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Abstract

Frequency tunable quantum cascade lasers (QCLs) with a broad wavelength tuning range

are highly desirable in chemical sensor/spectroscopic applications owing to the wide range

of frequencies, from terahertz up to mid-infrared, which must be scanned. QCLs represent

the only convenient, low-cost radiation source over this range of frequencies, however little

progress has been made in achieving broadband tunability. Surface acoustic waves (SAWs)

present an opportunity for achieving broadband modulation by passing a SAW through the

gain medium of the QCL. The electric field generated by the SAW via the piezoelectric effect

will modulate the carrier concentration within the gain medium causing distributed feedback

(DFB) in the QCL. Unlike conventional DFB mechanisms such as etched gratings on the

QCL surface, the wavelength of the SAW, and therefore the pitch of the DFB, can be altered

allowing tunability in the QCL frequency.

In this work, a theoretical investigation into the interaction between a SAW and the

free-carriers within the QCL active region is presented, with particular focus on whether

this interaction is strong enough for DFB to occur. Numerical models of both QCL active

regions and SAW propagation through semiconductor materials are developed and used in

conjunction to simulate the modulating effect of the SAW on the carrier concentration in

the QCL. It is shown that the magnitude of this modulation is large enough for DFB occur,

giving a DFB coupling constant comparable to, if not larger than, many experimentally

demonstrated DFB QCLs. Finally, device design recommendations are presented which aim

to maximise this DFB coupling constant in order to give the widest possible tuning range of

the QCL emission frequency.
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Semiconductors(2012).

• Modelling surface acoustic wave modulation of the carrier concentration in quantum

cascade lasers for broadband tuneability, J.D. Cooper, A. Grier, A. Valavanis, L. Lever,
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Chapter 1

Introduction

This thesis develops a theoretical model for the simulation of surface acoustic wave (SAW)

modulation of quantum cascade lasers (QCLs). The main aim is to establish the level of

modulation achievable in order to determine if this is a viable method for achieving a tun-

able, single mode emission QCL for use as a high power, convenient radiation source for

spectroscopic applications. This chapter gives and overview of QCL and SAW technologies

as well as the applications for a tunable terahertz and mid-infrared radiation source. It is

assumed that the reader is familiar with semiconductor and laser physics and has a basic

understanding of simple computational techniques.

1.1 Quantum Cascade Lasers

Since their first demonstration in 1994 by a group at Bell Labs [1], quantum cascade lasers

(QCLs) have attracted a great deal of interest from researchers and industry alike. Aside from

their potentially high efficiencies and output powers, the most attractive feature of QCLs is

the ability to choose the emission wavelength through careful design work, rather than being

confined by the range of available bandgaps as is the case with conventional semiconductor

lasers. This restriction occurs within conventional semiconductor lasers because the emission

is generated by electrons decaying across the bandgap, therefore the emission wavelength will

always correspond to the energy gap of the bandgap. The emission from QCLs, on the other

hand, is generated from electrons scattering between different electron energy levels which

exist within a carefully designed, periodic semiconductor heterostructure. These electron

energy levels may be altered by changing the widths of the quantum wells (QWs) which

make up the metros truce, allowing the transition energy of the laser, and hence the emission

wavelength, to be chosen at will.

1



2 1.1. Quantum Cascade Lasers

QCLs have enabled high powered laser emission at wavelengths which were previously

inaccessible to conventional lasers, namely in the far-infrared and terahertz regions of the

electromagnetic spectrum. This has lead to a large amount of research interest within these

frequency ranges, with potential applications including medical imaging, security screening,

spectroscopy for the detection of illicit materials as well as explosives, and communication

applications. (For an overview of QCL applications see [2, 3, 4, 5, 6]). Since QCLs are

currently the only convenient, high-power source of terahertz and far-infrared radiation, a

great deal of research has gone into their development. In particular, there is a strong need

for reliable QCLs which can operate up to room temperature and beyond, as this will allow

QCL applications to become commercially viable.

Infrared QCLs have far better performance than their terahertz counterparts. This is

mainly due to the larger energy gap between the upper and lower lasing levels meaning that

thermal back filling will be significantly reduced, resulting in higher operating temperatures,

and the larger wavelengths meaning that sub-wavelength waveguides need not be used to

couple the generated radiation out of the laser meaning lower loses. This higher performance

is reflected in the important dates in the development of infrared QCLs. The first room

temperature operations (pulsed-mode) was achieved in 1996 by Faist et al. [7], with the

continuous wave room temperature operation being realised in 2003 by Yu et al. [8]. By

comparison, terahertz QCLs have still yet to demonstrated at room temperature with the

highest achieved temperature to date being 199.5 K achieved in 2012 by Fathololoumi et

al. [9].

In the simplest explanation, the operation of QCL is analogous to a ball rolling down

a flight of stairs, where the ball represents the flow of electrons through the structure, and

the stairs represent the energy levels which exist within the QCL. Firstly, electrons must be

transported along the flat section of each step, a process which is facilitated by the applied

bias across the QCL forcing electrons from one side to the other. Once at the drop between

each step, electrons will scatter to the lower energy level emitting photons as they do so. This

is, of course, a greatly over simplified picture of a QCL. In reality, their periodic structure

is made up of two different alternating layers; an active region and an injector. The active

region is made up of an upper and lower laser level, and it is the transition of electrons

between these two states that produces photons. The upper laser level is designed to have

a relatively long lifetime, such that electrons will will exist in this state for a relatively long

time before they decay. This, along with the fact that the lower laser level has a short lifetime

due the large overlap with an extraction state which moves electrons very quickly into the
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injector region, means that there is a population inversion between the two states which is

a key condition for laser action. The injector has two main purposes; to couple strongly

to the lower laser level to quickly transport electrons out of the active region (hence giving

the lower laser level its short lifetime), and to quickly transport electrons to the upper laser

level of the next active region where they can decay via stimulated emission. The two main

types of QCL are defined by the mechanism which is employed to scatter electrons through

the injector region. Bound-to-continuum designs use a miniband of strongly coupled states

which are also strongly coupled to the lower laser level, making it preferable for electrons to

tunnel out of the bottom of the active region and through the miniband.The upper laser level

of the next active region normally extends into previous miniband, such that electrons at the

bottom of the miniband will tunnel straight into the next active region. Resonant-phonon

QCLs separate the lower laser level of one active region and the upper laser level of the next

active region by LO-phonon energy, making electrons in the lower laser level scatter very

readily into the next active region by emitting an LO-phonon.However, because the energy

of the lasing transition is relatively small compared to the LO-phonon energy, scattering via

phonon emission cannot happen too close in real space to the lasing transition, as it will

become preferable for electrons in the upper laser level to scatter via phonon emission and

therefore affect the population inversion. Instead, electrons in the lower laser level are forced

to tunnel into adjacent QWs via an almost degenerate state which extends into the injector,

where they can safely scatter via phonon emission.

1.2 Surface Acoustic Waves

The phenomenon of acoustic waves bound to a propagation mode close to the surface of an

elastic solid was first explained by Lord Rayleigh in 1885 [10]. Surface acoustic waves (SAWs)

would remain as little more than a mathematical concept until 1965 when the invention of

the interdigitated transducer (IDT) by White and Voltmer [11] allowed SAWs to be easily

generated on piezoelectric substrates, enabling possible applications of SAW technologies to

be explored.

An IDT device consists of a series of perpendicular rectangular strips or fingers patterned

onto a piezoelectric substrate as shown in figure 1.1, with alternate fingers connected to

opposite supply rails which, in tern, are connected to opposite sides of an oscillating voltage

source. Since alternate fingers are connected to opposite sides of the voltage source there

will be an electric field of alternating sign between each pair of fingers. This electric field
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will permeate into the substrate where, owing to the piezoelectric effect, it will generate

areas of localised strain in between each finger pair. Furthermore, because the oscillating

applied voltage source, these localised areas of strain will oscillate in magnitude causing an

acoustic wave to propagate radially downwards from between each finger pair, as shown by

the dashed lines in figure 1.2. As there are multiple finger pairs, multiple acoustic waves will

be generated within the substrate and will combine to give an interference pattern which will

be dependent upon the spacing between each finger. For an IDT device the spacing from the

middle of one finger to the middle of the next is half the desired wavelength of the SAW,

λ
2 , which is determined by the acoustic velocity of the substrate. With this spacing between

fingers, and therefore between the epicentres of each generated radial acoustic wave, the part

of the acoustic wave which travels along the substrate’s surface will constructively interfere

with the other acoustic waves generated as it passes through their points of generation,

as also shown in figure 1.2 by the red and blue shaded areas within the substrate. This

constructive interference gives a large acoustic wave magnitude near the substrate surface,

whereas destructive interference gives a small magnitude at greater depths. Since the spacing

between each finger is physically set by the desired SAW wavelength, the IDT will have a

resonance at this frequency and applying a frequency at anything other than this frequency

will produce less constructive interference and therefore a less powerful SAW. The shape

of the response of an IDT follows that of a cardinal sine function, owing to the points of

constructive interference coming in and out of alignment as the applied frequency is varied,

as discussed further in chapter 4.

Figure 1.1: An IDT device made of surface metallised fingers, each connected to alternate bond-pads.

As a greater number of finger pairs will lead to more constructively interfering acoustic
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Figure 1.2: Cross-section of the interference pattern of the acoustic waves below the substrate

surface, underneath an IDT. The red and blue areas indicate regions of induced stress of different

signs which propagate radially downwards from in between each finger pair. (The peak amplitudes

of the radially propagating waves are shown by dashed lines for clarity.) With the periodicity of the

fingers at λ
2 of the applied oscillating frequency (as shown here), each peak will constructively interfere

with the peak generated underneath the adjacent IDT pair close to the surface. This produces an

almost entirely surface bound acoustic wave which propagates from each end of the IDT.

waves and therefore a greater SAW amplitude, IDT devices often employ a large number of

finger pairs as is feasibly possible. For the lowest frequency IDT devices, with frequencies

of the order of megahertz the SAW wavelength will be of the order of centimetres (since

the acoustic velocity in most crystalline solids is of the order of 3000 ms−1), meaning that

space is at a premium and the IDT devices may only 5-10 finger pairs [12]. For the highest

frequencies achievable — the highest of which was 23.5 GHz [13]1, the SAW wavelength is of

the order of 100 nm meaning that space is not an issue and the IDTs typically have up to

several hundred finger pairs to produce a more powerful SAW.

An IDT device may be used to convert the energy of SAW passing underneath it into an

electrical signal just as it can be used to generate a SAW from a signal — a SAW passing

underneath the IDT will induce a voltage in the surface metallisation from the piezoelectric

effect; if the SAW is of the same wavelength as the resonant wavelength of the IDT then the

voltage of alternate fingers will constructively add. Because of this sensing ability of IDTs,

a basic SAW device can be made by placing an IDT at each end of the substrate, such that

a SAW may be excited by one IDT and detected by the other.

The large research interest and quick development of SAW devices after the invention

1Note that this frequency is the highest achieved because of the extreme difficulty in fabricating an IDT

on this scale, with fingers that are tens of nanometres across. For a discussion of these fabrication difficulties

see [13, 14].
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of the IDT meant that by the late 1970’s SAW filter electronics were included in a range

consumer, commercial, and military devices from TV’s to radar systems [15]. By the 1980’s,

the high insertion losses (> 6 dB) associated with IDTs at the time meant that SAW devices

were unsuitable for higher frequency applications such as RF. This led to more exotic designs

of IDT and the creation of pseudo-SAW devices, which utilise propagation modes that are

similar but distinctly different from the original surface bound mode [12]. The development

of these pseudo-SAWs, as well as the discovery of new piezoelectric materials, led to a vast

improvement in device performance, and by the late 1990’s SAW-based RF devices could be

found in a wide range of mobile and wireless communication products.

In recent years, a large proportion of the research that utilises SAWs has been focused on

quantum transport. The transport of single electrons across quasi-one-dimensional channel

(Q1DC), created by depleting a two-dimensional electron gas (2DEG) so that only a thin

channel in the centre remains, was first demonstrated by Shilton et al. in 1996 [16]. Since

then, a wealth of research has gone into exploring how SAWs interact with 2DEGs. There have

been many theory papers published to quantitatively explain this phenomenon [17, 18, 19, 20],

all of which rely on the exact solution of the differential equations which describe SAWs

[21]. While there are many very useful applications for single electron transport such as

quantum information processing, the impact of this has been small because it can only be

done within an experimental setup (i.e. at very low temperatures) and therefore most useful

applications have yet to be properly realised. Such experiments have, however, allowed for

great developments in the emerging field of quantum metrology, whereby physical parameters

may be measured incredibly accurately using quantum effects.

In terms of numerical simulation work, there has been little done on SAWs propagating

through crystalline semiconductors. In the literature, Cambiaggio et al. published a paper

in 1978 defining a scheme for converting the differential SAW equations into a set of finite

difference equations [22]. While this scheme was specific for the LiNbO3 material system, and

therefore lacks generality, it is a good starting point showing how the finite difference method

can be applied to SAWs. There have also been other more general simulations of SAWs such

as [23], however these often employ very complicated methods such Greens functions making

them difficult to implement.
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1.3 Surface acoustic wave modulation of quantum cascade

lasers

The concept of utilising a SAW to induce distributed-feedback-like modulation of a QCL

was proposed in 2003 by Kisin et al. [24]. The idea was to generate a propagating SAW

within the QCL ridge such that the electric field wave that moves with the SAW (via the

piezoelectric effect) will interact with the active region, attracting free carriers to the areas

of high potential, therefore modulating the carrier concentration along the axis of the SAW

propagation direction. This modulation in carrier concentration will affect not only gain of

the QCL active region, but also the electrical contribution to the refractive index, i.e. the

atomic susceptibility [25], giving them both a periodic modulation corresponding to the pe-

riodicity of the SAW. It is the combination of these two effects that preferentially amplify

the electromagnetic modes within the laser cavity whose points of maximum amplitude (de-

pendent upon the refractive index) correspond with the points of maximum gain; the same

mechanism which distributed feedback (DFB) QCLs utilise [26]. Since the modes which exist

within the laser cavity vary with frequency, i.e. the Fabry-Pérot modes of a laser cavity,

this mechanism allows one mode to selected thereby achieving single mode emission from a

QCL. The advantage of utilising a SAW-modulated QCL approach to achieve this is that the

frequency of the SAW may be altered, changing the periodicity of the modulation and the

frequency of the selected mode therefore allowing tunability of the single mode emission, un-

like DFB QCLs which achieve single mode emission via an etched grating in the top contact

of the QCL giving a fixed emission frequency.

A tunable, single-mode QCL is highly desirable in chemical sensor/spectroscopic appli-

cations where a wide range of frequencies, from terahertz up to mid-infrared, are required to

excite different inter- and intra-molecular vibrational modes within a sample to give infor-

mation about its chemical composition and structure. (For a overview of these applications

see [27, 28, 29, 30, 31] and the papers therein.) Unlike current spectroscopic sources such as

lead-salt lasers [32], systems which utilise a high-power gas laser to excite an Austin switch

and generate a broadband pulse over the desired frequencies [33], or external cavity QCLs [34],

SAW-QCL devices represent the only high-powered, convenient sources with the potential to

be tuned over the required range of frequencies [35].

Despite the potential advantages of SAW-modulated QCLs, the only attempt within the

literature to physically realise a device of this nature was by Salih et al. [36]. Within their

design, a QCL ridge was fabricated and mounted onto a separately fabricated SAW device, in
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between the two IDTs in the path of the SAW such that the long axis of the QCL is aligned

with the SAW propagation direction, as shown in figure 1.3. Since the SAW will be generated

within the substrate which the QCL is mounted on top of, this design relies upon the SAW

moving from the substrate up into the QCL ridge in order for modulation of the QCL active

region carrier concentration to occur. The potential SAW propagation paths are illustrated

in figure 1.4. There are two features of this design which aim to facilitate this movement of

SAW energy into the QCL ridge. Firstly the facets of the QCL angled producing a sloped

surface which the SAW must travel up. This aims to reduce the scattering of the SAW at the

discontinuity between the surface of the substrate and the QCL ridge, analogous to a tapered

waveguide, such that SAW will travel smoothly form the substrate into the QCL ridge. This

does, however, reduce the effectiveness of the QCL ridge as a resonant cavity and therefore

degrades the performance of the QCL; full details of which can be found in [37]. Secondly the

height of the QCL ridge has been reduced, from around 15µm typically used with this QCL

design2 down to 5µm, as detailed in [39]. This aims to reduce the size of the discontinuity

between the substrate surface and the QCL ridge, again reducing the amount of scattering

of the SAW at thus continuity and increasing the amount of SAW energy which enters the

QCL ridge. Despite these design features, a measurable modulation in the QCL output from

the SAW was not detected with this device. This was in part due to the difficult nature of

the fabrication of this device (full details of which can be found in [36]), but also due to the

unknown amount of SAW energy which is scattered at the discontinuity in the surface of the

device and therefore the unknown level of modulation which can be expected in the QCL

active region carrier concentration.

With these concepts in mind, a theoretical study of SAW propagation through QCLs

is required to answer three important questions about these devices that cannot be easily

answered experimentally. Namely, the amount of SAW energy which moves from the substrate

of the SAW device up into the QCL ridge, the level of modulation of the carrier concentration

within the active region of the QCL (as well as the depth of that modulation since the presence

of free charge may screen the effect of SAW and stop it modulating the entire depth of the

active region), and how that modulation in carrier concentration effects the gain and refractive

index of the QCL. These questions are the concern of this thesis.

2The QCL active region used by Salih et al. was the Luo et al. three-well active region design [38].
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Figure 1.3: The SAW modulated QCL device design as proposed by Salih et al. [36] consisting of

a QCL cavity mounted on top of SAW device. The propagation of direction of the SAW is aligned

within the QCL long-axis and the QCL facets have been angled to try and help the SAW move from

the substrate into the QCL cavity.

1.4 Thesis Structure

The main of this thesis is to provide the tools to perform theoretical study into SAW propa-

gation through QCLs in order to test the validity of using SAWs to achieve DFB modulation

of QCLs. There are three main unknowns which this study aims to find, as they cannot be

easily determined experimentally. Namely, the amount of SAW energy which moves from the

substrate of the SAW device up into the QCL ridge, the level of modulation of the carrier

concentration within the active region of the QCL (as well as the depth of that modulation

since the presence of free charge may screen the effect of SAW and stop it modulating the

entire depth of the active region), and how that modulation in carrier concentration effects

the gain and refractive index of the QCL.

Chapter 2 is concerned with the modelling of semiconductor heterostructures, which is

required to determine the electronic structure of QCLs. A novel method for the direct solution

of the nonparabolic Schrödinger equation is also derived, allowing the quantum states within

a heterostructure to be found both accurately and reliably in material with high conduction

band offsets such as GaN. The self-consistent Schrödinger-Poisson solution is also examined

for both performance and accuracy, allowing charge effects to be included in the calculation.

Chapter 3 derives the acoustic wave equations of motion from first principles and details

how these may be discretised to produce a time-dependent model of acoustic wave prop-

agation. Since this is an open domain simulation, novel perfectly-matched-layer boundary
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Figure 1.4: The potential paths of the SAW as it moves from the substrate into the QCL cavity,

either moving completely up into the QCL cavity and staying as surface bound propagation mode

(top) or scattering in to a bulk propagation mode as it hits the discontinuity in the surface such that

much of the energy of the acoustic wave does not enter the QCL cavity and does not contribute to

modulation (bottom).

conditions are derived to solve the problem of reflections off the simulation domain boundaries

interfering the physics within the region of interest. This model is then extended in chapter 4

to include a surface boundary condition such that SAW propagation may be simulated. A

model of IDTs is also developed to excite the SAW simulation and an experimental validation

of this model is also provided.

Extensions to the SAW model, which are required to simulate SAW modulation of QCLs,

are presented in chapter 5 along with a rate-equation model of QCL active regions which

is used to determine the gain and total refractive index of the QCL. These two models are

then combined to show the level of modulation in the gain and refractive index which can be

expected from SAW modulation. These results, as well as those from previous chapters are

summarised in chapter 6, along proposals for further work for which this thesis could serve

as a basis.



Chapter 2

Modelling semiconductor

heterostructures

Semiconductor heterostructure devices, such as QCLs, utilise careful engineering of the elec-

tronic band structure in order to enhance desirable properties required by the device. This

band engineering is achieved by controlling the thickness of each individual semiconductor

layer within the heterostructure, and therefore the thickness of each quantum well / barrier

within the devices band structure. Within the context of QCLs1, the desirable properties re-

quired are those which allow the device to be used as a laser gain medium, i.e. a population

inversion[40]. Since these properties depend upon the quantum processes (predominantly

scattering and tunnelling within QCLs) through which free carriers move through the band

structure [41], it is required that the quantum states, on which these properties depend, are

accurately found. This is done by solving the Schrödinger equation.

Since the heterostructure devices utilise confinement in one direction, the only variation

in their structure is along the direction of this confinement meaning that the quantum states

within the structure need only be found in one dimension. Furthermore, as QCLs are steady-

state devices, the time-dependent variation in these states may be ignored and they may

be found using a time-invariant method. Therefore, the time-independent one-dimensional

Schrödinger equation may be used to find the desired quantum states. While there are

freely available programs which will solve Schrödingers equation such as Nextnano [42], using

third-party software is less flexible and not open to further development/improvement in the

way that in-house software is. Furthermore, within the quantum electronic group at the

1Since holes do not contribute to the operation of QCL devices, the scope of the discussion will limit to

the consideration of holes for the remainder of this thesis.

11
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University of Leeds there is a long history of developing in-house simulation tools including a

solution to the time-independent one-dimensional Schrödinger equation, details of which can

be found in [41, 43, 44, 45] and the references therein.

Within this chapter a model for solving the time-independent one-dimensional Schrödinger

equation is presented allowing the quantum states within a semiconductor heterostructure

to be accurately determined. This model is then extended to use a nonparabolic dispersion

relation which increase the range of validity of the model, allowing heterostructures with

large conduction band discontinuities to still be simulated accurately. Charge effects on the

semiconductor bandstructure are considered next by solving the Poisson equation for the

distribution of free charge within the structure as found by solving the Schrödinger equation.

By combining the Schrödinger and Poisson solutions into one self-consistent loop, as shown at

the end of this chapter, the quantum states within a heterostructure may be found including

the effect free charge which changes the shape of the semiconductor bandstrucutre (and in

tern the free-charge distribution). This allows QCL bandstrucutres to be accurately modelled

with different doping concentrations, and therefore different amount of free charge within the

active region, which is crucial in determining the effect of the SAWs modulation on the QCL

active region carrier concentration on the operations of the QCL. (This is discussed in detail

in chapter 5.)

2.1 Time-independent Schrödinger equation

The simulation of optoelectronic semiconductor heterostructure devices often begins with

solution of the time-independent SE:

−~2

2

∂

∂z

(
1

m(E, z)

∂

∂z
ψ(z)

)
+ V (z)ψ(z) = Eψ(z) (2.1)

where m is the mass of a particle described by the wavefucntion, ψ, confined within a po-

tential, V , with some energy, E. The solution of this equation gives a set of basis states

(eigenvectors) and corresponding energies (eigenvalues) from which one can predict the car-

rier distribution as well as their transport between states with a heterostructure [41].

2.1.1 The effective mass approximation

The effective mass approximation (EMA) is an essential tool for solving the Schrödinger

equation (SE) in semiconductor heterostructure devices. As well as greatly reducing the

computational time required to find a solution to just a fraction of a second,2 this approx-

2A full bandstructure calculation can take many hours to complete.
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imation simplifies the problem immensely allowing one to have an appreciation for what is

going on within the electronic structure of a semiconductor, without the need to implement

a complicated, in-depth model of the underlying physics (such as density-functional-theory

simulation). The main assumption is that charge carriers confined within a semiconductor

(i.e. electrons and holes) will have a relatively low momentum, and therefore on the curve

of energy vs momentum, the dispersion relation, only relatively low energies need to be con-

sidered, i.e. much lower than the band gap of the semiconductor. For low momenta the

dispersion relation in most semiconductors is approximately parabolic, which is the same as

the dispersion relation for a particle in free space. An empirical scaling parameter called

the effective mass can be used to fit the parabolic dispersion relation of a semiconductor to

that of free space, hence treating charge carriers within a semiconductor as if they are in free

space, only with some new effective mass.

Assuming that the dispersion relation for charge carriers is parabolic inherently implies

another important approximation; the envelope function. The best way of explaining the en-

velope function is to carefully consider why it is implied by the EMA. Firstly, consider what

the EMA is actually doing to the way charge carriers are treated; they are now thought of as

behaving exactly like they would do in free space only with a different value for their mass.

Secondly, consider the difference in electrical potential energy between free space and in a

semiconductor; free space will have a constant potential (depending on the applied electric

field), whereas a semiconductor has a rapidly varying periodic crystal potential, created by

the outer shell of electrons surrounding each atom. Because charge carriers within a semicon-

ductor are now assumed to behave exactly as they would in free space, the electrical potential

within the semiconductor must also be assumed to be the same as in free space for the EMA

to be valid. This leads to the widely accepted simplification of bulk semiconductors having

a valence and conduction band each with constant potential edges, with different materials

having different values for the band edges due to their unique crystal potentials. This allows a

semiconductor heterostructure to be thought of as a series of one dimensional quantum wells

which arise from the discontinuity in band edges between each material. Solving the SE for

this simplified quantum well model of a heterostructure does not give the real wavefunction

of a carrier within the crystal, which is a rapidly varying function on the scale of the lattice

constant, rather it gives the envelope function of the wavefunction, which is slowly varying

due to the fact the rapidly varying component of the potential is not include in its calculation.

This is depicted graphically in Fig. 2.1.

Using this envelope function approximation along with the EMA does not effect the
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Figure 2.1: Envelope function of the ground within a qunatum well. The variation in energy of the

conduction band edge is shown in black with the rapidly varying Bloch wavefunction shown in blue.

The envelope function is shown in red.

validity of the quantum mechanics at work within any system simulated. After all, the SE

is still being solved for carriers under some kind of quantum confinement. Instead, these are

approximations of the material parameters of the semiconductor, specifically that carriers

behave as they in free space only with a different mass and some externally applied potential

field. This means that these approximations will still produce results that are representative

of real systems.

2.1.2 Parabolic dispersion

For a parabolic dispersion the effective mass is constant in energy (although varies spatially

as it is different within different materials) and has the form

m∗ = meff.(z)m0 (2.2)

where m0 is the free space space of an electron at rest and meff. is the effective mass co-

efficient — an empirical fitting parameter which is dependent upon the composition of the

semiconductor and therefore spatially varying within a semiconductor heterostructure. See

appendix C for the forms of meff. for all the material systems examined within this thesis.
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Inserting the parabolic form of the effective mass into the time-independent SE (2.1) gives

−~2

2

∂

∂z

(
1

m(z)

∂

∂z
ψ(z)

)
+ V (z)ψ(z) = Eψ(z). (2.3)

To solve (2.3) numerically the finite difference approximation (FDA) [41] may be used where

∂f(z)

∂z
≈ fi+1 − fi−1

δz

∣∣∣∣
i=z

, (2.4)

Applying first to the inner most differential gives

−~2

2

∂

∂z

(
1

m(z)

ψi+1 − ψi−1

2δz

)
+ V (z)ψ(z) = Eψ(z), (2.5)

and then to the rest of the equation

−~2

2


(

1
mi+1

ψi+2−ψi

2δz

)
−
(

1
mi−1

ψi−2−ψi

2δz

)
2δz

+ Viψi = Eψi (2.6)

where ψ, m and V have been spatially discretised onto a grid of points each separated by the

distance δz. Rearranging and removing a factor of two from δz gives

− ~2

2(δz)2

{
ψi+1 − ψi
mi+ 1

2

− ψi − ψi−1

mi− 1
2

}
+ Viψi = Eψi. (2.7)

The m ± 1
2 points, which lie in between grid points, can be found by taking the mean of

the two adjacent points since the FDA assumes a linear variation of variables between grid

points.

While there are several methods for solving the discretised SE such as the shooting

method [41] or a bi-section root finding approach [46], a matrix-method solution is used

within this project as it presents several advantages:

• Reliability. Root finding approaches suffer from problems when the separation in energy

between two states is smaller than resolution of the energy step used in the energy

search. Since these algorithms rely on the change in sign of the wave function at one

side of the simulation domain when they step through an energy solutions, they often

miss pairs of states making them unreliable. Since diagonalisation of the matrix within

the eigen value problem (EVP) will give all the eigenvalues of interest (i.e. those below

the top of the conduction band edge), so long as the spatial step, δz, is small enough it is

the most reliable method of solving the finite-difference Schrödinger equation (FDSE).

• Accuracy. Digitalisation of the EVP matrix will give the eigenvalues down to machine

precision, again assuming that the spatial step is small. Root finding approaches rely

on multiple iterations to home in on a particular solution therefore making an arbitrary

precision sometimes impractical to achieve.
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• Speed. Following on from the first two points; for a root finding approach to be both

accurate and reliable it requires many iterations with a very small energy step, therefore

making it slow. This implies that for root-finding approaches one of the three points

must be sacrificed, however with a matrix method the solution may be all three since it

will always take the same number of computational steps to achieve a reliable solution

with arbitrary accuracy3.

In order use matrix methods to solve (2.7), it must first be rearranged into a matrix

equation of the form

H|ψ〉 = E|ψ〉, (2.8)

where Dirac notation has been used to represent ψ as column vectors of spatial points and

H is the spatially varying matrix representation of the Hamiltonian operator. Rearranging

(2.7) to gather the coefficients of ψ gives

− ~2

2(δz)2

{
ψi+1mi− 1

2
− ψi(mi+ 1

2
+mi− 1

2
) + ψi−1mi+ 1

2

mi+ 1
2
mi− 1

2

}
+ Viψi = Eψi, (2.9)

− ~2

2(δz)2mi+ 1
2

ψi+1 +

{
~2

2(δz)2

mi+ 1
2

+mi− 1
2

mi+ 1
2
mi− 1

2

+ Vi

}
ψi −

~2

2(δz)2mi− 1
2

ψi−1 = Eψi, (2.10)

a set of N simultaneous equations, with i = 1, . . . , N corresponding to N discrete spatial

grid point within the simulation domain, which may be arranged into an N ×N matrix, with

each row being a different equation.

Schrödinger equation boundary conditions

Equation (2.10) does not, at present, represent a complete set of simultaneous equations since

at the boundaries, i.e. i = 1 and i = N , the points φ0 and φN+1 are currently undefined.

In order to complete the system of equations, boundary conditions must be imposed by

defining the values of these two φ-points. Since semiconductor heterostructures are made

up of recurring periodic structures, one would assume that a cyclic, or Neumann boundary

condition would be the most suitable choice. However, because the devices simulated within

this thesis are driven by an external electric field, the entire bandstructure is effectively tilted

such that the proceeding period is at a lower relative potential to the current period. This

means that the bandstructure is no longer truly periodic and cyclic boundaries may not be

used.
3As shown later in section 2.1.3, when solving the SE with nonparabolic dispersion, matrix methods do

become relatively slow. Unfortunately, this is the sacrifice one makes for arbitrary accuracy and reliability

and is discussed in more detail within that section
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The other option is to remove any influence of the outside world from the system under

consideration, effectively placing an infinite distance from any other source of electrical po-

tential (since the quantum well is made of an electrical potential). Practically, it would be

impossible to implement this exactly since it would require an infinite simulation domain,

however an approximate implementation of this boundary condition may be realised if two

things are considered. Firstly, that by placing the quantum well system within an infinite

domain, it is ensured that all wavefunctions are wholly confined within the quantum system

since the wavefunctions decay inside the potential barriers and the barrier extend to ± infinity,

therefore making φ at ±∞ = 0. Secondly, since the wavefunctions decay quickly within the

barriers, the point at which φ ≈ 0 will be some finite distance from the edge of the quantum

well system. Therefore an approximate implementation may be achieved by fixing the value

of the wavefunctions to zero at the boundaries of the simulation domain and ensuring that

the barriers at the edge of the quantum well system are thick enough for the wavefunctions

to decay to approximately zero. (This barrier padding is the operating condition for this type

of boundary as discussed later.) These hardwall, or Dirichlet boundaries are implemented by

setting the points at the boundary, i.e. φ0 and φN+1, to zero thereby giving a complete set

of equations that may be solved. (This approximation is equivalent to placing the quantum

well system between two infinite potential barriers, since a wavefunction cannot penetrate

into an infinite potential barrier so is zero at the boundary, which has implications for the

quantum states which are found above the quantum well system as discussed later.)

Now that there is a complete system of equations to solve, (2.10) may be arranged into a

matrix equation, with the matrix, H, being tridiagonal and of the form

H =



b1 c1 0 . . . 0

a2 b2 c2 . . .
...

0
. . .

. . .
. . . 0

... . . . aN−1 bN−1 cN−1

0 . . . 0 aN bN


where

ai = − ~2

2(δz)2mi− 1
2

bi =
~2(mi+ 1

2
+mi− 1

2
)

2(δz)2mi+ 1
2
mi− 1

2

+ Vi

ci = − ~2

2(δz)2mi+ 1
2

(2.11)
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since ai = ci−1, H is also symmetric and therefore only a or c needs to be computed before

solving. Solutions may be calculated by sending the constructed matrix to a linear algebra

routine such as those provided by LAPACK [47], which will diagonalise the matrix and return

the eigenvalues and corresponding values.

Model validation

As the solution of any matrix eigen-value problem will result in the same number of eigenval-

ues and eigenvectors as there are rows within the matrix (N equations will give N solutions),

the set of solutions must be scrutinised in order to determine which are the solutions of in-

terest and which are simply produced through the computational method used. In the case

of the Schrödinger equation, the solutions of interest will be the physically realistic solutions

where as the rest of the solutions will manifest themselves as higher-energy solutions resulting

from the Dirichlet boundaries acting as infinite potential barriers. The bottom five solutions

for a single quantum well quantum well are shown in figure 2.2, where it can be clearly seen

that the solutions above the top of the quantum well are simply artifacts of the simulation.

While these are real solutions to the Schrödinger equation with the imposed boundary con-

ditions, they are samples of the continuum of states above the quantum well which are not

of interest and can be discarded. Therefore, if the range of energy solutions is limited to be

within the bounds of the quantum well system being examined then the expected solutions

are obtained.

As discussed previously, a sufficient amount of barrier padding must be added to each

side of the quantum well system in order to stop the hardwall boundaries affecting the states

found. Figure 2.3 shows the effect of of varying the width of the padding at the edges of

the same 10 nm quantum well in the GaAs/Al0.15Ga0.85As material system. This shows that

a significant amount of padding needs to be added (>5 nm) in order to reduce the effect

of the boundaries. However, since the diagonalisation of a tridiagonal matrix requires very

little computational effort it is better to be over-cautious with the amount of padding and

therefore 10 nm is used.

Table 2.1 compares the energy solutions found for a 10 nm quantum well in the GaAs/Al0.15Ga0.85As

material system with an analytical solution, showing that the method agrees well. Figure 2.4

shows the wavefunctions calculated via the matrix method which are of the correct shape.
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Figure 2.2: Wavefunction diagram of the lowest (in energy) five matrix solutions to the time-

independent Schrödinger equation with parabolic effective mass within a 10 nm quantum well in the

GaAs/Al0.15Ga0.85As material system with 10 nm barriers with δz = 0.1 nm.

State Analytical solution (meV) Matrix solution (meV) % error

1 975.07 975.19 0.46

2 1044.41 1045.03 0.66

Table 2.1: Comparison of matrix and analytical solutions to the time-independent Schrödinger

equation with parabolic effective mass within a 10 nm quantum well in the GaAs/Al0.15Ga0.85As

material system. % error calculated from the bottom of the conduction band edge (949.33 meV) and

taking the analytical solution to be correct.

2.1.3 Nonparabolic dispersion

Limitations of the effective mass approximation

As discussed before, the EMA is only valid for carriers at relatively low energies. This is not

a problem for most semiconductor heterostructures because the band discontinuity between

materials is only a few hundred milli-electron volts, meaning that the states of interest (i.e.

confined states) cannot exist above this energy. There are some heterostructures however,

such as InP based systems, where the band discontinuity can be of the order of one electron
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Figure 2.3: Effect of varying the padding barrier thickness on the energies of the states found within

a 10 nm quantum well in the GaAs/Al0.15Ga0.85As material system.

volt. For these systems the EMA goes far beyond its range of validity and does not produce

reliable results. However, instead of moving to more complicated bandstructure simulation

techniques, it is possible to improve the EMA such that it can be used to simulate much

more energetic carriers within these types of systems.

In order to improve the EMA, consider why it is failing as carrier energies increase; the

parabolic description of the dispersion relation is no longer close enough to the real dispersion

relation to give an accurate representation of what is going on. It is possible to account for

this deviation in real and parabolic dispersion relations by including an energy dependent

term known as the nonparabolicity, as shown in Fig. 2.5.

In order to include this nonparabolicity within the effective mass approximation, the

effective mass must become energy dependent, and take the form described by Nelson et

al. [48]:

1

m∗(E, z)
=

1

m∗(z)
1

{1 + α(z)[E − V (z)]}
(2.12)

where α is the nonparabolicity, an empirical fitting parameter which is also material depen-

dent (hence the z dependence), E is the energy and V is band edge potential profile.
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Figure 2.4: Wavefunction diagram of the matrix solutions to the time-independent Schrödinger

equation with parabolic effective mass within a 10 nm quantum well in the GaAs/Al0.15Ga0.85As

material system.

Eigenvalue problem linearisation

Deriving a numerical solution for the nonparabolic SE, as in section 2.1.2, yields a cubic EVP

because of the energy dependence of the nonparabolic effective mass. Therefore the problem

cannot be solved directly be an eigenvalue solver and some form of root finding algorithm

must be employed in order to to search for solutions. However, if the cubic EVP is linearised

after it is derived, then a direct method of solution can still be used.

The derivation of the cubic EVP begins by inserting the nonparabolic effective mass into

the SE:

−~2

2

d

dz

(
1

m∗(z){1 + α(z)[E − V (z)]}
d

dz
ψ(z)

)
+ V (z)ψ(z) = Eψ(z) (2.13)

Discretising equation (2.13) gives:

−~2
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mi+ 1
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1 + αi+ 1

2
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E − Vi+ 1

2

)] − ψi − ψi−1

mi− 1
2

[
1 + αi− 1

2

(
E − Vi− 1

2

)]
+ Viψi = Eψi

(2.14)

In order to rearrange this problem into an EVP that is solvable, we must gather all the terms

of E through the equation. This requires the denominators of equation (2.13) to be multiplied
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Figure 2.5: The parabolic and nonparabolic dispersion relations. Whilst the parabolic dispersion is

close to the more physically-realistic nonparabolic dispersion, at higher wavevectors the nonparabolic

dispersion flatterns out to give more realistic state energies for energies high above the conduction

band.

through the entire equation, giving:

−~2

2δz2

{
mi− 1

2

[
1 + αi− 1

2

(
E − Vi− 1

2

)]
(ψi+1 − ψi)−mi+ 1

2

[
1 + αi+ 1

2

(
E − Vi+ 1

2

)]
(ψi − ψi−1)

}
+mi+ 1

2

[
1 + αi+ 1

2

(
E − Vi+ 1

2

)]
mi− 1

2

[
1 + αi− 1

2

(
E − Vi− 1

2

)]
Viψi

= mi+ 1
2

[
1 + αi+ 1

2

(
E − Vi+ 1

2

)]
mi− 1

2

[
1 + αi− 1

2

(
E − Vi− 1

2

)]
Eψi

(2.15)

Expanding all the mi+ 1
2
(1+αi+ 1

2
(E−Vi+ 1

2
))mi− 1

2
(1+αi− 1

2
(E+Vi− 1

2
)) terms, then gathering
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all the coefficients of powers of E and arranging them by coefficients of ψ gives:

mi+ 1
2
mi− 1

2
αi+ 1

2
αi− 1

2
E3ψi

+

{
αi− 1

2
+ αi+ 1

2
− αi+ 1

2
αi− 1

2
(Vi+ 1

2
+ Vi + Vi− 1

2
)

}
mi+ 1

2
mi− 1

2
E2ψi

+

{
~2

2δz2
mi− 1

2
αi− 1

2
ψi+1

+
[ ~2

2δz2

(
−mi− 1

2
αi− 1

2
−mi+ 1

2
αi+ 1

2

)
+
(
1− αi− 1

2
(Vi− 1

2
+ Vi)− αi+ 1

2
(Vi+ 1

2
+ Vi)

+ αi+ 1
2
αi− 1

2
(Vi+ 1

2
Vi + Vi− 1

2
Vi + Vi+ 1

2
Vi− 1

2
)
)
mi+ 1

2
mi− 1

2

]
ψi

+
~2

2δz2
mi+ 1

2
αi+ 1

2
ψi−1

}
E

+

{
~2

2δz2
mi− 1

2
(1− αi− 1

2
Vi− 1

2
)ψi+1

+
[ ~2

2δz2

(
−mi− 1

2
(1− αi− 1

2
Vi− 1

2
)−mi+ 1

2
(1− αi+ 1

2
Vi+ 1

2
)
)

−
(

1− αi− 1
2
Vi− 1

2
− αi+ 1

2
Vi+ 1

2
+ αi+ 1

2
αi− 1

2
Vi+ 1

2
Vi− 1

2

)
mi+ 1

2
mi− 1

2
Vi

]
ψi

+
~2

2δz2
mi+ 1

2
(1− αi+ 1

2
Vi+ 1

2
)ψi−1

}
= 0

(2.16)

which is a cubic EVP of the form:

(
E3A4 + E2A3 + EA2 + A1

)
ψ = 0 (2.17)

Applying the same hardwall boundary conditions derived in 2.1.2, the matrices A4, A3, A2

and A1 are all either diagonal or tridiagonal symmetric with the forms:

A1 =



b1 c1 0 . . . 0

a2 b2 c2 . . .
...

0
. . .

. . .
. . . 0

... . . . aN−1 bN−1 cN−1

0 . . . 0 aN bN


, A2 =



e1 f1 0 . . . 0

d2 e2 f2 . . .
...

0
. . .

. . .
. . . 0

... . . . dN−1 eN−1 fN−1

0 . . . 0 dN eN


,

A3 =


g1 0 . . . 0

0 g2
...

...
. . . 0

0 . . . 0 gN

 and A4 =


h1 0 . . . 0

0 h2
...

...
. . . 0

0 . . . 0 hN

 ,

(2.18)
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with matrix elements given by:

ai =
~2

2(δz)2
mi+ 1

2

(
1− αi+ 1

2
Vi+ 1

2

)
bi =

~2

2(δz)2

[
−mi− 1

2

(
1− αi− 1

2
Vi− 1

2

)
−mi+ 1

2

(
1− αi+ 1

2
Vi+ 1

2

)]
−
(

1− αi− 1
2
Vi− 1

2
− αi+ 1

2
Vi+ 1

2
+ αi+ 1

2
αi− 1

2
Vi+ 1

2
Vi− 1

2

)
mi+ 1

2
mi− 1

2
Vi

ci =
~2

2(δz)2
mi− 1

2

(
1− αi− 1

2
Vi− 1

2

)
di =

~2

2(δz)2
mi+ 1

2
αi+ 1

2

ei =
~2

2(δz)2

(
−mi− 1

2
αi− 1

2
−mi+ 1

2
αi+ 1

2

)
+
[
1− αi− 1

2

(
Vi− 1

2
+ Vi

)
− αi+ 1

2

(
Vi+ 1

2
+ Vi

)
+ αi+ 1

2
αi− 1

2

(
Vi+ 1

2
Vi + Vi− 1

2
Vi + Vi+ 1

2
Vi− 1

2

)]
mi+ 1

2
mi− 1

2

fi =
~2

2(δz)2
mi− 1

2
αi− 1

2

gi =
[
αi− 1

2
+ αi+ 1

2
− αi+ 1

2
αi− 1

2

(
Vi+ 1

2
+ Vi + Vi− 1

2

)]
mi+ 1

2
mi− 1

2

hi = mi+ 1
2
mi− 1

2
αi+ 1

2
αi− 1

2

(2.19)

This cubic EVP can be recast to give a linear, but generalised EVP of the form:


0 IN 0

0 0 IN

A1 A2 A3




ψ

Eψ

E2ψ

 = E


IN 0 0

0 IN 0

0 0 −A4




ψ

Eψ

E2ψ

 (2.20)

where IN is the identity matrix with a leading dimension N . As the matrix on the right hand

side of (2.20) is diagonal, its inverse is also diagonal, and one can transform (2.20) into a

normal EVP by pre-multiplying by the right hand matrix:


0 IN 0

0 0 IN

−A4
−1A1 −A4

−1A2 −A4
−1A3




ψ

Eψ

E2ψ

 = E


ψ

Eψ

E2ψ

 (2.21)

This pre-multiplication by A4
−1 is the equivalent of dividing through all the terms in (2.19)
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by the h term. This modifies the terms in (2.19) to

ai = −
~2(1− αi+ 1

2
Vi+ 1

2
)

2(δz)2mi− 1
2
αi+ 1

2
αi− 1

2

bi =
~2

2(δz)2αi+ 1
2
αi− 1

2

(
1− αi− 1

2
Vi− 1

2

mi+ 1
2

+
1− αi+ 1

2
Vi+ 1

2

mi− 1
2

)

+
Vi

αi+ 1
2
αi− 1

2

(
1− αi− 1

2
Vi− 1

2
− αi+ 1

2
Vi+ 1

2
+ αi+ 1

2
αi− 1

2
Vi+ 1

2
Vi− 1

2

)
ci = −

~2(1− αi− 1
2
Vi− 1

2
)

2(δz)2mi+ 1
2
αi+ 1

2
αi− 1

2

di = − ~2

2(δz)2mi− 1
2
αi− 1

2

ei =
~2

2(δz)2

(
1

mi+ 1
2
αi+ 1

2

+
1

mi− 1
2
αi− 1

2

)

− 1

αi+ 1
2
αi− 1

2

[
1− αi− 1

2

(
Vi− 1

2
+ Vi

)
− αi+ 1

2

(
Vi+ 1

2
+ Vi

)
+αi+ 1

2
αi− 1

2

(
Vi+ 1

2
Vi + Vi− 1

2
Vi + Vi+ 1

2
Vi− 1

2

)]
fi = − ~2

2(δz)2mi+ 1
2
αi+ 1

2

gi = − 1

αi+ 1
2

− 1

αi− 1
2

+
(
Vi+ 1

2
+ Vi + Vi− 1

2

)

(2.22)

with the h term no longer being used, such that the terms sit in the matrices A1, A2 and A3

in the same way shown in (2.18). Note that A2 is actually a tridiagonal symmetric matrix,

however all terms have been specified here since any practice implementation of constructing

this matrix will scan across the simulation, calculating the i ± 1
2 values at each point, and

therefore it is more convenient to define the whole matrix.

The cubic EVP has now been recast into a sparse, banded, linear EVP, with the matrix

here being three times larger than those of the cubic problem. This EVP can be easily solved

by any appropriate EVP solver, such as one from the LAPACK library [47]. It should be

noted that setting α to zero in equations (2.22) reduces to the nonparabolic formulation

to the parabolic formulation derived in section 2.1.2. This gives a good indication that the

derivation presented above is correct, as one would expect that setting α to zero, and therefore

removing the nonparabolic component from the EMA, would give exactly the same solution

as just solving the parabolic SE.
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Model validation

In order to ensure the validity of proposed method, its results are first compared to an ana-

lytical solution for a single quantum well which includes nonparabolicity. This is done within

the In0.53Ga0.47As/AlAs0.56Sb0.44 material system because of its very high conduction band

offset of 1.6 eV which accentuates the effect of nonparabolicity. Table 2.2 shows a comparison

of the energy levels found in a 10 nm quantum well by the presented method, a numerical

solution of the transcendental equation with an energy dependent [49], i.e. nonparabolic, ef-

fective mass, and the parabolic method presented in 2.1.2, to show how prominent an effect

nonparabolicity is high above the conduction band, the parabolic method from 2.1.2. Clearly,

the parabolic method overestimates the energy solutions (except for the ground state where,

due to the nonparabolic dispersion giving a marginally higher energy at low k-vectors as

in 2.5, the energy is underestimated slightly), and the error increases for solutions that are

higher above the conduction band edge. The overestimation of the energy solutions from the

parabolic method is so prominent towards the top of the quantum well that the top three

solutions are not found. Conversely, the nonparabolic method shows excellent agreement

with the analytical solution with the absolute difference being only a few milli-electron volts

for all solutions. Figure 2.6 shows the solutions found by the method confirming that the

wavefunctions are of the expected form.

In order to rigorously test the shape of the wavefunctions produced by the method, the

orthogonality of two wavefunctions from a single quantum well are tested. However, because

the nonparabolicity inherently introduces nonorthogonality, the nonparabolicity parameter,

α, was set set to zero in order to remove nonparabolic. Therefore, if the shape of the

wavefunctions found by presented method is correct, then with α = 0 the states within a

single quantum well strucutre should be exactly orthogonal (i.e. 〈i|j〉 = 0). The orthogonality

of the solutions found by the presented method, with α = 0, is compared to that of the widely

used parabolic shooting method [41], which utilises a bisection search root-finding algorithm

to find solutions. The comparison is done for a varying number of sampling points within

a fixed size system, and therefore different spatial sampling steps δz, as well as different

values of the bisection search accuracy limit which determines to what precision the solutions

are found within the search algorithm. Figure 2.7 shows the orthogonality of the top two

solutions found by the two methods, 〈4|5〉, for the 20 nm single quantum well show in the inset

of 2.7. Since the matrix method is a direct solution, it will always produce solutions that are

orthogonal down to machine precision and therefore 〈4|5〉 has a constant value of 4× 10−17.
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State Transcendental

solution

(meV)

Parabolic

solution

(meV)

Parabolic %

error

Presented

method

(meV)

Presented

method %

error

1 829.28 823.36 9.41 830.18 1.43

2 983.64 998.50 6.84 985.68 0.94

3 1182.21 1300.61 28.47 1184.68 0.59

4 1400.86 1734.01 52.51 1403.29 0.38

5 1628.90 2272.80 74.66 1631.12 0.26

6 1860.78 - - 1862.75 0.18

7 2092.03 - - 2093.80 0.13

8 2313.78 - - 2314.35 0.04

Table 2.2: Comparison of transcendental, parabolic and nonparabolic (i.e. the Presented method)

solutions to the time-independent Schrödinger equation with parabolic effective mass within a 10 nm

quantum well in the In0.53Ga0.47As/AlAs0.56Sb0.44 material system. % error calculated from the

bottom of the conduction band edge (766.40 meV) and taking the analytical solution to be correct.

The shooting method on the other hand, produces solutions whose orthogonality depends

very heavily on the number of sampling points used and reaches a minimum orthogonality,

〈4|5〉, of 0.002. The vastly lower orthogonality of the solutions from the matrix method imply

that the wavefunctions produced by this method have a much higher accuracy than those

produced by the shooting method.
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Figure 2.6: Wavefunction diagram of the nonparabolic solutions to the time-independent Schrödinger

equation within a 10 nm quantum well in the In0.53Ga0.47As/AlAs0.56Sb0.44 material system. Wave-

function tails have been cutoff for probability densities below 1%
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Figure 2.7: Orthogonality of wavefunctions, 〈4|5〉, with respect to the number of sampling points

for the presented method, with α = 0, and the parabolic shooting method [41] for several values

of bisection search accuracy. (Inset) The 20 nm single quantum well under consideration in the

GaAs/Al0.33Ga0.77As material system.
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2.2 Poisson’s equation in one dimension

Semiconductor heterostructures often make use of dopant atoms at specific points within the

device, acting as either donors or acceptors, to increase the number electrons or holes respec-

tively. Once these dopants donate or accept an electron not only do they become ionised, but

they also change the amount of charge within the conduction or valence band. Furthermore,

since electrons and holes are free to move through the heterostructure (via tunnelling in the

direction of confinement), whereas the ionised dopants have a fixed position within the crys-

tal lattice, there will no longer be charge neutrality, locally, along the heterostructure. This

net charge will induce voltages locally along the heterostructure which will bend the band-

strucutre and, in tern, shift the positions of the electrons within the sturucture (or rather

shift the expectiation positions of the wavefucntions). The movement of electrons will affect

the charge distribution, inducing a different voltage which will further alter the shape of the

bandstrucutre.

In one dimension, the spatial profile of an induced voltage, φ, is related to the charge

distribution which induced it, ρ, via Poisson’s equation,

∂

∂z

(
ε(z)

∂

∂z
φ(z)

)
= −ρ (2.23)

where z is the axis of the one extended dimension and ε is the spatially dependent effective

permittivity.

Applying the finite difference approximation, to the inner-most differential first,

∂

∂z

(
ε(z)

φi+1 − φi−1

2δz

)
= −ρ, (2.24)

and then to the rest of (2.23)

εi+1

(
φi+2−φi

2δz

)
− εi−1

(
φi−φi−2

2δz

)
2δz

= −ρi, (2.25)

where δz is the spatial step separating the grid points i = 1, . . . , N,. Removing the factor of

2 from δz, and rearranging to gather the coefficients of φ gives,

1

δz

{
εi+ 1

2
φi+1 − (εi+ 1

2
+ εi− 1

2
)φi + εi− 1

2
φi−1

}
= −ρi, (2.26)

where the i± 1
2 terms may be found by taking the average of the adjacent points.

By arranging φ and ρ into column vectors of the form,

φT = {φ1, φ2, . . . , φN},

ρT = {ρ1, ρ2, . . . , ρN},
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(2.26) may be rewritten as a matrix equation of the form

Aφ = −ρ, (2.27)

where the exact form of the matrix A is determined by the boundary conditions imposed.

2.2.1 Boundary conditions

Hardwall boundary conditions

Hardwall, or Dirichlet boundary conditions force the value of φ to be a particular value

(normally zero) at the edges of the simulation domain. Imposing this condition, i.e. φ0 =

φN+1 = 0, we may write down a complete set of N equations to describe the potential

resulting from some charge distribution, discretised onto a grid of N points:

1

δz

{
εi+ 1

2
φi+1 − (εi+ 1

2
+ εi− 1

2
)φi

}
= −ρi, for i = 1;

1

δz

{
εi+ 1

2
φi+1 − (εi+ 1

2
+ εi− 1

2
)φi + εi− 1

2
φi−1

}
= −ρi, for i = 2, 3, . . . , N − 1;

1

δz

{
−(εi+ 1

2
+ εi− 1

2
)φi + εi− 1

2
φi−1

}
= −ρi, for i = N ;

(2.28)

where the effective permittivity may be assumed constant across the boundaries of the sim-

ulation domain for εi= 1
2

and εi=N+ 1
2
.

Rearranging into a matrix equation of the form (2.27), the matrix to solve, A takes the

form

A =



b1 a1 0 . . . 0

a1 b2 a2 . . .
...

0
. . .

. . .
. . . 0

... . . . aN−2 bN−1 aN−1

0 . . . 0 aN−1 bN


, (2.29)

where

ai =
1

δz
εi+ 1

2

bi = − 1

δz
(εi+ 1

2
+ εi− 1

2
)

(2.30)

Since A is a tridiagonal symmetric matrix it may be solved rapidly using the Thomas algo-

rithm, which is implemented in many linear algebra software packages such as LAPACK [47].

In order to test the solution Poisson’s equation, a 10 nm single quantum well in the

GaAs/Al0.15Ga0.85As material system is considered, with both of the barriers being n-type

doped with a doping density of 1×1018 cm−3. As discussed previously, these dopant atoms will

donate free electrons whose position will clearly be dependant upon the wavefunctions found
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by the solution to the Schrödinger equation. However, for simplicity, a first approximation

may be made which does not require the solution of the Schrödinger equation by assuming

that the electrons will be evenly distributed throughout the heterostructure. Figure 2.8 shows

the resulting Poisson potential, φ, as well as the total band-edge potential, Vtotal, which is

the sum of φ and the conduction band potential, VCB.
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Figure 2.8: The Poisson potential, φ, for a 10 nm quantum well in the GaAs/Al0.15Ga0.85As material

system with barriers which are n-type doped to 1 × 1018 cm−3, assuming all donors are ionised and

free-carriers are evenly distributed throughout the entire structure. The total band-edge profile, Vtotal,

is also shown which is the sum of φ and the conduction band edge, VCB . (The Poisson potential has

been offset by the maximum value of the conduction band edge for clarity.)

As many semiconductor heterostructures are placed under some applied bias for normal

operation, it is useful to define how the potential may be fixed at the boundaries using the

Dirichlet boundary conditions. Furthermore, it is more accurate to apply a bias using these

boundary conditions than to simply add a linearly increasing/decreasing potential to the

conduction band edge, as the former method will account for the changes in the effective

permeability throughout the structure (and is in fact equivalent to solving Poisson’s equation

followed by Laplace’s equation and adding the results).

If the boundary points are fixed to some potential, i.e. φ0 6= 0, φN+1 6= 0, the equations
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at i = 1 and i = N become

1

δz

{
ε 1

2
φ2 − (ε1 1

2
+ ε 1

2
)φ1ε 1

2
φ0

}
= −ρ1, (2.31)

and
1

δz

{
εN+ 1

2
φN+1 − (εN+ 1

2
+ εN− 1

2
)φN + εN− 1

2
φN−1

}
= −ρN , (2.32)

respectively. Since there is no space within the matrix, A, for the φ0 and φN+1 terms, and

as the column vector φ is still unknown, these terms must be moved over to right hand side

when these equations are arranged within the matrix equation (2.27). This alters the form

of the column vector, ρ, such that it becomes

ρT = {ρ1 +
1

δz
ε 1

2
φ0, ρ2, . . . , ρN +

1

δz
εN+ 1

2
φN+1}, (2.33)

where the points which lie outside the simulation domain, ε 1
2

and εN+ 1
2
, can assumed to be

identical to their adjacent points which lie inside the simulation domain. Figure 2.9 shows

the same 10 nm quantum well as in 2.8 with an applied bias of 15 kVcm−1.
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Figure 2.9: The Poisson potential, φ, for a 10 nm quantum well in the GaAs/Al0.15Ga0.85As material

system with barriers which are n-type doped to 1 × 1018 cm−3, assuming all donors are ionised and

free-carriers are evenly distributed throughout the entire structure, with an electric field across the

structure of 15 kVcm−1. The total band-edge profile, Vtotal, is also shown which is the sum of φ and

the conduction band edge, VCB . (The Poisson potential has been offset by the maximum value of the

conduction band edge for clarity.)
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Mixed boundary conditions

Since heterostructures are periodic structures, it would be advantageous to be able to model

the charge effects within them using cyclic, or Neumann boundaries, to remove any effect the

boundaries have on the results. However, implementing Neumann boundary conditions, such

that the differential of potential is equal at each boundary, results in a singular matrix which

cannot be solved. Physically, the reason for the matrix being singular can be viewed as there

not being enough information to determine the potential; applying Neumann boundaries

effectively isolates the system from the outside world, and since potentials are additive, there

is no way of determining the absolute value of potential within the system. Equivalently, it

can be seen as the potential within the system being dependent upon the potential in the

next period of the structure, and therefore itself, meaning the potential cannot be found.

In order to avoid a singular matrix whilst still implementing a Neumann boundary, mixed

boundary conditions can be used whereby both the differential and absolute value of potential

are fixed at either one or both of the boundaries. In the case of Poisson’s equation, the

differential and absolute value cannot be fixed simultaneously at both boundaries as this

results in the same singular matrix as with Neumann boundary conditions. (Physically this

can be seen as forcing the potential drop across some charge whilst also fixing the electric

field to be equal at each boundary — something which is not physically possible for charge

distributions which are not antisymmetric around the centre of the system.) Instead, the

differential may be fixed at both boundaries whilst the absolute value is only fixed at one

boundary, giving the boundary conditions

∂φ(z)

∂z

∣∣∣∣
i=1

=
∂φ(z)

∂z

∣∣∣∣
i=N

,

φ(z)|i=0 = 0.

(2.34)

Applying the finite difference approximation,

φi=1 − φi=0

δz
=
φi=N+1 − φi=N

δz
, (2.35)

and removing the redundant factor of δz gives the relation,

φi=1 − φi=0 = φi=N+1 − φi=N . (2.36)

Now substituting in φ0,

φi=N+1 = φi=1 + φi=N , (2.37)
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which by inserting into (2.26) gives a complete set of equations to solve:

1

δz

{
εi+ 1

2
φi+1 − (εi+ 1

2
+ εi− 1

2
)φi

}
= −ρi, for i = 1;

1

δz

{
εi+ 1

2
φi+1 − (εi+ 1

2
+ εi− 1

2
)φi + εi− 1

2
φi−1

}
= −ρi, for i = 2, 3, . . . , N − 1;

1

δz

{
εi+ 1

2
(φi=1 + φi=N )− (εi+ 1

2
+ εi− 1

2
)φi + εi− 1

2
φi−1

}
= −ρi, for i = N ;

(2.38)

where the effective permittivity may be assumed constant across the boundaries of the sim-

ulation domain.

Rearranging into a matrix equation of the form (2.27), the matrix to solve, A, takes the

form

A =



b1 a1 0 . . . 0

a1 b2 a2 . . .
...

0
. . .

. . .
. . . 0

... . . . aN−2 bN−1 aN−1

c . . . 0 aN−1 bN


, (2.39)

where

ai =
1

δz
ε1+ 1

2
for i = 1, 2, . . . , N − 1;

bi =

 −
1
δz (εi+ 1

2
+ εi− 1

2
) for i = 1, 2, . . . , N ;

− 1
δz εi− 1

2
for i = N ;

c =
1

δz
εi= 1

2
.

(2.40)

Since the matrix to solve has a non-zero element in the bottom left corner, the simplest

method of solution is to use a dense matrix digitalisation routine. This has the disadvantage of

having very poor scalability in terms of execution time as the number of operations required

increase roughly quadratically with the number of points in the simulation domain. The

other option is utilise sparse matrix digitalisation routines, such as the PARDISO solver,

which will be more efficient but are often more complicated to implement. Alternatively, an

optimised algorithm may be developed for solving this specific form of matrix, as detailed in

appendix B. This matrix is particularly well suited to this sort of optimisation process as it’s

form is so close to a tridiagonal matrix as shown in the proceeding section.

As solving Poisson’s equation with mixed boundary conditions for a symmetric (about

the centre of the simulation domain) charge distribution will produce a Poisson potential

much the same as for Dirichlet boundaries, i.e. with no potential drop across the structure,

the same 10ṅm quantum well as in 2.8 is simulated with only the right barrier being doped.
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The resulting Poisson potential is shown in 2.10 where there is a potential drop across the

structure of 142.2 meV.
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Figure 2.10: The Poisson potential, φ, for a 10 nm quantum well in the GaAs/Al0.15Ga0.85As

material system with the right barrier being n-type doped to 1× 1018 cm−3, assuming all donors are

ionised and free-carriers are evenly distributed throughout the entire structure. The total band-edge

profile, Vtotal, is also shown which is the sum of φ and the conduction band edge, VCB . (The Poisson

potential has been offset by the maximum value of the conduction band edge for clarity.)

Optimised algorithm for solving mixed boundary condition

Inserting the form of matrix (2.39) in to the optimisation routine given in appendix B results

in the following algorithm. As with the Thomas algorithm used for tridiagonal matrices, this

requires both a forward and backward sweep to diagonalise the matrix. The forward sweep

requires the values of the diagonal elements of A, bi, and the values on the RHS of (2.27), ρi,

to be given new values, b′i and ρ′i respectively, as well as a third array of values stored which
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shall be labelled z′i. These take the values

b′i =

 bi for i = 1;

bi − aiai−1

b′i−1
for i = 2, 3, . . . , N ;

ρ′i =

 ρi for i = 1;

ρi −
aiL
′
i−1

b′i−1
for i = 2, 3, . . . , N − 1;

z′i =

 1 for i = 1;

−zi−1
ai−1

bi−1
for i = 2, 3, . . . , N − 1;

(2.41)

This forward sweep reduces the matrix A to its upper triangle form, with the RHS of (2.27)

now being ρ′. Finally, the problem may be solved via back substitution:

φi =

 −ρ′i
b′i

for i = N ;

−ρ′i−aiφi+1

b′i
for i = N − 1, N − 2, . . . , 1;

(2.42)

Figure 2.11 shows a comparison of the execution time of the optimised mixed algorithm

and the dense matrix solver from LAPACK [47] for a range of different sized discretisation

grids. Since the dense matrix solver requires roughly N2 operations to solve the problem,

where N is the number of grid points, it’s execution time scales very poorly. The optimised

algorithm on the other hand, which requires roughly 2N operations to solve, fares much

better with a runtime which is of the order of 100 ms. The inset of figure 2.11 shows the

percentage error of the optimised algorithm taking the dense matrix solution as the correct

solution, which is of the order one would expect the numerical error to be when using double

precision variables, therefore the solutions are the same down to numerical precision.

Object orientation of Poisson solver

Since a solution to Poisson’s equation is needed so regularly within simulations semiconductor

heterostructures, it is useful to have a well implemented, convenient method for solving

Poisson’s equation. Clearly, placing the code for solving Poisson’s equation within some

easily callable function is the simplest way of achieving this, however the concept of object

orientation provides a method to fully encapsulate the solution. This avoids the unnecessary

passing of variables between functions of the Poisson solver by effectively hiding the inner

working of the solver from the user, reducing the amount of misuse/user error when using

the Poisson solver.

The object orientated solution of Poisson’s equation creates the matrix to diagonalise

within the constructor of the Poisson solver class, named PoissonSolver. The only variables
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Figure 2.11: Comparison of runtimes of the Lapack dense matrix solver and the optimised algorithm

for solving Poisson’s equations with mixed boundary conditions. (Inset) Percentage error of optimised

algorithm solution taking the Lapack solution to be correct.

which need to be passed to construct the matrix are the spatial discretisation step, δz, and

the spatially varying effective permeability stored as an array of the values at each grid

point, from which the number of grid points can be easily found. To solve Poisson’s equation

by diagonalising the matrix, a ’solve’ member function may be called, to which only the

spatially varying charge distribution needs to be passed, and the potential is returned from

this function. Whats more, since linear algebra libraries such as LAPACK [47] have the

functionality to diagonalise the matrix and perform the back substitution to find the solution

in different functions, the matrix diagonalisation (where the majority of the time spent solving

Poisson’s equation is spent) may be done within the class constructor ather than the solve

member function. Therefore if Poisson’s equation is to be solved multiple times for the same

structure but with different charge distribution (such as in the self-consistent Schrödinger-

Poisson solution 2.3, the matrix only needs to be diagonalised once, making the solution

more efficient. This has an even bigger effect for larger simulation domains since the matrix

diagonalisation is slower, such as in the two-dimensional Poisson solution 3.2.3.

The user interface for the object orientated Poisson solver is
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#include ” Po i s sonSo lve r . h”

int main ( )

{

// Define the s i m u l a t i o n domain and c r e a t e an array

// o f e f f e c t i v e p e r m e a b i l i t y , eps .

double dx = 1e−10;

vector<double> eps = getEps ( ) ;

// Create i n s t a n c e o f Poi s sonSo lver c l a s s .

// D i a g o n a l i s a t i o n i s done here so i t doesn ’ t need

// to be done anywhere e l s e .

Poi s sonSo lve r po i s son (dx , eps ) ;

// So lve f o r one charge d i s t r i b u t i o n , rho 1

vector<double> rho 1 = getRho ( ) ;

vector<double> phi 1 = po i s son . s o l v e ( rho 1 ) ;

// So lve f o r another charge d i s t r i b u t i o n , rho 2

vector<double> rho 2 = getAnotherRho ( ) ;

vector<double> phi 2 = po i s son . s o l v e ( rho 2 ) ;

// Do something wi th computed p o t e n t i a l s . . .

return EXIT SUCCESS ;

}

This clearly hides all implementation form the user stopping any unintentional editing of the

implementation of the Poisson solver.

2.3 Self consistent Schrödinger-Poisson solutions

As discussed previously, localised charge within semiconductor heterostrucutres, coming from

both bound, dopant ions and free carriers, cause a band-bending of the conduction band. How-

ever, since the spatially varying charge distribution of free carriers is dependent upon this
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band-bending (since a change in the shape on the conduction band will shift the positional

expectation values of the wavefunctions), a direct solution to find the exact form the con-

duction band edge including charge effects is not easily obtained. Instead, a self-consistent

solution is opted for as the implementation of such an algorithm is simple and can be made

to converge rapidly (i.e. within a few, < 5, iterations). Such a self-consistent solution may

take the form shown in 2.12.
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Calculate conduction-band profile
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Figure 2.12: Flow diagram of self-consistent Schrödinger-Poisson solution.
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While many of the blocks within 2.12 are self-explanatory, there are several which may

differ depending on the implementation. These are discussed in detail here:

Calculate heterostrucutre profile:

The starting point for any simulation of a semiconductor heterostructure will be a definition

of the structure, usually in the form a list of layer thickness, the alloy fraction within each

of those layers and the positions of any dopants (if any). The purpose of this block is to

convert that information into a spatially varying set of arrays containing useful information

for the proceeding blocks; namely, the refractive index and doping profile. (Technically the

conduction-band profile is also calculated here, however because it so important within the

Schrödinger-Poisson loop it has been kept separate for clarity.)

Estimate charge distribution:

As discussed in 2.2, the simplest approximation to the distribution of free carriers is to assume

that they are distributed evenly across the structure. This approximation is used within this

block and gives a reasonable initial guess as to the total conduction-band profile without

having to solve Schrödingers equation first.

Calculate new conduction-band profile:

The total conduction band profile is the sum of the unperturbed conduction-band profile and

the potential from Poisson’s equation, i.e.

Vtotal = VCB + φ.

However, for systems which have very large Poisson potentials (which may come from either

very high doping concentrations or from in-built potentials such as those in GaN where

strain induces a large potential within each layer), simply adding the potentials together can

produce a self-consistent solutions which is not stable but either oscillates around the solution

or diverges from the solution entirely. For such systems, it is beneficial to damp the rate of

convergence by altering the method by which the Poisson potential is calculated such that,

at each iteration, i,

VPoisson|i = (1− α)φi − αVPoisson|i−1,

and total potential now becomes becomes

Vtotal = VCB + VPoisson.
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While this does increase the number of iterations required for the self-consistent loop to

converge, it is need to ensure stability for certain systems. The effects of damping are shown

below.

Redistribute free carriers amongst calculated states:

Once Schrödingers equation has been solved for the updated conduction-band profile, the

free carriers within the system may be redistributed amongst the calculated states and there

total spatial profile calculated. Deciding the population of each state, however, is a decidedly

non-trivial task. The simplest solution is to distribute free charge amongst all states evenly,

but even this isn’t straightforward as it must be decided how many states should be populated

as the most energetic states within a quantum well system are often not populated. A more

accurate solution would be a temperature dependent distribution of carriers between states,

however this requires the quasi -Fermi level to be calculated for each state as well as knowledge

of the substrate and electron temperatures of the systems. (The electron temperature in

particular is difficult to obtain, as described briefly in 5.2 and in more detail in [41], as it

requires a rate equation model of the system which is part of self-consistent loop outside of

the Schrödinger-Poisson loop.) The solutions within this section redistribute carriers evenly

across all states within the quantum well system. Once the carriers have been distrusted

amongst calculating the total spatial-varying charge distribution simply involves multiplying

the population in each state by the states probability density and summing over all states

for each point.

Test convergence:

Whether the solution has converged is a difficult problem to test. The traditional test is to

check the value of one particular state energy (usually the ground state) from one iteration

to the next; if the energies are within some predefined limit then solution is assumed to have

converged. However, if the state being examined happens to be spatially confined to one

region of the system, as is often the case with more complicated structure such as QCLs, this

method provides no way of determining weather states within other regions of the structure

have converged. Furthermore, if the solution does not converge then the loop will never exit

and become infinite. Not only is this bad from an implementation point of view, but could

also be problematic in larger calculations which may be more automated and so the infinite

loop may not be spotted executing. The simplest solution to this problem is to set the loop

to execute a set number of times and assume the solution will have converged by that point.



44 2.3. Self consistent Schrödinger-Poisson solutions

While this is a crude solution, it is often the most attractive as the convergence can normally

be checked by-eye once it has completed and the number of iterations can be set to more

than is required to ensure the solution has converged.

2.3.1 Results

Results are presented for a self-consistent solution of a 10 nm quantum well in the

Al0.3Ga0.7As/GaAs material system. Two doping are considered, well doping and barrier

doping, both with a carrier concentration of 5×1012 cm−2. This unusually high carrier con-

centration is used to produce a pronounced band-bending effect.

Figure 2.13 shows the results for the well doped quantum well after the self-consistent

loop has converged, showing that considerable band-bending occurs with such high doping.

To examine the performance of the self-consistent loop, as well as the effect of damping on the

speed of convergence, the energy of ground state is plotted against the number of iterations.

This is shown in figure 2.14. While the undoped solution does overshoot slightly within

the first few iteration, it does oscillate around the solution and therefore damping (especially

beyond α = 0.2) only acts to slow convergence. The change in the conduction band edge with

each iteration is shown in 2.15. This shows that the initial estimate for the charge density

is quite far off the converged solution, as the converged solution for the total potential is

closer to the unperturbed state than that of iteration 1. This is due to the barriers of the

quantum well being thicker than the quantum well itself; since the majority of the probability

density of all states will exist within the well, the assumption that free carriers will be evenly

distributed is not correct in this case. This assumption does not stop the solution converging

however, and for real systems which are much larger and typically have barriers which are

very thin, and therefore have states with higher probability density inside the barriers, this

assumption will be more valid.
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Figure 2.13: Self-consistent Schrödinger-Poisson solution for a 10 nm quantum well in the

Al0.3Ga0.7As/GaAs material system with dopant placed throughout the entire well such the dop-

ing density of the entire structure is 5×1012 cm−2.
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Figure 2.14: Evolution of the energy of the ground state of the single quantum well under consid-

eration with iterations of the Schrödinger-Poisson loop for various values of the damping parameter

α.
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Figure 2.15: The change of the condition band edge for the single quantum well under consideration.
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Figure 2.16 shows the resulting converged solution for the same quantum well but with

doping placed within the barriers. The band-bending is even more pronounced here as the

dopant ions and free carriers are more spatially separated that in the well-doped case (since,

as discussed previously, the majority of free carriers will exist within the well). Figure 2.17

shows the evolution of the ground state energy with each iteration of the self-consistent loop.

In this case, the undamped solution does oscillate before converging and therefore adding

a small amount of damping does increase the speed of convergence. The change in the

conduction band edge with each iteration is shown in 2.18.
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Figure 2.16: Self-consistent Schrödinger-Poisson solution for a 10 nm quantum well in the

Al0.3Ga0.7As/GaAs material system with dopant placed throughout each barrier such the doping

density of the entire structure is 5×1012 cm−2.

2.4 Conclusions

Within this chapter a model for finding the quantum states that exist within an arbitrary,

one-dimensional quantum well system has been presented. This allows the relative energies

and envelope functions of confined states within a semiconductor heterostructure to be deter-

mined, from which a device’s electronic structure may be analysed such that some desirables

properties may be designed in to a structure, e.g. a population inversion between the upper

and lower lasing level for a QCL. Such a model is invaluable in the design of complex het-
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Figure 2.17: Evolution of the energy of the ground state of the single quantum well under consid-

eration with iterations of the Schrödinger-Poisson loop for various values of the damping parameter

α.

erostructure devices, such as QCLs, as it allows predictions about simple properties to be

made directly from its results, for example a QCLs emission frequency, and can also be used

as basis for a more in-depth analysis of the electronic structure, for example to examine the

population of each state or to find the complex refractive index of a QCL gain medium as

discussed in chapter 5.
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Figure 2.18: The change of the condition band edge for the single quantum well under consideration

with α = 0.3.





Chapter 3

Acoustic wave propagation in

piezoelectric crystals

In order to determine how a surface acoustic wave (SAW) propagating through a quantum

cascade laser (QCL) will effect the electronic properties of the active region, the form of the

of that acoustic wave must be known. Since the structure of the SAW-QCL device is likely to

be far from trivial as discussed in chapter 1 (i.e. with ridge structures and different layers of

materials [36]), the method for determining the form of this acoustic wave must be a general

model, flexible enough to accommodate any structural features required.

With these goals in mind, this chapter is structured as follows: First, the acoustic wave

equations of motion are derived from first principles by considering the form deformation

induced by an acoustic wave. Since this section contains numerous tensor equations, it

makes heavy use of the Einstein summation convention, details of which can be found in

appendix D. Secondly, the finite-difference time-domain scheme which is used to solve the

equations of motion is presented, describing exactly how a solution is obtained. Finally,

perfectly-matched-layer boundary conditions are derived for the model, which play a crucial

role in stopping artificial reflections from the boundaries of the simulation domain interfering

with the physics being investigated.

3.1 Stress and strain in crystalline materials

In order to gain a deeper understanding of acoustic wave propagation in crystalline materials,

one must first understand how the deformations induced by an acoustic wave will alter a

crystal on a bulk scale. Only when an accurate description of this deformation has been

51
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grasped may the equation governing acoustic wave propagation be derived. Furthermore,

deriving the equations of motion from first principles allows not only the accurate application

of those equations and a better understanding the results coming from there solution, but

also assists in the derivation of boundary conditions and other areas where the equations

must be altered (such as in 3.3, 4.2.1 and 5.1.3).

With this is mind, this section begins by describing how stress and strain may be described

from some arbitrary deformation. Stress and strain are then related to produce Hooke’s law

and the piezoelectric effect is added before the equations of motion are derived. Finally,

tensor rotation is considered as this is required for applying the equations of motion to a set

of axes in an arbitrary direction.

3.1.1 Tensor representation of stress and strain

When considering mechanical forces acting on a crystal lattice, it is necessary to consider

the effect these forces have on the crystal unit cell. Under some resultant force or stress, the

unit cell will deform and therefore become strained. If the unit cell returns to its original

shape once the force has been removed then the crystal is defined as being elastic. These

elastic deformations may be characterised by defining three orthogonal unit vectors x, y and

z, such that these vectors lie along three axes of a Cartesian coordinate system, x1, x2 and

x3. Under some arbitrary deformation, the three unit vectors will be transformed into three

new vectors x′, y′ and z′, which may be defined as [50]

x′ = (1 + e11)x + e12y + e13z

y′ = e21x + (1 + e22)y + e23z

z′ = e31x + e32y + (1 + e33)z

(3.1)

where the coefficients eij are dimensionless and completely define the transformation of the

three vectors, and therefore the deformation. For elastic deformations these coefficients are

always � 1.

By considering the displacement induced by an arbitrary deformation, the coeffcients eij

may be defined in terms of displacement. If the position vector of an atom is defined as

r = x+y+z such that it sits in the top far corner of a unit cell before deformation, it follows

that its position after deformation will be r′ = x′+ y′+ z′. Therefore the total displacement

of the atom, u, will be [50]

u(r) = r′ − r = u1(r)x + u2(r)y + u3(r)z (3.2)
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where u1, u2 and u3 are the individual components of the displacement aligned along the x1,

x2 and x3 axes respectively.

This relationship between the two vectors u and r may be written more succinctly by

using a second-rank tensor [51],

u = [e]r (3.3)

where the second-rank tensor [e] is made up of the coefficients eij from (3.1), and has the

form

eij =


e11 e12 e13

e21 e22 e23

e31 e32 e33

 . (3.4)

This allows [e], and therefore the deformation, to be defined by the displacement induced on

some arbitrary point,

eij =
∆ui
∆rj

for i, j = 1, 2, 3, (3.5)

where ∆ui is the contribution to magnitude of the component of u along the xi axis from the

deformation eij and ∆rj is the magnitude of the component of r along the xj axis. Since r has

an arbitrary magnitude, making it arbitrarily small, i.e. ∆rj → ∂rj , will change the fraction

in (3.5) to a differential. This is equivalent to making the assumption that the material being

deformed is homogeneous, and turns out to be incredibly useful as it allows the displacement

of any point within such a homogeneous material to be found for any arbitrary deformation.

Making this assumption gives

eij = lim
∆rj→0

∆ui
∆rj

=
∂ui
∂rj

for i, j = 1, 2, 3, (3.6)

At this point it is important to realise that while [e] is a complete description of the

displacement of any point within a material, it does not describe the strain. This can be

seen be considering what happens to [e] when a translation (or rotation) is applied. Since

there will be displacement to every point (not at the center of rotation), [e] will be non-zero

everywhere (except this point) despite the fact that the material has not been deformed and

therefore there is no strain. However, since any arbitrary translation or rotation will produce

a purely anti-symmetric tensor, and the fact that any second rank tensor may be defined as

the sum of a symmetric and anti-symmetric tensor, i.e.

eij = εij +$ij for i, j = 1, 2, 3, (3.7)

where [ε] and [$] are the symmetric and anti-symmetric tensors respectively, the strain, [ε],
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may be defined as the purely symmetric part of [e],

εij =
1

2
(eij + eji) for i, j = 1, 2, 3. (3.8)

A more rigorous proof of this derivation of strain is beyond the scope of this thesis but may

be found in reference [51].

For completeness, the full strain tensor is then

[ε] =


ε11 ε12 ε31

ε12 ε22 ε23

ε31 ε23 ε33

 =


e11

1
2(e12 + e21) 1

2(e13 + e31)

1
2(e12 + e21) e22

1
2(e23 + e32)

1
2(e13 + e31) 1

2(e23 + e32) e33

 . (3.9)

Since each unique component of strain must be induced by a unique component stress,

it may be deduced that stress must also be represented by a symmetric rank-two tensor. In

order to define this stress tensor, the various ways in which stress can be applied to a unit

cell are considered. As stress is a force per unit area, stress applied to the unit cell can

be thought of as an instantaneous force applied equally to one entire face of the unit cell.

Clearly, the three diagonal elements of the stress tensor, σii for i = 1, 2, 3, will refer to a force

applied perpendicular to the face it is applied to, inducing either a compressive or tensile

strain (depending on whether the force is pointing inwards or outward from the unit cell).

This stress, and the strain which it induces, is labelled as lateral. The only other unique

way of applying stress to the unit cell is to apply a force parallel to the face it is applied to,

which corresponds to the other three unique elements of the stress tensor, σij for i 6= j with

i, j = 1, 2, 3. This stress, and induced strain, are labelled as shear. Applying stress at any

other orientation will simply produce some combination of lateral and shear stress. Figure 3.1

shows specifically which subscripts apply to which faces and axes with hidden faces having

the same notation as their opposite face (since the stress tensor is symmetric). The full form

of the stress tensor is then

[σij ] =


σ11 σ12 σ31

σ12 σ22 σ23

σ31 σ23 σ33

 . (3.10)

3.1.2 Hooke’s Law

Hooke’s law states that stress is directly propositional to strain, i.e.

σ = Cε, (3.11)
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Figure 3.1: Orientation of the subscripts for both stress and strain (the orientation of subscripts is

identical for both) for the visible faces of a cube. The non-visible faces will have identical subscripts

to their opposing sides.

where C is the elastic stiffness constant which is a property specific to the material or system

being stressed/strained. In order for (3.11) to be valid, the induced strain must be within

the elastic limit, as defined in section 3.1.1. With the addition of Hooke’s law, the elastic

limit may be defined more generally. That is, (3.11) is only valid when the induced strain is

small enough for the elastic stiffness constant to remain constant, i.e. remain within the linear

regime. While higher order terms can be added to (3.11), or precisely in the definition of stress

and strain, to account for deformations outside of this linear regime, such approximations

are not necessary in this work. Instead, this limit of validity is considered wherever Hooke’s

law is applied.

As shown in section 3.1.1, stress and strain within crystalline materials may be represented

by second-rank tensors. In order to use these in (3.11), the elastic stiffness constant must be

a fourth-rank tensor (since rank-two tensors are related by rank-four tensors), i.e. [C]. The

tensor representation of Hooke’s law within a crystalline material is then [51]

[σ] = [C][ε], (3.12)

or using the Einstein summation convention (see appendix D)

σij = Cijklεkl for i, j, k, l = 1, 2, 3. (3.13)
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Matrix representation of tensors

As discussed in section 3.1.1, both the stress and strain tensors are symmetric having only six

unique elements out of nine each. Therefore the elastic stiffness tensor will also be symmetric,

having only thirty six unique elements out of a total eighty one. This level of symmetry within

each tensor lends itself very well to representation by matrices, and is incredibly beneficial

as it greatly reduces the complexity of the analysis when applying Hooke’s law.

Representing tensors using matrices simply involves changing the notation used to repre-

sent each element. Since the stress and strain tensors have six unique elements, the first step

is to label these with a single suffix, from 1 to 6, replacing the double suffix notation, as in

table 3.1. Using this notation implies that the stress and strain tensors may be represented

Tensor notation Matrix notation

11 1

22 2

33 3

23 or 32 4

31 or 13 5

12 or 21 6

Table 3.1: Conversion from tensor to matrix notation.

by vectors each with 6 elements, which must be related by a 6× 6 matrix in order for (3.11)

to hold. Such a matrix can be constructed from the elastic stiffness tensor by converting the

first and second pair of suffixes into matrix notation, as in table 3.1, i.e.

Cijkl → Cmn for i, j, k, l = 1, 2, 3; m,n = 1, . . . , 6.

Care must be taken to ensure that this matrix representation is identical to the tensor

representation. If the tensor product in (3.12) is considered, it can be seen that implied

conversion to matrices described above does not produce an identical equation, since the

unique elements are included the number of times they appear in the tensor representation

but only once in the matrix representation. This can be rectified by introducing a factor of

two when converting the shear strain components, therefore making the conversion of strain

from tensor to matrix representation [51]

εi = εii for i = 1, 2, 3,

εi = 2εjk for i = 4, 5, 6; j, k = 1, 2, 3, with j 6= k,
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or, representing the elements of [ε] in matrix notation
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

→

ε1

1
2ε6

1
2ε5

1
2ε6 ε2

1
2ε4

1
2ε5

1
2ε4 ε3

 .
This matrix representation of shear strain is sometimes referred to as engineering shear strain.

The elements of stress do not require any scaling factor and, for completeness, the conversion

from tensor matrix is

σi = σjk for i, j, k = 1, 2, 3,

or, representing the elements of [σ] in matrix notation
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

→

σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

 .
By expanding (3.13) for one element of [σ], say σ11, in both tensor and matrix notations it

can be seen that they are now equivalent, i.e.

σ11 = C1111ε11 + C1112ε12 + C1113ε13

+ C1121ε21 + C1122ε22 + C1123ε23

+ C1131ε31 + C1132ε32 + C1133ε33,

which becomes,

σ1 = C11ε1 +
1

2
C16ε6 +

1

2
C15ε5

+
1

2
C16ε6 + C12ε2 +

1

2
C14ε4

+
1

2
C15ε5 +

1

2
C14ε4 + C13σ3,

in matrix notation.

The matrix representation of Hooke’s law in crystalline materials may now be written out

in full, 

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





ε1

ε2

ε3

ε4

ε5

ε6


, (3.14)
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or using the Einstein summation convention,

σi = Cijεj for i, j = 1, . . . , 6, (3.15)

where ε may be expressed in terms of the displacement inside the material, as described in

section 3.1.1,

εi =
∂ui
∂xi

for i = 1, 2, 3,

ε4 =
∂u3

∂x2
+
∂u2

∂x3
,

ε5 =
∂u3

∂x1
+
∂u1

∂x3
,

ε6 =
∂u2

∂x1
+
∂u1

∂x2
.

(3.16)

3.1.3 Including the piezoelectric effect

When a strain is induced within certain crystals, asymmetry of atomic positions within the

unit cell can cause an imbalance in charge which generates an electric field. This is known

as the direct piezoelectric effect [51]. Similarly, applying an electric field to a crystal which

exhibits the piezoelectric effect will induce a electric displacement vector within the crystal

causing it to become strained. This is known as the converse piezoelectric effect [51]. As

stated in section 3.1.2, the stresses and strains considered in this work are assumed to be

small and therefore within the elastic/linear limit. It can therefore be assumed that the

piezoelectric effect will also be within this elastic limit, i.e. the strain is small enough the

constant defining piezoelectricity will not changed under any arbitrary deformation. Since it

is the displacement of atoms within the unit cell that induces a electric displacement vector,

a relationship between the strain and the induced electric displacement vector is sought. This

relationship will be linear, with the constant defining the piezoelectricity being a third-rank

tensor, since it relates a second-rank tensor, strain, to a vector, the electric displacement

vector, and will take the form [51]

D = [e][ε] (3.17)

where D is the electric displacement vector and [e] is the piezoelectric constant, or using the

Einstein summation convention

Di = eijkεjk for i, j, k = 1, 2, 3, (3.18)

where Di is the electric displacement vector along the xi axis. The strain may be related

to the induced potential by remembering the divergence of the electric displacement vector
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gives the charge distribution,

∇ ·D = ∇ · [e][ε] = ρ. (3.19)

This may be substituted into Poisson’s equation to find the potential,

∇ε∇φ = −∇ · [e][ε] (3.20)

where ε is the permittivity and φ is the potential.

A relationship is now sought to relate an applied electric field to an induced stress. This

can also be assumed to be linear and will also be a third-rank tensor since it is relating a vector

and rank-two tensor. It can be shown thermodynamically, see [51], that this constant is in

fact the transpose of the piezoelectric constant, which in the Einstein summation convention

is equivalent to reversing the order of the suffixes. This simply allows an extra terms to

be added to Hooke’s law to include the piezoelectric effect, which will be negative since the

direct effect must oppose the converse effect,

[σ] = [C][ε]− [e]E, (3.21)

where is E is the electric field, or using the Einstein summation convention

σij = Cijklεkl − emjiEm for i, j, k, l,m = 1, 2, 3. (3.22)

Since the solution of Poisson’s equation gives a potential, it is often easier from an im-

plementation point of view to include the potential in Hooke’s law, which may be done very

simply by remembering that the gradient of potential gives the negative electric field, and

therefore Hooke’s law becomes

[σ] = [C][ε] + [e]∇φ, (3.23)

or using the Einstein summation convention

σij = Cijklεkl + emijφ for i, j, k, l,m = 1, 2, 3. (3.24)

For completeness, the piezoelectric form of Hooke’s law may be written in matrix notation

by converting the piezoelectric tensor into matrix notation. This is done by substituting the

second two tensor suffixes to a single matrix suffix as in table 3.1 such that,

eijk = eil for i, j, k = 1, 2, 3; l = 1, . . . , 6, (3.25)

which results in a 6× 3 matrix of the form

e =


e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

 . (3.26)
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In Hooke’s law the transverse of this matrix must be used and in the summation convention

this becomes

σi = Cijεj + eT
ik

∂φ

∂xk
(3.27)

3.1.4 Acoustic wave equations of motion

The defining property of an acoustic wave is a time varying displacement at each point within

the medium the wave is travelling through. As already shown in section 3.1.2, displacement,

or strain, within crystalline materials is induced by some stress. A relation is then sought

between this time varying displacement and the instantaneous stress in the form of a wave

equation to describe acoustic wave propagation. A similar relation is found in Newton’s

second law,

F = m
∂2S

∂t2
, (3.28)

where an instantaneous force, F , is related to the second-order time differential of displace-

ment (from some origin), S, by the mass, m. There are two main differences between (3.28)

and the wave equation which is sought. Firstly, the displacement of a point within a crystalline

material is not measured from the origin but from where that point lies in the unstrained

material, as in seciton 3.1.1. Therefore this displacement can be though of as a displacement

per unit of volume. Secondly, there is no instantaneous force, but an instantaneous stress,

i.e. a force per unit area. However, if the spatial differential of strain is taken to give a force

per unit volume, then using the density (mass per unit volume) an analogous equation may

be written down effectively describing Newton’s second law per unit volume,

∇ · [σ] = ρ
∂2u

∂t2
(3.29)

where ρ is the density and u is displacement, or using the matrix notation and Einstein

summation convention,

ρ
∂2ui
∂t2

=
∂σij
∂xj

for i, j = 1, 2, 3. (3.30)

This is the acoustic wave equation motion relating the time-dependent displacement to the

instantaneous stress within a three-dimensional crystalline material. (Note that in (3.30)

σ is in tensor rotation, as this is the only way that this equation can be written using

the Einstein summation convention.) It is worth noting that (3.30) is incredibly general.

Indeed, any form of acoustic wave propagation in a bulk crystalline material is described by

this equation. In fact propagation in non-bulk materials can also be described by applying

appropriate boundary conditions, such as with surface acoustic waves as in chapter 4.
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3.1.5 Tensor rotation

Although not explicitly stated until now, the spatial axes of the equations of motion derived

in 3.1.4 will be aligned along the crystal axes of the crystalline material being simulated unless

the axes of tensor constants are rotated. This is because the axes of the tensor constants

within the equations of motion are aligned to the crystal axes, or rather the constants are

always stated with their axes aligned to the crystal axes, and the axes of the equations of

motion are implicitly aligned along the tensor’s axes. Since it is often necessary to align the

axes of the equation of motion to some arbitrary direction, especially when the simulation

domain is restricted to a quasi-three dimensional system as described in 3.2.1 where the

direction of the restricted axis determines the direction within the crystal of the propagating

wave, a method is required to rotate the tensor axes.

Since the method of rotation requires a transformation matrix to be defined for an arbi-

trary rotation, this is done first. Then the method of rotation is described which utilises the

transformation matrices.

Transformation matrices for arbitrary rotations

Any arbitrary rotation which transforms some coordinate system defined by three orthogonal

axes, Ox1, Ox2 and Ox3, onto three new orthogonal axes, Ox1, Ox2 and Ox3, may be defined

by three distinct angles [51, p. 33]. This may be shown by considering a rotation which moves

one of the three axes, Ox1 say, to some new direction Ox′1. The movement of Ox1 to Ox′1

may be described fully by a rotation of Ox1 around a plane on which it already lies followed

by an elevation away from that plane. This rotation leaves the position of the other two

axes undefined however, since the Ox1 axis may be rotated further about itself. Therefore a

third angle is required to describe the transformation of axes fully. These three angles can

be thought of as rotations about each of the three orthogonal axes1, therefore allowing any

arbitrary rotation to be described by a combination rotations about each axis as shown in 3.2.

Three transformation matrices are therefore sought to describe a rotation about each of the

three axes so that a combination of these may be used to describe any arbitrary rotation.

At this point, it is worth noting about the convention for positive and negative angles in

3-dimensional space. In the present work the convention from [51] is used, that is on right-

handed axes a positive rotation about one axis is defined as the direction of a right-handed

screw motion along that axis. Since only rotations about one axis are considered here, this

1Although in fact the three angles can be taken about any three orthogonal vectors
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definition need not be extended to include all planes of rotation.

In order to find the form of each transformation matrix, the effect of a rotation about one

axis on the components of a rank 1 tensor, i.e. a vector, is examined since this is the simplest

non-trivial case of tensor rotation.2 Clearly the diagonal elements of the transformation ma-

trix will be the cosine of the rotation angle, however the diagonal element which corresponds

to the axis being rotated about will be one since the magnitude of the corresponding vector

component will not change. The off diagonal elements will have the magnitude of the sine of

the rotation angle, although to determine the sign of these elements one must consider the

direction in which occurs. Furthermore, the elements of the column and row which have the

diagonal element of one will be zero since the corresponding vector components will remain

orthogonal to the axis being rotated about both before and after the rotation (because this

axis does not change direction), and therefore will not affect nor be affected by the vector

component in this direction.

Figure 3.2: Arbitrary rotation of the three orthogonal axes, Oxi, to some new position Ox
′′′

i , via a

rotation first about Ox3 by an angle of θ1 to Ox
′

i, followed by a rotation about Ox
′

2 by θ2 to Ox
′′

i ,

and finally a rotation about Ox
′

1 by θ3 to Ox
′′′

i .

Using the above conditions, the transformation matrices may be written down by con-

sidering the relation between some arbitrary vector, v, and some resulting vector v′, after a

2Rotations of rank 0 tensors, i.e. scalars, are simpler, but are trivial since a rotation of axes does not

change the scalar value.
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rotation about each of three axes. I.e., for a rotation about the axis Ox1 by and angle θ

v′ =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

v, (3.31)

for a rotation about the axis Ox2 by and angle θ

v′ =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

v, (3.32)

and for a rotation about the axis Ox3 by an angle θ

v′ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

v. (3.33)

As the above transformation matrices may be combined to describe any arbitrary trans-

formation, it is readily shown that the same transformation may be achieved by multiplying

the transformation matrices together such that

v′ = azayaxv (3.34)

where ax, ay and az are the transformation matrices for rotations about Ox1, Ox2 and Ox3

respectively, in order to find a single, general matrix for any arbitrary rotation. However,

because matrix multiplication is noncommutative, the order in which the rotations about Ox1,

Ox2 and Ox3 are performed will intrinsically set with any general transformation matrix.

While this is not a problem so long as care is taken to insure that the total rotation is

described in terms of rotations about axes in a specific order, some rotations are easier to

describe by rotating about axes in different orders. Therefore, in order to avoid confusion

about the precise order of rotation and the rigidity of having to perform the rotations in a

specific order, multiplying the transformation matrices together to form a general matrix is

avoided. Instead the three transformation matrices, ax, ay and az, for rotations about Ox1,

Ox2 and Ox3 respectively are given as

ax =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 , (3.35)
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ay =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , (3.36)

az =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (3.37)

Transformation of tensor constants

While the present work is concerned only with the rotation of tensors, the method of utilising

a transformation matrix once it has been found for some arbitrary transformation (i.e. a

rotation) is the same, and therefore will first be described in a general sense. In fact, the

way in which a physical property transforms in terms of some transformation matrix is the

defining property of a tensor, and a property is not considered a tensor if it does not transform

as described below [51].

During a transformation, tensors are multiplied by a number of elements from the trans-

formation matrix corresponding to their rank number, with the specific elements that are

multiplied together changing dependent also upon the rank of the tensor. For rank 3 tensors,

e.g. the piezoelectric constant, the transformation, using the Einstein summation convention,

is

T
′
ijk = ailajmaknTlmn (3.38)

where T
′

is the tensor after transformation, a is the transformation matrix and T is the

original tensor. For rank 4 tensors, e.g. the elastic constant, the transformation, using the

Einstein summation convention, is

T
′
ijkl = aimajnakoalpTmnop (3.39)

where T
′

is the tensor after transformation, a is the transformation matrix and T is the

original tensor.

As discussed during the derivation of the transformation matrices, the matrix for a rota-

tion about each axis was kept separate to avoid confusion about which order the rotations

take place. If an arbitrary rotation were to be performed as above, these three matrices

would need to be multiplied together before the transformation could take place. However

from an implementation point of view, it is easier to simply perform the rotation about each

axis separately as this removes the need to multiply the transformation matrices together.
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This will produce identical results to performing the transformation in one so long as care is

taken that each rotation is performed separately, for example, firstly the transformation

T xijk = axila
x
jma

x
knTlmn,

where Tx is tensor after a rotation about x and ax is the transformation matrix for a rotation

about x, followed by

T yijk = ayila
y
jma

y
knT

x
lmn,

where Ty is tensor after a rotation about y and ay is the transformation matrix for a rotation

about y, and finally

T zijk = azila
z
jma

z
knT

y
lmn,

where Tz is tensor after a rotation about z and az is the transformation matrix for a rotation

about z. Furthermore, many rotations will only require a rotation about one axis, such as

when acoustic propagation in the [1,1,0] direction which requires only a rotation about x by

45◦, and therefore no more one transformation would be required.

To show the result of tensor rotation on the piezoelectric and elastic constant, the GaAs

material system is considered for acoustic waves propagating in the [1,1,0] direction. This

direction is used often with this material system as the piezoelectric effect in GaAs does not

produce acoustic waves when the exciting electric field is invariant in the [0,1,0] direction (as

discussed in 3.2.1). The original constants are

e =


0 0 0 −0.16 0 0

0 0 0 0 −0.16 0

0 0 0 0 0 −0.16

 ,

C =



11.9× 1010 5.34× 1010 5.34× 1010 0 0 0

5.34× 1010 11.9× 1010 5.34× 1010 0 0 0

5.34× 1010 5.34× 1010 11.9× 1010 0 0 0

0 0 0 5.96× 1010 0 0

0 0 0 0 5.96× 1010 0

0 0 0 0 0 5.96× 1010,


,

where e is the piezoelectric constant and C is the elastic constant, both in matrix notation,

with units of Cm−2 and Nm respectively. After a rotation about the x axis of 45◦, they

become

e =


0 0 0 −0.16 0 0

0 0 0 0 −0.16 0

0.08 −0.08 0 0 0 0

 ,
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C =



14.58× 1010 2.66× 1010 5.34× 1010 0 0 0

2.66× 1010 14.58× 1010 5.34× 1010 0 0 0

5.34× 1010 5.34× 1010 11.9× 1010 0 0 0

0 0 0 5.96× 1010 0 0

0 0 0 0 5.96× 1010 0

0 0 0 0 0 3.28× 1010,


,

respectively. Clearly, this rotation has a big impact not only on the values of specific elements

within the tensors, but also on the positions of the non-zero elements within the tensors,

showing that tensor rotation is a very important point to consider when simulating acoustic

wave propagation along directions other than the crystal axes.

3.2 Finite-difference time-domain model of acoustic wave prop-

agation

In order to simulate acoustic wave propagation through arbitrary crystalline structures a

numerical solution to the acoustic wave equations of motion is required. The finite-difference

time-domain method is a powerful tool that allows time-dependent systems of partial-differential

equations to be solved simply and efficiently, whilst retaining a generality, that allows a so-

lution to be found for any arbitrary structure, providing the correct boundary conditions

are imposed. Furthermore, the concepts of an interlaced mesh as well as the perfectly-

matched-layer boundary condition, that have emerged through the continued development

of the method, provide a more accurate solution than conventional meshing techniques and

ensure that the artificial boundaries imposed at the edge of the simulation domain do not

interfere with the solution within the region of interest.

In this section the finite-difference time-domain method is applied the acoustic wave

equations of motion to produce a model of acoustic wave propagation in crystalline materials.

Firstly, the assumption that the waves under consideration are of Rayleigh-wave type is

discussed, which allows the simulation domain to be quasi-three dimensional and greatly

reduces the computational effort required compared to a full three dimensional simulation.

Then, the finite-difference approximation applied to produce the acoustic-wave model, which

of followed by results of acoustic wave propagation within bulk crystalline material as a proof

of concept for the model.
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3.2.1 Rayleigh-wave assumption of acoustic-wave propagation

Since the ultimate aim of the simulation of acoustic wave propagation is to model surface

acoustic wave devices, some consideration of these devices needs to be taken before deriving

the model. The striking feature of these devices, from a modelling perspective, is that their

geometry, as well as the acoustic waves which they utilise, are practically invariant along the

direction parallel to the wave front, compared to the length-scale of the wavelengths they

use. A sensible approximation, therefore, is to assume that the geometry is invariant along

the direction parallel to the wavefront and the waves have a straight wavefront, i.e. are of

Rayleigh-wave type.

Setting the direction parallel to the wavefront to be along the x2 axis, implementing

this approximation then involves setting all terms with a differential with respect to this

axis, ∂
∂x2

, equal to zero in the equations governing the acoustic wave propagation. While

the differential is set to zero, the displacement along the x2 may be non-zero and therefore

must still be considered within the model. For this reason, using this approximation makes

the quasi -three dimensional since it is not a full three-dimensional model but contains more

information than a two-dimensional model which would assume that all variables along this

axes are zero, rather than invariant.

3.2.2 Finite-difference time-domain method

The simplest method of descretising a time-dependent set of equations is to directly apply

the finite-difference approximation to the time- and spatial-derivatives. The natural choice

of grid for the resulting set of discrete equations then sees every variable calculated at every

grid point in space and for every discrete point in space, as depicted in figure 3.3.

While such a discretisation method will work well for many systems of partial differential

equations, particularly those containing only second-order differentials, by utilising an inter-

laced grid the accuracy of the numerical solution may be increased without increasing the

number of sampling points required. This may be shown by considering the acoustic wave

equations of motion which are to be discretised,

ρ
∂2ui
∂t2

=
∂σij
∂xj

for i, j = 1, 2, 3, (3.40)

where,

σi = Cijεj for i, j = 1, . . . , 6. (3.41)

By substituting (3.41) into (3.40) then applying the finite difference approximation in both
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Figure 3.3: The simplest choice of discretisation grid for some spatially and time depedent function,

u.

space and time, a set of discrete equations of the form

ui(i, j, t+ 1)− 2ui(i, j, t) + ui(i, j, t− 1)

(δt)2
=
ui(i+ 1, j, t)− 2ui(i, j, t) + ui(i− 1, j, t)

(δx1)2
. . .

(3.42)

is obtained, where the other terms have been omitted as they cannont be written succinctly

in the Einstein summation convention. Equation (3.42) shows that the spatial differentials

will be calculated over a distance of 2δz (considering only one-dimension), since they depend

upon the neighbouring points, and the temporal differentials over a time of 2δt since the next

time step depends on the previous two. If, however, an auxillery variable, v is added to (3.40)

in order to split the time differential, such that

ρ
∂ui
∂t

=
∂vij
∂xj

for i, j = 1, 2, 3, (3.43)

where,

∂vi
∂t

= σi = Cijεj for i, j = 1, . . . , 6, (3.44)

Each equation is now only made up of first-order differentials. Applying the finite-difference
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approxiation

ui(i, j, t+ 1)− ui(i, j, t)
(δt)

=
vi(i+ 1, j, t)− vi(i, j, t)

(δx1)
. . . ,

vi(i, j, t+ 1)− vi(i, j, t)
(δt)

=
ui(i+ 1, j, t)− ui(i, j, t)

(δx1)
. . . ,

then gives differentials applied across δz spatially and δt temporally. This alone does not

improve the numerical accuracy however, since if these equation where applied to the same

discretisation grid as above the same result would be obtained (since the two sets of equations

are equivalent). Using an interlaced grid however, where the grid points for the auxiliary

variable v are placed in between the grid points used for the variable u, both spatially and

temporally (i.e. at i ± 1
2 , j ± 1

2 and t ± 1
2) as depicted in 3.4, each first-order differential is

calculated across a distance of 1
2δxi or 1

2δt meaning that the second-order differentials are

effectively calculated over δxi or δt. Therefore, by utilising an interlaced grid the effective

accuracy of the calculation can be increased by a factor of 2 without increasing the number

of sampling points. The interlaced grid changes (3.45) to

ui(i, j, t+ 1)− ui(i, j, t)
(δt)

=
vi(i+ 1

2 , j, t)− vi(i−
1
2 , j, t)

(δx1)
. . . ,

vi(i, j, t+ 1
2)− vi(i, j, t− 1

2)

(δt)
=
ui(i+ 1, j, t)− ui(i, j, t)

(δx1)
. . . .

Figure 3.4: Interlaced mesh used in the finite-difference time-domain method.



70 3.2. Finite-difference time-domain model of acoustic wave propagation

The disadvantage of using an interlaced grid is the increase in complexity in the imple-

mentation of the solution. This comes about as all of the spatial points of one variable at one

time step, say v|t− 1
2
, must be calculated before the next half-time-step of the other variable,

i.e. u|t, meaning that two separate loops over space are required for each whole-time-step,

one for each variable. Including the solution of Poisson’s equation at each time-step, the

flow-diagram for solving the acoustic wave equations of motion using the finite-difference

time-domain method with auxiliary variables is shown in figure 3.5.

3.2.3 Solving Poisson’s equation in two dimensions

The time evolution of the acoustic-wave equations of motion requires that the potential be

found, and therefore Poisson’s equation be solved at every time-step. Furthermore, since

the simulation domain considered is quasi-three dimensional and it is only the electric field

(i.e. - ∂φ∂xi ) that appears within the equations of motion, Poisson’s equation only needs to be

solved in two-dimensions as one component of electric field will always be zero. This is where

the biggest computational saving is made from the quasi-three dimensional approximation

as solving Poisson’s equation in three dimensions using the matrix diagonalisation approach

described below makes the runtime of this method scale roughly cubicly with the number of

sampling points, meaning that when simulating larger devices of a real-world size, solving

Poisson’s equation would take up nearly all of the total runtime of the FDTD algorithm.

The notation used within this subsection, particularly with reference to axis labels, has

been made general (as opposed to the matrix-style axis labels used when deriving the acoustic-

wave equations of motion) because the solution presented here is a general solution to the

two-dimensional Poisson equation. Furthermore, the notation has been changed to emphasise

the point that the axes used here are chosen arbitrarily and can be aligned along any of

the axes defined in the acoustic-wave equations of motion. In fact, the orientation of this

solution to Poisson’s equation is actually a very important consideration to the efficiency of

the solution, as discussed later in this subsection.

Derivation

The general form of Poisson’s equation is

∇ · (ε∇φ) = −ρ, (3.45)

where ε is the effective permittivity, φ is the potential and ρ is the charge density. Since the

Poisson equation is to be discretised over two-dimensions the ∇ operator is expanded over
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two orthogonal axes x and y to give

∂

∂x
ε

(
∂

∂x
φ

)
+

∂

∂y
ε

(
∂

∂y
φ

)
= −ρ. (3.46)

Applying the finite difference approximation gives
εi+1,j

(
φi+1,j−φi−1,j

2(δx)

)∣∣∣
i+1,j

− εi−1,j

(
φi+1,j−φi−1,j

2(δx)

)∣∣∣
i−1,j

2(δx)

+


εi,j+1

(
φi,j+1−φi,j−1

2(δx)

)∣∣∣
i,j+1

− εi,j−1

(
φi,j+1−φi,j−1

2(δx)

)∣∣∣
i,j−1

2(δy)

 = −ρ,

(3.47)

where δx and δy and the spatial discretisation steps along the x and y axes respectively.

Rearranging then gives{
εi+1,j (φi+2,j − φi,j)− εi−1,j (φi,j − φi−2,j)

4(δx)2

}
{
εi,j+1 (φi,j+2 − φi,j)− εi,j−1 (φi,j − φi,j−2)

4(δy)2

}
= −ρ.

(3.48)

Making the substitutions 2(δx)→ δx and 2(δy)→ δy, as in appendix A, gives{εi+ 1
2
,j

(δx)2
φi+1,j +

εi− 1
2
,j

(δx)2
φi−1,j +

εi,j+ 1
2

(δy)2
φi,j+1 +

εi,j− 1
2

(δy)2
φi,j−1−(εi+ 1

2
,j + εi− 1

2
,j

(δx)2
+
εi,j+ 1

2
+ εi,j− 1

2

(δy)2

)
φi,j

}
= −ρ

(3.49)

where variables indexed by ±1
2 are found by averaging.

The system of linear equations that eq (3.49) represents may be arranged into a matrix

equation of the form

Aφ = −ρ, (3.50)

where φ and ρ are vectors of all the spatial points of each variable arranged such that each

row of spatial points is placed one after another in ascending row order, i.e.

φ = [φ1,1, φ2,1, φ3,1, · · · , φni−1,1, φni,1, φ1,2, φ2,2, · · · , φni−1,nj , φni,nj ] ,

ρ = [ρ1,1, ρ2,1, ρ3,1, · · · , ρni−1,1, ρni,1, ρ1,2, ρ2,2, · · · , ρni−1,nj , ρni,nj ] ,

and A is a symmetric, sparse-banded matrix of the order of ninj, given by

A =



B1

ε
i, 12

(δy)2
I

ε
i, 12

(δy)2
I B2

ε
i,1 1

2
(δy)2

I

. . .
. . .

. . .
ε
i,nj−1 1

2
(δy)2

I Bnj−1
ε
i,nj− 1

2
(δy)2

I
ε
i,nj− 1

2
(δy)2

I Bnj


,
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where I is the identity matrix of the order of ni and B is a symmetric, tridiagonal matrix

given by

Bj =


a1,j b2,j

b2,j a2,j b3,j
. . .

. . .
. . .

bni,j ani,j


and a and b are

ai,j =

(εi+ 1
2
,j + εi− 1

2
,j

(δx)2
+
εi,j+ 1

2
+ εi,j− 1

2

(δy)2

)
,

bi,j =
εi− 1

2
,j

(δx)2
.

Note that in the construction of A, Neumann boundary conditions have been used. While

other boundary conditions could be added, such as those described in 2.2.1, this is not required

as the current system under consideration is always assumed to be isolated from external

electric fields.

Solution

The equation 3.50 is solved by passing the matrix to diagonalise, A, along with the charge

distribution, ρ, to the LAPACK linear algebra package [47] which returns the solution.

As a test case, Poisson’s equation was solved for a square of bulk GaAs, 30 × 30µm in

size. A charge of 1 Coulomb was placed on each of the 9 grid points in the 3×3 square at the

centre of the simulation domain, giving a charge density of approximately 44.44×1012 Cm−2.

The discretisation steps, δx and δy, were both set to 0.15µm. Figure 3.6 shows the solution.
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Initilise all variables (u, v, ρ and φ) to zero.

t = 0

Calculate v|t+ 1
2

for all space. (Dependant on u|t and φ|t.)

Calculate u|t+1 for all space. (Dependant on v|t+ 1
2
.)

Calculate ρ|t+1 for all space. (Dependant on u|t+1.)

Solve Poisson’s equation to calculate φ|t+1 for all space. (Dependant on ρ|t+1.)

Increment t.

Figure 3.5: Flow diagram of the finite-difference time-domain solution of the acoustic wave equations

of motion for the displacement, u, the auxiliary variable, v, the induced charged displacement, ρ, and

the potential, φ.
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Figure 3.6: Solution of Poisson’s equation in two dimensions within bulk GaAs with a 0.45×0.45µm

square of charge at the centre of the simulation and a charge density of 44.44 Cm−2.
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Computational efficiency of the solution

Since the matrix to be solved is of a symmetric, banded form, the most efficient method

for solving the matrix is to use a symmetric-banded matrix solver such as that provided

by LAPACK [47] which ignores the zero-elements outside the outer-most diagonal, therefore

only diagonalising the inner-most, non-zero part of the matrix. This reduces the number of

operations required from the order of (ninj)2 for Gaussian elimination, down to the order

of ni(nj)2. From this, it is clear to see that the dimension nj has the biggest effect on the

number of opperations required. Furthermore, since the axis in this solution to Poisson’s

equation are not specific to either axis within the acoustic wave simulation, then the y axis of

Poisson’s equation may be aligned to the shorter axis of the of the acoustic wave simulation

domain (if it is not square), hence making the solution more efficient. Clearly, this effect

is more pronounced on simulation domains where the ratio of the two sides are far from 1.

When simulating surface acoustic wave devices in particular, as in 4, where one side of the

simulation domain is often more than several orders of magnitude bigger than the other, it

is imperative that this effect be considered.

The second point on efficiency which should be considered when solving Poisson’s equation

within an acoustic wave simulation, is that Poisson’s equation must be solved at every time

step. Furthermore, the form of the matrix to solve does not change over time, only the

charge density varies, therefore there is no need to diagonalise the matrix at every time

step. Instead, if the diagonalised matrix is stored then this may be used to calculate the

new potential at every time step. LAPACK [47] offers this functionality by using its diver

routines, whereby the matrix may be diagonalised before the loop over time is entered and

then new potentials found by supplying a new charge density at every time step. Since the

majority of computational effort is spent diagonalising the matrix when solving Poisson’s

equation, this can have a dramatic improvement in the runtime of a simulation, especially

when there are many iterations over time.

3.2.4 Solution of acoustic wave equations of motion

The acoustic wave equations of motion are solved for a square of bulk GaAs in order to

demonstrate the viability of the finite-difference time-domain method. Since GaAs does not

produce propagating acoustic waves when an electric field is applied parallel to the crystal

axes, the axes of the simulation domain are rotated such that the x-axis lies along the [1,1,0]

crystal direction. This involves the rotation of the piezoelectric and elastic tensor constants as
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described in 3.1.5. The system is excited by placing a square block of charge in the centre of

the simulation domain, as in 3.2.3, the magnitude of which sinusoidally oscillates at frequency

of 1 GHz. This generates a sinusoidally varying potential which in term launches an acoustic

wave. The speed of sound within GaAs is approximately 2800 ms−1 giving a wavelength of

2.8µm. The discretisation steps within the simulation, δx1 and δx3, were therefore set to

0.15µm. Figure 3.7 shows various time frames of the solution for displacement in the x1 and

x3 directions, u1 and u3 respectively. The displacement in the x2 direction, u2, is always zero

within GaAs in the [1,1,0] orientation. This clearly shows the acoustic wave that is generate

which propagates radially outward as expected.
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(a) u1 at t = 1.25 ns
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(a) u3 at t = 0.625 ns
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(a) u3 at t = 1.25 ns
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(a) u3 at t = 2.5 ns
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(a) u1 at t = 2.5 ns
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(a) u3 at t = 3.75 ns
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(a) u1 at t = 3.75 ns
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Figure 3.7: Solution of the acoustic wave equations of motion in the [1,1,0] orientated, GaAs material

system. The acoustic wave excited by sinusoidally oscillating the magnitude of a block of charge in

the central 0.45×0.45µm of the simulation domain (i.e. a 3×3 square of grid points). The charge was

oscillated at a frequency of 1 GHz producing for an acoustic wave which propagates radially outwards

from the centre of the simulation domain.
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3.3 Perfectly-matched-layer boundary conditions

The perfectly-matched-layer (PML), first introduced in 1994 [52], is a powerful numerical

technique which allows travelling waves within free-space simulations to be completely ab-

sorbed. It is used as a boundary condition within simulations of wave propagation in order

to stop artificial reflections from the boundaries of the simulation domain interfering with the

region of interest. The success of the PML over other types of absorbing boundary condition

(ABC) comes from the fact that, before discretisation, the equations within the boundary

layer are perfectly matched to those within the region of interest, hence the name. This

allows for the absorption coefficient to be changed very rapidly, not only between the region

of interest and PML but within the PML itself, without causing instabilities. Any wave

entering the PML is therefore damped very effectively with PMLs whose thickness is just a

fraction of a wavelength will reduced the amplitude of the reflected wave by several orders of

magnitude.

PML were initially generated for electromagnetic problems by numerically calculating the

parameters of the PML in order to give an (almost) reflectionless absorber.[52] Since then, the

method has been mathematically proven in many different ways which see the PML, broadly,

as either an artificial anisotropic absorbing medium [53] or an analytic continuation of spatial

variables onto the complex plane [54]. In this thesis, that latter method is considered as its

application is better suited for large systems of PDEs.

While the concept of PMLs has been applied to domains of acoustic waves before in

the form of elastodynamics [55], they have never been applied to acoustic wave propagation

in piezoelectric crystals before the current work. PMLs for acoustic wave propagation in

piezoelectric crystals are derived in this section.

3.3.1 Analytic continuation of spatial variables onto the complex plane

The action of a PML may be thought of as an analytic continuation of spatial variables onto

the complex plane. Therefore as a travelling wave enters the PML, it will no longer travel

along purely real spatial coordinates, but instead will have some non-zero complex component

of spatial coordinates also. In order to see what effect this has, consider a plane wave in one

dimension

w(x, t) = Aei(kx−ωt), (3.51)
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with amplitude A, wave vector k and angular frequency ω. Once the wave enters the PML,

the spatial variable, x, becomes complex and therefore (3.51) becomes

w(x, t) = Aei(k(<x+i=x)−ωt)

= Ae−k=xei(k<x−ωt),
(3.52)

such that wave exponentially decays as it travels through the PML, hence making the PML

act as an absorbing material, as shown in 3.8. The key difference between a PML and a

regular absorbing boundary is that the plane wave solution has not changed after entering

the PML, only the coordinate space onto which it is mapped has changed. This ensures that

any wave entering the PML will be unaffected by this absorption and will not reflect back,

therefore making the layer perfectly matched and reflectionless.
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Figure 3.8: Concept of a PML. Within the PML (the area > 10), the x coordinate gains an

miagainary component causing the wave to exponentially decay.

In order to make the implementation of the PML simpler, the complex space within the

PML may be transformed back onto the real axis. This transformation requires a substitution

of variables, the first stage of which is to define the complex space in terms of the real space

it is be transformed to, say,

x(<x) = <x+ if(<x), (3.53)

where x is complex space and f(<x) is some function defining the magnitude of the com-

plex component. Because, the PML is to be applied within a system of partial differential

equations, (3.53) is differentiated with respect to x to give a differential relation,

∂x = (1 + i
∂f(x)

∂x
)∂(<x). (3.54)
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The form of the function f , or more precisely ∂f(x)
∂x since this is what will be used deriving

the PML boundary conditions, is now sought as this will determine the attenuation within

the PML region. Defining
∂f(x)

∂x
= ζ(x)

where ζ determines the magnitude of the complex component, and performing the substitu-

tion of variables in (3.51) gives

w(x, t) = Ae−k
∫
x ζ(x)xei(k<x−ωt).

where the attenuation will be dependent upon wavelength, with longer wavelengths atten-

uated more that shorter ones because of the dependence on wave vector in the exponential

decay term. However, if f is given the form

∂f(x)

∂x
=
ζ(x)

ω
,

then performing the substitution of variables in (3.51) gives

w(x, t) = Ae−
k
ω

∫
x ζ(x)xei(k<x−ωt).

where the attenuation is independent of the wavelength, assuming the material is dispersion-

less, since k
ω = 1

cph
is the inverse of the phase velocity which is constant for all wavelengths

in a dispersionless material. This clearly shows that the form of f plays an integral role in

the behaviour of PMLs, although a full discussion of the implications of the form of f are

beyond the scope of this thesis and more details can be found in [56]. In this thesis, the form

∂f(x)

∂x
=
ζ(x)

ω
, (3.55)

is used because it is independent of frequency, a property which is very useful when simulating

in the time domain since the frequencies generated within the simulation domain are not

calculated. This gives the relation for the substitution of variables, in terms of differentials,

used to derive the PML boundary conditions, as

∂

∂x
=

1

1 + i ζ(x)
ω

∂

∂x
. (3.56)

3.3.2 Substitution of variables

In order to implement PML boundary conditions a substitution of variables must be per-

formed on the acoustic wave equations of motion

ρ
∂ui
∂t

=
∂vij
∂xj

, (3.57)
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∂vi
∂t

= σi = Cijεj + eT
ik

∂φ

∂xk
. (3.58)

This is done by transforming to the frequency domain, such that u(t) → U(ω) and v(t) →

V(ω), we obtain

−iωρUi =
∂Vij
∂xj

, (3.59)

and

−iωVi = Cijεj + eT
ik

∂φ

∂xk
, (3.60)

respectively, where ω is the angular frequency of the acoustic wave. A complex change of

variables is now introduced such that xi → (1+i ζiω )xi, where ζ has two components, ζ1(x1) and

ζ3(x3), which are the absorption profiles of the PML in the x1 and x3 direction respectively,

to give

−iωρUi =
1

1 + i
ζj
ω

∂Vij
∂xj

, (3.61)

and

−iωVi = Ci1
1

1 + i ζ1ω

∂U1

∂x1
+ Ci3

1

1 + i ζ3ω

∂U3

∂x3
+ Ci4

1

1 + i ζ3ω

∂U2

∂x3

+ Ci5

(
1

1 + i ζ3ω

∂U1

∂x3
+

1

1 + i ζ1ω

∂U3

∂x1

)
+ Ci6

1

1 + i ζ1ω

∂U2

∂x1

+ eT
i1

1

1 + i ζ1ω

∂φ

∂x1
+ eT

i3

1

1 + i ζ3ω

∂φ

∂x3
.

(3.62)

Multiplying by (1 + i ζ1ω )(1 + i ζ3ω ) gives

−iωρUi + ρ(ζ1 + ζ3)Ui +
i

ω
ρζ1ζ3Ui =

∂Vij
∂xj

+
i

ω

(
ζ1
∂Vi3
∂x3

+ ζ3
∂Vi1
∂x1

)
, (3.63)

and

−iωVi+(ζ1 + ζ3)Vi +
i

ω
ζ1ζ3Vi = Cijεj + eT

ik

∂φ

∂xk
+

i

ω

(
ζ1

{
Ci3

∂U3

∂x3
+ Ci4

∂U2

∂x3
+ Ci5

∂U1

∂x3
+ eT

i3

∂φ

∂x3

}
+ζ3

{
Ci1

∂U1

∂x1
+ Ci5

∂U3

∂x1
+ Ci6

∂U2

∂x1
+ eT

i1

∂φ

∂x1

})
.

(3.64)

Transforming back to the time domain gives

ρ
∂ui
∂t

=
∂vij
∂xj
− ρ(ζ1 + ζ3)ui + αi, (3.65)

where the auxiliary field α has been introduced in place of the i
ω terms in (3.63), which

become time integrals when transformed to the time domain, such that the time derivative

of α is
∂αi
∂t

= ζ1
∂vi3
∂x3

+ ζ3
∂vi1
∂x1

− ρζ1ζ3ui, (3.66)
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and
∂vi
∂t

= Cijεj + eT
ik

∂φ

∂xk
− (ζ1 + ζ3)vi + βi, (3.67)

where the auxiliary field β has been introduced in place of the i
ω terms in (3.64), such that

its time derivative is

∂βi
∂t

= ζ1

{
Ci3

∂u3

∂x3
+ Ci4

∂u2

∂x3
+ Ci5

∂u1

∂x3
+ eT

i3

∂φ

∂x3

}
+ ζ3

{
Ci1

∂u1

∂x1
+ Ci5

∂u3

∂x1
+ Ci6

∂u2

∂x1
+ eT

i1

∂φ

∂x1

}
− ζ1ζ3vi.

(3.68)

3.3.3 Implementation

Equations (3.65), (3.66), (3.67) and (3.68) represent a new set of equations of motion which

will alter the way acoustic waves propagate with the PMLs (namely making them exponen-

tially decay in amplitude). These equations may be implemented in the same manner as the

unmodified equations of motion, as described in 3.2.2, however there are some nuances to the

implementation which are described below.

As identified by Smith et al. [57], the most natural choice of discretisation grid for applying

FDTD analysis to the acoustic wave equations of motion is an interlaced mesh, with grid

points interlaced in both space and time, as discussed in 3.2.2. Here, u and φ are mapped

to whole-integer values of x1, x3 and t, while v is mapped to half-integer values. Applying

the finite difference approximation, it then follows that a spatial derivative depends upon the

field values at ±1
2 , which lie in between grid points. These midpoints may be taken as the

average of their adjacent points, i.e. for a spatial derivative in the direction x1 at the point

(i, k)
∂v

∂x1
(i, k) =

v̄(i+ 1
2 , k)− v̄(i− 1

2 , k)

δx
(3.69)

where v̄ represents the average of the neighbouring points, i.e.

v̄(i+ 1
2 , k) =

v(i+ 1
2 , k + 1

2) + v(i+ 1
2 , k −

1
2)

2
(3.70)

As is normal with FDTD analysis, the instantaneous values of time-dependent variables

are sampled midway between the time steps used in evaluating time-derivatives, such that

(3.65) and (3.67) become

ρ
ui|t+1 − ui|t

δt
=

[
∂vij
∂xj
− ρ(ζ1 + ζ3)ui + αi

]
t+ 1

2

, (3.71)

and
vi|t+ 1

2
− vi|t− 1

2

δt
=

[
Cijεj + eT

ik

∂φ

∂xk
− (ζ1 + ζ3)vi + βi

]
t

. (3.72)
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However, this implies a dependence on u and v at time steps between those to which these

variables are mapped (i.e. ui|t+ 1
2

in (3.71) and vi|t in (3.72)). This may be overcome by first

noting that these terms are zero within the region of interest and therefore any approximation

that is made will not affect what we are trying to observe except possibly increase artificial

reflections from the boundaries, and second realising that the difference between the spatial

derivative at half time steps should be small provided that a small time step, δt is used. We

therefore make the assumption that, in (3.71), ui|t+ 1
2
≈ ui|t, and in (3.72), vi|t ≈ vi|t− 1

2
and

note that doing so does not produce a noticeable increase in numerical noise from the PMLs

in practice.

A similar problem arises when discretising the auxiliary fields α and β in time

αi|t+ 1
2
− αi|t− 1

2

δt
=

[
ζ1
∂vi3
∂x3

+ ζ3
∂vi3
∂x1

− ρζ1ζ3ui

]
t

, (3.73)

βi|t − βi|t−1

δt
=

[
ζ1

{
Ci3

∂u3

∂x3
+ Ci4

∂u2

∂x3
+ Ci5

∂u1

∂x3
+ eT

i3

∂φ

∂x3

}
+ζ3

{
Ci1

∂u1

∂x1
+ Ci5

∂u3

∂x1
+ Ci6

∂u2

∂x1
+ eT

i1

∂φ

∂x1

}
− ζ1ζ3vi

]
t− 1

2

.
(3.74)

However, here the values of u and v at the half time step may be taken as the average of the

adjacent time steps since they are already known, i.e.

ui|t− 1
2

=
ui|t + ui|t−1

2
, (3.75)

and

vij |t =
vij |t+ 1

2
+ vij |t− 1

2

2
, (3.76)

although we note, however, for simplicity, the same approximation as in (3.71) and (3.72)

may be used and in practice the PMLs still have the desired effect.

The simulation domain for time-dependent variables is terminated by hard-wall bound-

aries so that the simulation takes the form shown in Fig. 3.9. For φ, Neumann boundary

conditions are implemented. The hard-wall boundary condition is implemented on the whole-

integer grid points, mapped to the variable u, meaning that the outside edge of the PML,

and therefore the maximum value of ζ, occurs at the half-integer grid points, mapped to v,

immediately inside of the hard-wall boundary.

3.3.4 Numerical results

Prior to the current application of PMLs to the acoustic wave equations of motion in piezoelec-

tric crystals, the best method of stopping artificial reflection off the simulation boundaries
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Figure 3.9: Illustration of the simulation domain showing the PMLs at the edges of the region of

interest and where ζ is non-zero. Note that because ζ is zero within the region of interest the auxiliary

fields α and β are also zero here.

was to add a damping coefficient into the equations of motion, as presented by Smith et

al. [57]. While this method was stable for many material systems, it proved to produce insta-

bilities within the bismuth germanate (Bi4Ge3O12) material system. In order to demonstrate

the effectiveness of the current method, as well as to show its stability, it is applied to the

bismuth germanate.

The x1- and x3-axes of the simulation are aligned along the [1,1,0] and [0,0,1] crystal

axes respectively by rotating the elastic and piezoelectric tensors by 45◦ about the [0,0,1]

crystal-axis such that an acoustic wave will propagate along the [1,1,0] direction, as is done

experimentally with cubic crystals. The excitation frequency used was 1 GHz, as in [58],

making the spatial discretisation step, δx1 and δx3, 0.15µm (i.e., ∼ λ
20). The grid size of the

region of interest was set to 201×201 points and the time step, δt was set to 25 ps observing the

FDTD stability criterion [59]. The PMLs used were 10-points thick (∼ λ
2 ) and the parameter ζ

was increased quadratically up to its maximum stable value of 1.58×1010 rad s−1 as described

in the following section.

The acoustic wave was excited by setting a 3 × 3 square in the centre of the simulation

domain to have a constant charge which was then oscillated sinusoidally at the excitation

frequency for two periods and solving Poisson’s equation to find the potential profile around

this charge over the simulation domain. This potential profile was used as an input to the

acoustic wave equations of motion to launch a propagating wave. This method of excitation

was used firstly because it is more physically realistic than exciting a component of the

displacement since acoustic waves in piezoelectric crystals are generated using an alternating

potential, and secondly because excitations at a single point tend to lead to instabilities
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caused by the change in sign of the spatial differential from the point of excitation to its

surrounding points. These instabilities manifest themselves as changes in the sign of the

solution from one grid point to the next such that the entire solution appears modulated

by a sawtooth wave with oscillations of the order of the grid spacing. Fig. 3.10 shows the

resulting acoustic wave propagating in bulk bismuth germanate, with material parameters

taken from [60], which is absorbed by the PML boundaries.
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(e) u3 at t = 2.5 ns
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(b) u1 at t = 5.0 ns
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(f) u3 at t = 5.0 ns
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(c) u1 at t = 7.5 ns
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(g) u3 at t = 7.5 ns
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(d) u1 at t = 10.0 ns
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(h) u3 at t = 10.0 ns
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Figure 3.10: The u1 and u3 displacement components for the acoustic wave launched in Bi4Ge3O12

showing how the wave propagates radially outwards and is absorbed by the PML. (Animations of the

propagating wave are included as supplementary material. Animation 1 for the u1 displacement and

animation 2 for the u3 displacement.)
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3.3.5 Stability and optimisation of the PML

The discretized PML equations will be subject to a system-dependent stability criterion,

much the same as the stability criterion for the unmodified equations within the region of

interest. Considering the stability criterion for FDTD analysis in two dimensions [59]

vmaxδt =

(
1

δx2
1

+
1

δx2
3

)− 1
2

, (3.77)

where δt, δx1 and δx3 are the discretisation parameters in time and space respectively and

vmax is the maximum velocity within the simulation domain, it is clear that within the PML

layers extra terms will be added to this criterion which have a dependence upon ζ (or more

accurately a dependence upon the maximum value of ζ within the PML since this represents

the worst case scenario). It is important for the maximum stable value of ζ to be found since

the attenuation of a propagating wave within PML regions is proportional to the value of ζ.

Therefore, the effectiveness of the PMLs will be increased if a larger stable value of ζ is used.

From (3.77), it may be inferred that the maximum stable value of ζ will have a dependence

upon the discretisation parameters, δt, δx1 and δx3, as well as the material system being

examined since vmax =
√
C/ρ where C is the elastic constant in the direction of maximum

velocity. Surprisingly however, the maximum stable value of ζ also has a dependence upon

the thickness of the PML as well as how ζ varies through the PML. Although the derivation

of universal stability limits of ζ is challenging, insight may be gained into the effect of PML

thickness and functional forms of ζ by examining the stability limits numerically for a given

system.

In order to systematically examine the maximum stable value of ζ we restrict its functional

form to

ζi(xi) = ζmax

(
|xi − xi,PML|

∆PML

)a
(3.78)

where ζmax is the maximum value of ζ inside the PML, xi is the position in the x1 and x3

directions, xi,PML is the position of the boundary between the ROI and the PML and ∆PML

is the thickness of the PML. The shape of the ζ function may then be controlled using the

parameter a, such that a = 1 gives a linear increase from zero at the inside edge of the PML

up to ζmax at the outside edge, a = 2 a quadratic increase and so on. The case for a = 0 has

been omitted since, once discretised, the PMLs cease to be perfectly matched and therefore a

sudden step in ζ produces sizeable reflections from the interface between the ROI and PML

which were found to be around two orders of magnitude larger than the reflected waves with

steadily increasing ζ values. The maximum stable value of ζmax (with a given shape and
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PML thickness) was then found by using a bisection search where the simulation was deemed

to be unstable if after simulating 25 ns, by which time the initial excitation would have been

absorbed by the PML, the oscillations within the simulation domain are larger than the initial

excited acoustic pulse. Because instabilities within the simulation domain grow exponentially

this method finds the stability limit for ζmax in the chosen system reliably. Figure 3.11 shows

the maximum stable values of ζmax found for a range of values of ∆PML and a for the bismuth

germanate material system examined in the preceding section.
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Figure 3.11: Variation in the maximum stable value of ζmax with ∆PML from 2 to 45 points (λ =

20 points) and with the ζ shape factor a (as defined in equation (3.78)). (Top inset) The maximum

amplitude of reflection from PML with varying a and ∆PML using the maximum stable value of

ζmax for each case, normalised to the maximum amplitude of the excited wave. (Bottom inset) The

maximum amplitude of reflection from PML with varying a and ∆PML using a constant value of

ζmax = 1× 1010 rad s−1.

To compare the effectiveness of the PMLs with different values of a, the amplitude of

the wave reflected back from the boundaries was measured. This was done by performing

a Fourier decomposition on the u3 component of displacement at a point next to one of

the PML boundaries over time in order to separate the reflected signal at the excitation

frequency of 1 GHz from the higher frequency transients, which exist behind the excited

pulse and come from the excitation being switched off suddenly after two periods. The point

used was central on the x3-axis and 40 points (6µm) from the inside edge of one of the PML

boundaries perpendicular to the x1-axis to allow the two periods of the excited wave to pass
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through the point before the reflected wave arrives back at the same point. The top inset

in Fig. 3.11 shows maximum amplitudes of the reflected waves normalised to the maximum

amplitude of the excited wave for different values of a and ∆PML. The maximum stable value

of ζmax was used in each case. For PMLs below 10-points thick, ζ with a = 2 is the most

effective although for higher numbers of points, particularly above 20 points, all PMLs give

similar performance.

Although the numerical analysis above provides a method of optimizing PML parameters

for a given system, this may not be feasible for larger simulation domains, in which much

longer run times would be required. Ideally, the PML parameters could be found ab initio

for any system by applying a universal stability criterion. However, the derivation of such a

criterion is challenging, and as an interim measure a more conservative choice of ζmax (i.e.,

much lower than those found for the example above) is likely to yield stable simulations in

a wider range of simulation domains. As such, we have also examined the stability of the

system considered above (using a range of shape parameters, a) when ζmax has been restricted

to the much lower constant value of 1 × 1010 rad s−1. This value of ζmax is equal to 1
4δt and

since ζmax is roughly inversely proportional to δt, this represents a sensible choice for a stable

value of ζmax that is dependant upon the simulation parameters and the material system

(as δt is material dependent). The bottom inset of Fig. 3.11 shows the amplitude of the

reflected wave for different values of a and ∆PML. Here we clearly see that a = 1 has the best

performance for PMLs thinner than around 20 points. This is because higher values of a give

rise to smaller ζ close to the ROI, and therefore the net attenuation of the wave within the

PML is reduced.





Chapter 4

Surface acoustic wave devices

Devices which utilise surface acoustic waves (SAWs), including potential SAW-modulated

quantum cascade lasers (QCLs), all have several properties in common; that is they all use

an interdigitated transducer (IDT) to generate the acoustic wave, and the interactions of

interest all occur near the surface of the device substrate [12]. Therefore, in order to model

acoustic wave propagation through a SAW device, these points must be examined in detail.

This is the focus of this chapter.

Since it is useful to have a reference as to the form of a SAW, the analytical solution to

the acoustic wave equations of motion for a surface bound propagation mode [21] is presented

first. This will aid in validating that any model of a SAW device does setup and maintain

acoustic wave propagation of the expected form. The effect of a free surface on the acoustic

wave equations of motion is examined next to determine how the FDTD bulk-acoustic-wave

model may be altered to accommodate simulating surface-bound modes. This alteration

comes in the form of a boundary condition of the acoustic-wave simulation domain which

behaves as if it were a free surface. Finally, the structure of an IDT is considered in order to

simulate the method they utilise for acoustic wave generation within the FDTD acoustic-wave

model. The form of the simulated acoustic waves generated by this IDT model are compared

with the analytical SAW solution to ensure that a SAW is generated, before the simulated

response of a SAW device is compared with experimental results to validate the model.

4.1 Analytical solution of surface-acoustic-wave propagation

The propagation mode of a SAW is a solution of the acoustic-wave equations of motion

and therefore the form of the analytical solution is reasonably easy to deduce. Finding an

analytical solution of SAW propagation is advantageous as it gives a good idea of what the

91



92 4.1. Analytical solution of surface-acoustic-wave propagation

form of a SAW looks like, thus can be used to check when simulating SAW devices that the

obtained acoustic wave propagation is, in fact, a SAW.

Defining a free surface at x3 = 0 such that the positive x3 axes points downward into the

material perpendicular to the surface, with the x1 and x2 parallel to the surface, the form of

analytical solution of the SAW mode is

ui = Uie
−kqix3+ik(lx1+mx2−ct) for i = 1, 2, 3, (4.1)

where Ui is a constant defining the magnitude of the displacement in each direction, k is

the wavevector, qi is a dimensionless material dependent constant defining how tightly the

SAW is bound to the surface, the propagation direction of the wave is at an angle θ from

the x1-axis such that l = cos θ and m = sin θ, and c is the velocity of the propagating wave.

The defining feature of the form of this wave is the exponential decay into the depth of the

material which gives the surface bound propagation mode.

While (4.1) does represent the form of a surface bound propagation mode, it is incredibly

general and is not an exact solution to the acoustic wave equations of motion. Clearly, an

exact solution for any type of propagation mode will be intrinsically dependent upon the

symmetry within the medium and can therefore not be derived without first defining the

propagating material. Furthermore, any analysis to derive an exact solution will be labour

intensive, as it requires the analytical solution of the equations of motion which is beyond

the scope of this thesis. Details of such an analysis can be found in reference [21].

4.1.1 Solution for cubic crystals

From [21], it may be shown that within the cubic crystal class SAWs will have the form

u1 = A(e−qkx3−iφ + e−q
∗kx3+iφ)eik(x1−vst),

iu3 = A(γe−qkx3−iφ + γ∗e−q
∗kx3+iφ)eik(x1−vst),

(4.2)

where A is the amplitude of the wave, k = 2πf
vs

is the wavevector with frequency f , q,φ and

γ are constants depending on the material constants and vs is the velocity of the SAW (also

dependent on the material constants). Expanding the exponentials and taking only the real

part, as the imaginary part is not part of the physical solution [18], gives

u1 = Ae−<(q)kz2 cos(=(q)kz + φ) cos(k(x− vst)),

iu3 = A<(γ)e−<(q)kz2 cos(=(q)kz + φ) cos(k(x− vst)),
(4.3)

where the u3 component of displacement has a π
2 phase lag.
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The exact form of each of the constants, as well as the velocity, will depend upon the

propagation direction of the SAW, since different parts of the piezoelectric and stiffness

constants will take effect. As the cubic crystal gallium arsenide (GaAs) is commonly used in

SAW generation, and because of the particular relevance of GaAs to this project, this material

system will be used as a test case. As already mentioned in 3.1.5, SAWs are normally launched

in the [1,1,0] direction experimentally, and therefore the [1,1,0] propagation direction is used

here in defining the constants for analytical SAW propagation.

From [18], the velocity of the SAW, vs may be found by solving

(c44 − ρv2
s)(c11c

′
11 − c2

12 − c11ρv
2
s)

2 = c11c44(ρv2
s)

2(c
′
11 − ρv2

s), (4.4)

where cij are the elements of the elastic tensor, and c
′
11 is given by

c
′
11 = c44 +

c11 + c12

2
.

This may be easily done via a numerical search over vs since the limits on vs are known. q is

found by solving

(c
′
11 − ρv2

s − c44q
2)(c44 − ρv2

s − c11q
2) + q2(c12 + c14)2 = 0, (4.5)

where c
′
11 is defined as above. Since (4.5) is bi-quadratic, it may be solved easily using the

quadratic formula to find q2 and then taking the square root to find q. γ is found via

γ =
(c12 + c14)q

c44 − c11q2 − ρv2
s

, (4.6)

and φ is found by

e−2iφ = −γ
∗ − q∗

γ − q
. (4.7)

Noting that the form of these constants takes into account the propagation direction of the

SAW, and therefore the piezoelectric and stiffness tensors need not be rotated from the [1,0,0]

direction, the constants above come out as

vs = 2865.1 ms−1,

q = 0.502 + 0.477 i,

γ = −0.681 + 1.152 i,

φ = 0.518.

Inserting these constants into (4.3), and setting the frequency to 191 MHz to give a SAW

wavelength of ∼15µm at the predicted velocity of 2865 ms−1, gives wave pattern shown in 4.1.

For clarity, the profile of the displacement into the depth of the material has been plotted
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at the maximum amplitude of displacement for the u1 and u3 displacement in 4.2 and 4.3

respectively. These clearly show that for a surface bound propagating wave, almost all of the

waves energy is present within the top wavelength of the material.
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Figure 4.1: Colour plot of the u1 and u3 displacement for the analytical solution to the acoustic

wave equations of motion for a surface bound propagation mode in GaAs (with the SAW propagation

direction aligned along the [1,1,0] crystal axis).
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Figure 4.2: The u1 displacement profile into the depth of the material (i.e. along x3 axis) of the

analytical solution for surface bound acoustic wave propagation (in GaAs along the [1,1,0] direction).

Taken at the point of maximum u1 surface displacement.
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Figure 4.3: The u3 displacement profile into the depth of the material (i.e. along x3 axis) of the

analytical solution for surface bound acoustic wave propagation (in GaAs along the [1,1,0] direction).

Taken at the point of maximum u3 surface displacement.



96 4.2. Modelling surface-bound acoustic-wave propagation

4.2 Modelling surface-bound acoustic-wave propagation

In order to simulate the propagation of acoustic waves along a surface of a structure, an

additional boundary condition must imposed upon the simulation domain to mimic the be-

haviour of acoustic waves as they interact with the surface. This surface boundary condition

will involve altering the equations of motion such that the propagation of acoustic energy

differs at the surface from within the bulk material. The form of the surface boundary con-

dition is therefore integral in the formation of the surface-bound propagation mode with the

simulation domain. Within this thesis the widely used surface boundary condition from [21]

is used, however within this section a discussion of the problems surrounding this boundary

condition is also given, along with an exploration of several alternatives all of which introduce

problems of their own.

4.2.1 Surface boundary condition

Before the surface boundary condition may be derived, the change this boundary makes to

the simulation domain must be defined. As defined in section 4.1, the axes are orientated

such that the x3 axis points downward, into the depth of the material, perpendicular to the

surface, and the x1-x2 plane runs parallel to the surface, with the x1 axis being the acoustic-

wave propagation direction. Imposing a flat surface boundary condition then produces the

simulation domain shown in figure 4.4 with a surface on the top boundary, and the other

three boundaries effectively acting as if they where an infinite bulk crystal due to the PML

boundary condition.

Next the forces that act upon the surface are considered. Any force acting parallel to

the surface will be unaffected by the presence of the surface and therefore the components

of force, and equally stress, that act along the x1 and x2 direction will be the same. In the

x3 direction, the assumption is made that none of the acoustic wave energy couples from the

surface into air above it; a reasonable assumption since the air is not dense, so any movement

induced in the air will not have much momentum. Therefore, the differential of force, and

equally the differential of the stress across the surface must be zero, i.e. with the surface

situated at x3 = 0,

∂σi3
∂x3

∣∣∣∣
x3=0

= 0 for i = 1, 2, 3. (4.8)

This is the surface boundary condition, as defined in [21], which will alter the equations of
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Figure 4.4: Form of the simulation domain once the surface boundary has been introduced. Three of

the domain edges remain the same but the top PML has been removed and replaced with the surface

boundary condition.

motion along the surface such that they become

ρ
∂2ui(x3 = 0)

∂t2
=
∂σij(x3 = 0)

∂xj
for i = 1, 2, 3; j = 1, 2. (4.9)

Within the FDTD framework, which uses the auxiliary variable v instead of σ, the as-

sumption is made that ∂v
∂x3

is also zero at the surface. This is reasonable since σ is the time

differential of v, and there is no reason why the differentiation will not commute. The imple-

mentation of the surface boundary within the FDTD framework is therefore trivial since the

calculation of v is unchanged as there are no u-points with are missing from the simulation

domain, only those which lie along the surface, and the calculation of u along the surface

simply involves setting the ∂v
∂x3

equal to zero.

4.2.2 Adapting PML boundaries to include the surface boundary condition

The surface boundary condition alters the acoustic wave equations of motion at the surface

of the strucutre being simulated. Since this surface extends to the edge of the simulation

domain, and therefore into the PML region as in figure 4.4, the form of the equations within

the PML must be altered to include the surface boundary condition. This involves performing

an analytic continuation of spatial variables onto the complex, as in 3.3.1, on the equation of

motion at the surface boundary.

Applying the surface buondary condityion to the equations of motion gives

ρ
∂ui
∂t

=
∂vi1
∂x1

for i = 1, 2, 3, (4.10)



98 4.3. Interdigitated transducers

where i = 1, 2, 3 for the rest of the derivation and so shall no longer be stated. As stated

within section 4.2.1, the auxiliary variable v only exists below the surface and is not altered

by the surface boundary condition. Transforming to the time domain, such that u(t)→ U(ω)

and v(t)→ V(ω),

ρiUi =
∂Vi1
∂x1

, (4.11)

and performing the substitution of variables, xi → (1 + i ζiω )xi, gives

−iωρUi =
1

1 + i ζ1ω

∂Vi1
∂x1

. (4.12)

Multiplying by (1 + i ζ1ω ),

−iωρUi + ρζ1Ui =
∂Vi1
∂x1

, (4.13)

and transforming back to the time domain gives

ρ
∂ui
∂t

=
∂vi1
∂x1

− ρζ1ui. (4.14)

Since this formalism does not contain any addition auxiliary variables, the implementation

of the surface boundary inside the PML region is relatively simple; that is, it involves only

adding one extra term to the equations of motion at the surface. However, as discussed

in 3.3.3, (4.14) infers a dependence on u at a time step where it is not calculated, i.e. u(t+ 1
2).

This may be dealt with by utilising the same assumption as in 3.3.3, that the discretisation

grid should be tight enough that, for the implementation of the PMLs, adjacent time steps

may be assumed to be approximately equal, i.e. u(t+ 1
2) ≈ u(t).

4.3 Interdigitated transducers

4.3.1 Real-world SAW excitation

SAWs are excited using an IDT, which consist of a series of metal finger electrodes which

are deposited onto the surface of a piezoelectric substrate, with different fingers connected

to different voltage supply lines. The most common configuration for an IDT is to have

alternate fingers connected to alternate supply lines as shown in 4.5, although some devices

have proceeding fingers connected to the same side and others have more than two supply

lines.

Whilst the complexity of IDTs varies, they all reply on the piezoelectric effect to generate

SAWs. Consider two electrodes connected to constant, positive and negative voltages, which

are bought into contact with the surface of a piezoelectric material. The electric field around
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Figure 4.5: Diagram of the form of a basic IDT made by depositing metal onto the surface of a

piezoelectric substrate.

the two electrodes which propagates through the material will induce localised strain within

the material via the piezoelectric effect. This localised strain, which will initially be directly

underneath the electrodes, will propagate through the material at the speed of the sound as

the material adjusts to the locally induced strain, and reaches some equilibrium state. If the

electrodes are now connected to either side of a sinusoidally varying voltage source, then the

induced strain will now oscillate, from tensile to compressive, and will generate a pressure

wave the will propagate radially outwards through the material at the speed of sound.

Using multiple pairs of fingers, with each alternate finger connected to a different side of

the alternating voltage source, then multiple pressure waves will be launched radially from

underneath each finger pair. If each finger is regularly spaced by a half-wavelength of the

propagating pressure waves within the material then there will be a regular interference pat-

tern between waves as shown in 4.6. Destructive interference below the fingers causes a small

acoustic wave amplitude to be found below the surface. Along the surface the propagating

waves constructively interfere such that as a wave passes under the next finger-pair its ampli-

tude is added to the strain induced by the finger-pair, effectively amplifying the acoustic wave

amplitude as it passes underneath the IDT structure. This causes a large wave amplitude

along the surface. It also means that the amplitude of the wave emitted by the IDT does not

reach a steady state until the propagating wave generated at one end of the IDT has passed

through the entire length of the structure — something which is shown by the FDTD model

in 4.3.3.
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Figure 4.6: Cross-section of the interference pattern of the acoustic waves below the substrate

surface, underneath an IDT. The red and blue areas indicate regions of induced stress of different

signs which propagate radially downwards from in between each finger pair. (The peak amplitudes

of the radially propagating waves are shown by dashed lines for clarity.) With the periodicity of the

fingers at λ
2 of the applied oscillating frequency (as shown here), each peak will constructively interfere

with the peak generated underneath the adjacent IDT pair close to the surface. This produces an

almost entirely surface bound acoustic wave which propagates from each end of the IDT.

4.3.2 Modelling IDTs

Before a model of IDTs can be put together, the assumptions that are to be used must be

defined. Since the FDTD acoustic wave model defined previously already assumes that the

waves are invariant parallel to the wave front, the assumption will also be used here. In

fact, this assumption comes from the fact the majority of IDT structures are invariant along

the length of the fingers and therefore produce waves with approximately flat wavefronts.

While this excludes the possibility of simulating more complicated IDT types, these are not

of interest within the scope of this thesis so can be excluded.

Secondly, the electronic properties of the IDT are considered. Because the excitation

frequencies for the IDTs are often in radio-frequency range (or even higher, up to several

GHz), in order to determine the exact form of the electric field around the IDT structure

and transmission-line style analysis would be required. This sort of analysis would not only

significantly increase the complexity of SAW devices when included within the FDTD simula-

tion and would mean that the electric field around each finger would not need to be constant

down the length of each finger, therefore meaning that the excited acoustic waves would

not be invariant along the wave front. As the assumption of invariance along the acoustic

wave front has already been made, and to reduce the complexity of the simulation, it is also

assumed that the electric field around the IDT is invariant along the length of each finger.
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This assumption is equivalent to assuming that the movement of charge within the IDT is

adiabatic compared to the excitation frequency,1 which infers that the voltage on the IDT

fingers changes instantaneously with the applied voltage. Viewing the IDT as capacitor, this

assumption can be taken further to say that the voltage across the width of each finger will

also be constant, which reduces determining the electric field around the IDT structure to

solving Poisson’s equation around some fixed voltages.

Finally, the acoustic properties of the IDT and considered. Since the depth of the met-

allisation that makes up the IDT structure is several orders of magnitude smaller than the

wavelength of the SAW begin generated for lower frequencies, it can be assumed that metal

will have no mechanical effect on the propagating wave. When the wavelength of the SAW

is short enough that it becomes comparable to the metallisation depth the problem of deter-

mining how the acoustic wave enters the IDT fingers becomes complicated since the metal

will either be amorphous of polycrystalline (depending on the conditions when depositing).

However, since the lowest achievable SAW wavelengths are around 640 nm [13] with IDT met-

allisation depths of the order of 40 nm, the effect of the acoustic wave entering the metallised

region can be ignored. What cannot be ignored at shorter wavelengths however, is that the

mass of the metal on the surface of the substrate becomes a significant factor in how the

acoustic wave passes through the material. This mass loading effect is discussed in 4.3.6.

Now that all assumptions have been defined the IDT model can be constructed. Since all

mechanical effects are to be ignored, the model of the IDT consists of artificially introducing

a potential within the simulation domain at every point in time. As Poisson’s equation is

already solved at every time step within the FDTD model already, implementing the IDT

model simply involves fixing the potential within Poisson’s equation.

Fixing the potential in Poisson’s equation

As derived in 3.2.3, the discretised Poisson’s equiation in two dimensions takes the form

Aφ = ρ (4.15)

where the matrix A is banded and must be diagonalised (or reduced to a triangular matrix

and back substitution used) in order to find the potential, φ, resulting from some charge

distribution, ρ. For the potential to be fixed, i.e. the potential at some point to remain the

same before and after diagonalisation, the relationship between φ and ρ must remain the

same at that point after diagonalisation. Since the relationship between φ and ρ changes

1This will clearly hold true more for lower frequencies than high frequencies.
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during diagonalisation to minimise the off diagonal elements of A to zero, the only way to

ensure that their relationship remain constant is to make the rows of A which correspond to

the points of fixed potential diagonal to begin with. This is done by setting the off diagonal

elements to zero within the row which corresponds to the point in space where the potential is

to be fixed, i.e. taking the original form of the two-dimensional Poisson’s equation from 3.2.3,

a1,1 b2,1 c1,1

b2,1 a2,1
. . .

. . .

c1,1
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

ci−ni,j bi−1,j ai,j bi,j ci,j
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . bni,nj

cni−ni,nj bni,nj ani,nj





φ1,1

φ2,1

...

...

φi,j
...
...

φni,nj



=



ρ1,1

ρ2,1

...

...

ρi,j
...
...

ρni,nj



, (4.16)

where a, b and c are the five non-zero diagonals (the zero elements are not shown), if the

potential is to fixed at the point i, j then (4.16) becomes

a1,1 b2,1 c1,1

b2,1 a2,1
. . .

. . .

c1,1
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

0 0 ai,j 0 0

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . . bni,nj

cni−ni,nj bni,nj ani,nj





φ1,1

φ2,1

...

...

φi,j
...
...

φni,nj



=



ρ1,1

ρ2,1

...

...

ρi,j
...
...

ρni,nj



. (4.17)

Since φi,j and ρi,j will remain in a constant ratio the value of ai,j is not important, although

from an implementation point of view it is simpler to give it the same form as the rest of the

diagonal. The potential at the point i, j may then be fixed to some arbitrary potential, V ,

by setting ρi,j = V
ai,j

.

While making this change to the matrix A, implies that it is no longer Poisson’s equation

that is being solved, importantly it is akin to solving Poisson’s equation around the area

of fixed potential with fixed-potential boundary conditions, therefore Poisson’s equation is

solved normally in the areas where the potential is not fixed. Within the areas of fixed

potential Poisson’s equation is clearly no longer solved, so when fixing the potential in this
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manner care must be taken to ensure that charge is not placed within these areas as it would

not result in the potential field expected.

Solution of Poisson’s equation around an IDT structure

Since the potential within Poisson’s equation may be fixed at as points as desired, and the

solution to Poisson’s equation has been implemented as part of the FDTD simulation of

acoustic wave, finding the potential around an IDT structure simply involves defining the

positions of the IDT fingers and potential on each finger. Furthermore, as already stated,

since the thickness of the IDT metallisation is several orders of magnitude smaller than the

width of each finger, the IDT structure can be assumed to be one grid point in height.

Figure 4.8 shows the potential found around a 5-finger-pair IDT sturcutre in the GaAs

material system with each finger being 3.75µm wide and separated by 3.75µm, as shown

in 4.7, and alternate fingers connected to +10 V and -10 V.

Figure 4.7: Schematic diagram of the IDT simulated in figure 4.8.

4.3.3 Excitation of FDTD model via IDTs

As described in 4.3.2, the basis for the model of an IDT involves fixing the potential within

Poisson’s equation to find the potential profile around the IDT structure. As Poisson’s

equation is solved at every time step within the framework of the FDTD simulation, using

the IDT model to excite acoustic waves within this framework is trivial and involves applying

the changes to the Poisson solver outlined in section 4.3.2. Since the time varying potential

applied to IDT devices experimentally is sinusoidal, it is defined as

φIDT = A ∗ sin(2π · f · it · δt) (4.18)
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Figure 4.8: The potential profile around a 5-finger-pair IDT placed on the surface of GaAs with

finger widths of 3.75µm and spaces between fingers of 3.75µm (giving a SAW emisson wavelength of

15mµm). The boundary between the GaAs and the air is at x3 = 15µm.

where φIDT is the potential applied to one finger, A is the amplitude of the applied potential,

f is oscillation frequency of the applied potential, it is the number of the current time step

and δt is the temporal discretisation step. Because the method is general however, the applied

bias may be of any form desired or applied to metallised areas not in the form of IDTs, as

discussed in 5.1.1 which is concerned with applying a fixed (in time)potential to metallised

surfaces.

Result of IDT excitation

The oscillating potential form a 5-finger-pair IDT with a SAW wavelength of 15µm (as shown

in figure 4.7) was used to excite the FDTD acoustic-wave model using the GaAs material sys-

tem, with the x1 axis aligned along the [1,1,0] crystal axis (i.e. the wave propagation direction

is along [1,1,0]). Since the speed of sound in the [1,1,0] direction in GaAs is approximately

2800 ms−1, the frequency of a 15µm wavelength SAW will be ∼ 187 MHz. (Experimen-

tally, the accepted frequency is 188 MHz, giving a velocity of 2820 ms−1, but this value varies

depending on which source is quoted.) With this in mind, the frequency of the potential os-

cillations is set to 187 MHz as this should be the resonant frequency of the IDT. The spatial

discretisation steps, δx1 and δx3, where both set to 0.75µm, i.e. δxi = λ
20 , and the temporal

discretisation step, δt, was set to 0.05 ns, i.e. δt = τ
100 where τ is the time period of the SAW.

Figures 4.9 and 4.10 show the normalised u1 and u3 displacements over a range of time

intervals. (The IDT fingers are between 50- and 100µm on the x1 axis.) Clearly an acoustic

wave is launched from either end of the IDT structure, which propagates outwards along the
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surface (located at x3 = 0µm). Furthermore, the acoustic wavelength is ∼ 15µm and most

of the acoustic wave energy is contained within one wavelength below the surface, strongly

indicating that a surface acoustic wave has been induced.
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Figure 4.9: Induced u1 displacement at various time intervals for a sinusoidally varying potential

around a 5-finger-pair IDT, with finger widths and spacings of 3.75µm, giving a SAW wavelength of

15µm at a frequency of 188 MHz.
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Figure 4.10: Induced u3 displacement at various time intervals for a sinusoidally varying potential

around a 5-finger-pair IDT, with finger widths and spacings of 3.75µm, giving a SAW wavelength of

15µm at a frequency of 188 MHz.
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Comparison with analytical excitation

Comparing the analytical solution for SAW propagation with the acoustic wave excited via

the model of IDTs, one can see that the two are clearly not identical. The main difference is

the depth of the mode confinement; for the analytical solution the majority of the mode is

confined within ∼ 5µm (λ3 ) below the surface, whereas the IDT excitation produces a mode

which is mostly confined within the top 10µm (λ2 ). Furthermore, the non-zero displacements,

u1 and u3, do not have the same shape with the IDT excitation as they do in the analytical

excitation. This can be seen from the comparison of displacements profiles over depth, taken

at the maximum amplitude of displacement, in figures 4.11 and 4.12 for u1 and u3 respectively.

While the two methods do not produce modes which are identical however, they do

produce modes which are similar. Both have almost all of the wave energy within the top

wavelength of the surface, and both have the u3 phase-lagging by π
2 from u1. Furthermore,

real-world IDTs are not expected to produce a pure, surface-bound propagating mode, but a

mixture of surface- and bulk- propagating modes. In fact, there are some applications which

make use of this fact, using specially designed IDTs to specifically excite modes other than

surface-bound, such as leaky-SAWs and shallow bulk acoustic waves, as discussed by [15].

The fact that the two methods do not produce identical modes is not a problem, but

happens because real-world IDTs do not produce a pure SAW mode, therefore making the

solution found via the IDT method more physically realistic.
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Figure 4.11: Comparison of the u1 displacement depth profile for the analytical solution for a

SAW mode and IDT excitation of FDTD model, both done in GaAs material system with a [1,1,0]

propagation direction. Amplitudes are normalised to the maximum displacement.
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Figure 4.12: Comparison of the u3 displacement depth profile for the analytical solution for a

SAW mode and IDT excitation of FDTD model, both done in GaAs material system with a [1,1,0]

propagation direction. Amplitudes are normalised to the maximum displacement.
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4.3.4 Transmitting and receiving IDT pairs

Real-world SAW devices are most commonly fabricated with a pair of IDTs separated by some

distance as shown in figure 4.13. This acts as a form of fail-safe, to check that the IDTs are

functioning properly by testing the S-parameters of the overall device as in figure 4.14. Despite

the fact that the technology to fabricate IDTs at microwave frequencies is well established,

fabrication defects are still common, owing to the long, thin geometry of each finger as well

as thin spacing between fingers and the shear number of fingers on each device. Furthermore,

the devices themselves are very fragile, with a short circuit between to the two sides of the

IDT structure enough to stop the device working all together. It is therefore very attractive

to be able to test the operation of the SAW device before any more complicated devices are

placed in between the two IDTs, for example, as is the case within this thesis, a QCL.

Figure 4.13: Schematic diagram of a SAW device with a transmitting IDT (TxIDT) for SAW

generation and receiving IDT (RxIDT) for SAW detection.

Since a model SAW generation via IDTs has presently been developed, the best form

of model validation is to compare the theoretical predictions with the experimental results

for a transmitting and receiving IDT pair. Before this can be done, however, the physics of

an IDT receiving a SAW must be considered. Furthermore, the geometry of the real-world

device must be considered; that is, with the inclusion of the PML the simulated devices will

effectively be sat atop an infinite substrate, where as in reality the device has well defined

edges which the SAW will interact with.
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Figure 4.14: Experimentally measured S-parameters for a SAW device with 40-finger-pair IDTs with

a design wavelength of 15µm, propagating in the [1,1,0] direction on GaAs. (Device shown fabricated

and measured by Dr M. Salih.)
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Receiving IDTs

A travelling SAW carries with it a travelling electric field wave, generated via the piezoelectric

effect. As a SAW travels underneath any metallised surface, its electric field will induce a

movement of charge within the metal. If the SAW travels beneath an IDT structure, then

a different charge will be induced on each finger (depending on where each finger happens

to be within the SAW wavelength), and these will ad either constructively or destructively

depending on the dimensions and structure of the IDT, causing an imbalance charge on each

side and therefore a voltage across the IDT. If the grating length of the IDT matches half a

wavelength of the SAW, i.e. if the IDT would emit at the same frequency as the SAW, then

the charge on each finger will add constructively and a large voltage will be detectable across

the IDT structure.

Despite this relatively simple action of a receiving IDT, modelling the exact movement

of charge within the IDT metal becomes quite complicated since it involves considering the

electromagnetic interaction between the SAW electric field and the IDT (i.e. transmission

line theory). Such an analysis is beyond the scope of the current work, especially since mod-

elling receiving IDT is not a necessary component of the modelling the interaction between

SAWs and quantum cascade lasers. However, the response of a receiving IDT can be approx-

imated by assuming the overall response will be proportional to the sum of the SAW voltages

underneath each of the IDT fingers. This should hold true since the pattern of construc-

tive/destructive interference is caused the geometry of the IDT, not its electrical properties.

Furthermore even if a full electronic model of the IDT were developed, this would still not

necessarily be an accurate description of the measured voltage across the IDT, since it would

not include the effect of the bond wires connected to the IDT which would almost certainly

not be impedance matched. Therefore, the response of the simulated receiving IDT, RIDT,

may be found by taking the mean average of the voltages at every point, on every finger of

the IDT i.e.

RIDT =

∑nIDT
i VSAW(i)δx1

nIDT
, (4.19)

where nIDT is the number of grid points within the metallised fingers of the IDT, i is an index

over all the metallised grid points within the IDT and VSAW(i) is the voltage underneath the

ith point of metallisation in the IDT. The dimensions of the IDT are considered by the

inclusion of the δx1 term.

Using this approximation of summing the SAW voltage under each finger, one may find

the response of the receiving IDT at every point in time. By taking the maximum steady-
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state amplitudes of these responses over a range of frequencies, the overall frequency response

of an transmitting/receiving IDT pair may be determined. Figure 4.15 shows the frequency

response for a pair of 20-finger-pair transmitting and receiving IDTs both with a SAW wave-

length of 15µm, in the GaAs [1,1,0] material system, separated by a distance of 450µm. This
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Figure 4.15: Receiving IDT response for a pair of 40-finger-pair transmitting/receiving IDTs with

SAW wavelength of 15µm, in the GaAs material system with the propagation direction being [1,1,0],

and separated by a distance of 450µm. The applied voltage on each side of the transmitting IDT was

±10 V.

shows that the resonant frequency of the IDT pair is at 186.75± 0.25 MHz which, given the

wavelength of SAW emission, makes the velocity of the SAW 2801.25 ms−1.

As discussed in 4.3.1, the response of an IDT pair should not reach a steady state until

the acoustic wave excited from the first finger of the transmitting IDT has reached the

last finger of the receiving IDT. With the current SAW device, where the length of each

IDT is 20 × 15µm= 300µm and the separation between IDTs is 450µm, this steady-state

distance is 2 × 300 + 450 = 1050µm. Therefore, with the SAW velocity calculated from the

simulated resonance of the device, the steady-state time of the device is 1050µm
2801.25ms−1 = 374.8 ns.

Figure 4.16 shows the time dependent response of the receiving IDT at the resonant frequency

with the steady-state time marked on. Clearly the steady-state time calculated from the

resonance of the device is correct, indicating that SAW velocity calculated from this method
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is also correct. Furthermore, since the resonant frequency of the device, and therefore the

calculated velocity, is very close to experimentally measured values for GaAs with SAW

propagation in the [1,1,0] direction, this indicates that simulation is a good approximation

to real SAW propagation. Interestingly, when the time dependent responses of resonance are
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Figure 4.16: Time dependent response of the receiving IDT for the same SAW device simulated

in 4.15 with the transmitting IDT driven at 187 MHz. The calculated steady-state time for the device

of 374.8 ns is marked by the red, dashed line.

examined, it is found that the steady-state response is in fact lower than the initial signal.

Figures 4.17 and 4.18 show the responses with the transmitting IDT driven at 181 MHz and

178 MHz respectively. Clearly the steady-state time of the response does not change, which

is expected since the acoustic velocity is not frequency dependent. The steady-state value

is lower than the initial pulse because just off resonance the receiving IDT fingers will be

a combination of constructive and destructive interference, and it just so happens at these

frequencies that the destructive interference does not overcome the constructive until a large

portion of the SAW has entered the receiving IDT.
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Figure 4.17: Time dependent response of the receiving IDT for the same SAW device simulated

in 4.15 with the transmitting IDT driven at 181 MHz. The calculated steady-state time for the device

of 374.8 ns is marked by the red, dashed line.
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Figure 4.18: Time dependent response of the receiving IDT for the same SAW device simulated

in 4.15 with the transmitting IDT driven at 178 MHz. The calculated steady-state time for the device

of 374.8 ns is marked by the red, dashed line.
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As discussed above, the absolute value of the simulated response from the receiving IDT

has no real meaning since it is found via an approximate method. However, the overall

transmission through the device may (in decibels) be determined by finding the input power

using the same method for finding the response of the receiving IDT on the transmitting IDT.

The ratio of the two may then be used to the find the response in decibels. Figure 4.19 shows

the decibel response for the same SAW device simulated above. From this, the characteristic

sinc function-like response of the SAW device which both predicted analytically [15] and

measured experimentally; another good indicator that the FDTD model of SAW devices is

accurate.
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Figure 4.19: Receiving IDT response in decibels for a pair of 40-finger-pair transmitting/receiving

IDTs with SAW wavelength of 15µm, in the GaAs material system with the propagation direction be-

ing [1,1,0], and separated by a distance of 450µm. The applied voltage on each side of the transmitting

IDT was ±10 V.

Devices edges

Within the simulation domain, three of the boundaries of the modelled SAW devices are

made of PMLs. These act not only to stop artificial reflections off these boundaries, but

also to remove the need for the simulation domain to be the size of the actual devices, by

making these three boundaries act like an infinitely extending substrate. (This is particularly
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important to reduce the depth of the simulation domain as the scalability of the Poisson solver

within the simulation is largely effected by the depth, as discussed in 3.2.3.) Since the real-

world devices are not set within an infinite substrate, the differences in simulated response

need to be considered, namely to make sure that the use of PMLs makes the results obtained

valid.

Firstly the two boundaries, parallel to the x3 axis, at either end of the simulation domain

are considered. Clearly the propagating SAW emitted from each end of the transmitting IDT

will be reflected off each of these edges, as shown in 4.20, causing some interference with

the SAW between the two IDTs. As discussed in [12], this interference manifests itself as a

high frequency oscillation over the top of the sinc response of the SAW device, which can be

clearly seen in 4.14 of the response of a real-world SAW device. Modelling such an effect is

by no means trivial since the boundary conditions required would not be simple, hardwall

boundaries, but more like those implemented for the simulation of ridge structures in 5.1.2.

Furthermore, these high frequency oscillations in the response do not significantly affect the

operation of real SAW devices and therefore do not need to be included within the model.

Figure 4.20: Path of SAW when it reflects off the side edges of a real-world SAW device.

The bottom edge of SAW devices play much less of a role in the response because they are

normally of the order of 100µm deep, meaning that almost none of the SAW energy will reach

that depth. However, since IDTs don’t purely excite SAW modes (as discussed in 4.3.3), there

is the possibility of part of the acoustic energy bouncing off the bottom boundary, as shown

in 4.21. Since SAW devices will physically be mounted onto some sort of holder modelling

this problem would be more difficult, although this will actually act to dissipate much of the

SAW energy hence why the effect of this bottom reflection is never seen. Therefore reflections

off the bottom of the SAW device need not be considered.
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Figure 4.21: Path of SAW when it reflects off the bottom edge of a real-world SAW device.



4.3. Interdigitated transducers 119

4.3.5 Experimental validation of IDT model

As the model of SAW devices has been built up to a stage where it can model the signal

on the receiving IDT, there is the possibility of comparing the results with experimentally

measured values in order to give experimental validation to the model. As discussed in 4.3.4

however, the limitations of the model of receiving IDTs mean that the absolute amplitude of

the signal is arbitrary and so cannot be used in an experimental comparison. Furthermore,

since the acoustic wave model contains no loss mechanism, the comparison would be valid

anyway. A property which can be used for the comparison however is the full-width half-

maximum (FWHM) of the frequency response of the device. Not only is this a good property

to compare because it is well documented experimentally that the FWHM decreases as the

number of finger-pairs within each IDT is increased [12], but also because it does not depend

on the amplitude of the response, only the dimensions of the of the IDTs and the form of the

excited SAW (in terms of its frequency and speed of propagation). Such a comparison will

then provide a very strong indication whether the form of the excited SAW is of the correct

form.

For this comparison, a series of SAW devices were fabricated in the GaAs material system

with a SAW propagation direction of [1,1,0] with a different number of finger-pairs in the

IDTs on each device (fabricated by Dr. M. Salih). The number of finger-pairs was the same

in each IDT on each device and varied though 10-, 20-, 40-, 60- and 80-finger-pairs. The

separation between the two IDTs in the x1 direction was 2.6 mm. The same set of devices

were modelled using the FDTD simulation to produce a series of IDT frequency responses for

each different number of finger-pairs. The FWHM of both the experimental and simulated

responses was then taken and is shown figure 4.22.

Clearly the two are in very good agreement, giving a very strong indication that the SAW

simulation is a viable method for modelling IDT devices. Furthermore, comparing the overall

shape of the frequency response for the 40 finger-pair device in 4.23 both experiment and

simulation are in good agreement, although the simulated results predict a higher received

signal because there is no loss mechanism within the FDTD model.

4.3.6 Mass loading

The mass loading effect is something that effects IDTs that emit at a very short wavelength

such that the width of the IDT fingers become comparable to their height. When this happens

the weight of the metallisation of the IDT on the surface of the substrate begins to affect the
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Figure 4.22: Comparison of the FWHM of the frequency response for SAW devices various numbers

of finger-pairs found via experimental measurement and simulation.
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Figure 4.23: Comparison of the simulated and experimentally measured frequency response for a 40

finger-pair SAW device on GaAs with a [1,1,0] propagation direction.

mechanical motion of the propagating wave underneath the IDT. Considering the acoustic

wave equation of motion

ρ
∂ui
∂t

=
∂σij
∂xj

,

clearly mass loading will effectively increase the density underneath each of the IDT fin-

gers, since there will be more mass at those points to oscillate as the acoustic wave passes

underneath. Furthermore, since the velocity of the acoustic wave can be approximated to

vs ≈

√
C

ρ
,

it can be assumed that the velocity of the SAW will slow down underneath each IDT there-

fore lowering the resonant frequency of the IDT device; something which is seen experimen-

tally [13].
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This approximation is crude however. In reality, a portion of the acoustic wave energy

will enter the metallised region and effect the way the SAW propagates. However, even at

very high SAW frequencies of > 3 GHz where the width of each finger is around 800 nm, the

depth of metallisation is still only 50− 150 nm, meaning that the fingers are still much wider

than they are high implying that not too much of the acoustic wave will enter the metallised

region.

In order to simulate the mass loading effect using the assumption that only the material

density will change underneath each IDT finger, firstly that change in density must be defined

in terms of the thickness of the IDT metallisation. This is defined as

∆ρ =
ρIDTh

δx3
(4.20)

where ∆ρ is the difference in density from mass loading, ρIDT is the density of the IDT metal

and h is the height of the IDT metallisation. ∆ρ may then be added to ρ at all grid points

within the FDTD simulation that are on the substrate surface and directly below any surface

metallisation, i.e. the IDT fingers. Gold is normally used for IDT metallisation but for high

frequency SAW devices aluminium is often used because of its lower density.

Figure 4.24 shows the simulated resonant frequencies found for a SAW device, with 10

finger-pair IDTs with a design wavelength of 840 nm, on GaAs ([1,1,0] propagating) for var-

ious metallisation depths with the IDT metal being both gold and aluminium. Clearly the

frequency response of the device drops as the thickness of the surface metallisation increases.

Furthermore, as expected, the frequency drops off quicker with gold IDTs since these have

a much higher density than aluminium. What is also clear is that the ranges of surface

metallisation thicknesses used here are much to small. This was done because increasing

the thickness much beyond these ranges (i.e. > 30 nm for aluminium and > 4ṅm for gold)

caused instabilities within the simulation because the discontinuity in the density was too

great from the grid points underneath the IDT fingers to those not. This problem may very

well be to do with the incorrect form of (4.20), and an empirical scaling factor could be added

to compensate for this.

Examining the frequency responses of aluminium in 4.25 and gold in 4.26 shows that the

amount of SAW energy captured by the receiving IDT increases as thicker metallisation is

used. While this seems counterintuitive, it is a real effect and occurs because the increased

mass of each finger gives each finger an increased momentum as it vibrates from generated

SAW passing underneath it. This, in tern, increases the magnitude of the oscillations resulting

in a larger acoustic wave [61].
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Figure 4.24: Simulated resonant frequency of the IDTs on a SAW device within the GaAs material

system, [1,1,0] propagation direction, for gold and aluminium with different thickness of metallisation.
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Figure 4.25: Normalised frequency responses for mass loaded SAW devices in the GaAs material

system, [1,1,0] propagation direction, for aluminium metallisation with a range of thicknesses.
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Figure 4.26: Normalised frequency responses for mass loaded SAW devices in the GaAs material

system, [1,1,0] propagation direction, for gold metallisation with a range of thicknesses.



Chapter 5

Surface acoustic wave modulation

of quantum cascade lasers

As quantum cascade lasers (QCLs) made out of III-V semiconductor heterostructures exhibit

the piezoelectric effect, it is plausible that distributed feedback-like modulation of the laser

cavity may be achieved via acoustic waves. This is achieved by applying a propagating

acoustic wave through the laser cavity, which induces an electric field wave that redistributes

free carriers within the laser active region (AR), causing a periodic modulation of the gain

and refractive index. Unlike distributed feedback lasers where this modulation is caused

by altering the physical structure of the device (normally by etching through the surface

metallisation into the top contact layer of the QCL [26]), the periodicity of acoustically-

induced modulation may be varied by as much as the device generating the acoustic wave

allows, therefore allowing the output frequency of the laser selected via feedback to be tuned.

This idea was first suggested by Kisin in 2003 [24].

There has been experimental work to fabricate a surface acoustic wave (SAW) modulated

QCL device by Salih et al. which is summarised in [36]. Figure 5.1 shows the structure of the

device which has been fabricated. This device consists of a QCL ridge, using the Luo et al.

three-well AR [38], bonded to the top of a SAW device (consisting of a transmitting/receiving

IDT pair on a GaAs substrate). The long axis of the QCL is aligned to the propagation

direction of the SAW (which is the [1,1,0] crystal axis). A more detailed description of the

fabrication and structure of this device may be found in [36].

As the SAW is generated within the substrate of this device, it relies upon the SAW

energy moving from the substrate up into the QCL in order for modulation of the QCL

carrier concentration to be achieved. Since placing the QCL ridge on top of the substrate

123



124

Figure 5.1: The SAW modulated QCL device design as proposed by Salih et al. [36] consisting of

a QCL cavity mounted on top of SAW device. The propagation of direction of the SAW is aligned

within the QCL long-axis and the QCL facets have been angled to try and help the SAW move from

the substrate into the QCL cavity.

causes a discontinuity in the surface which the SAW travels along which is comparable to

the SAW wavelength 1, it is likely that a significant portion of acoustic wave energy will

be scattered at this discontinuity into a bulk mode which will not propagate through the

QCL ridge (and therefore not contribute to modulating the QCL), as illustrated in figure 5.2.

Therefore this device has two structural features which try to minimise the scattering of the

SAW at this discontinuity. Firstly, the thickness of the QCL AR has been reduced from a

typical thickness of ∼ 10µm to 5µm in order to reduce the discontinuity on the surface [39].

Secondly the facets of the QCL ridge are wet etched to produce a sloped surface, which acts

as a taper, removing the sudden step from the substrate surface to the QCL ridge surface.

Whilst altering the angle of the facets will reduce the effectiveness of the QCL ridge as a

resonant cavity (as well as affecting the beam pattern emitted by the QCL), QCL ridges with

sloped facets have been show to lase by Salih et al. [36]. Despite these features designed

to enhance the modulation of the QCL carrier concentration by the SAW, no observable

modulation to the QCL emission has been observed from this device. Furthermore, there

has been no investigation into how much of the SAW energy moves from the substrate into

the QCL AR and therefore whether this device represents a feasible design from which SAW

modulation of the QCL AR could be achieved.

1The SAW wavelength must be approximately double the wavelength of light at the emission frequency

within the QCL ridge in order to achieve distributed feedback around the lasing frequency [26], which for the

Luo et al. AR is ∼ 12.5µm; where as the QCL ridge height will be between 5 and 15µm as discussed above.
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Figure 5.2: The potential paths of the SAW as it moves from the substrate into the QCL cavity,

either moving completely up into the QCL cavity and staying as surface bound propagation mode

(top) or scattering in to a bulk propagation mode as it hits the discontinuity in the surface such that

much of the energy of the acoustic wave does not enter the QCL cavity and does not contribute to

modulation (bottom).

Within this chapter, a full model of SAW propagation through a QCL device is developed

by extending the FDTD acoustic wave model of SAW devices presented in chapter 4. A self-

consistent rate equation model [43, 44, 45, 41] is discussed next which, using the modulation

in carrier concentration calculated by the model of SAW propagation through QCLs, is

used to simulate the induced change in complex refractive index. The change in complex

refractive index may then be used determine the strength of the distributed feedback by

utilising coupled wave theory [62]. Finally, using the results from the analysis within this

chapter a recommended design for a SAW modulated QCL is presented, designed to maximise

the modulation of the carrier concentration within the QCL AR by the SAW and therefore

the strength of the distributed feedback.

5.1 Extensions to the SAW device model

As the model of SAW devices is required to simulate SAW-modulated quantum-cascade-laser

device, there are several extension which need to be made to the model before it may be used

to simulate these, or any other more complicated devices involving SAW propagation. These

will be discussed here.

5.1.1 Surface metallisation

Introducing surface metallisation with an applied bias into the model is relatively simple

because of it’s similarity to including IDTs. Since Poisson’s equation is already solved at
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every time step, and the Poisson solver includes the functionality to fix the potential at

any points within the simulation, the problem simply becomes defining the position of the

metallised region as well as the voltage applied to it (including any time variation in that

voltage). For a free metallised surface, not connected to any voltage, the method is identical

to that used for modelling 2DEG’s only placing the conductive region on the surface, therefore

it will not be discussed here.

Fixing the potential at the surface of the simulated structure pins the SAW induced

potential to that voltage directly underneath the metallised region. This pinning effect can

be seen in 5.3 where a small region in between the transmitting and receiving IDTs has been

fixed to various potentials on a GaAs substrate.
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Figure 5.3: The profile of the SAW induced potential underneath a metallised region on the surface

connected to voltages ranging from ±1 V (including the unbiased case), with a SAW wavelength of

15µm on [1,1,0] GaAs.

5.1.2 Ridge structures

In order to simulate the interaction between the SAW and QCL ridge which is placed in its

path, the surface boundary condition of the acoustic wave simulation must be altered to allow

ridge structures can be defined. This problem is far from trivial since the sides of the QCL

ridge do not have a regular shape, as shown in [37], because of the wet etching process used
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to create the ridge structure. This makes the edges of the device slightly curved, such that

the gradient of the edge of the ridge increases towards to the top of the ridge. Furthermore,

because of the square nature of the grid used in the acoustic wave simulation, any surface

shape that runs at an angle not parallel or perpendicular to the x1 and x3 will be subject to

some quantisation (although this will clearly become less of an issue when the ridge height

is much larger than the SAW wavelength since the grid steps, δx1 and δx3, are dependant

upon the wavelength).

Therefore as a first approximation, only square ridges will be considered, such that their

edges are either parallel or perpendicular to the axes x1 and x3.This approximation makes

defining the surface boundary for the flat areas along the ridge easy, since they are identical

to the regular surface boundary, that is the differential of the stress across the surface must

be zero, i.e.
∂σi3
∂x3

∣∣∣∣
x3=surface

= 0 for i = 1, 2, 3, (5.1)

for horizontal surfaces, and

∂σi1
∂x1

∣∣∣∣
x1=surface

= 0 for i = 1, 2, 3, (5.2)

for vertical surfaces, where surface defines any point in space which lies on a surface. How-

ever, defining the boundary conditions for the corner points is not straightforward. For the

concave corner, the horizontal and vertical boundary conditions will combine to give the bulk

equations of motion, i.e. neither (5.1) or (5.2) apply. For the convex corner on the other hand,

the two surface boundaries combine to set the left-hand-side of the equations of motion zero

(since the ∂
∂x2

terms are already zero due to the invariance in x2), i.e. both (5.1) and (5.2)

apply. Clearly neither of these corner conditions are correct since the displacement at the con-

vex corner cannot be zero without some external force pinning it there, and bulk conditions

cannot be used for concave corners since there are points missing from outside the corner

which are required to solve the equations of motion. Therefore, a further approximation must

be applied to find suitable boundary conditions for corners along the surface.

The displacement in the spatial dimensions for the concave corners is calculated as the

average of the displacement at the four adjacent points, i.e. for a concave corner at the point

i, j

ui(i, j) =
ui(i− 1, j) + ui(i+ 1, j) + ui(i, j − 1) + ui(i, j + 1)

4
for i = 1, 2, 3. (5.3)

The rationale behind this is that the difference in the displacement should be small enough

to approximately be linear between points.
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For the convex corners, where the corner point should be free to move under any applied

force, but not move in a way which adds any energy into the system, the assumption is made

that the distance between the corner point and the two adjacent points on the surface is

constant, and of the size of the spatial grid step, as shown in 5.4. This is done only for

the displacements u1 and u3 to simplify the trigonometry, since only ridge structures in the

GaAs material system with [1,1,0] propagating SAWs are considered within this thesis (and

the u2 displacement is always zero in this material system). However, this method could be

extended to include u2 displacement. In order to find the displacement at the corner point

i, j, firstly the sides of the dashed triangle, a and b are found by

a = |δx1 − u1(i, j + 1) + u1(i+ 1, j)| ,

b = |δx3 − u3(i+ 1, j) + u3(i, j + 1)| ,
(5.4)

with the hypotenuse of the dashed triangle being given simply by ` =
√
a2 + b2. The angles

η and ϕ may then be found using the laws of tangents and cosines,

tan η =
b

a
,

cosϕ =
`+ (δx1)2 − (δx3)2

2`δx1
.

(5.5)

Finally, the two components of displacement at i, j may be found by

u1(i, j) = u1(i+ 1, j)− δx1 sin(η + ϕ− π

2
),

u3(i, j) = u3(i+ 1, j) + δx1(sin(η + ϕ)− 1).

(5.6)

This analysis has been done for left-hand convex corners, i.e. where the positive direction

of the axes is as shown in 5.4, however the same analysis is readily applied to right-hand

convex corners where the positive x1 axis points in the opposite direction.

These corner boundary conditions were applied to a simple ridge structure in the [1,1,0]

propagation direction for GaAs material system, with a SAW generated by a 10-finger-pair

IDT with λ = 15µm, with varying ridge heights. The u1 displacements after 40 ns, shortly

after the acoustic wave has reached the ridge, is shown in 5.5 and 5.6. These show that

the magnitude of the acoustic wave appearing after the ridge seems to increase as the ridge

height increases, implying that ridge structure boundary conditions are adding energy into

the system. Furthermore, the correlation between ridge height and magnitude seems to imply

that the energy is being added to the system via vertical surface boundary, however because

this is identical to the horizontal surface boundary (only rotate via 90◦) which works well

this is not likely. What is more likely is that the concave corner boundary is adding energy
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Figure 5.4: Labeling of the angles and lengths involved in calculating the displacement at a convex

corner point i, j at the surface. The grey crosses represent the positions of the grid points, each

separated by either δx1 or δx3, and the black crosses represent the actual positions of those points at

some moment in time, with the displacement, u, being the distance between the two.

to the system which travels up the vertical surface boundary before being reflected back by

the convex corner boundary. If the ridge height is small then this added acoustic energy is

reflected and absorbed by the bottom PML before it passes by too many bulk grid points.

For larger ridge height this acoustic energy will pass by more bulk crystal (i.e. within the

ridge) before it is reflected off the top of the ridge and absorbed by the PML. This appears to

be consistent with the shape of the acoustic wave next to the start of the ridge in figures 5.5

and 5.6.
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Figure 5.5: Propagating SAW (u1 displacement) from a 10-finger-pair IDT on [1,1,0] (λ = 15µm)

propagating GaAs after 40 ns, propagating in ridge structures of varying heights, between 1 and 7µm.
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(f) u3 at t = 10 ns, ridge height 11µm
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(g) u3 at t = 10 ns, ridge height 13µm
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Figure 5.6: Propagating SAW (u1 displacement) from a 10-finger-pair IDT on [1,1,0] (λ = 15µm)

propagating GaAs after 40 ns, propagating in ridge structures of varying heights, between 9 and 15µm.
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(a) u3 at t = 70 ns, ridge height 2µm
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(b) u3 at t = 70 ns, ridge height 4µm
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Figure 5.7: Propagating SAW (u3 displacement) from a 10-finger-pair IDT on [1,1,0] (λ = 15µm)

propagating GaAs after 70 ns, propagating in ridge structures of varying heights, between 2 and 6µm.
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(d) u3 at t = 70 ns, ridge height 8µm
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(e) u3 at t = 70 ns, ridge height 10µm
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(f) u3 at t = 70 ns, ridge height 12µm
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(g) u3 at t = 70 ns, ridge height 14µm
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Figure 5.8: Propagating SAW (u3 displacement) from a 10-finger-pair IDT on [1,1,0] (λ = 15µm)

propagating GaAs after 70 ns, propagating in ridge structures of varying heights, between 8 and 14µm.
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Alternative ridge boundary conditions

While the ridge boundary conditions derived above are not perfect, they are the most stable

of all the different types tried within the acoustic wave simulation to date. Some of the other

boundary types that have been tried include

Forward/backward differencing

This tries to remove the need for the missing point in the bulk approximation to a

concave corner by using forward/backward finite differencing in the differentials for the

displacement, u. This boundary was also applied to convex corners without success.

As applying a forward/backwards difference introduces a larger computational error

within the interlaced grid scheme, this approach was also tried in a simulation where

the auxiliary variable V had not been introduced to the equations of motion (and hence

without PMLs). While this reduced the computational load of this approach, it still

led to instabilities and was unsuccessful.

Constant differential along boundaries

The value of the first and second order differential was fixed assumed constant around

each corner to try and approximate the displacement at the corner points. This method

was also unstable.

Masses-on-springs derivation of surface boundary

A masses-on-springs view of the discretisation of the acoustic wave equations of motion

was used to derive the surface boundary condition, and it was found that this altered

the equations of motion at a horizontal surface from

ρ
∂ui
∂t2

=
∂σi1
∂x1

,

to

ρ
∂ui
∂t2

=
∂σi1
∂x1

+ σi3.

From this approach, the combination of horizontal and vertical boundaries at the corners

of a ridge do not become zero or bulk, but rather corner boundary conditions drop out

of the bottom. This approach seemed promising, but is incompatible with the IDT

excitation method used as it leads to instabilities at the points of fixed potential within

the simulation domain. It is unclear whether these instabilities come from the new

surface boundaries or from the assumptions made in the IDT model.



5.1. Extensions to the SAW device model 135

Analysis of ridge boundary conditions

All of the methods used to derive ridge boundary conditions for the FDTD acoustic wave

model have been applied to a ridge with a vertical surface and right-angled corners which, as

discussed previously, represents the worst-case in terms of scattering of an incident acoustic

wave. Since all of these methods resulted in boundary conditions which were unstable (i.e.

they added energy to acoustic simulation domain), this implies that at at least one of the

right-angled corners the magnitude of one of the differential terms in the equations of motion

is becoming unrealistically large, producing an acoustic displacement which is larger than

physically possible. However as the right-angled corners themselves are physically realistic, it

is inferred that the instabilities introduced to the acoustic wave model by the addition of ridge

structure boundaries are not a problem with the boundary conditions, but a fundamental

problem with trying to simulate an unrealistic structure. Therefore in order to simulate

realistic ridge structures which have curved corners with a continuum model that utilises

a rectangular discretisation grid (such as the FDTD acoustic wave model), a scheme for

deriving boundary conditions for curved boundaries which lie in between grid points would

have to be used; analogous to that used in [63] for solving Maxwell’s equations around curved

waveguides — This is set as further work in chapter 6.

While the instabilities introduced by the ridge structure boundary conditions stop any

quantitative analysis of their results, a qualitative discussion about the fact that these insta-

bilities occur can still give insight into the scattering of acoustic wave energy by a physically

realistic ridge structure. The fact that right-angled corners cause at least one of the differen-

tials within the equations of motion to be large enough to cause instabilities implies that for

a physically realistic ridge structure (i.e. with curved corners) these same differentials would

still be large, but not large enough to cause instabilities, and therefore there would be a signif-

icant amount of scattering from a surface bound mode to a bulk mode. While the SAW-QCL

structure from [36] does employ sloped facets on the QCL ridge to try to minimise the this

acoustic wave scattering, the length of this sloped section along the propagation direction is

of the order of the SAW wavelength, implying that there will still be significant scattering.

Furthermore, although the height of the QCL ridge has been reduced to a minimum of 5µm,

the instabilities in the ridge structure simulations appear for ridge heights of 5µm and above,

implying that there will still be significant scattering.

Although these two structural features will help reducing this scattering to some degree,

the line of reasoning followed above implies that they will not be enough to prevent significant
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scattering of the surface mode into a bulk mode of acoustic wave propagation that will not

contribute to the modulation of the QCL active region.

5.1.3 Buried two-dimensional electron gas

The quantum wells within the QCL have a high concentration of free carriers, which are free

to move in-plane of the quantum well structure, i.e. in the x1 direction within the FDTD

simulation. These free carriers will move under the influence of the SAW-induced piezoelectric

potential, causing areas high and low carrier concentration along the x1 axis, and therefore

a modulation in the QCL active region. However, the potential from the free charge will act

to screen the potential induced by the SAW meaning that, depending on the thickness of

QCL active region, the SAW potential may not influence the carrier concentration through

the entire height of the QCL.

Since the SAW simulation domain is effectively two-dimensional, at its most complicated,

modelling this problem involves finding the charge density at every point in time for an area

of free charge within the simulation domain. This, however, is not easy as it requires the

confinement of a two-dimensional charge-well to be considered, and the problem is simplified

greatly by assuming the free charge area is made up of a series of layers of two-dimensional

electron gas in the x1-x2 plane. This approximation is not too far from reality since the

quantum well structure within the QCL does provide confinement in one direction, and

although in reality free carriers do tunnel from one quantum well to another the carrier

concentration within one well should remain reasonably constant as the device is electrically

pumped. This reduces the problem to finding the one dimensional carrier concentration

within a series of layers, however the confinement of one-dimensional potential must still be

considered. While a classical approach could be to find the evolution of carrier concentration

over time, hence ignoring electrons tunnelling from one area of confinement to another, the

problem may be simplified further by realising that only a steady state solution is required

to determine the strength of the modulation of the carrier concentration. Furthermore, since

(to a first approximation) carriers will be injected into the QCL active region evenly over

the area of the top of the device, finding the time varying carrier concentration for a layer of

2DEGs that does not take this into account would not valid. Therefore the charge within each

2DEG can be assumed to be spread out evenly at every time step, and modulated accounting

the SAW potential at that time step.
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Firstly, examining the dielectric relaxation time [64],

τ =
ε

σ
,

where ε is the permittivity and σ is the conductivity, for GaAs with a relatively low car-

rier concentration of ∼ 1015 cm−3 gives a time of the order of 10 ps, much shorter than the

nanosecond timescales of the SAW propagation, meaning that free carriers will respond adi-

abatically to the SAW potential. Secondly, it is assumed that all the donor atoms within the

structure will donate an electron, as is done within the rate-equation model of QCLs, meaning

that the number of electrons within each 2DEG is equal to the number donors within that

volume, ND. Finally, assuming that the charge displacement induced by SAW will never be

large enough to fully deplete any area within the 2DEG of carriers, then the electron charge

within the 2DEG, ρe, is given by

ρe = −qND − ρSAW, (5.7)

where qND is the charge from the donors and ρSAW is the charge induced form the SAW.

While it may seem like a problem that this assumption is only valid when no area of the

2DEG is fully depleted of carriers, since the purpose of modeling the QCL active region is

to determine the strength of the modulation and in a steady state when the carriers become

depleted this is effectively the maximum modulation, this assumption still allows this purpose

to be fulfilled.

As the simulation of ridge structures within the SAW model appears to add energy into

the system, simulating a buried 2DEG within a ridge structure would not give valid results.

As an interim solution, a 2DEG may be placed within the substrate itself with no ridge

structure on the surface. Clearly underneath the transmitting IDT there will be a much

higher potential due to the IDT potential itself, which will induce a higher modulation of the

carrier concentration. Therefore the modulation of the carrier concentration underneath this

IDT can be ignored.

Figure 5.9 shows the modulation of the carrier concentration of a 10µm thick layer of

2DEG with various doping densities, buried 5µm below the surface of the channel of a SAW

device on a [1,1,0] GaAs substrate. The doping density, Nd, and therefore the unperturbed

carrier concentration, varies from 1×1017 cm−3, i.e. the carrier concentration in the three-well

active region QCL by Luo et al. [38]. The voltage on each finger of the transmitting IDT

was set 0.5 V. Clearly, even with this relatively small value for the voltage on each finger of

the transmitting IDT, at the carrier concentration of 1×1017 cm−3, the SAW induced charge
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displacement is much higher than required to completely deplete regions of the 2DEG of

carriers. In fact, the carrier concentration may be increased by an order of magnitude to

10×1017 cm−3 before the carrier concentration is too high for the SAW to fully deplete areas

of carriers. Furthermore, the strength of the modulation does not appear to diminish into

depth of the substrate indicating that the 2DEG does not screen the modulating effect of

SAW. (The strength of the modulation does reduce towards the bottom 2DEG layers however

this corresponds to the reduced SAW power at a depth of 15µm, i.e. 1λ.) It is thought that

this is due to the piezoelectric effect being relatively weak within the GaAs material system,

since the only mechanism by which the 2DEG layer may screen the SAW is through altering

the induced SAW potential, which will feedback and alter the mechanical motion through

the piezoelectric term within Hooke’s law. In GaAs this feedback is relatively weak as the

values within the piezoelectric tensor are small compared to, say, lithium niobate of quarts

substrates (see appendix C for these material constants). Therefore the screening effect of

the 2DEG layer will therefore not alter the mechanical motion of the SAW to a large degree,

meaning that modulation of the carrier density will not change a great deal into the depth

of the material.
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Figure 5.9: Modulation of the carrier concentration within a 10µm thick layer of 2DEGs with various

doping densities, buried 5µm below the surface of the channel of a SAW device in the [1,1,0] GaAs

material system. The voltage on each of the fingers of the transmitting IDT was set to 0.5 V and

the doping densities, and therefore the unmodulated carrier concentrations vary from 1×1017 cm−3 to

50×1017 cm−3.
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To investigate how a change in SAW power effects the modulation in carrier concentration,

the same structure was simulated and the voltage on the transmitting IDT was varied. The

unmodulated carrier concentration was set to the carrier concentration in the three-well active

region QCL by Luo et al., 8.1×1014 cm−3. Figure 5.10 shows the results for several different

applied voltages to the transmitting IDT. For this carrier concentration, the conductive layer

is fully depleted of carriers with the voltage on the IDT fingers being lower 1 mV and even with

the voltage as low 0.1 mV there is still a significant modulation in the carrier concentration.
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Figure 5.10: Modulation of the carrier concentration within a 10µm thick layer of 2DEGs buried

5µm below the surface of the channel of a SAW device in the [1,1,0] GaAs material system, with

various voltages applied to the IDT fingers. The unmodulated carrier concentration was set to that

of three-well active region QCL by Luo et al. [38], 8.1×1014 cm−3.
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These results indicate that the SAW does have more than enough power to fully deplete

areas within the active region of a QCL of free carrier, therefore achieving the maximum

amount of modulation. Since in real-world SAW devices the applied voltage to the contacts

of the IDTs is of the order of several volts, even if the majority of the applied voltage does

not reach the IDT fingers due to the mismatch in impedance from the contacts to the IDT

bond-pads such that the voltage on each finger was say 1 mV, the QCL ridge would need to

scatter more than 90% of the SAW energy into a bulk mode to stop a significant modulation

in carrier concentration.

5.2 Rate equation model of quantum cascade lasers

The self-consistent Schrödinger-Poisson solution provides an accurate method for determining

the electronic of a semiconductor heterostructure. For example, when simulating the three-

well active region QCL device by Luo et al. the lasing transition is predicted to be 13.8 meV,

corresponding to an emission frequency of 3.3 THz compared to the experimentally measured

value of 3.4 THz. However, by examining the scattering rates between each state found

within the heterostructure the model may be improved and extended to calculate other

meaningful values which may be experimentally measured such as the frequency dependent

gain or current-voltage curve of a QCL.

5.2.1 Structure of the rate equation model

The rate equation model is built on the structure of the self-consistent Schrödinger-Poisson

loop, as in 2.3, however it includes the calculation of the scattering rates for each transition

which, by solving the rate equations, allow the populations of each state to be found. The

scattering rate calculations are all based upon Fermi’s golden rule [65], which states that the

lifetime of a charge carrier in some initial state 〈i|, which is subject to some time-dependent

perturbation H̃ that may cause it to scatter to some final state |j〉, is given as

1

τij
=

2π

~
∑
f

∣∣∣〈j|H̃|i〉∣∣∣2 δ(Ej − Ei) (5.8)

where τij is the average lifetime of a carrier in state |i〉 before it scatters to state |j〉 and the

term δ(Ej − Ei), where E is the energy of each state, ensures that that the transitions is

energetically possible. The form of H̃ changes depending on the scattering mechanism which

is being considered. These include alloy disorder scattering, acoustic phonon scattering,

carrier-carrier scattering, carrier-photon scattering, interface roughness scattering, ionised
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Figure 5.11: Wavefunction diagram showing two periods of the three-well active region structure by

Luo et al. [38]

impurity scattering and longitudinal optical phonon scattering, full details of which can be

found in [41]. If the system has more then two states, as in a QCL, then the total scattering

rate for each state will be the sum the scattering rates for each transition from one initial

state, i.e.

1

τi
=
∑
j

1

τij

Once the total scattering rate of each state has been calculated, the rate equations may

be solved. These come from the fact a carrier in one state may scatter in any other state

within the system, as shown in 5.12, and therefore the total change in the population of any

state over time is simply sum of emission and abortion rates for that state. This gives enough

information to calculate the ratio of the populations of all states which, assuming that the

total population is equal to the concentration of donor atoms, is enough to calculate the

population of each state [41].

Summing the total scattering rates, both scattering out of and in to state |i〉, multiplied

by the initial state population, n, for each gives the rate equations [41],

dni
dt

=
∑
j

nj
τji
−

∑
j

ni
τij

 . (5.9)
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Figure 5.12: Scattering transitions within a three level system showing lifetimes of each transition.

Assuming the system is in a steady state, i.e. dni
dt = 0, the rate equations give a set of

simultaneous equations which may be solved to find the ratio of the population in each

state.

5.2.2 Object orientation of rate equation model

Due to the complexity and large number of varying tasks within the rate equation model,

there is a considerable amount of computer code required to implement it. For ease of

implementation, it is normal for each task to be broken into individual programs which are

tied together by some master script, whose task is to execute all of the programs in the correct

order, with the correct inputs, in order to run the simulation properly. For the specific rate

equation model used in this thesis, the simulation has historically been developed on a Linux

platform using Fortran and C program tied together by a Bash script, with communication

between each program being done by reading and writing to and from files on the hard drive.

While this strategy for solving a complex problem such as the rate equation model does

work incredibly well, moving to an object orientated implementation of each program in-

troduces many advantages which are difficult (if not impossible) to achieve with a linear

programing language. Aside from the obvious advantages such as the robustness of utilising

objects under different conditions and the easy removal of duplicate code, as well as many

other very well documented advantages (see any introductory book on object orientated

programming, e.g. [66]), object orientation does a lot to help simplify complicated, compu-

tational code such as that in the rate equation model since simpler tasks can be done by a
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relevant object rather than inside a calculation which may involve that object. Furthermore,

the problem of the rate equation model is well suited to object orientation since so many of

its components may be converted into objects. For example the form of the heterostructure

may be stored in an heterostructure object containing the conduction band offset, effective

mass profiles, etc., while the wavefunction and energy of each solution to the Schrödinger

equation may be stored in sub-band objects, with a different object for each solution, which

also contains information such as the population of the sub-band and Fermi energy along

with methods for calculating the sub-band energy at a particular wavevector or the sub-band

population up to some wavevector. Pairs of sub-band objects may then be stored within a

transition object, which contains the scattering rate for the transitions but also methods for

calculating the dipole matrix element between each sub-band and the population difference

between sub-bands at some wavevector.

Due to the attractiveness of this implementation, a lot of work has been been put into

the object orientation of the rate equation model, in conjunction with Dr. A. Valavanis (who

has led the project) and A. Grier. This has involved refactoring much of the original rate

equation model [43, 44, 45, 41] into a series of object orientated programs. Currently these

programs are still tied together via a Bash script, however with much of the functionality

being placed within a library, along with the object orientation, there is the prospect of being

able to control each program from its own containing object and eventually tie the entire

simulation together from within a single compiled program. This would remove the need for

writing intermediate data to and from files since it could easily be passed from one object

to the next, therefore improving the speed of the simulation. Furthermore, a library-based

software solution allows for the user interface to be very easily improved with the possibility

of a graphical front-end being added to control the simulation.

5.2.3 Complex refractive index calculation

Since it is the change in complex refractive index (i.e. the real component of refractive index

and gain) that are modulated by the change in carrier concentration, these values need to be

calculated. [25] presented a method for calculating the contribution to atomic susceptibility

from one transition by using the dipole matrix element and population difference between the

two states, from which the complex refractive index may be calculated. As these values come

out from the rate equation model, this method can be implemented after the rate equation

model has finished to calculate the complex refractive index.
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From [25], the atomic susceptibility for a transition between two states is defined as

χ = χ
′ − iχ

′′
(5.10)

where real and complex components are given by

χ
′
(ω) =

µ2
ij(ωij − ω)Tij

2ε0~
∆NijLij(ω),

χ
′′
(ω) =

µ2
ij

2ε0~
∆NijLij(ω),

(5.11)

where µij is the dipole matrix element, ωij is the angular frequency, Tij is the dephasing

time, ∆Nij is the population inversion and L(ω) is the frequency dependent Lorentzian line

shape, all for the transition i→ j. The Lorentzian is defined as

Lij(ω) =
γij

π
{

(~ω − |Eij |)2 + γ2
ij

} , (5.12)

where γ is the linewidth, defined as γij = ~
Tij

, and E is the transition energy, both for the

transition i→ j.

While the lasing transition will have the biggest contribution to the complex refractive

index at lasing frequency, in order to find the total frequency-dependent refractive index (5.11)

must be summed over all transitions, i.e.

χtotal =
∑
i,j

χij , for j > i.

The total permittivity is the sum of the permittivity of the host material plus the calcu-

lated electoral contribution, i.e.

εTotal = εHost + εElec.,

= εHost(1 +
χ

εHost
),

(5.13)

and the complex refractive index of the form µ + i‖ is the square root of the permittivity,

such that

µ+ i‖ =
√
εHost

√
(1 +

χ

εHost
),

≈
√
εHost(1 +

χ

εHost
),

(5.14)

Figure 5.13 shows the frequency dependent gain , and 5.14 shows the frequency dependent

refractive index, calculated for the three-well active region QCL by Luo et al. [38]. The gain

peak is at the correct frequency of 3.2 THz with a reasonable amplitude with the other

features in the plot coming from the other transitions away from the lasing frequency. The
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main inflection of the refractive index (at 3.2 THz) also appears correct, with the refractive

index increasing below the lasing frequency and decreasing above. The features from the other

transitions within the QCL are much more prominent in the refractive index, particularly

the inflection ∼1 THz which corresponds to the transition between the lower laser level and

the extraction state. This is due to the large dipole matrix element between the two states

(the two states anti-cross at around the operating voltage of 12.5kV/cm).
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Figure 5.13: Frequency dependent gain of the three-well active region structure by Luo et al. [38]

with an applied bias of 12.5 kVcm−1 (i.e. the design bias).
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Figure 5.14: Frequency dependent total refractive index (i.e. both host and electrical contributions)

for the three-well active region structure by Luo et al. [38] with an applied bias of 12.5 kVcm−1 (i.e.

the design bias).
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5.2.4 Change in carrier concentration

As a change in carrier concentration will effect the magnitude charge distribution with the

active region of the QCL, and since the solution of the electronic structure is self-consistent

and dependent upon the carrier concentration, a change in the carrier concentration must be

considered within the self-consistent loop of the rate equation model. Fortunately this is not

difficult, owing to the fact that the donor atoms do not move and their concentration does

not change, and that the number of free carriers is simply distributed amongst the states

within the QCL according to the ratios found by solving the rate equations. Therefore a

change in carrier concentration can be implemented by changing the number of free carriers

available to distribute between states, although importantly not changing the number, and

therefore the charge from the dopant atoms.

To simulate the effect of a depletion of carriers caused by the SAW induced potential

interacting with the QCL active region, a range of different carrier concentration where given

to the rate equation model to determine the change in gain and refractive index with varying

carrier concentration. Figure 5.15 shows the change in gain and 5.16 shows the change in

refractive index for a range of carrier concentrations. These do not scale linearly with the

carrier concentration due to the self-consistent loop as well as, in particular, the inclusion of

electron-electron scattering.
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Figure 5.15: Gain of the three-well active region structure by Luo et al. [38], with the applied bias

set at the design bias of 12.5 kVcm−1, for a range of carrier concentrations, with the normal carrier

concentration being 3.6×1010 cm−2.
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Figure 5.16: Refractive index of the three-well active region structure by Luo et al. [38], with the

applied bias set at the design bias of 12.5 kVcm−1, for a range of carrier concentrations, with the

normal carrier concentration being 3.6×1010 cm−2.

5.3 Design recommendation for a SAW modulated QCL

As shown in section 5.1.2, the biggest problem associated with the SAW modulated QCL de-

sign presented by Salih et al. [36] is the discontinuity in the surface of the structure between

the substrate and the QCL ridges. As discussed, this discontinuity causes an unknown but

potentially significant amount of scattering of the incident SAW energy into a bulk propaga-

tion mode which will not enter the QCL ridge. This means that not only can the modulation

of the carrier concentration in the QCL AR not be determined by the model presented in

this thesis, but the magnitude of that modulation is potentially very small. Furthermore, the

sloped facets on the QCL ridge reduce its effectiveness as a resonant cavity which degrades

the performance of the QCL as discussed in [36].

As a result of these problems, a recommended design is presented which removes the

need for the SAW to propagate over any discontinuities in the surface structure. Not only

does this remove the problems involved with simulating ridge structures, thereby allowing

the revised device design to be modelled using the simulation tools presented in this thesis,

but also removes the biggest unknown factor in the design from [36]; that is, how much of

the SAW energy is scattered by the discontinuity of the surface of the device.
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The presented deign comes in two flavours — the need for which is discussed presently,

each of which use the same principle of placing an IDT on top of the QCL cavity and

generating the SAW directly within the QCL AR. This removes the need for the SAW to

move from the substrate into the QCL cavity and the requirement for the QCL facets to be

sloped which reduces the effectiveness of the laser cavity. (Furthermore, the fabrication of

the device will be simpler as only one additional step beyond the QCL fabrication is required,

i.e. patterning an IDT on the top contact, as opposed to fabricating the QCL and mounting

on a SAW device as discussed in [36].)

The first design is shown in figure 5.17. Within this design, an IDT structure is patterned

along the entire length of the QCL ridge in place of the top contact metallisation. Since the

QCL is driven by a relatively DC voltage compared to the IDT voltage which is an RF signal,

these two signals may be added such the applied signal may be used to both electrically pump

the QCL and generate a SAW (with the RF signal on one side of the IDT out of phase by π

from the opposite side). The main drawback of this method is that, because of the n-doped

top-contact layer on the QCL which is partially conductive, some of the RF voltage applied

to the IDT will leak across to the opposite side of the IDT, reducing the effectiveness of

the IDT at producing a SAW. While the magnitude of the RF voltage can be increased to

counteract this effect, the limiting factor is how much oscillation in its driving current the

QCL can withstand whilst still maintaining normal operation. Since the effect of a conductive

substrate reducing the effectiveness of the IDTs to generate a SAW is not considered within

the current model2, the magnitude of the required RF voltage cannot be calculated. Instead,

a second design is presented which may be used to sidestep this problem if it becomes a

significant issue.

Figure 5.18 shows structure of the second SAW modulated QCL suggested design. Within

this design, a section of the QCL cavity is electrically isolated by depositing an insulating layer

in place of the n-doped top contact layer. The rest of the laser is fabricated with the normal

top-contact metallisation n-doped top contact layer. This has the effect of only part of the

laser cavity is electrically pumped (the part underneath the normal top-contact metallisation)

and therefore contributing to gain whilst the rest of the cavity (the section underneath the

IDT) does not act as a gain medium but only as a waveguide. Whilst effectively switching

off part of the QCL cavity will reduce the overall gain, and therefore the output power, of

the QCL, doing so does allow the driving voltages for the QCL and IDT to be completely

separated. However, as shown in chapter 4.3, the magnitude of the generated is dependent

2This is set as further work in chapter 6.1.
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Figure 5.17: Illustration of the first design recommendation for a SAW modulated QCL. The IDT

sits on top of the QCL cavity and runs for the entire length of the QCL cavity ensuring that a SAW

is generated evenly throughout the QCL cavity.

upon the number of finger pairs, and therefore the overall length of the generating IDT.

There is, therefore, a trade-off within this design between how much SAW power is needed

(i.e. how long the IDT must be) and how much the gain of the QCL may be reduced by

(i.e. how much of the QCL may be switched off). Furthermore, within this design the loss

in SAW power as it travels along the QCL ridge will be an important effect as the SAW will

have to travel a significant distance — of the order of several millimetres.

While the presented model cannot be used to simulate the effect of the conductive top

contact layer on SAW generation in the first design, or the loss of SAW power as it travels

along the QCL ridge in the second design (as the IDT model assumes the two sides of the

IDT are electrically isolated and the FDTD acoustic wave model is losses), it can be used to

find an approximation to the modulation in carrier concentration of the QCL without these

effects. Therefore the SAW model was used in conjunction with the rate-equation model

to simulate the Luo et al. QCL active region, as used in the Salih et al. SAW-modulated

QCL design, with various carrier concentrations determined by the level of modulation in

the carrier concentration from the SAW (as in section 5.2.4). The wavelength of the SAW

was set to 12.5µm corresponding to half the wavelength of the simulated emission frequency

(∼3.2 THz) within the gain medium (such that the modulating frequency satisfies the Bragg

condtion [62]) and the voltage on each side of the IDT was set to ±1µV. The conductive layers
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Figure 5.18: Illustration of the second design recommendation for a SAW modulated QCL. Part

of the QCL cavity is has an IDT patterned on top whilst the rest is has a metallised top-contact.

The area underneath the IDT electrically isolated from the QCL active region to stop the potential

applied to the IDT interfering with the electrical pumping of the QCL. The SAW is therefore generated

within part of the QCL which is effectively switched-off before propagating into, and modulating, the

operational part.

representing the QCL active region within the SAW model were placed at depths between

0.5µm and 15.5µm below the surface of the QCL ridge, giving a top contact layer thickness

of 500 nm and a total AR thickness of 15µm. The unperturbed carrier concentration within

these layers was set to that of the Luo et al. QCL, i.e. 8.1× 1014 cm−1. This gave results for

the modulation in carrier concentration very similar to those in section 5.2.4, with a maximum

carrier concentration of 2.5 × 1015 cm−1 and the minimum being fully depleted areas. This

range of carrier concentrations was used within the rate-equation model to calculate the

complex refractive index for the QCL AR for various carrier concentrations, giving identical

results to those shown in section 5.2.3.

In order to give a quantitative discussion as to whether this level of modulation will lead to

DFB within the QCL, these results must be analysed using coupled-wave theory [62]. While

a full analysis is beyond the scope of this thesis (and is set as further work in section 6.1),

the DFB coupling constant may be easily calculated and used as an indicator as to whether

DFB is likely. From [62], a periodic modulation in the refractive index and gain of laser gain

medium may be described as

n(x) = n0 + n1 cos 2β0x (5.15)

g(x) = g0 + g1 cos 2β0x, (5.16)
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respectively, where x is the long-axis of the QCL (and the propagation direction of the SAW),

n(x) is spatially varying refractive index with n0 and n1 being the unperturbed value and

magnitude of the modulation of refractive index respectively, g(x) is the spatially varying

gain with g0 and g1 being the unperturbed value and magnitude of the modulation of gain

respectively, and β0 is given as

β0 =
2πn0

λ0
, (5.17)

where λ0 is the periodicity of the modulation to the gain and refractive index, i.e. the

wavelength of the SAW, which in this case is 12.5µm. The DFB coupling constant, κ, is then

given as

κ =
πn1

λ0
+

1

2
jg1. (5.18)

Figure 5.19 shows the frequency dependent coupling constant, |κ|, for the simulated de-

vice. At the simulated emission frequency, 3.2 THz, the magnitude of the coupling constant

is 9.0 cm−1. Comparing this value to others in the literature for DFB QCLs such as [26, 67],

which both have values for the |κ| of 5 cm−1, implies that the strength of the modulation

from the SAW is more than strong enough to induce DFB within the QCL.

2 3 4 5

Frequency (THz)

0

5

10

15

20

25

C
o
u
p
li

n
g
 c

o
n
st

an
t 

m
ag

n
it

u
d
e,

 |k
| (

cm
-1

)

Figure 5.19: Simulated frequency-dependent coupling constant for the Luoet al. QCL AR [38] with

an applied bias of 12.5 kVcm−1 (i.e. the design bias) modulated by a SAW with a wavelength of

12.5µm (i.e. the frequency which satisfies the Bragg condition [62] for the QCL emission wavelength,

3.2 THz).





Chapter 6

Conclusion

A set of simulation tools for modelling the modulating effect of a surface acoustic wave (SAW)

on the carrier concentration within a quantum cascade laser (QCL) active region have been

developed. These tools have been used to find the expected modulation in complex refractive

index within the QCL AR caused by a SAW, from which the distributed feedback (DFB)

coupling constant has been calculated. While the presented model has not been able to

model SAW modulated QCL device design that was proposed and fabricated by Salih et

al. [36] due to the shape of the surface structure causing instabilities within the simulation, it

was concluded that these instabilities suggest that a significant portion of the SAW energy was

scattered by the discontinuity where the substrate surface meets the QCL ridge and therefore

much of the SAW would not contribute to modulating the QCL AR carrier concentration.

An alternative design has therefore been suggested which not only can be modeled by the

presented tools, but more importantly removes any uncertainty of how much of the SAW will

modulate the carrier concentration by generating the SAW directly within the QCL ridge. For

this alternate design, the magnitude of the coupling constant, |κ|, at the emission wavelength

was found to be ∼9 cm−1, indicating that DFB modulation of QCLs using SAWs is indeed

feasible. Further work which would help to validate this claim is presented at the end of this

chapter.

The self-consistent Schrödinger-Poisson solution provides an accurate method for deter-

mining the electrical structure of semiconductor heterostructures including the effects of

charge. The accuracy and reliability of this method were improved by the derivation of a

novel, direct solution to the nonparabolic Schrödinger equation in chapter 2. This allows

material systems with high conduction band offsets (of the order of 1 eV) to be modelled

without the problem of missing pairs of states which are energetically very close which is
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often suffered by iterative approaches. This is particularly appealing for the design of QCLs

where, due to the very narrow barrier widths, states are often very close in energy and the

design work may be automated (through a genetic algorithm or similar) requiring the solution

to be robust, i.e. not skip states. The diagonalisation method for solving Poisson’s equation

was also investigated, and a new diagonalisation algorithm was derived for the problem with

mixed boundary conditions. Furthermore, it is thought that utilising the same optimisation

generating algorithm (appendix B) that a similar diagonalisation algorithms could be pro-

duced for other sparse banded matrices, such as the matrix produced from the discretisation

of the two-dimensional Poisson equation.

The derivation of a model of SAW propagation requires an in depth understanding of

acoustic wave propagation in crystalline materials. Therefore the acoustic wave equations

of motion for propagation within piezoelectric crystals were derived from first principles

in chapter 3. Since any simulation acoustic wave propagation will inherently be an open-

domain problem, it will suffer from the problem of energy within the system reflecting of

simulation domain boundaries and reflecting back into the region of interest; a problem that

was previously unsolved within piezoelectric crystals. This was solved by the application of

the concept of PMLs, predominantly used in electromagnetic simulations, to the acoustic

wave equations of motion.

In order to simulate SAWs, a surface boundary condition has to be added to the acoustic

wave simulation. This was derived in chapter 4. Furthermore, as SAWs are excited using

IDT structures experimentally, the time-dependent potential around an IDT structure was

modelled (by introducing the ability to fix the potential within the two-dimensional Poisson’s

equation), and this potential was used to excite the SAW simulation. The simulated SAWs

compared well to the analytical solution for a SAW, and had an almost identical value of

propagation velocity (and therefore wavelength) as measured experimentally. Additionally,

several SAW devices were fabricated with various numbers of finger pairs in the two IDTs on

the device (fabrication and processing done by Dr. M. Salih), in order to exploit the change

in FWHM of the S21 response of the device with varying numbers of finger pairs. These

devices were simulated and the responses compared, showing an excellent agreement in the

variation of FWHM with varying numbers of fingers. While not utilised within this project,

this novel method for simulating real-world sized IDT devices may act as a design tool for

determining the response of arbitrary IDT structures in two dimensions.

To examine the effect of SAW propagation through a QCL ridge the FDTD acoustic-wave

simulation had to be extended to allow modelling a QCL AR. Most notably, this included
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the addition of a conductive layer within the substrate which mimics the effect of the free

carries within the QCL AR. In order to simulate the design proposed by Salih et al. which

included a QCL ridge bound to the top of the SAW substrate, discontinuities in the surface

of the acoustic wave simulation were investigate, however a suitable boundary condition for

the corner points of this ridge was not found that did not introduce instabilities into the

simulation. Since it was already assumed that the discontinuity in the surface would cause

some scattering of the SAW (hence why this design employs several features which attempt

to minimise this scattering), it was concluded that these instabilities imply that a significant

amount of scattering would occur and that they were only unstable within the simulation

because the structure being simulated was not physically realistic (i.e. contained exact right-

angled corners). Furthermore, the self-consistent Schröindger-Poisson model was extended

to scattering rate model allowing the populations of all states within the QCL AR to found

and a method for calculating the complex refractive index which utilises these populations

was presented. By varying the carrier concentration used within the rate equation over the

range predicted within the AR by the SAW-QCL simulation, the variation in the frequency

dependent complex refractive index can be calculated for a SAW modulated QCL using the

presented model. Finally, a recommended design was presented that removes any issues

of acoustic-wave scattering stopping the SAW modulating the QCL AR by generating the

SAW directly within the QCL ridge itself. The presented model was used to calculate the

change in carrier concentration within the QCL AR for the proposed design, from which the

variation in complex refractive index was then calculated. The DFB coupling constant was

then calculated for this design as ∼15 cm−1, implying that the SAW modulation would be

strong enough to induce DFB within the QCL.

6.1 Further work

The presented analysis of the modulation in QCL AR carrier concentration by a SAW has

indicated that this is a feasible method of achieving tunable, DFB modulation of a QCL. The

model, however, is by no means complete and there are several avenues of investigation which

could not only help to validate this conclusion, but also expand upon the results presented

within this thesis.

Firstly, the current model has not been exhaustively to explore how different QCL ARs

perform over a range of SAW frequencies. The analysis presented in section 5.3 was only used

to validate if the SAW modulation was strong enough at the resonant frequency of the IDT for
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the specific QCL AR discussed. This line of investigation could be deepened substantially by

examining how the DFB coupling constant changes as the frequency of the oscillating voltage

applied to the IDT is moved away from the IDT resonant frequency. Comments could then be

made about the expected tuning range of this structure. Furthermore, this analysis could be

done with QCL AR designs, each of which will have different doping densities and therefore

different unperturbed carrier concentrations resulting in different levels of SAW modulation.

Different QCL ARs could they be assessed as to which is most favourable to SAW modulation,

by which has the highest DFB coupling constants.

Next, the assumptions and approximations within the model itself could be improved.

The most prominent assumption for the recommended design is that the n-doped top contact

layer of the QCL will not have a significant impact on the IDTs ability to generate a SAW.

In order to rectify this assumption the IDT model will need to be expanded to deal with a

conductive substrate. There is also the issue of loss within the SAW simulation itself. As

stated for second flavour of the recommended design, propagation losses in SAW energy may

be significant as the SAW may be required to travel a significant distance along the QCL

ridge. Loss may be added to FDTD acoustic wave model by adding a loss term to the material

constants, as discussed in [12].

Finally, by using calculated DFB coupling constant as an input into coupled wave the-

ory [62, 68], the modulation of the spectral output from the QCL can be determined given

a particular strength and depth of modulation of the carrier concentration through the QCL

AR. This would allow the strength of the modulation required to achieve some frequency

tuning range to be determined, and allow the methods presented within this thesis to be

used as a design tool for improving SAW modulation of QCLs.

Because of the generality of the SAW model, there are several other experimental valida-

tions which could done with the model. For example, if the model was used as an IDT design

tool then any new IDT designs could be fabricated and their measured responses compared

with the predicted ones. Once the reliable simulation of ridge structures becomes a reality,

experimental validation could also be used to confirm that the simulated SAW propagation is

correct by fabricating devices where the receiving IDT is on top of a ridge of varying heights.

The presence of grooves etched into the surface could also be investigated and used for model

validation, as well as periodic surface structures which could induce a resonant effect with

the SAW similar to a Bragg grating.

Due to there similarity to SAW-QCL devices, acoustic charge transport (ACT) devices

could be modelled using the outlined method by extending the model of buried conductive
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layers. ACT devices use a propagating SAW to transport charge within a 2DEG buried below

the surface of the substrate. Often the charge is transported through some form of gate,

consisting of a series of metal electrodes patterned on the surface which, when a voltage is

applied, will deplete the 2DEG underneath of carriers [64]. With the right geometry, the gate

can be made to pinch off the 2DEG such that within the gate area the electrons are confined

to a one dimensional channel [69]. These single-electron transport devices have a broad

range of applications including the study of fundamental quantum mechanics [70], quantum

metrology [71] and quantum computing [72]. While the ability to model time dependent

transport of electrons would need to be added, the SAW model has all the other functionality

it would need and ability to simulate the confinement of electrons in a one-dimensional channel

is already provided by the Schrödinger-Poisson solution. Such a solution would be in contrast

to other theoretical investigations into ACT which have utilised an analytical solution to the

SAW equations of motion to define the potential of the SAW which contains the transported

charge packet [18, 19, 20]. Furthermore, this model could also be used to examine acoustic

charge transport in graphene placed on the surface of a SAW device. These devices are, whilst

relatively new in their realisation, have the potential to be used to investigate fundamental

quantum effects due to the interesting electronic structure of the mono-layer of graphene [73].





Appendix A

Finite difference relations

The first derivative of some function is the gradient over some small distance δx,

∂f(x)

∂x

∣∣∣∣
i

≈ fi+1 − fi−1

δx
. (A.1)

For the second derivative,

∂2f(x)

∂x2
=

∂

∂x
(
∂f(x)

∂x
),

∂f(x)

∂x

∣∣∣∣
i

≈
∂f(x)
∂x

∣∣∣
i+1
− ∂f(x)

∂x

∣∣∣
i−1

δx
,

≈

fi+2 − fi
δx

− fi − fi−2

δx
δx

,

≈ fi+2 − 2fi + fi−2

δx
.

Removing a factor of 2 from δx [41], gives

∂f(x)

∂x

∣∣∣∣
i

≈ fi+1 − 2fi + fi−1

δx
. (A.2)
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Appendix B

Optimisation algorithm for matrix

digitalisation

The optimisation algorithm for producing consists of performing Gaussian elimination on the

matrix to reduce it to an upper triangle, whilst documenting the arithmetic performed on

each non-zero element of the matrix. This documenting is done using the String class within

the C++ standard library since it facilitates an easy search and replace method to replace

strings of characters.

The optimisation begins by defining the form of the matrix to produce an optimisation

algorithm for, i.e. defining the positions of the non-zero elements. This is done for a very

small matrix to reduce the complexity of the output form the optimisation algorithm, usually

6×6, although depending on the positions of the bands it may have to be larger. As each

move of the digitalisation is performed, an equation (stored as a string) is created from the

elements involved in the digitalisation (this will a ratio of two elements multiplied by the

element which is being changed and stored in the position of the changed element. If the

elements involved in that move or the updated element is zero then no equation is stored.

On subsequent moves, new equations are made up from the equations stored from previous

moves such that at the end of the digitalisation each element on the main diagonal contains

an equation describing exactly how that element was made. Even with a small matrix these

equations become very large, containing a large number of terms, making is almost impossible

to find patterns within them and simplify these equations by eye.

Fortunately, the search and replace feature of the String class can be used for this task.

Starting with the first element of the main diagonal (which will be unchanged), the equation

for the current element is searched for, and replaced within the equation for the next ele-
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ment for a symbol which defines the previous equation. This reduces the complexity of the

equations enough such that patterns may be easily spotted by eye, and a custom algorithm

for diagonalising this form of matrix may be written from these equations. This custom al-

gorithm effectively removes the redundant steps from the Gaussian elimination which result

from the zero elements of banded matrices.



Appendix C

Material constants

C.1 Material constants for acoustic wave simulation

C.1.1 Gallium arsenide, [1,0,0] propagation direction

C =



11.9× 1010 5.34× 1010 5.34× 1010 0 0 0

5.34× 1010 11.9× 1010 5.34× 1010 0 0 0

5.34× 1010 5.34× 1010 11.9× 1010 0 0 0

0 0 0 5.96× 1010 0 0

0 0 0 0 5.96× 1010 0

0 0 0 0 0 5.96× 1010


,

e =


0 0 0 −0.16 0 0

0 0 0 0 −0.16 0

0 0 0 0 0 −0.16

 ,

ε = 97.4× 10−12,

ρ = 5317.

165



166 C.1. Material constants for acoustic wave simulation

C.1.2 Gallium arsenide, [1,1,0] propagation direction

C =



1.458× 1011 2.66× 1010 5.34× 1010 0 0 0

2.66× 1010 1.458× 1011 5.34× 1010 0 0 0

5.34× 1010 5.34× 1010 11.9× 1010 0 0 0

0 0 0 5.96× 1010 0 0

0 0 0 0 5.96× 1010 0

0 0 0 0 0 3.28× 1010


,

e =


0 0 0 0 0.16 0

0 0 0 −0.16 0 0

0.08 −0.08 0 0 0 0

 ,

ε = 97.4× 10−12,

ρ = 5317.

C.1.3 Lithium niobate, [1,0,0] propagation direction

C =



2.03× 1011 0.573× 1011 0.752× 1011 0.085× 1011 0 0

0.573× 1011 2.03× 1011 0.752× 1011 −0.085× 1011 0 0

0.573× 1011 0.752× 1011 2.424× 1011 0 0 0

0.085× 1011 −0.085× 1011 0 0.595× 1011 0 0

0 0 0 0 0.595× 1011 0.085× 1011

0 0 0 0 0.085× 1011 0.7285× 1011


,

e =


0 0 0 0 3.76 −2.43

−2.43 2.43 0 3.76 0 0

0.23 0.23 1.33 0 0 0

 ,

ε = 0.377× 10−9,

ρ = 4640.
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C.1.4 Lithium niobate, Y-cut surface, 128◦ rotated. ([-0.78, 0, 1] propaga-

tion direction)

C =



2.03× 1011 7.52× 1010 5.73× 1010 −7.77× 109 0 −3.46× 109

6.84× 1010 2.42× 1011 6.41× 1010 0 −8.68× 109 0

5.73× 1010 7.52× 1010 2.03× 1011 7.77× 109 0 3.46× 109

−7.77× 109 0 7.77× 109 5.95× 1010 3.46× 109 0

0 0 0 3.46× 109 7.29× 1010 −7.77× 109

−3.46× 109 0 3.46× 109 0 −7.77× 109 5.95× 1010


,

e =


0.26 0 −0.26 0 4.078 3.76

0.23 1.33 0.23 0 0 0

1.29 0 −1.29 3.76 −2.44 0

 ,

ε = 0.377× 10−9,

ρ = 4640.

C.1.5 Bismuth germinate, [1,0,0] propagation direction

C =



11.58× 1010 2.7× 1010 2.7× 1010 0 0 0

2.7× 1010 11.58× 1010 2.7× 1010 0 0 0

2.7× 1010 2.7× 1010 11.58× 1010 0 0 0

0 0 0 4.36× 1010 0 0

0 0 0 0 4.36× 1010 0

0 0 0 0 0 4.36× 1010


,

e =


0 0 0 −0.0367 0 0

0 0 0 0 −0.0367 0

0 0 0 0 0 −0.0367

 ,

ε = 141.67× 10−12,

ρ = 7095.
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C.1.6 Bismuth germinate, [1,0,0] propagation direction

C =



1.15× 1011 2.78× 1010 2.7× 1010 0 0 0

2.78× 1010 1.15× 1011 2.7× 1010 0 0 0

2.7× 1010 2.7× 1010 11.58× 1010 0 0 0

0 0 0 4.36× 1010 0 0

0 0 0 0 4.36× 1010 0

0 0 0 0 0 4.44× 1010


,

e =


0 0 0 0 −0.0367 0

0 0 0 −0.0367 0 0

−0.01835 −0.01835 0 0 0 0

 ,

ε = 141.67× 10−12,

ρ = 7095.



Appendix D

Einstein summation convention

The Einstein summation convention allows sets of equations which reuse the same terms, only

with different subscripts, to be written in a more succinct manner than writing them out in

full. It is used often in equations describing physical effects in multiple dimensions, particular

those containing higher rank tensors such as Hooke’s law, as it provides an accurate way to

portray all the information contained within the equation using a little notation as possible.

Consider the relation

A = BC. (D.1)

While the form of this relation is clear, it is not fully described unless the form of each of the

three elements is defined. Suppose that A and C are both rank 1 tensors (i.e. a vector), B is

a rank 2 tensor (i.e. a matrix), and the equation is applied in 3-dimensional space, then it

may be written out more fully as
a1

a2

a3

 =


b11 b12 b13

b21 b22 b23

b31 b32 b33



c1

c2

c3

 . (D.2)

Equation (D.2) actually represents three separate equations, which are

a1 = b11c1 + b12c2 + b13c3,

a2 = b21c1 + b22c2 + b23c3,

a3 = b31c1 + b32c2 + b33c3.

(D.3)

Notice that each of these equations is identical in its form, except for changes within each sub-

script and furthermore that each term is identical, except for a change in subscript. Because of

the similarity between these equations and terms within the equations, the information they

represent may be written more succinctly by generalising the subscripts they use. Firstly,
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the three equations may be written as one equation by generalising the first subscript of B,

that is

ai = bi1c1 + bi2c2 + bi3c3 for i = 1, 2, 3. (D.4)

Secondly, the second subscript on B may be generalised and, using a summation, the three

separate terms gathered into one, such that

ai =
3∑
j=1

bijcj for i = 1, 2, 3. (D.5)

Equation (D.5) has all of the information from (D.2) only written in a much more succinct

fashion.

The Einstein summation convention is method of further simplifying the notation by

removing the need for the summation since it is implied by convention. It states that whenever

there is a repeated subscript within a term of an equation, that this implies a summation of

that term over that subscript, and whenever there is single, not repeated subscript within a

term, this implies separate equations with the same terms, different values for that subscript

in each equation. Using this convention, (D.5) may be written even more succinctly as

ai = bijcj for i, j = 1, 2, 3. (D.6)

Often, although it is not strictly part of the convention, the definition of the subscripts is

dropped and the equation be be written as

ai = bijcj . (D.7)

Interestingly, (D.7) is actually more general the (D.2) since its subscripts are not bound to any

particular limits. Furthermore, while (D.7) has all the generality of (D.1) (the implication

being that i, j = 1, . . . , n where n is number of dimension within the system), (D.7) actually

contains more information than (D.1) since the form of its variables are all definitely defined.

Therefore in writing (D.2) in a more succinct manner, the Einstein summation convention

has actually produced an equation which contains more information than the original, general

relation.

The Einstein summation convention is used often in equations describing physical effects

in multiple dimensions, particular those containing higher rank tensors such as Hooke’s law,

as it provides an accurate way to portray a lot of information in a very succinct manner.
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[13] S. Büyükköse, B. Vratzov, J. van der Veen, P. V. Santos, and W. G. van der Wiel.

Ultrahigh-frequency surface acoustic wave generation for acoustic charge transport in

silicon. Applied Physics Letters, 102(1):013112–013112–4, 2013.
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