axially crushed honeycomb is mostly dependent on the pre-yield region of the cell

wall’s constitutive model.

Literature specific to the mechanics of cardboard honeycombs during an axial

107



crushing response, has neglected any orthotropy of the cardboard cell wall mate-

rial, and been found to give good agreement between experimental observations and

semi-empirical predictions of cardboard honeycomb’s quasi-static energy dissipat-

ing characteristics [44]. Perhaps unsurprising, since it is logical that during an axial

crushing event the material properties parallel to the direction of loading, and hence

direction of buckling / progressive folding, would govern the magnitude of the me-

chanical response. Furthermore, cardboard exhibits elastic-plastic behaviour with

parabolic strain hardening, a good approximation of the constitutive material model

can sometimes be achieved with an almost linear curve [47].

Taking the above findings into consideration, it was decided that a piecewise-

linear elastic-plastic constitutive model, would provide an appropriate approxima-

tion of the real, cardboard cell wall material; thus, allowing the physical mesoscopic

mechanisms to be studied without adding additional, unknown, complexities. The

effects of a more complex, comprehensive material model can be studied at a later

date. A diagrammatic representation of the piecewise-linear elastic-plastic consti-

tutive model, used during the numerical simulations is shown in Figure 4.3, in the

pre-yield elastic region stress is coupled to strain by

σElastic = Eε. (4.13)

and in the plastic region

σPlastic = EεY ield + Etεp. (4.14)

where εY ield is the strain at the yield point, εp is the plastic strain, and Et is the

tangent hardening modulus which controls the rate of post-yield strain hardening.
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Figure 4.3 Piecewise linear elastic-plastic constitutive model used for the cell wall

material, (for specific values see Table 4.2).

A material parameter study is presented in Chapter 5 which investigates, in

detail, how variations in the constitutive model parameters affect the macroscopic

dynamic response of the cardboard honeycomb. For this model, the literature was

used as guidance to attain initial realistic estimations of the material parameters

and to ensure that any numerical modelling methods were suitable to the cardboard

honeycomb problem. From quasi-static tensile tests of a cardboard honeycomb cell

wall material Wang and E [44] determined values of σY ield = 7.21 MPa and E =

2.44 GPa, a further series of testing by Wang, Wang, and Liao [42] gave lower values

of σY ield = 4.25 MPa and E = 0.89 GPa (see Table 2.1). The chosen values for this

numerical model were σY ield = 5 MPa and E = 2 GPa, which both sit between the

reported values and are convenient round figures.

E and Wang [51] discovered that the double-ply, bonded, cell wall material had

a higher yield stress than the single cell wall material, the quotient between the two

being
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k =
σY,t2
σY,t1

(4.15)

where σY,t2 and σY,t1 are the yield stresses of the double and single cell wall

material. Values of k were found to vary depending on the relative humidity, the

average value being 1.41.

Szewczyk [53] and Schulgasser [52] reported values of ν for several paper types

between extremes of 0.2 and 0.375 with an average of about 0.3, which was chosen

for the numerical model.

An initial value of 0.2 MPa was used for Et, a factor of 10000 less than E, with

the intention of providing a modest degree of strain hardening to aid in numerical

stability, but being low enough so that strain hardening would not interfere with

the collapse mode, allowing a direct comparison between the numerical model and

the analytical relationships from the literature.

The cardboard material used to construct the tested samples was of 170 gm−2

weight and has a measured average thickness of 0.28 mm, therefore its average

density was ρ = 607 kgm−3.

The linear elastic plastic constitutive model was implemented in LS-Dyna using

the *MAT PIECEWISE LINEAR PLASTICITY keyword, a summary of the chosen values

is given in Table 4.2.

Table 4.2 Corner element model material parameters.

σY ield k E Et ν ρ

5 MPa 1.0 2 GPa 0.2 MPa 0.3 603 kgm3

4.1.3 Structural contact algorithms

Contact algorithms allow numerical bodies to touch, and prevent unwanted pene-

trations, by allowing the transference of force. They can also be used to simulate

frictional interfaces, and specify permanent or conditional attachment between ob-

jects. There are many contact algorithms available within LS-Dyna (a comprehen-
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sive guide is given by Hallquist [60]), those which were found to be effective for this

model are presented here.

A contact algorithm must be defined for every interface that the user wishes

to incorporate in the model, i.e. between all elements that are likely to meet, and

must not penetrate each other, during the simulation. This would be extremely

time consuming to do individually; in practice contact is applied to, and between,

groups of elements. Conveniently, in the corner element model, the elements were

already arranged in groups, by their part id number. During collapse, there was a

possibility for elements from all parts to meet each other, and so it was necessary

to define contact between all combinations of parts, including self-contact between

elements of the same part. It was also possible to model the cohesive interface

between the double cell walls by using a tie break contact algorithm.

Ascertaining a compatible combination of contact algorithms, that generated all

the desired contact interfaces and provided the cohesive bond between parts 801802

and 802801, was challenging. Table 4.3 shows the array of contact algorithms that

were implemented in this model.

Table 4.3 The contact algorithms and associated parts used in the (initial) corner

element numerical model, where A = “Automatic surface to surface”, B = “Auto-

matic single surface” and X = “Automatic one way surface to surface tie-break”.

PID 1 2 801802 802801

1 B A A A

2 A B A A

801802 A A B X

802801 A A X B

Compatibility issues arose when using tie-break contact algorithms (to model

the cohesive bond) in conjunction with the normal automatic surface contact algo-

rithms. Simplistically, there was interference between the repulsive force generated

by the automatic surface contact and the attractive force generated by the tie-break
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contact. The solution lay in placing the bonded cell walls on top of each other

and then using OPTION = 2 to enable the bond for nodes which are initially in con-

tact and PARAM = 1 to ignore the shell surface offsets when calculating the penetra-

tion distance on the *CONTACT AUTOMATIC ONE WAY SURFACE TO SURFACE TIEBREAK.

This method also required that the shell normals, of the bonded elements, face each

other; when the tie-break fails and the shells separate, the initially stacked nodes

will move towards the tail end of the normal vector.

During the initialization stage of an analysis the LS-Dyna executable searches

for initial penetrations and tries to remove them in a single time step by applying

nodal forces. Setting PENCHK = 1 and IGNORE = 1 on the *CONTACT AUTOMATIC

SINGLE SURFACE keyword circumvented this by instructing Dyna to ignore the initial

penetrations and apply no repulsive force to the stacked nodes until the tie-break

was broken and they moved outside of the single surface contact envelope which

surrounded the shells. These modifications would not interrupt the desirable self-

contact provided by the single surface algorithm, because adjacent nodes of the same

part would still surrounded by the contact surface.

4.1.4 Response to compressive axial ramp load

The cell walls were subject to a uniform axial compression by applying the linearly

increasing axial load, shown in Figure 4.4, to the nodes at top of the cell walls

(at z= 70mm). The existing literature suggested that the magnitude of peak and

plateau stresses transmitted during the axial crushing response was a function of

the cell wall thickness (t) and cell wall length (L), specifically the quotient between

the two (t/L). The cell wall thickness to length quotient (t/L) was varied by holding

L constant and changing t. To keep the relative loading rate constant for different

(t/L) values, an estimated critical buckling load PCrit was calculated by taking the

minimum value of Equation 4.4 and 4.5 and multiplying by Ac. The gradient of the

ramp load was set so that the applied load passed through PCrit at 0.1 ms; thus,

providing a rapid rate of loading, characteristic of an impact event.
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2PCrit

Figure 4.4 Time dependent axial compressive load vs time.

The peak transmitted stress was calculated by summing the vertical reaction

forces of every node at the base of the cell walls and dividing by the tributary area

of the corner element Ai. The shape of the numerical transmitted stress strain curves

took on one of two forms; diagrammatic representations of both are given in Figures

4.5 (a) and (b).

0
0 ε

σPeakNum

σ′PeakNum

σPlatNum

(a)

0
0 ε

σPeakNum

σPlatNum

(b)

Figure 4.5 The two numerical model responses, (a) double peaked and (b) the

single peaked.

Recorded values of the initial peak stress σPeakNum (red) and, if existent, the

secondary peak stress σ′PeakNum (green) for (t/L) values from between 0.005 and

0.03 are shown in Figure 4.6. Equations 4.4 and 4.5, which analytically describe

the maximum transmitted stresses before collapse due to Euler buckling or mate-

rial failure, were used with the model material and geometrical parameters to give
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Equations 4.16 and 4.17

σPeakEul = 4.847× 1010

(
t

L

)3

(4.16)

σPeakCru = 7.698× 106

(
t

L

)
(4.17)

which have also been plotted on Figure 4.6 with solid and dashed black lines.

As the load was ramped up, so was the stress within the cell walls. Once the stress

reached a critical value, the structure buckled and the load dropped. Theoretically,

the critical value would be decided by the buckling mechanism that required the

lowest load.
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Figure 4.6 Analytical peak stress predictions σPeakEul (Equation 4.4) and σPeakCru

(Equation 4.5) with numerical peak stresses σ′PeakNum and σPeakNum (see Figure 4.5)

vs varied (t/l) values.

There was very good agreement between the buckling response of the numerical

model and the analytical predictions, suggesting that the numerical methods were

capturing the physics described by the analytical relationships. For all analysis

σPeakNum was almost exactly equal to the dominant of the two buckling mechanisms,
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which was σPeakEul to the left of (t/l) = 0.0125 and σPeakCru to the right. For analyses

dominated by the Euler buckling mode, there was a double peaked response, where

the structure stiffened up after the initial yield to σ′PeakNum.

The value of (t/L) at which the dominant buckling mode changes can be calcu-

lated by taking the intersect of Equations 4.4 and 4.5

ξ =

√
2σY ield(1− ν2)

5KE
(4.18)

where

(
t

L

)
< ξ ⇒ σPeak ≈ σPeakEul(

t

L

)
> ξ ⇒ σPeak ≈ σPeakCru.

(4.19)

4.1.5 Response to a forced displacement

Once confidence had been gained in the fundamental numerical methods, the top

and bottom liner sheets could be introduced, the loading method changed to a

forced displacement (simulating that used during the experimental testing) and the

crushing stroke extended into the plateau region. The necessary corner element

model amendments are shown in Figure 4.7.

Figure 4.7 Necessary amendments to the corner element model to allow the addi-

tion of the top and bottom liner sheets, while also maintaining effective contact and

numerical stability.
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The top and bottom liners were modelled with the same shell elements used for

the cell walls and they were allocated PIDs 500 and 501 respectively. To simulate the

bond between the top and bottom of the cell walls and the liners, a bonding method

capable of attaching shell edges to shell surfaces was required. At large deformations,

many attempted methods resulted in penetration of the shell edges through the liner

surface and numerical instability causing a forced analysis termination. The solution

was to use a *CONTACT TIED SHELL EDGE TO SURFACE OFFSET contact, defining the

shell edge nodes at the top and bottom of the cell walls as a slave node set, and

the connecting liner part (PID 500/501) as the master with a 0.05 mm offset.

While this achieved effective contact between the cell wall edges and the liner

parts, the nodes at top and bottom edges of the cell walls were now subject to

conflicting penalty forces from both the TIEBREAK and new TIED contact algorithms,

leading to severe numerical instabilities. To remedy this, it was necessary to move

a ring of elements at the top and bottom of each cell wall to separate parts (PIDs

400 and 401). These parts were then omitted from the TIEBREAK contact, effectively

releasing just the shell edge nodes to be tied to the liners without conflict.

Table 4.4 shows the resulting array of contact types, which were found to be com-

patible while providing stable and effective contact during the progressive structural

buckling encountered when compacting the hexagonal corner element model to high

degrees of strain.
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Table 4.4 The contact algorithms and associated parts used in the (amended)

corner element numerical model, where A = “Automatic surface to surface”, B =

“Automatic single surface”, X = “Automatic one way surface to surface tie-break”

and Y = “Tied shell edge to surface offset”.

PID 1 2 801802 802801 400 401 500 501

1 B A A A A A A A

2 A B A A A A A A

801802 A A B X A A A A

802801 A A X B A A A A

400 A A A A A A A+Y -

401 A A A A A A - A

500 A A A A A+Y - - -

501 A A A A - A - -

A linear forced displacement was applied to the top liner using the *BOUNDARY

PRESCRIBED MOTION. Three strain rates were chosen which covered the range used in

the experimental testing, 50, 100 and 200 s−1, which corresponded to constant im-

pact velocities of 3, 7 and 14 ms−1. Figure 4.8 shows the recorded peak transmitted

stress for each strain rate, as (t/L) was varied.
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Figure 4.8 Analytical peak stress predictions σPeakEul (Equation 4.4) and σPeakCru

(Equation 4.5) with values of numerical peak stresses σPeakNum at varied strain rates

(ε̇) and (t/L) values.

There was good agreement between the trend of the quasi-static analytical crush-

ing buckling mode and the numerical results for all simulations. The gradient of the

numerical (dynamic) stress-(t/L) relationships were steeper than the quasi-static

relationship, suggesting that the enhancement in the dynamic peak stress increases

with (t/L). Furthermore, a very marginal strain rate effect begins to emerge as (t/L)

increases. It is thought that this strain rate effect may be the emergence of inertial

stiffening due to an increase in mass (i.e. wall thickness). Enhancements in the axial

crushing stiffness of honeycomb structures due to strain rate have been reported in

the literature [23, 24].

At these loading rates, the response appears to be solely governed by the crushing

buckling mode. The absence of the Euler buckling effect was thought to be due to

the lack of time allowed for the structure to respond. The following calculations

give some basis for this assumption. The strain at the yield εY ield is given as

εY ield =
σY ield
E

. (4.20)
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The vertical displacement of the top liner that causes yield ∆HY ield is

∆HY ield =
HσY ield
E

(4.21)

and so the time taken for the cell walls to yield TY ield for a given impact velocity

vi can be calculated as

TY ield =
HσY ield
Evi

. (4.22)

The time taken for a stress pulse to travel to the base of the sample is

TWave =
H

c
(4.23)

where c is assumed to be the 1D longitudinal wave speed

c =

√
E

ρ
. (4.24)

In order for the structure to buckle under global Euler buckling, its full length

must first be subject to compression. The absolute minimum time required for this

to occur, is the time taken for a stress wave to travel from the impact point (at the

top of the cell walls) to the supported base and back, this time is 2× TWave. If the

time taken for the cell walls to buckle due to yielding of the material is less than

2× TWave, the buckling mode must be dictated by crushing of the cell wall material

and the magnitude of the peak transmitted stress in the region of σPeakCru, where

TY ield ≤ 2TWave =⇒ σPeak ≈ σPeakCru. (4.25)

The above relationship can be revised into a more convenient form

vi,cru ≥
cσY ield

2E
=⇒ σPeak ≈ σPeakCru (4.26)

which allows the calculation of the minimum impact velocity required to ensure

that the peak stress will be dictated by yielding of the cell walls, vi,cru. For a cell

wall material, the minimum value of vi,cru can be obtained by using the maximum
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reported value of σY ield and minimum value of E. For the cardboard honeycomb

cell wall material this was σY ield = 7.21 MPa [44] and E = 0.89 GPa [42], which

results in a value of vi,cru = 4.81 ms−1. During the experimental impact testing, the

minimum recorded impact velocities during Phase 2 and 3 were 5.56 ms−1 and 9.45

ms−1 respectively. It is therefore not unreasonable to assume that the peak buckling

load recorded during all experimental tests was a function of the cell wall crushing

buckling mode.

In cases such as this, where the single and double-ply cell walls have equal yield

stress, k=1 and Equation 4.8, which gives an analytical prediction of the quasi-static

(and homogeneous with axial strain) plateau stress σPlatAn, becomes

σPlatAn = 5.076σY ield

(
t

L

) 5
3

+ 0.3849σY ield

(
t

L

)2

. (4.27)

The dashed black line in Figure 4.9 shows the plateau stress predicted by equation

4.27 for varied (t/L) values with the material yield stress used in the model σY ield.

On the same graph, values of the plateau stress transmitted by the numerical model

σPlatNum when crushed at strain rates of 50, 100 and 200 s−1. A solitary value of

σPlatNum was calculated for each analysis event by taking the mean transmitted stress

from 20 to 50% strain, each of which is indicated on Figure 4.9 with a respective

marker.
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Figure 4.9 Analytical plateau stress predictions σPlatAn (Equation 4.27) with values

of numerical plateau stresses σPlatNum at varied strain rates (ε̇) and (t/L) values.

The numerical model showed excellent consistency with the quasi-static analyti-

cal predictions. A small, strain rate effect is visible when comparing the 100 and 200

s−1 amounting to an increase of roughly 2.5 kPa for all analyses. As (t/L) increased

above 0.02, a second strain rate effect, with increasing magnitude, began to emerge

between the 50 and 100 s−1 analyses. It is worth note that because there was no

strain rate sensitivity included in the utilised cell wall constitutive model, the strain

rate effect observed above must be a sole product of the interaction between the

loading rate and the mechanics of the folding mechanism.

4.1.6 Mesh study

Consistency between the numerical model and the theoretical predictions (based on

observed physical behaviour), suggested that modelling techniques employed so far

were capable of capturing the failure mechanisms which contribute to the dynamic

crushing response of a cellular honeycomb material. In order to apply the modelling

techniques to a full, non-uniform, cellular structure, it was necessary to reduce the

required computational cost while maintaining accuracy.
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One common method of reducing computational cost is to increase the size of the

finite elements. This increases the maximum permissible time step (in agreement

with the Courant condition, meaning less time steps are required to advance for the

desired analysis time) and reduces the computational cost of each individual time

step (as there are less simultaneous equations to solve).

The mesh used for all analyses performed above, that has been found to produce

good results, consisted of rectangular elements 0.0271 high by 0.0278 mm wide,

giving an average size element size δEL of 0.275 mm. For this study, two additional

meshes were constructed with 0.5 and 1.00 mm square elements, giving 140 and

70 elements respectively, over the 70 mm crushing height, while there were 10 and

5 elements respectively along the 5 mm half length cell wall. To give a direct

comparison, both cell wall thickness and strain rate were held constant at 0.2 mm

and 100 s−1. Figure 4.10 shows the full transmitted stress vs strain behaviour for

all three mesh sizes.
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Figure 4.10 Full macroscopic numerical responses (σTotal) for varied mesh size δEL,

produced by the corner element model with (t/L) = 0.02 and ε̇ = 100 s−1.

The overall response of all three mesh sizes was very similar, consisting of a peak,

followed by a very level plateau region and finally a sharp increase, once the folds
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begin to bear on each other and the structure stiffened up. There were, however,

subtle differences, which were most obvious when comparing the response of the

most coarse 1 mm mesh (red line) with the response of the two finer meshes (blue

and green lines). The oscillations about the plateau are caused by variations in the

axial geometrical stiffness as each fold propagates. These oscillations, were much

more pronounced and of a lower frequency for the 1 mm mesh. The structure with

the 1 mm mesh also reached the stiffening phase slightly earlier than the other two

meshes. In Figure 4.11 the x-axis has been adjusted to show a detail of the initial

peak.
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Figure 4.11 Detail of peak macroscopic numerical responses σTotal for varied mesh

size δEL, produced by the corner element model with (t/L) = 0.02 and ε̇ = 100 s−1.

The early oscillations, including the initial peak, were found to be an artefact

introduced by the contact algorithms; the true peak value can be found by taking

an average across the oscillatory region. The shape of the softening limb becomes

increasingly drawn out and convex as the mesh size is increased. This is thought

to be due to the strain required for the first fold to fully form, with a coarser mesh

causing a recruitment of a larger region of cell wall material.

Figures 4.12 (a) and (b) show the singular extracted values of the peak (blue)
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and plateau (red) stresses against mesh size. On the same graph, the analytical

predictions are shown with dashed black lines. The difference between the magnitude

of the numerical and analytical peak stresses can be explained by the previously

observed strain rate effect. Over the three mesh sizes used, there is a linear reduction

in peak stress of 20.7 kPa/mm, which results in a reduction of σPeakNum of 11.7%,

when increasing the mesh size from 0.275 to 1 mm. Figure 4.12 (b) shows that there

is no significant impact on σPlatNum when increasing the mesh size from 0.275 mm to

0.5 mm. Between a mesh size of 0.5 mm and 1 mm there appears to be a threshold,

after which an increase in element size caused in increase of the plateau stress; by a

mesh size of 1 mm there was an increase of 8.6% to 43 kPa from the original value

of 38 kPa.
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Figure 4.12 Relationship between (a) σPeakNum and (b) σPlatNum and δEL for the

corner element model with (t/L) = 0.02 and ε̇ = 100 s−1. Analytical values σPeakCru

and σPlatAn as predicted by Equations 4.5 and 4.27 are given for reference.

Wierzbicki [22] showed that total length of each fold λ is a function of both the

thickness t and length L of the cell walls, where

λ = 1.642
3
√
tL2. (4.28)

It follows that the total number of folds, which will be present in the final crushed
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geometry nfold, can be calculated as simply H/λ. For the model used in the mesh

study, Equation 4.28 predicts a λ of 4.46 mm giving a nfold of 16. Figures 4.13

(a), (b) and (c) show the fully crushed, final geometries of the 0.275, 0.5 and 1mm

meshes.

(a) 0.275 mm, nfold = 18 (b) 0.5 mm, nfold = 19 (c) 1.0 mm, nfold = 17

Figure 4.13 Final deformed shapes at 85% strain for the three mesh sizes. Single-

ply cell walls are shaded blue and red.

While all three mesh types show slight variation from the predicted 16 folds, they

are generally in good agreement. Further research would be required to identify the

cause of variation, but for the purpose of this thesis, sufficient confidence has been

gained that the physics involved during the folding mechanism are being captured

by the utilised numerical techniques. There is no obvious correlation between the

number of folds and the mesh size. Comparison of the deformed shape produced

by the 1 mm mesh, with the deformed shapes produced by the other two meshes,

suggests an explanation of possible threshold that was perceived in Figure 4.12 (b).

For both the 0.275 and 0.5 mm meshes there are enough elements to smoothly resolve

the shape of a single fold, and so changing the mesh size would have minimal effect

on the folding mechanism. For the 1 mm mesh, the folded shape is much rougher,

and so logically would provide more resistance. It must be noted that while the

overall final deformed geometry produced by the 1 mm mesh does not look realistic,

the number of folds and the recorded plateau stress was not significantly different

from the response produced by the other two meshes.
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The numerical analyses were performed on a Windows 7 desktop PC with 8 GB

of RAM and an Intel core i7 2600 CPU clocked at 3.4 GHz. The computational cost

for each mesh size can be expressed as a quotient φCost of the required real time

TReal for a numerical run time TNum where φCost = TReal/TNum. For example, it may

take 100 seconds of real time to simulate a numerical event which is a total of 1

second in duration; in this case TReal = 100, TNum = 1 and φCost would be equal to

100.

To remove any bias introduced by highly distorted elements, the calculated values

of φCost, given in Table 4.5, were based on the numerical response between 0 and

50% strain.

Table 4.5 Comparison of relative costs φCost of three corner element model simu-

lations performed using different mesh sizes δEL.

δEL 0.275 mm 0.5 mm 1 mm

φCost 2.2× 106 1.7× 105 4.8× 104

To clarify, 1 second of numerical analysis time with the 0.275 mm mesh would

take 2.2 × 106 seconds, or 25.5 days. The relationship between mesh size and com-

putational cost, for this particular model, is non-linear, with the 0.5 and 0.257 mm

meshes being a factor of 3.54 and 45.8 times more expensive than the 1 mm mesh.

While computational cost was not a limiting factor at this stage in the modelling

process, it has been shown that even with a relatively basic model, increasing the

mesh size provides a substantial reduction in cost while introducing disproportion-

ately small numerical error.
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4.2 Development of the Eulerian numerical mod-

elling techniques required to capture the de-

velopment of internal air pressures

In order to model the development of pressures within the honeycomb, it was neces-

sary to first identify and verify a numerical modelling method capable of accurately

capturing the displacement and deformation (and associated variations in density

and pressure) of a gaseous material. Within LS-Dyna there are two primary meth-

ods for modelling fluid and gas material: Smooth Particle Hydrodynamics (SPH)

and the fully Eulerian finite element method. In terms of LS-Dyna syntax, the

fully Eulerian method is a special formulation of the Arbitrary Lagrange Eulerian

method, whereby after each time step the fluid mesh is returned to its original

position allowing the material to pass between elements.

During the preliminary modelling stage, the feasibility of both methods was

investigated; when investigating the use of the SPH method, numerical stability

could not be achieved when the SPH expressed air was used in conjunction with

highly distorted shell elements, thus, it was discounted early on. Implementation of

the fully Eulerian method was not without its difficulties, however, it proved more

robust, and through a process of iterative model development a methodology was

arrived at, which allowed stable numerical modelling of an air filled cellular structure

incurring large structural deformations as a result of high strain rate impact loading.

In Section 3.3.9 of Chapter 3 it was discussed that the air within the cardboard

honeycomb is being subject to a rapid, and therefore adiabatic, change in volume;

Equation 3.8 gave the overpressure which would be generated if a column of air was

subject solely to a 1 dimensional adiabatic change in volume by strain ε. Writing

Equation 3.8 instead in terms of the final absolute pressure P2 we get

P2 =
PAtmospheric
(1− ε)cp/cv

(4.29)

which states the maximum absolute pressure which will occur within the card-
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board honeycomb, for a given strain, if all air is contained throughout and there is

no change of the internal cross sectional area, and cp/cv is the ratio of specific heat

capacities (at constant pressure and constant volume).

During the experimental testing, the maximum recorded internal air pressure was

9 bar; Equation 4.29 predicts that the maximum possible air pressure, well after the

useful EDM response (at 90% strain), will be 25 bar. At 300◦ K and 40 bar, the

compressibility factor for air is 0.9917 [63] (the quotient of the actual pressure to

the pressure predicted by the ideal gas law), and so at the expected pressures and

ambient temperatures, the air within the cardboard honeycomb can be assumed to

be acting as an ideal gas.

A form of the ideal gas equation of state (EOS) is given below, which relates

the pressure within a region of gas P to its current density ρ, temperature τ and its

specific gas constant RSpecific.

P = ρRspecificτ (4.30)

According to Mayers law, Rspecific = cp − cv, and so

P = ρ (cp − cv) τ (4.31)

where cp and cv are the specific heat capacities of a gas when held at a constant

pressure and constant volume. A value of cv = 722.9 J/kg.K was obtained for air, at

20◦ C (τ = 293◦ K) from the work published by Magee [64], and the widely accepted

value of the ratio of specific heats for air (γ = 1.4 [65]) was used to calculate a value

of cp = 1012 J/kg.K.

The standard atmospheric pressure is 101.325 kPa, at this pressure, with the

parameters discussed above, Equation 4.31 yields a density of 1.2 kg/m3. Table

4.6 shows a summary of the ideal gas properties that were used for the numerical

modelling of air.

128



Table 4.6 Adiabatic ideal gas properties used for air in the numerical analyses.

ρ0 (kg/m3) cp (J/kg.K) cv (J/kg.K) γ τ (◦K) PAtmospheric (kPa)

1.2 1012 722.9 1.4 293 101.325

To develop the modelling capability necessary to simulate a rapid change in

volume of a body of air, a predictable and simplistic event was required. A column

of air, at an initial state representative of an ambient atmosphere, was allowed to

double in volume by expanding into an equal sized vacuum. Figure 4.14 shows a

schematic of the LS-Dyna numerical model.

Figure 4.14 Schematic of the model used for verification of the Eulerian numerical

methodology.

A geometry of 10 x 10 x 70 mm, for both parts, was chosen to resemble the volume

of air contained within the smallest cells observed during the impact testing, that

is, the case which was expected to be the most challenging to capture numerically.

Verification was achieved by ensuring that the pressure and density of the gas in

its final, expanded state, matched that predicted by Equation 4.29. In its final

state, the gas expanded to occupy the total internal volume of parts one and two,

effectively undergoing a negative strain of 100 %, meaning ε = −1. Substituting

into Equation 4.29, the final equilibrium pressure is calculated as

P2 =
101.325× 103

(1− (−1))1.4
= 38.4kPa (4.32)

and as the mass is constant, for a doubled volume the density will half ρFin = 0.6

kg/m3.
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Within LS-Dyna two keywords are commonly used to describe the pressure-

volume relationship of air, *EOS LINEAR POLYNOMIAL and *EOS IDEAL GAS. It was

discovered, that in problems such as this, where a gas must be transported a large

distance relative to its Eulerian domain mesh size, cumulative numerical errors result

in the emergence of spurious pressure and density gradients when the *EOS LINEAR

POLYNOMIAL keyword was used. No such behaviour was observed when using the

*EOS IDEAL GAS keyword and for that reason it was used for all subsequent numerical

analysis involving air.

The *MAT NULL material model was used in combination with the equation of

state, allowing the definition of a material with no shear resistance by instructing

the numerical solver to ignore deviatoric stresses. On this keyword viscosity, den-

sity and a pressure cut-off are defined. The inclusion of viscosity in this, and all

subsequent simulations, was found to be negligible, and so it was omitted from all

numerical simulations herein. To prevent the gas from providing any significant ten-

sile resistance to rapid reductions in pressure, a pressure cut-off was defined as an

extremely small negative number −1× 10−15, which limited the maximum possible

negative pressure. It is necessary to define a material type for all parts in LS-Dyna,

a material type for the vacuum region (Part 2) was defined using using the dummy

material *MAT VACUUM keyword, with a density of 1× 10−9 kg/m3. Both the air and

vacuum were allocated a respective *ALE MULTI-MATERIAL GROUP, instructing Dyna

to prevent mixing and to track the interface between them.

Both parts were defined with solid, 8 noded, 2 x 2 x 2 mm cuboid Eulerian

elements, by using the *SECTION SOLID ALE keyword. A single point integration

multi material element formulation was used, by defining ELFORM = 11, allowing

each individual Eulerian element to contain a proportion of both the air and vac-

uum. Nodes are shared at the interface between the two parts, allowing material to

be transported freely across the interface. The fully Eulerian case of the ALE for-

mulation was activated by including the *CONTROL ALE keyword and turning mesh

smoothing off with AFAC = -1, fixing the position of the Eularian mesh in space.

The number of cycles between advections was set to 1, ensuring that the original
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mesh geometry was restored at the end of each time step with the second order Van

Leer advection method.

Boundary conditions were set with single point constraints on the external nodes,

restricting only translational displacements in the degrees of freedom perpendicular

to each surface. A reduced time step scaling factor of TSSFAC = 0.5 was used to

ensure numerical stability when using the Eularian element formulation.

It was discovered that during this relatively long duration event, the use of a

single precision solver resulted in a gradual loss of energy from the model and so

double precision was required to maintain accuracy. For short duration events, in

the order of milliseconds, single precision was found to be adequate.

Figures 4.15 (a) and (b) show the average pressures and densities of part 1 (red),

and part 2 (blue), against time, for the numerical simulation. Values, calculated

above, of pressure PAn,F in = 38.4 kPa and density ρAn,F in = 0.6 kg/m3 of the gas in

its final expanded state are shown with dashed black lines.
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(b)

Figure 4.15 Evolution towards a final equilibrium state following a rapid expansion

of air from part 1 (atmospheric) into part 2 (vacuum), (a) pressure and (b) den-

sity vs time. PAn,F in and ρAn,F in indicate the predicted final pressure and density

respectively.

There was excellent agreement between the numerical model and the analytical
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prediction. A shock front was induced due to the initial sharp change in pressure at

the interface between parts 1 and 2. The pressurised gas rushed into the vacuum,

causing a rapid increase in both pressure and density in part 2 (to a peak at 0.5

ms), which was matched by an equal drop in pressure and density in part 1. Sub-

sequent reflections caused exponentially decaying oscillations of both the pressure

and density about the steady state.

4.3 Development of the numerical modelling tech-

niques required to provide coupling between

the cellular structure (Lagrangian) and the

internal air (Eulerian) materials

As the internal volume within the cardboard honeycomb reduces, the enclosed air

is compressed by movement of the cell walls and, in return, the compressed air dis-

tributes a load to the honeycomb structure proportional to the pressure differentials

either side of each cell wall. In order to capture this mutual exchange of forces

between the enclosed air and the honeycomb structure, it was necessary to develop

the capability to numerically couple the Eulerian (air) and Lagrangian (structural)

parts.

Effective coupling can be defined as coupling which prevents unwanted leakage

of the Eulerian material through the coupled solid surface, does not introduce nu-

merical instability and has a minimal impact on the computational cost. To ensure

that effective coupling could be achieved between the Eulerian gas and Lagrangian

shell structure, a modification of the event modelled in the previous section was

considered; the single point constraints which provided perfect containment at the

boundary of part 2 in Figure 4.14, were replaced with a rigid shell container and a

coupling definition between it and the rapidly expanding gas.

Figure 4.16 shows the schematic of the modified numerical model. Both parts

1 and 2 were defined in an identical manner to the previous model, with only the
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geometry of part 2 being adjusted to allow for the possibility of flow through the

shell container. Part 3 was given the same element formulation that was found

to give good results when modelling the cell walls during the structural response,

(Belytschko-Wong-Chiang). It was found that effective fluid structure interaction

(FSI) was much easier to obtain when the shell element size was matched to the

Eulerian element size; 2 x 2 mm quadrilateral elements were used for part 3 to

match the 2 x 2 x 2 mm hexahedral elements used for parts 1 and 2.

Figure 4.16 Schematic of the model used for verification of the FSI numerical

methodology. Part 1 and 2 are Eulerian domains, they consist of Eulerian elements

with shared nodes at their interface. Part 3 is a shell container situated within the

Eulerian domain defined by Part 2. When successful FSI was achieved, gas flowed

from Part 1 into Part 3 but remained within the volume encompassed within the

shell container.

In LS-Dyna FSI is activated by inclusion of the *CONSTRAINED LAGRANGE IN

SOLID (CLIS) keyword, on which constraint and penalty based algorithms can be

defined between a slave (Lagrangian) object within the master (Eulerian) domain.

Fluids, which are to be coupled within the Eulerian domain, are then identified

by setting MCOUP = -AMMGID, where AMMGID is the ALE multi-material group id

allocated to that specific fluid. It is good practice to couple no more than one AMMG

per CLIS keyword, allowing separate manipulation of each coupling surface and

adding clarity when studying their related output (pressures, forces) in the database

fluid structure interaction (DBFSI) binary output file. In this numerical model, only

one coupling relationship was necessary, that was between shell container (part 3)

and the air (AMMG = 1) within the Eulerian domain (part 2).
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Constraint-based algorithms provide FSI by constraining the velocity and/or

accelerations of the Eulerian material at the FSI interface; they were found to be

extremely unreliable at preventing leakage, when used in this numerical model, and

were therefore discounted from any further analysis. Setting the value of CTYPE = 4

on the aforementioned keyword, activated the penalty coupling method, which was

found to give much more reliable results than the constraint method.

Each CLIS keyword generates a coupling surface for the defined Lagrangian

parts; these coupling surfaces can then interact with the surface surrounding the

defined AMMG. This interaction is achieved by tracking the relative position of both

the Lagrangian and ALE objects; if, for a given time step, a penetration is detected,

then a penalty force is applied to the ALE material of sufficient magnitude to correct

for said penetration. In order to effectively detect penetrations, there must be no

coupled ALE material beyond the coupling surface at any time, and for this reason

the FSI penalty coupling algorithms are one directional.

The single directionality posed two issues which needed to be taken into con-

sideration when modelling this problem; firstly, any relative movement of the ALE

material through the coupling surface, in the direction matching the orientation of

the contact surface, would be permitted (FSI would not occur); secondly, for FSI

to occur it was necessary to ensure that, when defining the initial geometry of a

numerical model, there were no instances whereby the coupled AMMG was present on

both sides of the coupled Lagrangian part, i.e. for the solver to see the coupling

surface between the air and shell container, different AMMGs needed to be defined on

each side of the coupled Lagrangian part.

Coupling surface directions are calculated from the shell normal vectors and the

NORM value on the CLIS keyword dictates if the fluid is to be coupled to the head

NORM = 0 or tail NORM = 1 of each vector. For this problem, the easiest solution

was to ensure all of the shell normals of part 3 faced inwards and NORM was set to 0.

The following parameters were used to produce realistic and effective penalty

based coupling between the air material and the shell container: NQUAD = 2, cre-

ating 2 x 2 coupling points over each shell element; DIREC = 2, permitting only
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compressive coupling forces normal to each shell element (a variation on the default

value of 1 which allows tension, the gas has no tensile strength) and FRCMIN = 0.1,

a reduction from the default of 0.5 (activating the coupling algorithm when 10 % of

an Eulerian element is occupied by the coupled fluid). It was also necessary to set

the penalty force scale factor PFAC as a linear function of the penetration distance,

where the maximum penetration was set at 10 % of the Eulerian element size (0.1

mm) and the maximum coupling pressure as the pressure when leakage was first

observed.

Figures 4.17 (a) and (b) show the pressure and density against time for part 1

and the volume contained by the shell container part 3. Black dashed lines show the

final state values which were previously calculated in Section 4.2. There was very

good agreement with the predictions; following the initial oscillations (also observed

in the previous model), the pressure eventually settled to 39.8 kPa and density to

0.615 kg/m3. Note that these values were slightly higher than the predicted values

of 38.4 kPa and 0.6 kg/m3 (which the previous model began to settle towards),

the discrepancy being due to a slight reduction of the internal volume of the shell

container caused by the offset coupling surface.

The coupling surface thickness was 0.2 mm which gives a final expanded volume

of 1.37 ×105 m3, a predicted final pressure of 39.6 kPa and a predicted final density

of 0.613 kg/m3; this leaves an error of 0.3 % unaccounted for. This 0.3 % is likely due

to the fact that in the corners of the shell container the FSI algorithms would have

superimposed and therefore activated slightly earlier, effectively extending the con-

tact surface marginally further into the shell container than the 0.2 mm mentioned

above.

When comparing the oscillatory response with that which was observed in Figure

4.15, it can be seen that the decay rate is increased when using the penalty surface

as the boundary condition over single point constraints; meaning that the penalty

coupling algorithm must add a degree of numerical damping when reflecting the

shock.
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(b)

Figure 4.17 Evolution towards a final equilibrium state following a rapid expansion

of air from part 1 (atmospheric) into a rigid shell container part 3 (vacuum), (a)

pressure and (b) density vs time. PAn,F in and ρAn,F in indicate the predicted final

pressure and density respectively.

FSI capable of preventing a rapidly expanding pressurised gas from passing

through a shell container into a vacuum was realised; indicating that effective FSI

could be achieved for the less onerous case (observed during the impact testing),

whereby a relatively gradual development of pressure occurs on both sides of each

cell wall.

4.4 A fully coupled cardboard honeycomb numer-

ical model

This section details the steps which were required to assemble the modelling tech-

niques, developed in Sections 4.1, 4.2 and 4.3, to create a full scale model capable

of capturing the physics involved during the axial impact response of a cardboard

honeycomb structure. Comparison between the numerical response and the exper-

imental data presented in Chapter 3, was used to assess the accuracy of the full

scale model; to do so, a numerical replication of the experimental tests was achieved
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by digitally matching the applied loading, boundary conditions and exact cellular

geometry of each sample.

Due to the non-uniform cellular geometries present in the samples used for ex-

perimental testing (and therefore lack of symmetry), it was necessary to model the

whole structure of each sample to ensure that the response was being accurately

expressed; in combination with the fully coupled nature of each analysis and re-

quirement for a large number of self-contact algorithms within the highly distorted

geometry, computational cost became a severely limiting factor. To allow the nu-

merical analysis to be completed within a realistic time frame, careful attention

was paid to ensure that computational efficiency was a prime consideration when

designing the full scale model.

Mechanical properties of the cell wall material were not available, however, a

material parameter calibration was possible by firstly selecting values (with guidance

from the literature) which gave good agreement with the response of a sample from

one mesh type, and then using those values to check the numerical-experimental

agreement of a model of a sample from a different mesh type.

4.4.1 Digitisation of the tested samples

To generate the spatially discretised finite element mesh, the following process was

performed:

1. Photographs were taken of each honeycomb core before and after the top liner

(with square sample grid) was applied

2. Using Photoshop, the photographs were digitally corrected to remove the lens

and perspective induced distortion

3. The corrected photographs were then overlaid to reveal the internal cellular

geometry of each individual sample

4. The cellular geometry of the samples chosen for testing was imported into

AutoCad and digitised, creating 2-D structural cross sections of each tested
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cellular arrangement

5. A 3-D geometrical representation of the sample geometries, which were to

be modelled, was constructed by extruding the 2-D cross sections and using

planar surfaces to represent liner sheets and each cell wall

6. The 3-D surface models were then imported into Altair HyperMesh, which was

used to discretise the structural geometry generating a finite element mesh of

each structural component

7. The raw finite element meshes were imported into LS-PrePost, allowing any

required final formatting to be performed, prior to their use in the numerical

analysis.

Stages 1 - 4 were performed as part of the experimental work and are discussed

in Section 3.3.5 of Chapter 3, while stages 5 - 7 are novel to the work presented in

this section. Two samples were chosen for digitisation, F29 and D27, their average

geometrical properties are given in Table 4.7 and dimensions to which they relate

are marked on the diagram of an idealised cell in Figure 4.18.

L2t

L1tL1t

L2tL2t

L1t

L1tL1tL1tL1t

L2t

θ

x
y

Figure 4.18 The idealised cell.

Sample ref L1t (mm) L1t (mm) θ◦

F29 29.8 17.9 36.5

D27 17.3 11.1 35

Table 4.7 Idealised mesoscale geometrical

values for samples F29 and D27.

Figures 4.19 (a), (b) and (c) show the geometry of sample D27 at three stages

in the mesh generation process; (a), stage 3, an image of the internal geometry is
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revealed; (b), stage 5, a 3-D model of the cell walls is created and (c) Stage 6, the

3-D model is discretised using the powerful 2D Automesh tool, available in Altair

HyperMesh.

(a) (b) (c)

Figure 4.19 Three stages of the sample digitisation process. (a) Sample cellular

geometry is revealed following image overlay, (b) a 3-D model of the cell wall geom-

etry is created using AutoCad and (c) the 3-D model is discretised using four noded

shell elements in Altair HyperMesh.

Figure 4.20 (a) shows a LS-Dyna part schematic of a honeycomb structure with

four walls. Solid and dashed lines indicate single and double-ply walls respectively.

The part naming convention developed for the (two cell wall) corner element model,

in Section 4.1.1, has been followed; that is, each continuous cell wall is given a full

integer PID, beginning at 1 and incrementing from left to right. Regions of the cell

walls which are bonded to adjacent cell walls are named with the convention 801802,

where the second and third digits (01) refer to the part number of the cell wall it

belongs to, and the fifth and sixth digits (02) refer to the cell wall which it is bonded

to.

The suite of solid contact algorithms, which were found to be compatible and

to provide good results (Section 4.1.1), required the normals of the double-ply cell

walls to face each other, so that when the cohesive bond failed, the cell walls would

move apart rather than through each other (shell normal constraint 1). It was also
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discovered, in Section 4.3, that the FSI coupling algorithms are one way, meaning

that for coupling between the Eulerian gas and Lagrangian cell wall to occur, all

shell normals of the Lagrangian parts defined with each CLIS keyword must be

uniformly orientated either towards or away from the coupled fluid (shell normal

constraint 2). Satisfying both shell normal constraints, was achieved by using the

alternating pattern displayed by the arrows, on the internal (blue and orange) cell

walls, shown in Figure 4.20 (b).

PID 801802

PID 2 PID 3

PID 4

PID 802801

PID 802803

PID 1

PID 803802

PID 803804 PID 804803

(a) (b)

Figure 4.20 Illustration of (a) the part naming convention and (b) shell normal

pattern, for a honeycomb cellular model consisting of four complete cell walls.

Figure 4.21 shows a macroscale schematic of the full scale model. The cell wall

arrangement is defined as described above, unique to each sample and situated

between the top and base liner sheets, (PID = 500 and 501). The mesh geometry

of the liners conformed to the perimeter of each individual cell; thus, enabling a

segment set to be defined encompassing the elements at the base of each cell. These

segment sets, allowed each individual cell pressure to be easily extracted during

post-processing of the numerical model results. The ring of elements at the top and

bottom of all cell walls was moved to parts 400 and 401, allowing both the tie-break

and tied contacts to be used for the cohesive double cell wall bond and contact
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between the shell edges and liners, without interference.

Figure 4.21 Mesoscale schematic of full scale Lagrangian numerical model. For

detail of cell walls see Figures 4.19 and 4.20.

The model shown above constitutes the structural components of the honeycomb.

To introduce the air, a method was required which would allow the air within ad-

jacent cells to be allocated to different AMMGs (necessary for the one-directional FSI

coupling algorithms). The irregular cellular arrangement meant that it would be an

incredibly onerous task to match the mesh geometry of the Eulerian domain to the

internal geometry of each cell; furthermore, the existence of sharp angles at some

of the vertices made it impossible to generate a conforming Eulerian mesh without

severe impact on the critical time step size.

The solution was to use a background domain of uniform cubic multi-material

Eulerian elements and to allocate the gas material at desired locations to differ-

ent AMMGs with the *INITIAL VOLUME FRACTION GEOMETRY (IVFG) keyword. The

background domain was 325 x 325 mm on plan and 90 mm tall, providing enough

clearance to allow flow around the perimeter of the sample, which was situated

centrally with the domain.
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In combination with the IVFG keyword, a method of defining the geometry and

location of each region must be selected. Many methods are available, but due to the

irregular honeycomb geometry only two suitable methods were identified: the use

of segment sets, or the use of shell elements. At the time of model construction, the

most current version of LS-Dyna (for the available license) was revision 6.0.0, with

this, the use of segment sets with the IVFG keyword was found to be extremely er-

ratic when defining three different materials in close proximity, and therefore useless

for this application.

Fortunately, the use of non-structural, sealed, shell containers (with all shell

normals pointing inwards), to encompass the volume within each cell, in combination

with the second method IVFG method, was found to give good results. The shell

containers which were created for sample D27 are shown in Figure 4.22 (a). For

every defined AMMG the surface is tracked throughout the numerical analysis, for

multiple AMMGs the computational cost in both CPU time and memory was found

to be substantial. So substantial in fact, that it was necessary to use the minimum

of four AMMGs (which would ensure the AMMGID of gas in adjacent cells was always

different) in order to get the model of sample D27 to pass the initialisation phase.

The arrangement of the four AMMGs, as defined by parts 901 - 904, is shown

by the four different colours in Figure 4.22 (b). Each vertical strip of colour also

identifies a strip of cells (between two adjacent continuous cell walls), the air within

them being separated only by the cohesive bond of the double-ply cell walls. To add

further efficiency, coupling was only defined between each AMMG and the cell walls

initially in contact. For reference, the segment set containing the elements at the

base of each cell was given a number as shown in Figure 4.22 (b).
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(a) (b)

Figure 4.22 Definition of air within sample D27 (a) non-structural shell containers

used to define internal AMMGs; (b) complete cells, showing numbering convention.

In an attempt to closely emulate the loading and restraint conditions present

during the experimental testing, digital representations of the projectile and back

plate arrangements, as shown in Figure 4.23, were constructed to crush and support

each sample.

The loading block (PID 200) was given identical dimensions to the experimental

front plate and was modelled with solid elements and rigid material properties (us-

ing the *SECTION SOLID and *MAT RIGID keywords). A value of density was chosen

so that when multiplied by its volume, the total mass matched the total projectile

experimental mass of 81.4 kg; the elastic modulus was defined so that the internal

wave speed matched that in the cell walls, which aided in the achievement of sta-

ble contact between the loading block and the top liner, by using the *CONTACT

AUTOMATIC SURFACE TO SURFACE algorithm. A displacement time history was then

defined, using the *BOUNDARY PRESCRIBED MOTION RIGID keyword, to match the

displacement time history observed for the projectile during each experimental test

The back plate and load cell were modelled as one combined part (PID 300) with

elastic, 8 noded, single point integration, solid elements using the *SECTION SOLID

and *MAT ELASTIC keywords. A density of 7850 kg/m3 and elastic modulus of 200

GPa was used, corresponding to mild steel. The collar was defined in an identical
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manner and even had shared nodes with (PID 300), but the elements were moved

to a different part (PID301) allowing greater control over contact definition with the

honeycomb components.

Figure 4.23 Schematic showing sample support and loading conditions. For detail

of the honeycomb model see Figure 4.20.

4.4.2 Necessary modifications to add stability

During an explicit numerical analysis, the occurrence of a numerical instability will

lead to unrealistic results, and in the majority of cases, a catastrophic premature

termination of the simulation. Common forms of numerical instabilities include vio-

lations of the critical time step, negative volumes, shooting nodes and uncontrolled

oscillations in zero energy hourglass modes. As the complexity of a model is in-

creased, so is the possibility for instabilities to occur; by necessity, the coupled full

scale model included many computational components, and was therefore extremely

unstable.

Identifying the source of numerical instabilities and determining solutions, proved

to be one of the most difficult and time consuming challenges encountered during

this thesis; it was not uncommon for numerical instabilities to present themselves in

the late stages of an analysis, causing a premature termination after weeks of real
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computational time. Minor modifications to the simulation were possible through

the restart function (such as deletion of problem elements and nodes), however for

any major modifications a full restart, from time 0, was required.

There were two main contributing factors to numerical instability: the require-

ment for a large number of penalty contact algorithms, and extreme geometrical

deformations. The presence of both caused an amplification of their individual

adverse effects by enabling situations whereby nodes and AMMGs could be subject

numerous conflicting penalty contact forces. In addition, the structural contact al-

gorithms were required to be sufficiently robust, as to prevent penetrations at high

degrees of geometrical deformation; one commonly observed mechanism of instabil-

ity was where a spurious structural penetration would force some of the gas material

through a cell wall, effectively trapping it and causing a premature termination by

the creation of a negative volume. Reducing the bucket sort frequency to every 5

time steps, using the BSORT variable, was found to help prevent against some, but

not all, spurious penetrations.

By default, the penalty contact algorithm in LS-Dyna checks for penetrating

slave nodes through master segments and applies correcting penalty forces to each

discovered offending node; the penalty stiffness of the node-surface method is in-

dependent of the global time step. Segment based contact checks for penetration

between surfaces (each of which are defined by four nodes) and distributes the cor-

recting penalty force to all involved segment nodes; the penalty stiffness of the

surface-surface method is dependent on the global time step. In most cases, the

node-surface method is adequate, and due to its non-dependence on the global time

step it is also normally the cheapest. At large deformations, the node-surface method

was extremely unreliable at preventing unwanted penetrations, while the surface-

surface (segment based contact) method produced very good results; segment based

contact was activated by setting SOFT = 2 on the fourth card of each *CONTACT

keyword definition.

Hallquist [60] states that for the SOFT = 2 segment based contact, the penalty

stiffness κ is inversely proportional to the square of the global time step, κ ∝
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(1/∆t2global), where the global time step is a reduction of the critical time step by

∆tglobal = TSSFAC × ∆tcrit. Consequently, any reduction of the time step through

TSSFAC will result in a squared increase in κ. Earlier in this chapter, it was discov-

ered that to maintain numerical stability when using the Eulerian formulation, it

was necessary to reduce TSSFAC from its default value of 0.9, to 0.5. Thus, dramat-

ically increasing the penalty stiffness (and therefore forces) between the cell walls,

to magnitudes which were capable of destroying the cardboard cell wall material

without any external loading.

Numerical stability was regained by reducing the penalty stiffness scale factors, of

the slave SFS and master SFM surface (on the third card of each *CONTACT keyword),

through trial and error to find values which added sufficient stability to permit

completion of the analyses, while still provided adequate force to correct spurious

penetrations. Values which were found to work best were between 0.09 for contact

including the double-ply cell walls and 0.5 for contact between cell walls and the

liners.

When coupling was introduced via the *CONSTRAINED LAGRANGE IN SOLID (CLIS)

keyword, the simulations began to erratically terminate (without any reported er-

rors to guide debugging process), eventually, it was discovered that this was due to

the method used to calculate the direction of the applied penalty forces. By de-

fault FSI penalty force directions are calculated from normal vectors located at the

nodes; setting NORMTYP = 1 instructed Dyna to alternatively calculate the penalty

force directions using segment normals vectors, and in doing so, remedied the er-

ratic, unclassified terminations. It is thought that implementing this modification

had such a dramatic positive effect due to increased compatibility with the SOFT=2

based contact discussed above.

To reduce the CLIS induced numerical instability sufficiently, to allow the de-

sired analysis time to be reached, further modifications to the coupling parameters

(developed in Section 4.3) were required. As was the case with the structural contact

algorithms, relaxing the magnitude of the penalty forces was found to add stability;

this was done by returning the values of PFAC and FRCMIN to their default values
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of 0.1 and 0.5, setting the FSI penalty stiffness to 10 % of the estimated critical

penalty stiffness and only activating coupling when 50% of an Eulerian element was

filled with the coupled AMMG. The relaxation of the FSI contact parameters had a

detrimental side effect of allowing leakage to occur; this leakage was eliminated by

activating the strong leakage control, by setting the parameter ILEAK = 2 and using

a very small value for the leakage control penalty factor of just PLEAK = 0.001.

4.4.3 Material parameter calibration

With the resources available at the time of experimental testing, it was not possible

to measure the mechanical properties of cardboard material which constituted the

cell walls of the tested samples. In Section 4.1.5, it was shown that a simple linear

elastic plastic material model was sufficient to capture both the initial and subse-

quent progressive buckling mechanisms, which dictate the axial buckling response

of a generic cellular honeycomb material. It was also shown that the magnitude of

the initial peak is solely dependent on the properties of the cell wall material, and

that at the impact velocities vi > 9.45 m/s and cell wall thickness to length ratios

(t/L) > 0.009 observed during the experimental testing (see Equation 4.26 and Fig-

ure 4.9), the magnitude of the initial peak stress σPeak is likely to be a function of the

cell wall yield strength σY ield; using the known relationship between σPeak and σY ield

it was possible to determine numerical values for the single σY,t1 and double-ply cell

wall σY,t2 yield strengths.

From tensile tests performed on cardboard honeycomb cell wall material, E and

Wang [51] reported that the yield strength of the double-ply cell walls σY,t2 was

enhanced, by the factor k, in comparison to strength of the single cell walls σY,t1. E

and Wang [51] also reported a reduction of σY,t2, σY,t1 and k with increased relative

humidity (RH); at 30% RH, k was given as 1.572.

During the impact testing, presented in the previous chapter, the RH of the

testing environment was not recorded; however, care was taken to ensure that once

constructed all samples to be tested were kept in a dry, heated, environment (next to

a radiator), only transported to site on the day of testing and even then placed next

147



to a halogen space heater, ensuring that the water content within the cardboard

material was kept to an absolute minimum.

In the Lagrangian structural analyses presented earlier in this chapter, the glue

strength was chosen as to provide a full strength bond between the double cell

walls, removing the unquantified de-bonding effect from the simulations. From

visual inspection of the experimentally crushed samples, de-bonding was found to

be present throughout; thus it was necessary to reduce the strength of the glue σGlue

between the double cell walls to allow de-bonding to occur in the numerical model.

Experimental values for σGlue were not known; preliminary numerical analysis

showed that a reduction in σGlue caused a reduction in σPlateau. A relatively small

value of σGlue was chosen in comparison to an estimated experimental value, allowing

de-bonding to occur, while ensuring that any error induced by deviation from the

actual experimental value of σGlue would be visible as a qualitative reduction in

σPlateau.

Using a value of σGlue = 62.5kPa and holding all other material parameters con-

stant (determined in Section 4.1.2), the cell wall yield stresses were scaled (with the

proportion σY,t2 = 1.572σY,t1), so that the peak stress transmitted by a Lagrangian-

only numerical model, matched the peak recorded by the load cell during the impact

response of sample F29; values of of σY,t1 = 4.2 MPa and σY,t2 = 6.6 MPa were found

to give good agreement, this was promising as values attained from tensile testing

of cardboard honeycomb cell wall material by Wang and E [44] and Wang, Wang,

and Liao [42] were in the region of 5− 10 MPa.

Table 4.8 shows the full compliment of material parameters used to model the

cellular structure. Red text indicates values which have been adjusted from those

determined in Section 4.1.2 (see Table 4.2). Note that only adjustments to the cell

wall and glue yield strengths were made. Unless otherwise stated, the parameters

in the table below were used for all numerical analyses in this section.
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Table 4.8 Structural linear elastic-plastic material properties used for the full scale

model, those shown in red were adjusted (from those given in Table 4.2) as a result

of the material parameter calibration.

σY,t1 σY,t2 k E Et ν ρ σGlue

4.2 MPa 6.6 MPa 1.572 2 GPa 0.2 MPa 0.3 603 kgm3 62.5 kPa

These parameters were then used to perform two simulations, both Lagrangian-

only and identical in every respect apart from the structural geometry; one sim-

ulation was performed of F29 and one of D27, comparison between the numerical

(σTotal,Num,[F29,L], σTotal,Num,[D27,L]), and experimental (σTotal,Exp,[F29], σTotal,Exp,[D27])

macroscopic responses is given in Figures 4.24 (a) and (b).

With such minimal initial modifications to the structural modelling techniques

developed in Section 4.1, the correlation with the experimental data was surprisingly

good, which suggested that the logic and methodology followed during the model

development process was sound. The peak stress of sample F29 was used to scale the

numerical response (by only adjusting the yield stress of the cell wall material), and

so that correlation holds no significance; however, when the same material properties

were extrapolated to a model of D27 there was very good agreement between the

numerical and experimental peak stresses.

It must be noted that the experimental traces presented below do not represent

the true honeycomb response; the recorded initial stiffness is substantially lower,

and therefore strain to peak stress substantially higher, due to experimental factors.

Factors which were determined to have a detrimental effect on the recorded stiffness

were:

• the presence of a pre-impact pressure wave generated due to the rapid accel-

eration of the front plate, causing a compression of the contiguous cushion of

air

• the dynamic, inertial response, of the heavy back plate causing a drawing out

of the time base over which the compressive load was transmitted to the load
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cell strain gauges

• a possible ringing along the length of the projectile over the initial impact

stroke

• slack take up due to bedding of the honeycomb samples.

Discounting the spurious components of the measured response, there is good

agreement between the overall shapes of the experimental and numerical responses.

Comparing the plateau regions of these initial analyses, there is better agreement

with the plateau magnitude for F29 than D27; the reason for this was not clear.

The structural only numerical stiffening limbs also occur later than those measured

by the load cell, which is not surprising as this region of the macroscopic response

has been shown to be dominated by the internal air pressures (which were absent

in this model).
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(b) D27

Figure 4.24 Comparison between experimental and Lagrangian only numerical

macroscopic responses of samples F29 and D27. δEL = 1 mm.

A very low value of σGlue, relative to σY,t2, was used in the above analysis to

allow de-bonding and effectively generate a lower bound response. An upper bound

was created by repeating the analysis with a full strength bond σGlue = σY,t2; the
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actual experimental value of σGlue must have lay in the envelope between the weak

and full strength bond.

To reduce computational time, a 2 mm mesh was used. The results for both

Lagrangian-only analyses are shown in Figures 4.25 (a) and (b) for samples F29

and D27 respectively. It can be seen that in these structural only analyses, the full

strength bond caused a reduction in gradient of the post peak softening limb, a lift

of the plateau stress, and further delay of the compaction limb. The lift in plateau

stress was not significant enough to explain the shortfall in plateau of sample D27.

Interestingly, the full strength bond also introduces a shoulder to the softening limb,

a feature which was also present on the experimental traces, but it was not clear if

that was part of the genuine structural response.
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Figure 4.25 Comparison between experimental and Lagrangian only numerical

macroscopic responses samples of F29 and D27 using a weak (σGlue = 62.5 kPa) and

full strength strong (σGlue = 6.6 MPa), glue bonds. δEL = 2 mm.

Good agreement between the structural only models and the experimental data

was achieved with minimal modification to the material properties, suggesting that

the chosen Lagrangian numerical modelling techniques were valid. The observed

deviations were deemed more than acceptable when considering the omission of

air, complexity of the event being modelled, lack of exact material parameters and
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uncertainty in the recorded data.

During the impact testing, the magnitude of internal air pressures was observed

to increase significantly with increased lateral confinement; it is therefore likely

that the accuracy of these Lagrangian-only numerical models is limited to samples

which provide similar levels of confinement; and understanding of the mechanisms

introduced by the air is required for extrapolation to greater plan areas and finer

meshes.

4.4.4 Mesh refinement and numerical validation

In Section 4.1.6 a mesh study was performed to assess the impact of changing the

mesh size on the accuracy and computational cost of a simple Lagrangian-only

model. It was discovered that a 1 mm mesh provided substantial cost saving, with

minimal reduction in the accuracy of the simulation. When scaling up the model

and introducing the Eulerian parts, it quickly became apparent that computational

cost was going to be a limiting factor. The following work was performed to assess

the feasibility of achieving additional reductions in computational cost by further

increases in the element size.

For both samples, four meshes were created with δEL: 6, 4, 2 and 1 mm; each

mesh consisted of even square four noded shell elements. These 8 meshes were used

to perform 8 otherwise identical Lagrangian-only simulations, using the parameters

presented in Table 4.8. Table 4.9 shows a cost comparison of all 8 Lagrangian-only

simulations, where TReal is the total real simulation time required to complete each

analysis and φCost is the relative cost for each simulation, where φCost = TReal/TNum.

Note that φCost provides a decimal rather than sexagesimal number for inter simu-

lation cost comparison.

The cellular structure of sample D27 consisted of a larger number of cell walls

than sample F29; to model these additional cell walls it was necessary to define

more elements, more parts and more contacts between them. When defining a

greater number of computational objects, the system of equations, which describe

their position and deformation, expands; the effect of this increase in complexity
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is two fold: more physical memory is required to hold the system of equations and

more calculation time is required to solve them and advance to the next time step,

and so the overall computational cost increases.

Considering the cost of the simulations using the 1 mm meshes it can be seen

that the impact of increased scale was substantial; when a 1 mm mesh was used

for the simple corner element model, in Section 4.1.6, φCost was 4.84 × 104; for the

same mesh size (and wave speed) applied to the full scale structural simulations

of sample F29 and D27 φCost increased to 4.62 × 106 and 1.36 × 107 respectively,

factors of 95 and 281 times more expensive. Additionally, elements were added as

the mesh size was reduced; the cost increased relative to the 6 mm mesh with the

ratios 1 : 2.59: 9.36: 17.36 and 1: 2.33: 4.16: 14.6, (with a decrease of mesh size

from 6: 4 : 2 : 1 mm) for the F29 and D27 models respectively.

This was not an exact comparison as more than one model may have been

running on the machine used to perform the analysis. However, due to stability it

was necessary to use a shared memory parallel (SMP) solver. The standard practice

was to ensure that there was at least 20 % reserve of the maximum memory and

CPU load free at all times, limiting the detrimental effect on computational efficiency

encountered when throttling resources, and so the relative computational times still

provide a good estimate of the relative computational costs.

Table 4.9 Comparison of relative costs φCost of the full scale Lagrangian-only nu-

merical models, for varied mesh sizes δEL. Where φCost = TReal/TNum and TNum =

6.8 ms.

F29 L D27 L

δEL (mm) φCost TReal (hh:mm:ss) φCost TReal (hh:mm:ss)

6 × 6 2.66 × 105 00:30:12 9.30 × 105 01:45:26

4 × 4 6.91 × 105 01:18:16 2.17 × 106 04:05:23

2 × 2 2.49 × 106 04:41:41 3.87 × 106 07:18:02

1 × 1 4.62 × 106 08:43:40 1.36 × 107 25:45:24
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The macroscopic response of all 8 Lagrangian-only models are shown in Figures

4.26 and 4.27. Variation of the mesh size had little to no effect on the magnitude

of the initial peak, likewise, the plateau stress magnitude was relatively insensitive

to changes in the mesh size; the rest of the macroscopic response converged as δEL

was reduced. The convergence was mostly visible in the change of gradient of the

post peak softening limb and compaction limb, which indicates the softening and

compaction rate. This effect is caused by a limitation on the smallest resolvable fold

by a mesh of given δEL; the occurrence of earlier stiffening for a larger mesh size is

due to the presence of less unfolded cell wall at any given strain. As the mesh size

was reduced, there were diminishing returns on the added accuracy; in comparison

to the additional computational cost, the accuracy gained from reducing the mesh

size from 2 mm to 1 mm was very small.
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Figure 4.26 Comparison between experimental σTotal,Exp,[F29] and full scale,

Lagrangian-only (L), σTotal,Num,[F29L] numerical macroscopic responses, for sample

F29 and varied mesh size δEL = 1 to 6 mm.
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Figure 4.27 Comparison between experimental σTotal,Exp,[D27] and full scale,

Lagrangian-only (L), σTotal,Num,[D27L] numerical macroscopic responses, for sample

D27 and varied mesh size δEL = 1 to 6 mm.

The next step was to introduce the air to the model; the structural meshes were

placed centrally within a 325 x 325 x 90 mm cuboid domain mesh. The Eulerian

domain was meshed with regular cube elements with dimensions matching each

structural mesh. Five ALE multi material groups (AMMGs) were defined, one for the

background gas, and one for the gas within each of the each of the four alternating

strips of cells (identified by green, yellow, blue and orange in Figure 4.22); Table

4.10 displays the computational time and relative costs of all six analyses.

Introduction of the Eulerian domain and the definition of the 5 AMMGs with

their coupling to the Lagrangian structure substantially increased the computational

cost, in comparison to the Lagrangian-only analyses. Comparison between the two

Lagrangian-only (L) and two Lagrangian + Eulerian (L+E) simulations performed

with 2 mm meshes shows an increase in the cost by a factor of 57 and 79 for samples

F29 and D27 respectively.

As the mesh size was reduced, φCost for the simulation of sample D27 increased

with the ratio 1 : 2.7: 7 (with respect to the 6 mm mesh); using a 2 mm mesh, the
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total required time to complete the necessary 6.8 ms simulation was 579 hours 3

minutes and 4 seconds, which is just over 3 weeks and 3 days. Using the relative

cost of the Lagrangian-only simulations as a guide, with the computational power

available, it was estimated that using a 1 mm mesh would take a minimum of 6 to 9

weeks; this would have been a substantial investment of time, with no guarantee of

full convergence, especially considering that the amount of memory required would

have prevented any other simulations from being ran in parallel. An attempt was

made at initialising a 1 mm mesh simulation: the machine which was available at

the time had 8 GB of RAM, which was not enough.

Table 4.10 Comparison of relative costs φCost of the full scale, fully coupled La-

grangian and Eulerian (L + E) numerical models, for varied mesh sizes δEL. Where

φCost = TReal/TNum and TNum = 6.8 ms.

F29 L+E D27 L+E

δEL (mm) φCost TReal (hhh:mm:ss) φCost TReal (hhh:mm:ss)

6 × 6 5.17 × 106 009:46:15 1.53 × 107 028:54:05

4 × 4 2.57 × 107 048:30:15 4.19 × 107 079:13:14

2 × 2 1.42 × 108 268:56:32 3.07 × 108 579:03:04

Figures 4.28 and 4.29 show comparisons between the fully coupled analyses and

recorded traces for samples F29 and D27 respectively. The Lagrangian only analyses

converged towards an underly stiff late response, failing to capture the magnitude

and timing of the stiffening limb. It can be seen that by introducing the air, the

stiffening limb was simulated more accurately; it was shown during the experimental

testing that while the early response was controlled solely by the structure, as the

crushing progressed, developing air pressures began to dominate.

Reducing the mesh size caused convergence towards a less stiff response with

increased gradient of both the (post peak) softening and (compaction) stiffening

limbs. Unlike the Lagrangian-only analyses, variations in δEL had a significant

effect on the magnitude and shape of the plateau region, with convergence towards
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a lower, flatter plateau with a sharper angle at the transition between the softening

limb and plateau. The convergence effect was more pronounced for sample D27, this

is visible from the larger gaps between the numerical traces in Figure 4.29 compared

to the gaps in Figure 4.28.

Comparison between the dashed black and blue lines in Figure 4.28, shows

very good agreement between the experimental σTotal,Exp,[F29] and the numerical

σTotal,Num,[F29L+E] for the 2 mm mesh. Figure 4.29 also shows good agreement be-

tween the experimental and numerical responses for sample D27. Numerical models

of both samples produced plateau which was lower than the recorded data. This

deviation was more pronounced in the model of sample D27 than the model of F29

and was attributed to the variation in the material parameters from the actual ex-

perimental values; in these analyses, the lower bound value for σGlue was used and

so it was known for certain that at least one of the numerical material parameters

was lower than the experimental values.

It was decided that further material parameter calibration, to remove all numerical-

experimental deviations, would be extremely costly and would be of limited use;

from the comparisons drawn between the numerical and experimental macroscopic

responses, confidence was gained that the modelling techniques were capturing the

evolution of the mesoscale mechanisms which contribute to the macroscopic EDM

impact response.
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Figure 4.28 Comparison between experimental σTotal,Exp,[F29] and full scale, fully

coupled Lagrangian and Eulerian (L + E) σTotal,Num,[F29L+E], numerical macroscopic

responses, for sample F29 and varied mesh size δEL = 1 to 6 mm.
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Figure 4.29 Comparison between experimental σTotal,Exp,[D27] and full scale, fully

coupled Lagrangian and Eulerian (L + E) σTotal,Num,[D27L+E], numerical macroscopic

responses, for sample D27 and varied mesh size δEL = 1 to 6 mm.
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Figures 4.30 and 4.31 compare the experimental internal pressures, for samples

F29 and D27, with those generated during the fully coupled analyses with a 2 mm

mesh. Colours identify each pressure gauge, a diagram of their locations within each

sample is shown; solid and dashed lines indicate numerical and experimental results

respectively.

In Figure 4.30 it can be seen that the edge pressure gauge (PG1) was not initially

located within a closed cell for sample F29; there was no recorded pressure on PG1

until 70% strain, after which the pressure began to increase. This feature, which

was visible on both the numerical and experimental traces, was due to the creation

of a sealed volume between the crushed cell walls and the steel collar.

Both simulations produced internal pressures of a higher magnitude than the

recorded experimental pressures, at full compaction the numerical pressures were

a factor of 3 to 4 larger than the recorded pressures. While the magnitude was

larger, higher pressures developed within the model of D27 than within F29, which

agrees with the experimentally observed correlation between degree of confinement

and magnitude of developed pressure.

Likeness can also be drawn between the shape of the numerical and experimental

traces. During the experimental testing, as lateral confinement was increased, the

shape of the pressure traces shifted from a plateau followed by a dip and a transi-

tion into an exponential region (F mesh) to a linear increase transitioning into the

exponential region (D and B meshes). The shape of the numerical traces resembles

the pressure traces recorded within the D mesh samples, whereby there was a linear

increase followed by an exponential increase starting around 60% strain.
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Figure 4.30 Comparison between experimental and numerical pressure gauge read-

ings for sample F29. δEL = 2 mm.

Figure 4.31 Comparison between experimental and numerical pressure gauge read-

ings for sample D27. δEL = 2 mm.

The discrepancy between the magnitude of the numerical and experimental in-

ternal air pressures appeared to be due to a difference in the lateral confinement.
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With the additional numerical confinement being due to either: an additional re-

straint to gas flow caused by the chosen numerical methods or, deviations between

the numerical and experimental structural material parameters. In reality, it was

likely to be a product of the two, but their exact contributions were to remain elusive

without substantial computational time.

One source of spurious numerical confinement can be seen by looking at Figures

4.32 (a) and (b), which show how the development of the pressure at the central

pressure gauge changed in response to mesh size, for sample F29 and D27 respec-

tively. Solid coloured lines represent numerical results and the dashed black lines

show the experimental traces. There is a clear convergent behaviour towards the

experimental trace; it would appear that with the 2 mm mesh size, the simula-

tion has not converged, however, due to the presence of other unknown variables

and the previously discussed limitations on computational power, the extent of the

non-convergence is unknown.
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(a) F29
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(b) D27

Figure 4.32 Comparison between experimental and numerical central pressures

for varied mesh size, showing convergence towards the experimental response with

reduced δEL.
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4.5 Discussion

A numerical model capable of capturing the high strain rate axial crushing response

of the cardboard honeycomb EDM was constructed. From measurement of internal

air pressures during impact tests of the EDM, in Chapter 3, it was shown that the

high strain rate crushing behaviour is a function of both the structural response

and the development of internal air pressures. Therefore, to capture the resulting

micro-structural mechanisms, which dictate the macroscopic cardboard honeycomb

EDM behaviour, it was necessary to include numerical representations of both the

cell wall structure and the air within each sealed cell.

The modelling capability was developed through using simple problems and exist-

ing literature to verify newly introduced numerical techniques. As complexity was

gradually increased, issues of numerical stability and computational cost became

increasingly onerous, imposing strict limitations on the numerical methods. In Sec-

tions 4.1 and 4.2 models of the structure and air were developed independently, in

Section 4.3 a method of coupling between them is investigated and in Section 4.4 the

verified computational methods are used to create full scale models of samples F29

and D27, which were crushed during the experimental testing. Comparison between

their numerical responses and experimental data provided numerical validation.

The cellular structure was constructed from four noded, Lagrangian, Belytschko-

Lin-Tsay shell elements with four nodes through their thickness and one on plan;

Wong-Chiang variations were activated, adding warping stiffness and allowing the

elements to accurately and stably resolve the alternate progressive folding mecha-

nism. The cell wall material was defined with a linear elastic-plstic material model,

which was found to give reasonable results.

A suite of various segment based structural contact algorithms was used to pre-

vent spurious self and adjacent penetrations of the cell wall nodes. The glue bonds

between the double-ply cell walls were modelled with a simple tie break penalty

contact.

The air was modelled using Eulerian multi-material elements and an adiabatic
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ideal gas equation of state. The Lagrangian structure was placed centrally within

an Eulerian background domain, and non-structural shell containers were used to

define the volume within each cell which was to be filled with air; coupling between

the air and cell walls was defined using a penalty FSI algorithm.

Computational cost of the fully coupled analyses was very high. The most de-

manding simulation performed during the work presented in this chapter was of

sample D27 using a 2 mm mesh. It required 91 parts, 350 thousand Lagrangian

shell elements and 1.2 million Eulerian multi-material solid elements. To complete

a 6.8 ms simulation required a total computational time of 579 hours.

While experimental material properties were unknown, using existing literature

as guidance a simple material parameter calibration was performed; resulting val-

ues were found to give good correlation between the numerical and experimental

response. While there were discrepancies, their nature and magnitude suggested

that they were due to deviations between the numerical and experimental material

properties, and mesh dependent non-convergence, rather than flaws in the applied

modelling techniques. These issues were addressed by performing the work presented

in the following chapters.
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Chapter 5

Material parameter study

This chapter presents an investigation into how variations of the cell wall material

parameters affect the macroscopic impact response of an air filled, thin walled,

honeycomb structure. To perform the study, a numerical model was created; the

numerical model was given a regular hexagonal geometry and material parameters

typical of a cardboard honeycomb EDM. Section 5.2 presents an analysis of the

spatial internal air pressure development and its effect on the structural response.

Section 5.4 investigates the effect of variations in the cell wall material parameters

on the macroscopic response, and in Section 5.5 those material parameters, which

the macroscopic response was found to be most sensitive to, are considered in more

detail.

An idealised, macroscopic, EDM response for the cardboard honeycomb is shown

in Figure 5.1. The response can be characterised by four response parameters: peak

transmitted stress σPeak, plateau transmitted stress σPlateau, strain to compaction

εComp, and the energy stored within the EDM at a given strain U(ε).

Note that this characteristic definition of a dynamic cardboard honeycomb EDM

response is subtly different from that of a typical EDM (Figure 2.1). When a classic

EDM compacts (such as a steel tube or quasi-statically loaded aluminium honey-

comb) there is a sudden sharp increase in the gradient of the stress-strain response.

In a dynamically crushed cardboard honeycomb EDM, the internal air pressures su-

perimpose on the structural response, providing a smooth sweeping increase of the
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stiffening limb. Note that this behaviour is also is in line with fairly recent observa-

tions made on the response of dynamically crushed, sealed, aluminium honeycombs

(Figure 2.5 (a))[27]. The original definition of εComp will be retained, however it

must be stated that the point of compaction may now be dictated by the rate of

internal air pressure increase rather than just structural compaction.

Figure 5.1 An idealised air filled honeycomb macroscopic response curve, show-

ing the four characteristic response parameters: Peak stress, σPeak; Plateau stress,

σPlateau; Compaction strain, εComp (the strain at which the transmitted stress begins

to exceed the initial peak); and Internal strain energy per unit volume U(ε).

By holding the geometry of the honeycomb structure constant and varying each

material parameter individually, their effects on the impact response could be iso-

lated, and by evaluating σPeak, σPlateau, εComp and Uε for each analysis, the magni-

tude of any effects could be quantified.

5.1 Numerical methodology

To perform the large volume of numerical analysis required for a material parameter

study, a computationally efficient numerical model of an air filled honeycomb was

needed; by applying the modelling techniques developed in Chapter 4, this was

possible. While the majority of the computational methods remained unchanged,
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this section identifies modifications which were made to the full scale, air-filled

cellular honeycomb models which were used for numerical validation in Section 4.4.

The use of a perfect regular hexagonal structure, allowed computational efficiency

to be dramatically increased, by exploiting the quarter symmetry shown in Figure

5.2 (a); thus, allowing the full structural response to be simulated by modelling

just one quarter segment with symmetrical boundary conditions along the planes of

symmetry. An illustration of the modelled portion, and location of the symmetrical

boundary conditions, is shown in Figure 5.2 (b).

Symmetrical boundary conditions were applied along the X-X plane, by using

single point constraints, to restrain Eulerian flow and all Lagrangian displacements

and rotations across the boundary. For symmetry, it was necessary to locate the

Y-Y plane through the bonded, double-ply, cell walls. Restraining structural dis-

placements across the Y-Y plane, using single point constraints, also prevented both

the de-bonding and progressive folding mechanisms which occur during buckling.

As a compromise, a wall of rigid solid elements was placed along the Y-Y plane,

and contact was defined between this and the cell walls, providing one-directional

lateral restraint across the boundary. While this solution allowed progressive buck-

ling and the formation of air flow pathways at the boundary, it imposed limitations

due to the fact that it was not actually a perfect quarter symmetry boundary con-

dition and no cohesion of the boundary cell walls could be defined; lack of cohesion

of the boundary cell walls was to mean that air pathways could more readily form

resulting in the development of lower pressures in cells 43-46 than would occur if

the structure had been modelled as a whole.
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(a) (b)

Figure 5.2 Cellular geometry of the numerical model used as a platform for the

material parameter study, showing: (a) the full geometry (grey) and planes of sym-

metry X-X and Y-Y on which symmetrical boundary conditions were imposed, thus

allowing the full structure to be modelled with quarter symmetry (black). (b) the

modelled quarter portion consisting of 46 closed cells (containing air), air in cells

of the same colour was separated only by glue bonds between the adjoining (Y-Y

orientated) cell walls.

A 13 x 13 regular cell hexagonal arrangement ensured X-X and Y-Y planes of

symmetry passed through a central cell; the full structure consisted of a total of

163 cells (ncell) arranged in 13 rows (nrow) and 25 columns (ncol), an illustration is

given in Figure 6.1. In the quarter symmetry model there were a total of 46 cells, 36

whole, 9 half and 1 quarter; the cells were numbered from bottom left to top right

as illustrated in Figure 5.2 (b).

The model was 70 mm in height and all cells consisted of six equal cell walls,

10 mm in length (L) and 0.3 mm thick (t), and had an internal angle θ of 60◦ (see

Figure 3.20 (a) for identification of mesoscopic geometrical parameters). The 10 mm

cell walls were divided into six equal sized δEL, 1.667 mm square shell elements; this

provided a smaller (and therefore more accurate) mesh than that used for numerical
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validation (see Section 4.4.4 of Chapter 4) and allowed the cell walls to be cut

exactly in half to create the half cell walls shown at the top and bottom edge

of the honeycomb structure, in Figure 5.2 (b). Additionally, the internal area of

each hexagon can be calculated from AHex = 2L2 (sin θ + sin θ cos θ) = 2 × 102

mm(sin 60◦ + sin 60◦ cos 60◦) = 259.8 mm2.

The total footprint plan area ATrib of the quarter symmetry honeycomb structure

was calculated from ATrib = δX × δY = 6.5L
√

3 × 10.5L = 11821 mm2. The total

cross sectional area of cardboard cell wall within ATrib is defined as ACard and is

calculated by multiplying the total cell wall length ΣL by the thickness t. For the

default quarter symmetry geometry the total length of one continuous cell wall was

140 mm and there were 13 of these so ΣL = 1820 mm, multiplied by the default cell

wall thickness of t = 0.3 mm gives a default ACard = 546 mm2. The proportion of

the total footprint area (and also volume, as ACard is constant over the full height

H) that is occupied by cell wall material can be calculated from φCard = ACard/ATrib.

A summary of the meso and macroscale geometrical parameters, used for all

simulations in this chapter, are given in Tables 5.1 and 5.2.

Table 5.1 Mesoscale geometrical parameters used for the material parameter study.

L t θ◦ AHex δEL

10 mm 0.3 mm 60◦ 259.8 mm2 1.667 mm

Table 5.2 Macroscale geometrical parameters used for the material parameter

study.

H δX δY ncol nrow ATrib ACard φCard

70 mm 112.6 mm 105.0 mm 12.5 6.5 11821 mm2 546 mm2 4.619 %

A total of six elastic-plastic constitutive material parameters were required to

define the cell wall material: yield stress σY ield, quotient of the double-ply to single

cell wall yield stresses k (where k = σY,t2/σY,t1), elastic modulus E, tangent hardening
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modulus Et, Poisson’s ratio ν and density ρ. In addition, σGlue was used to represent

the strength of the glue bond between the double-ply cell walls.

Based on the background research and material parameter calibration presented

in Sections 4.1.2 and 4.4.3 of Chapter 4, values of the material parameters were

chosen which were deemed to be representative of a typical cardboard honeycomb

cell wall; these values are given in Table 5.3.

For the purpose of these analyses σY ield is defined as the yield stress of the single-

ply, cardboard only, cell wall material; the factor k represents the amplification in

yield strength caused by the inclusion of glue between the double-ply cell walls. From

tensile tests on samples of the single and double-ply cardboard cell wall material E

and Wang [51] found the average increase in strength of the composite was 41%; a

value of k = 1.41 was included in the numerical model, meaning the default yield

stress of the double cell walls was: σY,t2 = 5 MPa × 1.41 = 7.05 MPa.

Table 5.3 Default linear elastic-plastic material parameters on which singular vari-

ations were made.

σY ield k E Et ν ρ σGlue

5 MPa 1.41 2 GPa 2 ×105 Pa 0.3 630 kg/m3 0.5 MPa

The geometrical and material parameters stated in Tables 5.1, 5.2 and 5.3 de-

fine the default numerical model to which variations were applied. In addition, all

samples were crushed at the default impact velocity of vi = 5 ms−1, and therefore

strain rate of ε̇ = 71.4 s−1.

5.2 Analysis of internal air pressure development

and its effect on the structural response

Using the geometrical and material parameters given in Tables 5.1, 5.2 and 5.3,

two numerical analyses were performed; one with and one without the entrapped

air. For the simulation absent of air, at any given value of strain, all load being
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transmitted through the honeycomb was carried by the cell walls, its magnitude a

function of their material properties and current geometrical arrangement, and so

σTotal = σCard. For the simulation which included air, the pressures which developed

due to its compression also carried load, and so σTotal = σCard + σAir. Herein, the

two analyses will be referred to as “structural only” and “fully coupled” respectively.

From comparisons between the responses of the structural only and fully cou-

pled analyses, some insight could be gained into: the mechanisms which control

the development of internal air pressures, the air pressure distribution within the

honeycomb, and what effect air pressures have on the structural response.

Figure 5.3 shows macroscopic responses of both the structural only (solid) and

fully coupled (dashed) analyses. For both analyses black lines indicate the load

carried by the cell wall structure; for the fully coupled analysis load which was

carried by the air pressures is shown with a red dashed line and the total load is

shown with a blue dashed line.

The effect of the air pressures on the macroscopic response can be seen by com-

paring the solid black line with the dashed blue line. The air provides an overall

stiffening of the response, the magnitude of which generally increases with strain as

the air pressures build.

Over the plateau region (between 15 and 45 % strain) there was a reduction in

σCard while σAir continued to increase, meaning that the level of stiffening remained

relatively constant; at 19 % there was a sharp downward notch and σCard drops

below the solid black line, reducing at a similar rate to the increase in σAir. After

55 % strain this softening of σCard halts, and the structural only and fully coupled

structural responses resume their convergence.

Similarities between the two σCard curves in the early and late responses suggest

that the internal air pressures have little effect on the structural response in these

regions; the early response is unaffected because the air pressures, which increase

with strain, must reach a certain magnitude before being able to significantly affect

the structure. During the late response, the cell walls begin to bear on each other

and the cellular geometry degrades, in this region the load being transmitted through
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the structure becomes progressively less dependent on the geometrical arrangement

of the cell walls. Likewise, the effect of any any structural variations (induced by

the internal air pressures) on σCard, would diminish with increased strain causing

the two curves to converge.
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Figure 5.3 Comparison of the response without (solid black line) and with (dashed

lines) air included in the simulation. For the simulation including air, the two

components of σTotal are given: stress transmitted by the structure σCard and internal

air pressures σAir.

Figure 5.4 (a-h) shows the deformed shapes of the structural only (a-d) and fully

coupled (e-h) analyses at 20, 40, 60 and 80 % strain. The contours illustrate the

total lateral displacement (on plan, in the x-y plane); where the contour colour level

indicates the magnitude of displacement, ranging from blue showing no displacement

(∆x,y = 0 mm) to red showing the maximum displacement (∆x,y = 30 mm).

Cells in which the white background can be seen were bounded by walls under-

going the standard progressive buckling mode (illustrated by Figure 4.13 of Section

4.1.6); in cells where the white background is partially or fully obscured, the cell

walls have deviated from the progressive buckling mode by moving laterally.

In the structural only analysis (a-d) there was some lateral movement of the
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cell walls towards the perimeter, but most of the cell walls followed the progressive

buckling mode through the full compression stroke; at 80 % strain (which is a

substantial compaction), in all but three of the cells there is a proportion of the

white background still visible.

Now looking at the deformed shapes from the fully coupled analysis (e-h), and

comparing with (a-d), the effect of the entrapped air on the structural response can

be seen. Figures (f-h) all show a dramatic increase in the lateral movement of the

cell walls over the equivalent structural only analyses. Furthermore, this lateral drift

(which was previously confined to the sample perimeter) was now visible on almost

all of the cell walls. Drift occurred on both the x-x (right to left) and y-y (top to

bottom) planes, while being most substantial right to left. The magnitude of lateral

drift reduced towards the sample centre (top right), where at 80 % strain there were

still cells in which the white background was not obscured.

Comparison between the two early deformed shapes at 20 % strain (Figure (a)

and (e)), shows that in this early region of the response, any air pressure induced

lateral drift is very small (only just beginning at the left hand edge). Additionally,

the zone of weakness which developed during the structural only analysis (visible at

the bottom centre of Figure (a)), is not present in Figure (e), suggesting that the

presence of internal pressures of a relatively low magnitude actually provides a degree

of geometrical stiffening, giving lateral restraint to the cell walls, and encouraging

the progressive rather than a lateral-global buckling mode.

Re-examining the solid and dashed black lines, which were shown in Figure 5.3,

the modification of σCard can be explained; the small increase, visible at 17 % strain,

was due to the removal of the early zone of weakness; while the reduction in σCard

between 19 and 60 % strain was due to a reduction in the geometrical stiffness of

the cell wall arrangement due to lateral drift.
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(a) ε = 20% (b) ε = 40% (c) ε = 60% (d) ε = 80%

(e) ε = 20% (f) ε = 40% (g) ε = 60% (h) ε = 80%

Figure 5.4 Plan view of the deformed structure at 20, 40, 60 and 80 % strain,

when: (a-d) air was not included and (e-h) when air was included in the numerical

simulation. Contours show the magnitude of lateral displacement (on the x-y plane),

where the temperature indicates magnitude; with minimum (blue) being 0 mm and

maximum (red) being 30 mm.

For clarity, the rigid body lateral displacement of each cell wall in the x direction

∆x (right to left being positive) is shown in Figure 5.5 (b). Three cell walls have been

identified, as shown in Figure 5.5 (a), and their ∆x curves plotted with corresponding

colours in Figure 5.5 (b). It can be seen that: lateral drift increases with strain;

the magnitude of ∆x is larger in cell walls closer to the honeycomb edge; and the

differential of ∆x between two adjacent walls increases towards the edge.
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(a) (b)

Figure 5.5 A graphical illustration of the cell wall lateral drift which occurred as a

result of internal air pressures. The rigid body x displacement (∆x) of all individual

cell walls is shown in (b), where walls 1, 5, and 9 have been highlighted using the

colours indicated in (a).

In Figure 5.4 it was observed that the cell walls drift laterally due to the inclusion

of air. It is also known that each cell wall was fixed at its top and bottom edge to

the liner sheets. It is therefore not unreasonable to assume that the deformation

mechanism due to drift can be expressed using the geometry shown in Figure 5.6

(a, left), where the solid black line shows the profile of the deformed cell wall due

to a rigid body lateral displacement of ∆x, and the dashed line shows the location

of the initial undeformed shape.

The shaded area in Figure 5.6 (a, left) shows the increase in area (on the vertical

plane), which would result from an average rigid body displacement of magnitude

∆x (where 2∆x is the maximum mid-point displacement of the cell wall at half

height). Now if this slice was projected along the full length of the cell wall, the

shaded area in Figure 5.6 (a, right) shows the equivalent increase in plan area δA∆x

(on the horizontal plane) which would result from the same rigid body displace-

ment; the magnitude of δA∆x, for a cell wall of length L, is simply δA∆x = ∆x×L.

Using this mechanism, an estimation for the total increase in equivalent internal
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plan area (occupied by gas), due to lateral drift, can be calculated by: assuming that

every cell wall is moved to the perimeter (so that they occupy the same location)

and then multiplying the average rigid body displacement of all cell walls, ∆̄x, by

the perimeter length of the left edge 13.5L, giving: δA∆̄x
= ∆̄x × 13.5L; repeating

for drift in the y direction: δA∆̄y
= ∆̄y × 13L; and then summing to get the total

increase due to lateral drift: δA∆̄x,y
= δA∆̄x

+ δA∆̄y
.

Figure 5.6 (b) shows how δA∆̄x
, δA∆̄y

, and δA∆̄x,y
changed as the fully coupled

crushing simulation progressed. The increase in the internal area in the x direction

was of a higher magnitude than in the y direction, a difference in magnitude which

increased with strain, visible by the relationship between the blue and red curves.

When looking at the black curve which shows A∆̄x,y
there are three visible points

of inflexion at 2, 12 and 25 % strain; after an initial rapid increase, the rate of increase

reduced between 2 and 12 % strain, at 12 % strain the gradient sharply increased and

then began a smooth reduction which was present during the remaining crushing

event.
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(a) (b)

Figure 5.6 (a) The assumed deformation mechanism as a result of lateral drift,

showing the net increase of plan area δA∆x for a lateral rigid body x displacement

of ∆x. (b) Increase of internal plan area during the air filled simulation, due to the

average lateral drift of all cell walls in; the x direction δA∆̄x
; y direction δA∆̄y

; and

in total δA∆̄x,y
.

During the experimental testing work (presented in Chapter 3), samples of card-

board honeycomb were crushed at high strain rates; for each crushing event, air

pressures were measured at four internal locations within each sample. Findings in-

cluded: 1. that the magnitude of pressure was generally proportional to the distance

from the sample edge (increasing towards the centre), and 2. an increase in lateral

confinement from additional cell walls resulted in higher pressures; pressures at lo-

cations other than the four measurement points and therefore the true distribution

of pressure and total load carried by the air, was unknown.

Figure 5.7 shows the spatial distribution of internal air pressures, within the

honeycomb during the fully coupled analysis, at 20 (a), 40 (b), 60 (c) and 80 (d)

% strain. The resulting pressure distribution was a hexagonal grid matching the

structural geometry; with no boundary, the air pressure within each cell was able

to equalise. When the lateral drift of the cell walls was sufficient to create multiple

separated sealed volumes within a single cell, it was possible for that cell to contain
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air at different pressures; the pressures shown are those which were present at the

base of the honeycomb and are therefore representative of the load transmitted

through the sample.

The pressure distribution at 20 % strain (Figure 5.7 (a)) shows a plateau region

of equal pressure at ncol > 3, nrow > 2, meaning that the rate of pressure increase

in the internal cells was equal during the early response. Figure (b) shows that

this plateau region had broken down by 40 % strain and a gradient of pressure

throughout the sample began to emerge.

It was not possible to include a cohesive bond for the cell walls located on the

y-y plane symmetrical boundary (see Section 5.1). As a result, the air pressures

which developed in the cells located on the central column (ncol = 13) were lower

than if a glue bond had been present, this is visible in Figure 5.7 (c).

Higher pressures developed in the cells towards the centre. Cells located at the

two perimeter edges (nrow, ncol = 1) developed much lower pressures. Furthermore,

pressures on nrow = 1 were lower than those on ncol = 1 with some cells on

nrow = 1 developing no pressure by 40 % strain.

Comparison between the deformed shapes in Figure 5.4 (e-h), Figure 5.5 and the

pressure distributions in Figure 5.7 (a-d), shows that for a given strain, the magni-

tude of pressure in a given cell is inversely proportional to the lateral displacement

of the cell walls, and therefore the total load transmitted by the air is inversely

proportional to the average lateral displacement of all cell walls on the x-y plane at

a given strain ∆̄x,y(ε), and so: σAir ∝ 1/∆̄x,y(ε).
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(a) ε = 20% (b) ε = 40%

(c) ε = 60% (d) ε = 80%

Figure 5.7 Spatial development of internal air pressures during the air filled nu-

merical simulation (σGlue = 0.5 MPa) at 20, 40, 60 and 80 % strain.

As the air within the honeycomb is undergoing a rapid adiabatic compression,

the resulting air pressures are related to the adiabatic equation of state. For a

column of air, with perfect confinement, the air pressure which would develop in

response to a rapid 1 dimensional strain ε is calculated from Equation 5.1, where

PAtmospheric = 101.325 kPa and cp/cv = 1.4 for these numerical analyses.

σAir,1D(ε) =
PAtmospheric
(1− ε)cp/cv

− PAtmospheric (5.1)
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During analysis of the experimentally recorded air pressures (see Section 3.3.9), it

was discovered that for a given strain the load being carried by the air can be related

to σAir,1D by: σAir = φConf × σAir,1D, where φConf is a factor which indicates the

current degree of confinement provided by the honeycomb structure; furthermore,

φConf was found to decrease with an increase of axial strain.

Table shows σAir,1D as predicted by Equation 5.1; the maximum cellular pressure,

σAir,max; the total stress transmitted by the internal air pressures, σAir; and the

confinement quotient φConf of the fully coupled numerical analysis at 20, 40, 60 and

80 % strain. There are two points of interest here: firstly, the maximum cellular

pressure σAir,max was in exceedance of σAir,1D at 20 and 40 % strain; and secondly,

in agreement with observed experimental behaviour, φConf reduced with strain, and

so φConf must be a function of strain: φConf (ε)

Table 5.4 A summary of the pressures which developed during the default fully

coupled numerical analysis.

ε (%) σAir,1D (kPa) σAir,max (kPa) σAir (kPa) φConf (ε)

20 37 49 27 0.73

40 106 122 46 0.44

60 264 212 92 0.35

80 863 686 320 0.37

Two observations have been made of σAir, 1: σAir = φConf × σAir,1D, and 2:

σAir ∝ 1/∆̄x,y(ε), suggesting that the degree of lateral confinement is a function of

the cell wall lateral drift, or more specifically: the change of current internal volume

V2 due to a change of cross sectional area δA. Reconsidering the adiabatic pressure

volume relationship

P1V
γ

1 = P2V
γ

2 = K (5.2)

where K is constant and γ = cp/cv, can be written in the form
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P2 =
P1(H1A1)γ

[(H1 − εH1)(A1 + δA)]γ
(5.3)

which gives final (absolute) pressure P2 for a volume of air at initial (absolute)

pressure P1 and volume V1 = A1 × H1, subject to a vertical strain ε (where H2 =

H1 − εH1) and change in cross sectional area A1 area of δA (where A2 = A1 + δA)

to create a volume V2 = A2 × H2. Note that for δA = 0, Equation 5.3 reduces to

Equation 5.1 (the 1D adiabatic equation of state).

In addition to a change of internal volume due to δA, a second mechanism

was observed to be responsible for a change in φConf (ε): loss of gas via blow out.

Blow out occurred only in the y-y direction, the plane on which the glue bonds

were orientated; when the pressure gradient between two adjacent cells in the same

column reached a certain magnitude, the high pressure gas formed a pathway by

destroying the cohesive bond and separating the double cell walls. The glue bonds

could also fail during normal structural deformation, allowing the gas to flow along

the ready made pathway. During the crushing event it was also possible for pathways

to become re-sealed due to large structural deformations.

The largest possible pressure differential which can develop within the honey-

comb is between the over pressure σAir,max and the surrounding 0 kPa over pressure

at the honeycomb perimeter. In reality, air in cells close to the perimeter (nrow = 1)

vented well before σAir,max was reached. Cells close to the perimeter vent first as

the pathway to the surrounding ambient air is the shortest and most readily formed.

As the row number increases, the air must form a longer (less permeable) pathway

to vent. Additional factors, such as structural deformations of the (still bonded)

double-ply cell walls and air pressures acting on their back faces from adjacent cells,

increase the difficulty for pathways to form.

A third simulation was performed, σGlue was increased from 0.5 to 7.05 MPa to

provide a full strength bond between the double-ply cell walls. Internal pressure

distributions at 20, 40, 60 and 80 % strain are shown in Figure 5.8 (a-d).

During this numerical analysis, much less air was able to vent, resulting in higher

pressures throughout. In comparison to the pressure distributions which developed
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during the original fully coupled analysis (shown in Figure 5.7), a much larger num-

ber of cells reached and maintained σAir,max. This resulted in the development of an

internal pressure plateau which lasted throughout the analysis. The ability of many

cells to reach σAir,max suggested that they contained the same volume of air, no air

was able to vent from these cells during the impact event.

(a) ε = 20% (b) ε = 40%

(c) ε = 60% (d) ε = 80%

Figure 5.8 Spatial development of internal air pressures during a numerical simu-

lation with a full strength glue bond: σGlue = σY,t2 = 7.05 MPa (an increase from

the default value of σGlue = 0.5 MPa used for Figure 5.7).

Table 5.5 compares σAir,max, σAir and φConf (ε) between the two analyses. An
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increase in σGlue caused σAir,max to exceed σAir,1D during the full impact event,

whereas previously this was only the case at 20 and 40 % strain. A reduction in the

amount of internal air lost due to venting had a significant effect on φConf (ε), which

dropped at a much slower rate during the analysis with full strength glue bonds,

than during the analysis with weaker glue bonds.

Clearly, the development of air pressures within the honeycomb is significantly

affected by the volume of entrained air which is retained during the impact event,

and therefore: σAir ∝ 1/κy(ε), where κy(ε) is the permeability of the cellular structure

in the y direction at a given strain (with units in m3/s/m2) i.e. κy(ε) is the volume of

air which can flow through the area δX×H where H is the honeycomb height and δx

is the width of the honeycomb in the x-x plane. Previously, 1: σAir = φConf×σAir,1D,

2: σAir ∝ 1/∆̄x,y(ε) and now, 3: σAir ∝ 1/κy(ε).

Table 5.5 A comparison of the pressures which developed during the two fully

coupled numerical analyses, as a result of using the default and full strength glue

bonds. All air pressures, σAir,1D, σAir,max and σAir are all given in kPa.

σGlue = 0.50 MPa σGlue = 7.05 MPa

ε (%) σAir,1D σAir,max σAir φConf (ε) σAir,max σAir φConf (ε)

20 37 49 27 0.73 47 34 0.92

40 106 122 46 0.44 126 85 0.80

60 264 212 92 0.35 307 194 0.73

80 863 686 320 0.37 951 583 0.68

In the cells which developed σAir,max (for the analysis where σGlue was equal to

7.05 MPa) no venting occurred; the additional pressure σAir,max − σAir,1D can be

attributed solely to loss of internal volume to folded cell walls, which develop during

the structural deformation; a loss of volume which, can be expressed (like δA∆̄x,y

due to lateral drift) by an equivalent δA. Equation 5.3 can be rearranged to make

δA the subject
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δA =

[
P1(H1A1)γ

P2(H1 − εH1)γ

](1/γ)

− A1 (5.4)

giving an expression for the change in area δA attributed to a change in pressure

from P1 to P2 at a longitudinal strain of ε. Substituting atmospheric pressure

PAtmospheric and σAir,max

δALoss =

[
PAtmospheric(H1A1)γ

(σAir,max + PAtmospheric)(H1 − εH1)γ

](1/γ)

− A1 (5.5)

we get an equation which gives the equivalent loss of internal area due to struc-

tural deformations ALoss, which would generate over pressure σAir,max at a strain of

ε. The net change in area δANet(ε) can then be calculated by summing the growth in

area due to lateral drift A∆̄x,y
(ε) and the loss of area due to structural deformations

δALoss(ε) (both of which are a function of ε), which can be written simply as:

δANet(ε) = δA∆̄x,y
(ε) + δALoss(ε). (5.6)

Figure 5.9 shows how δA∆̄x,y
(blue line), δALoss (red line) and δANet (black line)

changed with strain for the fully coupled analysis with the full strength glue bonds.

Comparison between the blue and red lines shows that the rate of change of δA∆̄x,y

was much more constant than the fluctuation δALoss. Both mechanisms had an

equally significant impact on the net change in area; δANet was negative until 40%

strain, after which the cell wall drift began to dominate, resulting in a net expansion

of the internal volume.

The significance of the early, strong oscillations visible below 20 % strain on

the red line is not clear. In this region, pressures were still very low and so any

fluctuations from additional sources would be amplified as their relative size would

be large in comparison to the low early pressures. One potential source of this

additional early pressure, is a reflecting shock in the air, caused by a sudden forced

acceleration of the gas particles on contact between the impactor and the top liner;

after 20 % strain (when the air pressures began to become significant) the oscillations

has almost completely damped out.
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Figure 5.9 Increase of internal area due to outwards cell wall drift δA∆̄x,y
(ε), de-

crease of internal area due to structural deformations δALoss(ε) and net total change

of area δANet(ε) during the air filled analysis with full strength glue bonds.

Substituting δANet into Equation 5.3

σAir,δV (ε) =
PAtmospheric(H1A1)γ

[(H1 − εH1)(A1 + δANet)]
γ − PAtmospheric (5.7)

an equation is created which gives σAir,δV (ε), the internal pressure would be

generated within the honeycomb solely due to a change of the internal volume from

V1 = H1A1, to V2 = (H1 − εH1)(A1 + δANet).

Finally, any difference between σAir,δV (ε) and the actual value of σAir at a given

strain ε must be due to loss of gas, and so

σAir(ε) = σAir,δV (ε)− σAir,V ent(ε) (5.8)

where σAir,V ent(ε) is the drop in pressure which resulted from a loss of internal

gas of volume VV ent. Black, blue and red lines in Figure 5.10 show σAir with its

two components σAir,δV (ε) and σAir,V ent(ε) for the fully coupled analysis with full

strength glue bonds.
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Figure 5.10 Total stress actually transmitted by air the internal air pressures σAir,

stress which would have resulted purely from the change of internal volume (if all

air had been retained) σAir,δV , and the component which was lost due to venting

of the air σAir,V ent during the fully coupled analysis with full strength glue bonds.

Where: σAir(ε) = σAir,δV (ε)− σAir,V ent(ε).

This approach is limited as it relies on the development of σAir,max (which requires

a cell absent of any venting) to estimate the current internal volume within the

honeycomb. However, insight has been gained into the complicated and highly

variable mechanisms which contribute to the development of internal air pressures.

Perhaps the most striking finding is the development of an internal equal pressure

plateau of σAir,max (visible in Figure 5.8). If the sample plan area was increased, so

would the proportion of cells able to reach σAir,max and in turn σAir would approach

σAir,max.

5.3 Material parameter study scope

The numerical simulation was now repeated with singular variations on one of the 7

material parameters given in Table 5.3. The default values, which are in the expected

magnitude for a cardboard honeycomb cell wall, were based on those originally

determined in Section 4.1.2, with added consideration of the values which were

found to give good agreement between the numerical model and the experimental
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results in Section 4.4.3.

The matrix of numerical simulations was populated by firstly performing two

additional simulations for each material parameter, to assess the sensitivity of the

response, and then adding additional simulations (where computational resources

allowed) to further study the parameters which were found to be most sensitive.

Effort was made to maintain the magnitude of variation, between parameters,

for the initial two additional simulations to allow a fair sensitivity analysis; where

possible, variations were made on the default value so that the three simulations

possessed values which

1. were in the ratio of 1:2:4

2. and the value used for the default analysis was situated in the middle.

Some parameter variations proved problematic; for example, when density was

halved from the default value of 630 kg/m3 to 315 kg/m3 numerical stability could

not be achieved; and some parameter variations made little engineering sense, such

as doubling the default Poisson’s ratio from 0.3 to 0.6 (i.e. above that of a perfectly

compressible material where ν = 0.5), or halving the yield stress ratio from the de-

fault of 1.41 to 0.705 (imposing a lower yield stress for the double than the single-ply

cell walls). In these cases it was necessary to relax the two constrains stated above,

firstly, by allowing the default analysis to become either the maximum or minimum

value while maintaining the 1:2:4 ratio (such as for the density simulations), and

secondly, by adopting a more sensible, even, inter-simulation variation (such as for

the Poisson’s ratio simulations).

Table 5.6 gives a summary of the minimum and maximum values covered in this

material parameter study. Note that the range of values investigated for the tangent

hardening modulus Et was particularly large, this was to provide some insight into

when and if strain hardening begins to have an effect on the response i.e. at what

rate of strain hardening the elastic-plastic material model ceases to be an accurate

assumption.
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Table 5.6 Scope of the analysed material parameter variations.

Parameter Minimum value Maximum value

ν 0.2 0.4

E (GPa) 1.0 4.0

ρ (kg/m3) 630 2520

k 1.00 1.41

σGlue (MPa) 0.00 7.05

σY ield (MPa) 2.5 10.0

Et (Pa) 2× 103 2× 108

5.4 Material parameter study: Macroscopic re-

sponse results

For all analyses, four response parameters were calculated and in doing so, the

sensitivity of the macroscopic response to variations of each material parameter could

be quantified. σPeak was calculated by taking an average of the initial peak and the

four following data points, removing any numerically induced oscillations; σPlateau

was calculated as the average transmitted stress between 20 and 50 % strain; εComp

was the strain at which the plateau rises to exceed σPeak; and U(ε) was computed

for several levels of strain (including εComp), by integrating the stress strain curve.

At a given value of strain U(ε) represents the amount of kinetic energy which

has been converted to internal strain energy (per unit volume) by the EDM. U(ε)

consists of two components, energy dissipated by plastic strain of the cell walls (per-

manent) and energy stored by adiabatic compression of the internal gas (temporary).

U(εComp) is the total amount of strain energy, per unit volume, within the sample

at compaction.

Sections 5.4.1 to 5.4.7 look at the effect of varying each of the material pa-

rameters. In each section the macroscopic response curves are presented and then

followed by graphs of the four response parameters. In each graph comparing the
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macroscopic responses, the response of the default analysis is plotted with a solid

black line.

5.4.1 Effect of Poisson’s ratio (ν) on the macroscopic re-

sponse

Figure 5.11 shows the numerical macroscopic responses for varied Poisson’s ratio.

The graphed stress is σTotal, which is a composite of the stress transmitted by both

the air and the cardboard structure, σTotal = σCard+σAir. It was previously observed

that the early response was dominated by buckling of the cell wall structure and as

strain increased, the dominance moved towards the internal air pressures.

Variations in the Poisson’s ratio, caused no obvious trends in the early macro-

scopic response. When looking at the late response, after 50 % strain, as the Pois-

son’s ratio was increased, the rate of stiffening was reduced. The late response is

dependent on the development of internal air pressures; this reduced rate of stiffen-

ing could be explained by an increase in the internal volume from an enhanced, net,

macroscopic, Poisson’s ratio effect of the cellular structure.

Figure 5.11 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations with varied Poisson’s ratio ν.
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Figure 5.12 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed due to variations in the Poisson’s ratio. The three analyses are plotted

with hollow circle markers, a linear connection between them is used to highlight

any trends. There was no marked effect on σPeak, σPlateau; while the reduction in

the rate of stiffening, discussed above, caused a linear 1.6 % increase in εComp when

the Poisson’s ratio was increased from 0.2 to 0.4.
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Figure 5.12 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations in the cell wall Poisson’s ratio ν.

Figure 5.13 shows how the internal strain energy per unit volume U increased

with strain ε, as the Poisson’s ratio was varied. In addition, the dashed black line

shows U at the point of compaction, i.e. the total kinetic energy converted to

strain energy by the honeycomb, during its useful EDM response. There were no

discernible, noteworthy trends, the downward slope of 80% strain contour (green

line) is just another expression of the singular trend discussed above; also, UεComp is

remarkably consistent for all values of ν.
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Figure 5.13 Variation of the total strain energy per unit volume U(ε), at vari-

ous increments of strain (including εComp) as a result of variations in the cell wall

Poisson’s ratio ν.

5.4.2 Effect of elastic modulus (E) on the macroscopic re-

sponse

Figure 5.14 shows the numerical macroscopic responses, for varied elastic modulus.

The main effect of varying the elastic modulus can be seen between 5 and 25 %

strain. In this region there is a transition between the post-peak softening limb and

the plateau; the transition zone is characterised by an initial dip, followed by a small

peak, before settling to the plateau.

As the elastic modulus was increased, the shape of the transition zone changed;

both the peak and dip inflection point moved left and up, shortening the softening

limb while reducing the dip severity and increasing the secondary peak magnitude.

After the secondary peaks, all three responses linearly converged, reaching equal

magnitudes at 40% strain. Finally, there was a marginal reduction in the stiffening

rate, between 55 and 70% strain, with increased elastic modulus.
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Figure 5.14 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations with varied elastic modulus E.

Figure 5.15 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with variations in the elastic modulus. Between 1 and 4 GPa there was no

marked effect on σPeak, a small linear increase in σPlateau from 98 kPa to 109 kPa

and an even smaller 1% increase in εComp.
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Figure 5.15 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations in the cell wall elastic modulus E.

Figure 5.16 shows how the internal strain energy per unit volume U increased

with strain ε, as the elastic modulus was varied. By 40 % strain, the difference

in the early macroscopic behaviour had instilled a gradual, almost linear, increase

of the internal strain energy per unit volume; U increased by 8.4 kJ/m3 when E

was increased from 1 and 4 GPa; over the same interval, the strain energy per unit

volume at compaction UεComp also increased by a total of 8.9 kJ/m3 from 83.5 to

92.4 kJ/m3.
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Figure 5.16 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the cell wall elastic

modulus E.

5.4.3 Effect of density (ρ) on the macroscopic response

Figure 5.17 shows the numerical macroscopic responses, for varied cardboard den-

sity; both the early (0 - 10 % strain) and late (50 % + strain) response was affected

by changes in density; there was no significant impact on the central plateau region.

With increased density the rate of softening between the peak and plateau was

reduced. With increased density, there was also a smoothing out of the initial dip

and peak characteristic to the transition region between the softening limb and

plateau. An opposite effect was visible in the late response: stiffening began later

with increased density.
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Figure 5.17 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations with varied density ρ.

Figure 5.18 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with variations of the density. While there was no clear relationship between

σPeak and σPlateau and the density, the simulation with a density of 1260 kg/m3

produced marginally higher values for both the peak and plateau stresses. The

reduction in stiffness of the late response, observed in Figure 5.17, resulted in a

later compaction strain as the density was increased, εComp increased by 3.2 % as

the density was increased from 630 to 2520 kg/m3.
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Figure 5.18 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations in the cell wall density ρ.

Figure 5.19 shows how the internal strain energy per unit volume U increased

with strain ε, as the density ρ was varied. The effect of density on the early and late

responses is visible when comparing the early and late contours. At lower strains,

a cell wall with a higher density provides marginally more energy absorption, while

at higher strains, the opposite begins to become true. However, by comparing the

shape and location of the dashed black line with the green line, it can be seen that,

for these analyses the energy absorbed per unit volume at compaction U(εComp) is

unaffected by late response stiffening induced by a reduction in density.
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Figure 5.19 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the cell wall density

ρ.

5.4.4 Effect of the double-ply yield stress amplification fac-

tor (k) on the macroscopic response

Figure 5.20 shows the numerical macroscopic responses, for varied k, (where k =

σY,t2/σY ield). Analyses were performed with two additional values of k, 1.00 and 1.2

below the default value of 1.41; for k = 1.2 and 1.41 the yield stress of the material

constituting the double cell walls was increased by a factor of 20 % and 41 %

respectively. The effect was small, however, an increase in k caused a general lift in

magnitude across the response.
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Figure 5.20 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations with varied double to single-ply cell wall yield stress ratio k.

Figure 5.21 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with k. As k was increased from 1 to 1.41, σPeak and σPlateau each increased

by 10 kPa and 9 kPa, an increase of 4 and 10 % respectively; the effect of varying

k on the compaction strain was negligible, illustrated by the extremely tight y axis

in Figure 5.21 (b).
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Figure 5.21 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations in the double to single cell wall yield stress

ratio k.

Figure 5.22 shows how the internal strain energy per unit volume U increased

with strain ε, as k was varied. For plotted levels of strain, there was a linear increase

of U with k. The cumulative effect of the general lift in response magnitude with

k (observed above) caused an increase in the gradient of the U -k relationship with

increased strain; when k was increased from 1 to 1.41, there was a linear increase in

U of 3.45 kJ/m3 at 20 % strain (solid black line) while at 80 % strain (solid green

line), this increased to 8.80 kJ/m3. Over the same interval UεComp increased by 11

% from 78.9 to 87.4 kJ/m3.
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Figure 5.22 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the double to single

cell wall yield stress ratio k.

5.4.5 Effect of glue strength (σGlue) on the macroscopic re-

sponse

Figure 5.23 shows the numerical macroscopic responses, for varied σGlue. The glue

strength was varied between 0 MPa (no bond) and 7.05 MPa, σGlue = σY,t2 =

k × σY ield (full strength bond).

Two main effects are visible from variations in σGlue; as the strength of the

glue bond was increased, the rate of post-peak softening increased and the plateau

shortened. For a full strength bond (green line) the transmitted stress began to lift

away from the plateau at 25 % strain; when no bond was used (red line) the sample

began to stiffen at 45 % strain. Once stiffening began, the actual shape of the rise

was similar for all four analyses.
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Figure 5.23 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations with varied glue strength σGlue.

Figure 5.24 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with σGlue. An increase in σGlue from 0 to 7.05 MPa caused a drop in σPeak

of 11 kPa (4 %) and an increase in σPlateau of 27 kPa (27 %). The earlier onset of

stiffening (visible in Figure 5.23), with increased σGlue caused a reduction in εComp

of from 71 to 58% strain. Sharp changes in gradient, at 1 MPa, visible on the blue,

red and green lines in Figure 5.24 (a) and (b) suggested that the sensitivity of the

response reduces as σGlue increases above 1 MPa.
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(b)

Figure 5.24 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations in the cohesive bond strength between the

double-ply cell walls σGlue.

Figure 5.25 shows how the internal strain energy per unit volume U increased

with strain ε, as σGlue was varied. At low values of strain there was more energy

stored when the glue bond was weak. In contrast, by 60 % strain an increase in σGlue

caused an increase in U. The black dashed line shows that for this configuration, an

increase in σGlue from 0 to full strength caused a reduction of UεComp by 17 % from

90 to 75 kJ/m3.
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Figure 5.25 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the cohesive bond

strength between the double-ply cell walls σGlue.

5.4.6 Effect of yield stress (σY ield) on the macroscopic re-

sponse

Figure 5.26 shows the numerical macroscopic responses, for varied σY ield. It can be

observed that there was a strong relationship between variations in the yield stress

and the macroscopic response, an increase of the cell wall yield stress increased the

magnitude of load transmitted by the sample in the peak, plateau and compaction

region.
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Figure 5.26 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations with varied cell wall yield stress σY ield.

Figure 5.27 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with σY ield.

Three analyses were performed, σY ield was increased by a factor of 2, from 2.5

to 5 MPa and then again from 5 to 10 MPa; there was an almost perfectly linear

relationship between both the values of σPeak, σPlateau and σY ield; as σY ield was

increased, the peak and plateau stresses diverged.

Over the first interval (σY ield = 2.5→ 5 MPa), σPeak increased from 129 to 262

kPa, a factor of 2, suggesting direct proportionality: σPeak ∝ σY ield. Over the second

interval (σY ield = 5→ 10 MPa), σPeak increased from 262 to 494 kPa, a factor of 1.9,

suggesting that as the σY ield is increased the direct proportionality between σY ield

and σPeak begins to degrade.

Now considering σPlateau (red line), over both the first and second intervals there

was an increase by a factor of 1.7, (from 60 to 101 kPa then from 101 to 171 kPa for);

this was remarkable when considering that the macroscopic response curves shown

in Figure 5.26 were not exact geometrical transformations of each other. An increase
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in σY ield between 2.5 and 10 MPa also increased the compaction strain εComp from

65 to 72 %.
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(b)

Figure 5.27 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations in the cell wall yield stress σY ield.

Figure 5.28 shows how the internal strain energy per unit volume U increased

with strain ε, as σY ield was varied. For all levels of strain there was a linear increase

in U with σY ield; the gradient of the U-σY ield relationship also increased with strain.

An increase in σY ield from 2.5 to 10 MPa caused a total increase in UεComp by a factor

of 3.4 from 45 to 155 kJ/m3.
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Figure 5.28 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the cell wall yield

stress σY ield.

5.4.7 Effect of tangent hardening modulus (Et) on the macro-

scopic response

A graphical representation of the linear elastic-plastic constitutive model was given

in Figure 4.3 on which it is shown that the tangent hardening modulus (Et) is

the gradient of the post-yield region. Its magnitude, in comparison to the elastic

modulus (E), defines the degree of strain hardening present in the model; for a

perfectly linear elastic-plastic material model Et = 0, and for a perfectly linear

elastic material model Et = E. By default, a value of 0.0001 × E was used to

reduce the effect of strain hardening to a negligible magnitude. Three additional

simulations were performed using values of Et from E × 10−6 to E × 10−1, giving a

range of Et = 2× 103 → 2× 108 Pa.

Figure 5.29 shows the numerical macroscopic responses, for the four simulations

with varied Et. For the default analyses and values below Et < 2×105 Pa the effect

on the response was negligible; at an unknown value between 2 × 105 and 2 × 107

Pa, Et began to have a significant effect on the response.
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As Et was increased, there was an increase in the transmitted stress across the

full response and the differential between the peak and plateau region was reduced;

for a value of 2× 108 Pa the macroscopic response (green line) no longer resembled

the idealistic macroscopic response which was illustrated in Figure 5.1.
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Figure 5.29 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations with varied tangent hardening modulus Et.

Figure 5.30 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with Et. A log scale has been used on the x axis as the values of Et were

spread across many orders of magnitude.

For values of Et ≤ 2 × 105 Pa, there was little to no effect on the response. As

Et was increased above 2 × 105 Pa, towards E (2 × 109 Pa), the magnitude (and

sensitivity to a given change in Et) of both σPeak and σPlateau increased. Additionally,

the values of σPeak and σPlateau converged as Et was increased towards E.

As εComp was dependent on the difference between σPeak and σPlateau, their con-

vergence as Et was increased from 2 × 105 to 2 × 108 caused a rapid reduction in

εComp, from 69 to 41 %.

206



10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

50

100

150

200

250

300

350

Tangent modulus E
t
 (Pa)

S
tr

es
s 

(k
P

a)

 

 

σ
Peak

σ
Plat

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0

50

100

150

200

250

300

350

Tangent modulus E
t
 (Pa)

S
tr

es
s 

(k
P

a)

 

 

(a)

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Tangent modulus E
t
 (Pa)

S
tr

ai
n

 

 

ε
Comp

10
3

10
4

10
5

10
6

10
7

10
8

10
9

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Tangent modulus E
t
 (Pa)

S
tr

ai
n

 

 

(b)

Figure 5.30 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations of the cell wall tangent hardening modulus

Et.

Figure 5.31 shows how the internal strain energy per unit volume U increased

with strain ε, as Et was varied. As Et was increased over the interval 2×105 → 2×108

Pa there was an increase in both the magnitude of U and its rate of increase with

respect to Et and ε. In comparison, UεComp was relatively consistent, while still

increasing by 29% (25 kJ/m3) over the full interval.
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Figure 5.31 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the cell wall tangent

hardening modulus Et.

5.4.8 Summary of the material parameter study macroscopic

response results

Within the scope of analyses performed during this chapter (see Table 5.6) the

material parameters which had the least effect on the honeycomb response were:

• Poisson’s ratio (ν)

• Elastic modulus (E)

• Density (ρ)

• Yield stress ratio (k)

and those which were found to have a more significant effect on the response were:

• Glue strength (σGlue)

• Yield stress (σY ield)

• Tangent hardening modulus (Et).
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While it may be a true that ν, E, ρ and k are capable of significantly influencing

the honeycomb response when increased outside of the boundaries imposed by the

initial sensitivity analysis, or when used in combination with a different set of other

parameter values, this further investigation must be reserved for future work.

5.5 Analysis of the effect of dominant material

parameters on the structural and air pressure

load carrying mechanisms

This section presents further investigation into how variations of the glue strength,

yield stress and tangent hardening modulus affected the macroscopic response. This

is done by identifying how each parameter variation affected the load carried by the

cardboard cell wall structure σCard, and the internal air pressures σAir (the two

components from which the macroscopic response is composed). Consideration is

also given to what effect the resulting variations of σCard and σAir had on their

corresponding energy absorption capacities UCard and UAir.

5.5.1 Effect of variations in glue strength (σGlue) on the meso-

scopic load carrying mechanisms

Figure 5.32 shows macroscopic response for the four analyses with varied glue

strength σGlue. The total transmitted load has been decomposed into its two con-

stituents; each analysis is identified by a unique colour; the load transmitted by the

cell walls σCard is plotted with solid lines, and load transmitted by the internal air

pressures σAir is plotted with dashed lines. On the same graph, σAir,1D has been

plotted for reference (as calculated from Equation 5.1); σAir,1D is the pressure which

would develop if no gas was lost via blow out and there was no change of internal

volume due to structural deformations.

For the most part, variations in the glue strength had no significant effect on

σCard. However, when a full strength glue bond was used the initial post peak
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structural deformation was distributed throughout the full height of the structure,

causing a much more rapid softening than was present in the other three analyses,

whereby the the deformations were concentrated around the creation of the first

progressive fold. This behaviour can be seen in Figure 5.32, below 5 % strain, by

comparison of the much steeper solid green curve with the other three less steep

curves.

The analyses shown with green and black lines (σGlue = 0.5 and 7.05 MPa)

were both discussed in detail during Section 5.2. To summarise, three overlying

mechanisms have been observed to control the magnitude of internal air pressure

development; 1. volume increase due to cell wall drift; 2. volume reduction due to

structural deformations; and 3. loss of gas via venting. For air to vent from a given

cell, a pathway must be formed from that cell to the perimeter. To form, a pathway

must pass through at least one pair of initially bonded double-ply cell walls. An

increase of σGlue increases the stress required to separate the double-ply cell walls,

less pathways are able to form, less air is vented and as a result higher pressures

develop.

With increased σGlue, σAir approached σAir,1D, but even with a full strength glue

bond the honeycomb provided less than full restraint to the entrained air and σAir,1D

was not reached. Additionally, increases of σGlue had diminishing returns, increasing

σGlue from 0.5 to 1 MPa (an interval of 0.5 MPa) had a larger effect on σAir than

increasing from 1 to 7.05 MPa (an interval 6.05 MPa).
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Figure 5.32 Stress transmitted by the cell wall structure σCard and internal air

pressures σAir vs axial strain ε during the simulations with varied glue strength

σGlue. In addition, σAir,1D (as given by Equation 5.1) has been plotted, illustrating

the stress which would be transmitted through the air if it were perfectly constrained

and subject to an axial strain of ε.

Figure 5.33 shows how the two components of internal strain energy changed

with variations in σGlue; UCard is permanently stored in non-reversible plastic strain

of the cell walls and UAir is temporarily stored by reversible compression of the

entrained air.

Variations of σGlue had little effect on UCard, it is worth nothing that the energy

absorbed during the peak stress region was insignificant in comparison to the mag-

nitude of energy absorption provided by the plateau. Counter intuitively, UCard was

higher for the analysis with no glue bonds. During the early response there was no

effect on UAir, but after 30 % strain an increase of σGlue caused a significant increase

of UAir; UAir more than doubled from 48 to 111 kJ/m3 when the glue bond was

increased from zero to full strength.
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Figure 5.33 Energy per unit volume which was stored permanently as plastic strain

energy in the cell walls UCard and temporarily in compression of the internal air UAir

vs strain ε during the simulations with varied glue strength σGlue.

5.5.2 Effect of variations in yield stress (σY ield) on the meso-

scopic load carrying mechanisms

Figure 5.34 shows σCard and σAir for the three analyses with varied yield strength

σY ield. An increase of σY ield caused an increase in both σCard and σAir. For all three

analyses, the structural response took on a similar shape, its magnitude was scaled

in line with a variation of σY ield. Likewise, the gradient of σAir increased towards

σAir,1D as the yield stress was increased.

The point at which the structure and air were of equal stiffness (σCard = σAir)

shifted later in the crushing response; as σY ield was increased from 2.5 to 5 to 10 MPa

the point of equal stiffness moved from 35 to 44 to 52 % strain respectively. This

suggested that as σY ield is increased, the significance of the internal air pressures (in

comparison to the structural response) diminishes; even more so when considering

that σAir will reach an upper limit (of σAir,max ≈ σAir,1D), and σCard will not. It

appears that the geometrical and material parameters, typical of a cardboard hon-
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eycomb, place it in a region where the magnitude of load transmitted by the internal

air pressures, is comparable to the magnitude of load transmitted by the cellular

structure.
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Figure 5.34 Stress transmitted by the cell wall structure σCard and internal air

pressures σAir vs axial strain ε during the simulations with varied cell wall yield stress

σCard. In addition, σAir,1D (as given by Equation 5.1) has been plotted, illustrating

the stress which would be transmitted through the air if it were perfectly constrained

and subject to an axial strain of ε.

Figure 5.35 shows how UCard and UAir were affected by variations in σY ield. After

the initial sharp increase caused by the peak stress, the UCard curves were almost

linear throughout the whole response, their gradient increasing with increased σY ield.

During the early analysis UAir was unaffected, at 25 % strain the curves began

to diverge, an increase of σY ield increasing the rate of pressure development and

therefore amount of energy stored in UAir.
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Figure 5.35 Energy per unit volume which was stored permanently as plastic strain

energy in the cell walls UCard and temporarily in compression of the internal air UAir

vs strain ε during the simulations with varied cell wall yield stress σY ield.

5.5.3 Effect of variations in tangent hardening modulus (Et)

on the mesoscopic load carrying mechanisms

Figure 5.36 shows how the stresses transmitted by the cardboard structure and

internal air pressures were affected when the tangent hardening modulus Et was

varied. While the elastic modulus E is the gradient of the pre-yield limb of the

stress strain constitutive model, the tangent hardening modulus Et is the gradient

of the post-yield limb, and therefore controls the magnitude of post-yield strain

hardening present in the model. Note, that for all analyses the elastic modulus had

a value of 2× 109 Pa.

When Et was less than 0.001E i.e. when the tangent hardening modulus was

less than 2 × 106 Pa, any variation in its value had little effect on the honeycomb

response. As the tangent hardening modulus was increased above 2 × 106 Pa, the

load being transmitted by both the structure and internal air pressures began to be

affected, resulting in a general increase of σAir and σCard with an increase of Et.
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σAir increased when the tangent hardening modulus was increased from 2× 105

Pa and 2 × 107 Pa, however when the tangent hardening modulus was increased

above 2× 107 Pa, to 2× 108 Pa any further increase in σAir was marginal.

There was a notable increase of σCard as the tangent hardening modulus was

increased above 2× 106 Pa; additionally, the sensitivity of σCard to variations in the

tangent modulus increased as its value approached the elastic modulus, increasing

both the magnitude of structural stiffening and modifying the shape of the structural

response. For the simulation where the tangent hardening modulus was a tenth of

the elastic modulus (i.e. Et =2×108 Pa), the plateau had risen to be almost equal to

the peak stress, resulting in a structural response which was no longer characteristic

of a typical EDM.
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Figure 5.36 Stress transmitted by the cell wall structure σCard and internal air

pressures σAir vs axial strain ε during the simulations with varied cell wall tangent

hardening modulus Et. In addition, σAir,1D (as given by Equation 5.1) has been

plotted, illustrating the stress which would be transmitted through the air if it were

perfectly constrained and subject to an axial strain of ε.

The reason behind this stiffening can be understood by revisiting the basic me-

chanics behind the structural response. At any given strain, the load being trans-
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mitted by the structure is a function of the material properties and the current

geometrical arrangement. When the cell wall material has no strain hardening, the

maximum stress which can be present within the cell walls is limited to σY ield. At

the point just prior to impact the geometrical arrangement is at its stiffest, and so

when impact occurs the internal stress increases to its maximum ≤ σY ield, causing

a macroscopic peak stress of σPeak to be transmitted through the honeycomb.

Immediately following σPeak, the internal stress can increase no more, the struc-

ture is forced to buckle, assuming the geometrically less stiff, but kinematically

stable progressive buckling mode, and the macroscopic transmitted stress falls to

σPlateau. The progressive buckling mode then propagates until the cell wall is ex-

hausted and the honeycomb compacts causing the macroscopic transmitted stress

to rise from σPeak as the honeycomb stiffens up.

When strain hardening was included, the stress within the cell walls was no

longer limited to σY ield, and so when the internal stress reached the yield stress, in

addition to buckling, the internal stress was able to then increase above σY ield at

a rate proportional to the tangent hardening modulus and the rate of deformation.

Consequently, rather than the whole structure being forced into a progressive buck-

ling mode (concentrated at one point along the cell wall height), once a region of

cell wall was deformed by a certain amount it stiffened up and the load began to

act on the next region of the cell wall.

As Et was increased towards E, a greater proportion of cell wall material was

recruited, and stiffened to a greater magnitude, to provide resistance during the post

peak deformation. As a resultthe plateau stress was no longer reliant solely on a

change in geometrical stiffness (with a limit on the internal stress) and rose towards

σPeak.

Figures 5.37 (a) and (b) show the deformed shapes, at 5 % axial strain (i.e. just

after the initial peak stress), of the simulations with minimal and maximum strain

hardening. The responses of these two simulations were shown with black and green

lines in Figure 5.36. The behaviour discussed above is clearly illustrated; Figure 5.37

(a) shows a region of concentrated extreme deformation at the base of the cell walls
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(and another beginning to form at their top) with the vast majority of the cell wall

material unfolded; while Figure 5.37 (b) shows an evenly distributed deformation

pattern, with the full height of cell wall being recruited and numerous simultaneous

folds (of lesser magnitude) beginning to emerge.

(a) Et = 2× 105 Pa (b) Et = 2× 108 Pa

Figure 5.37 Side elevation (camera is looking at the left edge of the geometry

shown in Figure 5.2) showing the deformed shape of the honeycomb at 5 % axial

strain for the simulations with minimum (a) and maximum (b) (strain hardening).

Contours illustrate the magnitude of plastic strain of the cell wall material.

Figure 5.38 shows how UCard and UAir were affected by variations in Et. While

there was an increase of UAir when Et was increased from 2 × 105 to 2 × 107, the

major effect was on the structural response; when Et was increased above 2 × 107,

UCard increased dramatically, rapidly becoming the dominant energy absorption

mechanism.
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Figure 5.38 Energy per unit volume which was stored permanently as plastic strain

energy in the cell walls UCard and temporarily in compression of the internal air UAir

vs strain ε during the simulations with varied cell wall tangent hardening modulus

Et.

The reduction of the differential between the peak and plateau stresses suggest

that it may be advantageous for a user to select a cell wall material which has a

greater degree of strain hardening; meaning that when the peak and plateau trans-

mitted stresses are equal, the honeycomb will provide a maximum energy absorption

capacity for a given maximum design transmitted stress. In this case, the concept of

compaction becomes irrelevant and the user would be required to decide a maximum

permissible stress, which once reached, a known amount of energy absorption will

have have been provided.

However, by considering the extreme case where the rate of post-yield strain

hardening is increased to such an extent that Et = E (the cell wall becomes perfectly

elastic). In this case, no yielding would occur and the transmitted stress would tend

towards infinity with increased strain, i.e. the honeycomb would no longer function

as an EDM. Thus, there must be a limit after which any further increases in the

rate of post-yield strain hardening no longer have a desirable effect on the response.
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Furthermore, by considering the fact that the internal stress is allowed to exceed

σY ield, to what extent being dependent on the amount of time that the structure

has to respond (i.e. the rate of loading and rate of strain hardening), it is clear

that increasing the tangent hardening modulus must be also introducing a degree

of strain rate sensitivity.

5.6 Conclusions

By performing numerical simulations of an air filled, cellular honeycomb structure

subject to high strain rate axial crushing, it has been possible to study the mech-

anisms which occur during the non-linear, air-structure coupled, impact response

of the cardboard honeycomb EDM. The numerical simulations have allowed the

response to be observed with a much higher spatial resolution than what is real-

istically possible with experimental methods; thus, providing a novel insight into

the mesoscopic mechanisms which compose the cardboard honeycomb macroscopic

response. Furthermore, the numerical model was used as a platform to isolate the

effects of variations in the cell wall material parameters on the structural and air

pressure load carrying mechanisms, which together comprise the macroscopic EDM

honeycomb response.

In Section 5.2 the role of the entrained air was studied. Comparison between

simulations of the honeycomb with and without the air showed that the internal air

pressures, while causing a temporary reduction in the stress transmitted by the cell

walls, provided a substantial secondary load carrying mechanism and resulted in a

net increase of the total macroscopic transmitted stress. The presence of pressured

air within the honeycomb also modified the structural deformation mode, causing

the cell walls to drift outwards, with a magnitude proportional to the distance from

the honeycomb centre; a graphical representation of this behaviour is shown in

Figure 5.5.

In Chapter 3 it was discovered that the internal air pressure distribution is non-

uniform, with higher pressures developing towards the honeycomb centre; however,
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as the pressure was only recorded at four discrete points the exact internal pres-

sure distribution was unknown. The numerical modelling revealed that the internal

pressure distribution is discretised by the cell walls, the air within each cell being

of equal pressure and its magnitude dependent on the distance of that cell from the

honeycomb perimeter; Figures 5.7 and 5.8 show the pressure distributions which

developed during two separate numerical simulations.

It was observed that at any point during the response, there is a maximum

possible internal air pressure. Its magnitude is dependent on the current volumetric

strain provided by both the loss internal volume due to the axial strain and the loss of

internal volume due to the volume occupied by the folded cell walls. If provided with

sufficient lateral confinement by the honeycomb structure (such as for cells towards

the centre), the pressure within any given cell will reach this maximum pressure;

however, when the air pressure exceeds the provided lateral confinement (such as for

cells towards the perimeter) it deforms the structure, causing the aforementioned

outwards cell wall drift, and/or where a pathway to the perimeter can be formed,

vents via blow out, reducing the internal pressure below the maximum.

The result (which is shown in Figure 5.8) is an internal pressure distribution

where those cells capable of reaching the maximum pressure form a plateau of equal

pressure, surrounded by cells containing air at a lesser pressure of reducing magni-

tude towards the honeycomb perimeter. As the axial strain is increased, so is the

magnitude of internal air pressure, the pressure gradient between more cells becomes

capable of exceeding its restraint and the plateau region shrinks.

As the maximum internal pressure increases, so does the gradient between it

and the surrounding atmospheric pressure. As the pressure gradient increases, the

air in more and more cells begins to reach pressures of magnitudes that allow it to

overcome the resistance provided by both the structure and the bonded cell walls

and create a blow out pathway. It may also be the case, that the pressure gradient

required to form a pathway between some cells and the perimeter, is so high that

no air is able to escape, from these cells, during the impact response.

Theoretically, as 4.6% of the macroscopic volume consisted of cardboard (see
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Figure 5.2), once the structure had reached 95.4 % strain there would be no air

remaining within the honeycomb. However, it may be the case that the air pressures

reach such a high magnitude that they cause the impacting object to spring back.

Although for the samples tested during the experimental tests, once the projectile

was halted by the collar (at 83% strain), the internal air pressures rapidly vented

(within ms).

To identify the effects of variations in the cell wall material parameters and evalu-

ate their effects on the EDM behaviour of the cardboard honeycomb, four response

parameters were calculated for each simulation: peak transmitted stress, plateau

stress, strain at which compaction occurs and absorbed energy per unit volume.

Over the scope of simulations performed (see Table 5.6) three material properties

were found to have a significant effect on the response, these were: the double-

ply glue bond strength, cell wall yield stress and the cell wall tangent hardening

modulus.

An increase in the glue strength (while not having a noteworthy effect on the

structural response) was found to significantly increase the volume of air retained

within the honeycomb, resulting in much higher cellular pressures and therefore

higher total stress transmitted through the air. This resulted in an increase of the

energy absorbed per unit volume, at the compaction point by 29 %, when the glue

bond strength was increased from zero to full strength (i.e. equal to the double cell

wall yield stress).

An increase in the cell wall yield stress increased the stress transmitted by both

the structure and the internal air pressures. The peak stress was an almost linear

function of the yield stress, with the peak stress being a product of the yield stress

and the cross sectional area of cardboard cell wall. The absorbed energy per unit

volume at compaction increased by 340 % when the yield stress was increased from

2.5 to 10 MPa.

An increase in the magnitude of strain hardening, via an increase in the tangent

hardening modulus, had no effect on the response when it was below a thousandth

of the value of the elastic modulus (0.001E); above this, an increase in the tangent
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modulus began to modify the response, lifting both the peak and plateau stress, but

at different rates, causing the peak and plateau to converge. The mechanism behind

this behaviour was shown in Figure 5.37; an increased amount of strain hardening,

allowed the cell walls to stiffen above the yield stress and pass on load to the next

section of the cell wall, the result was a structural response where a much larger

proportion of the cell wall height was recruited to resist the impact loading.

5.6.1 Implications of the material parameter study for an

end user

Due to the relatively cheap cost of cardboard, the limiting design factor is likely to be

volume, possibly followed by weight if a significant amount cardboard was required;

cost is unlikely to be a factor. In this case, the design process would roughly consist

of:

1. Decide maximum permissible transmitted stress

2. Decide required magnitude of energy absorption (e.g. amount of kinetic energy

to be removed from a falling object)

3. Determine the height and plan area available for the EDM

4. Select a honeycomb which conforms to the above criteria

The ideal cardboard honeycomb EDM will therefore be required to provide a

maximum amount of energy absorption for the maximum permissible stress (nor-

mally the peak stress), while conforming to the permissible plan area and height.

At the point at which the honeycomb stiffens up enough for the transmitted stress

to exceed the initial peak stress, the honeycomb is deemed to be compact. With

this in mind, the total strain energy per unit volume at the compaction strain is a

good metric of the cardboard honeycombs EDM efficiency.

Considering the significant potential of the internal air pressures to provide free

energy absorption capacity (air costs and weighs nothing in comparison to the card-

board), it may be advantageous for the user to utilise this capacity by specifying a
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honeycomb configuration where the maximum permissible stress occurs not during

the early structural response, but during the late exponential phase. In this case,

the honeycomb would be acting as a hybrid airbag, possessing the late impact be-

haviour of an airbag, but with additional energy absorption capacity provided by

the cell wall structure.

In Figures 5.32, 5.34 and 5.36 the curve σAir,1D shows the maximum possible

stress which can be exerted solely by the air pressures when subject to a 1 dimen-

sional strain, this can also be used as an approximation for the maximum stress

which an airbag could exert if it were perfectly restrained against lateral expansion.

If the designer used a weak enough structure so that the maximum permissible

stress occurred during the late exponential increase region, but with enough con-

finement so that the maximum air pressures were able to develop, everything above

the σAir,1D curves would be additional bonus resistance (and therefore energy ab-

sorption capacity), which the designer would not be able to access by selecting an

air bag.

The simulations presented in this chapter show that the bias towards an air

dominated response can be created by providing full strength glue bonds between

the double ply cell walls and reducing the cell wall yield stress. Furthermore, in

Section 5.5.3 it was shown that an increase in the rate of strain hardening caused

the peak and plateau stresses to converge, causing the cardboard structure to provide

a much greater amount of energy absorption for a given permissible stress.

The work presented in this chapter suggest that if it were possible to tightly con-

trol the material properties, an air filled honeycomb structure has the potential to be

deployed as an extremely efficient EDM. In practice, it will be much easier to control

the response of the cardboard honeycomb through a combination of adjustments in

both the material and the geometrical parameters; thus, Chapter 6 contains an in-

vestigation into the effects of geometrical modifications, of the honeycomb geometry,

on the cardboard honeycombs EDM response.
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Chapter 6

Geometrical parameter study

This chapter presents an investigation into how variations of the meso and macroscale

geometry affect the macroscopic impact response of an air-filled, thin-walled cellu-

lar honeycomb. The quarter symmetry numerical model (discussed in Section 5.1

of Chapter 5) was used as a basis for the study. By holding the cell wall material

parameters constant and introducing solitary variations in one of six independent

geometrical parameters it was possible to isolate each geometrical parameter’s indi-

vidual effect.

The numerical methodology is discussed (Section 6.1), followed by an outline of

the analysed geometrical variations (Section 6.2). The effect of variations in the

cellular geometry, on the cardboard honeycomb dynamic response, are then studied

(Sections 6.3 to 6.8), and findings summarised, with consideration given to potential

implications for the end user (Section 6.9).

6.1 Numerical methodology

There are six fundamental geometrical parameters, which define the honeycomb

structure; three of which are mesoscopic, describing the geometry of each individual

cell: cell wall thickness t, cell wall length L and internal expansion angle θ. Two are

macroscopic, defining the global dimensions of the honeycomb sample: axial height

(H), number of rows (nrow), and number of columns (ncol); nrow and nncol define
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the minimum number of cells required to complete a path through the honeycomb

from one edge to its opposite, on the X-X and Y-Y planes respectively. Figure 6.1

gives a graphical representation of each parameter and how they correspond to the

cellular geometry of the quarter symmetry numerical model.

Figure 6.1 Geometry of the quarter symmetry numerical model with annotations

showing the fundamental geometrical parameters. Footprint dimensions δx and δy

have also been included to provide reference between the meso and macro scale.

Values of the fundamental geometrical parameters corresponding to the default

cellular geometry are given in Table 6.1. Each of these six fundamental geometrical

parameters can be varied independently with no effect on the other five. These six

geometrical parameters form the basis of this parameter study, each one was varied

in turn, while the others remained constant at their default values given below.
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Table 6.1 The independent, fundamental, geometrical parameters which describe

the honeycomb structure, for details see Figure 6.1. These values define the default

cellular geometry on which variations were made; this geometry was also used for

all analyses presented in Chapter 5.

t (mm) L (mm) θ◦ H (mm) ncol (full) nrow (full)

0.3 10 60 70 12.5 (25) 6.5 (13)

Variations of the independent geometrical parameters caused subsequent varia-

tions of dependent parameters. Values of eight dependent geometrical parameters,

for the default quarter symmetry cellular arrangement, are given in Table 6.2, they

are: δX and δY , the dimensions of the honeycomb footprint in the X-X and Y-Y

plane; ATrib, the total footprint area i.e. the full tributary area from the full cellular

structure; ΣL, the total length of cell wall within ATrib; ACard, the total cross sec-

tional area of cardboard cell wall; φCard, the percentage of ATrib which is composed

of cardboard material; AHex, the internal plan area of one hexagonal cell; and AAir,

the total cross sectional area of entrained air; and, total macroscopic volume of the

honeycomb V .

To ensure a fair comparison between simulations, when an independent parame-

ter variation resulted in an increase of the plan area, the loading block was scaled in

accordance. As the loading block was given more than enough energy to provide a

forced displacement, this scaling of its size was mainly to ensure that the honeycomb

was crushed evenly.

Table 6.2 The dependent geometrical parameters which are functions of those given

in Table 6.1. Values given are for the default cellular geometry, on which variations

were made. For details see Figures 6.1 and 6.2.

ncell δX δY ATrib ΣL ACard φCard AHex AAir V

(mm) (mm) (mm2) (mm) (mm2) (%) (mm2) (mm2) (m3)

40.75 112.6 105.0 11821 1820 546 4.62 250.8 10220 8.27× 10−4
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Figure 6.2 shows a simple two cell honeycomb, with annotations to clarify the

identification for the four areas referenced in the table above.

Figure 6.2 An illustration showing the four dependent areas for a honeycomb

consisting of two cells, where: ACard is the cross sectional area of cardboard cell

wall, AHex the internal area of one cell, AAir the total area of enclosed air within

the honeycomb and ATrib is the total footprint tributary area.

The arbitrary initial geometry prevents a simple relationship between nrow, ncol

and the number of cells ncell from being defined (for this application it was quicker

and easier to just count the cells); however, some useful relationships between the

independent and dependent parameters can be drawn:

δx = (ncol + 0.5)L sin θ δy = (nrow + 0.5)(L cos θ + L) (6.1)

AHex = 2L2 (sin θ + sin θ cos θ)− 3tL (6.2)

ΣL = 2L(nrow + 0.5)(ncol + 0.5) (6.3)

which can be used to calculate the remaining dependent parameters

ATrib = δxδy AAir = ncell·AHex ACard = ΣL·t φCard = ACard/ATrib. (6.4)

Note that φCard 6= ACard/AAir because AAir only includes air sealed within cells.

Finally volume V is calculated by multiplying ATrib by height H; likewise, due to

227



the honeycomb cross section being homogeneous over its height H, ACard, AHex and

AAir can be converted to volumes by simply multiplying by H.

Table 6.3 gives values of the material parameters which were used for all analyses.

To provide ongoing consistency they matched the default material parameters used

during the material parameter study (presented in Chapter 5).

Table 6.3 The material parameters which were used for all analyses presented in

this chapter and are consistent with the default material parameters used during

Chapter 5, they are: yield stress, σY ield; double to single cell wall yield stress ratio,

k; elastic modulus, E; tangent modulus, Et; Poisson’s ratio, ν; density, ρ; and

cohesive bond strength, σGlue.

σY ield k E Et ν ρ σGlue

5 MPa 1.41 2 GPa 2 ×105 Pa 0.3 630 kg/m3 0.5 MPa

The numerical results were analysed in a similar manner to Chapter 5, for each

analysis the four response parameters (shown in Figure 5.1) were evaluated and used

as metrics to identify and quantify any trends caused by each geometrical variation.

Additionally, as cardboard is a relatively cheap and light material and the cardboard

honeycomb mostly consists of air (φCard = 4.62% in Table 6.2), volume rather than

weight (and cost) is likely to be the limiting design factor. With this in mind,

the response parameters will continue to be presented in the format of stresses and

energy per unit volume, effectively treating the cardboard honeycomb as an EDM

unit of macroscopic dimensions V = δx · δy ·H.

6.2 Geometrical parameter study scope

Table 6.4 shows the range of variations performed for each independent geometrical

parameter. The ranges of variation for t, L, θ and H were chosen to cover a range of

known possibilities which would be typical for a cardboard honeycomb mesh; values

recorded for the samples used during the experimental testing of L and θ were given
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in Tables 3.3 and 3.21, minimum and maximum observed values for L were 8 to 24.7

mm, and average values for θ were shown to vary between 34.5◦ and 37.5◦ and the

cell wall thickness t was measured as 0.28 mm. L was increased from the standard of

70 mm to a maximum of 140 mm, to study the effect of using a deeper honeycomb

and the number of rows and columns were reduced from the original geometry which

consisted of 13 rows and 25 columns. The values shown for ncol and nrow reference

the number of columns and rows in the full honeycomb structure.

Table 6.4 Range of variations used for each independent geometrical parameter.

Parameter Minimum value Maximum value

t 0.15 mm 0.9 mm

L 5 mm 30 mm

θ 30◦ 90◦

H 70 mm 140 mm

ncol 9 25

nrow 5 13

6.3 Effect of cell wall thickness (t) on the response

The cell wall thickness was varied from 0.15 to 0.9 mm, Table 6.5 shows the de-

pendent parameters which were affected and how they varied as a result. The cross

sectional area ACard increased proportionally with t from 273 to 1638 mm2, in turn,

the proportion of total area which consisted of cardboard φCard to increase from

2.31 to 13.9 %, while the area of entrapped air AAir reduced by 8.8 % from 10403

to 9487 mm2.
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Table 6.5 Secondary geometrical variations which resulted from variations in the

cell wall thickness t.

t (mm) ACard (mm2) φCard % AHex (mm2) AAir (mm2)

0.15 273 2.31 255.3 10403

0.30 546 4.62 250.8 10220

0.60 1092 9.24 241.8 9853

0.90 1638 13.9 232.8 9487

6.3.1 Effect of variations in t on the macroscopic response

Figure 6.3 shows the numerical macroscopic responses for the simulations with varied

cell wall thickness. A general stiffening with increased cell wall thickness can be

observed with σTotal being increased across the full response; an increase of t caused

an increase in the peak stress, an increase in the plateau and earlier compaction.
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Figure 6.3 Total transmitted stress by the honeycomb σTotal vs axial strain ε during

the simulations with varied cell wall thickness t.

Figure 6.4 (a) and (b) shows how the peak and plateau transmitted stresses
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σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with variations of the cell wall thickness. As t was increased from 0.15 to

0.9 mm, σPeak increased linearly from 126 to 847 kPa; σPlat increased almost linearly,

with equal rate to σPeak between 0.3 and 0.6 mm and at a slower rate below 0.3 and

above 0.6 mm; εComp reduced linearly from 70.6 to 66.2 % between 0.3 and 0.6 mm,

but for the simulation with 0.15 mm thick cell walls the stiffening limb reached the

peak stress uncharacteristically early causing a εComp of 61.7 % strain.
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Figure 6.4 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations of the cell wall thickness t.

Figure 6.5 shows how the internal strain energy per unit volume U increased

with strain ε, as t was varied. For all levels of strain, an increase of t resulted in a

larger value of U . The gradient of the t−U relationship increased with an increase

of ε, this was caused by the cumulative stiffening effect observed in Figure 6.3. At

20, 40, 60 % and εComp, the t − U relationship was linear for over 0.3 mm < t <

0.9 mm; while for the 0.15 mm analysis the values of U sat above the projected

linear trends. Increasing t from 0.15 to 0.9 mm resulted in an increase of the energy

absorbed at compaction UεComp from 40 to 385 kJ/m3, a factor of 9.6.
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Figure 6.5 Variation of the total strain energy per unit volume U(ε), at various in-

crements of strain (including εComp) as a result of variations in the cell wall thickness

t.

6.3.2 Effect of variations in t on the mesoscopic load carry-

ing mechanisms

Figure 6.6 shows how the stress carried by the structure σCard and the stress carried

by the internal air pressures σAir were affected when the cell wall thickness was

varied. Changing the cell wall thickness had no effect on the honeycomb footprint

area; any variations in the transmitted stresses are also direct representation of the

magnitude of transmitted load.

Comparison between the solid lines shows a general increase of σCard in response

to an increase of t. An increase of t also caused the structure to compact earlier

and with increased rate, this can be observed by comparison between the point at

which structural compaction began to occur on the blue and green solid lines at 70

and 65 % strain respectively.

The red and black dashed lines show that σAir was mostly unaffected when the

cell wall thickness was reduced below 0.3 mm, above 0.3 mm σAir increased with

t towards the upper limit of σAir,1D ≈ σAir,max, by the simulation with a cell wall

232



thickness of 0.9 mm, σAir was very close to (and may have reached) this upper limit.

Comparison between the σCard and σAir curves, for each analysis, shows a shift

in the dominant load carrying mechanism as the cell wall thickness is varied. During

crushing of the honeycomb with 0.15 mm thick cell walls, the point at which σAir =

σCard occurred at a very low strain of 15 % and from then on σAir > σCard; during

crushing of the honeycomb with 0.9 mm thick cell walls, σAir was less than σCard

for the full event.
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Figure 6.6 Stress transmitted by the cell wall structure σCard and internal air

pressures σAir vs axial strain ε during the simulations with varied cell wall thickness

t. In addition, σAir,1D (as given by Equation 5.1) has been plotted, illustrating the

stress which would be transmitted through the air if it were perfectly constrained

and subject to an axial strain of ε.

Figure 6.7 shows how UCard and UAir were affected by changes in the cell wall

thickness t. UCard increased for each increase of t. The greater spacing between the

black and blue solid lines than the spacing between the blue and green solid lines

shows that the rate of increase was mostly affected when increasing t from 0.3 to

0.6 mm than for the same increment when increasing from 0.6 to 0.9 mm. As t

was increased between 0.3 and 0.9 mm, so did UAir, while between 0.15 and 0.3 mm
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there was almost no effect.
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Figure 6.7 Energy per unit volume which was stored permanently as plastic strain

energy in the cell walls UCard and temporarily in compression of the internal air UAir

vs strain ε during the simulations with varied cell wall thickness t.

6.4 Effect of cell wall length (L) on the response

Four simulations were performed with varied cell wall length (L) 5, 10, 20 and 30 mm,

Table 6.5 shows the dependent parameters that were affected and how they varied

as a result; changing L caused variations in every dependent parameter. Figure 6.8

compares the four (full) cellular geometries which resulted as a variation of the cell

wall length.
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Figure 6.8 Comparison between the four tested cellular geometries, which were

generated by variations in the cell wall length L.

As the cell wall thickness was held constant, varying the cell wall length caused a

linear variation in the cardboard cross sectional area; because the cell wall thickness

was held constant, an increase of the cell wall length L, by a factor of 6 (from 5 to

30 mm,) also caused an increase in the total cross sectional area of cardboard ACard

by a factor of 6. In contrast, the area over which the cardboard cross section acts

was a square function; when L was increased by a factor of 6 from 5 to 30 mm, ATrib

increased by a factor of 62. Consequently, as the cell wall length was increased the

proportion of cardboard to air reduced.

This resulted in a reduction of φCard; the honeycomb volume consisted of 9.24

% cardboard for a cell wall length of 5 mm, while this reduced to 1.54 % when

the cell wall length was increased to 30 mm. Over the same interval, the cross

section of air increased by a factor of 38, slightly more than the ATrib; the volume

of AHex occupied by the cell wall thickness (the −3tL from Equation 6.2) became

proportionally less with increased L.

235



Table 6.6 Secondary geometrical variations which resulted from variations in the

cell wall length L.

L δX δY ATrib ΣL ACard φCard AHex AAir V

(mm) (mm) (mm) (mm2) (mm) (mm2) (%) (mm2) (mm2) (m3)

5 56.3 52.5 2955 910 273 9.24 60.5 2463 2.10× 10−4

10 112.6 105.0 11821 1820 546 4.62 250.8 10220 8.27× 10−4

20 225.2 210.0 47285 3640 1092 2.31 1021.2 41615 3.31× 10−3

30 337.7 315.0 106376 5460 1638 1.54 2311.3 94184 7.45× 10−3

6.4.1 Effect of variations in L on the macroscopic response

Figure 6.9 shows the macroscopic responses for the simulations with varied cell wall

length L. As L was increased from 5 to 30 mm, there was reduction in the stiffness

of the early response and an increase in the late response. Additionally, as L was

increased, the gradient of the plateau region, between 10 and 60 % strain, shifted

from negative to positive.
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Figure 6.9 Total transmitted stress by the honeycomb σTotal vs axial strain ε during

the simulations with varied cell wall length L.
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Figure 6.10 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with variations of the cell wall length. σPeak σPlat and εComp all reduced

as L was increased. σPeak was inversely proportional to L; when L was doubled

from 5 to 10 and then 10 to 20 mm, σPeak roughly halved reducing from 520 to

261 kPa and then 261 to 138 kPa respectively. By applying lines of best fit in the

form f(x) = axb + c to the numerical data, it was possible to produce the empirical

relationships given by Equations 6.5 and 6.6 relating both σPeak and σPlateau to L

(in metres).

σPeak = 1.645× 103L−1.077 + 2.676× 104 (6.5)

σPlat = 4.328× 10−3L−3.258 + 8.686× 104 (6.6)

Note that as L is increased, the values of σPeak and σPlat converge; a behaviour

which was partly observed in Figure 6.9 by the early softening and late stiffening

with increased L, i.e. a shift in stiffness towards the late response. A result of

this shift was that εComp occurred much sooner for analyses with a longer cell wall,

however as the initial peak becomes less onerous in comparison to the plateau, εComp

begins to lose its significance as a design response parameter.
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Figure 6.10 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations of the cell wall length L.

Figure 6.11 shows how the internal strain energy per unit volume U increased

with strain ε, as L was varied. An increase of L caused a reduction in U for all but

the 80% strain contour. For all levels of strain, the honeycomb with a 5 mm long

cell wall stored the most internal strain energy. The reduction of εComp observed in

Figure 6.10 (b) was mirrored in the UεComp curve, which shows a dramatic reduction

in the energy absorbed at compaction with increased L.
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Figure 6.11 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the cell wall length

L.

6.4.2 Effect of variations in L on the mesoscopic load car-

rying mechanisms

Figure 6.12 shows how the stress carried by the structure σCard and the stress carried

by the internal air pressures σAir were affected when the cell wall length was varied;

a reduction L caused an increase of σCard and a reduction of σAir.

As L was increased, the dominant load carrying mechanism shifted towards σAir.

For the analysis with 5 mm long cell walls, σCard was greater than σAir during the

full analysis. While during the analysis with 30 mm cell walls, σAir was greater than

σCard from 6 % strain onwards; during the 30 mm analysis, at 12.5 % strain the

load being transmitted through the honeycomb was almost fully carried by the air

pressures while the structural component was negligible and so the honeycomb was

effectively acting as a column of air. As L was increased, an early development of

pressure above that predicted by the 1D equation of state σAir,1D began to occur,

this is visible in the region below 20 % strain on the σAir curves.
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Figure 6.12 Stress transmitted by the cell wall structure σCard and internal air

pressures σAir vs axial strain ε during the simulations with varied cell wall length

L. In addition, σAir,1D (as given by Equation 5.1) has been plotted, illustrating the

stress which would be transmitted through the air if it were perfectly constrained

and subject to an axial strain of ε.

Figure 6.13 shows how the energies per unit volume, absorbed permanently by

the cell walls UCard and temporarily by the air UAir, were affected by changes in the

cell wall length L. As L was increased, UCard reduced and UAir increased. When

L was increased from 5 to 30 mm, the energy stored within the air at 80% strain

increased from 32 to 108 kJ/m3, an increase by a factor of 2.38; while over the

same interval, the energy stored in the structure reduced from 158 to 30 kJ/m3, a

reduction by a factor of 5.27.

The difference in the sensitivities of UCard and UAir to a given change in L resulted

in responses of a dramatically different natures, whereby for a short cell wall most

of the energy is absorbed by the cardboard material UCard : UAir = 5 : 1 (at 80%

strain for L = 5.0 mm) and for a long cell wall majority of the energy is stored in

compression of the air UAir : UCard = 3.6 : 1 (at 80% strain for L = 30 mm).
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Figure 6.13 Energy per unit volume which was stored permanently as plastic strain

energy in the cell walls UCard and temporarily in compression of the internal air UAir

vs strain ε during the simulations with varied cell wall length L.

6.5 Effect of internal angle (θ) on the response

Three analyses with varied internal expansion angle θ were performed; one with

the default regular hexagonal geometry, where θ = 60◦; one at a lower degree of

expansion, where θ = 30◦; and one at the maximum possible degree of expansion,

where the hexagons have been drawn out to form rectangles of dimensions L · 2L,

and so θ = 90◦. The three resulting cellular geometries are illustrated in Figure

6.14.

These three meshes represent common variations which are likely to occur during

the fabrication process. In Chapter 3 the internal expansion angle was observed to

be highly variable even between cells of the same sample; however, average values

of 34.5◦, 36.3◦ and 37.5◦ were determined for the F, D, and B mesh types during

Section 3.3.5.
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Figure 6.14 Comparison between the three tested cellular geometries which were

generated by variations of the internal expansion angle θ.

Table 6.7 shows the dependent parameters which were affected and how they

varied when the internal expansion angle was changed. When changing θ, the

amount of cell wall material remained constant, while the footprint and volume

of air within each cell changed. Equation 6.2 relates AHex to θ via the trigonometric

expression (sin θ + sin θ cos θ); the maximum value of AHex occurs at 60◦, however

(sin θ + sin θ cos θ) is not symmetrical about this point, so: AHex,30◦ < AHex,90◦ .

The ratio between the resulting tributary areas was ATrib = 1.00 : 1.07 : 1.39 for

θ = 30◦ : 90◦ : 60◦, causing the proportion of ATrib consisting of cardboard to reduce

at the ratio φCard = 1.39 : 1.07 : 1.00.

Table 6.7 Secondary geometrical variations which resulted from variations of the

internal expansion angle θ.

θ δX δY ATrib φCard AHex AAir V

(◦) (mm) (mm) (mm2) (%) (mm2) (mm2) (m3)

30 65.0 130.6 8490 6.43 177.6 7237 5.94× 10−4

60 112.6 105.0 11821 4.62 250.8 10220 8.27× 10−4

90 130.0 70.0 9100 6.00 191.0 7783 6.37× 10−4
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6.5.1 Effect of variations in θ on the macroscopic response

Figure 6.15 shows the macroscopic responses for the simulations with varied internal

expansion angle θ. A higher stress was transmitted through the honeycombs with

an internal angle of 30◦ and 90◦ than was transmitted through the regular hexagonal

honeycomb with an internal angle of 60◦.

Figure 6.15 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations with varied internal expansion angle θ.

Figure 6.16 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with variations of θ. The 60◦ simulation produced the lowest value of σPeak

at 262 kPa while the 30◦ and 90◦ simulations transmitted higher values of 354 and

357 kPa respectively. σPlat increased with θ, lifting from 78 to 161 kPa as theta was

increased from 30◦ to 90◦. An increase of θ also caused a linear reduction in the

compaction strain εComp with the plateau rising to match the peak stress at 73.7 %

strain for 30◦ analysis and 5.7 % earlier, at 68.0 % strain for the 90◦ analysis.
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Figure 6.16 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations of the internal expansion angle θ.

Figure 6.17 shows how the internal strain energy per unit volume U increased

with strain ε, as θ was varied. For each constant value of strain there was an increase

of U with an increase of θ; the greatest effect was observed when increasing θ from

60◦ to 90◦, i.e. when over-expanding the honeycomb past the regular hexagonal

geometry. There was no significant variation of the internal energy per unit volume

at the compaction point UεComp between the 30◦ and 60◦ analyses; however, when θ

was increased from 60◦ to 90◦, UεComp increased by 44 %, from 88 to 127 kJ/m3.
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Figure 6.17 Variation of the total strain energy per unit volume U(ε), at vari-

ous increments of strain (including εComp) as a result of variations in the internal

expansion angle θ.

6.5.2 Effect of variations in θ on the mesoscopic load carry-

ing mechanisms

Figure 6.18 shows how the stress carried by the structure σCard and the stress carried

by the internal air pressures σAir were affected when the internal expansion angle θ

was varied.

The solid blue line shows that σCard transmitted by the 90◦ honeycomb was high-

est over the full response. The relative stiffness between the 30◦ and 60◦ honeycombs

varied with strain; during the plateau region (10% < ε > 50%), the 60◦ honeycomb

structure was stiffest; while during the late response (50% < ε), the 30◦ honeycomb

structure was stiffest.

Comparison between the red and blue dashed lines shows that the stress being

transmitted by the internal air pressures σAir was always higher for the 90◦ hon-

eycomb than for the 30◦ honeycomb; during the late response σAir for the 30◦ and

60◦ honeycombs was very similar, while σAir for the 90◦ honeycomb was an almost

consistent 50 kPa greater.
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Figure 6.18 Stress transmitted by the cell wall structure σCard and internal air

pressures σAir vs axial strain ε during the simulations with varied internal expansion

angle θ. In addition, σAir,1D (as given by Equation 5.1) has been plotted, illustrating

the stress which would be transmitted through the air if it were perfectly constrained

and subject to an axial strain of ε.

Figure 6.19 shows how the energies per unit volume, absorbed permanently by

the cell walls UCard and temporarily by the air UAir, were affected when the internal

expansion angle θ was varied. There was no significant effect on UCard when θ was

varied between 30◦ and 60◦; however, increasing θ from 60◦ to 90◦ caused an increase

of UCard, at 80 % strain, from 64 to 123 kJ/m3: an increase of 52%. The relative

magnitudes of UAir varied with strain; over the full response, the energy stored by

the air within the 30◦ honeycomb was least; during the early response the energy

stored by the air within the 60◦ honeycomb was greatest, at 57% strain this changed

and the energy stored within the 90◦ honeycomb became the greatest.
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Figure 6.19 Energy per unit volume which was stored permanently as plastic strain

energy in the cell walls UCard and temporarily in compression of the internal air UAir

vs strain ε during the simulations with varied internal expansion angle θ.

6.6 Effect of macroscopic height (H) on the re-

sponse

Three analysis were performed to study the effect of variations in sample height on

the response. In addition to the default 70 mm tall honeycomb, a 105 and 140 mm

tall honeycomb were analysed. These two additional analyses provided an increase

of 50 and 100% over the original height H. As the cellular cross section remained

unchanged only volume V was affected by variations in H; Table 6.8 shows the three

honeycomb heights and their corresponding volumes.
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Table 6.8 Secondary geometrical variations which resulted from variations of the

macroscopic height H.

H (mm) V (m3)

70 8.27× 10−4

105 12.41× 10−4

140 16.55× 10−4

6.6.1 Effect of variations in H on the macroscopic response

Figure 6.20 shows the macroscopic responses for the simulations with varied sample

height H. As H was increased, the honeycomb response was softened, however this

softening did not occur over the full response; its onset shifted earlier and severity

increased with greater values of H, it is illustrated by the separation of the red and

blue lines from the black line at 34 and 10 % strain respectively.
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Figure 6.20 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations with varied macroscopic height H.

Figure 6.21 (a) and (b) shows how the peak and plateau transmitted stresses
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σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

changed with variations of the honeycomb height H. Variations in the honeycomb

height caused no significant effect on the peak transmitted stress; although, there

was a modest reduction in σPeak from 262 to 255 kPa when H was doubled from 70

to 140 mm.

The plateau stress was most greatly affected, dropping by 45% (from 101 to 55

kPa) when the honeycomb height was increased from 70 to 140 mm. Additionally,

as the honeycomb height was increased so was the rate of softening; increasing the

height from 70 to 105 caused a 12 % reduction in the plateau stress, while increasing

the height by the same amount, from 105 to 140 mm, caused a much larger reduction

in the plateau stress of 38 %. Softening of the plateau with increased height caused

compaction to occur later; εComp increased from 70.6 to 78.7 % when H was increased

from 70 to 140 mm.
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Figure 6.21 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations of the macroscopic height H.

Figure 6.22 shows how the internal strain energy per unit volume U increased

with strain ε, as the honeycomb height H was varied. For all values of strain, an

increase in the honeycomb height caused a reduction of the energy absorbed per

unit volume. This reduction also increased with strain, increasing the honeycomb
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height from 70 to 140 mm caused a reduction of U at 20 % strain (black line) of 9.7

% from 22.6 to 20.4 kJ/m3, while at 80 % strain U reduced by a much larger 38 %

from 124 to 76 kJ/m 3.

The black dashed line shows the energy stored per unit volume within the hon-

eycomb at the compaction strain, this also reduced with increased height; increasing

H from 70 to 140 mm caused a reduction in energy absorbed at compaction of 18 %,

from 88 to 72 kJ/m3. Note that the negative gradient of the black dashed line was

much shallower than the gradient of the green 80 % strain contour, this was due to

the 140 mm tall honeycomb being able to deform by an additional 8.1% more than

the 70 mm honeycomb.
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Figure 6.22 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the macroscopic

height H.

6.6.2 Effect of variations in H on the mesoscopic load car-

rying mechanisms

Figure 6.23 shows how the stress carried by the structure σCard and the stress carried

by the internal air pressures σAir were affected when the honeycomb height H was

varied. As the height was increased both the stresses transmitted by the structure
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and internal air pressures were reduced. While the magnitude of the early response

was mostly unaffected, the softening of the structural response can be observed by

the separation of solid blue (140 mm) and red (105 mm) lines from the solid black

line (70 mm) at 15 and 50 % strain respectively. Comparison of the dashed lines

shows that for any given value of strain, the stress being transmitted by the internal

air pressures was inversely proportional to the honeycomb height, with the highest

stress being transmitted by the air pressures within the 70 mm tall honeycomb and

lowest by the air pressures within the 140 mm tall honeycomb.
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Figure 6.23 Stress transmitted by the cell wall structure σCard and internal air

pressures σAir vs axial strain ε during the simulations with varied macroscopic height

H. In addition, σAir,1D (as given by Equation 5.1) has been plotted, illustrating the

stress which would be transmitted through the air if it were perfectly constrained

and subject to an axial strain of ε.

Figure 6.19 shows how the energies per unit volume, absorbed permanently by

the cell walls UCard and temporarily by the air UAir, were affected when the honey-

comb height H was varied.

At 80 % strain, an increase of height caused a reduction in the amount of energy

per unit volume absorbed by the cellular structure; however, this was not true for

251



the full response, at 20 and 55 % strain the energy absorbed by the 140 and 105

mm tall honeycombs diverged, dropping below the upper bound UCard curve for the

70 mm tall honeycomb.

The energy absorbed by the air, was inversely proportional to the height, at

80 % strain 59, 43, and 26 kJ/m3 stored in the compressed air within the 70, 105

and 140 mm tall honeycombs respectively. Additionally, as the honeycomb height

was increased a lower proportion of the total absorbed energy was provided by the

internal air pressures; at 80 % strain the ratio of UAir : UCard for the 70 mm tall

honeycomb was 1.00 : 1.09, while for the 140 mm tall honeycomb it was 1.00 : 1.88.
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Figure 6.24 Energy per unit volume which was stored permanently as plastic strain

energy in the cell walls UCard and temporarily in compression of the internal air UAir

vs strain ε during the simulations with varied macroscopic height H.
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6.7 Effect of variation in lateral confinement, through

variation in the number of complete columns

(ncol), on the response

The cellular arrangement was now modified by stripping full columns of cells from

the perimeter edges on the X-X plane, thus simulating the effect of taking narrower

cuts of honeycomb from the same regular mesh. This is illustrated in Figure 6.25,

where the full original geometry is shown between the dashed black lines, the blue

and red dashed lines show the two cuts which were made to reduce the number

of columns from the original 25 to 17 and then 9. It is worth highlighting that

as ncol was reduced, the aspect ratio of the honeycomb (δx/δy) also changed from

being roughly square on plan to being much more rectangular. Table 6.9 shows

the dependent parameters which were affected and how they varied as the cellular

structure was modified by removing columns of cells.

253



Figure 6.25 Illustration of how the original cellular geometry was modified to study

the effect of variations in the number of columns on the response. The blue and

red dashed lines show the position of the two cuts which were made to reduce the

default 25 column wide honeycomb to one which was 17 and then 9 columns wide.

For both cuts, four columns were removed from each side, resulting in a loss of 13

sealed cells in the modelled quarter segment, reducing the area of sealed air AAir, the

width of the cross section in the x-x direction δx, and the total footprint area ATrib.

Moreover, with each cut, 4 of the original 13, continuous cell walls were removed

causing the total length of cell wall material ΣL and area of cell wall material ACard

to drop proportionally.

254



Table 6.9 Secondary geometrical variations which resulted from variations in the

number of complete columns ncol.

ncol ncell δX ATrib ΣL ACard AAir V

(full) (mm) (mm2) (mm) (mm2) (mm2) (m3)

12.5 (25) 40.75 112.6 11821 1820 546 10220 8.27× 10−4

8.5 (17) 27.75 77.9 8183 1260 378 6960 5.73× 10−4

4.5 (9) 14.75 43.3 4547 700 210 3699 3.18× 10−4

To add clarity, the value for ncol used during the remainder of this section will

refer only to the number of columns within the full honeycomb structure (rather

than the number being modelled in the quarter segment). Figure 6.26 shows the

macroscopic responses for the three simulations with a varied number of columns

ncol.

There was no significant effect on the response below 20 % strain; at 20 %

strain, the stress transmitted by the honeycomb with 9 rows began a gradual decline

dropping below the unaffected 17 and 25 row responses; at 47 % strain, the 17 row

honeycomb softened slightly in comparison to the honeycomb with 25 rows, this

magnitude of softening then remained constant until compaction.
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Figure 6.26 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations, where the number of complete columns of cells ncol was

varied.

Figures 6.27 (a) and (b) show how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

varied due to changes in the number of columns ncol. As previously observed in

Figure 6.26, there was no significant effect on the peak stress while the plateau

stress was reduced when the number of columns was changed from 17 to 9. Also, as

ncol was reduced the compaction strain occurred later.

256



9 11 13 15 17 19 21 23 25
0

50

100

150

200

250

300

ncol

S
tr

es
s 

(k
P

a)

 

 

σ
Peak

σ
Plat

9 11 13 15 17 19 21 23 25
0

50

100

150

200

250

300

ncol

S
tr

es
s 

(k
P

a)

 

 

(a)

6
9 11 13 15 17 19 21 23 25

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

ncol

S
tr

ai
n

 

 

ε
Comp

9 11 13 15 17 19 21 23 25
0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

ncol

S
tr

ai
n

 

 

(b)

Figure 6.27 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations in the number of complete columns ncol.

Figure 6.28 shows how the internal strain energy per unit volume U increased

with strain ε, as the number of columns was varied.

All three honeycombs had absorbed the same amount of energy per unit volume

at 20 % strain; however, all subsequent contours show an increase of absorbed energy

per unit volume as the number of columns is increased, with the greatest effect being

when the number of columns was increased from 9 to 17. The dashed line shows the

energy per unit volume which was absorbed by the compaction point, this increased

by 7.5% from 80 to 86 kJ/m3 when the number of columns was increased from 9 to

17 but only 2.3 % when the number of columns was increased from 17 to 25.
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Figure 6.28 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the number of

columns ncol.

6.7.1 Effect of variations in the number of columns (ncol)

on the mesoscopic load carrying mechanisms

Figure 6.29 shows how the stresses carried by the structures σCard and the stresses

carried by the internal air pressures σAir were affected when the number of columns

ncol was varied.

The stress transmitted by the honeycomb structure was unaffected by variations

in the number of columns until 55 % strain. At 55 % strain, the stress being

transmitted by the 9 column-wide honeycomb structure (solid red line) dropped

below the other two, began fluctuating and then resumed stiffening (at an increased

rate) at 68 % strain; by 80 % strain the stress being transmitted through the 9

column honeycomb had almost re-converged with the stress being transmitted by

the 17 column honeycomb.

In contrast, the number of columns affected the magnitude of stress being trans-

mitted by the internal air pressures over the full response; for any given value of

strain, a honeycomb structure with more columns transmitted more stress via air

258



pressures. The rate of pressure development was much lower within the 9 column

honeycomb than the other two, this can be seen when comparing the relatively flat

gradient of the dashed red line (between 0 and 50 % strain) with the steeper incline

of the dashed blue and black lines.

Comparison between the solid and red dashed lines in the region between 50 and

80 % (the late response of the 9 column honeycomb) strain shows that the stress

being transmitted by the internal air pressures experiences similar turbulence to that

which was observed in the structural response. In this turbulent region, oscillatory

features which are visible in the structural response are also mirrored in the stress

being transmitted by the air pressures, a clear example of this can be seen between

65 and 70 % strain. The turbulent region was not visible in Figure 6.26, and so these

oscillations must be an equal and opposite transfer of stress between the structure

and the air pressures. It is worth nothing that this turbulent region was preceded

by a small trough at 53 % strain in the air pressure transmitted stress.
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Figure 6.29 Stress transmitted by the cell wall structure σCard and internal air

pressures σAir vs axial strain ε during the simulations with varied number of columns

ncol. In addition, σAir,1D (as given by Equation 5.1) has been plotted, illustrating

the stress which would be transmitted through the air if it were perfectly constrained

and subject to an axial strain of ε.

Figure 6.30 shows how the energies per unit volume, absorbed permanently by

the cell walls UCard and temporarily by the air UAir, were affected when the number

of columns ncol was varied.

Variations in the number of columns had no effect on the energy absorbed by the

honeycomb structure until 65 % strain; at 65 % strain, the rate of energy absorption

for the honeycomb with 9 columns reduced in comparison to the other two. At 80

% strain, the 17 column honeycomb structure had absorbed 67 kJ/m3, which was

17 % more than the 57 kJ/m3 absorbed by the honeycomb with 9 columns.

Comparison between the three dashed lines shows that for all values of strain,

the energy per unit volume stored within the air and the rate of its increase was

proportional to the number of columns. At 80 % strain, the energy per unit volume

stored in the air contained within the honeycomb with 25 columns was 59 kJ/m3,

this was 20 % and 118 % more than the 49 kJ/m3 and 27 kJ/m3 stored within the
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honeycombs with 17 and 9 columns respectively.

The difference in energy conversion rates between the structural and air pressure

components resulted in a significant difference in the energy distribution at 80 %

strain due to a variation in the number of columns; for the analysis with 25 columns

the ratio of energies within the structure and air UCard : UAir was 1.08 : 1.00 (almost

equal) while for the honeycomb with 9 columns the ratio was 2.11 : 1.00 (roughly

double).
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Figure 6.30 Energy per unit volume which was stored permanently as plastic strain

energy in the cell walls UCard and temporarily in compression of the internal air UAir

vs strain ε during the simulations with varied number of columns ncol.

6.8 Effect of variation in lateral confinement, through

variation in the number of complete rows (nrows),

on the response

The original geometry was now altered by removing rows of cells parallel to the Y-Y

plane. Figure 6.31 shows how four cuts were made, each removing a single row of
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cells from the top and bottom edge, to create four honeycomb structures: 13, 11, 9,

7 and 5 rows thick.

Due to anisotropy of the honeycomb geometry, removing rows introduced dif-

fering mechanical variations in comparison to the removal of columns; by removing

rows, the potential pathway length between each pressurised cell and the perimeter

is reduced.

Figure 6.31 Illustration of how the original cellular geometry was modified to study

the effect of variations in the number of rows on the response. The coloured dashed

lines show the position of the four cuts which were made to reduce the default 13

row deep honeycomb to one which was 11, 9, 7 and then 5 columns deep.

Table 6.10 shows the dependent geometrical parameters and how they were af-

fected as nrow was reduced. The number of cells in each row alternated between 13

and 12, and so removing one row at a time caused slight relative alternating varia-

tions in the number of cells ncell and the area of contained air AAir. The proportion

of structure removed with each cut was identical, being symmetrical about the cut

line, and so the remaining dependent parameters all reduced by a constant value

with each removed row.
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Table 6.10 Secondary geometrical variations which resulted from variations in the

number of complete rows nrow.

nrow ncell δY ATrib ΣL ACard AAir V

(full) (mm) (mm2) (mm) (mm2) (mm2) (m3)

6.5 (13) 40.75 105.0 11821 1820 546 10220 8.27× 10−4

5.5 (11) 34.25 90 10132 1560 468 8590 7.09× 10−4

4.5 (9) 28.25 75 8444 1300 390 7085 5.91× 10−4

3.5 (7) 21.75 60 6755 1040 312 5455 4.73× 10−4

2.5 (5) 15.75 45 5066 780 234 3950 3.55× 10−4

To add clarity, the value of nrow used during the remainder of this section, will

refer to the number of complete columns in the full honeycomb structure (rather

than the number being modelled in the quarter segment). Figure 6.32 shows the

macroscopic responses for all 5 simulations with varied number of rows, nrow.

Comparison between the black and blue lines shows that there was no significant

effect on the response when one row was removed from each side and nrow was

reduced to from 13 to 11; additionally, all simulations transmitted the same stress

during the early response.

After 5 % strain, as rows were removed below 11 the response softened. The

magnitude of softening, which was introduced by the progressive removal of each

row, was not constant. Comparison between the red and pink lines shows that

reducing the number of rows from 11 to 7 had by far the greatest softening effect.
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Figure 6.32 Total transmitted stress by the honeycomb σTotal vs axial strain ε

during the simulations where the number of complete rows of cells nrow was varied.

Figure 6.33 (a) and (b) shows how the peak and plateau transmitted stresses

σPeak, σPlateau (blue and red lines) and the strain to compaction εComp (green line),

varied due to changes in the number of rows (nrow). Variations in the number of rows

had no significant effect on the early response, and so the peak stress was unchanged.

Increasing the number of rows from 5 to 11 caused a linear increase in the plateau

stress of 39 %, from 72 to 100 kPa; however, when nrow was increased from 11 to

13 there was no significant effect. An increase in the number of rows caused the

honeycomb to compact sooner; the honeycomb with 5 rows of cells compacted at

78.6 % strain, while the honeycomb with 13 rows of cells compacted at 71 % strain.

264



5 6 7 8 9 10 11 12 13
0

50

100

150

200

250

300

nrow

S
tr

es
s 

(k
P

a)

 

 

σ
Peak

σ
Plat

5 6 7 8 9 10 11 12 13
0

50

100

150

200

250

300

nrow

S
tr

es
s 

(k
P

a)

 

 

(a)

6
5 6 7 8 9 10 11 12 13

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

nrow

S
tr

ai
n

 

 

ε
Comp

5 6 7 8 9 10 11 12 13
0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

nrow

S
tr

ai
n

 

 

(b)

Figure 6.33 Variations of the macroscopic response parameters (a) σPeak, σPlateau

and (b) εComp as a result of variations in the number of complete rows nrow.

Figure 6.34 shows how the internal strain energy per unit volume U increased

with strain ε, as the number of rows was varied. At 20 % strain, variations in

the number of rows had no obvious effect on the absorbed energy. As strain was

increased, an upwards positive trend between the number of rows and the absorbed

energy per unit volume began to emerge, its gradient being proportional to the level

of strain. For the 20 and 40 % strain contours, the trend was linear; however, at 80

% strain increasing, decreasing the number of rows below 7, or increasing above 11

had less effect on the absorbed energy per unit volume, than for variations between

7 and 11 rows.

The absorbed energy per unit volume at compaction is shown by the dashed

black line, the relationship was positive and linear, increasing by 18 % from 74

kJ/m3 for the honeycomb with 5 rows, to 88 kJ/m3 for the honeycomb with 13

rows.
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Figure 6.34 Variation of the total strain energy per unit volume U(ε), at various

increments of strain (including εComp) as a result of variations in the number of rows

nrow.

6.8.1 Effect of variations in the number of rows (nrow) on

the mesoscopic load carrying mechanisms

Of the 5 numerical analyses performed to study the effect of variations in the number

of rows on the response, three had geometries which were directly comparable to

each other, they were the analyses with 13, 9 and 5 rows (see Figure 6.31 for detail).

Figure 6.35 shows the stresses carried by the structures σCard and the stresses carried

by the internal air pressures σAir of the three directly comparable analyses.

The magnitude of stress transmitted by the structure was unaffected until 60 %

strain, after which the stress transmitted by the honeycomb with 5 rows (green line)

dropped below the stress transmitted by the other two. In contrast, the magnitude

of stress transmitted by the internal air pressures was sensitive to the number of rows

over the full response; for all values of strain, the stress being transmitted by the

internal air pressures and the rate of pressure increase was greater for a honeycomb

with more rows. Comparison between the gradients of the dashed lines in the region

between 20 and 60 % strain shows that the rate of pressure development within the
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honeycomb with 5 rows was significantly less than in the other two.
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Figure 6.35 Stress transmitted by the cell wall structure σCard and internal air

pressures σAir vs axial strain ε during the simulations with varied number of rows

nrow. In addition, σAir,1D (as given by Equation 5.1) has been plotted, illustrating

the stress which would be transmitted through the air if it were perfectly constrained

and subject to an axial strain of ε.

Figure 6.36 shows how the energies per unit volume, absorbed permanently by

the cell walls UCard and temporarily by the air UAir, were affected when the number

of rows nrow was varied. There was no significant effect on the energy per unit

volume absorbed due to plastic strain of the cell walls. In contrast, the energy

stored in the internal air pressures was significantly affected by variations in the

number of rows. At any given value of strain, a honeycomb with more rows of

cells had more energy per unit volume stored within the compressed air. At 80 %

strain there was 59 kJ/m3 stored in the air within the honeycomb with 13 rows, this

reduced by 25 % and 71 % to 44 kJ/m3 and 17 kJ/m3, when the number of rows

was reduced to 9 and then 5 respectively.

The variation of the energy per unit volume of air due to a variation in the num-

ber of rows, coupled with a relatively constant energy per unit volume of structure,
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resulted in a significant shift in the distribution of energy between the two mecha-

nisms. At 80 % strain the ratio of energies within the structure and air UCard : UAir

was 1.08 : 1.00 (almost equal) for the honeycomb with 13 rows, when the number

of rows was reduced to 5 this ratio increased to 3.41 : 1.00 (severely biased towards

UCard).
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Figure 6.36 Energy per unit volume which was stored permanently as plastic strain

energy in the cell walls UCard and temporarily in compression of the internal air UAir

vs strain ε during the simulations with varied number of rows nrow.

6.9 Conclusions and end user implications of the

geometrical parameter study

The cardboard honeycomb structure is defined using an array of geometrical param-

eters; many of these parameters are coupled, which poses practical difficulties when

attempting to distil their individual effects on the EDM response. Practical con-

straints, such as the construction and sourcing of specific geometries and the sizing

and geometry of testing apparatus would normally impose additional, non-essential

variations on honeycomb geometry. By identifying a series of independent and de-
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pendent geometrical parameters (see Tables 6.1 and 6.2), and adapting the numerical

model to incorporate singular variations on each of the independent parameters, it

was possible to study their effects without any influence from non-essential varia-

tions.

The cardboard honeycomb macroscopic EDM response is composed of two com-

ponents: the component carried by the cell wall structure and the component carried

by the internal air pressures. The magnitude of the structural component is theoret-

ically unlimited (being a function of the cell wall material properties), while the air

pressure component is limited (being a function of the internal volumetric strain).

Within the range of potential cardboard honeycomb geometrical and material pa-

rameters, it has been observed that either the structural or air pressure component

can be dominant. Both the structural and air pressure components were found to

be sensitive to variations in all six independent geometrical parameters.

Increasing the cell wall thickness from 0.15 mm to 0.9 mm caused an increase

and divergence of the peak and plateau stresses; the peak stress increased linearly

from 126 to 847 kPa, and the total energy per unit volume absorbed at compaction

increased linearly by a factor of 9.6.

The structural component scaled proportionally with all variations in the cell wall

thickness. The air pressure component was unaffected when the cell wall thickness

was reduced below 0.3 mm, and may have reached the upper limit for the simulation

where the cell wall thickness was 0.9 mm. As a result, the simulation with 0.15

mm thick cell walls was dominated by the air pressure component while (with the

air pressures exceeding the structural response at 15 % strain) for the simulation

with the 0.9 mm thick cell walls the dominance had shifted towards the structural

component (with the air pressures remaining below the structural response during

the full analysis).

Increasing the cell wall length from 5 to 30 mm caused a reduction and conver-

gence of the peak and plateau stresses; the rate of reduction was observed to be of

the form f(x) = axb + c, and was stated by the empirical Equations 6.5 and 6.6; the

peak stress reduced from 520 to 138 kPa and the plateau stress reduced from 223
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to 80 kPa as the cell wall length was increased from 5 to 30 mm. The total energy

per unit volume absorbed at compaction reduced by a factor of 9.9.

Like variations of the cell wall thickness, varying the cell wall length shifted

the bias from a structurally dominated response when the cell walls were at their

shortest (5mm), to an air pressure dominated response when the cell walls were at

their longest (30mm). For the simulation with 30 mm long cell walls, the air pressure

component exceeded the structural component at 6 % strain, i.e. the honeycomb

was effectively acting as a column of air with lateral flow restraint provided by the

honeycomb cell walls. An alternative perspective is that: with a short cell wall more

energy was absorbed per unit volume, whereas for a long cell wall more energy was

absorbed per unit mass.

During the experimental work a strong correlation between the area of cardboard

and peak and plateau stresses was observed (see Figure 3.34); furthermore, in Figure

3.33 it was shown that the air pressure component reduces in significance as the

amount of cardboard within the cellular cross section is increased. This agrees with

the findings from the numerical modelling, discussed above, where variations in

both the cell wall length and thickness (which also caused large variations in the

area of cardboard), were observed to cause substantial variations in the magnitude

of the peak and plateau stresses while shifting the bias of the response between the

structural and air pressure component.

Table 6.3 showed that the proportion of cardboard increased from 2.31 % to 13.9

% when the cell wall thickness was increased from 0.15 mm to 0.9 mm and Table 6.9

shows that it reduced from 9.24 % to 1.54 % when the cell wall length was increased

from 5 mm to 30 mm. Clearly, the area/proportion of the cross section which is

composed of cardboard is a significant variable when determining the magnitude

and type (structural or air) of response.

Variations in the height of the honeycomb had no significant effect on the initial

peak; however, an increased height was found to significantly reduce the magnitudes

of the post peak structural and air pressure components of the macroscopic response.

When the air within the honeycomb is compressed, the pressure which develops is
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proportional to the axial strain, i.e. if two columns of air with initial heights of 70

mm and 140 mm are subject to a 1 dimensional axial compression, the air will be

at the same pressure when the two columns are compressed by 50 % to 35 mm and

70 mm respectively. Therefore, when cardboard honeycomb height is increased, for

any given value of axial strain, the same air pressures have a larger height/area of

cell wall to act over, meaning that they can more readily form blow out pathways

and deform the structure due to lateral drift. The result is a reduction in both the

air pressure and structural components of the macroscopic response.

When the honeycomb height was doubled from 70 mm to 140 mm the reduc-

tion in both components was substantial, although, because this resulted in a later

compaction strain (78.7 % rather than 70.6 %), the total energy per unit volume at

compaction reduced by just 18 %. It is thought that if further increases in height

were made, the increase in height-to-plan-area aspect ratio may cause such a sub-

stantial reduction in the degree of lateral confinement and result in a structure which

does not reach compaction, and in this case the reduction in the in the energy ab-

sorption capacity would be substantial. The 140 mm tall model required 3 months

of computational time to complete, and therefore represented the limit of what was

possible with the computational resources available at the time of analysis.

The implication from a design perspective is that if additional energy absorption

is required, using multiple thicker cells, rather than one very thick cell, will be more

efficient. Where the gains will be inversely proportional to the lateral confinement

(resistance against drift and blow out) provided by the structure, i.e. for a theoretical

honeycomb structure which provides infinite lateral stiffness, the effect of height

variation on the response will be nil.

During the sample manufacturing process for the experimental testing, discussed

in Section 3.2.2, it was discovered that variations of the internal expansion angle are

extremely likely to occur when the cardboard honeycomb is expanded from its flat

pack form. A regular hexagonal geometry has an internal expansion angle of 60◦,

the two additional simulations represented an under- and over-expanded honeycomb

with internal expansion angles of 30◦ and 90◦ respectively.
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As the honeycomb is expanded, the cross sectional area of cardboard remains

constant, while its tributary area changes. The maximum tributary area occurs

when the expansion angle is equal to 60◦; the peak stress reflected this change in

area, being a minimum of 262 kPa when the internal expansion angle was equal

to 60◦, either side of this the peak stress was increased by 35 % to 324 kPa and

357 kPa for the 30◦ and 90◦ analyses respectively. Furthermore, the plateau stress

increased with the internal expansion angle causing the peak and plateau stresses

to be closer when the expansion angle was 90◦ than when it was 30◦. The energy

per unit volume at compaction was unaffected when the honeycomb was under-

expanded, but increased by 44 % when the honeycomb was over-expanded (when

the expansion angle was increased from 60◦ to 90◦).

The above stated trends suggest that, ideally, the honeycomb should be ex-

panded to 60◦ and where possible, any manufacturing error, should be due to over-

rather than under-expansion. In practice, extreme difficulty was encountered when

expanding the finest B mesh; with two people, it was only physically possible to

expand B mesh honeycomb to an average of 37.5◦ (see Table 3.21), the coarser D

and F meshes could have been expanded further if required. Therefore, either the

difficulty of expansion must be taken into consideration or an alternative expansion

method must be investigated when using cardboard honeycomb with a small cell

size.

The removal of columns and rows of complete cells from the edges of the hon-

eycomb had no significant effect on the early response; there was no effect on the

structural component for all but two of the analyses (9 columns, 5 rows), which

showed some softening after 60 % strain. The air pressure components of the re-

sponse were much more sensitive to variations in the number of rows and columns,

where removal of cells from the honeycomb perimeter caused a reduction in lateral

confinement and therefore a substantial drop in the magnitude of transmitted stress,

and energy stored, by the internal air pressures.

When the number of columns was reduced from 25 to 9, and the number of rows

from 13 to 5, the proportion of structural removal was similar (loss of 26 and 25
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cells from the original 40.75 in the quarter symmetry segment), but the energy ab-

sorbed (per unit volume) at compaction reduced by 11 % and 18 % respectively i.e.

there was a greater reduction in absorption capacity when rows were removed over

columns. The response was most sensitive to the removal of rows than columns, be-

cause when rows were removed the length of potential blowout pathway was reduced,

allowing air to escape much more readily.

The design implication of this is that: for a fixed cellular geometry, the structural

response will be mostly unaffected (unless a sample with a very narrow aspect ratio

is used) by changes in the number of adjacent cells; however, cardboard honeycombs

will generate higher internal pressures and perform more efficiently as an EDM when

the number of adjacent cells is increased. An increase in the number of adjacent

cells can be made by increasing the plan area of the sample.
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Chapter 7

Conclusions and Future Work

Cardboard honeycombs provide a low-cost and lightweight energy dissipating ma-

terial (EDM) which is easily transported and disposed of once used. They are used

extensively in the packaging industry and have historically been used to protect air

dropped cargo against damage from shock loading on impact with the ground.

Cellular structures, such as honeycombs, behave as efficient energy dissipating

materials due to a geometrically efficient arrangement of their constituent material;

their structural form encourages a mesoscopic deformation mode, which for a given

macroscopic compaction, will result in a significant amount of internal plastic work

(energy dissipation). When cardboard honeycombs are subject to high strain rate

deformations, the internal air pressures which develop as a result of the rapid com-

pression of the entrapped air, reach magnitudes which are significant in comparison

to the stiffness of the structural response. Consequently, the impact energy dis-

sipation characteristics of cardboard honeycomb are not simply a function of the

structural deformation, but of a complex, coupled, non-linear deformation mode

which emerges as a result of the interaction between the rapidly deforming cell wall

structure and the air trapped within.

The importance of internal air pressures on the cardboard honeycomb’s impact

response was highlighted by Ripperger and Briggs [8, 31], after which very little was

published on the matter (see Section 2.4). Over the years, various series’ of impact

tests have been used to characterise the cardboard honeycomb’s energy dissipating
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characteristics, within a given window of design parameters. What has been lacking

is understanding of the fundamental mesoscopic mechanisms which occur within

the cardboard honeycomb, and how they compose the macroscopic response. It

is also worth noting that while the understanding of the impact response of stiffer,

metallic honeycombs, has advanced to the stage of well defined mathematical models,

the analytical understanding of the complicated, air-structure coupled, cardboard

honeycomb response is still in its infancy.

In this study, a detailed series of impact tests was performed to investigate the

effect of geometrical variations on the cardboard honeycomb EDM impact response

(see Chapter 3); samples from three different mesh sizes (B, D and F) were tested,

providing a broad range of cellular geometries. The exact mesoscopic cellular geom-

etry of all tested samples was recorded and digitised, allowing each experimentally

induced response to be attributed to an exact, known, cellular geometry. While ex-

isting research has tended to identify samples simply by their mesh size, it quickly

became apparent that mesh size alone was inadequate to facilitate a detailed in-

vestigation of the mechanisms involved in the impact response of the cardboard

honeycomb. This was because, even when the construction process was tightly con-

trolled, the inter-sample geometrical variation was high, and these variations were

found to have a significant effect on the cardboard honeycomb response.

During each impact test measurements were made of the axial strain, total load

transmitted through the sample and the air pressures at four internal locations

within each known geometry. This provided novel insight into both the spatial and

temporal development of internal air pressures, how the air pressure distribution was

affected by variations in the cellular geometry and the significance of the internal

air pressures in comparison to the structural response.

To enable the cardboard honeycomb impact response to be studied without the

practical, economical and time constraints imposed by experimental methods, a

numerical model capable of capturing the high strain rate axial crushing response

of an air filled cellular honeycomb structure was constructed (see Chapter 4).

During the cardboard honeycomb impact response, both the structure and the
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entrapped air undergo high rate extreme deformations, and while doing so continu-

ally redistribute load between one another. The cardboard honeycomb structure also

contains a substantial number of glue bonds, and the model must accurately capture

the process by which these bonds fail, in order for the correct structural collapse and

air venting mechanisms to occur. Numerical techniques capable of capturing each

individual component were identified, and verified, before being combined to create

a computationally efficient, full-scale, numerical model of the cardboard honeycomb

and its entrapped air (Chapter 4).

Precise geometrical records, of the experimentally tested samples, allowed digital

replications to be constructed. A simple material parameter calibration, against the

measured experimental response of one sample, yielded material parameter values

which were characteristic of a cardboard honeycomb cell wall. These material param-

eter values were then applied to a sample with radically different cellular geometry,

and while there were discrepancies between the numerical model and experimen-

tal data, considering the minimal variations performed during the calibration, the

correlation was surprisingly good.

The numerical modelling techniques were used to produce a further refined, com-

putationally efficient, regular hexagonal honeycomb model as a platform to study

the effects of structural parameter variations on the cardboard honeycomb’s impact

response (see Chapter 5). The refined model was initialised with a set of geometrical

and material parameters characteristic of the cardboard honeycomb; while holding

the geometry constant, isolated variations of each material parameter allowed a

perfectly clean assessment of their effect on the response.

A thorough investigation into the effects of geometrical variations was also per-

formed (see Chapter 6). During previous research into the cardboard honeycomb im-

pact response, a pre-determined macroscopic sample size (plan area and/or height)

ensured that any mesoscopic geometrical variations would also result in additional

enforced variations of the internal cellular structure. If the macroscopic response

could be expressed as simply a summation of many identical local mechanisms,

these enforced structural variations would not be a problem: a direct comparison
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could be made simply by scaling the response by the amount of cell wall material

present; however, during the experimental work it was observed that the magnitude

of internal air pressures is non-homogeneous throughout the honeycomb’s struc-

ture, meaning the cardboard honeycomb impact response must be at least partly

determined on the global scale; and therefore, for any analysis aiming to isolate

the effects of geometrical variations, a direct comparison can only be made if all

other enforced, non-essential geometrical variations are eliminated. The numeri-

cal modelling allowed a fundamental geometrical analysis to be performed, singular

variations in one of six identified independent geometrical parameters were studied

(see Table 6.1), while any dependent geometrical parameters were allowed to vary

unhindered (see Table 6.2).

The numerical modelling also revealed the mesoscopic mechanisms and how they

evolve within the cardboard honeycomb during its impact response. It was possi-

ble to view the structural deformation and internal pressure development with an

extremely high, 3 dimensional, spatial resolution. Being able to view and analyse

the response in this way, allowed significant advancement towards its understanding

and therefore, quantification (see Section 5.2).

7.1 Key findings

a) When subject to a forced axial compression, at the rates characteristic of low

velocity impact loading, the cardboard honeycomb structure buckles due to crush-

ing of the cell wall material and not Euler buckling; furthermore, during the early

response (low strain), the magnitude of the internal air pressures has not yet devel-

oped to be of any significance (see Figure 6.35). Consequently, a good estimation of

the peak load can be determined by taking the sum of the cardboard cross sectional

area and multiplying by its yield stress.

b) The magnitude of internal air pressures which develop within the cardboard

honeycomb EDM, during its high strain rate axial crushing response, is a function
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of both the geometrical arrangement and material properties of its cell walls. The

internal air pressures increase with strain, and are shown to be significant during

the late response; whereas, during the early response, the load transmitted through

the cell wall structure is dominant.

Potential geometrical and material characteristics, particular of cardboard hon-

eycombs, happen to place the them in a region where their response can be severely

dominated by either the stiffness of the structural response or the internal air pres-

sures, mostly it is a combination of the two. During the experimental testing, a

decrease in the cell size was found to increase the magnitude of load transmitted

by the internal air pressures but reduce their significance in comparison to the load

transmitted by the cellular structure (Figure 3.33).

c) The presence of internal air pressures allows the lateral transfer of load throughout

the honeycomb, and therefore modifies the response, from what would otherwise be

simply a summation of many localised collapse mechanisms, to a response which is

global in nature and dependent on the lateral properties of the cell walls. The card-

board honeycomb’s impact response is a complex mechanism which is constantly in

flux; a forced axial driving displacement provides a continuous source of additional

pressure while the internal air pressures which are driving structural deformations

are coupled to themselves via the magnitude of structural deformations which result.

d) The air pressure distribution within the cardboard honeycomb is discretised by

the cell walls, and takes the form of many regions of equal pressure matching the

geometry of each cell. The cellular air pressures are highest in the centre of the

honeycomb and reduce towards the edges, forming a global pressure gradient which

increases in steepness with increased axial strain. The magnitude of air pressure

within any given cell is a function of the current axial strain and the degree of

lateral confinement provided by both the surrounding cellular structure and cellular

air pressures.

If sufficient lateral confinement is provided, the cellular air pressure reaches a
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theoretical maximum, which is the pressure as predicted by the adiabatic equation

of state for a volumetric compaction consisting of the current axial strain and the

volume occupied by the folded cellular structure. It is also possible for multiple

cells to reach the theoretical maximum air pressure, when this occurs a central

equal-pressure plateau develops, the plateau reduces in size as the axial strain, and

therefore pressure gradient increases.

e) Two mechanisms result in a reduction of the cellular air pressure below the

theoretical maximum. They are: a lateral expansion of the internal volume due

to outwards lateral drift of the cell walls, and loss of the entrapped pressurised

gas as a result of blowout. Lateral drift has components in two planes, parallel

and perpendicular to the glue bonds. The magnitude of lateral drift endured by

any region of cell wall is a function of the current pressure gradient across it, and

its current lateral structural stiffness. The pressure gradient across the perimeter

cell walls tends to be the largest, as the perimeter cell walls are restraining the

high cellular over pressure against the surrounding atmospheric pressure (see Figure

5.8); the cell wall material available to restrain this pressure gradient is also at a

minimum. The result is an increase in the magnitude of lateral drift towards the

perimeter.

Blowout occurs in only one plane, parallel to the glue bonds. For the pressurised

air in any given cell to escape, it must have a clear path to the honeycomb perimeter.

For a blowout path to form, the pressure gradient between two adjacent cells, which

are separated by a pair of double-ply cell walls, must be sufficient to destroy the

glue bond and separate the cell walls. Furthermore, double-ply cell walls situated

deeper within the honeycomb will have a higher cellular air pressures acting on their

back faces; thus, increasing the pressure gradient required to separate them and for

a pathway to form, and so the air entrapped in many internal cells may not escape

during the course of an impact response while the air in cells close to the perimeter

will escape easily.
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f) Over the range of material parameter variations studied (see Table 5.6), the card-

board honeycomb’s impact response was most sensitive to variations in the glue

bond strength, yield stress, and rate of strain hardening (gradient of the post yield

constitutive stress-strain curve); an in depth discussion of their effects is given in

Section 5.6.

g) The cardboard honeycomb impact response was sensitive to variations in all ge-

ometrical parameters shown in Table 6.2. A detailed discussion of the nature and

magnitude of each effect is given in Section 6.9.

h) Convergence of the peak and plateau stresses is caused by: an increase of the glue

strength, rate of post yield hardening, wall length, and number of adjacent columns

and rows of complete cells (plan area); a decrease of yield stress, wall thickness and

sample height; and adjustments of the internal expansion angle towards 60◦ (regular

hexagons).

i) An increase of the energy absorption, per unit volume, at compaction (energy

absorption capacity) is caused by: an increase of the elastic modulus, yield stress,

rate of post yield hardening, cell wall thickness, internal expansion angle (above

60◦), and number of adjacent columns and rows of complete cells (plan area); and

a decrease of the glue strength, cell wall length and sample height.

j) A shift in dominance of the macroscopic response towards the internal air pres-

sures is caused by: an increase of the glue strength, cell wall length, and number

of adjacent columns and rows of complete cells (plan area); and a decrease of the

yield stress, rate of post yield hardening, cell wall thickness, internal expansion angle

(above 60◦) and sample height.

The greatest uncertainty during the work presented in this thesis is a lack of

experimental data on the material properties for the cell wall material which com-
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posed the experimentally tested samples. To be valid, any material testing of the

cell wall material would have had to have been performed at the same, high, strain

rates used during the impact test. Apparatus was not readily available to perform

such tests, and it was felt that it would require a substantial time investment to

develop a testing procedure from scratch. It was also not clear as to how the cell

wall material could be tested in a configuration which would be relevant to the

compressive loading conditions and deformations mechanism present within the cell

walls of a cardboard honeycomb during its impact response.

A common method of numerical model development is where the modeller be-

gins with a experimentally measured material properties and performs iterations on

the numerical techniques until the response matches experimental results. As the

material properties were unknown, an opposite approach was necessary whereby the

accuracy of each numerical technique was first verified before being included the full

model, an approach which is arguably more valid but much more tedious.

Fortunately, in this case the model development produced a numerical model

which gave good agreement with the experimental data with a after a simple calibra-

tion and produced values which are perfectly acceptable for a cardboard honeycomb

cell wall, which suggested that the modelling methods were sound. Unfortunately,

due to the large number of possible values for material properties, the high com-

putational cost required to check different combinations of values, and problems in

the accuracy of the experimentally recorded data, an iron clad experimental valida-

tion of the numerical model was not possible. To combat this, an extensive material

parameter study was performed with a scope wide enough to cover any uncertainties.

It is also likely that the linear elastic-plastic material model used for the cell walls

could be substantially improved upon. Although it is felt that the relative varia-

tions in the response and therefore any trends would be observed regardless of the

complexity of the material model, and at this stage, a simple material model is per-

haps advantageous in allowing the behaviour to be understood without introducing

additional, unquantified, complexity.
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7.2 Further work

The next logical step would be to use the large bank of numerical results pro-

duced throughout this thesis to characterise the cardboard honeycomb, one possible

method of characterisation would be to produce a series of characterisation curves.

This process is covered thoroughly in a publication by Gibson and Ashby [41] who

develop various characterisation curves for the EDM response of foams.

Some characterisation work has previously been performed for cardboard honey-

combs, although limited in scope due to oversimplification, experimental data of the

impact responses of various honeycomb samples were used to produce cushion curves

(maximum deceleration vs static stress) [38], and the quasi-static responses to pro-

duce energy absorption diagrams (energy absorption per unit volume vs transmitted

stress) [42–44].

The next step would be to produce design guidance based on fundamental re-

search rather than ad hoc series of experimental tests. It is hoped that this will allow

more efficient and reliable design of cardboard honeycombs by providing tighter con-

trol over their energy dissipating characteristics and making better use of the free

energy dissipation provided by compression of the entrapped air.

The development of an experimentally derived constitutive model of the cell wall

material would be of great benefit to numerical modellers. To do so, it will be neces-

sary to collect experimental data regarding the cardboards elastic properties, tearing

strength, and tensile/compressive strengths at the in-situ strain rates experienced

by the cell wall, during the honeycomb’s impact response. It will also be necessary

to identify the effects of any orthotropy, and if found to be significant, the cell wall

material will need to be tested in both the machine and cross directions, and various

angles of rotation between the two.

For a truly comprehensive model of the high-strain rate behaviour of the cell

wall material to be developed it may necessary to consider the cardboard micro-

structure and the mechanical interaction between adjacent fibres. Experimental

testing to determine the properties of the glue bonds would also be useful. Burst
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tests of specially constructed individual cells (such as was performed by Ripperger

and Briggs [31]) would provide experimental data, which could be used to validate

a small scale accompanying numerical model.

The ultimate goal is a fully comprehensive mathematical model of the collapsing

cardboard honeycomb structure and its interaction with the entrapped air. This

mathematical model would be able to predict the cardboard honeycomb’s EDM

characteristics for a known set of material and geometrical parameters. Fundamen-

tally, a mathematical model of the response will need to predict the magnitude of

load transmitted by a) the structure and b) the internal air pressures. It may be

possible to do this by adapting existing mathematical models, which predict the

structural only response, by including the modifications to the structural response

mechanism, which result from the internal air pressures.

To predict the load transmitted by the internal air pressures, it will be necessary

to consider the strain dependent permeability and lateral stiffness of the honeycomb

structure. If the permeability and lateral stiffness of the honeycomb structure are

known, predictions could be made of the proportion of retained air, the average

internal air pressure, and the average cell walls lateral displacement for the average

internal air pressure. The load transmitted by the structure could then be predicted

by modifying the mechanics of the perfectly axial buckling response to account for

lateral deformations.

Another approach may be to consider the mechanics of a super element whereby

all of the internal cell wall material is lumped at the honeycomb’s perimeter. This

super element will have an axial stiffness, permeability and orthotropic lateral stiff-

ness representative of the average internal mesoscopic behaviour.

To develop a truly comprehensive mathematical model of the cardboard honey-

comb, there are many areas of research which must be investigated. In the author’s

opinion, those which should be of high priority are:

• Variations in strain rate. Including an analysis of the transition between the

quasi-static and dynamic response modes. It is suggested that for any future

experimental impact tests, a complementary quasi-static series be performed.
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Thus, allowing the emergence of the dynamic mechanisms to be observed.

• Further geometrical variations and other combinations of parameters, e.g. sin-

gle to double cell wall length ratio.

• Multiple stacks, and multiple stacks of varied geometries.

• Oblique impacts, i.e. loading with a horizontal component.

With recent advancements in 3 dimensional printing techniques, it is expected

that further research will be performed into the design of bespoke, computationally

optimised, energy dissipating structures. It has been shown during this thesis that

the computational power now exists to perform numerical simulations of a rapidly

deforming structure in composite with an entrapped fluid, and that the entrapped

fluid can provide a substantial proportion of additional energy absorption capacity.

There is no reason why the structure must be of honeycomb geometry, be made

of cardboard or that the entrapped fluid must be air. Clearly, there is now enormous

potential for the simulation, design and construction, of a new breed of extremely

efficient and bespoke, fluid-structure-composite, energy dissipating materials.
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