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Abstract 

Oscillations between various populations of neurons are common and well 

documented.  However, there are oscillations that can emerge within 

networks of neurons that are pathological and highly detrimental to the 

normal functioning of the brain.  This thesis is concerned with modelling the 

transition from healthy network states to the pathological oscillatory states 

in	   two	  different	  brain	  disorders;	  epilepsy	  and	  Parkinson’s	  disease (PD).  To 

study these transitions, existing computational methods for modelling large 

systems of interacting populations of neurons are used and new tools are 

developed. 

The first half of this thesis explores the evidence for the dynamic evolution of 

focal epilepsy using bifurcation analysis of a neural mass model, and relating 

these bifurcations to specific features of clinical data recordings in the time-

domain.  These findings are used to map out the evolution of seizures based 

on features of segments of the clinically recorded electroencephalograms. 

The similarity of seizure evolution within patients is tested.  Statistically 

significant similarities were found between the evolutions of seizures from 

the same patient. 

In the latter half of the thesis a way of creating firing rate models is 

described, in which the value of the membrane time constant is dependent on 

the activity of afferent populations.  This method is applied to modelling the 

basal ganglia (BG). The hypothesis that the BG are responsible for selection in 
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the primate brain is tested and confirmed.  The model is then used to 

investigate the development of PD.  It was found that the loss of 

dopaminergic innervation caused a failure of selection capability but did not 

directly give rise to the beta oscillations ubiquitous in PD.  Network 

connection strength changes that are seen in PD cause the model to regain 

selection functionality but lead to a beta frequency resting state oscillation, as 

is the case in real PD. 
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Chapter 1: Introduction 

1.1: Background 

The human brain contains about 86 billion neurons connected to each other 

by roughly 200 trillion synapses [1].  Oscillations between various 

populations of neurons are common and well documented, for example the 

alpha rhythm of the cortex that can be observed in the EEG [2].  However, 

there are oscillations that can emerge within networks of neurons that are 

pathological and highly detrimental to the normal functioning of the brain.  

This thesis is concerned with modelling the transition from healthy network 

states to the pathological oscillatory states in two different brain disorders; 

epilepsy	   and	   Parkinson’s	   disease.	   	   To	   study	   these	   transitions,	   existing	  

computational methods for modelling large systems of interacting 

populations of neurons are used and new tools are developed. 

1.2: Aims and thesis overview 

In Chapter 2 the literature surrounding the modelling of neural systems is 

reviewed.  Firstly a broad overview of the differing levels of description at 

which models can be written is given, before focusing on the various 

methodologies for modelling the massed action of large systems of 

interacting populations of neurons.  Since a key part of model development is 

the estimation of parameter values, a section is devoted to a review of the 
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many techniques that have been used for this purpose.  The final section of 

the literature review chapter is an analysis of the ways that neural models 

have been used to draw biologically meaningful conclusions. 

The broad aim of this thesis is to better understand the mechanisms 

responsible for the onset of pathological neural oscillations in epilepsy and 

Parkinson’s	  disease.	  	  The	  aim	  of	  Chapter 3 is to explore the evidence for the 

dynamic evolution of focal onset epilepsy using clinical iEEG data and a 

bifurcation analysis of a mathematical model of hypocampal cortex.  Focal-

onset seizures have traditionally been conceptualised as having a highly 

circumscribed	   onset	   in	   an	   “abnormal”	   brain	   region,	   with	   evolution	   of	   the	  

seizure	   requiring	   recruitment	   of	   adjacent	   or	   connected	   “normal”	   brain	  

regions. Complementing this concept of the spatial evolution of seizures, the 

purpose of Chapter 3 is to explore the evidence for the dynamic evolution of 

focal epilepsy using bifurcation analysis of a neural mass model, and 

subsequently relating these bifurcations to specific features of clinical data 

recordings in the time-domain. The study is motivated by recent research in 

idiopathic generalised epilepsies which has suggested that the temporal 

evolution of seizures may arise out of gradual changes in underlying 

physiological mechanisms. It was found that spikes in the considered model 

arise out of so-called	   ‘false’	   bifurcations,	   a	   finding	   consistent	   with	   other	  

neural models with two timescales of inhibitory processes.  These results 

were compared with previous studies of the model, before extending the 

results to characterise other more complex model behaviours.  The 
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relationship between model dynamics and clinical recordings from patients 

with focal epilepsies is then explored.  A novel algorithm was used to 

subdivide each recording into time-windows for which the data is 

approximately stationary. The bifurcation findings were then used to map 

out the evolution of seizures based on features of the clinical data from each 

of the epochs identified by the algorithm.  Finally the similarity of the seizure 

evolution within patients was explored, using random surrogates to test for 

statistical significance. 

In chapter 4 a Bayesian algorithm called sequential Monte-Carlo approximate 

Bayesian computation (SMC-ABC) is described.  Since the algorithm has not 

previously been used in the field of neural modelling, its use is validated by 

replicating the results of an earlier study.  The results indicate that SMC-ABC 

is an effective tool for finding the parameters of nonlinear neural models.  

The technique is used in the following chapter to find the parameters of a 

novel firing rate model of the basal ganglia. 

Chapter 5 describes new computational methods of modelling large systems 

of interacting populations of neurons.  It describes how to use mathematical 

models to rigorously test ideas about the function of different brain networks 

and structures.  These methods are applied to modelling a group of 

structures called the basal ganglia and we test, and confirm, the idea that 

they are the structures responsible for action selection in the primate brain.  

One of the neural populations of the basal ganglia is the primary target of 

dopaminergic	   neurons.	   	   The	   death	   of	   these	   neurons	   in	   Parkinson’s	   disease	  
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gives rise to slowed movement and tremor, among other symptoms.  In 

Chapter 6 the	  model	   is	   used	   to	   investigate	   the	   development	   of	   Parkinson’s	  

disease.  The changes that are seen in the network structure of the basal 

ganglia are implemented in the model and conclusions are drawn regarding 

disease progression and possible treatments. 

1.3: Contributions arising from the thesis 

Contributions of the work in this thesis can be divided into two categories.  

Firstly, there are methodological advances that constitute improvements in 

the ways that neural systems can be studied.  Secondly, the thesis and 

associated published work contains insights into the function of healthy 

brain systems and disease states.  In chapter 3 a novel method of segmenting 

time-series data into temporal epochs in which the generating system is 

changing minimally is created.  This method may prove to be of use for the 

analysis of complex time series data generated by many other kinds of 

nonlinear systems.  The work of Chapter 3 also demonstrates that time 

domain analysis is at least as informative as the far more commonly used 

spectral analysis when looking at EEG data. 

Chapter 3 also presents evidence that focal onset seizures may follow a 

characteristic evolution through a low dimensional phase space that is 

constant in different seizures in the same patient but different between 

different patients.  This insight should inform future work on seizure 

prediction and suggest possible methods for seizure prevention.   
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Chapter 5 contains advances in neural modelling methodology.  A principled 

method of testing an hypothesis of brain function using computational 

modelling is defined.  Firstly a systems level model of the structure is created 

using connectivity that is known from experimental studies.  Secondly, the 

full distribution of model parameters is found using inference techniques 

constrained by experimental data.  A mathematical function is defined which 

quantifies the ability of the model to perform the hypothesised function.  A 

positive correlation between the goodness of fit to the data and the ability to 

perform the function is taken as evidence that the hypothesis should be 

accepted.  This is an approach that could be adopted in a wide variety of 

fields.  Also in chapter 5, the use of the likelihood free inference technique of 

SMC-ABC is used for the first time in neural modelling and it is shown to be 

extremely well suited to the task.   

A new method of creating firing rate models is created that expands the 

range of the possible dynamics that can be captured in high level models.  

This is accomplished by using second order dynamics to define the 

input/output relationships between neural populations and doing away with 

the assumption that neural populations always act at one constant 

characteristic time constant.  These developments allow dynamical firing rate 

time series data to be used to accurately constrain model parameters.  The 

above methodological advances are used to provide independent theoretical 

evidence that the basal ganglia perform action selection. 
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In Chapter 6, theoretical evidence is found that the pathological beta band 

network	  oscillations	  of	  Parkinson’s	  disease	  occur,	  not	  as	  a	  direct	  result	  of	  the	  

loss of dopamine, but due to the changes that occur in the network as the 

disease progresses.  The model and subsequent analysis suggest reasons for 

the	   effectiveness	   of	   some	   treatments	   of	   Parkinson’s,	  whose	  mechanisms	   of	  

action are not yet fully understood. 

 



7 
Overview of epilepsy 

 

Chapter 2: Literature Review 

2.1: Overview of epilepsy 

Epilepsy is a common chronic neurological disorder, affecting between 0.5-

1% people in the world today.  It is characterised by high amplitude, hyper-

synchronous neural activity in all (generalised seizures) or parts (partial 

seizures) of the cortex.  50% of people who have a seizure will not go on to 

have any subsequent seizures [3].  However, 20-30% of people diagnosed 

with epilepsy never experience a long-term remission.  It has been suggested 

that seizures are self-promoting, each seizure making subsequent seizures 

more probable [4].  Findings from animal studies supports this view [5]. 

There are many classes of seizures and they have been categorised in 

different ways over the years.  Absence (formerly known as petit mal) 

seizures are a form of generalised epilepsy in which the whole of the cortex 

displays pathological synchronous activity.  Onset has no clear focus, 

beginning at the same instant in all areas of cortex.  Those who suffer from 

absence seizures are usually children.  They typically experience 

intermittent, brief interruptions in consciousness of less than about 10 

seconds.   

Complex partial seizures appear to have a specific location in the cortex 

which could be considered to be the origin of the seizure.  The seizure then 

spreads, often to the same area in the contralateral hemisphere.  The epilepsy 
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of patients suffering complex partial seizures often progress to engulf the 

whole cortex, becoming focal onset generalised seizures.  These are the most 

common form of epilepsy and produce the symptoms most commonly 

associated with the condition.  Seizures often begin with a series of peculiar 

behaviours such as ticks or twitches, which are the same from seizure to 

seizure in each patient.  Suffers may then experience fitting, uncontrollable 

muscular contractions over the whole body lasting up to a few minutes. This 

is followed by a post-ictal phase during which consciousness may be 

regained, though the brain activity, as shown by EEG recordings, often does 

not return to the pre-ictal state until many minutes later.  Sufferers are often 

exhausted by the episode and a period of sleep follows an event. 

First line treatment for epilepsy is medication.  Anti-epileptic drugs (AEDs) 

work by affecting the processes involved in the recurrent firing of neurons.  

Sodium channel blockers and calcium	   current	   inhibitors	   decrease	   neurons’	  

propensity to fire an action potential by blocking the flow of depolarising 

ions through the channels in the cell membranes.   Gamma-aminobutyric acid 

(GABA) enhancers work by blocking the reuptake of GABA, the brain’s	  

inhibitory neurotransmitter, thereby producing an overall decrease in 

network activity. 

However, a large trial of antiepileptic drug treatment in recent-onset 

idiopathic generalized epilepsies (IGEs) and unclassifiable generalized 

epilepsies showed that 34-49% failed to achieve 12-month remission with 

first-line medication [6].  23% of patients in the same long term study were 
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still	  not	  seizure	   free	  after	  5	  years.	   	  While	   the	  sites	  of	  each	  drug’s	  action	  are	  

well known, we lack a complete understanding of how cellular level 

processes, with which the drugs interfere, give rise to the macro-scale 

behaviour of an epileptic seizure.  The lack of understanding of the 

fundamental mechanisms underlying seizures means that it can be many 

years of trying different drugs before an effective drug is found.  

In cases where drug treatments have failed, a surgical intervention is 

sometimes possible.  If the focus (point of origin) of the seizure is in a non-

vital area of cortex, then it can be removed.  However, a meta-analysis of long 

term outcomes of surgery for epilepsy showed that 34% of patients who 

underwent temporal lobe resections still experienced seizures after the 

procedure.  This figure rises to 63% for frontal lobe resections [7].   

The primary goal of all neuroscientists involved in the study of epilepsy is to 

understand the basic mechanisms underlying epilepsy to enable the 

elimination and prevention of epileptic seizures in humans.  On a theoretical 

level we need to gain an understanding of pathological neural population 

behaviour as a dynamical nonlinear system.  If we can use available data to 

constrain models of the neural substrates of seizure generation then we can 

use the physiological interpretation of parameters to generate hypotheses to 

drive experimental research and suggest new sites for drug interventions. 

The mechanisms of epilepsy are mainly studied in animal models and 

computational models.  Data used for the analysis of computational models 

comes from electroencephalograms (EEGs).  A mesh of electrodes is 
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positioned	  over	  the	  patient’s	  head.	  	  Each	  electrode	  records	  the	  electrical	  field 

potential from the area of cortex underneath it.  EEGs can be recorded either 

from the outside of the skull or intracranially by removing a section of skull 

and positioning the electrodes directly onto the surface of the brain.  EEG 

recordings represent a challenge to modellers due to high levels of noise, the 

difficulty in distinguishing the noise from the behaviour of interest and the 

interplay between complex spatial and temporal effects.  For this reason 

absence epilepsy has been a popular choice for computational models.  The 

EEG of sufferers of absence seizures display a highly uniform pattern of 

oscillations arising virtually instantaneously across the entire cortex.  Thus 

spatial components can be safely neglected and the time evolution of the 

seizure waveform can be studied in a simpler model. 

The EEG of patients suffering from subsyndromes of IGEs often display a 

characteristic wave form consisting of one or more quick bursts of activity 

followed by a quiescent phase, with the whole cycle repeated at a frequency 

of about 2-4Hz.  This behaviour has become known as spike-wave discharge 

(SWD). Its ubiquity in generalised seizures has meant that it has been well 

studied in a variety of animal models [8]–[10].  Results from the study of 

these models have led to the conclusion that both thalamus and cortex are 

required for the generation of the classic SWD.  Lesion studies of genetic 

absence epilepsy rats from Strasbourg (GAERS) have shown that SWD 

behaviour is not possible without both of these structures [11].  In the feline 

generalised penicillin epilepsy (FGPE) model, the large dose of the weak 
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GABAA antagonist penicillin, results in a typical 3-4Hz SWD, which has been 

simultaneously recorded in both thalamus and cortex  [12], [13]. 

2.2: Overview	  of	  Parkinson’s	  disease 

Parkinson’s	  disease	   (PD)	   is	   a	  progressive	  neurological	   condition	   in	  which	  a	  

particular group of neurons gradually die.  The affected neurons are located 

in a subcortical nucleus known as the substantia nigra (SN).  Many of the 

neurons of the SN are dopaminergic and therefore their gradual death results 

in	   a	   decline	   of	   the	   levels	   of	   dopamine	   transmission	   to	   the	   SN’s	   afferent	  

neuclei.   

The dopaminergic neurons of the SN project to the basal ganglia [14].  The 

basal ganglia (BG) is a group of subcortical nuclei that receives inputs from 

most parts of the cortex and from many subcortical structures via thalamic 

relays.  The output of the BG has been shown to be a tonic inhibition of the 

same structures from which the BG receives its inputs.  The BG is composed 

of the striatum, the subthalamic nucleus (STN), and the globus pallidus.  The 

dopaminergic neurons of the SN project to all of these nuclei but by far the 

highest proportion of projections are to the striatum.  The loss of the 

dopaminergic innervation of the BG has profound effects on the functionality 

of this network of structures. 

The symptoms of PD can be divided into three categories; cognitive 

symptoms; autonomic symptoms; and motor symptoms.  Cognitive 

symptoms include depression, anxiety and cognitive impairment [15], [16].  



12 
Literature Review 

 
 

Autonomic symptoms include dysphagia (difficulty swallowing), urinary 

incontinence, constipation, excessive sweating and erectile dysfunction [17].  

However, the most common and most obvious symptoms of PD are motor 

deficits.  Sufferers experience bradykinesia (slowness of movement) leading 

to a shuffling awkward gait, muscle stiffness and tremor, usually beginning in 

a hand or arm [18].  Tremor is most likely to occur when at rest. 

Treatments of PD can be divided into two categories, drug treatments and 

surgical treatments.  The reason for the death of the SN dopaminergic 

neurons remains unknown and there is currently no cure for PD.  Treatments 

have therefore focused on alleviating the symptoms of the disease.  The drug 

treatments for PD focus on mimicking the effects of dopamine.  Levodopa is a 

widely prescribed drug for PD which is absorbed by neurons and is turned 

into dopamine thus compensating for the loss of the natural dopamine.  

However, while Levodopa has a very positive effect when first prescribed, as 

the disease progresses the drug leads to its own motor deficits including 

sudden and uncontrolled jerky movements (dyskinesia).   

Dopamine agonists are another form of drug treatment and also act as a 

substitute for dopamine by binding to and activating the same receptors as 

dopamine would have in the healthy brain.  They are often prescribed 

alongside Levodopa in order that the dosage of the later can be reduced.  

However, dopamine agonists have been linked to the development of 

compulsive behaviours such as gambling and hyper-sexuality and 

disinhibition.  Monoamine oxidase-B inhibitors block the effects of the 
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chemical pathway that destroys dopamine in the brain and is a drug that is 

used to treat early stage PD as an alternative to Levodopa.  All drug 

treatments suffer the same drawbacks in that they have a blanket effect on 

the many parts of the brain that use dopamine and are not targeted on the 

specific nuclei that are innervated by the SN.  They also loose effectiveness 

over time as increasing SN cell death occurs.  

There are also two surgical treatments for PD; deep brain stimulation and 

pallidotomies.  In deep brain stimulation (DBS) an electrode is surgically 

implanted into one the nuclei of the BG (usually the STN) and a pulsatile 

current is used to stimulate the area around the electrode.  This treatment is 

highly effective in alleviating the motor symptoms in some patients with 

advanced PD.   

Paradoxically the effects of DBS are similar to the effects of lesioning the STN.  

There are four main classes of possible explanations for why the stimulation 

of an excitatory should lead to an effective inhibition [19]. 1) The stimulation 

may change the behaviour of the voltage-gated ion channels such that action 

potentials cease to occur (depolarisation block) [20].  2) Depletion of 

neurotransmitters at the axonal terminals of the stimulated neurons [21].  3) 

The stimulation may affect the axon terminals of inhibitory nuclei that 

innervate the STN causing the STN neurons themselves to be inhibited [22].  

4) Stimulation of the STN results in an increased inhibition of BG output 

nuclei due to the way that the network is changed in PD [23].  Experimental 

and theoretical research is ongoing to find the mechanisms of action of this 
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treatment.  This thesis is concerned, in part, with developing modelling tools 

for the study for this treatment.  Neural systems are extremely complex, with 

vast numbers of nonlinear dependencies at varying scales interacting to give 

rise to the observed behaviour.  Mathematical modelling is the primary 

means of ascertaining the parameters and variables that are of the greatest 

importance to generating the observations, and is also a key method for 

generating hypotheses that can be tested experimentally. 

2.3: Computational models of neural structures  

In this section a general overview of the techniques used for the modelling of 

neural systems is given.  Then a more in-depth review is undertaken of 

specific	   models	   of	   both	   epilepsy	   and	   Parkinson’s	   disease	   at	   all	   levels of 

description.  The aim of this section is to critically evaluate available models 

and focus in on the most appropriate model type for the research questions 

addressed in this thesis, namely neural mass models for the modelling of 

epilepsy in cortex and firing rate models for the modelling of basal ganglia. 

Computational models are mathematical models that require the processing 

power of a computer for their analysis.  Complex nonlinear models can be 

analytically intractable so computers can be used to solve the system 

numerically to an extremely good approximation.  Experiments can be run on 

the model, parameter dependencies explored and hypotheses of system 

function generated by manipulating the mathematical structure or parameter 

values in the model.  Computational modelling is extremely important in the 
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field of neuroscience as the nervous system is immensely complex and highly 

nonlinear [24].  Experimental manipulation and observation is hampered by 

many confounding factors such as the fact that animal models may not 

generalise well to humans or the many and complex effects of various 

anaesthetics [25], [26].  Computational models allow us to reduce the 

dimensionality of the system and to isolate and analyse individual elements 

to generate predictions that can be tested experimentally. 

2.3.1: Modelling of epilepsy 

 The SWDs of epilepsy have been intensively studied in many computational 

models at varying levels of description.  Destexhe  [27] was the first to model 

these pathological oscillations.  Multiple neurons were individually modelled 

using an Hodgkin-Huxley formalism.  Parameters were found by fitting model 

output to experimentally recorded postsynaptic currents [28].  It was found 

that the slowly acting GABAB response and thalamocortical feedback were 

both essential to the generation of SWDs.  Their model is too detailed to allow 

a complete search of the parameter space for epileptic dynamics but their 

result has been confirmed in various studies of models of generalised 

seizures with far smaller parameter spaces [29], [30].  More generally it has 

been shown that SWD dynamics can be observed in systems which have two 

distinct time scales, whether or not the time scales are related to GABAA and 

GABAB response, resembling the dynamics of fast-slow systems as studied by 

Brons in the early 1990s [31].   
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A detailed model of cortical tissue was created in [32].  This study focused on 

the possible role of axon-axon gap junctions in the generation of a fast (70Hz) 

oscillation that often precedes seizure onset.  It was found that gap junctions 

were a possible candidate for the generation of these oscillations and that 

therefore gap junction blockers may be a possible treatment for focal 

epilepsy. As with the Destexhe model [27] this model contains a great deal of 

physiological detail, modelling thousands of individual neurons.  While this 

makes these models suitable for testing the effects of changing intracellular 

parameters, it is less suitable for examining network level effects.  For this 

reason much of the current work on the modelling of epilepsy has been done 

using models of the mass action of large populations of neurons [30], [33], 

[34].  These models will be discussed in a later section. 

2.3.2: Modelling	  of	  the	  basal	  ganglia	  and	  Parkinson’s	  disease 

Modelling of PD has focused on the BG since that is the structure that is 

principally innervated by the dopamine neurons of the SN.  It has been 

observed that the motor symptoms of PD coexist with an increase of beta 

frequency (12-30Hz) oscillatory activity in the output of the BG [35]–[38].  

This observation has led many to conclude that the origins of the tremor in 

PD are in one of the feedback loops involving the BG.   The BG is composed of 

four populations of neurons.  The striatum and STN are the BG’s	  input	  nuclei,	  

receiving inputs directly from various cortical areas and many subcortical 

areas via the thalamus [39],[40].	   	  The	  BG’s	  output	  nucleus	  is	  the	  GPi	  (SNr	  in	  

rodents) and projects tonic inhibition to the same cortical locations from 
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which the BG receives its inputs [41], forming loops.  In the case of cortical 

loops, the GPi projects back to the cortex via thalamic relays [41].  Within the 

BG three pathways have been identified as being of particular importance; 

the direct pathway (Striatum to GPi); the indirect (striatum to GPe to STN to 

GPi) [42]; and the hyperdirect pathway (STN to GPi) [43],[44].  The STN is 

reciprocally connected to the GPe [45].  While other pathways exist much of 

the focus of BG modelling has focused on these connections.  Other 

connections will be examined later in the thesis. 

Feedback loops in the BG are a key feature of interest and have now been 

widely studied using computational models.  There are two feedback loops 

which have been thought to be candidates for the generation of oscillatory 

activity in the BG output nuclei:  cortex-BG-thalamus-cortex and GPe-STN.  A 

study of the GPe-STN feedback loop was conducted by [46].  This study found 

that increasing the strength of the cortex-STN connection increases 

oscillations. However, many of the other conclusions of this study rely on the 

assumption that there are significant self-excitatory connections within the 

STN.  Experimental evidence for these connections is not sufficiently strong 

to permit this assumption [47], [48].   

Similarly a conductance based study of the STN GPe feedback loop [49] found 

that the system is capable of generating oscillations in the theta range.  

However, this study neglected transmission delays between nuclei which 

have since been shown to be critical to the frequency of oscillations.   
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A later study by [50] used a first order firing rate model of the same feedback 

loop to investigate the conditions necessary for the generation of Beta 

oscillations.  By including axonal transmission delays between the two nuclei 

it was found that the self-excitation within the STN was not necessary to 

explain experimental observations of mean firing rates and oscillation 

frequency.  Thus it can be concluded that the GPe-STN feedback loop is a 

possible candidate for increase in power of beta band activity in the BG of 

Parkinson's sufferers.  Similar conclusions were reached by [51], who created 

a neural mass formulation of the whole basal ganglia-thalamo-cortical loop. 

Due to the intrinsic and extrinsic connectivity of the BG and its tonic 

inhibitory output, it has long been thought that the BG may be the locus for 

action selection in the vertebrate brain [52]–[56].  The typical motor 

symptoms of PD such as difficulty executing voluntary actions and slowed 

movements could easily be considered to be deficits in the functionality of a 

selection mechanism.  In the study of PD it is therefore important that 

computational models consider both the function of the healthy BG and the 

change in network dynamics that occurs with disease progression.   

Unfortunately there have so far been no models that address the issues of 

pathological oscillations and BG functionality simultaneously and it is this 

gap with which the latter half of the thesis is concerned.  [55] have come the 

closest to addressing this problem by creating a model of the BG using 

integrate and fire neurons.  While this study helps to illuminate the origins of 

alpha and gamma band activity in the healthy BG, they do not go on to 
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address the possible mechanisms for the rise in beta band activity in PD.  The 

high amount of biological detail in the model may make finding the many 

parameters of the diseased state extremely difficult.  The problem may be 

better addressed by creating a model of mass action similar to that of [50].   

One popular and fruitful model of BG functionality written at the firing rate 

level of description is [53], [54], the GPR model.  While the model in this 

study is highly abstracted is has served as the platform for much of the 

subsequent work on the modelling of BG function, such as [57], another 

popular model of selection in the BG.  It may be useful to extend the GPR 

model to better quantitatively represent BG firing rates and to use it to 

analyse the effects of the changes that occur in the network as PD advances.     

Frank has proposed a slightly different hypothesis of BG function.  It is 

proposed that the BG functions not as a selection mechanism, but as a gating 

mechanism [58].  The disinhibition of the thalamocortical circuits by the BG 

allows the updating of information currently stored in working memory.  

Frank’s	  computational	  model	  of	  this	  mechanism	  is	  a	  plausible	  mechanism	  for	  

how the BG interacts with working memory [59].  While the hypothesis is not 

the same as the hypothesis of action selection it should be noted that the 

action selection hypothesis is chiefly concerned with, and has been modelled 

as, a motor circuit function.  It may be that BG-thalamus-frontal cortex loops 

function in a slightly different way to BG-thalamus-motor cortex loops. 
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2.4: Models of mass action in the brain 

Though the state space of a fully described neural system is vast, the actual 

observed behaviour is restricted to a relatively low-dimensional sub-space.  

Many of the variables may change over timescales much (shorter/) longer 

than the characteristic timescale of the phenomena of interest.  These 

variables could be considered to be (instant/) constant over the time scales 

of interest and can therefore be modelled as fixed parameters (quasi-steady 

state approach) [60].  Other variables may strongly covary and so can be 

lumped together as a single variable [61].  In this way it is possible to greatly 

reduce the dimensionality of the system to a manageable number, while still 

studying the problem of interest.  The advantage of this model reduction is 

that analysis is greatly simplified creating the possibility of insights into 

function. 

This section begins with a general discussion of the main methods for the 

modelling of the aggregated activity of large populations of neurons; neural 

field models, neural mass models and firing rate models.  Following this, 

there is a full review of the way these techniques have been applied to the 

modelling of both epilepsy	   and	   Parkinson’s	   disease,	   allowing	   the	   correct	  

modelling framework to be chosen for the study of both epilepsy and PD. 

2.4.1: Mass action models in general  

The first attempt to model the aggregated responses of populations of 

excitatory and inhibitory neurons was made by [62] who demonstrated that 
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many features of aggregated neuronal dynamics such as hysteresis loops and 

limit cycles can be captured using a pair of nonlinear differential equations, 

with one equation defining the proportion of excitatory cells that are active 

and the second defining the number of inhibitory cells that are active.  Similar 

work was done by [63] who derived a lumped parameter model to explain 

the alpha rhythm of the EEG, and Nunez, who derived the brain wave 

equation [64].  These studies form the foundation of most models of mass 

action in the cortex.  The models have been built upon and analysed in a 

multitude of ways to be discussed later in this chapter. 

2.4.1.1: Spatially extended models 

Models of mass action that include spatial components have been developed 

for the purpose of modelling the propagation of neural activity across the 

cortex.  Spatial dependence is accomplished by modelling two, either discrete 

or continuous spatial dimensions directly in the equations for each neural 

population (neural field models) [65].  A third discretised depth dimension is 

sometimes included to model the different layers of cortex [66]. The rationale 

behind this method is that within any given macro-scale piece of neural 

tissue there will be such a large number of randomly connected neurons that 

statistical methods can be used to derive continuous field equations in the 

form of partial differential equations.  A weighting function describes the 

connectivity structure of the tissue.  For example, if local connections are, on 

average excitatory, but longer-range connections are inhibitory, then a 

mexican-hat function like a difference of Gaussians would be an appropriate 
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choice.  Often a uniform homogenous connectivity structure is assumed.  The 

solutions to the system of partial differential equations can be steady states, 

travelling wave fronts, bumps or stationary waves (known as breathers).   

Models using this method generally neglect depth and boundary effects and 

treat the cortex as an infinite two-dimensional sheet [67].   

Neural field models seem to be a natural choice to study the spread of the 

pathological oscillations of epilepsy as they travel across the cortex.  Primary 

data on epilepsy is gathered by EEG, in which an array of recording 

electrodes are placed at spatially distinct locations over the head of the 

patient.  Field potentials of the area of cortex underlying each electrode are 

recorded.  What is measured by the EEG can therefore be thought of as an 

averaged field potential of all the neurons under each electrode.   

One of the most successful neural field models of the EEG is [68] though this 

study is concerned with modelling the effects of anaesthesia on the EEG and 

does not address epileptic states.  The only neural field study that produces 

SWDs is [69], whose model of the cortex is based on the model of [70].    

Neural field models are problematic to implement since their assumptions 

create a large disconnect with physiology.  For the sake of making the models 

analytically tractable potential to firing rate operators are often 

approximated as a Heaviside function [65].  The assumption that connectivity 

kernels are homogeneous is particularly limiting.  Work is still ongoing by 

groups in Exeter and Nottingham to map known connectivity structures onto 
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the PDEs of the neural field models in order that models can built that 

accurately describe the spatial propagation of focal onset seizures.  

2.4.1.2: Neural mass models 

Neural mass models can be derived from a set of neural field equations 

simply by removing the dependence on spatial location, turning the partial 

derivatives into time derivatives [71].	  	  	  Neural	  mass	  models	  utilise	  a	  “rate	  to	  

potential”	   transfer	   function,	   conceptually	   located	   at	   the	   synapse	   of	   an	  

average neuron.  This changes the firing rate of the afferent nucleus into a 

post synaptic potential and is typically modelled by a biexponential [63], [71] 

or an alpha function [72]. There is a unique transfer function for each 

receptor type in each neural population.  The PSPs are linearly summed and 

transformed	   into	   a	   firing	   rate	   by	   a	   “potential	   to	   firing	   rate”	   operator	  

conceptually located at the soma of the average neuron (see [73] for a review 

of these operators).  The usual choice for this function is a sigmoid, which is 

more physiologically realistic than the Heaviside function that is often used 

in neural field formulations.  The form	  of	  the	  “potential	  to	  rate”	  and	  “rate	  to	  

potential”	  operators	  embodies	   the	  mean	  cellular	  dynamics	   from	  synapse	   to	  

soma. 

Epilepsy is suited to analysis using models of this type since it is a dynamical 

disorder of the brain characterised by hyper-synchronous neural activity 

across large areas of cortex [9], thus spatial dependencies can often safely be 

neglected.  Also, the number of nuclei involved in modelling the cortex is 

relatively small (a population of pyramidal cells whose activity defines the 
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simulated EEG, and either two or three distinct populations of interneurons) 

so the dimensionality of the system is sufficiently small that numerical and 

analytical analyses are possible.   

This approximation has proved extremely fruitful in the modelling of 

epileptic EEGs.  Jansen & Rit proposed a lumped parameter model of a single 

cortical column [34] based on the work of Lopes da Silva [74].  They included 

an additional population of excitatory interneurons in a second feedback 

loop.  Thus their model is a population of pyramidal cells with two feedback 

loops, one inhibitory, one excitatory.  Their model is capable of replicating 

many of the waveform features of the EEG and, when two models are 

connected together with transmission delays between them, it is capable of 

replicating the spatial distribution of alpha and beta rhythms.  As with the 

Lopes Da Silva study, there is no analysis of epileptic states.  The Jansen & Rit 

model [34] has been studied a great deal and its properties are well 

understood.  Many other models are based on it.  Wendling [75] created a 

model of hypocampal cortex which includes an additional population of 

inhibitory interneurons mediated by GABAA receptors with a longer time 

constant.  Their model is therefore composed of the pyramidal cell 

population, one excitatory feedback loop of interneurons, and two inhibitory 

feedback loops of interneurons, one with a short time constant and one with 

a long time constant.  The additional inhibitory population enables the model 

to replicate the spectral properties [76] and the features of the shapes of the 

waveforms in the time domain (see [77] and Chapter 3).  The success of these 
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models, which are all based on the pyramidal cell population and a pair of 

feedback loops, demonstrates that the neural mass formulation is an 

adequate framework for capturing the network level activity in cortex. 

David and Friston have also analysed and augmented a Jansen and Rit model 

[78].  They used dynamic causal modelling to find the parameters of a 

generative neural mass model of the cortex-BG-thalamus-cortex loop driven 

by noise.  Their principle findings were that coupling strength and 

propagation delay are key determinants of the spectrum of the EEG and 

strong coupling between areas of cortex induces phase locking. 

Suffczynski  et al [79] created a neural mass model of thalamic population 

activity including cortical feedback.  It is a slightly more detailed version of 

the model put forward in Lopes Da Silva (1974).  Since the model is primarily 

concerned with thalamic activity, much of which is characterised by short 

duration bursts of rapid activity, the variable in the model is different to that 

in the Lopes Da Silva study.  As mentioned above, the Lopez Da Silva model 

uses the proportion of active cells as its variable.  The Suffczynski study uses 

action potential density as its variable in order that the bursting behaviour of 

the thalamus can be captured.  One drawback of their model is that it does 

not explicitly include a term that would correspond to the EEG.  It is therefore 

not of direct use for the modelling of epilepsy.  However, since the thalamus 

is responsible, at least in part, for the spread of activity across cortex, a 

detailed neural mass formulation may prove to be valuable as a part of a 
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more extensive model that includes more detailed models of cortical 

populations. 

One such model that includes the thalamo-cortical loop as well as a term that 

could be interpreted as the EEG signal is that of [71].  This study begins by 

deriving a set of neural field equations for the cortical sheet coupled with a 

spatially independent model of the nuclei of the thalamus.  Their model is 

concerned with the analysis of absence seizures which appear across the 

whole cortex virtually simultaneously [80], thus the spatial components are 

neglected creating a neural mass model.  They go on to conduct a bifurcation 

analysis of the model using the cortex to thalamus coupling strength and the 

time delay of the slow GABAB transmission as bifurcation parameters.  They 

show that the waveform profiles of SWDs in absence epilepsy are dependent 

mainly on these parameters and that transitions between oscillatory 

solutions with different numbers of maxima per cycle are due to false 

bifurcations [81].  However, this formulation has only a single neural mass to 

represent the cortex, and so this model would require significant reworking 

if it were to be made to represent the dynamics of focal onset seizures.   

Neural mass models assume that no dynamics occurs between the synapse 

and the soma of each average cell.  This is not always the case.  It has been 

shown that the membrane time constant, which governs the transmission 

between synapse and soma, is in fact variable by a factor of ten: when cells 

are active the membrane time constant is dramatically smaller, increasing the 

rate of information transfer [82], [83].  In cases where this assumption is 
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approximately true neural mass models are an extremely effective way of 

capturing very detailed physiology in an extremely compact form.  However, 

attempting to fit parameters to a neural mass model of a system for which 

this assumption is invalid would yield unreliable conclusions.   

The details of BG dynamics studied in [84] demonstrate that the neural mass 

model would be insufficient to explain the firing rate changes that are seen in 

the pallidum.  Under a neural mass formulation the only mechanism that 

could reasonably explain the observation that GP firing rates make a very 

gradual return to their tonic rates would be only be explainable as a 

consequence of the receptors that function over longer time periods, NMDA 

or GABAB.  However, recordings of GPi following application of the NMDA 

antagonist, cpp, show that the elevated GPi firing rates persist.  In that 

example NMDA therefore has a minimal effect on the mean firing rate.  This is 

a possible issue with a recent study by [51] in which a neural mass model of 

the cortex-BG-thalamus-cortex system was created and its parameters found 

using spectral data recorded from anaesthetised rats.  It may be useful to find 

a way to capture input/output firing rate dependencies directly without 

having to model intracellular processes at all.  

Neural mass models require a separate differential equation for each 

receptor type, meaning that to model a single neural population containing 

AMPA, NMDA, GABAA, GABAB receptors would require at least four second 

order differential equations.  To model the systems in which the number of 

interacting populations is even slightly larger than the models described 



28 
Literature Review 

 
 

above would require a much larger number of equations.  The parameter 

space associate with such a model would be prohibitively large.   It is 

therefore be desirable to reduce the dimensionality of the model still further.  

One method for accomplishing this is to employ a firing rate model. 

2.4.1.3: Firing rate models 

Firing rate models are particularly well suited to modelling certain types of 

experimental data.  In many experiments the incidence of action potentials 

are recorded and other intracellular variables such as membrane potentials 

or synaptic currents are hidden.  This is the case for the majority of 

experiments that record activity in the BG.  It would therefore be difficult to 

accurately constrain a model that explicitly included these variables.  So 

while firing rate models contain less physiological detail, they can be more 

accurate in reflecting the biology in cases where the data is insufficient to 

places bounds on the unobserved variables.  When modelling the BG, a firing 

rate model would therefore be more appropriate than a neural mass 

formulation since the data is often in the form of peristimulus time 

histograms (PSTHs) of spike events i.e. population average firing rates. 

Firing rate models can be derived in a number of ways.  A simple heuristic 

derivation has been put forward by [85] in which the firing rate of a given cell 

is dependent on the potential at the soma.  The potential at the soma is in 

turn dependent on post synaptic potentials that are governed by a bi-

exponential impulse response function.  Their derivation begins with a neural 

mass formulation then reduces the dimensionality of the model by making 
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various approximations.  One key assumption is that the timescales of 

activity at the synapse are negligible when compared to the membrane time 

constant of the post-synaptic cell.  While there are many other methods for 

deriving firing rate models, all make use of this assumption [85]–[87].  

Unfortunately this assumption has been shown to not be valid in many 

situations [82], [83] and this is an issue which will be addressed in Chapter 5.   

2.5: Parameter estimation for neural models 

In order to make reasonable hypotheses for clinical studies based on the 

results of experiments run on computational models, one has to be confident 

that the structure of the model reflects the neural architecture and that the 

parameters of the model are within biophysically plausible ranges.  This can 

be relatively easy when a parameter is clearly defined, such as the 

conductance of an ion channel for example.  It is much harder when the 

parameters are not directly measurable.  This is generally the case with the 

parameters of mass-action	   models,	   since	   a	   parameter	   such	   as	   “connection	  

strength between two neural populations”	   is	   the	   aggregated	   activity	   of	  

millions of synapses spread across thousands of neurons.   

One	   approach	   is	   to	   vary	   the	   parameters	   to	   fit	   the	   model’s	   behaviour	   to	  

clinically obtained data, such as the EEG of epileptic patients.   However, this 

is a nontrivial task due to the nonlinear nature of the system.  In all but the 

simplest cases, the error function is unknown and so traditional methods 

such as gradient descent are unavailable; Random walks and exhaustive 
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search methods are unusable due to the extremely high dimensionality of the 

parameter-space.   

A usual method has been to adopt a two-pronged approach.  Firstly, estimate 

and fix parameters that have a physiological interpretation and second, to 

use	   some	   method	   to	   search	   the	   system’s	   parameter	   space	   to	   find	   regions	  

where model behaviour is qualitatively similar to real EEGs.  This was the 

approach taken in the previously cited Lopez da Silva [63], Jansen and Rit, 

[88] and Wendling [75] class of models.  Parameters found to give rise to the 

behaviour of interest were inherited by the future studies since this is an 

obvious way to reduce the dimensionality of the parameter space. 

Different studies have lent more heavily on one or other of the approaches.  

Some rely mostly on published data to constrain parameter estimates, for 

example Robinson [89], while others use sophisticated optimisation methods 

to find reasonable parameter sets using relatively sparse data [68].  A good 

example of the first approach was taken by Robinson [89], who applied 

multiple constraints on parameters from the biological literature and 

combined them with model constraints to give a more accurate model fit.  

Monte Carlo methods were used to fit the highly constrained model to data.  

Bojak and Liley on the other hand use only Fourier power spectrum data and 

maximum and minimum mean firing rates as data to assess the validity of 

parameter sets estimated by a swarm optimisation method [90].   

An interesting approach to parameter estimation was taken by [76].  Most 

parameter values were inherited from previous studies [75], [91] and their 
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values were fixed.  The connectivity strength parameters, of which there are 

three, were allowed to vary.  An evolutionary algorithm was used to find 

parameter sets that	   optimise	   the	   model’s	   fit	   to	   the	   spectral	   properties	   of	  

clinical data.  Optimum parameter sets were found for different time periods, 

before during and after seizure.  An assumption inherent in this approach is 

that the time evolution of a seizure is governed by changes in a small subset 

of	   the	  neural	  system’s	  parameters.	   	  Thus	  the	  evolution	  of	  a	  seizure	  through	  

time could be plotted as a path through parameter space, some regions of 

which would contain normal steady state or alpha rhythms, and some 

regions would give rise to the pathological oscillations of epilepsy.   

The most advanced work that has been built on this assumption has been 

done by [92].  A multi-objective genetic algorithm was developed capable of 

recognising the precise features of individual waveforms such as the size and 

number of spikes in a cycle of SWD.  They used it to plot paths through 

parameter space for different seizures in the same patients.  This method 

retains much more of the information contained in an EEG time series than 

using the spectral methods used by [76]. 

In mathematical modelling what is often required is some measure of our 

belief in a particular set of parameters given the available data.  This makes 

Bayesian inference an ideal tool for the purpose since this naturally arises 

from the Bayesian framework.  Rather than extracting parameter values 

directly from data as is the case in frequentist estimation methods or the 

evolutionary methods discussed above, the Bayesian approach yields a 
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subjective belief in different parameter values.  Bayesian inference therefore 

yields distributions of possible parameter values rather than one best 

parameter set.  This is of particular use in neural modelling because the 

spread of the posterior distribution could be regarded as a measure of the 

robustness of the model to small perturbations in each parameter.   

Dynamic causal modelling (DCM) is a framework that uses the Bayesian 

expectation maximisation algorithm for finding the most likely model 

connectivity and parameter values that explain experimental data [93].  It has 

been used in many applications.  Of particular interest to this thesis is its use 

in neural mass modelling [51].  However, DCM is not universally accepted as 

giving an accurate picture of the underlying, and unknown, neural substrate.  

It has been demonstrated that DCM does not consistently identify the true 

model from a set of candidate models [94].  DCM is also limited to low order 

bilinear models and is not universally applicable.  It is also highly much 

harder to implement than some likelihood free inference techniques that do 

not suffer this disadvantage. 

With the exception of DCM, Bayesian approaches to parameter estimation 

have not been widely used in neural modelling primarily because of the 

difficulty in calculating the likelihood function.  The likelihood function is 

defined as the probability of obtaining the observed data given a particular 

model and set of parameters.  In all but the simplest models this can be 

extremely difficult to calculate.  Fortunately there is a growing trend for the 

use of so called likelihood-free inference techniques in which the likelihood 
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distribution is approximated by sampling from the posterior.  Various 

algorithms have been proposed that use this basic idea.  The most basic, 

which was proposed by [95], uses a simple rejection algorithm to select 

samples from the prior that satisfy some acceptance criterion. However, in 

cases where the parameter space is high dimensional and the data used to 

constrain the search is highly informative, this method alone is very 

inefficient.   

Approximate Bayesian computation methods address this inefficiency either 

by using conditional density estimation [96], [97], by using Markov-chain 

Monte-Carlo sampling [98] or a sequential Monte-Carlo method [99]–[101]. 

For a full discussion of approximate Bayesian computation methods see 

[102].  ABC has not been used to date in neural modelling: this thesis 

proposes the novel use of ABC in estimating neural connection strengths, 

which could prove to be highly advantageous across the field of 

computational neuroscience, exploiting the many computational models that 

already exist to drive this simple Bayesian estimation framework.   

2.6: Analysis of dynamics with neural models 

2.6.1: Bifurcation analysis 

When the number of parameters which are allowed to vary is as low as three, 

it is	   natural	   to	   attempt	   to	   explore	   the	  model’s	   behaviour	   at	   all	   parts	   of	   the	  

parameter space.  Wendling et al [91] attempted to do this by qualitatively 

classifying	  the	  model’s	  behaviour	  at	  every	  discrete	  location	  of	  the	  parameter 
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space.  While this approach gave rise to simulated EEGs which looked similar 

to clinically recorded EEGs, it lacks rigor.  Since the system is unknown and 

non-linear, interesting dynamics can occur in arbitrarily small regions of 

parameter space.  These regions would be missed if the discretised sampling 

used in the exhaustive search technique used by Wendling were too large.  

Also, the Wendling model [91] has a Gaussian noise as an input.  This means 

that the observed model behaviour could be, in part, due to the varying sizes 

of the basins of attraction of coexisting stable limit cycles.  The noise may 

serve to kick the model between different limit cycles.  While this may be the 

case in the real system too, it would be more instructive to analyse the 

mechanisms separately.   

A tool for accomplishing this task is bifurcation analysis.  The first study to 

use this tool for looking at the behaviour of a cortical model was [103] , who 

analysed the Jansen & Rit model [88].  The model cortical column has an 

input parameter that was varied smoothly and the value of a system variable 

was recorded, yielding a 1 parameter bifurcation diagram.  It was shown that 

the transition from normal background activity to spike-and-wave-like 

epileptic activity was caused by a Hopf bifurcation in the Jansen & Rit model.  

They were also able to give support to the values of the fixed parameters, and 

the ranges of the variable parameters by conducting the bifurcation analysis 

for different values.  It was found that the variety of behaviour exhibited by 

the model was significantly reduced when parameters varied significantly 

from the ones given by Jansen and Rit [88]. 
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The tools of bifurcation theory allow a far more thorough exploration of 

parameter space than is possible by just simulation alone.  If the 

dimensionality of the parameter space to be explored can be reduced to two 

or three, bifurcation theory allows for the model behaviour to be completely 

described within this space without having to run simulations at infinitely 

small parameter gradations.  Beginning from an equilibrium state, a single 

parameter is smoothly changed until the conditions are detected that 

indicate a Hopf bifurcation has taken place.  The Hopf bifurcation itself can 

then be tracked through the two dimensional parameter space yielding a line 

through the space which divides the region of parameter space for which the 

model gives a steady state solution from the region which gives rise to 

oscillating solutions.  All types of bifurcations can be tracked through 

parameter space, and so it is possible to gain a complete understanding of 

model dynamics on the chosen subspace.  

Marten et al [71] analysed their thalamocortical neural mass model in this 

way, mapping model behaviour in a two dimensional parameter subspace.  

They identified from simulation that cortex-thalamus coupling strength and 

the GABAB delay time were the parameters whose variation led to the most 

interesting range of model behaviour.  They also found that interesting 

changes in the time series of the model output could not be explained by 

bifurcations.  The appearance and disappearance of additional spikes in the 

time	   series	   was	   found	   to	   be	   the	   result	   of	   “false”	   bifurcations.	   In	   false	  

bifurcations, the change of a parameter results in a smooth change in the 
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vector field of the system, but the change appears discontinuous when the 

state space is projected onto the observable subspace.  Marten et al [71] used 

co-location to continue false bifurcations in a similar way to normal 

bifurcations and so were able to fully map model behaviour across the two 

dimensional parameter space and envisage the abrupt changes in the EEG of 

an absence seizure as a smooth path through parameter space.  No similar 

time domain analysis has yet been done on any of the neural mass models of 

cortex.  A study of this kind may shed light on the mechanisms underlying the 

dynamics of focal onset epilepsies.  

Jansen & Rit models [88] of cortical tissue have been extensively studied 

using bifurcation analysis.  Spiegler et al. conduct a bifurcation analysis of a 

modified Jansen & Rit model [104].  Extrinsic input to the neural mass model 

comes from three sources, instead of one as in the original model (and also 

the Grimbert & Faugeras analysis [103]).  The inhibitory interneuron 

population, the excitatory interneuron population and the pyramidal cell 

population all receive independent inputs.  Inputs are constants measured in 

mV, without noise.  The pyramidal input is the main bifurcation parameter 

used in the paper.  Codimension-one bifurcation diagrams are calculated and 

classified according to the nature and order of their Hopf bifurcations.  This 

was done for every combination of the remaining two inputs (where the two 

remaining inputs are coarsely discretised).  A similar analysis is done using 

the excitatory and inhibitory dendritic time constants as the secondary 
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variables.  The authors build a comprehensive account of the behaviour of 

this modified model as a function of all three possible inputs.  

Touboul et al. [105] also conduct a thorough bifurcation analysis on mainly 

the Jansen & Rit [88] neural mass model of cortex, but also include a brief 

analysis of the Wendling model [72] of hippocampal cortex.  Their approach 

is to reduce the dimensionality of the model by performing a change of 

variables to yield a dimensionally smaller system whose parameters are 

dimensionless.  This leads to a distortion of the bifurcation diagrams when 

compared to similar analyses of the full models, but the differences are 

qualitative only.  

Bifurcation parameters are mainly the extrinsic input to the neural mass 

(from areas of cortex outside the modelled area), and a dimensionless global 

connectivity parameter.  Their thorough bifurcation analysis in these 

parameters includes bifurcations up to codimension-three. 

While the Speigler [104] and Touboul [106] studies are successful at 

describing the solutions of their models for different values of extrinsic input, 

this information may prove to be of limited value.  If we are interested in the 

emergence of focal onset epileptic oscillations then manipulating external 

inputs to the system to show behavioural transitions is not the most 

informative approach.  What is of interest is the intrinsic oscillatory 

properties of the piece of cortical tissue being modelled, independent of 

external input.  Therefore a more fruitful approach may be to fix all inputs to 

a physiologically plausible background level and then identify which of the 
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model’s	   internal	  parameters	  can	  be	  varied to cause the system to make the 

transition to oscillatory solutions.  This was the approach taken in  Nevado 

Holgado et al. [50] , in which conditions for the generation of beta oscillations 

in the globus pallidus- subthalamic feedback loop were assessed analytically. 

One study of a cortical neural mass model has used internal system 

parameters as the bifurcation parameters.  In an appendix to [105] the 

authors analyse a dimensionally reduced version of the Wendling model of 

hippocampal tissue [75].  However, the analysis is brief and the parameter 

ranges are small when compared to the ranges used by Wendling et al. in 

their 2005 study [76].   

A bifurcation analysis of a model of cortical tissue may help illuminate the 

mechanisms of focal onset epilepsies in the same way that bifurcation 

analysis of neural mass models of the thalamocortical loop has yielded 

interesting hypotheses regarding the mechanisms of absence seizures.  Also, 

little attention has hitherto been given to the temporal features of the EEG of 

focal onset epilepsies.  Rather parameters have been fit using spectral 

properties of the data.  This method is less suited to studying dynamic 

evolution as theoretical results from nonlinear dynamics have shown that 

temporal information cannot be recovered from spectral information alone 

[107], [108].  Thus far, the theoretical methods for dealing with focal onset 

epilepsies have not been taking full advantage of all the information 

contained in the EEG.   
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There have also been bifurcation analyses of models of the BG.  Most notably 

the study of [50] in which conditions for the generation of the beta 

oscillations associated with Parkinson's disease were analytically derived 

from a bifurcation analysis of their firing rate model of the STN-GPe feedback 

loop. 

2.7: Summary 

There has been much success in the theoretical study of absence epilepsy 

using time domain analyses and bifurcation analysis of neural mass models of 

the thalamo-cortical loop [71], [109].  While there have been studies that use 

neural mass formulations to examine the dynamics of the much more 

common focal onset seizures, these studies have used spectral properties of 

EEG data from temporally broad segments of the seizure EEG [91], [110].  

The work on absence seizures indicates that an analysis using temporal 

features may better illuminate the changes in the neural substrate.  In studies 

that conduct bifurcation analyses on models of cortex the principle 

parameter that is varied is the extrinsic input to the model [104], [106], 

[111], [112].  However, recent work has led to the hypothesis that the 

evolution of seizures is due to gradual changes in underlying system 

parameters rather than simply strength of external inputs. There is therefore 

scope to analyse neural mass models of hypocampal tissue in the time 

domain and to conduct a full bifurcation analysis on the models to explore 

which parameters are responsible for the variation in the waveform profiles 

as seizures progress.  
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There have been many computational models demonstrating that the basal 

ganglia is capable, in principle, of performing action selection [53]–[56] .  

There have also been many models of the generation of beta oscillations in 

the STN-GPe feedback loop of the basal ganglia that has been shown to occur 

with	  the	  advance	  of	  Parkinson’s	  disease	  [46], [50] .  However, as yet there has 

been no model that has been capable of quantitatively examining the 

selection functionality of the basal ganglia alongside the generation of the 

pathological	  oscillations	  of	  Parkinson’s.	   	  The	  only	  model	   that	  has	  addressed	  

oscillations and functionality simultaneously is that of [55], but this study 

does not address the transition to the parkinsonian state, only oscillations in 

the healthy condition.  Their model is also far too physiologically detailed to 

permit any kind of numerical or analytical analysis.  There is therefore scope 

to create a population activity level model of the basal ganglia and use it to 

quantitatively study the dynamics of healthy function and also how 

functional	  deficits	  present	  themselves	  as	  Parkinson’s	  disease	  advances.	  	   

Equation Chapter 3 Section 1 
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Chapter 3: The dynamic evolution of focal 

onset epilepsy 

3.1: Introduction 

Focal-onset seizures typically show a dynamic evolution of the clinical 

features of the seizure, progressing through a sequence of subjective and 

behavioural phenomena in a manner that is highly stereotyped for an 

individual patient, and often broadly similar between different patients with 

seizure onset in the same anatomical site [113], [114]. The accompanying 

EEG features also dynamically evolve through the seizure. Focal-onset 

seizures are conventionally conceptualised as having a highly circumscribed 

onset	   in	  an	  “abnormal”	  brain	  region,	  with	  evolution	  of	  the	  seizure	  requiring	  

recruitment of adjacent	  or	  connected	  “normal”	  brain	  regions.	  The	  emergence	  

of focal seizure activity is increasingly recognised to occur in a network of 

interconnected regions. The dynamical evolution of clinical seizure features 

and EEG features must presumably be explained by the fundamental 

mechanisms of seizure onset, spread of seizure activity to connected brain 

regions within the seizure network, and spontaneous seizure termination. 

These fundamental mechanisms are not yet known. 

Human focal-onset epilepsy may be associated with onset in medial temporal 

regions in or adjacent to the hippocampal formation, or in neocortical 
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regions. A wide range of pathologies may be identified using in vivo MRI or ex 

vivo histology, including hippocampal sclerosis, cortical malformations, focal 

cortical dysplasia, tumours, and the consequences of traumatic brain injury; 

in some instances no specific pathology can be identified. In contrast to 

absence seizures in idiopathic generalised epilepsy, where the cortico-

thalamic loop has been implicated in several studies [71], [115]–[121], the 

generators of seizure discharges in EEG are not so fully described in focal-

onset seizures.  

In human temporal lobe epilepsy (TLE), EEG may be obtained from scalp 

electrodes or intracranial electrodes (termed intracranial EEG, iEEG). If 

seizure onset is in the hippocampus, typically the scalp EEG remains normal 

at seizure onset, because signals from the hippocampus are not detectable at 

the scalp, but a 5-9Hz rhythm gradually appears in anterior temporal regions 

ipsilateral (sometimes contralateral) to seizure onset, and evolves over 

seconds, becoming slower and more diffuse later in the seizure [122], [123]. 

The pattern of intracranial onset is complex, typically showing localised 

higher frequency activity at 10-20Hz in the hippocampus, which spreads and 

slows, being visible at the scalp only when neocortical regions are involved 

[124]. Seizure onset from a focus in neocortex often may show a low voltage 

higher frequency onset in the 20-40Hz range, which increases in amplitude 

and slows [124], [125], and may be visible with scalp EEG as well as 

intracranial EEG. The evolving patterns of ictal EEG discharge suggest that 
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the underlying networks which generate the ictal activity progressively alter 

over the course of the seizure. 

The commonest focal onset human epilepsy is temporal lobe epilepsy (TLE), 

most often due to a specific pathology termed hippocampal sclerosis (or its 

less severe variant end-folium sclerosis). The pattern of abnormality is 

typically restricted to the hippocampal formation with limited evidence of 

neuropathological abnormality elsewhere in the brain [126]. Evidence 

suggests that microscale mechanisms in local microcircuits may be 

responsible for seizure onset, but the manifestation of the seizure depends on 

activity emerging in large-scale macroscopic brain networks. Several animal 

models of human TLE with hippocampal sclerosis exist and have been 

extensively studied. For example, unilateral electrical stimulation of the 

excitatory input through the perforant path results in status epilepticus 

which is followed by the emergence of spontaneous temporal lobe seizures 

[127]. In this model, seizures may appear to be generated from hippocampus 

(ipsilateral or contralateral to the stimulation) or entorhinal cortex, but the 

generation of the seizure appears to be critically dependent on the 

involvement of both local and larger-scale networks. In several in vitro and in 

vivo temporal lobe epilepsy models, emergence and expression of the seizure 

depends on intact connectivity between hippocampal and interconnected 

cortical regions such as entorhinal and perirhinal cortex [128]. This evolving 

change in the underlying networks generating seizures has recently been 

illustrated in three dimensions in the human brain [129]. In this study, iEEG 
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power in a frequency band typical of seizure activity was directly measured 

using a very large number of intracranial electrodes in a small number of 

patients, and a three-dimensional map of the temporal evolution of this iEEG 

power was created by interpolating between electrodes. This map showed 

that the brain networks supporting seizure activity gradually evolved from 

mesial temporal structures to temporal and insular neocortex. 

Although these lines of evidence support the idea that the dynamic evolution 

of the seizure requires spatial extension of seizure activity into progressive 

larger circuits, experimental electrophysiological techniques are typically 

limited to the study of small brain regions and limited numbers of neurons, 

therefore may interrogate local microcircuit phenomena but may not reveal 

larger-scale brain network activity involved in generating seizures. The 

technique of 14C-2-deoxyglucose autoradiography [130] can reveal the 

regional metabolic rate throughout the brain in the period following 

injection, and hence infer the network of brain regions active during a 

seizure. In a TLE model, seizures with highly focal motor and behavioural 

features were associated with increased activity restricted to the medial 

temporal lobe and its direct connections, but the evolution of the seizure into 

a more generalised pattern in the same model was associated with activity in 

a network including medial temporal lobe, thalamus, basal ganglia and 

neocortex [131]. This increased metabolism during the acute seizure may be 

reflected in structural alterations evolving over months to years in a network 

of brain regions in experimental TLE, revealed with MRI, including 
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hippocampus, thalamus, striatum, and specific neocortical regions [132]. In 

human TLE, seizure-related regional cerebral blood flow increases (assumed 

to reflect increased neuronal firing) have been seen in temporal lobe and 

ipsilateral basal ganglia [133], and the temporal evolution of the anatomical 

extent of these blood flow changes throughout the brain has been described 

[134]. 

In summary, there is clear evidence of a dynamic evolution of the clinical 

features of the seizure and accompanying EEG in focal-onset epilepsy. In 

experimental systems, localised seizure onset evolves to more widespread 

involvement of macro-scale brain circuits, accompanied by associated 

changes in behavioural seizure features; some evidence exists also in human 

focal-onset epilepsy that the dynamic evolution of the seizure and EEG is 

accompanied by progressive involvement of more extensive brain circuits. 

Given the challenging richness and complexity of experimental data, and the 

persistent obscurity of the mechanisms responsible for seizure onset, 

evolution and termination, a modelling framework is here described through 

which EEG data can be interrogated.  Prior work in absence epilepsy [71], 

[109], [118], [119], has illuminated the underlying mechanisms of seizure 

activity seen on scalp EEG.  As yet however, there has been no similar 

analysis conducted on the far more common condition of focal onset epilepsy.  

This has been largely due to the complexities of fitting model parameters to 

data drawn from a system that is undergoing constant changes over the time 

course of the seizure.  In the work that follows this issue is addressed and a 
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formal model-driven analysis of intracranial EEG (iEEG) is described that can 

explain features of focal-onset data, in particular transitions from one pattern 

to another during the seizure discharge. 

3.2: Materials and Methods 

3.2.1: Intracranial EEG recordings 

Intracranial EEG data were obtained from 3 patients undergoing iEEG at 

King’s	   College	   Hospital,	   London.	   In	   these	   cases,	   conventional	   antiepileptic	  

drug treatment had failed to control seizures despite trying a range of 

medications at appropriate doses; hence these patients were being evaluated 

for surgery in which the putative focal source of seizure activity would be 

resected.  A first phase of investigation with magnetic resonance imaging, 

neuropsychometric testing and seizure recording with simultaneous video 

and scalp EEG had failed to adequately localise the seizure onset zone, 

therefore the conventional next step of iEEG was undertaken to better 

localise seizure onset. The data used here were obtained during conventional 

clinical investigation entirely independent of the study described here. iEEG 

data were examined by the clinical team, seizures identified and appropriate 

segments copied, and shared with this study in an entirely anonymised form 

without video.	  The	  local	  Research	  Ethics	  committee	  of	  King’s	  College	  Hospital	  

approved use of these data for this study. 

The patients, all female, were aged 26, 55 and 61. All three subjects had the 

clinical syndrome of temporal lobe epilepsy, and all were studied with 
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bilateral subdural electrode strips covering inferior and medial temporal 

lobe. Commercially-made intracranial electrodes approved for human use 

were used (AdTech Medical Instruments Corporation, WI, USA). Strips of 

electrodes consisted of 8 platinum-iridium disc electrodes 4mm in diameter 

arranged in a single row at intervals of 10 mm centre to centre, embedded in 

a strip of  polyurethane 0.7 mm thick. Intracranial EEG data were recorded 

using a Nervus Medelec System (Medelec, Oxford Instruments, Witney, UK). 

Data were digitized at 256 Hz with a 22 bit analogue-to-digital converter, 

band-pass filtered in software (0.3 Hz – 70 Hz). 

Large-scale brain activity recorded using such strips is typically thought of as 

the summation of the ionic interactions of large populations of neurons; 

predominately pyramidal cells, which integrate both excitatory postsynaptic 

potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) and output 

extracellular currents [135]. These currents may be summed due to the 

perpendicular alignment to the scalp of the pyramidal cell dendritic tree. 

Patient 1, aged 55, had two patterns of seizure. The first pattern emerged 

from right medial temporal regions, and consisted of motor arrest followed 

by automatisms (involuntary semi-purposeful motor activity) involving the 

right hand. A second pattern emerged from left mesial temporal electrodes, 

and consisted predominantly of motor arrest accompanied by oral 

automatisms (lip-smacking and chewing movements). Patient 2, aged 26, had 

a single pattern of seizure emerging from left medial temporal electrodes; 

this consisted of motor arrest followed by prolonged involuntary repetitive 
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vocalisation, and posturing of both arms. Patient 3 also had a single pattern 

emerging from left medial electrodes, consisting of arrest, automatisms of the 

left hand, dystonic posturing of the right arm, chewing, and dysphasia for a 

few minutes after the seizure. In all patients, different seizures emerging 

from the same onset zone tended to be very similar within patients, with the 

same overall pattern and evolution of features, but differing duration (see 

below). Although it would be of great interest to relate the evolving clinical 

seizure characteristics to the bifurcation analysis of our model, these clinical 

features are challenging  to robustly characterise and classify, hence this is 

not attempted here. 

3.2.2: A neural mass model for intracranial EEG recordings 

There are a number of approaches that can be considered for defining a 

generative model of (i)EEG and the interpretation of EEG signals from 

biophysical principles remains an active area of research. One approach is to 

consider large-scale neuronal networks whose output mimics that of EEG 

(for example [27], [136]). A challenge with such an approach is that the 

model complexity typically precludes any attempt at formal analysis, making 

it difficult to identify the underlying mechanisms responsible for features 

observed in the data. This makes an approach based around matching 

features of model output to iEEG recordings difficult. As an alternative to this 

detailed approach, a continuum-based approximation using a neural mass 

formulation was used. 
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The neural mass framework can be traced back to fundamental studies [74], 

[137] in the 1970s. Freeman in his work on olfaction observed that the 

population response to an electrical impulse observed a bi-exponential 

response consisting of a steep rise and a more gradual decline. Similarly 

Lopes da Silva and colleagues used the neural mass formulation (described 

therein	   as	   a	   ‘lumped	  parameter	  model’)	   to	   explain	   the	   alpha	   rhythm	  of	   the	  

human EEG. More recently, in the 1990s, Jansen and Rit [138] introduced a 

neural mass model (NMM); the output of which they relate to visual evoked 

potentials recorded using EEG.  

NMMs are employed as a means of capturing the bulk properties of 

interacting populations of different types of neurons.  The response of each 

neural population is governed by a differential equation.  The equations are 

coupled together according to the schematic structure of the model and 

solved numerically using a program such as MatLab.  NMM have no spatial 

component, thus they must be conceptualised as representing a large number 

(O(104)-O(108)) of neurons but in an area of tissue small enough such that 

axonal transmission delays can be safely neglected.  This makes NMMs 

particularly well suited to the modelling of systems for which the output 

represents a scalp or intracranial EEG signal, as each electrode gathers the 

aggregated potential of neural activity from the small area of tissue under it.  

The reader is referred to [67], [139] for full analytical discussions of neural 

modelling, including spiking neuron models, NMMs and neural field models.  



50 
The dynamic evolution of focal onset epilepsy 

 
 

3.2.3: A generative neural mass model of hypomcampal 

cortical tissue 

A generative neural mass model was examined which has previously been 

shown to qualitatively replicate the EEG of human TLE sufferers.  The model 

was constructed as in studies by Wendling [72], [91].  The model output 

represents the mean field potential of a population of hypocampal pyramidal 

neurons.  The potential of this population is given by the aggregated 

contributions of the three feedback loops of interneurons connected to it; one 

excitatory population; and two inhibitory populations. One population is 

classed as slow inhibition, reflecting dendritic projecting GABAA 

interneurons; the other population is classed as fast inhibition, reflecting 

somatic projecting GABAA interneurons (See Figure 3.1).  
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Figure 3.1.  Schematic of hippocampal tissue model. 
Left: Schematic of neural mass model as defined by [75].  Main population of 
pyramidal cells interact in feedback loops with three populations of 
interneurons; one excitatory and two inhibitory interneuron populations with 
GABAA projections.  One inhibitory population synapses on the dendrites of the 
pyramidal cells, the other directly onto the soma.  This difference in morphology 
results in two distinct time-scales in the model. The slow inhibitory population 
also inhibits the fast acting inhibitory population as well as the pyramidal cells.  
Right: Block representation of the model showing relative locations functions.  
Sigmoids can be thought of as cell bodies, transforming the membrane potential 
of each population into an output firing rate.  Transfer functions represent 
synapses between populations with C parameters representing connection 
strengths between populations.  Model output is the aggregated activity of all 
three feedback loops. 

In vivo, the firing of action potentials in presynaptic cells gives rise to 

changes in the membrane potential of the postsynaptic neuron.  The model of 

Wendling et al [72], [91] captures this behaviour by allowing the dynamics of 

the membrane potential of each synapse to be governed by a second order 

ordinary differential equation (ODE).  Experimental studies have shown that 

presynaptic action potentials cause the dynamics of postsynaptic membrane 



52 
The dynamic evolution of focal onset epilepsy 

 
 

potentials to look similar to alpha functions (see Figure 3.2).  By assuming 

that the temporal width of action potentials is negligible, Wendling et al [72], 

[91] then model synaptic dynamics as a second order ODE whose solution 

when being driven by an impulse is given by an alpha function [33] of the 

form of Equation 3.1.  This function transforms the summed firing rate inputs 

of each synapse into an average post-synaptic potential (PSP).  The model 

also assumes PSPs are linearly summed. 

 

Figure 3.2.  Experimentally recorded excitatory postsynaptic potential. 
Figure reproduced from [140].  Dotted line: Spike triggered EPSP recorded from 
a neocortical pyramidal neuron.  Can be well approximated by an alpha function 
such as Equation 3.1.  Solid line: Postsynaptic response to injected current (not 
relevant in the current context).  
 

In order to accurately represent physiology, it is required that the post-

synaptic	  potential’s	  response	  to	  a	  pre-synaptic action potential, should have 

the form of an alpha function (see Figure 3.2).  Thus the mean post-synaptic 

membrane potential y of the nth synapse is given by 
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where hn is the synaptic gain of the nth synapse, which can take one of three 

values; either A, B or G. 

x A is the synaptic gain in the excitatory feedback loop. 

x B is the synaptic gain in the slow inhibitory feedback loop. 

x C is the synaptic gain in the fast inhibitory feedback loop. 

 τn is the time constant for each synapse and can take one of three values; a, b 

or g.  

x a is the time constant of excitatory synapses. 

x b is the time constant of slow inhibitory synapses. 

x c is the time constant of fast inhibitory synapses. 

The transfer function (Equation 3.1) is the solution to the second order 

homogeneous ODE,  
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in which, once again, yn is the potential of the postsynaptic membrane of the 

nth synapse.  Setting the right hand side equal to the input to the synapse 

yields  
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where x(t) is the firing rate of the postsynaptic neural population in spikes 

per	  second.	  	  The	  population’s	  firing	  rate,	  x, is related to its presynaptic inputs, 

v, by a sigmoid function, 
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Where 2e0 is the maximum firing rate, v0 is the firing threshold potential, and 

r is the slope of the sigmoid at v=v0.  v is the weighted summation of the 

potentials of the  presynaptic nuclei and is therefore given by 

 .mn m
m

v C y ¦      (3.5) 

Where ym is the potential of the mth presynaptic nucleus, and Cmn is the 

connection strength between the mth nucleus and the postsynaptic nucleus.  

Equation 3.4 is known as a potential to firing rate function, and transforms 

the membrane potential of the neuron (which is affected by the activity of the 

neuron’s	   synapses)	   into	   the	   firing	   rate	   of	   the	   neuron.	   	   Since neurons have 

physiological bounds to their firing rates both above and below, with 

smoothly gradated activity between these bounds, a sigmoid function is very 

often used to capture this transformation.  See [73] for a detailed discussion 

of potential to firing rate functions.    

Given that the dynamics of each synapse of the generative model is governed 

by Equations 3.3 – 3.5, the following set of ODEs describes the complete 

model. 
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The dependence of y on t is universal and has therefore been dropped from 

the notation.  y1-y5 are the output potentials in millivolts of the linear transfer 

functions.  Refer to the right hand panel of Figure 3.1 for a graphical 

representation of the meaning of y1-y5.  The potential to firing rate sigmoid 

function defined in equation 3.4 is showed as S. Inputs to this sigmoid 

function	  are	  given	  in	  {…}.  p represents the input to the system from areas of 

cortex outside the region described by the model, here modeled as a constant 

of 90 spikes per second (justification below). The average number of synaptic 

contacts between the main pyramidal cells and the populations of 

interneurons is parameterised by the dimensionless connectivity constants 

C1 to C7. See Figure 3.1 for a schematic illustration of the relationships 

between system variables and parameters and Table 3.1 for a list of 

parameter values.  Each of the above second order ODEs can be split into two 

first order ODEs, yielding a full system of 10 first order ODEs.  This set of 
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equations was solved numerically using the MatLab ODE solver, ode45, 

which uses a variable step Runge-Kutta method.   

Model output is given by,   y2 -y3 -y4 since this is the summed activity of all 

three feedback loops. 

Parameter Interpretation      Value 
 
A  Mean excitatory synaptic gain  (mV)    Varied 
B  Mean slow inhibitory synaptic gain (mV)    Varied 
G  Mean fast inhibitory synaptic gain (mV)    Varied 
a    Inverse average time constant - excitatory feedback loop  0.01 s 
b  Inverse average time constant - slow inhibitory feedback loop  0.02 s 
g  Inverse average time constant - fast inhibitory feedback loop 0.002 s 
Cl  Connectivity strength – pyramidal to excitatory     C 
C2   Connectivity strength – excitatory to pyramidal   0.8 C 
C3  Connectivity strength – pyramidal to slow inhibitory  0.25 C 
C4 Connectivity strength – slow inhibitory to pyramidal  0.25 C 
C5  Connectivity strength – pyramidal to fast inhibitory   0.3 C  
C6 Connectivity strength – slow inhibitory to fast inhibitory 0.1 C 
C7  Connectivity strength – fast inhibitory to pyramidal   0.8 C 
v0, Firing threshold potential       6 mV 
e0 Half of maximum firing rate of neural masses   2.5 s-1 
r  Slope of potential to rate sigmoid function at v=v0              0.56 mV-1 
 
Table 3.1.  Model parameter values and biophysical interpretations.   
Fixed parameter values were established in [138].  C = 135 

3.2.4: Bifurcation theory and numerical continuation 

Of particular interest is the understanding of the mechanisms that underlie 

the transition from one solution type to another within the generative model. 

Bifurcation theory, which is concerned with the study of changes in the 

structure of solutions of parameterised differential equations, provides a 

natural suite of tools for understanding such transitions. Essentially, 

bifurcation theory enables us to neatly divide regions of model parameter 
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space into different solution types that can in turn equate to the dynamic 

waveforms of activity recorded using iEEG. A substantial literature on 

bifurcation theory has built up in recent years and the reader is referred to 

[141] for a detailed discussion of the approaches that follow. 

A common type of bifurcation is the so-called Hopf bifurcation, which 

describes the transition from steady-state dynamics to oscillatory behaviour. 

Such a transition is frequently observed in seizure recordings, where inter-

ictal activity resembles a noisy steady state, with the commencement of 

seizure activity heralded by a transition to oscillations whose amplitude is 

much larger than the amplitude of the noise driven fluctuations of the inter-

ictal state.  These oscillations typically have a lower frequency than the 

preceding inter-ictal activity. 

There is another type of transition that commonly occurs in systems with 

multiple time-scales of activity. This is where the geometry of the vector field 

itself changes upon smooth variation of a model parameter(s). This 

corresponds to the appearance of an inflection point in the time-profile of the 

solution and consequently an extra maxima and minima of the wave profile 

as variation of the system parameter continues. This type of transition is in 

contrast to a bifurcation, where the change in behaviour occurs abruptly, 

resulting in a change of structural stability. However, the transition can 

appear abrupt if one considers a projection of the system into a lower-

dimensional	   space,	   hence	   the	   term	   ‘false’	   bifurcation,	  which	  was	   coined	   by	  

[142] who studied a related phenomenon in fast-slow systems. Within the 
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context of epilepsy, this type of solution has been used to describe the onset 

of spikes in a variety of neural models (e.g. [69], [71], [118],[143].  See Figure 

3.3). 

 

Figure 3.3.  Example of a false bifurcation from [143]. 
[143] describes a model of the corticothalamic loop for the study of absence 
epilepsy.  The spikes that are ubiquitous in the waveforms of the EEG recorded 
from absence epilepsy sufferers arise in the model via a false bifurcation; an 
inflection in the vector field giving rise to what appears to be an abrupt change 
in system behaviour when viewed in a particular projection.  The bifurcation 
parameter in this case is the cortex-thalamus coupling strength.   

To map out curves in parameter space corresponding to these bifurcations, a 

technique was used called numerical continuation. Described in detail in the 
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book of [144], continuation techniques are a method for mapping out 

bifurcation curves in multi-dimensional parameter spaces by essentially 

formulating the bifurcation in terms of a linear algebra problem, finding an 

initial solution and then continuing the branch of solutions as parameter(s) 

are varied. For example, the condition for the presence of a Hopf bifurcation 

is that the eigenvalues of the Jacobian matrix of the system are a complex 

conjugate pair with zero real part.  Continuation software such as XPPAut 

[145] or DDE-biftool [146] can vary parameter(s) such that the condition is 

always satisfied.  In this way the continuation software can map out the 

manifold of the Hopf bifurcation in parameter space.  Other bifurcations have 

their own linear algebraic conditions which may also be continued.  In a 

similar fashion one may also continue branches of false bifurcations by 

continuing the branch of solutions in parameter space corresponding to a 

zero first and second derivative (those required for an inflection point) [81].   

This paper is related, in part, to the work of [103], who conducted a one-

parameter bifurcation analysis of a similar model [138].  Model behaviour 

was examined as a function of the extrinsic input parameter (p), with all 

other parameters fixed.  It was found that the transition to epilepsy-type 

oscillations occurred as a result of a Hopf bifurcation at an input value of 

approximately 90Hz.  This work was extended by [104] who systematically 

studied the effects of changing five parameters (the denritic time constants of 

the inhibitory and excitatory interneurons and the levels of extrinsic inputs 

onto all three neural populations) in a modified Jansen & Rit model.  This 
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work is related to earlier studies of variation in extrinsic inputs by [78], 

[105]. 

In the present study it is assumed that the average level of input to the area 

of cortex represented by the model can be regarded as a constant.  Inputs to 

the neural mass model from other areas of cortex (p) have previously been 

modelled as a constant with the addition of Gaussian white noise. This is 

primarily to account for other neural activity not explicitly incorporated 

within the model. However, the current analysis is concerned with the 

contribution of deterministic mechanisms to the dynamic waveform. Hence, 

in the interests of capturing the richest variety of dynamics that can be 

supported by the model, the level of input (p) is instead set constant close to 

the location of the Hopf bifurcation identified by [147] at 90Hz. 

There has been some success using bifurcation and continuation techniques 

for the study of generalized epilepsy.  Marten [71], [118] was able to map 

solution-types of a neural mass model of the thalamocortical loop (in which 

typical absence seizure arise) on a two dimensional parameter subspace.  

Numerical continuation was used to find regions of parameter space 

separated by lines of Hopf bifurcations and false bifurcations.  A similar 

analysis on the model defined above was conducted.  A combination of DDE-

Biftool and XPPAut was used to perform numerical continuation. 
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3.2.5: Relating model solutions to clinical data 

Recent work on the modelling of absence epilepsy data has demonstrated 

that changing features of the EEG could be due to smooth changes in a 

relatively small number of the underlying system parameters [109]. The 

characteristic spike and wave discharges (SWD) that are a hallmark of 

absence seizures, have a frequency of 2-4Hz and are highly synchronous 

across the entire cortex. In this study, segments of ictal EEG were split into 

individual spike-wave cycles and model parameters were fitted to each cycle.  

Features of each cycle (the number of spikes, their ordering and position in 

phase) were used to determine model parameters, by minimising the 

distance between the features of the model output and the equivalent 

features obtained from each spike-wave cycle of the clinical data. The 

variation of these parameters from cycle to cycle of the overall SWD gives 

rise to the path through parameter space. SWD are naturally suited to this 

type of analysis, given the uniformity of EEG and the high signal to noise 

ratio. In TLE however, there is no such uniformity.  The neural activity in TLE 

originates from a localised area of cortex before spreading to neighbouring 

regions.  Onset can often appear gradual with no clear moment of genesis, 

and waveforms are not nearly as uniform or synchronous as they are in 

absence seizures.  Thus clearly identifying individual cycles from iEEG data of 

a TLE seizure is impossible.  Consequently, if the hypothesis that the 

temporal dynamics of TLE are due to smooth changes in system parameters 

is to be explored, a principled way to segment the data must first be found.    
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To consider this problem a selection algorithm was created, the aim of which 

is to identify epochs of data across which the parameters of the model are 

changing minimally.  The underlying assumption being that within an epoch 

parameters are approximately constant, whilst across epochs there may exist 

gradual variations in parameters and that there is some consistency in this 

parameter evolution across different seizures from the same patient. This 

would present evidence for a gradual variation in neural mechanisms that 

underpins the transition from inter-ictal to ictal dynamics.   

It is required that epochs of the iEEG data be identified that are sufficiently 

small that the model parameters can be regarded as constant over the 

duration of the epoch, but sufficiently large that a few cycles of any 

oscillations which may be present can be seen.  For instance, if a powerful 

oscillation exists at 2Hz, and 4 cycles per epoch are required, then it is 

necessary to select an epoch with a width of about 2 seconds duration. 

First the noisy iEEG signal is de-noised by a simple Butterworth low pass 

filter set at 30Hz to eliminate high frequency noise.  MatLab’s continuous 

wavelet transform function (using Mortlet-wavelet cgau4, and a logarithmic 

frequency scale from 0.1-30Hz) is then used to calculate the relative power of 

each frequency at every time step.  The matrix of power values is then 

normalised at each time step to yield the power of each frequency relative to 

the total power at each time step.  It is assumed that the most salient 

frequency at each instant of the time series is that for which the relative 

power is maximal.  However, the power spectrum at each instant is not 
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necessarily simple: It may have multiple peaks at different frequencies, or 

show low-frequency artefacts.  For this reason one cannot simply use the 

frequency for which the power is at a maximum: rather a “centroid	  

frequency” is defined.  The centroid frequency of the power spectrum at each 

instant is calculated by a simple scalar product of the vector of discretised 

frequencies with the power at each frequency, divided by the total power at 

that time step.  This yields an average frequency which is weighted by the 

relative power at each frequency.  This centroid frequency can be used as a 

guide for determining the minimum size of the time window that is required 

to include full cycles of the oscillations with the most power.  The reciprocal 

of the centroid-frequency is approximately the time taken for a single cycle of 

the most powerful oscillations at that instant in time.   This value is 

multiplied by the number of cycles that are required to be seen in each 

window to yield the size of the time window needed at each time step.  Each 

and every time step therefore constitutes the centre of an epoch of data, 

whose temporal breadth is given by the above process.   

Since the task is to find the epochs within which the data is at its most 

stationary, the variance of the spectral properties within all the epochs are 

then calculated.  The variance of the centroid-frequency within each window 

is calculated and recorded for each time step, as is the variance of the 

maximum of the power.  This yields two vectors whose length is the same as 

the number of data points in the iEEG.  Each element of the first vector is the 

variance of the centroid-frequency within the epoch of data which is centred 
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on that time point.  Each element of the second vector is the variance of the 

maximum power within the epoch of data which is centred on that time 

point.  The log of both these vectors is taken.  Both vectors are then 

normalised to unity by dividing each element by the maximum variance in 

each vector.  This gives two vectors of dimensionless measures of variance of 

frequency and power at each sampling point in the data.  These are then 

added together to yield a total variance function.  The minimas of this 

function are the time steps which are the centres of the epochs in which both 

the frequency and amplitude show minimum variation.  It should be noted 

that, due to the way the total variance function is calculated it is non-smooth, 

local minima are plentiful.  Applying a one second moving-average smoothing 

procedure to the vector removes local minima.  It is also necessary to include 

a threshold level of the dimensionless variance since local minima still exist 

for high levels of total variance.  The threshold is set at a level which selects 

only epochs whose total variance is relatively small, in this case 4% of the 

maximum of the normalised variance (which is two by definition since it is 

the sum of two quantities which have been normalised to one). In cases 

where two time windows overlap the window with the lower value of total 

variance is preserved and the other window is deselected.  

This method of time series segmentation is a solution to the problem of how 

to divide the data into near stationary epochs to which model output can be 

compared. In this study the evidence for the dynamic evolution of TLE is 

explored by categorising the profile of waveforms within each epoch of iEEG 
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using features in the time domain which can be mapped to an equivalent 

region of parameter space obtained from our bifurcation analysis where the 

model output has equivalent features. Numbering each epoch according to its 

dynamic behaviour (see Figure 3.10, right), gives rise to a sequence of length 

n (being the total number of epochs) from which the consistency of seizure 

evolution is explored,	  by	  studying	  the	  consistency	  of	  this	  “seizure	  sequence”	  

for different seizures.  
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Table 3.2.  Summary of segmentation algorithm  
 

Step 
Aim Proceedure 

1 Denoise data Apply 30Hz Butterworth low pass filter to the 
data, D(t). 
 

2 Calculate the relative power, P(f,t) of 
each frequency, f, as a function of time, 
t.  * 
i.e. Calculate the scalogram of D(t). 

Apply	   MatLab’s	   continuous	   wavelet	   transform	  
function to D(t), with Mortlet-wavelet cgau4, and 
a logarithmic frequency scale from 0.1-30Hz, f. 

3 Calculate normalised power values, 
Q(f,t). 
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4 Calculate centroid frequency, F(t).   
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5 Calculate width of time window, S(t), 
required to see m cycles of oscillations 
of frequency F(t) 
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6 Calculate variance of power, VP(t), in 
each time window, S(t). 
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7 Calculate variance of centroid 
frequency, VF(t), in each time window, 
S(t). 
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8 Create a metric of the total variability 
of the signal, V(t), at each time point. 
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9 Smooth V(t) to remove local minima. 0 .5
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10 Apply threshold to remove high 
minima 
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11 Find minima Find minima of Vsmooth(t) 
12 Define segments, K. ( ) 2
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Where n takes all the values in N.  Where N is the 
set of all times at which Vsmooth is a minimum. 

* Where t takes all values in T, where T is the set of all sampling times in seconds. 
 

Ultimately, it may be illuminating to precisely fit model parameters to TLE 

data (rather than based on bifurcation regions) using a tool based on 

temporal feature detection such as that used by [109] for absence seizures.  

One of the challenges with pursuing such an approach is the heterogeneity of 
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waveforms in TLE in contrast to the relatively consistent patterns observed 

in SWD.  There have been some attempts to fit parameters of a neural mass 

model from clinical recordings in TLE [76].  However, the authors primarily 

used coarsely discretised spectral properties of temporally broad segments 

of the iEEG as input to their parameter fitting algorithm.  This method is less 

suited to studying dynamic evolution as theoretical results from nonlinear 

dynamics have shown that temporal information cannot be recovered from 

spectral information alone [108], [148], [149].   

3.3: Results and Statistical Analyses 

Results are presented in three parts. In the first part bifurcation theory and 

numerical continuation is used to understand transitions in the dynamic 

behaviour of the model within regions of parameter space considered in 

earlier studies of the same model [91]. In the second part, the boundaries of 

the considered parameter space are expanded and bifurcations to more 

complex wave morphologies containing poly-spike solutions are described, 

that are strongly reminiscent of the transitions observed in other neural-

mass models [119], [150]. These poly-spike complexes are frequently 

observed in clinical data during focal seizures (this study), as well as in 

generalized epilepsies [71], [118]. In the third part, changes in data features 

from clinical recordings to variations in the waveform profiles of the 

solutions of the model determined from the bifurcation structure are 

mapped. In this part multiple recordings from a number of patients are 
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considered to evaluate the consistency of seizure evolution both within and 

between patients.   

3.3.1: Bifurcation analysis: Part I 

Initially, the bifurcation analysis of the model will draw direct comparisons 

with the qualitative analysis of the noise-driven model in [91]. Consequently, 

the ranges of the free parameters (A, B, G) are restricted to those used in that 

study ([3mV,7mV], [0mV,50mV], [0mV,30mV]) respectively.  These 

parameters correspond to the connectivity strengths of the excitatory 

interneurons (A), and the slow and fast inhibitory interneurons (B, G) on the 

pyramidal cell population respectively. In their work Wendling and 

colleagues presented a number of numerically generated activity maps 

within which they identified six primary behaviour types and explored the 

regions of A, B and G for which these behaviour types occurred.  The purpose 

of the next part is to explain these behaviour types in terms of underlying 

changes in system dynamics. 

Simulation of the model for mid-range values of A (A=5mV) and G (G=20mV) 

show that an equilibrium solution gives way to an oscillatory solution as the 

value of parameter B is increased (Figure 3.4).  Parameter B represents the 

mean synaptic gain of the slow dendritic GABAA inhibitory population on the 

pyramidal cell population.  Oscillations begin with arbitrarily small 

amplitudes and a fixed period.  Transition to oscillatory behaviour occurs as a 

result of a supercritical Hopf bifurcation at a B value of approximately 12mV.  
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An analysis of the eigenvalues in this region shows a pair of complex 

conjugate eigenvalues crossing the imaginary axis, confirming the existence 

of the Hopf bifurcation.   

Further increasing B leads to another sudden change in the type of solution.  

At higher B values (B = 20mV in the case illustrated in Figure 2) a spike 

appears in the time series of the simulated EEG, accompanied by a change in 

the profile of the waveform.  This change cannot be considered a true 

bifurcation, however, since the discontinuity exists only in the particular 

state-space projection with which represents the EEG signal.  Consequently, 

this behaviour has been termed a false bifurcation [142] (see [81] for a 

description of continuation method).   The location of the false bifurcation 

coincides with that given in [91] for	  the	  emergence	  of	  “sustained	  discharge	  of	  

spikes”	  class	  of	  model behaviour. 

 At high values of B (B>38mV in the case illustrated in Figure 3.4) the system 

returns to an equilibrium solution.  The transition from spike and wave 

behaviour to this new equilibrium solution has different properties to the 

Hopf bifurcation that was seen at the low B value.  Close to the transition the 

amplitude of the oscillation is large, and the period becomes arbitrarily high.  

The waveform becomes increasingly deformed such that the time series 

begins to resemble a series of intermittent spikes rather than a smooth 

oscillation.  A one-parameter bifurcation analysis in B (see Figure 2) shows 

that this behaviour is due to the stable limit cycle meeting the limit point of 

the high stable equilibrium.  This transition is known as a saddle-node on 
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invariant circle (SNIC) bifurcation.  SNIC bifurcations result in a deformation 

of the vector field in such a way as to permit high amplitude and infinitely 

long periodic orbits, exactly as is seen in the solutions of the model in this 

region	   of	   parameter	   space.	   	   This	   behaviour	   type	   corresponds	   to	   “sporadic	  

spikes”	  using	  the	  terminology	  of	  Wendling [91] and colleagues.  The sporadic 

spiking is explained by the decrease in frequency as the SNIC bifurcation is 

approached. 
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Figure 3.4.  A co-dimension 1 bifurcation diagram in parameter B.   
Thick black lines show maximum and minimum of the simulated EEG potential 
of each limit cycle.  Additional maximum and minimum (where they exist) for 
each limit cycle is shown in grey.  Stable steady state undergoes a supercritical 
Hopf	  bifurcation	  at	  approximately	  B=11mV,	  after	  which	  simple	  “pseudo-
sinusoidal”	  oscillations	  appear	  with	  a	  single	  maxima	  per	  oscillation.	  	  Further	  
increasing parameter B increases the amplitude of oscillations.  At 
approximately B=20mV, the system undergoes a false bifurcation, adding an 
extra maxima and minima per cycle (shown in grey).  At B=38mV the limit cycle 
meets the saddle node which is the limit point of the fold.  This is a SNIC 
bifurcation and results in a deformation of the vector field such that, before the 
bifurcation, high amplitude oscillations exist with an arbitrarily long period.  
System solutions for values of B above the SNIC are steady states. 

The presence of Hopf, false and SNIC bifurcations in the A-B parameter 

subspace explains many of the qualitative features of the oscillatory 

solutions.  The equilibrium states of this model are now considered. For 

regions of parameter space, within which the dynamics are at equilibrium, 

different transient behaviours can be observed when the system is perturbed 

from this state.  These transient behaviours are important since noise 

continuously disturbs a system from equilibrium. The leading pair of 

Stable equilibrium 
Unstable equilibrium 
Stable periodic 
Spike range 
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eigenvalues (the pair with largest real part) of the dynamical system governs 

the path by which the system returns to its steady state and a transition in 

this eigenstructure can explain the boundary between the two regions 

identified in [91],	  as	  “low-voltage	  rapid”	  and	  “slow	  rhythmic”	  activities (See 

Figure 3.7 reproduced from [91], for example time series of these behaviours.  

See Figure 3.8 reproduced from [91] to see the transition between behaviour 

types in the noise driven model). Low-voltage rapid activity is displayed by 

the model in regions of parameter space for which the leading eigenvalues 

are real and negative, whilst slow rhythmic activity is characterised by the 

leading eigenvalues being a complex conjugate pair with negative real part.  

The system, when perturbed away from its equilibrium in this region of 

parameter space will return to steady state via a damped oscillation.  When 

this oscillation is superimposed on the noise (which is the perturbing force) 

the behaviour seen is that which Wendling [91] describes as	  “slow	  rhythmic”.	  	  

The boundary between these two types of equillibria is defined by the birth 

or annihilation of a complex conjugate pair of eigenvalues.   

Figure 3.5(a) shows the output of numerical continuation software for which 

all of these transitions in structure for regions of B and G [0mV,50mV] and 

[0mV,30mV] respectively have been continued.  In a recent study, [106] 

conducted a bifurcation analysis on a dimensionally reduced version of the 

Wendling model [91] (with similar bifurcation parameters) and identified 

regions of normal activity and rhythmic spikes which are in agreement with 

the results presented in Figure 3.5.    
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It is important to note that the hard transition lines corresponding to 

bifurcations and eigenstructure transitions become blurred when 

considering the noise-driven solutions of the generative model. This makes 

detecting the actual location of deterministic oscillation-onset (as opposed to 

noise driven oscillations) impossible when simulating the model. For 

example, the Hopf bifurcation is supercritical and the stable equilibrium 

preceding the Hopf is a stable focus-node. A supercritical Hopf bifurcation 

has the property that oscillations have arbitrarily small amplitudes at the 

bifurcation point.  Crossing a supercritical-Hopf by varying the bifurcation 

parameter results in oscillations that gradually increase in amplitude from 

zero. In contrast, when a subcritical-Hopf is crossed, oscillations of a finite 

amplitude appear suddenly.  The stable focus-node means that, although the 

equilibrium state is stable, when perturbed from equilibrium the system 

takes a spiral path through phase space on its return this equilibrium.  This is 

transient oscillatory behaviour.  This means that when the system is 

constantly buffeted by noise a succession of oscillatory transients is seen.  

Ultimately this results in a subjective decision regarding the location of 

transition points when numerically simulating the noise-driven model (see 

eg. Figure 3.8, A=5mV (original location: [91] figure 4, A=5mV)). Figure 3.5(b) 

shows a two-parameter continuation in the B-A plane which captures the 

transitions represented in the other panels of, Figure 3.8 (original location: 

figure 4, [91]). 
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Figure 3.5.  Two-parameter numerical continuation diagrams. 
Presenting two-parameter numerical continuation plots of the model for the 
parameter range considered in the studies of Wendling et al. [91].  Compare 
this figure with Figure 3.8 taken from [91].  Region 1: Steady state with 
leading eigenvalue real and negative (node).  Region 2: Steady state with 
complex conjugate eigenvalues with negative real part (focus-node).  Region 
3:	  Steady	  state.	  	  Region	  4:	  Simple	  “pseudo-sinusoidal”	  solution-type with a 
single maxima per cycle.  Region 5: Spike and wave solution with two maxima 
per cycle.  Region 6: Characteristic waveform but without the spike.  Region 
7: Steady state.  Left: Parameter subspace B-G with A=5.  Figure can be 
compared directly with Wendling et al. [91] figure 4, middle panel, in which 
the	  red	  region	  labelled	  “low	  voltage	  rapid	  activity”	  corresponds	  with	  region	  1	  
in this figure.  Region 5 is virtually identical to the green region in the 
Wendling study [91],	  in	  which	  it	  was	  called	  “sustained	  discharge	  of	  spikes”.	  	  A	  
discrepancy	  exists	  between	  region	  4	  and	  the	  comparable	  “pseudo-sinusoidal”	  
white area identified by Wendling et al. [91]  See text for an explanation.  
System solutions close to the SNIC bifurcation are consistent with the 
behaviour identified by Wendling et al [91] as	  “sporadic	  spiking”.	  	  Right:  
Parameter subspace A-B plane with G=20.  Exploring the effect of varying 
parameter A on overall system dynamics.  For high A the oscillatory region in 
B expands, eventually leading to the appearance of a waveform (region 6) 
that lacks the additional maxima of region 5.  Note that region 1 (the so-called 
“low	  voltage	  rapid	  activity”	  in	  Wendling	  [91]) extends to high A, with a new 
region 2 appearing above A=5mV.  See Figure 3.6 for examples of waveform 
profiles from each of these regions  
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Figure 3.6.  Examples of waveforms from regions numbered in Figure 3.5. 
Regions 1, 2, 3 and 7 are all steady states and are therefore not shown.  
Region 4: A=5, B=15, G=10.  Shown as white in Figure 3.7 and Figure 3.8 [91].  
Region 5: A=5, B=25, G=10.  Shown as green in Figure 3.7 and Figure 3.8 [91].  
Region 6: A=7, B=50, G=20. Likely indistinguishable to Region 5 in the noise 
driven model, and is therefore shown as green in Figure 3.8 [91]. 
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Figure 3.7.  Hypocampal EEG behaviour-types in noise driven model and data.  
Figure reproduced from [91].  Classifications of waveforms seen in the EEG of 
human TLE sufferers.  Left: Wendling model outputs.  Right: Data recorded 
from human EEGs. Type 6 behaviour is reproduced in the current work in 
region 4 of Figure 3.5.  Type 3 behaviour is reproduced in the current work in 
region 5 of Figure 3.5.  The dynamics of the remaining behaviour-types are a 
consequence of the noise driven model of [91] being perturbed away from its 
equilibria. See text for a full discussion. 
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Figure 3.8.  Solution-types as a function of synaptic gain parameters (A, B & G) 
in noise driven model [91]. 
Figure reproduced directly from [91].	  	  Wendling’s	  noise	  driven	  model	  was	  
simulated at each of the pixels in the above plots.  Behaviour-type was classified 
by hand.  This figure is included for direct comparison to Figure 3.5.  The 
current work demonstrates that the solution-types identified in [91] as types 1-
6 are explainable in terms of the bifurcation structure and eigenstructure of the 
system. 

3.3.2: Bifurcation analysis: Part II 

We now proceed to explore the behaviour of the model upon larger variation 

of model parameters (B and G) corresponding to the different timescales of 

inhibitory action of GABAA projections. This part of the study is motivated in 



78 
The dynamic evolution of focal onset epilepsy 

 
 

part by the works of [117], [151], [152] who all explored experimentally how 

the levels of tonic GABAA inhibition governed the onset of epileptiform 

activity in different animal models of epilepsy. Extending the B-G parameter 

subspace (B[0mV,70mV] and G[0mV,260mV]) it was found that the model 

supports spike and wave, polyspike complexes, period doubling cascades, 

and further complex solutions that qualitatively replicate many of the 

waveforms commonly observed in the EEG of TLE sufferers (see Figure 3.9).  
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Figure 3.9.  Comparison of model with clinical data. 
Comparisons of waveform profiles of model output and stationary segments 
(see results section) of real clinical iEEG recordings of TLE.  Examples of 
waveforms with 1-4 maxima per cycle are shown along with an example of 
complex chaos-like behaviour (last row).  Y axis labels correspond to regions 
defined subsequently in Figure 3.10.  Model outputs are computed using the 
following [B, G] parameters. 1:[19,60], 1a:[62,40], 2:[23,16], 
3:[22,49],4:[24,149], 5:[24,225].    

When the synaptic gain of the fast inhibitory feedback loop (parameter G) is 

allowed to increase it can be seen that the SNIC bifurcation, which bounds the 

periodic behaviour, occurs at lower and lower values of the parameter B 

(synaptic gain of the slow inhibitory feedback loop).  The SNIC eventually 

crosses the Hopf bifurcation creating a bounded region of oscillatory activity 

(see Figure 3.10).  The SNIC-Hopf crossing point occurs at larger values of G 

as the synaptic gain of the excitatory feedback loop (parameter A) increases.  
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Hereafter the analysis is restricted to the region of the B-G plane which is 

bounded by the SNIC curve at A = 7mV.  

 
Figure 3.10.  Two parameter continuation plot of B and G with associated 
waveforms. 
Main plot shows a two-parameter continuation plot in parameters B (slow 
GABAA inhibitory dendritic projection strength) and G (fast GABAA inhibitory 
soma projection strength).  Only parameter sets bounded by the SNIC 
bifurcation are considered.  Regions are numbered according to the number of 
maxima per cycle, except region 5, in which more complex chaos-like solutions 
exist.  Panels show exemplars of the expected waveform within each region.   

In the present study, solution types are characterised by the number of 

maxima per oscillation.  There are two ways that the number of maxima per 

oscillation can increase; either through an inflection point in the vector field 

(the so-called false bifurcation described in the previous subsection) or 

through a period doubling bifurcation.  The Hopf bifurcation occurs at 

roughly the same value of B for any combination of A and G.  Further, the 

pseudo-sinusoidal solution-type persists alongside it with the first false 

bifurcation occurring at a roughly constant value of B for all A and G values.  

Regions of extremely complex behaviour are seen at the boundary between 

simple pseudo-sinusoidal solutions and solutions with relatively high 
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numbers of maxima in each period.  Approaching these complex regions (by 

increasing the gain in the slow inhibitory loop, parameter B) the solution 

undergoes virtually simultaneous false bifurcations and period doublings 

(see Figure 3.11).   
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Figure 3.11. Illustrating the deformation of waveform upon increasing 
parameter B.   
Both plots show the same slice through BG plane of A=7mV at G=226mV.  Top: 
Maximas (minimas) for each orbit of the limit cycle are plotted in black (grey) 
for varying values of parameter B.  Steady states are observed, as expected 
before the Hopf (at B=14mV) and after the SNIC (at B=46mV).  Pseudo-
sinusoidal solution emerges at the Hopf and persists until a virtually 
simultaneous period doubling (PD) and false bifurcations (at B=22mV).  Further 
PDs quickly give way to extremely complex behaviour.  A 4-maxima solution 
exists up to B=34mV, when a false bifurcation annihilates a maxima and minima.  
A 3-maxima solution then dominates up to the SNIC.  Bottom:  DDE-BifTool was 
used to continue a branch of periodic orbits in parameter B.  At around B=24mV 
the PD can be seen.  This region (region 5 in Figure 3.10) is of particular interest 
since it demonstrates how a high diversity of solutions can exist in a very small 
region of parameter space.  The period tends to infinity as parameter B 
approaches the SNIC.  Each inset shows three periods of the waveform at each of 
the marked locations on the branch.  
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When parameters B and G are close to region 5 (the narrow band of 

apparently chaotic solutions), many different stable solution-types exist in 

close proximity to each other.  This is of particular relevance when studying 

clinical EEGs as small variations in the connectivity strength of slow GABAA 

dendritic projections to pyramidal cells can give rise to sudden and dramatic 

changes in the shape and period of the waveforms.  The solution time series 

in region 5 of Figure 3.10 appears chaotic, which would be consistent with 

the period doubling cascade observed numerically. 

For values of B above this region of complex behaviour, solutions exist with 

varying numbers of maxima per period.  Transitions between these regions 

are due solely to false bifurcations, evidenced by the fact that the number of 

maxima per oscillation changes but no discontinuity exists in the period as 

one of these boundaries is crossed (see Figure 3.11, B = 34mV).  

3.3.3: Consistency of seizure evolution in clinical recordings 

The results contained within this section were obtained from intracranial 

EEG data from three patients, containing thirteen seizures (four from two 

patients and five from one) in total. For each seizure the channel of the iEEG 

spatially closest to the clinically determined seizure focus was chosen for 

analysis.  Essentially, this was the channel with the highest amplitude ictal 

oscillations and the earliest moment of seizure onset.  Seizures from each 

patient are assigned a lower case letter and are referred to as such hereafter.   
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The presented bifurcation analysis explored regions of parameter space for 

which the dynamic transitions between solution types of the model were 

characterised. From initial visual observations of the seizure recordings it 

can seen that some seizure evolutions appear qualitatively consistent with 

parameter variation of the generative model. In patient 3 for example, low 

amplitude, sinusoidal waveforms can be seen at seizure onset, consistent 

with crossing a supercritical Hopf bifurcation.  Likewise, iEEG at the point of 

seizure termination in patient 3 displays lower frequency, high amplitude 

oscillations consistent with approaching and passing through a SNIC 

bifurcation.  The iEEG of all three patients show that early-ictal oscillations 

have relatively simple waveforms, with extra maxima being added as the 

seizures evolve.  They also show regions which resemble chaotic behaviour 

at periods during each seizure. 

To explore this relationship more quantitatively each seizure recording is 

subdivided into epochs of data for which the time-series is approximately 

stationary using the algorithm described in the methods. An example of the 

output of this algorithm is presented in Figure 3.12.  Observable features of 

dominant waveform within each epoch are identified and these are mapped 

into the BG parameter plane, labelling them 0-5 according to their dynamic 

form as presented within Figure 3.10, noting that a five is assigned to 

segments displaying chaotic-like behaviour.  It should be noted that, due to 

the noise nature of iEEG data it can be difficult to distinguish noisy high-

period solutions from chaos. 
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Figure 3.12. Output of stationarity algorithm. 
Illustrating the output of the stationarity algorithm used to epoch the clinical 
data.  Top: Time series of a discharge, in arbitrary units, shown in grey.  
Segments selected by the algorithm shown in black and numbered below.   
Bottom:  Detailed view of each of the selected stationary segments.  In order to 
classify waveform-types or to fit model parameters to the data sections of the 
data are found for which the underlying system is approximately stationary. 

Each ictal epoch is classified in this way and a vector is created 

corresponding to all epochs for each seizure.  The similarity between these 

evolutions is then compared by interpolating each vector to a length of 100 

corresponding to the time period of the ictal discharge (as the number of 

epochs identified for each seizure by the segmentation algorithm varies 

according to how stationary epochs appear). These trend lines are shown in 



86 
The dynamic evolution of focal onset epilepsy 

 
 

Figure 3.13. Cross-correlation is used to determine the lag time to maximum 

correlation of each pair of vectors.  This lag time is used to align the vectors 

so a common point from which ictal evolution is considered. The evolution of 

each seizure is then truncated to the length of the shortest seizure (to enable 

the consistency of evolution across seizures to be evaluated). From here, we 

used two separate measures to quantify the similarity between pairs of 

seizures; correlation and the Euclidean distance between paths.  Euclidean 

distance, in this context, means the sum of the magnitudes of the element-

wise differences between the two vectors.   
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Figure 3.13.  Temporal evolution of multiple seizures from three TLE patients.    
Selected	  ‘stationary’	  epochs	  are	  classified by the number of maxima per cycle, 
with apparently chaotic segments assigned a five (y-axes on above plots).  
Segments are re-normalised in time and aligned with each other according to 
the approximate start of the discharge seizure. Vectors are then interpolated 
and then truncated to the time window of the shortest seizure.  For each patient 
the same channel was used for analysis each time, with the exception of one 
seizure from patient 1, where a discharge (seizure d) occurred in the opposite 
hemisphere relative to all others and is therefore omitted from the plot.  

To test whether pairs of seizures are statistically similar, correlations and 

Euclidean distances were compared to the Euclidean distances and 

correlations between randomly generated vectors.  Vectors of the same 

length as those given by the number of ictal segments were filled with digits 

0-5, with equal probability.  As with the real data, each vector was 
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interpolated to 100, aligned with each other by maximum correlation, 

truncated and re-interpolated to 100.  Correlations and Euclidean distances 

between pairs of vectors were calculated and used to generate two 

distributions (see Figure 3.14). Statistical significance was assessed by 

evaluating the 5% and 1% values of these distributions of random trends. 

 
Figure 3.14. Distributions of random vectors for statistical tests.  
10,000 random vectors, with entries 0-5, of varying lengths corresponding to 
those of the original seizure recordings were calculated. Random pairs of 
vectors were then compared.  As with the real data the two vectors were aligned 
by maximum cross-correlation  and the longer vector cropped to the length of 
the shorter (in the same manner used to compare the seizure evolutions). The 
distributions of these random trends for either the correlation (Left panel) or 
Euclidean distance (Right panel) was then calculated. 5% confidence level are 
shown by the dotted lines (0.536 correlation, 106.4 Euclidean distance).  1% 
confidence level given by the solid grey lines (0.725 correlation, 86.0 Euclidean 
distance).   

Using either measure, the calculated evolutions were found to be strongly 

statistically significant across many of the considered pairs for all three 

patients (see  

However, given the nature of EEG recordings and the different length of 

seizures	  (for	  example	  discharge	  ‘b’	  and	  ‘c’	  in	  patient	  2	  were	  of	  short	  duration 

compared to the other discharges), not all pairs display significance and this 
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should not be considered surprising. Further, it should be noted that the 

seizure	  focus	  for	  discharge	  ‘d’	  of	  patient	  1	  was	  clinically	  determined	  to	  occur	  

in the opposite hemisphere to all other recorded discharges for this patient. 

Again, it should not expected that significant correlations would be observed 

between this discharge and others from the same patient. 

Patient 1 Patient 2 Patient 3 
Pair Corrltn. Euc. Dist Pair Corrltn. Euc. Dist Pair Corrltn. Euc. Dist 
a,b** 0.8574 

(0.0018) 
53.3 
(0.0003) 

a,b 0.1894 
(0.4724) 

159.4 
(0.7691) 

a,b 0.7416 
(0.0080) 

62.0 
(0.0007) 

a,c** 0.8051 
(0.0036) 

124.0 
(0.1833) 

a,c** 0.7299 
(0.0095) 

56.6 
(0.0004) 

a,c 0.4489 
(0.0965) 

96.8 
(0.0230) 

a,d -0.3990 
(0.9950) 

194.9 
(0.9778) 

a,d 0.0580 
(0.7276) 

138.1 
(0.4059) 

a,d 0.6239 
(0.0251) 

98.0 
(0.0256) 

b,c 0.7102 
(0.0117) 

126.7 
(0.2184) 

b,c -0.2602 
(0.9814) 

189.3 
(0.9677) 

a,e -0.2789 
(0.9843) 

139.9 
(0.4405) 

b,d -0.0151 
(0.8357) 

192.3 
(0.9736) 

b,d 0.5097 
(0.0614) 

138.2 
(0.4077) 

b,c 0.7452 
(0.0077) 

53.4 
(0.0003) 

c,d -0.3927 
(0.9946) 

181.6 
(0.9443) 

c,d 0.1757 
(0.5001) 

129.5 
(0.2601) 

b,d 0.3890 
(0.1493) 

70.6 
(0.0020) 

 c,d 0.3867 
(0.1520) 

58.5 
(0.0005) 

c,e* 0.6080 
(0.0283) 

69.6 
(0.0018) 

d,e 0.3979 
(0.1410) 

81.3 
(0.0066) 

Table 3.3.  Correlations between seizures for each patient.   
Seizures are labelled a-d for each patient (a-e for patient 3).  Stationary 
segments from each seizure were classified according to solution-type (See 
Figure 3.10).  Correlations and Euclidean distances between different seizures 
from each patient were calculated and compared against a distribution 
constructed from a similar pairwise comparison between 10,000 randomly 
generated vectors.  P-values shown in brackets below each result.  All seizures 
are recorded from the same channel for each patient with the exception of 
seizure	  “d”	  from	  patient 1, which was recorded from a seizure whose focus was 
in the opposite hemisphere from the others.   

These findings show that significant similarities exist in the evolution of 

temporal features of different seizures from the same patient.  Whilst our 

characterisation of time-evolution is crude in many respects, that such strong 
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significances are observed is suggestive that a method to fit parameters of 

the underlying generative model based on temporal-features of the clinical 

data (following a similar approach to Nevado-Holgado et al., 2012 will 

provide additional information. There are many challenges that must be 

overcome to allow such an approach to work in this more complex setting. 

3.4: Discussion 

In this chapter, the relationship between the dynamics of a generative model 

of intracranial EEG recordings introduced by Wendling [91] and clinical 

recordings from patients with temporal lobe epilepsy has been explored. A 

combination of bifurcation theory and numerical continuation has been used 

to explore how combinations of Hopf bifurcations, false bifurcations, SNICs 

and eigenstructure changes in the noise free model, give rise to dynamics 

that are strongly reminiscent of clinically observed waveforms and those of 

the noisy model as characterised by [91]. Extending these findings to larger 

parameter planes, it was found that more complex transitions including 

period doublings and multiple false bifurcations, which give rise to polyspike 

complexes that are frequently observed in clinical recordings. Using an 

algorithm for determining approximately stationary epochs of data from 

intracranial EEG recordings a path through parameter space was mapped out 

by matching temporal features of each identified epoch to regions of 

parameter space identified from numerical continuation, observing 

consistencies across several seizures from each patient. 
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The Wendling model is closely related to the model of the EEG developed by 

Jansen & Rit [138] in which a population of cortical pyramidal neurons is 

connected to two feedback loops of interneuron populations, one excitatory 

and one inhibitory.  The Wendling model includes an additional inhibitory 

feedback loop that has a shorter timescale to represent what is known of the 

connectivity of hypocampal cortex.  The analysis in this chapter shows that 

the inclusion of two timescale of inhibition allows the model to capture time 

domain features that cannot be created by the Jansen & Rit formulation.  The 

Wendling model is therefore an improvement over the Jansen & Rit model for 

the modelling of hypocampal tissue.  However, any future work that attempts 

to model spatial evolution of seizures across the cortex should note that the 

Wendling formulation is a model of mass action in the hypocampus and not a 

model of the EEG.  Spatial dependencies would therefore have to be modelled 

using formulations such as [34], [63], [90] using the output of the Wendling 

model as inputs. 

It is important to note that subtle changes in parameters of the generative 

model give rise to a wide-variety of complex waveforms. Of particular 

importance is that changes in different model parameters (in our case 

reflected changes in fast and slow inhibitory mechanisms) result in near-

identical waveforms that would be indistinguishable using standard clinical 

methodologies. Given that subtle changes in different mechanisms would 

most likely warrant different treatment strategies, an additional 
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computerised analysis of EEG may ultimately enable more robust decisions 

regarding treatment strategy at the point of first diagnosis.  

To enable this would require two important steps. The first is for greater 

validation studies of neural mass models that are currently used to study 

clinical data. The need for this is to establish the precise relationships 

between parameter variation of the generative model and the 

neurophysiological changes that underpin the observation data. 

Experimental models provide a route towards model validation (although 

care must be taken with linking between animal models of epilepsy and their 

clinical equivalents) and studies such as [117], [151], [152] are all suggestive 

of changes to GABAA dynamics in different epilepsy models that may be 

captured by varying inhibitory mechanisms of neural mass models. Such 

animal models may provide the environment to systematically explore the 

conditions that favour, or prevent, particular types of dynamic transitions. A 

similar approach has been used by [90] to characterise transition to 

epileptiform dynamics by modelling the effect of general anaesthetic agents.  

The second step is to develop more robust methods for fitting parameters of 

an underlying generative model to the diversity of clinical waveforms 

observed during focal discharges. For example, the work of Fabrice Wendling 

et al., 2005 and our current study both suggest consistency of underlying 

mechanisms during seizures. However these methods are likely too crude to 

capture the subtle changes in parameters that may underpin the dynamic 

evolution recorded clinically. The recent study of [92] used a multi-objective 
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genetic algorithm (MOGA) to fit parameters of a neural mass model from 

scalp EEG that was clinically recorded from patients with idiopathic 

generalized epilepsies. Extending this work to enable the MOGA to fit the 

wider variety of waveforms observed from iEEG may represent an initial step 

towards the patient specific modelling of epilepsy. 

3.5: Summary 

x The relationship between the eigenstructure of a generative model of 

the EEG and clinical recordings has been illuminated.  Eigenstructure 

changes in the model give rise to waveform profiles that have a strng 

resemblance to clinically recorded iEEGs. 

x Small changes in certain parameter values give rise to dramatic and 

obvious changes in the profiles of simulated waveforms.  Of particular 

importance is the relative strength of the two inhibitory feedback 

loops of interneurons that have different characteristic timescales. 

x Bifurcation analysis of the model allows the waveform profiles to be 

characterised across the parameter space.  Clinically recorded EEGs 

were temporally segmented using a novel algorithm and these 

segments were categorised according to which region of the 

parameter space of the model they most closely resembled.  This 

analysis demonstrated that there exist statistically significant 

similarities between different seizures from the same patient.  Thus it 

can be concluded that the evolution of focal onset TLE seizures is 

likely to follow a characteristic pattern for each sufferer. 
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Chapter 4: Bayesian estimation of 

connection strengths between neural 

populations using SMC-ABC 

4.1: Introduction 

The increase in computational power over recent years, combined with the 

increase in understanding of neural systems has led to an explosion in neural 

modelling studies.  A serious issue at the heart of modelling is how to find the 

values of parameters that inherently undiscoverable by purely experimental 

methods.  The connection strength between two populations of neurons is 

the main example of this kind of parameter with which subsequent chapters 

will be concerned.   

The value of the connection strength is a function of multiple physiological 

elements, for example; number of receptors per synapse; number of 

synapses; location of the synapses on the dendrites; and many more.  

Measuring each of these variables experimentally and calculating a value is 

impossible, hence the need to use available experimental evidence to infer 

values.   

The Bayesian paradigm provides a natural choice for the inference of 

parameter values, since it is inherent in the Bayesian framework that 
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parameters are learned through evidence rather than assumed, as is the case 

in frequentist frameworks.  The Bayesian approach also has the advantage 

that distributions of parameter values are inferred rather than a single best 

or adequate value.  Having access to the full distribution of parameter values 

that explain the observed data gives the modeller much more information 

about the robustness of the system to small changes in parameters and 

therefore the means to assess the validity of conclusions drawn from the 

model.   

However, Bayesian techniques have not been widely used in neural 

modelling due to the difficulty in calculating the likelihood function, the 

probability of observing the experimental data given a particular set of 

parameter values.  In instances where compute-time of a single simulation is 

relatively large, the computational overhead of doing sufficient simulations to 

calculate the likelihood is often too large to be tractable.  All but the simplest 

toy neural models fall into this category.  There have, over the last decade or 

so, been advances in so called likelihood free inference techniques in which 

the likelihood is approximated by sampling from the posterior.  For a full 

review of these techniques see [102].  Outlined in this chapter is a simple and 

effective method for finding the parameters of high dimensional systems, 

called sequential Monte-Carlo approximate Bayesian computation (SMC-ABC) 

[100].   
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4.2: Description of the method 

4.2.1: Introduction to likelihood free Bayesian inference 

Bayesian computation in general requires the modeller to estimate a 

conditional probability density that describes the probability of any 

parameter	   vector,	   Ө,	   	   given	   the	   observed	   data,	   x.  This is known as the 

posterior distribution and is given by Bayes rule, 

� �
� � ( )

.
( )

p x
p x

p x

T S T
T      (4.1) 

This is very often hard to compute owing to the difficulty of calculating the 

marginal likelihood P(x), which can be stated as the probability of the data 

and is often a high dimensional integral: 

� �( ) . ( )p x p x dT S T T ³     (4.2) 

This problem can be avoided by noting that p(x) can be evaluated to a 

normalising constant, yielding a relative measure of the posterior probability 

of parameter vectors rather than an absolute measure, which in most cases is 

sufficient.  However, as models become more complex, the definition and 

calculation of the likelihood, p(x│Ө), becomes difficult.  It becomes easier to 

generate data, x, by simulating the model with parameter vector Ө.  If the data 

being modelled are discrete and of low dimension, one can use this to 

generate the posterior distribution without having to calculate the likelihood 
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using the following algorithm from [153], in which π(Ө) is the prior 

distribution of Ө. 

For an observed data point, y. Repeat the following until N parameter 
vectors are found. 

Draw ( )iT S T  
Simulate � �i ix p x T  
Reject iT  if ix yz  

This simple case can be generalised to models in which the system variables 

are continuous by comparing some measure of the distance,	  φ,	  between the 

data y and the simulated data, xi,	  to	  a	  threshold	  ε.  Performing this operation 

means the result is an approximation to the posterior rather than posterior 

iteslf. 

Reject iT  if � �,ix yM H!  

This can be further generalised to more complex systems by using some 

summary statistic, S, to reduce the number of dimensions, yielding a 

complete approximate Bayesian computation algorithm [154]: 

For an observed data point, y. Repeat the following until N parameter 
vectors are found. 

Draw ( )iT S T  
Simulate � �i ix p x T  

Reject iT  if � �( ), ( )iS x S yM H!  

Values are assigned to the unknown parameters from a prior distribution 

which is informed by pre-existing knowledge of the system.  The simulation 

is run using these values and the model output is then used to compute an 

error statistic.  The error statistic is compared to a threshold; if it is below 
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threshold then the random values constitute an acceptable parameter set and 

the values are stored; if the error statistic is above threshold then the values 

are rejected.  This process continues until N acceptable parameter-sets are 

found.  This process is approximate Bayesian computation [101].  However, 

in cases where the data is highly informative and the dimensionality of the 

parameter space is high, this algorithm is still unable to find a good 

approximation to the posterior in acceptable compute times.  A solution to 

this issue is to use sequential sampling.  This is the method that is employed 

in the modelling work of the following chapters as is therefore described in 

detail. 

4.2.2: SMC-ABC method 

When dealing with high dimensional parameter spaces where the data is 

highly constraining to the values being sought, the above method alone is 

inefficient.  An improved algorithm has been suggested [100], in which the 

rejection threshold is initially set to be very large such that it is relatively 

easy for the values drawn from the prior to be accepted.  Each of the N 

parameter sets is assigned a weight and the threshold decreased. A 

parameter set is chosen from the N sets of the previous iteration using a 

weighted random selection.  All the parameter values in this set are 

perturbed to create a new parameter-set by adding a noise term drawn from 

a zero mean Gaussian kernel with a variance of twice the variance of that 

parameter across all N values [102].  As before, the simulation is then run 

using the new parameter values and the error statistic computed.  The error 
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statistic is then compared to the new lower threshold and the parameter-set 

is accepted or rejected.  This process continues until we once again have N 

acceptable sets.  The threshold is decreased further still and the whole 

process is repeated.  The effect of the algorithm could be visualised as using a 

loose	  threshold	  to	  “capture”	  parameter-sets and then shrinking the threshold 

to shepherd the sets into the region of parameter space that is acceptable 

according to the final (strict) rejection threshold.  See Figure 4.1 for a 

graphical description of the algorithm.  
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Figure 4.1.  Flow chart describing the SMC-ABC algorithm.   
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4.2.3: SMC-ABC Algorithm 

The following algorithm was formulated by Beaumont [155] but is very 

similar to the algorithms of Toni [99] and Sisson [100].  In the following 

pseudo-code � �t
iT  is the ith parameter-set in the tth iteration. It is a column 

vector with length equal to the number of free parameters. � �tT refers to all N 

parameter-sets found in the tth iteration.  � �S T is the prior distribution of T , 

and � �� �t

iS T is the value of the prior distribution evaluated at � �t
iT .  N is the 

number of parameter-sets to be found.  1 2 3, , .... ....t TH H H H H  is a series of 

incrementally decreasing rejection thresholds.  f  is the model that 

generates the simulated data, y , using the parameter-set  � �t
iT .  D is the 

function that generates the error statistic from the simulated data.  K is a 

Gaussian kernel. 

for iteration 1t   

Set index, 1i   

 while  i N�  

  Sample � �1

iT  from � �S T  

  Use � �1

iT  to generate simulated data y .  � �� �1~ iy f y T  

   Generate error statistic � �iD y .  

  if 1iD Hd  

   set  weight,  � �1 1
iw

N
  

   set index,  1i i �  

  end if 
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 end while 

 Set  � �� �2 2 var tW T       

 Normalise weights 

end for 

for iteration 2 t Td d   

Set index, 1i   

while i N�   

Sample iT
  from � �1tT � with probabilities ( 1 )tw �  

 Create � �t
iT by perturbing iT

 .    � � � �* 2~ ;t

i iKT T T W  

 Use � �t
iT  to generate simulated data y .   � �� �~ t

iy f y T  

  Generate error statistic � �iD y .  

  if i tD Hd  

   set weight,  � �

� �� �
� � � � � �� �1 1 2

1

;

t

it

i N
t t t

j i j
j

w

w K

S T

T T W� �

 

 

¦
 

   set index,  1i i �  

  end if 

 end while 

Set  � �� �2 2 var tW T  

Normalise weights 

end for 
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4.2.4: Validating the use of SMC-ABC 

Since SMC-ABC has not previously been used in the field of neural modelling 

its use is evaluated and validated for the first time here for neural modelling 

by replicating an earlier study by Nevado Holgado [50].  The Nevado Holgado 

(NH) model is a first order firing rate model of the STN-GPe feedback loop.  

The model is defined by the following pair of first order delay differential 

equations representing the dynamics of the feedback loop between the STN 

and the GPe under constant inputs from cortex and striatum. 

� �

� �

( )

( ) ( )

G S

SG GG

t T
S S S G S GP C tx S S

t T t T
G G G S G STN G G G str G G

Y F W Y W C tx Y

Y F W Y W Y W Str Y

W

W

� '

� �

� ' � '

� � �

 � �

 � � �
   (4.3) 

Function dependencies are shown in superscript for clarity.  τ is the 

membrane time constant of either GPe (G) or STN (S) neurons; Y is the firing 

rate of each nucleus; Wm-n  is the connection strength between the mth and the 

nth nuclei; Ctx and Str are the inputs to the system from cortex and striatum 

respectively; ∆Tmn is the axonal transmission delay between nuclei m and n.  

F is	  a	  function	  that	  transforms	  each	  nucleus’s	  summed	  inputs	  into	  the	  firing	  

rate of the nucleus.  It is given by    

� � 4
1 ex p

n

n n n

n n

M
F

M B k

B M

 
§ ·� § ·�

�¨ ¸¨ ¸¨ ¸
© ¹© ¹

   (4.4) 

Model parameters are given in Table 4.1 
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Table 4.1. Parameter values and sources for the Nevado-Holgado model [50]. 
Table reproduced from [50] 

Equilibrium firing rates of this network have been recorded in vivo under a 

number of experimental conditions (muscimol blockade of STN for example).  

Similar conditions were replicated in the model (by setting all efferent STN 

connection strengths to zero, for the above example) and the equilibrium 

firing rates were recorded (See [50],  table 2).  In the NH study this data was 

used to constrain a genetic algorithm whose task it was to find the 

connection strengths, W, between each of the nuclei.  The NH study used 

another set of experimental results to constrain their parameter search: the 

network response to a single or burst stimulation of the STN.  However, the 

dynamics displayed by the first order NH model depend on the duration of 

the stimulus.  Since this is physiologically unrealistic these constraints were 

omitted from this validation study.  It is of no consequence to the present 

analysis since all that this chapter is attempting to do is to demonstrate that 

the single parameter values found using the genetic algorithm in the NH 
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study are contained within the distributions found using SMC-ABC.  For full 

details of the NH model see the original paper [50].  

Table 4.2.  Experimental data used to constrain free parameter in NH model [50] 

 

SMC-ABC was used to find the full distribution of parameter values satisfying 

the same equilibrium constraints as were used in the NH study.  The priors 

were uniform distributions bounded below by zero and above at 100.  

Equilibrium firing rates of the model were recorded under each experimental 

manipulation.  To calculate the ABC error statistic the standard deviation of 

the equilibrium firing rates as reported in the experimental studies was used.  

The	   “distance”	   between	   the	  model	   firing	   rates	   and	   the	   experimental firing 

rates is calculated in terms of the number of standard deviations.  This 

measure ensures that the ABC algorithm is not striving to exactly replicate a 

value whose variance in the original data was extremely high.  The error 

statistic, E, is given by 

m ax
i i

i K
i

y y
E

V�

§ ·�
¨ ¸ 
¨ ¸
© ¹

     ( 4.5) 
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where i indexes which of the K experimental manipulations are being 

considered (K=6 in this case).  yi is	   the	   model’s	   equilibrium	   firing  rate of 

whichever nucleus is recorded during the ith experimental manipulation.  Y 

bar and sigma are the mean and standard deviation of the real firing rates 

recorded from the ith experiment (see Table 4.2).  This formulation of the 

error statistic was chosen to simplify the definition of the vector of error 

thresholds.  The error statistic is the maximum difference between the mean 

of the real experimental data in multiples of the standard deviation of the 

experimental data, across all eight experimental conditions.  Thus if a model 

yields an error statistic, E, of 1.8, this means that none of the six experimental 

manipulations cause the model to be more than 1.8 standard deviations away 

from the true experimental mean.   

The ABC algorithm was run with the number-of-parameter-sets-to-be-

calculated, N,	  set	  to	  400.	  The	  first	  iteration’s	  threshold	  was	  set	  to	  4	  standard	  

deviations from the mean.  Thus if the maximum deviation of the model from 

the data was less than 4 standard deviations, the parameter set was accepted.  

30 thresholds were linearly spaced from 4 to 0.2. The algorithm is not 

permitted to attempt to fit the model with zero error since this makes it very 

inefficient [156].  It would also be counterproductive since the variance in the 

original experimental data is high. 

4.2.4.1: Validation results 

The results demonstrate the advantage of the Bayesian approach to 

parameter estimation in that, not only can parameter sets be found that 
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enable a good fit between model and data, but also it gives information on the 

distribution of possible parameter sets (see Figure 4.2).  Knowing the 

distribution	  of	  possible	  values	  rather	   than	  simply	  a	  single	   “best”	  parameter	  

set is useful in assessing the significance of conclusions drawn from the data.  

The histograms show that the experimental data is highly constraining to 

STN afferent connections.  However, the same data is an extremely weak 

constraint of the connection from striatum to GPe, with the posterior 

distribution spanning nearly the full range of possible values.  The fact that 

the parameters found by the NH study are within the distribution is 

demonstrates that the SMC-ABC algorithm produces results consistent with 

the genetic algorithm used in the Nevado Holgado study [50].  It is therefore 

an effective tool for finding parameters in this kind of system. 
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Figure 4.2.  Nevado Holgado model and parameter distributions. 
Top left) Schematic diagram of the connectivity of the model of the GPe-STN 
feedback loop as formulated in [50].  Connectors terminating in arrows indicate 
excitatory connections. Connectors terminating in dots indicate inhibitory 
connections.  Histograms) The distributions of parameter values found using 
the SMC-ABC algorithm are shown in the grey histograms.  Connection strengths 
of the model found in [50] using a genetic algorithm are show as black stems.  
The fact that the parameters found using the GA lie within the posterior 
distributions validates the use of SMC-ABC for finding parameters of firing rate 
models.  The benefit is clear of the Bayesian approach in that the full 
distribution of values that can explain the data is available.  The data is shown to 
be a strong constraint of the GPe-STN connection strength, WGS, but a very weak 
constraint of the striatum –GPe connection strength, WXG. 

4.3: Discussion 

The use of SMC-ABC has been demonstrated in the context of neural 

modelling and it has been shown it to be very well suited to the task of 

finding the parameters of highly nonlinear neural models.  The application of 

SMC-ABC to neural modelling is a novel contribution of this thesis, as the 

method has hitherto been mainly used in the context of population genetics.  
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There is a high likelihood that SMC-ABC could become much more widely 

used in the neural modelling community.  Indeed, the method has been 

described (though not applied) for a biological modelling audience in a recent 

journal article in the PLoS Computational Biology journal [156].  

It is extremely easy to parallelise.  Since it is purely a sampling and 

simulation based approach, the algorithm does not require reformulating for 

use in different contexts and it can be used to find parameters of arbitrarily 

complex nonlinear systems.  These are advantages that are lacked by DCM.  

Like DCM, SMC-ABC can also be used for model selection [99].   

SMC-ABC is conceptually easy to understand and relatively simple to 

implement.  Unlike genetic and evolutionary algorithms, SMC-ABC has very 

few parameters that need to be set to allow the method to function correctly.  

The only parameters that are required are the number of parameter sets to 

be found and the number and spacing of the sequence of the rejection 

thresholds.   

ABC has some similarities to stochastic optimisation methods (SOMs).  SOMs 

contain random variables in the formulation of the optimisation problem.  

They can be used in cases in which there is random error in the input data, as 

is often the case in neural modelling.  Stochastic approximation [157] or the 

method of finite difference [158] are examples of algorithms used to solve 

problems of this kind, in which the true values of the functions parameter 

have to be inferred from uncertain data.  Random variables can also be 

introduced to deterministic models to increase compute times and 
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robustness in the optimisation.  Genetic algorithms [159], stochastic hill 

climbing [160] or swarm optimisation [161] are examples of algorithms of 

this kind.   

The algorithms of ABC and GAs have significant elements in common; both 

use random sampling to attempt to identify global minima of some 

predefined cost function.  In both ABC and GAs an initial search space is 

defined which is necessarily informed by prior beliefs about the system 

before any optimisation is done.  The difference between ABC and GAs is that 

ABC defines this formally as a prior distribution. In GAs there is no formal 

definition of prior belief distributions but rather the prior knowledge is 

implicit in choice of bounds of the search space.  This could be interpreted in 

a Bayesian framework as a uniform prior and therefore, in this respect, a GA 

is a special case of likelihood free Bayesian inference.  In both GAs and ABC 

some large number of parameter vectors are found during the course of the 

procedure.  The difference between the two classes of methods is that ABC 

seeks explicitly to find a posterior distribution whereas GAs seek to find the 

global minimum of the cost function; the posterior distribution could be 

approximated using the other data points found by the stochastic 

optimisation algorithm, but this is not its primary purpose.  Thus the 

differences between GAs and ABC are largely philosophical, with the only 

significant difference between them being the formal inclusion of probability 

distributions of prior knowledge that bias the sampling in the case of ABC.  

This makes ABC well suited to parameter estimation in neural modelling, 
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since we typically have a reasonably good estimate of parameter ranges but a 

high dimensional parameter search space.  A uniform prior over all unknown 

parameters, as would be used in GAs, would make the search prohibitively 

slow. 

The model examined in this chapter, and the models of the following chapters 

are all deterministic.  That is to say, there is no noise in the models and thus 

any given parameter vector will give rise to a single simulated data-set.  The 

likelihood distribution of the models is therefore a delta function.  However, 

this is not to say that the posterior is also just a single point.  Uncertainty 

arises in the model parameters due to the fact that the observed data is noisy.  

Further uncertainty is added when comparing the model simulation to data, 

since the model is not capable of fitting the complex and noisy data perfectly.  

The fact that the model is deterministic does not therefore preclude the use 

of ABC.  Nor does it mean that standard Bayesian inference would be better 

suited to the task.  The current model, and the models that follow, are all 

coupled delay differential equations that are nonlinear in their unknown 

parameters, so no closed-form solution exists.  It would be necessary to use 

numerical optimisation techniques to find the parameters of the posterior 

distribution.  This makes it much more computationally intensive and it is 

likely to be more efficient to approximate the posterior using Monte-Carlo 

methods such as ABC.  Furthermore, a deterministic estimation is a useful 

first step to a full stochastic treatment because it avoids having to both model 

and simulate the noise, both of which may be nontrivial tasks involving 
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modelling neural noise and numerical integration methods for stochastic 

differential equations. 

The validation study in this chapter demonstrates the value of this approach.  

Broad distributions indicate that the system is likely to be robust to changes 

in that particular parameter value.  Narrow distributions show that the 

system is likely to be very sensitive to small changes in the value of that 

parameter. 

In what follows, SMC-ABC will be used to constrain the parameters of a novel, 

physiologically accurate, firing rate model of the whole basal ganglia. 

4.4: Summary 

x This thesis is the first time that SMC-ABC has been used in a neural 

modelling context.  It has the potential to be much more widely used 

than it is currently. 

x SMC-ABC has been shown to be well suited to the task of finding the 

parameters of neural models.   

x It is an easy method to understand and relatively simple to implement.   

x As a Bayesian method it has the advantage that it yields parameter 

distributions rather than a single best value. 

x Since it is a likelihood free method, it can be used to find parameters 

of arbitrarily complex nonlinear systems. 

Equation Chapter 5 Section 1 
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Chapter 5: A novel firing rate model of the 

basal ganglia 

5.1: Introduction 

The basal ganglia (BG) are a set of subcortical nuclei that takes inputs from 

most areas of cortex and many subcortical structures via the thalamus.  Their 

output is a tonic inhibition of the same structures that provide their inputs.  

This has led to the hypothesis that one of the primary functions of the basal 

ganglia is to select between competing inputs [52]–[56]: selection meaning 

the focused disinhibition of one particular input channel and the 

maintenance of inhibition of all other channels.  If this is the case then the 

motor symptoms of PD can be viewed as a dysfunction of selection ability of 

the BG.   

The fact that the BG includes a feedback loop between the inhibitory globus 

pallidus external segment (GPe) and the excitatory subthalamic nucleus 

(STN) has led many to believe that this loop may be the origin of the 

pathological beta frequency oscillations that are often coexistent with the 

tremor of PD [46], [50].  Given that the BG may be the locus of selection as 

well as the pathological oscillations of PD there is a need for a model that can 

capture both these phenomena in a way that enables a numerical analysis to 

be conducted.  Gillies et al. [46] conducted a study of the GPe-STN feedback 
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loop and found that increasing the strength of the cortex-STN connection 

increases oscillations.  However transmission delays have been shown to be 

crucial to the presence and frequency of oscillatory solutions, and these were 

neglected in their study.  Their conclusions rely on the assumption of the 

presence of self-excitatory connections within the STN, but experimental 

evidence for these connections is not strong enough to justify this 

assumption [47], [48].   

The work of Nevado Holgado et al. [50] used a first order firing rate model of 

the GPe-STN feedback loop to analytically generate conditions for the 

generation of beta oscillations in the network.  Their work showed that STN 

self-excitation is not necessary so long as transmission delays are included.  

However, their analysis is compromised by the fact the cortical input was 

modelled as a constant of 27Hz, a rate which would only be present when the 

cortical inputs are active.  However, the oscillations of PD are present only 

when the sufferer is inactive.  It is therefore much more likely that the 

cortical input to the model would be nearer to a 4Hz background firing rate.   

The action selection functionality of the BG has been modelled many times 

[53]–[56].  However, the only model to quantitatively represent BG firing 

rates and capture oscillatory phenomena is [55].  This model is composed of 

leaky integrate and fire neurons and contains a great deal of physiological 

detail.  The model is therefore unsuitable for analytical or numerical analysis.  

It also does not address the changes that occur in the BG network with the 

advance of PD.  In this chapter we set out new methodologies that enable 
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firing rate dynamics to be captured in physiologically realistic, yet efficient 

way.  This is in preparation for chapter 6 in which an analysis is conducted of 

functionality and oscillatory phenomena in the healthy and Parkinsonian 

conditions.   

The modelling framework that was used to model the hypocampal cortex in 

chapter 3 is less suitable for the modelling of the whole basal ganglia.  The 

higher number of connections in the basal ganglia as compared to the cortical 

model greatly increases the dimensionality of the parameter space 

necessitating that the system be captured in a simpler model.  In this chapter 

a novel firing rate model of the basal ganglia is created in order that the 

oscillatory phenomena	   that	   occur	   with	   the	   advance	   of	   Parkinson’s	   disease	  

can be studied alongside the selection functionality of the network.   

We firstly set out to independently test the hypothesis that the BG is a 

selection mechanism and then go on to analyse how the network changes 

observed in PD affect BG functionality.  While there have been many 

computational models of action selection in BG [53]–[56] they tend to find 

the free parameters of the model such that the network performs the 

hypothesised function.  We here outline a novel paradigm for the testing of 

hypotheses of neural function:   

1. Construct the connectivity of a model according to what is known of 

the anatomy of the system.   
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2. Infer the full distribution of	  the	  model’s	  free	  parameters	  (in	  this	  case	  

using SMC ABC) from experimental data in order that we gain a full 

picture of the diversity of models that can explain the known data.   

3. Test this suite of models for a correlation between the fit to data and 

ability to perform the function.  A positive correlation is taken as 

evidence in favour of the hypothesis.   

In this paradigm, modelling is used to provide actual evidence for or against 

hypotheses of function, rather than using modelling to demonstrate that a 

particular function is possible. 

The BG consists of at least five neural populations.  In order to understand 

the dynamics of the network a model is constructed in which the firing rate of 

each nucleus can be represented by a single differential equation.  Firing rate 

models have the advantage that they are simple enough that large systems 

can be modelled but they have been severely limited by their ability to 

accurately represent observed response latencies.  Firing rate models are 

often first order approximations and often use the membrane time constant 

as the characteristic time constant of the system.   This makes response 

latencies of the models much slower than is observed in reality.  The complex 

relationships between the input and output firing rates of the nuclei 

necessitate that a new way to capture these dynamics is created.  A new 

methodology is outlined whereby the firing rates of the nuclei are 

approximated by a second order transfer function, the time constant of which 

is dependent on the firing rates of the pre-synaptic nuclei relative to their 
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tonic rates.  This method increases the physiological realism that can be 

captured in a firing rate model.  It also negates the need to assume that there 

is no processing occurring between synapse and soma of neurons, as is the 

case in neural mass formulations.  By modelling firing rate interactions 

directly we greatly reduce the number of parameters that need to be found.   

In order to find the distributions of parameter values in the nonlinear neural 

models a Bayesian sampling technique called sequential Monte-Carlo 

approximate Bayesian computation (SMC-ABC) is used.  Due to the 

intractability of calculating what is known in Bayesian inference as the 

likelihood function, Bayesian methods have not been widely used in neural 

modelling.  However, SMC-ABC has the advantage that the likelihood function 

does not need to be explicitly calculated.  It has gained popularity in 

population genetics and may also be well suited to neural modelling.  Its 

implementation is outlined in this context in the methods section.  

5.2: Materials and Methods 

5.2.1: Model architecture 

We created a model of the whole basal ganglia for the study of healthy BG 

function and the pathological network dynamics of conditions such as PD.  

Our model includes the striatum and the GPi as well as the well-studied STN-

GPe feedback loop.  The model remains relatively simple in that it consists of 

only five delay differential equations each of which governs the firing rate of 
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one of the basal ganglia nuclei.  See Figure 5.7 for a graphical illustration of 

model connectivity.  Connections are as in [162] 

An identical excitatory cortical input drives the striatum and the STN [39], 

[43], [45], [163].  Since more than 90% of striatal neurons are medium spiny 

neurons (MSNs), the striatum of the model is assumed to consist only of 

MSNs [164].  No attempt is made to simulate the striatal microcircuit.  The 

striatum is split into two distinct populations which represent MSNs 

expressing mostly D1 receptors and MSNs with mostly D2 receptors [165].  A 

normalised parameter governs the average dopamine receptor occupancy 

and modulates the firing rate of both the striatal populations.  Increasing the 

dopamine parameter modulates the firing rate of the D1 striatal population 

upwards [166] and the firing rate of the striatal D2 population downwards 

[167].   
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Figure 5.1. Basal Ganglia connectivity 

The D1 striatum projects to GPi (the direct pathway) and the D2 striatum 

projects to the GPe [167].  The D1 striatum projects to the GPe with a 

connection strength of roughly the same as that of the D2 striatum-GPe 

connection [168]–[170].  The GPe is connected to the GPi both by direct 

GABAergic projections [171] and also via the STN [45].  In turn the STN has 

projections back to the GPe, creating a feedback loop [172]–[174].  Neurons 

in GPe are connected to their local neighbours [175].  While direct evidence 

of intrinsic collaterals in GPi is sparse it should be noted that studies have 

focused	   on	   the	   GPi’s	   extrinsic	   connections.	   	   There	   is	   strong	   evidence	   for	  

collateral	  connections	   in	   the	  basal	  ganglia’s	  output	  nuclei	   in	   the	  rodent,	   the	  

substantia nigra pars reticulata [176] and the entopeduncular nucleus [177].  

These pallidum collaterals are implemented in the model as self-inhibitory 

connections.  See Figure 5.1 for BG connectivity. 
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5.2.2: Initial attempts to model the basal ganglia using a first 

order model 

Initially, attempts were made to model the whole BG using a first order firing 

rate model [86], [87], in which the firing rate, y, of each nucleus, n, is given by   

 ( )n
n n

d y
F g y

d t
W  �  (5.1) 

Where W is the time constant, F is a sigmoidal input to firing-rate operator 

and g is a weighted linear sum of inputs to the nucleus.   

 ( )n m n m mn
m

W y t Tg  � '¦  (5.2) 

Where m is the index of every nuclei that has afferent connections to the 

current nucleus, n.  Wmn is the connection strength between the pre-synaptic 

nucleus, m, and the postsynaptic nucleus, n.  ym is the firing rate of the mth 

pre-synaptic nucleus.  ΔTmn is the axonal transmission delay between nuclei 

m and n (parameter values given in Table 5.1).  Attempts were made to infer 

the distributions of the unknown parameters using equilibrium firing rate 

data from eight different experimental manipulations.   

1. Firing rate of the GPe under normal conditions 

2. Firing rate of STN under normal conditions 

3. Firing rate of GPi under normal conditions 

4. Firing rate of GPi following the administration of a glutamate 

antagonist in GPi.  Modelled by setting WSTN-GPi equal to zero. 
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5. Firing rate of GPe following the administration of a GABA antagonist 

in GPe.  Modelled by setting Wstr-GPe and WGPe-GPe equal to zero. 

6. Firing rate of GPi following the administration of the GABA agonist 

muscimol into STN.  Modelled by setting WSTN-GPi and WSTN-GPe equal to 

zero. 

7. Firing rate of GPi following the administration of the GABA agonist 

muscimol into GPe.  Modelled by setting WGPe-GPi and WGPe-GPe and 

WGPe-STN equal to zero. 

8. Firing rate of GPi following administration of GABAA and GABAB 

blockers in GPi.  Modelled by setting WGPe-GPi and Wstr-GPi equal to zero. 

In the interests of creating the most parsimonious description of the system 

possible, a variety of different model connectivities had their parameters fit 

to the experimental data.  The model has the connectivity set out in [53].   

The error statistic is defined as 
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where i indexes which of the K experimental manipulations are being 

considered.  yi is the model’s equilibrium firing  rate of whichever nucleus is 

recorded during the ith experimental manipulation.  Y bar and sigma are the 

mean and standard deviation of the real firing rates recorded from the ith 

experiment.  This formulation of the error statistic was chosen to simplify the 

definition of the vector of error thresholds.  The error statistic is the 
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maximum difference between the mean of the real experimental data in 

multiples of the standard deviation of the experimental data, across all eight 

experimental conditions.  Thus if a model yields an error statistic, E, of 1.8, 

this means that none of the eight experimental manipulations cause the 

model to be more than 1.8 standard deviations away from the true 

experimental mean.  The error thresholds used were 46 linearly spaced 

values between 5 and 0.5, each threshold being 0.1 lower than the previous 

one. 

 

Figure 5.2.  Connectivity schematic of first order BG model. 
Connections of the basic basal ganglia model are shown as black connectors.  
Every combination of the three optional connections (shown in grey) were 
added to the basic connections to create eight different models. 

Parameters were fitted to the experimental data using SMC-ABC.  Since the 

model is the same as the model of Nevado Holgado [50] with extra nuclei 
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added, the range of connection strengths found in that study were taken as a 

guide for setting the range of the uniform priors.  Priors were uniform 

distributions bounded below at zero and above at 40.  800 parameter sets 

were found in each iteration of the algorithm.  The series of rejection 

thresholds were defined using the means and standard deviations of the 

firing rates found experimentally under the eight manipulations listed above.  

The initial rejection threshold was defined as the mean firing rate plus or 

minus four times the standard deviation.  Subsequent rejection thresholds 

were 25 linearly spaced increments between the initial threshold and the 

mean plus or minus 0.5 times the standard deviation.   Parameters were fit 

using	   the	   basic	   model’s	   connections	   plus	   every	   combination	   of	   three	  

additional pathways; strD1-GPe; GPe-GPe recurrent connections and GPi-GPi 

recurrent connections.   

It was found that the model composed of the basic connections plus the GPe 

recurrent and the strD1-GPe connections yielded firing rates with the 

smallest deviation from the experimentally observed values (see Figure 5.4).  

While the distribution of firing rates in all experimental conditions were 

found to agree well with the data (see Figure 5.5) it was found that the 

estimation algorithm preferentially found parameters such that the most 

direct pathways through the network were used, minimising almost to zero 

the connection strength of the GPe-STN pathway (see Figure 5.6).  This 

effectively eliminates information flow through the indirect pathway.  This is 

known to be physiologically implausible.   
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For the model to be a useful tool for the study of the BG it should be able to 

replicate the dynamics of the BG under stimulation experiments.  In order to 

test this, the model was tested against data recorded from:  

1) The STN from [178] figure 3A.  

2) The GPe from [178] figure 4A.   

3) The GPi from [84] figure 4A.   

4) The GPi with a muscimol blockade of the STN [84] figure 4B. 
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Figure 5.3. Response of the 1st order model to a brief cortical stimulation. 
Model parameters were trained using SMC-ABC on equilibrium firing rate data.  
The parameter set with the smallest error statistic was used to simulate the 
network’s	  response	  to	  cortical	  stimulation.  Black lines show model response to 
a cortical stimulation (22Hz, 0.3ms) at t=0.  Grey histograms show experimental 
data.  A is from [178] figure 3A. B is from [178] figure 4A. C is from [84] figure 
4A. D is from [84] figure 4B.  
  

As can clearly be seen from Figure 5.3 the model fails to capture the 

dynamics following cortical stimulation.  It was therefore concluded that the 

equilibrium data was insufficient to accurately constrain the search of 

parameter space.   

The 800 parameter sets were also tested for their ability to function as 

selection mechanisms (see chapter 6 for details).  While some of the 

parameter sets allowed this simple first order model to perform action 
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selection, the majority did not.  This is likely due to the lack of information 

flow through the indirect pathway.  

 

Figure 5.4. Deviation from observed firing rates for different model 
connectivities. 
For each model connectivity the firing rates of specific nuclei were recorded 
under 8 conditions.  800 parameter sets were found that matched observed 
rates as closely as possible.  The root mean squared percentage error, 
averaged across all 8 conditions for each model connectivity is shown.  Core 
connections are those described in [53].  The model with the smallest 
deviation from the data is composed of the core connections plus strD1-GPe 
and GPe recurrent connections.     
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Figure 5.5. Performance of best model under the 8 experimental conditions. 
Distribution	  of	  the	  best	  model’s	  firing	  rates	  under	  the	  8	  experimental	  
manipulations (blue).  Details of experimental manipulation given on x axis.  
Mean (red) and standard deviation (green) of experimental data shown by 
dotted lines.  Nucleus from which the firing rate is recorded is shown in red 
text.  Model connectivity can be parametised such that there is good 
agreement between equilibrium states of the model and tonic firing rates 
recorded in vivo.  
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Figure 5.6. Distributions of connection strength parameters in first order model. 
The connection strength parameter distributions of the best model are shown in 
blue.  Distributions were found using SMC-ABC.  Priors were uniform 
distributions bounded below at zero and above at 40.  Shown in red is the 
subset of parameter sets that also function as good action selectors (see chapter 
6). 

Dynamical data is far more informative than equilibrium data and 

stimulation studies of BG nuclei are common.  However, first order models 

are not capable of capturing the dynamics with sufficient accuracy.  In first 

order approximations increases in firing rate depend on the duration of the 

stimulus.  The response of a first order model to an extremely short duration 

but high amplitude input cannot be physiologically accurate.  The dynamics 

can only be captured accurately by using a second order formulation. 
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5.2.3: Second order firing rate model of the basal ganglia  

The model was rebuilt using the methodology described below.  All three of 

the optional connections were included in this formulation.  See Figure 5.7 

for connectivity schematic. 

 

Figure 5.7. Connectivity schematic of full model of basal ganglia. 
Schematic diagram of the basal ganglia as modelled in this paper.  Both striatal 
nuclei and the STN are assumed to receive identical inputs from cortex.  Medium 
spiny neuron populations expressing mostly D1 or D2 receptors are modulated 
differently by dopamine and as such are modelled separately.  Focused/diffuse 
connections are only of relevance when modelling action selection.  No 
distinction is made between them when finding parameters using the SMC-ABC 
algorithm. 

The model was rebuilt using an alpha function to model the firing rate 

impulse response of each nucleus.  The impulse response of the nth nucleus is 

given by 
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Where τn is the time constant of the nth nucleus and t is continuous time.   

Differentiating twice with respect to time yields 
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which can be written as an homogeneous ODE 
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The second order delay differential equation (DDE) governing the firing rate 

of each nucleus is defined by setting the left hand side of the homogeneous 

equation equal to the input to the nucleus, yielding 

2
2

2
2 { ( )}n n

n n n n

d y dy
y F k t T

d t d t
W W� �  � '    (5.8) 

where kn is the weighted linear sum of all afferent firing rates at their 

respective axonal transmission delays, ΔT.  F is a function that relates the 

inputs of each nucleus to its output firing rate and is given by [50]. 
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Where Mn is the maximum firing rate of the nth nucleus, and Bn is the firing 

rate of the nucleus when all inputs are blocked, hereafter referred to as the 

baseline firing rate.  This function is a sigmoid with a maximum firing rate of 

Mn.  The denominator is written such that the maximum slope of the sigmoid 

is always one, regardless of the values of maximum and baseline firing rates.  

The total firing rate input, kn, is given by 

 ( )n m n m mn
m

W y t Tk  � '¦  (5.10) 

Where m is the index of every nuclei that has afferent connections to the 

current nucleus, n.  Wmn is the connection strength between the pre-synaptic 

nucleus, m, and the postsynaptic nucleus, n.  ym is the firing rate of the mth 

pre-synaptic nucleus.  ΔTmn is the axonal transmission delay between nuclei 

m and n. In the case of the D1 and D2 striatal populations the weight is 

multiplied by a factor of (1+DA) for the D1 population and (1-DA) for the D2 

population, where DA is a normalised parameter describing the proportion of 

dopamine receptors that are occupied.  This has the effect of increasing the 

firing rate of the striatal D1 population and decreasing the firing rate of the 

D2 striatum when dopamine is present (see Figure 5.10). Other model 

parameters are given in Table 5.1. Table of model parameters. 

The error statistic is defined as a root mean square error (RMSE).  Both the 

experimental data and the relevant model outputs are interpolated to a 

length of 600 linearly spaced time points.  The time series of the four 
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stimulation experiments (Figure 5.3) are concatenated and the following 

RMSE applied to calculate the error statistic, E. 
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Where s is the interpolated vector of experimental firing rates, length 600, 

and y is the interpolated vector of model firing rates, also length 600.  Initial 

error threshold was set to 5.3, decreasing linearly in steps of 0.067.  

5.2.3.1: Second order model results 

The SMC-ABC algorithm failed to converge further at iteration 20; an error 

value of 3.73.  In Figure 5.8 the time series of the model with the smallest 

error is plotted with the real experimental data.  It is clear that, even with the 

second order formulation, the model is still not capable of reproducing the 

dynamics that are seen in the BG in vivo.  The GP nuclei are not capable of 

producing dynamics at an appropriately short time scale.  The following 

section examines the membrane time constant and its role in population level 

neural responses. 
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Figure 5.8.  Second order model comparison to experimental data. 
Model parameters were trained using SMC-ABC on the data shown in grey 
histograms.  A is from [178] figure 3A. B is from [178] figure 4A. C is from [84] 
figure 4A. D is from [84] figure	  4B.	  	  The	  network’s	  response	  to	  cortical	  
stimulation (22Hz, 0.3ms, t=0) (using the parameter set with the smallest error 
statistic) is shown in black.  The second order model, like the first order model, 
is not capable of replicating the dynamics seen in vivo.  

5.2.4: Second order model with variable time constants 

In previous firing rate models the characteristic time constant of each 

nucleus is assumed to be constant.  However, it has been found that this 

assumption cannot be justified when attempting to fit models to dynamical 

data [82].  As an exemplar see Figure 5.11,D [84], which shows the firing rate 

of the GPi decreasing quickly in response to inhibition from the striatum but 

returning to its tonic firing rate at a much slower rate.  A review is now 
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conducted of the evidence that neural processing occurs at different time 

scales within the same population, and that the characteristic time constants 

can vary rapidly according to their afferent populations’	  activities. 

Large populations of neurons are able to react extremely quickly to changes 

in firing rates of pre-synaptic populations.  The model represents the 

averaged activity of an extremely large number of cells.  The sub-threshold 

membrane time constant, which is often used in firing rate models, yields 

response latencies that are far too large to be physiologically realistic [82].  

The response latency of a population to its inputs can be divided into three 

components; firstly, the axonal transmission delay of the pre-synaptic cell, 

which is modelled as the delays in the delay differential equations; secondly, 

the rise-time of the post-synaptic currents (PSCs); thirdly, the membrane 

time constant, which governs the signal propagation between the synapse 

and the soma.  Critically, the membrane time constant has been shown to 

change by up to a factor of ten when dendritic synapses are active [179].   

In the absence of inputs that are significantly different from the pre-synaptic 

nucleus’s	   tonic	   firing	   rates,	   the	   fast	   time	   scales	   of	   the	   PSCs	   do	   not	   affect	  

changes in firing rate.  When afferent nuclei are firing close to their tonic 

levels, it is assumed that the firing rate of each nucleus returns to its tonic 

rate according to its sub-threshold membrane time constant.  Two distinct 

regimes in which populations operate have therefore been effectively 

delineated; firstly the active regime, when response latencies are governed 

by the rise time of synaptic currents; and secondly the passive regime in 
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which the dynamics are governed by the slower intrinsic cellular membrane 

processes. 

The second order model is now augmented to represent what is known about 

neuronal physiology [179] is increased by allowing this time constant to vary 

depending	  on	  the	  firing	  rates	  of	  the	  nucleus	  itself	  and	  the	  nucleus’s	  upstream	  

connections.  It is required that high excitatory inputs create fast positive 

changes in firing rate, and high inhibitory inputs create fast negative changes 

in firing rate.  As such, equations are developed that have the effect of 

allowing high excitatory inputs to induce a reduction in the time constant of a 

nucleus only if the gradient of the firing rate is positive.  Likewise, high 

inhibitory afferents must only induce a change to a short time constant if the 

gradient of the firing rate is negative.  Thus the time constant of the nth 

nucleus, nW  is defined by the following equation.  Equation 5.12 is a sum of 

two sigmoid functions, each of which is multiplied a Heaviside function.  The 

Heaviside functions act as a switching term: when the gradient of the firing 

rate, y, is positive, the first sigmoid is multiplied by one and the second 

sigmoid is multiplied by zero and therefore has no effect on the value of the 

time constant.  When the gradient of the firing rate is negative, the first 

sigmoid is multiplied by zero and the second sigmoid is multiplied by one.  

The input to the first sigmoid is the weighted sum of all excitatory inputs.  

The input to the second sigmoid is the weighted sum of all inhibitory inputs 

(see equation 5.13).  Equation 5.12 therefore allows high excitatory inputs to 

induce a reduction in the time constant of a nucleus only if the gradient of the 
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firing rate is positive.  Likewise, high inhibitory afferents only induce a 

change to a short time constant if the gradient of the firing rate is negative. 
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See Figure 5.9 for a graphical description of this function.  H is the Heaviside 

step function and ny is the rate of change of firing rate of the nth nucleus.  LnW  

( SnW ) is the longest (shortest) time constant of the nth nucleus.  s and q are 

parameters governing the nature of the transition between the two time 

constants.  s is the slope of the sigmoid; a large value of s means that the 

switching is hard; a small value means the shift between the time constants is 

more gradual.  q is a normalised parameter governing how much activation of 

the upstream nuclei is required to produce a change in time constant.  q and s 

can be altered according to what is known about the input-output 

characteristics of each neuronal population.  Pe (Pi) are weighted and 

normalised averages of the total excitatory (inhibitory) input to the nuclei, 

given by 
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The nucleus n has M excitatory (inhibitory) afferents.  ymtonic is the 

equilibrium value of  ym and represents the tonic firing rate of the mth 

nucleus.  Thus Pe (Pi) is the average of the firing rates of all excitatory 

(inhibitory) afferents relative to their tonic rate, weighted by its relative 
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connection strength.  All ymtonic values are found by running the model using 

only the short time constants and recording the equilibrium firing rates.  

 

Figure 5.9.  Dependency of time constants on rate of change of firing rate and 
inputs 
Pe (Pi) is normalised weighted average of all excitatory (inhibitory) afferent 
firing rates.  If the rate of change of firing rate ny  is positive (negative) the time 
constant nW  is defined by Pe (Pi).  Average deviations of afferent firing rate of 
more than 2% from tonic levels result in a change in time constant. 

5.2.4.1: Model parameters defined from experimental data 

Information from the literature is used to set as many of the parameters of 

the model as possible (see Table 5.1).  Tonic firing rates and axonal 

transmission delays are found from experimental recording studies using 

awake but inactive Japanese monkeys, macaca fuscata.  Peak firing rates are 

easily estimated from PSTHs.  Baseline firing rates for STN and GPi of this 

species are unavailable so are included in the search algorithm.  The time 

constants of the PSCs are different for different neurotransmitters and 

receptor types and sub-types.  The two main neurotransmitters with which 
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this model is concerned are glutamate and GABA.  The rise time of PSCs 

generated from the activation of receptors operate on an extremely fast time 

scale (~1ms) [180].  Therefore when a neural population is being driven by 

its pre-synaptic populations its response latency should be of the order of 1 

or 2 milliseconds (not including pre-synaptic axonal transmission delays).  As 

such, time constants of striatal and pallidum nuclei are set to 1.5ms.  

Evidence exists that the response latency of the cortico-subthalamic pathway 

is smaller than that of the cortico-striatal pathway [84], [181].  The time 

constant of the STN is therefore set to 0.5ms shorter than the other BG nuclei 

at 1ms.  It should be noted at this point that that constants of 1-2ms that we 

refer to here are not the first order decay time constants of postsynaptic 

currents.  Rather they are the time constants of the second order alpha 

function and reflect the time-to-peak-response of the firing rate.  If this 

second order function were to be approximated by a first order system with 

an instantaneous rise followed by an exponential decay, the equivalent decay 

time constant would be about 4ms.  This is approximately the decay time 

constant of AMPA EPSCs which dominates the response latency of these 

neurons.  



141 
Materials and Methods 

 

Noting that both the striatal nuclei have membrane time constants that are 

similar in magnitude to the short time constant governing the response 

latency (2-5ms, [182]), we make the approximation that the striatum acts on 

its short time scale at all times.  While recent work has shown that the 

membrane time constant of the STN may be extremely high, the same work 

also shows that the probability of an STN neuron firing following a high 

stimulus is reduced.  So the decrease in the firing rate of an STN cell following 

the withdrawal of a stimulus can be as a rapid as the increase in firing rate 

following the onset of a stimulus [183].  For the purposes of creating our 

firing rate model it is only the input/output firing rate relationships that are 

of interest.  Thus it is assumed that the STN is acutely sensitive to inputs and 

reacts at its short (~1ms) timescale at all times.  And so the model is left with 

only the two GP nuclei having variable time constants.  

The set of 5 second order DDEs is split into 10 first order DDEs and solved 

using MatLab DDE solver, dde23. 
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Figure 5.10.  FF curve for the model striatum 
A) Weighted input against output firing rate for the striatum with dopamine 
parameter set to zero. Realistic firing rates and dopaminergic modulation can be 
attained by restricting the available portion of the curve to section shown in 
bold.  This is done by setting the value of the cortico-striatal connection strength 
to 4.  This allows the maximum striatal firing rate to be attained only by D1 
MSNs in the high dopamine condition.  B) Firing rate input/firing rate output 
curve for the striatum with Wctx-str = 4, for both D1 (red) and D2 (blue) MSN 
populations.  Dopamine level is shown on the right.  In the absence of dopamine 
both populations are identical.  Dopamine modulates the firing rate of D1 MSNs 
upwards and D2 MSNs downwards as required. 

5.2.4.2: Estimation of unknown model parameters using SMC-ABC 

There are a large number of pathways of information transfer through the 

network (see Figure 5.7) so the data used to constrain the unknown 

connection strength parameters has to be informative.  SMC-ABC functions at 

its best when low dimensional but highly informative data are used to 

generate the error statistic [156].  Time series of firing rates are a good 

example of this kind of data.  Dynamical data recorded from the STN, GPe and 

GPi were used.  The time-series of the response of GPi to a single short 

duration M1 stimulation is taken from [84] (figure	  4,	  A	  &	  B),	  as	   is	   the	  GPi’s	  
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response to the same stimulation with a muscimol blockade of the STN.  The 

time series of the response of the GPe and the STN to the same cortical 

stimulation is taken from [184] (figure 4, A1 and figure 3, A respectively).  

The error function used in the SMC-ABC algorithm is created by comparing 

data from these studies with model output.  The parameter fitting was done 

using data in the temporal range beginning 40ms before the cortical 

stimulation and ending 150ms after the stimulation.  Thus the SMC-ABC 

algorithm is compelled to fit the equilibrium firing rates observed before the 

stimulus as well as the dynamical behaviour post-stimulus.  Each time series 

was interpolated to create a vector of firing rates at 500 evenly spaced 

sampling times.  The simulation was run using the parameter values 

generated by SMC-ABC.  The resulting vector of firing rates was truncated to 

the temporal range of the experimental data and then interpolated to the 

same 500 sampling times.  To generate the value of the error statistic from 

this vector a simple root-mean-squared function was applied in an identical 

way to Equation 5.11. 

Priors of connection weight parameters are Gaussian distributions.  Mean 

connection strengths are set such that when multiplied by the maximum 

afferent firing rate the resulting value spans the output range of the nuclei.  

Since the slope of the f-f sigmoids is set to one, this value is approximately 

double the ratio between the maximum firing rate of the downstream 

nucleus to the max firing rate of the pre-synaptic nucleus.  For example if the 

maximum cortical firing rate is 22Hz and the maximum STN firing rate is 300 
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Hz then to calculate the mean of the prior it was assumed that the maximum 

cortical firing rate will give rise to the maximum firing rate in STN.  The 

sigmoid of the Ctx-STN’s	   ff-curve is at 99% of its maximum value when the 

STN’s	   inputs	   total	   600.	   	   Therefore	   the	   Ctx-STN weight multiplied by the 

maximum cortical firing rate must equal 600. Thus the mean of the prior of 

600 / 22C tx STNW �  .  This is obviously quite uncertain so the variances of the 

Gaussian priors are set to twice the mean value.  Search space is bounded 

below at zero for all parameters and above at 80 times the mean of the prior, 

though it is not to be expected that this high upper bound would be needed.  

Information about the inputs and outputs of MSNs is used to set the 

connection strength between the cortex and the striatum.  In this model, 

striatum takes its inputs solely from cortex.  It is known that a baseline 

cortical input of ~4Hz [185] should give rise to a striatal firing rate of no 

more than about 0.5 Hz [182] and that the maximum possible firing rate of an 

MSN is about 90Hz [186].  It is also known that both D1 and D2 populations 

of MSNs should be firing at roughly 20Hz when dopamine is low [182].  

Therefore the cortex-striatum connection strength is fixed such that a 

cortical firing rate of 22Hz [185] induces a striatal firing rate of 20Hz.  This 

firing rate can be modulated up to 80Hz or down to zero by the action of 

dopamine on the D1 and D2 MSNs respectively.  This information allows the 

cortex to D1 striatum and cortex to D2 striatum connection strengths to be 

set to 4 (see Figure 5.10). 
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5.2.5: Model summary 

In summary of the above, the complete model is defined by the following five 

delay differential equations.  
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Functional dependencies are written in superscript to aid legibility.  da is the 

normailsed dopamine level and is varied.  F is the sigmoid function that 

relates the summed inputs of the nucleus to its firing rate and is defined by 

Equation 5.9 [50] 
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Where kn is given in {..}. 

τn is varies with the activity of each nucleus as well as its afferents, and is 

defined by Equation 5.12 
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Where P is given by Equation 5.13 
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Where wmn is the connection strength between the mth and nth nuclei. 

All parameter values are given in Table 5.1. Connection strength parameters 
are found using SMC-ABC with an error statistic given by 
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Where s is the model generated data interpolated to a length of 600 and y is 

the experimental data, also interpolated to a length of 600. 
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Table 5.1. Table of model parameters. 
Parameter Meaning & reference Value 
ΔTctx-str Axonal transmission delay [187] 2.5 ms 
ΔTctx-STN Axonal transmission delay [187] 2.5 ms 
ΔTSTN-GPe Axonal transmission delay [187] 2.5 ms 
ΔTSTN-GPi Axonal transmission delay [187] 2.5 ms 
ΔTGPe-STN Axonal transmission delay [187] 1 ms 
ΔTstr-GPe Axonal transmission delay [187] 7 ms 
ΔTstr-GPi Axonal transmission delay [187] 12 ms 
ΔTGPe-GPe Axonal transmission delay [187] 1 ms 
ΔTGPi-GPi Axonal transmission delay ** 1 ms 
τstr Time constant of striatum [180] 1.5 ms 
τSTN Time constant of STN [183] 1 ms 
τGPeS Short active time constant of GPe [188] 1.5 ms 
τGPeL Upper bound of time constant of GPe [184] 30 ms 
τGPiS Short active time constant of GPi [180] 1.5 ms 
τGPiL Upper bound of time constant of GPi * 30 ms 
Mstr Max firing rate of striatum [189] 90 Hz 
Bstr Baseline firing rate of striatum [190] 0.5 Hz 
MSTN Max firing rate of STN [178] 300 Hz 
MGPe Max firing rate of GPe [191] 300 Hz 
BGPe Baseline firing rate of GPe [188] 100 Hz 
MGPi Max firing rate of GPi [84] 300 Hz 

Wctx-str 
Connection strength between cortex and 
striatum * 4 

WD1str-GPe 
Connection strength between D1 striatum and 
GPe [192] WstrD2-GPe 

s Slope of sigmoid governing time constants * 500 

q Fraction of deviation from tonic firing 
required to induce a change in time constant * 0.02 

 
*   Set in this paper 
**  Based on proximity of cells 
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5.3: Results  

5.3.1: Parameter estimation using ABC gives an accurate 

description of BG dynamics  

It was discussed at the start of this chapter that equilibrium data alone is not 

sufficiently informative to constrain the search of the large parameter space 

of the full BG model and that dynamical data is far more informative.  The 

four peristimulus time histograms (PSTHs) shown in Figure 5.11 (hereafter 

referred to as the fitting data) are the dynamical data that were used to 

constrain the search of the parameter space. 
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 Figure 5.11.  Fit of second order variable time constants model to data. 
The	  distributions	  of	  the	  model’s	  free	  parameters	  (9	  inter-population connection 
strengths and 2 baseline firing rates) were found using SMC-ABC.  Solid black 
lines are the simulations produced from running the model using the parameter 
set which gave the smallest deviation from the data Wctx-str = 4.0  Wctx-STN = 77, 
WGPe-STN = 13.6, WstrD2-GPe = 41.6,  WSTN-GPe = 1.1, WstrD1-GPi = 20.6, WSTN-GPi  = 0.54, 
WGPe-GPi  = 0.08, WGPe-GPe = 1.4, WGPi-GPi  = 0.75, BSTN = 96Hz, BGPi = 98Hz.  In grey 
are the PSTHs of the experimental data used for parameter estimation. (A is 
from [178] figure 3A. B is from [178] figure 4A. C is from [84] figure 4A. D is 
from [84] figure 4B).    All plots show the response of each nucleus to a brief 
(300µs) cortical stimulus at t=0.  A) Time series of STN firing rate following the 
cortical stimulus.  B & C) Time series of the GPe and GPi respectively following 
the same stimulus.  D) Time series of the GPi following the same cortical 
stimulation but with STN afferent pathways blocked (In the experimental data: 
by administration into STN of the GABA agonist muscimol.  In the model: by 
multiplying every instance of STN firing rate by zero.) 

The free parameters (inter-nuclei connection strengths and the GPi and STN 

baseline firing rates) of the model were found such that the resulting 
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simulation matched the fitting data as closely as possible.  All PSTHs in Figure 

5.11 are	  a	  single	  BG	  nucleus’s	  response	  to	  a	  single	  brief	  cortical	  stimulation	  

(300µs duration, 200-700µA current in [84], [178]).  A single time series was 

used for STN and another for GPe [178].  The GPi response to the cortical 

stimulation was recorded twice; once under normal conditions and once 

under a simulated blockade of STN using the GABA agonist muscimol [84].  

This condition was replicated in the model by multiplying all STN firing rates 

by zero.  The SMC-ABC algorithm yielded 100 parameter sets, all of which 

satisfy the constraints of the available experimental data.  Plotted in Figure 

5.11 in black is the model solution that is closest to the fitting data. 

Initial observations of the model solutions indicate that the model is capable 

of representing the dynamics of the BG network to a single cortical stimulus.  

The fact that the model can be fit to the data indicates that the connectivity 

structure is plausible and that the modelling framework is sound.  The 

solutions of the GPe and GPi nuclei to the impulse from cortex demonstrate 

that the model is capable of acting on two distinct timescales depending on 

the firing rates of the upstream populations.   

The close match between the data and the model solutions indicate that 

separately modelling active and passive population responses is a successful 

way to increase the biological detail that can be included in a high level firing 

rate model without having to model in detail the membrane processes 

involved in shaping the firing rate behaviour.  Observations of model 

behaviour indicate that this difference between the rates of active and 



151 
Results 

 

passive mechanism is essential in preventing high amplitude oscillations in 

the gamma band driven by fast feedback between the STN and GPe.  The long 

timescale of the passive cellular processes of the GP nuclei may exist, at least 

in part, to strongly dampen the high frequency oscillations that would occur 

in the STN-GPe feedback loop if the GP were to always react at its short active 

time scales. 

5.3.2: Parameter distributions 

The distributions of the parameter values found by SMC-ABC that satisfy the 

constraints of the fitting data are shown in Figure 5.12.  The posterior 

distribution relative to the prior is informative.  Priors, shown in dotted lines, 

are Gaussian distributions with a mean given by twice the maximum firing 

rate of the post-synaptic population divided by the maximum firing rate of 

the pre-synaptic population.  The maximum firing rate of the afferent nucleus 

is therefore capable of maximising the firing rate in the population that it 

targets (see section 5.2.4.2: for details).  Therefore, in instances in which the 

mean of the posterior is higher than the mean of the prior, the pre-synaptic 

population has a greater influence over its target nucleus than would be 

necessary	   to	   maximise	   the	   efferent	   nucleus’s	   firing	   rate.	   	   	   The	   GPe-STN 

connection strength is much higher than one would expect if the simple 

relationship on which the prior was based were true.  The baseline firing rate 

of the STN (~100Hz, Figure 5.12 J) is much higher than its tonic firing rate 

(~35Hz, Figure 5.11 A).  This indicates that the GPe-STN connection strength 

is higher than expected because it is serving to reduce the STN rate from its 
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high baseline down to its tonic level.  The GPe may be able to exert this strong 

influence due to the fact that GPe projection neurons possess large terminal 

boutons at the soma or on the proximal dendrites of efferent populations 

[192], [193].  This strong tonic inhibition of STN may serve to make the STN 

very sensitive to changes in GPe firing rate.  Small reductions in GPe firing 

rate may lead to dramatic increases in the STN. 

The Cortex-STN connection is also a little higher than the prior.  The tonic 

inhibition from GPe must therefore be providing more inhibition than it takes 

to reduce the activity of the STN to its tonic level.  It can be concluded from 

this analysis that the feedback loop between STN and GPe is held in a 

balanced state in which each nucleus relies on its inputs from the other to 

maintain their tonic activity levels.   

The mean of the STN-GPi connection (~0.5) is relatively weak in comparison 

to	  the	  mean	  of	  the	  prior	  of	  2.	  	  The	  GPi’s	  baseline	  firing	  rate	  of roughly 100Hz 

is higher than its tonic firing rate of 50-80Hz.  The GPi is therefore under 

tonic inhibition from its inhibitory afferents [84].  Thus it takes 

comparatively little excitation from the STN to have a relatively large effect 

on GPi firing rate. 
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Figure 5.12.  Distributions of free parameter values. 
Distributions of the free parameters as found by the SMC-ABC algorithm.  
Histograms are shown in grey (left axis).  Prior distributions are shown in 
dotted lines.  For comparison a kernel density estimate of the posterior 
distributions are shown in solid black lines.  Panels in which the prior appears 
to be at a constant low value are actually instances where the prior distribution 
is very much broader than the posterior.  Graphs of the prior distributions are 
truncated where appropriate to allow the posterior to be plotted at a suitable 
scale. 

5.3.3: The identified model accurately predicts an independent 

validation data set of BG dynamics.  

It was confirmed that the model not only represents the experimental 

manipulations on which it was fitted, but also has predictive power.  The 

model was validated by replicating the results of stimulation experiments 

against which the free parameters of the model were not fitted.  In a study 

conducted by [191] the striatum of Japanese macaque monkeys was 
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stimulated and single unit recordings were taken from multiple GPe and GPi 

neurons.  The stimulation protocols were simulated by adding brief (300µs) 

pulses of high firing rate input to both the D1 and D2 striatal populations 

(Figure 5.13 A-F).  It was assumed that the 300µs 200-700µA stimulation 

currents were sufficient to maximise the responses in the stimulated nuclei.  

Thus, in our second-order model the magnitude of the firing rate input that is 

given to the stimulated nucleus is immaterial, so long as it is high enough to 

enable the nucleus to reach the maximum firing rate that can be gained from 

a 300µs stimulation.  The stimulation was in addition to the 4Hz cortical 

background rate.  The direct input to the STN was the cortical background 

firing rate only.  Stimulations were either a single stimulation or a 0.2 second 

burst of 50Hz stimulation.  Results are shown in Figure 5.13.  The fact that 

the model solutions are similar in qualitative form as well as approximate 

magnitude is taken as good evidence that the model accurately reflects the 

average network activity of the basal ganglia of the macaque in vivo.  The 

model output resembles a low pass filtered version of the experimental 

PSTHs.  This is a good validation of the usefulness of the model.   

The response of the network to the cortical stimulus is now analysed.  Initial 

increases in firing rate of the GP occur at a very short latency and with a very 

short time constant since they are both receiving excitatory inputs from the 

STN.  For evidence of this see Figure 5.11D in which all afferent STN 

connections are set to zero. The early excitation is abolished.  The subsequent 

decrease in firing rate of both GP nuclei also occurs with short latency.  This 
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is due to the arrival in the GP of the rapid onset, high firing rate inhibition 

from the striatum.  (Blocking most of the inhibition from all inhibitory nuclei 

to the GP diminishes this early inhibition in GPe and almost completely 

abolishes it in GPi (see Figure 5.13 E,F)).  The resulting depression below the 

tonic level of the firing rate of the GPe releases the tonic inhibition from the 

STN.  There is, therefore, a second sharp increase in the firing rate of the STN 

(see Figure 5.11A).  Evidence of this is shown in Figure 5.13 A & B, in which 

the late excitation is a direct consequence of the disinhibition of the STN by 

the GPe.  Also when STN afferent connections are set to zero the late 

excitation is abolished (see Figure 5.11D).  Since the firing rate of the cortex 

has, by this point long since returned to its background level, there is no 

excitation	  on	  the	  STN	  or	  the	  striatum.	  	  As	  such	  none	  of	  the	  GP’s	  afferents	  are	  

firing significantly above their tonic levels, so the firing rates of the GP nuclei 

return to their tonic levels according to their long passive time constant.  Our 

theoretical analysis of the propagation of the cortical impulse through BG is 

supported by many experimental studies [178], [192], [194], [84]. A careful 

analysis of the experimental observations surrounding these impulse 

response dynamics can be found in [195]. 

The only instance in which the model does not accurately predict the 

equivalent	   experimental	   manipulation	   is	   in	   the	   GPe’s	   response	   to	   striatal 

stimulation following local administration of gabazine (Figure 5.13 E).  It was 

found that the model solution will never include an increase in firing rate if 

the totality of inhibitory connections is set to zero.  Working on the 
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assumption that gabazine will not perfectly block all GABAA, the strength of 

the striatum-GPe connection was reduced to one quarter of its original 

strength.  This allows the firing rate of the GPe to fall sufficiently that the STN 

is disinhibited and so passes excitation back to the GP.  Presuming that this is 

indeed the mechanism by which the GP excitation is elicited in the 

experiments, it shows that the STN is more sensitive to changes in GPe firing 

rate than the model: so much so that the short latency decrease in GPe firing 

rate from the striatal stimulation is barely visible on the PSTH (Figure 5.13 E 

inset). 

Another slight deviation between the model and the observed data is the long 

latency decrease in spike count following the initial inhibition in Figure 5.13 

G (GPi response to cortical stimulation with a muscimol blockade of GPe).  

The source of the long latency inhibition is likely to be the slow action of 

GABA mediated by metabotropic GABAB receptors from striatum.  GABAB was 

not included in this model.  A similar explanation could be applied to Figure 

5.13 F. 
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Figure 5.13.  Model validation time series. 
Figure	  to	  show	  the	  model’s	  responses	  to	  experimental	  manipulations	  on	  which	  
the free parameters were not fitted.  Simulations are run using the parameter 
set with the smallest deviation from the data on which the model was fitted (see 
Figure 5.11).  Main figures show model solutions and inset figures show the 
PSTHs of the experimental data. Insets A-F are from [191].  Inset G is from [84].  
A) GPe response to a single brief stimulation of striatum at t=0.  B) GPi response 
to the same stimulus as A.  C) GPe response to 50Hz BHFS stimulation beginning 
at t=0.  D) GPi response to the same stimulus as C.  E) GPe response to a single 
stimulation of the striatum with inhibitory afferents reduced to 24% of their 
original value (see text).  Inset: GPe response to striatal stimulation after local 
application of the GABAA antagonist gabazine.  F) GPi response to same 
stimulation as E.  G) GPi response to single cortical stimulation with all GPe 
afferent connections set to 2% of their original value.  Inset: PSTH of GPi 
response to cortical stimulus following application of the GABA agonist 
muscimol into GPe. 
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5.4: Discussion 

It has been demonstrated that it is possible to model the dynamics of the 

whole basal ganglia using a firing rate model with a single delay differential 

equation for each nucleus.  The model is physiologically accurate in that it 

can predict both equilibrium firing rates and temporal dynamics under a 

wide range of experimental manipulations.  Furthermore, the connection 

strength parameters that were found using SMC-ABC have illuminated the 

relative dependencies of each nucleus on their afferent populations. 

SMC-ABC has been shown to be capable of finding the parameters of 

nonlinear and high dimensional neural models.  SMC-ABC is well suited to 

neural modelling since it functions at its best when the error statistic can be 

calculated from low dimensional but highly informative data.  Time series of 

membrane potentials, local field potentials or firing rate PSTHs are good 

examples of this and are common in the experimental neuroscience 

literature.  However, it is not without complications.  For a full discussion of 

potential issues see [156].  The number of parameter sets that need to be 

computed in order that one can be sufficiently confident that the whole 

parameter space has been explored is unknown.  In the current model it was 

ensured that using the small number of parameter sets (100) was sufficient 

by initially running the algorithm with 10,000 parameter sets.  It was found 

that the small sample size was merely a uniform subsample of the larger 

distribution, indicating that the small population is adequate.   
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The modelling framework that is set out in this chapter has the potential to 

be generalised to other systems.  By focusing solely on the input-output 

relationships between neural populations the number of variables in the 

system has been reduced.  It has therefore become possible to model much 

larger systems of interaction populations.  While this is true of all firing rate 

models, their scope has been extended by modelling active and passive 

cellular mechanisms separately.  This has made it possible to accurately 

model the dynamics of multiple channels of all the neural populations of the 

basal ganglia. 

5.5: Summary 

x A new physiologically realistic firing rate model of the BG has been 

created that parsimoniously describes firing rates in all BG nuclei 

under dynamical as well as steady state conditions. 

x A novel firing rate modelling framework has been described.  The 

membrane time constant is allowed to vary with the activity of each 

nucleus’s	   afferent	   connections	   as	   required	   by	   physiology.	   	   This	  

modelling framework has the potential to be applied in to firing rate 

models of other systems. 

x SMC-ABC has been shown to be a useful and effective tool for finding 

the parameters of nonlinear neural models. 
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Chapter 6: Computational analysis of 

basal ganglia function 

6.1: Introduction  

In the previous chapter a firing rate model of the BG was obtained.  

Sequential Monte-Carlo approximate Bayesian computation was used to find 

the posterior distributions of the unknown parameters of the model.  In this 

chapter the model is used to firstly find independent theoretical 

corroboration that the healthy BG network is tuned to perform action 

selection, and secondly to explore the network dynamics associated with PD.  

A principled approach to using computational models to test hypotheses is 

outlined and employed.  Having already used what is known of the 

physiology of the BG to construct the model, the full distribution of 

parameters that can explain the experimental data is identified.  To test the 

hypothesis that the BG functions as a selection mechanism, all models found 

by the SMC-ABC algorithm are tested for their ability to select between 

inputs.  A positive correlation between fit-to-data and ability-to-select is 

taken as evidence that the network is tuned to perform that function. 

The model is then used to analyse network dynamics when the dopaminergic 

input is reduced to zero, simulating the onset of PD.  The network changes 

that are observed experimentally in advanced PD are then applied to model.  
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Our analysis suggests possible mechanisms of action of some treatments that 

are currently in use but whose reasons for their efficacy are unknown. 

6.2: Function and pathologies of the basal ganglia  

The hypothesis that the basal ganglia acts as a selection mechanism has 

gathered much support [52], [56], [196]–[198].  That the BG can, in principle, 

act as a selector has been demonstrated in numerous computational models 

[54], [199]–[201].  The deficits in selection ability and motor function that 

are seen in disorders of the BG demonstrate the importance of the BG in both 

motor control and cognition.   

Pathologies of the BG are responsible for the symptoms of many neurological 

disorders.  Since the BG is thought to be responsible for the suppression of 

motor commands, disorders of the BG network can lead to a variety of motor 

and cognitive deficits.  Inadequate inhibition of competing actions gives rise 

to an inability to suppress unwanted actions (hyperkinseasia), which is the 

case	   in	   Huntingdon’s	   disease.	   	   Huntingdon’s	   disease	   results	   in	   sudden	  

involuntary jerky movements [202].  While BG disorders are most commonly 

associated with movement deficits there is now a growing realisation that BG 

malfunction is also responsible for cognitive impairments.  Indeed the first 

symptoms	  of	  Huntingdon’s	  disease	   are	   changes	   in	  mood	  and	   cognition	   and	  

precede the more obvious motor deficits.  The involuntary ticks of Tourette 

syndrome, obsessive compulsive disorder and attention deficit hyper-activity 
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disorder have also recently been found to be caused by malfunctions of the 

BG [203].   

BG disorders can also result in difficulty in initiating voluntary actions, called 

hypokinesia.	  	  This	  is	  a	  common	  symptom	  of	  Parkinson’s	  disease.	  	  Parkinson’s	  

disease (PD) is a neurodegenerative condition in which the dopaminergic 

neurons of the substancia nigra pars compacta die.  The primary targets of 

the dopamine neurons are neural populations in the basal ganglia (BG), 

primarily but not exclusively the striatum.  It is widely accepted that the loss 

of dopamine in the basal ganglia results in the most obvious outward motor 

symptoms of PD; rigidity; slowed movements; and tremor.  This is evidenced 

by the effectiveness of dopamine replacement drug treatments such as 

levodopa. 

6.3: Emergence of action selection in the model of 

basal ganglia 

To test the ability of the model to select between competing inputs the model 

is replicated three times and all three models were connected as described 

below.  Each parallel instantiation of the model is hereafter referred to as a 

channel.  Each channel is driven by a different cortical input to simulate a 

time varying pattern of competing actions.  In keeping with what is known of 

BG physiology the efferent connections of the STN are diffuse [193].  Since it 

has been observed that the somatotopic organisation of cells within BG nuclei 

is conserved from striatum through to the output nuclei of SNr and GPi [204], 
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it is assumed that the diffuse efferents of STN connect across different 

channels.  Wherever an STN input appeared in the one-channel model, in the 

three-channel model the STN input is now the sum of STN firing rates on all 

three channels.  Similarly it is also assumed that GP recurrent connections 

also connect between different channels.  The model running in selection 

mode is thus composed of 15 second order coupled DDEs.  See Figure 6.1. 
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Figure 6.1.  Three channel BG model schematic. 
To create the three channel model, three BG models are implemented in 
parallel.	  	  Each	  channel’s	  striatum	  and	  STN	  receive	  different	  cortical	  inputs	  to	  
represent	  three	  distinct	  action	  choices.	  	  Each	  channel’s	  STN	  projects	  not	  only	  to	  
its efferent nuclei in its own channel but also to the same nuclei in all other 
channels.  The recurrent connections of the GPe and GPi are similarly 
constructed.	  	  For	  clarity,	  only	  channel	  2’s	  cross	  channel	  connections	  are	  shown. 
Blue dotted lines indicate inhibitory cross channel connections.  Red dotted 
lines indicate excitatory cross-channel connections. 

The three-channel model was run for a period of 2 simulated seconds (see 

Figure 6.3 top).  All three channels spent the first 0.5 seconds with only the 

cortical	  background	   firing	  rate	  of	  4Hz	  as	  an	   input.	   	  Channel	  3’s	   input	  to	   the	  

BG model was a constant background level of 4Hz for the full 2 seconds of the 

simulation.  Cortical inputs on channels 1 and 2 were arranged such that 

different channels should be selected at different times during the simulation.  

Every half-second of the 2 second simulation sees a change in the relative 

strength of cortical inputs between the three channels.  0.25 seconds is 



166 
Computational analysis of basal ganglia function 

 
 

allowed	  for	  transient	  dynamics	  to	  decay	  and	  the	  network’s	  equilibrium	  to	  be	  

found.  The first 0.5 seconds is disregarded during which all three channels 

are at rest.  This leaves three epochs of interest; epoch 1, from 0.75 – 1 

second; epoch 2, from 1.25 – 1.5 seconds; and epoch 3, from 1.75 - 2 seconds.  

See Figure 6.2. 

 

Figure 6.2.  Three channel cortical inputs. 
Solid line – channel 1.  Dot dashed line – Channel 2.  Dotted line – Channel 3.  
Cortical firing rate input for each of the three channels as a function of time.  
Epochs are positioned in such a way as to avoid any transients that may occur 
following changes to inputs. 

The output of GPi is a tonic inhibition of the same populations that supply 

inputs to the BG [41].  The action selection hypothesis requires that the BG 

mechanism selects one or more of the channels, and that the tonic inhibition 

of those channels is released.  The selection of a channel therefore appears as 

a drop in GPi firing rate below some threshold for the duration of that 

particular cortical input configuration.  A channel is counted as selected if the 

firing rate in the relevant epoch is below 75% of the tonic firing rate. 

All parameter sets found in one in every five iterations of the SMC-ABC 

algorithm were tested for selection properties.  It has been proposed that 

dopamine aids selection [162].  The higher the levels of dopamine in the 

striatum, the greater should be the likelihood that GPi drops to below a 
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threshold releasing the inhibition of its cortical targets thus selecting an 

action.  When dopamine is high it is expected that multiple active channels 

would be simultaneously selected.  Similarly, in the low dopamine condition, 

it should not be expected that more than one channel at a time could be 

selected,	  even	  if	  both	  channels’	  cortical	  inputs	  are	  high.	   	  Each parameter set 

was tested in each of the three epochs in both a high dopamine (DA = 1) and a 

low dopamine (DA = 0.2) condition.  (Dopamine is not set to zero as it is 

envisaged that this would constitute the pathological condition of advanced 

Parkinson’s	   disease	   and	   therefore	   not	   a	   healthy	   condition.)	   	   	   This yields a 

suite of six selection tests.  A parameter set was classed as a good selector if it 

passed all six tests. 

6.3.1: Selection tests 

Low dopamine (DA = 0.2) 

1. In epoch 1 channels 2 and 3 should not be selected. 

2.  In epoch 2 channel 2 should be selected and channels 1 and 3 should 

not be selected. 

3. In epoch 3 channel 1 should be selected and channels 2 and 3 should 

not be selected. 

High dopamine (DA = 1) 

4.   In epoch 1 channels 2 and 3 should not be selected. 

5. In epoch 2 channel 2 should be selected and channel 3 should not be 

selected.  
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6. In epoch 3 channel 1 and 2 should both be selected and channel 3 

should not be selected. 

6.3.2: Selection properties 

In order to test the hypothesis that one of the functions of the basal ganglia is 

to select between competing inputs, the parameter sets found by SMC-ABC 

are tested for their ability to function in this way.  If the hypothesis is correct 

then the closer the simulations get to the fitting data the better they should 

function as selection mechanisms.  As such a test was conducted for a 

negative correlation between deviation-from-data and ability-of-the-

network-to-select.  The model was run in selection mode (fully described 

above) in which three channels are simulated.  Each channel is given a 

different time-varying cortical input and the relative GPi firing rate for each 

of the three channels is recorded (see Figure 6.3). 
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Figure 6.3.  Time series of 
the model basal ganglia 
network selecting between 
inputs.  
Multi-channel BG dynamics 
under time-varying cortical 
inputs.  Simulation is run 
using low dopaminergic 
input (DA = 0.2) and with 
the cortical inputs showed 
in the top plot.  Tests for 
selection ability of the 
model are done on mean 
GPi firing rates in each of 
the three temporal epochs 
shaded in grey.  Striatum) 
Both D1 and D2 striatal 
populations receive 
identical inputs from 
cortex.  D1 striatal activity 
is modulated upwards by 
the effects of dopamine 
while the D2 population is 
modulated downwards. 
GPi) A channel is defined as 
selected if is activity in the 
relevant epoch is below 
75% of the tonic GPi firing 
rate.  This corresponds to a 
release of the tonic 
inhibition	  of	  the	  GPi’s	  target	  
structures, permitting the 
execution of the action.  
Firing rates above the 75% 
threshold indicate that the 
channel is not selected.  
Accordingly, in the example 
displayed above, in epoch 1 
no channel is selected; in 
epoch 2 only channel 2 is 
selected; and in epoch 3 
only channel 1 is selected.  
When a similar simulation 

is run using a high level of dopamine (DA = 1) it is required that both channels 1 
and 2 be selected in epoch 3.  See selection tests for full details. 
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In order to check that selection ability improves as the model solutions get 

closer to the fitting data, not only the parameter sets in the final iteration 

were tested but also the parameter sets from earlier iterations in which the 

deviation from the fitting data was much higher.  The process of using SMC-

ABC to find the free parameters yielded 100 parameter sets for each of the 45 

completed iterations of the algorithm: a total of 4500 parameter sets.  Since it 

is reasonably computationally intensive to test for action selection all the 

parameter sets in only every fifth iteration of the SMC-ABC algorithm were 

tested.  In the early iterations of SMC-ABC the error threshold is extremely 

high meaning that the parameter sets that are found yield system solutions 

that have a large deviation from the experimental data.  As the algorithm 

progresses into latter iterations the error threshold is much closer to the 

experimental data.  The iteration number can therefore be thought of as a 

proxy for goodness-of-fit-to-data.   

For each of the selected iterations the percentage of parameter sets passing 

different numbers of tests was recorded (see Figure 6.4).  It was found that 

simulations run using parameter sets from early iterations (i.e. poor fit to 

data) passed far fewer of the tests for selection functionality than later 

iterations.  The early iterations have less than 10% of parameter sets passing 

all six selection tests.  By the final iteration over 55% of parameter sets pass 

all six tests.  During the SMC-ABC algorithm the root mean squared error 

(RMSE) for every accepted parameter set was stored.  This error value was 

plotted against the number of selection tests that were passed when the 
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model was run in selection mode (see Figure 6.4B).  The clear negative 

correlation between the two is evidence that the closer the model gets to 

physiological accuracy the better the network functions as a mechanism for 

selecting between competing inputs.  This is a novel result that has not been 

demonstrated before, lending further support to the suggestion that the BG 

functions as an action selection mechanism. In part, this analysis was enabled 

by the novel application of SMC-ABC estimation to BG network parameters. 
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Figure 6.4.  As the model 
approaches the data, 
selection functionality 
improves. 
One in every five of the 
iterations of the SMC-ABC 
algorithm had all 100 of 
their accepted parameter 
sets tested for their ability 
to permit the model BG 
network to function as a 
selection mechanism.  
Selection ability was tested 
by the application of six 
tests (see selection tests 
section).  The number of 
tests that were passed by 
each parameter set was 
recorded.  A) Early 
iterations of the SMC-ABC 
algorithm, where the fit to 
data is poor have a high 
percentage of the 
parameter sets not passing 
any of the selection tests, 
and a very small percentage 
passing all six tests.  Later 
iterations, where the fit to 
the data is much better, 
show a much higher 
percentage (over 55%) 
passing all six tests for 
selection ability.  B) Boxes: 

1st & 3rd quartiles.  Whiskers: 1.5 inter-quartile range. Crosses mark mean 
values. For every parameter set in every iteration in which selection ability was 
tested, the root mean squared deviation from the experimental data is plotted 
against the number of selection tests that were passed.  The high negative 
correlation (correlation of means: r = -0.997, p < 10-5) between the two 
variables shows that the closer the model network gets to the experimental data 
the better the network functions as a selection mechanism. 
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6.4: Consequences	  of	  network	  changes	  in	  Parkinson’s	  

disease 

Attempts were made to use SMC-ABC to find the connection strength 

parameters	   in	   the	   case	   of	   advanced	   Parkinson’s	   disease.	   	   This would have 

enabled a quantitative description of how connection strengths change from 

the healthy state to the pathological state.  This information has hitherto only 

been qualitatively assessed using experimental studies on animal models 

(see [50] for a review of these experimental results).  The search was 

constrained using two pieces of information; the fact that STN, GPe and GPi 

should all oscillate in the beta frequency range; and the mean firing rates of 

the GPe and STN.  There is little other reliable information on firing rates in 

macaque models of PD.  However, this data alone is insufficient to constrain 

the parameter space.  There is a wide range of parameter values that induce 

beta oscillations in the network, mostly found when the connection strength 

parameters are higher than in the healthy model.  This is in keeping with 

what is known about the changes that occur with the advance of PD (see [50] 

for a full review of this evidence).  Rather than attempting to fit the model 

parameters using these weak constraints it is more informative to use 

experimental studies to work out which connection strengths in the network 

are changed in the advance of PD as described below.  The model connection 

strengths were then changed in the same way and the effects on the action 

selection capabilities of the network were observed (see Figure 6.5). 
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A distinction is drawn between two kinds of experimental evidence; those 

that demonstrate changes in firing rate as an immediate consequence of 

dopamine loss; and those that demonstrate long term changes in connection 

strengths as the network adapts to the loss of dopamine.  For the purposes of 

changing network weights only the later is of interest: the former occurs 

naturally in the model by setting the DA parameter to zero.  Setting the 

dopamine parameter to zero does not produce oscillations in the vast 

majority of cases (see Figure 6.6C).  It does however markedly increase the 

overall firing rate of the GPi, severely impairing the ability of the network to 

select between inputs (see Figure 6.6B).  This indicates that it is more likely 

that it is the network adaptations to the loss of dopamine that cause the beta 

oscillations of PD rather than the loss of dopamine itself. 

Changes in network weights are likely to occur due to homeostatic plasticity 

mechanisms of neurons, whereby a neuron whose input becomes 

consistently lower or higher than usual can up or down-regulate the number 

and	   efficacy	   of	   glutamatergic	   or	  GABAergic	   receptors	   to	   bring	   the	   neuron’s	  

average firing rate back into its optimal range [205]–[208].  There is evidence 

that changes in the strengths of connections occur in the BG following 

chronic loss of dopamine.  In [209] average firing rates in the rat striatum 

were shown to increase following 6-OHDA hydrobromide lesion of 

dopaminergic neurons.  Mean firing rates moved from less than 1 

spikes/second pre-lesion to around 3.5 spikes/second 15-20 days after 

lesion.  Since the firing rates of the D1 and D2 MSN populations are 
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differentiated by the presence of dopamine, in its absence the two 

populations will theoretically fire at the same rate.  It is assumed that this is 

the case.  Therefore the effective connection strength from cortex to both 

striatal populations appears to increase as the MSNs adapt to the complete 

loss of all dopaminergic innvervation.  Using the same rationale that was 

used in the healthy case it can be shown that the effective connection 

strength of the cotico-striatal connection is around 10, roughly double that in 

the healthy condition.  Similar evidence for this change can be found in [210], 

[211]. 

Evidence from [212] indicates that the connection strength between cortex 

and STN is also increased in PD (though it remains unclear by what 

mechanism this change occurs).  Comparing cortically induced STN neuronal 

activity in diseased and healthy states showed that STN firing rate in the 

diseased state is more than double the firing rate in the healthy state.  A 

combined experimental and modelling study [213] confirms that the cortex 

to STN connection is significantly increased in PD.  Shen and Johnson [214] 

have showed that, in PD, GABA agonists give rise to greater GABAergic PSCs 

in STN neurons than in the healthy state, indicating that the connection 

strength between GPe and STN is increased in the diseased state.  As well as 

striatum, STN neurons are also innervated by dopaminergic neurons (not 

included in this model).  STN expresses mostly D2-type dopamine receptors 

indicating that dopamine loss should increase STN activity.  The increase in 

the connection strength between the GPe and the STN seen in the Shen and 
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Johnson study may arise as the STN up-regulates GABA receptors in an 

attempt to bring its firing rate back to normal. 

Shown in Figure 6.5C is the effect of multiplying the cortex-STN and cortex-

striatum connection strengths by 2 and the GPe-STN strength by 1.5 in the 

zero dopamine condition.  These results indicate that the parameter changes 

that are seen in PD serve to maintain selection functionality in the absence of 

dopamine.  As is the case in real PD, the model exhibits resting state 

oscillations that cease when actions are undertaken.  However, it should be 

noted that in real PD, resting state oscillations exist alongside impaired 

selection capabilities.  It may well be the case that this behaviour exists in the 

model if parameter values are tuned accordingly.  To fully analyse the 

transition to the PD state a bifurcation analysis should be conducted.  This is 

beyond the scope of the current work and is left for a future study. 

The mechanism whereby the oscillations are extinguished in our model is the 

saturation of STN firing rate at its maximum or minimum values.  Channels 

that receive a cortical input that is above background-level cause the active 

STN populations to fire at their maximum rate.  Channels with only 

background level input cause the STN population of their associated channel 

to cease firing altogether.  Under these conditions the information transfer 

through STN is rendered binary.  The diffuse excitation given to GPi from the 

STN therefore lacks any of the differences between active channels that are 

present in the healthy condition (see Figure 6.3).  However, selection 
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function is maintained by the focused inhibition coming directly to the GPi 

from the D1 striatal population, the direct pathway [215] 
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Figure 6.5.  Network 
changes in PD attempt 
to restore BG 
functionality. 
Model BG response 
to the same 3-
channel inputs as 
Figure 6.3 in three 
conditions.  In A and 
B model parameters 
(that were found by 
SMC-ABC) are as in 
Figure 5.11.  A) DA = 
1.  Healthy response 
when dopamine level 
is high.  Tonic firing 
rate when all 
channels have 
background level 
cortical input in the 
interval t=0-0.5s.  
Single channel 
selection at 
moderate inputs and 
the selection of two 
channels when both 
inputs are high.  B) 
DA = 0.  Immediately 
after DA loss.  When 

dopamine is completely absent no channels are selected at all, even when 
inputs are high.  C) Connection strength parameters are changed to reflect 
the major changes that are seen in advanced PD.  Connection strengths as 
above except Wctx-str and Wctx-STN are both twice their healthy values and WGPe-

STN is 1.5 times its value in the healthy state.  Selection capability is restored.  
However,	  when	  the	  BG	  network’s	  inputs	  are	  at	  cortical	  background level, 
significant beta oscillations exist.  Functionality is restored but at the cost of a 
resting state oscillation of 14Hz.  D) Possible remedy.  The oscillation can be 
removed while maintaining functionality by decreasing the connection 
strength between STN and GPe.  All parameters are identical to those in C 
except WSTN-GPe, which is 40% of its value in C.  
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6.5: Targeted GPe GABA antagonists as a possible 

treatment of PD symptoms 

Decreasing the STN-GPe strength halts the resting state oscillation while 

maintaining selection, even in the absence of dopamine (see Figure 6.5D and 

Figure 6.6B,C).  In our model all 100 model variants cease oscillating when 

the STN-GPe strength is down to 40% of its original value.  Immediately 

following dopamine loss the increased inhibition of GPe from the striatum 

leads to a diminished inhibition of the STN by GPe.  However, since cells have 

intrinsic mechanisms with which to maintain an average firing rate [205]–

[208], the reduced firing rate of the GPe may be compensated for by 

increasing the synaptic strength of STN afferents: the exact opposite change 

to that which would be required to remedy the oscillations.  This homeostatic 

mechanism of individual neurons may stop the network as a whole making 

the necessary connection strength adjustments that would otherwise allow 

selection to be maintained and free from oscillations, even in the zero 

dopamine condition.  This suggests a possible therapeutic intervention.  If the 

STN-GPe connection could be artificially weakened then the BG's natural 

network changes could be allowed to correct for the reduced dopamine levels 

without the induction of the resting state oscillations.  Indeed, it may be the 

reduction in the strength of this pathway that is responsible for the efficacy 

of the NMDA antagonist drug amantadine (l-adamantanamine hydrochloride) 

or the benefits of pallidotomies. 
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Figure 6.6. Change in selection functionality as DA and connection strengths 
change. 
A) STN and GPe feedback loop oscillating in the beta frequency range.  Time 
series produced using the same parameters as in t < 0.5 s in Figure 6.5c.  B 
and C) Each of the 100 parameter sets in the final iteration of SMC-ABC are 
compared under 4 conditions.  1) Healthy condition i.e. parameters left 
unchanged.  2) DA=0. Dopamine is set to zero but all connection strength 
parameters left unchanged.  3) PD.  Dopamine is left at zero but the weights 
are changed to reflect the changes seen in advanced PD.  Wctx-stn and Wctx-str 
are doubled. WGPe-STN is multiplied by 1.5.  4) STN-GPe. Parameters and 
dopamine level are as in the PD condition except WSTN-GPe is multiplied by 0.4.  
B) Average number of selection tests passed out of a maximum of 6.  The loss 
of dopamine causes a dramatic fall in the ability of the network to select.  The 
weight changes that occur in PD cause selection ability to be regained.  C) 
Frequency of GPi oscillations in each condition.  No oscillations in healthy 
condition.  Setting DA=0 causes low frequency oscillations in a very small 
proportion of cases.  The changes in connection strengths in PD cause the 
network to oscillate in 100% of cases.  Multiplying the STN-GPe strength by 
0.4 causes all 100 models to cease oscillating.  
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6.6: Discussion 

A new methodology is put forward for the testing of a computational 

hypothesis.  Rather than seeking model parameters that enable the system to 

function in the hypothesised way, the distribution of parameter values is 

sought that are in agreement with known experimental data.  These 

parameter sets are then tested for the hypothesised function.  Using this 

methodology the current work shows that the basal ganglia are well suited to 

the task of selecting between multiple inputs of varying strengths.  The model 

correctly predicts that dopamine loss leads, in the first instance, to the 

akinesia associated with the Parkinsonian condition.  When the changes that 

are seen in advanced PD are made to the network it also predicts that the 

network will produce beta oscillations when at rest that cease when actions 

are undertaken.  Our model supports the hypothesis that the beta oscillations 

recorded from the BG of PD sufferers arise as a result of the changes in the 

network that are a response to the loss of dopaminergic input, rather than 

the loss of dopamine itself.  A novel result from this work is that the model 

also illuminates the possible mechanisms of action of some treatments 

already in use; glutamate antagonists and pallidotomy. 

A	  number	  of	  other	  models	  have	  addressed	  the	  BG’s	  ability	  to	  select	  between	  

inputs [54], [55], [200], [201].  And many models have addressed the 

question of the transition to oscillations in the STN-GPe feedback loop [46], 

[49], [50], or the whole BG-thalamocortical system [213].  However, only 

Humphries et al. have modelled action selection and oscillatory phenomena 
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in the same study.  Their model was written at a detailed level of description, 

composed of populations of leaky-integrate-and-fire neurons.  While this 

approach has proved extremely useful, the model is far too detailed to allow 

numerical or analytic analysis.  The work of Gillies [46] showed that 

increasing the strength of the cortex-STN connection increases oscillations.  

However, many of their other conclusions rely on the assumption of 

significant self excitation in the STN.  The evidence for such a connection is 

not thought to be strong enough to play a significant role in either the 

selection of actions or the generation of oscillations  [47], [48].   

Nevado Holgado [50] showed, using a simple firing rate model of the STN-

GPe loop, that this self excitation was not necessary for the generation of beta 

oscillations and demonstrated the importance of time constants and delays to 

the presence and frequency of oscillations.  In their study a healthy and a 

diseased parameter set were found and the transition into advanced PD was 

modelled as a linear transition of connection strengths from one to the other.  

While this approach was a useful simplification for the purposes of an 

analytical treatment our current work shows that there is a multitude of 

ways that the network can change that give rise to beta oscillations.  Thus the 

linear progression from health to one specific pathological state may be an 

oversimplification.  This may have clinical implications in that the BG 

network	   in	   Parkinson’s	   sufferers	   may	   have	   changed	   in	   different	   ways	  

between patients, but the observable behavioural symptoms would be the 

same.  It may prove fruitful to use what is known of homeostatic plasticity to 
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attempt to plot the distribution of possible connection strength changes as 

PD progresses.  The changes seen in animal models, in which dopamine loss 

happens extremely quickly, may be different from the changes that occur in 

human PD when dopamine loss is much more gradual.  It is an idea worth 

investigation that the efficacy or otherwise of particular treatments may be 

explainable by the differences in network changes between patients.  Our 

model is well suited to exploring this space of strength changes and this is an 

area of study that is ongoing.  

A significant difference between the current work and the NH study is that in 

the current analysis a low background-level of cortical input (4Hz) to the 

striatum and STN is used whereas NH used a value of 27Hz.  A low spike rate 

was used because the monkeys from which the fitting data was recorded 

were not performing any tasks.  The current work shows that this 

assumption was well founded, since the model correctly predicts beta 

oscillations only in the resting state, as is the case with the behaviour of PD 

sufferers. 

Our model seeks to combine the benefits of the many BG modelling studies 

that preceded it.  It includes sufficient physiological detail to give an accurate 

description of how the firing rates of neural populations interact, but it is not 

so complex that numerical analyses become intractable.  The compact 

framework of the model enables the modelling of multiple channels.  This is 

of particular importance when modelling PD since it is a disorder in which 

symptoms exist as both a deficit in selection ability and pathological 
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oscillations.  These are intimately connected phenomena.  Our model 

constitutes the first purely mathematical treatment that can address these 

issues simultaneously. 

Observations of model behaviour indicate that the parameter value ranges 

found by SMC-ABC yield stable solutions under most combinations of inputs 

and dopamine levels.  In instances where the model displays oscillatory 

behaviour the frequencies of the oscillations fall into two distinct groups: 

about 10-20Hz and about 60-80Hz.  Experimental observations have been 

made which find that the spectral activity in the BG does indeed have 

significantly higher activity in these frequency ranges [216].  In the healthy 

model these oscillations seem to occur in channels in which the cortical input 

is above baseline but the channel is not selected.  To formalise and fully 

understand the nature of these oscillations it will be necessary to conduct a 

numerical bifurcation analysis of the model, focusing on input level, 

dopamine level and a parameter governing the weight changes involved in 

disease progression.  This work is ongoing and is beyond the scope of the 

current paper.   

Since our current work suggests that the resting state oscillatory phenomena 

emerge as a consequence of connection strength changes, it will be useful to 

attempt to uncover the gradual network changes that are seen as PD 

progresses.  This could help us to understand the differences between the BG 

connection strengths of individual PD sufferers, and may enable us to 

uncover why certain treatments work for some individuals and not others. 
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6.7: Summary 

x A new principled methodology for testing a computational hypothesis 

is put forward.  Firstly build model connectivity and parameters 

according to what is known of the physiology.  Secondly, find the 

distributions of the unknown parameters using a sampling-based 

Bayesian estimation technique.  Thirdly, test all identified parameter 

sets for their ability to perform the hypothesised function.  A 

correlation between ability to perform the function and the goodness 

of fit to the experimental data should be taken as evidence in favour of 

the hypothesis. 

x The hypothesis that the BG performs action selection is tested using 

the above methodology.  It was found that the hypothesis should be 

accepted. 

x Setting the level of dopaminergic innervations of the striatum of the 

model leads to increased average activity in the BG output nucleus and 

so a loss of selection capability.  However, setting dopaminergic 

innervations to zero does not directly lead to resting state oscillations. 

x When the same changes are made to the network that occurs with the 

advance of PD, two notable effects are observed.  1) Selection 

functionality is restored, even in the absence of any dopaminergic 

innervations.  2) A resting state oscillation in the beta frequency range 

occurs.  As is the case in real PD, the oscillations cease when cortical 

input increases above baseline. 
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Chapter 7: Conclusions and Future Work  

Detailed discussion of each part is given at the end of each chapter.  Here is 

outlined the main conclusions of the work as a whole and the general 

directions for future work in this area.   

The main and most general conclusion from the work undertaken is that 

models of mass action of neural activity are an extremely useful method for 

assessing healthy and pathological neural activity at the systems level.  

Results from the work in Chapter 3 demonstrate the effectiveness of 

analysing temporal features of clinical EEG recordings rather than using 

solely spectral data as is most often the case.  Bifurcation analysis of the 

neural mass model showed that the model was capable of replicating all the 

classes of waveform profiles that were seen in the EEG recordings from focal 

onset epilepsy suffers, and also showed that seizures follow a characteristic 

evolution over the timescale of each seizure.   

Moreover, the statistical analysis showed that different seizures from the 

same patient followed the same temporal evolution, whereas seizures from 

different patients follow slightly different evolutions.  However, the analysis 

also exposed some similarities between seizures from different patients.  For 

example all seizures began with a period of pseudo sinusoidal oscillations, 

moving through a period of apparently chaotic behaviour before ending the 

seizure with a period of spike and wave activity.  The bifurcation analysis 
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showed that a wide variety of dynamics are possible with only small 

variations in the values of a small number of parameters.  Of particular 

importance were the parameters governing the gain in the fast and slow 

inhibitory feedback loops.   

From this analysis it can be concluded that the dynamics of epilepsy critically 

depend on the balance between fast and slow inhibition in hypocampal 

cortex.  These observations could be used to inform future experimental 

work focusing on seizure prediction and cessation.  Future work in this area 

will focus on precisely fitting the parameters of the model to the clinical data 

in	   order	   to	   plot	   the	   characteristic	   path	   that	   each	   patient’s	   seizures	   take	  

through the low dimensional phase space.  This kind of patient specific 

modelling is becoming increasingly possible and has already been 

implemented in models absence epilepsy [92].  Its extension to the far more 

technically challenging problem of focal onset seizures will be enable these 

insights to benefit a far greater number of epilepsy sufferers. 

In chapter 4 a Bayesian parameter estimation technique called approximate 

Bayesian computation (SMC-ABC) is described.  Since this technique has not 

previously been used in neural modelling its use was validated by replicating 

the results a previous study.  Since the results are consistent with those from 

the previous study, it was concluded that SMC-ABC is a suitable tool for 

finding the parameters of neural models. 

The most significant conclusion from the work contained in Chapter 5 is that 

firing rate models can be constructed such that they better represent the 
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richness of dynamics that are displayed in real neurons without the need to 

model unknown intracellular processes.  By parsimoniously modelling only 

the input/output relationships between nuclei and their afferents using a 

second order formulation and variable time constants there is sufficient 

detail to permit the models to be accurately parametised using dynamical 

time series data.  It has been shown that approximate Bayesian computation 

is a suitable tool for finding the parameters of neural models for a number of 

reasons.  Neural models are invariably highly complex and nonlinear and so 

the likelihood function is often difficult to compute.  ABC functions best when 

low dimensional but highly informative data is used to constrain the search 

and this is exactly the kind of information that is common in the experimental 

neuroscience literature.  The new methodology defined in this thesis will 

generalise well to other neural modelling problems. 

Conclusions from Chapter 6 are related to the functionality and pathology of 

the basal ganglia.  In the first instance, evidence was found that the basal 

ganglia are tuned to select between competing cortical inputs.  Finding the 

parameters of the network according to firing rate data yields networks that 

disinhibit channels for which the inputs are higher than competing channels, 

as would be required from a selection mechanism.  While the hypothesis that 

the basal ganglia is a selection mechanism has gained significant support 

over the last decade, support for the idea is not universal [201], so 

independent theoretical evidence is an important step forward. 
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The	   simulation	   of	   the	  development	   of	   Parkinson’s	   disease	   in	   the	  model,	   by	  

setting the dopamine parameter to zero and increasing the connection 

strengths between certain experimentally identified nuclei, leads to the 

conclusion that the pathological increase in beta band oscillations is caused 

not by the decrease in dopamine directly, but rather by the network changes 

that arise as the network adapts to the reduced dopamine.  The simultaneous 

analysis of both oscillations and basal ganglia functionality has demonstrated 

how these two phenomena interact.  The network connection strength 

changes	   that	   are	   seen	   in	   Parkinson’s	   disease	   seem	   to	   serve	   to	   restore	   the	  

selection functionality of the network, even in the absence of dopamine.  

However, as the network continues this adaptation, a point is reached 

whereby the stability of the network cannot be maintained in the resting 

state.  At this point the network oscillates in the beta frequency range, as is 

seen	  in	  Parkinson’s	  sufferers.	  	   

Future work will focus on conducting a rigorous bifurcation analysis of the 

model in order to illuminate this transition to an oscillatory stable state.  

Parameters of particular importance to this analysis are the level of input 

from the cortex, the level of tonic dopamine and a parameter governing the 

change of the network connection strengths between the healthy state and 

the advanced disease state.   

This modelling framework could be used to produce patient specific models 

of	  Parkinson’s	  sufferers.	  	  Experiments could be conducted on PD sufferers to 

assess their motor deficits and selection function and the data will be used to 
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find the parameters of models of their BG.  Until the work contained in this 

thesis was completed, the only models that were capable of quantitatively 

describing both the selection functionality and the pathological oscillatory 

phenomena were models that used many spiking neurons and contained a 

great deal of physiological detail with a large number of parameters.  It is 

likely that the high number of parameters in these models will mean that 

there is too many degrees of freedom in the models, leading to overfitting 

and poorly constrained parameter value ranges.  The low dimensionality of 

the model described in this thesis, combined with its direct quantification of 

connection strengths between nuclei, make this model ideally suited to this 

patient specific modelling of network changes. 
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