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Abstract 

The effects of microstructure, mechanical properties and hydrogen 

content on the hydrogen induced cold cracking (HICC) resistance of high 

strength low alloy (HSLA) steel weld metals were studied in this investigation. 

The weld metals were designed in a previous work. Their microstructures were 

characterised by optical and electron microscopy (FEG-SEM and TEM). 

Microphases, such as non metallic inclusions (NMI) and martensite-austenite- 

carbide constituent (MAC), were studied in some detail due to their hydrogen 

trapping capacity. Fractographic studies of hydrogen charged tensile samples 

were carried out to study the effect of microstructure and hydrogen content on 
the fracture micromechanisms. A critical hydrogen content (Ck) was estimated 
for each weld metal. The trapping capacity 'of each weld metal was studied 
using an electrochemical double pulse technique to measure the hydrogen 

trapping constant (k). The weld metals were classified based on composition, 
microstructure and micro-phase characteristics. NMI number density, size 
and spatial distribution were determined and thermodynamic calculations 
were proposed to identify their type. MAC morphology and distribution were 

qualitatively assessed. Retention of austenite was estimated, considering 

chemical and size stabilisation of remaining austenite. It was found that a 

continuous network of grain boundary ferrite (PF(G)), in combination with the 

presence of retained austenite in the MAC particle and certain NMI 

characteristics were beneficial to increase Ck. In weld metals without PF(G), 

retained austenite proportion and NMI distribution and size play a critical role 
in maintaining tolerance to hydrogen. From fractographic observations, it was 

proposed a phenomenological model that correlates microstructure, hydrogen 

content and the stress intensity factor, with the activation of different fracture 

micromechanisms: micro-void coalescence (MVC), quasicleavage (QC) and 

intergranular (IG). The trapping capacity of the weld metals was evaluated and 

results indicate that this capacity is the result of a complex combination of 

factors such a NMI inclusion size and distribution, presence of retained 

austenite and microstructure. The value of k takes into account these effects. 
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microstructure showing PF(G), FS(A), AF and microphases, (b) TTT and CCT 
diagram with the cooling curve superposed and (c) Calculated phase proportion 
of the weld metal at CR=43K/s. Bs and Ms are the start transformation 
temperature for bainite and martensite, respectively. 115 

Figure 7.9 Theoretically calculated TTT and CCT diagrams for the different steel 
weld metals listed in table 7.1. The calculated Pcm values are: (a) 0.11, (b) 0.12, 
(c) 0.13, (d) 0.15, (e) 0.17 and (f) 0.18.117 

Figure 7.10 Theoretically calculated TTT and CCT diagrams for the different 

steel weld metals listed in table 7.1. The calculated Pcm values are: (a) 0.20, (b) 
0.20, (c) 0.21, (d) 0.23, (e) 0.24 and (f) 0.27.118 

Figure 7.11 Schematic representations of the weld metal microstructures in 
different HSLA weld metals. PF(G): grain boundary ferrite, FS(A): Widmanstätten 
ferrite, AF: acicular ferrite, FS(B): bainite and M: martensite. ". 119 

Figure 7.12 FEG-SEM image of microstructure presented in the CWX361 weld 
metal, (a) Polygonal ferrite(PF) and acicular ferrite(AF) and (b) Detail of the region 
in (a): micro-phases (short arrows) and NMI (long arrows) 121 

Figure 7.13 Weld metal microstructure formed by polygonal ferrite and acicular 
ferrite; the arrows indicate some of the micro-constituents: MAC islands, 

retained austenite and NMI 121 

Figure 7.14 Weld metal microstructure presenting the morphology and 
distribution of microphases. (a) Elongated and irregular microphases and (b) 
detail of the figure (a). 123 

Figure 7.15 Detail of an acicular ferrite microstructure showing the wedge- 
shaped micro-constituents. Arrows indicate the microphases. 123 

Figure 7.16 Detail of the microphases found in a HSLA steel weld metal, the 
central feature could be a MAC island, formed by martensite(M), austenite(A) and 
carbides (C); (a) positive FEG-SEM image and (b) negative FEG-SEM image. 

124 
Figure 7.17 TEM image of a MAC island showing the substructures in the 
martensitic region. It can be observed the acicular ferrite grains (AF), martensite 
(M) and retained austenite (A). 125 

Figure 7.18 SEM image of a MAC island. Note the substructure in the 
martensite island and the martensitic elongated inter-lath region signalled by 
arrows, (a) low resolution image showing FS(A) and M; (b) detail of the figure (a). 
The micro-mark in the figure is 2µm 124 

Figure 7.19 MAC proportion for different HSLA steel weld metals 126 

Figure 7.20 Variation in MAC and C, Si, Mn, Mo, Cr and Ni content with Pci� 

value as identifier of the weld metal. 127 

Figure 7.21 Schematic representation of the weld metal microstructure showing 
the type and location of MAC constituent and/or retained austenite. 129 

Figure 7.22 Estimated austenite carbon content with respect to ferrite volume 
fraction in steels. A minimum C content in the alloy was selected as 0.037 W% 
and a maximum of 0.083 w%, the interval of carbon content in the studied weld 
metals. Equations based on mass balance (Chang and Bhadeshia 11391) and 
analytical treatments (Wang et. al. 11311) were implemented. 131 

Figure 7.23 Calculated transformation temperatures for bainite (B., Bso and Br) 
and martensite (M., Mio, Mso, M9o and Mr) versus carbon content in the last 

untransformed austenite (containing Cy, vertical line). Room temperature is the 
horizontal line. (a) CWX181 and b) CWX361. In weld metal CWX361 Mr is below 

room temperature. I_, ". ý, 4 -ý 132 
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Figure 7.24 Qualitative estimation of the austenite particle size on Ms and Mf. It 
was assumed for the calculations t=0.05, B=1.234 and the carbon concentration 
as the corresponding Of in table 7.3. The approach that was used is presented in 
annex A. 12. Estimations for. (a) CWX181 and (b) CWX351 135 

Figure 7.25 Effect of the austenite particle size on M. and Mt for the 14001 (a) 
and CWX91 (b) weld metals. It was assumed for the calculations v=0.05, B-1.234 
and the carbon concentration as the corresponding Cy in table 7.3. The 
approach that was used is presented in annex A. 12.136 

Figure 7.26 3D or true diameters (d�) for the HSLA steel weld metals, which 
were studied in this investigation. 139 

Figure 7.27 NMI numbers for the HSLA steel weld metals, which were studied in 
this investigation. The Pcm value for each weld metal increases from left to right. 139 

Figure 7.28 NMI size and spatial distribution for the analysed weld metals: 
CWX181, CWX351,14001 and 15171. The method used for the estimation of the 
spatial distribution is presented in section 6.2.1.3 in chapter 6.141 

Figure 7.29 NMI size and spatial distribution for the analysed weld metals: 
VCX2561, CWX361, CWX201 and 14031. The method used for the estimation of 
the spatial distribution is presented in section 6.2.1.3 in chapter 6.142 

Figure 7.30 NMI size and spatial distribution for the analysed weld metals: 
CWX71, CWX91, CWX81 and CWX331. The method used for the estimation of 
the spatial distribution is presented in section 6.2.1.3 in chapter 6.143 

Figure 7.31 NMI composition in the CWX181gb weld metal, (a) BE image of the 
surface, (b), (c) and (d) are the composition of NMI A, B, and C, respectively. 146 

Figure 7.32 Typical chemical composition of the NMI for several HSLA steel weld 
metals which were studied in this research. 146 

Figure 7.33 Elemental composition mapping presenting the distribution of Al, 
Si, Ti and Mn in the VCX2561 weld metal. 147 

Figure 7.34 Complex morphology of some inclusions in low alloy steel weld 
metals, (a) 15171 and (b) CWX181gb weld metals. 148 

Figure 7.33 NMI stability diagrams for the oxides A1203, SiO2, MnO and the 
complex oxide MnOSiO2 calculated for the weld metals studied in this 
investigation: (a) Contracted MnOSiO2 field: CWX181gb, CWX351,14001, 
15171, VCX2561 and CWX201; (b) Expanded MnOSiO2 field: CWX361,14031, 
CWX71, CWX91, CWX81 and CWX331 150 

Figure 7.36 NMI stability diagrams for the Ti oxides in the weld metals studied 
in this investigation: (a) Expanded fields: CWX351,14001 and CWX361; (b) 
Intermediate fields: CWX181gb, 15171, VCX2561 and CWX201; (c) Contracted 
fields: 14031, CWX71, CWX91, CWX81 and CWX331 152 

Figure 7.37 NMI stability diagrams for MnS, TiN and AIN in the weld metals 
studied in this investigation: (a) Expanded fields: CWX351,14001 and cwx361; 
(b) Intermediate fields: CWX181gb, 15171, VCX2561 and CWX201; (c) 
Contracted fields: 14031, CWX71, CWX91, CWX81 and CWX331 153 

Figure 7.38 Effect of the solidification process on the equilibrium ratio Q/Kq for 
the CWX181gb weld metal. This weld metal is contained in the figures 7.32(a), 
7.33(b) and 7.34(b). The horizontal discontinuous line represent equilibrium, 
where Q/Lq 1.154 

Figure 7.39 Effect of the solidification process on the equilibrium ratio Q/Keq for 
the 14001 weld metal. This weld metal is contained in the figures 7.32(a), 7.33(a) 
and 7.34(a). The horizontal discontinuous line represent equilibrium, where 
Q/K«q=1.155 

Figure 7.40 Effect of the solidification process on the equilibrium ratio Q/Keq for 
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the CWX201 weld metal. This weld metal is contained in the figures 7.32(a), 
7.33(b) and 7.34(b). The horizontal discontinuous line represent equilibrium, 
where Q/K«q=1: 156 

Figure 7.41 Effect of the solidification process on the equilibrium ratio Q/Kcq for 
the CWX71 weld metal. This weld metal is contained in the figures 7.32(b), 
7.33(c) and 7.34(c). The horizontal discontinuous line represent equilibrium, 
where Q/Key=1.156 

VIII Figure 8.1 Tensile mechanical properties of the HSLA steel weld metals, which 
were studied in this investigation. The strength and ductility of the weld metals 
are presented as a function of the Pcm value. Based on data obtained by 
Wildashls-111 160 

Figure 8.2 Fracture surfaces of three weld metals presenting MVC fracture: (a) 
CWX181gb, (b) CWX201 and (c) CWX331. The presence of grain boundary ferrite 
could be the reason of the appearance of the smooth flat regions in (a). The other 
two weld do not present PF(G). 162 

Figure 8.3 Fracture surfaces of two weld metals presenting MVC fracture: (a) 
CWX201 and (b) CWX331. These weld metals do not present PF(G), and the 
smooth flat regions are absent (compare with 8.2). 163 

Figure 8.4 Variation of the fracture stress and the three-dimensional density 
(Nv) of NMI for the studied weld metals. Based on data obtained by Wildashtsl 
and the NMI characterisation in this investigation. 163 

Figure 8.5 Effect of diffusible hydrogen content (HD) on the strength and 
ductility of the 15171 weld metal. The loss of ductility is quantified using . the 
embrittlement indexes: HEIei and HEIAR. Based on data obtained by Wildashlsl 164 

Figure 8.6 Schematic representation of the variation of the strength and the 
ductility (HEI) with diffusible hydrogen content in the weld metal. The 

. critical 
hydrogen level is CK. Above this value embrittlement occurs. 165 

Figure 8.7 Effect of diffusible hydrogen (HD) on the Sy/Sm ratio for weld metals 
with Pcm values below 0.20: CWX181, CWX351,14001,15171, VCX2561 and 
CWX361. Based on data obtained by Wildashlsl 170 

Figure 8.8 Effect of diffusible hydrogen (HD) on the Sy/Sm ratio for weld metals 
with Pcm values above 0.20: CWX201,14031, CWX71, CWX91, CWX81 and 
CWX331. Based on data obtained by Wildashtel 170 

Figure 8.9 Fish eye associated to a 5µm inclusion in the CWX181 weld metal 
charged with 1.39m1/ 100g of hydrogen and fractured by tensile test. (a) NMI 
surrounded by QC fracture and (b) detail of the figure (a) where can be observed 
the slip lines on the QC surface. This slip lines or striations could be produced 
by the discontinuous growth of the crack. 176 

Figure 8.10 Calculation of the tessellated stress around the non-metallic 
inclusions of different size: (a) 2µtn and (b) 20µm in diameter. It was supposed a 
single compound inclusion of A1203 (ai=8 10-6 1/°C, E1=3.89 1011 Pa, vi=0.25) 
and steel (as=8 10-6 1/°C, E2=3.89 1011 Pa, va=0.25) with 600MPa of yield 
strength. 177 

Figure 8.11 Schematic representation of the effect of inclusion size on the 
trapping and crack initiation. The hydrogen tends to accumulate in stressed or 
strained regions, where can reach critical concentrations to form cracks due to 
the presence of tessellated stresses. 178 

Figure 8.12 Relation between the inclusion, the brittle fracture of the matrix 
and the hydrogen content. (a) Inclusion of around 5µm in diameter in the 15171 
weld metal charged with only 0.4mL/ 100g . of hydrogen., (b) Cracking. of the 
matrix around the inclusion (2µm in diameter) at high hydrogen levels 'in the 
CWX201 weld metal with 11.72mL/ 100g of hydrogen., ,. 

180 

Figure 8.13 Microcrack formed around a NMI in CWX201weld metal charged 
with 11.72mL/ 100g of hydrogen. The microcrack plane : seems : to , be 
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perpendicular to the interface surface 180 

Figure 8.14 The initiation and propagation of a crack around an inclusion due 
to the effect of residual or tessellated stresses without the application of external 
loads. The growth of the crack stops when the residual stress. is low and the 
assistance of hydrogen is not enough to propagate the crack. 181 

Figure 8.15 The propagation of a microcrack during the tensile test in a 
quasicleavage mode. (a) The microcrack is formed around the inclusion and the 
growing is stopped due to reduction in stress. (b) Applying load during test, 
stress concentration due to microcrack produces the growth of the crack 
assisted by hydrogen diffusion towards crack tip. (c) The cracks continue to 
propagate due to increase of stress in a QC mode. When stress intensity reaches 
a critical value the crack continues to growth but in a MVC fashion. 182 

Figure 8.16 Cavities and micro-shrinkages as initiators of cracks in CWX201 
weld metal with 3.24mL/ 100g of hydrogen after tensile test. (a) QC facet of 
300µm in diameter surrounded by a ductile fracture (MVC), (b) and (c) details of 
the origin of the brittle fracture. 184 

Figure 8.17 Large QC facet found after tensile test in CWX201 weld metal 
charged with 1.77mL of hydrogen. The composition illustrates the impact of the 
presence of this kind of complex network of cavities (micro shrinkages) on the 
hydrogen assisted cracking process. 185 

Figure 8.18 QC facet originated by a cavity in CWX331 weld metal charged with 
1.27rL/ 100g of hydrogen. 186 

Figure 8.19 QC facet of around 301im in diameter associated with a small cavity 
in the CWX331 weld metal at 0.73mL/ 100g of hydrogen 187 

Figure 8.20 Schematics of the mechanisms proposed for the initiation of 
cleavage in the intercritical zone in weldments of high strength low alloy steels. 1- 
The elongated-type MA constituent cracks readily, initiating cleavage in the 
ferrite matrix. 2- Overlapping of transformation-induced residual stresses 
between blocky MA and applied tensile stress assists the cleavage of the ferrite 

matrix. 3- Strength mismatch leads to interfacial decohesion increasing stress in 
the matrix between particles. 4- Brittle debonding resulting in a microcrack at 
the MA/matrix interface could then propagate in a cleavage manner. Based on 
figure 18, Davis and King I1-981.189 

Figure 8.21 Examples of unidentified QC origins for three weld metals with 
different hydrogen content (mL/100g): (a) CWX181 (2.70), CWX361 (2.95) and 
CWX 201 (5.58). 190 

Figure 8.22 Possible MAC particle decohesion initiating the QC facet in CWX331 
weld metal with hydrogen content of. (a) 1.27mL/ 100g and (b) 4.88 mL/ 100g. 191 

Figure 8.23 Effect of the difusible hydrogen content on strength and the fracture 
surface of the CWX181gb weld metaL 193 

Figure 8.24 Effect of the difusible hydrogen content on strength and the fracture 
surface of the 15171 weld metal. 194 

Figure 8.25 Effect of the difusible hydrogen content on strength and the fracture 
surface of the CWX361 weld metal. 195 

Figure 8.26 Effect of the difusible hydrogen content on strength and the fracture 
surface of the CWX201 weld metal. 196 

Figure 8.27 Effect of the difusible hydrogen content on strength and the fracture 
surface of the CWX331 weld metal. 197 

Figure 8.28 Fracture surface for the highest hydrogen content present in the 
weld metals where it is observed the mixture of QC and MVC micromechanisms: 
(a) CWX181 (5.26mL/100g) and (b) 15171 (3.77mL/100g). Arrows show isolated 
dimples. 199 
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Figure 8.29 Fracture surface of the CWX361 weld metal with 2.95mL/ 100g of 
diffusible hydrogen, showing mixture of QC and MVC fracture micromechanism. 199 

Figure 8.30 IG fracture found in two weld metals at high hydrogen content: (a) 
and (b) CWX201 (5.58mL/ 100g); (c) and (d) CWX331 (4.88mL/ 100g). 200 

Figure 8.31 Schematic diagram that represent the effect of the threshold stress 
intensity factor (K) and the hydrogen content on the fracture micromechanisms. 
The Pyun's diagram [161-1621 was completed by the addition of the curve for QC 
micromechanism, which is based on the fractographic evidence obtained in this 
investigation. 203 

Figure 8.32. Schematic representation of the effect of microstructure, 
mechanical properties and hydrogen content on the hydrogen induced cracking 
(MAC) of the weld metals. On the top of each figure is shown the microstructural 
features and examples of the most representative weld metals. The strength, 
represented by Sy, the yield stress. 205 

Figure 8.33 Schematic representation of the fracture surface profile and the 
effect of microstructural factors and hydrogen content. 206 

Figure 8.34 Estimation of the accumulation of hydrogen due to the effect of 
stress fields. 207 

Figure 8.35 Effect of heterogeneous concentration of hydrogen and the stress 
concentration factor in the micromechanism of fracture for a steel that is 
charged with low to medium hydrogen content. The result is a mixture of QC 
facets surrounded by dimples from the MVC mechanism. 209 

Figure 8.36 Fracture surface of the CWX201 weld metal charged with 
3.24mL/ 100g of hydrogen. It could be noted the transition from QC to MVC 
micromechanism of failure around the multiple QC facets. 209 

Figure 8.37 Effect of heterogeneous concentration of hydrogen and the stress 
concentration factor in the micromechanism of fracture for a steel that is 
charged with high hydrogen content The result is a mixture of IG and QC facets 
surrounded by dimples from the MVC mechanism. 210 

Figure 8.38 Fracture surface of CWX331 weld metal charged with 4.04mL/ 100g 
of hydrogen after tensile test. Note the existence of microvoids coalescence 
(MVC), quasi-cleavage (QC) and IG fracture micromechanisms in (a) and (b). (b) 
is a detail of (a). 211 

Figure 8.39 Fracture surface of CWX331 weld metal charged with 4.88mL/ 100g 
of hydrogen after tensile test. Figure shows large areas of IG and QC fracture. 212 

IX Figure 9.1 Schematic representations of the proton adsorption and reduction, 
hydrogen atoms adsorption, absorption and diffusion during the charging 
potential in the second step of the PDP test 215 

Figure 9.2 Factors influencing the value of the hydrogen trapping rate constant, 
k. Four groups are distinguished: NMI, microstructure, MAC and other traps. 
Ideally the k value could be related with the susceptibility to hydrogen cracking 
of the weld metals, it could be regarded as a HEI 217 

Figure 9.3 Hydrogen diffusion in a weld metal containing grain boundary and 
acicular ferrite phases, PF(G) and AF, respectively. Equation 9.2 could be used to 
understand the influence of the mixture. 219 

Figure 9.4 Microstructure in the electrochemical test electrodes: (a) CWX181 
and (b) CWX201. (c) Schematic representation of a multi-pass weldment 
illustrating the different regions which suffer re-crystallisation due to reheating. 
The outer red circle in insert in (c) represents electrochemical samples (cut from 
tensile sample base) and the red circles in (a) and (b) are the targeted weld metal 
region for tensile test. 220 

Figure 9.5 Schematic representation of the microstructural changes expected in 
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the reheated zone of a low alloy steel weld metal. Based upon the variation of 
microstructure in HAZ Fi9,1741 221 

Figure 9.6 Microstructure of the CWX181 electrode containing weld metal and 
reheated regions. (a) general view illustrating the regions, (b) and (c) - detailed 
recrystallised coarse and fine zones, respectively. 222 

Figure 9.7 Current-time curves for the electrochemical double pulse test of the 
weld metals: (a) CWX181, (b) CWX351, (c) 14001, (d) 15171, (e) VCX2561, (f) 
CWX361, (In 0.87mo1/L acetic acid (C2H404) and 0.5mol/L sodium acetate 
(C2H3NaO2) containing 15 ppm sodium meta-arsenite (AsNaO4) as a hydrogen 
entry promoter at 25.0 ± 0.1°C. 225 

Figure 9.8 Current-time curves for the electrochemical double pulse test of the 
weld metals: (a) CWX201, (b) 14031. (c) CWX71, (d) CWX91, (e) CWX81 and (f) 
CWX331. In 0.87mol/L acetic acid (C2H4O4) and 0.5mol/L sodium acetate 
(C2H3NaO2) containing 15 ppm sodium meta-arsenite (AsNaO2) as a hydrogen 
entry promoter at 25.0 ± 0.1°C. 226 

Figure 9.9 Experimental anodic current density for the re-oxidation of hydrogen 
for the CWX181 weld metal in 0.87mo1/L acetic acid (C21-1402) and 0.5mol/L 
sodium acetate (C2H3NaO2) containing 15 ppm sodium meta-arsenite (AsNaO2) 
as a hydrogen entry promoter at 25.0 ± 0.1°C. The analytical curve was 
estimated graphically varying the value of k until fit experimental data. 227 

Figure 9.10 Comparison of the anodic current density for the hydrogen egress 
for different weld metals in 0.87mo1/L acetic acid (C21-1402) and 0.5mo1/L sodium 
acetate (C2H3NaO2) containing 15 ppm sodium meta-arsenite (AsNaO2) as a 
hydrogen entry promoter at 25.0 ± 0.1°C. 228 

Figure 9.11 Confidence intervals (95%) for the k values for different weld metals 
after 10 s of charging time. Obtained by the potentiostatic pulse technique in 
0.87 mol/L acetic acid (C2H402) and 0.5 mol/L sodium acetate (C2H. Na02) 
containing 15 ppm sodium meta-arsenite (AsNaO2) as a hydrogen entry promoter 
at 25.0 ± 0.1°C. 229 

Figure 9.12 Confidence intervals (95%) for the k values for different weld metals 
after 20 s of charging time. Obtained by the potentiostatic pulse technique in 
0.87 mol/L acetic acid (C2H402) and 0.5 mol/L sodium acetate (C2H3NaO2) 

containing 15 ppm sodium meta-arsenite (AsNaO2) as a hydrogen entry promoter 
at 25.0 ± 0.1°C. 230 

Figure 9.13 Confidence intervals (95%) for the k values for different weld metals 
after 30 s of charging time. Obtained by the potentiostatic pulse technique in 
0.87 mol/L acetic acid (C2H402) and 0.5 mol/L sodium acetate (C2HLNaO2) 
containing 15 ppm sodium meta-arsenite (AsNaO4) as a hydrogen entry promoter 
at 25.0 ± 0.1°C. 230 

Figure 9.14 Corrected trapping rate constants (kioew, k2oAw and k3oAw) for all the 
weld metals. The krh, the k value for the reheated region of weldment, was 
supposed to be 0.05 s-1. k values for times of charging (tc): (a) 10 s, (b) 20 s and 
(c) 30 s. Calculation was made using equation 9.2. Table 9.2 shows the values. 234 

Figure 9.15 Variation of k value with the hydrogen charging time for the weld 
metals: (a) CWX351, (b) 14001, (c) CWX361, (d) CWX71, (e) CWX81 and (1) 
CWX331. The k value, for these weld metals, decreased with tt. 236 

Figure 9.16 Variation of k value with the hydrogen charging time for the weld 
metals: (a) CWX181, (b) 15171, (c) VCX2561 y (d) CWX201. This group of weld 
metals presented an apparent maximum k value at 20 s of charging. 238 

Figure 9.17 Variation of k value with the hydrogen charging time for the weld 
metals: (a) 14031 and (b) CWX91. These weld metals presented a minimum k 
value at 20 s of hydrogen charging. 239 

Figure 9.18 Schematic representation of the diffusion of hydrogen at different 
charging times for weld metals with clustered and random NMI distributions. 
Clustered distribution could give an apparently low k value. 240 

xviii 



Figure 9.19 Distribution of hydrogen in the weld metal due to different NMI 
distributions: clustered and random 241 

Figure 9.20 Effect of large inclusions on the variation of the k value -with 
charging time. At short tc and apparent low k value is obtained. At medium tc, if 
large inclusions are presents, an apparent large k value is measured. After 
longer charging times and total or partial saturation of large NMI, lower k values 
could be registered. 241 

Figure 9.21 NMI true number density (Nv) and main characteristics 
(distribution/number/size), MAC proportion and critical hydrogen content (CK) 
for the weld metals studied in this investigation. *NMI distribution: R (random) 
and C (clustered); number: L (low), M (medium) and H (high); size: L. (large), M 
(medium) and S (small). 243 

Figure 9.22 Comparison of weld metals with MAC content around 6%. It is 
shown the general microstructure constitution, the trapping constants (k), the 
critical hydrogen content (Ck), the number density of NMI (Nv) and their 
distribution/number/size characteristics, the MAC proportion and the 
probability to find retained austenite, considering the values of M., Mf and the 
effect of particle size in reducing Ms below room temperature (RT) 246 
Figure 9.23 Comparison of weld metals with MAC content around 9%. See 
description in figure 9.20 for more detail. 247 

Figure 9.24 Comparison of weld metals with similar NMI number density, Nv, 
(between 22.0 and 23.8 106 mm-3). See description in figure 9.20 for more detail. 248 

Figure 9.25 Comparison of weld metals with similar NMI number density, Nv, 
(around 20 106 mm-3), but different microstructure and MAC content. See 
description in figure 9.20 for more detail 249 

Figure 9.26 Comparison of weld metals with similar NMI number density, Nv, 
(around 20 106 mm-3), but different microstructure and MAC content. See 
description in figure 9.20 for more detail. 251 

A Figure A. 1 Schematics showing microstructure of solid/liquid interface for 
different modes of solidification and the temperature gradients that generate 
each of the different modes. (a) Planar growth, (b) cellular growth, (c) cellular 
dendritic growth, (d) columnar dendritic growth, (e) equiaxed dendrite, and (e) 
five temperature gradient versus constitutional supercooling M. 

. 271 

Figure A. 2 Schematics showing the Dube classification of ferrite morphologies in 
steels[421.272 

Figure 
, 
A. 3 International Institute of Welding scheme for classifying 

microstructural constituents in ferritic steel weld metals with the optical 
microscope [421.273 

Figure A. 4. The energy level diagram for the Fe4S cluster showed in the figure 
4.6(a). The dashed lines are for unnoccupied levels of the minority spin-state P01.274 

Figure A. 5 Instrumentation amplifier unit 279 

Figure A. 6 Dual polarity reference potential unit 11971 279 

Figure A. 7 Cooling rate curve for the different weld metals calculated at a 
distance of 5mm from the welding line 280 

Figure A. 8 Phase proportion of the weld metals 281 

Figure A. 9 Microstructure of the CWX181 weld metal presenting the different 
prior austenitic grain sizes: small grains near the fusion line and large grains 
close to the centre. It is shown the reheated zone, which is the region with small 
ferritic grains at the bottom of the figure. 282 

Figure A. 1O Schematic representation of an austenite particle of diameter (do), 
and an internal martensite plate of thickness (8). The aspect ratio is " which is 
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assumed to have a value around 0.05 for convenience and simplification of the 
interpretation. 284 

Figure A. 11 Effect of the austenite particle size on M. and Mr for the weld 
metals: (a) CWX181, (b) CWX351, (c) 14001, (d) 15171, (e) VCX2561 and (t) 
CWX361. It was assumed for the calculations i=0.05, B=1.234 and the carbon 
concentration as the corresponding Cy in table 7.3. 286 

Figure A. 12 Effect of the austenite particle size on M. and Mr for the weld 
metals: (a) CWX201, (b) 14031, (c) CWX71, (d) CWX91, (e) CWX81 and (i) 
CWX331. It was assumed for the calculations t=0.05, B=1.234 and the carbon 
concentration as the corresponding C7 in table 7.3. 287 

Figure A. 13 Measurement of the parameter fro classification of NMI 
characteristics for the weld metals. 290 

Figure A. 14 Schematic representation of the normal distribution for a material 
property. Several possibilities are shown for (x� - xL): 2Q, 4a and 6Q. As 
suggested in Dieter 8031 (x� - xi) = 6a could be used to estimate standard 
deviation. 296 

Figure A. 15 Effect of diffusible hydrogen content (HD) on the strength and 
ductility of the weld metals: (a) CVrX181gb and (b) CWX351 and (c) 14001. 
Figures are based on data obtained by C. Wildash 181. 298 

Figure A. 16 Effect of diffusible hydrogen content (HD) on the strength and 
ductility of the weld metals: (a) 15171, (b) VCX2561 and (c) CWX361. Figures are 
based on data obtained by C. Wildash P1. 299 

Figure A. 17 Effect of diffusible hydrogen content (HD) on the strength and 
ductility of the weld metals: (a) CWX201, (b) 14031 and (c) CWX71. Figures are 
based on data obtained by C. Wildash Isl. 300 
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CHAPTER 1 

INTRODUCTION 

Economical welding of high strength, upto 890 MPa, low alloy (HSLA) 

steels requires the continuous research and development of consumables to 

produce weld metal deposits with mechanical properties and corrosion 

resistance equal or exceeding that of the base metal coupled with a need to 

reduce or eliminate the use of pre-heating before welding. The principal 

characteristics that provide the incentive to use HSLA steels are: higher 

strength, excellent toughness, ductility and formability, but especially the 

improved weldability that results from reduction of the carbon equivalent 

value (CEV) primarily by the use of lower carbon content (below 0.10% C) 111. 

The utilisation for lightweight construction and minimum fabrication cost has 

made HSLA steels particularly attractive for the construction and offshore 

structure industries 121. 

High-strength low alloy (HSLA) are a group of low carbon steels that 

utilise small amounts of alloying elements to obtain minimum yield strengths 
between 350 and 550 MPa in the as-rolled or normalised condition 11.31. These 

steels have better mechanical properties and sometimes better corrosion 

resistance than as-rolled carbon steels. The ferrite in HSLA steels is typically 

strengthened by grain refinement, precipitation hardening and, in minor 
importance, solid solution strengthening. Grain refinement is the most 
desirable strengthening mechanism because it improves not only strength but 

also toughness P1. This refinement of the ferrite grain size is produced by 

additions of microalloying elements such as aluminium, vanadium, niobium, 

and titanium in combination with various forms of thermomechanical 

processing. At the same time, this has made possible improvement of the 

resistance of steels to hydrogen assisted cold cracking, stress corrosion 

cracking, and brittle fracture initiation in the weld heat-affected zone (HAZ) 

region, without sacrificing base metal strength, ductility, or low-temperature 

toughness. Higher strengths can be obtained by the use of the quenching and 
tempering process, in excess of 890 MPa can be achieved with appropriate 

steel compositions. Whilst, lower strength HSLA steels can be welded 

economically without the use of pre-heating, in general the higher strength 

grades, such as those with yield strengths of 690 or 890 MPa, have 

traditionally required pre-heating before welding to prevent hydrogen induced 
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cold cracking (HICC) of the weld metal and HAZ. The former becomes a more 

serious problem as the CEV of the steel are progressively reduced to both 

reduce pre-heating requirements and prevent HICC in the. weld HAZ. 

Currently, steels are available which do not crack when welding without pre- 
heating. However, a key problem is that, in such circumstances, the weld 

metal is then prone to cracking partially because of a different microstructure 
from the base metal and partially because to achieve the weld metal 

mechanical properties a higher CEV composition is often necessary. 

' In the welding of HSLA steels, hydrogen-induced, cold cracking (HICC) is 

a severe problem- and it occurs when the following four factors are present 

simultaneously: hydrogen. in the weld metal and/or HAZ, a sufficiently high 

stress, -a susceptible microstructure and relatively low temperature [41. Cold 

cracks are weldment defects that form as the result of presence of certain 

amount of hydrogen in the weld microstructure. Hydrogen-induced cracking is 

usually a delayed phenomenon, occurring possibly hours, days, weeks or even 

months after the welding operation. The temperature at which these defects 

tend to appear ranges from -50 to 150 °C in steels. The fracture is either 

intergranular or transgranular cleavage and as with other forms of cracking, 

hydrogen-induced cracking involves both a particular microstructure and a 

threshold level of stress. It also involves a critical level of hydrogen, which is 

alloy and microstructure dependent 15]. 

The weldability and the resistance to HAZ HICC of HSLA steels have 

been mainly improved by reducing carbon contents and impurities and 

controlling the microstructure. Other remedies for the HICC are the control of 

the ' welding parameters (preheating, postweld heating, bed tempering, etc. ) 

and' the use - of proper welding processes and materials (low hydrogen 

processes and consumables, low strength filler metals, etc. ) 14.61. As was 

mentioned before, the - thermomechanical control process used in the hot 

rolling of steel plates has further promoted this trend in the case of the HAZ 177, 

but problems have been continuously found in the weld metal. For this 

reason, new welding consumables to produce weld metal deposits with similar 

mechanical properties to the base metal and improved resistance to HICC 

have been developed in- recent- years. At first, this development has been 

concentrated on the achievement of a maximum toughness and ductility for a 

given strength level by control of-the weld metal microstructure 111. Recently, 

this development has included the improvement of the HICC resistance. 
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There seems to be general agreement that microstructures primarily 

consisting of acicular ferrite provide optimum weld metal mechanical 

properties, both from a strength and toughness point of view, compared with 

grain-boundary, polygonal, or Widmanstätten ferrite [1.51. This effect of the 

acicular ferrite is related with its small grain size (typically 1-3 µm) and high 

angle grain boundaries 111. The formation of large proportions of upper bainite, 

ferrite side plates, or grain boundary ferrite, on the other hand, are considered 
detrimental to toughness, since these structures provide preferential crack 

propagation paths, especially when continuous films of carbides are present 

between the ferrite laths or plates. Attempts to control the weld metal acicular 

ferrite content have led to the introduction of welding consumables containing 

complex deoxidizers (Si, Mn, Al, and Ti) and balanced additions of various 

alloying elements (Nb, V, Cu, Ni, Cr, Mo, and B) Ill. Acicular ferrite is often 

nucleated on minor phase particles, such as specific oxides or borides 1s1. 

Wildash 181 has shown that there are potentially several ways, based on 

microstructural changes, to improve the mechanical properties and the HICC 

resistance of HSLA steels weld metals. The weld metal produced with the 

modified consumables offered higher strength than that produced with 

commercial consumables. With respect to the HICC, Wildash and 

collaborators 18-101 suggested that a relationship existed between HICC 

susceptibility, diffusible hydrogen concentration (HD), and the presence of 

microstructural constituents and phases in the weld metal, such as grain 
boundary ferrite, martensite/austenite islands, carbides, and non-metallic 

inclusions. For example, a reduction in the content of grain boundary ferrite 

was reported to be beneficial to the HICC resistance whilst an increase in the 

fraction of martensite-austenite-carbide (MAC) islands and non-metallic 
inclusion (NMI) produced improvements to the HICC resistance that depended 

on the quantity of HD in the weld metal 18-101: the increase of MAC was 
beneficial at low levels of HD and for the case of NMI the beneficial effect was 

detected at high HD contents. These results could indicate that the presence of 

NMI is more important than that of the MAC constituent in improving the 

HICC resistance. However, other factors not taken in account by Wildash[81, 

such as the NMI composition, size spatial distribution and the presence of 
different types of microconstituents (for example, retained austenite, 

martensite islands, and/or MAC) could be responsible for the oversetting of 

the benefits of each other to the HICC resistance. Another contradictory result 

reported by Wildash 181 was the effect of the grain boundary ferrite (agb), which 

3 



Chapter 1. INTRODUCTION 

was claimed to be deleterious to the HICC resistance, although in some cases 

the presence of this microstructure seemed to increase the critical hydrogen 

content to produce a decrease in the ductility at low HD. This was suggested to 

be the result of the presence of NMI and MAC, which outweighed the harmful 

effect of the agb, and not to a possible beneficial effect of this microstructural 

constituent ' at low HD concentrations. This work intends to clarify the role of 

the agb, NMI and MAC on the HICC resistance, taking in account their 

influence on the mechanical properties, - hydrogen transport and - trapping 

behaviour of the HSLA steel weld metal designed by Wildash11. 

In the study of the weld metal HICC susceptibility it is important to 

measure the HD content of the different steel weldments because this permits 

the determination of the hydrogen levels supported by the material. Several 

techniques have been used to determine the weld metal diffusible hydrogen 

(HD) content and'a considerable number of hydrogen assisted cracking tests 

have been proposed 16,71. To measure HD a mercury displacement method 

(International Institute of Welding method) and a gas chromatography method 

are considered preferable because they can collect very small amounts of 

hydrogen. Hydrogen assisted cracking tests have been developed for 

investigation of the mechanism of hydrogen assisted cracking and for proper 

selection of welding materials and welding conditions to avoid hydrogen 

assisted 'cracking. These tests are divided into two groups: an external 

'restraint type and a self-restraint type. The safe welding condition is, in 

general, determined from the result of a hydrogen cracking test and the 

advantages and disadvantages between them are reviewed by Yurioka and 

Suzuki elsewhere M. 

Other methods used in the study of HICC involve hydrogen charging of 

the steel to simulate the hydrogen quantity that could present in the weld 

'metal and/or HAZ during the welding process. Many researchers have 

reported lower reproducibility than others, but in general, electrochemical 

charging has been used around the world to study the hydrogen damage. 

Wildash and collaborators Is. 111 analysed the " various factors that should be 

taken into account when using and interpreting the results of hydrogen 

induced cracking through the utilisation of the cathodic hydrogen charging 

method. Although it was concluded in these studies that the cathodic method 

could be' used to simulate the hydrogen induced cold cracking behaviour of 
different HSLA steels; the problem of low reproducibility was still present, and 

Ahnt" was minimised by the ability- of measure HD concentrations after 
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precharging I'll., However, in several cases, the details of the method of 

charging did not permit a controlled increment of the. HD content, and. this 

factor made difficult the comparison between. the different weld metals. This 

low reproducibility and control over the hydrogen charging could be the 

consequence of the several experimental variables which intervene In an, 

electrochemical process as for example: the sample microstructure and 

surface finishing, the corrosion behaviour of the samples, the variation of the 

electrolyte pH during the charging, the charging potential and current, the 

different corrosion inhibitors, the type of electrolyte, the temperature of the 

solution, the time of charging, etc.. The utilisation of controlled sample 

preparation and experimental procedures (controlled temperature, 

potentiostatic control of the polarisation), buffer electrolytes, and the same 

quantities of entry promoters (inhibitors and hydrogen entry promoters) could 

result in acceptable reproducibility levels. Nevertheless, Wildash was able to 

show a correlation between the results of hydrogen charging and the 

propensity for weld metal HICC and, subsequently, to use this technique to 

show that the weld metal HICC susceptibility could be improved empirically. 
The general target of this investigation is to study in more detail the 

relationship between microstructure, hydrogen trapping behaviour and the 

hydrogen cracking response of HSLA weld metals of different strength levels 

obtained with different consumables. These consumables were selected and 
designed by Wildash [81 with the intention of varying the microstructure and 

study the effect of this variation on the hydrogen cracking resistance. 

To gain knowledge of microstructure-hydrogen induced cracking 

relationships, the followings objectives were proposed: 
1- To determine the effect of the consumable composition on the 

microstructure of the weld metal obtained: specifically phase proportions, size 

and distribution and relate this to their effect on mechanical properties and 
HICC resistance 

2- Using Field Emission Gun Scanning Electron Microscopy (FEG-SEM) 

and Transmission Electron Microscopy (TEM) identify the potential hydrogen 

trapping features which could be found in different weld metal 

microstructures: martensite-austenite-carbides (MAC) constituents, non- 

metallic inclusions (NMI), retained austenite, ferrite/austenite or 
ferrite/martensite interfaces, dislocation arrangements and density, etc 

3- To study the influence of microstructure, mechanical properties, and 
hydrogen content of the weld metal on the fracture induced cracking and 
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propose a mechanism that relates these variables and the micromechanisms 

usually found in hydrogen induced fracture 

4- Using an electrochemical technique, a potentiostatic double-step 

method, study the hydrogen diffusion and trapping processes for the different 

weldments and relate this with their microstructural components and their 

resistance to HICC 

5- Elucidate the response of the studied weld metals to real welding 

situations based on the results obtained in this investigation in regard to their 

HICC resistance. 
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CHAPTER TWO 

HIGH STRENGTH LOW ALLOY STEELS AND THEIR WELDING 

In this chapter, firstly, a brief description of the characteristics of HSLA 

steels is presented: mechanical properties, alloying elements and their 

weldability. Secondly, the metallurgy of the welding of the HSLA steels is 

briefly explained. In this section the evolution of the microstructure is 

described, including: the formation of non metallic inclusions, the 

solidification and its effect on the final microstructure, and the solid state 
transformation and the factors which control its development. 

2.1 High Strength Low Alloy Steels 

High strength low alloy (HSLA) steels provide an optimum combination 

of properties such as high strength, toughness, ductility, formability, 

weldability and atmospheric corrosion resistance. The high strength permits 

the construction of lightweight structures and the consequent low cost of 
fabrication. The potential weight reduction and the low cost of HSLA steels are 

compared with other materials in figure 2.1. 

40 

Ej Titanium springs 
3 20 

Cost penalty 

Graphite-glass 

ö 
10 

V 
composite 

`" ä6 Wrought 
- aluminium 

C l 4 
Q 

ast a uminium 
Cost savings 

2 High Strength Steel 

1 

100 75 50 25 0 
weight reduction % 

Figure 2.1 Material cost ratio as a function of weight reduction potential for various 
materials compared to mild steel as the base. Adapted from WrightPl. 

Hot rolled HSLA steels (which are also called microalloyed steels) are a 

group of low carbon steels that utilise small amounts of alloying elements, 
such as Nb, V or Ti, to produce minimum yield strengths between 275 and 
550 MPa and Charpy V-notch fracture appearance transition temperature 
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(FATT) about -60 °C. In general, the- maximum carbon content is less than 0.2 

wt%C and the total alloy content is less than 2 wt%. Apart from manganese 
(up to 1.5 wt%) and silicon (up to 0.7 wt%), as in carbon steels, HSLA steels 

often contain small amounts of niobium (up to approximately 0.05 wt%), 

vanadium (up to about 0.1 wt%), -and titanium (up to about 0.07 wt%) to 

ensure both grain refinement and " precipitation hardening, the. , two 

strengthening mechanisms more used compared with the solid solution 

strengthening, which is used in lesser extent P. 41. Niobium (Nb), vanadium (V) 

and titanium (Ti) are strong carbide and nitride formers, particles responsible 

for the reduction of the grain boundaries movement and in consequence the 

grain growth. Among the carbides and nitrides of Nb, V, and Ti, titanium 

nitride (TiN) is the most stable, making it the most effective in limiting the 

extent of grain growth during welding 14). As discussed, in the next chapter, 

grain size control is the key factor to produce high strength and excellent 

toughness for these low alloy steels. 
Higher strength, in excess of 550 MPa, can be obtained by adding small 

amounts of Ni, Mo or Cr coupled with severe controlled rolling and/or 

accelerated cooling. Alternatively, re-austenitisation followed by quenching 

and tempering may be used to produce the highest grades of steel such as 

X100 to X120 or yield strengths in the order of 690 to 890 MPa. For the 

welding of these high strength steels, a careful consumable selection (low 

hydrogen potential, controlled composition) and a strict welding procedure 

(pre-heating, inter-pass temperatures, post-weld heat treatment) have to be 

taken into account, incurring in higher construction costs. In this respect, the 

HSLA steels were designed to improve weldability keeping the necessary high 

strength for structural construction. Next paragraph discusses the parallel 

development of these steel and the welding consumables. 

2.1.1 Development of High strength low alloy steels 

Increasing the carbon and manganese content, was a traditional 

method to increase tensile strength of mild steels, impairing weldability. With 

the arrival of microalloying technology the strength of steels was kept high 

while C and Mn quantities were reduced, hence improving weldability. Since 

then, the utilization of combined small amounts of Nb, V and Ti, in addition to 

Mn, Si, Cr, Mo, Ni, Cu and Al, and the application' of thereto-mechanical 

treatments are used today for the production of weldable and tough high 

strength steels. Glädman(121 summarises the factors that' led to initial 
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development of microalloyed steels: materials cost saving due to weight 

reductions of structures, a need for weldable high strength pipelines, the 
development in welding processes and the close interaction between 

metallurgy scientist and industry, leading to the production of high strength 

steels at low cost. Table 2.1 shows chronologically the discoveries and 
developments of these high strength steels. 

Table 2.1 Discovery and development of microalloyed steels. 
Adapted from Gladman(121 

Decades of discovery and development 

1930 1940 1950 1960 1970 1980 1990 
Discovery. Use of Nb in steels. 
High Nb prices. 
Introduction. First BS 
specification for Nb-steels 
Development. Microalloying 
lead to reduction in C and Mn 
Controlled Rolling. `As rolled' 
fine grain size 
Multiple Additions. Micro- 
alloying with Nb, V, Ti. 
Inclusion Shape Control. Ce, 0 
Ti, Zr, Ca (spherical) 
Desulphurisation. Replace 
shape control methods 
Acicular Structures. Bainitic 
and acicular ferrites 
Dual Phase Steels. Ferrite + 
martensite microstructure 
Accelerated Cooling. Control 
of transformation temperature 
TiN Technology. TiN as grain 
refining agent 
Interstitial Free Steels. C 
and N reduced at <0.005 wt % 
Bake-Hardening Steels. C 
and/or N about 0.001wt% 

Oil Crisis (1973) 

The reduction in C and Mn from the steels led to the reduction in heat 

treatments to avoid HICC in the HAZ. Figure 2.2 presents diagrams originally 
developed by Prof. R. C. Cochrane and reported by Wildash 181. These diagrams 

highlight two important observations in regard to the development of weldable 

steels: 

1- Reduction in C and Mn, in combination with small additions of Cr, 

Mo and Ni, decreases the preheat temperature, needed to avoid cracking in the 
HAZ of welded low carbon low alloy steels (LCLA) by approximately 60 °C, at 
low heat inputs (<3 kJ/mm). For the modified steel, room temperature (25 °C) 

was the minimum necessary preheating at heat inputs above 3 kJ/mm. Figure 
2.2(a) presents the calculated preheating temperature for two steels. 
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2- Although improvement on the weldability was achieved with the 

modified LCLA steels using microalloying, weld metals of high strength needed 

a preheating in excess of that for LCLA steels HAZ. This preheating 

temperature depends on weld metal strength: the higher the strength the 

higher the preheating. These reduce the advantages offered by the designed 

steels, increasing production costs. Impulse to develop new consumables 

appeared. 
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Figure 2.2 (a) Effect of change in steel composition on the recommended preheating 
temperature to avoid cracking in the HAZ. (b) Comparison between recommended 
preheating temperatures to avoid cracking in two weld metals of different strength and 
HAZ of a typical LCLA steel. Composition of steels in (a): 
X1: 0.17C-0.4Si-1.4Mn-0.15Cr-0.1SMo-0.06V-0.02STi-0.04AI-0.035Nb-O. OlNi-0.01 Cu 
X2: 0.1 1C-0.3S i-0.9Mn-0.50Cr-0.45Mo-0.04V-0.004Ti-0.07A1-0.003Nb-0.85N i-0.25Cu 
Adapted from figures reported by Wildash['1 

2.1.2 Development of welding consumables 

As was mentioned before, the high strength low alloy steel weldability 

was improved throughout microalloying, but cracking appeared in the high 

strength weld metals. As consequence consumable development was aimed to: 

1- Control microstructure and mechanical properties of the weld metal. 
This was achieved through the careful selection of consumable 

components to provide adequate transfer of alloying elements, 

protect the weldment from atmospheric gases and offer good arc 

properties. Wildash (8-101 and collaborators have demonstrated how 

to obtain yield strength between 400 and 900 MPa in the as welded 

condition. Chapter 3 deals with the effect of alloying elements on 

weld metal microstructure and properties. 
2- Reduce the potential hydrogen which could be introduced to the 

weld pool. MMA consumables with basic coating and flux-cored 
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electrodes could introduce low hydrogen content: to the weld. In 

chapter 4., the potential hydrogen, content from, different welding 

consumables is compared. 

Hydrogen could be minimised in the weld metal by the use, of correct welding 

procedures, " consumables and protecting gases. This combination of factors 

will improve the soundness of the weld metal when matching the base metal 

mechanical properties. A recently hydrogen trapping theory, which is 

discussed in chapter 4, suggests that an adequate introduction of hydrogen 

traps into the weld metal could permit the distribution and immobilisation of 
hydrogen that otherwise could assist cracking. With this in mind, development 

of new consumables should take into account this suggestion. 

2.2 The welding metallurgy of HSLA steels 

Properties of HSLA steel welds depend on the microstructural 

development that occurs during the weld cooling. This depends on complex 
interactions between several important variables such as: 

i) the total alloy content 
ii) the concentration, chemical composition, and size distribution of 

non-metallic inclusions 

iii) the solidification microstructure 
iv) the prior austenite grain size 

v) the weld thermal cycle 
The critical transformation temperature range where the 

microstructural changes occur during welding are in principle the same as 

those in the steel production, but the microstructures that form are 

considerably different due to some particular effects resulting from the arc 

welding process: 
(a) A high volume fraction of inclusions in the weld metal due to much 

higher amount of oxygen introduced during welding. The presence of 
these inclusions, influences the austenite/ferrite transformation, 

restricting grain growth and offering alternative nucleation sites 
leading to acicular ferrite or ferrite side plate microstructures. 

(b) Significant, segregation. During, weld metal solidification, - alloying 

and impurity elements tend to segregate extensively to interdendritic 

or intercellular spaces , under the conditions of rapid, cooling. This 

affects the kinetic of the posterior solid-state transformation Ill. 
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Figure 2.3-summarises the steps involved in -the development of the 

weld metal microstructure. During the liquid state, chemical reactions occur 
in the liquid metal (weld pool) to form non-metallic inclusions (step I). These 

inclusions could form during solidification as well and then be trapped in the 

weld -metal ý during this process (step II). The, solidification process will 
determine the final microstructure of the weld metal. Steps from the step III to 

VII correspond to the solid-state transformation of the weld, which depend on 

the products of steps I and II, the composition of the alloy, the welding 

parameters, and the cooling rate. In this section the basis of the 

microstructural development of the weld metal will be described briefly. 

. ,ý 

Figure 2.3 Schematic representation of a continuous cooling transformation diagram 
presenting the basic steps involved in the weld metal microstructure development. (I) 
inclusions formation, (II) solidification, (III) austenite phase, (IV) beginning of primary 
ferrite nucleation and growth, (V) Finishing of the primary ferrite growth, (VI) 
nucleation and growth of ferrite side plates, and (VII) acicular ferrite formation 113.14). 

2.2.1 Non-metallic inclusion formation in the weld metal 

In the weld metal, the first reaction known to influence the final weld 

microstructure is inclusion formation. During the welding process, some of the 

products of the oxidation/de-oxidation reactions, which took place in the arc 
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and in the melt, are trapped as spherical non-metallic inclusions into the bulk 

of - the weld' metal. - Microanalysis of such inclusions, generally, reveals A he 

presence of manganese, silicon, aluminium, and titanium 1151. In table 2.2 is 

shown examples of non-metallic inclusions found in C-Mn and low-alloy steel 

weld metals. It has always been assumed that the oxides or inclusions will 

form in a fixed sequence A1203, Ti2O3, SiO2, and MnO, regardless of the weld 

metal composition. This sequence is derived according to decreasing stability, 

or decreasing the absolute value of the standard free energy of formation. 

However, this does not necessarily represent the observed reaction processes, 

because the stability of the oxides depends on the reactant concentration in 

the weld, that is, segregation, and the formation of complex oxides 1161. 

Table 2.2 Chemical composition of some non-metallic inclusions 1171 

Type of weld Constituent elements Reported phases 
C-Mn steel Si, Mn, 0, S (traces of Al, Ti, and Cu) SiO2, MnOSiO2, MnS, 

(CUES) 
Low alloy Al, Ti, Si, Mn, O, S, N (Cu) MnOA12O3, y-A1203, 
steel TiN, Si02, MnOSiO2, 

a- and ß-MnS, (CURS) 

The reactant concentration in the weld is affected by the solidification 

process. During the weld metal solidification solute elements segregate to the 

liquid at the solid/liquid interface, and the liquid concentration can reach high 

levels in the interdendritic spaces. The nonequilibrium lever rule or Scheil 

equation could be used to take into account this segregation, if the solid 

diffusion is neglected: 

CL =C0fLKO-1 
c0(i-fS/Kp-I 

(2.1) 

where Co is the bulk concentration in the weld pool, CL is the concentration in 

the liquid at the interface, fL and fs are the liquid fraction and the solid 

fraction, respectively; and xo is the equilibrium partition ratio 118-201. Table A. 1 

in the annexes shows values for xQ for different solute that could be found in 

HSLA steel welds. 
The concentration of different alloying solutes and the interaction 

between them are the factors affecting the formation of the simple or complex 

non-metallic inclusion during the welding process. The concentration of the 

different solute could be estimated using equation 2.1 and the interaction 

between them could be taken in account using the interaction coefficients 
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used in steelmaking processes 121.221. Several attempts have been made for the 

prediction of the inclusion formation in steel welds. Kluken and Grongl23l 

developed a theoretical model for inclusion formation in submerged arc (SA), 

gas metal arc (GMA), and flux cored arc (FCA) steel weld metals, where the 

homogeneous nucleation of oxide inclusions occurs as a consequence of the 

supersaturation in the weld pool during cooling. The reactions of deoxidation 

will be almost completed when the liquid metal reach a constant level of about 

1550 °C. The growth of the particles may occur under this approximately 

isothermal condition until the temperature reaches the melting point of the + 

steel. Figure 2.4 shows the sequence of events during the inclusion formation 

in the weld metal. In a later work, van der Eijk and Grongtul, working on Ti 

and Al-Ca deoxidised steels, proposed the mechanism for the formation of 

single phase and complex multiphase oxysulphides, based on experimental 

and thermodynamical analysis. They concluded that Ti-rich inclusions forms 

as a result of a series of reactions occurring in the liquid metal, during 

solidification and in the solid state, identifying the solid state products as 

MnS, TiN, and MnOTiO2. In contrast the inclusions in the Al-Ca deoxidised 

steel were complex oxysulphides, where the thermodynamically more stable 

phase can be formed in the liquid metal. Figure 2.5 shows schematically the 

formation of those complex inclusions. These types of complex inclusions have 

been found in welds [la, l7, a3,25-271. 

The utilisation of computational thermodynamicsP81 has permitted the 

prediction of the formation and competition between different non metallic 

inclusions and the construction of deoxidation diagrams similar to those 

presented in the figure 2.6, from the investigation of Babu and David [14.26-27). 

These diagrams predicted satisfactorily the formation of A1N and the inhibition 

of the A1203 and Ti(CN) reactions for the alloy (a) (figure 2.6 (a)) and the 

contrary situation for the alloy (b) (figure 2.6 (b)). 

The construction of these diagrams shows the possibility to describe 

inclusion formation in a wide range of welding processes and compositions by 

employing equilibrium thermodynamic calculations that consider 

multicomponent interactions in liquid steels. However, this analysis is not 

complete without the modelling of the kinetics of formation and growth of 

inclusions. This kinetic approach could permit the estimation of the size, size 

distribution and density of non-metallic inclusions, characteristics that 

influence strongly the weld metal transformation and the final mechanical 

properties of the weldment. 
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Figure 2.4 Schematic representation of the inclusion formation model proposed by 
Kluken and Grong 117.231 

Figure 2.5 Schematic representation of sequence of inclusion formation in Ti 
deoxidised steels, superposed on a TTT diagram for the weld transformation. Modified 

from Grong 1241 

Various investigations have been concerned with kinetic models for the 

precipitation of non-metallic inclusion during the steel solidification. Babu 1261, 

Hong 0,301 and collaborators have developed a model for inclusion formation 

in liquid weld metal based on an overall kinetics approach using nucleation 

and growth rate expressions. In the model of Babu P61, the homogeneous 

nucleation rate was used to estimate the number of inclusions as a function of 

time and the inclusion growth was simulated taking in account the diffusion 

rates of the elements to the reaction interface. This model permits prediction 

of the deoxidation sequence in the liquid weld metal from calculated TTT 
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diagrams. However, the model does not take into account the temperature 

gradient that the inclusion may experience due to the liquid flow and the heat 

extraction from the weld pool. Hong P9.301 considered the temperature and 

velocity fields in the weld pool, combining the thermodynamical and kinetical 

theories used by Babu with those of transport phenomena. Other 

investigations on the inclusion formation during steel solidification Pl" 321 and 

on weld metal P31 have considered the solute redistribution. during 

solidification, diffusion controlled deoxidation, and interfacial kinetics, in their 

models. All the models mentioned before have been compared with 

experimental data and the agreement has been acceptable, and indicates that 

some simplifications are the reason for the differences, which suggests that 

more has to be investigated in this area, particularly in the case of weld 

metals. 
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Figure 2.6 Calculated stability diagrams P4,26271 at 1800 K for Fe-Al-O, Fe-AI-N and 
Fe-Ti-N for the base weld composition in weight of 

(a) 0.23%C, 0.28%Si, 0.50%Mn, 1.70%Ai, 30ppmTi, 60ppmO, and 640ppm N; 
(b) 0.15%C, 0.30%Si, 0.64%Mn, 0.53%A1,580ppmTi, 300ppmO, and 330ppm N 

2.2.2 Non-metallic inclusions effect on the microstructure and 

mechanical properties HSLA steel weld metals 
The composition, number density, size and spatial distribution of non- 

metallic inclusions in weld metals are critical factors in determining weldment 

, microstructural development and, as a consequence, the properties. In 

, general, the mechanical properties are affected negatively by the presence of 

non-metallic inclusions. However, under certain conditions, in low alloy steel 

welds, : the_ existence of some kind of inclusions promote. the formation of 

acicular ferrite, with which an improvement in toughness is produced 91. 
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During weld metal solidification, the inclusions could be formed and 
trapped in the interdendritic spaces as, a consequence of the solute 

segregation in those regions. Cochrane 1341 suggests that this distribution of 
the inclusions could reduce the mobility of the austenite grain boundary, 

contributing in some degree to the austenite grain refinement. During the 

austenite to ferrite transformation, non-metallic inclusions provide preferential 

sites for the nucleation of ferrite, particularly acicular ferrite, when the proper 
inclusion composition is present. 

Thewlis [1 5in his study of the transformation kinetics of ferrous weld 

metals concluded that different types of inclusion appear to have different free 

energy barriers to ferrite nucleation. It has been found, that inclusions rich in 

titanium are most effective in acicular ferrite production, but. specific 

compounds have not been identified. Many results suggest that 

inhomogeneous inclusions are responsible for the nucleation of acicular ferrite 

[361. Lee et al. 1371, in studies on low carbon steels, found a relation between the 

Si02-MnO-Al2O3 inclusion size and the probability of acicular ferrite 

nucleation. They concluded that these inclusions provided an inert substrate 
for the nucleation of acicular ferrite and that the potential for the nucleation 
increased with larger inclusion size, reporting that the probability enhanced 

markedly for sizes over 0.2 µm and reached 1.0 at about 1.1 µm. 
Many investigations [36] have reported the effect of the inclusion 

composition on formation of acicular ferrite. Inclusions could promote ferrite 

nucleation by: thermal strains induced on the matrix, chemical heterogeneities 

in the vicinity of the inclusion/ matrix interface and simply heterogeneous 

nucleation on an inert site. 

In the table 2.3 are shown some examples of inclusions, which have 
been identified as effective or ineffective in the nucleation of acicular ferrite. 

The inclusions, as mentioned before, could act as inert sites for nucleation or 

on the contrary, they could react chemically: decarburizing the steel close to 

the NMI/matrix interface or consuming other alloying elements which are 

austenite stabilizers. As a consequence, ferrite nucleation is promoted. 
Inclusions acting as oxygen source have the ability to tolerate oxygen 

vacancies in their structures or to thermally decompose. Ti203 can 
dramatically reduce the Mn concentration of the adjacent steel, element that is 

considered an austenite stabilizer. 
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Other mechanisms are not yet clear. For example, TiO is effective as a 
ferrite nucleant and a good lattice match with ferrite may be the reason, but so 
does TiN, which is not effective in ferrite nucleation P61. 

Table 2.3 List of ceramic oxides that have been tested for their potency in stimulating 
the nucleation of ferrite plates P61 

Effective: oxygen Effective: other Ineffective 
source mechanism 

Ti02, SnO2, Mn02, Ti203, TiO TiN, CaTiO3, Si'TiO3, 
PbO2, KNO3 NbC, a-A1203 

2.2.3 Weld metal solidification 
Solidification behaviour controls the size and shape of grains, the 

microstructure, the extent of segregation, the distribution of inclusions, the 

extent of defects such as porosity and hot cracks, and ultimately the 

properties of weld metal 1381. The weld solidification process has the following 

characteristics P91: 

(a) No nucleation event is necessary to initiate weld solidification. The 

molten weld pool wets partially melted grains in the base material, 

which has similar composition. These offer the solidification 
interface and when the weld pool is cooled the growth takes place 

with a minimum of supercooling. 

(b) Macroscopic solidification rates in weldments are very rapid, being 

determined by the speed of welding, thermal gradient, etc 

(c) Macroscopic shape of the solid/liquid interface remains constant 

over the major portion of the weld length. 

(d) The motion of the molten metal within a weld pool during arc 

welding creates conditions of considerably turbulence due to the 

electromagnetic stirring. For this reason, there is good mixing of the 

molten weld pool. 

In welds, the initial solidification takes place epitaxially, where the 

partially melted base metal grains at the fusion boundary act as nuclei for the 

columnar grains. The width of the columnar grain depends on the HAZ grain 

morphology; which subsequently will affect the weld austenite grain size. Most 

microalloyed steel welds solidify as delta ferrite, which later- decomposes to 

austenite. Figure 2.7 shows schematically, the solidification structure of a 

weld-metal that solidified 'as delta ferrite. The austenite grains will cross the 
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primary delta ferrite grain boundaries, thereby removing all traces of the prior 

structure. However, i the mode of: solidification depends on the weld metal 

chemical composition, and in some cases the delta ferrite can be completely 

suppressed t1. 

delta ferrite aust nite 

l(ºI 

r1 
+r f,, º 

rr t ti 
ýt 

ý 
it rI1 

1r1 
rr y 

fusion line 

HAZ 

Figure 2.7 Schematic illustration of the solidification of delta ferrite columnar grains 
and the subsequent formation of austenite grains. 

The columnar grain exhibits a substructure that depends on the 

stability of the solidification front, which is controlled by the extent of 

constitutional supercooling ahead of the advancing interface,, and ý is therefore 

influenced by composition, the growth rate R and the thermal gradient G in 

the weld pool. The figure A. 1, in annexes, presents the solidification modes 
depending of the temperature gradients and the constitutional supercooling. It 

can be seen that the higher the thermal gradient the lower the constitutional 

supercooling. 
The reduction of the thermal gradient, change the growth mode in the 

following order: planar, cellular, , cellular dendritic, columnar dendritic, ý and 

equiaxed dendritic [1.13.17.38,401. The various growth modes that may, develop 

during normal solidification of fusion welds are shown schematically in figure 

2.8 (a). Figure 2.8 (b), which is based on experimental observations, relates the 

gradient G, solidification rate R, and composition, to the type of structure 
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developed. For a given alloy system; it has been found that the greater the Co, 

the -greater the tendency - for. constitutional supercooling and non-planar 

solidification 1401. "1 -. I--1 

CT9 usion zone 

Welding speed ý 
Weldcents e-line 

-- 

Equiaxed dendritic 

ge 6 Column ar dendritic 
Cellular dendritic 

---'Cellular 
Planar 

HAZ grains 
(a) 

v° 

8 

.Z 1 

Equisxed 
dendritic Co'umner 
growth dMdritic 

growth 

Cenular 
dendritic 
growth 

000 

ceruler 
growth 

Planar 
growth 

Solidification parameter (G /fR) 
(b) 

Figure 2.8 Schematic diagrams illustrating (a) structural variations in the weld metal 
solidification microstructure across the fusion zone, and (b) the effect of crystal growth 
rate R and the melt thermal gradient G [17.3$, 401. 

The characteristic growth pattern of cellular and dendritic solidification 
in combination with the rapid cooling rates, presented in welding processes, 

produce extensive segregation of alloying and impurity elements (particularly 

carbon, oxygen, manganese, sulphur, and phosphorus) to the intercellular or 

interdendritic , spaces. After - the austenite/ferrite transformation, the 

segregation can lead to formation of coarse blocky laths of martensite and 

bainite along the solidification or the transformation sub-boundaries M. The 

segregation in the interdendritic regions is higher than that in the intercellular 

regions, as is shown in figure 2.9. 

The segregation to these, inter-columnar regions in weld metals could 

cause intergranular " embrittlement. It has been demonstrated that . the local 

tensile stress required for intergranular separation decreases monotonically as 
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the intergranular concentration of a particular solute increase. When 

hydrogen and intergranular impurities are present, the result is intergranular 

brittle fracture at lower stresses 1411. 
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Figure 2.9 Solute distribution at the dendrite or cell core and the intercellular or 
interdendritic regions. (a) Cellular growth. (b) Dendritic growth 1401. 

2.2.4 Solid-state transformation and the microstructure of HSLA 

steel weld metals. 
The properties of the weld metal are governed by the microstructure. 

For this reason, the various phases and micro-constituents must be identified 

using a system of nomenclature that is both widely accepted and well 

understood. In wrought steels, this need has been satisfied to a large degree 

by Dube scheme for classifying the different morphologies of ferrite, as shown 
in figure A. 2 in annexes. Similarly, the microstructures in ferritic steel weld 

metals have been largely resolved by the IIW classification scheme shown in 

figure A. 3 in annexes 1421. Table 2.4 shows these categories and the 

abbreviations. Figure 2.10 presents a typical microstructure of HSLA steel 

weld metal using optical and electronic microscopy (SEM). 

Cochrane 1431 reviewed the transformation microstructure in an, as 
deposited weld and presented continuous cooling, transformation (CCT) 

diagrams , 
for weld metals. The minor . constituents, (the ! nicrophases"), 

generally in quantities lower than 10%, are: retained austenite and/or 

martensite, martensite austenite carbides -aggregates (MAC) or cementite. 
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These minor constituents are formed in the last region to transform and, while 

their distribution is influenced predominantly by the form adopted by the 

ferrite, certain other factors, including the addition of Nb and Mo, can 
influence their character 1151. 

Table 2.4 International Institute of Welding classification of microstructural 
constituents in ferritic steel weld metals 1421. 

Category Abbreviation 
Primary ferrite PF 

Grain boundary ferrite PF(G) 
Intragranular polygonal ferrite PF(I) 

Ferrite with second phase FS 
Ferrite with non aligned second phase FS(NA) 
Ferrite with aligned second phase FS(A) 

Ferrite side plates FS(SP) 
Bainite FS(B) 
Upper bainite FS(UB) 
Lower bainite FS(LB) 

Acicular ferrite AF 

Ferrite-carbide aggregate FC 
Pearlite FC(P) 

Martensite M 
Lath martensite M(L) 
Twin martensite mm 

Choi and Hill 1441 give the transformation temperature ranges for the 

major constituents, which showed some dependence on composition. In table 

2.5 are shown these temperature ranges and the product identified. 

Table 2.5 Transformation temperature range in a steel weld metal [391 

T range [°C] Microstructure associated Nucleation site 
1000-650 Grain boundary ferrite Prior austenite grain boundary 

750-650 Ferrite side plates 

Below 650 Acicular ferrite 

Prior austenite grain boundary 

Within austenite grains 

Below 500 Bainite Linked with high dislocation 
density 

It has been suggested (for submerged' arc welds) that three broadly 
different types of microstructure may be linked to three regimes of weld metal 

oxygen "content. Several ' factors influence the oxygen levels , at which 
microstructural t changes `occur. In table 2.6; the ' effect of oxygen content on 
the ' microstrüicture of a steel weld ' metal is presented. A sufficiently high 
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volume fraction of inclusions can restrict austenite grain size in the weld 

metal, favouring the formation of ferrite side-plates. A reduction in the 

quantity, and possibly the size of the inclusions, added to an adequate 

composition of the weld and an appropriate cooling rate, provide the 

conditions for the formation of acicular ferrite. Finally, a sufficient reduction in 

oxygen content or increase in alloy content will inhibit the formation of 

acicular ferrite, permitting the formation of bainite 1391. Ito and collaborators 1481 

demonstrated that the increment of the oxygen content in the weld metal 

augment the number of inclusions in the microstructure and shift the 

transformations curves to short times, resulting in a detrimental effect on 

hardenability. 

(a) 

(b) 

Figure 2.10 HSLA steel weld metal microstructures showing various microstructural 
constituents. Table 2.5 presents classification nomenclature. (a) Optical microscopy, 
and (b) SEM microscopy. 
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CCT diagrams provide a convenient way of describing microstructural 
development 'under non-equilibrium conditions, such as those encountered 
during welding. ' Weld, metal CCT, diagrams,, and schematic weld metal CCT 

diagrams have played -an important role in improving the metallurgical 

understanding of weld metal microstructural development 1"). Figure 2.11, a 

conventional CCT diagram applicable to weld metals, -shows the.. effect on 

microstructural developments of alloying elements, oxygen- content, and heat 

input. 

Table 2.6 Types of microstructure linked to three regimes of oxygen contents P91. 

Oxygen content Inclusions Mayor constituent Microphases 
z 0.06 weight % High Ferrite side-plates Elongated 

content or WidmanstAtten microphases 
within the ferrite 
laths. 

-0.03-0.06 weight % Medium Acicular ferrite 
content 

Irregular space 
between the 
intragranular 
laths of ferrite. 

-0.01 weight % Lower Bainite Elongated 
content microphases 

within the ferrite 
laths. 

CCT diagrams provide a useful way of examining the effects of 

composition on the austenite/ferrite transformation behaviour during welding. 
The influence of different alloying elements and the prior austenite grain size 

on movement of CCT diagram phase regions is illustrated schematically in 

figure 2.12. 
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Figure 2.11 Schematic presentation of effect on the weld metal microstructures of the 
alloying elements and the heat input K61 

'24 



Chapter 2. HIGH STRENGTH Low ALLOY STEELS AND THEIR WELDING 

Carbon, Mn, Ni, Cr, Mo, and increased grain size all displaced the 

bainite and ferrite regions of the CCT diagram to longer times. Manganese and 
Ni displace all transformation temperatures to lower values and generally 
increase hardness. Molybdenum and Cr extend the bainite field. Niobium 

suppresses grain boundary pro-eutectoide ferrite and blocky pearlite. In weld 

metals with high oxygen levels and/or low hardenability, Nb promotes ferrite 

sideplates and upper bainite structures. On the other hand, Nb promotes 

acicular ferrite in the low oxygen and/or high hardenability type weld metals 
1461. 
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Figure 2.12 Schematic representation of the effect of alloying elements and the 
austenite grain size on CCT diagrams 1461 

The understanding of the factors that influence the final microstructure 

of the steel weld metals will permit to determine the optimal composition and 

characteristics of consumables. These have to produce weld metal with an 

optimum combination of mechanical properties and resistance to hydrogen 

induced cracking. 
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1 CHAPTER THREE 

- .-4--,, 
HIGH STRENGTH Low ALLOY WELD MICROSTRUCTURE 

AND MECHANICAL PROPERTIES 

In the previous chapter, brief descriptions of the phase transformations 

that occur during welding were presented. It was shown` that several factors 

influence the final microstructiiral development and hence the mechanical 

properties. From the chemical reactions in the liquid steel (inclusion 

formation) to the solid state transformation, passing throughout the 

solidification process, the welding parameters and the steel composition affect 

strongly the final properties of the weldment. 
In the present chapter, attention is concentrated on the effect of 

alloying elements on the microstructure and mechanical properties of high 

strength low alloy steels. 

3.1 Microstructure and Mechanical Properties 

In low alloy steel weld metals there are several strengthening 

mechanisms that could contribute to the final strength of the weldment. These 

mechanisms are 112,171: grain refinement strengthening, solid solution 

strengthening, precipitation (or dispersion) strengthening and dislocation 

strengthening (or work hardening) 

The influence of each mechanism on the final strength depends on the 

chemical composition and the weld thermal history, which is affected by the 

welding parameters. The number of variables involved in the welding process 
(heat input, multi-run welding, preheating temperature, post welding 

treatment, consumable type, position of welding, geometry of joint, etc. ) and 
the effect of metallurgical variables (composition of parent plate, composition 

of filler metal, thermodynamic and kinetic of phase transformation, etc. ) on 
the final microstructure and hence the mechanical properties, makes the 

modelling and prediction of weld metal properties a very challenging task. 

Several models presented by Lalam 1471 involve mechanical properties 

prediction by empirical approximation and by physical approximation. The 

first group use empirical equations 1481, use linear regression analysis which 
take into account chemical composition, whilst maintaining the welding 

variables constants. The second group, by Bhadeshia and collaborators [agil, 

attempt the mechanical properties prediction using physical variables such as: 

solid solution strengthening, grain size, phase proportions, dislocation density, 
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bainite and martensite lath width, etc. ). The aim of these models is to design 

weld metals theoretically reducing the time consuming and costly mechanical 

tests and microscopy, at the same time of gaining knowledge on the behaviour 

of materials. In the following paragraph some models are briefly discussed. 

3.1.1. The effect of the strengthening mechanisms. 
Figure 3.1 shows a variation of the treatment for bainitic steels 

originally developed by Gladman and Pickering, reported by Grong 117] where 

the individual strengthening contributions in low carbon bainite weld metal, 

which includes both upper and lower bainite and acicular ferrite, are shown. 
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Figure 3.1 Influence of the different strengthening mechanisms on the yield 
strength in low carbon bainite. Adapted from Grong 1151 

The matrix strength is the result of the solid solution strengthening 

produced by alloying and impurity elements such as manganese, phosphorus, 

silicon and uncombined nitrogen. The matrix strength is increased by grain 

refinement, which in this case is determined by the reduction in the bainite 

lath size. However, the effect of the precipitates (dispersion strengthening) is 

only significant for small grain sizes and this is of great importance at the 

moment of the selection of the adequate microstructure to produce a good 

combination of toughness and strength, as the obtained by the introduction of 

acicular ferrite. Figure 3.1 implied that if higher strength levels than those 

produced by acicular ferrite (with a lath size of about 2 µm could produce a 

maximum yield strength of 650 MPa) are required it is necessary to decrease 
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the grain (lath) size through a refinement of the microstructure,, which means 

that the acicular ferrite must be replaced by bainite or martensite. Following 

this idea, a new generation of high - strength steel weld . metals have been 

developed in the range from 650 to 900 MPa (171. 

3.1.2 Empirical models for mechanical properties prediction 
Empirical expressions are obtained, under experimental condition 

applied to the studied weldments and for this reason they may be only 

applicable to those conditions. Some coefficients can- be difficult to explain 

physically., In table 3.1 some equations are presented [47,481. , 

Table 3.1 Yield and tensile stress for C-Mn weld metals (MPa) 147,48). 

Models Application Equations (concentration in wt%) 
Regression C-Mn welds Sy = 335 +439C +6OMn+361(C "Mn) 

S. =379+754C+63Mn+337(C"Mn) 

Si-Mn welds Sy = 293+91Mn+228Si - 122Si2 

Sm =365+89Mn+169Si-44Si2 

Cr-Mn 
welds Sy =320+113Mn+64Cr+42(Mn"Cr) 

S. =395+107Mn+63Cr+36(Mn"Cr) 

Ni-Mn welds S, =332+99Mn+9Ni+21(Mn"Ni) 
Sm = 401 + 102Mn + 16Ni + 15 (Mn " Ni) 

3.1.3 Models using physical metallurgy principles 

The yield. strength- has been estimated throughout the application of 

physical metallurgy principles. The method. assumes that the yield strength 
(ay) . of steel, microstructures can be factorised, into a number of intrinsic 

components L49-53J: the, strength of the pure annealed iron (OFC), the solid 

solution strengthening effect of substitutional alloying elements x, a, ), -the 

carbon solid solution strengthening (ac), the grain size strengthening effect 

(Hall-Petch equation, kY d-112), the effect of dislocation density (KD, AID ), effect 

of lath' size or width (martensite'and bainite, KL (L )-1), the effect of dispersion 

strengthening ' (Kp &-1), effect of phase ý proportions (mixture. law) and others. 
Some examples are listed in regard of the applicability of the equation: 
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1-, Strength of as-welded weld. metals containing grain boundary, acicular 

and Widmanstätten ferrite phases: This model by Sugden and Badeshia 

1491 is represented by the following equation: 

ay = 0Fe +I CSSi +aMlao ý3.1) 

Q&cro 07M =: agbvgb +aAFVAF +QWVW (3.2) 

1' 

where own. is the mixture law, agb, OAF and 'ßw are the microstructural 

strength contributions and vgb, vAp and vw are the volume fractions of 

the grain boundary, acicular and Widmanstätten ferrite phases, 

respectively. The values of the strength contribution are: ogb= 27 MPa, 

(AF= 402 MPa and aw= 486 MPa 

2- Strength of a mixture of bainite and martensite (not welded): Young and 
Bhadeshia [mal proposed that the mixture of these two phases can be 

factorised as follow: 

ay =°F. +QSS,, +o +KL(L) I +KDpDS +KPD' (3.3) 

log{pD }=9.284 + 
68x. 73 

_ 
17 0 60 (3.4) 

where KL(1 15 MPa-µm), KD(7.34 10-6 MPa"m-1) and Kp (0.52-vp MPa-µm, 

vp is the volume fraction of cementite particles) are constants for the 

contribution of lath width, dislocation and inter-particle distance, 

respectively, ac solid solution strengthening due to carbon (for bainite 

ac= 1722.5 Xcl/2 and for martensite ac= 1171.3 Xc1/3, Xc in weight%), L 

(µm) is the bainitic or martensitic ferrite plate width, PD [m-2] is the 

dislocation density (estimated by equation (3.4) where T is the 

transformation temperature in Kelvin) and 0 is the distance between 

any carbide particles. The strength of pure annealed iron, as., is around 
219 MPa at 300 K. 

3- The strength of ferritic microalloyed steels: this takes into account 

grain size and precipitation strengthening[121: 
R 

Qy =Qr +Ecssr +Kyd-viz +Aay (3.5) 
r=i 

Aay =(10.8f"' In 
(61251O-4)) 

t 
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where a; is the friction stress for iron, Ky is the strengthening coefficient 
for grain size and d is the grain diameter. Lay is the dispersion 

strengthening (Ashby-Orowan relationship), where X is the particle 

diameter (µm) and f is the volume fraction of particles. 

Neural network analysis, a more general form of regression, has been 

used to estimate the yield and tensile strength of ferritic weld metals and to 

provide an indication of the likely values for elongation and Charpy toughness, 

which are much more difficult to predict 152,53]. 

3.2 Effect of the alloying elements in the weld metal 

microstructure and properties. 
An incredible amount of research has been dedicated to the study of the 

different alloying elements on the microstructure and mechanical properties of 

steel weld metals and heat affected zones. The excellent work by Evans and 

Bailey 1481 covering some 20 years of research illustrates the complexity of the 

influence of alloying elements on the mechanical properties of C-Mn weld 

metals and the role of microalloying . Earlier review by Abson and Pargeter 1151 

presents great quantity of data related with this subject. Both groups have 

shown clearly the importance in the design of the consumables with the 

optimum chemical composition to produce the desired mechanical properties 

of the weldment. 

In this section, the effect of the different alloying elements on the 

modification of the microstructure and the mechanical properties will be 

explained briefly. 

3.2.1 Effect of Carbon. 

The carbon content influences the strength and toughness of the weld 

metal. The solid solution hardening effect of carbon is very high, but this is the 

little importance in most welds as the solubility of carbon in ferrite is about 
0.01 wt% I1 1. The main effect of C is to alter the microstructure 1481. Some 

effects of an increase in C are 115,48-54,53): 

(a) Decrease the width of the columnar grains or reduces the austenite 

grain size, which seemingly promotes intergranular transformation 

(b) Give thinner ferrite veins at prior austenite grain boundaries 

(c) Increase the amount of secondary phases, such as martensite- 

austenite constituent (MA) or austenite-martensite-carbide (MAC). 
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Increase the proportion of retained austenite between the -laths of 

acicular ferrite. 

(d) Increase the aspect- ratio of the ferrite lath, giving the classical 
Widmanstätten structure at high carbon levels. 

The role of carbon, in defining the amount and distribution of the so- 

called `microphases', is also important. The presence of retained phases 
(retained austenite) may - be harmful for toughness if this is transformed to 

carbides or/and martensite. 

3.2.2 Effect of Manganese 

Manganese is used, in general, as a deoxidant and to control strength 

and toughness. The utilisation of Mn is a practical way of controlling 

mechanical properties without the necessity of more expensive alloying 

elements [491. It has a moderate solid solution strengthening effect. Moreover, 

Mn has a great effect on the acicular ferrite formation. The effect of manganese 

can be summarised as follow: 

(a) Promote acicular ferrite (AF). AF formation hardly occurs with 

manganese content less than 1. Owt%. At 1.4-1.8wt%Mn, the 

microstructure mainly consists of AF, giving the -highest toughness. 

When this range is exceeded, upper bainite is expected to form and 
toughness decreases I61 

(b) Acicular ferrite is refined by an increase in Mn content [56] 

(c) An increase in Mn content reduces the grain boundary ferrite and 
the ferrite with second phase 

(d) Mn content seems not to affect the quantity of retained austenite in 

the weld metal 
(e) Strength properties increase linearly with manganese content 
(f) In terms of Charpy transition temperatures an optimum level is 

reached with 1.4wt%Mn 

3.2.3 Effect of Silicon 

Silicon and Mn are used as deoxidants. Si is used, in quantities lesser 

than 0.5wt%, because it produces undesirable effects on the properties of the 

weld metal, such as the reduction in ductility. The , influence. of Si on the 

microstructure depends on the Mn levels of the weld 148,541: ,., 
ýý ý_., r_... 

ý_e. F, 

ý. 
_ý.. . ýý_ ý kia ,. r 
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(a) At high Mn:, no significant changes are produced. However, an 
increase in the Si content increases the aspect ratio of the acicular 

I ferrite. 

(b) At low Mn: Si increases irregularly the proportion of acicular ferrite 

at the expense of other constituents. 
(c) Si has been reported to increase the amount of retained austenite or 

the M/A . constituent largely through, its role in delaying cementite 
formation. 

In regard to the Si effect on strength, an increase in the Si content 

produces an increase in the yield strength, but this effect is reduced when 

more Si is added 1481. The operating strengthening mechanisms is due to the 

solid solution of Si 1151. 

3.2.4 Effect of Nickel 

Nickel is a much less potent strengthener of weld metals than 

manganese, chromium or molybdenum ["l. However, an increase in Ni 

improves considerably the toughness regardless of the change in 

microstructure. The effect of Ni can be summarised as follow:. 

(a) It could increase the proportion of acicular ferrite at the expense of 

both grain boundary ferrite and ferrite with second phase[48I 
(b) At high Mn level and with a content more than 2.2wt%Ni, - martensite 

is produced and the proportion of ferrite with second phase is 

increased 

(c) Increases the aspect ratio of acicular ferrite 

(d) Permit the retention of M/A constituent 
Kang and collaborators 1571 studied the effect of Ni and Mn in low-carbon 

steel weld metals and found that the hardness increased linearly with Mn and 
Ni, due mainly to solid solution strengthening and partially to the formation of 
hard phases. The effect of Ni on toughness depended on the quantity of Mn, 

improving this at low Mn content and deteriorating this property at high Mn 

levels, causing intergranular fracture. 

3.2.5 Effect of Chromium 

Together with nickel, and molybdenum, , chromium forms part of , the 

major alloying elements added to steel weld metals. Chromium increases 

hardenability in a similar manner as Mn [48). This is a strengthening element 
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that promotes the formation of acicular ferrite and as a consequence could 
improve toughness. The effects are: 

(a) Reduces and could eliminate the amount of grain boundary ferrite 

veins. 
(b) Cr increases the proportion of acicular ferrite and the optimum 

content to produce a maximum of this phase depends on the Mn 

content: for example, at lwtO/oMn the optimum Cr content is 1% and 
less than this value at higher Mn content (1.8wt%Mn)[48l. Further 

increase in Cr reduces AF and promotes the formation of ferrite with 

aligned second phase (bainite). 

(c) Promote the formation of irregular and dispersed M/A constituent 
(d) Both yield and tensile strengths increase linearly with Cr 

3.2.6 Effect of Molybdenum 

Molybdenum has an important strengthening effect. This effect is 

greater than that produced by Mn. However, Mo can cause detrimental effects 

on toughness. In general its effects on microstructure are 148-541: 

(a) The addition between 0.2 and 0.3wt% of Mo suppresses grain 
boundary ferrite and promote the formation of acicular ferrite. 

However, subsequent additions could increase ferrite with aligned 

second phase, reducing the proportion of acicular ferrite. 

(b) An increase of Mo up to 0.5wt% refines considerably the AF. 

(c) Mo in combination with titanium could further facilitate the 

formation of acicular ferrite. 

3.2.7 Effect of Titanium 

It has been recognised that small titanium additions to C-Mn weld 

metal promotes considerably the formation of acicular ferrite. Evans and 
Bailey( 481 reported that using lwt% of rutile(Ti02) in the consumable, which 

gives 15 ppm of Ti in the weld metal, produce a microstructure formed 

predominantly by acicular ferrite. The maximum content of acicular ferrite was 
found between 25 and 40 ppm of Ti. Ventrella et al. 181 in studies on the effect 

of boron and titanium on ferritic weld metals reported that 30, ppm of Ti 

produced a large volume fraction of acicular ferrite in B-free weld metals. The 

addition of 40 ppm of B and 400 ppm of Ti promoted the formation of the 

maximum proportion of acicular ferrite. This effect is due to the effect of B in 

°33 



Chapter 3. HIGH STRENGTH Low ALLOY STEEL MICROSTRUCTURE AND MECHANICAL PROPERTIES 

reducing the grain boundary ferrite formation and the effect of; Ti on the 

formation of AF. 

The influence of Ti on the AF formation is believed to be the result of the 

formation of Ti compounds (Ti-oxides) on the surface of the non-metallic 

inclusions, where the acicular ferrite nucleates 1541. In the table 2.2, chapter 2, 

the effectiveness of different Ti oxides can be compared. 
Other effects of Ti on the microstructure and properties of, steel weld 

metals are 1483: 

(a) An increase in Ti content could increase the acicular ferrite aspect 

ratio 
(b) The strength of the weld metal increases with the Ti content and the 

ductility is reduced slightly. 
(c) Ti is effective to the formation of acicular ferrite in combination with 

sufficient Mn content; for weld with 1.4-1.8wt%Mn only 30 ppm Ti 

are required. 

3.2.8 Effect of Boron 

Boron increases the hardenability of engineering steels. Devletian and 

Heinet391, in studies on. carbon steel welds, found that the hardenability effect 

of B in weld metals was as potent as it " was in wrought, steels of the same 

composition. In low alloy steel weld metals, the segregation to grain 

boundaries inhibits the" formation " of . grain boundary, ferrite, due to the 

formation of boron nitride (BN) [54I. 

Boron is used in combination with titanium to promote the nucleation 

of ferrite intragranularly, due to the GBF suppression. However, in weld metal 

with Ti, an increase in the B content above 50ppm could increase the 

proportion of ferrite with second phase, reducing both grain boundary ferrite 

and acicular ferrite M. 

3.2.9 Effect of Aluminium 

Aluminium is used as a deoxidant, having a stronger affinity to oxygen 

than Ti and Mn, and in- some cases could be utilised to fix nitrogen, reducing 

the risk for strain-ageing embrittlement 1481. There is an optimum aluminium 

content - for -ý the .- formation of acicular ý ferrite. At low Al content, the 

microstructure, consists = of grain boundary: ferrite and acicular ferrite, but if 

this is added in excess the microstructures becomes upper bainite, which 
affect the toughness 1541. The formation of upper bainite is the result of the 
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increase in Ti and B soluble in the weld metal, which produce an increase in 

the hardenability and reduce the formation of Ti oxide, affecting the formation 

of AF. 

The effect of aluminium depends strongly on the oxygen potential in the 

weld metal. At high oxygen content, Al effect is insignificant. At low oxygen 
levels, the presence of Al do not permit the formation of Ti oxides and the 

soluble Ti and B increases, changing the microstructure, as described before. 

3.2.10 Effect of Oxygen 

The microstructure of the weld metal is affected by the oxygen content. 
Table 2.5 (Chapter 2) shows that varying the level of oxygen in the weld metal 

produces the variation of the microstructural constituent from bainite, at low 

oxygen content, to ferrite side plates (Widmanstätten ferrite) at high levels. 

Optimum oxygen contents between 0.03 and 0.06wt%O, are necessary for the 

formation of acicular ferrite 1391. A narrower range (0.02-0.035wt%O) has been 

reported by Potapov[601 for low alloy steel weld metals, based on the optimum 

mechanical properties, which must be related with the formation of acicular 
ferrite and the quantity of non-metallic inclusions. This critical oxygen content 

to form AF is affected by welding method, cooling rate, and alloying elements, 

and has been reported to be wide for these reasons (from 150 to 450ppm)[54]. 

A decrease in oxygen content lowers the start temperature for 

transformation and delays the transformation time as shown in figure. 2.10 in 

chapter 2. These could be the result of the role of inclusion as a nucleation 

site and as austenite grain refiners 1"1. The reduction in oxygen decreases the 

number of inclusions (rather than their size) ["1. 

To control the 0 levels in the weld metal, the quantity of deoxidants, 

such as Mn, Si, Ti, and Al, must. be carefully balanced to permit the positive 

effect that these elements and the other alloying elements produce on the 

microstructural transformation and the mechanical properties of weld metals. 

3.2.11 Effect of Nitrogen 

Nitrogen is a strengthening element. that. has little effect on the 

macrostructure of C-Mn steel weld metals 1481. N in, solid solution has a similar 

strengthening effect to that of carbon.. The major problem regarding nitrogen is 

its. role in promoting strain ageing embrittlement. Strain ageing is an 
interaction between free nitrogen (and free carbon) atoms in steels and 

r? ý i 
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dislocations in the matrix. It can occur at room temperature and above. Strain 

ageing increases strength and reduces ductility and toughness 1481. 

The nitrogen content has to be maintained at levels lower than 200 

ppm, because at higher values it could contribute to the formation of 

porosities. For optimum impact toughness N contents should be maintained 
lower that -0.007wt% depending on the levels of Al and Ti present. Account 

has to be taken of the observation that the lower the N contents the lower the 

risk for strain ageing embrittlement. 

3.2.12 Effect of Niobium and Vanadium 

Niobium and vanadium are known to give toughness problems. Small 

amounts of these elements could enter the weld metal, either diluted from the 

parent steel, from impurities in rutile or other coating materials or from the 

core wire 1481. Dolby 1611, in a review of the effects of these two elements on weld 

metal properties, concluded that low levels of Nb (<0.02wt%) and V (<0.05wt%) 

were not detrimental to Charpy toughness, behaviour that depended on the 

cooling rate and the Mn content of the weld metal. In the presence of high 

levels of V and Nb, the best weld metal toughness was found in 

microstructures consisting in acicular ferrite. The general effects of V and Nb 

on weld microstructure are summarised in table 3.2. 

He and Edmonds [621, in studies on C-Mn steels, concluded that the 

acicular ferrite appeared to develop principally as a result of vanadium 

alloying between 0.2 and 0.5wt% V, without detrimental effects on toughness. 

They suggested that the formation of V-rich regions may facilitate the 

nucleation of acicular ferrite in these steels. 

Table 3.2 V and Nb effects on the microstructure of steel weld metals 1611 

Microstructural V effect on proportion of Nb effect on proportion of 
constituent the constituent the constituent 

Grain boundary Little change but may be Reduced 
ferrite increased 
Lamellar (sideplates) Reduced, except in presence May be increased depending 
ferrite of Nb on plate and welding 

Acicular ferrite Often increased, especially 
when lamellar ferrite is 
reduced. However, V alone 
cannot increase AF beyond 
80'% 

consumables used 
Depends on consumables 
used. Generally decreased in 
lean deposit at slow cooling 
rates. It could be increased 
when using basic, alumina- 
basic and low silica, calcium 
silicate fluxes 

Martensitic Increased Increased 
microphases 
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3.2.13 Effect of impurities: phosphorus and sulphur 
Sulphur and phosphorus are generally recognized to be detrimental to 

toughness. Oxygen and sulphur are responsible for the, 
. 
formation of non- 

metallic inclusions, and for this if they are restricted the upper shelf Charpy 

toughness will improve 1151. , 
Increasing the sulphur content decreased the proportion of acicular 

ferrite, which is replaced by ferrite with aligned second phase and as a 

consequence the toughness is deteriorated. Another effect of sulphur is to 

deteriorate the strength and reduction of area (ductility) of the steel. Moreover, 

as S is augmented the ductile-fragile transition temperature is increased 1481. 

On the other hand, phosphorus does not produce significant changes in 

microstructure of the weld metal and Evans [481 have reported that this 

element did not appear to change the tensile strength, yield strength and 

ductility values in the as-welded condition of the studied C-Mn weld metals. 

The effect of the alloying elements mentioned before are complex when a 

combination of them is present in the weld metal. However, for the selection of 

the optimum combination of alloying elements it is important to take in 

account their individual behaviour and their interdependence. This has made 

the modelling of the welding metallurgy one of the more difficult subjects to 

develop because of the huge number of involved variables. 
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CHAPTER FOUR 

HYDROGEN EMBRITTLEMENT AND HICC IN WELDS 

The previous three chapters 'have been concerned with the welding of 
HSLA steels, their microstructure and properties relationships. The present 

chapter is dedicated to the literature review on one of the most frequent 

problems found in the welding of HSLA steels: the Hydrogen Induced Cold 

Cracking (HICC). Firstly, a general description of HICC problem inwelding and 

some of the parameters, which affect its occurrence, are described. 

Consecutively, the theories about the general phenomena of hydrogen 

embrittlement are treated with some detail. It is worthy to emphasise at this 

point that the HICC is not more than a manifestation of the effect of hydrogen 

on the mechanical properties of metals, which in the case of steel weldments is 

the'result of the introduction of hydrogen in the weld from different sources 
during the welding process. In other hydrogen embrittlement phenomena, the 

hydrogen could be introduced during electrolytic processes, such as 

electroplating, and/or during the structure service time, due to corrosion or 

cathodic protection. 
A further section is devoted to the treatment of the trapping theories. 

The influence of the hydrogen trapping effect on the hydrogen transport, 

distribution and concentration in different regions of the microstructure is 

related with the susceptibility to HICC of the microstructure. Finally, the last 

section deals with the appearance of hydrogen embrittlement on the fracture 

surface. This last section elucidates the relationship between hydrogen 

content and distribution, the microstructure and the fracture mechanism. A 

special treatment is made to the micromechanism suggested for the effect of 

the hydrogen on the crack formation and propagation. 

4.1 Hydrogen Induced Cold Cracking (HICC). 

One of the most common causes of failure in welded structures, during 

and after the welding process, is hydrogen induced cold cracking (HICC). This 

is caused by the presence of hydrogen in the bulk of the steel, which 

originates from dissociation of hydrogen from various types of hydrogen 

containing compounds. 
In this section the origins of the hydrogen which cause the damage are 

discussed, together with a description of the factors which influence the 

occurrence of hydrogen induced cold cracking. 
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4.1.1 Hydrogen sources and its diffusion into a metal 

Hydrogen is dissolved in a weld metal during the welding process and 

the amount is proportional to the square root of the partial pressure of the 

hydrogen gas in the shielding gas M. Several sources can be identified. The 

following sources of weld metal hydrogen are considered in shielding metal arc 

welding f7,16,631: hydrogen in core wire steel; organic substance, hydroxyl and 

water of mineral crystallisation in covering flux; moisture in binder for 

covering and extraneous hydrogenous material, e. g. moisture, grease, organic 

compounds, and paint. 

The weld metal hydrogen content may vary strongly from one welding 

process to another. The lowest hydrogen levels are usually obtained with the 

use of low moisture basic electrodes or gas metal are welding (GMAW) with 

solid wires. Submerged are welding and flux cored arc welding, on the other 

hand, may give high or low concentration of hydrogen in the weld metal, 

depending on the flux quality and the operational conditions applied. The 

highest hydrogen levels are associated with cellulosic, acid, and rutile type 

electrodes [161. In figure 4.1, a comparison of different welding processes, in 

terms of the hydrogen levels, could be observed. 

11 ý,, Rt 
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Figure 4.1 Schematic ranking of different welding process in terms of hydrogen level: 
shielded metal arc (SMA), flux-cored arc (FCA), gas metal arc (GMA) and gas tungsten 

arc (GTA) welding 1161. 

4.1.2 Conditions for hydrogen induced cold cracking (HICC) 

As was mentioned in the introductory chapter, for the occurrence of 

HICC in the weld metal or in the HAZ of the weldment or both, four conditions 

have to be present simultaneously, as schematised in figure 4.2. These 

conditions are [6.7.49]; 
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1. Hydrogen at sufficient concentration 
2. Sufficient stress for the crack initiation and propagation 
3. Microstructure susceptible to hydrogen embrittlement 
4. The temperature must be within a critical range 

i 
Hydrogen 

  Trapped 
  Diffusible 

Stresses 
  Load 

" Residual 

Xý' 
a 

4 
Relatively Low 
Temperature 

-WC <T< 150°C 

Figure 4.2 Necessary conditions for the occurrence of hydrogen-induced cold cracking 
of the weldment 

The hydrogen is introduced into the metal during the welding process 
from various sources, as mentioned before. During and after the welding 

process some hydrogen remains in the solid metal and some could escape to 

the atmosphere. The hydrogen that remains into the metal could be present in 

two forms: 

(a) Diffusible hydrogen, which is the hydrogen that can diffuse out of 

the sample at room temperature (defined as 25 ± 5°C)1641. This is the 

hydrogen considered to be the cause of the hydrogen induced cold 

cracking. 
(b) Residual or trapped hydrogen, which is the difference between the 

total amount of hydrogen in the metal and the diffusible hydrogen. 

This is the hydrogen trapped in different locations in the 

microstructure. It is relatively immobile and it is believed not to be 

harmful, although in some cases could transform to diffusible 

hydrogen. 

The stresses, which are necessary for the formation and propagation of 

cracks, could be of two kinds: residual and/or the loads supported in service 
by the structure. The first kind could be introduced during the welding 
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process due to the occurrence of different phase transformations and the 

constraints imposed on the structure. The other stresses are those for which 
the structure was designed. 

- 
Local stresses- or local strains produce non- 

uniform distribution of hydrogen that could assist the - formation and 

propagation of cracks. 
If the hydrogen content is sufficient and the localised stresses occur 

near microstructural features susceptible to the formation of cracks, the 

micro-cracks are going to form. These cracks could grow until the failure of 
the structure is produced or could be arrested and remain in the material as a 

potential flaw, which could continue to propagate in the presence of sufficient 

stress. The temperature at which this process occurs is very important. As 

shown in figure 4.2, the temperature interval where the HICC is produced 

could be as low as -50°C and as high as 150°C. In this temperature interval 

the hydrogen diffusion may have the right value to affect the deformation and 

crack propagation processes in a delayed manner. If one of the four factors 

listed above is absent the hydrogen induced cold cracking would not occur. 

4.2 Mechanisms of hydrogen embrittlement. 
Several reviews have been written in relation with the phenomena of 

hydrogen embrittlement of steels. A survey of this subject is not complete 

without making reference to the works of Oriani 16M and Hirth 1"1. In these 

reviews there is an excellent presentation of the fundamental basis for the 

understanding of the complexity of the hydrogen embrittlement phenomena. 
Yurioka and Suzuki Fl gave another excellent review in regard to the, hydrogen 

assisted cracking in weldments. HICC could be termed a special case of 
hydrogen embrittlement because of how hydrogen is introduced in the metal. 

The mechanism of hydrogen induced crack formation is still being 

investigated. An early hypothesis, involving the build up of hydrogen gas 

pressure in voids, is now generally discredited. Currently, the, most widely 

accepted model involves the presence of pre-existing defect sites in the 

material: small cracks or discontinuities caused by minor phase particles or 
inclusions. In the presence of. existing stress, these sites may develop high 

local areas of biaxial or triaxial tensile stress. Hydrogen diffuses preferentially 
to these dilated lattice sites . of the microstructure. As the local hydrogen 

concentration increases, the cohesive energy and the critical stress to break 

the. cohesion . of the lattice decrease. When this critical stress falls below . the 

local intensified stress level, fracture occurs spontaneously.,, Hydrogen then 
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evolves in. the crack volume, and the process is repeated. This model is 

consistent with the relatively slow and discontinuous nature of the crack 

propagation found in the hydrogen induced cracking process tel. 

The mechanisms of hydrogen induced cracking could be divided into 

two important groups: classic and modem mechanisms. The first group 

includes the earlier attempts to explain the phenomenon and the last one 

contains the modem theories in the field. 

4.2.1 Classic Mechanisms 

Hirth [661 summarised the following five major mechanisms proposed to 

explain hydrogen embrittlement of steels: 
a. Internal pressure theory 

b. Slip softening model 

c. Surface energy model 
d. Hydride formation model 

e. Decohesion theory 

These models are discussed briefly in the following paragraphs. 

`-a. Internal Pressure Theory 

In the, internal pressure mechanism, proposed by Zapfee and Sims 1671, 

the hydrogen reaches high internal pressures in voids and microcracks and as 

a result assists the formation and growth of the crack. The idea is that very 

large hydrogen gas pressures generated in internal microcracks and voids 

force their expansion either by plastic deformation or cleavage, leading to the 

coalescence of microcracks or microvoids [65l. A small external stress helps the 

spreading of the crack because the external stress and the internal pressure of 

H2 are additive M. High-fugacity hydrogen environments are necessary for the 

occurrence of the pressure enhanced void growth, as demonstrated by blister 

formation in the absence of external stress. However, several authors have 

shown that crack propagation in dry hydrogen at sub-atmospheric pressures 

can occur and for this reason, this model can not be general 1661. 

The theoretical model for crack propagation -in the pressure theory is 

based on Griffith's theory of brittle fracture. This theory is based in a 

thermodynamic treatment of the crack propagation, i. e., based on an energy 
balance concept. If a solid body under the action of external stresses can 

reduce its potential energy by forming cracks, then the equilibrium state of the 

body is reached when the fracture of the solid has' occurred 1691. The critical 
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stress, ßcr for spreading an elliptical crack of length - 2c under-plane strain 

state- (thick plate) is: 

1/2 
Y 

all 2) 

where y is the surface energy of the metal, v the Poisson's ratio and E the 

Young's modulus. Then the condition for crack spreading in presence of a H2 

pressure (PH2) inside the crack is modified as: 

PH= +Q>Qc, (4.2) 

where a is the applied stress which is assumed to act normal to the plane of 

the crack ["l. The simple relation 4.2 shows that the stress to produce the 

fracture or the propagation of the crack in the solid with hydrogen is lesser 

than that without the presence of hydrogen. 

The presence of microcracks and voids, where the,, hydrogen pressure 

can reach critical values, are necessary for the operation of this mechanism. 
However, many authors 170,711 have shown that microcracks or cavities need 

not to be present to initiate embrittlement process. Microcracks could nucleate 
from. dislocation pileups under the influence of, an external stress.,, 

b. Slip Softening models 
In studies of hydrogen 

tý j fit! : i-ý= 

assisted cracking of, steels, Beachem, 1721 

proposed that hydrogen augments the dislocation motion. Hydrogen effect on 
dislocation motion is demonstrated by the softening behaviour due to the 

enhanced screw dislocation mobility, enhanced dislocation formation at 

surfaces, and the promotion of shear instabilities 1661. This increase in the 

dislocation mobility produces a softening effect. However, hardening effect 

could also be observed, and for this reason, the softening theory may not be a 

general one. 

Linch £'31 has noted the analogy between the liquid metal embrittlement 

and the intergranular crack propagation in high strength steels charged with 

or in the presence of hydrogen. As in the case of liquid metal embrittlement, 

the hydrogen effect is due to the adsorption of it and its major contribution is 

to 
" promote the. formation of dislocations at, the crack tip,,, causing crack 

propagation by an alternate sliding off of the crack tipin a model's ar to 

that suggested for. fatigue crack growth 1661. 
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c. Surface Energy Model. 

Similar to the Griffith's crack model for brittle fracture, Petch and 

Stables 1741 suggested that the adsorption of hydrogen decreases the surface 

energy at the surfaces created in crack propagation, reduces the needed work 

to produce fracture, and as a consequence promotes cracking. For a crack 
formed from a pileup of dislocations (Stroh crack) the well-known Petch 

equation for fracture stress is: 

Y 
1/2 

Qf =Qo+4 
3"G" 

(4.3) 
[z. 

(I-v)-L 

where ar is the fracture stress, ao is a constant, y is the surface energy, 2L is 

the grain diameter, v is the Poisson's ratio (0.30) and G the rigidity modulus 

(--79GPa). In presence of H, the value of the surface energy is reduced to y14, as 

given by the following equation: 

YH =Y-2"Ns "k. T "lnll+(A"P)12 
j (4.4) 

where N. is twice the number of H atoms adsorbed per unit area of surface at 

saturation (Ns= 6.106 1010 m-2 for the (100) planes of a-Fe), k is the 

Boltzmann's constant, T is the absolute temperature, A is constant (--5.107m-1) 

originated from Langmuir isotherm and P the pressure of H2. Substituting 

equation 4.4 into 4.3 and simplifying the expression to the Hall -Petch's 

popular form: 

Qf =Qo+K"L-112 (4.5) 
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Figure 4.3 Hydrogen effect on the fracture stress of a mild steel at 291 K without and 
with 10cm3 of hydrogen per 100g of steel and different grain size. The reduction of oo 

and K can be observed when hydrogen is introduced to the steel. Adapted from r751 
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Petch found that the values of ao and K, which are proportional to y or 

yH, decrease as a consequence of the presence of H 1681, as shown in figure 4.3. 

It can' be observed that both ao and K are reduced from 328.75MPa and 61.95 

MPa"mml/2 to 251.31MPa and 32.44MPa"mml/2, respectively. Using equation 

4.3 the ratio yH/y could be estimated as 0.274, value that shows clearly the 

reduction in the surface energy due to the hydrogen absorption. Assuming y to 

be around 1.2J/m2, Petch's theoretically predicted value of ßroo = 147.1 MPa 

for (2L)-1/2 = 5mm-1/2 was in close agreement with the observed values of 

169.7MPa 1751. 

Although the experimental evidence that support this theory exists, 

there are some arguments against this theory: 

a) It greatly underestimates the needed work for fracture 

b) It cannot account for the discontinuous cracking propagation mode 

characteristic of the hydrogen assisted cracking 

c) It cannot explain why the tendency for delayed failure can be 

reversed on stress removal. This reversibility is likely connected with 

crack nucleation which can involve not only surface energy 

reduction by hydrogen but- also local stresses associated ' with 

dislocation pileups and elastic incompatibility stresses (which can 

influence the local hydrogen concentration), all of which ' can be 

relaxed or recovered on removal of external stresses 1661. 

d) It cannot explain why oxygen, which has -a greater heat of 

adsorption, not only fails to promote cracking but stops the 

hydrogen effect. One possibility for the role of oxygen is that it 

adsorbs at the crack tip and blocks hydrogen while also being in an 

atomic position unfavourable for crack propagation, where it could 

locally make bond breaking more difficult 1I1. 

d. Hydride formation model 
This model was proposed by Westlake[761 and the idea is that cracking 

occurs by the formation and cracking of metallic hydrides near the crack tip. 

The hydrostatic stress field at a stressed crack tip could stabilise hydride, as 

was demonstrated for embrittlement in niobium by Gahr et al 1771. Other 

metals and alloys, for example, Ti, Zr, V, U, Ta, LaNis, Fe-Ti, etc., form 

hydrides as well [68l. The modulus of elasticity and the molar volume of these 

hydrides are lower and larger than that of the metallic matrix, respectively. 

Even without the application of external stresses, the materials will fracture. 
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This - model had not been considered in the case of iron and steels 
because iron hydride is stable at very high hydrogen pressures, which could 
be as high as 2 GPa. Nevertheless, calculations of the Fermi Dirac atmosphere 

of hydrogen at a stressed crack tip shows that saturation occurs at room 

temperature permitting the hydride formation. This suggests that the hydride 

formation model could be applied on an atomic scale [a). 

e. Decohesion Theory 

This is the most accepted qualitative model and proposes that hydrogen 

reduces cohesion of the second phase particles when pre-charged into steels. 
It was firstly proposed by Troiano 1781 in his study of low strength steels. This 

model is in agreement with the general idea of decohesion as in the ductile 

fracture models, and as modelled for metalloid effects on the mode of fracture 

of several alloys 1661. It supposes that dissolved hydrogen at high 

concentrations lowers the maximum cohesive force between the atoms of the 

alloy in the iron alloy lattice, at grain boundaries and at interfaces. 

On application of an external stress, H is supposed to diffuse 

preferentially into regions of triaxial stresses, where solubility is higher than 

other regions. Hydrogen accumulates at these regions and produces the 

weakening of the metal-metal bond. The fracture results when the local stress 

at the crack tip equals the fracture strength reduced by hydrogen [66.681. 

Plasticity at the crack tip such as dislocation pileups, intersection of slip 
bands, and regions of plastic incompatibility due to inhomogeneous plastic 
deformation provide the necessary conditions for hydrogen accumulation and 
its embrittlement effect 1661. In the next section these mechanisms are linked 

with theoretical calculations of the electronic density: the molecular approach 
to fracture. 

4.2.2 Modern Mechanisms for hydrogen embrittlement 
Many investigators have attempted to provide an explanation for the 

hydrogen embrittlement phenomenon for more than 130 years. The vast 

available literature shows that the search for a theory, capable of explaining H 

embrittlement for all metals and alloys, remains obscure. The modern 

mechanisms rely on the phenomenological treatments given previously for H 

embrittlement but attempt a quantum mechanical approach to hydrogen 

solubility and decohesion at interfaces. In the following paragraphs two of the 
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most interesting models are described. These theories are related. to the 

decohesion theory described before. 

a- The electronic density of states N(E) approach 
This theory was proposed by Lee t'9I and is based on the concept that 

hydrogen embrittlement could be related to the electron density of states N(Ef) 

at the Fermi energy level. This relationship is characterised by a unique 

electrons per atom number (Zi), that must be determined both from its 

position in the periodic table and from the net charge transfer of electrons (AZ) 

which takes place upon alloying. In other words, hydrogen embrittlement is 

related to its effect on the electronic structure of metals and alloys.. The 

general effect of the hydrogen on a particular alloy was described by the 

decohesion model that was proposed firstly by Troiano 1781. 

Lee C"1 suggest a `universale hydrogen embrittlement index (HEI) which 
is empirically derived to show a direct correlation with the electronic specific 

heat coefficient (y) at high temperature. When plotting N(Ef) or y and HEI 

obtained experimentally using the change in area reduction after charging 

with hydrogen, a linear relationship can be noted, as in figure 4.4 for pure 

metals. 
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Figure 4.4 The electronic density of states approach of hydrogen embrittlement: (a) 
plot Iof y versus HEI for 22 pure metals at low temperature=and (b) at room' 

temperature 

The figure 4.4(a) shows a linear relationship between the HEI and y at 
low temperatures. This relation must be corrected to room temperature where 

the embrittlement effect is observed. In the figure 4.4(b) such correction is 
.,. . .. . Y; f ..: {A: try+Y i. tf r 

ý% 
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ý 

, plotted and from this the following equation is obtained: 
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HEI = a(y)-b ste 13%(y)-13% (4.6) 
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From this kind of approach, and similar to the periodic law, it could be 

suggested that hydrogen embrittlement may vary systematically in going from 

one element to the next as arranged in the periodic table. Moreover, for any 
transition element the hydrogen embrittlement effect could be related with a 

particular electron per atom number (Z). Lee l"l showed that HEI could be 

predicted for a large quantity of binary alloys and more complex alloys 
following the same concept. The general form of the equation 4.6 is still 

applicable, but the yalloy must be estimated. Every element can contribute 
individually to the total HEI of an alloy. Zi for the alloy is not an average value 
but it will depend on the alloy concentration and the sign will depend on the 

ability for an element to lose or gain an electron when alloying l71. The 

prediction for many austenitic stainless steels and nickel alloys is shown in 

the figure 4.5. 
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Figure 4.5 HEI predictions for austenitic stainless steels and Fe-Ni-Cr alloys as a 
function of Ni (wt. %) with Cr concentration mostly 16 to 20 wt. % MI. 

The electronic density: approach has some limitations when localised 

events related to a premature loss of local ductility at the tip of microcracks 
that lead to the formation and propagation of rapid cracks are taken into 

account. In this respect, the 'electronic 4density theory s suggests that H 

embrittlement must begin at a' particular site where the local N(E1) value is 

relatively high. However, the predictions of the HEI from the N(Ef) of the bulk 
metal seem to indicate that the variations of the electronic density in this 
localised sites `must be small and this suggests that a localiäed event is not of 
vital importance to the embrittlement effect. In addition* to this, it is not clear 

c. }*,.,, : i' iý o-`+i 
. 

> ral yet how internal strains, dislocations, interfaces and other microstructu. 
defects affect the average N(E) t791. 
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b. - The molecular orbital approach to, fracture 

The basic idea to model the embrittlement'effect of a determined-solute 

in, a matrix is to use a cluster of atoms to represent the environment, in this 

case the grain boundary or an interface. Then " the solute is located in a 

particular place and the molecular orbital theory (MO) is used to solve for the 

electronic structure of the cluster I°1. In this manner different solutes are 

studied and their effect on the cohesion of the matrix. 
Messmer and Briant Is] used this approach to show the effect of S, P, C, 

and B as impurities on the intergranular embrittlement. They assume a 
tetrahedron as the structure of the clusters. Some of their results are shown 

in figure 4.6 
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Figure 4.6 The MO theory applied to the grain boundary embrittlement. (a) 
Tetrahedron used as cluster of atoms M (Fe, Ni) and the impurity (S, B). (b) The orbital 
contour plots of the lal and lt2 orbitals in Fe4S (crosshatched plane in (a)), and (c) The 
charge density for the tetrahedral cluster for Fe4S and Ni4B t 11. 
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Figure 4.6(a) presents the tetrahedral cluster, where "M" represents the 

metallic atoms and "I" the impurity - in " the-, centre of the, cube, used in the 

calculation of the f orbital contour (4.6 (b)) and the charge . density distribution 

(4.6(c)). The energy level' diagram , for this system is, showed in - annex- figure 

A. 4. In these diagrams, the lal and, lt2 levels are very important, because 

these- two levels correspond to the -wave functions that describe the metal- 
impurity interaction. The, rest of the energy levels, correspond to wave 
functions that are located either completely or almost completely on the metal 

atoms. For this reason, the orbital contour plots for the lai and lt2 levels are 

shown in figure 4.6(b). As can be observed in this figure for Fe4S, the lal 

orbital has practically no metal contribution and the lt2 orbital also has little 

content on the metal atoms and are more concentrated on the impurity. 

Consequently, the bond has a hetero-polar character [811. 

The special charge density plots are shown in figure 4.6 (c) for Fe4S and 

Ni4B to compare the effect of an embrittler element (S) and a cohesive 

enhancer (B). As is observed, the charge density is much greater on the S 

atom in the case Fe4S than on the B atom in the case Ni4B. For example, 

examining the sixth contour (from the most external contour) it can be 

observed to be broken in the case of Fe4S but not in the case of Ni4S. This 

suggests that the metal-metal bond has been weakened by the presence of the 

impurity, in the case of S in Fe, but it has been reinforced in the case of B in 

Ni. S is an embrittler and B not 1811. If an embrittler impurity is located in the 

grain boundary or other interface, the metal-metal bonds which hold these 

together will be weakened and the embrittlement will occur. 
In a MO treatment of the embrittlement of Fe. by hydrogen, the MO 

energy levels for a cluster of Fe atoms in the' presence of hydrogen have 

showed results similar to the case of S in Fe or Ni. The basic idea is a chemical 

combination of H with Fe that could weak the Ye-Fe bonds 1801. This is not 

different to the phenomenological ideas about "hydrogen embrittlement 
developed by Troiano (781. Eberhart et al. 1821 indicated that hydrogen which 
forms three centre bonds with the segregate could enhance the effect of the 

impurities in the grain-boundary, and produce embrittlement at much lower 

concentration of impurities. 

4.3 Hydrogen Trapping Theory ; 
There is evidence that certain and localised sites' in the material serve 

as hydrogen sinks. The hydrogen becomes trapped in these places where it 
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could remain or be " liberated ,. to diffuse, " depending on -condition such as 
temperature and the binding energy of the traps. 

Evidence for hydrogen trapping in certain localised regions of the, matrix 
is provided by the decrease in the diffusion coefficient of hydrogen in ferritic 

steels, at temperatures below 200°C. This effect is shown in figure 4.7. The 

apparent diffusion rate of hydrogen in ferritic steels is slower than that for the 

diffusion in the lattice at temperatures below 200°C. Oriani[831, based on a 
hydrogen trapping theory, proposed the following equation for the apparent 
diffusion coefficient: 

DL 
Dana =b E 

R1+K"exp T 

Where 

Dapp apparent diffusion coefficient 
DL lattice diffusion coefficient 
Eb binding energy between hydrogen and trap site 

K density of trapping sites 
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Figure 4.7 Hydrogen diffusivity coefficients for lattice diffusion (Di) and for thi 
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an increase in trap density K occurs M. Moreover, an increase in the binding 

energy (Eb) between hydrogen and the trap site, which represents the intensity 

of hydrogen trapping or the quality of the trap, must decrease Dapp as well. 

This is shown in figure 4.8. 
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Figure 4.8 Variation of Depp with the increase of the binding energy of the hydrogen 
trap using equation 4.7. AK value of 4.4 10-3 was used. 

Depending on the value of Eh, traps have been classified into two 

groups: reversible traps (Eb < 60 kJ/mol) and irreversible traps (Eb > 60 

kJ/mol). It is reported that Eh for dislocations and hydrogen ranges between 

20 and 60 kJ/mol, being reversible traps. On the other hand, TiC particles in 

a Ti-C steel are irreversible traps (strong traps) and their Eb is 96 kJ/mol M. 

Binding energies for different traps are listed in table 4.1 extracted from the 

review by Hirth [mal and other references such as the data related with retained 

austenite reported by Park et al. [841, the data for VC by Asahi et at 1351 and 

that for TiC reported by Lee et at ["l. The traps are presented in the order of 

increasing trap-hydrogen binding energies. Reversible traps could complicate 

hydrogen diffusion due to the hydrogen attraction to the trap if the binding 

energy is low. At medium values of Eb, the hydrogen becomes strongly trapped 

but this could be released in the event of deformation when a dislocation 

passes near the reversible trap transporting this hydrogen to other sites. In 

contrast, the irreversible traps, as a consequence of their high binding energy, 

only capture hydrogen until saturation and its later release is very difficult P7]- 

The only means of releasing hydrogen from a irreversible trap is at elevated 
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temperatures, a characteristic that is used in the hydrogen thermal desorption 

(HDT) analysis for the study of trap binding energies. 

" As mentioned before, reversible traps can behave in two ways: they can 

act as simple sinks, where hydrogen accumulates, and remains during the 

test; or they can exchange hydrogen with stronger traps, acting as hydrogen 

source as for example with dislocations. On the contrary, irreversible traps 

would be strong enough that they do not release hydrogen in the conditions 
imposed by the test 1881. 

Table 4.1 Hydrogen binding energies with different traps 166,84-871 

Trap site Eb [kJ/ mol] 
H-perfect lattice 0 (reference) 
H-C 3.3 
H-H 4.2 
H-N Z 12.5 
Ti-grain boundary 17.2 to 59 
H-Ti 26.1 
H-H2 in void 28.6 
H-dislocation core (screw) 20 to 30 
H-VC interface 33 to 34 
H-Austenite bulk trap 55 
H-dislocation core (mixed) 58.6 
H-A1N interface 65 
H-free surface 70.7-95 
H-MnS interface 72 
H-A1203 interface 79 
H-Fe3C interface 84 
H-TiC interface 86.9 to 94.6 

4.3.1 Traps and hydrogen embrittlement 
Traps definitively affect the susceptibility to hydrogen embrittlement of 

a' metal or-, alloy as ' indicated by the general idea that some , critical 

concentration of hydrogen (CK) must be reached at potential crack sites for the 

initiation of cracks. As is shown in figure 4.9, a crack is initiated 6n a, certain 

defectYif the quantity of trapped hydrogen (CH (t)) goes over CK. Both CK and 

CH(t) are dependent on various parameters, but'CK depend specifically on the 

defect considered and its characteristics 1881: 

(a) The shape of the defect: for example, an elongated MnS is more 

susceptible to initiate a crack than ä spherical one. This means that 

for an elongated inclusion the value of CK'is lower than that f6r'a 

spherical inclusion. 

(b) The neighbouring structure of 'the' defect: for example, ` CK for an 
elongated MnS in martensite is lower than in ferrite. fkT 
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(c) The defect coherency: for example, very incoherent grain boundaries 

are more susceptible to initiate a crack than more coherent ones. , 
(d) The defect orientation with respect to the applied stress: for 

example, a tensile stress perpendicular to the main axis of an 

elongated MnS lowers CK. 

(e) Other factors are the adsorbed impurities at the interface defect- 

matrix, the microstructure, the temperature, etc. 

Some parameters influencing CK 

temperature 

applied stress coherency 

microstructure S}xPe 

impurities nature 

Ck 

CH(t) 

EHE - IHE strain rate 

other traps transport mode 

time temperature 

diffusible hydrogen stress 

Some parameters influencing CH (t) 

Figure 4.9 Critical concentration concept and related parameters. Cic is the critical 
concentration and CH the hydrogen concentration trapped on the defect considered. 
EHE: external hydrogen embrittlement and IHE: internal hydrogen embrittlement [gal. 

In the same way, CH (t) is influenced by numerous parameters, such as 
time, stress, temperature, amount of available hydrogen (diffusible hydrogen), 

other traps, transport mode, etc [U. 891. 

The type of traps could be classified depending on the crack initiation 

sites and the propagation path. Following this idea, Gibala and DeMiglio [°l 

suggested that the crack path in hydrogen embrittlement could depend on the 

presence of strong traps that in adequate numbers can collect hydrogen from 

external sources or reversible traps and produce the cracks. Table 4.2 

presents this statement in a general manner. However, this view has changed 
with time and. research and as discussed below 

, 
the presence of a 

homogeneous distribution, of irreversible traps could reduce the risk of 
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hydrogen induced cracking due to the redistribution of hydrogen in local low 

concentration that are not enough to crack initiation and propagation. 

Table 4.2 Crack classification for hydrogen assisted cracking (HAC) L901 

Microstructural trap Nature of trap HAC susceptibility 
Solute atoms Weak/ moderate Cracking along well-defined 
Microvoids Reversible interfaces is not favoured 
Low angle boundaries Eb560 kJ/mol 
Dislocations 
Coherent precipitates 

Pre-existing microcracks Strong Cracking along interfaces 
Propagating microcracks Irreversible that are irreversible traps is 
High angle boundaries Eb z 60 kJ/mol favoured. 
Incoherent precipitates 
Incoherent interfaces 

Pressouyre [M. 891 has proposed two ways to explain the incidence of 
traps on the susceptibility to hydrogen embrittlement: 

a- Some of these traps will be potential flaws for the crack nucleation. 
The formation of the crack depends on the trapping, on its critical 

concentration value, and on the quantity of hydrogen which will 

reach the trap site during the test. If the hydrogen concentration 

goes over the critical concentration, a crack will be nucleated. 
b- Many traps will not nucleate cracks, but they will either prevent 

hydrogen from reaching potential flaws in sufficient quantities, 

acting as innocuous sinks, or they will assist potential traps to gain 
large amounts of hydrogen, playing the role of sources. 

.. ý ý< 

Two main factors influence the behaviour of the - traps in the metal 
during a test to study the hydrogen embrittlement. Firstly, the initialr state of 
the material prior to testing, for example, whether the material has been pre- 

charged- or "not.., Secondly,, the . process by which; hydrogen -moves 
r 
iný; the 

material. Hydrogen may diffuse throughout the lattice by interstitial jumps, as 

dislocation atmospheres, or along ; short, circuits . paths , such, as grain 

. 
boundaries and interfaces 1". 891. 
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The trap theory, of, H embrittlement proposed by Pressouyre 188- 891 

quantitatively describes the role of these three groups on the factors that affect 

. 
CH(t), ;, those 

, are shown . 
in 

, 
figure 

, 
4.9: 

, 
trap 

, characteristics (reversible or 
irreversible),. hydrogen transport mode (lattice,, dislocation, or fast path) and 
location of hydrogen during, test (external or internal). Figure 

. 
4.10, represents 

schematically two cases where ." 
hydrogen is_,,, transported , 

by, dislocation 
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atmospheres: one- with the hydrogen source external to the material during 

mechanical testing and the other where the material has been precharged with 
hydrogen before testing. The response of the material will be different in each 

case. 
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Figure 4.10 (A). External hydrogen atmosphere and transport by dislocations. (a) The 
dislocation just nucleated at the surface has pick-up hydrogen and moves toward the 
flaw. (b) On passing over an irreversible trap, i, some hydrogen is lost by the 
dislocation. (c) Some more hydrogen is lost on the reversible trap, r. The flaws receive 
little quantity of H. (B). Material precharged and transport by dislocations. (a) 
Hydrogen is distributed on all traps when the dislocation begins to move. (b') Some 
hydrogen is lost on the i traps. (c) Because the preceding loss, the dislocation 
recharges itself on the r trap. The flaw will receive more hydrogen than without the 
existence of r trap 591. 

In the external hydrogen situation, the material is tested mechanically 
in an atmosphere with hydrogen or other hydrogen source such as corrosion 

reactions. The dislocations of interest are those nucleated at the surface where 
they can collect hydrogen. This hydrogen is transported in their atmospheres 
to the hydrogen free material, and has to reach potential flaws for the 

formation of cracks. Transport by dislocations will provide hydrogen both to 
irreversible traps (i), and to reversible traps (r) which are initially without 
hydrogen. Consequently, the dislocations reach the flaw with much less 
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hydrogen than it collected at the surface. Under this circumstance, it will be 

more difficult- to reach . the critical hydrogen concentration (CK) on the flaw to 

produce the crack initiation and the material seems to have low susceptibility 
to hydrogen induced cracking. 

In the internal hydrogen situation, the material is precharged with 
hydrogen before the testing. In this situation, reversible traps (r) and 
irreversible traps (i) contain hydrogen before the test. The dislocations source 

may be located anywhere in the lattice or at the material surface. When 

dislocations are created, they collect hydrogen from the surrounding material. 
Dislocations move with their hydrogen atmospheres and would introduce more 
hydrogen to i traps. However, the situation with the r traps could be different. 

Dislocations that have lost hydrogen on i traps could replenish it when they 

meet the r traps. Therefore, the replenished dislocation will reach the flaw with 

more hydrogen than if there had not been r traps. This will result in an 
increasing chance of nucleating a crack, because is easier to exceed CK ["" 891. 

Application of this theory could explain the different response of a metal 
to different experimental conditions to study its susceptibility to hydrogen 

embrittlement. The dual role of the reversible traps could be one 
interpretation. On the contrary, a fine and homogeneous distribution of 
irreversible traps would be a method of improving the resistance to hydrogen 

embrittlement 1891. 

4.4 Fracture Modes, microstructure and Hydrogen embrittlement 
Microscopic observation of fracture surfaces produced by hydrogen 

induced cracking is an important step in understanding the hydrogen 

embrittlement mechanisms and to elucidate the role of the microstructure on 
the promotion and control of the process of hydrogen assisted fracture N. - 

The fracture- modes found in hydrogen assisted cracking processes 
include different types: microvoids coalescence (MVC), quasicleavage - 

fracture 

(QC), and intergranular fracture (IG). For this reason, it is necessary to 

understand these mechanisms of fracture and identify. the ' relationship 
between, hydrogen content and microstructure so that the micromechanisms 

of fracture can be determined. In general, such processes can be divided into 

nucleation and propagation stages of the fracture event 1911. For example, in 

the case of MVC the micromechanism is the - nucleation, - growth and 

coalescence of microvoids 191.921. For the other fracture modes, however, the 

micromechanism is not clearly defined. Several models have been proposed. 
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The cleavage fracture of steels containing discrete carbides particles is 

nucleated by microcracks formed in the carbide particles, but the 

micromechanism is not established in the case of steels that do not contain 
brittle second phase particles 1931. Echeverria and Rodriguez-lbabe [941 studied 

the brittle fracture of C-Mn-B steel conditioned for both bainitic and 

martensitic microstructure., They found that. the rupture of coarse TiN 

particles of similar size triggers the brittle fracture. Lambert et al. 1951 in 

studies on brittle fracture of a HSLA steel found that martensite/austenite 

constituents acts as initiators of arrested cleavage cracks. Several 

investigations have demonstrated that the fracture toughness of low alloy 

steels is influenced by the called metallurgical factors as prior austenite grain 

size, bainite packet " size, martensite/austenite constituents and carbides [9S1. 

In general, the larger the grain and the bainite packet size the lower the 

toughness. In the case of the MAC and the carbides, the higher the volume 
fractions of them could reduce the toughness of the steel. 

The intergranular -mode of fracture occurs when the grain boundaries 

are embrittled by the presence of precipitates, impurity phases or impurity 

elements. The -fracture is produced after a minimal mechanical loading [%l, 

which is lower than the required to produce cleavage or MVC. McMahon 191 

suggested that the combined effects of hydrogen and segregated embrittling 

elements at grain boundaries, such as Mn, Si, P and S in commercial steels, 

cause the phenomenon of hydrogen-induced intergranular brittle fracture of 

steels. The presence of impurities at the grain boundaries reduces the cohesive 

strength of the steel and the mobile hydrogen increases this effect. The result 
is decohesion of the grains at very low stress intensities. 

Although a great deal of effort has been made to explain how hydrogen 

alters or assists the ' various micromechanisms of fracture there are only 

qualitative descriptions of these processes. One of them was suggested by 

Bcachem CMI. The author suggested a diagram based on qualitative observation 
(figure 4.11), where are shown the three factors known to affect the crack 

growth mode during stress corrosion cracking (SCC) and hydrogen assisted 

cracking (HAC) of quenched and tempered steels: 
(a) The stress intensity factor (K), that depends on the applied stress 

and the crack geometry - 
(b) The dissolved hydrogen content (H) in the crack tip 

(c) The microstructure 

r 
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Basically, the model suggests that " the presence of enough hydrogen 

dissolved in the lattice ahead of the crack tip contributes with. the deformation 

and 1 crack propagation : processes. These processes depend-on the - stress 

intensity (K) and the microstructure. In the figure, the K values and hydrogen 

concentrations are the ordinate ' and abscissa., respectively, and the, - lines 

represent critical combination of K and hydrogen concentration to produce 

crack growth by the . three fracture modes as ." 
determined 

. 
by -- the 

microstructure: "IG, QC, and MVC. Cracks would not be expected in the region 

labelled "NO HAC". The lines that divide the regions of fracture modes depend 

on the microstructure, but the order of the regions is fixed. These converge at 

the Kc value,. which is the critical fracture stress factor (Kc). H10, HQc, and HMVc 

represent the critical hydrogen concentration to allow crack nucleation at the 

edges : of sub-microscopic interfaces . (sub-microscopic , cracks, interfaces or 

other defect) by whichever mode. The increase in hydrogen content, in the case 

of . no applied stress, is sufficient - to cause cracking. In . the case _ , of , test 

specimens or components in service, the applied loads - increase , the K factor 

and reduce the amount of hydrogen to produce the crack. During the process 

the stress intensity factor augments from zero or its initial value to Kc. When 

Kc is reached, the failure occurs tel. 
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Figure. 4.11 Suggested. interrelationships between stress intensity factor, dissolved 
hydrogen ` content, and HAC mode in - microscopically small volumes of crack tip, 
adapted from Beachem 1 1. ;.. 

examples; " two 'cäses" are' shown in"- the Eigöre 4.111 The case 1 may 

'explain the changes in the fracture mode with crack growth from the initial QC 

to ` final fracture by MVC ` in ' low'- alloy steels, ! when' external stress is not 
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applied[72l. In this case, the crack growth may be assisted by residual stresses 

and/or hydrogen pressure. When the conditions reached Kc the failure occurs. 

Case 2 represents conditions where a pre-cracked or components cracked in 

service are under stress producing initially a finite value of K. At the 

beginning, the crack or microcrack has a sub-critical size, is held under 

constant load and growth does not occur. Then, hydrogen diffuses to the crack 

tip and consequently the critical condition for IG is reached. HAC initiates and 

the conditions change continuously through the other modes (QC and MVC) 

until Kc is reached 1721. Finally, the failure occurs. 

The fracture modes observed by Beacheml721 have been observed by 

other authors, although some differences can be apparent. Ishikawa et al. 1981 

suggested that a possible mechanism of hydrogen assisted fracture is that 

cracking starts at the subsurface non-metallic inclusion resulting in a QC 

facet, followed by an IG facet and MVC region. This is shown in figure 4.12. In 

this case an inversion of position between the QC and IG regions seems to 

occur in figure 4.11. However, this behaviour could be explained as follow: 

iL 

Figure 4.12 Fractographic illustration of the hydrogen cracking process 
appeared in the fracture surface 1981 

a- An accumulation of hydrogen occurs around the inclusion. In 

this way, the concentration of hydrogen is locally raised and 

at a certain stress level the crack propagates in a QC mode. 
b- Due to the formation of a QC fracture around the NMI, where 

there was a high hydrogen content, the region ahead of the 

crack could find lower hydrogen levels and as a consequence 
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the fracture changes from QC mode to IG mode. The crack 

grows in an IG form producing an increment of K. 

c- The crack continues growing, increasing the stress intensity 

factor K. This change in K value could occur sharply and as a 

result. the fracture process could proceed under the MVC 

mode. However, the transition from the IG mode to the MVC 

should pass through the QC region, but this transition region 

could be. small because the increase in- K is large and the 

conditions for MVC mode of fracture are favoured. 

As has been noted, the Beachem's approach, which is qualitative, described 

the effect of hydrogen content and the stress intensity factor (or the. effect of 
the mechanical loads) on the fracture modes found in HAC processes. 
However, the model does not take in account the effect of the heterogeneous 

distribution of hydrogen due to the effect of the microstructure or trapping. 

The example described above could be one way of taking into account the local 

accumulation of hydrogen in certain regions of the material, in this case the 

NMI. Other considerations that are not clearly explained include the effect of 
different microstructural features, such as grain boundary ferrite, acicular 
ferrite, bainite, retained austenite, MAC islands and other phases on the 

fracture mode in the presence of hydrogen. In this investigation an attempt is 

made to correlate these factors. 
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CHAPTER FIVE 

TECHNIQUES USED IN HYDROGEN MEASUREMENT, 

TRANSPORT AND TRAPPING STUDIES 

In this chapter, the different techniques used in the measurement of 

the hydrogen content, transport and trapping are described. The first section 

treats briefly the classical techniques related with the measurement of the 

potential hydrogen levels (those in consumables, fluxes and shielding gases) 

and the hydrogen content in welds (after the welding process). These 

techniques have been used to classify the welding methods and the 

consumables on the basis of the different risks of producing hydrogen induced 

cold cracking or HICC. 

Later sections deal with the experimental techniques to determine 

hydrogen transport and trapping, which are of great importance in 

understanding the process of hydrogen diffusion and distribution in the 

material and its effect on the mechanism of failure and assistance to crack 

growth. It is generally accepted that diffusible hydrogen is responsible for the 

reduction in ductility and toughness. On the contrary, the trapped hydrogen 

could have different effects: I 
1- The trapping of hydrogen could reduce the risk for 

embrittlement due to the reduction in diffusible hydrogen. 

2- The trapped hydrogen could be transformed to diffusible 

hydrogen. In this case the traps act as a source of hydrogen 

and this may increase the risk for embrittlement 
3- The trapped hydrogen could exceed a critical concentration for 

the microstructure and as a consequence of the local stresses 

cracks are initiated in this site, crack growth is then assisted 
by diffusible hydrogen liberated from the trap. 

A knowledge of the critical hydrogen content to produce embrittlement, 
its diffusion paths and trapping sites for different weldment microstructure 

could elucidate ways of improving the resistance to hydrogen induced cold 

cracking of a welded alloy. 

5.1 Classic techniques to measure hydrogen content. 
There are several techniques in this field but they can be classified into two 

groups: those that measure the potential level of hydrogen that could be found in the 

weld and those that produce information about the levels of hydrogen after 

welding. 
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5.1.1 Measurement of potential hydrogen levels 

These techniques include those that measure the moisture in the 

electrode coatings, welding fluxes and shielding gases. These moisture levels 

are ý related with the amount of hydrogen that is potentially available for 

absorption in the weld pool during the welding process. For this reason, these 

procedures allow a classification of the consumables and welding processes 

with respect to the potential risk of introducing certain quantities of hydrogen 

in' the weldment. Depending on the susceptibility of the steel to, HICC, the 

methods are selected to reduce the risk for cold cracking. In table 5.1 several 

consumables and fluxes are compared with respect to the potential hydrogen 

levels that can' be produced: 

Table 5.1 Typical potential hydrogen levels produced for different consumables 
and fluxes. Adapted from Bailey 161 

Electrodes or Fluxes Moisture Content (% by weight) 
Consumables 

Cellulosic type 10.0 
Rutile type 3.50 
Basic type (re-baked) 0.075 

Fluxes 
Agglomerated submerged-arc 0.050 
Fused submerged-arc 0.035 

In the selection of a method for welding not only has the data from table 

5.1 to be taken in account but also the atmospheric humidity where the 

welding process is being applied. The principles used for the measurement of 

potential hydrogen are shown in table 5.2. For more detailed description the 

reference of Bailey et. al. 161 is recommended. 

Table 5.2 Techniques used for the measurement of potential hydrogen 
produced by consumables and fluxes. Adapted from Bailey 161. 

Measurement Principle 
Moisture in electrode coatings The sample is ignited in the presence of 
and fluxes pure dry oxygen and the water produced' 

in the process is absorbed and weighed. 

Moisture in shielding gases An electrolytic hygrometer is used 

Hydrogen potential of welding The consumable is encapsulated in a 
consumables by mild - steel container . that , allows fast, 
encapsulation hydrogen effusion at high temperatures. 

The hydrogen that evolved from the 
capsule is measured. 
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5.1.2 Measurement of weld metal hydrogen levels 

This type of measurement is used to determine the quantity of hydrogen 

that is absorbed during the welding process. They are generally used to 

characterise the welding consumable, under standard conditions, based on 

the hydrogen levels in the weldment. Using these methods the diffusible, the 

residual (trapped) and the total hydrogen content could be measured. A 

knowledge of these factors is of vital importance in revealing the susceptibility 

of the weldment to hydrogen cracking and the risk of the process in producing 

this failure. 

Table 5.3 Typical weld hydrogen levels for different consumables and welding 
processes. Adapted from Bailey 161 

Welding process or consumable Hydrogen amount (mL/ lOOg of 
metal) 

Covered electrode, rutile coating 20.0-30.0 
Cored wires 2.50-12.5 
Submerged are 2.50-12.5 
Covered electrodes, basic coating 2.50-10.0 
Gas shielded metal are, Ar & CO2 1.0-5.0 

Figure 5.1 Relationship between potential hydrogen levels and weld hydrogen 
content for different consumables and welding processes 161 
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In table 5.3, the "" typical hydrogen levels " obtained,. for different 

consumables and welding processes are shown. The highest values of 

hydrogen are the result of the use of rutile coatings in covered electrodes. The 

lowest hydrogen levels are reached using gas shielded metal arc (Ar and C02). 

Figure 5.1 summarises the hydrogen levels in weldment . obtainable with 

different consumables and welding processes. This classification can be used 

as -a guide for the selection of the process. At the bottom of this figure the 

levels of hydrogen are classified as very low, low, medium and high. This does 

not mean that the risk to HICC corresponds to this hydrogen levels, the risk 

also depends on the microstructure' of a specific alloy. The graph only gives 

some indication of the quality of the consumable or the welding process 

necessary to achieve the shown hydrogen level. 

Table 5.4 summarises the two most common methods of measuring 

diffusible, residual and total hydrogen content in weld beads after the welding 

process has been applied. Other techniques based on the same principles have 

been used to measure the hydrogen content in a weld [77: 

a- The glycerine replacement method, which immerses the weld sample 

in glycerine bath at 45°C for 48 h 

b- The silicone oil replacement method, which uses this liquid as an 

immersion media at 100°C for 90 min. 

c- The gas chromatography method, which involves placing a sample in 

a chamber at 150°C, filled with argon as a gas carrier. The hydrogen is 

transported to a chromatograph, where is analysed. 

Table 5.4 Techniques used for the measurement of diffusible hydrogen 
produced in welds. Adapted from Bailey 161 

Measurement Principle 
Determination of diffusible A single weld bead is deposited under carefully 
hydrogen in ferritic steels controlled conditions and then quenched. The 
BS 639 Parts 1-5 weld is immersed in mercury at room temperature 

and its diffusible hydrogen content is measured by 
volumetric methods and reported as hydrogen 
volume per mass of either deposited or fused 
metal. 

Determination of diffusible, A single weld bead is deposited under carefully 
residual or total hydrogen in controlled conditions and then quenched. To 
ferritic steel weld metals measure the diffusible hydrogen the sample is 

analysed at room temperature. To measure the 
residual hydrogen the samples are heated to 
650°C to extract the hydrogen. In both cases the 
hydrogen content is determined volumetrically 
using vacuum 'apparatus or an inert' carrier gas 
technique. 
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5.2 The determination of hydrogen distribution in welds 
During the welding process, hydrogen is introduced in the weld pool 

from the consumable, the atmosphere or impurities on the surface of the 

parent plate. During cooling this hydrogen diffuses through the microstructure 
in the weld metal and the HAZ of the weldment. Depending on the different 

microstructures and the stresses in these regions the hydrogen could be 

heterogeneously distributed, due to differences in the diffusion coefficient and 

solubility. Moreover, the existence of voids, inclusions and microphases, such 

as retained austenite and MAC islands, could contribute to the non-uniform 
distribution of the hydrogen in the weld. As a consequence the hydrogen 

becomes trapped and distributed in specific regions of the weldment. For 

example, the hydrogen content in the HAZ could reach higher levels in 

comparison with the weld metal. The opposite could well occur. For these 

reasons, methods of determining the hydrogen distribution have been 

designed. 

The determination of the local accumulation of hydrogen in steel welds 
has been experimented by several methods 171: 

. 
a- Microsectioning of different weld zones at low temperature followed 

by hydrogen extraction. 
b- Bubble counting on the polished cross-section of a weld covered by 

a thin film of glycerine 
c- Microprinting of a polished cross-section utilising a neodymium film 

or an emulsion silver bromide, normally used in conjunction with 

the radioactive isotope, tritium, of hydrogen. 

d- Spot fusion of a weld cross-section by laser beam followed by mass 

spectrometric analysis of evaporated hydrogen. 

These methods must be capable of measure the hydrogen content in 

small and localised regions of the weldment and this objective is best reached 

producing the local evolution of hydrogen using a concentrated heating, for 

example, a laser beam. Between them are the following: 

1- Laser Induced Breakdown Spectroscopy (LIBS) 

2- Laser ablation/ Gas Chromatography (LA/GC) 

3- Laser ablation/Mass Spectrometry (LA/MS) 

These three techniques were evaluated by Smith et al. l'991 and their 

results shows that the more suitable of the methods was LA/MS. This method 

can detect very low hydrogen concentration and it is capable of distinguishing 
between the isotopes from deuterium' gas (D2), which is, used, as a hydrogen 
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tracer, and those from other sources, such as contaminants on the weldment 

surface. Using this technique it is possible to obtain qualitative hydrogen 

profiles that are consistent with the theory of non-uniform hydrogen 

distribution in welded steel as a function of differences in microstructural 

transformation. Figure 5.2 shows schematically a result of the hydrogen 

distribution for a gas metal arc welded 100 HSLA steel using 0.5% D2/Ar 

shielding gas, obtained by Smith and collaborators M1. 

Smith et. al. 11001 developed a hydrogen sensor that permits the detection 

of hydrogen in the actual welded structure and in short times (less than an 

hour). The sensor is based on the chemochromic reaction (colour change due 

to a chemical reaction) of certain transition metal oxides with hydrogen in air. 

The reaction is catalyzed by a thin film of Pd or Pt on the WO3 oxide film, 

which is sensitive to hydrogen. Both films are deposited on a polymer optical 

fiber. The changes are detected visually or spectroscopically. The sensor 

promises to be an excellent device to detect hydrogen in welds and the 

distribution of it, provided an array of sensors is used. However, refinement of 

the design is needed to improve the performance of the detector in the field. 

.. 
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Figure 5.2 Schematic representation of a LA/MS hydrogen/deuterium distribution 
profiles for gas metal arc weld. Adapted from Smithl98 

5.3 Electrochemical techniques to study H diffusion and trapping 

In this section, some electrochemical techniques to study the hydrogen 

diffusion process and hydrogen trapping in metals and alloys are briefly 

described. Attention is concentrated in a complete description of the technique 

and analysis of data proposed by Pound and collaborators [lol-1051 because this 

' technique is used in the present investigation to qualitatively characterise the 

trapping behaviour of the different weld metals used in this research. 
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Measurements of hydrogen "on" and hydrogen ""in' metals has been the 

subject of several investigations. The metal surface could be corroding or 

dissolving anodically while H from the surface is studied. The 
, 
fundamentals of 

some of these techniques are described briefly as follow: - 

(a) The Fourier Transform Infrared Spectroscopy (FTIR) - approach to 

surface hydrogen. - It was found by Bockris et al. [$o] for H on Fe that 

FTIR determinations could distinguish two peaks which 

corresponded to those expected for vibrations of :H. chemically 

bonded to Fe. This technique is used to -determine the surface 

" coverage of adsorbed hydrogen atoms per. unit area (OH). Low and 

accurate numerical values of OH could be obtained, but the method 

gives a In 'OH /ö V, which is an indicator of the mechanism of 

adsorption [°l. ` 

(b) Devanathan-Stachurski (D-S) Permeation Method 'for Internal 

Hydrogen. ' This method gives 'the 'diffusivity of H (DH) in the metal 

and the concentration of H just below the surface of the Fe (Co, H) 

which are useful in the study of the diffusion and trapping of H in 

the'metal. A thin Pd membrane is used to protect the anodic side of 

the Fe. The method allows the determination of Co, H and the partial 

molar volume of hydrogen in metal (Vx) as a function of potential, 

surface occupation by inhibitors, etc. The permeation-time (PH-t) 

data indicates the potential region in which the metal breaks down 

due to the onset oft internal cracking: before that potential, it is 

reversible, but afterwards the PH-t relations cannot be repeated 18°1. 

(c) Determination of internal H by means of Laser-Pulse evaporation. A 

laser is used to evaporate : 
holes of about 20 µm' diameter. The H2 

released is registered ' on a mass spectrometer. The Fe and steel 
specime'ns'are"prechärged with'H`at various -Ligacities. ' This method 
gives the concentration of H in the metal at a controlled spot and at 

"a controlled depth `It is helpful in finding the' distribution of H, for 

example, near points 'of stress "[801. - This technique was ' described 

above, in the' section 5.2. 

'68 



Chapter 5. TECHNIQUES USED IN THE HYDROGEN MEASUREMENT, TRANSPORT AND TRAPPING 

(d) Double pulse approach. H2 is evolved on the metal at a chosen over- 

potential (n), and two constant-current potential-time 

measurements are then recorded. In the fast, the potential from 

which the anodic sweep starts is produced when the over-potential 

(i) is eliminated. The anodic current during this pulse involves that 

from the dissolution and re-oxidation of H and' that from the 

dissolution of Fe. A second pulse is then made which starts from an 

anodic region and therefore involves only dissolution of Fe. Both 

signals are subtracted and the signal corresponding to the re- 

oxidation of hydrogen is obtained. Electrochemical kinetic equations 

allow a basic coulometric value of AH (the hydrogen coverage) to be 

derived, but the determination involves an iterative procedure I°1. 

5.4 'A Potentiostatic double-step method for measuring hydrogen atom 
diffusion and trapping in metals. 

r =' ..,. Pound et al. - Ilol-loaf proposed a general model. to study experimentally 

and mathematically the effect of trapping on- the diffusion, of, hydrogen by 

modifying Fick's second law of diffusion. The modification takes in account the 

effect of hydrogen trapping. Experimentally, the metal electrode is polarised as 

shown in. figure 5.3 which shows the. potential step programme, and the 

resulting current transient. EA is slightly below, the. corrosion potential (E., ) to 

minimise the effect of corrosion of the. metallic electrode.. The experiment 

commences by stepping the cathodic potential to E. for a period t0, the 

charging time, during which the steady cathodic current, ' ' ii, will flow and the 

electrode becomes charged with. H. atoms. Then the electrode potential is 

stepped in the positive direction back to EA, and the anodic current transient 

is recorded during a period of time, V1101). 

Mathematically, the, modification of Fick's law is made to include a 
trapping term, k"c, in which the rate of trapping is assumed to be proportional 
to the concentration c(x, t) of diffusing hydrogen. 

.: ýýý O'c 

The density of traps and the" probability 'of caiptureof hydrogen by ``a 

trap 'determine the magnitude "of the trapping -'rate constant ' (k). Several 

assumptions and boundary conditions are necessary in - this model because 

the short time used in the experiments: 
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Figure 5.3 Schematic potential programme and expected current response during the 
double potentiostatic pulse experiment. qA is the anodic charge value read from the 
digital coulometer, and qco is the charge correction arising from the small cathodic 
current. Modified from Pound 11011 

(a) The trapping is irreversible and for this reason, there is no 

significant release of H atoms from the traps. 

(b) The traps are not considered to become saturated. This implies that 

k must be a constant. 

(c) Mass balance at the interface requires that the difference between 

the H flux into and out of the metal is balanced by the diffusion flux 

carrying hydrogen into the bulk metal, i. e. 

"C ) I\ 
x0 

(5.2) 

where the term k;,, 9 is the flux into the metal, k,,, c(0, t) is the flux 

out of the metal, and 0 is the surface coverage of adsorbed hydrogen 

atoms per unit area. 

(d) The ingress flux k;,, 6 is considered constant at a given charging 

potential E,.. 

The diffusion equation 5.1 is solved analytically for two cases that are 

characterised by the rate-determining step for the transfer of adsorbed 
hydrogen into the metal during the cathodic reduction. These cases are: 
diffusion control and transfer control. In this investigation, it is assumed that 
the diffusion control operates in the cases that were studied. Further 
justification is made in following chapters. 
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I. - Diffusion control case 
In this case, H atom transfer across the iron/ electrolyte interface is very 

rapid. The H concentration just below the metal surface is assumed in 

equilibrium with the adsorbed H layer, and reaches the Cs value almost 
instantly after the polarisation at E,:. This is due to the small value of the 

second right hand side term in equation 5.2, which gives the relation: 

k;,, O =k c(0, i) =k Cs (5.3) 

The rate of hydrogen ingress is then controlled by the diffusivity of H in 

the metal. The non-dimensional anodic current I', and charge Q', as a function 

of time after stepping back to EA have been calculated: 

1 rT1 --e 
-R (fý( ' er R" 1+T) -f er 

(R"r)) (5.4) 
R+ 

Tr 1; F 
-R 

7'' 
e 

"1 

2T+ "e- 2+rR"(1+T)]"erf 
R" 1+T 

[_j=+i. 
r]. er 

R Ir 

[ýR 

(5.5) 
1 ý7", 

_ e4 O. r)+ +ý "erfý+Ie-R 
C2J 

In these equations I', Q', T' and R are'non-dimensional terms of current, 

charge, time and trapping rate constant respectively, defined as follows: 

1'= it (5.6) 
fýtý, 

F"c, 

Q qt (5.7) 
F-c, 4-D -to 

T'= (5.8) 

R=k" tc (5.9) 

where i' is the current density at the surface of the metal at time t' after the 

anodic step from Ec to EA. q' is the charge consumed 
, 
in oxidising the 

diffusional hydrogen 11011. 
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II. - Interface control 
If the rate of transfer of hydrogen atoms across the interface is very 

slow, then this process controls the velocity of hydrogen ingress. Under these 

conditions of interface control, the second term on the right hand side of 

equation (5.2) is dominant. Then the following relation is obtained: 

k, 
�6 = -D 

'=J (5.10) W 
I-0 

where J is the hydrogen ingress flux which is constant for a given value of Ec. 

At sufficiently long times, the assumption of a constant concentration gradient 

at the surface may not be valid. On the contrary, the concentration 
immediately below the surface, c(O, t), could approach the equilibrium value 
(Cs) and a transition to diffusion control could then occur. 

5.5 Utilisation of the potentiostatic double-step method. 
The double step method or the potentiostatic double pulse (PDP) 

technique has been used by Pound 1102-1051 in the study of different alloy 

systems: 

a- High strength alloys: AISI 4340 steel, Monel K500 and MP35N 

b- Work-hardened alloys: Inconel 625 and Hastelloy C-276. 

c- Precipitation-hardened alloys: Inconel 718, Incoloy 925 and 18Ni 

maraging steel. 
d- High strength steels: AISI 4340, AerMet 100 and H11. 

In all these cases, Pound has tried to relate the value of the trapping 

rate constant (k) with the hydrogen embrittlement susceptibility and the trap 

population in the alloy. In the study for high strength alloys the author found 

a close relation between the MnS inclusion density and the density estimated 
from the value of k using the following equation: 

k= 4=12 NTDL 

a 
(5.11) 

These estimations were made under the assumption of spherical traps 

of radius d and a surface area 4nd2. NT is the concentration of traps and "a" is 

the diameter of the metal atoms. If the value of the diffusivity constant in the 
lattice (DL) is known the k value could be related to the NT. In the case of the 

steel 4340, the MnS density, which are assumed to be the principal traps 

acting in the steel, was estimated around 2 108 m-3 and the determined 

through metallographic characterization was 2 109 m-3. However, for the case 

i 
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of the Monel alloy K500 and the alloy MP35N this value was uncertain. For the 

last two alloys the traps were assumed to be sulphur and phosphorous 

clusters at grain boundaries 11021. Table 5.5 present-a. summary of the . results 

reported by Pound 1103-1051 for the values of k for different alloy systems and the 

irreversible traps identified to be related to k. 

Pound 1101-10s1 associated the k value for the different alloy systems to 

the intrinsic susceptibility of the alloy to hydrogen embrittlement (HE). As a 

general rule, the higher the value of k the higher is the susceptibility to HE. 

Following this tendency it could be expected that the susceptibility to HE 

decrease from the steel 4340 to the annealed AerMet 100 alloy. In some cases, 

where the values of k show only a small difference, the tendency to 

embrittlement is similar for two alloy systems. 

Table 5.5 Irreversible trapping constant for different alloy systems 
obtained by the PDP technique 1103-1051 

Alloy k (s-1) Irreversible Trap 
4340 steel 4.0 MnS inclusions 
H 11 steel 3.5 MnS inclusions 
18 Ni maraging steel 1.50 TiC/Ti(CN) particles*** 
AerMet 100 (482°C aged) 0.66 M2C carbides (M=Cr, Mo)**** 
AerMet 100 (270°C aged) 0.44 Fe3C rod-shaped carbides 
Inconel 718 0.128 NbTi(CN) particles 
Hastelloy C-276 (27% c. w. ) 0.090 P at grain boundaries 
Monel K500 0.040 S and P impurities* 
Incoloy 925 0.034 TiC particles 
MP35N 0.026 S and P impurities* 
Hastelloy C-276 (27% c. w. ) 0.019 Unidentified" 
Inconel 625 (17% c. w. ) 0.014 NbTi(C) particles 
AerMet 100 (annealed) 0.000 No irreversible traps 

* The inconsistency was attributed to segregation and clustering of S and P 
** These are unidentified quasi- irreversible traps that saturates 

***This alloy presented a quasi-irreversible traps with a higher k value (k=3) 
****Very small Fe3C rod-shaped carbides could be found 

Another effect that is worthy of mention from table 5.5 is the effect of 

the aging temperature on the trapping constant for the AerMet 100 alloy. As 

can be seen the increase of the aging temperature from 270 to 482°C increase 

the k value 11051. This could be attributed to the precipitation of the M2C type 

carbides which increases the population of irreversible traps. The annealed 

alloy presented ak value of virtually zero. Moreover, in the case of the 4340 

steel with different heat treatment to obtain higher yield strengths, it was 

found that the k value increases with the increasing' strength 11051. This, is 

probably associated with some variation in the microstructure. """ 
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As can be observed, the determination of k could be used as an index of 

susceptibility to hydrogen induced cold cracking. However, the interpretation 

of results needs careful analysis for the following reasons: - 
a- The value of k is a trap constant that reflects the effect, of irreversible 

and reversible traps. It is very, difficult to separate the effect of both 

types of traps' and within each type, different trap quality and 

quantity " could be present. For this reasons, to determine which 

group of hydrogen traps are producing a predominant role to 

produce the . hydrogen embrittlement effect is not easily possible. 

Moreover, it is recognised that the diffusible hydrogen is responsible 

for the embrittlement effect and that the traps could be simple 

hydrogen sources or sinks, although they could be located in a 

susceptible microstructure to form cracks and in which case they 

may act as crack initiators. 

b- The k value has been related to irreversible traps such as MnS in 

steels, some carbides and carbo-nitrides in steel and other alloys 

and in some Cu-Ni alloys with segregated S and P. Although these 

play an important role in the hydrogen assisted cracking process, 

they should not be taken as the only sites for crack initiation. The 

microstructure of the alloy has an important influence in the 

initiation and propagation of cracks: interfaces and inter-phases 

regions, retained phases, voids and micro-shrinkages, micro-cracks, 

dislocation arrangements, etc. This list could be expanded and 

taken into account to analyse the susceptibility of the alloy to HIC or 

HICC. 

c- The suggestions made by Pound have certain degree of disagreement 

with the theory of hydrogen trapping mentioned in the previous 

chapter. It is accepted by that theory that the presence of 

irreversible traps homogeneously distributed in the material could 

be beneficial to the resistance to hydrogen embrittlement. This is 

due to the beneficial effect of the distribution of hydrogen in those 

traps reducing the diffusible hydrogen that is signalled to be the 

responsible of the reduction in ductility of the material, as was 

mentioned previously. 

To overcome the effect of the reversible traps on the value of k, which is 

defined as the apparent irreversible constant, Pound[lo3-1os suggests a relation 
between k and k;, the irreversible trap constant: 
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ki =k 
D° 

(5.12) 
DL 

where D. is the apparent diffusivity constant for the alloy and DL is the lattice 

diffusivity constant. The first has to be determined using permeation methods 
for the alloy in study and the second diffusivity constant has to be determined 

or estimated for the equivalent high purity alloy where some elements have 

been removed to eliminate their influence on the diffusion of hydrogen through 

faster paths such as grain boundaries, interfaces, etc.. In any case, to estimate 

the k; value from the apparent irreversible trap constant, k, determined 

experimentally, specific diffusion data is required. In some cases this data may 
not be available and should be determined in the laboratory. 
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CHAPTER SIX 

EXPERIMENTAL METHODOLOGY 

6.1 The weld metal and welding process 
The weld metals used in the present work were selected and designed 

by Wildash[$1 in a previous work; two types of consumables were available: 

commercial and modified. These had produced different microstructures and 
this allowed study of their effect on the HICC resistance. A detailed description 

of the experimental methodology is described elsewhere [8-111. Sections 6.1.1 to 

6.1.4 summarises the procedures followed and are included in this text due to 

the importance of defining the microstructure, the mechanical properties and 
the resistance to HICC of the several weld metal studied in this investigation. 

6.1.1 Welding Procedure 

The welding process used to obtain the different weld metal utilising 
both commercial and modified consumables was Gas Metal Arc welding 
(OMAW). The general welding conditions applied are shown in the table 6.1. 

Other welding parameters are shown in the tables A. 2 and A. 3 in the annexes. 
The tensile samples were obtained from the final weld bead made over the 

groove machined into the cladding, as is shown in figure 6.1. 

Table 6.1 Welding conditions applied to each weld bead of the cladding and each final 
weld bead, deposited in the machined groove, where a heat input of 1.0 kJ/mm was 

required. Data from Wildash [S] 

Parameter Value 
Preheat (°C) 150 
Heat Input (± 0.2 kJ/mm) 1.0 
Polarity DC + or -, Appendix A 161 
Shielding gas Composition Argon 80% - CO2 20% 
Shielding gas flow (L/min) 21 
Stand off (mm) 15 
Arc Mode Dip or spray transfer 
Current (A) 188 ±4 
Potential (V) 27.0 ± 2.5 

After application of the final weld bead, the weld metal was degassed for 

20 h at 150 °C. Tensile samples were then obtained from the fusion zone of the 
final weld bead and charged with hydrogen as described later. 
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ý--ý 4 layers of cladding 

Restraining plate 

beposition of Cladding material on restraining base plate 

Heat Input 
i kJ /ý 

445mm 

d¢ap 

06mm 
Ball Nose Cutter 

Groove machined dimensions in clod steel weld metal 

Figure 6.1 Procedure to obtain the tensile sample of every weldment. 
Adapted from Wildash 131. 

6.1.2 Weld Metal Composition 

The composition of the weld metals obtained using commercial and 

modified consumables are shown in table 6.2. The commercial consumables 

are those with the following identification: 15171,14001, and 14031. The so- 

called modified consumables are those with the identification number 

preceded by CWX or VCX. In the table the P,, » value was calculated using the 

equation: 

%Mn + %('r + %('u %Si %V %Mo %Ni 
Pam = %C + 

20 
+ 

30 
+ 

10 
+ 

15 
+ 

60 
+5" %B (6.1) 

The weld metals were divided by Wildash [8] into 5 groups as is shown in 

the table 6.3, presented here as a reference. This table shows roughly the 

effect of consumable composition on the microstructure. This could be used as 

a guide and does not limit comparison between weld metals of different 

groups. In tables A. 2 and A3 (annexes) the different weld metals are classified 

as basic, metal cored and rutile depending on the consumables types. 

6.1.3 Hydrogen Charging 

Hydrogen charging of the tensile test samples was carried out 

electrochemically by Wildash [8l. The detailed procedure is found in his work. 
The principal variables are presented here as a reference. 
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The solution utilised was 0.1 N H2SO4 with different quantities of 

sodium arsenite as inhibitor of corrosion and promoter of H entrance into the 

metal. Different inhibitor concentrations (inhibitor strength) were employed to 

introduce a certain quantity of hydrogen into the steel. Hydrogen contents in 

the range from 0.2 to 15 ml/ 100 g of weld steel were obtained. Specimens 

were cathodically precharged using a current density of approximately 6 A/m2 

during 48h employing a platinum counter electrode P. 111. After the precharging 

and before the tensile test, the specimens were stored in liquid nitrogen to 

minimise the hydrogen evolution. 

6.1.4 Mechanical Testing and hydrogen measurement 
Tensile tests of the weld metals without and with different hydrogen 

content were carried out by Wildasht8l. A schematic representation of the 

tensile sample is given in the figure 6.2. These samples were obtained from the 

final weld bead. After precharging and before the tensile test, the stub was cut 

to measure the diffusible hydrogen (HD) in the sample using a gas 

chromatographic analyser. The strain rate used in all the tensile tests was 0.5 

mm/min. 

Tensile sample Stub 

3. O mm 

11 mm 

41.50 mm 

Figure 6.2 Tensile sample and stub made of weld metal. 

6.2 Weld Metal Characterisation 

In the understanding of the mechanical properties and resistance to 

hydrogen induced cold cracking, the microstructure must be completely 

characterised. This characterisation took account of 
(a) Microstructure present in every weld metal. This includes major and 

micro phases present 

(b) Volume fraction of phases present in the microstructure 
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(c) " Non-metallic inclusion, volume fraction, size distribution. and spatial 

distribution 

(d) ' Size and distributions of micro-phases 

For the microstructural characterisation optical and electron 

microscopy will be used. SEM and TEM will be utilised as principal tools of 

microphase's observation. 

6.2.1 Optical Microscopy 

The optical microscopy is useful in studying the general microstructure 

of the different weld metal. Weld metal microstructures are examined using 

standard specimen removal and - preparation, techniques. Microstructural 

characterisation of welds has the purpose of relating the microstructure 

present -to mechanical properties and resistance to hydrogen- induced 

cracking. ' Phase-proportion and distribution have to be taken in account.. The 

presence' 'of microphases, such as retained austenite, austenite/martensite 
islands, ' and carbides, must be carefully studied because their effect on the 

material ý' properties. In " general, the effects, of a process and parameters - on 

microstructure are due to the compositional and thermal effects. The 

compositional effects are principally limited to the fusion zone and the thermal 

cycles affect both the fusion zone and HAZ 11061. 

The optical microscopy techniques include: 

" Standard metallogräphic procedure 

" Light and deep etching 

" Non-metallic inclusion' assessment (size and spatial 
distribution) 

6.2.1.1 Standard Metallographic Procedure 

A transverse section was studied, which is most often used to observe 

and document welded joint macrostructure and microstructure. 
The metallographic procedure �was was, the 

, standard. An optically flat 

surface of the material , was obtained using a low-speed cutter with a diamond- 

impregnated wheel, in order, to avoid mechanical damage or overheating the 

sample. Because the small size of the 
'sample, 

this had to be mounted using 

polymer. resin or Bakelite.: Once the sample is mounted, the sample surface 
must be ground flat and polished. Grinding was, made using silicon carbide 

paper of 240,, 320, 
_400,600 

and 1000grit. After this, the sample surface has 

to be mechanically polished using ' cloth polishing wheels impregnated with 
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diamond paste of grit from 6,3,1, and 0.25 µm. Finally, the surface was 

chemically etched. The chemical etching was 2.5% Nital for " the " entire weld 

metals. The etchant composition and the microstructure that. is revealed are 

listed in the table 6.4, selected from the standard ASTM E 340-95. 

Table 6.4 Etchant for microscopic examination of the weld metals 11071 

Etchant Composition Purpose or characteristic revealed 
Nital 2.5 ml HNO3 in 100 ml ethanol Develops ferrite grain boundaries in 

(95%) or methanol (95%) low carbon steels; produces maximum 
contrast between pearlite and 
cementite or ferrite network; develops 
ferrite boundaries in structures 
consisting of martensite and ferrite 

6.2.1.2 Light and deep etching 
For. the study of the microstructure on the optical microscope at low 

magnifications (50X, 100X, 200X and 400X) short etching times were used. 

The time of etching was slightly different for each weldment, depending on the 

chemical composition. The times varied between 10s and 20s. The sample 

surface, maintained upward, was covered by the etchant and the progress of 

the etching was observed constantly during the procedure to avoid over 

etching. , ... , 
In the case of OM studies at higher magnification (1000X) and for 

electron microscopy examinations a more deep etching was used. The time for 

etching was between 30 and 100s and the sample surface was covered with 

Nital and observed as described before. However, the solution was renewed 

several times during the etching procedure to permit fresh etchant in contact 

with the sample. 

6.2.1.3 Non-metallic inclusion assessment (density, size and spatial 

distribution) 

The inclusions were studied on a transverse section of the weld metal 

which was prepared metallographically as described before, but taken special 

care in the final step of polishing with 0.25 µm diamond paste, to avoid or 

minimise the scratches that could introduce difficulties in the, automatic 

counting and measuring process. Optical microscopy was used to obtain at 
least 12 photographs of the weld metal at 1000X. Care was taken to avoid 

repetition of the photographed inclusions and to take representative regions of 

the weld metal surface. Not less than 1500 inclusions were counted. The ran ge 
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of inclusions counted was between 1500 and 3500. The minimum inclusion 

size measured was around 0.2 µm. The total of inclusions per surface area 

was counted. The number of inclusions per unit area with size less than 1 µm 

in diameter and greater than 1µm are reported as well. For counting and 

diameter measuring of the inclusions, KS400 (version 4.0) software was used. 
For the automatic counting and sizing the MACRO 1 was implemented. The 

instructions utilised is shown in the annexed section A. 7. 

The average diameter measured on the surface will be called the 

arithmetic mean two dimensional particle diameter, d., as named by Kunklen 

and collaborators flog]. This 2-D diameter is related with the arithmetic three 

dimensional particle diameter, d,., by the theory of polydispersed system of 

spheres, developed by Pullman and reported in the work of Kunklen and 

Grong 11081, and presented in the simple equation: 
d 

da 2 
(6.2) 

Equation (6.2) was used to calculate the 3-D diameter of the inclusions. 

Other important inclusion characteristics and the way of calculating them 

from the measurement on the sample surface (2-D) are shown in the following 

group of stereometric relationships 11081: 

N" = 
_ýV")3 

(6.3) 

N. = N"j" (6.4) 

S" _ TN"(d")Z (6.5) 

3 

=0.554 (6.6) 
" 

where Na is the number of particles per unit area, N� is the number of particles 

pFr unit volume, V� is the inclusion volume fraction, S� is the total particle 

surface area, and A� is the mean particle centre to centre volume spacing. 
The inclusion spatial distribution was measured indirectly using a 

procedure designed to take in account the ' area around the inclusion (on the 

surface of the metallographic sample), ' instead of using the distance between 

the nearest neighbour, - the second nearest, and the successive nearest 

neighbour, which can make the automatic calculation difficult from the 

mathematical and programming point of view. The following procedure was 

considered simpler for programming and analysis: 
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. 
" 

(a) 

-- i 

4-Ni' . t_ _Y 

(b) 

Count 

8.00 

7.00 

6.00 

5.00 

4.00 

3.00 

2.00 

1.00 

0.00 

15111 

-------------------- 
---------- ---------- 

;1 ------ ------ 

50.0 100.150.200. 
AREA [miaometer^2] 

counts 61 
lower bound 1.644609 
Lper bound 238.952041 
u, derfbw 0 
in range 61 
overflow 0 
classes 20 
modti 11.865372 
min. coint Q000000 
maxcout 8.000000 

Statistics 
minima 1.644609 
malimun 238.852041 
SLAM 5754.956626 
madianvalue 81.735867 
mean 94.343551 
variance 2881.643224 

(c) 
Figure 6.3 Non-metallic inclusion distribution, (a) Binary image of the inclusions in 
the steel obtained by OM at 1000X, (b) The Euclidean distance map (EDM) after 
"skeletonisation" and the measuring frame (in red) superposed on the image (a), and 
(c) area distribution of the regions only inside the frame. 

(a) The image is enhanced using any graphic software available, 

changing the brightness and contrast to make the inclusion to appear clear on 
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the picture. Any scratches and luminosity gradient on the image has to be 

corrected before processing the image. 

(b) The image is converted to a binary image using specialized software 

for this. The inclusion are black after this processing and the matrix is, white, 

as is shown in the figure 6.3 (a). 

(c) The Euclidean distance map (EDM) is calculated on the binary image 

by the image analyser. The definition of EDM is very simple: each pixel in the 

foreground,, that is the inclusion, is assigned a brightness value equal to its 

straight line distance (thus, "Euclidean") from the nearest point in the 

background or metallic matrix. In most pixel images, the distance is taken 

from each pixel in the feature to the nearest pixel in this is the background. 

This calculation produces a grey-scale image from the binary picture, in which 

every pixel between inclusions is assigned a value that is its distance from the 

nearest background pixel 11091. Then the EDM is thresholded and 

"skeletonised" and the final image, on which the original binary image has 

been superposed, is shown in the figure 6.3(b). The continuous lines around 

the inclusions represent the maximum distance from the matrix to the 

inclusions. 
(d) A frame is imposed on the figure 6.3(b) previous to the calculation of 

the areas limited by the boundary (red frame). This is done to avoid the areas 
formed with the edges` of the photograph, which does not represent the area 

around inclusion as defined before. 

(e) The distribution of the areas counted is plotted in a histogram, as is 

represented in the figure 6.3(c). 

For a more detailed description of the image processing and analysis, 
the MACRO 2 utilized by the image analyzer is included in annex section A. 7. 

For further, information on the concepts involved the book by Russ 11091 is 

recommended. 
Using ` the ' EDM method the 'spatial 'distribution of, the non-metallic 

inclusion' can` be classified in three 'groups, depending on the form of the 

histogram as presented in figure 6.4, which is the mean value and the 

variance or standard deviation. These three groups are: 
a= Random ý distribution: it I is, characterised by higher variance and 

standard deviation'' values than the corresponding values for 

clustered and regular distributions. " ,' 
b- Clustered distribution: the median value and the variance may be 

lower than the corresponding values for random distribution. 
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c- Regular distribution: in this case, the standard deviation may be 

lower than the value for clustered and random distributions. 

Following this criteria, the spatial distribution of the inclusions in the 
different steel weld metals could be determined. 

Random 
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Figure 6.4 Schematic representation of the histograms for three different inclusion 
distributions: random, regular and clustered. 

6.2.2 Electron Microscopy, general methodology. 
Electron microscopy was used to study the general microstructure, to 

identify microphases and inclusions, and to observe the fracture surface of the 

tensile specimens of weld metal, which were tested uncharged and charged 

with hydrogen. Scanning Electron Microscopy (SEM) was used together with 

the X-ray energy dispersive spectrometer (XEDS) to study the microstructural 

constituents of the weld metal and the chemical composition of the non- 

metallic inclusions. Transmission Electron Microscopy (TEM) was utilised to 

identified the different microphases that could be observed in the weld metal: 

martensite-austenite- carbide constituent (MAC), retained austenite, carbides, 

martensite-carbide and in some cases to distinguish bainite. 

6.2.2.1 Sample preparation for Electron microscopy. 

No special preparation is required for the observation of the 

microstructure and the fracture surface using SEM. 

For the observation of the microstructure the same procedure for 

grinding and polishing was used (see section 6.2.1.1). Long etching times are 

necessary to reveal the different micro-constituents. The reagent used was the 
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same as the utilised in optical microscopy: 2.5% Nital. Times from 30 to 100 

seconds were employed. After etching the sample was immersed in acetone 

and cleaned using an ultrasonic bath. 

In the fractographic studies the fracture surface was observed after- a 

cleaning process in an ultrasonic bath using acetone. No chemical cleaning 

was used to avoid damage of the fracture surface. 
The transmission electron microscope was employed to identify the 

microphases presents in the studied weld metals. These micro-phases are: 

martensite-austenite-carbide (MAC) constituent, carbides, small precipitates 

and small non-metallic inclusions. All of these are related to the phenomenon 

of hydrogen trapping. Other important observation that could be made is the 

structure of dislocation arrangements, around these micro-phases and in the 

microstructure presented by the bulk metal. 
The procedure followed for TEM sample preparation followed standard 

practice Lilo-1111. Sample preparation is a difficult issue and must be carried 

out carefully. The following general methodology was used and this proved to 

give excellent results. 

A- Pre-treatment of the specimen. 
Samples for TEM were taken from the base of the tensile samples 

showed in the figure '6.5. " Disc of 250 µm -thick-and approximately 5 mm in 

diameter 'were cut using " a- low speed diamond saw to minimise mechanical 
damage. Planar grinding with'a 1000 grit SiC-paper was utilised to reduce the 

thickness of the disc between 150 and 200 M. After that 3 mm discs were 
punched out and then were ground further,. using a holder where the sample 

can be introduced 'and the thickness ' contrölled rotating a screw on the 
opposite end of the holder. The final thickness of the 3 mm discs were between 

80 and 100 
µm. ` 

t,, .. ; fý 

B- Final thinning of the discs 
The final thinning was carried out utilising a Struers TenuPol-5 twin jet 

polisher. The schematic representation of the process is shown in figure 6.6. 

This normally consists in polishing'the 3 'i ri disc specimens with the 1 mm 
jets. The polishing is carried on until 'a small hole appears, when the process 
is stopped automatically using a light"Istop value, selected previous to 'the 

thinning process, reacting as soon as a hole is established [112-1131. 
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Figure 6.5 Transversal sections from the tensile sample used to extract samples for 
the fractographic studies, the TEM samples and the electrochemical test samples. 

Figure 6.6 Schematic of a twin jet electro-polishing equipment. The positively charged 
specimen is held in a Teflon holder between the jets. A light pipe (not show) detects 

perforation and terminates the polishing 11121. 

The electrolytic solution used for the electro polishing has the 

composition presented in the table 6.5. The chemicals have to be mixed in the 

order showed in the table and this operation must be carried out very carefully 

and following the correct safety procedures. Whilst mixing, the solution has to 

be constantly stirred. 

Table 6.5 Chemical composition for the electro-polishing solution 

Substance Concentration (% volume) Volume (mL) 
Ethanol + 4.8`%, Methanol 60 900 
2-Butoxyethanol (99%) 30 450 
Perchloric Acid (60%) 10 150 
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The polishing condition, such. as voltage, temperature, flow mode and 

rate were established after some trials. The polishing voltage was determined 

for every sample to be prepared, obtaining the current-voltage curve under the 

condition for electro-polishing. The voltages used were between 22 and 30 V, 

depending on the weld metal. Some recommended. conditions are listed in 

table 6.6. Lower temperatures than the maximum recommended . 
in the table 

were used and these extended the time for the thinning process, but improve 

considerably the conditions for a thin polished sample. A single moderate flow 

rate was used for all the cases. The time of polishing was controlled by an 
infrared sensor, which constantly measure light emitted from an infrared light 

source placed on the opposite side of the sample. 
After the electro-polishing process was finished, the sample was cleaned 

up in methanol and then in ethanol. The sample was stored immersed in 

ethanol until its observation on the TEM microscope. 

Table 6.6 Recommended parameters for the final thinning of TEM samples 
Parameters Condition 
Electrolyte See table 3.4 
Voltage 22 - 30 V 
Maximum Temperature -15° C 
Light Stop value Auto (see reference 66) 
Time Automatically stopped 
Pump flow rate 35 (see reference 66) 
Flow mode Single flow 

6.2.2.2 Characteristic of the Electron Microscopes 

The table 6.7 summarise the important condition for the different 

microscopes used in this investigation. Important parameters for the 

microscopes are: type of filament, accelerating voltage (E), working distances 

(WD), electron detectors type (EDT) and spot size (SS). 

Table 6.7 Important parameters for the different microscopes used 
Equipment Filament type E (kV) WD (mm) SS EDT 
CamScan4 Thermoionic 

,, 
20 18-22 1-5 SE 

emission (W) BE 
FEG-SEM Field emission 5-10 5-12 30 µm* SE 

SE-in-lens 
CM-20 TEM Thermoionic 200 AL=1 m** 2 Screen 

emission (LaB6) `.... ...:. _, ..,, .:, _. ý, ., _ Film 
* The size of the spot is controlled by different apertures (standard 30 µm) 
**This is the camera length used for electron diffraction analysis 

The 
.. 

CainScan4-SEM was -'used 'for general - observation of a' " the 

microstructure, chemical analysis of NMI and general fractography. The FEG- 
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SEM permitted the observation of the microstructure and the fracture surface 

at very high resolution. The CM20-TEM was utilised for the identification of 
the microphases using electron diffraction techniques. 

6.3 Scanning Electron Fractography 

To - study the fracture mechanism and its relation with the 

microstructural components of the weld metal and the hydrogen, content, 
scanning electron microscopy (SEM) was used. Special attention was made to 
both the morphology of the fracture surfaces and the microstructure possibly 

related with the fracture surface characteristic. 
A special methodology is not necessary in the SEM observation of the 

fracture surface of the tensile samples. If dust or corrosion products are 

present, some cleaning procedures should be necessary. Care has to be taken 
in the selection of the procedure to be used because it could result in the 

dissolution of the fracture surface, changing the morphology. 
In the fracture morphology of hydrogen assisted cracking, quasicleavage 

(QC), intergranular (IG), and microvoid coalescence (MVC) fracture 

mechanisms are observed. Using SEM, the relationships 'between fracture 

morphology of hydrogen assisted cracking, microstructure, and mechanical 

properties could be elucidated. 

6.4 Test for measuring hYdrog-n diffusion and trapping, e 
., 

. -A potentiostatic double-step, method. or. double; pulse , 
technique (PDP) 

was used to study hydrogen ingress and, egress for the different weld metals. 
The technique consists of generating -hydrogen atoms at a constant cathodic 

potential on the metallic surface and in the presence of a hydrogen entry 

promoter (for example As+3, : S-2, etc. ), and, then step _the the. potential to a more 

positive value below the corrosion potential. During this step,, the 
; anodic 

current and the, charge associated . with ; the re-oxidation , of from 
, the 

electrode are recorded. This technique was n proposed _ 
by, Pound and 

collaborators 1101-105, , 114). They, showed, that a, mathematical model for, the 
'esr. .F-i 

diffusion and trapping of hydrogen (chapter 5, sections 5.4 and 5.5) under, the 

condition, -, imposed, -, by a. this ; technique, could quantitatively, account for, the 

experimental _results results obtained.,, = Using. , this 
,- 

technique, the trapping 

characteristic of the weld metal could be obtained, through, the determination 

of the k, the trapping rate constant. 
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6.4.1 Weld metal electrode preparation 
Discs of weld metal about 0.5 cm2 and 1-1.5 mm thick were taken from 

the base of the tensile samples (see figure 6.5) using a slow cutting machine 

with a diamond disc. After the cutting, both faces of the discs were ground 

with 1000 grit SiC-paper and then cleaned with acetone. A copper wire was 

soldered to the discs, obtaining the electrical contact necessary. This wire was 

passed through an L-bent glass tube previously to the soldering on the sample 

surface. Soldering was made using 60Sn-4OPb wire. The sample of weld metal 

was located as near as possible of the L- shaped extreme of the tube and then, 

using a digital voltmeter, the electrical conductivity was checked. 

Figure 6.7 Especial mould used to mounting the electrode. 

After that, a mounting with epoxy resin utilising a special mould (figure 

6.7) was made to permit contact only between one of the surfaces of the 

sample and the electrolyte. A schematic representation of the electrode is given 

in the figure 6.8. This type of electrode has the advantage of easier handling at 

the time of grinding, polishing and degreasing of the metal surface. 

6.4.2 Surface preparation of the electrode. 

After the resin has cured, the electrode surface was ground with SiC 

paper of 1000 grit to obtain a flat surface. Then the surface was polished using 

a diamond abrasive compound from 6 to 1 µm of particle size. Finally, the 

surface was cleaned and degreased in an ultrasonic bath with ethanol during 

5 minutes then dried in the air and immediately immersed in the electrolyte. It 

is very important to prepare the sample just before the PDP test to avoid the 

formation of corrosion products on the surface that could affect its 

electrochemical condition. 
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Figure 6.8 Schematic representation of the electrode of weld metal to be used in the 

electrochemical test. 

6.4.3 Preparation of electrolytic solutions 
The electrolyte was a sodium acetate buffer of composition: 0.87 mol/L 

acetic acid (C2H402) and 0.5 mol/L sodium acetate (C2H3NaO2) containing 15 

ppm sodium meta-arsenite (AsNa02) as a hydrogen entry promoter. It was 

prepared mixing 51.3 ml of acetic acid 96%, 42 g of sodium acetate, 1 mL of a 

15.6 g/L aqueous solution of sodium meta-arsenite and distilled water to 

complete 1 litre of solution. The calculated pH for this buffer electrolyte was 

4.52. This solution was de-aerated continuously with nitrogen 1 hour before 

the sample immersion and throughout the measurements. 

6.4.4 Description of the electrochemical cell and equipment. 

The electrochemical cell that was used for the hydrogen ingress/egress 

experiments is shown in the figure 6.9. This consists of a six-necked flask, a 

Lugging capillary, a saturated Calomel electrode (SCE) as a reference electrode 
(RE), two glass cylinders with a porous base to introduce the two platinum 

counter electrodes (AE), and the nitrogen inlet. The counter or auxiliary 

electrodes were introduced into the cylindrical container to avoid the 

dissolution of oxygen in the electrolyte, which is formed on their surface 

during polarization. The Lugging capillary was filled with the same buffer 

solution used for experiments. The working electrode (WE) was held by a 
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rubber stopper with a hole in its centre through which the L-bent glass tube 

was introduced. 

Counter electrode 
/ apt( , Reference electrode (SCEJ 

Nitrogen inlet 

Luggin capillary 

Figure 6.9 Schematic of the electrochemical cell. 
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Figure 6.10 Schematic illustration of the instrumentation for the electrochemical test. 

The potentiostatic double pulse experiment of the weld metal electrode 

was carried out with a Ministat-251 potentiostat. The figure 6.10 shows 

schematically the instrumentation. It was necessary to design and build an 

instrumental amplifier to permit the measurement of the current transient 

during the test. Detailed description of the differential amplifier circuit is 
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shown in figure A. 5 in annexes. This amplifier was connected to a rheostat 

which was connected in series with the line of the counter electrodes (AE). For 

the potential pulse generation, a stable potential source was built and was 

operated manually. Details of its circuit are presented in figure A. 6 in annexes. 
An analogue to digital converted (Picolog ADC-16) was utilised to record the 

current transients in a personal computer. 
The electrochemical cell was immersed into a thermostatic bath with 

water and the temperature was controlled by a water recirculator at 

approximately 25.0 ± 0.1 °C. For the continuous stirring of the solution inside 

the cell, a magnetic stirrer was used in combination to a stirring plate placed 

outside the bath (see figure 6.10). 

6.4.5 Electrochemical test procedure 
The electrochemical test was carried out with standard electrode-kinetic 

instrumentation described previously in this chapter. 
Firstly, the buffer solution was de-aerated continuously with pure N2 at 

least 1h before the immersion of the sample and throughout the realisation of 

the experiment. It was stirred continuously. The temperature of the solution 

was maintained at 25.0 ± 0.1°C during the whole process using a thermostatic 

bath described before. The preparation of the sample surface was started just 

30min before its immersion in the solution, so the sample was introduced into 

the solution just after the lh de-aeration process was completed and just after 

the preparation of its surface. This procedure permits the minimisation of the 

corrosion of the sample surface in the air. 
Once the sample is in the electrolytic solution, its corrosion potential 

(E., 7) is measured with respect to the SCE, during 30 min every 5 min. This 

allows the starting point for the realisation of the polarisation. Before the 

culmination of the 30 min period, the potentiostat is set up to the value of 
Ecn-10 mV. This is the EA potential. At this stage, the cell must be properly 

connected to the potentiostat but the cell must be isolated. The potentiostat 
has a switch to permit this state. At the same time, the external potential 

source is set up to the overpotential (Tic) needed to reach the ' Ec potential 

value, which is 

Ec = EA +77 (6.7),, ...,. 

Ec was selected to permit the reduction of hydrogen on the weld metal 

surface without the formation of H2 bubbles in excess that could interfere with 

the H covering of the electrode surface, which at the same time could decrease 
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the ingress of H atoms into the weld metal. For the weld metals studied the 

value of tic was'selected at -150 mV, which is expected to be located inside the 

Taffel region of the polarisation ý curve. Visual observation of the electrode 

surface during polarisation " permitted corroboration . that the formation - of 

excessive H2 bubbles was avoided, i. e. no bubbles were observed. 
After the measurement of Err- the sample was polarised at EA during 

exactly 1 min, time considered to be sufficient for the stabilisation of the 

polarised electrode surface. During -this time the cathodic current was 
followed. At EA the cathodic current will be called IA for future explanations. 

The recording of the current with respect the time using the analogue to 

digital converter (Instrumentation amplifier + Picolog DC-16) was started 10s 

before the culmination of the period of 1min. The table 6.8 shows the settings 
for the data acquisition using the Picolog software. One of the most important 

parameters is the sampling interval, which will permit the recording of the 

current transients. These transients are expected to occur very fast. 

Table 6.8 Important parameters for the data acquisition using Picolog ADC-16 

Parameter Value or Condition 

Recording type 

Sampling interval 

Reading per sample 
Resolution 

Real time continuous 
looms 

Single 

13bits 

Conversion time 78ms 

After 1 min at EA, the potential was stepped to the Ec value, in the 

cathodic direction. At this moment, the process of hydrogen charging begins, 

that is the ingress of hydrogen into the weld metal electrode. The charging 

process at Ec is maintained constant during a determined period of time and 

the charging current (I, )' is recorded. Three charging times (ta) were used: 10, 

20 and 30 s. This selection, as will be explained below, permits the study of 

the hydrogen egress process taken in account the two possible cases that 

could be controlling the behaviour of the evolution of H: diffusion control in 

the weld metal and interface control. This was explained in chapter ' 2. 

Moreover, by using different times it may be possible to study the saturation of 
the traps in the weld metal, by following the changes in the trapping constant 
k. 

At the end of the charging period, the potential is returned to the EA 

value. An anodic current transient is registered after this step. This anodic 
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current is produced by the re-oxidation of the .H that is diffusing out of the 

electrode, the diffusible hydrogen (HD). This current transient is the most 
important part of the whole experiment. This permits . the characterisation. of 

the trapping rate constant (k) for the different weld metals. The method for this 

determination is explained in the next section. 
The current recording process is stopped when the current, is stabilised 

approximately to the original IA, the cathodic current measured before the Ec 

step. The time passed between the appearing of the anodic current transient 

and the end of the recording was called V. The figure 6.11 shows schematically 

the potential program and a possible current response. 

> 
EA Ear, - IOmV EA 

lt= -150MV 

Ec= EA-$. flc 

. s'; IqA 

ý0 
-----------------y'ýkýti' ------ 

IA 'A 

IC 

tc - ". I to 

60s 10,20 or 30s time [s] 

Figure 6.11 Schematic potential programme and expected current response during 
the potentiostatic pulse experiment. Modified from Pound 1101.1141 

In figure 6.11, the area below the anodic transient has been shaded. 
Two regions are shown: the upper region where the current is positive (qA) and 

the lower one where the current is negative (qe). The addition of these two 

charges is equivalent to the total hydrogen that evolves from the interior of the 

weld metal electrode. For this reason, if the total amount of hydrogen that 

egresses from the sample is required, the shaded area has to be calculated. 

Mathematically this could be done easier if the current curve is shifted to more 

positive values until IA becomes nil. This is equivalent to adding the absolute 

value of IA (I IA 1) to the anodic current transient (I1. This will be explained in 

the next section. 
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6.4.6 Methods for the analysis of the hydrogen egress ". 
The analysis of the experimental data can be examined in, terms of the 

diffusion control presented in the section 5.4 in chapter 5.. From, the 

application of this, parameters such as the rate constant for trapping (k) were 

evaluated for the different weld metals.. , 
The method for the determination of the: trapping constant, k consists in 

the matching of the equation for I'(T' (equation 5.4 in chapter, 5) with the 

experimental data obtained for the anodic current density transient. The 

equation 5.4 is the solution of the modified equation for second Fick's law of 
diffusion that takes in account the trapping of hydrogen. This solution was 

obtained by Pound and collaborators 11011. In the equation I', T' and R are non- 
dimensional terms of current, time and trapping rate constant, respectively, 
defined in the expressions from 5.6 to 5.9 1101,1141 (see chapter 5, section 5.4). 

Before the utilisation of the analytical equation to match the 

experimental data, the latter has to be modified to take in account the small 

cathodic current (IA) imposed by the potential EA, which is slightly below the 

corrosion potential, Ein, of the weld metal. Figure 6.12 shows the concept 

that is needed to explain the modification of the anodic curve. The left hand 

side picture shows the theoretical electrochemical behaviour of the metal M, 

that is the independent curve for the anodic reaction and the corresponding 

cathodic reaction. On the right hand of the figure, the potentiostat response to 

the polarisation process is represented, this shows basically the difference 

between the anodic and the cathodic currents. For example, at Ecorr the anodic 

current density (oxidation of the metal) equals the cathodic current density 

(reduction of hydrogen), and the potentiostat response is zero current because 

the different between these is nil. However, at EA the anodic current density 

(iAI) is much less than the cathodic current density (ie, 2) (logarithmic scale) and 

as a consequence the potentiostat reports a total cathodic current almost 

equal to the value of iA2, that is in--in2. This implies that during the hydrogen 

egress, the anodic transient, so determined, is in reality the difference between 

the anodic transient and the cathodic current at EA. This suggests that the 

anodic current due to the re-oxidation of hydrogen is equal to the anodic 

current reported by the potentiostat plus the absolute value of the cathodic 

current" at EA. Such a modification facilitates the- comparison between the 

responses for different weld metals and simplifies, the mathematical 

processing. 
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An iterative process was involved for the determination of the C. and k 

values, the surface concentration of hydrogen and the trapping constant, 

respectively. A simple method was used for the iteration: firstly, a spreadsheet 

was created to plot the equation 5.4, where the input data was C5, t, k, t', the 

hydrogen diffusivity (D) and the Faraday's constant (F); then this theoretical 

curve was superimposed on the experimental curve and finally, the values of 
C5 and k were changed until the theoretical curve matches the experimental 

one. Following this procedure the trapping rate constant k was obtained. 

THEORETICAL POTENTIOSfAT RESPONSE 

O 
N Anodic reaction 

n+ _ M=M + ne 

Eooa 

EA 
1`2 

EC 
Cathodic reaction C 

2H++ 2e- -H2 

ie 
_ 

lA1 lA2 

Log (current density) 

Figure 6.12 Schematic representation of the theoretical and potentiostatic response 
during polarisation of a metal in an acid aqueous solution. iA is the cathodic current 
density at EA and ic is the cathodic current density at the charging potential. Ec. 

It is very important to know how to interpret these results, and the 

effects of C. and k on the anodic current density transient. Figure 6.13 

presents the effect of these two parameters on the anodic current theoretically 

calculated. Figure 6.13(a) shows that the changes in the concentration of 
hydrogen on the surface of the electrode, from 1.10-9 to 1.10-8 mol/cm3, causes 

an important decrease of the anodic current density peak at t'=0. It has been 

demonstrated that the value of Cs depends on the cathodic charging potential 

or overpotential (ii). McBreen and Genshaw 11151, presented an electrochemical 

analysis of the hydrogen evolution kinetics, mechanisms and adsorption on 

metals and concluded that one of the most important parameters in the entry 

of hydrogen into metals is the coverage of absorbed H on the metal surface, 0, 

which for low coverage gives the Langmuir expression: 

THEORETICAL POTENTIOSfAT RESPONSE 

Anodic reaction 
n+ M=M + ne 

/'A1 
1`2 

Cathodic reaction 
IC2 

2H++ 2e- -H2 

`A_ 'A1 'A 
I 

2 C 
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6=90exp(-R 
T) 

(6.8) 

where 9o is the value of A at zero overpotential and F, R and T are the 

Faraday's constant, the Universal Gas constant and the temperature, 

respectively. 
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Input Data 
F [C mor'] 96485.34 
D [cm2 s'1] 1 5.0010-5 
tc [s] 30 
Cs (mol cm'3]: 10-9 to 10-0 
k [s'1] 0.5 
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Figure 6.13 Schematic representation of the anodic current density due to the re- 
oxidation of hydrogen. (a) Effect of the superficial hydrogen concentration (Cs) and (b) 
effect of the trapping rate constant (k), on the current density response 
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The hydrogen coverage can be related with C. using the equilibrium 

constant Kabs, representing the equilibrium across the interface between the 

absorbed and dissolved hydrogen: 

Cs K`b' =9 [6.9] 

By substituting equation 6.8 into 6.9 and modifying the latter, it is 

possible to obtain a relationship between C. and q: 

In C, =ln(Bo "Kai7-F RT 
(6.101 

Equations 6.8 and 6.10 show that as the potential becomes more 

cathodic (i. e. 'i becomes more negative), the coverage with hydrogen (0) and the 

superficial concentration of hydrogen (C, ) will increase. Moreover, if a group of 

similar alloys (in the case of this investigation, HSLA steel weld metals) are 

charged electrolytically at the same overpotential (ii), it will be expected that 

similar values of C. for every weld metal will be found. This principle was 

useful in the present investigation because the recording of the anodic current 

peak was apparently affected by the relatively slow sampling rate (100 ms). For 

this reason, after some tests on different weld metals a value, for, C. was 

selected. Figure 6.14 shows a preliminary result for three different weld metals 

which were selected to represent the, most common microstructures presented 
in the steels studied in this investigation. The range of microstructure varies 
from continuous veins : of-, grain , boundary 

_. 
ferrite. -: (GBF) joa non-GBF 

morphologies. As can be seen in the graph, the 1 peak of . the anodic current 

density appears to be between 30 and 35 pA/cm2, which using the procedure 
for the determination of C; and k described before, and, schematised, in figure 

6.13, the values for the three weld metals in - figure 6.14 ý' were:, 8.70.10-9, 

9.60.10-9, and 9.95.10-9 mol/cm3, " for 
. the weld: metals 15171,14031- and 

VCX256 1, respectively. With these values - as a guide, all the , anodic " current 
density results for the egress' of hydrogen were studied to determine k. After 

the processing of all the curves, it was apparent that the value for C8, suitable 
to compare the totality of the weld metal samples was 9.91.10-9mol/cm3., This 

C. value was selected to permit comparison of the k values for the weld metals 

, 'studied. This value may or may. not represent the'true value for Cs for all the 

weld metals; however it permitted at, least ;a qualitative comparison between 

them, from the trapping point of view.. s 
For the presentation of the results of- the egress of hydrogen, the peak 

related with the value of Cs was omitted: and the maximum' scale, used in the 
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graph was 5 µA/cm2 which did permit the comparison of the experimental 
data obtained for the different samples that were studied. 
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Figure 6.14 Anodic current densities for three different weld metal microstructures. 
The microstructures are: continuous grain boundary ferrite veins (15171), 
discontinuous grain boundary ferrite (VCX2561) and no grain boundary ferrite 
(14031). The rest of the microstructure is acicular ferrite, and variable contents of 
bainite and microphases. The microstructure for each weld metal is represented 
schematically in the figure based on real results. 

6.4.7 Determination of the trapping rate constant (k) 

Once the value of C. was selected as described before, the 

determination k is done through iteration until the theoretical curve of anodic 

current density matches the experimental data. The criteria to compare the 

trapping rate constant for the different weld metals is schematised in the 

figure 6.13(b) where the effect of the value of k is shown. As can be observed in 

the figure, an increment of the k value produces the reduction of the anodic 

current density. For this reason, the variation of the k value is associated with 

the increase of the trap density in the weld or the variable quality of traps that 

could be found. The quality of the traps is the capacity of the trap to attract 

and immobilise the hydrogen in the material. 
Other applications of the study of the k value at different charging times 

could be the saturation of the traps. If the sample is charged at consecutively 
increased times, a reduction of the k value could be related to the saturation 
of the traps. This criterion was employed to compare the k values and in the 

same weld the effect of the time of charging. 
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6.5 Experimental data and analysis. 
In this investigation, as mentioned before, original data was taken from a 

previous work by Wildash[$]. This data includes: 

1- MAC proportion. This information was obtained by a very meticulous 

method, and after revision of some results it was corroborated their 

validity. For this reason this set of data was used. The 

corresponding scatter of results was estimated, following the 

recommendations of the appropriated standard. In this case, as is 

discussed later the potential error is estimated to be no more than 

5%. 

2- Mechanical properties. All the results from the, tensile test were 

employed. This data was manipulated to clearly present the results 

without oversimplifying. This original data was analysed following a 
different approach to elucidate the weld metal behaviour and the 

effect of hydrogen. Due to the lack in statistical information, the 

potential scatter of the results was estimated. This is discussed in 

detail later. 

3- Diffusible hydrogen measurement. This measurement was made 

using gas chromatography and was utilized as was reported 

originally. No further manipulation was done. 

As is described in this chapter, the work that was, carried out, during 

this investigation involves: 

1- Detailed metallographic analysis. Weld metal, samples were prepared 

in different manners to study: microstructure of the weld metals 

(OM, SEM and TEM), NMI characterisation (some compositional 

analysis, size and spatial distributions, morphology, number 

density, etc. ), MAC identification and characterisation (location, 

morphology, size, etc. ). The finality of this analysis is to clarify the 

relationship between composition, microstructure, mechanical 

properties and hydrogen induced cold cracking resistance. 

2- Fractographic analysis. The fractured tensile samples were studied 

in some detail throughout SEM. Basically, the study was 

concentrated in identify the relation between microstructural 

features and the behaviour of the hydrogen charged samples. 

Especial attention was taken to the effect, of hydrogen " on - the 
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fracture micromechanisms, the crack initiation and the associated 

microstructure or microconstituent. 
3- Thermodynamics and other theoretical, calculations. Some effort was 

made to apply current models to the analysis of the weld metals 

samples. TTT and CCT diagrams were calculated to support the 

effect of composition on microstructure of weld metals. Estimation of 

transformations temperatures (Be, Br, M. and Mr) taking into account 

composition and size effect, in the case of the estimation of the 

probability in the retention of austenite in the MAC constituent. NMI 

stability diagrams were obtained for each weld metal with the 

intention of associate composition with type of expected inclusions. 

Other calculation involving NMI, was the effect of solidification of the 

weld metal on the formation of the different inclusions. Other minor 

mechanical estimations were employed to support the analysis of 

results. 
4- Trapping capacity of the weld metals. The pulse technique described 

in this chapter was applied to the weld metal samples to estimate 

their hydrogen trapping capacity. This technique had not been 

employed before on weld metals. For the application of this 

technique some electronic circuitry was fabricated by the author to 

be adapted at the facilities of the laboratory. Detail of this electronic 

circuits are described in this volume. 
5- Statistical analysis. When appropriate a t-student analysis was 

carried out to establish the significance of the results. In the case of 
the electrochemical test to estimate the trapping constant, due to 

limitation in the volume of sample each test was made maximum 
three times. This small size sample requires an especial statistical 
treatment. Confidence intervals were estimated when needed. 

ý.; ' 
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CHAPTER SEVEN 

RESULTS AND DISCUSSIONS 

PART I 

THE MICROSTRUCTURE OF THE HSLA STEEL WELD METALS 

In the present chapter the results of metallographic 'studies carried out 
during this investigation are presented. They were obtained using optical and 
high, resolution-electron microscopy (FEG-SEM). Twelve weld metal samples 

were selected from a group of 40 compositions obtained by Wildash and 

collaborators [8-111, which were made with two heat inputs: 1 and 3 kJ/mm. 

For convenience, the weld metals produced with a heat input of 1 kJ/mm were 

selected, as the effect of heat input on microstructure and properties is well 

understood. These weld metals were utilised. to cover a wide range of 

compositions, microstructures and strengths. Some efforts are made to 

classify the different weld metal microstructures. Proportion variations of grain 
boundary ferrite (PF(G)), acicular ferrite (AF), ferrite sideplates (FS(SP)), bainite 

(FS(B)), and martensite (M), were related to composition. The effect of 

composition on microstructure is interpreted using; theoretically calculated 
TTT and CCT diagrams and other models for the calculation of the proportion 

of phases. 
Attention was concentrated on identification of phases and microphases 

in the weld metal, as well as their volume fraction and spatial distribution. The 

microconstituents of the weld metal such as retained austenite, martensite- 

austenite-carbide islands (MAC), and non-metallic 'inclusions (NMI), are 

studied with some detail because their hydrogen trapping capacity. Effort at 
the identification of MAC and 'retained austenite was made. * Theoretical 

calculations to try to predict the presence of retained austenite in the MAC 

constituent are presented. In the case of the NMI, ' their size and spatial 
distribution were assessed, and some chemical analysis was used to identify 

the 'principal types and compositions of inclusions. Some thermodynamical 

calculations were carried out as an attempt to predict the types of inclusions 

that ' could' form from a determined weld metal composition. " The purpose of 
these 'f assessments , is to characterise , as ý complete as, possible ; the 

microstructural features that could influence: the mechanical properties of the 

weld metals; the transport, distribution and trapping of hydrogen in the weld; 
and their resistance to hydrogen induced cracking or HICC. 3, -, _. °, " -- -., -. 
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7.1 General microstructure of the weld metals. 

Figure 7.1 shows a general view of the weld metal CWX351. In this 

photomicrography, two regions in the microstructure of the weldment can be 

clearly differentiated: 

a) The fusion region or weld metal region. This is formed mainly 
by columnar grains decorated by grain boundary ferrite 

surrounding a darker region of a fine constituent, which could 

be a mixture of acicular ferrite and other microconstituents 

such as bainite, martensite, carbides, retained austenite and 

MAC islands. In some welds, due to variations in composition, 

the presence of grain boundary ferrite is inhibited. 

h) The heat affected zone (HAZ) or reheated regions in a multi- 

pass welding. These regions content fine ferrite grains and 

some darker regions, which could be MAC constituents. 

Figure 7.1 Weld metal and reheated zone of the weldment obtained with the 
consumable CWX351 using a heat input of 1 kJ/mm 

The microstructural study in this investigation is concentrated in the 

weld metal region, where HICC is expected to occur in HSLA steels welds. 
In the are welding process, the weld metal composition, microstructure 

and mechanical properties such as strength and toughness are mainly 
determined by the following factors: 
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Chapter 7: MICROSTRUCTURE OF HSLA STEEL WELD METALS 

a- the composition of the consumables; 
b- the' composition of the parent metal; 

c- the heat input and the thermal history of the weldment, which 
depends on the geometry of the workpiece. 

The composition and microstructure of the weld metal were varied by 

Wildash[8-111 through the utilisation of different types of consumables and 

maintaining the other parameters similar, using 1 kJ/mm and a multi-pass 
bed t6'avoid dilution of the weld metal due to the effect of the parent plate. The 

composition of the consumables affects microstructure through all stages of 
the transformation of the weld: from the formation of inclusions in the weld 

pool to the solid state transformation of the weld metal, passing throughout 

the solidification process. 

7.2 Effect of weld metal Pcm value on general microstructure. 
Figures 7.2 and 7.3 present the general microstructure of the weld 

metals which were studied in this investigation. Table 6.2 in chapter 6, shows 

the composition of these weld metals. It can be noted in this table that the 

analysis was complex and no attempts were made to identify clearly the 

influence of compositional variables on microstructure. This complication is 

increased by the difficulty of recognising or differentiating the various 

microstructural constituents. To overcome this problem the Pte, value, 

equation 7.1 which is a measure of composition, was used as a reference to 

compare the different weld metals: 

Vomit + %Cr + %Cu %Si %V °/%Mo %Ni 
+5"%B %C+ 

Vomit 
20 

+30+10+ 
15 

+ 
60 

(7.1) 

'An figures 7.2 and 7.3, the different constituents of the HSLA steel weld 

metals: grain boundary ferrite (PF(G)), Widmanstätten ferrite (FS(SP)), acicular 
ferrite (AF), bainite (FS(B)) and martensite (M), can be identified. From these 

figures the following observations could be extracted: 

1= An increase of the P. value produces ' the' reduction in grain 
boundary ferrite proportion, the refinement of the microstructure 

and the formation of low temperature 'transformation products: 
bainite and martensite. This basically is due to the increase in 

hasdenäbility of the weld metal, - that is, the displacement of the TTT 

or CCT curve to longer times and lower temperatures. - 
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Figure 7.2 Effect of composition (Pe,,, ) on the microstructure of six different weld 
metals obtained with a heat input of 1 kJ/mm: (a) CWX181, (b) CWX351, (c) 14001, 
(d) 15171, (e) VCX2561 and (f) CWX361. 

2- In the group of weld metals that contain grain boundary ferrite, two 

sub-groups could be delineated: those containing a continuous 

network of grain boundary ferrite and those accommodating a 
discontinuous network. This feature has been previously shown by 

Wildash[1I to have a significant effect on the HICC behaviour of the 

weld metals. 
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Figure 7.3 Effect of composition on the microstructure of six different weld metals 
obtained with a heat input of lkJ/mm: (a) CWX201, (b) 14031, (c) CWX71, (d) CWX91, 
(e) CWX81 and (f) CWX331. 

3- The size (width and length of columnar grains) vary slightly between 

weld metals with no particular relation with the increase Pm value. 

Cooling rate and heat input are important to control the size of these 

columnar grains. The prior austenitic columnar grain is observed 

clearly in the weld metal with PF(G) and hardly in those without this 

constituent decorating the grain boundary. The austenite grains are 
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formed during the solidification process and/or the transformation 

of S-ferrite to austenite and are affected by: the grain size of the 

parent steel (in this case previous weld pass), the non-metallic 

-inclusions density; size and distribution, and the alloy content. The 

reduction in grain size could be the consequence of. the variations in 

C content and/or the non-metallic inclusion density. An augment in 

C has been reported [14, as, 55-561 to reduce the columnar grain width 

and size, which could be due to the formation of carbides that could 

control the austenite grain growth. Moreover, a high non-metallic 

inclusion density could affect the nucleation and growth of the new 

grains. This change in grain size influences the solid-state 

transformation due to the increase of places for the nucleation of 

grain boundary ferrite, bainite or another transformation product. 

The weld metal microstructure in the lower Pte, range (<0.20), changes 

from 'a mixture of grain boundary ferrite (PF(G)), Widmanstätten ferrite (FS(SP)) 

and `acicular ferrite (AF) to almost 100% acicular ferrite (AF), as observed in 

figure 7.2 and 7.3(a). However, at higher P values (>0.20) the appearance of 

bainite could be observed, constituent which appear to compete with the 

formation of acicular ferrite, as shown in figures from 7.3(a) to 7.3(e). At the 

highest Pm value of 0.27, a martensitic microstructure can be found, which 

also contains an amount of bainite which is difficult to distinguish using the 

optical microscope. 
Micro-constituents such as retained austenite and martensite- 

austenite-carbides islands (MAC) are present in small proportions in all the 

welds mentioned above. This proportion is affected by the alloy content and 

cooling rates, as is `discussed in the next section. 

7.3. Details of weld metals microstructure and composition effect. 

Figures 7.4 to 7.6 present in more detail representative microstructure 

of weld metals. The proportions of each phase are shown, in figures, adjacent 
.. '` to the microstructures. In some cases, the phases can be clearly identified as 

grain boundary. ferrite (PF(G)), acicular ferriteF (AF) and ferrite with aligned 

second phases (FS(A)), in which is included Widmanstätten ferrite or ferrite 

side plates (FS(SP)) and bainite (FS(B)).. When no alignment between second 
phase and ferrite is found, the phase is' identified as FS(NA). However, in other 
welds the distinction between the different' features was very difficult. In these 
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cases a mixture of microstructural features are reported, such as: AF+FS(NA) 

and FS(A)+M, as in figures 7.4(c) and 7.5. Evolution of the microstructure with 
Pte, value is shown in table 7.1. In annexe A. 10 the phase proportion of all the 

weld metals is presented. Figures from 7.4 to 7.6 are representative of them. 
The following observations are worthy of comment: 

1- The microstructure of the studied weld metals is a mixture of 

various features. At low Pcm values grain boundary, Widmanstätten 

and acicular ferrite forms predominates. At higher Pam� values bainite 

apparently compete with the formation of acicular ferrite and it is 

possible to produce martensite. 
2- Microphases are found in all the weld metals. As is discussed in 

next section, the proportion of microphases such as retained 

austenite, MAC islands and carbide depends on the amount of 

particular alloying elements. The austenite transformation to 

acicular ferrite tends to leave a significant amount of untransformed 

austenite between the intersecting ferrite laths as a consequence of 
its chaotic interlocking nature. These regions later transform to 

either ferrite-carbide aggregates, martensite or remains as retained 

austenite, depending on cooling rate and composition. In- next 

section, an attempt to predict the retention of austenite is made. 
3- At high Pc� values and due to the variation of some alloying 

elements such as Mn, Cr, Ni and Mo, it is promoted the formation of 
bainite, which is found as isolated islands as shown in figure 7.6 for 

several welds. Manganese, chromium and nickel are typically used 
to produce low carbon bainite steels 11l5i. Probably, a fully bainitic 

weld metal is not obtained due to the large size of the prior austenite 

grain. The sulphur content as been reported to. promote the 

nucleation of bainite at the grain boundary, where this impurity 

segregates [iibl. 

Table 7.1 Evolution of the weld metal microstructure with composition. The weld 
metal is a representative example of that microstructure 

Pam value Microstructure* Weld metal 
Pcm<0.17 PF(G) [continuous] + AF + FS(A) + microphases CWX181 
0.17<P , <0.20 PF(G) [discontinuous] + AF + microphases CWX361 
P, : 0.20. AF + FS(B) + FS(NA) + microphäses CWX201. 
Pte, =0.27 M+ FS(B) + microphases' CWX331 

*PF(G): grain boundary ferrite, AF: acicular ferrite FS(A): Widmanstätten ferrite, FS(B): 
bainite, FS(NA): ferrite with non aligned second phase or degraded ferrite with MAC 
constituents and M: martensite. 
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(a) 

(b) 

(C) 

FS(NA) 

0% 

PF(G) 
3% 

FS(A) 
1% 

Figure 7.4 Microstructural changes due to the composition of different weld metals: 
(a) CWX181gb, (b) CWX351 and (c) CWX361. The P,,,,, values are 0.11,0.12 and 0.18, 

respectively, as seen in table 7.1. 
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(a) 

(b) 

(c) 

PF(G) 
O% 

Figure 7.5 Microstructural changes due to the composition of different weld metals: 
(a) CWX201, (b) CWX81 and (c) CWX331. The Pcm values are 0.20,0.24 and 0.27, 

respectively, as seen in table 7.1. 
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(a) 

(b) 

(c) 

Figure 7.6 Isolated islands of FS(A) or bainite in three weld metals: (a) CWX71, (b) 
CWX81 and (c) CWX91 
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4- High content of Ni and Mo promotes the formation of martensite as 
is the case of the CWX331 weld metal, which seems to be a mixture 

of lower bainite and martensite. The TEM image of this weld metal is 

presented in figure 7.7. It can be observed in this figure the presence 

of bainitic ferrite laths and the high dislocated region of very fine 

martensite laths. 

Figure 7.7 TEM image of the CWX331 weld metal containing bainite and 
martensite (dark region on centre left of picture). 

5- The increase in some alloying elements such as Cr, Ni and Mo, as 

expected, produces the refinement of the weld metal microstructure 

as can be observed comparing CWX201 with CWX71 in figures 7.5 

(a) and (b), respectively. This could be the result of the retardation of 

the austenite transformation, which reaches lower temperatures to 

convert to ferrite, thus refining the microstructure. The formation of 

precipitates from the microalloying additions (Nb, V, Ti) could 

contribute to this effect. 

This general description of the variation of the weld metal 

microstructure, as discussed previously, permits to provide a basis for 

understanding the wide spectrum of weld metal strength (from 400 MPa to 

1000 MPa) in the as-welded condition. 
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7.4 Calculated TTT and CCT diagrams for the HSLA steel welds 

In the last section the effect of the composition on the microstructure of 
the weld metal was briefly elucidated. In this section, the effect of the 

composition on the weld metal hardenability and phase proportion is treated 

using two computer programs based on simple thermodynamic and kinetic 

models. For calculation of the 'ITf and CCT diagrams the models first 

presented by Bhadeshialllal were used by Babu et. al. 11191 to produce a suitable 

software. The other program that was used to estimate the phase proportion 

was made by Babu et. al. 11201 and implements the models reported by Ashby, 

Easterling and Ion[121-121. 

TTT and CCT diagrams are a convenient way of presenting the effect of 
the composition on weld metal transformation. Figure 7.8 shows the 

calculations for the CWX181 weld metal. Figure 7.8(a) shows the actual 

microstructure of the weld metal, figure 7.8(b) presents the TTT and CCT 

diagrams for this, weld metal and figure 7.8(c) plots the variation of the 

proportions of ferrite, martensite and bainite with the cooling rate. Figure 

7.8(a) shows a microstructure consisting of grain boundary ferrite (PF(G)), 

ferrite sideplates (FS(A)) and acicular ferrite. Figure 7.8(b), showing the 

transformation diagrams and the calculated cooling curve for the weld metal 

near the centre line, indicates that this general form of microstructure is well 

predicted. The calculation of the cooling rate curve, based on Rosenthal's 

equations; is explained in annex A. 9. Using this cooling curve, it should be 

noted that the formation of PF(G) is expected in agreement with the actual 

microstructure.. However, the diagram fails to show clearly the range of 
transformation 

f 
for ferrite sideplates and acicular ferrite, regions that must 

appear, between the PF(G) initiation curve and the bainite start line. These 

, 
transformation boundaries can be only obtained experimentally. Harrison and 
Farrar 1123-1241 present more complete CCT diagrams and phase proportion for 

1C-Mn weld, metals. Figure 7.8(c), where the variation of the phase proportion 

with the cooling rate is shown, could supplement diagram 7.8(b). This figure 

presents the proportion of ferrite, bainite and martensite after the solid state 
transformation, information that is not contained in the previous diagram. In 

. this case, it is, predicted the formation of 80% ferrite and 20% bainite, but no 
distinction is made about grain boundary, acicular ferrite or ferrite side plates. 

Similar diagrams to figure 7.8(c) were calculated for the rest of weld metals but 

the phase proportion predictions not were satisfactory for weld metals with P. 

values above 0.20. 
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Figure 7.8 Microstructure of the weld metal CWX181gb (a) Actual microstructure 
showing PF(G), FS(A), AF and microphases, (b) TTT and CCT diagram with the cooling 
curve superposed and (c) Calculated phase proportion of the weld metal at CR=43 K/s. 
Bs and Ms are the start transformation temperature for bainite and martensite, 
respectively. 
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In figures 7.9 and 7.10, calculated TTT (red dotted line) and CCT 

(continuous black line) for all studied weld metals are presented. On each 

diagram the estimated cooling curve is superimposed. Figure 7.9, it can be 

noted that the formation of grain boundary ferrite is expected for this group of 

weld metals, results that are in agreement with experimental observations. In 

contrast, figure 7.10 do not predict the formation of grain boundary ferrite but 

bainite. It can be observed that for the case of CWX201 weld metal (figure 

7.10(a)) the cooling curve intercepts the CCT diagram in a region between 

polygonal ferrite and bainite, slightly above B, temperature, the initiation 

temperature of bainite. In this region it is expected to occur the formation of 

acicular and/or bainite. Experimental observations confirm this 

microstructure (see figure 7.5(a)). Weld metals represented in figures 7.10(b) to 

(f) indicate that bainite is expected, as shown experimentally in figure 7.3. The 

diagram for the CWX331 weld metal shows that martensite is expected in this 

weld metal, which as well is in agreement with metallographic results, as 

shown in figure 7.5(c). 

Calculated TTT and CCT diagrams permit to have a broad visualisation 

of the microstructure and. the effect of the composition of the various weld 

metals studied in this investigation. With these diagrams in mind and from the 

metallographic observations, the weld metals can be classified as shown in 

figure 7.11 and table 7.2. Figure 7.11 presents schematically the evolution of 

the microstructure of the weld metals with composition. Five types can be 

observed and table 7.2 indicates which weld metals pertain to each type. Weld 

metals in the same group have different proportions of the phases and/or 

composition. In regard to the columnar grain size, it could vary in the same 

weld metal. Generally, the prior austenitic grains are smaller near the fusion 

line in comparison to those close to the centre. In the annexe A. 11 is shown an 

example for the CWX181 weld metal. 

This microstructure classification is taken into account in next chapters 
to explain the microstructural influence on the following aspects: 

1- The changes in fracture micromechanisms of the weld metal with 

and without hydrogen. The presence of microstructural features that 

could ° initiate *"cleavage ° cracks" could be: = gram' boundary ferrite, 
bainite; martensite; 'etc.., 
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Figure 7.9 Theoretically calculated TTT and CCT diagrams for the different steel weld 
metals listed in table 7.1. The calculated Pcm values are: (a) 0.11, (b) 0.12, (c) 0.13, (d) 
0.15, (e) 0.17 and (t) 0.18. 

2- The hydrogen diffusion and trapping. It is expected, for example, 

that a continuous network of grain boundary ferrite could contribute 

to the transport of hydrogen into the weld and outside to the 

atmosphere. The diffusion throughout the microstructure could be 

difficult due to heterogeneous features. Moreover, high proportion of 

MAC constituent, which could be located between ferrite side plates 

and acicular ferrite laths, could increase the hydrogen trapping of 

the weld metal. 
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Figure 7.10 Theoretically calculated M and CCT diagrams for the different steel weld 
metals listed in table 7.1. The calculated PcR, values are: (a) 0.20, (b) 0.20, (c) 0.21, (d) 
0.23, (e) 0.24 and (f) 0.27. 

The general classification presented in figure 7.11 and table 7.2 

summarises the range of microstructure of the weld metals which were 

analysed in this research. This was one of the reasons for the selection of 

these 12 compositions. These figures simplify the microstructural support that 

is needed in the next discussion chapters, when dealing with relationships 
between the microstructure, the mechanical properties and the resistance to 

HICC of the weld metals, making the discussion more comprehensive and 

effortless. 
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(c) (d) (e) 

Figure 7.11 Schematic representations of the weld metal microstructures in different 
HSLA weld metals. PF(G): grain boundary ferrite, FS(A): Widmanstätten ferrite, AF: 
acicular ferrite, FS(B): bainite and M: martensite. 

Table 7.2 Qualitative description of the effect of the composition on the general 
microstructure of the different weld metals 

Weld metal Pcm PF(G) characteristic Schematic 
CWX181gb 0.11 
CWX351 0.12 Continuous network Figure 7.12(a) 
14001 0.13 
15171 0.15 
VCX2561 0.17 Discontinuous network Figure 7.12(b) 
CWX361 0.18 
CWX2O1 0.20 No PF(G) formation Figure 7.12(c) 
14031 0.20 
CWX71 0.21 No PF(G) formation Figure 7.12(d) 
CWX91 0.23 
CWX81 0.24 
CWX331 0.27 No PF(G) formation Figure 7.12(e) 

7.5 Microstructure and micro-constituents of the weld metals 

There is considerable evidence from other studies about the effect of 

micro-constituents (retained austenite, martensite/austenite islands and 

martensite/austenite/carbide particles (MAC) on: the effect of retained 

austenite (yR) on the properties of TRIP steels 111271, the mechanical 

properties of weld metals 116.128-1291 and hydrogen trapping by retained 

austenite or MAC 1871. Wildash 181 identified MAC constituents as one of the 

factors that influence the HICC resistance of HSLA steel weld metals. The 

presence of microphases affects in different ways the properties of the weld 
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metal. Firstly, these micro-constituents could reinforce or weaken the matrix 
depending on their individual strength and their relationship with the 

surrounding phases. Secondly, when the metal is stressed or deformed they 

act as stress concentrators which could facilitate the fracture of the matrix. 
Thirdly, they could be strong traps sites for hydrogen, producing a local 

distribution of hydrogen that may reach a critical concentration to produce 
fracture or on the contrary, reducing the hydrogen content of the matrix 
increasing its resistance to hydrogen induced fracture. Finally, these 

microphases could itself be the crack initiation sites in the presence or not of 
hydrogen. 

In this section, the microstructure of the HSLA steel weld metals is 

studied in some detail using FEG-SEM and TEM observations. The objective of 
this section is to make a more detailed assessment of the weld metal 

microstructure than is possible by optical microscopy. In addition to this, it is 

intended to identify and locate the different types of micro-phases that could 
be found in these welds. 

Figure 7.12 presents a picture of a weld metal microstructure, where 

can be observed polygonal or grain boundary ferrite and acicular ferrite. This 

high resolution photomicrograph permits to appreciate the continuous 

character of the polygonal ferrite (PF) and chaotic nature of the acicular ferrite 

(AF). For this reason, for example, polygonal ferrite is an easy path for crack 

propagation and acicular ferrite is an intricate path for the growth of the 

crack. From the point of view of the hydrogen diffusion, the acicular ferrite 

offers more resistance to hydrogen transport and the contrary occurs for the 

grain boundary ferrite which could be a fast path for hydrogen to diffuse. This 

is discussed in detail in chapter 9. 

Figure 7.12(b) shows a detailed image of the section marked on figure 

7.12(a). In this figure can be appreciated the presence of what has been called 

micro-constituents or microphäses: -'retained 'äüstenite, ' märtensite=austenite- 

carbides islands -(MAC), carbides ' and `non-metallic 'inclusions (NMI). These 
micro-phases are löcäted "mainly in between'the grains of acicular ferrite (black 

arrows) and 'ät interfaces around ' grain ' boundary ferrite (red arrows). The 

number density and distribution öf micro-constituents in the weld metal 
' microstructurre -are affected by the composition and the thermal history of the 

weld: .:; ý; .::. .. j... 
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Figure 7.12 FEG-SEM image of microstructure presented in the CWX361 weld metal, 
(a) Polygonal ferrite(PF) and acicular ferrite(AF) and (b) Detail of the region in (a): 

micro-phases (short arrows) and NMI (long arrows) 

The microphases are the last regions to form or transform in the weld 

metal and for this reason adopts the shape that is permitted by the 

morphology of the ferrite. When polygonal ferrite is present the microphases 

are trapped between ferrite grains or located along the polygonal 
ferrite/acicular ferrite interface often having an irregularly elongated shape 
(see figure 7.13). In the case of parallel laths of ferrite as in ferrite sideplates 

and bainite, the microphases are located at the inter-lath region and can have 

laminar or thin films shapes (see figure 7.14). In acicular ferrite these occupy 

the irregular spaces between the ferrite grains as shown in figure 7.15, and for 

that reason adopt a wedge shape. 
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In regard to the spatial distribution of the microphases, it is expected to 

be influenced predominantly by the form adopted by the ferrite at least in the 

case of the MAC constituents, because the NMI distribution is inherited from 

the solidification stage. In the case of a matrix with polygonal ferrite, the MAC 

could be distributed sparsely, depending on the grain size (figure 7.13). If the 

matrix contains regular distributed lath of ferrite, the MAC are distributed 

regularly along the inter-lath spaces (figure 7.14(a)). On the contrary, if 

acicular ferrite is predominant the microphases are spatially distributed closer 

to each other located in the sites left by the interlocking ferrite grains. As is 

discussed in chapter 9, the spatial distribution of microphases could increase 

or decrease the possibility of hydrogen trapping. 

To clearly identify the different type of microphase is a very difficult 

task. It is necessary to make use of high resolution SEM (for example, FEG- 

SEM) and in many cases transmission electron microscopy (TEM) will be 

essential. Whichever the case, the identification could be affected by the 

sample preparation, making this assessment a time consuming experiment 

when analysing several weld metal compositions. For example, in the case of 

SEM observation of MAC constituents, the sample has to be etched carefully to 

reveal the substructure of the microphase permitting the identification of 

retained austenite and martensite. In the case of the TEM thinning 

preparation of the sample at low temperature, the retained austenite could 

transform to martensite. 
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Figure 7.13 Weld metal microstructure formed by polygonal ferrite and acicular 
ferrite; the arrows indicate some of the micro-constituents: MAC islands, retained 
austenite and NMI 
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Figure 7.14 Weld metal microstructure presenting the morphology and distribution of 
microphases. (a) Elongated and irregular microphases and (b) detail of the figure (a). 
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Figure 7.15 Detail of an acicular ferrite microstructure showing the wedge-shaped 
micro-constituents. Arrows indicate the microphases. 

It is important to identify whether the MAC islands are formed by 

retained austenite, martensite or a mixture of them and carbides. The 

hydrogen solubility in austenite is higher than in ferrite, whilst the diffusivity 
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is lower in austenite than in ferrite 116.1301 and probably in martensite. For this 

reason, retained austenite or MAC containing retained austenite are better 

traps for hydrogen. The stability of retained austenite have to be taken into 

account, because if a hydrogen saturated retained austenite transforms for 

whichever the reason to martensite or ferrite and carbides the hydrogen will be 

liberated to the matrix increasing the risk of cracking. On the contrary, 

stabilised retained austenite will retain its hydrogen trapped during service 

due to the high binding energy P71. 
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Figure 7.16 Detail of the microphases found in a HSLA steel weld metal, the central 
feature could be a MAC island, formed by martensite(M), austenite(A) and carbides (C); 
(a) positive FEG-SEM image and (b) negative FEG-SEM image. 

In figure 7.16 are shown details of the surface appearance of some of 

the microphases presented in figure 7.15. These high resolution FEG-SEM 

images allow identification of martensite, retained austenite and carbides. The 

martensite (M) is identified by the observation of substructures on the surface. 

Carbides (C) can be seen as elongated precipitates. The smaller and blocky 

regions seem to be retained austenite, because generally they do not show 
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substructure on their etched surface. Using transmission electron microscopy 

this substructures and the configuration of similar microphases could be 

observed in more detail. 

Figure 7.17, shows a TEM image of a MAC constituent in the weld metal 

CWX201. It can be noted the wedge shape of the central region of martensite, 

which fills the space between the acicular ferrite grains. The right hand corner 

of the wedge seems to be untransformed austenite, which has a lower 

dislocation density than the martensitic region. The high dislocation density of 

martensite and the high hydrogen solubility of austenite make them potential 

hydrogen traps, but crack initiators when a critical hydrogen level is reached. 
Figures 7.18(a) and (b) show a more detailed SEM image of the 

substructure found in a martensite island in the CWX201 weld metal. The 

martensite island appears to be located in a region between the acicular ferrite 

(AF) and the ferrite sideplates (FS(A)). Moreover, it seems to be located between 

two ferrite laths that have grown from the upper right region in the figure to 

the centre. This region was enriched in C and other elements during 

transformation raising hardenability and as a consequence promoting the 

formation of martensite. An elongated region, marked in figure 7.18(b) by 

arrows, can be noted that has probably formed by martensite in the inter-lath 

region, the last region to transform. 

Figure 7.17 TEM image of a MAC island showing the substructures in the martensitic 
region. It can be observed the acicular ferrite grains (AF), martensite (M) and retained 
austenite (A). 
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h 

A? 

Figure 7.18 SEM image of a MAC island. Note the substructure in the martensite 
island and the martensitic elongated inter-lath region signalled by arrows, (a) low 
resolution image showing FS(A) and M; (b) detail of the figure (a). The micro-mark in 
the figure is 2 µm 

7.6 The relation between composition and MAC proportion. 
Microphases exert a significant influence on the properties of the weld 

metals. As a consequence, the determination of the volume fraction of MAC for 

each weld allows a correlation with mechanical properties and the resistance 
to hydrogen induced cold cracking. In figure 7.19, the variation of the 

proportion of MAC constituent with the composition of the weld metal can be 

observed as a function of the Pte, value. This figure was constructed using data 

from the work of Wildashl8l. It is anticipated a progressive increase in the MAC 

content with the increase in alloying elements due to the expected increase of 

the hardenability of the steel, permitting the formation of the microphases. 
However, as is noted, the MAC proportion does not show a uniform increase 

with respect to the Pem value and a maximum value is found for two of the 

weld metals with medium Pe,,, values: CWX361 and CWX201. 

Pem 
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Figure 7.19 MAC proportion for different HSLA steel weld metals. The relative error, 
based on BS7590, was estimated to be :55%. Data taken from Wildash rol 
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Figure 7.20 presents the variation in the experimental and the predicted 
MAC content with the Pcm value for each of the studied weld metals. In 

addition, the proportions of C, Si, Mn, Mo, Cr and Ni are shown to try to find 

whether the changes in MAC content correspond to variation in one or several 

alloying elements from this list. A multiple regression was used to obtain the 

empirical equation 7.2 which relates weld metal composition and MAC 

proportion. The equation is: 

MAC(%)=155"C+10"Mo+6.6"Mn-11"Cr-7"Si-Ni-4 (7.2) 
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Figure 7.20 Variation in MAC and C, Si, Mn, Mo, Cr and Ni content with Pcm value as 
identifier of the weld metal. 
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Equation 7.2 correlates well with the experimental results as can be 

observed in figure 7.20. This equation shows that C is the alloy element that 

affects markedly the MAC content the most, other elements such as ý Mo and 
Mn are less effectives. Carbon influence on the formation of MAC constituent 

could be due to its high diffusivity in the weld metal and readily segregation 
during the transformation of the weld metal to the remaining untransformed 

austenite. However, whilst in general the variation in MAC is explained by 

variation in C content, the high C content of weld metal CWX351 do not 

produce a MAC proportion similar to those found in CWX361 and 14031. This 

is the result of the lower Mn and Mo content, which counteract the effect of C. 

Empirical correlations, as equation 7.2, to predict the proportion of 
MAC constituent and to highlight the individual influence of major alloying 

elements are of practical importance in the case of weld metals, particularly 
from the point of view of hydrogen trapping. However, the identification of 

whether the MAC contains retained austenite or not remains elusive. In next 

section an attempt is made to predict the presence of retained austenite. 
In summary, the knowledge of the MAC content, type and distribution 

in a weld metal is crucial to understand the properties of the weld metal. 
Figure 7.21 presents schematically the type, location and distribution of the 

microphases in a typical weld metal microstructure. In this figure are 

presented two kinds of MAC: the one located in the inter-ferrite lath space and 
the other located between acicular ferrite grains. In the figure are shown the 

presence of non-metallic inclusions that are discussed in the next section. 
Retained austenite could be found in same places where the MAC constituent 
is located. It is worthy to keep this figure in mind. 

7.7 An attempt to estimate the retained austenite presence in the MAC 

constituent in weld metals. 

The previous sections presented the effect of the composition in the 

weld metal microstructure and micro-constituents. The equation 7.2 indicates 

that C is possibly the most influential on the formation of MAC microphases. It 

was stated that one possible reason is the high diffusivity of the interstitial 

elements (C and N) during solid state transformation. During transformation 

of'the weld metal; C and N are rejected from the 'newly formed phase to the 

remaining untransformed austenite: C and N rejection continues until the last 

portion of austenite is saturated with. these elements. Substitutional elements 
are not expected to be partitioned significantly due to their lower diffusivity. 
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Figure 7.21 Schematic representation of the weld metal microstructure showing the 
type and location of MAC constituent and/or retained austenite. 
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C and N saturation and the presence of other alloying elements in 

austenite could have two effects: stabilise austenite at room temperature or 

permit the transform to martensite. However, only compositional factors are 

not responsible for the stabilization of austenite islands. Retained austenite 

stability is controlled by the C content, the size, distribution and morphology 

of the austenite particles, the microstructure that surround the retained 

austenite, the stress state and the strength of the retained austenite [131-1381. 

The carbon content and the presence of alloying elements such as Ni, 

Mn and N, could depress the martensite start temperature (Ms) and stabilise 
the austenite particle. Nevertheless, a complete partitioning of C and Mn 

(which is not expected due to slow diffusion) are not enough to shift this below 

0 °C 11361. For this reason, other factors as particle size and shape have to be 

taken into account to complete the analysis. As a first approximation, the 

compositional stabilisation of austenite is discussed in the following 

paragraphs. 
The carbon content in the remaining austenite, which transforms to 

MAC constituent or remains as retained austenite, has been estimated using a 

mass balance equation of carbon which takes into account the experimental 

proportion of ferrite phases and MAC. The mass balance equation is in general 

as follows for the various weld metals microstructures: 

CNM =CPF(G) *VPF(a) +CFS(SP) "VFS(SP) + CAF 
"VAF + 

(7.3) 
+Cps(B) -V (a) +Cm -V, M +C c-V, c 

where CwM is the total carbon content of the weld metal, C; and V; are the 

carbon content and volume fraction of "each ferrite phases. If carbon in 

polygonal ferrite (PF(G)), ferrite sideplates (FS(SP)), acicular ferrite (AF) and 
bainite (FS(B)) are assumed to be 0.02 wt% (Cr, 

., ºrr) equation 7.3 becomes: 

CM = Cferrire 
. 

(VPF(O) 
+V (SP) 

+VAF +VFS(B)/+CM "VM +CMRC *vfflC (7.4) 

Carbon in martensite is equal to the carbon in austenite from which is 
formed (diffusionless transformation). Volume ' fractions of MAC and ferrite, 
VMAC and Vr mu 

((VPF(G) +Vn(SP) +VAF +VFN(B)), respectively, were measured by 

Wildash PI in a previous work. From equation 7.4 can be noted that the C 

content in remaining austenite depends on the total volume fraction of ferrite 
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phases. In figure 7.22 is plotted the C content in retained austenite versus the 

ferrite volume fraction, estimated throughout the mass balance of equation 
7.4, which gives identical results as the equation proposed by Bhadeshia 11391, 

and slightly higher by the analytical equation given in Wang [137]. Both results 

are shown for two weld metal C contents: 0.037 and 0.083 wt%. These 

correspond to the minimum and maximum carbon content found in the 

studied steel weld metals. As expected the carbon partitioning increase with 

the reduction in remaining austenite proportion depending on C content of the 

steel. For example, the carbon content in retained austenite (volume fraction 

0.10) is around 0.2 and 0.7 C wt%, if the steel C level is 0.037 and 0.083 C 

wt%, respectively. 
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Figure 7.22. Estimated austenite carbon content with respect to ferrite volume 
fraction in steels. A minimum C content in the alloy was selected as 0.037 '% and a 
maximum of 0.083 w%, the interval of carbon content in the studied weld metals. 
Equations based on mass balance (Chang and Bhadeshia [1391) and analytical 
treatments (Wang et. al. (1371) were implemented. 

The Ms and Mr temperatures, martensite start and finish transformation 

temperatures, respectively, determine the extent of the transformation of the 

remaining austenite. If the C content of the last austenite to transform is 

known, and the values of M. and Mf are estimated from the weld metal 

composition, it is possible to estimate approximately the extent of austenite 

retention for a particular weld metal, just taking into account chemical 

composition considerations. For the calculation of the transformation 
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temperatures for bainite and martensite, equations reported in the literature 

1140-1421 were used and are listed in annex A. 12. 
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Figure 7.23 Calculated transformation temperatures for bainite (Bs, B50 and Bf) and 
martensite (M,, Mio, M5o, M9o and Mr) versus carbon content in the last untransformed 
austenite (containing Ci� vertical line). Room temperature is the horizontal line. (a) 
CWX181gb and b) CWX351. Note that in weld metal CWX351 Mr is below room 
temperature. 
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Two examples of the transformation temperature estimation are shown 
in figure 7.23 for weld metals CWX18lgb and CWX351. The vertical line 

represents the carbon content present in the last untransformed austenite 
from where MAC constituent forms. The transformation temperatures are 

plotted against carbon content. Some retained austenite is expected when the 

M. and Mf temperatures are below room temperature. In the examples shown 
in figure 7.23, retained austenite could be partially expected for the weld metal 
CWX351 (figure 7.23(b)). 

Table 7.3 presents the calculated bainite and martensite transformation 

start and finish temperatures for all the studied weld metals and shows the 

volume fraction of ferrite (Vferrite), the carbon content in the last untransformed 

austenite (C. ), B, Br, M9 and Mr. From point of view of the austenite 

compositional stabilisation, only four of the weld metals are expected to 

contain, at least partially, retained austenite as their Mf indicates. These welds 

are: CWX351,15171, VCX2561 and CWX81 (see table 7.3). However, it is 

necessary to consider the size and shape of the retained austenite to make a 

complete analysis. 

Table 7.3 Calculated transformation temperatures for the weld metals. 
Weld metal Vf=ic° Cy (wt9'o) B. (°C) & (°C) M. (°C) Mr (°C) 
CWX181 91.4 0.218 653 533 403 188 
CWX351 93.9 1.056 519 399 84 -131 
14001 94.6 0.501 580 460 288 73 
15171 94.3 0.693 529 409 203 -12 
VCX2561 93.5 0.620 532 412 228 13 
CWX361 83.7 0.383 609 489 349 134 
CWX201 86.2 0.304 561 441 342 127 
14031 91.4 0.217 517 397 364 149 
CWX71 91.3 0.319 486 366 319 104 
CWX91 89.0 0.413 424 304 273 58 
CWX81 91.0 0.545 388 268 217 2 
CWX331 80.0 0.265 451 331 324 109 

Several investigations on dual-phase steels have found an austenite size 

effect on the stability of austenite. Balliger and Gladman 11331 have reported 
that austenite islands of less than about 1 gm in diameter were retained, 

slightly larger than 1 gm were partially transformed to martensite and in 

islands greater than about 10 µm, retained austenite was seldom found. In 

simulated heat affected zone of V treated HSLA steels, Chen et. a1.11431 reported 

M-A constituents between 1 and 5 µm, approximately. No mention was made 

to distinguish whether the small blocky M-A constituent was retained 

austenite or a mixture of retained austenite and martensite. They associated 
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large M-A constituent to low toughness of the HAZ, probably due to the 

presence of 'martensite'. in the largest M-A particles., Jacques[144-1461 ; has 

reported retained austenite with a very fine size of the order. of 1 and 2, pm " in 

TRIP steels. Rigsbee 11361 reported that the particles of retained' austenite are 

smaller than the martensite ones: 0.75 and 2.0 gm, respectively. In, this 

investigation particles of retained austenite of sub-micron size have been 

found as was presented in figures form 7.12 to 7.18. Moreover, when larger 

than 1 pm particles were found, they were partially transformed to martensite 
(see figures 7.16,7.17 and 7.18). All these examples demonstrate qualitatively 
that the smaller is the retained austenite particle the greater is its stability. 
This effect could be related to a decrease in M,. 

Wang and collaborators [1371 have studied the stabilisation mechanisms 

of retained austenite: chemical and size stabilisation. They discussed that the 

reduction in the austenite particle size could be a consequence of. a decrease 

in the probability of finding heterogeneous nuclei inside the austenite island 

and a stabilisation effect due to an increase in interfacial energy. An increase 

in the interfacial energy is the result of the decrease in the austenite particle 

size. The effect of size reduction produces a shift of Ms to lower temperatures. 

In figures from 7.24 and 7.25 are shown several examples about the effect of 

the austenite particle size' for the studied weld metals. These figures were 

obtained following the approach suggested by Wang et. al. [1371 with few 

modifications. In annex A. 13 is presented the procedure that was utilised in 

the present work. 
In figures 7.24 and 7.25, it is observed that a reduction in the austenite 

particle size, as expected, decreases the M. and Mr temperatures for the 

transformation of austenite to martensite for the weld metals. This effect is 

accentuated at particles 'sizes below 1 µm, approximately. Taking room 

temperature as a reference (segmented horizontal line), it can be noted that, 

depending on the steel composition, austenite particles below 0.1 µm should 
be retained, as in the case of all'the 'weld metals except for CWX351. In the 

particular case of the CWX351 weld metal, an austenite particle with 'a 

diameter equal or less than 0.6 µm should be retained (see figure 7.24(b)). This 

behaviour as important implication with respect to the hydrogen trapping 

cäpäcity of the weld metals äs discussed later. 

For weld ' metäls where no retained austenite is expected, the effect of 
'thepärtiele`'size'öf'the remainingaustenite 

could stabilise it' completely'or 
partially. ` For example, the CWX91 weld metal which has a value of Mr around 
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58 °C (see figure 7.25(b) and table 7.3) could reduce this temperature below 

room temperature. As a consequence, in this weld metal small particles could 

be partially retained as austenite. The same occurs to the weld metal: 14001 

in figure 7.25(a). 
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Figure 7.24 Qualitative estimation of the austenite particle size on Ms and Mf. It was 
assumed for the calculations t=0.05, B=1.234 and the carbon concentration as the 

corresponding Cy in table 7.3. The approach that was used is presented in annex 
A. 13. Estimations for: (a) CWX181 and (b) CWX351 
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Figure 7.25 Effect of the austenite particle size on M. and Mr for the 14001 (a) and 
CWX91 (b) weld metals. It was assumed for the calculations t=0.05, B=1.234 and the 
carbon concentration as the corresponding Cy in table 7.3. The approach that was 
used is presented in annex A. 13. 

In annex A. 13 are presented the totality of the results of the estimations 
for the effect of particle size on the retention of austenite. It is worthy to 

mention that the steel composition seems to be the most important factor that 
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affects the stability of the retained austenite. The complexity of the prediction 

of the retention of austenite is due to the existence of factors that combined 

can control the stability of the retained austenite: carbon and alloy content, 

particle size, morphology and distribution within the microstructure. This 

subject continues to be an incentive for further investigations. Recently, 

Timokhina et. al 11481 studied the effect of microstructure on the stability of 

retained austenite in TRIP-steels. They demonstrated that coarse blocks of 

retained austenite located in the polygonal ferrite or at the polygonal 
ferrite/bainite interface transform to martensite at low deformation levels, 

easier than the retained austenite present between the bainitic ferrite laths. 

These results suggest that the retention of austenite in the weld metals is 

going to depend on all the factors discussed above and on the microstructure 
that forms during cooling: grain boundary ferrite, Widmanstätten ferrite, 

acicular ferrite, bainite and martensite. As was discussed before the 

morphology of the microstructure and the MAC constituent are interrelated 

and are summarised in figure 7.21. Unfortunately, an exhaustive study on the 

size and distribution of the MAC constituents was not possible during this 

investigation. However, some qualitative evidence indicates a good correlation 

with the discussion above. A more detailed study is proposed for further work, 

a research that could clarify the role of the MAC constituent in the hydrogen 

induced cracking susceptibility or resistance of the weld metals. 
These estimations and observations are taken into account in chapter 

9, when dealing with the trapping of hydrogen in the weldments. It is expected 

that weld metals containing retained austenite have a greater capacity to trap 

hydrogen and, possibly, a better resistance to hydrogen induced cracking. 

7.8 Non-metallic inclusion assessment 
In steel weld metals the quantity of non metallic inclusions (NMI) is 

expected to be higher than in normal steels. During the welding process 

atmospheric gases (N2,02 and H2) are absorbed in the 
, 
weld pool. NMI are 

formed by the reaction of some reactive alloying elements with oxygen such as 

Al, Ti, Mn and Si. They are complex compounds which can contain mixtures of 

oxides, sulphides and nitrides. Their effect on weld metals microstructure and 

properties include: a contribution as nucleation sites during transformation of 

the weld metal, participation in the formation of voids during deformation, 

distribution of hydrogen in the weld metal due to trapping capacity, initiation 
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of cracks, etc. For these reasons as complete as possible characterisation of 

the NMI in the weld metals is relevant to this investigation, particularly 

hydrogen trapping and distribution and initiation of cracks. 

The assessment of the NMI characteristics is presented in this section. 

It was divided in experimental characterisation and thermodynamical 

calculation. The experimental assessment of the NMI was divided in two parts: 

the general NMI characteristics (shape, content, size and spatial distribution) 

and the NMI specific nature (chemical and morphological). Due to the 

impracticality of completely characterising the NMI types and composition, 

thermodynamic calculations were used. In this respect, stability diagrams 

were obtained to predict the composition and type of inclusions that could be 

formed during solidication. 

7.8.1 NMI number density, size and spatial distribution. 

Using the procedure described in the section 6.2.1.3 (chapter 6), ' the 

'number of inclusions on a2 dimensional (2D) transverse surface through each 

weld metal were determined. The apparent size and number on this plane were 

converted to true 3-dimensional (3D) using equations 6.2 to 6.6. Tables A. 5 

and A. 6, in annex A. 14, show these results. Table A. 5 reports the cross- 

sectional superficial-density of the NMI (Na) and the average two (apparent) 

and three-dimensional (true) diameters and their respective standard 
deviation. It could be noted that more than 90% of the total inclusion number 

has a true diameter less than 1.6 pm as a consequence of the rapid cooling 

rate experienced by the weld metal. The remaining inclusions are larger than 

1.6 pm in diameter, as shown in table A. 6. In general, the average inclusion 

true diameters are between 0.75 and 0.95 pm, as can be observed in table A. S. 

However, the dispersion of the true diameters, as determined by the standard 
deviation, varies in each weld metal. 

Figure 7.26 shows the values of do, the true diameter, for the various 
low alloy steel weld metals. In general, the NMI average size is similar for all 
the weld metals that were evaluated. Moreover, it was observed that there was 

a wide dispersion of inclusion diameters and this was particularly wide for 

weld VCX2561. This range in inclusion diameters is related to the presence of 

particularly ' large'inclusions; which can jeopardize the mechanical properties 

of the weld metal. 
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Figure 7.26 3D or true diameters (do) for the HSLA steel weld metals, which were 
studied in this investigation. 

Figure 7.27 presents the 3D or true inclusion number for the steel weld 

metals. It can be noted that the number of inclusions vary considerably for 

each weld metal, showing a minimum value for CWX201 and the maximum for 

the CWX351 and CWX81 welds. 
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Figure 7.27 NMI numbers for the HSLA steel weld metals, which were studied in this 
investigation. The Pcm value for each weld metal increases from left to right. 
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It has already been mentioned that the dispersion of the values of the 

NMI diameters was wide and this suggests that the best way of presenting 

these results is using histograms. This kind of presentation permitted the 

application of certain criteria to classify the weld metals based on their NMI 

characteristics. The criteria are explained briefly in the annex A. 15. With 

respect to the inclusion number density three categories are used: high 

(maximum frequency (N) > 800), medium (600sN5800) and low (N: 5600). In 

regard to inclusion maximum size the categories are: large (d�>5 µm), medium 

(3<d�55 µm) and small (d�53 pm). The spatial distribution, following the 

recommendations in chapter 6, section 6.2.1.3, classify the weld metals in the 

following categories: random, clustered or regular (see annexe A. 15 for a 

detailed description). 

Figures 7.28 to 7.30 expose the size and spatial distribution of the NMI 

in the different low alloy steel weld metals, which were analysed using the 

methods already described. In the figures, the histograms on the left-hand 

side are the results for 3D or true diameter (d�) distribution of each weld. This 

distribution obeys a log-normal distribution. 

Histograms on the right-hand side of the figures, show the spatial 

distribution which was indirectly estimated by the NMI-free area around each 

inclusion. The curves on these histograms correspond to a normal distribution 

and allow classification of the distribution in random, clustered or uniform, as 

was mentioned above and is proposed in chapter 6. 

As an example, in figure 7.28 the weld metals CWX351 and 14001 show 

similar inclusion characteristics: they present a high number of inclusions 

with a significant degree of clustering. On the contrary, the CWX181gb and 

15171 weld metals seem to show a lower degree of clustering, which could be 

a consequence of the lower inclusion density. Weld metals CWX201" and 

CWX331, in figures 7.29 and 7.30, respectively, show the least clustering, that 

is, their distribution is almost random. Similar results are observed for other 

weld metals as reported in figures 7.25 for weld metals CWX181 and 15171, 

and in figure 7.29 for the VCX2561. 

The results given in figures from 7.28 to 7.30 allow a qualitatively 

comparison of the weld metals taking into account the characteristics of their 

non metallic inclusions: maximum NMI size, maximum NMI frequency and 

spatial distribution, as mentioned above. Table _ . 7.4 shows this -. qualitative 

classification. 
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Figure 7.28 NMI size and spatial distribution for the analysed weld metals: CWX181, 
CWX351,14001 and 15171. The method used for the estimation of the spatial 
distribution is presented in section 6.2.1.3 in chapter 6. 
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Figure 7.29 NMI size and spatial distribution for the analysed weld metals: VCX2561, 
CWX361, CWX201 and 14031. The method used for the estimation of the spatial 
distribution is presented in section 6.2.1.3 in chapter 6. 
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Figure 7.30 NMI size and spatial distribution for the analysed weld metals: CWX71, 
CWX91, CWX81 and CWX331. The method used for the estimation of the spatial 
distribution is presented in section 6.2.1.3 in chapter 6. 
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Table 7.4 Qualitative classification of the NMI population in the weld metals. The 
classification criteria are shown in table A. 7 and A. 8 in annexes. 

Spatial Distribution NMI size* NMI number Weld metals 
Random Small Low CWX331 

Medium Low CWX201 

Large Low 
Medium 

Clustered Small High 
Medium 

Medium High 
Medium 

CWX181gb 
1517 1, VCX2561 

CWX71, CWX81, CWX91 
CWX361 

CWX351 
14031 

Large High 14001 
*maximum inclusion size observed in the original data and on the histogram 

The weld metals were only grouped into two spatial distribution classes: 

random and clustered. Regular distributions were not found. Average volume 

around inclusion clusters in the random group is larger than that expected for 

inclusions showing clustered distribution. There are further sub-divisions in 

each group based on maximum NMI true size and NMI number. Each weld 

metal pertains to a determined group. For example, weld metal CWX201 has a 

unique combination of NMI inclusion characteristics: random distribution, 

medium NMI maximum true size and low NMI number. Weld metals CWX71, 

CWX81 and CWX91 are in the same group: clustered distribution, small NMI 

size and high number density of inclusions. 

Such a qualitative classification of the weld metals based on their NMI 

characteristics can be used to compare the influence of inclusions on the 

mechanical properties and the hydrogen induced cold cracking. These aspects 

are discussed in greater length in chapter 8 and 9. However, with respect to 

the weld metal microstructure it is known that the size, type and distribution 

of NMI influence the solid state transformation in several different ways. 

Firstly, the presence of NMI could affect the grain size. They could 

inhibit the grain growth during solidification and solid state transformation 

reducing the size of the prior columnar austenite. Depending on volume 

fraction, , small' NMI size could affect less than large. For example, weld metal 

CWX351, which has a high number of medium sized inclusions, had smaller 

columnar grains in the regions near fusion line and upto some distance from 
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the centre. In the cases of the 15171 and VCX2561, the same result is 

obtained. The CWX331, CWX71, CWX81 and CWX91 weld ' metals seems to 

have longer columnar grains consistent with different inclusion densities. 

Secondly, a more random distribution of NMI possibly encourages and 

could permit the formation of coarse microstructures. For example, weld metal 
CWX201 has a coarse acicular ferrite microstructure, which is associated with 

the low NMI density and their sparsely populated areas, a corresponding larger 

volume between them. 

Finally, highly clustered inclusions would mean that there are regions 

of the weld metal free of NMI, hence the formation of microstructures not 

requiring inclusions as a nucleant could occur. Examples of this are the 

isolated islands of bainite found in the weld metals 14031, CWX71, CWX81 

and CWX91 or Widmanstätten ferrite in the CWX351. 

7.8.2 NMI composition and morphology 
Non-metallic inclusions have complex structures formed from various 

oxides, nitrides and sulphides. Some of the compounds that could be found in 

steel weld metals are: MnOA12O3, y-A1203, Si02, MnOSiO2, TiN and MnS. 

Figure 7.31 shows the composition of typical randomly selected NMI's 

found in CWX181gb. Figure 7.31(a) shows the backscattering electron image 

(BEI) where could be appreciated the size and location of some inclusions 

which have the typical NMI composition presented in the figures from 7.31(b) 

to (d). Generally, microanalysis of the inclusions in the studied, weld, metals 

revealed the presence of elements such as Mn, Si, Al, Ti, 0, N and S. 

Figure 7.32 shows other examples of NMI composition that were found 

in other HSLA steel weld, which were studied in this investigation. Figure 7.33 

presents more evidence about the elemental distribution of Mn, Si, Ti and Al in 

a weld metal surface. This NMI composition results could imply the presence 

of compounds such as those mentioned. above. There are concordances 

between the NMI composition results in this investigation and those reported 

by several authors [1,16.2334,149], 

The complex composition of the non-metallic inclusions indicates that 

they, are formed by several oxides, compound oxides, sulphides, carbides and 

nitrides, which implies that the NMI's can not be treated as monocrystalline 

and homogeneous particles. Moreover, 
, many inclusions are amorphous 

, materials. It has been reported that the amorphous inclusions represent the 

50 to 60% of the inclusions that could be found inýlow alloy, steel weld.. metals. 
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Figure 7.31 NMI composition in the CWX181gb weld metal, (a) BE image of the 
surface, (b), (c) and (d) are the composition of NMI A, B, and C, respectively. 
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Figure 7.32 Typical chemical composition of the NMI for several HSLA steel weld 
metals which were studied in this research. 
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Figure 7.33 Elemental composition mapping presenting the distribution of Al, Si, Ti 
and Mn in the VCX2561 weld metal. 

Between these inclusions, the majority are glassy silicates 11491. Figure 7.34 

presents two examples of complex non-metallic inclusions, which were found 

in two different weld metals in this work. These NMI were found on the 

fracture surface of the tensile sample. It can be noted the composite nature of 

them and the complex structure that could be formed. 

The determination of the NMI composition and morphology may permit 

the identification of those kinds of inclusions, which produce beneficial or 
detrimental effects on the phase transformation processes, the mechanical 

properties and the hydrogen distribution in the weld metals. Study of the 

nature of inclusions, chemically and morphologically, is a very complex task 

and the detailed study may not lead to any precise result. For example, in the 

case of studies related to the effect of NMI on the formation of acicular ferrite 

in weld metals, there have not been unambiguously demonstrated, what 

chemical composition of inclusions or orientation relationship promotes the 

preferential formation of acicular ferrite 11491. 
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Figure 7.34 Complex morphology of some inclusions in low alloy steel weld metals, (a) 
15171 and (b) CWX 18 1gb weld metals. 

7.8.3 Thermodynamic calculations 
The effort required for quantitative analysis of the inclusions in all of 

the welds was considered impractical and, although useful, would have been 

impossible in the timescale. One way of overcoming the complexity of the 

inclusion is through thermodynamical calculations. Such calculations are 

capable of predicting the types of non-metallic inclusions that would be 

expected based on the chemical composition of the weld metal or the 

consumables and the shielding gases. Moreover, segregation during the 

solidification process, which produces changes of alloying elements as the 

fraction of liquid decreases, can be accounted in the prediction. Segregation 

could promote or inhibit the formation of certain inclusions or precipitates, 

but models based on the Scheil approach can, in principle, indicate the 

sequence of inclusion formation. 
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7.8.3.1 NMI stability diagrams 

.`" It is possible, using thermodynamic data on dilute iron alloys, to 

construct non-metallic inclusion stability diagrams. These diagrams describe 

the inclusion formation employing equilibrium thermodynamic calculations by 

considering multicomponent interactions in liquid steel. The equations and the 

thermodynamical data utilised for the calculation of the diagrams are given in 

the annex A. 16. 

Figure 7.35 presents two stability *diagrams for the major non-metallic 
inclusions: A1203, SiO2, MnO and MnOSiO2. These are isothermal diagrams in 

this case the temperature selected was 1873 K, where the liquid iron is stable. 
The axes of the diagram are the activity or weight percent of the involved 

metallic elements (M = Al, Mn and Si, for example) and the oxygen dissolved 

(O) in the liquid metal. The continuous lines represent the equilibrium 

activities for M and 0 for the formation of a particular oxide. If the activities of 
M and O are located above this line, the respective oxide is formed. On the 

other hand, the ovoidal regions of stability for determined compound are 

obtained when interaction coefficients between alloying elements are taken 

into account (see appendix A. 16. If the weight percent of M and O are located 

inside the ovoidal regions of a particular compound, this is formed. On the 

contrary, if the M and O activities is below the equilibrium line or their weight 

percent is outside the stability regions, the compound is not formed. In this 

way it is possible to predict the potential oxides or other compounds such as 

nitrides and sulphides that could be formed in the weld metal during welding 

or during solidification if the appropriated isothermal diagram is obtained. 
In figure 7.35, weld metals are grouped into two classes: those' with 

comparatively contracted regions for SiO2 and MnOSiO2 and those with an 

expanded region for the same compounds. The stability regions for A1203 and 

MnO are similar for all the studied weld metals. -The nominal contents of Si, 

Mn, Al and 0 for each weld metal are plotted on the figures and, as can be 

observed, they are located in certain regions. This indicates similarities 
between NMI in the weld metals studied. '. " 

In the case of A1203, SiO2 and MnOSiO2, the diagrams confirm their 

formation. in all the welds. However, in the case of the weld metals - CWX361, 

1403 1,, CWX71, CWX91', CWX81'-and CWX331, it could be expected a major 
thermodynamical tendency, due to the expanded fields for Si02 and MinOSiO2 

(figure 7.35(b)), and the location of the corresponding composition inside the 

stability regions. In regard to the formation of MnO, it is noted that-it is 
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possible for all the weld metals except for the CWX351, which has the lowest 

Mn content, about 0.25 wt%. This weld, observed in figure 7.35(a) on the left 

in the oval corresponding to Mn and 0 combination, has a composition that 

falls outside the stability region of MnO oxide. 
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Figure 7.35 NMI stability diagrams for the oxides A1203, SiO2, MnO and the complex 
oxide MnOSiO2 calculated for the weld metals studied in this investigation: (a) 
Contracted MnOSiO2 field: CWX181gb, CWX351,14001,15171, VCX2561 and 
CWX201; (b) Expanded MnOSiO2 field: CWX361,14031, CWX7 1, CWX9 1, CWX81 and 
CWX331 
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Figure 7.36 presents the diagrams for the formation of titanium oxides: 
TiO, Ti203, Ti3Os and Ti02. Similarly, the weld metals were grouped in three 

classes:, expanded, intermediate and contracted oxide -fields. In the first two 

groups the formation of all the Ti-oxides is possible. In the expanded group 
(figure 7.36(a)) the thermodynamical tendency for the formation of Ti-rich 

oxides is larger than for the rest, possible similar to the case of A1203, Si02 and 
MnOSiO2 formation. In figure 7.36(c), the Ti and 0 content are located so close 
to the stability boundary that a decrease in oxygen due to the formation of 

other more stable oxides, could inhibit the formation of Ti-oxides. 

The figure 7.37 shows the stability diagrams for MnS, TiN and AIN in 

the studied weld metals. As for the case of Ti-oxides, the weld metals have 

been classified in three groups depending on the size of their TiN field because 

MnS and AIN fields do not present appreciable changes. It can be noted that 
for the first group (figure 7.37(a)), it could be expected the formation of TiN in 

the liquid steel. For the welds in the intermediate group (figure 7.37(b)), the 
TiN precipitation could occur during solidification. However, the formation of 
Ti-oxides could reduce this possibility due to the consumption of Ti, which 

could maintain the Ti-N composition outside the stability region. For the case 

of the weld metals in the contracted group (figure 7.37(c)), due to the reduction 
in the stability region of the TiN, it is not expected to form this nitride. 

The thermodynamical calculations for the formation of NMI in weld 

metals, presented in form of stability diagrams in figures 7.35 to 7.37, can be 

useful to predict the type of inclusion that could form depending on 

composition. However, in the present investigation the difference in weld metal 

composition does not seem produce significant changes in the NMI types. In 

the next section a Scheil approach is used to study theoretically the effect of 

solidification on the formation of different NMI. 

7.8.3.2 Effect of solidification on the formation of NMI's 

The formation of inclusions in the weld metal is, affected by the 

simultaneous formation of other inclusion and by the segregation of alloying 

elements due to the solidification process of the weld metal. Other factors that 

could influence the formation of inclusions are: the magnetic _ and thermal 

stirring of the weld, pool, the composition of the protecting gases, . 
the cooling 

rate, the heat input and other external factors, 
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Figure 7.36 NMI stability diagrams for the Ti oxides in the weld metals studied in this 
investigation: (a) Expanded fields: CWX351,14001 and CWX36 1; (b) Intermediate 
fields: CWX181gb, 15171, VCX2561 and CWX201; (c) Contracted fields: 14031, 
CWX7 1, CWX9 1, CWX81 and CWX331 
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Figure 7.37 NMI stability diagrams for MnS, TiN and A1N in the weld metals studied 
in this investigation: (a) Expanded fields: CWX351,14001 and cwx361; (b) 
Intermediate fields: CWX181gb, 15171, VCX2561 and CWX201; (c) Contracted fields: 
14031, CWX71, CWX91, CWX81 and CWX331 
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A complete model for the formation of inclusions has to take in account 

all the parameters mentioned before. The necessary data include information 

about: thermodynamic of multicomponent systems, fluid mechanics, inorganic 

chemistry, diffusion, phase stability, etc. In the present work an attempt is 

made to present the evolution of the chemical composition in the weld pool 
due to segregation following a Scheil approach and its effect on the 

thermodynamical stability of the inclusions, taking into account the first order 
interaction coefficients of the majority of the alloying elements in the liquid 

steel weld pool. 
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Figure 7.38 Effect of the solidification process on the equilibrium ratio Q/KC for the 
CWX181gb weld metal. This weld metal is contained in the figures 7.32(a), 7.33(b) and 
7.34(b). The horizontal discontinuous line represent equilibrium, where Q/ Kq=1. 

Figures 7.38 to 7.41 show the effect of the solidification process on the 

value of the equilibrium ratio Q/KC , where Q is the product of element 

activities and Keq is the equilibrium constant. The significance of the 

equilibrium ratio is discussed in annex A. 17. To take in account the effect of 

segregation the Scheil equation and the first order interaction coefficients were 

employed. In the figures, the larger the Q/K ratio the larger is the tendency 

to the formation of the specific inclusion. The inclusion is not formed when the 

equilibrium ratio is less than 1. 

Figure 7.38 presents the variation of Q/K q ratio for the CWX181gb weld 

metal. The 15171 weld metal present similar behaviour. In both cases, the 
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inclusions with major tendency to form are: Ti3Os, A1203, Ti2031 Ti02, Si02, TiO 

and in less extension MnO and TiN. This tendency changes with the increase 

of the solid fraction due to the effect of the segregation. In the case of A1203, it 

could be noted a reduction in the equilibrium ratio at the end of the 

solidification process as a consequence of the interaction with other alloying 

elements. Similar trend is observed for other compounds. 
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Figure 7.39 Effect of the solidification process on the equilibrium ratio Q/KC, for the 
14001 weld metal. This weld metal is contained in the figures 7.32(a), 7.33(a) and 
7.34(a). The horizontal discontinuous line represent equilibrium, where Q/ Kq=1. 

Figure 7.39 is for weld metal 14001, which is similar to CWX351 and 
CWX361. This weld metals show higher values for the ratio Q/Ký in 

comparison to previous case. This weld metals show a large tendency to form 

Ti-rich oxides, as in the case of CWX201 and VCX2561 which are shown in 

figure 7.40 (for CWX201). TiN could be formed but with the advance of the 

solidification process and can be expected to precipitate on the NMI particles. 
Figure 7.41 shows the calculations for the CWX71, which is similar to 

those for: 14031, CWX81, CWX91 and CWX331 weld metals. The highest 

tendency to form is for the A1203 oxide. Ti, Si, and Mn oxides could form as 

well but the driving force is lesser than for the rest of the weld metals. The TiN 

is not predicted to form. As a consequence, in this group of welds Al-rich NMI 

are expected. 
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As a summary, the thermodynamical calculation for the formation of 

NMI can predict the type of inclusion that can be formed in the weld metal. 

However, due to the similarities in composition between the studied weld 
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metals no significant differences were found. Refinement of the calculation 
taken into account the decrease in composition caused by simultaneous NMI 

formation can be useful as the determination of the formation sequence. The 

weld metals can be broadly classified as containing Ti-rich inclusions 

(CWX181, CWX351,14001,15171, VCX2561, CWX361 and CWX201) and Al- 

rich inclusions (140131, CWX71, CWX91, CWX81 and CWX331). Further 

work is necessary identify the types of inclusions and to clarify their role in the 

properties of the weld metals and their resistance to hydrogen induced 

cracking. 

7.9 Summary of the chapter: Weld metals microstructure. 
In this chapter, a metallographic characterisation was carried out in 

some detail. Firstly, the weld metal microstructures were studied to establish 

a relation with composition. All the microstructures were classified as shown 
in tables 7.1 and 7.2, and schematised in figure 7.11. To support the analysis 
TTT and CCT diagrams were calculated. The weld metals classification 

permitted the organisation of the weld metal into groups, and ordered by their 

P. value. This order is respected throughout this book to facilitate discussion. 

Secondly, and due to the interest in study the trapping capacity of each weld 

metal, more detailed characterisation was carried out. This includes the study 

of the micro-phases in weld metals: MAC constituent, NMI and other features 

that could act as hydrogen sinks. The presence of retained austenite is 

particularly important due to its high hydrogen solubility and binding energy. 
Due to difficulties encounter to identify retained austenite in thin foils using 
TEM, a theoretical approach was used to estimate the probable retention of 
this constituent in the MAC particles. Throughout empirical and 
thermodynamical calculation, considering chemical (carbon and alloy content) 

and size stabilisation, was possible to identify the weld metal samples with 

chance to retain austenite partially or totally. They are the following well 

metals: CWX351,15171, VCX2561, CWX91 (if size effect is considered) and 
CWX81. Depending on the weld metal composition and MAC proportion, the 

austenite particle size that reduces Ms below room temperature is in the 

submicrons range (particles smaller than 0.1 µm in diameter can be retained). 

Using high resolution SEM the MAC constituent was characterised in a 

general way: their morphology and location in the microstructure was 

elucidated as schematised in figure 7.21. 
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Thirdly, a detailed characterisation of NMI number density, size and 

spatial distribution was carried out. However, it was not possible to fully 

characterise the inclusion composition and type and some thermodynamical 

calculations were used to overcome this limitation. With respect to the NMI 

density, size and distribution some differences were established between weld 

metals. This permitted the classification of the weld metals following the 

criteria presented in table 7.4: random and clustered distribution; large, 

medium and small maximum sizes; and high, medium and low NMI number 
(defined in annexe A. 15). This characterisation is taken in consideration in the 

chapter 9, where the trapping capacity of the weld metals is studied. The NMI 

stability diagrams permitted a general differentiation of the -weld metals 

depending of the extension of the stability of determined NMI types: 

aluminium oxide, titanium oxides, silicon oxide, manganese oxide and 

sulphide and, - finally, " some nitrides. These calculations are complemented 

with some estimation following Scheil approach. 
Finally, in this chapter are established some important microstructural 

issues that can contribute to understand the behaviour of the weld metal 

when affected by hydrogen charging, in an attempt to find relationships 

-between microstructure and resistance to hydrogen induced cold cracking of 

the different weld'metals. 

m 

, ýi: 
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CHAPTER EIGHT 

RESULTS AND DISCUSSIONS 
PART II - 

f ýý 

THE EFFECT OF HYDROGEN ON THE MECHANICAL PROPERTIES AND 
FRACTURE BEHAVIOUR OF HSLA STEEL WELD METALS 

In chapter seven the relations between weld metal composition and 

microstructure were described for various selected HSLA steel weld metals 

studied in this investigation. This chapter deals with the effect of hydrogen 

content on the mechanical properties and the fracture behaviour of these weld 

metals. 
The effect of hydrogen content on the fracture micromechanisms of. the 

weld metals and the possible role of the different phases and. micro 

constituents were investigated. Special attention was dedicated to the factors 

that contribute to: 

1- Crack initiation (on non metallic inclusions, cavities, voids, MAC 

constituents, precipitates, interfaces, etc. ) . 
2- The changes in micromechanisms of fracture due to - stress 

intensity factor and/or hydrogen content and weld metal strength 
3- The changes in the propagation of cracks (hydrogen level, different 

phases, grain boundaries, NMI and different precipitates). 
, 

The results on the effectj of hydrogen on mechanical properties were 

obtained by Wildash 18-111 in a previous thesis and are revised and analysed to 

be fully understood: firstly, the intrinsic mechanical properties of the weld 

metals; and secondly, the effect of the hydrogen content on the strength and 
ductility. A brief summary is given in the next section of this chapter on the 

mechanical properties, more detailed information could be found elsewhere [s1. 

With respect to the effect of hydrogen on the weld metal. properties, some 

results are shown here in a clearer manner, avoiding the oversimplification 
found in Wildash [M1. The intention of,, this' analysis is to correlate 

microstructure, properties and hydrogen induced cold cracking of the, different 

weld metals. 
Based on fractographic analyses a phenomenological model is proposed 

which describe and relate the occurrence of' different micromechanisms of 

fracture with microstructure, mechanical properties and hydrogen 

heterogeneous distribution in the weld metal. 
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8.1 The as-welded tensile properties of the HSLA steel weld metals 

The diversity of microstructures and the variation of particular alloying 

elements in the studied weld metals have produced a wide range of 

mechanical properties: yield strengths (S,, ) between 400 and 900 MPa, tensile 

strengths (Sm) between 600 and 1100 MPa and fracture stresses between 900 

and 1500 MPa, in the as-welded condition. These levels of strength are 

commonly reached in structural steels throughout quenching and tempering 

or other heat treatment such as ageing. 
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Figure 8.1 Tensile mechanical properties of the HSLA steel weld metals, which were 
studied in this investigation. The strength and ductility of the weld metals are 
presented as a function of the Pte, value. Based on data obtained by Wildasht-111 

Figure 8.1 presents the tensile properties of the selected weld metals, as 

a function of their Pc,,, value. The values of Sy, Sm, and Sr are shown together 

with the values of ductility, which were determined by the elongation (El%) 

and the area reduction (AR%). Although, the original information utilised to 

construct this figure does not include scatter of values, it is possible to 

estimate the potential variability of them. It is known that for materials 

property data, such as yield strength, hardness, and fracture toughness, 

coefficients of variation (SX=SX/ x, where S. and x are the standard deviation 

and sample mean, respectively) are generally in the range 0.05 to 0.20, that is, 

5% to 20% 11501. Typical values of S. for Sy and Sm of metals are 7 and 5%, 

respectively. In the case of the tensile strength of welds &= 10%, and for this 
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reason 8, s for Sr` should -be around! 10-15%. These coefficients of variation are 

included' in figure 8.1, to give an idea of the, potential variation ý around the 

measured value. These Y-error bars have to be taken as illustrative of the 

potential' variation of the weld metal-property due 'to unknown scatter in . the 

original data.. - .. -j, ""; .;.. 
Figure 8.1 shows that S,., S. and Sr values increases with P,: m value, 'but 

this' -increase shows some irregularities. - These irregularities could be 

associated with the variations of different alloying, elements Z in ý each'- weld 

metal. As mentioned in chapter seven, no attempts were made to identify 

clearly the influence of compositional variables on microstructure, taking one 

element at a time. As a consequence, complexity is added to the determination 

of the relationship between composition and properties. -. ý- 
Changes in the proportion of grain boundary ferrite, acicular . ferrite, 

bainite, martensite and the micro-constituents of the weld metals, (MAC 

islands, retained austenite, NMI and other precipitates) have, a strong impact 

on'the mechanical properties, which in turn depend on its alloy content: "' 
1- = For weld metals in the range of -Pam� values '' from ý 0.11' to ; 0.20 

(CWX181gb, CWX351,14001,15171, ' VCX2561, " CWX361; ° CWX201 

and 14031), the mayor microstructural variation = is the -reduction in 

grain boundary ferrite, the refinement of the microstructure- and an 

increase in the proportion of the MAC, constituent. These 'variations 

could increase strength, but compositional differences impede this to be 

monotonically. i::.... 

2= 'For weld metals with P., values in > the range! 0.20-0.24,, = such,. as 

CWX71, CWX81 and CWX91, the yield and maximum- strengths are 

maintained similar. As presented in figure 7.6 there are no significant 

differences in the microstructures, all of which are 'characterised by a 

very fine ferritic constituent (degenerated acicular ferrite or ferrite with 

non aligned second phase) and some isolated bainite islands. However, 

in table 6.2 can be observed slightly differences in C, Mn, Mo, Ni, V, Ti 

and N, which could explain discrepancies. 

3- Weld metal CWX331 (P,.,; equal to 0.27), gave the highest yield and 

maximum stress values. The microstructure of this weld metal is a 

mixture of'martensite and bainite, as can be observed in figures 7.5 

and 7.7, producing a high strength. This type of microstructure is some 

times avoided in the, welding of. high strength -low alloy steels because 

their - brittle' behaviour in' ,, t the presence' of hydrogen. ° However, 
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martensite presence is needed to produce high strength welds when C 

is low. 

8.2 The effect of hydrogen content on the strength and ductility of the 

weld metals and the critical hydrogen content for embrittlement 

Figures 8.2 and 8.3 present the fracture surface for three different weld 

metals: CWX181gb, CWX201 and CWX331 in the as welded and degassed 

condition. The fracture of these welds occurs by the coalescence of microvoids: 

the MVC mechanism. This kind of ductile fracture is present in all the weld 

metals prior to hydrogen charging, even though differences in microstructure 

and strength between the weld metals exist. 

An association between the microvoids and the NMI can be observed. 

The number, shape and size of the dimples depend on 11511: the number, size 

and spatial distribution of the NMI and other precipitates which contribute to 

the formation of cavities and the ductility of the material. As can be observed 

on the fracture surfaces of the three weld metals, each dimple could be 

associated with particles and NMI of different nature. 

Figure 8.4 shows, as an example, the relation between true fracture 

stress (Sr) and the NMI number density (N�). As can be noted, the maximum 

fracture stress is presented by the CWX201 weld metal which contains coarse 

acicular ferrite and the lowest NMI density. This and other examples indicate 

that the strength and ductility of weld metals strongly depend on their NMI 

characteristics and this is important to keep in mind through the discussion 

in this chapter. 

,- 

. . 
ý%ý 

Figure 8.2 Fracture surface of CWX181gb weld metal presenting MVC fracture. The 
presence of grain boundary ferrite could be the reason of the appearance of the 
smooth flat regions on the surface. 

162 



Chapter 8. THE EFFECT OF HYDROGEN ON THE MECHANICAL PROPERTIES AND FRACTURE 

i 

(b) 
Figure 8.3 Fracture surfaces of two weld metals presenting MVC fracture: (a) CWX201 
and (b) CWX33 1. These weld metals do not present PF(G), and the smooth flat regions 
are absent (compare with 8.2). 
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FIBnre 8.4 Variation of the fracture stress and the three-dimensional density (Nv) of 
NMI for the studied weld metals. Based on data obtained by WildashPl and the NMI 
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8.2.1 Effect of hydrogen on mechanical properties and the hydrogen 

embrittlement indexes (HEI). 

The effect of hydrogen on weld metals is to reduce ductility and assist 

cracking. The magnitude of hydrogen embrittlement is characterised through 

the utilisation of certain indexes. Equations 8.1 and 8.2 are examples of such 

equations: 

HEI _ 
ý%E10 

- %E1Ch) (8.1) EL - %E1 
o 

HN - 
(%AR0 - %ARCh) ( 8.2) 

%AR) 

where HEJei and HEIAR are the hydrogen embrittlement indexes obtained by the 

calculation of the changes with hydrogen content of. elongation (%El) and 

transversal area reduction (%AR) percentages. The subscripts "0" and "ch" 

indicate that the property was measure without hydrogen charging and after 

hydrogen charging, respectively. 
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Figure 8.5 Effect of diffusible hydrogen content (HD) on the strength and ductility of 
the 15171 weld metal. The loss of ductility is quantified using the embrittlement 
indexes: HEIEL and HEIAR. Based on data obtained by Wildashl'l. See annex A. 18 for 
information on the estimation of the potential scatter of the weld metal properties. 

Figure 8.5 presents the effect of diffusible hydrogen (HD) on mechanical 

properties (Sy, S., and Sf) and ductility loss (HEIEL and HEIAR) for the 15171 

weld metal. This figure shows mainly the reduction in Sf and the loss of 

ductility with the increase in HD. This example illustrates the concept of the 

critical hydrogen content for embrittlement, Ck. As discussed in chapter 4, this 

164 

VIGJ "/ 



Chapter 8. THE EFFECT OF HYDROGEN ON THE MECHANICAL PROPERTIES AND FRACTURE 

critical concentration depends on: microstructure, applied stress, temperature 

and the hydrogen distribution due to trapping. For the weld metal 15171 this 

critical hydrogen content seems to be around 1.2 ml/ 100 g. Below this value 

the weld metal does not present a reduction in ductility or the true fracture 

stress, Sr. Above this critical hydrogen level the ductility is reduced almost 

60%. 

From figure 8.5 three observations must be highlighted: 

1- The loss of ductility (as measured by equations 8.1 and 8.2) is 

observed above a critical hydrogen value, Cx. 

2- The true fracture stress is reduced drastically to levels close to Sy 

and S,,, or lower (in other cases discussed later), when the hydrogen 

content exceeds the CK value. 

3- An increase in the HD content does not seem to affect drastically the 

yield and maximum stress of the weld metal 15711, even at high 

hydrogen levels. 

No hydrogen I Hydrogen 
embrittlement effect embii Clement 

Sf 
HEI_ 

1.0 

Stress HEI 

0.5 

Sm 

Sy 

0.0 

Ck HD 

Figure 8.6 Schematic representation of the variation of the strength and the ductility 
(HEI) with diffusible hydrogen content in the weld metal. The critical hydrogen level is 
CK. Above this value embrittlement becomes appreciable. 

Figure 8.6, based on the behaviour of weld metal 15171 and other weld 

metals, idealises the effect of hydrogen on mechanical properties. Fracture 

stress and ductility seems to be the mechanical properties that are changed 

substantially when a critical hydrogen level is reached. The curve for the HEI 

resembles the behaviour of materials when toughness versus temperature is 

studied and the ductile to brittle transition temperature is found: below the 

ductile to brittle transition temperature the steel is brittle and above CK the 

material becomes brittle. Unfortunately, the idealised behaviour was only 

observed clearly in the case of the 15171-weld metal and in some degree in 

165 



Chapter 8. THE EFFECT OF HYDROGEN ON THE MECHANICAL PROPERTIES AND FRACTURE 

cases such-as CWX351, : 14001, CWX201, -14031 and CWX81. ! The rest of the 

weld: metals ": presented . the general response. to hydrogen, content without 
following the behaviour shown in figure 8.5: reduction in Sr and ductility with 
hydrogen content. However, "it could be extracted from the different curves that 

there exists a critical hydrogen level over which embrittlement is appreciated 

clearly. Figures from A. 15 to A. 18, in annexe A. 19, show details of the effect of 
diffusible hydrogen on the strength and ductility of all the weld metals studied 
in this investigation. From these figures, as discussed below, the Ck is 

estimated as the diffusible hydrogen content that produces a HEIAR of 0.5, i. e., 

a 50% of loss in ductility. Due to the absence of statistical information in the 

original data 181, the potential scatter in the measured properties of the weld 

metals was estimated following the suggestions in annex A. 18. These 

estimations are considered in the discussion that follows. 

8.2.2 The hydrogen critical level for embrittlement (CK) 

Figures in annex A. 19, apart from being consistent with general 

observations about the reduction in Sr and ductility mentioned before, show 
that the diffusible hydrogen content reaches an apparent critical level (CK) 

above which embrittlement is obvious. This CK value is different for each weld 

metal and is given in table 8.1. In some cases the experimental data was 

sufficient to select a value for CK. In other cases, a range is given, which was 

estimated by drawing curves through the data that resemble the ideal 

behaviour shown in figure 8.11 and best correspond with the experimental 
data. From table 8.1 three observations are noted with respect to the possible 

effect of the microstructure of the weld metals: 

Table 8.1 Apparent critical hydrogen content for different weld metals, .. >,, 
which produces 50% of ductility loss 

Weld metal Cs (mL/ lOOgj CK interval [mL/ lOOgJ 
CWX181gb 2.6 
CWX351 5.4' 
I AnnI nnnini 
1't VVl %3. Z : Z. O-3.0 

15171 1.5 
VCX2561, 1.6 * 
CWX361 4.0 3.6-5.0 
CWX201 2.0 
14031 1.0 0.7-1.2 
CWX71 1.8 1.6-2.4 
CWX91 1.0 0.6-1.2 
CWX81 3.0 2.6-3.4 
CWX331 1. 2 0.8-2.0 
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1- The CK values for the weld metals with grain. boundary. ferrite are 

apparently -higher than. the values for the weld metals without this 

constituent. Weld metal CWX351, which contains grain boundary 

ferrite and " Widmanstätten ferrite, exhibits the highest CK level.. Weld 

metals with less or without grain- boundary ferrite show lower, CK 

levels. 

2- In combination with the microstructure characteristic, the-presence 

of NMI seems to favour the hydrogen tolerance of the weld metal, 

i. e., increase the CK level. This can be . 
illustrated using - two 

comparisons. The first example is presented by the pair : 14001 and 

15171. Both weld metals have similar microstructure (see 
. table 7.2) 

and similar MAC content (see figure 7.19). It can be observed from 

figure 7.27 and table 7.4 that the main difference between weld 

metals is their NMI characteristics: 14001 has higher Nv (number 

density of NMI) than 15171. This could be the reason for the higher 

CK level for 14001. The other example involves weld metals: 14031 

and CWX71. The higher value of CK for the CWX71 could be due to 

its higher Nv in comparison to 14031, because the microstructure is 

similar. However, it is important to mention that: several factors 

contributing to the redistribution of hydrogen in the. weld metal are 

operating in the system simultaneously,, adding . complexity? to the 

interpretation of the results in an isolated manner. One example of 

this complexity is the comparison between CWX181 -. and>14001. 

These weld metals show similar microstructures, but. different NMI 

number density per unit volume (N�). The weld 14001 with a. higher 

N� shows slightly higher CK, and the reduced difference in Ck values 

could be due to differences -in the proportion of, MAC (higher 

proportion in CWX181), as discussed below. -This suggests that there 

exists a combination of factors that contribute' simultaneously to the 

susceptibility to hydrogen cracking, as represented by CK. Other 

examples are discussed in chapter 9. 

3- The high proportion of MAC in the CWX361 seems to be responsible 
for the elevated CK value if compared with the VCX2561, which has 

a similar microstructure, only slightly higher N and lower MAC 

content. This is probably indicative of the beneficial effect of MAC 

presence in the microstructure. The case for, the CWX201 seems to 

corroborate this behaviour. This weld metal content coarse acicular 
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ferrite, the lowest NMI density and approximately 13.75 % of MAC 

(lower than CWX361). The value of' CK for the CWX201 is -half the 

value of the critical hydrogen content for the CWX361. However, as 

explained before several other factors influence the value of CK. , In 

chapter 9 this is discussed in detail. . 

These observations apparently indicate that the tolerance of the weld 

metal to hydrogen is influenced by: the grain boundary ferrite content, the 

MAC proportion and the NMI density. However, there is no general rule for the 

variation of CK for different welds. It is clear that a combination of several 

factors interacting simultaneously provide the resistance to hydrogen 

embrittlement. These factors could be: 

a- The microstructure constitution (phase proportion and 
distribution of PF(G), AF; FS(B), FS(A), FS(NA), etc. ) 

b- The microphases content and distribution (MAC, retained 

austenite, carbides) 

c- The NMI density, size and spatial distribution. 

The influence of these factors on the weld metal resistance to hydrogen 

induced cold cracking is discussed in the next chapter in more detail and from 

the point of view of the hydrogen trapping behaviour. 

It is important to stress that the values determined for CK have to be 

reached with caution as they represent the total hydrogen content measured 

in the weld metal. They do not take in account the heterogeneous distribution 

of hydrogen in the weld due to different features: voids, cavities, residual 

stresses, traps of different capacities (different binding energies and size), 

microcracks, non metallic inclusions and retained phases (retained austenite, 

MAC, etc. ). All these microstructural features could induce local 

accumulations of hydrogen and the impairment of the weld metal mechanical 

behaviour in those regions. 

8.2.3 The effect of HD on 3y and S. of the weld metals. 

Diffusible hydrogen content affects the values of Sy and Sm. This effect 

depends on the microstructure and strength of the weld metals. In annex A. 19 

are shown the results for each selected weld metal. As can be observed, for 

weld ý metals, below Sy values of 650 MPa, such as CWX181, CWX351,15171, 

VCX2561, CWX361, CWX201 and 14031, the changes in Sy and S. due to the 
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increase in HD content are not. dramatic: at lowýand. medium hydrogen levels. 

The exception was weld metal 14001 which'shows changes in, these stresses. 

However, --at high hydrogen levels weld metals CWX181; CWX201. and 14031 

show marked variations. On the other hand, weld metals with Sy 
. values above 

650 MPa suffered considerable. variations, of these two stresses (CWX71, 

CWX81, CWX91 and CWX331) in the range of hydrogen levels which were 

produced by electrolytic charging. . ý., . °: " "f ý1 
Various investigators [61,152-154J have shown that the effect of hydrogen 

on yield stress (Sy) is not unambiguous. It has been found a softening and a 

hardening effect. A reduction in Sy due to an increase in hydrogen content 

could mean that hydrogen promotes or assists the movement of dislocations. If 

the contrary occurs, hydrogen reduces the movement of dislocation and a 

strengthening effect could be observed. On the other hand, reports on the 

effect of hydrogen on the maximum tensile stress (Sm) seem to be scarce. 

S. is the stress at which the material suffers a localized and intense 

deformation in its weakest region. This results in the formation of the neck in 

a sample during a tensile test. Plastic deformation occurs before the Sm stress 

is reached and the material experiences strain hardening. A simple way to 

quantify the strain hardening capacity is throughout the, Sy/Sm ratio 11171, 

Hydrogen affects this ratio. Figures 8.7 and 8.8 present the variation of the 

Sy/Sm ratio with the increase of diffusible hydrogen content. To, interpret this 

result, the following approach is used: weld metals with low, Sy/Sm ratio have a 

large capacity to strain harden before fracture and"the contrary is true to weld 

metals with high Sy/Sm ratio. If for a determined weld* metal -this., ratio 

increases with the hydrogen content, its strain hardening capacity is reduced, 

which means that deformation before fracture - is decreased. This reduction 

could be the consequence of the following effects: 
- 4r 

1- Hydrogen increases dislocation mobility-and the weld metal does not 

strain harden considerably and Sy and Sm become. closer in value. 

The increase in dislocation mobility must produce, a reduction in 

strength or . softening of the . steel., In reviews by: Hirth . 1". 1521 is 

reported that - in pure iron the role of hydrogen is to . increase the 

mobility of screw dislocations by., the promotion of the formation of 

double kink nucleation and slip planarity. 

i= "' F:: ' 2-1 Hydrogen interacts with : dislocations, and . impedes their movement. 

" Due to this impediment the weld metals do not deform easily and 
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fracture is promoted. This must result in an increase in yield stress 

or hardening. Hirth [6l suggest that when deformation occurs by 

cross slip, hydrogen charging could make difficult the deformation 

process due to the preferential softening of {110} slip planes, the 

increase in dislocation density and the changes in their 

arrangements. Hydrogen in dislocation cores could make dislocation 

intersection more difficult as well. 

1 
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Figure 8.7 Effect of diffusible hydrogen (HD) on the Sy/S,,, ratio for weld metals with 
Pcm values below 0.20: CWX181, CWX351,14001,15171, VCX2561 and CWX361. 
Based on data obtained by WildashP1 
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Figure 8.8 Effect of diffusible hydrogen (Hp) on the Sy/Sr, ratio for weld metals with 
Pcm values above 0.20: CWX201,14031, CWX71, CWX91, CWX81 and CWX331. 
Based on data obtained by WildashI I 
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" 3- Hydrogen contributes to the multiplication of dislocations and as a 

result. the material - strain hardens quickly. Consequently, the 

movement of dislocation is made difficult rapidly, the weld metals 
lose 'their capacity to deform and fracture occurs easily at lower 

stresses. Sy/Sm ratio is increased. The formation- of microcracks, 

which act. as " stress risers,, could increase locally - the . 
dislocation 

density and the multiplication occurs at lower global stresses. 

The behaviour described above is affected by the microstructure of the 

weld metal and the dislocation density associated with the various ferrite 

phases that can form during solid state transformation. At high temperatures, 

products such as grain boundary ferrite and ferrite side plates are expected to 

have low dislocation density. As the transformation temperature is decreased, 

the dislocation density is increased. Martensite, which forms at much lower 

temperatures than the other ferrite phases, has the highest dislocation density 

of all. The dislocation density of these phases and their interaction with 

hydrogen causes the impairment of the mechanical properties and induces 

fracture. 

In figures 8.6 and 8.7, it can be observed that the HD content generally 

increases the Sy/Sm ratio. The variation is pronounced for some of the weld 

metal, - whilst for - others the ratio is only : slightly augmented, and, could, -be 

related to the strength level and/or the microstructure ; of the different weld 

metals: 

1- Weld metal whose Sy/ Sm ratios are affected markedly by hydrogen 

content. These weld metals are 14001 and CWX181 given in figure 

8.7; 14031, CWX71, CWX81, CWX91 and CWX331 in figure 8.8. The 

first two weld metals contains around 15% of PF(G), around 80% of 

AF and between 2 to 3% of FS(A). The rest of the weld contain fine 

AF, FS(B) and M, CWX331 containing a mixture of FS(B) and M. 

High dislocation density is expected for the last group of weld metals 

and it may explain the lower capacity to deform due to the 

interaction of dislocations and hydrogen. On contrast, weld metals 
14001 and CWX181, which contain high 

- transformation 

temperature products, should tolerate more deformation or strain 

hardening due to their expected -lower, dislocation density. No clear 
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explanation has been found for -this behaviour but it could be 

related somehow to the coarseness of the microstructure. 

2- Weld metals whose Sy/Sm ratios are affected slightly by hydrogen 

content These weld metals are: CWX351,15171, VCX2561 and 
CWX361, given, in figure 8.7 and CWX201, in figure 8.8. These weld 

metals do not lose their strain hardening capacity as the previous 

group with the increase in hydrogen content. Excepting CWX351, 

these weld metals contain low proportions of grain boundary ferrite 

(PF(G)) and the rest of the microstructure is acicular ferrite (AF). 

Their Sy/Sm value without charging is between 0.83 and 0.89 and as 
is noted this values do not change markedly with hydrogen. Such 

increase could be related to the hydrogen interaction with. the 

expected medium dislocation density. However, CWX351 weld metal, 

which -contents the highest proportion of grain boundary ferrite 

(35%) and possesses the lowest Sy/Sm ratio without charging (about 

0: 76), seems to withstand the hydrogen effect -due to the expected 
lower dislocation density at grain boundary ferrite. 

From the -results presented, it can be suggested that there exists a 

competition between hydrogen softening and hardening effect. For example, it 

is observed clearly that, Sy and S. for the case of the 14001 weld which is 

presented in figure A. 14 (c), increase slightly at low hydrogen levels and then 

decrease for higher HD contents, illustrating the occurrence of hardening and 

softening effect- of hydrogen. This effect is observed to a lesser degree in other 

welds. This behaviour could indicate that depending on microstructure and 

strength level, - certain critical hydrogen contents are needed to produce 
hardening or softening to the weld metals, as summarised: 

1- At low hydrogen levels a softening effect could be observed in 

microstructures with expected low dislocation densities due to 

the increase in dislocation mobility and multiplication. 
2- At low hydrogen levels a hardening effect could be observed in 

microstructures with expected high dislocation levels and 
high number of precipitates, which could promote multiple or 

cross slip motion of dislocations. 
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3- At high hydrogen levels, quantity that depends on 

microstructure, the "softening" effect could be associated with 

damage of the material. This damage involves the formation of 

microcracks and voids in those susceptible regions where a 

high hydrogen content and stress are combined to initiate 

fracture or voids. The internal stress concentration at the 

microcracks and voids enhances local plastic flow, which 

could produce global deformation at lower stresses implying 

reduction in Sy. 

8.2.4 Variation of Sf with diffusible hydrogen content. 

As has been mentioned before, the increase of HD content mainly 

reduces the true fracture stress of the weld metals. A marked effect of 

hydrogen on Sr is observed in comparison to its influence on Sy and Sm. Three 

different types of behaviour can be distinguished in figures from A. 15 to A. 18 

in annexe A. 19. -- 
Firstly, for the cases of weld metals with continuous network of grain 

boundary ferrite, such as CWX181, CWX351,14001. and , 15171, at low HD 

levels Sr appears to increase slightly until a maximum is reached and then 

further reduction occurs gradually. The variation in transversal area reduction 

with HD supports this trend: at low HD the index HIEar (equation 8.2) becomes 

slightly negative and then positive when hydrogen increases. This behaviour is 

not noted for the rest of the weld metals. It has been reported 181 that the grain 

boundary ferrite is detrimental to low temperature toughness: it ;, is ;a 

preferential and easy path for crack propagation.. However, it seems-to 

increase the CK level for cracking, as was discussed above and additionally, to 

increase the hydrogen cracking resistance at low hydrogen levels in the weld 

metal. The role of grain boundary ferrite could be explained as follow:. ' 

a- The transformation of austenite to grain boundary ferrite occurs at 

high temperatures and for this reason, it ' is expected that its 

dislocation density were lower than, the other products . which 

transform at lower temperatures.. This makes PF(G) a_ softer 

microstructure and a relatively free path for hydrogen diffusion. The 

easy hydrogen diffusion throughout the continuous network of grain 

boundary ferrite could permit the redistribution of hydrogen in the 

weld metal and its escape, to the atmosphere., This is discussed in 

the next chapter in more detail. 
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b- The " PF(G) deforms before ý the, rest of the, microstructural 

constituents until work hardening permits transfer of strain to the 

remaining harder phases. At low hydrogen levels hydrogen may 

increase the- dislocation mobility, and inhibit work hardening 

increasing ductility. 

c- It is possible to find NMI. in the ferrite and a negligible quantity of 

other micro-constituents at which cracks could be initiated due to 

the effect of hydrogen accumulation. This should reduce the 

possibility of the crack initiation in PF(G). A more -critical region is 
the interface between PF(G) and the rest of the interior of the 

columnar grain, where segregation is expected - and acicular ferrite 

and MAC constituents can be found. 

These observations suggest, firstly, that the presence of grain boundary 
ferrite could be beneficial at hydrogen levels below 2 ml/ 100 g of weld metal. 
Moreover, the slight reduction in PF(G) proportion, mostly as a result of a 
reduction of the width of the continuous network, could contribute to the 

reduction in the probability of initiating cleavage in this region of the weld 

metal maintaining toughness at acceptable levels in the presence of hydrogen 

and preserving the path for hydrogen to escape after welding. 
Secondly, the effectiveness of grain boundary ferrite in maintaining 

toughness in the presence of hydrogen is reduced at high HD levels and when 
the continuity of the PF(G) veins are lost in the weld metal microstructure. 
Examples are the weld metals VCX2561 and CWX361, whose behaviour is 

shown in figure A. 16. Any discontinuity of the grain boundary ferrite network 

could reduce its capability to redistribute hydrogen. Moreover, the reduction in 

Sr begins at low HD levels. 

Finally, weld metals without grain boundary ferrite seem to tolerate less 

hydrogen content. Sr values for these weld metals decrease considerably at low 

hydrogen levels, as-shown-in figures from A. 16(c) to and A. 18 (annex A. 19). 

This -reduction in the true fracture stress of, the weld metals could be 

associated to the formation of, microcracks during charging or during the 

tensile test. The growth. of microcracks is assisted by the stress concentration 

at crack tips and the hydrogen content. - Cracks could form around inclusions, 

microvoids, MAC islands, carbides and other interfaces. In next section this is 

discussed in some detail. 
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8.3 Effect; of hydrogen, microstructure and properties of-weld`metals, on 
fracture micromechanism: MVC,. QC and 

: Hydrogen embrittlement of steels manifests itself. in a variety of ways on 

the fracture -surface, depending on the - hydrogen content , and , the 

microstructure of the weld metal. The appearance : of the fracture, surface of 
hydrogen, embrittled steels or ' weld. metals . could include the following 

micromechanisms, which were introduced in chapter 4:, 

1- Microvoids coalescence fracture features (MVC) 

2- Quasicleavage fracture features (QC) 

3- V Intergranular fracture features (IG) 

The occurrence of these fractographic characteristics. could depend not 

only on the hydrogen content and microstructure but stress/strain levels. 
, 
In 

the following sections this relationship is discussed. Firstly, crack initiation 

based on the fractographic analysis of the charged and. tensile fractured weld 

metals is, studied. Secondly, the changes, on, the , fracture, surface due to " the 
increase in hydrogen content are analysed -in some: detail: in, an " attempt. to 

relate changes to microstructure of each weld metal. type. 
-A model, that 

describes the relation between hydrogen content, stress concentration factor, 

microstructure and weld metal strength is proposed. , ..., 

8.3.1 The initiation of the hydrogen induced cracks. 
,s , .: 

Numerous examples of brittle cracks initiation in steels can be found in 

the literature and both NMI and MAC islands appear to initiate them. These 

brittle cracks, and particularly quasicleavage (QC), 
_, 
fractures, have been 

associated with: NMI, microphases and hard coarse particles. (carbides, and 

nitrides). Echeverria and Rodriguez-Ibabe['941 reported that -the fracture -of 
coarse TiN particles were responsible for the cleavage initiation. in a C-Mn-B 

steel with bainitic and martensitic microstructures. Lambert and collaborators 
[? ý1 

, associated cleavage., nucleation with , cracked = M-A .` 
islands.:. Several 

'dislocation mechanisms have beenproposed in the case of cleavage' nucleation 

not associated to a brittle particle., In the case of C-Mn weld metals, Tweed and 

Knott[l55l 'have : reported non-metallic inclusions as, cleavage, crack - initiators 

sites. - The . occurrence of . these +, micromechanisms ý font cleavage - fracture 

nucleation depends on -, the, availability. -of the ;: 
hard particles, ' 

. 
their ; strength, 

'their size' and spatial distribution. 

... _ .. , _, 
>i .,.. 
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ia. '.. ýý } i; } -h. ß, a i: ! 

.r : ý3 .. -¢5': ýf.: k'_v il(ý 

c 175 



Chapter 8. THE EFFECT OF HYDROGEN ON THE MECHANICAL PROPERTIES AND FRACTURE 

8.3.1.1 NMI as a quasicleavage initiator. Effect of size and spatial 

distribution on hydrogen trapping 

Figure 8.9(a) shows a QC facet on the fracture surface of the CWX181 

weld metal which was charged with 1.39 mL/ 100 g of hydrogen. In the centre 

of the QC facet is found a NMI of around 5 µm in diameter. The slip lines or 

striations that can be observed around the inclusion (figure 8.9(b)) suggest 

that the initiation of the crack is related to the inclusion and that the crack 

grew from the centre (NMI) to the surroundings. Moreover, the striations are 

evidence of the discontinuous growth of the crack assisted by hydrogen 

diffusion to the crack tip. Tong and Knott[1561 have found such kind of evidence 

in low strength steel charged with hydrogen and tensile tested at different 

temperatures. 

In general, the inclusions found in this investigation on the QC facets 

were of sizes above the average for each weld metal. The tessellated stresses, 

the microstructure and the accumulated hydrogen around the inclusion could 

be the factors that contribute to the crack initiation. 

or 

-44 

Y 

l r. EHT- 00kv WA Yi, ýna Ga S : u2 
ILp" 2.00K X [ý WD OL pcm N. "I- Twr 163213 

,i 
iw M"asw ýý"r.. f äsm 

11 c 

(a) (b) 

Figure 8.9 Fish eye associated to a5 µm inclusion in the CWX181 weld metal charged 
with 1.39 ml/ 100 g of hydrogen and fractured by tensile test. (a) NMI surrounded by 
QC fracture and (b) detail of the figure (a) where can be observed the slip lines on the 
QC surface. This slip lines or striations could be produced by the discontinuous 
growth of the crack. 

Tessellated stresses around a NMI depend on the following factors: the 

inclusion shape, size and distribution, the nature of the inclusion (single, 

duplex or multiple compounds), the thermal expansion coefficients and elastic 

moduli of the inclusion and matrix 1157-1621. The stresses around inclusions or 

precipitates arise as a consequence of the differential thermal contraction and 

are of the general form: 
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6tesseUated ±4)[(a2 - al 
)AT] ] (8.3) 

where c is a function of the factors mentioned above, al and a2 are the 

coefficients of thermal expansion of the inclusion and matrix, respectively. AT 

is the change in temperature. Depending on the value of the term (a2-ai) the 

NMI inclusions are considered as: inclusions with stress raising or void 
forming potentials, see annexe A. 20 for more detail. The nature and value of 

the tessellated stresses around NMI can be calculated using the expressions in 

annex A. 2 1, for the case of an elastic-plastic deformation of the steel matrix. 
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Figure 8.10 Calculation of the tessellated stress around the non-metallic inclusions of 
different size: (a) 2 µm and (b) 20 µm in diameter. It was supposed a single compound 
inclusion of A1203 (a, =8 10-6 1 /°C, E1=3.89 1011 Pa, vi=0.25) and steel (a2=8 10-6 1/0C, 
E2=3.89 1011 Pa, v2=0.25) with 600 MPa of yield strength. 
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As an example, the regions of influence for two A1203 inclusions of 

different sizes has been calculated and presented in figure 8.10. The figure 

shows stress variation on the steel matrix versus the distance from the centre 

of the inclusion. From figure 8.10, it can be elucidated that the bigger the 

inclusion the larger the stressed/ strained region. As a result of the expansion 

of the matrix more hydrogen could be accumulated around of large inclusions 

and more possibilities to initiate a crack exist if a potential flaw is reached by 

the stress field or the matrix cohesion strength is overwhelmed. The initiation 

of the crack depends on the microstructure surrounding the inclusion, its 

strength and the quantity of hydrogen. Inclusions in high strength steels could 

produce high residual stresses, and the probability to form a microcrack 
increases due to the cracking of the inclusion (high compression stress) or the 

assistance of hydrogen in cracking the steel. 

Figure 8.10 shows schematically the effect of the inclusion size on the 

hydrogen accumulation and the initiation of cracks. Depending on the 

hydrogen level, the stress and the microstructure, the propagation of the crack 
is ductile (MVC) or brittle (QC or IG). This is discussed later. 

Stressed region 
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Figure 8.11 Schematic representation of the effect of inclusion size on the trapping 
and crack initiation. The hydrogen tends to accumulate in stressed or strained 
regions, where can reach critical concentrations to form cracks due to the presence of 
tessellated stresses. 

In the case of NMI with void forming potential, such as MnS that could 

be found in weld metals, hydrogen could be trapped in the void and the 

interface between steel matrix and NMI. High hydrogen can accumulate in 

178 



Chapter 8. THE EFFECT OF HYDROGEN ON THE MECHANICAL PROPERTIES AND FRACTURE 

voids and at high pressures the matrix could crack. This type of NMI can be 

beneficial to trap hydrogen that is introduced during welding. 
Figure 8.12 illustrates the effect of the inclusion in the formation of 

quasicleavage facets at different hydrogen levels. Two general situations could 
be described based on the hydrogen level: 

1- At low total hydrogen content in the weld metal. The steel around the 

inclusion could accumulate enough hydrogen that during tensile test 

the region could fracture in a QC mode instead of a MVC 

micromechanism. Not necessarily, the crack is formed during charging 

as a consequence of the low hydrogen level (see figure 8.12(a)). They 

form during the tensile test. Large inclusions could be more detrimental 

in this respect. 

2- At high total hydrogen content in the weld metal. In this case, the 

residual stress and the hydrogen content could be sufficient to. initiate a 

crack during charging. This could be evidenced in figure 8.12(b) where a 

secondary microcrack can be observed around the inclusion. This 

seems to be perpendicular to the fracture surface (main crack path), 

which could mean that it was formed during hydrogen charging. The 

residual stresses and the hydrogen accumulation and assistance would 

be the driving -forces of the microcrack propagation in the absencel of 

external stress. This microcrack growth may, stop when the crack tip is 

not influenced by the residual stresses or the microcrack is arrested by 

other microstructural obstacles. Further evidence is shown in figure 

8.13, where a microcrack was observed on the NMI/matrix interface of 

a hole left by a NMI. Figure 8.14 illustrates the assistance of hydrogen 

in the presence of a residual stress to the formation and growth of a 
brittle microcrack. The crack grows in a discontinuous manner and 

may be controlled by the hydrogen diffusion towards the crack tip, as 

reported before 1156.163-1651. 

The microcracks that are formed during charging are -going to grow 

when tensile stresses are applied. Microcracks whose planes are normal to the 

tensile axis may begin to grow from the start of the tensile test, when the 

stress concentration around the crack is sufficient to propagate the, crack in a 
particular manner (QC or MVC). 
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Figure 8.12 Relation between the inclusion, the brittle fracture of the matrix and the 
hydrogen content. (a) Inclusion of around 5 . tm in diameter in the 15171 weld metal 
charged with only 0.4 mL/ 100 g of hydrogen. (b) Cracking of the matrix around the 
inclusion (2 4m in diameter) at high hydrogen levels in the CWX201 weld metal with 
11.72 mL/ 100 g of hydrogen. 

Figure 8.13 Microcrack formed around a NMI in CWX201 weld metal charged with 
11.72 mL/ 100 g of hydrogen. The microcrack plane seems to be perpendicular to the 
interface surface 
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Figure 8.14 The initiation and propagation of a crack around an inclusion due to the 
effect of residual or tessellated stresses without the application of external loads. The 
growth of the crack stops when the residual stress is low and the assistance of 
hydrogen is not enough to propagate the crack. 

A fracture mechanics approach to stress concentration around 

an inclusion and inclusion + cracked matrix could give the order of magnitude 
indicator of the stresses that could be found in such regions. The stresses 

around a NMI could be approximated to the stresses around a spherical hole if 

it is supposed that no strong interaction exists between the inclusion and the 

matrix. Timoshenko and Goodier [169[ have calculated for perfectly elastic 

materials, estimations for the case of steels which gives that the stress around 

the equatorial plane (am) can be twice the applied stress ((Q,, ),,, 2a). This 

is the tensile stress that the matrix around the inclusion suffers during the 

tensile test, when there is not microcrack to intensify it signiflcantly. This 

stress, or the associated strain, could produce enough hydrogen accumulation 

to promote the initiation and propagation of the cracks in a brittle manner. 

In the case of a microcrack formed during charging, this could be taken 

as penny shaped cracks surrounding the inclusion. In this case no strong 

interaction between NMI/steel interfaces is supposed as before. The equation 

8.4 allows an estimation of the stress intensity factor (K) for a circular 

embedded crack as follow [1671: 

K=? QI (8.4) 
9 
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where "a" is the crack radius. Thus, the stress intensity factor depends on the 

size of the penny shaped crack surrounding the inclusion and the larger the 

crack (inclusion size) the higher the stress intensity factor value. The 

combined effect of stress (applied and/or residual) and hydrogen 

accumulation in critical regions of the matrix are the cause for the initiation 

and propagation of cracks in brittle mode (QC and IG). Figure 8.15 presents 

schematically this combined effect. In the case of MVC fracture, the 

localisation of high strain and the assistance of hydrogen to the formation and 

growth of voids have been identified as the factors driving HAC in steels. 
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Figure 8.15 The propagation of a microcrack during the tensile test in a quasicleavage 
mode. (a) The microcrack is formed around the inclusion and its growth is stopped 
due to reduction in stress. (b) Applying load during test, stress concentration due to 
microcrack produces the growth of the crack assisted by hydrogen diffusion towards 
crack tip. (c) The cracks continue to propagate due to increase of stress in a QC mode. 
When stress intensity reaches a critical value the crack continues to growth but in a 
MVC fashion. 
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With respect to the NMI density and spatial distribution and its effect 

on the initiation and propagation of QC cracks, a precise correlation of the 

several variables such as: inclusion size, shape and composition, population, 

spatial distribution, location in the microstructure (grain boundary, interface, 

intragranular) and surrounding microstructure (grain boundary ferrite, 

acicular ferrite, bainite, martensite, micro constituents, etc. ) is complex. 

However, two general cases could be mentioned, based on the spatial 

distribution, NMI numbers and the accumulation of hydrogen: 

1- Inclusions with random spatial distribution: In this case, the separation 

between inclusions is such that there are no large free volumes for 

diffusible hydrogen to saturate the matrix. If a crack is formed 

somewhere nearby there will not be sufficiently large amount of 

hydrogen to assists its growth. As a consequence the crack may change 

from brittle to ductile due to the low concentration of hydrogen 

assisting cracking. 

2- Inclusions with clustered spatial distribution: In this case, the clustering 

of inclusion could have two effects: the accumulation of larger 

quantities of hydrogen at the cluster sites and the existence in the 

matrix of large volumes of material where diffusible hydrogen can stay 

and saturate the matrix. The consequences are clear: the initiation of 

cracks is more likely to occur at clusters and there will be enough 

diffusible hydrogen to assist their growth which could be the hydrogen 

liberated by the cluster and/or the hydrogen saturating the matrix from 

those free volumes of steel. 

The effect of the NMI size and spatial distribution on the HAC of the weld 

metals is discussed in more detail from the point of view of hydrogen diffusion, 

distribution and trapping in chapter 9. 

8.3.1.2 Cavities or micro-shrinkages as quasicleavage initiators. 

In some of the weld metals studied enormous QC facets were associated 

with cavities or micro-shrinkages. Figures from 8.16 to 8.19 show examples of 

these crack initiators. The size of the QC facet is around 300 µm in diameter 

(figure 8.16(a)) and the origin of the crack is a complicated network of cavities 

that must have been formed during the solidification of the weld metal (figures 
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8.16(b) and (c)). The effect of these cavities is to collect large quantities of 
hydrogen. The hydrogen could recombine as hydrogen gas in the cavity 

thereby pressurising it. If sufficient pressure is accumulated the cavity would 
induce the cracking of the matrix which is saturated by atomic hydrogen. 

(a) 

(b) 

(c) 

Figure 8.16 Cavities and micro-shrinkages as initiators of cracks in CWX201 weld 
metal with 3.24 mL/ 100 g of hydrogen after tensile test. (a) QC facet of 300 µm in 
diameter surrounded by a ductile fracture (MVC), (b) and (c) details of the origin of the 
brittle fracture. 
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Cracks would then form around the defect and their propagation assisted by 

the large amount of hydrogen inside cavities and the diffusible hydrogen in the 

matrix. For this reason the cavities produces large facets of brittle fracture, as 

the composition in figure 8.17 shows for the CWX201 weld metal charged with 
1.77 mL/ 100 g of hydrogen, only 55% the hydrogen content for the same 

sample in figure 8.16. 
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Figure 8.18 QC facet originated by a cavity in CWX331 weld metal charged 
with 1.27 mL/ 100 g of hydrogen. 

Smaller cavities were found in the weld metal with the highest strength: 

the CWX331, which consists of a mixture of bainite and martensite. The 

micro-cavities were identified as the origin of the QC facet. Figure 8.18 

presents an example of such cavities. Contrary to the cavity network reported 

above, these cavities seem to be isolated, that is not interconnected. However, 

the impact of these small cavities on the initiation of brittle cracks in higher 

strength steel weld metals seems to be considerable, because only small 

quantities of hydrogen in the material are needed to trigger the crack 
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formation. In the case of the CWX331 weld metal, the hydrogen level was as 
low as 0.73 mL/ 100 g and was sufficient to produce a QC facet associated 
with a small cavity, as shown in figure 8.19. 

The presence of cavity networks or micro-shrinkages, like those 

presented above, was not found in the fractographic study of the rest of the 

weld metals. However, their existence should not be discarded. The cavities 
seem to be at least as detrimental as large non-metallic inclusions. However, 

their capacity to trap hydrogen is expected to be greater as is illustrated by the 
formation of blisters in steels exposed to corrosive environments. Such high 

quantities of hydrogen should be liberated to the matrix when fracture occurs 
around the cavity. As a consequence, cavities or micro-shrinkages probably 
are traps and/or sources of hydrogen during HICC. 

Figure 8.19 QC facet of around 30 µm in diameter associated with a small cavity in 
the CWX331 weld metal at 0.73 mL/ 100 g of hydrogen 

8.3.1.3 The MAC as a nucleation site for quasicleavage. 
In this investigation the MAC constituent was not identified on the 

fracture surface of the fractographically analysed tensile samples after 
hydrogen charging. Nevertheless, some QC facets were found with no clear 
identification of the micro-constituent responsible for their appearance or 
initiation. 

The effect of MAC particles on mechanical properties and particularly 
toughness of steels have been subjects of several studies 1133,170-1721. The 

findings of these studies are useful to understand the role of MAC particles in 

low alloy steel weld metals. These are: 
1- Martensite islands have been found to contribute to the formation of 

voids, most of them by the interfacial decohesion of the ferrite 

martensite interface [170.1711. Wildash [al has found similar evidence 
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in regions close- to the fracture surface of HSLA weld metal tensile 

samples. ' ..,.. 
2- Brittle cracks propagate primarily in' the - ferrite matrix rather than 

'- into'or throughout the martensite [1711, 

3- During tensile deformation the martensite islands do not deform 

until high strains are attained, which are above the maximum 
uniform strain [1331. 

4- The M-A volume fraction, ý spatial distribution and size strongly 
influence the strength and work hardening of the dual-phase steels, 
both increase with the -augment of the volume fraction. The , work 
hardening rate -retards void growth during deformation and as 

consequence the total strain at fracture is expected to increase. ,, 
The MAC in weld metals can behave in a similar manner. In the case of 

hydrogen charged samples, MAC might be expected to trap hydrogen at the 

interface or inside when retained austenite, which has high hydrogen 

solubility, is present. Considering the observations above and supposing the 

MAC constituent as a solid particle which could trap hydrogen in the charged 

weld metals, during tensile test they could: 

a- Support the deformation of the matrix without cracking itself at low 

and medium strains. Without fracturing the hydrogen remains 

trapped in the MAC. However, depending on the hydrogen content 

of the MAC constituent it could be embrittled and fracture may 

occur at low and medium strains. Then, cracks could propagate in a 
brittle manner if the matrix hydrogen level and stress concentration 
factor are sufficient. Hydrogen might be liberated to the steel matrix 

where it can continue to assist crack propagation. 
b- Contribute to, the formation of voids when the hydrogen content in 

, 
the matrix is low and at high strain levels. If the hydrogen content 
in the MAC and the matrix is high, both could fracture in a brittle 

manner. Hydrogen contained in the MAC and the matrix will assist 

. 
the 

, propagation of the -. crack in conjunction with the stress 

concentration factor produced by tensile stress. 
This simple observation,. about. MAC, based on considering it as a 

hydrogen trapping hard-particle, is complicated, by the constitution of the 

MAC. , If , the MAC ý is mostly formed by_, retained austenite, the solubility of 
hydrogen is high, which, make it, an excellent, hydrogen, container. However, 

austenite may be softer. than ferrite, - depending on C. content, and can deform 
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during the tensile test. Deformation could transform the retained austenite to 

martensite and the trapped hydrogen is liberated saturating the steel matrix 

around, increasing the possibilities of embrittlement. The presence of carbides 

and ferrite, bainite or pearlite adds further complications to the behaviour of 
the MAC particle from the point of view of mechanical properties and hydrogen 

trapping. 

The MAC constituent has been identified as detrimental to toughness in 

the heat affected zone (HAZ) of high strength low alloy steels, as has been 

reported by several authors (173-1761. All reports identify the martensite island 

as the initiators of cracks (ductile or brittle) depending on the morphology of 

the MAC islands and the temperature of the impact test. A summary of their 

observations is in annexe A. 22. Figure 8.20 summarises these mechanisms of 
fracture involving MAC particles. 
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Figure 8.20 Schematics of the mechanisms proposed for the initiation of cleavage in 
the intercritical zone in weldments of high strength low alloy steels. 1- The elongated- 
type MA constituent cracks readily, initiating cleavage in the ferrite matrix. 2- 
Overlapping of transformation-induced residual stresses between blocky MA and 
applied tensile stress assists the cleavage of the ferrite matrix. 3- Strength mismatch 
leads to interfacial decohesion increasing stress in the matrix between particles. 4- 
Brittle debonding resulting in a microcrack at the MA/matrix interface could then 

propagate in a cleavage manner. Based on figure 18, Davis and King 1171. 
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Figure 8.21 Examples of unidentified QC origins for three weld metals with different 
hydrogen content (mL/ 100 g): (a) CWX181 (2.70), CWX361 (2.95) and CWX 201 (5.58). 

Figure 8.21 shows some examples of QC facets not associated with NMI, 

as a crack initiator as discussed before. Although the micro-feature which 

initiated the QC was not clearly identified, it is probable that one of the 

mechanisms summarised in figure 8.20 is operating. For example, if 

mechanisms 1 or 4 in figure 8.20 are initiating the crack, in the first case, the 

MAC could be recognised after etching (see arrow on figure 8.21(b)) and in the 
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second case, the MAC particle could be underneath the fracture surface (see 

figure 8.21(c)). Mechanisms 2 and 3 in figure might be easily recognised 

because the crack initiates between two MAC particles. No evidence was found 

in this study. Other mechanisms not involving MAC can not be discharged. 

For example, the weld metal CWX181 (figure 8.21(a)), which contains grain 

boundary ferrite (15%), could have initiated the QC crack in those regions due 

to the presence of a stress concentrator. Voids beneath the fracture surface 

could be other type of crack initiators. No clear evidence was found in this 

investigation. 

If the MAC islands were the crack initiation sites, they should have 

been observed in those weld metals with high MAC proportion. CWX361 weld 

metal has one of the highest proportion of MAC constituent (16.3%) followed 

by CWX201 weld metal with 13.8%, both fracture surfaces in figures 8.21 (b) 

and (c), respectively. However, features like these were seldom found in these 

samples or in other samples. The majority of the QC facets were related to the 

presence of NMI, at least at low hydrogen levels. 

Figure 8.22 shows QC facets which were found in weld metal CWX331. 

The origin of the facets seems to be the hole left by a particle of small size, the 

size expected for MAC islands. Further work is needed to clarify the MAC effect 

on crack initiation. 

(a) (b) 

Figure 8.22 Possible MAC particle decohesion initiating the QC facet in CWX331 weld 
metal with hydrogen content of. (a) 1.27 mL/ 100 g and (b) 4.88 mL/ 100 g. 

8.3.2 Evidence for modification of fracture micromechanism by 

hydrogen content in the weld metals 

Given the observations presented earlier in this chapter, it appears 

likely that the details of the fracture micromechanisms will depend on details 

of the microstructure and hydrogen content. The following sections deal with 

the evidence that is going to support the proposed model that describes the 

191 



Chapter 8. THE EFFECT OF HYDROGEN ON THE MECHANICAL PROPERTIES AND FRACTURE 

relation between microstructure, stress, mechanical properties and the 

hydrogen content of weld metals. 

Figures 8.23 and 8.24 show the results for weld metals CWX181 and 

15171, respectively. These welds are characterised by a continuous network of 

grain boundary ferrite and acicular ferrite in different proportions. As can be 

observed, at low hydrogen level (approximately 0.2-0.3 mL/100 g of weld 

metal) the fracture occurred by the MVC mechanism (figures 8.23(a) 
, and 

8.24(a)). At somewhat higher hydrogen contents, transgranular quasicleavage 

is observed, generally associated with the larger NMIs as observed in figures 

8.23(b) and 8.24(b). Regions with dimples, indicating a mixed fracture 

micromechanism, surround these quasicleavage features or `fish eyes", as 

these are more commonly known. At this hydrogen level (1-1.4 mL/ 100 g), no 

significant reduction in Sr is observed despite the presence of a few QC facets 

with diameters below 100 µm. It seems to indicate that these weld metals with 

hydrogen levels around 1 mL/ 100 g, could withstand few penny shaped 

cracks of this size without severely affect the Sr value. However, further 

increase in HD, between 1.2 and 4 mL/100 g, produces an appreciable 

decrease in Sr, which is related to the increase of QC on the fracture -plane 
including facets with diameters between 100 and 300 µm and smaller ones. At 

even higher hydrogen contents (above approximately 4 mL/ 100 g), a larger 

number of QC features link up together to produce large quasicleavage areas, 

as those observed in figures 8.23(d) and 8.24(d). In addition to these QC 

regions, long cracks, which in a large number of cases appear to be coincident 

with regions of grain boundary ferrite, begin to appear. It could represent the 

initiation of the IG fracture mechanism. This evolution of the fracture surface 

with HD is discussed in more detail below. 

The behaviour for the weld metal CWX361 is illustrated in figure 8.25. 

This weld metal consists of a discontinuous network of grain boundary ferrite 

and acicular ferrite, as is shown schematically in figure 7.11 and table 7.2. In 

addition, CWX361 possess one of the highest MAC proportion of all the weld 
"3 f 

metals studied (16.3%). Similar to the previous welds, the influence', of 

hydrogen on the fracture characteristics is demonstrated by changes in 

fracture rnicroMechanisms from pure MVC in the weld without hydrogen (and 

probably very low HD content) to the 'presence of QC facets together with 

evidence of MVC at high HD. Even at the highest HD content, the MVC fracture 

micromechanism is still observed (result not shown due to poor image quality). 

r. E 
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Figure 8.26 shows the variation of the fracture surface appearance with 
hydrogen content for the weld metal CWX201, predominantly consisting in 

coarse acicular ferrite (see figure 7.5(a) and 7.11). As can be noted, similar 
behaviour to CWX361 is found. The fracture surface changes gradually with 
HD content, from being mainly dimpled fracture (MVC) to a mixture of QC and 
MVC features. The QC areas are associated with NMI as before. However, it is 

found that some of these brittle regions are linked with what seems to be 

micro-shrinkage cavities, which was discussed in previous section. Another 

difference on the fracture surface appearance of the weld metal CWX201, in 

contrast to previous welds, is that at high hydrogen levels (5.58-11.72 mL/ 
100 g) there is evidence for intergranular fracture (figure 8.26(d)). These 

regions of IG fracture are not general on the surface, but remain localised. 

This may indicate that for previous cases (CWX181,15171 and CWX361) the 

critical hydrogen content to induce IG fracture is higher than for this case. In 

other words, the increase in strength of the material can make it susceptible to 

the hydrogen induced IG fracture at lower hydrogen levels. 

Figure 8.27 shows the behaviour of weld metal CWX331, the strongest 

weld metal studied, which as indicated in figure 7.11, contains a mixture of 

martensite and bainite. Similarly, the quasicleavage fracture is originated at 
NMI and micro-shrinkages in the weld metal. IG fracture occurs at HD levels as 
low as approximately 3 mL/ 100 g. As mentioned before, the IG fracture 

micromechanism seems to be linked to the strength of the weld metal, the 

higher the strength the higher the susceptibility to intergranular fracture. 

Three micromechanisms have been identified: microvoid coalescence 
(MVC), quasicleavage (QC) and intergranular fracture (IG). The MVC 

mechanism is a common feature of all the weld metal examined even at the 

highest HD contents. Figure 8.28 shows examples for CWX181 and 15171 at 
high hydrogen levels. The QC feature observed in figure 8.28(a) has been 

delineated and surrounded by dimples characteristic of the MVC. In contrast, 

such features are less clearly differentiated in the case of the 15171 weld 

metal (figure 8.28(b)). This indicates the competition between both QC and 
MVC fracture micromechanisms. The appearance of one or both of these 

micromechanisms is expected to be a function of. hydrogen level, stress 
intensity and microstructure. A mixture of QC facets surrounded by MVC 

dimples were found in the fractured weld metals at different hydrogen levels. 

Figure 8.29 shows a mixture of QC and MVC fracture modes at 2.95 mL/ 100 g 

of diffusible hydrogen. 
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Figure 8.28 Fracture surface for the highest hydrogen content present in the weld 
metals where it is observed the mixture of QC and MVC micromechanisms: (a) 
CWX181 (5.26 mL/100 g) and (b) 15171 (3.77 mL/100 g). Arrows show isolated 
dimples. 
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Figure 8.29 Fracture surface of the CWX361 weld metal with 2.95 mL/ 100 g of 
diffusible hydrogen, showing mixture of QC and MVC fracture micromechanism. 
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Figure 8.30 presents the IG fracture noted for weld metals CWX201 and 
CWX331. In both cases, the shape of the columnar grains present in the weld 

metal can be appreciated. In the case of the CWX201, the IG fracture is only 

noted between the columnar grains, but the QC fracture dominates the 

surface. On the other hand, in the case of the CWX331, the IG fracture 

extension covers several grains. 
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Figure 8.30 IG fracture found in two weld metals at high hydrogen content: 
(a) and (b) CWX201 (5.58 mL/ 100 g); (c) and (d) CWX331 (4.88 mL/ 100 g). 

It is clear that there is a continuous spectrum of change in fracture 

appearance which is linked with microstructure and hydrogen content. The 

remaining part of this chapter is devoted to a phenomenological model which 
describes the effect of microstructure, stress and hydrogen content on these 

changes in fracture micromechanisms. 
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8.4 A phenomenological model describing the changes in 

micromechanism of fracture due to the combination of stress intensity 

factors and hydrogen content. 

The first attempt to present a diagram which linked the stress intensity 

factor and the hydrogen content with fracture micromechanism (IG, QC and 
MVC) for steels under SCC or HAC conditions was proposed by Beachem 1711. 

Figure 4.11 in chapter 4 shows schematically this diagram and some examples 

were discussed there. One suggestion of the diagram is that the three fracture 

micromechanisms can occur at whichever hydrogen level and stress. Evidence 

in this investigation and others shows this is not totally true. Pyun and 

collaborators 1177,1781 proposed a modification of the Beachem's diagram based 

on a theoretical model for the transition of fracture micromechanisms for 

hydrogen assisted intergranular cracking of high strength steels. The diagram 

is shown schematically in annexe A. 23. The model predicts the occurrence of 
MVC at low hydrogen levels but QC fracture mode is not taken into account. 
Gerberich et. al. [163-1651 and other investigators 1179-1811, presented experimental 

evidence of the appearance of QC facets at certain hydrogen content or stress 

condition. 
Based on the fractographic observations in this investigation, and the 

previous studies mentioned above a modified model for hydrogen assisted 

cracking is proposed. This model modifies the Beachem's diagram and 

completes, adding the QC curve to it, the Pyun's proposal. The reasons for the 

modification are detailed in the following paragraph: 

1- Experimental fractographic evidence of hydrogen charged weld 

metals demonstrates that MVC mechanisms is predominant or only 

observed when the weld metal is not charged with hydrogen and at 

very low hydrogen content. Beachem's diagram predicts the 

formation of the three modes: MVC, QC and IG fractures even at low 

hydrogen levels. Asa consequence, a threshold, - stress I or the 

occurrence of ductile fracture (MVC) should appear at low hydrogen 

contents. This region was suggested by Pyun et. al. 1177-1781. 

2- At low hydrogen content, IG fracture evidence is not observed. 

Beachem's diagram predicts the appearance of this fracture mode. 

Pyun et. al. 1177-1781 suggests that at low hydrogen concentration the 
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threshold stress necessary to cause IG fracture is so high that it is 

difficult to occur. 

3- Quasicleavage fracture is observed at low hydrogen content. In the 

case of the QC facets found in the weld metals charged at a low 

hydrogen level, these are generally associated with stress raisers 

such as NMI and/or coarse precipitates. As a consequence, a 

threshold stress intensity factor for QC fracture (KQc) higher than 

that for MVC (KMVC) is expected. It is proposed that this KQc value for 

low hydrogen content could be between the threshold stress 
intensity for IG fracture (KIG) and that for MVC, KMVC. 

4- The hydrogen content of the weld metals affects their K value. 
Several investigations 1177-1811 have reported experimental evidence 
for the reduction of the threshold stress intensity factor caused by 

hydrogen content. Beachem's diagram shows this effect for each 
fracture mode, but the author supposed that the failure of the steels 

occurs at a constant Kc, the critical stress intensity factor for 

fracture, which is not affected by hydrogen. In the modified diagram, 

failure is expected to occur at the highest K value depending on 
hydrogen content and microstructure. An exception could be found 

at very low hydrogen contents, where KIG is very high and is not 

reached before fracture of the material by other fracture 

micromechanisms occurs. 

Figure 8.31 presents the changes to Pyun[177-1781 original diagrams. As 

in the original diagram the vertical axis gives the threshold stress intensity 

factor and the horizontal axis hydrogen content. The diagram now shows the 

variation of the threshold' stress for each type of fracture micromechanism that 

could be found in hydrogen induced cracking of steels weld metals: microvoids 

coalescence (MVC), quasicleavage (QC) and intergranular (IG). Hydrogen 

content reduces the K values for each fracture type. The diagram allows an 

explanation for the changes in micromechanisms of fracture with hydrogen 

and stress intensity factor: 
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Figure 8.31 Schematic diagram that represent the effect of the threshold stress 
intensity factor (IQ and the hydrogen content on the fracture micromechanisms. The 
Pyun's diagram 1177-1781 was completed by the addition of the curve for QC 
micromechanism, which is based on the fractographic evidence obtained in this 
investigation. 

a- At low hydrogen content region (H content < HK ). In samples 

without hydrogen or low hydrogen content the fracture 

micromechanism expected is MVC. In this region only high 

stress intensity factor could produce QC fracture. For 

example, in high strength steels with some microcracks or a 
fractured hard particle could reach locally the K level to 

triggers QC or cleavage fracture. In softer steels the 

microcracks are expected to blunt reducing the stress 

concentration at the tip, favouring the MVC mechanisms. 

b- At hydrogen levels between HQC and HQ, 
_, 0 . The KQc is lower 

than the KMVC and for this reason the quasicleavage 

micromechanism is promoted. The increase in K due to the 

growth of the brittle crack under load, favoured the formation 

and growth of dimples. QC facets surrounded by dimples 

could form the final fracture surface. 

c- At hydrogen levels above HQc_, G and HG. At these higher 

levels, the threshold stress intensity to produce IG fracture is 
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lowered. The final fracture surface is therefore expected to 

involve IG, QC and MVC. micromechanisms. 

d- At very high hydrogen levels. As shown in figure 8.31 shows 

the critical hydrogen contents: H, , HQOc and HmO m. As was 

suggested by Beachem fl, these hydrogen concentrations 

correspond to the critical content to produce IG, QC and, MVC 

fractures, respectively, in the absence of an applied external 

stress. It is expected to find on the final fracture surface the 

three micromechanisms. _ý 

The shape and location of the curves in figure 8.31 must be affected by 

the microstructure of the steel weld metal and its strength. Generally, the 

higher the strength of the weld metal the lower the threshold stress intensity 

factor for the occurrence of fracture. Figure 8.32 shows, schematically, this 

trend for. the -weld metals studied. These diagrams for each group of, weld 

metals are based on the proposed model in figure 8.31 and takes into' account 

experimental observations. For example, the IG fracture mechanism has been 

found to occur at 3 mL/ 100 g of hydrogen for the weld metal CWX331, the 

strongest of the weld metals. At same level of hydrogen, none of the weld 

metals shown in figures 8.23 to 8.26 (CWX181,15711, CWX361 and CWX201, 

respectively) and other not shown (1400land VCX2561), suffer IG fracture. IG 

fracture was appreciably observed for weld metal CWX201 when its hydrogen 

content was around 5.58 mL/ 100 g. These observation suggest, as can be 

observed in figure 8.32, that for weld metals with low strength (Sy<450 MPa) 

the critical hydrogen/stress intensity factor for IG mode are expected to be 

higher than for stronger weld metals. For the case of weld metal CWX201 the 

critical hydrogen content for IG fracture might be around and 5.58 mL/ 100 g, 
where the initiation of IG fracture was observed. In contrast, for the CWX331, 

this'critical hydrogen level is between 1.2 and 3 mL/ 100 g, considerably lesser 

than CWX201:. ,..; _ ..... , ..,, 
In regard ` to the hydrogen critical " levels to induce QC fracture it was 

more difficult'to. estimate for the weld metals'studied because the hydrogen 

content increments were, ` iri some ' of the ' cases, : sufficiently large to produce 

changes on the, fracture, surface but not conveniently fine to detect the 
initiation of changes. In addition to this, the QC initiation, as was discussed in 

; previous section, is dependent upon the hydrogen accumulation. This means 
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'-Weld metals examples and microstructure 
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Figure 8.32. Schematic representation of the effect of microstructure, mechanical 
properties and hydrogen content on the hydrogen induced cracking (HAC) of the weld 
metals. On the top of each figure is shown the microstructural features and examples 
of the most representative weld metals. The strength, represented by Sy, the yield 
stress. 

that the measured diffusible hydrogen does not, reflect the hydrogen level 

which is locally accumulated. Small isolated and very few QC facets 'were 

observed on the fracture surface of weld metal 15171 at hydrogen levels 
R@ 'AnS Pf 

a; 
r`ýrB: 

3a mini. i£,! 

between 0.4 and 1.17 mL/100 g, mostly associated with large inclusions. In 

weld metal CWX181 was not found evidence of QC at 0.3 mL/ 100 g. However, 

for the case of CWX331, several QC facets were observed on the surface at 
0.73 mL/ 100 g of hydrogen, 

Fwhich 
were related to micro-cavities and NMI. 

Other experimental observations indicate -that, the QC facets became more 

appreciable, i. e., their numbers increase, at hydrogen levels that seem to be 

lower for weld metals with higher strength. For example, in the l case of the 

weld metal CWX181, the QC facets are appreciable at around 2.7 mL/ 100 g, 

approximately 1.5 mL/ 100 -g for 515171; -around 1.0 
. mL/ 100 'g for VCX2561, 

probably below 1.77 mL/100 g for CWX201 `and 0.73 mL/100 g for CWX331. 

The order in which these weld metals are sorted correspond to an increase in 

strength (see figure 8.1). 

The figure 8.32 summarises, a possible effect- of_ strength and 

microstructure on the hydrogen induced cracking. ' As expected and confirmed 

by the actual experimental observations, the figure indicates that the higher 

the strength the greater. the. susceptibility of the steel weld metaIs. ', Further 

work is needed to clarify the effect of these 'important factors over the shift of 
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the different curves representing the three kinds of fracture micromechanisms 

and to try to determine the critical levels of hydrogen for each mechanism. 

8.5 Effect of hydrogen accumulation or trapping and crack growth on the 

changes in fracture micromechanisms. 

The diagram in figure 8.31 could be used to follow the changes in 

fracture micromechanism that are found in the weld metals which were 

charged with different quantities of hydrogen. The hydrogen introduced into 

the weld metal is likely to be heterogeneously distributed between the various 

microstructural constituents. 

Figure 8.33 presents schematically a transversal view of the fracture 

surface profile of a weld metal charged with different hydrogen levels. As the 

hydrogen content increases, the fracture surface shows evidence of changes in 

fracture micromechanism and this generally is evidenced by the observation of 

micromechanisms mixtures. As found in steels, it may be possible to find 

fracture surfaces 100% QC or 100% IG, however, these were not found in this 

investigation even at very high hydrogen contents (12 mL/ 100 g). Figure 8.33 

shows schematically that brittle fracture is initiated at particular features of 

the microstructure: NMI (shown in figure for simplicity), cavities and possibly 

MAC islands depending on the applied stress. 
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v only MVC 

\inter-columnar 
v 

grain boundaries 
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Figure 8.33 Schematic representation of the fracture surface profile and the effect of 
microstructural factors and hydrogen content. 
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It should be recognised that, although the measured HD content 

represents an average value, there can be accumulation, or trapping, of 
hydrogen in specific regions of the microstructure such as around NMI, at 
dislocation sites in the AF, at particles interfaces, etc. Several authors (182-1881 

have estimated this hydrogen accumulation using various models and 

numerical methods taking into account stress. Essentially, the hydrogen 

accumulation in stressed regions has the form: 

CQ = Co exp 
yRý 

(8.5) 

where, Co is the stress modified hydrogen concentration, Co is the equilibrium 

concentration of hydrogen in the unstressed lattice, VH is the partial molar 

volume of hydrogen (2 10-6 m3 mol-1 in steels) and a is the hydrostatic stress 
(=1/3[aß + a2 + a3 ], where al, a2, and 03 are principal stresses). The expected 
increase in concentration estimated by equation 8.5 is presented in figure 

8.34. The window shows the Co/ Co ratio expected for the weld metals studied, 
taking their yield strength as the maximum stress field. It can be noted that 

C. /Co ratio factor between 1.4 and 2 could be found for stresses of the order of 

the yield stress. Equation 8.5 does not consider the effect of the hydrogen 

traps which could be found in the stressed regions. Gerberich 1161 proposed 
that considering the trap binding energy (Eb) the equation 8.5 then changes to: 

Cu = Co exp 
Eb 

RT 
er (8.6) 
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Figure 8.34 Estimation of the accumulation of hydrogendue to the effect of stress 
fields. 
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Table 4.1 shows binding energies (Eb) of different types of traps. Taking, 

for example, values of Eb around 20 kJ/mol, the value of the Ca/Co ratio could 
be of the order of 5 103, for stresses around 600 MPa, which is the value of the 

hypothetical steels used in calculations of stress around NMI in figure 8.10. 

Although the average hydrogen level is below the critical value for the 

occurrence of QC (H) some regions of the weld metal could have' hydrogen 

levels above this critical values (the large NMI in figure 8.33, for example). As a 

consequence, it is probable that the stress concentration factor and the 

hydrogen reach their critical value to produce the initiation and propagation of 

a crack in a QC mode. The growing of the crack increases the value of K and 

the crack penetrates regions with less hydrogen concentration. Both factors 

switch the mechanisms of fracture to the MVC mode. The growth of the crack 

(increase in K) affects the hydrogen accumulation as suggested by Yokobori et 

al I136- 1U1. They proposed a physical model for hydrogen diffusion and 

accumulation around crack tip and carried out numerical analysis taking into 

account the effect of diffusivity constant, strength of the material and the 

stress concentration factor. The hydrogen accumulation is increased by the 

yield strength of the material and decreased by the value of the stress 

concentration factor, which correlates with the model proposed in this 

investigation (figure 8.31). Their more important findings are presented in 

annex A. 24. 

Following the considerations above, diagram from figure 8.31 could be 

used to interpret two cases where mixtures of fracture micromechanisms were 

found. The first case is shown in figure 8.35 where a mixture of QC and MVC 

is represented schematically. The matrix charged with low to medium 

hydrogen levels and a constant tensile stress is applied. Due to the effect of 

the tessellated stresses and the stress concentration around a large inclusion, 

hydrogen accumulates in the surrounding matrix at sufficient amounts to 

As the crack grows, the crack tip enters regions with initiate QC (above HQ C 

lower hydrogen content and K is increased by the increase in crack size, as 

shown in the insert at the bottom of figure 8.35. Then, conditions (H level and 

K) for crack propagation are such that the micromechanism of fracture 

changes from QC to MVC. As a result, a mixture of QC facets plus MVC 

surfaces is found on the fracture surface. Figure 8.36 shows evidence found in 

this investigation. It can be observed the occurrence of multiple QC facets due 

to the presence of inclusions. Each brittle facet is surrounded by dimples, 

evidencing the change in micromechanism due to the growth of the crack. 
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Figure 8.35 Effect of heterogeneous concentration of hydrogen and the stress 
concentration factor in the micromechanism of fracture for a steel that is charged with 
low to medium hydrogen content. The result is a mixture of QC facets surrounded by 
dimples from the MVC mechanism. 

Figure 8.36 Fracture surface of the CWX201 weld metal charged with 3.24 mL/ 100 g 
of hydrogen. It could be noted the transition from QC to MVC micromechanism of 
failure around the multiple QC facets. 

The second case is shown in figure 8.37 for a higher hydrogen content. 

At this hydrogen level, although the average hydrogen content could be close 

to the limit for the transition from MVC to QC (HK ), the accumulation of 

hydrogen could be found in excess of the critical levels required at grain 
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boundaries to produce IG fracture (H) or at cavities or non metallic 

inclusions to produce QC fracture (H. ) of the weld metal. As a result, the 

application of a tensile stress could trigger the micromechanism with the 

lowest energy requirement, in this case the IG fracture. As the crack 

propagates, K is increased and the hydrogen concentration in front of the 

crack is expected to decrease (see insert in figure 8.37). When conditions for 

QC micromechanism are reached the crack propagates in this manner. K 

would then continue to increase and hydrogen to decrease closer to average 

value. As a consequence, the MVC mechanism is activated. The final fracture 

surface is therefore expected to show evidence for all three of fracture 

micromechanisms. 

K1a 

(K1) KQC MVC MVC Mvc 

KMVC QC Q+ 

IG 

No HAC 

KKK hydrogen content HMVC HQC HIG 

/ 

MVC 

\ 

QC IC* grain 
boundary 

fracture surface n 

stress intensity factor 

HD hydrogen content 

crack size 
distance from NMI interface 

Figure 8.37 Effect of heterogeneous concentration of hydrogen and the stress 
concentration factor in the micromechanism of fracture for a steel that is charged with 
high hydrogen content. The result is a mixture of IG and QC facets surrounded by 
dimples from the MVC mechanism. 

Figure 8.38 present evidence of the coexistence of the three 

micromechanisms mentioned above: MVC, QC and IG modes. It is suggested 

that the transition occurs from IG to QC modes and then from QC to MVC 

modes, follows the considerations mentioned above. 
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rot, 

(a) 

(b) 

Figure 8.38 Fracture surface of CWX331 weld metal charged with 4.04 mL/ 100 g of hydrogen after tensile test. Note the existence of microvoids coalescence (MVC), quasi- 
cleavage (QC) and IG fracture micromechanisms in (a) and (b). (b) is a detail of (a). 

Furthermore, it was mentioned before that theoretically it is possible to 
find fracture surfaces with 100% QC or 100%IG. The condition for that is that 
the hydrogen content and the stress concentration factor remains in their 
respective ranges suggested in figure 8.31. Figure 8.39 suggests that this 
could be possible at very high hydrogen contents. It is shown large areas of IG 

and QC fracture. At the top of the figure could be noted the transition 
IG-ºQC-ºMVC. 
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Figure 8.39 Fracture surface of CWX331 weld metal charged with 4.88 mL/ 100 g of 
hydrogen after tensile test. Figure shows large areas of IG and QC fracture. 

8.6 Summary of chapter: Effect of microstructure, strength and hydrogen 

content on hydrogen induced cracking of weld metals 
In this chapter, the influence of the hydrogen content on the 

mechanical properties and fracture of the weld metals is studied in some 

detail. The main tool used was the fractographic analysis using high resolution 

SEM. 

Firstly, the effect of diffusible hydrogen content on Sy, S,,,, Sr and 
ductility, originated from the work of Wildash[81, is presented and analysed 

carefully avoiding oversimplification. Figure 8.5 is an example of the new data 
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presentation. A conceptual idealisation of the effect of hydrogen on mechanical 

properties of the weld metal suggested that hydrogen affect considerably the 

values of Sr and ductility, indicating the critical hydrogen content for 

embrittlement, Ck. This critical hydrogen content depends strongly on 

microstructure and trapping capacity of the weld metals. Table 8.1 present Ck 

values for the different weld metals. The weld metal with the highest Ck is 

CWX351. Weld metals CWX181, CWX351 and 14001 are amongst the weld 

metals containing grain boundary ferrite (PF(G)) and acicular ferrite (AF), 

suggesting that a continuous network of PF(G) could be beneficial to improve 

the resistance to hydrogen cold cracking. However, as indicated by the lower 

Ck value for 15171 (weld metal with PF(G)), the beneficial effect of grain 
boundary ferrite depends on its proportion, continuity and other important 

factor like the MAC content and NMI characteristics. Weld metal CWX361 and 
CWX 81, with Ck of 4.0 and 3.0 mL /100 g confirm the last observation. The 

first weld contain a discontinuous film of PF(G), while the second is formed by 

fine AF and isolated bainite islands. The other factors that play an important 

role in increasing the hydrogen tolerance of the weld metal are: the MAC 

content and the presence of retained austenite in this constituent; and the 

NMI characteristics, like inclusion size, number density and distribution. The 

effect of these microstructural features on the Ck value and the trapping 

constant, k, is discussed in detail in the next chapter. 
Secondly, throughout fractographic analysis with FEG-SEM (high 

resolution), it was studied the micromechanisms of fracture of the weld metal 

and how this behaviour can be affected by hydrogen charging. It is proposed a 

phenomenological model to correlate stress intensity factor and hydrogen 

content. There are three modes of fracture that where identified: coalescence of 

microvoids (MVC), quasicleavage (QC) and intergranular fracture (IG). The 

model intent to explain the effect of hydrogen, stress and crack like flaws on 

the fracture observed experimentally. Figure 8.31 presents a schematic 

representation of the model. The strength of weld " metals ' was suggested to 

affect the critical combination of hydrogen content and stress intensity for 

changes in micromechanisms: H, HI, Hlo', H and Hý '. 

Finally, the role of NMI, MAC constituent and micro shrinkages is 

elucidated with respect to the initiation of cracks and as hydrogen 

accumulators. Large NMI 
, and the microcavities were identified as very 

detrimental to the resistance to hydrogen assisted cracking. The evidence of 

A he role of MAC particles was not explicit. 
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CHAPTER NINE 

ýý sw". 

REsuLT3 AND DIscussION 

PART III ... , 

HYDROGEN TRAPPING BEHAVIOR AND ITS RELATION WITH THE HYDROGEN 

INDUCED CRACKING (HIC) 

In previous chapters, an attempt was made to relate the microstructure, 

the. mechanical properties and the hydrogen induced cracking resistance of 

selected weld metals. It was mentioned that the microstructure plays an 
important role on the weld metal fracture behaviour and how this links to the 

diffusion and distribution of hydrogen in the weld. In this. respect, the 

hydrogen traps are the key to understanding hydrogen transport and 
distribution. 

It is known that the hydrogen traps control the distribution of hydrogen 

throughout. the microstructure in such way that may decide whether critical 
levels are reached and, therefore, whether the crack is initiated or not at flaw 

sites. For this reason, it is useful to attempt to characterise the different 

microstructures with respect to their trapping capacity. The weld metal traps 

could be of different nature: interfaces, precipitates, NMI, dislocations and 

solute atoms. Knowing the relationship between trapping and microstructural 
features may allow the weld resistance to hydrogen cracking to be improved. 

As described in chapter four, the occurrence of hydrogen induced cracking 

needs the simultaneous interaction of four factors: hydrogen in sufficient 

quantity or a hydrogen critical content, the presence of stress, a susceptible 

microstructure and relatively low temperatures. Hydrogen traps could, in 

principle, be designed to redistribute the hydrogen absorbed during welding 

and control its concentration in places susceptible to crack initiation, provided 
the relationship between trapping and microstructure was known. 

An electrochemical technique, described in chapters five and six, was 

used to study the trapping behaviour. Using this technique a trapping rate 

constant (k) was estimated for each of the analysed welds. This value can only 
be used for qualitative comparisons, at least in this investigation, due to the 

wide variety of traps that could occur in a typical steel weld metal and the use 

o&, d limited quantity of available samples which contains reheated regions, 

=However, an attempt is made in this chapter to correlate the measured" k 

values with details of the microstructure, particularly MAC content, the NMI 
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characteristic and weld metal resistance to hydrogen induced cold cracking as 

these have already been identified as important in the fracture mechanisms 
described in Chapter 8 but had also been isolated as key variables controlling 
HICC cracking in weld metals by Wildash et al 19-10). 

9.1 The potentiostatic double step method and significance of the 

trapping constant value k 

As was described in chapter 4 and 6 an electrochemical technique was 

used to estimate the trap capacity of selected weld metals. Basically, this 

method consists of introducing hydrogen in the weld metal sample by cathodic 

polarization charging and then, when polarisation is eliminated, permitting the 

egress of the absorbed hydrogen and re-oxidise it. The anodic current 

registered is the data to be used to estimate the trapping constant k. 

During charging, hydrogen is reduced on the metallic surface. Figure 

9.1 presents schematically the process of hydrogen proton reduction, 

adsorption, absorption and diffusion. Protons are adsorbed on the weld metal 

surface where they are reduced to atomic hydrogen. This atomic hydrogen 

could interact with others H to form molecules of H2. If the formation of H2 is 

interrupted the H atoms can be absorbed in the weld metal and diffuse into 

the material. The elimination of polarisation changes to zero the concentration 

of H on the surface and produces the absorbed H atoms to diffuse back to the 

surface, where they are re-oxidised. 

Weld metal 

Hydrogen 
diffusion 

.............................. ....................... ..... ........... ............. ............................... ............................... ............................... ............................... ............................... .............................. ............................... ............................... ............................... .............................. ............................. ........................... ...................... 

Electrolyte 
HabýHD 

H* +e- -Had 
ýH2 

H++e -Had 
"ý 

Hab--a HD 

Proton reduction 

0 

0 0 

0 
Q H" 

OH (adsorbed) 

OH (absorbed and diffusible) 

8 
H2 

Figure 9.1 Schematic representations of the proton adsorption and reduction, 
hydrogen atoms adsorption, absorption and diffusion during the charging potential in 

the second step of the PDP test. 
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9.1.1 Assumptions for the diffusion model 

To estimate the ý trapping constant for each weld metal the method 

shown in chapter 6, sections 6.4.6 and 6.4.7, was followed. The assumptions 

for the application of the model in this investigation are: ".,.;, 

1- The. hydrogen entrance-is controlled by, the diffusion of H into, the 

bulk metal. This means that the transfer of H at the interface, is very 
fast and, equilibrium is reached quickly. 

2- The value of C,, the hydrogen concentration just below . the surface, 

was considered similar in every weld metal studied. Figure,, 6.14 

-indicated that the current density peak is related strongly to the, C. 

value, as demonstrated in figure 6.13(a). The C. value was estimated 

" to be around 9.91.10-9mol/cm3 

3- . The hydrogen traps, in contrast. to the original assumption ; by 

Pound[100,1131, can be saturated. This might be the reason why in 

--some of the weld metals-the k value decreases with the charging 
time. However, for mathematical simplicity the k value is kept as a 

constant for the solution of the modified second Fick's law,, 

4- The hydrogen lattice diffusivity (D) has been taken as constant for all 
the studied weld metals. It is supposed that the effect of trapping on 
the diffusion of hydrogen, which is characterised by an apparent 
diffusivity, is taken by the k value. Permeation studies may be 

carried out to estimate in each case the apparent diffusivity of 
hydrogen. Because of the lack of diffusivity data for the different 

weld metals, the hydrogen diffusivity was assumed to - be 

approximately 5 10-5 cm2/s. 

9.1.2 The significance of the k value for the weld metals 
The k value is proportional to the hydrogen trapping rate for a specific 

weld metal and characterises its trapping capacity. The precise value of k 

could be related to the density of traps, the capacity of the traps (size, type) 

and their spatial distribution, all of which determine the probability of 
hydrogen capture. Strong traps (high binding energy) or irreversible traps are 
likely; to, affect. the k value, significantly. The presence, of weak, or 

, 
reversible 

traps could affect the diffusion coefficient and may only slightly influence the 
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value of k detected by the double pulse electrochemical test. Moreover, the k 

value may vary if saturation of traps occurs as charging times are increased, 

as the results in this investigation seem to indicate. This is discussed later. 

Figure 9.2 presents the various factors that could lead to changes in the 

value of the trapping rate constant, k. It can be noted the complex interactions 

between numerous microstructural features that could affect the trapping 

capacity of the weld metals. Four important groups are identified: NMI, MAC 

constituents, microstructure and other traps (TiC, cavities, porosities, etc. ). 

For example, the observed k value could be high for weld metals with a high 

number density of NMI, because the possibility of hydrogen trapping 

increases. Conversely, a low density of sparsely distributed NMI or similar 

traps could reduce the value of k. In regard to the MAC constituent, the 

presence of retained austenite, which is regarded as a strong trap due to its 

high hydrogen solubility and binding energy, would increase the k value. 

The simultaneous presence of this diversity of microstructural features 

makes difficult the interpretation of the k value. For example, a reduction in 

NMI number could reduce the k value, but a simultaneous augment in 

proportion of MAC constituent, or the presence of retained austenite in it, 

could compensate the decrease in k. This indicates that all the variables have 

to be considered simultaneously in comparing weld metals. 

ý PF(Gj 

y 

ý }k 
AF 

Figure 9.2 Factors influencing the value of the hydrogen trapping rate constant, k. 
Four groups are distinguished: NMI, microstructure, MAC and other traps. Ideally the 
k value could be related with the susceptibility to hydrogen cracking of the weld 
metals, it could be regarded as a HEI. 
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The k value, globally, can describe the effect of the various factors that 

contribute to hydrogen trapping and redistribution. Ideally, a measurement of 
k should relate directly to the resistance to hydrogen induced cracking of steel 

weld metals. Pound et. al. 1100-104,1131 has proposed that the trapping rate 

constant value is an intrinsic hydrogen embrittlement index for different 

alloys. The calculation of this trapping rate constant required a complete 

characterisation of the alloy in terms of irreversible trapping (diameter and 
density of traps) and the effective hydrogen diffusion in the alloy. An 

equivalent and simpler approach is utilised in this investigation for the studies 

of high strength weld metals, where a direct interpretation of the k value (kg, 

as termed in the work by Pound, the apparent rate constant) is done without 
further calculations: that is, a high value of k is related to a high density of 

traps or high capacity of trapping. This directly obtained k used here contains 

enough information to elucidate, in combination with other HE 

determinations, the resistance to hydrogen induced cracking of the weld 

metal. The simple determination and interpretation of k could be used to rank 

the weld metals in order to hydrogen induced cold cracking susceptibility. 

Relationships between the k value and Ck would be extremely useful from the 

practical point of view, as was intended in this investigation in next sections. 

9.1.3 Microstructure of the electrodes and the k value. 

Figure 9.2 indicates that the microstructure could affect the k value 

due to the possible variation in hydrogen transport. Such details of the 

microstructure are, therefore, important factors to take into account in 

considering the interpretation of the value of k. The mixture of phases in a 

weld metal (see chapter 7), will clearly influence the k value due to the distinct 

trapping capacity which could be related to each different trap site. For 

example, suppose that a weld metal is formed by grain boundary (PF(G)) and 

acicular ferrite (AF) phases. The characteristics of these phases are different 

due basically to the different transformation temperature which defines their 

morphology. A continuous network of grain boundary ferrite is expected to be 

a relatively free and fast path for hydrogen diffusion and for this reason its k 

value is expected tobe low (kpIG)). On the contrary, the chaotic morphology of 

AF and their relatively high trapping density (NMI + MAC + other traps) could 
lead to a high "k value (kAF). Both trapping constants, kpc) and kAF, include the 

presence of trap sites m"each`region, which is expected to be numerous in AF. 
,. <i a .. "2L ,; 
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k= VAP *kAF + VPF(G)-kPF(G) (9. i) 
where k is the total hydrogen trapping constant and VAF and VPFIG) are the 

fractions of acicular and grain boundary ferrite phases, respectively. 

Equation 9.1 indicates that a decrease in k value could be associated 

with the presence of grain boundary ferrite network and the contrary could 

occur when the PF(G) is reduced or the network disrupted. Figure 9.3 

represents schematically the behaviour of hydrogen in a weld metal containing 
PF(G) and AF. A similar approach can be followed for mixtures of other 

microstructures and for the case of the presence of weld metal and reheated 

regions. For the case of a mixture of weld metal and reheated regions the 

approach mentioned above can be used to correct the values of k and estimate 

a kAw, a trapping rate constant for the weld metal. The following equation 

could be used: 

k=A AW " kAW +A RH " kRH (9.2) 

where AAw and AR,, are the area proportions for weld metal and reheated zone, 

respectively, knw and kRH are their trapping rate constants. 

?I 

ýf KA, > KpF(G) 

Figure 9.3 Hydrogen diffusion in a weld metal containing grain boundary and acicular 
ferrite phases, PF(G) and AF, respectively. Equation 9.2 could be used to understand 
the influence of the mixture. 

Figures 9.4(a) and (b) show the microstructure of two samples for the 

electrochemical test: weld metals CWX181 and CWX201. After etching, two 

regions can be distinguished: the as welded region or weld metal and the 

reheated region. Figure 9.4(c) points out the effect of the reheating on the 

microstructure of the weld metal of previous passes and the distance from the 
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fusion boundary. Two sub-regions are distinguished in the reheated 

microstructure: a coarse and a fine recrystallised zones I1s+1. The coarse region 

is close to the fusion boundary and for this reason is reheated at higher 

temperatures producing a coarse recrystallised region. Away from the fusion 

boundary a fine recrystallised zone is found and further away partially 

transformed and tempered microstructure are present. These regions are 

schematised in figure 9.5. Most of the electrochemical test electrodes 

presented weld metal and recrystallised regions (coarse and fine). 

(a) 
tensile test samples to 
study weld metal 
mechanical properties 

weld metal cladding 

II 

(b) 
reheated 
regions 

I 

II 

DRC 

metal 

RF 
RC3 

27 RF3 
RC, & RF, 

DRF23& RC1 

TRF 

RF, 

last three welding beads 

Detailed regions that 
could be found in 
multipaar waeldments 

RC;: recristallised coarse by pass i 

RFj: rec ristallised fine by pass i 

DRC: double recristallised coarse 
TRF: triple recristallised fine 

(c) 

Figure 9.4 Microstructure in the electrochemical test electrodes: (a) CWX181 and (b) 
CWX201. (c) Schematic representation of a multi-pass weldment illustrating the 
different regions which suffer re-crystallisation due to reheating. The outer red circle 
in insert in (c) represents electrochemical samples (cut from tensile sample base) and 
the red circles in (a) and (b) are the targeted weld metal region for tensile test. 
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Figure 9.5 Schematic representation of the microstructural changes expected in the 

reheated zone of a low alloy steel weld metal. Based upon the variation of 
microstructure in HA P9,1581 

Figure 9.6 shows an example of the regions described above in the 

CWX181 weld metal electrode. The presence of weld metal, recrystallised 

coarse and recrystallised fine reheated zones can be observed, (figure 9.6(a)). 

Figures 9.6(b) and (c) present details of these last two regions. 

From the point of view of transport and trapping of hydrogen, the 

presence of reheated weld metal portions will have one or more of the following 

effects: 
1- The dislocation density is expected to decrease considerably on 

recrystallisation, which in turn would increase the hydrogen 

diffusivity appreciably. 
2- Although some grain growth occurs in the coarse recrystallised 

region, the prior austenite grain size here is smaller than that in the 

weld metal. As a consequence hardenability is reduced and the 

proportion of polygonal ferrite will increase. This change will also 

accelerate hydrogen diffusion. 

3- -For weld metals with P. values less than 0.20, the fine 

recrystallised region consists mainly of fine ferrite grains between 5 

and 8 µm : in diameter. It. is likely : that precipitation of carbides 

occurs at the grau boundary "reducing 'the quantity ý of MAC 

constituent compare] to that present in the as cast weld metal 
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microstructure. This variation would also increase hydrogen 

diffusivity due to the reduction of dislocation density and the 

trapping capacity of the region. 

4- For weld metals with Pte, values higher than 0.20, formation of 
bainite and or martensite would be expected depending on details of 

prior austenite grain size, composition and cooling rate. 
Combinations of these factors could promote retention of austenite 

and formation of MAC micro-constituents, both of which would 
increase hydrogen trapping. 

5- Some tempering would also take place transforming the MAC 

constituents from martensite or bainite to ferrite and carbide, which 
in turn could cause reduction in trapping capacity due to a decrease 

in retained austenite proportion. In addition, carbides are less 

effective hydrogen traps compared to retained austenite. 

(a) 

(b) (c) 

Figure 9.6 Microstructure of the CWX181 electrode containing weld metal and 
reheated regions. (a) general view illustrating the regions, (b) and (c) detailed 
recrystallised coarse and fine zones, respectively. 
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These observations complicate the interpretation of the electrochemical 

results. Some additional work is necessary to evaluate the effect of different 

proportions of weld metal and reheated regions on trapping rate constant (k). 

The, hydrogen trapping test results, obtained in this, investigation, include the 

trapping behaviour of both regions of the weldment. However, it is assumed 
that the errors introduced by neglecting differences in the reheated area 
fraction will be proportional to the area fraction exposed on the test electrode. 
This is because the diffusivity of hydrogen in a ferritic matrix is about an order 

of magnitude greater than that in a dislocated matrix typical of a martensitic 

or acicular ferrite matrix. This is taken into account for the discussion on weld 

metal k values. 

9.1.4 Microstructure of the weld metal and the hydrogen diffusion. 

The various different phases (AF, FS(NA), PF(G) etc. ) present in each 

weld metal are expected to have different effective diffusion coefficients. Wang 

and collaborators 11891, using the permeation technique, determined the 

effective hydrogen diffusivity (Deff) for the weld metal (WM), heat affected zone 
(HAZ) and base metal (BM) of a TMCP weldment. They found that the lowest 

diffusivity was in the HAZ (4.21 10-11m2/s), which was predominantly bainitic 

in microstructure. The effective coefficients for WM (AF and PF(G)) and BM 

(ferrite and pearlite) were reported to be 5.21 10-11 and 8.51 10-11m2/s, 

respectively. These effective diffusion coefficient variations are due to the 

presence of different hydrogen traps in each region of the weldment. In this 

investigation the hydrogen diffusivity in the ferrite lattice was taken as 

constant and the effect of trapping is not included because this is taken into 

account by the trap constant, k, and no corrections are made to obtain a Derr 

as in the work by Wang [1891. 

9.2 The electrochemical method and estimation of the trapping 

rate constant 
Figures 9.7 and 9.8, 'present the current density variation during the 

different steps of the potentiostatic double-step method that was used to study 

hydrogen ingress and egress for the different weld metals. Three regions could 

be observed: 

a) The initial' and slightly cathodic region (at EA =Eor=l OmV). 

During this, a small cathodic current density is detected and 
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this is the result of the reduction of hydrogen protons on the 

surface, described by the reaction: 
2H+ + 2e- a H2(g) (9.3) 

At this potential, the corrosion rate of the weld metal electrode 
is very low. 

b) The hydrogen charging region (at Ern - Ein - 150mV). During 

this polarization the reduction of hydrogen protons is 

increased and, as the cathodic current density indicates, the 

reaction kinetics for equation 9.3 are increased. During this 

period and due to the presence of As3+ in solution, the 

formation of hydrogen molecules is perturbed. The hydrogen 

atoms, which are adsorbed on the electrode surface, became 

absorbed and hydrogen diffusion into the weld metal electrode 

occurs. Any other hydrogen that is not introduced into the 

weld metal evolves as hydrogen molecules. 

c) The hydrogen re-oxidation region (at EA). At this potential, an 
anodic current density due to hydrogen egress and re- 

oxidation is observed. Hydrogen that was introduced during 

the charging is induced to diffuse back to the surface, where it 

is desorbed and oxidised. This anodic current can be analysed 

to evaluate the trapping rate constant of the weld metal as is 

discussed below. 

In figures 9.6 and 9.7, it is observed that the average charging current 
density was different in most cases. This varied between 10 and 35 µA/cm2 

even for the same weld metal. This charging current density might be expected 

to be the same for each weld metal as a consequence of the utilisation of a 
fixed polarisation value (150 mV below each E., T). However, it is likely that the 

differences are due to small superficial changes in the experimental conditions 

that could include: small differences in microstructure of the same weld metal, 

proportions of weld metal and reheated zone and/or surface finish. Such 

differences between samples could change the hydrogen reduction (or 

oxidation) kinetics. As a result of this, the amount of electrical charge used for 

the reduction of hydrogen is, in some cases, not proportional to the charging 

time. 
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Figure 9.7 Current-time curves for the electrochemical double-step test of the weld 
metals: (a) CWX181, (b) CWX351, (c) 14001, (d) 15171, (e) VCX2561, (i) CWX361. In 
0.87 mol/L acetic acid (C2H402) and 0.5 mol/L sodium acetate (C2H3NaO2) containing 
15 ppm sodium meta-arsenite (AsNaO2) as a hydrogen entry promoter at 25.0 ± 0.1°C. 
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Figure 9.8 Current-time curves for the electrochemical double pulse test of the weld 
metals: (a) CWX201, (b) 14031, (c) CWX71, (d) CWX91, (e) CWX81 and (1) CWX331. In 
0.87 mol/L acetic acid (C2H402) and 0.5 mol/L sodium acetate (C-2H,, Na41) containing 
15 ppm sodium meta-arsenfite (AsNaO2) as a hydrogen entry promoter at 25.0 ± 0.1 °C. 
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Only part of the total hydrogen produced during the charging time, is 

introduced into the weld metal electrode. This amount could be expected to be 

proportional to the total charge used to reduce protons on the electrode 

surface and has to be taken into account when the trapping rate constant (k) 

data are discussed and compared. 

9.2.1 The trapping behaviour of the studied weld metals 
Figure 9.9 shows a typical example of the estimation of the k value for 

weld metal, CWX181. The value of k is adjusted until the analytical curve 

matches the experimental data. C. value was maintained fixed as mentioned 
before. To simplify the estimation, the scale of the graph was arbitrarily 

selected as shown: from 0 to 5.0 µA/cm2 and 0 to 5 s. A fixed diffusivity value 
(5.00 10-5 cm2 s-1) for hydrogen in the welds was used throughout. Some 

scatter in the anodic current can be noted for the three tests. Similar scatter 

was present in all other estimates of k for all the weld metals studied and the 

results are similar to figure 9.9. In annex A. 25, the data for the k values for 

the different weld metals are presented. 
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Figure 9.9 Experimental anodic current density for the re-oxidation of hydrogen for 
the CWX181 weld metal in 0.87 mol/L acetic acid (C2H402) and 0.5 mol/L sodium 
acetate (C2H3NaO2) containing 15 ppm sodium meta-arsenite (AsNaO2) as a hydrogen 
entry promoter at 25.0 ± 0.1°C. The analytical curve was estimated graphically varying 
the value of k until fit experimental data. 
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9.2.2 Weld metals and their k value 
The k value was obtained of each weld metal at three different times of 

hydrogen charging: 10,20 and 30 s. Due to the small volume of samples 

available for the electrochemical test, each experiment was made in triplicate. 

Three charging times were used with the idea of obtaining as much 
information from each sample as possible. For this reason, a small set of data 

was obtained and statistical treatment is employed to analyse it safely. 
Figure 9.10 presents an example of the anodic current due to the egress 

and re-oxidation of the hydrogen for various weld metal electrodes. For each 

weld metal, the curve fitted to the experimental data is shown. As can be 

observed, the anodic current is decreased as the k value increases. Following 

this approach, the k values were determined for the studied weld metals. Table 

9.1 presents the k values, with their respective standard deviation, for each 

weld metal at different charging times. It can be noted that there exits in some 

cases a considerable dispersion in the data (scatter). This dispersion is below 

20% for the majority of the cases (67 % of the cases in each group). To 

visualise this scatter a box plot is shown in annex A. 26 for each weld metal 

tested at different charging times. It can be seen in table 9.1 and figures A. 24 

to A. 26 (annex A. 26) that the scatter in k values is important for some of the 

samples and reduced for others. An increase in the repetition of test would 

improve this behaviour. 
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Figure 9.10 Comparison of the anodic current density for the hydrogen egress for 
different weld metals in 0.87 mol/L acetic acid (C2H402) and 0.5 mol/L sodium acetate 
(C2H3NaO2) containing 15 ppm sodium meta-arsenite (AsNaO2) as a hydrogen entry 
promoter at 25.0 ± 0.1°C. 

228 



Chapter 9. THE HYDROGEN TRAPPING BEHAVIOR AND ITS RELATION WITH THE HIC 

Table 9.1 Trapping rate constant for the different weld metals obtained by the 
potentiostatic double-step method 

k value ± S, [s-l] 
Weld Metal los 20s 30s 

CWX181 0.053 ± 0.025 0.177 ± 0.025 0.060 ± 0.010 
CWX351 0.357 ± 0.040 0.247 ± 0.025 0.170 ± 0.026 

14001 0.393 ± 0.031 0.180 ± 0.020 0.150 ± 0.030 
15171 0.317±0.076 0.410±0.036 0.273±0.031 

VCX2561 0.310 ± 0.036 0.550 ± 0.050 0.217 ± 0.031 
CWX361 0.283 ± 0.076 0.260 ± 0.036 0.047 ± 0.006 
CWX201 0.150 ± 0.050 0.400 ± 0.050 0.173 ± 0.025 

14031 0.387 ± 0.055 0.127 ± 0.025 0.190 ± 0.053 
CWX71 0.083 ± 0.015 0.070 ± 0.026 0.037 ± 0.015 
CWX91 0.257 ± 0.040 0.033 ± 0.021 0.120 ± 0.020 
CWX81 0.350 ± 0.050 0.123 ± 0.025 0.130 ± 0.020 

CWX331 0.100 ± 0.020 0.097 ± 0.015 0.000 ± 0.000 

In practice, to deal with a small set of data and analyse it statistically, 
the t-student distribution [I9o-1961 is utilised. The estimation of confidence 
intervals is one of the manners to present the data to be analysed. In figures 
from 9.11 to 9.13, the confidence intervals (95%) around the mean k value are 
plotted for each weld metal for the three corresponding times of hydrogen 

charging. As can be observed in these figures, the comparisons between 

different weld metals have to be analysed considering the statistical 
significance of difference between means, which could be estimated using the 

procedures in literature 1194-196] or using statistical dedicated software. In this 

case SPSS® for Windows was employed to facilitate calculations. 
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Figure 9.11 Confidence intervals (95%) for the k values for different weld metals after 
10 s of charging time. Obtained by the potentiostatic pulse technique in 0.87 mol/L 
acetic acid (C2H402) and 0.5 mol/L sodium acetate (C2H3NaO2) containing 15 ppm 
sodium meta-arsenite (AsNaO2) as a hydrogen entry promoter at 2 5.0 ± 0.1 °C. 
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Figure 9.12 Confidence intervals (95%) for the k values for different weld metals after 
20 s of charging time. Obtained by the potentiostatic pulse technique in 0.87 mol/L 
acetic acid (C2H402) and 0.5 mol/L sodium acetate (C2H;, NaOs) containing 15 ppm 
sodium meta-arsenfite (AsNaO2) as a hydrogen entry promoter at 25.0 ± 0.1°C. 
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Figure 9.13 Confidence intervals (95%) for the k values for different weld metals after 
30 s of charging time. Obtained by the potentiostatic pulse technique in 0.87 mol/L 
acetic acid (C2H402) and 0.5 mol/L sodium acetate (C2H3NaO2) containing 15 ppm 
sodium meta-arsenite (AsNaO2) as a hydrogen entry promoter at 25.0 ± 0.1 °C. 
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It can be noted from figures 9.11 to 9.13 that for some weld metal 

groups there exists no statistically significant difference between k values. For 

example, in figure 9.11, the group of weld metals CWX351,14001,15171, 

VCX2561 and CWX361 have no significant difference in their k value. If this 

group is compared with welds CWX91 and CWX81, no significant differences 

in k values are found and this could be associated with the several variables 

presented in figure 9.2. This means that the difference or equality of the 

trapping constant between weld metals and/or groups could be explained 
taking into account the similitude or inequality in microstructure 

characteristics: NMI density, size and distribution; MAC content and the 

presence of retained austenite; and the microstructure. 
Comparing the figures 9.11,9.12 and 9.13, it can be noted that the 

results for the k value after 20 s of hydrogen charging (figure 9.12) are better 

than those shows for 10 s of charging (9.11): the 95% confidence intervals are 

narrower for several cases. The same could be observed in the case of the 

results in figure 9.13 (30 s of charging). Although, all the values are going to 

be considered in the discussion special attention is paid in those in figure 9.12 

due to their statistical quality. 

9.2.3 Correction of k value due to effect of microstructure 

It was mentioned in section 9.1.3 that the different proportion of ferrite 

phases in the weld metal electrodes could affect the value of k. In the case of 

the electrodes used in this investigation a first correction could be applied 

using equations 9.1 and 9.2 which takes into account the proportions of weld 

metal (AW, for as welded region) and the reheated zone (RH). However, this 

first correction needs information in regard to the value for the trapping rate 

constant of the reheated region. This information is not available without 

proper experimentation using heat treated weld metal to simulate reheated 

material. 

As pointed out in section 9.1.3, the transformation that occurs during 

welding in the heat affected zone is going to affect the diffusion and trapping of 

hydrogen in these regions. Recrystallisation, tempering of MAC constituent 

and grain refinement, to mention some of them, could lead to an increase in 

hydrogen diffusivity and a decrease in the trapping capacity. On the contrary, 

MAC formation in high Pem materials due to very fast heating and cooling 
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cycles, the formation of carbides, between other reasons, could increase the 

trapping rate constant and reduce hydrogen diffusivity. 

No-metallic inclusions are not expected to be affected by the reheating 

cycle. As a consequence, the reheated regions of the different weldments could 

have NMI characteristics similar to their respective weld metal. This implies 

that the estimation of the reheated region k value is very difficult. It-has to 

take* into account the factors that increase, decrease or maintain the intrinsic 

k value of the weld metal. Experimental work seems to be the correct manner 

to accomplish this. The supposition for the reheated region k value (kRH) in 

this investigation has to be considered as a limitation in this investigation. It 

was not possible to estimate the experimental real value. Nevertheless, the 

correction approach is illustrated. 

Table 9.2 shows; for all analysed weld metals, the factorisation of the 

experimentally measured k value into: kt. Aw and kRH values, the trapping rate 

constant for weld metal and reheated region after the charging time t,,,, 

respectively. It was supposed that the value for kRH has a low value (0.05 s-1) 

based on some results reported in the literature and considering that the 

hydrogen diffusivity is high in this region, decreasing k. As a reference, the 

investigation by Pound 11041, reported that the trapping constant, as measured 

by the pulse technique, is very low for an annealed high strength steel (AerMet 

100), in fact the investigator report a value of k of 0.000 ± 0.001 s-1. It is 

difficult to suppose a value in accordance to this reference for the reheated 

region of the weld. The reheated region, as mentioned above, depending on the 

heating and cooling cycles, the composition and the NMI content of the 

previous weld metal, might contain certain degree of trapping capacity, which 

might be different for each weld. However, what is truly expected is a 

reduction in the k value due to recrystallisation of the reheated weld metal. 

Further work to establish clearly the value for kRH is needed to correctly 

estimate the effect of this region on the overall k value and particularly the 

value of kt Aw. 
Preliminary calculations supposing a kRH=0.05 s-1 are shown in table 

9.2. The estimations seem to indicate that the correction does not change the 

trend indicated already for the measured k value. It seems to increase the k 

value for most of the weld metals and slightly change this value for few of 

them. Nevertheless, the qualitative comparison between the weld metals is not 

affected by the correction - the original behaviour is not affected by the 

consideration of the reheated region proportion. 
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Table 9.2 Corrected value of the trapping rate constant for the weld metals studied in 
this investigation. Correction was made using equation 9.2. 

Weld 
metal 

AW 
(%) 

RH 
(%) 

kio 
(5. i) 

kiosw 
(8-1) 

kso 
(. i) 

k2oAw 
(s-I) 

kao 
(s-i) 

kaosw 
(8-1) 

CWX181 69.4 30.6 0.053 0.054 0.177 0.233 0.060 0.064 
CWX351 65.9 34.1 0.357 0.516 0.247 0.349 0.170 0.232 

14001 55.3 44.7 0.393 0.670 0.180 0.285 0.150 0.231 
15171 63.6 36.4 0.317 0.470 0.410 0.616 0.273 0.401 

VCX2561 62.8 37.2 0.310 0.464 0.550 0.846 0.217 0.316 
CWX361 70.9 29.1 0.283 0.379 0.260 0.346 0.047 0.046 
CWX201 50.9 49.1 0.150 0.246 0.400 0.738 0.173 0.292 

14031 54.1 45.9 0.387 0.673 0.127 0.192 0.190 0.309 
CWX71 49.9 50.1 0.083 0.116 0.070 0.090 0.037 0.024 
CWX91 60.4 39.6 0.257 0.393 0.033 0.022 0.120 0.166 
CWX81 74.5 25.5 0.350 0.453 0.123 0.148 0.130 0.157 

CWX331 68.9 31.1 0.100 0.123 0.097 0.118 - - 
k«: trapping rate constant for the weldment (weld metal + reheated region) 
kRH: trapping rate constant for the reheated region, supposed as 0.05 s-1 
ktCAW: trapping rate constant for the weld metal as welded, tc = 10,20 and 30 s. 

The figure 9.14 presents in a graphical manner, the changes in the k 

values after the correction and, as can be observed, the correction just amplify 

the value of k but keeping the differences between weld metals similar. For 

example, in figure 9.14(a) the k value for the CWX181 weld metal was slightly 

changed by the correction. On the other hand, that ' for the CWX351 was 

changed from 0.357 to 0.516, about 44.5 % increase. The difference between 

these two welds was increased but the behaviour, * is just the same as the 

original - the CWX351 weld metal has larger hydrogen trapping capacity than 

the CWX181. Although, this behaviour is repeated in several other examples in 

figure 9.14, it has to be taken with care due to the supposition of equal kRH 

values for all welds, limiting the interpretation. In most of the cases, the 

correction maintained the differences between the original k values (see figure 

9.14(b) and (c), as well). In few other cases, the correction' seems to equalise 

the k value, as shown in figure 9.14(c) for the weld metals: CWX351-14001 

and CWX81-CWX91. However, the original k values for these two pairs were 

similar, if it is considered their standard deviations. 

The k value, as was' discussed before, can, used, to compare the 

hydrogen trapping capacities of the weld metals.. The original k value 

contemplates the trapping rate constant for both weld metal and reheated 
'region of weldment. On the other hand, kAw; is'the trapping rate constant for 

, the weld metal alone when the kRH is supposed to be similar, for all the welds 

and a0.05s-lvalue. 
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Figure 9.14 Corrected trapping rate constants (k, oAw, kx, Aw and k, oAw) for all the weld 
metals. The krh, the k value for the reheated region of weldment, was supposed to be 
0.05 s-1. k values for times of charging (tr): (a) 10 s, (b) 20 s and (c) 30 s. Calculation 
was made using equation 9.2. Table 9.2 shows the values. 
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This supposition may be close to the real value of the k value for the 

reheated region but it is not necessarily equal for all the welds due to 

differences in composition, microstructure and inclusion population. More 

detailed experiments are needed to truly correct the effect of the reheated 

material on the k value and to clearly separate the weld metal behaviour. This 

could be done by simulating reheated material and carefully studying the 

trapping capacity of weld metals. 
For all these reasons and for simplicity, the discussion of the hydrogen 

trapping rate constant was based on the 
-original 

k values, those who 

represent the trapping capacity of the weldment (weld metal + reheated 

region). Taking into account the kAw values does not change the comparisons 

that are discussed in the following sections - these are qualitative 

comparisons. 

9.2.4 Effect of hydrogen charging time on k values. 
From figures from 9.11 to 9.13 it is difficult to elucidate the effect of 

charging time on the value of k. However, a simple inspection and comparison 

of figure 9.13 with the others seems to indicate that the increase in charging 

time (tc) could reduce trapping capacity of the weld metal. This could be 

possible if the traps become saturated with hydrogen at longer times. If k 

values for each weld metal are plotted against charging time, taking into 

account their confidence intervals, it could be possible to observe the influence 

of charging time. Figures 9.15,9.16 and 9.17, present three groups of weld 

metals. Each group behaves in a particular manner, respectively: 

a- Weld metals which ak value that decrease with t, ý. 
b- Weld metals with a maximum k value at t0 = 20 s 

c- Weld metals with 'a. minimum k value at to = 20 s. 

These variations in k with time of charging'. could be associated to 

different factors:, hydrogen saturation of traps, size and spatial distribution of 
traps, heterogeneities in the weldment (defects), and variations in 

microstructjire., Other source, fork variation that can, not be, avoided. is the 

proper scatter of the experiment, - which is a result for using a small number of 

samples. Nevertheless, this does not, invalidates the results if 'a proper 

statistical analysis is employed - the student distribution, for example. 

235 



Chapter 9. THE HYDROGEN TRAPPING BEHAVIOR AND ITS RELATION WITH THE HIC 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0-- Mean 
In, Lowe, 95% 

- a--Upper 95% 

o". 

.o 

10.00 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

20.00 

t. (s) 

(a) 

30.00 

O -- Mean 
- {r- Lower 95% 
-Upper 95% 

10.00 

0.7 

0.6 

0.5 

0.4 

'° 0.3 

0.2 

0.1 

0 

20.00 

t. (s) 

(c) 

30.00 

O-- Mean 
--h-Lower 95% 
-ß-Upper 95% 

o. 

AW" 

0.7 

0.6 
0.5 

0.4 4-0.4 

0.3 

0.2 

0.1 

0 

0.7 

0.6 

0.5 
0.4 
0.3 

0.2 

0.1 

0 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

O-- Mean 
-ý - Lower 95% 

Upper 95% 

P 

P. 
-. 

10.00 20.00 

4 (s) 

(b) 

30.00 

O Mean 
--Lower 95% 

Upper 95% 

10.00 20.00 30.00 

t. (s) 

(d) 

F 
Mean 

-o- Lower 95% 
--ü-Upper 95% 

oo-------------- o... 

10.00 20.00 30.00 10.00 20.00 30.00 

to (s) to (s) 

(e) (f) 

Figure 9.15 Variation of k value with the hydrogen charging time for the weld metals: 
(a) CWX351, (b) 14001, (c) CWX361, (d) CWX71, (e) CWX81 and (f) CWX331. The k 
value, for these weld metals, decreased with t,. 

Although the double-step technique supposes that hydrogen traps do 

not saturate with the charging times, its occurrence might be possible. This 
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depends on the traps capacity to accumulate hydrogen, which could depend 

on their size and spatial distribution. In figure 9.15 are shown weld metals of 

group (a), those whose k values decrease with- charging time, tc. Taking into 

account the 95% confidence bands, it can be noted that the decrease in the k 

values with time is statistically significant. In two cases, k decreases is 

observed at 20 s of charging and remains similar at 30 s: weld metals 14001 

and CWX181, in figures 9.15(b) and (e), respectively. In other two cases, the 

decrease in k is observed at 30 s of charging: figures 9.15(c) and (f). Only for 

the weld metal CWX351, the k seems to decrease gradually with t.. For the 

case of CWX71, the k value remains at the same level at the different charging 

times. 

It was found that all the welds in figure 9.15, except CWX331, have 

clustered NMI distribution. With respect to NMI maximum size, most of these 

welds are classified as S (small): CWX361, CWX71, CWX81 and CWX331. 

CWX351 and 14001 are M (medium) and L (large), respectively. In regard to 

NMI number (see appendix A. 15), these welds are classified as follow: H 

(CWX351,14001, CWX71, CWX81), M (CWX361) and L (CWX331). These 

suggest that the size and spatial distribution of traps could contribute to their 

saturation with hydrogen and as a consequence a reduction in their k value. 

However, other microstructural features could produce the effect presented by 

CWX71 and CWX331. For example, the martensite content in CWX331 could 

increase hydrogen solubility or diffusivity, keeping k values low or inexistent 

trapping capacity, as in this case at 30 s. At the end of this section, the effect 

of size and spatial distribution of traps (NMI or MAC) are treated in detail. 

Figure 9.16 present a group of weld metal that presented an apparent 

maximum k value at 20 s of hydrogen charging. Again, it should be related 

with the trap size and distribution. Comparing the NMI characteristics, it is 

noted that all welds in figure 9.16 have a random NMI distribution with a 

maximum size classified as large (L), except for weld CWX201: which' have a 
mal : ý. tf medium size. The NMI number is from low (L) to medium (M): It could indicate, 

as mentioned before, that the large maximum inclusion size and their random 
'distribution and low number' (maxi-mum-- frequency) are responsible for this 

behaviour. This is discussed latter ip this section. ' = 

The ' presence of heterpgeneities (defects),, --or" differences F3 `in 

microstructure along he weld metal - could cause different responses of the 

same weld metal. , 
For example, some `: 'micro shrinkage ` was found ' on , the 

fracture surface of weld metal- CWX2011 It is' possible that the distribution of 
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these defects is not homogeneous and the sample tested during 20 s contains 

them. The presence of these cavities could trap hydrogen in large quantities 

giving a high k value. Nevertheless, there is no evidence to explain the 

behaviour of the rest of weld metals in figure 9.16. As a result, this behaviour 

could be attributed, in general, to differences between samples of the same 

weld, leaving the similarities in NMI characteristics as a more likely 

explanation. 
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Figure 9.16 Variation of k value with the hydrogen charging time for the weld metals: 
(a) CWX181, (b) 15171, (c) VCX2561 y (d) CWX201. This group of weld metals 
presented an apparent maximum k value at 20 s of charging. 

Figure 9.17 presents the remaining two weld metals. In this case, an 

apparent minimum k value is found. However, confidence intervals for the 

weld metal 14031 and CWX91 shows no statistical significance for the k 

values at 20 and 30 s for the first case and a similar value for the last. As a 

consequence, these cases could be treated as a decrease in k with t' (group 

(a)). The decrease in k value could be related with the saturation of traps, 

which depends on size and spatial distribution as is discussed below. 
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Figure 9.17 Variation of k value with the hydrogen charging time for the weld metals: 
(a) 14031 and (b) CWX91. These weld metals presented a minimum k value at 20 s of 
hydrogen charging. 

In general, the k value could be affected by the hydrogen charging time 

and saturation of traps in the weld metal. Nonetheless, due to differences in 

microstructure between samples of the same weld metal, and a possible 
heterogeneous distribution of defects or other kind of strong traps along the 

weldment, the k value can suffer deviations producing the observed scatter in 

the experimental results. The variations in k with charging time for the studied 

weld metals could be summarised as follow: 

1- Partial or total saturation of superficial traps. An increase in the 

charging time introduces more hydrogen into the weld metals samples and 
this could saturate the traps close to the surface of the electrode. Saturation of 
the traps permit the saturation of the matrix around the traps and when the 

hydrogen is forced to egress from the sample enough hydrogen can re-oxidise 

on the electrode surface giving an apparently low k value. This could explain 
the high k values found at short time of charging (t, = 10 s) and the decrease of 
this values at longer times, as presented in figure 9.15 with few exceptions. 

2- Effect of NMI clustering in the weld metals. Figure 9.18 shows 

schematically the effect of the NMI spatial distribution. Two distributions are 

presented: clustered and random. In each case the front of hydrogen diffusion 

is indicated for the different charging times. Suppose that both samples are 

charged during 10 s. The sample with clustered NMI has more probability for 

trap hydrogen than the individual NMI in the random distribution. The k value 

should indicate that more hydrogen was trapped in the first sample. An 

increase in charging time will introduce more hydrogen in both samples. The 

matrix of the sample with clustered NMI, where there are free volumes 
between NMI clusters for the hydrogen to diffuse, can be saturated with 
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hydrogen because of low quantity of trapping sites in these regions. As :a 

consequence, when hydrogen is forced to egress, the saturated matrix should 
liberate its content giving an apparently low k value. This behaviour could be 

responsible for the decrease in k value with time, as presented in figure 9.15. 

In the case of the random distribution, it could be expected that the k value 

could depend on the NMI population and size distribution close to the surface. 
This is discussed in some detail below. 

Clustered NMI distribution Random NMI distribution 

" NMI clusters 

I w. 1+ 
."E 

electrolyte electrolyte 

t0= 30s 20s 102 tc= 30s 206 10s rt. t 

hydrogen hydrogen 
diffusion front diffusion front 

Figure 9.18 Schematic representation of the diffusion of hydrogen at different 
charging times for weld metals with clustered and random NMI distributions. 
Clustered distribution could give an apparently low k value. 

The clustering of NMI in weld metals could produce the formation of 
large quasicleavage facets on the fracture surface, as schematically presented 
in figure 9.19. Basically, the effect of clustering is to permit hydrogen tot have 

more mobility in those volumes between clusters which have low trapping 
density sites. Due to this, diffusible hydrogen has more chance to' reach' a 
susceptible site for crack initiation. In the figure this potential crack initiator 

isý a large inclusion but could be another potential flaw: microcräcks; voids, 
cavities, etc. If the critical hydrogen content for cracking is reached, ' then a 
crack is formed and its growth is assisted by the sufficient diffusible hydrogen 

available in the saturated matrix. In the example of the figure a' large 

quasicleavage facet can'. be, expected around the inclusion which ' initiates the 

crack. On the contrary, hydrogen in weld metals with a high NMI content 
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randomly distributed has more chance to be trapped, and the assistance to 

crack initiation and growth is more difficult. 

small QC facet expected 

ý::: '. 

Random distribution 

large QC facet expected 

difusible hydrogen 
, 

Clustered distribution 

Figure 9.19 Distribution of hydrogen in the weld metal due to different NMI 
distributions: clustered and random. 

3- Effect of trap size and distribution. Figure 9.20 shows schematically 

the behaviour of weld metals at different hydrogen charging times. This 

behaviour could be the result of the presence of large NMI in the weld. 

Random NMI distribution 

iI ý`ýj 
" 

`Hydrogen 
trapped 

ä around large NMI 
Fi L/ 
Ca I ,, " k (1/s) 

"f electrolyte 

ýý .... 

k value variation with time 

ý'ýý 
IýT 

10 20 30 
tc= 30s 20s 104; tc ts) 

hydrogen 
diffusion front 

Figure 9.20 Effect of large inclusions on the variation of the k value with charging 
time. At short tc and apparent low k value is obtained. At medium tc, if large 
inclusions are presents, an apparent large k value is measured. After longer charging 
times and total or partial saturation of large NMI, lower k values could be registered. 

In figure 9.16, four weld metals have an apparent maximum k value at 

20 s of charging. These welds have a random spatial distribution of NMI, low 

and medium NMI number and a large maximum NMI size, as presented in 

figure 9.20. At short times, t, = 10 s, hydrogen diffuses a short distance from 
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the surface. Between these distances large and small inclusions could' be 

found and these should trap hydrogen in some quantity. Due to The random. 
distribution and low population of NMI, the trapped hydrogen quantity should 
be low, giving a low k value. As time is increased, hydrogen diffuses into the 

steel reaching more large inclusions. Large inclusions can trap more hydrogen 

around themselves, as discussed in chapter 8. As a consequence, at 20 s of 

charging there is a good probability that hydrogen could reach and be trapped 

by large NMI, given an apparent higher k value. Increasing the time to 30 s, 

could increase the probability of trapping more hydrogen by large NMI, but it 

could permit the hydrogen saturation of the few large inclusions close to the 

surface of the sample. This causes the egress of more hydrogen, reducing the 

k value. For this reason, it is found that for few weld metals the k value 
present a maximum at 20 s of hydrogen charging, as shown in figure 9.16. 

3- Effect of retained austenite content. Due to the hydrogen high 

solubility and binding energy of H in austenite, it is expected that an augment 
in retained austenite proportion can increase the k value. However, an 
increase in MAC content not necessarily produces an increase in the trapping 

constant. This could be dependent on the presence of retained austenite in the 

MAC constituent. The probability of retain austenite in the weld metal is 

influenced by composition, size and shape of the austenite particle, as 
discussed in chapter 7. In next section these observations are further 

discussed using experimental examples. 

9.3 Relationship between the hydrogen trapping constant, the Ck value 

and the microstructure of the weld metals. 
In this section attempts are made to elucidate the effect of NMI, MAC 

content and microstructure on the trapping capacity and the resistance to 

hydrogen induced cracking of the weld metals. This task is carried out making 

comparisons between weld metals which have similarities in a group of 

variables and have clear difference in the factor that is discussed. Support 

from previous chapters is used and to help the reader a list of key. figures and 
tables is presented in table 9.3. Figure 9.21 collect in a visual manner, ppart of 
the 'inforinatiön which could be found in figures and tables mentioned in table 

9.3. This figure shows the value of Ck, the MAC content and NMI 

characteristics of the weld metals studied in this investigation: number 

density (Nv), distribution, size and inclusion number (see annex A. 15). 
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Table 9.3 Location of relevant information from previous chapter 

Relevant information Location 
General microstructure Figure 7.11 and table 7.2 on page 119 

MAC content Figures 7.19 and 7.20 on pages 126 
and 127, respectively 

Mj temperature Table 7.3 on page 133 

Size effect on M. and Mf Figures A. 11 and A. 12 in annex A. 13 

NMI number density (Nv) Figure 7.27 on page 139 

. NMI characteristics Table 7.4 on page 144 and tables A. 5 
and A. 6 in annex A. 14 

Weld metal mechanical properties Figure 8.1 on page 160 

Critical hydrogen content (Ck) Table 8.1 on page 166 
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Figure 9.21 NMI true number density (Nv) and main characteristics 
(distribution/number/size), MAC proportion and critical hydrogen content (CK) for the 
weld metals studied in this investigation. *NMI distribution: R (random) and C 
(clustered); number: L (low), M (medium) and H (high); size: L (large), M (medium) and 
S (small). 

Although the visual presentation of this data has no intention of 

showing clearly correlation and trends of the variables and Ck, it can be 

observed that some Ck maximums seems to be related to MAC and N� 
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maximums. This suggests that. both of these variables can have a beneficial 

effect on the hydrogen, induced cold cracking of the ý weld metals. This is 

discussed in detail in the next sections. 

Table 9.4 Factors to be considered when comparing weld metals with respect to 
hydrogen trapping capacity (k) and hydrogen cracking resistance (Ck) 

Factor Effect on k and Ck 
Microstructure Microstructure could affect k and Ck in several ways: 

modifying the hydrogen transport (PF(G), AF, B, M), 
promoting crack formation due to the presence of 
susceptible features (B and M). 

NMI number density, Nv An increase in N, could contribute to the trapping of 
hydrogen. The redistribution of H reduces the chance to 
hydrogen accumulation at susceptible sites. It is important 
to consider NMI size and distribution. 

NMI characteristics NMI number, size and spatial distribution could affect k 
and Ck in several ways: 

" Clustered distribution could produce low k values 
at long charging times due to the high H mobility in 
the matrix between NMI clusters. 

" Random distribution could increase the probability 
of trapping hydrogen, increasing k. 

" The size of the inclusions could change their 
trapping capacity and make them crack initiators. 
Large inclusions are susceptible to trap more H, 
but during deformation their stress intensity factor 
is high, promoting cracking. Small NMI trap less 
hydrogen, but they can withstand higher overall 
stresses 

" NMI number. This corresponds to the maximum 
number of inclusions with sizes around the 
median. The effect should be similar to Nv. 

MAC proportion The influence of this constituent of the weld metals seems 
to depend strongly on the presence and stability ; of 
retained austenite. However, as a general rule, it : is 
expected to increase Ck and affect slightly the k value. 

-Retained austenite Retained austenite is a strong hydrogen trap (high binding 
energy). It has high hydrogen solubility. Depending on size, 
distribution and proportion, retained austenite could affect 
k and Ck. The main concern is the transformation to 
martensite during deformation. If charged with hydrogen, 
when transformed, hydrogen could be released into the 
matrix. 

Comparison between weld metals is divided into three general groups, 
considering similarities between each other. These groups are: 

a- Weld metals with similar MAC content 
b- Weld metals with similar NMI number density 

--c- Weld metals with combined effect: microstructure, NMI and MAC. ' 
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Each group is discussed taking into account the factors presented. in 

table 9.4: microstructure, NMI characteristics, , MAC proportion and- retained 

austenite. The combination of these factors, as discussed,,, before, ;a could 
improve or impair the resistance to hydrogen induced cracking and the 

trapping capacity of the weld metals. 

9.3.1 Welds with similar MAC content: effect of NMI characteristics and 

retained austenite presence on k and Ck. 

Figure 9.22 present a group of four weld metals which have MAC 

contents around 6%: CWX351,14001,15171 and VCX2561. The first three 

contain a continuous network of grain boundary ferrite (PF(G)) in different 

proportions with acicular ferrite (AF). VCX2561 hass discontinuous PF(G) and 
AF., It can be noted that the' weld metal CWX351' has the highest Ck value in 

this group: 5.4 mL / 100 g. On the"other" hand, the trapping constant (k) after 
20 s of charging is not high if compared with 15171"and VCX2561. The high 

. 
Ck value for CWX351 could-be a response to the combination of high Nv ̀ and 

high probability to find large particles of retained aüstenite (around 0.6 µm in 

diameter, see annex A. 13, figure A. 11). Particles of retained austenite in this 

weld metal are expected to be of high stability due to 'composition (carbon 

content could be as high as 1.0. wt %). This effect could retain austenite even 

at high deformation during tensile test, maintaining hydrogen trapped. As a 

consequence, high Nv and the presence of retained austenite seems to improve 

the hydrogen induced cracking resistance of CWX351 in comparison with the 

rest of weld metals. 
The lower Ck value of 14001 could be the consequence of the reduction 

in Nv, the increase in NMI size and the reduced probability, to find retained 

austenite, when comparing with CWX351. Both weld metals are considered to 

have high NMI number and a clustered distribution. The larger inclusion size 
(maximum size) in 14001 could make it susceptible 

. 
to hydrogen cracking, 

reducing hydrogen tolerance (decrease in Ck). 

Further reduction in Ck, observed for weld metals 15171 and VCX2561, 

could be attributed to the reduction in Nv, the, presence of large inclusions 

and, in both cases, the random distribution of them. These factors diminish 

the weld metal capacity to redistribute hydrogen, which could be free in the 

matrix to assists cracking o might be accumulated.,, around inclusions 
. 
to 

initiate cracking. , 
Although 

. 
it ' is probable to, find small retained, austenite 

particles (less than 0.1-0.2 µm), they could have less chemical stability due to 
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reduced carbon -content (see table 7.3). That is, under deformation they can 

transform. to martensite releasing hydrogen and, as a result, giving a low Ck to 

the weld metal. 

Weld metal 

Microstructure 

Trap constant (11s) 
kiss 
kH, 
kiss 

Ch (mU 100 g) 

Nv (x 10'1mm') 

NMI 
(distributaonlnumberlsize) 

MAC (%, ) 

Retained austenfti 
(particle size for Ms< RT) 

CWX351 111! 001 15171 II vcx2561 
Continuous PF(G) + AF Discontinuous PF(G)+ AF 

0.357 0.393 0.17 0.310 
0.247 0.180 0.410 ' 0.550 
0.170 0.150 0.273 0217 

bA 32 1.6 1.6 

30 28 23 19 
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Figure 9.22 Comparison of weld metals with MAC content around 6%. It is shown the 
general microstructure constitution, the trapping constants (k), the critical hydrogen 
content- (Ck), the number density of NMI (N, ) and their distribution/number/size 
characteristics, the MAC proportion and the probability to find retained austenite, 
considering the values of M,, Mr and the effect of particle size in reducing Ms below 
room temperature (RT) 

In regard to the variation of k value for the weld metals indicated in 

figure 9.22 and as discussed previously in section 9.2, it can be noted that at 

short charging times the apparent trapping constant is high irrespective of 
NMI distribution: random or clustered. However, at longer charging times a 
decrease in k is noted for clustered distributions. A maximum k value is 

reached for NMI distributed randomly after 20 s of hydrogen charging. ' The 

apparent lower k value for the clustered distribution could be attributed to the 

egress of hydrogen from the free volume between inclusion clusters, which is 

noted at longer charging times. On the other hand, the presence of a 

continuous network of grain boundary ferrite in large proportions could 

contribute in reduce the k value, as a consequence of its involvement in 

hydrogen transport throughout the weld metal. 
Figure 9.23 shows another group of weld metals with similar MAC 

proportion: in this case 9 %, approximately. Weld metals 14031, CWX71 and 
CWX81 have similar microstructure, containing fine acicular ferrite (AF) and 

isolated islands of bainite (B). Their respective Ck values are: 1.0,1.8 and 3.0 

mL / 100 g. It can be observed that this increase in Ck could be related to the 

augment in Nv, as expected. Furthermore, the lower Ck value for 14031 could 
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be due to the medium size inclusions that contain, in contrast with the small 
in CWX71 and CWX81; This corroborates what was suggested before: there . 

is 

a beneficial effect of NMI if they are small and in high numbers. The probable 

presence retained austenite in CWX8 1, together the NMI population, ý could 

contribute to its resistance to hydrogen induced cracking. 
The Ck value for CWX181, which is slightly below that of CWX81, could 

be the consequence of the lower NMI number density and the larger inclusion 

size. Although this combination is detrimental to the hydrogen cracking 

resistance, it seems that the presence of grain, boundary ferrite might. have 

compensated this effect. 

Weld metal 

Microstructure 

Trap constant (11s) 
kN, 
kH. 
kM. 

Ck (mlJ 100 p) 

Nv (z 104Imm') 

NMI 
dlstrlbutlonlnumbe rlslze) 

MAC (%) 

Retained austenlts 
(particle size for M e< RT) I '-' ! '"I I 

0.350 
0.123 
0.130 

3.0 

30.8 

CIWS 

9.0 

Probable 

Figure 9.23 Comparison of weld metals with MAC content around 9%. See description 
in figure 9.20 for more detail. 

With respect to the variation of the 
. 
trapping constant in figure 9.23, it 

can be noted that the k value seems' to be affected by., both NMI size and the 

presence of retained austenite. " Comparing ,' 14031 with ' CWX81, $ it is 
ýa3 

appreciated a similar k value, although 14031 have lower Nv and larger NMI 

than CWX81. This suggests . 
that the reduction in. Nv is compensated by . the 

increase in inclusion size,. which� could trap more hydrogen ' around ' itself. If 

weld metals CWX71 and CWX81 are compared, they seem to indicate that the 

higher k value for CWX81' is due to the combination of higher NMI number 

density and the probable retention of austenite. In contrast, ' the low k value for 

CWX181 could be associated -'with the gram boundary ferrite and the low 

population` of large and randomly ' distributed Y inclusions. 'The k value ' is 

therefore' seen tobe sensitiven to these NMI distribution and size of NMI, which 

could act as large volumetric traps for hydrogen in the case of clustering. 
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These examples illustrate the importance of the NMI population, 

particularly' their; size. and -distribution, on the hydrogen trapping behaviour 

and the hydrogen cracking resistance of the weld metals. The results suggest 

that for the case of weld metals -with similar MAC content and nature,. the NMI 

characteristics contribute directly to an increase in Ck. An increase fi in 

inclusion size could increase k, but affect negatively the Ck value. Finally, it is 

noted again the importance of the presence of retained austenite. 

9.3.2 Welds with similar NMI characteristics: effect of MAC proportion 

and retained austenite presence on k and Ck - 
In figure 9.24 weld metals CWX181,15171 and CWX361 are compared. 

These weld metals have similar Nv value and different MAC content. Some 

differences in NMI characteristics can be noted. The first two welds " have 

similar -microstructure: continuous network of PF(G) and AF. Nevertheless, 

they present different Ck and k values. The high Ck value for CWX181 could be 

related to its higher proportion of MAC (8.5%) which is expected to contain 
little, proportion of retained austenite. The random distribution of a low 

population of large inclusions could be the reason for the acceptable Ck value. 

On the other hand, the Ck value for 15171 is the result of the slightly higher 

number of large inclusions, counterbalancing the benefit of retained austenite, 

which is expected in this weld metal. However, this beneficial effect depends 

on chemical and mechanical stability of retained austenite with low C content. 

Weld metal 

Microstructure 

Trap constant (11s) 
klo. 
k20, 
k3o. 

Ck (mLJ100 q) 

Nv (x 10'1mm3) 

NMI 

MAC (°/u) 

Retained austenite 
krtIcle size for Ms< RT) 

CWX181 11 15171 

Continuous PF(G) + AF 

CWX361 

Discontinuous PF(G) + AF 

0.053 0.317 0283 
0.177 OA10 0.260 
0.060 0 0.047 

2.6 1.5 4.0, 

22.0 23 23.8 

ýý- RUL CIMIS 

8.5 5.5 16 

Less proba Probable Less probable (0.1 µm) 
ble 
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Figure 9.24 ; Comparison, of weld metals with similar NMI number, density, : Nv, 
(between 22.0 and 23.8 106 mm4). See description in figure 9.20 for more detail., - 
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The lower k value for CWX181 could be the result of the combination of the 

low - inclusion, number, though large; the presence of grain- boundary, 
. 
ferrite 

and the, low probability to - fmd retained austenite. In contrast, - an increase in 

NMI number and the probable existence of retained austenite, -despite the fact 

that MAC has lower proportion, contribute to an increase in the trapping 

constant k for the 15171. 

The Ck value, around 4.0 mL / 100 g, for the weld metal CWX361 could 
be the result of the combined effect of slightly higher Nv, the clustering of 
inclusion- of small size, -and. the large proportion of MAC "(16 %),, though it is 

expected low content of retained austenite. in this constituent. This combined 

effect compensates the discontinuity of grain boundary ferrite. 

In figure 9.25, there are contrasted two weld metal with similar NMI 

number density but very ý different microstructures: one containing a 
discontinuous network of PF(G) and AF; the other is formed by martensite (M) 

and bainite (B). Ck is slightly higher for the weld metal VCX2561 -than for 

CWX331, probably due to the presence of retained-. austenite that is 

counterbalanced by the effect of larger NMI. Although the MAG proportion in 

CWX331 is around 20%, no apparent beneficial effect is observed. This could 
be the result of the little retention of austenite and its instability due, to low 

carbon content. 

-,.. .-,. 
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Figure 9.25 Comparison of weld metals with similar NMI number density, Nv, (around 
20 106 mm-3), but different microstructure and MAC content. See description in fiVre 
9.20 for more detail. 1. - 11 . 
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"',, The higher k value for VCX2561 could be due to the probability, to find 

retained , austenite; 'the , presence of large inclusions and -the discontinuity of 
the grain boundary ferrite. The smaller NMI in CWX331 limits trapping and 

makes the martensite susceptible to hydrogen cracking. The low Ck value: for 

CWX331 is due to the presence of martensite, which at the same time does not 
have sufficient hydrogen traps to decrease hydrogen induced cracking 

susceptibility. 

Previous examples suggest that the MAC content in a weld metal can be 
beneficial to increase their Ck value, especially when retained austenite exists 

and present high chemical and mechanical stability. However, it has been 

shown that microstructure plays an important role and that the combination 

of certain NMI characteristics with the MAC content could improve the weld 

resistance to hydrogen cracking. In the next section the effect of this 

combination is elucidated. 

9.3.3 Welds metals presenting combined effects of MAC and NMI. 

In figure 9.26 two weld metals that have not been compared before are 

presented: CWX201 and CWX91. These do not present similarities with ' the 

rest of the ten weld metals studied in this investigation and which were 
discussed before. Both welds contain acicular ferrite, with some bainite 

islands in the case of CWX91. 

The Ck value for the CWX201 is twice that for the CWX91, and this 

seems to be contradictory due to its very low Nv. However, the MAC content in 

weld metal CWX201 is almost 3% higher than in CWX91 and this might 

contribute to the measured Ck value. The medium size and randomly 
distributed inclusions, although in low number, could trap hydrogen better 

than smaller and clustered ones, as in CWX91. Nevertheless, larger NMI could 
be susceptible to initiate cracks in presence of enough hydrogen quantities, 
limiting the hydrogen tolerance of the weld metal. 

NMI number density is much higher in the weld metal CWX91, but 
their beneficial effect is not appreciated on the Ck value. Comparing this weld 

metal with CWX71°and CWX81, which have similar microstructure, higher Nv 

and lower MAC proportion, it can be noted that the decrease in NMI number 
density is-responsibility of the reduction in Ck, even when the MAC is 2% 

above for the CWX91. 

The inspection of the, k values suggests that for these two anomalous 
cases other factors may be operating as hydrogen traps. There exists evidence 

that micro cavities are present in the weld metal CWX201, as shown in figures 
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8.16 and 8.17. These cavities are volumetric traps and can be the reason for 

the relative high k value. No evidence of such kind was found for the CWX9 1, 

and it could be suggested that the bainite islands may decrease the hydrogen 

cracking resistance for the welds that contains them. 
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Figure 9.26 Comparison of weld metals with similar NMI number density, Nv, (around 
20 106 mm-3), but different microstructure and MAC content. See description in figure 
9.20 for more detail. 

Welds metals CWX201 and CWX71 have similar Ck value, 'as shown in 

figures 9.26 and 9.23. Table 9.5 presents comparatively' the other 

characteristics. 

Table 9.5 Comparison between CWX201 and CWX71 

Characteristics CWX2O1 CWX71 
ML1L (%O) 10.10 

* 
O. A7 .. 

Nv [106 mm-3] 13.51 29.22 
NMI characteristics R/L/M C/H/S 

As can be noted in table 9.5,, MAC and NMI have been combined, to 

obtain the same Ck value. The effect of a low NMI population of medium size in 

the CWX201 on Ck, has been complemented by the large MAC content, and in 

the case of the weld metal CWX71, the high population of small NMI is taking 

control of the hydrogen that can not be trapped due to the reduction in MAC 

volume fraction. The result of this combination is the production of similar 

hydrogen resistance in these two welds. The higher MAC content and : the 

presence of medium sized NMI of the CWX201 weld metal is detected by the 
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trapping constant k, which is higher than for the- CWX71. This indicates the 

slightly- better -resistance to hydrogen cracking of the CWX201 weld. Similar 

behaviour is found when comparing other weld metals. .{,., 

9.4 Summary of this chapter: The hydrogen trapping capacity of the weld 

metal and. their resistance to hydrogen induced cold cracking. 

In-this chapter the results from chapter 7 and 8 converge in an attempt 
to establish a relationship between microstructure, properties and HICC of the 

HSLA steel weld metals - the title of this book. The hydrogen trapping capacity 

of the weld metals, characterised by the trapping constant k, is studied and 

analysed. ý Firstly, the fundamentals of the electrochemical technique to 

measure the trapping constant are briefly explained and the assumptions are 
listed. Then a revision of the k value significance is discussed. Figure 9.2 

present several factors that have an influence on the k value. 
The trapping constant is a measure of the hydrogen trapping capacity of 

the weld metal. -It is known that the hydrogen traps control the distribution of 
hydrogen throughout the microstructure in such way that may decide whether 

critical levels are reached and, therefore, whether the crack is initiated or not 

at flaw sites. A high k value means a high capacity to trap hydrogen at specific 

sites and might imply a capacity of the material to tolerate higher hydrogen 

levels, which is distributed evenly throughout the microstructure avoiding 

accumulation in those crack susceptible regions. Trap sites are: interfaces, 

NMI, MAC, porosities, precipitates, dislocations and solute atoms. 
The complexity of the k value interpretation is due to the simultaneous 

interaction of the different traps. Moreover, the presence of a variety of 

microstructural phases-,, might influence the measurement of k. In this 

investigation NMI and MAC particles are considered to influence the k value 

and Ck, as well. The influence could be beneficial or detrimental as discussed 

along the chapter. 

' In this investigation, it was found that the k values vary with time of 

charging.: This variation could be associated to different factors: hydrogen 

saturation of traps, heterogeneities in the weldment and variations in 

microstructure. Considering -the-. spatial distribution of NMI a possible 

explanation ofthe k variation with time was suggested. 
The' effect of microstructure, MAC content and NMI ý on the k value and 

Ck could be summarised as follow: _ ..;? 
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1- Effect of microstructure. The k value seems, to be insensible to the 

microstructure. Similar k values were obtained in weld metals with a 

continuous network of PF(G), with a discontinuous one and without 

grain boundary ferrite. It seems to be more dependent on MAC 

content and NMI inclusion characteristics. However,, the, presence of 

a continuous film " of grain boundary ferrite- seems., to. . 
have. 

,a 
beneficial effect on Ck. 

2- Effect of MAC content. The k value is sensible . to the, presence of 

particles of MAC. Nevertheless, as some evidence r indicates, the 

important issue is not the MAC content, but, the existence- of 

retained austenite. Retained austenite is a strong hydrogen-trap and 

hydrogen solubility in it is high. As a consequence, ,k value remains 

relatively high when there is retained austenite in the weld metal.. In 

regard to the value of Ck, it is expected to find an increase of this 

value with retained austenite. However, the results of " this 

investigation indicate that other factor can counterbalance this 

expected beneficial effect. Amongst this factor can be mentioned: the 

instability of retained austenite during deformation and . the NMI 

characteristics. Retained austenite is an excellent hydrogen trap, 

but when deformed it can transform to martensite. realising its 

hydrogen content. Chemical and mechanical stabilisation of 

austenite is important to be considered to improve the, hydrogen 

induced cracking resistance of the weld metals. The effect of NMI is 

discussed below. 

3- Effect of NMI characteristics. The k value. is considerably affected by 

the NMI population, size and distribution. A random distribution of 

inclusions seems to favour the trapping efficiency, but it depends on 

their number and size. For example, a random, distribution of large 

inclusions is expected to contribute with a high k value if they are in 

a medium range number. On the contrary, a random distribution of 

large retained austenite in lower quantities is expected to reduce the 

trapping capacity of the weld metal. If the NMI -size is lowered,. its 

trapping capacity is diminished. , On the other hand, ' the clustered 

distribution of NMI can improve the trapping capacity, but again, 

the size and number is important. In regard with the Ck value, the 

NMI characteristiccan counterbalance the beneficial effect of the 
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factors mentioned above. In general, large inclusions were 

associated with low Ck values. 

As discussed in this chapter, a careful design of weld metal must consider 

the complex interaction observed experimentally. It has to be taken into 

account that a weld metal with high resistance to hydrogen induced cold 

cracking is the result of a combination of microstructural characteristics. 
Further work is needed to clarify the effect of individual factors such as 

retained austenite stability and the NMI characteristics. 

ý. . t: l`. ýti .. 
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CHAPTER TEN 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

10.1 CONCLUSIONS 

10.1.1 The mixture of microstructures of the weld metals studied was 

classified into four principal groups which depend on weld metal compositiorn. 
These groups contain: grain boundary ferrite (PF(G)), acicular' ferrite (AF), 

ferrite with aligned second phase (FS(A)) which can be ferrite side plates 
(FS(SP)) and bainite FS(B), ferrite with non aligned second phase (FS(NA)) and 

martensite (M). The groups are shown in table 10.1. 

Table 10.1 Microstructural classification of the weld metals studied 
Pam value Microstructure 
Pcm<O. 17 PF(G)continuous network + AF + FS(A) + microphases (MAC, YR, NMI) 
0.17<Pcm<0.20 PF(G)discontinuous network + AF + microphases (MAC, YR, NMI)* 
Pcm2: 0.20 AF + FS(B) + FS(NA) + microphases(MAC, yR, NMI)* 
P, 7m=0.27 M+ FS(B) + microphases (MAC, YR, NMI)* 
*Microphases: MAC (martensite-austenite-carbide islands, yR (retained austenite) and 
NMI (non metallic inclusions). 

10.1.2 The spatial distribution and shape of MAC depends on the ferrite phase 

that forms during transformation. Elongated MAC particles are found at PF(G) 

boundaries and between ferrite lath in FS(A) and FS(B). Wedge shaped-MAC 

particles are found between AF grains. An empirical expression correlating 

composition and MAC content was obtained by multiple regression which 

shows good correspondence with experimental values. The equation is the 

following: 

MAC(%)=155"C+10"Mo+6.6"Mn-11"Cr-7"Si-Ni-4 (10.1) 

10.1.3 The probability to ' find retained austenite (yR) in MAC were carried 

throughout estimations of M. and Mr temperatures for the remaining 

austenite. It was considered both chemical stabilisation (carbon partitioning 

and alloying effect) and particle size effect. Weld metals where yR is more 

probable are: CWX351,15171, VCX2561, CWX91 (size effect) and CWX81. The 

small particle size necessary to stabilise austenite should be below 0.1 µm for 

most of the weld metals. Then, for the rest of weld metals it is less probable to 

find retained austenite. The weld metal CWX351 is expected to have very 

stable retained austenite due to high carbon content. 
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10.1.4 The NMI characteristics were fully assessed: number density, size and 

spatial distribution. Weld metals inclusions were classified based on these 

characteristics as random and clustered distributed; high, medium and low 

number; and large, medium and small size. No attempt was made to fully 

classify the NMI by type and composition, but some thermodynamical 

calculations are proposed to estimate these. 

10.1.5 A method to estimate the critical hydrogen content (CK) for hydrogen 

embrittlement is proposed. This consists in estimate, from experimental data, 

the hydrogen content that produces 50% of ductility loss. 

10.1.6 The CK value, in principle, is affected by weld metal microstructure. The 

presence of a continuous network of a thin film of PF(G) in combination with 
AF, MAC content and certain NMI characteristics, seems to be beneficial to 

hydrogen cracking resistance. The presence of bainite or a mixture of bainite 

and martensite are expected to be detrimental. 

10.1.7 The Ck value is influenced by the MAC volume fraction. However, the 

presence of retained austenite in the MAC constituent is the important factor 

to increase the Ck level of the weld metals. 

10.1.8 Certain NMI characteristics were identified to be beneficial for the 

tolerance to hydrogen. Clustered inclusions seem to be more effective than 

random distributed, but this effect depends on NMI size. Large inclusions were 

associated with low Ck values. A high number density of medium and small 

sized inclusions can result in an acceptable Ck. 

10.1.9 The resistance to hydrogen induced cracking could be improved with 
the right combination of. microstructure with grain boundary ferrite, MAC 

particles with stabilised retained austenite, and NMI of medium to small size, 
in high number and clustered distributed. 

10.1.10 Large NMI has been identified as the principal cracks initiators. 

Cavities or micro-shrinkages were observed in some weld metals to initiate 

large quasicleavage facets. MAC particles were not clearly related to crack 
initiation. 

10.1.11 A phenomenological model, based on fractographic observations, is 

proposed. In a diagram, it is described the effect of hydrogen content, stress 
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intensity factor and microstructure on the occurrence of the fracture 

micromechanisms that can be found in hydrogen assisted cracking in,, weld 

metals: micro-void coalescence (MVC), quasicleavage (QC) and intergranular 

(IG) fractures. 

10.1.12 An electrochemical double pulse technique was used to determine the 

hydrogen trapping rate constant (k) for each weld metal studied. The 

technique was proved to be sensitive to the microstructural differences 

between weld metals. 

10.1.13 The trapping rate constant k is sensitive to the presence of retained 

austenite, changes in NMI characteristics and the time of charging of the weld 

metals. This value could be used as an indicator of the trapping capacity of 

the weld metal. However, its direct relation with Ck is difficult due, to the 

complex interrelation between other variables: defects, NMI characteristics, 

MAC content and the presence of retained austenite. 

10.2 RECOMMENDATIONS AND FURTHER WORK 

10.2.1 To improve the statistical significance of the different results it is 

necessary to carry out a large quantity of experiments. Specialised equipments 

with high current resolution and high sampling rate for data acquisition is 

recommended to record the results. 

10.2.2 A very detailed study using high resolution SEM is necessary to verify 

the presence of retained austenite in the MAC constituent. This can be carried 

out taking few representative samples of the weld metals and using special 

etching techniques to reveal the superficial morphology of the MAC particle. 
This method protects retained austenite from transformation, which could 

occur during TEM sample preparation due to the effect of low temperature or 

stress relief. 

10.2.3 The size and spatial distribution of retained austenite could be an 
interesting subject to study. In combination'to the NMI, characteristic the role 

of both features can be fully understood. 

{ý "" 3 
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10.2.4 A study about the influence of the NMI spatial distribution on the weld 
metal microstructure is recommended. More detailed microscopy studies to 

characterise the morphology of the microstructure that is formed in NMI-free 

regions and NMI populated regions, could be appropriate because it is possible 

that the clustering of inclusions favours the formation of orientated ferrite 

phases, such as FS(A) and FS(B), in those NMI-free regions. 

10.2.5 The role of MAC on the crack initiation in hydrogen charged weld 

metals seems to be important. More detailed fractographic analysis is 

proposed using: the technique of matching fracture surfaces and chemical or 

electrochemical etching of the fracture surfaces to identify microstructure 
beneath a specific feature. 

10.2.6 Using carefully designed heat treatments simulate the formation of 

reheated region in multipass welding. Then characterise it and estimate the k 

value. In this way the result in this investigation can be corrected. 

10.2.7 The utilisation of a hydrogen permeation technique could corroborate 
the validity of the trapping constant k for the different weld metals. From these 

studies the diffusivity of hydrogen can be clearly estimated. 

10.2.8 To fully understand the role of retained austenite on the resistance to 

hydrogen induced cracking and the trapping capacity of steels, it is proposed 
to use a TRIP-steel. This steel can be carefully heat treated to produce 
different proportions, particle sizes and distribution of retained austenite. This 

control could permit to quantify the effect of retained austenite on k and Ck. 

The effect of stability of retained austenite on hydrogen induced cracking can 
be studied after the application of deformation to samples. 

10.2.9 To study the influence of MAC on the trapping of hydrogen when 

retained austenite is present, it is proposed to determine k for the samples 

with retained austenite before and after cooling it down to sub zero 

temperatures to transform yR to martensite. Deformation to induce martensite 

transformation could be applied as well. 
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ANNEXES 

A. 1 The equilibrium partition ratio 

.( 
"çô 

The equilibrium partition ratio, xo, controls the direction and extent of 

segregation. For most alloy elements in steel the partition ratio is less than 1 

and the element segregates to the interdendritic liquid 1191. Table A. 1 gives 

some approximate values of uo for various alloying elements present in high 

strength low alloy steels. 

Table A. 1 Equilibrium partition ratios for different 
solutes in low alloy steelsi19-201 

Element xo 
C 0.17 
Si 0.8 
Mn 0.7 
Ni 0.85 
Al 0.95 
Ti 0.5 
B 0.001 
0 0.01 
3 0.2 
N 0.04 
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ANNEXES 

A. 2 Modes of solidification depending on the temperature gradient and 
the constitutional super-cooling 

OLý AN t)13!. j ý-,, I dJ Fusion zone 

ý`. s sI Solidified Liquid I+ý 
nw 

Fusion zap , 
... Bass 

Bass mcd 

i< Grain 
No. 1 'P1 

direction 
I1 

(a) 

Base metal 

Grain 
No. 1 

Grain 
No. 2 r 

LýC 
(b) 

ice 
ý. +Oººsa 
QrOwth dirqý 

Fusion zone 
. - Solid I Liquid Note the roughly 
qýI hexagonal ShWe 

of subgrains 

Subgrsins 
'( 1 

Sotid-liuid 
interface i 

A 
Cross section 

at A-A, .. 
r 

Base metal 
1 Fusion mrrf (0) 

Solidified .. -w 

W, - -i lSubgran 

<100> 

G 
No. 2 ý"/ý 

7 

(C) 

Successive lGrain 
positions; of 
solid-liquid "-' 
interface 

(d) 

Typirid 
crow section 

a b c d 

e 

XL 

Figure A. 1 Schematics showing microstructure of solid/liquid interface for different 
modes of solidification and the temperature gradients that generate each of the 
different modes. (a) Planar growth, (b) cellular growth, (c) cellular dendritic growth, (d) 
columnar dendritic -growth, (e) ' equiaxed ' dendrite, and (e) five temperature gradient 
versus constitutional supercooling M. ' "= =`.. a. 
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ý!: ! ANNEXES 

A. 3 Dube's classification of the ferrite morphology is steels 

In the figure A. 2 are shown the early classification proposed by Dube of the 
morphology of the ferrite. Some of these names are still used today. The. only 
major change to this classification is the designation of the name acicular 
ferrite to what Dube called intergranular WidmanstAtten ferrite. 

Gain boundary 
allotiomorphe 

läomorphs 

01 

Massed 

Figure A. 2 Schematics showing the Dube classification of ferrite 
morphologies in steelsL42l. 
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ANNEXES 

A. 4 IIW algorithms for the identification of the different microstructures 
in low alloy steel welds 

The figure A. 3 shows the IIW recommended procedure to classify the different 
microstructural features that could be found in low alloy steel welds. This 
permits a systematic identification of the phases or morphologies of the steel 
microstructure. ,+,.. ,.. 
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Figure A. 3 International Institute of Welding scheme for classifying microstructural 
constituents in ferritic steel weld metals with the optical microscope M. 
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A. 5 Electron energy diagram for the Fe4S cluster 

In these diagrams, the lai and lt2 levels are very important, because these 

two levels correspond to the wave functions that describe the metal-impurity 
interaction. The rest of the energy levels correspond to wave functions that, are 
located either completely or almost completely on the metal atoms. For this 

reason, the orbital contour plots for the 1al and lt2 levels are shown in the 

figure 4.6 (b). As could be observed in this figure for Fe4S, the 1al orbital has 

practically no metal contribution and the lt2 orbital also has little content on 

the metal atoms and are more concentrated on the impurity. Consequently, 

the bond has a heteropolar character P IL 

F14S 
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Figure A. 4. The energy level diagram for the Fe4S cluster showed in the figure 4.6(a). 
The dashed lines are for unoccupied levels of the minority spin-state 181). 

.. 
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A. 6 Welding Parameters used in the production of the weld'metals 

The tables A. 2 and A. 3 present the. different welding parameters, used by 

Wildash 181 in the fabrication of the weld metal samples. The first table shows 
the data fro the commercial consumables. and the. second table. for the 

modified consumables. The heat input (H, ) was recalculated from the original 
data. The weld metals studied in this investigation are those with, the heat 

input around 1.0 kJ/mm. 

Table A. 2. List of commercial consumables, tubular wire 1.2 mm diameter, chosen for 
experimental work and welding variables used. 

Consumable CW Type WM id arcs Vw 
(MPa) (rn/m) 

Vwo 
(mm/m) 

Hi 
(kJ/mm) 

OK 14.00 Metal Cored 14001 460 6.5 262 1.0 
OK 14.03 Metal Cored 14031 710 6.6 245 1.1 
OK 15.17 Ruffle 15171 560 8.7 281 1.1 
Legend: CW Type: Cored wire type 

WM id: Weld metal identification 
Syo: Quoted yield strength 
Vw: Average wire speed 
Vwo: Average welding gun speed 
HI: Heat input. 

Table A. 3. List of modified consumables, tubular wire 1.2 mm diameter, chosen for 
experimental work and welding variables used. 

WM id CW Type Sm 
(MPa) ( 

Vw 
m/min) 

Vwo 
(mm/min) 

Hz 
(kJ/mm) 

CWX18gb Rutile 8.7 281 1.0 
CWX201 Rutile 8.7 281. 1.0 
VCX256 Rutile 8.7 281 1.0 
CWX35 Metal Cored 6.6 245 1.0 
CWX36 Metal Cored 6.6 245 1.0 
CWX33 Rutile 6.6 245 1.0 
CWX18o Metal Cored 6.6 245 1.0 
CWX7 Rutile 6.6 245 1.0 
CWX8 Ruhte 6.6 245 1.0 
CWX9 Rutile 6.6 245 1.0 

Legend: CW Type: Cored wire type 
WM id: Weld metal identifi cation 
Syo: Quoted yield strength 
Vw: Average wire speed' 
Vwo: Average welding gun speed 
HI: Heat input. 
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A. 7 Macros utilized for the determination of the NMI size and spatial 
distribution 

The image analyser software utilised was the KS 400 Version 3.0 available at 
the Electron Microscopy Centre facilities in the University. of Leeds. Some 

comments in parenthesis and italic letters are used to clarify some 
instructions. These must not be written in the macro. 

A. MACRO 1. NMI size distribution and superficial density 

imgsetpath "D: \arm\inclusions\Group2" (location of the images in the storage disc) 
# MACRO: NMlsizedistribution 
# Keywords: NMI, steel, inclusion size distribution 
# BACKGROUND: Size distribution of NMI in weld metal at 1000X 
# SYSTEM: KS 400 - Version 2.0 3.0 
# OPTIONS: Grey morphology 
#--------------- ------------------------- --------------------------------- 
#Preparation of the windows 
#--------------- ----------- _______ý________M 
imgdelete "*" 
if (ISconfigured("Grey') -- 0) 

MBok "Option 'Grey Morphology' is not configured 1" 
stop 

endif 
showwindow "Display", 1 
Gclear 0 
showwindow "Gallery", 1 
showwindow "Messages", 1 
write "@" 
MSload "default" 
update 
#--------------------------------------------------------------------------------- 
# Getting the image 
#___-______-_--____-_______ý_ýý____ý_ý 
imgload "CWX3611. tif', 1 (name of the specific image file) 
#w-_________________ý_w_ 
# Discriminate the image 
#-------------------------------- ------ ------ ----------------------------------- 
disdyn 1,2,151,45,1 
binscrap 2,3,0,1000,0 
#-------------------------------------------- --------------------------------- 
# binary processing 
#___________________ý_w_ý 
binnot 3,3 - 
MSsetprop "CONDITION", "FCIRCLE>0.60" 
imgclear 4,0 
MSlabelmask 3,1,4,1,255 
distance 4,5,1 
binnot 5,5 
greywsheds 5,6 
binnot 6,6 - 
binand 4,6,7 

#--------- --- 
# setup and perform measurement 
#------------------------------- ------------------------------------------------ 
FNAME = "CWX361" 
MSsetprop "CONNECT", 4 
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MSsetprop "REGIONFEAT", "DCIRCLE" , ., Scale = 0.0884956 # calculated from the image micromark of 10 microns 
MSsetprop "SCALEX", Scale 
MSsetprop "SCALEY", Scale 
MSsetprop "UNIT", "micrometer" 
MSsetprop "CONDITION", "DCIRCLE>0" 
MSmeasmask 7,1, FNAME, 0,1,10 
#_________________________________________________ 
# measure total number per unit surface , #------------------------------------------------------------------------------- 
MSsetprop 
"FIELDFEAT", "FLDCOUNT, FRAMEAREA, FLDDensity[ 10**6 /mm2]=FLDCOUNT/ FRAM 
EAREA" 0 
MSsetprop "CONDITION", "DCIRCLE>0" 
RGnew 7 
MSmeasregion 2 
MSgetvalue "FLDDensity", FLDtot 
MSsetprop "CONDITION", "DCIRCLE < 1" 
MSmeasregion 2 
MSgetvalue "FLDDensity", FLD45 
MSsetprop "CONDITION", "DCIRCLE > 1" 
MSmeasregion 2 
MSgetvalue "FLDDensity", FLD10 
swrite Si, " Total : $1/6.2F ", FLDtot * 1000 
swrite S2, "Diameter <1: $/6.2F ", FLD45 * 1000 
swrite S3, "Diameter > 1: $1/6.2F ", FLD10 * 1000 
Gclear 
Gstring 10,1 0, "Surface density of particles (in thousand/ mm2): ", 11, "SWV 18" 
Gstring 10,50, S1,11, "SWV 18", 0 
Gstring 10,80, S2,11, "SWV 18", 0 
Gstring 10,110, S3,11, "SWV 18", 0 
#------------- - __________ý____ý_______ ' 
# show results 
#-------------------------------------------------------------------------------- .. 
datahisto FNAME, "DCIRCLE", 0,20,0.0,5.0,100.0, "CWX36 1"rlWrelated with sample) 
Gmerge 1,255 
Gclear 
imgdisplay 1 
write "Done.,, '.,, ',.... 

, 
stop 

B. MACRO 2. NMI spatial distribution, 

imgsetpath "C: \arm\inclusions\Group5" -0 
# MACRO: NMlspacialdistribution 
# Keywords: NMI, steel, inclusion spacial distribution 
# BACKGROUND: The image is processed to obtain a bynary representation of the inclusions. 
The eucledean distance map is utilised to define regions around the inclusion. The boundaries 
produced after skeletonizasion represent the maximun distance from the matrix and the 
inclusion. The distribution of areas will show the spacial distribution of the inclusion: random, 
uniform or clustered. 0; 
# SYSTEM: KS 400 - Version 2.0 3.0 
# OPTIONS: Grey morphology 
#--------------------------------------------------------- ----------------- 
#Preparation of the windows 0 
#------------------------------ -------------------------------------------- 
imgdelete 
if ( ISconfigured("Grey") -- 0) 

MBok "Option 'Grey Morpholo" is not configured I" 
., stop 

endif 
showwindow "Display", 1 
Gclear 0 
showwindow "Gallery", 1 
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showwindow "Messages", 1 
write "@" ". ,. ' . .,. ' 
MSload "default" 
update 
#--------------------------------------------------------------------------------- 
# Getting the image 
#---------------------------- --------- ------------------------------------------- 
imgload "CWX9112. tif', 1 
# -------------------------------------------------------------------------------- 
# Discriminate the image 
#--------------------------- ----------_ _--- 
disdyn 1,2,151,45,1 
binscrap 2,3,0,1000,0 
#------------------------------------------------------------------------------- 
# binary processing 
#-------------------------------- ----__ 
binnot 3,3 
MSsetprop "CONDITION", "FCIRCLE>0.60" 
imgclear 4,0 
MSlabelmask 3,1,4,1,255 
distance 4,5,1 
binnot 5,5 
greywsheds 5,6 
binnot 6,6 
binand 4,6,7 
# ------------------------------------------------------ 
W setup and perform measurement 
#------------------------------------------------------- -----__--- ---- 
FNAME m "CWX91nd" 
MSsetprop "CONNECC, 4 
MSsetprop "REGIONFEAT", "AREA" 
Scale = 0.0884956 # calculated from the image micrornark of 10 microns 
MSsetprop "SCALEX", Scale 
MSsetprop "SCALEY", Scale 
MSsetprop "UNIT", "micrometer" 
MSsetprop "CONDITION", "AREA>0" 
# Spacial distribution calculation 
binnot 7,8 
distmapeuclid 8,9 
greywsheds 9,10 
binnot 10,11 
MSsetframe 
MSmeasmask 11,1, FNAME, 1,1,10 
#------------------------------------------------------ ----- ------- 
# show results 
#------------------------------------------------------ ---------- ---------------- 
datahisto FNAME, "AREA", 0,40,0.0,250.0,250.0, "CWX91" 
Gmerge 1,255 
Gclear 
imgdisplay 1 
write "Done. " 
Stop 
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A. 8 Instrumentation Amplifier circuit and Stable potential pulse 
generator circuit 
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A. 9 Calculation of the cooling rate for the weld metal 

The temperature/ time profiles in the weld metal were calculated form the 
equations of Rosenthal. The equation A. 1 give the temperature T at a point 
lying a radial distance r from the weld line as a function of time t, for a 
determined heat input q/v. The solution used here was for the case of thick 
plate approximation. 

R 

T= To +v exp rZ 
2, zÄt Oat (A. 1) 

where To is the initial (or preheat) temperature [K], 1. is the thermal 
conductivity [J m-1 s-1 K-11, a= k/pc is the thermal diffusivity [m2 s-11 and pc is 
the specific heat per unit volume [J M-3 K-1]. The specific data for this case was 
supposed to be equal for all the weld metals and are listed in table A. 4. In the 
figure A. 7 the equation A. 1 is plotted using the data in table A. 4. 

Table A. 4 Data for the calculation of the cooling rate curve 1121-1221 

Term in equation Value 
To [K] 423 
pc [J m-3 K-11 4500000 

a [m2 a-1] 9.1 10-6 
X [J m-1 s-1 K-11 41 
71 [none] 0.85 
H=q/ v [J m-1] 1000000 
r 1m] 0.005 
v [m/s] 0.0041 
ü [V] 28 
1 [A] 190 
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Figure A. 7 Cooling rate curve for the different weld metals calculated at a distance of 
5mm from the welding line 
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A. 10 Phase proportion of the weld metal microstructures 
Figure A. 8 presents the phase proportion in each weld metal. These 
proportions are based partially on the Wildash[8-111 work and on detailed 
observations during this investigation. The huge effort to determine the phase 
proportion by Wildash[8-111 was corroborated with new metallographic 
observation and some corrections were included. These corrections include: 
the observation of isolated island of bainite, the presence of a very fine 
acicular ferrite, the identification of martensite. In some cases the 
identification was clear. In others, on the contrary, the separation of the 
different features was very difficult. For this reason, it is proposed to group the 
microstructures as follow: 

1- AF + FS(NA): group that consists of a chaotic microstructure as 
acicular ferrite (AF) and ferrite with non-aligned second phase 
(FS(NA)) -a very fine microstructure without spatial orientation. 

2- M: martensite. 
3- FS(A): ferrite with aligned second phase, that is, bainite. 

A more detailed revision of the weld metal microstructure could permit a 
complete characterisation of it. Different techniques can be used: X-ray 
diffraction, MEB, TEM, etc. 

I  PF(G) OAF + FS(NA)   FS(A) © FS(A)+M 

100 
90 

80 

70 

160 

50 
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30 
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0 

Weld metal PF(G) AF + FS(NA) FS(A) FS(A)+M 
CWX181gb 15 80 5 0 

CWX351 35 50 15 0 
14001 15 83 2 0 
15171 5 92 3 0 

VCX2561 2 97 1 0 
CWX361 3 96 1 0 
CWX201 0 95 5 0 

14031 1 94 5 0 
CWX71 0 99 1 0 
CWX91 2 96 2 0 
CWX81 2 98 0 0 

CWX331 0 0 0 100 

Figure A. S. Phase proportion of the weld metals. 
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A. 11 Complete microstructure of a weld metal: CWX181 

Figure A. 9 Microstructure of the CWX181 weld metal presenting the different prior 
austenitic grain sizes: small grains near the fusion line and large grains close to the 
centre. It is shown the reheated zone, which is the region with small ferritic grains at 
the bottom of the figure. 
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A. 12 Bainite and martensite transformation temperatures. 

Equations used to estimate B3, Bso, Br, M,, Mio, Mso, M9o and Mr were found in 
Liu et. al 11401, Andrews 11411 and Steven and Haynes[1421. The following 
equations were used: 

A- For bainite transformation[1421: 

BS(°C)=830-270C-90Mn-37Ni-70Cr-83Mo A. 2 

B50 (°C) = Bs - 60 A. 3 

Bf(°C)=Bs-120 ý.: A. 4 

B- For martensite transformatiön1l41.1421: ; 

MS(°C)=539-423C-30.4Mn-17.7Ni-12.1Cr-7.5Mo A. 5 

Mio(°C)=Ms-10 
is ýaz 

A. 6 

M50 (°C) = MS - 47 A. 7 

Mgo(°C)=MS -103 A. 8 tT 

Mf(°C)=MS-215 A. 9 

Several more equation could be found in Liu[1401, specially for the very low 
carbon and alloy steels. In this investigation were used the equations from A. 2 
to A. 9. 

.ý;. 

.ý 
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A. 13 Effect of austenite particle size on Ms 

The change in Gibbs free energy clue to the austenite to martensite 
transformation (OG, 'ý) could be written as: 

eGy is 
_ AG' 

-Eextra +Eba" 
Ch mm 

(A. 10) 

where OGc,,, Em ° and E°"' are the chemical driving force, the reduction in 

energy due to other factors (Zener ordering of C (E, ) and stacking fault energy 

(E° )) and the energies opposing the nucleation of martensite (elastic strain 

(E. '), internal defect energy (Ea) and interfacial energy(E,. )), respectively. 
Substituting all these terms equation A. 10 becomes: 

AGm, ý' _(Gm-(;. 
)-(EZ+Fý, ') +(ham, +E +i ) (A. 11) 

Of particular interest is the term E,,,, the interfacial energy between austenite 

and martensite, because this could be important due to the reduction in 

austenite particle size. Wang et. al. propose a treatment to estimate the value 
of this energy and found a way to elucidate the effect of the austenite particle 
size on Ms temperature. Figure A. 9 presents the important variables to 

consider in the estimation of EM using equation A. 12. 

Figure A. 1O Schematic representation of an austenite particle of diameter (d), and an 
internal martensite plate of thickness (n). The aspect ratio is i which is assumed to 
have a value around 0.05 for convenience and simplification of the interpretation. 

2"Vm" r. ' 

t"d, 

'A. 
1Gy 1ý) 

r'" . 

where Vm is the martensite molar volume, y,,. is the specific surface energy 

of the martensite/austenite interface and the rest were defined in figure A. 19. 

A reduction in (d,, ) is going to produce an increase of E. which opposes the 

formation of martensite. As a consequence the driving force should increase to 
permit the formation of martensite and this means that M4 have to be 
decreased. At Ms-temperature equation A. 11 becomes: 
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Gm-G"y -(E; +ED)+(E, ' +Ei+Em)+Wf=0 (A. 13) 

where Wf represents all other types of energies that may exist but cannot be 

considered in an explicit manner. Following Wang 11371 approach, the 
predictable items are grouped on the right hand side of equation A. 13 and 
assuming that the remaining part is a function of Ms, this equation changes 
to: 

-Em' (A. 14) W'-E' _(Gmr_ GmY +E (Et +E1 ý/ fD- 

(A. 15) ý(M, ) 
-E. =f(M, ) 

where f (M, ) could be obtained experimentally. Wang et. al. 11371 reported an 

equation for f (M, ) as A. 16 which was obtained for a Fe-0.6C-1.5Mn-1.5Si 
TRIP-steel. Raghavan et. al. 11471 reported a similar equation for 1152 steel 
compositions yielding the linear equation A. 17. This equation is valid for steels 
with the following range in compositions: 0.1 to 0.6C, 0 to 1.4Cr, 0.3 to 0.9Mn, 
0 to 0.32Mo, 0 to 2.2Ni and a fixed 0.25Si, all in wt%. These compositional 
ranges cover approximately the weld metals which, were studied in this 
investigation. The accuracy of this equation was estimated to bet 25 J/mol. 

E�er(Jlmo1)= f(M, )=A+B"M, =3931-6.761"Ma(K) (A. 16) 

AG(Jlmo1)=1975-1.234"M, (°C)= 2311.9-1.234"Ms(K) (A. 17) 

Combining A. 15 with A. 16 or A. 17 (equation to be used with the weld metals) 
and neglecting the g(T) dependence, an expression for the decrease in Ms 
temperature due to grain size effect can be obtained: 

AM, = B'" o- .w... _ .. 
(A. 18) 

Then, considering the decrease in the martensite transformation temperature 
as M, -AM,, it is possible to estimate the combined effect of composition and 
size on the appearance of retained austenite. The effect of C on. the . molar 
volume of martensite was taken into account using the equations A. 19.. and 
A. 20 P61 to estimate the volume of the bct cell: r ". ,. 

=1+0.045"C(wt%) (A. 19) 

, I; 

c=2.86 + 0.1143 " C(wt %) (A. 20) 

Figures A. 10 and Ä. 11 present the 'results 'of the above approach' for all the 
weld metals which were studied in this investigation., These results-are taken 
in a qualitative manner. 
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Figure A. 11 Effect of the austenite particle size on M. and Mr for the weld metals: (a) 
CWX181, (b) CWX351, (c) 14001, (d) 15171, (e) VCX2561 and (f) CWX361. It was 
assumed for the calculations t=0.05, B=1.234 and the carbon concentration as the 
corresponding C7 in table 7.3. 
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Figure A. 12 Effect of the austenite particle size on M. and Mr for the weld metals: (a) 
CWX201, (b) 14031, (c) CWX71, (d) CWX91, (e) CWX81 and (t) CWX331. It was 
assumed for the calculations =0.05, B=1.234 and the carbon concentration as the 
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A. 14 NMI characteristics for the different HSLA steel weld metals 

Table A. 5 Inclusions superficial densities, two and three-dimensional diameters for 
the HS LA steel weld metals, which were investigated in this work. `< 1µm" and "> 1µm'° 
denote NMI with sizes less than and more than lµnn in 2D-diameter. 

Na [103/mm2] 
Weld Total < 1µm > 1µm d. [mm] Sd. [mm] do [mm] Sdo [mm] 

CWX181 20.47 18.65 1.83 0.59 0.36 0.93 0.57 
CWX351 27.84 25.90 1.94 0.59 0.28 0.93 0.44 
14001 26.32 23.88 2.44 0.59 0.30 0.93 0.47 
15171 19.96 18.50 1.47 0.54 0.38 0.85 0.60 
VCX2561 17.43 15.70 1.73 0.58 0.50 0.91 0.79 
CWX361 20.94 19.23 1.71 0.56 0.24 0.88 0.38 
CWX201 12.73 11.57 1.16 0.60 0.30 0.94 0.47 
W14031 22.90 21.16 1.73 0.54 0.30 0.85 0.47 
CWX71 26.16 24.71 1.45 0.57 0.25 0.90 0.39 
CWX91 25.56 23.90 1.66 0.59 0.26 0.93 0.41 
CWX81 26.20 25.07 1.12 0.54 0.24 0.85 0.38 
CWX331 15.36 14.85 0.52 0.48 0.23 0.75 0.36 

Na: number of inclusion per square millimetres 
d,: arithmetic mean two dimensional particle diameter in a cross-section plane 
do: arithmetic mean three dimensional particle diameter 
3d.: standard deviation of da 
Sdo: standard deviation of d, 

Table A. 6 Volumetric characteristics of the NMI in the different HSLA steel weld 
metals which were studied in this investigation. "<1.6µm" and ">1.6µm" denote NMI 
with sizes less than and more than 1 µm in diameter. 

Nv [106/mm3] 
sv Ä. v 

Weld Total <1.61im >1.6µm V. [mm2/mm3] [µm] 
CWX181 22.09 20.12 1.97 9.21 10-03 59.60 1.97 
CWX351 30.04 27.95 2.09 1.2510-02 81.06 1.78 
14001 28.40 25.76 2.64 1.1810-02 76.63 1.82 
15171 23.53 21.81 1.73 7.5210-03 53.19 1.93 
VCX2561 19.13 17.23 1.90 7.5810-03 49.89 2.07 
CWX361 23.80 21.86 1.94 8.4810-03 57.87 1.93 
CWX201 13.51 12.28 1.23 5.92 10-03 37.69 2.33 
W14031 26.99 24.95 2.04 8.63 10-03 61.01 1.85 
CWX71 29.22 27.60 1.62 1.10 10-02 73.59 1.80 
CWX91 27.58 25.79 1.79 1.1510-02 74.41 1.83 
CWX81 30.88 29.56 1.33 9.8710-03 69.80 1.77 
CWX331 20.38 19.69 0.69 4.5710-03 36.39 2.03 

No: number of inclusion per cubic millimetres 
Vo: inclusion volume fraction 
L: total particle surface area per unit volume 
1q: mean particle centre to centre volume spacing 
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A. 15 Criteria for the qualitative classification of the NMI. 

The qualitative classification of the NMI characteristics of the weld metals was 
considered relevant for, the influence that NMI has on the mechanical 
properties and the trapping behaviour of the weld, metals. f Table A. 7 and , A. 8 
present the criteria that were used to try to group weld metals with 'similar 
characteristics taken into account density and size of inclusions. The limits for 
each parameter were selected after careful comparisons between welds. These 
permit a qualitative grouping of welds. " 

"4 

Table A. 7 present a weld ' metal qualitative classification based on ; the NMI 
maximum size. The presence of large inclusions is detrimental. These could be 
massive hydrogen traps and for this reasons potential crack initiators. This 
classification was selected after comparison of all the welds and it has to be 
considered as qualitative. 

1 Table A. 7 Inclusion maximum size grouping 

Classification NMI maximum size* Weld metals 
Large dv>5µm CWX181,14001,15171, VCX2561 ". 't° ý'' 

Medium 3<dv55µm CWX351, CWX201,14031:. " ;.; 
�_. ra yýý `J, ' ~ýt : i" ._ 

Small dvs3µm CWX361, :; CWX71, CWX81, CWX91, 
CWX331 

*The figure A. 13(a) present the meaning of the NMI maximum size. � 

On the other hand, ' table A. 8 try to classify the weld metals "considering the 
maximum frequency of NMI size. This classification intent 'to simplify the 
grouping of weld metals just taking into account the maximum frequency of 
NMI size, the size of the peak in figure A. 13 (a). This value does not intent to 
substitute the NMI, number. density, (Nv) in table 'k. 6, which -is taken into 
account in the trap discussion. NMI number. is 'a simple way to describe the 
highness of the NMI histogram and could be, considered as ; the . 

maximum 
number of NMI of a particular size "close` to the' mean or median value. ` This 
value may or may not be directly related to Nv. 

Table A. 8 Inclusion number grouping 

Classification NMI number** Weld metals , 
High N>800 , CWX351,14001, CWX71, CWX91, 

, CWX81 

Medium 6005N5800 15171, VCX2561, CWX361,14031 "{ ' 

Low Ns600 CWX181, 'CWX201, CWX331 
"The figure A. 13(a) presents the meaning of the NMI number 

With respect to' the NMI spatial distribution, it was found an indirect way to 
characterise it. --- measuring the area around each inclusion rwhich is free of 
other NMI, at least on the surface 'plane. ' In figure 6.4, could be observed that 
the spatial distribution of the NMI can be classified, based on'the histogranas 
shape. Figure A. 13 (b) shows to possible ways to take it into account: the 
median value and the ratio r., Both indicators, ' presented in table 'A. 9, ' could be 
used to qualitatively describe the spatial distribution of inclusions: random b clustered or normal. 
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Figure A. 13 Measurement of the parameter for classification of NMI characteristics for 
the weld metals (a) NMI number and maximum size, (b) median value and ratio H/W. 

It seems that the ratio r value is a simple manner to describe the spatial 
distribution of NMI in the weld metals. To calculate this ratio H (cm) and W 
(cm) are defined in figure A. 13 (b). From the values of r the NMI spatial 
distribution was as follow: 

1- Random spatial distribution: weld metals with H/W<3 
2- Clustered spatial distribution: weld metals with H/W z3 
3- Normal spatial distribution: symmetrical distribution around the 

median value. None of the weld metal presented this kind of spatial 
distribution. 

Taking onto account the median value of the area around the inclusions, it 
could be suggested that weld metals with random spatial distribution of NMI 
have large median value. On the contrary, the clustered distribution is 
characterised by lower median values. The limit value, considering the 
classification that was made using H/W, seems to be 40 µm2. 

Table A. 9 Parameters for the classification of the NMI weld metal characteristic. Inside 
parenthesis are some values from table A. 5 and A. 6. The spatial distribution 
qualification was made using the r value (H/W) (cm/cm) taken on figures of equal size. 

Weld ID Size 
fAm) 

NMI Number 
(106/mm3) 

Median Ratio* 
(H/W) 

NMI 
Distribution 

CWX181 6 0.93 600 (22.09) 43.6 2.1 Random 
CWX351 4 0.93 1000 (30.04) 32.7 6.8 Clustered 
14001 5 0.93 900 28.40 36.3 6.0 Clustered 
15171 6 (0.85) 700 23.53 43.6 1.7 Random 
VCX2561 10 (0.91) 625 (19.13) 50.9 1.7 Random 
CVVX361 3 (0.88) 750 (23.80) 40.0 4.1 Clustered 
CWX201 4 (0.94) 400 (13.51) 72.7 0.6 Random 
14031 4 (0.85) 700 26.99 40.0 3.6 Clustered 
CWX71 3 (0.90) 950 (29.22) 36.3 5.3 Clustered 
CWX91 3 0.93 900 (27.58) 36.3 5.3 Clustered 
CWX81 3 (0.85) 900 (30.88) 32.7 4.9 Clustered 
CWX331 2.5 (0.75) 600 (20.38) 58.2 1.1 Random 

*The figure A. 13(b) presents the meaning of the NMI media value and ratio (r=H/W) 
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A. 16 Thermodynamical calculation of NMI stability diagrams 
For the calculation of the stability of inclusions in the liquid iron of the weld 
pool, the variations of the free energy for the reaction were, determined. If the 
formation of the oxide MXOY is supposed, the equation for the change in the 
free energy due to the formation of the oxide is as follow: 

xM+yO=Mx. OO (A. 21) 

AG = LtG° +RTin 
a ,., y (A. 22) 
aMQO 

where M and 0 denotes diluted metal and oxygen in the liquid iron and a is 
the activity of the diluted species. At equilibrium LtG=O and the equation A. 22 
is further simplified if it is supposed that the activity of the pure oxide is one 
(a,,.,, =1): 

AG° =-RTIn xI y 

1=RTln(aa) 
(A. 23) 

LaMap 
To estimate the activity of any of the involved species, M and O, the following 
expressions were used: 

1og(aa )= [log(hM )j=1og(L(wt %)M) =1og(wt%)M +log(f M) (A. 24) 

log(f,,,, )=1: 
e� "(wt%)1 

f=1 

ý' (A. 25) 

where eM is the first order interaction coefficient that' describes the effect of 

solutes j on the activity of M, (wt%)1 is the quantity of the j alloying element 
in weight percent, and fm is the activity coefficient of M. The same is applied 
to the activity of oxygen. Selected data for the first order interaction coefficient 
are shown in the tables A. 10. The equations to calculate the standard free 
energy for the formation of some oxides or nitrides are shown in table ' A. 11. 
The following example for A1203 describes the equations used to' calculate the 
stability diagram for this oxide: 

AG° 
= 21og(ýj+31og(a2 ýý (A. 26) 

2.303"R"T 

21og(aj +31og(ao)= 21og(wt%)A, +(2ej +3eA'Xwt%),, t + 

+3log(wt%)Q +ee +2e°Xwt%)Q + 
(A. 27) 

_,,. , _...... _ _. 
+2Z el (wt %)x +3ZeQ(wt%)aa. 

ý.. 
I 

X=; r X-4 

The equality , 
in, equation A. 26 

. was obtained varying (wt%)#u and iterating for 
(wt%)o at low and high values for each value of (wt%)ni. 

Thermodynamic information in the following tables was collected from 
references 199 to 202. 
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ANNEXES 

A. 17 The equilibrium ratio Q/K. q 

For a general reaction the variation of the free energy is: 

zM+yN+zO =MxxyO: (A. 28) 

OG = AGO +RT In aM (70s = AG° -RT1n(, La aö)= AG° -RT 1n(Q) (A. 29) 
aMaNao 

The parameters in the equation A. 10 have the usual meaning. At `equilibrium, ' 
where iG=O the equation A. IO is simplified and Kam,, the equilibrium constant, 
is presented: 

AG° =-RTIn 
ax a''as 

RT1nýa; ýaNao)=RT1n(Keq) (A. 30) 
M ay a' 

tq 

The formation of MxNyOz occurs spontaneously if. Then, simplifying the 
equation A. 10 the equilibrium ratio is obtained: 

AG = RT In (K. 
q 
)- RT ln(Q) = RTIn 

K`g 
(A. 31) 

iQ 
} 

It is necessary that In `Q <0 to produce a AG<0, which means that: ="- 

1_Q')>1 (A. 32). 
Kee 

.. _. r;.,. ... `s 
Inclusion formation is possible when the concentration of oxygen, nitrogen or 
sulphur and the alloying elements for deoxidation, denitrogenation and 
desulphuration exceed the equilibrium values for a particular compound. That 
is, the equation A. 13 is satisfied. The effect of segregation was estimated using 
the partition coefficients from table A. 1, at the beginning, of this, chapter-and 
the Scheil equation: 

CL =Cýft, =Co(1. fsPýä ..,, w ._{... r, _. (A. 33) 

In the equation, Co is the bulk concentration in the weld pool, CL is the 
concentration in the liquid at the interface, ' fý and fs are the'liquid fraction and 
the solid fraction, ' respectively; and CO is'the ejquilibrium partition ratio [18-2o], _ 7e1x. 'JYd-i. 
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}F.. 
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ANNEXES 

A. 18 Variability in Weld Metal Properties. 

The weld metal properties Sy, S. and Sr, as measured by Wildash[81, were not 
reported with their respective scatter. No standard deviation was considered in 
that previous work. These values are of importance to consider small variation 
in data from sample to sample under slightly different conditions, in this case, 
the hydrogen content. 
Although not all the mechanical properties are normally distributed, a normal 
distribution is a good first approximation that usually results in a conservative 
value. Dietertl propose that when statistical data are not available, the 
standard deviation can be estimated by assuming that the upper x� and the 
lower XL values of a sample are three standard deviations from the mean. In 
figure A. 13, and equation A. 34, this is presented. 

(x. 
-xL)=6"Q Q= 

(x. 
- XL) (A. 34) 
6 

N 

4 x21 µ 
Upper and lower values of the property 

Iz- (x-Wla 

z' 

Az) 

rL 

682T%-ý 
F- 95.45%- I 

Figure A. 14 Schematic representation of the normal distribution for a material 
property. Several possibilities are shown for (x� - XL): 2a, 4a and 6a. As suggested in 
Dieter P031 (x� - xL) = 6a could be used to estimate standard deviation. 

It can be observed from figures that considering x� and XL apart by 6a will give 
a lower estimated standard deviation value than considering 4a, which give 
several possibilities: 

a. x� =µ+ 16 and xL =µ- 3a that covers 84.00 % of probability 
b. x�=µ+ 2a and xi. =µ- 2a that covers 95.45 % of probability 
c. x� =µ+ 3a and XL =9- 1a that covers 84.00 % of probability 

Whichever the case (a, b or c), supposing that the values of Sr. and Sn, are 4a 
apart, give a good chance to guess the position of these values with respect to 
g. As a consequence, it becomes feasible to estimate an approximated value for 
a by considering a pair of values measured under similar conditions, for 
example, without hydrogen charging or with similar hydrogen content. This 
approach will be used to estimate the potential scatter of the WildashP3 
original data for Sr. Using 4a instead to 6a gives a more conservative guessing. 
However, these values have to be taken with care. 
From figures in annex 18 a pair of values were selected and aa value 
estimated. In table A. 12 can be observed the values obtained for each case. 
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Table A. 12 Values extracted from figures A. 14 to'A.. 17 to estimate a, supposing that x., 
the values are 4a apart. 

Weld metal ID 3e, (MPa) SEE, (MPa) Sn, -&r. (MPa) ta (MPa) 
CWX181 1400 900 500 125 
CWX351 1150 1050 100 25 
14001 Close values found for a pair under similar conditions 
15171 1400 1300 100 25 
VCX2561 1200 1100 100 25 
CWX361 1400 1200 200 50 
CWX201 1100 1000 100 25 
14031 900 950 50 12.5 
CWX71 1000 900 100 25 
CWX91 950 850 100 25 
CWX81 1400 1200 200 50 
CWX331 1500 1200 300 75 

It could be observed from table A. 12 that the estimated standard deviations 
are in order of repetition as: 25 (50% of all cases), 50 (16.6%), 75 (8.3%), 125 
(8.3%), 12.5 (8.3%) and a small value (8.3%). The average value is 42.0 MPa, 
approximately. The potential scatter in the measurement of Sr is presented in 
the corresponding figure as ±3a, taking a as 25 MPa. 

In the case of Sy and Sm, other recommendation was followed. For materials 
property data, such as yield strength, hardness, and fractures toughness, 
coefficients of variation S. are generally in the range 0.05 to 0.20, that is, 5% 
to 20%. In table A. 13 some values are presented which could be applied in this 
case to estimate the potential scatter of the weld metal properties: Sy and Sm. 

Table A. 13 Coefficients of variation (Sx) for some properties of metals 11681 

Value x Sx. % 
Yield strength of metals, 7 
Ultimate strength of metals 5 
Modulus of elasticity of metals 5 
Fracture toughness of metals "' 15 
Tensile strength of welds 10 
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ANNEXES 

A. 19 Presentation of the results about the effect of hydrogen on the 
mechanical properties of weld metals studied in this investigation. 

1600 

-, '- HEIe1 1.0 
1400 j- ;- HEIar 

1I0.8 
1200 

,. OC 
0.6 

1000 0c 
co 

800 
1 0.4 w 

600 02I 

400 
_ 

°_ 
- 

0.0 
/ - - Z)y -. - m --- ai I 

0 12345 6 

Ho (mU100g of weld metal) 
(a) 

1600 
1.0 

1400 

-- HEIe1 0.8 
1200 

_ - HE Iar 
m 0 6 

1000 . 
c 

0.4 W 
m 800 .., 
CO) 0 2= 600 . 

400 0.0 
-ý- Sy -0- SM -A- Sf 

0 2468 10 12 

H. (mUIOOg of weld metal) 
(b) 

16C 

14C 

12C 

10C 

8( 

CO) 
6C 

4C 

0 

-ý- HElel 

-0- HElar 

94 

1.0 

0.8 

0.6 < 
M c Co 

0.4 W 

w 
0.2 = 

0.0 

Hp (mL/l OOg of weld metal) 
(c) 

Figure A. 15 Effect of diffusible hydrogen content (HD) on the strength and ductility of 
the weld metals: (a) CWX181gb and (b) CWX351 and (c) 14001. Figures are based on 
data obtained by C. Wildash II1. 
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Figure A. 16 Effect of diffusible hydrogen content (HD) on the strength and ductility of 
the weld metals: (a) 15171, (b) VCX2561 and (c) CWX361. Figures are based on data 
obtained by C. Wildash P]. 
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Figure A. 17 Effect of diffusible hydrogen content (HD) on the strength and ductility of 
the weld metals: (a) CWX201, (b) 14031 and (c) CWX71. Figures are based on data 
obtained by C. Wildash t$1 
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Figure A. 18 Effect of diffusible hydrogen content (HD) on the strength and ductility of 
the weld metals: (a) CWX91, (b) CWX81 and (c) CWX331. Figures are based on data 
obtained by C. Wildash 131. 
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r ANNEXES 

A. 20 Classification of inclusion based on difference between the steel and 
NMI expansion coefficients [1411 
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Figure A. 19 Stress raising properties of inclusions in 1%C-Cr bearing steels [1411 

Table A. 14 Thermal expansion coefficients and elastic moduli of inclusion materials in 
1%G, 1.5%Cr steels 11411 
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ANNEXES 

A. 21 Calculation of tessellated stress around the inclusion, taking into 
account plastic deformation of matrix (steel).: - 
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Figure A. 20 Schematic representation of the regions around the inclusion and 
significance of notation used in the equations of table A. 13 1141.1441 

Table A. 15 Equations to calculate the different stresses around a NMI 1141-14+1 
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ANNEXES 

A. 22 Observations about the influence of MAC constituent on the 
toughness of HSLA steels weldments. 

Kim and collaborators [1711 found that when ductile or brittle fractures 
are dominant the initiation of the cracks occurs by void formation at the 
elongated-MA/ferrite interface. Cracks grow by microvoids coalescence 
(ductile) or cleavage (brittle). The cleavage propagates catastrophically until the 
prior austenite grain boundary is reached. This mechanism is schematically 
represented in figure A. 20. Davis and King[1751 pointed out that the 
embrittlement of the intercritical zone is associated with the presence of a 
connected grain boundary network of blocky MA phase ("necklace" 
appearance), which debond readily producing sufficient stress raising to 
promote local cleavage. Isolated MA particles did not have such detrimental 

effect on toughness. Other mechanisms proposed by Davis and King 11741 is 
that the impairment of toughness by the network of blocky MA particles is the 
combination of the interfacial decohesion mentioned above and the 
overlapping of residual transformation induced stress in the regions between 
them, creating high local stresses capable of produce cleavage of the steel 
matrix. Alkensel et. al. [1761 proposed a similar stress overlapping mechanisms 
to explain the subzero loss of toughness of low carbon microalloyed steels. 
They considered MA islands as stress concentrators due to the effect of the 
transformation strain and difference in yield strength with the matrix. Figure 
8.20, in chapter 8 summarises mechanisms described above 
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Figure A. 21 Mechanism for ductile or brittle fracture involving elongated MAC 

constituents. Adapted from Kim et. al. [174,179] 
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ANNEXES 

A. 23 Theoretical model, for the intergranular fracture of, high strength 
steel charged with hydrogen. ._.. ý., 

.ný 

microvoid X threshold stress intensity 
coalescence for fracture mode 

KIC transition 

intergranülar 
fracture 

hydrogen pressure P. 

Figure A. 22 Schematic representation of fracture mode transition for hydrogen 
assisted cracking as related to the relationship Kth against hydrogen pressure 1177,1781 
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ANNEXES 

A. 24 Hydrogen diffusion and accumulation in the crack tip: the effect of 
yield strength (an) and stress concentration factor (K) 
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Figure A. 23 Effect (a) yield strength and (b) stress concentration factor on hydrogen 
diffusion and accumulation in front of the crack tip at the elastic-plastic boundary 

, from Yokobori 1164,186 

Yokobori et. al [184.1861 proposed the following expressions with relates the 
diffusion constant D, yield stress or., and stress intensity factor, K. Equation 
A. 15 shows the effect of this variables on the critical time tc. which hydrogen 
takes to reach a critical value arbitrarily chosen as C, /Co-3. 

Do6K -a 
t b2 E& (A. 35) 

where b is the Burger's vector and E is the Young's modulus. A is a constant 
that depends on plate thickness (A=2.10 10-6 s-1 for thick and 1.49 106 s-1 for 
thin plates). The author's final proposal is an embrittlement index which is 
shown in the following equation: 
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ANNEXES 

A. 25 Experimental data for the trapping constant k estimation 

Tables from A. 16 to A. 18 present the estimated values for k. Three values for each 
weld metal where obtained (M1, M2 and M3). It is shown the mean and the standard 
deviation (S. ). This data is presented in different ways in the main text. Statistical 
analysis of the data using t-distribution was employed to estimate the confident 
intervals at a 95%. 

Table A. 16 Estimated values fork (s-1) for the weld metals charged during 10 s 

Weld Mi (8-1) Mz (s-1) M3 (s-1) Mean (s-1) S. (s-1) 
CWX181 0.08 0.03 0.05 0.053 0.025 
CWX351 0.40 0.32 0.35 0.357 0.040 
14001 0.42 0.36 0.40 0.393 0.031 
15171 0.30 0.40 0.25 0.317 0.076 
VCX2561 0.28 0.30 0.35 0.310 0.036 
CWX361 0.20 0.30 0.35 0.283 0.076 
CWX201 0.20 0.10 0.15 0.150 0.050 
14031 0.45 0.36 0.35 0.387 0.055 
CWX71 0.08 0.07 0.10 0.083 0.015 
CWX91 0.25 0.22 0.30 0.257 0.040 
CWX81 0.40 0.35 0.30 0.350 0.050 
CWX331 0.12 0.08 0.10 0.100 0.020 

Table A. 17 Estimated values fork (s-1) for the weld metals charged during 20 s 

Weld Mi (s-1) M2 (s-1) M3 (8-1) Mean (s-1) S. (s'1) 
CWX181 0.15 0.18 0.20 0.177 0.025 
CWX351 0.27 0.22 0.25 0.247 0.025 
14001 0.18 0.16 0.20 0.180 0.020 
15171 0.45 0.38 0.40 0.410- 0.036 
VCX2561 0.60 0.50 0.55 0.550 0.050 
CWX361 0.30 0.23 0.25 0.260 0.036 
CWX201 0.45 0.35 0.40 0.400 0.050 
14031 0.10 0.13 0.15 0.127 0.025 
CWX71 0.06 0.05 0.10 0.070 0.026 
CWX91 0.04 0.01 0.05 0.033 0.021 
CWX81 0.10 0.12 0.15 0.123 0.025 
CWX331 0.11 0.10 0.08 0.097 0.015: 

Table A. 18 Estimated values for k (s-') for the weld metals charged during 30 s 

Weld Mi (s-1) M2 (s-1) M3 (s-1) Mean (s-1) S: (s-1) 

CWX181 0.07 0.06 0.05 0.060 0.010 
CWX351 0.16 0.20 0.15 0.170 0.026 
14001 0.12 0.18 0.15 0.150 0.030 
15171 0.28 0.24 0.30 0.273 0.031 
VCX2561 0.19 0.21 0.25 0.217 0.031 
CWX361 0.05 0.04 0.05 0.047 0.006 
CWX201 0.17 0.15 0.20 0.173 ` 0.025 
14031 0.15 0.17 0.25 0.190 0.053 
CWX71 0.04 0.02 0.05 0.037 0.015 
CWX91 0.12 0.14 0.10 0.120 0.020 
CWX81 0.13 0.11 0.15 0.130 0.020 
CWX331 0.00 0.00 0.00 - - 
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Table A. 19. Table to construct figure 9.21 

Nv: NMI 3-D density, MAC: martensite-austenite-carbide content, Ck: critical 
hydrogen content to produce 50% of ductility reduction, NMI Character. NMI 
characteristics (spatial distribution/NMI number/NMI maximum size) 

Weld 
metal 

No 
(106 mm-3 

MAC 
°Yo 

Ck 
mL/ 100 

NMI 
Character 

CWX181 22.09 8.58 2.6 RLL 
CWX351 30.04 6.08 5.4 CHM 

14001 28.4 5.40 3.2 CHL 
15171 23.53 5.65 1.5 RML 

VCX2561 19.13 6.50 1.6 RML 
CWX361 23.39 16.26 4.0 CMS 
CWX201 13.51 13.75 2.0 RLM 

14031 26.99 8.64 1.0 CMM 
CWX71 29.22 8.69 1.8 CHS 
CWX91 27.58 10.95 1.0 CHS 
CWX81 30.88 8.96 3.0 CHS 

CWX33I 20.38 19.71 1.2 RLS 
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ANNEXES 

A. 26 Box plot to visualise the scatter in the k data value. 
In figures A. 23 to A. 25 are presented the measured k values in a box plot. 
Each box shows the median, quartiles, and extreme k values for each weld 
metal sample. 

045- 

040- 

035- 

. 030 

025 

Qr 

020 
. 19 

015 

r 
0.10 

0.05 

m in ö U) m 
cýý9i 

SZ ö ýC 
. 

`vi 

Weld 

Figure A. 24 Box plot to visualise the k values for different weld metals after 10 s of 
charging time. Obtained by the potentiostatic pulse technique in 0.87 mol/L acetic 
acid (C2H401) and 0.5 mol/L sodium acetate (C2H3NaO2) containing 15 ppm sodium 
meta-arsenite (AsNaO2) as a hydrogen entry promoter at 25.0 ± 0.1°C. 
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FigureA. 25 Box plot to visualise the k values for different weld metals after 20 s of 
charging time. Obtained by the potentiostatic pulse technique in 0.87 mol/L acetic 
acid (C2H4O2) and 0.5 mol/L sodium acetate (C2H3NaO2) containing 15 ppm sodium 
meta arsenfite (AsNaO2) as a hydrogen entry promoter at 25.0 ± 0.1 °C. 
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Figure A. 26 Box plot to visualise the k values for different weld metals after 30 s of 
charging time. Obtained by the potentiostatic pulse technique in 0.87 mol/L acetic 
acid (C2H402) and 0.5 mol/L sodium acetate (C2H3NaO2) containing 15 ppm sodium 
meta arsenfite (AsNaO2) as a hydrogen entry promoter at 25.0 ± 0.1°C. 

These figures give a general picture of the scatter of the k value for the totality 

of the weld metals. In chapter 9a confident interval presentation was used. 
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