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Abstract 

 The consumers’ increasing desire to be connected at all times and the 

advancement of integrated functionality within the vehicle, increases the risk that 

drivers could be faced with information overload while driving. Given the 

importance of human interaction with technology within the vehicle, automobile 

manufacturers are introducing workload manager systems within the vehicles to help 

prevent driver overload. However the ability of the system to decide in a timely 

manner requires anticipation of changes in workload, depending on the capacity of 

the driver and matching it with the demand expected from the driving task such as 

the dynamic traffic environment.  

 In relation to the need to understand the influence of traffic demand on driver 

workload, the work here comprises the systematic manipulation of traffic 

complexity and exploration of workload measures to highlight which are sensitive to 

primary task demand manipulated. A within-subjects design was used in the studies 

explored in this thesis to allow comparison between different manipulated traffic 

conditions. In the first simulator test, the ability of various objective and subjective 

workload measures to tap into drivers’ momentary workload was examined. 

Following the identification of a subjective measure that was sensitive to the 

influence of lane changes performed by neighbouring vehicle on drivers’ momentary 

workload, the characteristics of the lane change were explored in the subsequent 

studies involving single and dual-task conditions. Overall, these studies suggested 

suppression of non-urgent communications by a workload manager during safety-

critical conditions involving critical cut-ins would be advantageous to both younger 

and older drivers. 

 This thesis offers a novel and valuable contribution to the design of a 

workload estimator so as to ensure that the driving demand is always within drivers’ 

capacity to avoid driver overload. Results of these studies have also highlighted the 

utility of vehicle-based sensor data in improving workload manager functionality. 
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1 Chapter 1 

Introduction 

 

Chapter 1 highlights the background of the research performed, providing a brief 

overview of the problems and the available design solutions relevant to the research. 

An outline of the remainder of this thesis is also provided.  

1.1 The Vehicle Today 

Automobiles are going through a transformation with infotainment systems 

providing more information and connectivity. With a tremendous appetite for new 

technology, car owners expect the latest telematics, infotainment and smartphone 

integration to be available in their cars. Progressing alongside the efforts of the 

designers and engineers who dream up new generations of infotainment features - 

GPS display, Internet radio, email and even Facebook apps - is a new generation of 

advanced driver safety assistance systems designed to increase comfort and avoid 

accidents. These available options for the modern automobile include lane departure 

warning systems and detecting obstacles on the road. While adoption of 

infotainment and assistance systems brings a lot of exciting features to cars 

promising comfort and potential reduction in traffic congestion (Barfield and 

Dingus, 1998; Matthews and Desmond, 2001; Alkim, Bootsma, and Looman, 2007), 

it presents another set of problems. 

1.1.1 Problem 1: Internal Sources of Distraction 

Matthews and Desmond (1995) identified the two themes of particular 

relevance to driver workload in the vehicle of the future: overload of attention and 

disruption of control. The overload of inputs from the in-vehicle systems, perhaps 

amplified by bad weather or demanding traffic, presents a real challenge to the driver 

and possibly a danger to all road users. There is a concern that telematics, 

infotainment and assistance systems could potentially overload and distract the 

driver and thus jeopardise safety (Verwey, 2000; Pauzie, 2002; Blanco et al., 2006). 
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The United States (US) National Highway Traffic Safety Administration (NHTSA) 

estimates that distraction and inattention contribute to 20% to 30% of reported 

crashes, although other sources estimate that this figure is between 35% and 50% 

(Stutts et al., 2001). Meanwhile, a study of naturalistic driving behaviour found that 

inattention contributed to 78% of crashes and 65% of near-crashes (Neale et al., 

2005; Dingus et al,. 2006; Basacik, 2008). According to the data from the NHTSA 

Fatality Analysis Reporting System (FARS), the number of fatalities as a result of 

distracted driving has remained high for the past few years; for example in 2012, 

3,328 people were killed in crashes involving a distracted driver on US roads, 

compared to 3,360 in 2011 and 3,267 in 2010 (National Highway Traffic Safety 

Administration, 2012).  

According to Stutts et al. (2001), “distraction occurs when a driver is delayed 

in the recognition of information needed to safely accomplish the driving task 

because some event, activity, object, or person within or outside the vehicle compels 

or induces the driver’s shifting attention away from the driving task”. Such 

distraction may be in the form of visual (i.e taking your eyes off the road), manual 

(i.e. taking your hands off the wheel), or cognitive distraction (i.e taking your mind 

off what you are doing), depending on the type of in-vehicle task. The technologies 

which are commonly used within the vehicle include integrated vehicle systems (i.e. 

those that are factory-fitted or retrofitted) and nomadic (i.e portable) devices which 

provide a range of functions, such as entertainment, provision of information and 

communication. Examples of the integrated vehicle systems that provide pertinent 

real-time in-vehicle information about the elements of the driving (i.e traffic 

environment, the vehicle or the driver) include navigation systems, hazard warning 

and sign information systems. The portable systems refer to in-vehicle navigation 

systems designed to support the driving and mobile phones which have not been 

designed specifically for in-vehicle use. Due to the wide range of functionalities 

available and the vast differences in the designs of the human-machine interface 

(HMI) between devices, there is potentially a significant impact on the amount of 

time and effort required to interact with these devices which in turn, influences the 

level of distraction that it imposes on drivers. 
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In a UK-based study of police reports on fatal accidents, in-vehicle distraction 

was shown to be a contributory factor since mid-1980s, whereby 2% of fatal 

accidents between 1985 and 1995 were attributed to in-vehicle distraction (Stevens 

and Minton, 2001). With the growing number of mobile phone ownership 

worldwide as well as rapid spread of smart phones and rising introductions of new 

“in-vehicle” communications systems, this problem is likely to escalate globally in 

the coming years. A 2011 survey study performed by the Centers for Disease Control 

and Prevention found that at least 21% of drivers in the UK conversed on a mobile 

phone while driving, while in the US this percentage increased to 69% (Centers for 

Disease Control and Prevention, 2011). Some studies also attempted to assess the 

use of mobile phones at any given moment. For example, the 2011 national 

observational survey data and self-reported data on hands-held and hands-free 

mobile phone use estimated that at any moment, 9% of the US drivers were 

conversing on mobile phones (National Highway Traffic Safety Administration, 

2013). Comparing this to the police crash report in one state in the US which 

estimated that 2.7% of drivers use the mobile phone while driving in 2001 and 5.8% 

in 2005 (Eby, Vivoda and St. Louis, 2006), there is clearly a growing body of 

evidence on the prevalence of mobile phone use at any moment while driving 

between 2001 and 2011.  

Data from observational and epidemiological studies draw a clear picture about 

the impact of mobile phone conversations on the risk of being involved in an 

accident with increases in risk ranging from four-fold (McEvoy et al., 2005; 

Redelmeier and Tibshirani, 1997) to nine-fold (Violanti, 1998). Most researchers 

conclude that a significant contributor to mobile phone-related driver distraction is 

the engagement in the conversation, which leads to a withdrawal of attention from 

the immediate driving environment (Strayer, Drews and Johnston, 2003). In a high-

fidelity simulator study, drivers conversing on a mobile phone (either handheld or 

handsfree) showed delayed braking reaction times and an increase in traffic 

accidents compared with the control group that was only driving (Strayer and Drews, 

2006). In addition to signs of drivers adopting strategies to compensate for high task 

demands, such as slower response times to traffic events, participants also reported 

higher subjective workload. Some studies have attributed these findings to a 

reduction in situation awareness, which resulted from driver’s attention being drawn 
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away from the road and the surrounding environment to concentrate on the phone 

conversation (Parkes and Hooijmeijer, 2000; Cooper et al., 2003). Some studies 

have also suggested that the “relative risk (of being in a traffic accident while using a 

mobile phone) is similar to the hazard associated with driving with a blood alcohol 

level at the legal limit” (Redelmerier and Tibshirani, 1997; Strayer and Drews, 

2006). With much of the research focused on the negative safety impacts of driver 

engagement in secondary tasks, there were studies that have shown mobile phone 

conversation to be “protective” by supporting driving performance (Olson et al., 

2009; Hickman, Hanowski, and Bocanegra, 2010), particularly during low levels of 

arousal (Fitch and Hanowski, 2011; Curry Meyer and Jones, 2013; Toole et al., 

2013). 

Apart from mobile phones, interactions with in-vehicle information systems 

are also prime examples of distracting activities. Most of the existing research on the 

effects of driver interaction with technology-based sources of distraction has so far 

been concerned with infotainment technologies that are embedded in the vehicle 

cockpit. For example, manipulation of the audiovisual entertainment systems such as 

the radio system controls has been shown to affect driving performance (Horberry et 

al, 2006; Stutts et al, 2001). Due to the non-criticality of these activities, drivers are 

still capable of monitoring traffic continually and able to focus attention on the 

driving task at any given time. Little is known about the adverse effects associated 

with drivers’ use of warning systems which provide real-time information about the 

status of the vehicle components (e.g. ‘Bonnet Open’, ‘ACC sensors blocked’, etc). 

While these systems are meant to support, inform and warn drivers, these systems 

may impose a demand upon the drivers. This may result in competition between 

driving and secondary tasks, inducing increased levels of distraction and workload. 

As both tasks fluctuate simultaneously, unsafe situations can develop rapidly and 

unexpectedly. If an unexpected event takes place within the time window the driver 

fails to monitor the ongoing traffic, failure to prioritise the driving task can have 

safety-critical consequences. This could mean longer times taken for the driver to 

detect the event and longer brake reaction times (Green, 2000).  
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1.1.2 Problem 2: External Sources of Distraction 

Distracting activities can involve sources from either inside or outside the 

vehicle. As driving is a complex, multitask activity, the demand of one element of 

driving will interfere with another element. Often, a mismatch between the attention 

demanded by the road environment to drive safely and the attention devoted to it 

poses a threat of distraction. The level of distraction is dependent on the combined 

demand of the roadway and the competing activity relative to the available capacity 

of the driver. The lesser the degree to which the distribution of demands of roadway 

and the competing activity overlap, the less likely the roadway demands will exceed 

a driver’s capability to respond (Figure 1.1). Mishap occurs when combined demand 

of both exceeds driver’s capacity to respond (Lee et al., 2009).  

 

 

 

 

 

  

 

 

 

Figure 1.1: The distributions of attention demanded by the roadway and the 

competing activity (Source: Lee et al., 2009) 

 

Due to the inherent variability in environmental sources of demand, for 

example if the traffic demand peaks suddenly and unexpectedly (such as when an 

obstacle moves suddenly into the driver’s path), drivers may fail to respond to the 

hazard due to insufficient attentional capacity. Traffic density, surrounding drivers’ 

behaviours and road geometry have been identified as contributory factors to 

accidents (Verwey 1993b; Verwey 2000). For example, Lerner and Boyd (2005) 

collected subjective risk ratings of varying driving situations and found that high risk 

ratings of a driving situation are often related to traffic demand with the highest 

three cited by drivers being merging or interacting with other traffic, high speed of 

traffic and behaviour of other drivers (Table 1.1). Inappropriate distribution of 
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attention however, does not necessarily guarantee a mishap or even a decline in 

performance. Hoyos (1988) concluded that the danger of a traffic situation depends 

on the amount of information to be processed and is frequently underestimated by 

drivers who tend to believe they have better control over traffic situations than is 

actually the case. Therefore drivers may be unaware that they are distracted, leading 

to drivers continuing to adopt unsafe practices that increase the chance for roadway 

demands to exceed the attention devoted to the roadway.   

 

 Table 1.1: Lists of reasons given by subjects for high risk ratings.  

(Source: Lerner and Boyd, 2005) 

Reason 

Percentage of 

subjects citing 

the reason at 

least once 

Demand 

Merging/ interacting with other traffic 32 Traffic 

High speed of traffic 26 Traffic 

Behaviour of other drivers (improper, risky, 

hard) 

24 Traffic 

Difficulty of visual and temporal judgements 20  

Manoeuvre requires concentration, awareness 20  

Opposing traffic 19 Traffic 

Limited sight distance 13 Visibility 

Demands of vehicle control, staying on path 13 Road geometry 

Volume of traffic 11 Traffic 

Unfamiliarity 10  

Limited manoeuvre time 5  

Presence of children, pedestrians 4 Traffic 

Slow or stopped vehicles 2 Traffic 

Presence of roadside hazards 2  

 

Driving not only involves integrating and co-ordinating multiple discrete visual 

and motor actions, but also requires the driver to continuously sample and interpret 

the environment as well as other traffic participants’ behaviour. Failure to detect an 

object or event is sometimes defined as attentional blindness which could be 

associated to the “looked but did not see” phenomenon. According to STATS19 data 

from Department for Transport (DfT), the most prevalent factor that contributes to 

road traffic collisions in the UK since 2007 was “failing to look properly”, reported 

in 35% of accidents in 2007 and 42% in 2012 (with 14% of the those falling into this 

category were either killed or seriously injured). While a driving task requires speed 

control, lane keeping, curve negotiation, collision avoidance and motor control such 
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as gear shifting, the subtask of visual orientation i.e. looking in the right direction at 

the right time is deemed vital as it provides an overview of the traffic situation. 

However, coordinating these subtasks can be seen as a task itself (Aasman, 1995) 

and the fluctuating demand of the surrounding traffic environment which is less 

under the driver’s control, may exacerbate the overall driving demand. 

  

1.1.3 Design Solutions 

Today, as drivers are exposed to an increasing amount of information flow 

provided by a number of in-vehicle systems (not exclusively related to the driving 

task) and the introduction of driver assistance systems (such as navigation systems, 

nomadic devices etc.), managing the demanding HMI interactions remains a 

challenge. With the increasing complexity of HMI, drivers could be overloaded if 

multiple systems want to attract their attention simultaneously, which could lead to 

potential accidents especially in critical situations. In order to handle this growing 

diversity and complexity of in-vehicle functionality, several types of workload 

management functions for human-machine integration and adaptation have been 

proposed to resolve potential conflicts between individual functions. Based on the 

interactions of these in-vehicle functions with the driver, information are prioritised 

or put on hold in demanding driving situations if the information are deemed non-

critical (Engström et al., 2004, Broström et al., 2006). 

So far only a few systems of this type have entered the market (e.g. Volvo 

Cars’ intelligent driver information system (IDIS) and Saab’s dialogue manager), but 

more advanced functions are being developed in different research efforts, both in-

house at the companies and in collaborative efforts such as COMUNICAR (Amditis 

et al., 2002), AIDE (Engström et al., 2004) and SAVE-IT (SAVE-IT, 2002). These 

workload managers support drivers by resolving conflicts between different (driving 

and non-driving related) goals. One key objective is to promote safe driving by 

providing support to the driver in prioritising driving tasks in demanding driving 

situations. Workload managers adapt information flow based on the demand of the 

driving situations. Hence in order to ensure that these systems are effective, great 

care must be taken in the design of such functions in order to avoid unexpected 

usability and safety problems.  
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The behavioural effects of a specific driver support function is the result of a 

complex dynamic interaction between individual driver characteristics (motivation 

for driving, subjectively chosen safety margins, driving skills, personality, effort, 

etc), vehicle parameters (e.g. steering and braking dynamics) and the driving 

environment (road type, curvature, lane width, traffic density, etc). Most recent 

developments in workload management driver support systems by Scania (Osbeck 

and Åkerman, 2010) involves some form of characterisation of difficulty of use of 

different in-vehicle information functions while driving. In this study, the workload 

associated with each of the in-vehicle tasks was defined on the basis of amount of 

resources that the driver needs to perform the tasks, relative to a limited subjectively 

defined resource pool. Most studies conducted are based on traditional information 

processing models which tend to view the human as a passive receiver of 

information, subject to overload if the limited capability is exceeded. Moreover, 

different behavioural effects may result, depending on the type of secondary task. 

For example the HASTE EU-funded project (Engström et al., 2005; Östlund et al., 

2004) showed that cognitively loading tasks lead to significantly improved tracking 

control in terms of reduced lane keeping variation compared to baseline driving, 

while the opposite effect is true for visually-loading tasks. Results also showed that 

the longitudinal safety margin, in terms of time-headway to a lead vehicle, was 

reduced during cognitive load (Jamson and Merat, 2005). 

There is evidence that cognitively loading tasks, such as phone conversations, 

impair the ability to set appropriate safety margins and adapt accordingly. However, 

vehicle related messages also have the potential to cause cognitive load. The safety 

consequences of this are still unknown as the relation between driving performance 

and the risk (for an individual driver) is dependent on a driver’s adaptation to the 

current complexity or difficulty of the driving task. Since the development of driver 

support functions is still to a large extent driven by technological possibilities rather 

than user needs, it is therefore important to link driver support functions to their 

intended purpose. In such dynamic and complex traffic environment, it is important 

that the self-paced, adaptive nature of driving is captured to ensure that driver 

support systems are able to provide assistance appropriately depending on the 

complexity of the driving condition and the type of secondary task involved.  
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1.2 Research Questions and Scope  

This thesis studies the interaction between drivers and other road users in a 

motorway environment. Driver workload at a particular instance is highly related to 

driving behaviour and the driving task. According to De Waard (1996, pp. 15), 

workload is defined as “the specification of the amount of information processing 

capacity that is used for task performance”. De Waard (1996, pp. 17) also posits that 

workload depends on the combination of task demands (what does the driver need to 

do), the available information processing capacities (how much can the driver 

handle), and the effort invested (how much effort is the driver willing to invest in 

task performance). As such, task demands can increase or decrease according to the 

situation and the pursued goals. Driving in dynamic traffic is a complex task as 

drivers continuously meet a sequence of different situations which are neither static 

nor similar. Occasionally drivers may encounter events requiring their full attention 

and quick reaction to avoid serious conflicts or accidents. Although research exists 

that reports the interaction between high traffic demand on driver performance and 

workload, these results are relatively few and there is still a need to study how 

changes of the traffic affect momentary driver response and fluctuations in 

subjective workload. Moreover, the determination of what constitutes high workload 

is largely driver-dependent and incorporates a number of contextual factors such as 

the point at which other road users enter the ‘safe field of travel’ (Gibson and 

Crooks, 1938) or the current level of distraction. Following the discussion above, 

this research aims: 

 To explore how traffic complexity (i.e. traffic flows and the presence of lane 

changes) influences driver workload.  

 To investigate to what extent resulting fluctuations in workload can be 

estimated via different measures.  

 To explore the influence of lane change characteristics (i.e. criticality of a 

lane change, information availability) on driver workload.  

 To investigate driver workload recovery and whether a driver is capable of 

managing his/her own workload in varying traffic demand conditions.  
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 To examine the ability of a workload manager to moderate driver workload 

via time-management of system-initiated distractions. 

The research presented in this thesis attempts to examine how the surrounding traffic 

behaviour influences driver’s momentary workload and how resulting fluctuations in 

driver workload are best captured by different workload measures. Such systematic 

manipulation of traffic complexity and utilisation of various workload measures to 

tap into these fluctuations in traffic have not been investigated before. This thesis is 

an attempt to fill this gap and present a set of findings on this topic which are useful 

to academia and the automotive industry (in particularly, in the design of a workload 

manager). In summary, the studies presented in this thesis are intended to contribute 

to the existing knowledge of driver workload in varying traffic complexity, with a 

focus on traffic flows and influence of other road users’ behaviours.  

1.3 Thesis Outline 

This section provides a summary of the contents of this thesis:  

Chapter Two addresses the definition of driver workload. To understand driver 

workload fluctuations, driving task models as related to driver workload effects are 

discussed. In addition, a review of the key methodologies used to study driver 

workload relevant to this research is provided. The chapter concludes by 

highlighting that driving is a self-paced task which poses a challenge in the 

estimation of driver workload in the driver-vehicle-environment interaction.  

Chapter Three reviews the research on driver assistance systems, specifically 

the workload management systems which are designed to prevent driver overload. A 

critical review of existing workload manager system functionalities (i.e. to keep 

demand within operator capacities) and the deficiencies are provided. This chapter 

provides the rationale for the simulator studies described in Chapter Four to Chapter 

Six of this thesis.  

Chapter Four describes an exploratory study carried out on a driving 

simulator, the first study conducted as part of this research. This study investigates 

the driver interaction with other road users in ambient traffic. The surrounding traffic 

was scripted to allow the examination of workload measures in a “naturalistic” 
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traffic environment. Appropriate measures of workload to be used in subsequent 

studies were defined based on their efficiency to capture changes in  driver workload 

and driving performance.  

Chapter Five details a second driving simulator study, which utilises the 

methods and advances from the findings of the first study. The effect of traffic 

demands on workload was further investigated by varying a range of characteristics 

of traffic behaviour, in particular focusing on the influence of a lane change 

performed by a neighbouring vehicle. To examine drivers’ ability to manage their 

own workload in these traffic situations, the findings of the prior study were 

extended by incorporating an in-vehicle task in the dual-tasking domain. Drivers 

were presented with an in-vehicle task (i.e. a mental arithmetic task) which occurred 

concurrently with a change in traffic demand. The findings of the study are used to 

shape the design of the subsequent study which examines the potential benefit of 

coordinating system-initiated information with respect to the current driving demand 

and driver workload.  

The final driving simulator study in this thesis is discussed in Chapter Six. It 

introduces surrogate in-vehicle tasks with higher ecological validity and explores the 

potential benefits of a workload manager to manage driving demand. Workload 

manager systems are compared in various dual-task conditions involving a preceding 

or a concurrent in-vehicle task alerts during critical traffic situations. Driver 

performance and driver workload are assessed to understand how in-vehicle tasks 

distract drivers in varying driving demand conditions. This information is used to 

make recommendations regarding the benefits of using a workload manager for in-

vehicle task presentation in varying traffic scenarios. 

Chapter Seven concludes this thesis by summarising the key findings. Using 

the results of the three studies in this thesis, recommendations are proposed for 

managing workload resulting from traffic density and the surrounding traffic 

behaviour both in primary and in dual-tasking conditions. The resulting 

recommendations aim to reduce the occurrence of distracted driving and mitigate its 

effects when it occurs. This chapter concludes with several suggestions for future 

work that could extend on the findings from this thesis and also to be applied in 

workload manager systems. 
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2 Chapter 2 

Theoretical Frameworks of the Driving Task 

 

Chapter 2 presents a detailed literature review on the underlying theories related to 

multiple task performance, its relationship to driver workload and their limitations. 

An overview of workload measurements pertinent to the driving task is also 

provided.  

2.1 Operator Capacity and Workload 

Car driving can be described as conducting a complex and dynamic control 

task (Rouse, 1981, Nilsson, 2005) within a traffic system, requiring the driver to 

perform a number of functional abilities simultaneously (Peters and Nilsson, 2007) 

in a timely and efficient manner. Although the traffic system is comprised of three 

interactive parts-vehicles, road users and the road environment- road user factors 

have been the sole or contributory factors in most of the traffic accidents. Early 

studies such as the Indiana Tri-Level crash causation research conducted during the 

mid-1970s identified human factors as the probable cause in 93% of the investigated 

crashes, while environmental factors and vehicular factors each attributed 34% and 

13% to the accidents, respectively (Treat et al., 1979). Even though the most 

commonly reported cause of distraction-related accidents are associated with 

external distractions from outside persons, objects or events (Stutts et al., 2001), 

95% of road collisions have been contributed by human error (Smart Motorist, 2000) 

suggesting the driver as a critical component of the traffic system. Since the driving 

task can be divided into multiple subtasks such as lane keeping, collision avoidance, 

speed control etc., understanding the theories relevant to workload may offer some 

explanations in regards to human errors while driving.   
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As illustrated in Figure 2.1, the concept of workload is “fundamentally defined 

by the relationship between resource supply and resources demanded” (Wickens and 

Holland, 2000, pp. 459). Changes in workload may thus result either from 

fluctuations of the operator’s capacity or from the changes in the resource demands. 

In the following section 2.1.1, capacity-based theories and approaches are used to 

explain how limited human information processing capacity results in errors or 

slowed task performance. 

 

Figure 2.1: Relationship among resource demand, resource supply and 

performance. (Source: Wickens and Hollands, 2000) 

 

 

2.1.1 Central Processing Limitations 

Early models of capacity-based theories consider human processing capacity to 

be limited (Broadbent, 1958) but flexible (Moray, 1967) depending on the operator’s 

physiological arousal mechanism (Kahneman, 1973). Numerous theoretical 

frameworks to explain the general limits of central processing have been presented, 

for example in experimental research on the structure of working memory 

(Baddeley, 1986), the limits of attention (e.g., Cowan, 2000), on bottlenecks in 

central processing (e.g., Pashler, 2000), or on specific resource theories (e.g. 

Wickens, 2002).  

Baddeley (1986) defined working memory as the temporary storage of 

information that is being processed in a broad range of cognitive tasks. In the 

absence of rehearsal, the memory would decay thus suggesting its vulnerability to 
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interruptions by other tasks (e.g, Brown 1958). To keep several task components 

active in the working memory, additional workload is incurred from constantly 

refreshing these tasks in working memory to consciously process information. 

Cowan (1995) proposed that the human processing system is influenced by the 

limited focus of attention, which may represent lapses in the control and regulation 

of cognitive action in distracted driving. Cowan (1999) elaborates on how voluntary 

and involuntary mechanisms of the central executive interact to control and regulate 

the focus of attention. It is suggested that, when overloaded with visual information, 

a person may selectively focus attention on relevant aspects of the task environment 

while repressing the others (Haberlandt, 1997). Rather than focusing on working 

memory, Pashler (2000) found evidence for a bottleneck in the central-processing 

stage (i.e. response-selection or decision-making stage of human information 

processing), which is commonly referred to as the Psychological Refractory Period 

(PRP) (Telford, 1931). In essence, it shows that if two tasks require response 

selection or decision making at a particular time, at least one of them is delayed. 

However these models discussed earlier cannot explain all types of dual-task 

interference as it is possible that two tasks can be processed in parallel.  

Adequate dual-task performance is achievable as long as the total amount of 

resources was not exceeded, by flexibly allocating the pool of resources between 

subtasks (Moray, 1967; Kahneman, 1973).  Further empirical evidence found that 

dual-tasking performance can be improved by changing the qualitative demand of 

information processing (e.g, by changing the stimulus modality of one of the tasks) 

(Wickens, 1976). This subsequent research led to the concept of multiple resource 

theories in which multiple resource pools were defined (Wickens, 1980; 1984; 2002) 

which are both limited in capacity and can be allocated amongst difference tasks. 

These resources are defined along four dimensions: processing stages (i.e., 

perception, central processing and responding), resources for different input 

modalities (i.e., visual, auditory), responses (i.e., manual, vocal) and processing 

codes (i.e. spatial, verbal) as depicted in Figure 2.2. 
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Figure 2.2: Wicken’s four dimensional multiple resource model.  

(Source: Wickens and Hollands, 2000, pp. 449) 

 

 Using the multiple-resource theory, the existence of serial processing in 

cognitive processes enables prediction of useful performance deterioration in dual-

tasking or multi-tasking conditions. Although these theories may not be thoroughly 

applicable to complex tasks such as driving due to their development via simple 

laboratory tasks, they are useful as a framework to determine multi-tasking 

descriptions. For example, better overall performance of two tasks is expected when 

different resources are utilised. Therefore the primary task of driving will experience 

less interference if the secondary task has a different modality. For example, Verwey 

(2000) compared drivers’ reaction times to a secondary task presented either 

auditorily or visually and found that visual presentation led to greater performance 

deterioration (i.e. longer reaction time) than auditory presentation. 

 In driving however, the relationship between the available resources and 

driving performance is not linear whereby driving demand may involve a variety of 

unknown variances imposed by the dynamic changing traffic environment and 

performance which can be enhanced by the development of skills (Fisk, Ackerman 

and Schneider, 1987). Although the capacity-based models above can explain part of 

the significant driving-related subtasks, their relevance can also be questioned as 

driving skills can be developed through learning and practice (Newell, 1991) which 

will be explored further in the following section. 
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2.1.2 Cognitive Models of the Driving Task 

In an interactive environment, performance in longer continuous tasks may be 

better explained by time-sharing strategies (Gopher, 1993) as skills can be developed 

through practice. After sufficient practice, task completion can move from the 

limited-capacity conscious control to so-called automatic control (Schneider and 

Shiffrin, 1977; Shiffrin and Schneider, 1977; Groeger, 2000). Based on these 

observations, Rasmussen (1987) developed a popular model of skill-, rule- and 

knowledge-based information processing to explain the different types of human 

error (see Reason, 1990). This model was combined with the hierarchical control 

model of Michon (1985) to form the three behavioural levels of driving in Figure 

2.3; i.e., control (skill-based behaviour), manoeuvre (rule-based behaviour), and 

strategic (knowledge-based behaviour).  

The three levels can be differentiated based on the temporal level; the amount 

of processing time to define a goal and to make a decision varying from minutes to 

milliseconds. The discrepancy in terms of the time available and time required to 

make decisions can create time pressure for control level tasks where time to 

response is limited and constant adaptation of motor skills is required to avoid safety 

critical situations (Brouwer et al., 1988). With greater skill enhancements, more 

components of the driving task are performed through automatic control which 

demands relatively less attentional resources than controlled processing. Thus, the 

driving task becomes more routine, requiring less mental capacity. With extensive 

practice, experienced drivers are more efficient in allocating resources or scheduling 

tasks and thus have more spare capacity available to cope with the increasing 

difficulty of the driving task. By supporting lower levels in familiar tasks, more 

cognitive resources may be devoted to the strategic (i.e. knowledge-based 

behaviours) level which are important for managing unanticipated events.  
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Figure 2.3: Combination of performance levels according to Rasmussen (1996) 

and the hierarchical model according to Michon (1985), modified by Donges 

(1999) 

 

The ability to manoeuvre the vehicle safely is largely determined by the extent 

to which the individual is successful in adapting the planned motor behaviour to the 

changing environment. This adaptation is often extremely rapid and the driver must 

have different actions ready for implementation. In normal driving conditions, the 

complexity of the driving task is very much influenced by a driver’s personal choices 

of driving speed, following distances or vehicle positions. Such personal choices are 

influenced by a driver’s goal in maintaining a constant level of anxiety (Taylor, 

1964), risk of collision (Wilde, 1982) or the more recently proposed theory of 

driving safety suggesting that driver’s attempt to maintain a set level of task 

difficulty (Fuller, 2005). In Fuller’s (2005) task-capability-interface (TCI) model 

(Figure 2.4), the driver is placed in interaction with external factors such as the 

vehicle and the environment which is largely outside the driver’s control.  
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 Figure 2.4: The task capability interface model from Fuller (2005) 

 

When task demand exceeds the driver’s capabilities, it results in task overload. 

The effect that this task difficulty has on the driver is commonly referred to as 

workload (e.g., De Waard, 1996). As the driving task requires continual interactions 

with a highly dynamic environment in real-time, the driving task difficulty fluctuates 

with roadway and traffic conditions, thus influencing the temporal driver workload. 

In a busy traffic environment, a driver may occasionally experience particularly high 

demanding situations due to unpredictable changes in the traffic. As driving demand 

fluctuates throughout the drive, driver capabilities also change with driver state (for 

example, inattentive, fatigued or distracted). In occasions where discrepancies occur, 

high workload may result thus increasing the likelihood of an accident occurring.   
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2.1.3 Sources of Driving Task Demand 

The primary driving task demands are differentiated by the elements outside 

the vehicle namely traffic condition, road geometry and by driver status such as age, 

gender, fatigue and driving experience. However, the interaction between the driver 

and the environment is complicated by additional sources of demand either from the 

support systems already available within the vehicle or nomadic devices which are 

brought into the vehicle by the drivers such as the mobile phone. The following 

discussions are not intended to contain an exhaustive explanations of all possible 

influencing factors. Rather, they are provided to illustrate the key influencing factors 

examined in this thesis and to highlight the benefits of examining these 

relationships.  

 

 

 

 

 

 

 

Figure 2.5: Source of demands on driver and their safety relevance with reference 

to CAMP driver workload metrics (Source: Hurts et al, 2011) 

 

2.1.3.1 Primary Task Demands 

Events which occur outside the vehicle such as traffic density, surrounding 

drivers’ behaviours and road geometry, are attentional events that are less under the 

driver’s control and may pose as contributory problem factors to accidents (Verwey 

1993b; Verwey 2000). The magnitude of hazardousness in varying traffic situations 

is related to the amount of information to be processed (i.e., rate of information 

flow), for example, an emergency braking to avoid a vehicle pulling into the driver’s 

lane is a high hazard potential driving condition as it requires high perceptual and 

cognitive selectivity as well as constant vigilance (Hoyos, 1988). However, drivers 

are confronted with various types of hazard while driving and this is complicated by 
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the fact that demands of the surrounding traffic environment on the perceptual 

capacities of drivers is constantly changing. Therefore, the driver would have less 

time to react to an event with increasing cues within the environment (Figure 2.5). 

Various previous studies have suggested the effect of traffic density on driver 

workload i.e. increase in attentional processing requirements of driving due to high 

traffic density (Lee and Triggs, 1976; Miura, 1986, 1990; Antin et al., 1990; Zeitlin, 

1993; Dingus et al., 1989; Verwey, 1993a, 2000). The traffic flow and other road 

user behaviour in a particular road condition affect the driver workload via a number 

of possible routes; varying amount of information processing, feeling of comfort and 

time margin.  

Although statistically, motorways are among the safest roads on which to 

drive, they are not crash free. The STATS19 Department for Transport road traffic 

survey, for instance, showed that in the year 2012, there were 626 Killed and 

Seriously Injured (KSI) casualties on UK motorways. Although motorways are 

highly standardised and much more predictable to the driver, 26% of fatal road 

accidents in the UK occur on the motorway. Factors including over-arousal such as 

higher traffic demand at a given speed or under-arousal due to monotonous driving 

on high-standard road, may create problems on driver in safety-critical situations 

where an almost instantaneous response from the driver is required. Thus, some 

safety-critical situations can be seen as reflecting a state of insufficient information 

in which the drivers must decide about manoeuvres and execute them although they 

do not have time to perceive and process all the necessary information. Additionally, 

motorways are demanding because they are multi-lane. On UK motorways, road 

users are often seen moving between the lanes to stay at a constant speed, either by 

overtaking slow traffic or giving way to approaching fast moving vehicles from 

behind. A naturalistic study of lane changes on 16 participants (who drove either a 

SUV or saloon car) conducted in the US (Lee, Olsen and Wierwille, 2004) reported 

8667 lane changes over 24000 miles of driving. While saloon car drivers performed 

more lane changes than SUV drivers, results showed that male drivers perform more 

lane changes per mile on highway. Overall, 91% of the lane changes were low 

urgency and low severity (based on time-to-collision values and driver responses via 

subjective ratings).  
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However lane changing without understanding the surrounding traffic, can be 

dangerous and could be a hazard to other road users. An analysis of more than 

50,000 accidents on UK roads by the accident management company, Accident 

Exchange, found that lane change manoeuvres account for more than 6% of the 

collisions (Automotive Industry Digest, 2011). Between the year 2009 and 2011, 

lane-change related accidents has increased by 48% and the annual cost of damage to 

vehicles is estimated to be more than £437 million (Automotive Industry Digest, 

2011). The factor ‘failed to look properly’ is the most frequently reported 

contributory factor in traffic accidents in 2012 (42%) and the position of this factor 

has remained unchanged since 2007 (35%) (Department for Transport, 2012). In the 

majority of the incidents, drivers ‘at fault’ did not see or was unaware of the 

presence of another vehicle or crash hazard before lane change initiation. Therefore, 

several studies have looked into the benefits of the use of active safety equipment 

such as Lane Change Departure Warning systems implemented in the vehicles to 

assist drivers in maintaining awareness and reducing lane change crashes (Pomerleau 

et al., 1999; Abele et al., 2005; COWI, 2006). However there is a lack of literature 

on the perspective of the behaviour and workload of the drivers faced with the 

cutting-in of neighbouring vehicles. Data concerning this activity are limited and 

availability of such data can be used not only in developing models of human 

response in driving but also in designing and optimising driver aids such as Forward 

Collision Warning systems which could alert drivers of a potential pull-in from 

neighbouring vehicles. Moreover, the different aspects of the HMI can be adapted to 

optimise driver-system interaction to the current situation. 

 

2.1.3.2 Secondary Sources of Demand  

As discussed in the previous section, drivers perceive that driving on the 

motorway is considered relatively safe compared to other roads. Rural roads where 

design is less standardized, or urban roads where the presence of the other road users 

such as pedestrians or cyclists cause a higher increase in the complexity of the 

driving task. As drivers perceive motorway driving is more predictable and safer, 

they are more likely to interact with in-vehicle devices or communication devices 

that they have elected to bring in to the vehicle (e.g., mobile phones, GPS unit). 

Many of these devices including those readily available on-board the vehicles, are 
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taxing on the drivers’ visual-manual channels, for example the embedded vehicle 

controls notification system which is design to inform or warn driver of potential 

faults within the vehicle. If this occurs when expectations in the primary task are 

violated (e.g., a vehicle pulling in front of the driver), the effect of the secondary task 

based distraction would be amplified, possibly causing sudden co-occurence of 

demands placed on the executive attention component of working memory (DeLucia 

and Tharanthan, 2009). Based on the multiple-resource model (Wickens, 2002), this 

simultaneous loadings of the primary driving task and a secondary task on the 

visual-manual channel would cause “structural overlap” (Hurts et al., 2011) 

depending on the modality of the secondary task. 

Research has shown that the impact of using mobile phones while driving will 

result in varying profiles of interference, depending on the response required from 

the drivers. Earlier studies indicated that talking or listening on a phone while 

driving was no riskier than normal driving; therefore the assumption was made that 

the act of dialling or holding the mobile phone causes the driving impairment. 

However, recent work focusing mostly on the impact of using hands-free devices 

demonstrates that engagement in a conversation is a significant contributor that leads 

to a withdrawal of attention from the immediate driving environment (Drews and 

Strayer, 2009). Meta-analyses of mobile phone usage conducted by Caird et al., 

(2008) and Horrey and Wickens (2006) indicated that drivers responded more slowly 

to events (in the order of 130ms to 250ms) during a phone conversation. The mobile 

phone conversations have a negative impact on driving performance because the 

person who is remote from the driver has no awareness of the demand of the driving 

environment and as a consequence is unable to act as mediator by adjusting the 

conversation with the demand of the driving. Thus, cognitive demands may be 

unknowingly imposed when the traffic requires full attention from the driver. 

Moreover, drivers using mobile phones also demonstrate inattention blindness, 

suggesting the presence of a bottleneck in terms of simultaneous processing of the 

information from the driving environment and the conversation. A recent simulator 

study conducted by the Transportation Laboratory in the University of Padova (Rossi 

et al., 2012) examined the effect of processing a single, auditorily presented word on 

driver braking response. Their findings demonstrated that processing of a single 

word hinders driving performance whereby braking responses were substantially 



- 23 - 

slower as the overlap between tasks increased. As a result, this study of effects of 

presentation of just a single word to drivers highlights the potential implications of 

cell-phone ringing, visual information from navigation systems and auditory alerts 

from driver warning systems on driver’s response time, leading to potentially safety-

critical situations. 

If the interpretation of auditory stimuli requires cognitive resources to process 

the content of information, then visual stimuli such as warning icons and text 

messages might have greater interference with the primary task due to the 

overlapping of resources used in processing the information from the vehicle and 

also the traffic environment. Another aspect that differentiates the mobile phone task 

from in-vehicle messages is that drivers are able to employ strategies such as 

delaying their response in answering the ringing mobile phone in high demand 

situations. This allows the drivers to allocate attention more flexibly and more 

effectively when required while driving. Vehicle-initiated messages such as 

information relating to equipment faults within the vehicle may be more difficult to 

be managed by drivers, as information presented is relevant to the driving task and 

may lead to potentially dangerous situations if the messages interfere with subtasks 

involved in driving such as braking, especially in an unpredictable emergency.  

However the safe use of in-vehicle devices is debatable and mainly relates to 

the nature of the driving itself, drivers state, strategies employed by the drivers as 

well as the design of the secondary task investigated. To prevent the unwanted 

consequences of interference, understanding of the causes and the dynamic of the 

multitask interferences (caused by, for example listening, talking or using in-vehicle 

devices) has to be considered fundamental for designing and validating equipment 

(workload manager systems, human-machine interfaces, etc). Susceptibility to 

interference of secondary tasks with respect to the traffic demand such as traffic flow 

and other road users behaviour could also be investigated in single or dual-task 

conditions to provide a more thorough investigation on how the support systems 

could be improved in provide assistance to the drivers. For example, with the 

advancement of in-vehicle systems to increase driver comfort and driving experience 

such as the alerting system to notify the user of an event such as mobile phone call 

or text alert, it may prove difficult to prevent drivers from using such devices even 

when they are in a dynamic, high workload situation. With more and more people 
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owning mobile phones and coupled with the fact that drivers with higher mileage are 

more likely to engage in such distracting activity, the frequency of safety-critical 

events is likely to increase (Jamson, 2013). As such, enabling such functions while 

driving would require an active support system that manages these information 

available to drivers based on the driving situation.  

Drivers’ engagement with a secondary task may, however, influenced by 

drivers’ characteristics such as age factor. While some studies have shown that 

driving performance degrades with age, especially with respect to the strategies of 

task coordination (McPhee et al., 2004; Chaporra et al., 2005; Makishita and 

Matsunaga, 2008; Stinchcombe, 2011; Thompson et al., 2012) in dual-task 

conditions, some studies however found conflicting results whereby no such age 

difference were found in dual-task performance (Strayer and Drews, 2004) and 

perceived workload (Fofanova and Vollrath, 2011). Horberry et al. (2006), for 

example, shown that older drivers engaged in self-regulatory behaviour by reducing 

their speed when performing a secondary task in complex highway environments. 

The authors reported that older drivers regulated their driving behaviour to offset the 

age-related degradation in their driving performance and to reduce their crash risk. 

Indications of older drivers to self-regulate were also highlighted in a survey 

research by McEvoy et al. (2006). Findings from the survey indicated that older 

drivers (aged between 50-65 years old) are less likely to engage in distracting 

activities while driving than younger drivers (aged between 18-30 years old) as they 

tend to be law-compliant, have a lower propensity for risk taking and are less 

inclined to drive aggressively. Therefore an exploration of driver workload 

fluctuations in response to the demands of joint driver-vehicle-environment may 

provide useful information on how in-vehicle support systems can assist in particular 

conditions, weighing the drivers’ capability and the momentary driving demand. 

Comparisons of how driver workload differs between intra-individual variables such 

as systematically manipulated settings of traffic demands, designs of secondary task 

and inter-individual variable such as driver characteristics (age, gender) may provide 

relevant knowledge in developing and improving socially useful in-vehicle systems 

supports.  
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2.2 Understanding Driver Mental Workload 

The study of workload is becoming an increasingly important topic in our 

society. Traditionally, the study of workload has been concentrated on physical 

workload but recent studies are more focused on other types of workload such as 

psychomotor, perceptual or mental workload (Wierwille, Rahimi and Casali, 1985). 

In the driving domain, mental workload is becoming one of the well known concepts 

to be examined when looking at human-technology interaction. However there is no 

clearly defined and universally accepted definition of mental workload due to the 

multidimensional nature of the topic. With workload being an aggregation of many 

different demands, it is therefore difficult to define workload uniquely. But there are 

several proposed definitions of mental workload as listed below, which are also cited 

in Cain (2007): 

 “… the mental effort that the human operator devotes to control or 

supervision relative to his capacity to expend mental effort.” (Curry et al., 

1979) 

 “...the difference between the capacities of the information processing system 

that are required for task performance to satisfy performance expectations 

and the capacity available at any given time.” (Gopher and Donchin, 1986) 

  “... the cost of performing a task in terms of a reduction in the capacity to 

perform additional tasks that use the same processing resource.” (Kramer et 

al., 1987) 

 “... the relative capacity to respond, the emphasis is on predicting what the 

operator will be able to accomplish in the future.” (Lysaght et al., 1989) 

Although a commonly accepted, formal definition of workload does not exist, 

workload can be characterised as a mental construct that relates to attentional 

demand (Kantowitz, 1987, Wickens, 1992) to explain the inability of human 

operators to cope with the requirement of a task (Gopher and Braune, 1984). From 

the perspective of cognitive-energetical theories, Gaillard (1993) viewed mental 

loads as the interaction between computational and energetical processes (Mulder,  

1986), whereby the mental load induced by the task, is related to the mental effort 

and is influenced by the difficulty of task. Task difficulty is not only related to the 

processing effort required for performing the task at hand i.e. task demand, but also 
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dependent on individual factors such as operator’s capacity, state and motivation 

which may influence the operator’s strategy in allocating the resources involved in 

performing the task (De Waard, 1996). As such, workload is related to subjective 

task difficulty and thus related to effort invested. Workload measurement can 

therefore be employed to characterise effort invested in performance of the task. And 

for these reasons, the aspects of mental workload considered in this thesis are the 

effort invested (i.e. depending on driver’s capacity and mediated by motivation in 

the allocation of processing resources) as the input and the task performance (i.e. 

primary or secondary task) as an output or result. These approaches represent 

alternative attempts to study workload and to allow greater diagnosticity, it is 

necessary to have more than one measure to be used when estimating mental 

workload.  

 

2.2.1 Mental Workload Measurements 

Over the past few years, there has been a great deal of research undertaken in 

developing and applying numerous mental workload assessment techniques. There 

are many techniques (e.g., Lysaght et al., 1989; Miller, 2001) available and some 

conceptual issues involved are very complex. To examine workload, it is first 

important to define exactly what kind of workload (i.e. residual capacity region, 

overload region, etc.) is to be estimated (Gawron, 2008; Tsang and Vidulich, 2006). 

From the perspective of multiple resource theory, overload can occur when either 

perceptual (i.e. visual, auditory), cognitive, or psychomotor resources are 

overloaded. For example in driving, the critical resources are usually visual and 

cognitive but the demand for those resources in driving are often coupled (Lee et al., 

2007). Due to the potential dissociation of performance and mental workload (Yeh 

and Wickens, 1988) as well as the coupled effect of motivation, performance-based 

measurements alone may be insufficient to fully reflect mental workload. Therefore, 

subjective or physiological measurements of mental workload should be conducted 

in addition to the performance-based measurements. Subjective procedures are based 

on operator judgements of the workload associated with performance of tasks and 

operators are often capable of reporting the demands on separate workload 

dimensions. For physiological techniques, changes in physiological responses to task 

performance are used to determine the amount of workload imposed by performing 
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the task. However there are several criteria which a workload assessment technique 

should possess in order to be appropriate for use. 

 The most important criterion when examining the different measures of 

mental workload is sensitivity, which is the degree at which the measure is capable 

of detecting changes in levels of workload (Casali, 1983; Wierwille and Eggemeier, 

1993; De Waard, 1996). Most subjective assessment procedures and certain primary 

task and physiological measures are capable of reflecting variations in different types 

of resource expenditure or factors that influence workload and thus qualify as 

globally sensitive measures of operator workload. Preferably, these measures should 

not degrade primary task performance (i.e. be non-intrusive) and provide reliable 

consistent results both within and across tests. If techniques are less intrusive and 

less artificial, operator acceptance will be higher and this can largely affects the 

reliability and accuracy of the measures (O’Donnell and Eggemeier, 1986; De 

Waard, 1996). Other things to considered include implementation requirements 

which includes any equipment or instrumentation that is necessary to present 

information (e.g., the stimuli required for data collection of primary and/or 

secondary task demand) or record data (e.g., operator eye behaviour). 

Implementation requirements also include expertise (i.e. knowledge to use a 

particular equipment, data processing and analysis), technique for data collection 

(e.g., time interval for data collection) or any operator training (e.g., familiarisation 

with rating scales). However, each measure has its own benefits and drawbacks 

whereby finding a perfect measurement is nearly impossible. It is therefore important 

to look into all areas to decide which measure is applicable for a given situation and 

often researchers use more than one method to get the most accurate measurement of 

mental workload.  

In regards to the measure of temporal driver workload, various methods have 

been employed and investigated for the sensitivity in detecting variation in driver 

workload. Subjective measures, performance and physiology measures have been 

widely investigated in varying combinations of driving and secondary task demand 

conditions. Certain studies have investigated the effect of driving demand (i.e. 

driving environment) on certain measures such as workload ratings and response-

time based performance measures. These on-line workload measures and few 
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potential physiological measures relating to driving demand relating to traffic 

changes are discussed in the following sections. 

 

2.2.1.1 Subjective measures 

Subjective measurements are relatively easy to implement, non-intrusive, 

inexpensive, and have a high face validity as they depend directly on the subject’s 

actual experience of workload (Sheridan, 1980; Gopher and Dochin, 1986). With 

subjective workload being obtained from subjects’ direct estimates of task difficulty 

obtained under repeated exposures to the same tasks, there are strong indications of 

uni-dimensional ratings being reliable subjective measures of mental workload (i.e. 

reliability coefficients as high or higher than 0.90) (Gopher and Browne, 1984). 

Subjective methods attempt to quantify the personal interpretations and judgements 

of experienced demand and generally have good user acceptance as these methods 

are easy to understand and to use. Depending on the task and demand explored, it is 

possible that subjective measures are more accurate in measuring fluctuations of 

driver workload in certain test environments as compared to some objective 

measures.  

Uni-dimensional rating scales such as Rating-Scale Mental Effort (RSME),  

Modified Cooper-Harper Scale (MCH) and Sequential Judgement Scale (ZEIS) are 

considered the simplest to use because they do not involve complicated analysis 

techniques. The uni-dimensional scale, for example RSME scale developed by 

Zijlstra (1993) to investigate mental effort is rated on a 150mm long vertical line 

marked with nine anchors points, ranging from ‘absolutely no effort’ (close to the 0 

point), to ‘rather much effort’ (approximately 57 on the scale) to ‘extreme effort’ 

(approximately 112 on the scale). The MCH scale is a 10-point scale enhanced 

version of psychomotor Cooper-Harper scale to account for the increase of range of 

applicability to situations, such as perceptual, cognitive and communications 

workload (Wierwille and Casali, 1983). MCH scale has demonstrated sensitivity in 

tasks during simulated flight (Wierwille and Casali, 1983; Wierwille, Rahimi and 

Casali, 1985; Skipper, Rieger, and Wierwille, 1986). This scale assumes that the two 

dimensions of performance (i.e. difficulty of aircraft controllability) and effort (i.e. 

pilot workload) are directly related, (Wierwille and Casali, 1983), whereby a pilot 
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answers questions regarding his/her performance of the aircraft-handling task under 

analysis to elicit an appropriate workload rating. As such, this uni-dimensional scale 

is less useful in other environments such as driving (Geddie et al., 2001). Moreover, 

the MCH scale is presented in the form of a category rating and therefore the values 

may result in ordinal data. In response to the need for a better scale to evaluate 

vehicle handling while completing the task, a 15-point form of the ZEIS scale 

(Pitrella and Käppler, 1988) was developed to measure task difficulty. The rating 

scale (Figure 2.6) requires participants to make two judgements in sequence; first 

judgement based on categories of difficulty (0-6), medium (5-9) or easy (8-14) then 

followed by making a finer rating within the scale of the appropriate first judgement. 

This scale has interval scale properties and thus the use of parametric statistics on 

rating data is permitted. This rating scale however has only been tested in flight 

simulation studies.  

 

Figure 2.6: Fifteen point form of the Sequential Judgement Scale (ZEIS)  

(Source: Pitrella and Käppler, 1988) 

 

In the driving domain, a similar concept to the ZEIS scale was used to quantify 

driver workload measured in terms of stress factors with respect to the dynamic 

changes in traffic complexity (see Figure 2.7) (Schießl, 2008a and 2008b; Knake-

Langhorst and Schießl, 2009).  The 15-point scale also utilised the 2-step approach 

but with increasing numerical values with respect to increases in driver’s perception 

of workload. Different from other rating scales which are pencil and paper-based, 

drivers were required to provide numerical values of their current workload verbally 

whenever they perceived a change in their subjective workload attempting to explore 

dynamic driver workload. Findings from Schieβl’s (2008b) study indicate that 

continuous subjective rating is capable of picking up short-term changes every few 

minutes. This concept of modelling dynamic workload has been previously 

investigated in the flight simulation studies (Speyer et al., 1987), whereby pilots 

were required to provide a rating based on a 5-point scale whenever requested by the 

observer. Although Speyer et al. (1987) found no direct relationship between 

scenario difficulty and rating, possibly due to the low number of sample (i.e. two 
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pilots) and flaws in the data collection (i.e. dependency on observer’s assessment of 

workload in determining when to prompt pilots for rating), both Speyer et al. (1987) 

and Schieβl (2008a; 2008b) studies suggest the potential use of workload ratings to 

measure continuous driver workload in a dynamic environment. This may reduce the 

effect of post-task workload ratings (i.e. delay in data collection at the end of task 

completion) where the operators may forget the amount of workload they were 

feeling during a particular segment of the task. 

 

Figure 2.7: Fifteen point form of continuous rating scale in driving domain 

(Source: Schießl, 2008a) 

 

While a uni-dimensional scale is more sensitive than the multi-dimensional 

scale in accessing overall mental workload (Wierwille and Casali, 1983; De Waard, 

1996), the multi-dimensional scale is generally more diagnostic (De Waard, 1996) 

and outperforms uni-dimensional ratings with a reduction in between-subject 

variability (Eggemeier and Wilson, 1991). The reduced version of NASA Task Load 

Index (NASA-RTLX; Byers et al, 1989) is an example of a commonly used 

subjective mental workload scale which reflects the multidimensional property of 

mental workload. The NASA-RTLX, a reduced version of the NASA-TLX 

originally proposed by Hart and Staveland (1988), was developed because the 

collection and analysis of the original TLX scale was cumbersome and labour 

intensive (Byers et al., 1989). The RTLX scale is the same as the original version but 

with a reduced procedure (i.e omitting the second step of the original TLX which 

requires a pairwise comparison and subsequent weighting procedure), thus 

producing unweighted mean of subscale scores. According to Byers et al. (1989), the 

RTLX is almost equivalent to the original TLX scale (R=0.977, p< 0.001) but with 

far less time involved for analysis (Lai, 2005). The scale measures mental workload 

with six rating subscales exploring mental demand, physical demand, time pressure, 

own performance, effort, and frustration levels. Each subscale is 10-cm long 

depicting a scale of 0 to 100, with the endpoints of the response scale anchored ‘low’ 

and ‘high’. Park and Cha (1998) found that the RTLX scale was more sensitive to 

mental demand and difficulty in driving than the TLX. Due to the ease of 

applications and success in measuring small changes in workload (Jahn et al., 2005) 



- 31 - 

specifically in mental demand and effort, the NASA-RTLX has been widely adopted 

for evaluation of drivers’ subjective workload across various research topic. This 

includes task management (e.g. Piechulla et al, 2003), dual-task performance (e.g. 

Horberry et al., 2006), driver impairment (e.g. Friswell and Williamson, 2008) and 

system design (e.g. Maltz and Shinar, 2007). 

 Although multi-dimensional measures were considered the best form of 

subjective measurement of workload in the past, recent studies have shown some 

evidence that uni-dimensional ratings of workload could be just equally adequate in 

determining how much workload a person ‘feels’. Thus for simpler tasks, or while 

performing a task, a uni-dimensional rating is very appropriate because it is fast, 

easy and inherently not distracting. For a more exact estimate of workload  at the end 

of the test, it may be beneficial to also use a multidimensional scale such as the 

NASA-RTLX when time is not a huge constraint.  

 

2.2.1.2 Performance measures 

“Performance may be roughly defined as the effectiveness in accomplishing a 

particular task” (Paas and van Merrienboer, 1993). 

Performance measures of workload can be classified into two main types: 

primary task performance and secondary task performance. Based on the assumption 

that human have limited resources, “tasks demanding the same resource structure 

will reveal performance decrements when time-shared and further decrements when 

difficulty of one or both tasks is manipulated” (Derrick, 1988). Performance 

measures of the primary task will always be of interest and central to the study as it 

is a more direct way to measure workload. With direct assessment of operator’s 

performance on the task of interest, primary tasks are useful where the demand 

exceed the operator’s capacity such that performance degrades from baseline or ideal 

levels. As such, primary task measures are thought to be “global-sensitive and 

provide an index of variations in load across a variety of operator information 

processing functions” (Eggemeier et al, 1991).  
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However, primary task measures may be insufficient or inadequate if the 

variability of the task demands are insufficient to produce observable primary task 

performance changes (i.e. no information on remaining capacity can be inferred). 

Moreover, strategies employed during driving may affect performance and driver 

workload differently. Secondary tasks are therefore explicitly designed to probe 

“residual capacity” not used for a primary task, thus serving only to load or measure 

the spare mental capacity of the operator (Siveraag et al., 1993). Secondary task 

measures provide an index of the remaining operator capacity while performing 

primary tasks, and are more diagnostic than primary task measures alone.  

 

i) Primary task performance 

Primary tasks such as steering wheel movements (De Waard, 1996; Hicks and 

Wierwille, 1979; Boer et al., 2005; McLean and Hoffman, 1975; Östlund et al., 

2004; Verwey, 2000), speed control (Wierwille and Eggemeier, 1993; Östlund et al., 

2004) and lane-keeping (De Waard, 1996; Östlund et al., 2004) are examples of 

primary task measures taken to examine changes in driver workload. For driver 

workload estimation, these performance data are an indication of real-time driving 

conditions as measured by the vehicle sensors and can be used to quantify the factors 

influencing the primary task of driving. The mean gap from the lead vehicle (Green 

et al., 2007; Green et al., 2011), brake actuation rate (Zeitlin, 1998) and speed 

(Zeitlin, 1998; Fuller et al., 2008) are examples of driver behaviour which change 

with workload and are thus proposed to predict subjective task difficulty (i.e. driver 

workload).  

While primary task measures are considered necessary measures of workload, 

they are insufficient on their own to adequately characterise workload. Speed for 

example, is able to reflect the amount of mental effort required to manoeuvre safely 

through the traffic (Wierwille and Eggemeier, 1993; De Waard, 1996; Cacciabue et 

al., 2007), whereby drivers proceed more cautiously with lower speed in more dense 

traffic conditions where space is restricted. However it does not take into account 

spare mental capacity and such measure can also be influenced by many other factors 

including motivation. Unless the workload is very high, it is hard to measure 

changes to performance due to workload. To assess the task difficulty, another 
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measure such as subjective measures or physiological measures may be collected 

concurrently to allow inferences regarding workload to be drawn. Although studies 

that do make comparisons between performance and subjective measures often find 

dissociation whereby “the pair of dual-task configurations differ in the degree of 

competition for common resources” (Yeh and Wickens, 1988), some agreement was 

found between secondary tasks and subjective measures of workload (Colle and 

Reid, 1999). Similarly, motivation may influence the performance whereby 

performance might not increase to the same extent (Vidulich and Wickens, 1986) as 

the workload increase when drivers are motivated. Therefore the upper limit of 

invested effort may be increased allowing behavioural stability to remain high under 

conditions of high workload. Effort remains within reserve limits, though the overall 

level of mental activity is increased (Hockey, 1997).                             



ii) Secondary task performance 

Typical variables for secondary task measures include signal detection rates, 

reaction time, time estimation variance, accuracy and response time (to mental 

arithmetic), etc. Depending on the task demand manipulated, the characteristics of 

the secondary task are used to infer the interaction between the primary and 

secondary task such that primary task performance is unaffected. In this secondary 

task approach, operators are instructed to maintain consistent performance on the 

primary task regardless of the difficulty of the overall task. The variation of the 

secondary task is measured as an indicator of the operator’s reserve capacity, serving 

as a surrogate workload measurement under the various loading conditions.  

An example is the peripheral detection task (PDT) which was first developed 

in the late nineties in response of the lack of good methods for measuring variations 

in workload (Martens and van Winsum, 2000). PDT measures attentional demand by 

recording the response times and/or hit rate to stimuli in the peripheral visual field 

reflected in the windshield or presented graphically on a simulator screen. Findings 

have demonstrate that reaction time to more peripheral stimuli increases as the 

functional visual field decreases with increasing complexity of the driving task (i.e. 

higher traffic density) (Miura, 1986; Williams, 1985; 1995). Numerous experiments 

found that visual tunnelling occurred with increasing foveal load, but performance 
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loss did not occur if the peripherally located stimuli were relevant to the 

performance of primary centrally located task (e.g. Cornsweet, 1969) and this 

phenomenon is “indicative of a shift towards increasingly selective patterns of 

attending” (Dirkin and Hancock, 1985) suggesting this as the ‘cognitive tunnelling’ 

effect. PDT is therefore a method sensitive to cognitive variation in both primary 

(driving) task demand and task demand induced by in-car support systems (van 

Winsum et al., 1999; Martens and van Winsum, 2000). Although it is suitable for 

measuring short-lasting peaks in cognitive workload, it lacks diagnosticity to 

account for the variances in driver performance resulting from changes in task 

workload (Van der Horst and Martens, 2010). It is unable to discern whether the 

effect is due to the operator’s limitation or visual eccentricity (Engström et al., 

2005). Moreover, background contrast and lighting conditions may also influence 

the measurement sensitivity. 

To eliminate the limitations mentioned and to ensure a ‘pure’ measure of 

cognitive workload, Engström et al., (2005) proposed the Tactile Detection Tasks 

(TDT) which is a modification of PDT that presents stimuli in a different sensory 

modality (i.e. which is not used in driving or secondary task operation). These tactile 

stimuli are presented by means of vibrators attached either to wrists (Engström et al, 

2005; Bengler et al. 2012) or neck (Merat, et al, 2006; Mattes, et al, 2007; Merat  

and Jamson; 2008) and a response button attached to the index finger.  

Three major TDT studies were conducted; a field study at Volvo Technology 

in Sweden (Engström et al, 2005) and two simulator studies at the University of 

Leeds in the UK and at Daimler in Germany respectively (Merat, et al, 2006; Merat  

and Jamson; 2008; Mattes, et al., 2007). All three studies found similar results, 

indicating that TDT is at least as sensitive as PDT in measuring attentional demands 

of driving and secondary tasks. In general, driving demand had a small but 

significant effect on TDT response times (Engström et al., 2005; Mattes, et al., 

2007). Results based on standardised effect size comparisons indicated that TDT 

was more sensitive than PDT in certain simpler cognitive load tasks such as 

answering biological questions (Engström et al., 2005) and as good as the PDT 

measure in more difficult tasks such as counting down by seven (Engström et al., 

2005; Merat and Jamson; 2008). Mattes, et al. (2007) compared the effects of 

secondary task modality of varying difficulty (i.e. cognitive task either counting up 
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by two or counting down by seven, visual-manual task difficulty manipulated by 

varying the size of the distractor circles) on response times and found that TDT was 

sensitive to different levels of cognitive task difficulty as well as between different 

driving environments. There was a relatively large effect of the visual-manual task 

(i.e. response times to a visual-manual task were the highest among the different 

tasks in a highway and city environment) but no differences were found with visual-

manual task difficulty levels. This thus further verifies that the TDT is a measure of 

cognitive load and is not affected by visual perceptual difficulty (Engstrӧm, 2010). 

Therefore, TDT can be utilised as a real-time workload measure since TDT 

does not disrupt primary task performance and secondary task performance (Merat 

and Jamson, 2008) and this “tertiary task” does not use the same resource as the 

primary and secondary tasks (i.e. visual demand). However studies so far have only 

attempted to measure the differences in driving demand using TDT as a tertiary task 

measured over a longer period of time (i.e in minutes). There have not been any 

studies that attempt to measure TDT in smaller time intervals (such as in seconds) 

and there is a lack of extensive comparisons between performance and physiological 

measures. Additionally, there is also a concern of the best location to place the 

tactile stimulus and alternatives should be considered. For example, placing the 

stimulus on the neck (Mattes et al., 2007; Merat and Jamson, 2008) would minimise 

the wiring interference associated with putting it on the wrists (Engstrӧm, 2005; 

Bengler et al., 2010) but the sound vibration associated with secondary task 

involving verbal responses may however interfere with the tactile stimulus place on 

the neck (Engstrӧm, 2010). 

 

 

 

 

 

 

 

 



- 36 - 

2.2.1.3 Physiological measures 

Among all the workload measures, physiological measures have been 

developed the most within the past forty years, thanks to the advancement in 

technology. The main motivation for physiological measures is the fact that direct 

responses from the operator can be measured accurately. Physiological measures 

may be needed in occasions where pure behavioural measures fail to provide fully 

satisfactory indexes of aspects of cognition for example cardiac activity, brain 

activity through electroencephalography (EEG) or the less obstructive measure of 

eye activity collected with remote eye trackers. However, it is still an open question 

in regards to determining which of these techniques is the most sensitive to the 

differential effects of driving demand (Young and Regan, 2007). Data interpretation 

may be difficult as the body also response physiologically to things other than 

mental workload. Depending on the task demand manipulated and the physiological 

measure employed, skewed data may result if the mental demand is coupled with 

other increased demand such as physical effort (Brünken et al., 2003). Moreover the 

choice of the measures is dependent on the cost and expertise required in utilising 

the equipments to collect data.  

Cardiac activity measured through mean heart rate and heart rate variability is 

the most common measure of workload with the longest history among the 

physiological measures due to its fairly reliable indication of workload and 

continuous availability (Wilson, 1982). In a simulator study examining the influence 

traffic density on driver workload, mean heart rate was found to be associated with 

subjective ratings of strain from low to moderate traffic density conditions. In high 

traffic density conditions, these two measures however dissociate (Schieβl, 2008b) 

whereby subjective strain increased while mean heart rate decreased possibly 

influenced by relatively higher mental load than physical load in high density traffic 

situations. Mulder et al. (1999) reported that heart rate measures, particularly heart 

rate variability in the 0.07-0.14 Hz range, are sensitive to effort invested. However 

this band is also associated with blood pressure regulation and compensatory effort 

may result due to the presence of stressors such as fatigue (Veltman and Gaillard, 

1998). Therefore cognition and emotion may be too tightly coupled to distinguish 

effect. 
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EEG is a measurement of brain electrical activity recorded from electrodes 

placed on the scalp. Measures of EEG such as the P300 component of Evoked 

Response Potential is thought as a good measure of residual capacity (Wickens, 

1992) because it is one of the largest components and relatively easy to evoke using 

a secondary task. According to Wilson and O’Donnell (1988), the P300 amplitude 

ERP is associated with the degree of sudden and unexpected events while P300 

latency is more related to the difficulty of a task. EEG can also be used to measure 

the magnitude or power of ongoing oscillatory activity such as alpha band power 

which is found to be sensitive to task demand (Kramer and Strayer, 1988; Wilschut, 

2009). The alpha-band power can be used as a complementary measure of driver 

workload to account for driver fatigue and time-on-task while driving (Schier, 2000; 

Wilschut, 2009). Although EEG provides multiple methods to obtain insight into 

cognitive processes, approaches are prone to artefacts and results should be 

interpreted with great caution. For example, amplitude of the true P300 is hard to 

measure because it strongly depends on the baseline chosen (i.e. mean amplitude of 

the entire period or pre-stimulus baseline) (Wilschut, 2009). 

Eye movements have the advantage of being unobtrusive since they can be 

collected with remote eye trackers. Measurements of eye activity such as eye blinks 

(duration and frequency) and pupil dilation are believed to be an indicator of both 

fatigue and workload. While the number of blinks increases as a function of time-on-

task (i.e. fatigue) and it has been observed to increase with increased mental 

workload (Holland and Tarlow, 1972; Recarte et al., 2008), Castor et al. (2003) 

suggests the link between blink rate and workload to be tenuous. Besides blink rate, 

blink duration has been shown to be affected by visual task demand whereby blink 

closure duration appears to decrease with increased workload resulting from visual 

stimuli or gathering data from a wide field of view (Veltman and Gaillard, 1996; 

Ahlstrom and Friedmand-Berg, 2006). Blink latency increases with memory and 

response demands (Castor et al., 2003), often related to sustained attention 

(Ahlstrom and Friedman-Berg, 2006; Ingre et al., 2006).  

Pupil diameter generally increases with higher cognitive processing levels and 

it is sensitive to rapid changes in workload. Although the pupils dilate for other 

reasons such as emotions and loads on working memory, it has been successfully 

used for distinguishing different levels of difficulty of various cognitive tasks 
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(Beatty, 1982; Beatty and Lucero-Wagoner, 2000; Recarte and Nunes, 2008; Bailey 

and Iqbal, 2008) as well as between-subject differences (Goldwater, 1972; 

Kahneman; 1973). The two most common use of pupillometry as a measure of 

cognitive load are the index of cognitive activity (ICA) and the average change of 

pupil diameter (Palinko et al., 2010). ICA uses the frequency of dilation of the pupil 

per minute (Marshall, 2002; Marshall et al., 2004) and used almost exclusively with 

head-mounted eye trackers for high precision data. However, Marshall et al. (2004) 

have patented this measure and therefore, only an approximation of this variable can 

be used. Ewing and Fairclough (2011) attempted to infer mental effort using an 

approximation of this method and remote eyetrackers but without success. The 

average change of pupil diameter, on other hand, can be easily calculated for 

estimating rapid cognitive load changes and this method has been found to correlate 

well with cognitive load (Bailey and Iqbal, 2008, Palinko et al., 2010). Although 

these measurements need to be quite precise (in the order of tenths of a millimetre) 

making application difficult in an environment with uncontrolled lighting 

conditions, such measures are more viable in strictly controlled simulated-

environment as the percentage change of brightness varies by less than ±5% (Palinko 

et al., 2010). Moreover pupil diameter can become unresponsive to changes or even 

reverse its responses when overload occurs.  
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2.2.2  Situation Awareness 

It is worth noting that the concept of situation awareness is constantly coupled 

with mental workload (Vidulich, 2003). Endsley (1995) defined situation awareness 

as “the perception of the elements in the environment within a volume of time and 

space, the comprehension of their meaning, and the projection of their status in the 

near future”. According to Wickens (2001) these two concepts of workload and 

situation awareness can be differentiated by the quantitative properties of mental 

workload (i.e. ‘how much’) and qualitative properties of situation awareness (i.e. 

‘what kind’) of the cognitive processes. While the operator’s skills and ability 

influences the level of mental workload and the quality of situation awareness, 

external factors such as task demands, situation complexity and uncertainty also play 

an important role in achieving a delicate balance of workload level and situation 

awareness. This is because the more demanding the task, the more complex the 

situation and the more work is required to get the task completed and the situation 

assessed. Therefore more attention is required for task performance and less 

resources is available to keep abreast of the situation. Parasuraman et al. (2008) 

indicated that mental workload and situation awareness constructs have useful roles 

in improving the performance of human-machine systems by being both predictive 

of performance in complex human-machine systems and diagnostic of operator’s 

cognitive state. 

To take better account of the regulation activity in a dynamic traffic 

environment, situation awareness is assimilated with an occurring mental 

representation. In the driving domain, drivers construct a mental representation of 

what they see in the road environment and with this understanding, they can then 

estimate and predict what will happen. However, environmental determinants on 

driver workload for example, traffic density (e.g., Verwey, 1993b; De Waard, 1996; 

Liu and Lee, 2006; Verwey, 2000; Trick et al., 2010) or  road geometry  (e.g., Miura, 

1986; Green et al., 1993) are dynamic and change rapidly. The mental construct is 

constantly updated and with increasing environmental cues to be processed, it is 

assumed that level of workload will increase as a result and thus also influence the 

driver’s ability to maintain situation awareness. To maintain adequate situation 

awareness, strategic management is needed. This involves strategic coordinating, 

planning, chunking or reorganising of multiple tasks to optimise resources and 
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inhibiting irrelevant information. Such strategic management is skill-based and 

depends highly on a driver’s apprehension of the situation (Vidulich and Tsang, 

2012). Therefore, an effective strategic management would require high-quality 

situation awareness. However a driver’s quality of situation awareness is dependent 

on their ability to continuously engage in a spectrum of estimations as to what is 

currently happening in their driving environment and what is liable to happen in the 

immediate future.  

Drivers make estimations in relation to a multitude of objects in the driver’s 

environment: driver’s own field of travel, the possibility of intruding objects and the 

roadway surface. Earlier studies have established some fairly stable and commonly 

acceptable boundaries for the detection of movement in other vehicles (Mortimer et 

al., 1974), but events outside the car are attentional events that are less under the 

driver’s control. Traffic density and surrounding drivers’ behaviours have been 

identified as contributory factors to accidents (Verwey, 1993b and 2000; 100-car 

study of Dingus et al, 2006) whereby time available for drivers to make accurate 

estimates of the potential hazards within the driving environment may rapidly shift 

from being primarily relative to mostly absolute. In these situations requiring drivers 

to have high perceptual and cognitive selectivity and constant vigilance (Hoyos, 

1988) to safely transverse the roadway, driver’s accuracy in decision making and 

ability of estimations in uncertainty would depend strongly on the explicit and 

implicit “awareness” a driver has of the situation (Morgan and Hancock, 2009).   

However drivers occasionally may be surprised and frightened when suddenly 

realising that their own awareness of the situation was not on par with objective 

reality. The surprise effect is greater when the driver was initially convinced of being 

in control of a familiar situation but that situation suddenly becomes critical. Bellet 

(2006) conducted a field study on ten participants to examine driver’s risk awareness 

of varying criticality of situation relating to the presence of obstacle occurrences. 

Risk awareness was assessed based on the risks of path conflict with other road users 

and on the anticipation of hazard depending to other road users’ behaviours and 

action. The participants assessed the criticality level of each of the situations via a 

double scoring (i.e. a score from 0 to 100%) and findings indicated that in higher 

criticality situations, drivers tended to feel that they “suffered the situations” and felt 

less often in control of events.  
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2.2.3 Envelope Zones: the concept of safety margins in the road 

environment 

The road environment requires constant adaptation from the driver. To 

progress safely in the road environment, drivers are guided by the envelope zones 

when managing their interactions with other road users. In car driving, this concept 

of envelope zones can be found in the notion of safety margins (Gibson and Crooks, 

1938). Safety margins reflect the amount of time drivers allow themselves in the 

interaction with other road users and the environment. Summala (1988) defined 

safety margins in terms of temporal distance of an agent to a hazard. The idea of 

safety zones was first developed by Kontaratos (1974) and Ohta (1993) further 

defined these safety zones by time-based following distances namely, a danger zones 

(time headway < 0.6s), a critical zone (between 0.6 and 1.1s) and a comfort zone 

(between 1.1s and 1.7s). Similarly, Van der Horst (1990) used time-to-collision 

which is defined as “the time required for two vehicles to collide if they continue at 

their present speed and along the same path” (Hayward, 1971), to differentiate the 

criticality of the situation when drivers start braking. Under normal driving 

conditions, the envelope zones play a decisive role in the modulation of interactions 

with other road users, for example in maintaining safe distances between vehicles as 

well as risk diagnosis (Figure 2.8) and management of conflicts in the event of 

safety-critical situations. 

 

Figure 2.8: Examples of danger (red), critical (yellow) and comfort (green) zones 

in COSMODRIVE project (Source: Bellet et al, 2009) 
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The distance to a lead car is an important safety margin that has to be 

maintained continuously for prolonged periods of time. Occasionally, drivers may 

experience small safety margins and are under-pressure due to the smaller time 

frame available to react to potential hazards. In such occasions, driver may need to 

regulate the distance that they judges as safe and maintain the driving situation to an 

acceptable limit while managing their cognitive resources within the given time to 

deal with the current situation. Following difficulties either with perceptual 

thresholds or lack of expectation, driver error may occur (Rumar, 1990). Depending 

on drivers’ anticipation abilities (i.e. mental simulation of the driving situation future 

statues) and skills, failure to detect the relevant information (such as late detection of 

decelerations of the lead car) in danger or critical zones could impose a longer time 

to recover following an error (Brown, 1990).  

Experiences from other actions of traffic (such as a cut-in from a neighbouring 

vehicle) are examples of factors which are used to build up usable mental rules or 

models for behaviour in traffic situations relating to envelope zones. When one is 

confronted with an increasing variety of traffic situations and more of the driving 

tasks are integrated in mental models, attention can be diverted towards interaction 

with other road users. At this rule-based stage of development, behaviour will 

initially be greatly governed by formal rules and regulations, but gradually the 

formal rules and control skills will become more integrated and perceptions and 

experiences from the road and interaction with other road users will play an 

increasingly dominant role in determining driving behaviour. For experienced 

drivers, their implementation of skill-based behaviours enable them to allocate the 

cognitive resources required for driving monitoring and the management of their 

interactions with the nearest events more effectively than novice drivers. Studies 

have shown that experienced drivers are comparatively better than novice drivers in 

detecting potential risk situations (Soliday and Allen, 1972; Finn and Bragg, 1986). 

In situations where drivers are approaching an urban intersection, for example, 

Bellet et al, (2009) suggests that experienced drivers would anticipate behaviours of 

surrounding vehicles up to 50m ahead (including the opposite traffic), while novice 

drivers tend to pay greater attention to the nearby environment of the vehicle (i.e. 

15m or less). With better anticipation abilities, experienced drivers may therefore be 

more aware of potential path conflicts in the future than the novice drivers. 
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2.3 Factors Moderating Dynamic Temporal Workload 

There are many factors mediating mental workload that make a definitive 

measurement difficult. As described by Jex (1988), mental workload is a function of 

coping with interacting goals, strategies, adjusting to task complexity, etc. In the real 

world, drivers play an active role in the initiation and management of driving and in-

vehicle tasks (Lee et al., 2009). Drivers’ multi-tasking performance at a particular 

instance is dependent on the real-time demand of the driving task, and therefore both 

the driver characteristics related to regulation of own driving (such as driving 

experience, gender or personality) and the driving context (i.e. unexpected hazards, 

level of distraction) (as shown in Figure 2.5), should be considered when estimating 

driver temporal workload.  

2.3.1 Self-regulation strategy 

 Drivers are active receivers and can actively adjust their driving behaviour in 

response to changing task demands to maintain an adequate level of safe driving 

(Haigney et al., 2000). Due to information processing limitations, drivers will adapt 

their strategies with changing task demand by processing more elements 

simultaneously in the focus of attention (e.g., Cowan, 2000) or investment of more 

effort, changing working strategy (e.g., Wilde, 1982; Fuller, 2005; Fastenmeier and 

Gsalter, 2007) or neglecting less important tasks or information (Cnossen et al., 

2000; Hockey, 1998). The ability of the driver to prioritise between primary and 

secondary tasks is intrinsically linked to the spare mental capacity (i.e. the ability to 

conduct a number of tasks simultaneously) and also influenced by the level of 

interest (motivation) which determines how drivers select and persist in processing 

certain types of information in preference to others. With more spare capacity, 

drivers are able to attend to and process input rapidly. 

At the highest level (i.e. strategic level), drivers can moderate their workload 

by choosing not to engage in potentially distracting activities, for example a driver 

can  make the decision not to use the mobile phone from the start of the drive. This 

self-regulation behavioural adaptation at a strategic level is more commonly seen in 

older drivers who have greater tendency purposely limit or restrict their driving in 

order to reduce accident risk (e.g. Ball et al., 1998; Hakamies-Blomqvist and 
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Wahlström, 1998; Baldock et al., 2006; Lang, Parkes and Fernández-Medina, 2013). 

According to the recent STATS19 Department for Transport UK survey, in year 

2012, accident involvements for older drivers (13%; age > 60 years old) are 

generally lower in comparison to young (17%; age < 25 years old) and middle age 

groups (49%; 25-50 years old). Despite lower involvement in accidents than other 

groups, older person can be seen as a vulnerable road user group. In the UK, among 

those road users who were killed or seriously injured in a road traffic accident, the 

fatality rate for older person (12%) is the highest of all age groups (i.e. fatality rate 

for other age groups varies up to 8%) (Department for Transport, 2012). Due to their 

frailty and vulnerability to injury in the event of a crash, older road users therefore 

have distinct risk factors relative to young and middle-aged groups. However there is 

an indication that older drivers have more difficulty extracting relevant information 

from road signs, particularly when driving in complex traffic and in time-limited 

situations (Schieber et al., 1997). A related finding is that older adults have more 

difficulty than younger adults in management or coordination of multiple tasks, but 

many older drivers who are aware of their decline in functional capacities may adapt 

their driving patterns to match these changes by self-regulating when, where and 

how they drive, to an extent that does not interfere with their lifestyle (Ball et al, 

1998; Baldock et al., 2006) .  

In addition, experience may also play a part as regular drivers are more adept in 

with the rules of the road, better in perceiving or predicting the dynamics of the road 

(Kaempf and Klein, 1994) and perhaps more skilful in their driving manoeuvres in 

varying circumstances. While there is a high correlation between age and driving 

experience (for example, young drivers are inexperienced drivers, and older driver 

typically have many years’ of driving experience), numerous studies have found 

conflicting results (Catchpole et al., 1994; Cooper et al., 1995; Levy et al., 1990) due 

to difficulties in discriminating the relative effects of age versus driving experience 

on driving performance and crash involvement. To overcome the significant 

discrepancies of driving performance loss between older drivers and younger drivers 

when the complexity of the tasks being performed increases, studies have suggested 

using “average” drivers aged between 25-50 years old with at least 5 years driving 

experience as the general group of drivers in studies (Östlund et al., 2004). Within 

the drivers, fatigue and arousal (i.e. motivation) may also lead to differences in 
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driving task demand. A fatigue driver for example, may perform worse than his/her 

usual level of performance in the driving task despite being an experienced driver 

and researchers attributed between 2% and 25% of car crashes to fatigue (Brown, 

1994).  

Apart from age and experience, several studies have also demonstrated gender 

and personality factors as influencing factors in adoption of risk avoidance strategy. 

For example, women drivers are more likely to embrace stricter rules and driving 

habits than men (Bauer et al., 2003; Gwyther and Holland, 2012) and studies had 

suggested that this may be due to women having less experience than male 

counterparts since men are traditionally the main driver (Kostnyniuk and Shope, 

1998). In terms of personality, theorists have suggest that extroverted drivers tend to 

opt for non-avoidance in order to boost arousal, which accounts for their higher 

involvement in traffic accidents and violations (Eysenck, 1965; Fuller, 1984). At 

tactical and operational levels, research has shown that driver conducting secondary 

tasks attempt to reduce workload by decreasing speed, increasing inter-vehicular 

distance or by reducing or ceasing to engage in certain driving task, such as checking 

mirrors.  

The level of driver performance at any given moment is also dependent on the 

motivational (i.e. arousal) factors and driver’s prioritisation between different tasks, 

whether primary or secondary. In real world situations, drivers have different and 

varying motivations for undertaking concurrent in-vehicle activities (Lerner and 

Boyd, 2005; Hancock et al., 2009). Horrey and Lesch (2009) conducted a study 

where drivers were instructed to perform a task before a given deadline. Drivers 

were found to initiate a secondary task in all driving demand conditions. Although 

this could be due to the limitation whereby the experimenter’s instructions forms the 

driver’s motivations to comply with the experimental rules, it indicates that drivers 

may be likely to distract themselves in real driving situations. Studies have also 

shown that drivers are motivated to complete a task with increasing exposure and 

practice with the task even in demanding driving conditions (Horrey et al., 2008). 
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2.3.2 Driving context 

In normal driving conditions, drivers are able to adjust their pace downwards 

by shedding irrelevant input and tasks, which can be done with information provided 

in advance. However this may not be possible in safety-critical situations involving 

sudden increases in demand or extraneous demand where quick decisions from the 

driver is required. The criticality of the event influences drivers to switch skill-based 

driving towards rule-based or even knowledge-based  (i.e. conscious control over the 

driving task). Drivers switch from a lower level of automaticity to exert more 

conscious control (i.e. more active role) on the driving task in an unexpected 

situation. In more highly critical events, drivers evoke more active control of the 

brake to decelerate and keep a larger safety margin.  

Studies have indicated that different traffic environments can have different 

effects on driver workload and driving behaviour. High workload conditions, for 

example are associated with more disruptive gas pedal operation, i.e. frequent 

corrections on the gas pedal (Malta, 2010), increased safety margins or lowering 

driving speed. Liu and Lee (2006) found that drivers in general adopted greater 

safety margins and lower driving speeds when faced with heavy traffic. However  

heavy traffic was generally defined based on the peak hours as data were mostly 

obtained via on-road studies. Thus, a clear identification of the traffic factors that 

truly influence drivers’ momentary workload could not be achieved. 

Additionally, workload history plays a role in drivers momentary workload and 

subsequent driver behaviour. Schaap (2012) found that two groups of drivers (high 

mental workload and normal circumstances i.e. low mental workload) responded 

differently to different categories of critical events. It was found that those under 

normal circumstances (i.e. low mental workload) responded to all levels of events, 

while high mental workload drivers responded selectively only to the critical ones. 

Such presence of workload history effects, also referred to as hysteresis effect on 

task performance, was first studied in the aviation domain in the 1960s. Earlier 

studies indicated that task performance varies with task demands up to a certain 

demand level and differs with the loading directions (i.e. increasing or decreasing 

levels of demand). In a study in which Hancock et al., (1995) examined the effect of 

prior workload history on current task performance and workload in Air Traffic 
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Control scenarios, it was demonstrated that workload history has a strong effect on 

current perceived workload suggesting presence of lag within operator’s perception 

of the level of task demand and interpretation of workload. In the driving domain, 

Morgan (2008) conducted a simulator study to examine the interaction between 

workload history and driver workload in the driving task. In this study, participants 

were instructed to follow pre-set routes in the simulated environment and the 

navigation system failed at a certain point within the drive. Driver workload ratings 

were collected three times: once during the drive before the failure, immediately 

after the failure of the system and at the end of the drive. Results from the simulator 

studies indicated that the increase in driver mental workload resulting from the 

navigation system’s failure was prolonged and did not reduce significantly by the 

end of the drive. However due to the short drive in the study, it is unknown for how 

long the workload effect was present or simply how long the driver would take to 

recover from the incident. The author concluded with remarks that future systems 

should include some manner of accommodating the immediate past as well as the 

immediate present demands from the drivers. The design recommendations for 

advanced  driving cognitive load-levelling technologies include reducing message 

transmission rate after a high demand situation or provide highly reliable cue to 

upcoming high demand situation.  

2.4 Summary 

 This chapter has highlighted the concept of workload which is used in 

discourse of human interaction with technology and organisations. Although the 

definitions of workload vary quite considerably, in this thesis, driver workload is 

defined as the effort invested (i.e. the input as the amount of effort mediated by 

driver’s capacity and motivation) in performing a task (i.e. primary or secondary task 

performance as output or result) (refer Section 2.2).  

 Despite several methods for measuring workload (as discussed in Section 

2.2.1), there is a lack of good methods for measuring variations in workload (i.e. 

short-lasting peaks of workload). Performance measures, for example, may be the 

most direct indication of driver workload but substantial variability of the task 

demands are required to produce observable changes in performance. Physiological 
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measures, on the other hand, may have an advantage over the performance measures 

with them providing continuous data over time. However, changes in physiological 

measures may differ for a lot of reasons that are not related to workload. Thus, rather 

than using the physiological means to determine workload differences, subjective 

techniques for direct assessment of how a driver would “feel” about the task may be 

a potential option. After all, the difficulty of a driving task is to a large extent 

dependent on drivers themselves and may be moderated by other motivational 

factors (refer Section 2.3). Of course, current available subjective measurement tools 

have their own shortcomings of being ill-suited for measuring real-time workload. 

But with further simplification of the rating scale (such as using a 10-point rating 

scale) and by collecting subjective appraisal of the “feeling” of workload verbally, 

this imperfect subjective tool may be the best available technique to probe driver 

workload. In the absence of one-size-fits-all technique and with room for further 

improvement, a combination of information from different candidates of measures 

may be much more attractive at the initial stage prior to determining the most 

suitable workload measure for the intended area of investigation. This will be 

discussed and investigated further in Chapter 4 of this thesis. 

 Due to the increments in traffic density, the number of roadside sources of 

data and the new additions of in-vehicle equipments such as mobile phones and 

automotive displays in recent years, there are growing concerns in regards to the 

amount of information flow to drivers while driving. The ability of drivers 

themselves to manage their own workload is questionable and therefore, vehicle 

manufacturers are looking into introducing intelligent workload manager systems 

within the vehicle to ease drivers’ management of information. This has gained 

interests not only from the vehicle manufacturers, but also from the human factor 

community to examine whether a workload manager is useful in reducing driver 

workload and improving driving performance. In the next Chapter 3, the concept and 

functionality of a workload manager system will be provided. The limitations in the 

current designs of workload manager systems will also be discussed. 
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3 Chapter 3 

Workload Management 

 

Chapter 3 describes the concept of workload management systems which are 

designed to prevent driver overload. A review of existing workload manager system 

functionalities is provided. The chapter concludes by discussing the limitations of 

existing studies in relation to the design of workload manager systems, thus forming 

the rationale for the simulator studies described in Chapter Four to Chapter Six of 

this thesis.  

3.1 Introduction 

To assist drivers and improve the operation and safety of the traffic system, 

there has been a rapid increase in research activity devoted to the design of new in-

vehicle support systems over the past 20 years. These driver support systems mediate 

drivers’ interactions with the road environment by creating new sources of 

information such as visual or auditory alerts to warn drivers or by directly 

intervening by for example,  automatically applying the brakes. Examples of these 

systems are lane departure warning (LDW), forward collision warning (FCW) and 

intelligent speed adaptation (ISA) all designed with the goal of preventing or 

mitigating crashes. To ensure that the end-product is adapted to user needs, the 

development phase of most advanced driver assistance systems (ADAS) include an 

evaluation of their human machine-interaction (HMI) (Norman and Draper, 1984; 

Nielsen, 1994; Norman, 1998; Cacciabue, Hjälmdahl, Lüdtke, and Riccioli, 2011). 

While each system is evaluated during the development phase for a good basic 

knowledge background to understand which is the best way to give information to 

systems, the collaborative impact is unknown when more than one of these systems 

(such as ADAS, telematics and on-board information messages) are used 

simultaneously. Hence, with the vast amount of technologies introduced in the 

vehicle, drivers may encounter situations involving high a large amount of 
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information to be processed simultaneously within a limited time, resulting in higher 

task difficulty and higher driver workload.  

As discussed in Chapter 2, driver workload is subject to variation over time 

and if not carefully managed, additional tasks in the vehicle can adversely affect 

performance (Donmez et al., 2007; Horberry et al., 2006), particularly if workload is 

already high. In highly demanding situations, drivers can actively try to cope with 

the increased demands and protect performance by investing more effort in it (De 

Waard, 1996), for example by constant corrective steering wheel movements in 

order to maintain lateral control as well as keeping a safe distance from lead vehicle 

by continuous pressure changes on the brake and a accelerator. However, things may 

deteriorate if the driver tries to use more than one in-vehicle device at the same 

moment. Other than increased task demands alone (i.e. higher number of 

information), the capabilities of the task performer, i,e the driver also play a major 

role. If the driver has a lower capacity to respond due to impairment or lack of 

experience (May et al., 2006; Wilschut, 2009), these factors can affect the reactions 

of the overloaded driver since their spare capacity has been absorbed by the 

secondary task. Moreover, errors in judgement of a driver’s own driving capabilities 

in relation to the vehicle control and to the external environment and traffic 

conditions are factors in causing road accidents. Hence, there is a need to design and 

develop a workload manager assistance system which is capable of modulating the 

flow of oncoming messages to a driver, from both the newly developed and readily 

available functions in the vehicle.  

 

3.1.1 How much workload is too much? 

The Yerkes-Dodson Law developed in the early 20
th

 century is the foundation 

of workload that plots the relationship of workload and performance on a bell curve, 

i.e. the inverted-U hypothesis (Figure 3.1). At both ends of the curve, there are risks 

of an accident due to either an inattentive or an overworked driver who may be 

incapable to safely manoeuvre the vehicle. In the under-challenged (to low task 

demand) conditions, drivers may see no reason to be fully attentive to the driving 

task or they are in the danger of approaching their driving task in an unmotivated 

way.  On the other end, drivers could be overwhelmed by the volume and scale of 

the competing demands on their attention thus influencing their performance either 
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in the driving task or subsidiary tasks. In both conditions, mental workload is high 

(see Figure 3.1) compared to normal optimum performance level represented by the 

middle of the curve which is ideal for the drivers. In this highly productive state, 

drivers are sufficiently loaded in tasks but not so overloaded that they struggle to 

maintain safe driving. However, based on task performance alone, the high workload 

conditions cannot be distinguished from each other. Therefore, investigators have 

found it useful to divide the Yerkes Dodson inverted-U function into 6 task 

performance-related regions (see Figure 3.1) as a way to determine safe limits of 

workload. Based on Figure 3.1, driving performance in both high workload 

conditions can still be protected from deterioration by effort investment i.e. trying 

harder to counteract a sub-optimal state (region A1) or deal with high task demands 

(region A3) (De Waard, 1996). In the under-loaded condition, transitions from 

region A2 into region A1 due to reduced task performance would rely heavily on 

increased operator vigilance to maintain performance. However, to maintain an 

optimal performance (i.e. within A1 region), the operator would need to make sure 

his/her vigilant state is adequately resourced. In low workload scenarios (i.e. region 

A1), effort is thus needed for the maintenance of a vigilant state to ensure that the 

operator’s cognitive system is in the state of “ready to respond” when required. In 

contrast, in high workload scenario (i.e. region D), effort is required to direct 

attention towards the incoming task demand (Caggiano and Parasuraman, 2004).  

 

Figure 3.1: Task performance and workload as a function of demand  

(Source: De Waard, 1996) 
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In region A3 operator is able to maintain adequate task performance levels by 

increasing cognitive effort or by allocating more mental resources to processing 

activity. However there are costs and limits to investment of efforts. Although such 

effort investment is a voluntary and a conscious process, it is preferred for short- 

lasting rather than prolonged effort as extended period of time spend in this region 

can be harmful in emergence of peak loads which could give rise to heightened 

workload which are to be avoided wherever possible (Mulder et al., 1988). Quality 

of task performance begins to decline in region B because demands begins to exceed 

the operators’ tolerable capacity. Operators thus experienced higher workload with 

increasing task demand and performance errors become increasingly commonplace. 

Therefore individuals no longer have the mental resources to recover the situation 

without adopting coping strategies which in some situations involve reducing 

demand by shedding some of the work activities contributing to cognitive overload. 

Beyond region B, the operator is at risk of losing control of the situation due to high 

workload levels.  

 With the divisions of the inverted U function, useful qualitative discussions 

of cognitive workload in practical contexts and estimation of mental workload levels 

in particular situations, are more viable. The simplest way to use this inverted-U 

model is to be aware of it when allocating tasks to drivers by considering the driver’s 

current workload and the additional load to be employed on the driver by the 

subsidiary tasks. With the growing amount of information coming from on-board 

information messages, telematics and advanced driver assistance, there is a need to 

understand how well the driver is managing workload in various driving situations 

especially in demanding driving periods when the driver may not have sufficient 

spare attentional capacity to handle the amount of information given. The interaction 

between the driver and the systems is critical since each additional task taken on 

board while driving would increase driver workload. NHTSA for example, has 

issued design guidelines in an effort to reduce distraction and banning use of hand-

held mobile phones while driving, while in the UK, using hand-held mobile phones 

while driving is illegal. But this does not stop accidents relating to use of hands-free 

mobile phones from occurring. Given consumers’ hunger for gadgets and car-makers 

introducing new generations of infotainment features and safety systems into the 

vehicle, driver overload is becoming harder to manage.  
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3.1.2 Countermeasures to Prevent Driver Overload 

With the availability of workload measures (as discussed in Section 2.2.1), 

driver support systems can be designed to consider drivers’ workload and driving 

demand to ensure that they do not present in a way that overloads the drivers while 

the car is in operation and also reduce any load it placed on the driver when the 

driver is busy. As such, these support systems manage driver workload in real-time 

by preventing distractions but also mitigate distraction. Moreover, mental workload 

is not determined solely by the task demands but also reflects large individual 

differences in capability and state. Although humans are very adaptable at 

responding to continuously changing local situations when driving and can easily 

cope with increases in workload, in combination with decreased capability (such as 

from an elderly, less skilful or inexperienced driver), workload can be too high 

resulting in driver overload. Therefore workload managers have been introduced as a 

support system to modulate the levels of information available to drivers to avoid 

overloading drivers in situations when the driver is already under high demand. 

There have been numerous initiatives in Europe (Michon, 1993), the United 

States (SAVE-IT, 2002) and Japan (Uchiyama et al., 2002) investigating the 

optimisation of HMI and the integration of multiple ADAS and IVIS by means of 

integrated and adaptive interfaces techniques. These initiatives look into estimating 

drivers’ workload or developing static situation-dependent rules for the interaction 

between the driver and the vehicle. To prevent mental overload or distraction from 

occurring in the first place, system initiated information can be prioritised or 

scheduled according to the current driving situation or driver state. According to 

Carsten and Brookhuis (2005), the amount of information has to be adapted to the 

traffic situations and road-user requirements (i.e. providing the required ‘dose’ of 

information to the driver at a given situation) to avoid information overload at one 

moment. This issue can be managed by adaptive systems that possess a level of 

intelligence which may provide support to the driver by changing the level of 

information presented to the driver, or even alter the system thresholds and 

parameters in real time. The type of function which utilises this information 

scheduling is commonly known as a workload manager.  
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This idea of adaptive systems was first highlighted in the Generic Intelligent 

Driving Support (GIDS) project (Michon, 1993) which proposed adding a 

scheduling system that plans information presentation (Verwey, 1993a) based on the 

local situations. The scheduling of the tasks was to be based on prior knowledge of 

the effects the tasks have on the driver workload (i.e. previously stored model of the 

driver or the task context) which were assessed independently and in combination 

with other tasks that require simultaneous performance. Since the workload imposed 

on the driver and the associated potential for distraction changes dynamically with 

the driving situation,  the GIDS concept prevented overload by scheduling resource 

demanding tasks (such as an incoming phone call) which may coincide with the 

sudden workload peaks in demanding driving situations (for example when 

overtaking). Depending on the assessment of the complexity of the road layout, the 

GIDS system might then decide whether to re-route the incoming phone directly to 

voicemail without informing the driver. 

Following this EU-funded project which was conducted between 1989 and 

1992 as part of the DRIVE programme in the automotive domain that implemented 

adaptivity to the driver (Onken, 1993), there have been efforts in the area of 

workload management systems. However research that demonstrates the 

effectiveness of workload managers to reduce driver workload is less common. The 

benefit of the use of the information management system was examined in the 

COmunication Multimedia UNit Inside CAR (COMUNICAR) project, whereby 

Hoedemaeker et al. (2003) compared the subjective workload measured using the 

RSME method in two conditions: (1) without the Information Management system, 

the message was presented exactly during the event, (2) with the Information 

Management system, the message was postponed to right after the event. Although  

no significant differences between the conditions were found, recent studies have 

shown otherwise. For example, the study performed in the Adaptive Integrated 

Driver-Vehicle Interface (AIDE) project which featured more overt behavioural 

indices or stored models of the driver, whereby situational factors were detected by 

an on-board geographical database and a computational workload estimator 

compared these data to a complex task-based model in order to assess those 

situations, demonstrated that workload management can indeed improve driving 

performance. Results however indicated that effects were only obtained in more 
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difficult driving scenarios (where driving difficulty was varied in terms of traffic 

density and curvature). In the US, NHTSA funded the SAfety VEhicles(s) using 

adaptive Interface Technology (SAVE-IT) project which investigated the impact of 

locking (i.e. disabling or lock-out entry system when vehicle is in motion) and 

advising strategies on driving performance (Donmez et al., 2006b; Tijerina et al., 

2011). Although this study indicated that a locking strategy improves driving 

performance, the effects differed between the type of information scheduled. 

Therefore, more research is needed to better understand the mechanisms underlying 

drivers’ responses to workload management functions in different traffic conditions 

and how the potential safety benefits of these types of systems can be quantified.  

The more commonly known workload manager systems that have entered the 

market are: the Saab Dialogue Manager in the Saab 9-3 and 9-5 models (Green, 

2004) and the Volvo Car Intelligent Driver Information System (IDIS) in S40 and 

V50 models (Broström et al., 2006). These are focused on an information-

rescheduling function depending on the demands of the driving situation on the basis 

of real-time workload estimation from the sensor information already available on 

the vehicle’s data bus. The complexity of the current driving environment is gauged 

based on the vehicle behaviour (i.e. lateral and longitudinal acceleration or 

velocities) and driver inputs (such as brake pedal position, steering wheel angle, 

windshield wiper, indicator usage, etc). The flow of information to the driver is then 

regulated based on these conditions to minimise the risk of driver distraction, for 

example if the driver enters a roundabout, incoming phone calls are delayed until the 

driver has completed the manoeuvre.  

Although there are still very few workload management systems in the market, 

the automotive industry is working to realise the workload management function by 

looking into various ways of improving the estimate of driver workload as well as 

identifying the situations where a certain type of information presentation should be 

rescheduled. The Swedish truck manufacturer Scania (Osbeck and Åkerman, 2010) 

for example, has conducted a project to develop a system that presents only relevant 

and desired information to drivers of trucks and buses in critical traffic situations. 

Drivers’ responses of the criticality of the traffic situation and the secondary tasks 

involved were collected and classified. However the workload ratings could not be 

verified as the prototype was not tested in real-life situations. Although the 
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effectiveness of the workload manager system in preventing crashes is completely 

unknown, analysis of data from naturalistic driving studies in heavy vehicles appears 

to indicate that total removal of distraction due to higher risk tasks (i.e. tasks relating 

to dispatching devices, interaction with mobile phones and navigation aids) would 

reduce the incidence of “safety-critical events” by about 6 percent (Olson et al., 

2009). Therefore, efforts to feature more advanced workload estimation of the 

dynamic driving situation as well as centralised management of information from all 

types of onboard applications to improve the efficiency of workload managers may 

have merit. 

3.2 Workload Manager and Functionalities 

According to Engström and Hollnagel (2007), workload management functions 

can be viewed as “meta-functions” responsible for coordinating individual functions 

by, for example, prioritising or putting non-critical information on hold in 

demanding driving situations (Engström and Victor, 2008). These systems typically 

use sensors to detect some parameter of the task context, and will infer the driver’s 

state based upon this information. Depending on the data that have been collected, 

the interface itself then adapts the amount of information by providing more or less 

information depending on the situation. Thus with these adaptive interfaces, mental 

workload can be regulated to achieve an optimal operator state (Byrne and 

Parasuraman, 1986; Hancock and Verwey, 1997). Green (2004) categorizes 

workload manager systems into four broad categories depending on what they 

measure:  

i) the driving situation 

ii) driver input 

iii) vehicle performance and response 

iv) the driver state  

 

 An optimal workload manager would cover all relevant parameters involved 

in assessing driver state and the various demands to successfully determine driver 

overload and distraction. However, there remains the crucial open issue as to what is 

measurable within each category and how the parameters combine in affecting driver 

workload and driving performance. If these categories are to be used by a real-time 
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on-board system such as a workload manager system, then appropriate sensors 

(vehicle CAN Bus in Figure 3.2) will be required to generate information about the 

current conditions and depending on the diagnostic of the workload estimator on the 

driver’s current workload (Low, Medium or High), the information is filtered and it 

is decided whether adaptation of the action to the workload conditions (is needed).   

 

 

Figure 3.2: Simple diagrammatic representation of workload manager obtained 

from a vehicle manufacturer 

  

 Traffic density for example, can be provided from radar or image processing. 

Secondary task demand, as opposed to driving task demand, can be inferred from 

interaction with entertainment systems, navigation systems and other in-vehicle 

devices. Use of the mobile phone by the driver can be identified provided that there 

is an interface between vehicle and mobile phone. Using these readily available 

sensors in the vehicle, driver workload can thus be estimated and be managed 

accordingly to ensure that the driver workload is within manageable level (below A 

as shown in Figure 3.3). Assuming that E is the estimated workload and D is the 

actual workload, driver’s workload range should be within A and C for optimum 

performance. 
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Figure 3.3: Illustration of driver’s workload transition while driving  

(Source: Hancock and Chignell, 1988) 

 

However, accurate estimation of driver workload is not sufficient for realising 

workload management functions. Due to the variability of human responses both 

between and within individuals, it is virtually impossible to predict from one precise 

moment to the next what the driver is likely to do. Rather than predicting precisely 

and reliably what a driver will do at any moment, it is perhaps more sensible to 

attempt to predict the probability of error or failure (Carsten, 2007). An example 

would be to identify traffic situations where a workload manager system might need 

to intervene in order to prevent performance from deteriorating drastically.  

With the need for a driver model which is predictive and can be applied in the 

long run to produce a well-designed advance driver assistance system, a dynamic 

real-time driver model which includes five major categories of driver capability, 

performance and behaviour with the associated variables was proposed initially by 

Carsten (2007) and later adapted by Cacciabue et al. (2007), as shown in Table 3.1. 

Each of these five categories of driver capability, performance and behaviour are 

related to accident risk, with workload associated with demand from road layout to 

driver performance. If the workload is used by a real-time on-board system, 

appropriate sensors will be required to generate information about the current 

conditions including vehicle behaviour (i.e. lateral and longitudinal velocity or 

acceleration), weather conditions (i.e. wet, snow or fog), traffic complexity (i.e. 

traffic flow), etc (see Table 3.1). Estimation of some of these task demands in real-

time has been the focus of vehicle manufacturers in the design of a workload 

manager and also the focus of previous projects such as COMUNICAR (Amditis et 

al., 2002) and CEMVOCAS (Bellet et al., 2002). 
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Table 3.1: The proposed five main parameters which play important role in the 

dynamic Driver-Vehicle-Environment interaction  

(Source: Carsten, 2007; Cacciabue et al., 2007) 

Parameters Definition Measurable Variables 

Experience The accumulation of knowledge or 

skills that result from direct 

participation in the driving activity 

1. Annual Mileage 

2. Number of years with 

driving license 

 

Attitudes A complex mental state involving 

beliefs and feeling and values and 

dispositions to act in certain ways. 

Sensation Seeking and Locus of 

Control have been identified as 

personality based predictors of accident 

involvement. 

1. Speed 

2. Lane keeping 

3. Overtaking 

4. Headway 

Task 

Demand 

(workload) 

The demands of the process of 

achieving a specific and measurable 

goal using a prescribed method. When 

Task Demand is focused only on 

driving, then Task Demand = Driving 

Demand 

1. Traffic complexity 

2. Weather 

3. Light 

4. Speed 

5. Driving direction 

Driver State 

(impairment 

level) 

Driver physical and mental ability to 

driver (fatigue, sleepiness etc). A set of 

dynamic parameters representing 

aspects of the driver relevant for the 

human-machine interaction 

1. Lane keeping; headway 

control 

2. Duration of driving; 

time-on-task 

3.Weather; road 

conditions 

4. Traffic complexity 

5. Speed 

Situation 

Awareness 

Perception of the elements in the 

environment within a volume of time 

and space, the comprehension of their 

meaning and the projection of their 

status in the near futures 

1. Distraction 

2. Driver state 

3. Task demand 

 

To estimate task demand in real-time in order to manage driver workload, 

AIDE has also used similar approach by assuming that different workload 

management functions may require different or specific driver-vehicle-environment 

(DVE) parameters (Engström, Arfwidsson et al., 2006) such as driving demand, 

secondary task demand, driver impairment, traffic risk and individual driver 

characteristics to decide the specific workload management function to be 

implemented (i.e. information-rescheduling function).  Although it was never really 

built, Figure 3.4 illustrates the general principles behind the AIDE architecture and 

examples of workload manager systems developed based on similar principles are 

discussed in Section 3.2.1. In AIDE, the main part of the theoretical workload 
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manager functionality is controlled by the Interaction and Communication Assistant 

(ICA) which works on logic whether to execute the list of prioritised action from the 

Application Request Vector (ARV) or delayed/cancel depending on the real-time 

information gathered from the DVE modules. If needed, the action is adapted to the 

DVE conditions before allocated to the appropriate input or output devices. 

 

Figure 3.4: Illustration of the basic principles behind AIDE workload 

management system concept (Source: Engström and Victor, 2009) 

 

3.2.1 Examples of workload manager systems with information-

scheduling function  

Information-scheduling functions aims to minimise the number of non-driving 

related tasks that can be performed in high load situations. For example, under high 

demand driving conditions and depending on the criticality of the situation, the 

incoming phone calls can either be filtered (not letting the phone ring) or prioritised 

(allowing only the calls that are listed by the driver as highly important). 

Parasuraman et al. (2000) suggest that organizing information sources by 

prioritisation or representing the information by highlighting decreases workload and 

thus enhance performance. However, a potential downside of this strategy is that the 

driver’s attention may be drawn to inappropriate elements of the driving task when 

multiple number of information is available simultaneously (e.g. notification of the 

next exit when the car ahead is braking). 
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The list of prototypes of workload manager systems discussed below are 

selectively chosen to highlight the simulator and on-road studies regarding 

information-scheduling workload manager systems. Although the list is not 

exhaustive due to the limited availability of information, this list provides an idea of 

the current workload manager prototypes used in the automotive industry and thus 

highlight the research gaps which are to be discussed in relevance to this thesis 

contribution in this research field as discussed in Section 3.3. 

I. BMW - SANTOS Project 

 Piechulla et al. (2003) conducted on-road study of a workload manager with 

12 university drivers (6 novices and 6 experienced drivers) who drove a 27 km 

experimental route three times. The participants were required to respond to 

incoming phone calls that involved 10 mental arithmetic questions while driving in a 

variation of situations involving the use of driver support systems such as adaptive 

cruise control, lane keeping aid and a workload manager. In the study, incoming 

calls were automatically sent to voice mail when the estimated driver workload was 

over a certain threshold value (i.e. a value of 0.35 was chosen for study). Driver 

workload was estimated to increase in situations where a lead vehicle was present 

within a certain range of interest (i.e. 120m), an intersection was present within 

drivers’ view or hard braking was taking place. For example, if the car was 

approaching an intersection within the next 5s, a factor of 1.1 was multiplied to the 

current driver workload value. This estimated workload was then determined 

whether it is was higher than a certain threshold value (i.e. 0.35) to suppress 

incoming phone calls (see Figure 3.5).  

 Physiological measures such as heart rate, heart rate variability, facial muscle 

tone as well as subjective measures such as offline rating from observers watching 

video scenes and NASA-RTLX scores from participants were recorded. Observers 

ratings suggest that only the experienced group of drivers benefited from the 

workload manager system. Both NASA-RTLX and physiological workload 

measures (heart rate, heart rate variability, and facial muscle tone) however were 

found to be not significantly different with the use of a workload manager. This 

study is an example of a prototype real-time workload estimation operational in a 

demonstrator vehicle which showed that experienced drivers benefited from the use 

of a workload manager (i.e. reduction of subjective workload) which automatically 
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directed incoming telephone calls to the mailbox without notifying the driver. 

Although this study focused on exploration of information-scheduling HMI based on 

traffic complexity, it had also highlighted the importance of subjective assessments 

in the development of a workload estimator. 

 

Figure 3.5: Piechulla’s (2003) workload estimator 

 

 

II. Toyota 

 In Japan, Uchiyama et al. (2002) developed a workload estimator based on 

accelerator pedal release to predict when the driver was under high workload. Based 

on results from nine test participants who were engaged in a mentally demanding 

memory test, the researchers found that accelerator pedal releases were able to 

predict high mental workload situations with 85% accuracy. Following this finding, 

Uchiyama et al. (2002) conducted an on-road study with two drivers whereby the 

voices messages (with duration of each messages between 2 to 3 seconds) were 

delayed in most conditions involving high driver workload such as when 

encountering a stopped or slowed vehicle ahead, curves ahead or approaching left or 
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right turns. In the study, the increase in workload was estimated to be valid for 5 sec 

and during that time, all voice messages were delayed (Figure 3.6). This on-road 

study provides an interesting correlation between driver workload and the time 

release of accelerators pedal in estimating driver workload recovery period following 

the high demanding conditions. The workload recovery was estimated to be 

approximately, 5 seconds. However, the issue here is that the accelerator release 

might be too late as a signal to be useful as the estimation of driver workload. 

 

Figure 3.6: Workload Estimator (Source: Uchiyama et al., 2002) 

 
 

III. Volvo Cars 

 Volvo’s interaction management system, IDIS consists of a workload 

estimator and an information manager. The workload estimator continuously 

monitors the driver’s activity via the vehicle’s CAN bus network for example, by 

checking on brake pedal position, vehicle speed, turn signal indicators, steering 

wheel angle and engagement of infotainment controls (Broström et. al. 2006). When 

a signal exceeds its threshold value, such as when the driver is performing an 

overtaking, the IDIS which has a built-in delay function will automatically hold 

incoming phone calls for up to 5 seconds (i.e. until the workload is estimated to have 

decreased to an acceptable level). This common method of managing incoming 

phone calls based on the inputs from sensors is also implemented by other 

automotive car makers such as General Motors and Mercedes-Benz. 
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IV. General Motors 

 Saab’s Dialog Manager developed in the Intelligent Vehicle Safety Systems 

(IVSS) research project, could delay or cancel information from infotainment or 

other non-critical systems when the driver was considered to be under high 

workload. The five critical scenarios investigated were operating radio while driving 

in a roundabout, turning into a road while presented with a warning message, 

initiating a phone call, answering a phone call in a restriction area such as within a 

school or hospital areas with and without the presence of a hazard (i.e. pedestrian 

crossing the street). The system was also able to adapt information according to the 

complexity of the traffic situation, i.e. vehicle speed was given audibly to the driver 

in complex traffic environment (IVSS, 2007). However warning messages of high 

priority such as ‘brake fluid level low’, are allowed. It is however unknown the 

duration of delay implemented. 

 

V. Mercedes Benz 

 Similarly, Mercedes is also working on a workload manager that prioritises 

the messages based on some set of parameters such as criticality and urgency and 

improving the comfort for drivers which include personalisation of application such 

as allowing download and update of applications and interfaces (Wex et al., 2008). 

Although no details on the information-scheduling of the messages are available, it 

suggest the importance of prioritising messages based on driving demand. Moreover, 

future advanced system will be able to handle information from several types of 

sensors and devices such as an eye and head tracker. 

 

3.2.2 Examples of workload manager systems with locking- or advising-

function  

As well as an information-scheduling function, some workload managers have 

a locking function (i.e. a high level mitigation function) which interrupts by locking-

out system that is associated with non-driving activities, to help drivers to focus on 

primary driving task. This strategy is preferred in situations where drivers are found 

to engage in in-vehicle tasks as long as the driving demand is relatively low. It does 

however has the disadvantage of potentially increasing driver annoyance and thus 
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the degree of distraction especially when the driver attempts to resume engagement 

with the non-driving related task that was interrupted or locked (Donmez et al., 

2006b). An example of a such support system recently on market is the Ford’s Do 

Not Disturb feature (Ford Motor Company, 2011) which is aim to reduce distraction 

among teenage drivers.  

Alternatively, the workload managers developed by Delphi Electronics under 

the SAVE-IT Program, could provide feedback to drivers regarding the degree to 

which they are engaged in a non-driving task. For example, an “advising” 

background sound could become more intense as vehicle speed and traffic density 

increase. This real-time function is commonly coupled with other strategies such as a 

locking function which is available in the Delphi Electronics workload manager 

system. Provision of feedback on how well driver’s performed in driving is also 

available in certain workload manager system such as the Scania Driver Support 

system. Although an advising-function is a lower level of intervention as compared 

to a locking-function, such a strategy may increase driver annoyance and possibly 

distraction if the demands of ignoring the “advice” become a burden. A list of 

workload manager systems discussed below are selectively chosen to highlight the 

current work alternative workload manager system who examine locking and 

advising functions. It is worth noting that the list is not exhaustive and serves the 

function on emphasising research gaps which are to be discussed in relevance to the 

work contribution of this thesis as discussed in Section 3.3. 

 

I. Delphi Electronics- SAVE-IT Project 

Donmez et al. (2006b) conducted a simulator study to compare the effects of an 

advising strategy and a lockout strategy to mitigate the demand of visual and 

auditory IVIS tasks following the approach of triggering conditions such as a curve 

ahead or lead vehicle braking events. In both strategies, the workload manager 

presented either visual information (a red bezel on the IVIS that stayed lit during a 

triggering condition) or auditory information (a periodic clicking noise that persisted 

during a high demanding condition). Results indicated that mitigation strategies have 

mixed effects depending on the type types of in-vehicle system and the system 

demands. In the study, the visual advising strategy was found to be more disruptive 

as compared with the visual locking strategy, whereby drivers were maintaining 
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higher speeds when manoeuvring the curve sections, leading drivers to more risky 

behaviour.  

Following these findings, Tijerina et al. (2011) conducted a simulator based 

study to investigate several different workload mitigation strategies on driver 

braking response to a surprise forward collision hazard. The strategies included no 

in-vehicle task or distraction (baseline); task allowed; task interrupted (i.e. locking 

of the screen following presence of a hazard); and task denied. Participants were 

requested to conduct a visual in-vehicle task and during the conduct of the task, a 

vehicle parked on the side of the road would suddenly pull into the participant’s lane 

requiring the participant to brake to avoid a collision. Results indicated that the task 

interrupted condition was more disruptive as the variability of braking reaction times 

were larger than in task denied conditions, indicating that drivers were taking longer 

time to process the reason underlying the task interruption. The study concluded 

with suggestion to avoid task interruption strategy (i.e. locking of the screen) if a 

task is already underway and in situations where driving conditions suddenly grow 

more intense.  

 

II. Ford 

 In 2011, Ford introduced the ‘Do Not Disturb’ function (Ford Motor 

Company, 2011) in their vehicles, which aimed to reduce driver distractions among 

teen drivers. With the function enabled, the system would automatically sent all 

incoming calls from a bluetooth-paired phone to voicemail and stores new text 

messages for later viewing. Different from the information-scheduling workload 

manager systems, the driver has the choice to choose to have this function enabled 

by having the driver support system named the SYNC to be paired with all nomadic 

devices such as cell phones and mp3-players.  

 

III. Scania (Heavy Good Vehicles- Trucks and Buses) 

 The instrument cluster (ICL2) used in the latest Scania trucks is capable of 

handling three levels of criticality of messages; red (for high priority messages 

relating to serious vehicle damage which may compromise traffic safety), yellow 

(warnings or active functions) and white (for general informational messages which 

are non-critical) (Osbeck and Åkerman, 2010). If there is a queue of messages to be 

presented, the highest priority messages will be presented first for at least two 
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seconds followed by the next highest priority message in order. This way the driver 

never misses any information since it is just delayed until the highest priority 

messages have been acknowledged. Recent development in Scania trucks’ workload 

manager systems involves expanding the traffic situations and varying modality of 

secondary tasks which are considered extra demanding.  

 

3.2.3 Simulation techniques related to driver workload estimation   

 Following the examples discussed in Section 3.2, it can thus be concluded 

that workload managers are now attempting to account for the fluctuations of driver 

workload in the dynamic traffic conditions to improve the efficiency of the systems 

in managing real-time driver workload. With the increments in traffic density and 

the inherent fluctuations of traffic demand, it is becoming important to be able to 

predict or anticipate sudden increases in workload or short but high peaks workload 

which are potentially dangerous (Figure 3.7). Moreover, the mismatch of drivers’ 

capability and driving demand (i.e. usually due to errors in drivers’ own judgement) 

is often the key issue in the occurrence of road accidents (Amditis et al., 2006).  

 

 

 

 

 

 

 

Figure 3.7: Estimation of epochs of driver workload in dynamic traffic condition 

(Source: Hancock and Chignell, 1988) 

 

 To predict operator’s mental workload, there are some studies that use an 

analytical method. Although the analytical workload method is beyond the scope of 

this thesis, it is worth noting that cognitive architectures such as Adaptive Control of 

Thought- Rational (ACT-R, Salvucci et al., 2001) and Queuing Network- Model 

Human Processor (QN-MHP, Wu et al., 2008) have been used in several studies to 

predict mental workload. For example, Wu et al. (2008) developed a driver 

workload manager based on a queuing network model of human cognitive processes. 
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This model used micromodels of elementary perceptual, cognitive, and psychomotor 

processes arrayed in a queuing network that sampled data about the driving 

environment and carried out operations on the data. The processing times were 

estimated from the micromodels and the benefit of this cognitive modelling 

approach was that it could optimally delay task sequencing rather than simply lock 

out functions or reroute messages. This simulator based study investigated the 

benefit of a workload manager by addressing  performance on a secondary task 

performed by police interceptors and found that subjective workload assessment was 

lower when the workload manager was active (i.e. optimal delay of tasks based on 

the driving demand i.e. straight or curved road segments at either 45 mph or 65 

mph). Overall, the average utilisation of a sub-network of QN-MHP was regarded as 

a natural index of mental workload and their QN-MHP workload model could 

predict each NASA-TLX sub-factor rating with good accuracy. While these results 

contribute to the road safety, a more common technique i.e. empirical testing is 

preferred in this thesis.  

As discussed in Chapter 2, empirical measures of mental workload are the 

most common, useful and reliable methods to be applied as they provide a genuine 

reflection of the real-world happenings. In this kind of approach, a variety of 

methodologies can be implemented, for example primary task, physiological and 

subjective measures. In the evaluation of different workload management functions 

for instance, empirical technique provides useful information regarding the 

beneficial effect of information-scheduling function on driving performance in both 

longitudinal and lateral controls as well as both objective and subjective workload as 

discussed in Section 3.2. Since the objective of this research is to explore the real-

time detection of driver workload in varying traffic conditions and then to offer 

guidance regarding the time-scheduling of information to avoid overload or 

distracted situations, the primary approach in this thesis is to explore the empirical 

measures of mental workload namely, primary task, physiological and subjective 

measures in detecting temporal workload transitions. The problematic traffic 

situations will be identified through a moment-by-moment analysis of driver state 

and the management of workload will be based upon accurate predictions about how 

certain tasks will impact upon driver state (in terms of workload).  



- 69 - 

Video 

Medium 

0 ≤ 80m 

Short Range 

(Radar,  Lidar) 

Short 

0.2≤ 20m 

Infrared 

Night vision 

range 

≤ 200m 

Long Range 

Radar 

Ultralong 

2 ≤ 150m 

3.3 Gaps in the Literature on Workload Manager Systems 

Following the current development of workload manager systems as discussed 

in Section 3.2, it can be concluded that there is still a lack of research in this area 

especially in investigating the influence of traffic demand on driver workload. The 

traffic conditions examined are limited and requires a more systematic exploration of 

the traffic demands. Also, given the complexity of the proposed model in Table 3.1, 

the number of relationships within it and the number of potential parameters, it is 

thus sensible to decompose the model so that not all parameters are tested and 

verified at once. A good workload manager system would be required to have the 

ability to determine the driver’s actual workload level by estimating and 

differentiating the load; for example it is important the system is capable of 

distinguishing between driving on a curvy road or negotiating a dangerous 

intersection as well as the load incurred on the driver. With the availability of 

varying types of sensors in a vehicle (Figure 3.8), the analysis of the vehicle 

surroundings has become more reliable and widely available. The workload manager 

however cannot be omniscient about the environmental situation and may make 

errors in interpreting driver actions and capabilities.  

 

 

 

 

 

  

 

 

Figure 3.8: Range of some of the sensors available in the vehicles to analyse the 

vehicle surroundings (Source: Erséus, 2010) 

 

In some situations, drivers may manage high workload peaks by adapting to 

the driving situation by, for example, slowing down or refraining from conducting 

secondary tasks such as answering the phone. Studies however have shown that 
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drivers may not always be able to anticipate a demanding or risky situation and adapt 

accordingly and some drivers find it hard to resist answering an incoming phone call 

even in very demanding driving situations (Green, 2004; Lansdown, 2012; Jamson 

2013). It is therefore important to empirically predict mental workload through 

various measures during the early stages of system development to ensure full 

benefits of the support system to the driver. Although this would be a substantial 

task requiring large number of drivers to be observed over a considerable amount of 

driving, the benefit gained would be the delivery of a truly intelligent workload 

manager system.  

In the next section, the research gap with examples of current available systems 

will be highlighted and discussed, which also forms the objective of the simulator 

studies examined in Chapter 4 to 6 of this thesis. 

 

3.3.1 Quantitative standardised measures of the traffic complexity 

 With the advancement in current available sensor systems to assess drivers’ 

physiology and traffic environment, there is a great effort to explore and interpret the 

interaction of DVE systems on drivers’ mental workload. Some recent literature 

which examined the human-vehicle interactions focused on investigating the effect 

of IVIS on driver’s mental workload and exploring the effect of individual 

differences such as age, skill and experience. However driver perception of 

workload is affected by factors such as road geometry, road type, lane driven, and 

traffic volume (Tsimhoni and Green, 2004; Schweitzer and Green, 2006). And thus, 

it is important to be able to model driver workload perception and prediction 

because the perceived workload will influence a driver’s willingness to engage in  

secondary tasks (Schweitzer and Green, 2006).  

 Many specific road characteristics concerning the traffic environment 

(including road curvature, road marking, roadside advertising, etc) have also been 

considered. For example visual demands on the driver increase linearly with the road 

curvature, and maximum demand occurs near the point of curvature (Nowakowski et 

al., 2002; Tsimhoni and Green, 2001). Early studies (Brown and Poulton, 1961; 

Harms, 1986, 1991) have shown that driver performance varies according to the 

driving environment. Harms (1991) found that mean reaction time in responding to 
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targets (i.e. attentional demand) was strongly related to the complexity of the driving 

environment. Results showed that in higher surrounding traffic density and more 

complex driving environment (such as a village), the time response to visual signals 

increased due to greater tendency of drivers’ eyes directed toward the surrounding 

driving scene rather than the road ahead. Similarly, the study of Zhang et al. (2009) 

suggests that driving task demand increases when the number of objects in the 

forward scene increases. Demands also increased in sharp curves, highway entrances 

and exits, narrow lanes, higher speeds, and during braking manoeuvres.  

 Apart from road infrastructure, various studies have suggested that traffic 

density increases driving task demands (Antin et al. 1990, Zeitlin 1993, Dingus, 

Antin et al. 1989). For example, Zeitlin (1998) proposed a micromodel of driver 

behaviour to predict subjective task difficulty. In this study, the participants 

performed two subsidiary tasks while travelling on a mix of rural secondary roads, 

express highways and high density urban roads. Using data which includes road 

characteristics, time, traffic density, speed, weather, brake applications, subsidiary 

task performance, and subjective difficulty ratings, it was suggested that it is 

possible to equate the mental workload differences imposed by the same system 

under different conditions. In this study, driving workload was defined as having 

two components, a steady state load dictated by roadway conditions, speed, and 

traffic density and a transient load determined by the braking actuation rate.  

 Similarly, Verwey (1993b, 2000) attempted to investigate the traffic density 

factor by measuring performance on a secondary task at different times of the day 

(associated with traffic density) but found no significant effect of traffic density on 

driver’s mental workload. Evidence of increased mental workload during rush hour 

was however reported by Fairclough (1997) in which a decrease of frequency in 

overtaking was associated with reducing opportunity to select following headways 

and perform manoeuvres at leisure due to greater volume of vehicles in early-

morning journeys. In relation to this, Hanowski et al (2009) studied the relative 

frequency of critical incidents where participant drivers were at fault, as a function 

of time of day and found that there was a strong positive linear relationship. This 

suggests that as the number of vehicles increases, there is an increase in the number 

of possible encounters and so does the chance of being involved in a multi-vehicle 

incident. However using time of day to represent different levels of traffic density 



- 72 - 

may be too crude a method to investigate the size of this effect on driver mental 

workload. This thus calls for a systematic approach in estimating real-time driver 

workload. 

 The model proposed by Piechulla et al. (2003) suggests that workload is due 

to the road segment being approached. Although it suggest only very  modest 

increases in workload due to external factors such as darkness (2.6%), rain (5%), a 

wet surface (2.5%), and ice (10%), it presents quantitative workload estimates for 

real roads and for a wide range of driving situations involving a single lead vehicle. 

In contrast to the work of Piechulla et al. (2003), Green et al. (2007) considers 

multiple vehicles as traffic and reported that the Level of Service (LOS) i.e. an 

ordinal measure of traffic flow using letter A through F, with A being the best road 

condition (i.e. free flow) to F being the worst (i.e. force or breakdown flow) 

substantially affects driver’s rating of workload. The study showed that free-flow 

conditions (LOS A) imposed low workload, while LOS E (unstable flow) imposes 

the highest workload (LOS F represents stopped traffic in a queue). While Green 

(2007) highlighted the association of driver subjective workload with few 

parameters including mean distance between the participant and lead vehicle as well 

as traffic count (Figure 3.9), the study did not address the question of how dynamic 

traffic situations in real traffic would affect driver workload as the participants were 

providing ratings based on short video clips. 

 

 

Figure 3.9: Green’s et al. (2007) workload estimator equation 

 

Hence, a quantitative standardised measure of primary task difficulty is 

required as studies tend to manipulate the driving environment qualitatively. 
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Moreover, it is also difficult to link the available findings of driver-vehicle 

interactions as the traffic conditions considered are not standardised. This makes 

association between other and own research findings rather difficult. Not to mention 

that results would differ between types of studies for example, definition of high 

density traffic on-road track would differ from the simulated high density traffic in 

simulator studies, but also between different simulator studies.  

 

 

3.3.2 Exploration of the benefits of workload manager in managing 

dual-tasking conditions  

Most studies demonstrate adaptive behaviours in the driving task in single 

experimental sessions (e.g., Strayer and Drews, 2004; Strayer, Drew and Johnston, 

2003; Liu and Lee, 2006; Haigney et al., 2000) whereby drivers engaged in a cell 

phone conversation increased the headway distance. However it is unknown whether 

drivers would adapt their driving behaviour (with respect to in-vehicle activities) in 

response to changes in traffic over a relatively short time frame. Drivers generally 

perceive that they can effectively partition the task into more manageable chunks 

(e.g., Wierwille, 1993). While this strategy may be effective the majority of the time, 

there are obviously instances where it would be expected to break-down (e.g., 

Hancock and Ganey, 2003). Moreover, drivers do not tend to be well-calibrated to 

their own level of performance and tend to be overly optimistic about their ability to 

perform in-vehicle activities (Horrey, Lesch and Gabaret, 2008; Wogalter and 

Mayhorn, 2005). As such, drivers may not be effective at gauging the appropriate 

times to perform in-vehicle tasks. For example, in an on-road study conducted by 

Verwey (2000), the participants were found to be incapable of judging the traffic 

situation as participants were found to conduct non-driving related tasks in unsafe 

situation despite being asked to postpone the task following an occurrence of unsafe 

situation. Similarly, Horrey and Lesch (2009) also found no interaction between the 

distracter task (i.e. initiating a hands-free phone conversation) and subjectively-rated 

demanding road sections (such as narrow roads, curve road sections or signalised 

intersections). In the study, Horrey and Lesch (2009) found that participants did not 

postpone their decision in initiating any in-vehicle tasks in all highly demanding 

traffic conditions, despite being aware of the demand of the driving situation. 
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Additionally, it is possible that increasing the number of objects (for example, 

billboards and buildings, Horberry et al., 2006) that are not central to the driving task 

has little effect on increasing the demands of the driving task because drivers simply 

ignore environmental features that are not essential to the driving task when already 

under increased load (e.g., when performing a secondary activity).  

To mitigate distractions, some vehicle manufacturers employ ‘lock-outs’ on 

navigation systems to prevent drivers from using the in-vehicle applications in 

driving situations deemed unsafe or critical. Research has shown that a locking 

strategy was beneficial in improving driving performance during engagements in 

visual distraction (Donmez et al., 2006b). However studies have indicated that such 

intervention on a task that is already underway is not advisable in driving conditions 

which have suddenly grown more intense as task interruption could potentially lead 

to higher workload. Thus in the design of an optimum support system, it is important 

to identify the problematic traffic situations and to account for the possible 

mitigation functions. It is also equally important to understand how a driver thinks 

about the system while driving the vehicle with the system enabled. While it is 

indeed difficult to provide a balanced approach between controlling the environment 

and optimising the operation of infotainment features, engineers and researchers 

from both academia and industries have recognised the importance of utilising 

mental workload in designing support systems to prioritise information within the 

vehicle and are altogether heading in the same direction towards optimising the 

support system which provides the right level of information at the right time. 
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3.3.3 Summary 

 Overall, the results from the current literature have demonstrated that 

surrounding traffic condition such as traffic density can have an impact on driver 

workload and potentially safety critical impacts on driver responses in dual-tasking 

conditions. Although various industrial and academic organisations have attempted 

to quantify the activities in car and driving situations as a way to generate workload 

estimates, there is a lack of understanding about how driver’s workload fluctuates 

with the current traffic situations. Most workload estimators utilise sensors that 

determine speed, throttle position, steering wheel angle and transmissions gear as 

surrogates for monitoring traffic on the road and driving situations. Additionally, 

physiological metrics such as heart rate, skin conductivity and temperature have 

been combined with analysis of the driving situation to gauge fluctuations in driver 

workload, but some car manufacturers have not embraced biometrics as a practical 

way of measuring driver workload. Some researchers believe that biometrics only 

work in a laboratory. To ensure that the system includes the ‘driver-in-the-loop’, 

subjective rating techniques are employed as they offer the advantages of not 

disrupting the task and ease of application. However current measures of subjective 

workload such as NASA-TLX and SWAT do not capture all the relevant aspects of 

their tasks and their application not considered appropriate for use in real-time where 

demand changes are dynamic.  

 Thus the research in this thesis will extend the studies on the area of 

estimating driver workload in varying traffic behaviour condition by exploring a 

variety of different measures to capture the epochs of driver workload. Based on the 

findings from Chapter 4, Chapter 5 and Chapter 6 attempt to advance on the work 

described in Chapter 4 to produce recommendations for information-scheduling 

strategies in demanding traffic conditions.  
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4 Chapter 4 

Exploratory Study: Effect of Traffic Complexity on Driver 

Workload 

4.1 Study Aims  

 This chapter outlines the first of three studies conducted on a driving 

simulator. This study was undertaken to develop and test the following: the traffic 

behaviour required for the driving simulator experiment and the effects that these 

traffic behaviours might have on driver workload by collecting a wide range of data. 

This study also provided the opportunity to refine the workload measures to be used 

in later experiments. 

4.1.1 Identification of measures 

 A significant amount of driving occurs in traffic and the amount of traffic not 

only influences the visual demand imposed on drivers but also to some degree the 

behaviour of the drivers (Zaidel, 1992). The traffic environment represents an 

important and commonly experienced social space that constitutes of anonymous 

individuals with a variation of driving behaviour traits, who interact with one 

another within a set of written and unwritten rules. The collective behaviours of 

other drivers represents the driving culture and has direct interaction and impact on 

an individual driver. While for an individual driver, his skills and experience play 

important roles in structuring his expectations and enable him to formulate 

hypotheses about the adjustment that other road users may force him to make in his 

driving (Saad et al., 1999). Wilde (1976) provides an extensive review of social 

interaction patterns which places various social factors in perspective and discusses 

how they interact with other factors in driving. For example, the presence of other 

drivers may increase attention when driving, especially when driving in heavy 

traffic. Others factors include expectations about the behaviour of other road users in 

obeying rules of the road and knowing how to drive properly, communication 

between drivers through use of signalling lane change as well as the social aspect of 
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invasion of one’s personal space in particularly when other drivers follow or pull-in 

too closely. Nonetheless, the number as well as the repeatability and controllability 

of studies that involve driving in dynamic traffic has not been overwhelming. This 

first experiment aimed to define an appropriate indicator for driver workload in 

varying traffic demands under the assumption that driving is demanding due to the 

amount of attention required in processing external inputs involving the surrounding 

traffic and also the need to make predictions about the roadway situation based on 

expectations about other drivers’ behaviour. In this study, visual workload is 

considered as part of mental workload which is often used interchangeably with the 

terms cognitive workload in the literature. Since the distinction between them is 

vague (De Waard, 1996) and they are often used for the same concept, it will be 

referred to as mental workload in this study. 

 As far as research in transport is concerned, there are no reported studies that 

have systematically varied complexity factors and measured the resulting workload 

in a dynamically changing traffic environment.  This study has attempted to do just 

that, albeit in a simulated context. For the advancement of knowledge in the 

modelling of driver workload, it was more efficient to undertake the study using a 

driving simulator; in an on-road study it would not have been possible to control the 

surrounding traffic or expose the participants to identical experimental conditions. 

Although simulator studies can invite criticism on the grounds of validity, the lack of 

fundamental understanding in the domain of traffic complexity and workload is 

partly due to the difficulties in manipulating it in the real world. In this case, a 

simulated environment was therefore ideal for this purpose. 

 Assessment of mental workload calls for using multiple measures together. 

De Waard (1996) described a variety of possible measurement tools for measuring 

mental workload including primary task, secondary task, self-report measures and 

physiological measures. Workload studies in traffic adopt an operator-based 

approach which consider the characteristics of the driver and interactions between 

the driver and the driving environment. With this approach, the causes of high 

workload could be examined; strategies to reduce workload can be identified and 

ultimately improve the quality of driving and driver safety.  

 Since the sensitivity of workload measures are dependent on the road and 

driving conditions, there is a need to identify valid and reliable methods for 
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assessing the fluctuations in workload while driving. Peaks in workload while 

driving might have immediate safety implications. However the ability to detect 

these workload epochs are dependent on the driving conditions. Since this study 

aimed to explore continuously the influence of the external traffic complexity on 

drivers’ workload, a variety of selected measures were identified for their suitability 

in tapping into these changes in workload. The measures considered in this study are 

highlighted in the following paragraph with the detailed descriptions of the  

measures available in Section 4.3.  

 The test is the Tactile Detection Task (TDT), a secondary task that is used to 

measure “headroom” on the primary task. This objective workload measure was 

chosen over the Peripheral Detection Task (PDT) due to a number of practical 

advantages. Firstly, TDT is suggested as a better measure of workload than PDT as 

PDT has the limitation of surrounding lighting and background contrast effect which 

may introduce additional variance in detection performance and thus influence the 

measurement sensitivity (Engström, 2010). Additionally, PDT detection 

performance may also be impaired due to attention switching as visual resources are 

also utilised in monitoring the changes in surrounding traffic. This may lead to 

inaccurate results as the aim of the measure is to enable discrimination of demands 

in ‘just driving’ rather than discriminating the effect of driving of both with and 

without secondary task load. Since the measures utilised in this study should not 

interfere with the visual demand required in driving task, TDT may thus in this case, 

thought to be more appropriate detection task. 

 Subjective measures of workload are valid, easy to use and widely adopted 

(Sheridan, 1980 also cited in Wickens, 1984; Gopher and Browne, 1984, Gopher and 

Donchin, 1986). To probe the perceived workload as a whole, both uni-dimensional 

and multi-dimensional subjective workload questionnaires i.e. RSME (Zijlstra, 

1993) and NASA-RTLX (Byers et al., 1989) were administered at the end of a each 

of the three runs in this study. To explore the temporal workload imposed by the 

traffic demand while driving, a continuous subjective rating task (CSR) was 

administered during driving, whereby participants were requested to provide a 

workload rating via a 10-point rating scale (as described in data collection Section 

4.3.1(ii)). This is to enable the collection of subjective workload without interrupting 

the driving tasks and possibly jeopardising objective performance. Moreover, in a 
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highly controlled experimental setting, the ability to prompt participants to provide a 

workload rating to a pre-specified schedule is superior to that of conventional post-

drive scales, given the natural fluctuations in traffic complexity that can be observed 

in real-life settings.  

 Additionally, physiological measures provide an alternative and more 

objective perspective on workload and effort. Although there are various selection of 

physiological measurements which are sensitive to driver workload such as heart 

rate (Mulder et al., 1999), brain activity (Wilshut, 2009) and eye behaviours (Recarte 

et al., 2008) (refer Section 2.2.1.3 for the descriptions of physiological measures), 

the feasibility of the measures in momentary analysis of driver workload may 

influence the choice of the measures. Heart rate, for example, would require wider 

window length (i.e. at least 30 s to 40 s) to detect momentary changes in mental 

effort (Mulder, 1992) and thus to distinguish changes in mental effort in the mid-

frequency band. Since the momentary workload is measured at shorter intervals (i.e. 

every 8s in the present study), comparison between measures such as heart rate 

variability (HRV) and other measures such as subjective workload ratings, may 

prove to be difficult due to the unequal window length. Other factors to be taken into 

consideration include the availability of equipment and the expertise in utilising the 

equipments to collect data. Since the remote eye-trackers were readily available in 

the simulator, eye behaviour such as blink frequency, blink duration and pupil 

diameter were also measured. Eye blinks are believed to be an indicator of both 

fatigue and workload. Number of blinks (Recarte et al., 2008) and blink duration 

(Veltman and Gaillard, 1996; Ahlstrom and Friedman-Berg, 2006) were suggested to 

be related to aspects of visual attention required by the driving task. Pupil dilation 

has also been found to reflect changes in task variation such as cognitive tasks 

(Beatty and Lucero-Wagoner, 2000) and mental tasks (Recarte and Nunes, 2000).

 With the use of multiple measures together in this first experiment, the 

relationship between the dynamic traffic behaviours and driver workload was thus 

explored. It was hoped that relationships could be found between workload measures 

within particular traffic conditions.  
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4.1.2 Experimental hypotheses 

 The main experimental hypothesis was that the changes in surrounding 

traffic complexity would affect driver workload. Driver workload was predicted to  

increase with increasing traffic flow and presence of lane changes.   

 The secondary experimental hypothesis was that the momentary traffic 

complexity can be tapped into using different workload assessment techniques. This 

present study compared techniques encompassed of three rating scales (RSME, 

NASA-RTLX, 10-point rating scale), six driving parameters (mean speed, standard 

deviation of speed, distance headway, time headway, high steering frequency 

component, and standard deviation of lateral position), secondary task performance 

(tactile detection task reaction time) and three physiological measures (blink 

frequency, blink duration and pupil diameter). Detailed insight into the merits of 

these workload assessment techniques for the driving task will aid in understanding 

workload in varying traffic complexity manipulated in this study and also in the 

design of subsequent studies of driver workload. 

4.2 Methods 

4.2.1 Simulator  

 The experiment took place in the moving-base, high-fidelity University of 

Leeds Driving Simulator (UoLDS) as shown in Figure 4.1.  

 

 

Figure 4.1: The University of Leeds Driving Simulator 
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The UoLDS is based on a complete 2005 Jaguar S-type vehicle housed within a 

dome, with all of its basic controls and dashboard instrumentation fully operational. 

The vehicle’s internal Control Area Network (CAN) is used to transmit driver 

control information between the cab and one of the eight Linux-based PCs that 

manage the overall simulation. The simulator system collects data relating to driver 

behaviour (vehicle controls), the vehicle and other autonomous vehicles in the scene 

at a rate of 60Hz.  

 To simulate realistic driving cues, the 80W 4.1 sound system is used to 

provide audio cues of engine, transmission and environmental noise. The projection 

system within the dome provides a seamless total forward field of view of 250°. The 

central rear channel (60°) is viewed through the vehicle’s rear view mirror, whilst 

LCD panels are built into the Jaguar’s wing mirrors to provide the two additional 

rear views. The vertical field of view of 45°. 

 Additionally, driver’s visual behaviour is tracked using remote cameras 

mounted on the dashboard. The Seeing Machines faceLAB (version 4) eye-trackers 

housed within the vehicle cab collect data at 60Hz. The quality of eye tracking was 

monitored throughout the experiment, and calibration undertaken before each drive.  

 

4.2.2 Participants  

 Drivers were recruited on the basis of a volunteer sample scheme, drawn 

from both an existing database, responses to University of Leeds’ website and local 

poster advertisements seeking volunteers. Forty six drivers participated in the study 

(22 males, 24 females, Rangeage = 25-50 years old; Mage= 36; SDage= 7.1). All 

participants were holders of a valid driving license for over five years, with reported 

minimum annual mileage of 10000 miles. They all had normal or corrected-to-

normal vision. Ten participants did not complete the experiment due to simulator 

sickness and simulator technical complications. The breakdown of the thirty-six 

participants (18 males and 18 females; Rangeage = 25-50 years old; Mage= 37; SDage= 

6.9) who successfully completed the experiment is reported in Table 4.1. All drivers 

were paid for their participation (£15). A sufficient number of participants is 

important for reducing between-subject variance in task performance. According to 

the central limit theorem in statistics, the distribution of a sample will be close to the 
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normal distribution when the sample size is larger than 30, regardless of the 

distribution of the population. 

Table 4.1: Statistics of participants’ demographic details 

Gender N Mage SDage Mannual mileage 

Male 18 37.0 5.709 20428 

Female 18 37.4 8.081 15333 

Note:  N= number of participants; Mage= mean age; SDage= standard deviation of 

 age ; Mannual mileage= mean annual mileage. 

 

 

4.2.3 Experimental design  

 Three roads were modelled, each being a 38km two-lane divided motorway 

where the behaviour of the traffic was dynamically scripted to change lanes, 

overtake and stay in front of or behind the participant’s vehicle.  The three roads; 

Low, Medium and High Traffic Complexity varied in their average traffic flow and 

therefore the number of lane changes that occurred as shown in Table 4.2. Examples 

of the three simulated drive are depicted in Figure 4.2. 

Table 4.2: Average traffic flow and number of lane changes for each drive 

 
Low Traffic 

Complexity 

Medium Traffic 

Complexity 

High Traffic 

Complexity 

Average Traffic Flow 

(vehicles/lane/hour) 
416 810 1654 

Total No. of Lane Changes (count) 1065 1428 2688 

 

 

Figure 4.2: The three simulated roads with varying Traffic Complexity  

(left to right: Low, Medium, High) 

 

Due to the naturalistic nature of the choreographed traffic, for the purposes of data 

analysis each road was divided into 252m long sections, i.e. the tile size of the traffic 

road used in the simulation. These road sections were defined according to their 

traffic complexity in terms of Traffic Flow and Lane Change Presence, Proximity 

and Direction.  
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i. Traffic Flow was characterised according to the Level of Service (LOS) as 

defined in the Highway Capacity Manual (2000); these range between LOS 

A (minimal traffic) and LOS F (traffic congestion). According to the 

Highway Capacity Manual (2000), the traffic in LOS F can be considered as 

erratic and unstable. As there were very few instances of LOS F present in 

this study, it is difficult to draw statistical robust conclusions. Therefore, the 

LOS F data were excluded from the analysis, leaving five levels of this 

independent variable (LOS A-E). 

ii. Presence of one or more lane changes performed by neighbouring vehicle in 

front of the participant’s vehicle were considered for every 252 m travelled. 

This created a dichotomous independent variable (Lane Change Present, 

Lane Change Absent). 

iii. When a lane change performed by a neighbouring vehicle occurred, its 

proximity to the participant was subsequently categorised as being in either 

the near-zone and far-zone. The near-zone was defined as the area between 

the participant’s vehicle and the lead vehicle within 252 m, whilst the far-

zone was defined as the area between lead and preceding lead vehicle within 

a distance of 252 m from participant vehicle (see Figure 4.3). This resulted in 

two levels of independent variable (Near-Zone and Far-Zone).   

iv. Lane Change Direction was also varied, with vehicles either moving away 

from the participant’s lane or towards it, thus creating two levels of 

independent variable (Towards and Away). 
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Figure 4.3: Description of type of Lane Change 

 

4.2.4 Driving task 

 A within-subjects design was used, whereby all participants drove all three 

roads, each at a differing traffic complexity and the order in which the participants 

drove the roads was counterbalanced among the participants. The surrounding 

vehicles consisting of passenger vehicles, highway maintenance vehicles and heavy 

good vehicles were scripted to change lanes when certain conditions were met (e.g. 

available gap). To encourage participants to interact with the surrounding traffic, 

they were instructed to drive as they would in the real world. They were instructed 

that driving in a hurried manner whilst adhering to the traffic regulations (i.e. they 

should not exceed the speed limit) would ensure that they arrived at the meeting on 

time. No extra reward was offered for compliance with the instructions. The 

following instructions were given to the participant prior to the start of the drive, 

“You are late for a meeting. You will arrive on time if you drive at 70mph.” 

 A 10 minute practice of the experimental road preceded the experiment to 

ensure a certain level of competence with the simulator controls and familiarisation 

with the rating scales and tactile detection task. 
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4.3 Data Collection  

 The first 3km of data in each road were excluded to allow participants to 

adjust to the traffic conditions and to allow the simulated traffic to build up to the 

appropriate flow level (see Figure 4.4).  The following 35km road geometry was 

consistent across the three roads, with 75% of the sections being straight and 25% 

being curved. In order to eliminate the carryover effects between sections (e.g. 

accelerating out of a curve or decelerating into one), the data recorded in the first and 

the last 26m of each 252m straight section were excluded from the analyses, as 

detailed in Figure 4.4. This resulted in there being 126 road sections for inclusion in 

the analysis. 

 

 

Figure 4.4: Data recording at each road section 

 

4.3.1 Subjective workload measures 

 Overall (i.e. after each drive) and continuous (i.e. during each drive) 

measures of subjective workload were elicited. An informal post-study interview 

session was also conducted at the end of study to expand the understanding of ease 

of use of workload ratings and to discuss factors that influenced driver’s ratings. 

i. Overall workload (NASA-RTLX and RSME). It is common to assess workload 

over a long period of time (Verwey and Veltman, 1996) as a global measure 

of operator demand. In this study, after the completion of each of the three 

drives, the two most commonly used techniques of eliciting subjective mental 

workload were administered; the Raw NASA-Task Load Index (NASA-

RTLX; Byers, Bittner, and Hill, 1989) and RSME (Zijlstra, 1993). The 

NASA-RTLX is a multi-dimensional instrument consisting of six subscales 

exploring Mental Demand, Physical Demand, Temporal Demand, Own 

Performance, Effort, and Frustration Level. Each subscale is 10-cm long 

depicting a scale of 0 to 100, with the endpoints of the response scale 
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anchored ‘low’ and ‘high’. The NASA-RTLX has successfully been used to 

measure small changes in workload (Jahn, Oehme, Krems, and Gelau, 2005), 

specifically in mental and temporal demands. Another multidimensional 

workload scale that has been developed to assess the level of workload in the 

automotive environment is the Driving Activity Load Index (DALI) (for 

example, Pauzié, 2008). Although DALI is a modified version of the NASA-

TLX, DALI is less preferred for this study as it is specifically tailored to the 

assessment of in-vehicle systems/ tasks, which is not the task demand being 

investigated in this study. The RSME is a uni-dimensional rating scale 

developed by Zijlstra (1993) to investigate mental effort only. Perceived 

mental effort is rated on a 15-cm long vertical line marked at 1-cm intervals 

and reflects a scale of 0-150. The scale has nine anchor points ranging from 

‘absolutely no effort’ (close to the 0 point), to ‘rather much effort’ 

(approximately 57 on the scale) to ‘extreme effort’ (approximately 112 on the 

scale). This scale has been widely used in traffic research (De Waard, 1996) 

since it is a fast and easy method; however it provides no diagnostic 

information about the sources of workload (Zjilstra, 1993). 

ii. Continuous Subjective Rating (CSR). As well as the workload measures taken 

post-drive, in the present study ratings were also collected continuously 

during each drive to assess the fluctuations in participant’s workload. De 

Waard (1996) noted that where performance measures might be insensitive to 

increases in workload, changes in continuous workload ratings may well give 

an indication of effort exerted. A pilot study using a 15 point rating scale 

similar to that of Schieβl (2008a; 2008b), suggested response-bias with 

participants’ scores clustering around multiples of 5. Participants also 

indicated a preference for a smaller scale and therefore a 10-point scale was 

used here. The rating scale consisted of a 1-10 point scale and was explained 

verbally to the participants as follows, “Please provide a rating on how easy 

or difficult to drive in the traffic. Low difficulty is between 1 to 3, medium 

difficulty is between 5 to 6 and high difficulty is between 8 to 10”. 

Participants were asked to provide a workload rating by an auditory prompt, 

approximately every 8 seconds (i.e. in each 252m road section).  

 

http://www.researchgate.net/researcher/2000060299_Pauzie_Annie/
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4.3.2 Tactile Detection Task 

 Performance was measured in terms of response time (RT) and error rate. An 

error is defined as a response less than 200 ms or more than 2000ms from the 

stimulus onset (Engström, 2010, pp. 93). RTs are defined as the time between 

stimulus onset and response, and are calculated for correct responses only. RT is 

used as the main performance metric, since it is difficult to interpret RT data at low 

hit rates (Engström et al., 2005). According to Merat, et al. (2006), the hit rate must 

be above 70% for a data segment to qualify for analysis. Therefore, hit rate is mainly 

used as an indicator of the quality of the measure (i.e. to identify whether the set of 

data from a participant can be used for analysis). 

 Engström et al. (2005) has shown that TDT is sensitive to small variations in 

non-visual cognitive loads such as answering biological questions (Engström et al., 

2005) or counting up by two (Mattes et al., 2007). Results also indicate that TDT 

does not seem to have any major impact on driving performance and any major 

impact on visual behaviour (Engström et al., 2010). Since this study attempts to 

examine the short-lasting variations in workload induced by increasing complexity 

of driving task (higher traffic density), TDT was investigated to see whether this 

approach was sensitive to short lasting peaks in workload.  

4.3.3 Physiological measures 

 Van Orden et al. (2001) found oculomotor parameters such as eye blink 

frequency and pupil diameter could be combined in multi-factorial index to detect 

overload conditions. The challenge is to determine whether these oculomotor 

metrics can be generalised across tasks and varying levels of task difficulty. In order 

to optimise the significance of the pupil data, the luminance of the screen was kept at 

a constant level of 100 lux. Both mean blink rate and average change of pupil 

diameter were measured over each road section as described in Figure 4.4. 

i. Blink Frequency and Blink Duration 

Studies have shown that blink of the eye (i.e. the rapid closing and reopening 

of the eyelid) is affected by both mental workload and visual demand, with 

the former leading to blink frequency increase and the latter to blink 

frequency inhibition (Recarte et al., 2008). This thus suggests that an  

increase of visual demand required by the driving task could lead to a 
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decrease in blink frequency. Apart from the blink frequency, the blink 

durations, typically between 40 and 200 milliseconds in length, were also 

examined in this study. 

ii. Pupil Diameter Changes  

Pupil dilations have been observed to increase with increased cognitive 

loading, such as processing of discrete sentences (Just and Carpenter, 1993), 

or talking and calculation (Recarte et al., 2008). Since human pupils dilate as 

a consequence of mental and emotional events (Beatty and Lucero-Wagoner, 

2000) and tends to be indicative of increase demand for information 

processing (Kahneman and Beatty, 1966; Beatty and Wagoner, 1978), 

fluctuations of the pupil diameter can thus be associated with changes in 

workload. As discussed in Section 2.2.1.3, the mean pupil diameter or 

average change of pupil diameter, is a common pupillometric measure and is 

suggested to be more resistant to noise than the ICA method in tracking load 

changes on time scales of seconds due to the averaging process (Palinko et 

al., 2010; Ewing and Fairclough, 2010). A remote eye tracking system was 

utilised to collect pupil diameter measure, owing to it being less obtrusive 

and easier to use than head-mounted eye trackers. Baseline pupil diameter 

was measured for 1 minute for which participants were required to look 

straight ahead. Pupillometry data were pre-processed to remove blinks and 

artefacts due to tracking failures (i.e. eliminating readings of 0 or near 0). The 

change of pupil diameter measured in this study was adapted from Palinko et 

al., (2010), as follows:   

Pupil Change (PC) = (Pupil diameter - Baseline)/Baseline 

An average change of pupil diameter (ACP) for each road section (as 

described in Figure 4.4) was calculated  by taking the average of this measure 

over a time period.  
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4.3.4 Driving Performance 

 During the trials, driving behaviour in terms of speed, steering and vehicle 

position (lateral position, time headway) was sampled and calculated for each road 

section (each 252 m) as detailed previously in Figure 4.4. Curved sections (which 

comprise of 25% of the total sections) were removed when examining the lateral 

control measures.   

i. Mean and Standard Deviation of Speed.  

Ratings of workload systematically increase with speed (Fuller, McHugh and 

Pender, 2008) since task difficulty has been suggested to be analogous to 

mental workload (Fuller, 2005). Since very little change of speed occurs in 

the case of roads with constant geometry (straight or low curvature roads), 

standard deviation of speed would be an indication of changes in traffic 

conditions (Cacciabue, 2007) suggesting variation in driving demand while 

controlling the vehicle. This is particularly applicable in more dense traffic 

conditions where space is restricted, causing drivers to proceed more 

cautiously with lower speed. 

ii. Mean Distance Headway and Time Headway 

Headway is a measure of longitudinal control to understand whether a 

following vehicle is travelling too close to a lead vehicle compared with a 

recommended safe following distance (Roskam et al., 2002). In previous 

studies of estimating driver workload, Green et al. (2011) suggested that 

distance from the lead vehicle should be considered when measuring the 

influence of other road users on driver workload and this measure of distance 

was included in workload estimator equations in the SAVE-IT project 

(Green, 2011). Since the continuous workload ratings collected in this study 

requires the driver to constantly monitor the surrounding traffic, distance 

headway is selected for in-depth analysis to investigate the possible influence 

of overall distance headway on driver workload. In this study, distance 

headway is defined as the distance from the front bumper of lead vehicle to 

the front bumper of the following vehicle. Additionally, time headway which 

is defined as the time taken to pass the same point by taking into 

consideration of the vehicle speed, is also considered in this study for 

comparisons over conditions.  
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iii. High Frequency Component of Steering Angle Movement 

A detailed analysis of lateral deviation performances can be conducted by 

examining the variation of steering wheel angle. Analysis of the means of a 

spectral analysis of the steering signal requires an initial transformation of the 

signal to a frequency domain (by means of Fourier transform), prior to 

analysing those frequency bands affected by different factors. Mc Lean and 

Hoffman (1975) found that the frequency content in the 0.35-0.60 Hz band is 

sensitive to variations in both primary and secondary task load, and is thus an 

effective indirect measure of the driver workload since any variations on 

drivers’ attention affect the steering wheel frequency variation (Östlund et al., 

2004). In this study, the high frequency component is defined as the 

proportion between the power in the frequency band between 0.3 and 0.6 Hz 

and the total steering activity signal (i.e. power of frequency band between 0 

– 0.6 Hz).  

iv. Standard Deviation of Lateral Position  

Lateral position variation is influenced by unintentional lateral variations 

caused by the difficulty to drive within the safe path of travel. SDLP is a 

primary task performance measure which is sensitive to high workload in 

conditions where driver performance is not optimal (De Waard, 1996). In this 

present study, it is hypothesised that significant changes in lateral position 

would be observed when driver workload increases with the changes in 

traffic conditions. In a study conducted by Green et al. (1993) that examined 

the relationship between road geometry and workload ratings, standard 

deviation of lateral position was found to correlate with workload ratings 

whereby workload was low when traffic was light or absent. In the present 

study, it is assumed that this variable is capable of detecting the driver 

workload changes caused by the impact of the surrounding traffic conditions. 
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4.3.5 Procedure 

 Upon arrival at the simulator, participants were given the participant briefing 

sheet and a consent form to fill in. Following a short briefing on the study, 

participants were escorted to the simulator and fully briefed of the operation of the 

simulator. The base and lumbar support of the seat were adjusted to ensure a 

comfortable driving position and the view of the warning messages are within the 

peripheral sight. They then drove the simulator vehicle on the motorway used in the 

later experiment and were encouraged to familiarise themselves with the use of the 

throttle brake and steering wheel. After completing a ten minutes practice drive, the 

participant then performed the first experimental drive which involves two sets of 

tasks. Figure 4.5 describes the administration of the tasks (Subjective Ratings, CSR; 

Tactile Detection Tasks, TDT) within each of the three drives (approximately twenty 

minutes each).  

 

Figure 4.5: Administration of the secondary tasks within each drive 

 

 Participants were required to first produce the subjective self-reported ratings 

(CSR) in the first half of the drive (i.e. Drive A) and then the tactile detection task 

(TDT) was presented in the second half of the drive (i.e. Drive B) (refer to Figure 
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4.5). For the SR task, participants were asked to verbally provide a rating of their 

driving demand using the 1-10 point rating scale (as shown in Figure 4.6), explained 

as representing low (1-3), medium (5-6) and high (8-10) workload. Participants were 

asked to provide this workload rating, prompted by an auditory signal, 

approximately every 8 seconds (i.e. in each 252m road section).  

 

Figure 4.6: Ten-point workload rating scale 

  

 Upon completion of the SR task, participants were then required to respond 

to the TDT. The detection task was presented via a small vibrating mechanism, 5.8 

cm x 5.8 cm x 2.5 cm (as shown in Figure 4.7) which was strapped on the driver’s 

seat and placed directly below the participants’ left thigh outside their clothing. 

Participants received a short vibration pulse of one second (at approximately every 8 

second interval) and a response was required via pressing a button nearest to the left 

index finger on the steering wheel. Detection performance was measured in terms of 

response time (s) and missed signals (%).  

 

 
Figure 4.7: The position of the vibrating mechanism for tactile detection task 

during study 

 

 During piloting, the tasks were counterbalanced among the participants. 

However results indicated that data were contaminated as with participants became 

confused about the order of the next task. To avoid this issue in this present 

experiment, each of the drive began with the rating task followed by the tactile 

detection task. 

 After the completion of the first drive, participants were required to fill in the 

NASA-RTLX and RSME questionnaires to indicate their perceived level of  
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workload in the drive. Participants were also required to fill in the nine-point 

Karolinska Sleepiness Scale (KSS) to evaluate their level of alertness before and 

after each drive (1=very alert, 9=very sleepy). There were two purposes for this 

measurement; firstly to evaluate whether the duration of the task was too long and 

secondly to enable changes in driving performances and subjective workload which 

are not associated to driving difficulty, such as fatigue, to be identified and to be 

taken into consideration in the analysis if required. These are repeated for the second 

and last drive. Participants were required to complete a post-study questionnaire 

after the third drive. They were then debriefed and paid for their time. 

4.4 Results and Analysis by Traffic Complexity  

 As outlined in Section 4.2.3, there were three levels of Traffic Complexity 

(Low, Medium, High). Within each of the three traffic complexity conditions (Low, 

Medium and High), two main workload measures were administered, namely 

continuous subjective rating (CSR) and tactile detection task (TDT). Drivers’ 

physiological behaviour such mean blink frequency, mean blink duration, and 

average pupil change as well as driving performance were also measured. 

 To explore the sensitivity of the chosen measures mentioned above in 

tapping into the changes across traffic complexity, highly validated subjective 

measures such as NASA-RTLX and RSME questionnaires were administered at the 

end of each traffic condition. These questionnaires will be used to benchmark the 

workload associated with each traffic complexity.  

 The exploratory data were analysed for normality of distribution and 

homogeneity of variances using the Kolmogorov-Smirnov test and the Levene’s Test 

of Equality of Error Variances, respectively. Following any violation of these tests 

(p<0.01), transformations were conducted on the data. For reporting purposes in this 

thesis, the results of these transformed data were back-transformed and interpreted 

on the original measurement scale. In the event that the Mauchly’s test indicated that 

the assumption of sphericity was violated (p<0.05), the Greenhouse-Geisser 

correction was applied to produce a more conservative p-value (Field, 2005). 
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4.4.1 Relationship between NASA-RTLX, RSME, CSR and TDT 

 To compare the workload measures, means and standard deviations of the 

measures across the traffic conditions are presented in Table 4.3. Due to the number 

of missed TDT responses, the total number of data points associated with this 

measure is less than CSR and varies across the three traffic conditions. 

Table 4.3: Descriptive statistics of workload measures between traffic complexity 

conditions 

Workload 

measure 

Low Traffic 

Complexity 

Medium Traffic 

Complexity 

High Traffic 

Complexity 

N Mean SD N Mean SD N Mean SD 

CSR 2268 2.88 0.92 2268 4.66 1.35 2268 6.37 1.09 

RT 2192 0.66 0.39 2090 0.62 0.38 2136 0.65 0.39 

RSME 36 31.61 14.57 36 51.28 18.71 36 82.42 20.01 

N
A

S
A

_
R

T
L

X
 MD 36 25.03 18.41 36 44.47 21.49 36 73.01 16.28 

PD 36 15.53 11.85 36 27.19 15.45 36 47.94 20.62 

TP 36 23.39 18.58 36 40.08 21.92 36 68.56 17.71 

OP 36 20.06 17.68 36 28.42 14.94 36 52.28 20.21 

EF 36 24.36 20.50 36 47.00 22.60 36 68.14 15.21 

FR 36 18.92 20.60 36 41.44 26.66 36 67.97 16.70 

NASA 

OW 
216 21.21 13.48 216 38.10 14.89 216 62.98 11.91 

  Note: Abbreviations: CSR = Continuous Subjective Ratings 

          RT = Tactile Detection Task Response Time (s) 

   RSME = Rating Scale of Mental Effort 

   MD = Mental Demand 

   PD = Physical Demand 

   TP = Time Pressure 

   OP = Own Performance 

   EF = Effort 

   FR = Frustration 

   NASA OW = NASA Overall Workload 

  

 Analysis of variance was performed to find out to what extent indices of 

mental workload varied as a function of the objective changes in driving demand 

(varying from low to high traffic complexity). All the data were entered into a 

repeated measures ANOVA analysis with one within subject factor (i.e Traffic 

Complexity) and one between participant variable (i.e. Gender). Table 4.4 shows the 

results of the ANOVAs for each measure.  

 Statistical analysis of the measures of workload showed a main effect of 

Traffic Complexity on the workload measures. Simple effects analysis showed that 

only the subjective ratings increases with increasing Traffic Complexity 



- 95 - 

(Low<Medium<High, p<0.05). TDT response times (RT) was not found to vary 

significantly with increasing traffic complexity.  

Table 4.4: Summary of ANOVAs for each workload measure 

Workload measure 
Traffic Complexity Gender 

F(2,68) Sig. η
2
 F(1,34) Sig. η

2
 

CSR 153.05 <0.001 0.818 1.94 0.173 0.054 

RT 1.09 0.341 0.031 1.98 0.168 0.055 

RSME 128.28 <0.001 0.790 0.96 0.333 0.028 

N
A

S
A

_
R

T
L

X
 MD 132.75 <0.001 0.796 1.30 0.262 0.037 

PD 61.25 <0.001 0.643 6.75 0.014 0.166 

TP 81.23 <0.001 0.705 0.02 0.896 0.001 

OP 44.35 <0.001 0.566 0.01 0.916 0.000 

EF 73.43 <0.001 0.684 0.11 0.743 0.003 

FR 75.21 <0.001 0.689 0.35 0.556 0.10 

NASA OW 175.86 <0.001 0.838 0.36 0.553 0.010 

Note: BOLD denotes significance < 0.05 

 

 There was significant main effect of Traffic Complexity on all six NASA-

RTLX dimensions. However, main effect of gender was only significant for  

physical demand, whereby female drivers reported significantly more physical 

demand as shown in Table 4.5. Additionally, no interaction was found. 

Table 4.5: Descriptive statistics of the physical demand across traffic complexity 

Gender 

Low Traffic 

Complexity 

Medium Traffic 

Complexity 

High Traffic 

Complexity 

Mean SD Mean SD Mean SD 

Male 13.06 12.544 21.94 11.096 40.39 19.722 

Female 18.00 10.890 32.44 17.601 55.50 19.117 

 

 To explore the sensitivity of CSR and TDT in tapping into workload,  

correlations with the two highly-validated workload measures (i.e. RSME and 

NASA-RTLX) were computed as shown in Table 4.6. Results show that CSR being 

highly correlated with RSME (r=0.720, p<0.001) and the NASA OW (i.e. overall 

NASA-RTLX)  (r=0.739, p<0.001), which confirm the convergent validity of CSR. 

TDT response times, on the other hand, has shown a moderate correlation with 

RSME and Overall Workload in Low Traffic Complexity only. For an appreciation 

of the relationships between CSR and the overall workload measures (i.e. RSME and 

NASA-RTLX), comparisons between these subjective measures are depicted in 

Figure 4.8, with RSME and Overall NASA standardized to 100 point scale for 



- 96 - 

graphing purposes. Figure 4.8 shows CSR being as good as RSME and NASA in 

tapping into workload induced by primary driving task (i.e. traffic complexity) 

Table 4.6: Pearson correlations between workload measures 

Measures 

CSR RT 

Traffic Complexity Traffic Complexity 

Low Medium High Low Medium High 

RSME 0.646** 0.553* 0.589* 0.409** 0.034 0.058 

N
A

S
A

_
R

T
L

X
 MD 0.231 0.655** 0.513** 0.101 0.122 0.202 

PD 0.080 0.214 0.078 0.162 0.017 -0.286 

TP 0.176 0.352* 0.065 0.106 0.026 0.155 

OP 0.193 0.133 0.019 0.433** 0.183 0.297 

EF 0.114 0.176 0.241 0.076 0.054 0.281 

FR 0.224 0.453** 0.232 0.031 0.024 0.101 

NASA OW 0.632** 0.583** 0.666** 0.310* 0.025 0.060 

Note: 1. N = 36 

 2. Figures shown in cell are correlation coefficients 

 3. * denotes the correlation is significant at the 0.05 level. 

 4. ** denotes the correlation is significant at the 0.01 level. 
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Figure 4.8: Workload scores across Traffic Complexity 
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4.4.2  Relationship between CSR, TDT and behavioural parameters  

 The descriptive statistics for the behavioural parameters measured within 

each drive are shown in Table 4.7. Since CSR and the TDT were performed 

separately within each traffic drive (refer Figure 4.5), two-way ANOVA analyses 

(with Traffic Complexity as a within-subject factor and Gender as a between-subject 

factor) were conducted individually for each of physiological and driving 

performance measure. For SDLP and HFS, only straight sections were analysed 

(refer Table 4.8).  

Table 4.7: Descriptive statistics of behavioural parameters between traffic 

complexity conditions 

Measures 

Drive A: CSR Drive B: TDT 

Traffic Complexity  Traffic Complexity 

Low 

Mean 

(SD) 

Medium 

Mean 

(SD) 

High 

Mean 

(SD) 

Low 

Mean 

(SD) 

Medium 

Mean 

(SD) 

High 

Mean 

(SD) 

MBF 
0.42  

(0.21) 

0.42 

(0.25) 

0.40 

 (0.18) 

0.41  

(0.18) 

0.42  

(0.19) 

0.39 

(0.18) 

BD 
0.17 

(0.05) 

0.18 

(0.06) 

0.18 

(0.06) 

0.17 

(0.06) 

0.18 

(0.05) 

0.17 

(0.06) 

ACP 
0.11 

(0.03) 

0.12 

(0.04) 

0.11 

(0.02) 

0.12 

(0.03) 

0.12 

(0.04) 

0.11 

(0.02) 

MSP 
34.63 

(2.15) 

31.74 

(1.19) 

27.74 

(0.77) 

34.40 

(1.85) 

31.56 

(1.16) 

27.66 

(0.77) 

SDSP 
0.28 

(0.10) 

0.41 

(0.10) 

0.81 

(0.14) 

0.28 

(0.11) 

0.42 

(0.13) 

0.75 

(0.16) 

DHW 
348.85 

(156.6) 

56.41 

(17.87) 

31.68 

(13.11) 

374.39 

(134.4) 

59.52 

(21.49) 

30.65 

(14.63) 

THW 
9.33 

(5.76) 

4.17 

(2.13) 

1.46 

(0.40) 

9.42 

(5.13) 

4.16 

(1.91) 

1.62 

(0.51) 

HFS 
0.46 

(0.05) 

0.45 

(0.05) 

0.46 

(0.06) 

0.47 

(0.05) 

0.47 

(0.05) 

0.47 

(0.06) 

SDLP 
0.09 

(0.03) 

0.10 

(0.03) 

0.10 

(0.02) 

0.08 

(0.03) 

0.10 

(0.03) 

0.09 

(0.02) 

Note: 1. Abbreviations: MBF = Mean Blink Frequency (Hz),  

    BD = Blink Duration (s),  

    ACP = Average Change of Pupil Diameter,  

    MSP = Mean Speed (m/s),  

    SDSP = Standard Deviation of Speed (m/s),  

    DHW = Distance Headway (m),  

    THW = Time Headway (s),  

    HFS = High Frequency Steering,    

    SDLP = Standard Deviation Lateral Position (m) 
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 The aim of these analyses was to examine the effects of Traffic Complexity 

and Gender on eye measures, driving performance, and workload. As shown in 

Table 4.8, CSR was more sensitive than TDT as CSR increases with increasing 

traffic complexity. Additionally, driving performance measures such as mean speed, 

standard deviation of speed, distance headway and time headway which achieved 

significance, were similar regardless whether the CSR or TDT was administered 

during the drive. This thus suggest no influence of workload measure on the driving 

task. No main effect of gender was found for all measures.  

Table 4.8: Effect of Traffic Complexity and Gender on primary task measures 

Workload 

Measure 
Measure 

Traffic Complexity Gender 

F(2,68) Sig. η
2
 F(1,34) Sig. η

2
 

Drive A: 

CSR 

CSR 153.05 <0.001 0.818 1.93 0.173 0.054 

MBF 0.55 0.581 0.016 1.34 0.210 0.088 

BD 1.32 0.443 0.123 0.55 0.582 0.018 

ACP 0.32 0.691 0.035 2.05 0.161 0.057 

MSP 291.39 <0.001 0.896 0.59 0.449 0.017 

SDSP 225.54 <0.001 0.869 0.94 0.340 0.027 

DHW 156.58 <0.001 0.822 0.13 0.718 0.004 

THW 54.14 <0.001 0.614 1.19 0.283 0.034 

HFS 0.26 0.772 0.008 3.36 0.076 0.090 

SDLP 3.08 0.047 0.094 1.50 0.052 0.039 

Drive B: 

TDT 

RT 1.09 0.341 0.031 1.98 0.168 0.055 

MBF 1.76 0.180 0.055 0.23 0.632 0.008 

BD 1.21 0.542 0.030 0.40 0.672 0.004 

ACP 0.89 0.661 0.092 0.32 0.731 0.002 

MSP 166.01 <0.001 0.847 0.00 0.964 0.000 

SDSP 132.93 <0.001 0.758 0.01 0.923 0.000 

DHW 94.92 <0.001 0.695 1.79 0.192 0.056 

THW 5.73 0.023 0.103 2.96 0.080 0.110 

HFS 0.55 0.581 0.016 0.96 0.335 0.031 

SDLP 2.73 0.063 0.083 0.46 0.503 0.015 

Note: 1. BOLD denotes significance < 0.05 

   2. Abbreviations: MBF = Mean Blink Frequency (Hz),  

    BD = Blink Duration (s),  

    ACP = Average Change of Pupil Diameter,  

    MSP = Mean Speed (m/s),  

    SDSP = Standard Deviation of Speed (m/s),  

    DHW = Distance Headway (m),  

    THW = Time Headway (s),  

    HFS = High Frequency Steering,    

    SDLP = Standard Deviation Lateral Position (m) 
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 Since CSR, TDT, driving performance and eye measures were measured 

continuously across the whole drive, correlations were computed to examine 

whether relationships between these measures can be established within certain 

Traffic Complexity. Correlations were computed to investigate whether variances in 

the CSR data (i.e. workload peaks and troughs) can be accounted by certain primary 

task measures. Table 4.9 shows that CSR significantly correlates with the SDSP, 

THW and DHW across all traffic complexity conditions while TDT only 

significantly correlating with certain driving parameters in low traffic complexity 

conditions (such as SDLP, MSP, THW and DHW). Among the eye behaviour 

measures, only mean blink frequency showed some significant correlations with 

CSR and TDT and were present only in moderate traffic complexity condition.   

Table 4.7: Pearson correlations between workload and behavioural measures (by 

Traffic Complexity) 

Measure 

CSR RT 

Traffic Complexity Traffic Complexity 

Low Medium High Low Medium High 

Eye Behaviour 

MBF -0.058 -0.095* -0.068 -0.108* -0.106 -0.020 

BD -0.102 -0.023 -0.087 -0.095 -0.089 -0.054 

ACP 0.022 0.103 0.122 0.032 0.0988 0.056 

Primary Task Performance 

MSP -0.034 -0.261** -0.211** -0.157* -0.003 0.020 

SDSP 0.098* 0.173** 0.168** 0.049 0.077 -0.008 

DHW -0.255* -0.354** -0.207* -0.171** -0.187** -0.015 

THW -0.144* -0.342** -0.083 -0.153** -0.160** -0.019 

HFS 0.005 0.002 0.071 0.020 0.056 0.080 

SDLP 0.023 0.154* 0.063 -0.100* -0.066 -0.062 

Note: 1. Figures shown in cell are correlation coefficients 

 2. * denotes the correlation is significant at the 0.05 level. 

 3. ** denotes the correlation is significant at the 0.01 level. 

 

    

4.4.3 Karoslinka Sleepiness Scale (KSS) 

 To identify presence of fatigue in the study, participants were required to rate 

their level of alertness by filling in the nine-point KSS, before and after each drive. 

The order of the runs (T1, T2 and T3) were counterbalanced among the participants 

with an overall of six order combinations in total. On average, all the participants 

were at a level of alertness between first and third point at the start of the drive. 

Although there were reductions in alertness (i.e. on average, one point reduction) 
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with  increased number of drives per participant, these data were not statistically 

significant. This is due to fluctuations in the level of alertness among the 

participants, depending on the type of traffic involved. For example, there were five 

participants who showed an increased level of alertness (an average change of two 

points) following the completion of T3. Additionally, participants’ level of alertness 

was reduced by an average of one point following the completion of T1 due to low-

demand monotonous driving. Since the order of the drives was counterbalanced 

among participants and all participants were given a short break following the 

completion of each drive, the effect of fatigue is therefore negligible. Moreover, all 

the KSS scores did not exceed four points and changes in KSS score did not exceed 

two points.  

 

4.4.4 Overview of the Traffic Complexity Analysis 

 In this study, the effect of Traffic Complexity was investigated for all 

measures with the aim to provide an overview of how the workload measures and 

driving performance would vary with increasing Traffic Complexity. However, no 

relationship could be established between workload and driving performance as 

correlations between these measures were variable. This may be due to the limitation 

of comparing the means between the traffic complexity drives which is too gross a 

measure which may limit the generalisation of findings. By examining the changes 

in workload and driving performance by traffic complexity conditions (i.e. drive 

completed by each participant), average changes were computed, as opposed to the 

momentary change in workload and driving performance. Additionally, such method 

does not allow for looking at whether lane changes were absent or present at a 

particular time or within each traffic flow condition.  

 Since the aim of the study was to investigate the fluctuations in workload and 

to determine which of the workload measures were sensitive to the momentary 

changes in Traffic Complexity, it may thus prove to be beneficial to subdivide each 

of the three traffic complexity drives based on road sections (as previously outlined 

in Figure 4.4) and categorise these traffic demand by Traffic Flow and Lane Change 

Presence. As shown in Figure 4.9, each traffic complexity drive consists large 

number of road sections covering all five levels of Traffic Flow (A to E). With the 
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high amount of datapoints within each traffic complexity drive, traffic complexity 

and thus momentary workload, can be tapped into more accurately. Moreover, 

categorisation of the manipulated traffic complexity by Traffic Flow (i.e. categorised 

based on the standard LOS concept) permits more reliable comparison of outcomes 

across all measures. 
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Figure 4.9: Post-hoc analysis of the distribution of number of sections per LOS 

  

4.5 Results and Analysis by Road Section   

 As shown in Figure 4.4, each 38 km traffic complexity (including 6 km 

without workload measures) was divided into 252m long sections. This resulted in 

there being 126 road sections for inclusion in the analysis. In this part of the analysis, 

all the data from the three traffic complexity drives were pooled together for data 

stratification. There were two parts of analysis in this section; Section 4.5.1 

investigates the effect of Traffic Flow, Lane Change Presence and Workload 

Measure and Section 4.5.2 investigates the effect of lane change characteristics. 

 In Section 4.5.1, these road sections were defined according to their traffic 

complexity in terms of Traffic Flow (five levels: A, B, C, D, E) and Lane Change 

Presence (two levels: Present, Absent) as well as Workload Measure (two levels: 

CSR, TDT).   
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 In Section 4.5.2 which depicts the results on the effect of lane change 

characteristics, the road sections were defined according to Lane Change Proximity 

(two levels: Near-Zone, Far-Zone) and Lane Change Direction (Towards, Away). 

 

4.5.1 Effect of Traffic Flow and Lane Change Presence 

 The following analysis consists of four parts; Section 4.5.1.1: Continuous 

Subjective Ratings, Section 4.5.1.2: Tactile Detection Task, Section 4.5.1.3: Eye 

Measures, and Section 4.5.1.4: Driving Performance Measures. Data transformation 

were conducted on the data which violated the normality of distribution and in the 

event of violation of the sphericity assumption, Greenhouse-Geisser corrections were 

used. 

 In Section 4.5.1.1 and 4.5.1.2, a three-way (5x2x2) repeated measures 

ANOVA was conducted on the CSR and TDT data respectively, with Traffic Flow 

and Lane Change Presence as within-subjects factors and Gender as between subject 

factor. The aim of the analysis was to examine whether the two workload measures 

are sensitive to the changes in the independent factors.  

 Since two workload measures were included in this study (as indicated by A 

and B in each traffic complexity as shown in Figure 4.5), the effect of workload 

measure on eye behaviour and driving performance was assessed by subdividing all 

road sections into two groups defined by Workload Measures (CSR or TDT). This 

addition of the Workload Measure (two levels) was conducted on the eye 

behavioural and driving performance data, in Section 4.5.1.3 and 4.5.1.4 

respectively, to investigate whether both datasets (related to CSR or TDT) showed 

identical patterns of main effects. A significant difference in traffic complexity effect 

across workload measures would imply the need to separate the road sections based 

on the Workload Measures administered. Therefore, a four-way (5x2x2x2) was 

conducted on the eye behaviour and driving performance data, in Section 4.5.1.3 and 

4.5.1.4 respectively, with Traffic Flow, Lane Change Presence and Workload 

Measure as within-subject factors and Gender as between subject factor.  
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4.5.1.1 Continuous Subjective Ratings 

 First, the segmented CSR data were subjected to three-way ANOVA 

repeated measures analyses. There were significant main effects of Traffic Flow 

(F(3.02, 102.61)=124.978, p<0.001, η
2
=0.786) and Lane Change Presence 

(F(1,34)=45.758, p<0.001, η
2
=0.574) on CSR ratings as shown in Figure 4.10. CSR 

was found to increase with increasing Traffic Flow and was found to be higher when 

lane changes were present as compared to lane changes were absent.  
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Figure 4.10: Mean CSR  (with standard errors) 

 

 Post-hoc polynomial contrasts showed a significant linear (F(1,34)=255.509, 

p<0.001, η
2
=0.883) and quadratic effect of Traffic Flow (F(1,34)=69.504, p<0.001, 

η
2
=0.672) on CSR. Post-hoc pairwise comparisons of CSR indicated that the effect 

of Traffic Flow on CSR was significant up to LOS D, suggesting that workload 

increases with increasing Traffic Flow (A-D) and then levels off beyond LOS D. 

This suggest that a higher Traffic Flow (i.e. from Traffic D to E), changes in this 

variable have little effect on this measure of workload. Additionally, the non-

significant interaction between Traffic Flow and Lane Change Presence (p=0.063) 

suggests that the effect of Traffic Flow on the CSR is not dependent upon the 

presence and absence of lane changes. However, there was no significant effect of 

Gender (p=0.234). 
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4.5.1.2 TDT Response Times and Percentage of Missed Signals 

 The TDT represents the objective workload measure used in this study. The 

mean response times and percentage of missed signals rate for the total of 6418 

datapoints collected were analysed using a three-way repeated ANOVA (Traffic 

Flow, Lane Change Presence, Gender), respectively. For TDT response time, no 

significant main effects were found. There was no significant interaction between 

Traffic Flow and Lane Change Presence as well as no significant effect of Gender. 

 Of the 36 participants, 9 made no errors (i.e. missed stimuli) during the 

driving scenarios and only 4 participants made more than 15 errors (out of a 

maximum of 189 stimuli). Missed rate was calculated based on the percentage of 

missed stimuli within each Traffic Flow per participant. The results indicate that the 

average percentage of missed stimuli increased significantly with the increasing 

Traffic Flow (F(2.14,72.88)=7.059, p=0.001, η
2
=0.172) and the Lane Change 

Presence (F(1,34)=7.087, p=0.012, η
2
=0.172) (Figure 4.11). No significant effect of 

Gender as well as interaction between Traffic Flow and Lane Change Presence was 

found. 
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Figure 4.11: Mean TDT percentage of missed signal (with standard errors) 
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4.5.1.3 Blink Frequency, Blink Duration and Pupil Diameter 

 In addition to CSR and TDT, other objective measures were evaluated to 

determine their suitability for use as measures of workload. Eye movement activity 

metrics such as blink frequency and pupil diameter could serve in this capacity, by 

evaluating whether they were sensitive to the changes in traffic demand such as 

Traffic Flow and Lane Change Presence. The average pupil diameter change, mean 

number of blink per second and blink duration were measured throughout the drive. 

Since CSR and TDT were administered while the eye behavioural data were 

collected, a factor of Workload Measure was also examined to investigate whether 

the workload measures had an effect on these eye behavioural data. Thus, a four-way 

(2x5x2x2) repeated ANOVA was computed for each of the measure with Workload 

Measure, Traffic Flow and Lane Change Presence as within-subject factors and 

Gender as between-subject factor.  

 Results showed that blink frequency did not vary with Workload Measure 

(p=0.380), Traffic Flow (p=0.114) and Lane Change Presence (p=0.595). These null 

effects of workload measure, traffic flow and lane change presence were also present 

for the blink duration (Workload Measure, p=0.986; Traffic Flow, p=0.768; Lane 

Change Presence, p=0.326) and average pupil diameter change (Workload Measure, 

p=0.338; Traffic Flow, p=0.117; Lane Change Presence, p=0.732). Workload 

Measure did not take part in any significant interactions suggesting that it has a 

consistent effect on eye behaviour across the range of experimental conditions 

tested. Additionally, the non-significant main effects of Traffic Flow and Lane 

Change Presence suggest that the eye behaviour measures were not sensitive to the 

manipulation in  traffic complexity. Similar to findings using workload measures of 

CSR and TDT, there was no significant effect of Gender on eye behaviour. No two, 

three or four way interactions were found.  
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4.5.1.4 Driving Performance 

 The effect of Workload Measure, Traffic Flow, Lane Change Presence and 

Gender on longitudinal and lateral measures of driving performance were analysed 

in this section. Each of the longitudinal and lateral data was analysed with a four-

way ANOVA with Workload Measure, Traffic Flow and Lane Change Presence as 

within-subject factor and Gender as the between-subject factor.   

Mean Speed and Standard Deviation of Speed 

 The four-way ANOVA described above found a main effect of Traffic Flow 

on average mean speed (F(1.79, 61.00)=193.108, p<0.001, η
2
=0.850) and standard 

deviation of speed (F(2.52, 76.55)=59.106, p<0.001, η
2
=0.635).  

 The mean trend is consistent with the traffic complexity effect, with 

increasing Traffic Flow causing a decrease in driving speed. This is because as 

traffic builds up, drivers were forced to cruise less. Post-hoc pairwise comparison 

analysis found that all significant differences (p<0.001) between the Traffic Flow (A 

to E). A similar trend was also found with main effect of Lane Change Presence on 

average mean speed (F(1,34)=48.737, p<0.001, η
2
=0.589) and standard deviation of 

speed (F(1,34)=113.63, p<0.001, η
2
=0.770). As drivers responded by rapid 

adjustment of own speed (for example, shown by lower average mean speed) in the 

presence of lane changes, this led to greater variations in mean speed in higher 

traffic complexity conditions.  

 Since the main effect of Workload Measure did not approach significance for 

both mean speed (p=0.06) and standard deviation of speed (p=0.41) which suggests 

no significant difference between the two dataset for CSR and TDT, the whole 

dataset for both mean speed and standard deviation of speed is shown in Figure 4.12. 

No significant interaction between Traffic Flow and Lane Change Presence on 

standard deviation of speed and mean speed suggesting that the main effect of Lane 

Change Presence is prominent regardless of Traffic Flow and vice versa. No two-

way, three-way or four-way interactions reached significance.  
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Figure 4.12: Mean and standard deviation of speed (with standard errors) 

 

Mean Distance and Time Headway 

 For the headway measures, there was significant effect of Traffic Flow, 

F(1.13, 38.36)=239.20, p<0.001, η
2
=0.876) on mean distance headway. Post-hoc 

pairwise comparison analysis found that all comparisons showed significantly lower 

distance headway with increasing Traffic Flow conditions.  

 Taking into consideration of the drivers’ driving speed, there was also a 

significant main effect of Traffic Flow on drivers’ time headway (F(1.79, 

60.97)=154.571, p<0.001, η
2
=0.820). Post-hoc comparisons showed that time 

headway was significantly different only in Traffic Flow A to C. Beyond Traffic 

Flow C, drivers’ did not achieve significantly lower time headway with increasing 

traffic flow. This indicates that drivers had compensated the reduction in distance 

headway in increasing traffic flow by reducing their driving speed, which thus 

resulted in non-significant reduction in time headway between Traffic Flow C, D 

and E. 

 There was also main effect of Lane Change Presence on mean distance 

headway, (F(1,34)=135.864, p<0.001, η
2
=0.800) and time headway (F(1,34)=46.864, 

p<0.001, η
2
=0.580), respectively. Results showed that mean distance was smaller in 

the presence of lane changes but participants generally kept an overall larger time 

headway. There were no significant main effects of Workload Measures and Gender 

on the headway measures. 
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 Significant two-way interactions of Traffic Flow x Lane Change Presence on 

headway measures were found; distance headway (F(1.72, 58.37)=31.119, p<0.001, 

η
2
=0.478) and time headway (F(2.55,86.57)=11.89, p<0.001, η

2
=0.259). To examine 

the interaction of Traffic Flow and Lane Change Presence, simple effects analysis 

involving pair-sampled t-tests were conducted separately for distance headway 

(Table 4.10) and time headway (Table.4.11).  

 T-test results of mean distance headway revealed significant  effect of Lane 

Change Presence in all Traffic Flow conditions whereby significant reductions in 

mean distance headway were observed when lane changes were present (Table 4.10). 

Pearson’s correlation coefficient (r) was used to give a measure of the effect size for 

each significant results (Equation 4.1). All five Lane Change Presence effects were 

strong, accounting for at least 34% - 64% of the variance in the data. 

 

Equation 4.1: Paired sample t-test effect size calculation  

(calculated using Field, 2005, pp. 294) 

 

Table 4.8: Paired sample t-test comparisons of Lane Change Absent and Lane 

Change Present distance headway 

Traffic 

Flow 

Mean difference of 

distance headway (m) 
t Sig. 

Effect size 

(r) 

A 106.32 t(35)= 7.784 <0.001 0.796 

B 46.16 t(35)= 6.752 <0.001 0.752 

C 17.36 t(35)= 4.900  <0.001 0.638 

D 11.98 t(35)= 4.230 <0.001 0.582 

E 11.78 t(35)= 5.709 <0.001 0.694 

  

With Lane Change Present, the mean distance headway is reduced by an average of 

106.33m (95% CI - 78.60m to 134.06m) in Traffic Flow A to 11.78m (95% CI – 

7.59m to 15.97m) in Traffic Flow E (Figure 4.13).  
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Figure 4.13: Mean distance headway (with standard errors) 

  

 For time headway (i.e. headway with consideration of drivers’ driving speed) 

measure, t-tests results showed that the effect of Lane Change Presence was 

significant for all Traffic Flow conditions except Traffic Flow D (p=0.114) and 

Traffic Flow E (p=0.062) (Table 4.11). The mean increment in Traffic Flow A 

(M=3.35s) was the highest in comparison to other traffic flow conditions (B and C). 

As the time headway in LOS A is larger than a threshold of 6 s (which is considered 

as non-car following), LOS A is therefore excluded from Figure 4.10 for a better 

representation of data from LOS B to LOS E. Although participants kept a longer 

mean time headway whenever lane changes were present (as shown in Figure 4.14), 

this effect of Lane Change Presence was non-significant in Traffic Flow D and E.  

 

Table 4.9: Paired sample t-test comparisons of Lane Change Absent and Lane 

Change Present time headway  

Traffic 

Flow 

Mean difference of time 

headway (s) 
t Sig. 

Effect size 

(r) 

A -3.353 t(35)= -6.874 <0.001 0.757 

B -0.569 t(35)= -5.132 <0.001 0.655 

C -0.172 t(35)= -2.524  0.016 0.393 

D -0.852 t(35)= -1.621 0.114 0.264 

E -0.722 t(35)= -1.929 0.062 0.310 
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Figure 4.14: Mean time headway (with standard errors) 

 

Standard Deviation (SD) of Lateral Position 

 Analysis of the lateral measures data (i.e. high steering frequency component 

and SD of lateral position) showed that there was significant main effect of Traffic 

Flow (F(4,136)=5.397, p<0.001, η
2
=0.137) on standard deviation of lateral position. 

Post-hoc pairwise comparison analysis found only significant differences between 

the lowest Traffic Flow A and non-adjacent Traffic Flow pair (C and D). All other 

comparisons showed non-significantly higher deviation in lateral position in 

response to higher Traffic Flow conditions (Figure 4.15). 
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Figure 4.15: SD of lateral position (with standard errors) 
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 It is worth nothing that the SDLP values presented in Figure 4.15 were values 

derived from the means of small segments (i.e. every 252m). Although the SDLP 

values are smaller than commonly reported values (i.e. 0.15 m to 0.25 m) due to the 

averaging, the main effect of Lane Change Presence (F(1,34)=5.592, p=0.024, 

η
2
=0.141) was also found to approach significance, thus indicating that participants 

deviated more in lateral position when lane changes were present (M=0.103m) than 

when absent (M=0.093m).  

 Although there was no main effect of Workload Measure, there was a 

significant two-way interaction of Workload Measure and Lane Change Presence 

(F(1,34)=6.29, p=0.017, η
2
=0.156). Simple effect analysis of the significant 

interaction effect involved paired sample t-test comparison of Lane Change Present 

and Lane Change Absent standard deviation of lateral position for each workload 

measure (CSR and TDT). Results showed that the effect of Lane Change Presence 

on standard deviation of lateral position only significant for CSR, t(35)=-3.97, 

p<0.001 with an effect size of 0.557. On average, participants deviated 0.012m (95% 

CI - 0.006 m to 0.018 m) more during presence of lane changes than they did during 

non-lane change conditions. For TDT, the increment in SD of lateral position was 

however non-statistically significant (p=0.175) (Refer to Figure 4.16). No other two-

ways, three-way or four-way interactions reach significance. 
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Figure 4.16: SD of lateral position (with standard errors) by Workload Measure 

and Lane Change Presence 
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 In regards to high steering frequency component measure, no significant 

main effects and interactions of the independent factors were found.   

4.5.1.5 Summary of statistical ANOVA analysis 

 The summary of the statistical ANOVA analysis for each of the measure is 

provided in Table 4.12 for comparison purposes. Results of the statistical analysis 

were found to be similar for both Drive A (CSR as workload measure) and Drive B 

(TDT as workload measure) whereby the associated measures showing significant 

main effects of traffic behaviours were similar, regardless whether the driver was 

conducting CSR or TDT task. This shows that the workload measures do not 

influence the driving behaviour.  

 Results on overall have indicated the sensitivity of CSR of tapping into the 

changes in traffic complexity. Few driving parameters such as speed, headway and 

lateral position, were found to vary with the independent variables, suggesting a 

possible relationship between the workload measures and the driving parameters in 

certain traffic complexity conditions. To investigate the relationship between the 

workload measures and driving parameters, correlations were computed in Table 

4.13.
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Table 4.10: Summary of ANOVAs for each measure 

Measures Data 

Workload Measures 

F(1,34) 
Traffic Flow 

Lane Change Presence 

F(1,34) 

Gender 

F(1,34) 

F Sig. η
2
 F Sig. η

2
 F Sig. η

2
 F Sig. η

2
 

Workload 

Measures 

CSR    F (3.02,102.6)=124.98 0.00 0.79 45.76 0.00 0.57 1.47 0.23 0.04 

RT    F(2.51,85.26)=2.24 0.10 0.06 0.15 0.70 0.01 0.61 0.44 0.02 

ER    F(2.14,72.88)=7.06 0.00 0.17 7.09 0.01 0.17 2.02 0.17 0.06 

Eye 

Measures 

MBF 0.79 0.38 0.02 F(2.15,73.01)=2.20 0.11 0.06 0.29 0.60 0.01 4.73 0.08 0.10 

BD 0.94 0.34 0.03 F(2.55,86.97)=0.11 0.77 0.00 0.47 0.33 0.01 0.03 0.91 0.00 

ACP 1.94 0.34 0.05 F(4,136)=1.94 0.12 0.05 0.12 0.73 0.01 0.07 0.79 0.00 

Driving 

Performance 

MSP 3.89 0.06 0.10 F(1.79,61.00)=193.11 0.00 0.85 48.74 0.00 0.59 0.57 0.46 0.02 

SDSP 0.71 0.41 0.02 F(2.52,76.55)=59.11 0.00 0.64 113.63 0.00 0.77 1.62 0.21 0.05 

DHW 0.09 0.76 0.00 F(1.13,38.36)=239.20 0.00 0.88 135.86 0.00 0.80 0.12 0.73 0.01 

THW 0.99 0.33 0.03 F(1.79,60.97)=154.57 0.00 0.82 46.86 0.00 0.58 0.02 0.88 0.00 

HFS 0.44 0.512 0.01 F(1.09,37.10)=2.08 0.16 0.06 3.52 0.07 0.09 0.02 0.90 0.00 

SDLP 3.50 0.07 0.09 F(4,136)=5.40 0.00 0.14 5.59 0.02 0.14 0.63 0.43 0.02 

Note:  1: BOLD denotes significance < 0.05
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4.5.1.6 Correlations between workload measures and behavioural parameters 

 Figures presented in the cells in Table 4.13 are Pearson correlation 

coefficients; correlations which are significant at level 0.01 and 0.05 are highlighted 

in bold. As shown in Table 4.13, the workload measures correlated with the 

behavioural data (both objective and physiological measures) in certain traffic 

complexities. A comparison between Table 4.9 in Section 4.4.2 and Table 4.13 

showed that relationships between certain measures were found to be more 

significant in certain traffic conditions when road sections were categorised by 

Traffic Flow (i.e. Traffic Flow was categorised according to the LOS, refer to 

Section 4.2.3(i)). For example, in Table 4.13, relationships between CSR and speed 

measures (i.e mean and standard deviation of speed) were found to be more 

significant in Traffic Flow B-D. Prior to this technique of categorising the traffic 

demand, presence of such relationship could only be generalised as being present in 

medium and high traffic complexity (as shown in Table 4.9). With a more refined 

way of categorising the data, the inherent fluctuation of Traffic Flow to be taking 

into consideration and thus enables the workload peaks to be detected by certain 

measures more accurately.  

 On overall, both the ANOVA analysis and correlations have shown strong 

indications of CSR being a better measure than TDT in tapping into the traffic 

demand manipulated in this study. Only CSR was also found to be sensitive to effect 

of traffic behaviour, namely the presence of lane changes. Therefore, only significant 

measures such CSR and driving performance parameters were explored in the 

following Section 4.5.2 Effects of Lane Change Characteristics. 
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Table 4.11: Pearson correlations between the workload measures and behavioural parameters 

Workload 

Measures 
Data 

Lane Change Absent Lane Change Present 

Traffic 

Flow A 

Traffic 

Flow B 

Traffic 

Flow C 

Traffic 

Flow D 

Traffic 

Flow E 

Traffic 

Flow A 

Traffic 

Flow B 

Traffic 

Flow C 

Traffic 

Flow D 

Traffic 

Flow E 

CSR 

Eye Behaviour Measures 

MBF -0.18 -0.20 -0.15 -0.14 -0.17 -0.06 -0.18 -0.06 -0.25 -0.35* 

BD -0.05 -0.02 -0.03 -0.06 -0.08 -0.11 -0.08 -0.01 -0.03 -0.04 

ACP 0.07 0.12 0.05 0.02 0.09 0.12 0.02 0.14 0.018 0.11 

Primary Task Performance 

MSP -0.01 -0.31* -0.31* -0.32* -0.31* -0.09 -0.33** -0.35** -0.31** -0.29 

SDSP 0.15 0.30* 0.41** 0.49** 0.33 0.06 0.50** 0.58** 0.52** 0.33 

DHW -0.35* -0.07 -0.01 -0.06 -0.15 -0.43** -0.19 -0.03 -0.06 -0.28 

THW -0.35* -0.04 -0.05 -0.11 -0.15 -0.38** -0.15 -0.04 -0.07 -0.33* 

HFS 0.08 -0.15 -0.07 0.01 0.05 0.11 0.000 -0.07 0.35* -0.13 

SDLP 0.15 0.18 0.32* 0.46* 0.44* 0.04 0.03 0.14 0.43* 0.46** 

RT 

Eye Behaviour Measures 

MBF -0.24 -0.22 -0.15 -0.01 -0.20 -0.35* 0.00 -0.20 -0.22 -0.18 

BD -0.04 -0.08 -0.11 -0.07 -0.18 -0.14 -0.09 -0.04 -0.07 -0.08 

ACP 0.03 0.15 0.12 0.00 0.13 0.45** 0.08 0.08 0.03 0.25 

Primary Task Performance 

MSP -0.30 -0.17 -0.01 0.10 0.29 -0.05 -0.35 0.13 0.11 -0.05 

SDSP -0.17 0.30 0.19 -0.01 -0.01 -0.03 0.46** 0.18 0.05 0.28 

DHW -0.30* -0.30 -0.02 -0.01 -0.21 -0.34* -0.04 -0.03 -0.24 0.27 

THW -0.27* -0.08 -0.18 -0.11 -0.14 -0.16 -0.01 -0.04 -0.09 -0.01 

HFS -0.06 -0.06 0.13 -0.04 -0.07 -0.01 0.06 0.13 -0.02 0.08 

SDLP -0.33* -0.07 -0.22 -0.6 0.04 -0.07 -0.18 -0.19 0.11 0.03 

 Note: 1. Figures shown in cell are correlation coefficients 

  2. * denotes the correlation is significant at the 0.05 level, ** denotes the correlation is significant at the 0.01 level. 

    3. Abbreviations:  CSR = Continuous Subjective Ratings, RT = Tactile Detection Task Reaction Time,  

       MBF = Mean Blink Frequency, BD = Blink Duration, ACP = Average Change of Pupil Diameter,   

      MSP = Mean Speed, SDSP = Standard Deviation of Speed, DHW = Distance Headway, THW = Time Headway, 

      HFS = High Frequency Steering, SDLP = Standard Deviation Lateral Position



- 116 - 

4.5.2 Effect of Lane Change Characteristics  

 Given that the presence of lane changes has an impact on driver workload 

and driving performance, further analyses were undertaken to establish what 

characteristics of the Lane Change Proximity and Lane Change Direction (see 

Section 4.2.3) were included as relevant characteristics of the lane change that 

affected workload. This analysis was only computed for the CSR measure and the 

corresponding driving parameters which were shown to be significantly influenced 

by the presence of lane change in the previous section (i.e standard deviation of 

lateral position, mean and standard deviation of speed as well as distance headway 

and time headway). With regards to Lane Change Proximity, the near-zone was 

defined as the area between the participant’s vehicle and the immediate lead vehicle 

(569 lane changes took place here), whilst the far-zone was defined as the area 

between lead and preceding lead vehicle (2147 lane changes) (see Figure 4.3). The 

lane changes performed by neighbouring vehicle were also categorised by Lane 

Change Direction (Towards or Away) (refer Figure 4.3) which is dependent on 

whether the vehicles were moving away from the participant’s lane or towards it. 

However only 31 participants experienced both characteristics of lane changes, 

therefore data for the 5 participants were excluded.  

 To examine the influence of the characteristics of a lane change, only 

mutually exclusive conditions were considered. Data relating to occurrence of lane 

changes in both zones were excluded to ensure that the effect of near-zone lane 

changes on driver workload can be differentiated from the effect of far-zone lane 

changes. Two way repeated ANOVA showed a significant main effect of Lane 

Change Proximity, (F(1,30) = 8.445, p<0.005, η
2
=0.236) on CSR scores. When the 

lane change occurred in the near-zone, CSR scored were higher than when the lane 

changes occurred in the far-zone (Figure 4.17). There was, however, no significant 

main effect of Lane Change Direction on CSR ratings. No significant interaction 

between Lane Change Direction and Proximity was found. 
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Figure 4.17: Mean CSR (with standard errors) by lane change characteristics 

 

 Although no significant effect of Lane Change Direction was found on any of 

the performance measures, there was an effect of Lane Change Proximity on mean 

speed (F(1,30)=19.586, p<0.001, η
2
=0.395) and standard deviation of lateral 

position (F(1,30)=8.430, p=0.007, η
2
=0.219). Results indicate that participants drove 

at a lower mean speed of 2.182m/s and performed more poorly in maintaining lateral 

position with an average increase of 0.024 m when experiencing lane changes in the 

near-zone. Although other factors such as the criticality of these lane changes (for 

example, time-to-collision at which they occur) could offer an explanation to 

changes in primary task performance, this factor was not explored further due to 

insufficient data for statistical testing. Table 4.14 shows a summary of the main 

effects of Lane Change Proximity and Lane Change Direction on the workload and 

driving performances. 

 

Table 4.12: Summary of ANOVAs for each measure with respect to Lane Change 

Characteristics 

Measure 
Proximity Direction 

F(1,30) Sig. η
2
 F(1,30) Sig. η

2
 

CSR 8.445 0.002 0.236 1.180 0.286 0.038 

SDLP 8.430 0.007 0.219 0.000 0.990 0.000 

MSP 19.586 0.000 0.395 0.215 0.647 0.007 

SDSP 1.864 0.182 0.059 1.409 0.245 0.045 

DHW 0.421 0.521 0.014 3.341 0.078 0.100 

THW 0.425 0.519 0.014 3.066 0.090 0.093 

Note: BOLD denotes significance < 0.05 
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4.6 Discussion 

 The present study investigates the relationship between dynamic traffic 

behaviour factors and workload measures and compares the sensitivity of different 

workload assessment techniques in measuring the momentary traffic complexity.    

4.6.1 Influence of traffic flow 

 Measures of self-reported workload elicited after each of three twenty-

minutes drives significantly increased as Traffic Complexity increased. Based on the 

correlations between the three subjective workload measures (RSME, NASA-TLX 

and CSR) and objective performance measure (TDT reaction times), it can be 

concluded that the CSR is a reliable measure of overall driver workload as shown by 

its significant correlations with the widely validated uni-dimensional RSME 

(r=0.720, p<0.001) and multi-dimensional NASA-RTLX (r=0.739, p<0.001) 

workload scales.   

 To further establish the feasibility of using different modality of  measures to 

tap into workload changes, the subsequent analysis of temporal fluctuations (by 

252m road section) in workload involved dividing the road into 252 m sections. 

Each road section was characterised by its momentary traffic flow and lane changes. 

Among the three measures, namely CSR, TDT and eye measures, only CSR was 

found to vary in the hypothesised direction, increasing systematically as traffic flow 

increased. Schieβl (2008b), who also found similar results, argued that mental load 

is higher in high traffic flow due to drivers being restricted in the actions available to 

them. Feedback from the post-study interviews in the present study indicated that 

participants rated workload higher when they experienced a ‘boxed-in’ effect with 

the presence of the vehicles, especially heavy goods vehicles in dense traffic. 

Participants also indicated higher ratings when a highway maintenance vehicle 

(misjudged as a traffic police vehicle) was present in the nearby surroundings. Other 

traffic factors which influenced their ratings included frustration when traffic was 

operating at non-normal speed i.e. when vehicles in the slow lane were moving 

faster and more freely than in the fast lane. The driving performance measures 

demonstrated changes in longitudinal and lateral control, an effect that was linear up 

to moderate traffic. However from moderate traffic to high traffic density conditions, 
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the driving task is more heavily influenced by other vehicles that required 

participants to adapt their speed and headway distance with respect to the 

surrounding traffic. Thus continuous control input from the driver as measured by 

the longitudinal driving performance measures such as standard deviation in speed 

and average headway may imply fluctuations in driver workload. 

 The two TDT measures on the other hand, were found to respond differently 

in different Traffic Flow conditions. TDT reaction times were found to vary only 

within low traffic complexity conditions (i.e. Traffic Flow A and B). Despite 

variation of demand in traffic flow conditions, the TDT response times were unable 

to differentiate the Traffic Flow conditions as good as using the subjective rating. A 

possible explanation for this might be that responding to the TDT stimuli does not 

require an evaluation of the driving demand and therefore performance in this task 

may be associated with other factors rather than workload from variations in traffic 

complexity. In this study, the measure of TDT percentage of missed signal was 

however found to be more sensitive than the reaction times whereby the percentage 

of errors increases with Traffic Flow. Literature indicating that the percentage 

missed signals measure being slightly more sensitive than the response times 

measure in detecting changes in the attentional demand, can be found in some 

studies that utilised the peripheral detection task (Martens and van Winsum, 2000; 

Feenstra, Hogema and Vonk, 2008) (see Section 2.2.1.2(ii) for a description of the 

peripheral detection task). However, these studies utilised the method to measure 

attentional demand imposed by the secondary task, rather than the primary task 

demand (i.e. traffic flow) as measured in this study. Moreover findings may vary 

depending on the design of the study and therefore, Van der Horst and Martens 

(2010) recommended that both measures (i.e, reaction time and percentage error) 

should be used when utilising an event-detection task for reliable conclusions to be 

made. 

 In addition to the measures discussed, eye behaviour measures were also 

found to be non-significant to the main effects of density and lane changes. Although 

there is a decreasing trend in the number of blinks and an increment trend in average 

pupil change with increasing traffic demand by visual inspection, these were 

statistically non-significant. The dual resource; mainly visual and cognitive aspect, 

utilised while driving in a dynamic changing environment may possibly provide an 
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explanation for these findings. In general, drivers not only have to monitor the traffic 

but also make hypotheses and predictions about the roadway situation. Due to these 

conflicting effects, these demands may have impacted on the overall eye behaviour 

measures, for example increment of the relevant amount of visual attention required 

by the driving task could lead to blink reduction (Recarte et al., 2008) but interaction 

with the surrounding traffic can be stressful and may contribute to an increment in 

blink rate. Studies have shown that blink rate slows after relaxation while increased 

in blink rate generally reflects negative mood states such as nervousness, stress and 

fatigue (Tecce, 1992). Moreover, the NASA-RTLX questionnaire findings in this 

study had also indicated an increase in frustration in relation to higher traffic flow. 

Therefore, the increase of visual demand and emotions (i.e. frustration) elicited in 

demanding traffic may off-set each other’s effects, resulting in non-significant 

effects on measures of eye behaviour.   

 

4.6.2 Influence of the presence and characteristics of lane changes 

 Additionally, this study not only wished to establish how the flow of traffic 

influenced workload, i.e. the number of vehicles that drivers were required to 

monitor, but also whether the specific behaviour of those vehicles was influential. 

Whilst undoubtedly there are other behaviours that can be considered, such as a lead 

car braking, we chose to focus on lane changes due to the relative lack of research 

observed in the literature. Moreover, drivers reported increases in workload when a 

lane change occurred in their forward field of view, with further increases when that 

lane change occurred in close proximity. This is congruent with the notion of a 

safety margin (Endsley, 1995) which influences a driver’s interactions with other 

road users under normal driving conditions (e.g. distance keeping) and in their risk 

assessment if a critical situation occurs. This concept was first conceived as the 

“field of safe travel” by Gibson and Crooks (1938) and later adapted by e.g. 

Kontaratos (1974) who defined two safety zones (termed collision and threat zones). 

If another vehicle entered these zones, then the driver undertakes an emergency 

reaction. Ohta (1993) defined these safety margins as four zones, with the most 

critical being when a following vehicle is within 0.6 s of a lead vehicle. In this zone, 

drivers experience feelings of being in danger of colliding with the vehicle ahead.  
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Ahead of this critical zone is the danger zone (0.6 s to 1.1 s headway) whose upper 

border corresponds to the minimum subjective safe following distance. The normal 

(or comfort) driving zone then extends to 1.7 s headway, beyond which is the pursuit 

zone.  

 In the current study, among the two lane change characteristics investigated; 

Lane Change Proximity (Near-Zone, Far-Zone) and Lane Change Direction 

(Towards, Away), only Lane Change Proximity was found to have significant effect 

on CSR. The lane change events occurred in all four levels of lane change 

characteristics), thus allowing the possibility of measuring the criticality of these 

lane changes and evaluating the effect of this factor on driver workload. 

Investigation of the near- and far- zone lane change indicates that proximity of an 

event has an influence on driver’s perceived workload. On average, driver’s 

workload rating was approximately one-point higher in the events of presence of 

lane changes in higher traffic demand conditions. Additionally there were significant 

standard deviation of lateral position in response to the proximity of the lane 

changes. Table 4.15 below indicates that standard deviation of lateral position and 

subjectively perceived difficulty is higher in the presence of lane changes within the 

near-zone. An investigation of the criticality of the lane changes with near-zone may 

provide some explanation on the influence of lane changes, but there were 

insufficient number of data to conduct any inferential testing.    

Table 4.13: Descriptive statistics and paired-sample comparison of Lane Change 

Proximity 

Measure 

Mean (SD) Paired-sample t-test 

Near-Zone Far-Zone t(30) Sig. 
Effect 

Size (r) 

CSR 5.111 (1.245) 4.556 (1.196) 3.235 0.003 0.508 

SD of lateral 

position (m) 
0.102 (0.024) 0.080 (0.036) 2.924 0.007 0.471 

Mean speed (m/s) 30.293 (2.149) 32.476 (1.895) -4.426 <0.001 0.628 

  

 Results from the post-study questionnaire (refer Appendix III) also supported 

the findings above whereby 50% of the participants indicated that the factor of  

‘adjacent vehicle pulling into your lane’ as the most important factor in influencing 

their driving task difficulty (i.e. subjective workload ratings). The factor of ‘lead 

vehicle braking’ was rated by 58.3% of the participants as the second most important 



- 122 - 

factor influencing driving task difficulty.  Additionally, 11% of the participants 

indicated both factors as the main influencing factor. Overall, the ‘number of 

vehicles in front’ is the least prioritise in the perceived driving task difficulty as 

compared to the behaviour of imminent traffic such as adjacent and lead vehicle. 

Figure 4.18 shows the percentage distribution of the four factors in influencing 

participants subjective ratings. Below are example of comments from the 

participants in explaining these findings;  

Participant 2: ‘Sudden lead vehicle braking and adjacent vehicle pulling into your 

  lane are both main priority as I usually prioritised based on whether 

  the lead vehicle or adjacent vehicle is nearer when changes occur.’ 

Participant 4: ‘Adjacent vehicle plays a big role as I can adjust my braking when   

  lead vehicle speed changes. But unpredictability of adjacent vehicle 

  moving in and out the lane requires me to monitor more often.’  

Participant 13: ‘I would say the adjacent vehicle pulling into your lane. The black  

  BMW pulled into my lane when I wasn’t aware that I had to brake to 

  avoid collision. That certain made me more aware of the traffic  

  around throughout the drive.’   

Participant 27: ‘I disliked vehicle pulling into my lane because I need to adjust speed 

  accordingly. Thus I would rather change lane following an   

  experience.’      

Participant 33: ‘I usually keep a long distance from the lead vehicle and constantly 

  check of up to 3 vehicles ahead of me. I gave higher ratings when the 

  adjacent vehicle moved in and out without signalling.’ 
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Figure 4.18: Most important factor in influencing driving task difficulty 

 

4.6.3 Sensitivity of Workload Measures  

 This study shows that workload is a multi-dimensional and multi-faceted 

construct whereby sensitivity of measures were found to vary according to the 

demand of traffic behaviours. Although self-report measures can be prone to 

response bias (for example, Green et al. (2011) found ratings tended to be clustered 

at lower ends of the range and significantly favoured rounded numbers), this issue 

was not found in this study as sufficient piloting was conducted to ensure that the 

scale can provide diagnostic value. The simple CSR method developed in this study 

was found to be capable of differentiating the level of workload and had proven to 

have high-face validity (as indicated by the high correlations with the highly 

validated RSME and NASA-RTLX). Findings in this study have shown that this 

method can be used not only in assessing the effect of traffic on driver workload but 

also measuring these effects in real-time.  

 On overall, TDT did not demonstrate the same sensitivity as CSR in 

measuring traffic effect. While studies have prove the sensitivity of TDT in detecting 

change in cognitive load associated with secondary tasks (Engström, 2010), this 

measure was however not found to be sensitive in detecting short-lasting variations 

changes in workload associated with changes in traffic demand manipulated in the 

present study. Similarly, the physiological measures utilised (i.e. blink frequency, 

blink duration and average pupil diameter) in this study did not vary with the 
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fluctuations in driving demand, possibly due to these measures being more suitable 

to tap into other types of effort. Moreover, it is possible that these physiological 

measures are more suitable for measuring workload over a longer period of time 

(rather than a short time interval i.e. 8s as measured in this study).  

 From the selected candidates of measures investigated in this study, CSR was 

the only measure that was found to be sensitive to all levels of Traffic Flow. Using a 

simplified rating scale (10-point rating), verbal ratings were collected on a frequent 

basis, requiring participants’ to actively assess their own workload. Therefore, 

participants’ subjective appraisal of their “feeling” of workload could be measured 

real-time using this technique. Additionally, relationships between CSR and vehicle 

parameters such as speed, headway and standard deviation of lateral position, could 

be found in certain traffic conditions. Apart from being indicators of the vehicle 

status, these parameters can be good indicators of workload change and were found 

to be in agreement with the CSR with respect to the changes in traffic demand. 

Although CSR were found to be sensitive to the influence of traffic flow across the 

different LOS, TDT was found to discriminate low traffic demand conditions only 

(as indicated by the correlations with driving performances). With a more refined 

way of categorising the data (by LOS and Lane Change Presence), results on the 

sensitivity of measures are more conclusive, whereby CSR was found to be 

comparatively more sensitive than TDT to the influence of Lane Change Presence. 

Moreover, some participants failed to respond to TDT but there were no 

observations of participants failing to respond to the prompt for CSR. This is 

possibly due to the interaction of the noise and vibration environment within the 

vehicle in the virtual environment that could lead to participants being less sensitive 

to the TDT stimuli, which further support the decision to adopt CSR as a tool to 

measure workload in subsequent experiments (Chapter 5 and Chapter 6). Despite the 

fact that there are indications that TDT is a sensitive method of measurement for 

cognitive workload (Engström, 2010), future research is still needed in order to 

specify some absolute criterion against which driving demand can be accurately 

determined, particularly in the context of international standardization.   

 Brookhuis et al. (2003) highlighted that each measure of driving performance 

has its value in determining the differing level of driver impairment. In other words, 

it is possible to capture changes in momentary workload from vehicle control 
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parameters. For example, CSR can be used to benchmark the relevant situations and 

apparent improvement or deterioration in several vehicle control parameters such as 

steering performance, speed maintenance, etc. can be examined. Jamson (1999) 

suggested that steering behaviour can be used as an indicator of driving experience 

and therefore it is possible that drivers’ momentary workload can be estimated from 

a variety of refined indicators such as steering reversal rate and steering entropy or 

other indicators such as headway maintenance (Carsten, 2007). The ability to 

estimate drivers’ momentary workload from vehicle control parameters (based on 

measures from several vehicle sensors) would help improve the management of 

driver workload in real-time and thus preventing driver overload. 

4.7 Implications of Study for the Thesis 

 This study has indicated that categorising the traffic complexity variables that 

influence driver workload and driver performance may prove useful in estimating 

driver workload as traffic demands could now be determined and weighted 

accordingly. Results from this study have validated CSR as a simple method for 

measuring real-time driver workload and have indicated traffic behaviour (i.e. Lane 

Change Presence) as being more important than Traffic Flow in causing high 

workload. Following the findings from this study, lane change characteristics could 

be explored further to examine the varying criticality on driver workload. Since this 

study showed that driving task related to changes in the traffic such as weaving 

traffic may increase momentary driver workload as measured subjectively and 

objectively, this factor can be examined further by taking into consideration of other 

variables affecting the influence of a lane change. The impact of the lane change on 

driver workload warrant further study based on this investigation. 

 While current study has shown the influence of lane change characteristics 

on driver workload, further research is needed to examine these lane change 

characteristics, such as lane change proximity, the origin of the pulling-in vehicle 

and the use of indicator, more systematically. This is to ensure that the increase in 

driver workload in this study is not a consequence of experimental settings and these 

changes can be tapped into more accurately in a more systematically manipulated 

driving environment. For example, this study was unable to accurately measure the 
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impact of a lane change as the workload rating obtained was a reflection of the 

overall driver workload every 8s interval, and not when the lane change occurred.  

 Additionally, interference from an in-vehicle task presented during a lane 

change event should be considered, especially to determine whether lane change 

effect on driver workload is shown in dual-task driving scenarios. If the presence of 

a distracter task during lane change events can have an effect on driver workload, 

there is a possible merit in the prioritising the in-vehicle task to reduce the lane 

change effect.    

 To conclude, understanding of possible problematic traffic behaviours may 

help in optimising the design of a real-time workload estimator which considers not 

only the driver’s distraction within the vehicle but also the dynamic workload 

resulting from surrounding traffic demand. Assessing and predicting poor 

performance states on a moment-to-moment basis would be useful towards 

improving an individual’s performance level, particularly on tasks  such as driving 

which requires ongoing vigilance and decision-making. As such, both of these 

characteristics will aid the design of a workload manager that is reliable and 

acceptable to drivers. 
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5 Chapter 5  

The Influence of a Lane Change Performed by a Neighbouring 

Vehicle on Driver Workload and Performance 

5.1 Study Aims 

 This chapter reports on the second of the three studies presented in this thesis 

and examines whether drivers can assess their own level of workload and where 

appropriate, delay their response to a secondary task. The study again uses a motion-

base, high fidelity driving simulator and seeks to explore the findings detailed in 

Chapter 4 with regards to the effect of lane changes on workload. The aims of the 

study are: 

 To determine the magnitude of the effects of a lane change in a single-task 

scenario by systematically manipulating three lane change characteristics, 

namely the distance gap from the participant vehicle during the cut-in (5m, 

10m, 15m, 20m, 25m, 30m), location or lane origin of the neighbouring 

vehicle (slow lane, fast lane) and use of the indicator by the neighbouring 

vehicle before the start of the lane change (indicator on, indicator off).  

 To quantify the influence of the varying lane change behaviour performed by 

neighbouring vehicle on driving difficulty using the subjective workload 

ratings and objective driving performance. Additionally, workload recovery 

time, i.e. the time required for the participant to recover from each increase 

in driving demand associated with the lane change presence is examined both 

subjectively and objectively. 

 To explore whether drivers would modify or regulate their driving behaviour 

to reduce the driving difficulty. For example, whether drivers would delay or 

postpone their engagement in a secondary task (i.e. exhibit adaptive 

behaviour) such that they coincided with the lower driving demands.  
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5.1.1 Study rationale 

 Based on learning and experience within this rather complex social 

environment, drivers develop their own expectations for the self and others 

following their experience of the typical speed, volume, flow and style of traffic 

within their area. One of those expectations that develop over time is the desired 

proximity to other vehicles.  

 Personal spaces has been defined as "the area immediately surrounding an 

individual, which is regarded as his or her own" (Sommer, 1959). Depending on the 

environment and social factors, this personal space varies in size and serves to avoid 

arousal and overload, minimise stressors, privacy, as well as serving as a form of 

defence and protection from harm (Fisher et al., 1984). The notion of personal space 

in a traffic environment (also commonly known as driver space) was introduced 

more than 20 years ago (Marsh and Collett, 1987). Recent studies have shown that 

personal space can extend from the body to possessions such as computer (Bassolino 

et al., 2010) and extend visually far from the body through extrapersonal space 

(Holmes and Spence, 2005). Similarly, driver space may also extend beyond the 

physical boundaries of the vehicle itself, and the mobility and variability of this 

space make it especially unique. However driver space in the rapid context of the 

traffic environment may be too subjective and too variable for specific dimensional 

measurement or identification of spatial evaluations. For example, drivers in specific 

traffic would adjust expectations based on the situation (i.e. drivers generally prefer 

a large space, but under a bumper-to-bumper traffic situation would adjust 

expectations to a smaller size based on the situation) (Hennessy et al., 2011). As 

such, it would be useful in understanding how drivers perceive these driving 

situations (measured via workload) and their interaction with the other road users in 

order to establish the situational factors that can accurately determine driver 

workload level and to predict the performance degradation following an event.  

 To help drivers manage difficult situations on road, traffic safety researchers 

and automobile system engineers are looking into developing intelligent system to 

regulate driver workload in varying traffic situations. These potentially demanding 

situational factors could be incorporated the workload manager ‘watch-list’ as these 

scenarios can be detected or monitored via the radar or sensors readily available in a 
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vehicle. Data captured by the vehicle can be leveraged to determine the amount of 

external demand and workload upon a given time and apply an intelligent decision-

making system (i.e. a workload manager) to simplify the driving experience.  

 One issue of pressing importance following the findings reported in Chapter 

4 regarding traffic behaviour is what characteristics of a lane change performed by a 

neighbouring vehicle influences driver workload and if so can the magnitude of this 

influence in fact be measured. Previous research has found that drivers would alter 

space preference. For example, under crowded conditions, drivers expected lower 

personal space (Baum and Greenberg, 1975). However, traffic congestion would 

alter interpretations and reactions of drivers (for example, increasing driver stress, 

revenge motivations and aggressions) and research predicted that the size of driver 

space preference would thus be greater in higher congestion conditions. This is in 

line with the finding of Lewis-Evans et al. (2010) who found that the feelings of risk, 

task difficulty and discomfort in a simulator increase only when drivers were within 

2.0 seconds of another vehicle, while Fraine et al., (2007) found that some drivers 

identified cutting in and tailgating as a "violation of personal space". As Chapter 4 in 

this thesis has shown that the driver workload increased in the presence of lane 

changes possibly due to the influences on driver’s personal space, this present study 

attempted to explore this effect by examining the fluctuation in temporal workload 

across a variety of lane change situations (i.e. whether the driver obtains information 

from the surrounding traffic either explicitly through use of formal signals such as 

the indicator, or implicitly through their behaviour such as positioning on the road).  

 Studies have already established the effect of distracter tasks on workload 

and driving performance and this study is looking to build on this by assessing the  

fluctuations in driver workload and driving performance in traffic events involving a 

cut-in performed by an adjacent vehicle. This study also attempted to explore the 

driver’s self-regulating behaviour in respond to additional distracter task in varying 

lane change conditions. For example, will the drivers be able to recognise their own 

workload in dual-task conditions and possibly delay their response to answering a 

mobile phone call in high workload conditions. In recent years, workload manager 

systems have been developed for vehicles, in order to manage distractions within the 

vehicle during driving; this study attempts to extend this work albeit in specific 

conditions relating to lane changes. Research has showed that the effects of task 
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interruptions occurring during driving are disruptive and further magnified when the 

interruption involves a secondary task requiring driver response (Monk et al. 2004). 

For example, while studies have shown that conversing using a hands-free mobile 

phone during motorway driving increases subjective workload (Parkes et al. 1993; 

Alm and Nilsson, 1994) and heart rate (Brookhuis et al., 1991), Lerner and Boyd 

(2005) found that drivers are not dissuaded from engaging in a series of in-vehicle 

activities even in challenging and traffic-heavy driving situations. Similarly, a 

questionnaire survey conducted by Lansdown (2012) found that 32.4% of surveyed 

drivers use hands-free mobile during a typical week and would still attempt to use it 

despite being aware that this activity is distracting.  

 

5.1.2 Experimental hypotheses 

 The primary experimental hypothesis is that subjective workload ratings will 

vary according to the three lane change characteristics; lane change 

proximity, lane origin of the cutting-in vehicle and indicator usage. Firstly, it 

was hypothesised that the nearer the lane change cut-in occurs, the greater 

driver workload will be. Secondly, there will be differences with respect to 

the origin of the pulling in-vehicle i.e. between vehicle pulling in from the 

slower lane and from the faster lane. Thirdly, driver workload is moderated 

by the use of the indicator i.e. driver workload is lower when the 

neighbouring vehicle uses the indicator use prior to starting the lane-change. 

 The secondary experimental hypothesis is that driver response to the 

secondary distracter task would not vary across lane change conditions. This 

hypothesis was constructed based on the question whether drivers are 

sensitive to the increased task demands as reflected in drivers’ ratings of 

workload. 
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5.2 Pilot Study: Testing of Scenarios 

 There were two aims of this pilot study. Firstly, piloting was conducted to 

test the script and the realism of the lane change characteristics simulated. Secondly, 

it was hoped that the piloting would provide some evidence of whether the use of an 

auditory prompt is efficient for measuring workload variation in relation to the lane 

change characteristics manipulated. 

 

5.2.1 Participants 

 Participants consisted of twelve experienced male drivers, recruited on the 

basis of a volunteer sample scheme, drawn from both an existing database, responses 

to University of Leeds’ website and local poster advertisement seeking volunteers. 

Participants were aged between 25 to 40 years old (mean age = 31 years, SD age = 

5.15 years) and they all possessed a valid UK driving license and had been driving 

regularly for the previous 5 years with a minimum annual mileage of 10,000 miles. 

Drivers were awarded a payment of £15 for their participation.  

 

5.2.2 Apparatus 

 The study used the same apparatus as utilised in Study 1, which was the 

motion-base, high-fidelity University of Leeds Driving Simulator. The driving 

simulator’s vehicle cab is a complete 2005 Jaguar S-type model with all driver 

controls fully operational. Participants had full control of the longitudinal and lateral 

motion of the vehicle and were encouraged to operate the controls as they would in 

their own vehicle. The vehicle is right-hand drive and uses an automatic 

transmission (refer Chapter 4, Section 4.2.1 for the description of the simulator 

controls and sound systems). 
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5.2.3 Method 

5.2.3.1 Experimental Design 

 A three-lane motorway was simulated with occasions of adjacent vehicle 

(either from the slow or the fast lane) pulling in front of the participants. Vehicles in 

the slow lane were programmed to maintain 60mph while fast lane vehicles travelled 

at 70mph. Three characteristics of the lane changes performed by the neighbouring 

vehicles were manipulated: Lane Change Proximity (5, 10, 15, 20, 25 or 30 metres 

in front of the participant), Lane Origin(Slow or Fast Lane) and Indicator Usage (On 

or Off). The adjacent vehicle was programmed to pull in at a certain distance 

measured as the gap (LCp, measured in metres) between the participant vehicle and a 

cutting-in vehicle as shown in Figure 5.1. To minimise fatigue, the lane change 

events were divided into two shorter drives; each contained twenty-eight events 

involving a mix of lane change conditions to avoid predictability of the event. The 

two drives were counterbalanced among the participants.  

   

Figure 5.1: Lane change descriptions showing vehicle overtaking either from slow 

lane (left figure) or from fast lane (right figure), LCp = Lane Change Proximity, 

P= participant vehicle 
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5.2.3.2 Traffic Manipulation 

 Traffic was dynamically scripted to change lanes when certain conditions 

were met (e.g. available gap). To ensure that the workload measured accounted for 

all possible scenarios, a mix of lane change events originating either from the fast or 

slow lane, with and without use of indicator was provided. Drone vehicles had their 

indicators switched on approximately 1.9s before crossing the lane divider. To 

ensure that the indicator usage was visible, the respective drone vehicle was always 

ahead of the participant vehicle before starting the lane change manoeuvre.  There 

was an average buffer period of forty nine-seconds between the lane changes to 

eliminate cross-contamination effects.  

 

5.2.3.3 Rating Task 

 For the rating task, participants were prompted with an audible beep to 

provide a rating between 1-10 to indicate their overall workload based on the events 

which they had recently experienced or any events that had occurred since the last 

rating (approximately seven seconds). The rating scale consisted of a 1-10 point 

scale and was explained verbally to the participants as follows, “Please provide a 

rating on how easy or difficult to drive in the traffic. Low difficulty is between 1 to 

3, medium difficulty is between 5 to 6 and high difficulty is between 8 to 10”. 

Baseline ratings were collected at the start of the drive (ten data points) before the 

first lane change event and at the end of the drive (ten data points). The lane changes 

and audible ‘beep’ prompts were scripted such that the ratings of the driving 

difficulty were collected continuously before and after a lane change. With these 

ratings, the relative changes in driver workload (pre-, during and post-lane changes) 

can be examined. Relative Workload was defined as the difference between pre-lane 

change rating and during-lane change rating. A Workload Recovery Period was also 

calculated, defined as the total time taken to achieve a constant workload (i.e. the 

level of workload ratings achieved and has not changed since the last three ratings of 

workload) or baseline workload (i.e. the level of workload measured at the start of 

the drive), following a lane change. 
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5.2.3.4 Procedure 

 Upon arrival at the simulator, participants were given the participant briefing 

sheet and a consent form to fill in. Following a short briefing on the study, 

participants conducted a short practice drive to ensure that they were adept at 

handling the vehicle controls and familiar with the task involved. Participants were 

instructed to maintain at 65mph in the middle lane and not pass the new ‘lead 

vehicle’. After completing a 15 minutes practice drive, the participant then 

performed the first experimental drive and periodically the rating task. After 

completion of the first drive, they were given a short break to freshen up before they 

were allowed to conduct the second drive. Following the completion of the second 

drive, participants were then debriefed and paid for their time. 

 

5.2.4 Examination of Subjective Workload 

 The relative changes in driver workload (pre-, during and post-lane changes) 

were examined. Relative Workload was defined as the difference between pre-lane-

change rating and during-lane-change rating. A  Workload Recovery Period was 

also calculated, defined as the total time taken to achieve constant workload or 

baseline workload, following a lane change. 

 

5.2.4.1 Effect on Relative Workload 

 The data were tested for normality and suitability to conduct ANCOVA 

testing. Since the data fulfilled all the assumptions for ANCOVA including the 

assumption of homogeneity of regression slopes  (i.e. no interaction between the 

covariates and the independent measures, a three way repeated measure (6x2x2) 

ANCOVA with the baseline workload at the start of the drive as the covariate 

(baseline) was used to examine the effect of the independent measures on Relative 

Workload (RW). Assumption of sphericity was violated and Greenhouse Geisser 

correction was used. Workload at the start of the drive was used as the covariate. 
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 After accounting for the covariates, significant main effects of Lane Change 

Proximity (F(1.996,19.958)=36.430, p<0.001, η
2
=0.928) and Lane Origin 

(F(1,10)=8.428, p=0.001, η
2
=0.657) on Relative Workload were found. Effect of 

indicator use was however non-significant (p=0.226). Post-hoc pairwise 

comparisons of the Relative Workload across the Lane Change Proximity indicated 

that the effect of lane change distances on Relative Workload was significant up to 

20 m; beyond this distance the effect started to plateau. Participants overall 

experienced higher Relative Workload when encountering a pull-in from the slower 

lane compared to pull-in from the faster lane (Figure 5.2). There was however no 

interaction between Lane Change Proximity and Origin of the Overtaking Vehicle. 
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Figure 5.2: Relative Workload (with standard errors) in pilot study  

 

 

5.2.4.2 Effect on Workload Recovery Period 

  The Workload Recovery Period (WRP) was measured as the time elapsed 

from the point the lane change occurred to the first instance the baseline workload 

ratings were achieved or constant static workload, was achieved (i.e. the point where 

the reduction of workload ratings remained constant for last three workload ratings). 

The latter was measured as there were occasions where workload did not reduce to 

baseline.    
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 Data were examined for normality and a three way (6x2x2) repeated 

ANOVA was conducted to examine for the effect of Lane Change Proximity,  Lane 

Origin and Indicator Usage. Similar to the finding on Relative Workload, a main 

effect of Lane Change Proximity (F(5,55)=11.894, p<0.001, η
2
=0.574) on Workload 

Recovery Period was found. Post-hoc pairwise comparisons demonstrated that the 

effect of Lane Change Proximity significantly influenced driver’s recovery time 

between Lane Change Proximity 5 and 20m. 

 Additionally, there was also a main effect of Lane Origin (F(1,11)=5.218, 

p<0.001, η
2
=0.326) on Workload Recovery Period. Pairwise comparisons indicated 

that drivers in general took a few seconds longer to recover from the lane change 

originating from the slow lane (M=13.177s) in comparison to lane changes 

originating from the fast lane (M=11.776s) (Figure 5.3). No significant main effects 

of Indicator Usage and interactions between the independent variables on Workload 

Recovery Period were found.  
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Figure 5.3: Workload Recovery Period (with standard errors) in pilot study 

 

 

 

 



- 137 - 

5.2.5 Implications of the Pilot Study 

 Results of the pilot study showed that even with a very small sample size, the 

design was sufficiently sensitive to differentiate the effect of proximity of lane 

changes (i.e. criticality). The examination of Relative Workload and Workload 

Recovery Period suggested that the presence of a lane change was influenced by the 

different characteristics of the lane change: mainly the Lane Change Proximity and 

possibly Lane Origin of the overtaking vehicle. 

 A modification to the simulator script in the study was added following the 

findings from the pilot study. In the pilot study, the drone vehicle started moving 

away from the participant’s vehicle two seconds after pulling-in to create gap for the 

preparation of the next lane change to occur. Although this increases the probability 

of a lane change occurring, it reduced the realism of the lane changes experienced 

on-road. To improve the realism of the lane change events, the pulling-in drone 

vehicles were scripted to stay in front of the participant’s vehicle for ten seconds 

after pulling-in. 

 To examine how would drivers react in response to a secondary task such as 

an incoming mobile phone during varying Lane Change Proximity and Lane Origin, 

a third drive was added into the main study. In this drive, an incoming phone alert 

was given simultaneously to the lane change. The participants were required to 

respond to the incoming mobile phone call when they perceived the driving demand 

as low and thought if appropriately safe to conduct the task. To take into account of 

driver’s experience and their preference for using mobile phones while driving, only 

drivers who use hands-free while driving were recruited in the subsequent study. 
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5.3 The Main Study 

 The main study in this chapter focused on the research questions that was 

examined in the pilot study in a higher scale (i.e. larger number of participants). 

5.3.1 Participants 

 Twenty-eight users of hands-free mobile phones drivers were recruited via 

responses to the University of Leeds’ website and local poster advertisement seeking 

volunteers.  Twenty four participants successfully completed the study with ages 

ranging between 24 to 45 years old (mean age = 32.2 years, SD age = 6.05 years: 14 

males, 10 females). Four participants did not complete the study due to simulator 

sickness. The minimum number of participants selected was based on a power 

analysis using sample size and effect size from the pilot study dataset. Participants 

were permitted to take part in the experiment if they held a valid UK driving license 

and had been driving regularly for the past five years with a minimum annual 

mileage of 10,000 miles. Participants were randomly allocated to a particular trial 

order. Drivers were awarded a payment of £20 for their participation. The study 

advertisement offered a £15 reward with a further £5 based on performance. The 

reward was used to motivate participants to engage with the task. However, every 

participant received the full reward payment, regardless of performance. 

 

5.3.2 Method 

 Stimuli, procedure, apparatuses and experimental conditions were the same 

as those used in the pilot study, with the following additions: 

 Traffic script: The difference concerning the traffic script in the present 

experiment was that the adjacent vehicle was scripted to stay in front of the 

participant’s vehicle for ten seconds after pulling-in. 

 Experimental design: The difference regarding experimental design was that 

each participant in the present study was required to complete three drives (as 

compared to two drives in the pilot study), each lasting approximately thirty 

minutes. The first two drives were the same as in the Pilot Study which 

involved only the rating task and were counterbalanced among the 
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participants. Following the completion of the second drive, participants were 

given a briefing regarding the third drive and the nature of the secondary task 

involved. The secondary task was added into the third run to investigate how 

drivers would respond to a distracting task in varying lane change conditions. 

Since the participants were unaware of the true purpose of the study and to 

ensure participants were fully familiarised with the traffic behaviour 

(following one hour of interaction with the traffic in the driving simulator), 

the drive involving the secondary task was administered as the last drive for 

every participant.  

 Apparatus: Due to the absence of synchronized voice recording capabilities 

in the simulator software, the dependent measures relating to the secondary 

vocal response task were collected manually via a voice recorder and the data 

were processed using the Praat audio playback program with sound spectral 

analysis capability. The vocal responses were recorded using a Sony ICD-

200X Digital Voice Recorder attached to a Griffin Lapel Microphone. To 

measure the vocal reaction time using Praat, originally stored in Windows 

Media Audio (WMA) format, were required to be in WAV format. Therefore 

the recording files were converted to MP3 using the Jodix Free WMA to 

MP3 Converter and then followed by conversion to to WAV format using the 

Audacity digital audio editor. Using Praat’s software sound spectral analysis 

capability, the sound stimulus and speech response could then be identified 

and thus the vocal reaction time measured to +/-1 millisecond accuracy. 

 

5.3.2.1 Secondary task 

 Apart from the addition of the third run, a secondary task was used in the 

third run to investigate how drivers respond to a distracting task in varying lane 

change conditions. To assess drivers’ prioritisation in dual-tasking, participants were 

presented with a numerical operations task as a surrogate for a phone conversation (a 

two choice, self-paced response task) at different times in the driving task. The 

mathematical operation task has been used in many previous studies (McKnight and 

McKnight, 1993; Shinar, Tractinsky and Compton, 2005) and has been shown to be 

sufficiently taxing to interfere with driving performance. In this study as in other 
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research (Treffner and Barrett, 2004) the decision to use mathematical problems as 

materials was motivated by the need for an engaging task that offers a degree of 

experimental control as well as cognitive effort.  

 In this third drive, each participant experienced six single tasks involving 

driving only (with lane changes) and eighteen dual-task conditions (with and without 

lane changes). The eighteen dual-task conditions involving the surrogate mobile 

phone tasks consists of six no-lane change conditions and twelve dual-task 

conditions (with lane changes between 5 and 30m). In dual-tasking conditions, a 

‘ding-dong’ sound was played to indicate an incoming phone call at certain points 

during the drive and this prompt occurred only once. The participants were 

instructed to respond as they would in real life. As soon as participants responded by 

pressing the button on the steering wheel, five numbers were presented via the audio 

system, followed by a sum or product question1. For example, 

 9, 5, 3, 2, 1 What is the sum of the first and the fifth number? 

 8, 4, 2, 0, 1 What is the product of the second and fourth number?  

The time taken to answer the call (i.e. Acceptance Time, AT), the time taken in 

responding with an answer verbally to the arithmetic question (Response Time, RT) 

and the questions answered wrongly (percentage of error) were recorded. 

Participants were informed that their performance on the secondary task would be 

monitored and rewarded based on how many questions they answered correctly. To 

increase the ecological validity of the driving scenario and allow participants to 

decide how to manage the dual-task scenarios, participants were not instructed on 

how to respond to a surrogate mobile phone task in the event of lane change event so 

as not to prime the participant on how to respond to this type of event.   

 

 

                                            

1 According to Card, Moran and Newell (1986), the human auditory storage capacity 

(i.e. the capacity of the auditory image store) is 5 characters. 
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5.3.2.2 Procedure 

 Participants were required to attend the driving simulator for one testing 

session. They were briefed about the content of the study before giving their 

informed consent. Participants then drove the simulator four times, one practice run 

(approximately ten minutes) and three experimental runs (approximately thirty five 

minutes each). During the practice drive, participants were encouraged to ask 

questions if they were unsure of any aspect of the driving. Participants were fully 

debriefed on simulator safety protocol before the experimental stage of the study.  

 Participants performed three drives, with the first two drives aiming to 

evaluate workload responses to  the lane change events. The first two drives; each 

consisting of twenty four lane change events with four non-lane change conditions to 

avoid predictability of the events, were counterbalanced among the participants. 

Prior to the start of the third drive, participants were briefed on the secondary task 

and shown the control button to press in the event of wanting to respond to the in-

vehicle task.   

 Participants exited the simulator vehicle between the runs to counteract 

fatigue effects and to maintain the illusion of the virtual world during the set-up of 

the following drive. After the experiment, participants were fully debriefed and paid 

for their time.  
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5.3.3 Data Collection 

 Apart from the subjective measures (Relative Workload and Workload 

Recovery Period) as described in Section 5.2.4, three additional measures of 

secondary task performance and driving behaviour were collected in the present 

experiment. 

 

5.3.3.1 Subjective Workload 

 Similar to the measures investigated in the pilot study, this present study also 

examined the relative changes in driver workload (i.e. Relative Workload) as  well 

as the recovery time (i.e. Workload Recovery Period) following a lane change. 

Based on the pilot study findings, this present study hypothesised that the Relative 

Workload and Workload Recovery would vary with the characteristics of the lane 

changes (i.e Lane Change Proximity and Lane Origin).  

 

5.3.3.2 Secondary task performance 

 The Acceptance Time (AT) measured in seconds is defined as the time that 

elapsed between the offset of the interruption (i.e. ‘ding-dong’ prompt of secondary 

task) and the first press on the steering wheel button which indicated participants’ 

readiness to engage in the secondary task.  

 Response Time (RT) which is also measured in seconds, is defined as the 

time taken to respond to the arithmetic question. The RT were recorded on a digital 

recorder and processed manually using spectral software (‘Praat’). RT is the time 

that elapsed between the end of the voice message and the first correct answer 

provided by the participant, as illustrated by the following equation: 

Vocal response time (RT) = Vocal response onset - End of auditory stimulus onset 

 Additionally, the accuracy of each of the responses was also measured (i.e. 

correct or wrong) for the computation of percentage error (%). 
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5.3.3.3 Driving Performance 

 This study not only wished to quantify the effect of the lane change 

characteristics on driver workload subjectively but also attempt to examine the effect 

of lane change on driving performance. To account for the influence of increased 

driver workload  on driving behaviour, driving performance indicators such as mean 

speed and brake pressure were examined for each lane change event. The 

measurement of speed is of interest as the participants were encouraged to maintain 

speed at 65mph through the run. In addition, some of the lane change events 

manipulated in the study required the participants to brake. Therefore examination of 

the speed and braking may provide some illustration on how much change in vehicle 

control was involved in varying traffic demand situations. To examine the 

relationship between changes in driving behaviour with Relative Workload, the 

changes in driving behaviour (i.e. the difference of driving behaviour 7s before and 

after a lane change) were computed. For example, if mean speed 7s before a lane 

change is 28 m/sec, and the mean speed 7s after a lane change is 18m/sec, the 

relative change in mean speed of -10m/sec indicates a reduction in speed following a 

lane change.  

 Braking profiles and driving speed profiles were examined to understand 

better the differences between conditions. The maximum brake pressure, minimum 

speed and the half recovery time were computed for each traffic conditions. Half 

recovery time is defined as the time for participants to recover 50% of the speed that 

was lost during braking (e.g. if the participant’s car was travelling at 28m/sec before 

braking and decelerated to 20m/sec after braking, then half recovery time would be 

the time taken for the participant’s vehicle to return to 24m/sec). Since all 

participants were required to maintain a speed of 65mph throughout the drive, 

participants speed were investigated for the half recovery time following a lane 

change. As such, examination of driving profiles and recovery from interruption may 

provide better understanding on how these adjacent lane changes influences driver 

workload and driving performance.  
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5.3.4 Data Analysis and Results 

5.3.4.1 Subjective Measures 

 Subjective measures of Relative Workload and Workload Recovery Period 

were examined from the first two runs (Run 1 and Run 2). The data were pooled 

together and the average of responses for each Lane Change Characteristics (i.e. 

Lane Change Proximity, Lane Origin and Indicator Usage) were computed for each 

participant. The data were checked for normality and homogeneity of variance using 

the Kolmogorov-Smirnov and Levene tests respectively and tested for sphericity for 

all ANOVA and ANCOVA analyses. Greenhouse Geisser correction was applied 

where necessary.  

 

Relative Workload 

 Data were subjected to a three-way Repeated Measure ANCOVA analysis 

with Lane Change Proximity, Lane Origin, and Indicator Usage being the 

independent factors. After accounting for the workload at the start of the drive (i.e. 

the covariates), main effects of  Lane Change Proximity, (F(3.18, 66.70)=71.917, 

p<0.001, η
2
=0.794) and Lane Origin, (F(1,21)=93.513, p<0.001, η

2
=0.873) on 

Relative Workload were found.  

 Similar to the findings in the pilot study, post-hoc pairwise comparisons 

indicated that the effect of Lane Change Proximity on Relative Workload were not 

significant beyond 20m, see Figure 5.4. 
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Figure 5.4: Relative Workload (with standard errors) 

   

 An effect of Lane Origin on the mean Relative Workload was found whereby 

change in workload was higher when drivers experienced a cutting-in vehicle 

originating from the slow lane (M=3.707, SD=0.307) as compared to a vehicle 

originating from the fast lane (M=2.514, SD=0.321). On average, participants 

indicated an increase of 1.193 (95% CI-1.052 to 1.335) in workload when they 

experienced vehicle cut-ins from the slow lane. No significant main effect of 

Indicator Usage was found in this study whereby driver did not report significant 

differences in workload depending on whether the cutting in vehicle used the 

indicator or not. Additionally, no two-way and three-way interactions were found. 

 

Workload Recovery Period 

 Data were subjected to a three-way Repeated Measure ANOVA analysis with 

within-subject factors of Lane Change Proximity (5, 10, 15, 20, 25, 30m), Origin of 

the Lane Origin (Slow/ Fast Lane), and Indicator Usage (On/Off). Significant main 

effects of Lane Change Proximity, F(2.59,59.51)=69.245, p<0.001, η
2
=0.751 and 

Lane Origin, F(1,23)=88.452, p<0.001, η
2
=0.794 were found. Pairwise comparisons 

showed that Workload Recovery Period increased with decreasing Lane Change 

Proximity up to 20 m. Beyond 20m, the increase of Workload Recovery Period was 

not significant. Similarly, drivers recovered significantly slower after experiencing a 

Lane Change from the slow lane (M=17.865, SD=1.8915) as compared to the 
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overtaking vehicle originating from the fast lane (M=13.637, SD=1.644) (Figure 

5.5).   

 These findings were similar to those obtained in pilot study whereby the 

origin of the cutting-in vehicle had an influence on the Workload Recovery Period 

on all lane change distances even though drivers’ Workload Recovery Period was 

not significantly influenced by distal lane changes (i.e. lane changes which at 

occurred at distances beyond 20m). Among all levels of Lane Change Proximity, the 

workload recovery for the 30m trials is the smallest and particularly if the cutting in-

vehicle originates from the fast lane. Since the minimum average workload recovery 

period obtained in this study is 11.188s, the minimum amount of time that a driver 

requires to recover from this traffic event can thus be estimated to be approximately 

12 seconds.  
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Figure 5.5: Workload Recovery Period (with standard errors)  

 

 Similar to the findings on Relative Workload, no main effect of Indicator 

Usage (p=0.649) was found. Pairwise comparisons of Indicator Usage showed that 

the recovery time for absence of Indicator Usage events (M=15.825) was not 

significantly higher than for presence of Indicator Usage events (M=15.677). 

Therefore the variable of the Indicator Usage was not investigated further. 

Additionally, no effect of interactions between the independent variables were 

found.  
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5.3.4.2 Secondary Task Performance 

 While Section 5.3.4.1 examines the effect of the presence of lane changes on 

driver workload, this section investigates the effect on driving behaviour and 

secondary task performance. This section uses the data obtained from the third run 

(Run 3) which investigates the manipulation of two independent variables (i.e Lane 

Change Proximity and Lane Origin).  

 

Surrogate mobile phone task acceptance time  

The Acceptance Time (AT) was not normally distributed. Reciprocal-

transformation was effective in reducing problems relating to the skew and kurtosis 

of the variable distribution. Therefore, parametric testing was performed on the 

transformed data set. The Acceptance Time (s) data was subjected to ANCOVA with 

two within factors; Lane Change Proximity (six levels) and Lane Origin (two 

Levels) and control condition Acceptance Time (i.e. where no lane change occur) as 

covariates.   

 These analyses showed statistically significant main effects of  Lane Change 

Proximity, F(5,110)=16.690, p<0.001, η
2
=0.326 and Lane Origin, F(1,22)=19.704, 

p<0.001, η
2
=0.447) on in-vehicle surrogate task acceptance time. Drivers initiated  

the in-vehicle surrogate task more slowly when the lane change performed by the 

neighbouring vehicle occurred at a shorter Lane Change Proximity distance. 

Inspection of the Figure 5.6 suggests that the effect of Lane Change Proximity on 

acceptance time dissipated at a longer Lane Change Proximity.  
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Figure 5.6: Mean Acceptance Time (with standard errors) 

  

Post-hoc pairwise comparisons (with Bonferroni adjustments) showed that 

longer Acceptance Time was significantly associated with shorter Lane Change 

Proximity (i.e. less than 15m). Beyond 15m Lane Change Proximity (i.e. 20m, 25m 

or 30m), the planned contrasts results showed that the reduction in Acceptance Time 

were not significant. Mean Acceptance Time for cut-ins originating from the slow 

lane (M=7.818s) differed from those where cut-ins originated from the fast lane 

(M=5.560s) (Figure 5.7). The analysis showed that the interaction of Lane Change 

Proximity x Lane Origin on acceptance time was not significant (p=0.051).  
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Figure 5.7: Effect of Lane Origin on Acceptance Time (with standard errors) 
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Secondary task response time and performance accuracy 

 Upon acceptance of the secondary task, the mean time taken to respond to 

each arithmetic question was measured. The Response Time was defined as the time 

elapsed from the end of the voice message until the driver responded verbally. The 

data were subjected to ANCOVA analysis with Lane Change Proximity and Lane 

Origin as within-subject variables and  response time in control events as covariates. 

No significant main effects of Lane Change Proximity, (F(3.15, 95.35)=1.147, 

p=0.133, η
2
=0.026) and Lane Origin, (F(1,23)=11.609, p<0.000, η

2
=0.0.447) on 

Response Time were found. 

 Incorrect responses to the surrogate mobile phone task were rare. Each 

participant performed six trials involving the in-vehicle task alone (i.e. baseline) and 

twelve trials where it was presented concurrently with a lane change event. Of the 24 

participants, only one participant made more than  three errors (out of a maximum of 

18). Despite the overall high level of accuracy, it is clear that, where errors did 

occur, they were largely confined to high demand conditions involving small Lane 

Change Proximity. The percent error data differed significantly from the normal 

distribution and transformations were ineffective for normalisation. The percent 

error data were therefore subjected to non-parametric analysis. Wilcoxon Signed 

Rank tests confirmed that differences were found between baseline and the near 

Lane Change Proximity scenario (5m), T=0, p<0.05. The percent error and mean 

response times for each of the scenarios are shown in Figure 5.8. 
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Figure 5.8: Mean secondary task response times (with standard errors) and mean 

error rates (right ordinate) 

  

 Since the secondary task involved a driver-paced response, the Response 

Times were unaffected by driving demand. Visual inspection of the number of errors 

from Figure 5.8 indicated that errors were highly associated to demanding traffic 

scenario such as Lane Change Proximity at 5m and 10m. Considered in relation to 

Response Time, these data indicate a speed-accuracy trade off  whereby responses to 

the secondary task were made more quickly in the baseline situation and in 

conditions requiring braking but tended to be less accurate. Despite Response Times 

being longer under more demanding conditions (i.e. lane change at proximity of 

5m), there was a marked increase in error. These findings indicate that the inclusion 

of a distracting task is inappropriate in certain traffic events deemed as cognitively 

demanding to drivers, specifically requiring drivers to brake in order to maintain 

their safety margin.   
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5.3.4.3 Driving Performance 

 In this section, the effects of lane change characteristics on mean speed and 

braking were examined. Two way repeated ANOVA analysis were conducted on the  

changes in mean speed and braking force across Lane Change Proximity (six levels), 

Lane Origin (two levels), Indicator Usage (two levels). To understand the driving 

performances in different conditions, the speed and braking profile were computed. 

 

Speed 

 There were significant main effects of Lane Change Proximity (F(3.14, 

59.98)=36.124, p<0.001, η
2
=0.440) and Lane Origin (F(1,23)=25.939, p<0.001, 

η
2
=0.775) on mean speed reduction. There was also a significant interaction of Lane 

Change Proximity x Lane Origin, F(2.307,68.83)=6.886, p=0.011, η
2
=0.087) (Figure 

5.9) indicating a higher reduction in mean speed when experiencing a lane change 

from the slow lane.  
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Figure 5.9: Mean speed reduction (with standard errors) 

  

 Pairwise comparisons showed that the effect was significantly different for 

Lane Change Proximity less than 20 m whereby drivers did not slow down when 

experiencing lane changes performed by an adjacent vehicle at distances beyond 

20m. Similar to the findings in relation to relative workload, this suggests that the 

drivers were influenced by the presence of the vehicle when the cutting-in vehicle 
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encroached into their safety zone. On the other hand, no main effect of Indicator 

Usage on mean speed was found (p>0.05). 

 Speed profiles were examined for each independent variable (i.e. Lane 

Change Proximity and Lane Origin), in order to better understand the differences 

between conditions. Indicator Usage was not examined as this main effect was not 

found in any driving performance measures. Since the cutting-in vehicle started 

moving laterally 2 s before crossing the lane divider and stayed in front of the 

participant vehicle for 10 s after pulling-in, driving profiles were thus created by 

extracting 12s-epochs of driving performance from the onset of the cutting-in 

vehicle moving laterally. The data for the ensuing 12 s measured at 60 Hz were then 

entered into a 24x720 data matrix (i.e. on the jth occasion that the drone vehicle 

indicator on, data from the 1st, 2nd, 3rd ...and 720th observations following the 

onset of the drone vehicle signal lights were entered into the matrix X[j,1], X[j,2], 

X[j,3],... X[j,720], in which j ranges from 1 to 24 reflecting the 24 occasions in which 

the participant reacted to the overtaking vehicle).  

 Figure 5.10 presents the driving speed profiles. In the near lane change 

distances (i.e. 5 m and 10 m), participants began reaching minimum speed 2 s after 

the drone vehicle began to move laterally across the lane, whereupon participants 

began a gradual return to pre-braking driving speed. When traffic was demanding 

(i.e. lane change proximity 5 m and 10 m), participants drove more slowly; thus the 

shape of the speed profile differed compared to when traffic demand was low (i.e. 

lane change proximity between 15 m to 30 m). By contrast, when participants 

experienced an overtaking vehicle originating from the slow lane, it took them 

longer to recover their speed following braking. 
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Figure 5.10: The speed profile by Lane Change Proximity and Lane Origin; 

slow(top) and fast (bottom) 
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Braking 

 There were significant main effects of Lane Change Proximity (F(3.352, 

54.190)=12.319, p<0.001, η
2
=0.211) and Lane Origin (F(1,23)=21.318, p<0.001, 

η
2
=0.317) on maximum brake pressure depression. Pairwise comparisons showed a 

significant increase in maximum brake pressure was exerted for Lane Change 

Proximity between 5m and 10m (Mean difference= 10.897N, p=0.013). Figure 5.11 

shows the distribution of relative change in Maximum Brake Pressure where 

significant higher brake pressure was applied when the overtaking vehicle originated 

from the slow lane within 10m. 
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Figure 5.11: Maximum Brake Pressure Difference (with standard errors) 

 

 Figure 5.12 presents the braking profiles of different lane change 

characteristics. As illustrated, participants’ braking responses were slower for longer 

Lane Change Proximity cut-ins. The Lane Origin effect could also be seen whereby 

the median of time to maximum brake depression shifts to the right, indicating 

longer response time when experiencing a lane change originating from the fast lane. 

For example, as shown in Figure 5.12, the braking for 25 m and 30 m was almost 

negligible in the event approaching an overtaking vehicle originating from fast lane, 

suggesting that participants were able to negotiate without the need to brake. There 

were occasions where participants would apply a braking force of less than 10 N, 

which is comparatively negligible in the examination of urgency to brake. 
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Figure 5.12: The braking profile by Lane Change Proximity and Lane Origin; 

slow(top) and fast (bottom) 
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Half-time recovery, Maximum Brake Force and Minimum Speed 

 Following the examination of the brake pressure and speed, half-time 

recovery was measured. Half-time recovery which is defined as the time taken for 

the participants vehicle to recover 50% of the speed that was lost during braking 

were also investigated. Strayer, Drews and Crouch (2006) used this method to 

evaluate the effect of alcohol and distraction of mobile phone on driving 

performance. Although this method has been widely use in biological sciences 

studies evaluating human recovery from physical demand task such as running, this 

has not been widely researched in the automotive domain.  

 Since this study attempted to quantify the traffic demand based on subjective 

measures, findings associated with objective parameters may provide conclusive 

evidence of the multi-dimensional aspect of driving workload. In the attempt to 

examine workload recovery period using driving performance parameters, half-time 

recovery is calculated to differentiate the differing level of demand associated with 

each lane change characteristics. As the baseline speed may be different before and 

after a sudden change in demand, thereby influencing the measurement of full-

recovery time, a half-recovery time measure was adopted instead for more reliable 

results. Since half recovery time is the time participants take to recover 50% of the 

speed that was lost during braking, this measure is only calculated for each lane 

change where braking was applied. There were occasions where participants did not 

need to exert brake pressure. Table 5.1 shows the percentage of trials which were 

excluded from the analysis of half-recovery rate. 

Table 5.1: Percentage of trials excluded in the analysis of half-recovery period 

Trial Type % Trials Excluded 

5m 0 

10m 0 

15m 0 

20m 2.6 

25m 26.0 

30m 32.8 

 

 Since not all participants braked in all events (especially in low demand 

conditions such as Lane Change Proximity 30 m) and Indicator Usage was not found 

significant in this study, the half-recovery time was thus grouped by traffic demand 
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(as manipulated by Lane Change Proximity and the Lane Origin) for analysis. 

Additionally the maximum brake force and minimum speed associated with each of 

the lane change were also analysed. This was to allow interpretation of the half-

recovery time data. The data were grouped by Traffic Proximity as measured by 

Lane Change Proximity; high proximity (Lane Change Proximity 5 m and 10 m), 

medium proximity (Lane Change Proximity 15 m and 20 m), low proximity (Lane 

Change Proximity 25 m and 30 m).  

 Data were analysed individually using a 3x2 repeated measure ANOVA 

(three level of Traffic Proximity and two level of Lane Origin). Results indicated a 

significant main effect of Traffic Proximity on all three measures of Maximum 

Brake Force, (F(2,46)=69.57, p<0.001, η
2
=0.737), Minimum Speed, F(2,46)=57.132, 

p<0.001, η
2
=0.713) and Half Recovery Time, (F(2,46)=8.938, p=0.007, η

2
=0.280). 

When drivers were in closer proximity traffic conditions, they exerted a higher brake 

force resulting in the significantly lower average minimum speed due to more hard 

braking involved, relative to lower proximity traffic conditions. However 

participants who were in high traffic proximity situations reacted more quickly to 

recover the speed that was lost during braking due to the lane change involved. This 

could possibly be translated to the greater urgency of the lane change at near 

distances involved, thus increasing participants level of arousal during lane change. 

Therefore, participants were more aware of the need to increase their speed to keep 

up with the surrounding traffic and also to meet the requirement of maintaining 

speed at 65mph (as instructed to the participant in the briefing).  

 Although no significant effect of the Lane Origin on half recovery time was 

found, a main effect was found on braking force, F(1,23)=8.185, p<0.01, η
2
=0.525) 

and minimum speed, F(2,46)=57.132, p<0.001, η
2
=0.713). Average minimum speed 

achieved when the overtaking vehicles originated from the fast lane was higher as 

compared to adjacent vehicles pulling in from the slow lane (see Table 5.2). The 

higher urgency to brake when responding to a slower lane vehicle could result in 

increased braking force and thus the high maximum braking force exerted. Overall, 

speed reduced with the increase of braking force and although not all braking force 

would result in the same speed reduction (for example, the minimum speed), this 

relationship was not surprising due to significant correlation between brake force 

and speed at the particular time (r=-0.174, p<0.01). 
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Table 5.2: Descriptive statistics of mean and standard deviation of measures 

collected following a lane change 

Proximity Origin 

Maximum braking 

force (s) 
Minimum speed (s) Half recovery time (s) 

Mean SD Mean SD Mean SD 

5 

Slow 108.182 54.221 20.71 6.956 7.82 7.344 

Fast 58.16 3.601 25.13 4.675 9.27 6.868 

10 

Slow 63.09 22.937 24.22 4.671 13.52 6.968 

Fast 48.71 20.929 26.37 0.689 14.21 6.897 

15 

Slow 46.70 28.340 25.94 0.709 14.33 6.088 

Fast 23.44 23.439 27.52 0.775 14.52 6.580 

20 

Slow 40.01 27.931 26.01 0.738 14.89 7.564 

Fast 17.14 20.794 27.88 0.825 15.04 6.579 

25 

Slow 11.97 19.300 26.26 0.964 15.22 7.523 

Fast 8.26 16.483 27.72 1.021 15.36 6.579 

30 

Slow 4.01 9.482 26.21 0.814 15.24 4.608 

Fast 2.71 1.324 27.86 0.656 14.24 0.608 

 

 Figure 5.13 depicts the relationship between the half recovery time measured 

objectively based on mean speed and the workload recovery period obtained 

subjectively via workload rating (1-10). Following the finding that workload was 

influenced by the presence of lane changes, drivers in general required a minimum 

time duration of 12 s or 15 s (as measured by subjective and objective measure 

respectively) to recover in low Traffic Proximity situations following an experience 

with an adjacent vehicle pulling-in. Overall, Figure 5.13 depicts a dissociation 

between the objective half-time measure and workload measure in high and medium 

traffic difficulty i.e. associated with presence of Lane Change proximity of less than 

20 m. Between Lane Change Proximity 5 m and 15 m, the subjectively measured 

workload recovery period is on average higher than the objectively measured half-

time recovery by 7.40s (ranging between 1.98 s - 14.90 s). From medium to low 

traffic difficulty, (i.e. Lane Change Proximity 20 m to 30 m), the subjective 
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workload recovery time is lower than the measured objective half-time by on 

average 3.28 s (3.05 s - 3.57 s). As shown in Figure 5.13, both measures showed 

constant values of recovery period beyond Lane Change Proximity of 20 m, which 

suggest dissociation of the subjective and objective measure of workload recovery 

period only in higher lane change proximity (i.e. less than 20 m). 
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Figure 5.13: Comparison of mean workload recovery time (with standard errors) 

measured subjectively and objectively 

   

5.3.5  Summary of Results 

 This study produced a number of important results: 

 Lane changes at close proximity of up to 20 m have significant effects on 

driver workload. Findings showed that lane changes within 20 m or less, 

influence both participants’ relative workload and workload recovery period 

significantly.   

 This effect of this cut-in was particularly strong when the overtaking vehicle 

originated from the slow lane as compared to the fast lane. This is probably 

due to drivers generally being concerned about vehicles in the slow lane 

being unable to keep up with the speed in the middle lane after pulling in, 

hence an increase of workload with respect to the presence of the vehicle 

involved. However, no effects of indicator usage was found. 
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 Despite the secondary task being driver-controlled and participants being 

able to decide when they would like to respond to the secondary task, 

participants’ were found to perform poorly (i.e. higher percentage error) in 

the secondary task in traffic conditions associated with lane change proximity 

5 m and 10 m.  

 Additionally, participants were found to only employ an average delay of 10s 

at maximum in all traffic conditions. The suggests participants’ insufficient 

self-pacing as a minimum workload recovery time of 12 s is required to 

recover following a lane change. 

5.4 Discussion 

 The present study aimed to explore the influence of the surrounding traffic in 

a simulated environment, with a focus on examining characteristics of a cut-in 

performed by an adjacent vehicle. This study utilised subjective workload measures 

to capture the driver’s perceived driving difficulty of various manipulated traffic 

events. Hence, participants were required to actively assess and differentiate their 

own momentary loads via verbal ratings collected on a frequent basis. The subjective 

workload measures showed that drivers were sensitive to increased driving task 

demands as defined by the characteristics of the pull-in manoeuvre (Lane Change 

Proximity and Lane Origin). From the point of driver training and awareness, this is 

encouraging as this indicates the ability of drivers to evaluate own level of workload 

constantly, but there is little evidence to prove that drivers are able to manage their 

own workload in the presence of secondary tasks, in a particularly highly motivating 

task such as the use of a mobile phone while driving.  

 As discussed in Section 5.1.1, such intrusion into this safety zone arouses 

discomfort (Summala, 2005) and may account for the increases in workload.  The 

presence of a lane change performed by the neighbouring vehicle not only increased 

the visual demand associated with the more frequent traffic monitoring, but may also 

lead to heightened arousal. Results showed that apart from increases of visual 

monitoring and possibly heightened arousal, the changes in workload ratings also 

suggest increasing variation in vehicle control as variation in traffic especially in 

moderate to heavy traffic situation requires the driver to continuously update their 
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speed, lane position and headway in order to maintain their own safety. In normal 

driving, drivers try to keep themselves within a certain range of “comfort zone” and 

therefore, when a conflict occurs in the “view to the front” channel of a driver’s 

trajectory, the driver is removed from the “comfort zone” as they are now required to 

make adjustments to changes in task demand (Summala, 2007). Greater adjustments 

in vehicle control are thus required when the presence of conflicts was less 

anticipated or possibly more threatening which could result in high demanding 

conditions.  

 While the use of the indicator signal may improve the predictability of an 

event, this study however found no significant improvement in workload changes in 

regards to the use of signal indicator. Throughout the study, sufficient care has been 

taken to ensure the visibility of signal indicator to participants in the simulated 

environment, for example, the cutting-in vehicle is always ahead of the participant 

vehicle prior to the cut-in and the colour contrast of the signal indicator enables it to 

be easily differentiated from the surrounding traffic. In addition, the duration (i.e. 1.9 

s) of the signal indicator being switched on (i.e. to indicate a lane change intent) is 

sufficiently long as findings from an on-road study (Hedrick, 1997) found that most 

turn-signal onsets tend to occur close to lane change start (for example, as early as 

2.42 s before the start of a lane change to as late as 3.62 s after the start of a lane 

change). Therefore, despite that participants in this study having higher anticipation 

of a cut-in with the use of signal indicator, their perceived workload did not differ 

with indicator usage. This thus highlights that the relationship between workload and 

situation awareness is multifaceted as changes in drivers’ comprehension of the 

driving situation (i.e. situation awareness; Endsley, 1995) may not be necessarily 

reflected on driver workload. 

 Drivers are viewed as an active operator who is not only capable of assessing 

and differentiating their own momentary load but also plays an active role in the 

initiation and management of distracting in-vehicle activities (Lee and Strayer, 

2004). Some studies have noted that secondary take engagement may support 

performance (Olson et al., 2009, Hickman, et al., 2010), which is particularly true at 

low arousal levels (Fitch and Hanowski, 2011, Curry et al., 2013). However, studies 

have also shown that despite drivers being aware of the increasing driving demand, 

drivers still choose to engage in secondary task (Horrey and Lesch, 2009) in the 
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event of high workload conditions. As such, it is interesting to investigate whether 

drivers would employ any form of behavioural adaptation in initiating a secondary 

task despite that drivers have shown capabilities of differentiating driving difficulty, 

(measured as Relative Workload in this present study). For example, this study 

attempts to investigate whether drivers would employ any delays in initiating the 

secondary task, in order to compensate for the addition of secondary task demand on 

mental resources. To explore drivers’ behavioural adaptation to an engaging 

secondary task, a surrogate mobile phone task was simulated using arithmetic 

questions to cognitively load them temporarily in occasions of high traffic demand. 

In such circumstances, drivers’ task prioritisation of the driving and surrogate 

mobile task were evaluated for any form of adaptation. Since the participants were 

prompted with incoming calls at intervals to coincide with mentally loading 

conditions, it was hypothesised that drivers would strategically postpone in-vehicle 

activities until the driving difficulty was perceived as manageable. To examine this 

form of adaptation with respect to the interaction with secondary tasks to the 

demands of driving, numerous response variables including percentage of errors 

were also evaluated.  

 Drivers were, in general, found to apply some form of delay (i.e. in seconds) 

in responding to a concurrent secondary task in demanding traffic conditions deemed 

as the presence of lane changes within close proximity. Despite the varying effect of 

lane change distances on driver workload, participants on overall were found to 

respond to the task alert within 10 seconds or less, from the first prompt in all 

driving demands. While the delay duration increases with increasing driving demand 

(i.e. Lane Change Proximity), it was found that the motivation of answering a phone 

call is relatively prevalent as the delay time (ranging between 6s to 10s) is 

comparatively shorter than the workload recovery period (ranging between 12s to 

24s). Although this shows that drivers would attempt to regulate their workload by 

making deliberate decisions to delay their response time to attend to a secondary task 

in more demanding traffic situations, there is a lack of understanding of whether 

drivers were still capable of controlling the vehicle within such condition at that 

particular time. Findings of higher secondary task percentage error in higher traffic 

demand conditions (i.e. Lane Change Proximity 5m and 10m) indicated that the 

adoption of delay on the task was not adequate. Visual examination of Figure 5.14 
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depicts that the percentage error is roughly equated to the difference between the 

Workload Recovery Period and the Total Response Time to the surrogate in-vehicle 

task. The Total Response Time is defined as the sum of Acceptance Time and 

Response Time in completing the secondary task. While the average mean difference 

of the Workload Recovery Period and total Response Time increased with lower 

Lane Change Proximity, the increase of percentage error suggests that the delays 

implemented by drivers were possibly insufficient. This is particularly relevant in the 

demanding traffic conditions involving Lane Change Proximity such as 5m and 

10m. 

 

Figure 5.14: Workload Recovery Period, secondary task Total Response Time 

and Percentage Error  

 

  Overall, this study found two important findings. Firstly, driver workload 

fluctuated with the behaviour of surrounding vehicle. As each driver keeps a safety 

zone around them in all environments, drivers experienced intrusion of space when 

this boundary is trespassed. Secondly, drivers strategically regulated their overall 

workload by delaying their response to a secondary task, especially in high workload 

traffic conditions. Assessment of subjective workload indicated that drivers were 

capable of differentiating traffic demands in terms of safety margin. However, when 

placed in dual-task conditions, driver judgements seemed to be impaired as 

evidenced by the degraded performance of the secondary auditory task examined in 

this study. Use of a phone resulted in perceptual and decisional impairment due to 
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division of drivers’ attention between different sensory modalities (Brown et al., 

1969) and the act of being involved in a conversation while driving detracted 

attention away from the primary task of driving (Strayer et al., 2005). While Brown 

et al. (1969) concluded that talking was likely to have only a minimal effect on the 

more automatized driving skills such as steering, Almor (2008) has shown that the 

act of speaking increases the level of interference with performing a visual task by as 

much as four times in relative to listening-only conditions. Thus if there is a need to 

perform a response, the perception and decision-making abilities could be critically 

impaired by drivers having to switch their attention between eyes and ears (Spence, 

Nicholls, and Driver, 2001). Additionally, the intensity of the conversations could 

further impair the drivers’ ability to drive (Violanti and Marshall, 1996; McKnight 

and McKnight, 1993).  

 Therefore, it can thus be concluded that drivers do not tend to be well-

calibrated to their own level of performance and tend to be overly optimistic about 

their ability to perform in-vehicle activities (Horrey, Lesch and Gabaret, 2008; 

Wogalter and Mayhorn, 2005) in the traffic demands investigated in this study. 

Despite the implementation of delay, errors were still prominent. New forms of 

assistance systems such as workload managers have been implemented in vehicles to 

help drivers to cope with the increasing amount of information that a driver would 

need to deal with while driving. Since such distraction could be detrimental 

especially in situations where the traffic changes required an immediate changes for 

example lane changes at close proximity, the workload manager may provide 

assistance to the driver by suppressing non-urgent communications when drivers 

experience critical lane changes. This study suggests that a delay of 12 seconds or 

more may be advantageous to drivers. 

5.5 Conclusion 

 The influence of the lane change performed by a neighbouring vehicle on 

driver workload was observed in subjective workload ratings and driving 

performance measures. This effect was largely due to the occurrence of the lane 

changes at close proximity such as 5m and 10m. These lane changes  were perceived 

as urgent and difficult due to the amount of work in braking in maintaining a safe 
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margin from the overtaking vehicle. As such, participants took longer to recover 

(measured as workload recovery period) following these events. The relative 

workload measuring drivers’ assessment of the driving difficulty suggests that 

drivers are aware of the interruption that the change in traffic demand may have on 

their own driving. Further examination of the dual-tasking conditions found that 

participants employed delays (measured as acceptance time) in initiating a secondary 

task. Comparison of the measure with workload recovery period obtained via the 

subjective rating measure suggests that the delay duration was lower than the amount 

of time taken to recover (Figure 5.15). Additionally vehicles pulling in from the slow 

lane were more threatening (as reflected in the Relative Workload) and required a 

higher amount of time to settle down (i.e. workload recovery period) as compared to 

cut-ins from the fast lane (Figure 5.15). 
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Figure 5.15: Workload Recovery Period (and std error) by Lane Origin 

 

Comparison of the workload recovery period and the acceptance time (i.e 

delay) in responding to a task alert indicates that the drivers were sensitive to this 

demand manipulation as the average acceptance time of the secondary task not only 

increases with Lane Origin (as shown in Figure 5.15) but also with Lane Change 

Proximity. The average acceptance time ranged from 6 s in low demanding driving 
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conditions (Lane Change Proximity 30 m) to 10 s in highly demanding driving 

conditions (Lane Change Proximity 5 m). 

Since this task was driver-controlled, this delay might be the result of a 

voluntary performance strategy which consist of the time taken to decide whether 

accepting the mobile phone call would unacceptably compromise driving 

performance. However, participants were still found to perform some errors in 

higher traffic difficulty conditions despite the implementation of delay in task 

initiation. In this study, this error was found to be highly associated with shorter 

Lane Change Proximity such as 5m and 10m. 

 With the use of the high-fidelity driving simulator and the scripted 

"naturalistic" traffic and driving scenario in this study, it is suggested that the effect 

is the realistic and valid outcome of traffic behaviour. Findings in this study shows 

that careful design of tests situations, measurements and analyses may help provide a 

strong basis for investigations of driving performance of drivers in unexpected 

driving situations which in return could be used to evaluate the benefit of a workload 

manager. The findings regarding workload recovery is particularly worthy of further 

exploration. For example whether performing a concurrent task within the recovery 

time is to be avoided completely and if so, how can this be monitored by the 

workload manager. 

 Furthermore, the task involved in this study were mainly simple arithmetic 

questions and may not fully load the driver since they were driver-controlled tasks. 

Therefore, a different type of distracting task involving system-initiated interface 

could be manipulated and evaluated for influence on driving performance. This is 

particularly important in critical conditions, specifically in avoidance of unexpected 

hazards.  As such, the impacts of the lane changes on driver workload warrants 

further investigation and the management of workload in critical conditions will be 

considered in the following study.  
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6 Chapter 6  

Effect of Information Scheduling on Driver Reaction Time and 

Secondary Task Performance 

6.1 Study Aims 

 This chapter reports on the final of the three studies presented in this thesis. 

The first two studies have demonstrated the existence of a lane change effect on 

driver workload and the workload recovery period. The primary objective of this 

present study was to examine the benefit of using a workload manager to manage the 

presentation of system-controlled messages during safety-critical conditions. This 

involved the presentation of an in-vehicle task either prior or concurrently with a 

safety critical braking event.  

 A safety-critical braking event can be defined a sudden event requiring the 

driver to perform a braking response due to the very short reaction time available. 

One of the causes of these situations are due to the failure to detect changes in the 

environment complexity whether due to inattention, distraction or attentional 

tunnelling (Baddeley, 1972; Endsley, 1995; Endsley, 2006). With distraction taking 

place while driving, drivers may dedicate less attention to scanning the environment 

and maintaining accurate situation awareness. This is one of the reasons why rear-

end collisions occur more frequently than other kinds of crash type in vehicle 

accidents as the driver did not expect any hazard and did not reduce speed earlier in 

response to a cutting-in vehicle or slowing lead vehicle (Najm et al., 1995). Thus in 

a situation where the driver needs to act abruptly, the driver has insufficient time to 

respond. Therefore in this study, the effect of occurrences of in-vehicle messages on 

driver performances was examined via braking time and the time taken to respond to 

a secondary task in various safety-critical situations involving a lane change 

performed by neighbouring vehicle. 

 The second objective was to assess the influence of age in responding to 

these safety-critical situations. The aim was not only to investigate which of the age 
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groups showed faster reaction times to the hazard, but also to understand how these 

two groups of drivers (younger drivers aged between 25 and 50 years old; older 

drivers aged between 60 and 75 years old) manage the in-vehicle task. Research has 

shown older drivers attempt to adopt more restrictive driving patterns (i.e. limiting 

exposure to demanding situations) to compensate for their deterioration in cognitive 

and motor capacities due to ageing (Lang, Parkes, and Fernández-Medina, 2013). 

But the practice of self-regulation may not be timely in the less predictable safety-

critical situations and there is a lack of research in understanding how and when 

different age groups of drivers use this as a tool in modulating own workload and 

performance to ensure safe driving. Moreover, with the projected increase of older 

drivers on-road based on the UK National Travel Survey (i.e. due to ageing of 

existing license holder; Department for Transport, 2012), it becomes apparent to 

ensure that the development of support systems such as a workload manager 

considers not only the comfort and safety of younger drivers, but also the growing 

population of older drivers. 

 

6.1.1 Study Rationale 

A driver workload manager continuously estimates driving demand and 

manages the flow of information coming to drivers that could interfere with driving. 

Such a system might enhance highway safety by helping to reduce potential 

distractions during driving periods when the driver may not have sufficient spare 

attentional capacity to handle them. Several classes of factors may be used to 

estimate the difficulty of driving, including road characteristics (e.g., road 

curvature), dynamic traffic conditions (e.g., traffic density, range, range rate to 

obstacles ahead), and traffic behaviour of other road users. A number of studies have 

examined the effectiveness of workload managers in simulator, track, and on-road 

venues (Piechulla et al., 2003; Uchiyama et al., 2004; Donmez et al., 2006b; Wu et 

al., 2008; Tijerina et al., 2011). Research suggests that workload managers may 

provide some benefits to the driver, for example a locking strategy on an in-vehicle 

information system that deny access to initiate a task function was found to promote 

a consistently quick response in braking (Tijerina et al., 2011). However, Tijerina et 

al., (2011) suggested that implementation of a locking strategy on an in-vehicle task 
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that is already underway is to be avoided due to additional cognitive delay in 

interpreting the task interruption. This is particularly important in driving conditions 

which suddenly grow more intense, requiring drivers’ attention on the driving task to 

maintain safe driving. Most of these studies investigating intervention strategies of 

in-vehicle tasks were focused on mobile phones and engaging navigation tasks 

which have a higher level of distraction due to the length of the tasks and the 

motivation level involved in the tasks. However less is known on how to manage 

system-controlled tasks of shorter distraction durations for example, visual warning 

messages such as ‘FUEL LEVEL LOW’.   

Research has suggest that secondary tasks introduced by driver assistance 

systems can affect driving performance, particularly in increasing drivers’ reaction 

times in responding to unexpected events. For example, research on car-following 

indicates that when the lead vehicle suddenly decelerates, drivers performing a 

cognitive distraction task take longer to release the accelerator pedal (Hurwitz and 

Wheatley, 2001; Lee et al., 2002). Additionally, foot movement time and responses 

to braking events is influenced by the type of distracter task and the order of in-

vehicle task presentation for example, leading to an improvement in braking 

performance when the braking task was presented after the in-vehicle task (Hibberd 

et al., 2013). Therefore, manipulation of distracter task modality may not be a 

completely effective method for the removal of an in-vehicle distraction effect 

(Vollrath and Totzke, 2005) but accurate timing of the secondary tasks is rather 

important to prevent the driver from being overloaded. Although traffic and vehicle 

safety information can be useful to the driver, there are possible negative side 

effects. One of these expected negative effects is that the extra information source in 

the car may lead to increased task demand and capacity overload in the driver 

(Pauzie and Alauzet, 1991; Verwey, 2000; Blanco et al., 2006), especially for older 

drivers, who are known to have decreased perceptual, motor and cognitive 

functioning due to normal ageing (Anstey et al., 2005). While driving is generally 

self-paced and compensating strategies can be executed to limit the interference of 

secondary tasks, a safety-critical question concerning system-initiated safety visual 

information arises. While discrete and system-paced messages are useful to the 

drivers, inappropriate timing of presentation of these messages could well result in 

driver overload.  
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The basic idea behind workload management (WM) functions is to prevent 

excessive workload and distraction by dynamically supporting the driver to manage 

the driving and nondriving- related tasks, in particular by controlling the information 

initiated by in-vehicle systems and by limiting the system functionality available to 

the driver in demanding, or potentially demanding, situations. This study is 

conducted as a continuation of the simulator study presented in Chapter 5 which 

found that driver workload is influenced by the presence of critical lane changes 

performed by neighbouring vehicles. It aims to explore these events further in dual-

tasking conditions involving system-initiated messages which are not under the 

driver’s control. Given that the criticality of lane changes can be measured via 

sensors installed within the vehicle, this study was designed to discover whether 

delaying incoming information in safety-critical situations involving a critical cut in 

(such as lane change proximity of 5 m and 10 m) would improve driver’s braking 

performance and reduce subjective workload. This range was selected based on the 

Lane Change Proximity levels that produced a high workload effect in Study 2 (as 

measured by Relative Workload) and high error ratio (as measured by the ratio of 

percentage of error and acceptance delay) across the Lane Change Proximity range. 

The largest workload increase and percentage error was observed when the adjacent 

vehicle cut in at close proximity (<5 m). This increase in Relative Workload 

decreased monotonically with increasing Lane Change Proximity. Similarly the 

percentage error per acceptance delay decreased monotonically between 15m and 

30m Lane Change Proximity. The highest mean percentage error was found when 

the adjacent vehicle cut in at a Lane Change Proximity of 10m. Additionally, the 

average time headways during cut-in (measured at the point when the cutting-in 

vehicle crosses the lane divider) for 5 m and 10 m Lane Change Proximity were 

critical as defined by Ohta (1993) whereby the following vehicle is within 0.6 s of a 

lead vehicle. Although the cut-ins for Lane Change Proximity 15 m and 20 m were 

at the boundaries of critical zone and danger zone (i.e. between 0.6s to 1.1.s 

headway), these lane change proximities were not explored in the present study as 

the focus of this study is to examine safety-critical events and therefore any lane 

change proximity which does not have at least 95% of the lane change trials 

occurring within 0.6s time headway were excluded. As such the lane change events 

of 5m and 10m cutting-in distances were manipulated as critical events  in this study. 
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Table 6.1: Distribution of average relative workload, ratio of percentage error 

per acceptance delay and time headway of cut-in across Lane Change Proximity 

from Study 2 

Lane 

Change 

Proximity 

Average 

Relative 

Workload 

Ratio of 

(Percentage Error/ 

Acceptance Delay) 

Lane Change Time 

Headway 

Mean/SD (95% CI) 

5m 5.741 3.504 0.193/0.081 (0.168-0.219) 

10m 3.795 4.125 0.379/0.200 (0.315-0.443) 

15m 2.994 2.531 0.549/0.308 (0.450-0.647) 

20m 2.217 2.276 0.651/0.271 (0.527-0.707) 

25m 1.939 2.029 0.748/0.074 (0.598-0.899) 

30m 1.977 1.556 1.131/0.086 (0.957-1.305) 

 

In the dual-tasking conditions examined in Study 2, drivers performed worse 

on a surrogate in-vehicle task as a result of the lane change effect. This means that a 

10 seconds acceptance delay for the secondary task would not be sufficient to 

remove the “damage-workload increase” caused by the lane change effect for all 

drivers. This study thus utilises the measure of workload recovery period as used in 

the previous simulator study to assess the effects of a critical lane change on braking 

performance and to make subsequent recommendations about the in-vehicle delay 

timing. 

The mean workload recovery period (i.e. defined as the time taken to achieve 

steady-state workload or baseline workload) both in the non-critical and critical lane-

change situations in Study 2 were considered. In addition to utilising the minimum 

workload recovery of 12 s (as suggested in Study 2), the mean workload recovery 

period in critical lane-change situations of 21 s was chosen as the second delay 

parameter to be investigated. This value of 21 s is an over-estimation of the time to 

recover as drivers may have spare capacity to conduct other tasks within this 

recovery time, which has been shown in Study 2 whereby all drivers answered their 

“phone calls” within 10 seconds from the first ring in all circumstances relating to a 

cut-in performed by a neighbouring vehicle. Moreover the system-controlled in-

vehicle messages investigated in this current study have higher relevance towards the 

driving task. Therefore the range of delays should not be so short that it would 

overload the driver and also not too long since the warning messages are relevant to 

the driving task. Hence these two values of 12 s and 21 s will be used to design the 
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system-controlled delay guidelines in this study as these delays would be sufficient 

to remove the “damage” caused by the lane change effect for all drivers.  

 This study represents the final effort of this thesis to explore the lane change 

effect on workload and to define the appropriate time delay of a system-controlled 

in-vehicle task in order to minimise driver distraction and maintain performance of 

the safety-critical aspects of the driving task - in this case a braking response to a 

critical cut in performed by neighbouring vehicle. 

6.2 Methods 

6.2.1 Apparatus 

 Similar to the apparatus used in the previous studies examined in this thesis, 

this present study was also conducted in the University of Leeds Driving Simulator 

(UoLDS) and also uses the manual data collection approach used in Study 2 to 

examine driver’s vocal response time due to the time investment required to train 

voice recognition system (Pashler, 1990; Van Selst et al., 1999).  

 

6.2.2 Participants  

 Drivers were recruited on the basis of a volunteer sample scheme, drawn 

from both an existing database, responses to University of Leeds’ website and local 

poster advertisement seeking volunteers. To avoid the issue of older drivers driving 

less distance annually compared to younger driver (Rimmö and Hakamies-

Blomqvist, 2002; Hu and Reuscher, 2004; Alvarez and Fiierro, 2008) due to the 

changes in lifestyle after retirement, all recruited participants were drivers who still 

use their vehicle more than four times a week with a reported minimum annual 

mileage of at least 5000 miles.  

 A total of fifty drivers, holders of a valid driving license for over five years 

were recruited. They all had normal or corrected-to-normal vision. Participants were 

screened for visual and auditory sensory deficits during the practice stage to ensure 

they would be able to detect the task stimuli to be presented in the experiment. Six 

participants did not complete the experiment; four participants due to simulator 
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sickness and technical complications, two older participants were excluded due to 

their large amount of errors in the driving task during the practice stage. Twenty six 

young drivers aged between 25 to 49 years (13 males and 13 females) and eighteen 

older drivers aged between 60 to 72 years old (10 males and 8 females) who 

successfully completed the experiment are reported in Table 6.2. All drivers were 

paid for their participation (£15).  

 

Table 6.2: Statistics of participants’ demographic details 

Age Gender N Mage (SDage) Mdriving experience Mannual mileage 

Young Drivers 
Male 13 32.2 (7.4) 12.5 11775 

Female 13 33.3 (10.8) 13.7 7400 

Older Drivers 
Male 10 66.1 (3.6) 41.2 10700 

Female 8 65.7 (3.2) 40.5 6200 

Note: N= number of participants, Mage= mean age, SDage= standard deviation of age, 

Mannual mileage= mean annual mileage 

 

6.2.3 Experimental Design 

 A mixed between and within subject design was used. The between subject 

variable was age (Younger or Older driver). There were two within subject variables, 

each with two levels. The first was Lane Origin (Slow Lane or Fast Lane) and the 

second was Workload Manager (On or Off). 

6.2.3.1 Driving task 

 A three-lane motorway was simulated with occasional adjacent vehicles 

(either from the slow or the fast lane) pulling in front of the participants. Vehicles in 

the slow lane were programmed to maintain 60 mph while fast-lane vehicles 

travelled at 70 mph. The adjacent vehicle was programmed to pull in at a certain 

distance from the participant vehicle. The critical lane change distance was defined 

as approximately 5 m (+/- 2m) upon crossing the lane divider and a non-critical lane 

change was defined as a lane change beyond 20m from the participant vehicle. The 

participants were instructed to drive in the middle lane, maintain a speed of 65 mph 

and not pass the new ‘lead vehicle’.  

 All participants were required to complete two drives (35 minutes each); a 

drive with Workload Manager Off (i.e. no delay of messages) during critical lane-
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change situation and the other drive with Workload Manager On (i.e delay of 12 s or 

21 s) following a critical lane change. Each drive contained twenty events involving 

a mix of critical and non-critical lane changes and non-lane change conditions as 

catch trials to avoid predictability of the event. The order of these drives was 

counterbalanced among the participants. 

 

6.2.3.2 Simulated critical cut-in scenarios 

 To quantify the effects of the intervention on driver responses and driver 

workload, instantaneous parameters reflecting the conditions that the drivers faced at 

the moment of cut-in were measured, which included time-to-collision (in seconds), 

spaces i.e. gap measured in metres between the participant’s vehicle and the adjacent 

vehicle and time separations i.e. time headway measured in seconds at cut-in. These 

instantaneous variables that the drivers faced at the moment of cut-in provide 

information on the criticality of the situation. These values of the instantaneous 

parameters were measured at the point where the adjacent vehicle started to cross the 

lane divider (i.e. the front wheel of the adjacent vehicle first touched the lane 

divider) and can be straightforwardly extracted. Apart from measures of 

instantaneous distance gap and time headway, time to collision which is a 

continuous measure of safety margin determining how long it will take for the two 

vehicles to collide at their current relative position, velocity and acceleration was 

computed. These measures are important as they help to define the severity of the 

situation. The description of the severity of the lane changes in this study is provided 

in Table 6.3. The critical cut-ins were measured at the point the adjacent vehicle 

crosses the lane divider.  

 

Table 6.3: Statistical description of the critical lane changes in this study 

Lane Change 

Characteristics 

Slow Lane 

Mean/SD (95% CI) 

Fast Lane 

Mean/SD (95% CI) 

Distance gap (m) 3.678 / 2.191 (2.622-4.734) 4.234 / 3.139 (2.765-5.704) 

Time headway (s) 0.171 / 0.089 (0.128-0.214) 0.186 / 0.125 (0.128-0.244) 

Time-to-collision (s) 4.807 / 3.252 (3.239-6.374) N/A* 

Note: * No value for TTC as the cutting-in vehicle travelled at a higher speed than  

 participant’s vehicle 
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 Therefore all the critical lane change events in this study would require the 

participant to brake to avoid a collision assuming the current speeds of their vehicle 

and the vehicle ahead did not change. However the severity of the cut-in may differ 

between drivers depending on whether the driver initiated braking before the 

adjacent vehicle crossing the lane divider. 

 

6.2.3.3 Secondary Task 

 Periodically during each drive, messages were presented on the dashboard 

screen, situated below the tachometer as shown in Figure 6.1.  

 

Figure 6.1: Location of the system-controlled messages 

 

 The system-controlled messages (Table 6.4) were obtained from a vehicle 

manufacturer and were investigated in two main dual-task conditions where the 

occurrence of these messages could possibly influence driver workload and 

performance. The messages were initiated in two cut-in conditions; message onset 

was either Before a critical lane change or Concurrent with a critical lane change. 

Messages were also presented during No-lane change conditions in each drive to 

reduce the predictability of a cut-in.  

System-controlled message 



- 176 - 

 With each incoming message, an audible ‘beep’ was presented to alert the 

driver. Each message appeared for 2.5 seconds before being overwritten by the next 

message. The secondary task initiation was contingent on the development of the 

scenario to ensure that the task was performed at the critical moment, that is when 

the adjacent vehicle initiated a lane change. 

 

Table 6.4: List of system-controlled messages to be displayed on dashboard. 

Vehicle system messages obtained from a vehicle manufacturer 

Vehicle Systems Messages Non-Vehicle System Messages 

ACC SENSOR BLOCKED WIND SPEED 5MPH 

BONNET OPEN TEMPERATURE 15C 

BRAKE FLUID LOW THREE LANE MOTORWAY 

CHARGING SYSTEM FAULT DRIVE IN MIDDLE LANE 

ENGINE TEMP VERY HIGH SLIPPERY WHEN WET 

CAMERA SYSTEM FAULT LOW BRIDGES 

COOLANT LEVEL LOW HEAVY TRAFFIC AHEAD 

EDIPSTICK FAULT TOW AWAY ZONE 

ENGINE SYSTEMS FAULT YELLOW WINDING ROAD AHEAD 

GEARBOX OVERTEMP TRAFFIC QUEUES LIKELY 

OIL LEVEL LOW SLOW VEHICLE BEHIND 

BOOT OPEN SLIPPERY ROAD 

BRAKE PAD LOW SPEED CAMERA AHEAD 

FUEL LEVEL LOW MAINTAIN SPEED AT 65MPH 

KEY BATT LOW SPEED LIMIT 70MPH 

TPMS CHECK SPARE STAY IN LANE 

WASHER FLUID LOW TUNNEL AHEAD 

EDB FAULT ICY ROAD AHEAD 

 

In the drive with Workload Manager Off, no delays to the messages were 

implemented during the critical cut-in. When message onset commenced Before the 

cut-in, in total six messages were played and the lane change was initiated during the 

third message. Thus the driver had to respond to the cut-in during the fourth message 

as shown in Figure 6.2. Drivers’ braking responses to the cut-in and responses to the 

secondary task (average response times of the fourth, fifth and sixth messages) 

following the cut-in were measured. 
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Figure 6.2: Timeline where message onset was Before a critical cut-in (Workload 

Manager Off)  

 

 Similarly for the Concurrent cut-in condition, in-vehicle messages were 

initiated to coincide with the critical lane change. The in-vehicle messages were 

initiated when the adjacent vehicle started a lane change (i.e. as soon as when the 

adjacent vehicle was triggered to move from own lane). The first of the three in-

vehicle messages was triggered at the start of the lane change. Thus the first message 

coincided with the critical cut-in as the participants juggled between the two tasks; 

driving task and in-vehicle task, as shown in Figure 6.3. The interference effect of 

concurrent in-vehicle task on driving performance was measured for braking 

performance. 

 

Figure 6.3: Timeline where message onset was Concurrent with a critical cut-in 

(Workload Manager Off) 

 

In the drive with the Workload Manager On, the messages were managed by 

delaying them for a certain duration following a lane change. When message onset 

was Before the cut-in, the fourth to sixth messages were postponed for a duration of 

12s to allow drivers to concentrate on the driving task as shown in Figure 6.4.  

 

Figure 6.4: Timeline where message onset was Before a critical cut-in (Workload 

Manager On) 

 

Secondary task: 

Secondary task: 

Secondary task: Secondary task: 

 

Critical traffic event: 

Secondary task: 

 

Critical traffic event: 

Secondary task: 

 

Critical traffic event: 
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Since this constitutes a task interruption, a delay of 21 s was not used due to the 

assumption that a task which has been started should be allowed to resume as soon 

as possible.  

Where the message onset was Concurrent with a cut-in, two delay timings 

were manipulated whereby incoming messages were delayed either for 12 s or 21 s, 

following a critical cut-in as shown in Figure 6.5. Justification of these chosen delay 

values can be found in Section 6.1.1.  

 

Figure 6.5: Timeline where message onset was Concurrent with a critical cut-in 

(Workload Manager On) 

                                      

6.2.3.4 Procedure 

 Upon arrival at the simulator, participants were given the participant briefing 

sheet and a consent form to complete. Participants then drove the simulator three 

times, one practice run (approximately 15 minutes) and two experimental runs 

(approximately 35 minutes) each.  

 Following the short briefing on the study, the participants conducted a short 

practice drive. The blocks of in-vehicle messages were presented eight times in the 

familiarisation drive to ensure that participants were familiar with the vehicle 

controls and the tasks to be conducted. After completing a 15 minutes practice drive 

involving a series of critical and non-critical lane changes as well as system-

controlled messages, the participant then performed the first experimental drive with 

the secondary task and rating task.  

 For the in-vehicle task, the participant was required to provide a verbal 

answer ‘Yes’ to indicate if it was a vehicle system-related message such as ‘BRAKE 

FLUID LOW’ or ‘No’ to indicate if it was other types of message ( i.e. non vehicle 

system-related such as traffic information). Examples of non vehicle system-related 

messages are ‘TRAFFIC QUEUES LIKELY’, ‘WINDING ROAD AHEAD’.  

Secondary task: Secondary task: 

Critical traffic event: 
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 For the rating task, participants were prompted with an audible ‘PLEASE 

RATE’ message to provide a rating between 1-10 to indicate their overall workload 

based on the task which they had recently completed and any events that had 

occurred since the last rating (approximately 30 seconds).  

 After completion of the first drive, participants filled out the RSME and 

NASA-RTLX questionnaires. This was repeated with the second drive. After the 

completion of the second drive, they were then debriefed and paid for their time. 

 

6.2.4 Experimental Hypotheses 

 The primary experimental hypothesis was that accelerator pedal release 

reaction time would improve with the Workload Manager On. This effect 

would be observed as a quicker release of accelerator pedal or brake response 

to increase the onset time between the critical cut-in and in-vehicle task. The 

principles of resource competition mean that the concurrent presentation of a 

secondary task during critical cut-in requiring control of accelerator pedal 

release should produce greater interference on the throttle control than when 

it was presented after the critical cut-in. 

 A positive effect of the intervention of a workload manager would be 

expected for secondary task reaction times when presented during a critical 

cut-in. The predictions were derived from Multiple Resource Theory 

(Wickens, 1984; 2008). With a common visual stimulus between the two 

tasks (secondary task and critical cut-in requiring throttle control) was 

expected to slow the release of accelerator pedal response across all non-

intervened conditions. The presentation of tasks that require simultaneous 

response processing demand with the throttle control tasks would be 

expected to enhance dual-tasking interference effects. 

 Driver workload was expected be lower in conditions where a workload 

manager was used. The use of delay should avoid the need to share resources 

when driving conditions suddenly grow more intense. It also helps the driver 

to devote more visual attention to driving and focus on the driving task until 

the driving conditions calm down. 
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6.3 Data Collection 

6.3.1 Driving performance 

There were three variables used to estimate the safety benefit of the delay 

strategy, i.e. the braking response time, braking profile and the number of collisions. 

Braking response time  focused largely on the speed of response to the critical cut-in 

event. It was decomposed into two specific measures; accelerator release reaction 

time and accelerator-to-brake transition time. Accelerator release reaction time was 

defined as the time from the onset of the cutting-in vehicle indicator light to the 

moment when the accelerator pedal was fully released, and accelerator-to-brake 

transition time defined as the time from accelerator release to initial brake pedal 

depression. 

Additionally, the number of trials involving a collision with the cutting-in 

adjacent vehicle was also recorded.  

 

6.3.2 Subjective workload measures 

Two measures of subjective workload were elicited; overall workload (NASA-

RTLX and RSME) and continuous subjective rating (CSR). The CSR rating scale 

consisted of a 1-10 point scale and was explained verbally to the participants as 

follows, “Please provide a rating on how easy or difficult to drive in the traffic. Low 

difficulty is between 1 to 3, medium difficulty is between 5 to 6 and high difficulty 

is between 8 to 10”. Fluctuation of driver workload following the driving only or 

dual-tasking condition both with and without the Workload Manager, was measured 

at various points during the drive via the 10-point rating scale. RSME and NASA-

RTLX were administered at the end of each drive. 
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6.3.3 Secondary task performance 

Participants’ verbal responses were recorded on a digital recorder and 

processed manually using spectral analysis software (‘Praat’). The software 

displayed both the waveform (amplitude vs time) and  the spectogram (frequency vs 

time) of the sound recording. The following equation was used to measure vocal 

responses time: 

Vocal Reaction Time = Vocal Response Onset (i.e start of the vocal response) - 

Auditory Stimulus Onset (i.e. beep alert) 

 

Driver’s response time to the Secondary Task (SecRT) was measured as the 

90th percentile value of the average Vocal Reaction Time responses to exclude the 

cases of unusual response times. Table 6.5 shows how the responses were measured 

in all four scenarios.  

Table 6.5: Measure of secondary task response times (SecRT)  

Workload Manager Off Workload Manager On 

Secondary Task Onset Before a Critical Cut-In 
 

 

 

 

Secondary Task Onset Concurrent with a Critical Cut-In 

 

 

 

 

 

  

 Additionally, percentage error of secondary task (which includes the number 

of missed responses and wrong responses) was also measured.  

SecRT

T 

SecRT 

SecRT

T 

SecRT 

12s or 21s message delay 

 
12s message delay 

 

  

 

Secondary task: 

 

Critical traffic event: 

Secondary task: 

 

Critical traffic event: 
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6.4 Data Analysis and Results 

Data from 44 participants were compiled to form a database of 1232 lane 

change events. Each variable was checked for normal distribution and homogeneity 

of variance using the Kolmogorov Smirnov test and Levene’s tests respectively. All 

data were analysed using the two way repeated-measures ANOVA with the Lane 

Origin (Slow/Fast) and Workload Manager (On/Off) as within-subject factors and 

age as the between factor. These tests were applied to all analyses undertaken, and 

thus will not be described in detail for each.  

 

6.4.1 Driving Performance 

 The braking response times were analysed separately depending on whether 

message onset was before or concurrent with a lane change.  

6.4.1.1 Secondary task onset Before a critical cut-in 

 In these cut-in situations, the participants were presented with the in-vehicle 

task prior to a critical cut-in. The braking components and the total braking response 

were analysed to establish whether Lane Origin and the Workload Manager had any 

effect on any of the measures. 

Accelerator release reaction time 

 There was a significant main effect of Lane Origin F(1,42)=26.584, p<0.001, 

η
2
=0.388 whereby the accelerator pedal release reaction time was faster when the 

cutting-in vehicle originated from the slow lane (M=1.109s) compared to the fast 

lane (M=1.608s). A main effect of Workload Manager was also found 

(F(1,42)=31.637, p<0.001, η
2
=0.430) whereby participant took an average 272ms 

longer to react when it was not in use (refer Figure 6.6). The main effect of age 

failed to reach significance (p=0.403).  
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Figure 6.6: Accelerator release reaction times for secondary task onset Before a 

critical cut-in 

 

 The two-way interaction of Workload Manager x Age (F(1,42)=5.25, 

p=0.027,  η
2
=0.111) and a three-way interaction of Lane Origin x Workload 

Manager x Age (F(1,42)=8.47, p=0.006, η
2
=0.168) on accelerator release reaction 

time were also significant. A simple analysis with a paired sample t-test was 

conducted for older and younger drivers to compare whether the accelerator release 

reaction time of distracted drivers improved with the use of a workload manager. 

The results are displayed below (Table 6.6). 

Table 6.6: Paired sample t-test comparisons of Workload Manager On and Off 

accelerator release reaction time 

Lane Origin x Age 

Mean difference 

of accelerator 

release reaction 

time (s) 

t Sig. 
Effect size 

(r) 

Slow lane, younger 0.229 t(25)=3.557 0.002 0.579 

Slow lane, older 0.167 t(17)=2.758 0.013 0.556 

Fast lane, younger 0.133 t(25)=1.372 0.182 0.265 

Fast lane, older 0.694 t(17)=3.680 0.002 0.666 

Note: BOLD denotes significance < 0.05 

 

 The workload manager had a significant effect on the improvement of 

accelerator release reaction time for older drivers regardless of lane origin. For 
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younger drivers, this improvement on accelerator release reaction time was only 

found  with a slow lane cut-in. 

 

Accelerator-to-brake transition time 

 There was significant main effect of Lane Origin F(1,42)=10.279, p=0.003,  

η
2
=0.197 on the accelerator-to-brake movement time whereby participants 

responded 131ms faster when the cut-ins originated from the slow lane as compared 

to cutting-in vehicle originating from fast lane. Although there was no main effect of 

Workload Manager (p=0.191), the interaction between the Lane Origin and 

Workload Manager was significant (F(1,42)=10.566, p=0.002, η
2
=0.201) (refer 

Figure 6.7). In slow lane cut-in scenarios, participants reacted more quickly with 

Workload Manager On (M=375ms) as compared to Workload Manager Off 

(M=468ms). However in fast lane critical cut-in situations, participants waited for a 

longer duration of time to initiate braking when Workload Manager was On 

(M=642ms) as compared to Workload Manager Off (M=463ms). No main effect of 

age or other two way interaction was found. 

 

Figure 6.7: Accelerator-to-brake transition time for secondary task onset Before a 

critical cut-in 

 

Brake Response Time 

 Brake response time is the summation of accelerator release time and 

accelerator-to-brake transition time. Overall, main effects of Lane Origin 
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F(1,42)=34.05, p<0.001, η
2
=0.448 and Workload Manager F(1,42)=17.406, 

p<0.001, η
2
=0.293 on brake response time were significant. With the Workload 

Manager On (M=1.714s), participants responded 263ms more quickly as compared 

to with Workload Manager Off (M=1.917s) (see Figure 6.8). The main effect of age 

was found to be non-significant (p=0.559).   

 

Figure 6.8: Brake response time for secondary task onset Before a critical cut-in 

 

 No two-way interaction was found to be significant. A  significant three-way 

interaction of Lane Origin x Workload Manager x Age (F(1,42)=5.494, p=0.024, 

η
2
=0.116) on brake response time was found. A simple analysis of paired sample t-

test was conducted for older and younger drivers to compare whether the brake 

response time of distracted drivers improved with the use of the workload manager. 

The results are displayed below (Table 6.7). 

 

Table 6.7: Paired sample t-test comparisons of Workload Manager On and Off 

brake response times 

Lane Origin x Age 

Mean difference of 

brake response time 

(s) 

t Sig. 
Effect size 

(r) 

Slow lane, younger 0.380 t(25)=3.749 0.001 0.560 

Slow lane, older 0.203 t(17)=2.777 0.013 0.559 

Fast lane, younger 0.002 t(25)=0.018 0.986 0.004 

Fast lane, older 0.467 t(17)=2.142 0.017 0.461 

Note: BOLD denotes significance < 0.05 
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 Similar to the results found with accelerator release reaction time, the 

workload manager had a significant effect on the improvement of brake reaction 

time for older drivers regardless of lane origin. For younger drivers, these 

improvements in brake reaction time were only found in slow lane cut-ins. Figure 

6.9 depicts the brake response time components, accelerator pedal release time and 

accelerator-to-brake transition time, for slow and fast lane cut-ins.  

 

Figure 6.9: Braking components for secondary task onset Before a critical cut-in 
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 Figure 6.9 shows that the response times for older drivers were relatively 

similar to younger drivers’ response times when the Workload Manager was On. 

This means that both groups of distracted drivers (i.e.in-vehicle messages started 

before a critical cut-in) will benefit from the use of the delay strategy, but older 

drivers benefit more in fast-lane cut-ins. 

 

6.4.1.2 Secondary task onset Concurrent with a critical cut-in 

Accelerator Release Reaction Time 

 There was a significant main effect of Lane Origin F(1,42)=76.62, p<0.001, 

η
2
=0.646 whereby the accelerator pedal release reaction time for cutting-in vehicle 

originating from the slow lane (M=0.969s) was shorter than from the fast lane 

(M=1.668s). A main effect of Workload Manager was also found (F(1,42)=32.72, 

p<0.001, η
2
=0.438) whereby participants took an average 357ms longer to react 

when it was not in use (M=1.497s) as compared to when the workload manager was 

On (M=1.140s).  

 Generally, older drivers showed a slower response to throttle control, having 

an overall larger mean reaction time (1.446s) than the younger drivers (1.191s) 

(F(1,42)=8.719, p=0.005, η
2
=0.172).  The two way interaction of Lane Origin x Age 

(F(1,42)=7.719, p=0.008, η
2
=0.155) and Workload Manager x Age (F(1,42)=12.10, 

p=0.001, η
2
=0.224) on accelerator release reaction times was significant, indicating 

that the influence of Workload Manager was consistent in all lane origins for older 

drivers. However, in fast lane cut-in conditions, there was no influence of Workload 

Manager on younger drivers (Figure 6.10) as compared to older drivers’ reaction 

time. 
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Figure 6.10: Accelerator release reaction time for secondary task onset 

Concurrent with a critical cut-in 

 

 Additionally, a three way interaction of Lane Origin x Workload Manager x 

Age was also found to be significant (F(1,42)=7.37, p=0.01,  η
2
=0.149). A simple 

analysis with a paired sample t-test was conducted for older and younger drivers to 

compare whether the accelerator release reaction time performance improved with 

the use of the workload manager to delay in-vehicle messages which coincide with a 

critical cut-in. The results are displayed below (Table 6.8). Based on the effect size, 

older drivers benefited from the delay intervention more than younger drivers in all 

types of cut-in conditions (Slow Lane/Fast Lane). 

 

Table 6.8: Paired sample t-test comparisons of Workload Manager On and Off 

accelerator release reaction time 

Lane Origin x Age 

Mean difference of 

accelerator release 

reaction time (s) 

t Sig. 
Effect size 

(r) 

Slow lane, younger 0.255 t(25)=5.674 0.000 0.750 

Slow lane, older 0.342 t(17)=3.793 0.001 0.677 

Fast lane, younger 0.025 t(25)=1.372 0.839 0.265 

Fast lane, older 0.806 t(17)=3.655 0.002 0.663 

Note: BOLD denotes significance < 0.05 
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Accelerator-to-brake transition time 

 There was a significant main effect of Lane Origin on accelerator-to-brake 

transition time (F(1,42)=5.51, p=0.024, η
2
=0.116) whereby slower movements were 

associated with a cut-in from the fast lane (M=588ms) in comparison to cut-ins from 

a slow lane (M=471ms). Older drivers (M=428ms) reacted 183ms more quickly than 

younger drivers (M=621ms) (F(1,42)=16.090, p<0.001, η
2
=0.277). A two way 

interaction of Workload Manager x Age (F(1,42)=5.02, p=0.030, η
2
=0.107), 

indicated that older drivers reacted differently than younger drivers when the 

Workload Manager was in use. Older drivers generally moved more slowly by 89ms 

when Workload Manager was On while younger drivers moved more quickly by 

128ms.  

 A significant three way interaction of Lane Origin x Workload Manager x 

Age (F(1,42)=4.89, p=0.033, η
2
=0.104) was found. A simple analysis with a paired 

sample t-test was conducted for older and younger drivers to compare the 

accelerator-to-brake transition time in conditions where Workload Manager is On or 

Off. The results are displayed in Table 6.9. 

Table 6.9: Paired sample t-test comparisons of Workload Manager On and Off 

accelerator-to-brake transition time 

Lane Origin x Age 

Mean difference 

of accelerator-to-

brake transition 

time (s) 

t Sig. 
Effect size 

(r) 

Slow lane, younger 0.030 t(25)=0.329 0.745 0.203 

Slow lane, older -0.018 t(17)=-0.241 0.812 0.058 

Fast lane, younger 0.225 t(25)=2.480 0.020 0.444 

Fast lane, older -0.161 t(17)=-2.625 0.018 0.537 

  

Results in Table 6.9 indicate that these differences are only significant in fast 

lane cut-in scenarios. In slow lane conditions, the times taken for foot movement 

between accelerator and brake pedal were relatively equal, regardless of whether the 

workload manager was in use. In fast lane cut-in conditions with the Workload 

Manager Off, younger and older drivers behaved differently: older drivers had 

shorter movement time (M=388ms) compared to younger drivers (M=821ms). This 

suggests that in multiple task situations, older and younger drivers perceived the 

urgency to brake differently, whereby older drivers had prioritised braking over the 
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secondary task more than younger drivers. When the workload manager is in use, 

both age groups had similar accelerator-to-brake movement time: older drivers 

(M=548ms), younger drivers (M=595ms) (refer to Figure 6.11). The older drivers 

responded more slowly in the accelerator-to-brake movement times with Workload 

Manager On, suggesting that the older drivers had longer judgement time in 

anticipating the progression of the driving situation before deciding to depress the 

brake pedal. 

 

Figure 6.11: Accelerator-to-brake transition time for secondary task onset 

Concurrent with a critical cut-in 

 

Brake Response Time 

 Overall, the main effects of Lane Origin , (F(1,42)=99.83, p<0.001,η
2
=0.704) 

and Workload Manager, (F(1,42)=19.61, p<0.001, η
2
=0.318) on brake response time 

were significant. While drivers in general responded more quickly when vehicles 

pulled in from the slow lane (M=1.441s) than for the fast lane (M=2.255s), there was 

also a significant reduction in brake response time when the workload manager was 

present (M=1.660s) compared to absent (M=2.036s). No main effects of Age were 

found on the brake reaction time indicating that older drivers performed equally well 

as the younger drivers in critical cut-ins. Figure 6.12 shows that the older drivers’ 

brake responses in slow cut-in conditions were similar to the younger drivers 

suggesting that both age groups prioritised driving. 
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Figure 6.12: Brake response time for secondary task onset Concurrent with a 

critical cut-in 

 

 However there was also a marginally significant interaction of Lane Origin x 

Age (p=0.041) on brake response time. Visual inspection of the graph of the braking 

components and brake responses for both younger and older drivers in slow and fast 

lane critical cut-in indicated that both younger and older drivers responded equally 

fast in slow lane cut-in conditions. But the improvement in braking performance for 

older drivers in fast lane cut-in condition was inhibited by the increase in the 

accelerator-to-brake transition time (Figure 6.13). For younger drivers, the reduction 

in braking performance in fast-lane cut-ins with Workload Manager On is associated 

with the reduction on the accelerator-to-brake pedal transition time. Despite there 

being difference of Workload Manager effect on the accelerator-to-brake transition 

time between the two age groups, both age groups performed better in brake 

response times with Workload Manager On. 
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Figure 6.13: Braking components for secondary task onset Concurrent with a 

critical cut-in 

 

6.4.1.3 Number of collisions 

 The occurrence of a collision with the new cutting-in vehicle was recorded. 

A collision was identified if the time headway was less than 40ms or if the time to 

collision was between 0 and 70ms. For the total number of crashes, only descriptive 

data are presented since the number of collisions across the entire experiment was 

not sufficient to perform statistical analysis. Nevertheless, as Table 6.10 

demonstrates, there was an indication that more crashes occurred when the 
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Workload Manager was Off (41 out of 440) compared to when Workload Manager 

was On (3 out of 528).  

 

Table 6.10: Number of collisions per scenario 

Workload Manager 

Secondary task onset 

Before a critical cut-in 

Secondary task onset 

Concurrent with a critical 

cut-in 

Number of 

collisions 

recorded 

% Events 

with 

collision 

Number of 

collisions 

recorded 

% Events 

with 

collision 

Workload Manager Off 26 14.77 15 8.52 

Workload Manager On 2 0.01 0 0.00 

 

 When the Workload Manager was Off, the collisions were evenly split 

between situations where message onset was either before or concurrent with a 

critical cut-in event. However, when the Workload Manager was On, the percentage 

of collisions reduced in both situations.  

 Further analysis of the number of collisions in Workload Manager Off 

condition showed that these could be attributed to younger drivers. The percentage 

of younger drivers (65.4%) involved in collisions with the Workload Manager Off 

was higher than for older drivers (16.7%) (Table 6.11). 

 

Table 6.11: Number and percentage of drivers involved in collision by Age and 

Workload Manager 

Age 

Workload Manager Off Workload Manager On 

Number of 

participants 

% Involved 

in  collisions 

Number of 

participants 

% Involved 

in  collisions 

Younger Drivers 17 65.4 1 3.8 

Older Drivers 3 16.7 0 0.0 

 

 Comparisons of the percentage of drivers involved in a collision indicate that 

younger drivers were more likely to be involved in collision as compared to older 

drivers.  
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6.4.1.4 Summary of driving performance  

 Statistical analysis and visual inspection of the graphs indicated that driver 

response time was slower when distracted by an in-vehicle task regardless of 

whether the driver was distracted prior to a cut-in or when the in-vehicle task 

coincided with the critical lane change. When a workload manager with a 12s delay 

was used to postpone any incoming messages that coincided with a critical lane 

change or to interrupt by delaying any subsequent in-vehicle messages following a 

lane change, there was an improvement in the response time. Table 6.12 shows that 

the effect of this intervention is significant for the braking response time in both 

conditions.  

Table 6.12: Summary of main effects and interactions  

(Workload Manager x Age) on driving performance 

Scenario 
Workload 

Manager 
Age 

Workload 

Manager x Age 

In-vehicle task before critical cut-in 

   Accelerator release time    

   Acc-to-brake transition time    

   Braking response    

Coincident in-vehicle task with critical cut-in 

   Accelerator release time    

   Acc-to-brake transition time    

   Braking response    

 

 Overall, older drivers were found to be capable of responding well to the 

critical lane changes in situations where secondary task onset was Before a critical 

cut-in, in comparison to younger drivers. This may suggest that these drivers were 

capable of managing own their workload. However in situations requiring 

simultaneous response to an in-vehicle task and throttle control, older drivers were 

found to respond slower in releasing the accelerator pedal in critical lane changes. 

While this could be due to the switching cost between two tasks that requires the 

same visual resources, older drivers were found to prioritise driving better than 

younger drivers. This is because older drivers were less involved in collisions (as 

shown in Table 6.11) despite slow response in braking. In sum, although the 

difference between the age groups was not significant in braking response, both age 
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groups performed worse in the driving task when an in-vehicle task was present 

simultaneously in situations requiring a quick response from the driver (i.e. critical 

cut-in). To confirm the findings regarding driver responses, analysis of driver’s 

rating of effort and workload are examined in the following section. 

 

6.4.2 Subjective workload measures 

 Two measures of driver workload were collected: the overall workload 

(measured at the end of each of the two drives: one with Workload Manager On, the 

other with Workload Manager Off) and momentary workload (measured at the end 

of each event using the rating scale between 1 and 10).   

6.4.2.1 Overall workload 

 Paired-sample t-tests with α of 0.05 were carried out to compare the 

differences in workload between the two drives (drive with Workload Manager Off, 

drive with Workload Manager On) for each of the six dimensions of NASA-RTLX 

including the Overall NASA and also RSME as shown in Table 6.13. Results 

showed that the use of a Workload Manager (WLM On) significantly reduced 

workload.  

Table 6.13: Descriptive statistics and t-test results of subjective workload 

Statistics 
Mean (SD) 

Sig. 
Effect 

size, (r) WLM Off WLM On 

N
A

S
A

-R
T

L
X

 

D
im

en
si

o
n
s 

Mental Demand 64.46(17.20) 45.66(21.43) p<0.001 0.611 

Physical Demand 48.28(23.26) 31.70(22.63) p<0.01 0.499 

Time Pressure 54.03(25.24) 34.45(21.82) p<0.01 0.482 

Own Performance 53.45(18.76) 40.83(22.47) p<0.05 0.382 

Effort 56.88(21.68) 37.90(22.49) p<0.001 0.520 

Frustration 52.76(25.80) 33.90(22.95) p<0.01 0.486 

Overall NASA-RTLX 54.98(17.18) 37.41(17.94) p<0.001 0.581 

RSME 61.40(19.39) 48.51(18.11) p<0.001 0.810 

 

 The effect size for each significant results in Table 6.13 were calculated 

using Equation 4.1 (Fields, 2005). Results showed effect of substantial reduction  in 

Overall NASA-RTLX (Figure 6.14) with the use of a workload manager. All the six 
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effects of NASA-RTLX dimensions were moderate to strong, accounting for at least 

15% to 38% the variances in the data. Similarly for the RSME questionnaire, 

participants provided a higher rating of effort (M=61.4, with the label ‘Rather much 

effort’) for the drive with Workload Manager Off. This was significantly higher than 

the level of effort required to complete a drive with Workload Manager On 

(M=48.5). 

 

Figure 6.14: Workload Manager effect on ratings of NASA-RTLX dimensions 

 

 Additionally, both age groups of drivers were found to benefit from the use 

of a workload manager. As show in Figure 6.15, both age group of drivers reported 

lower workload (as measured by NASA-RTLX and RSME) when the Workload 

Manager was On. 

 

Figure 6.15: Workload Manager effect on overall workload  

(overall NASA-RTLX and RSME) 
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 Although older drivers, in general, were found to provide a lower rating of 

workload and effort, in comparison to the younger drivers in all conditions, the 

average reduction in workload and effort with Workload Manager On were 

consistent across the age groups. Paired-sample t-test indicated that both age groups 

experienced significant reduction in effort with Workload Manager On; whereby 

younger and older drivers experienced average reduction of 13.07 (95% CI - 8.51 to 

17.64) and 14.49 (95% CI - 10.49 to 18.88) in effort, respectively. 

  

6.4.2.2 Momentary workload 

 To examine whether the effects of Workload Manager and Age were found 

with the driver’s momentary workload during the drive, further analysis was 

conducted on the continuous workload rating data (collected using the 1-10 point 

rating scale) which was measured at the end of each cut-in event within a drive. This 

was carried out to investigate whether the workload manager is capable of managing 

drivers’ temporal workload in safety-critical situations  

 A three way repeated-measures ANOVA with the Lane Origin (Slow/Fast) 

and Workload Manager (Off/On) as within-subject factors and Age as the between 

effect was carried out. Data analysis were conducted separately to examine the effect 

of Workload Manager on each of the dual-task conditions (i.e. secondary task onset 

Before a critical cut-in, secondary task onset Concurrent with a critical cut-in). 

 

Secondary task onset Before a critical cut-in 

 There was a main effect of Lane Origin, F(1,42)=47.72, p<0.001, η
2
=0.532 

on momentary workload. Drivers’ momentary workload in slow-lane cut-in 

situations (M=5.949) were higher than fast-lane cut-ins (M=4.778) in all dual-task 

conditions.  

 A reported significant main effect of Workload Manager (F(1,42)=38.22, 

p<0.001, η
2
=0.476) suggest that driver workload was lower when the Workload 

Manager was On. Pairwise comparisons showed that participants rated the in-vehicle 

task before critical cut-in conditions with a significantly lower workload rating in 
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scenarios with Workload Manager On (M=4.686) than the scenarios with Workload 

Manager Off (M=5.861, mean difference=1.172, SE=0.190, p<0.001) (Figure 6.16). 

 

Figure 6.16: Momentary workload for secondary task onset Before a critical cut-

in  

  

 A significant main effect of Age on workload ratings was also found, 

F(1,42)=7.107, p=0.011, η
2
=0.145. Younger drivers (M=5.769) in general rated 

workload higher than the older drivers (M=4.778, mean difference=0.991, 

SE=0.372, p=0.011) (Figure 6.16). No two way or three way interactions were 

found.  

 

Secondary task onset Concurrent with a critical cut-in 

 A three way ANOVA with Lane Origin (two levels) and Workload Manager 

(three levels: Workload Manager Off with no delay, Workload Manager On with 12s 

delay and Workload Manager On with 21s delay) as within subject factors and Age 

as between subject factor was conducted. There were main effects of Lane Origin, 

F(1,42)=33.915, p<0.001, η
2
=0.393 and Workload Manager, F(2,84)=36.927, 

p<0.001, η
2
=0.468. Workload ratings were higher when secondary task was 

performed concurrently with a slow-lane critical cut-in (M=5.442) as compared to 

fast-lane critical cut-in (M=3.918). With Workload Manager On, workload reduces 

with the increasing delay duration (Mean for 0s=5.726, Mean for 12s=4.403, Mean 

for 21s=3.911) with Workload Manager On. 
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 Similar to the findings in the previous section on overall workload, older 

drivers (M=4.316) provided a lower rating than younger drivers (M=5.045, Mean 

difference=0.729, SE=0.140, p<0.001) for all critical cut-in situations (Figure 6.17).  

 

Figure 6.17: Momentary workload for secondary task onset Concurrent with a 

critical cut-in 

 

 An interaction of Lane Origin x Workload Manager on workload rating was 

found to be significant, F(2,84)=4.292, p=0.017, η
2
=0.093. Simple analysis of one 

way ANOVA was computed for each lane origin (Slow/Fast). Results of the 

ANOVA analysis are provided in Table 6.14 below. 

 

Table 6.14: Workload Manager effect on momentary workload  

(per Lane Origin) 

Lane Origin F (2,86) Sig. 
Effect size 

(µ
2
) 

Pairwise Comparison 

Slow lane 24.05 <0.001 0.364 
Delay 0s > Delay 12s, 

Delay 12s =Delay 21s 

Fast lane 19.173 <0.001 0.313 
Delay 0s > Delay 12s, 

Delay 12s =Delay 21s 

  

 From the pairwise comparisons results in Table 6.14, it can be concluded that 

the workload ratings were independent of the delay duration (12s vs 21s). Thus, 

participants did not experience a significant reduction in workload when delay was 

increased from 12s to 21s.  
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6.4.3 In-Vehicle Task Performance  

6.4.3.1 Secondary Task Response Times 

 Participants verbal responses to the secondary task were measured at 90th 

percentile to exclude the cases of unusually long response times. The response times 

were compiled and analysed with two main aims: i) to examine whether drivers’ 

response times increase when the critical cut-in event happens and ii) to investigate 

the benefit of delays on secondary task response times.  

i) Do drivers slow down on response to secondary task when the critical cut-in event 

happens? 

 To investigate this, drivers’ response times to the secondary task initiated 

before a critical cut-in were examined. The secondary task response times prior to a 

critical cut-in was defined as the baseline, which was then compared with the 

secondary task response times following a critical cut-in conditions by Workload 

Manager (Workload Manager Off, Workload Manager On). With the Workload 

Manager Off, the secondary task overlaps with the critical cut-in and thus the 

secondary task response times is defined as WLM Off, while with Workload 

Manager On, the secondary task which occurs 12s later following a critical cut-in is 

measured as WLM On (refer Figure 6.18). By examining the secondary task 

response times, the benefits of employing a 12s delay during a slow or fast lane 

critical cut-in can be examined and compared. 

 

a) Secondary task onset Before a critical cut-in with WLM Off                

                         

 

 

WLM Off Pre_LC 
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b) Secondary task onset Before a critical cut-in with WLM On 

 

Figure 6.18: Definition of the secondary response times measures 

  

 Each variable was checked for normality and homogeneity of variance using 

the Kolmogorov Smirnov test and Levene’s tests respectively. The data were also 

tested for sphericity using the Mauchly’s test. In case of violation of sphericity, the 

Greenhouse Geisser correction was used. A three-way repeated-measures ANOVA 

with Workload Manager (Baseline, WLM Off, WLM On) and Lane Origin (Slow 

Lane, Fast Lane) as within-subject factors and Age (Younger, Older) as the between 

factor was carried out on the participants’ verbal responses.  

 When the secondary task was performed in non-critical driving situations, 

older drivers performed slower as compared to the younger drivers (M= 1424 ms, 

1283 ms, respectively, p<0.001). Critical cut-in events were found to cause an 

increase in secondary task response time for both age groups (F(2,84)=123.66, 

p<0.001, η
2
=0.746), and when examining the effect of the Workload Manager on 

secondary task performance, post hoc pairwise comparisons showed this effect was 

highest with the Workload Manager Off (Molder= 2143ms, Myounger= 1675ms) and 

then followed by Workload Manager On (Molder= 1759ms, Myounger= 1377ms). 

Additionally, there was also main effect of Lane Origin whereby drivers were also 

found to respond slower to the secondary task when the cut-in events originated 

from the slow lane as compared to fast lane (F(1,42)=122.16, p<0.001, η
2
=0.744). 

Compared to younger drivers, older drivers were found to respond slower to 

secondary task in all dual-task conditions. A significant interaction between Age 

group and Workload Manager revealed that the effect of critical cut-in on secondary 

task response times was particularly strong in older drivers (F(2,84)=10.75, p<0.001, 

η
2
=0.204) as shown by the large increase in response times with WLM Off, in 

Figure 6.19.  

WLM On Baseline 
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Figure 6.19: Secondary task RTs of secondary task onset Before a critical cut-in 

 

 In sum, both age groups performed slower on responding to secondary tasks 

in the event of critical cut-in, regardless whether the cutting-in vehicle originated 

from slow or fast lane. With respect to Workload Manager, all drivers in general, 

benefited from the delay of 12s with WLM On. 

 

ii) Do drivers benefit from a longer delay on the secondary task onset? 

 Reaction times for the secondary tasks initiated concurrently with a critical 

lane change were examined to investigate the benefits of employing a longer delay 

on a system-controlled task. The 528 datapoints (from 44 participants) involving an 

secondary task which coincided with a cut-in were compiled and analysed. The tests 

for normality and homogeneity of variance were conducted on the data. In case of 

violation of sphericity, the Greenhouse  Geisser correction was used.  

 A three way repeated-measures ANOVA with the Lane Origin (Slow/Fast, 

Workload Manager (WLM Off with 0s, WLM On with 12s, WLM On with 21s) as 

within-subject factors and Age (Younger/Older) as the between factor was carried 

out on the participants vocal responses (measured at 90th percentile to exclude the 

cases of unusually long response time). 

 The reaction times of the correct trials on the visual task showed that there 

was a significant main effect of Lane Origin (F(1,42)=112.85, p<0.001, η
2
=731). 
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Response time to the secondary task in slow-lane critical cut-in situations 

(M=1975ms) was 548ms longer than fast-lane critical cut-in situations (M=1427ms) 

(Figure 6.20).  

 

Figure 6.20: Secondary task RTs for secondary task onset Concurrent with a 

critical cut-in 

 

 There was a significant main effect of Workload Manager (F(2,84)=19.007, 

p<0.001, η
2
=312) whereby participants’ secondary task response time reduced 

systematically with the increase in delay on the secondary task onset (Figure 6.20), 

On average, participants were more than 0.2s faster when responding to a secondary 

task with Workload Manager On with a delay of 12s  (M=1635ms) and 21s 

(M=1609m s) than when Workload Manager was Off (M=1858ms). When no delay 

was implemented (i.e. WLM Off), participants’ performance on the secondary task 

was the worst as participants had to juggle between the secondary task while 

simultaneously dealing with throttle control to manoeuvre the vehicle safely. 

Additionally, there was also a main effect of Age whereby older participants on 

average responded more slowly by 397ms than younger participants 

(F(1,42)=27.253, p<0.001, η
2
=0.394). 

 Lane Origin was found to interact significantly with Workload Manager 

F(2,84)=23.53, p<0.001, η
2
=0.359). To examine the simple effects of the interaction 

of Lane Origin x Workload Manager, one way ANOVA was conducted on each 

Lane Origin trials. Results showed that there was a significant benefit of longer 

delay onset only in slow-lane critical cut-ins. Although  participants’ response time 
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for secondary task was the highest when no delay was implemented and the response 

times reduce with increasing delay, the benefit of longer delay onset of 21s was not 

found in fast-lane critical cut-ins (refer Table 6.15). In fast-lane cut-in conditions, 

pairwise comparison showed that the response times for 12s and 21s delay were not 

significantly different. 

 

 Table 6.15: Workload Manager effect on secondary task response times  

(per Lane Origin) 

Lane Origin  F (2,86) Sig. 
Effect size 

(µ
2
) 

Pairwise Comparison 

Slow lane 52.17 <0.001 0.548 
Delay 0s > Delay 12s, 

Delay 12s > Delay 21s 

Fast lane 23.69 <0.001 0.355 
Delay 0s > Delay 12s, 

Delay 12s = Delay 21s 

 

 No other two-way or three-way interaction was found. In sum, these findings 

showed that although both age groups benefited from the Workload Manager On 

with 12s delay in all critical cut-in conditions, there is an additional benefit of a 

longer delay of 21s on secondary task onset concurrent with slow-lane critical cut-

ins.  

 

6.4.3.2 Percentage of Error 

Secondary task onset Before a critical cut-in 

 A three way ANOVA with Lane Origin (Slow/Fast) and Workload Manager 

(On/Off) as within-subject factors and Age as between-subject factors was carried on 

the participants percentage of error. There was a significant main effect of Lane 

Origin (F(1,42)=73.837, p<0.001, η
2
=0.637) whereby participants on overall 

performed more poorly in secondary task during slow-lane critical cut-ins 

(M=13.00%) as compared to fast-lane cut-ins (M=4.97%). Significant main effects 

of Workload Manager F(1,42)=146.89, p<0.001, η
2
=0.780) indicates that 

participants performs more error when Workload Manager is Off (M=16.40%) than 

when Workload Manager is On (M=1.57%). A significant main effect of Age 

F(1,42)=7.14, p=0.011, η
2
=0.145 showed that the older driver (M=11.00%) in 

general performed more errors than younger drivers (6.97%). Age effect interacted 
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significantly with Workload Manager (F(1,42)=9.208, p=0.004, η
2
=0.180) 

suggesting that both age groups although performed poorly with Workload Manager 

Off, but a large percentage of these errors when Workload Manager was Off was 

attributed to older drivers (M=20.62%).  

 

Secondary task onset Concurrent with a critical cut-in 

 With Workload Manager Off, participants made significantly more errors 

(M=21.50%; F(2,84)=85.57, p<0.001, η
2
=0.671) compared to when Workload 

Manager was On (M=1.71% for 12s and M=0.58% for 21s). Additionally, drivers 

were found to perform more errors in slow-lane cut-ins (M=10.17%) than in fast-

lane cut-ins (M=5.69%; F(1,42)=21.773, p<0.001, η
2
=0.341). Similar to other dual 

task conditions, an age effect (F(1,42)=6.50, p=0.017, η
2
=0.128) on error rate was 

found, whereby older drivers on average performed 4.21% of errors more than 

younger drivers. Table 6.16 shows a summary of the number of misses and the 

contribution of these misses in percentage, by age group. There is an indication that 

the overall increase of errors in dual-tasking for older drivers is due to older 

participants performing more misses than younger drivers when simultaneously 

performing the driving task and the secondary task (Table 6.16).  

Table 6.16: Mean (and standard error) of number of misses and the contribution 

of missed responses in percentage error  

Secondary Task Performance 

Slow Lane Fast Lane 

Younger 

Drivers 

Older 

Drivers 

Younger 

Drivers 

Older 

Drivers 

Misses (count) 15.4 (2.7) 41.1 (6.5) 5.1 (0.8) 12.1 (2.1) 

Contribution of missed responses 

in percentage error (%) 
5.3 (1.7) 10.5 (2.9) 2.6 (1.3) 7.6 (1.9) 

  

 Lane Origin was found to interact significantly with Workload Manager 

(F(2,84)=15.173, p<0.001, η
2
=0.265). One-way ANOVA was conducted on each of 

the Lane Origin to examine whether there was a benefit of longer delays on 

secondary task onset. Results in Table 6.17 indicate that while there was an extra 

benefit of longer delay of up to 21s in slow-critical cut-ins, this was however not 

found with fast-lane critical cut-ins (p>0.05). 
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Table 6.17: Workload Manager effect on secondary task percentage error (per 

Lane Origin) 

Lane Origin F (2,86) Sig. 
Effect size 

(µ
2
) 

Pairwise Comparison 

Slow lane 74.774 <0.001 0.635 
Delay 0s > Delay 12s, 

Delay 12s > Delay 21s 

Fast lane 23.507 <0.001 0.348 
Delay 0s > Delay 12s, 

Delay 12s = Delay 21s 

 

6.4.3.3 Summary of secondary task performance 

 In sum, both age groups of drivers benefited with the Workload Manager On 

that implements a delay of 12s during critical cut-in conditions. Drivers were found 

that longer delays of up to 21s have significant impact on improving drivers’ 

secondary task performance, particularly in slow critical cut-in conditions. 

Considering that older drivers performed poorer than younger drivers in secondary 

task, older drivers may actually benefit more than younger drivers with the 

implementation of longer delays. A summary of secondary task response times and 

error rates for younger and older drivers in all dual-task conditions is shown in 

Figure 6.21.  
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Figure 6.21: Mean secondary task response times (with standard errors) with 

mean percentage error (with standard errors) 

 

 

 

 

 

Secondary task onset Before a 

critical cut-in 

 Secondary task onset Before a 

critical cut-in 
 Secondary task onset Concurrent 

with a critical cut-in 

Secondary task onset Concurrent 

with a critical cut-in 
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6.5 Discussion 

 Results from the present study are consistent with Study 2 in that a vehicle 

cutting in from the slow lane increases driver workload and is considered more 

urgent than a vehicle cutting-in from the fast lane. While participants in study 2 had 

expressed their concern that the cutting-in vehicle from the slow lane may not cope 

with the average speed on the middle lane and is perceived as more urgent than fast 

lane cut-in thus increasing the driver workload, the present study indicates that the 

presence of a secondary task during these events has a consistent additive effect on 

response performance and driver workload across all lane change condition (as 

shown in Table 6.18). For conditions where secondary task was initiated before a 

critical cut-in, drivers were distracted during the cut-in situation. Results from Table 

6.18 indicate that on average, there is a reduction of 16% (at a minimum) in 

accelerator release time for both slow lane cut-ins and an average reduction of 19.2% 

for fast lane cut-ins with the use of the intervention system. Driver workload was 

also reduced by 20% in both critical cut-in situation (both from slow and fast lane). 

These findings will be discussed further in Section 6.5.1. 

 The accelerator-to-brake transition time however differs with lane origin. In 

slow lane cut-in situations, the movement time reduced significantly for distracted 

conditions (i.e. secondary task onset Before a critical cut-in). For in-vehicle 

messages that were initiated at the time of critical cut-in, this improvement was 

minimal. While this measure improves with delay in the slow lane situation, this was 

however not found in the fast lane conditions and will be discussed in Section 6.5.2.  
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Table 6.18: Workload Manager (WLM) effect on driving performance and 

workload (per Lane Origin) 

Measures 

Slow Lane Fast Lane 

WLM Off 

Mean(SD) 

WLM On 

Mean(SD) 

WLM Off 

Mean(SD) 

WLM On 

Mean(SD) 

Secondary task onset Before a critical cut-in 

Accelerator release time 

(s) 
1.213 (0.285) 1.009 (0.192) 1.773 (0.702) 1.410 (0.665) 

% Improvement in 

accelerator release time 
16.82% 20.47% 

Accelerator-to-brake 

time (s) 
0.478 (0.356) 0.375 (0.086) 0.466 (0.258) 0.637 (0.245) 

% Improvement in 

accelerator-to-brake time 
21.55% -36.70% 

Driver workload 6.67 (1.56) 5.32 (1.93) 5.27 (1.55) 4.17 (1.48) 

% Reduction in driver 

workload 
20.24% 20.87% 

Secondary task onset Concurrent with a critical cut-in 

Accelerator release time 

(s)  
1.110 (0.244) 0.819 (0.268) 1.798 (0.853) 1.453 (0.475) 

% Improvement in 

accelerator release time 
26.22% 19.19% 

Accelerator-to-brake 

time (s) 
0.488 (0.354) 0.478 (0.245) 0.643 (0.378) 0.576 (0.272) 

% Improvement in 

accelerator-to-brake time 
2.05% 10.42% 

Driver workload 6.40 (1.80) 4.94 (2.32) 5.27 (1.82) 3.96 (1.30) 

% Reduction in driver 

workload 
22.81% 24.86% 
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6.5.1 Benefit of a Workload Manager During Safety-Critical Situations 

 In this experiment, the effectiveness of strategies to interrupt a task during 

critical cut-in situations was investigated. Investigation of the braking responses 

indicates that during lane changes with Workload Manager On, drivers responded 

quicker to the lane change events as compared to Workload Manager Off. This was 

applicable to all cut-in situations regardless of whether the adjacent vehicle 

originated from the slow lane or the fast lane.  

 Thorough investigation of the braking responses showed that participants 

undertaking an in-vehicle task prior to a critical cut-in event, responded more slowly 

in braking in the event of a critical cut-in. The accelerator release time and the 

accelerator-to-brake movement time improved with Workload Manager On during 

critical condition. However this additive effect of load was not found with 

accelerator-to-brake movement time in fast lane critical events. The accelerator-to-

brake-time improves with delay at greater urgency situations (i.e. slow lane critical 

cut-in) but then paradoxically becomes longer for older drivers with message delay 

in less urgent situations (i.e. fast lane critical cut-in).  

 For messages that were presented concurrently, improvement on accelerator-

to-brake reaction time was minimal. However improvement of accelerator release 

time with the Workload Manager On was in-line with the improvement in driver 

workload, thus indicating that accelerator release time is a good indicator of 

workload when evaluating the benefits of a workload manager. Moreover, the degree 

to which drivers rely on the different visual cues depends on their relative 

effectiveness (DeLucia and Tharanathan, 2009). In this situation where lane changes 

occur at very close distances (less than 10m headway) with the cutting-in vehicle 

originating from slow lane, the looming cues will be strong which may cause the 

drivers to perceive a slow lane cut-in as more threatening than a fast lane vehicle 

cutting-in at the same distance. On this occasion, the drivers’ perception of the 

criticality of the situation would influence driver workload and thus driver’s action 

to respond differently, which has been described earlier as the theory of perception-

action coupling (Gibson, 1979).    

 On the occasions of successfully avoiding a collision, the response time in 

general was longer when the secondary task was initiated during the cut-in as 
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compared to non-overlapping secondary and driving task. The distracted drivers who 

were engaged in the visual task were less aware of the surrounding due to drivers 

looking away from the forward view at the moment when the lane change event was 

initiated. Thus in the intervened conditions, the cut-in events both from the slow lane 

and fast lane showed consistent improvement in braking response. However there 

were a number of distracted participants who did not respond fast enough, or 

possibly did not sufficiently prioritise the driving task and this resulted in collisions. 

This suggests that although people are fairly good at performing multiple tasks at the 

same time, both age groups were unable to continue to perform the driving task 

adequately in dual-task conditions requiring drivers to brake and process in-vehicle 

information simultaneously. Therefore, the implementation of a 12 seconds delay or 

more to minimise the distraction and thus to avoid overload may have merit for both 

age groups.   

 

6.5.2 Age Effects 

 In general, older participants were more affected by dual task performance as 

they showed longer response times and worse performance (i.e. higher error rate) on 

the secondary task in comparison to the younger drivers. This could be attributed to 

the reason that older drivers needed more time to inspect the visual messages on the 

dashboard or that they have partly given up the secondary task and focus on the 

driving task. Similarly, the performance of older drivers was also poorer in situations 

relating to concurrent in-vehicle messages during critical lane-change. For example, 

in the fast lane critical cut-in situation, older drivers responded more slowly in 

releasing the accelerator pedal when the Workload Manager was Off. Older drivers 

experience a greater delay in braking more as the concurrent tasks requires 

simultaneous responses (as shown in Figure 6.22). With Workload Manager On 

however, older drivers were able to release the accelerator pedal and thus braking 

more quickly. Although Workload Manager has a varying effect on the two age 

groups, whereby improving the accelerator-to-brake transition times for the younger 

drivers, both groups of drivers performed better in braking response times with 

Workload Manager On. 
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Figure 6.22: Braking components reaction time for secondary task initiated 

concurrently with a fast-lane critical cut-in 

  

 Despite the driving performance data showing that older drivers performed 

the braking task slower than younger drivers, the percentage of participants involved 

in a collision was comparatively lower for older drivers as compared to younger 

drivers. A likely explanation is that older drivers were more cautious in driving.  

 With regard to subjective workload, older drivers in general provided lower 

ratings as compared to the younger drivers. This indicates that older drivers were 

less influenced by the dual-tasking demand as older drivers were found to prioritise 

driving more (i.e. fewer collisions). Despite slower reaction times in comparison to 

younger drivers in conducting secondary tasks, older drivers were good or perhaps 

better drivers than younger drivers who were more prone or interested in dual-

tasking. Thus when both age groups have similar annual high mileage, the older 

drivers perform driving as well as the younger ones, possible due to their higher 

capability of regulating own-driving which may be attributed to their higher number 

of years of driving experience than the younger drivers.   

 Overall, Table 6.19 shows that participants of both age groups in general 

benefited from the use of Workload Manager in all critical cut-in situations. With 

Workload Manager On, there is a consistent trend of improved driving and 

Fast Lane Critical Cut-In 
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secondary task performances which suggests that a workload manager that uses this 

strategy may be of benefit for some otherwise distracted drivers. 

Table 6.19: Percentage improvement in brake reaction time following the use a 

Workload Manager 

Age 

Before a critical cut-in 

conditions 

Concurrently with a critical 

cut-in conditions 

Slow Fast Slow Fast 

Younger Drivers 21.65% 0.10% 17.56% 11.06% 

Older Drivers 12.74% 18.78% 20.71% 24.00% 

   

6.5.3 Influence of the Lane Origin of the Other Vehicle 

 The effect of the lane origin of the cutting-in vehicle on braking performance 

and subjective workload suggests a possible influence of looming effect. Loom is a 

psychological term widely used in the study of perception which refers to the "rapid 

expansion in the size of any given image so that it fills the retina and is perceived as 

an approaching object" (Schiff et al., 1962).  In driving, whenever a person is on a 

collision course with an object, the apparent size of the visual image generated by 

the object on the observer’s retina grows at an accelerated rate. If the lead vehicle 

travels in the same direction and at the same speed or higher to the driver, the lead 

vehicle image size will either be constant or contracting. On the other hand, if the 

lead vehicle is slower, the image of the vehicle expands. Such optical looming 

during approaching is an important cue for perception which provides approximate 

information about collision such as relative movement direction (approaching 

towards and departing from) and relative movement speed (fast or slow). 

Additionally, it also quantifies the time remaining before collision. According to Lee 

(1976),  the time-to-collision is directly specified through Tau (defined as the inverse 

of the relative expansion rate of the retinal image), is used for judging when to start 

braking and how to control a vehicle during braking.  

 As previously shown in Table 6.3, the time-to-collision of the critical cut-in 

originating from the fast lane simulated in this study is negative in value due to the 

cutting-in vehicle travelling at a higher speed when crossing the lane divider. On the 

other hand, the time-to-collision for cut-ins from the slow lane is positive in value 

and these critical cut-ins have been found to be subjectively more demanding than 
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fast lane critical cut-ins. As such, the looming effect may offer an explanation from 

the psychological perspective on the differences in driver responses to the lane origin 

of the overtaking vehicle.  

6.6 Conclusion 

 The results found in the current experiment indicated that older drivers had 

more errors on the secondary task and slower braking response times. These 

differences suggest that older drivers (a) prioritise driving thus making more errors 

and (b) experienced greater delayed response when switching between tasks (Monk 

et al., 2004)   

 This study also showed that delaying an in-vehicle task by 12 seconds or 

more during critical cut-in situations may have merit. This is because in 

circumstances of when distractions are system-controlled (i.e. out of driver’s 

control), drivers may pay less attention to the driving situation. This could possibly 

due to driver’s misinterpretation of a traffic situation or perhaps being unaware of 

his or her own limits of driving capabilities. Drivers who failed to timeshare the in-

vehicle interactions and neglect potential collisions situations may cause a hazardous 

situation to arise. This is proven through statistical significant differences on driver 

responses (typically the brake response times) when the Workload Manager is 

present or absent. Additionally mental demand and effort was also found to improve 

with Workload Manager On, thus indicating reduction in driver workload (i.e. higher 

spare capacity following the implementation of information-scheduling strategy). 

Whilst this study is not focused on offering advice in regards to a particular delay 

duration to be implemented in critical cut-in situations, it does however clearly 

indicate the general detrimental effects on attention and performance which thus 

warrant caution to be exercised when allowing such in-vehicle messages.    

 In addition, drivers could also benefit from a notification system that provide 

warnings that alert them to an impending collision. Recent studies have indicated the 

potential benefits of warnings that alert the driver of a braking vehicle ahead (rear-

end collision warning) and those that alert the driver when the vehicle begins to drift 

towards the edge of the road or out of its lane (road departure warnings). Fiat, for 

example has introduced a collision avoidance system that utilised radar or camera 
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sensors to detect an imminent crash. This safety system provides visual and audible 

warning to prompt drivers to take preventive action and also initiates braking and 

seat-belt retraction (i.e. increase of seatbelt tension) to hold the driver more securely, 

in the event that a collision is unavoidable. In relation to the findings obtained from 

the current study in regards to the managing driver workload during critical cut-in 

situations, implementing warnings that can alert drivers of dangerous neighbouring 

driver, such as Fiat’s seat-belt retraction or possibly, haptic steering are potential 

alerts which can help steer driver’s attention to the source of conflict, may have 

merit. Such alerts could be provided as additional support of a workload manager to 

warn drivers, particularly those who were busy dual-tasking in the event of a critical 

cut-in.   
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7 Chapter 7  

Thesis Conclusions and Recommendations 

7.1 Overview 

 The central aim of this thesis was to examine how the surrounding traffic 

influenced momentary driver workload, and to attempt to measure these workload 

fluctuations via comparison of systematically manipulated traffic conditions in 

within-subject experiments (De Waard, 1996; Lewis-Evans, 2012). The three 

simulator studies in this thesis provide a thorough investigation of how momentary 

driver workload can be measured and an evaluation of how the findings can be 

useful and relevant to traffic safety, with particular reference to workload managers.  

 The issue of workload measurement, in terms of its dynamic, evolving and 

multi-faceted nature, was highlighted and examined in the first study. Since 

workload is a construct with a variety of components (Meshkati, 1988) which can 

vary substantially over time, a range of subjective and objective measures were 

employed in the study to investigate the effect of traffic complexity on driver 

workload. The study provided findings on the sensitivity of measures in tapping into 

the fluctuations of the primary task demand manipulated in the study (i.e. traffic 

complexity), as well as highlighting a particular traffic behaviour that has an effect 

on driver momentary workload, namely the lane changes performed by a 

neighbouring vehicle. Among the measures examined, subjective measures were 

found not only to be sensitive to the overall changes in traffic complexity but was 

also more superior than other types of measures in capturing fluctuations in 

workload (Carsten, 2014). In addition to the low cost involved and ease of the 

administration, a subjective measure was used as the main workload measure in the 

latter two experiments presented in this thesis, which investigated the effect of lane 

changes. 

 In the second study, the characteristics of a lane change were explored and 

the workload recovery associated with each level of driving demand manipulated 

was examined. To investigate driver workload in dual-task conditions, a surrogate 
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mobile phone task (i.e. a driver-paced task), was introduced to evaluate  the effect of 

a distracter task by measuring driver response times to secondary task alerts. This 

study highlighted the dynamics of changing task demand and the evolution of 

workload which would not be possible with the most common subjective workload 

measurement tools such as NASA-TLX or its derivative, DALI (Pauzié, 2008). 

 In the third, and final study presented in this thesis, driver workload and 

performance were evaluated in varying safety-critical dual-task conditions. The 

benefits of using a workload manager to reduce driver workload and improve 

performance in potentially safety-critical situations involving a critical lane change 

performed by a neighbouring vehicle were highlighted. Drivers’ ability to manage 

own workload in demanding conditions were evaluated via primary and secondary 

task performances and comparisons were made between two age group of drivers 

(i.e. younger, older). 

 This thesis concludes with a summary of the potential contributions that 

these driving simulator studies make to our understanding of managing driver 

workload and reducing in-vehicle distraction during a critical-cut in. 

  

7.1.1 Which workload measures are sensitive to changes in traffic 

complexity? 

 Multiple methods and metrics were used in the first study, serving as a 

screening to determine which of the workload measures are capable of classifying 

different levels of traffic complexity (i.e. sensitive to the primary task demand). The 

subjective measure of workload (CSR) was found to be more accurate than the 

objective (TDT) reaction times in distinguishing levels of demand; CSR 

significantly correlated with the two highly validated workload measures of RSME 

and NASA-RTLX. Additionally, CSR was found to respond to increasing traffic 

complexity, for example, increasing from LOS A (low traffic flow) to E (high traffic 

flow) and also to increase with the presence of lane changes. TDT reaction-time on 

the other hand only tapped into the lower primary task demand manipulated (LOS A 

to B) and was not found to vary with the presence of lane changes. 
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 The workload construct associated with traffic complexity was demonstrated 

via correlations between objective and subjective measures. Despite there being 

studies that have shown workload to increase with increased task demand, the 

physiological measures examined in this study, such as pupil diameter, blink 

frequency and blink duration were not found to vary significantly with increasing 

traffic complexity. Additionally, no correlations between the eye behaviour measures 

and the workload measures were found. The non-significant results only suggest that 

different types of effort will have different physiological signatures and in this study, 

it was found that subjective appraisal of workload was the most sensitive measure 

associated with traffic complexity. 

 Although subjective measures may have their own drawbacks of response-

bias with participants’ scores clustering around multiples of 5 (refer to Section 

4.3.1), if care is taken in the design stage, adequate piloting will ensure that an 

appropriate scale is being used and the scale is sensitive to gauging subjective 

workload. Since workload ratings should only be used to compare between different 

conditions in within-subject designs, it is perfectly acceptable that subjective tools 

are the best available technique to compare the different traffic complexities 

investigated in this thesis. Moreover, it is worth noting that drivers are active 

operators, who employ varying strategies to maintain their own driving performance. 

Therefore, the level of effort employed by participants to maintain safe driving can 

differ, and a simple and yet diagnostic measure is required to tap into these 

momentary changes in effort. Thus the CSR measure is not only much easier to 

implement as compared to the multidimensional NASA-RTLX questionnaire, but 

also a more viable method of measuring momentary workload as compared to the 

wider uni-dimensional RSME scale of 1 to 150. As such, the CSR was utilised in the 

subsequent studies that explored more specific criteria of the traffic behaviours. The 

continued use of this measure throughout this thesis provides an understanding of 

how driver workload evolves across different traffic scenarios and with the use of a 

workload manager. From this point on this thesis, the driver workload discussed 

refers to this CSR measure. 
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7.1.2 What traffic complexity characteristics influence driver workload? 

 In the first study, driver workload was found to increase with increasing 

traffic flow and also with the presence of lane changes undertaken by an adjacent 

vehicle. To encourage participants’ interaction with the traffic environment, they 

were told that they were late for a meeting which added an element of urgency to 

driving task. Under this urgency, drivers would consider the surrounding traffic 

more than usual. And being in a hurry, they may be opportunistic, whereby finding a 

gap to overtake another vehicle in order to maintain their speed. For instance, drivers 

would constantly assess their own driving and the surrounding traffic for possible 

gaps and also to determine whether a gap is sufficient to stay in lane or even to 

initiate a lane change. Drivers may utilise simple cues and features inherent in the 

situation such as the safety-margin involved (Näätänen and Summala, 1976; 

Summala, 1985) to avoid hazards with other traffic users. Some on-road studies 

(Sultan et al., 2002; Lee, Olsen and Wierwille, 2004) have attempted to examine the 

cause and effect of traffic complexity based on driving performance, but 

investigating such connection by incorporating real-time driver workload as 

investigated in this thesis would be the first.  

 In the first experimental study, it was found that the increase in traffic 

complexity influences both driver workload and driving performance to a certain 

extent. Driver workload for example increases with the increasing flow between 

Traffic Flow A (i.e. free-flow) and D (i.e. approaching unstable flow). Beyond 

Traffic Flow D, the increase of traffic flow has a negligible effect on driver 

workload, possibly due to the restricted changes within the traffic environment. For 

example, participants cruised less due to reduced flexibility within the traffic. Within 

Traffic Flow A to D, the effect of adjacent vehicles pulling-in at close proximity has 

an effect on driver workload. Analysis of the lane change events suggests that driver 

workload was affected when an adjacent vehicle pulled into the gap between the 

participant vehicle and lead vehicle. Within this vicinity, adjacent vehicles pulling-in 

or a lead vehicle pulling-out had similar effects on driver workload. This shows that 

driver workload is influenced to some degree by the behaviours of adjacent vehicles 

on the roads. This highlights driving from a social perspective whereby driver 

workload changes under the influence of adjacent vehicle behaviours.  
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7.1.3 Does the Lane Change effect exist? 

 The differing effect of the presence of lane change on driver workload across 

the three studies reported suggests that there is a significant likelihood of observing 

the lane change effect across single- and dual-task conditions. The first study asked 

participants to rate subjectively ‘How easy or difficult to drive in the traffic?’. 

Within this study, there were no constraints placed on the driver such that 

participants interacted with the surrounding traffic (for example, they could change 

lane as they wish). The driving situations examined were naturalistic and the 

subjective workload measured for the road sections involving lane changes had an 

effect size of 0.574 (refer to Section 4.5.1.1).  

 The second study focused on manipulating the lane change characteristics. In 

this study, the lane change proximity and the lane origin were found to be 

influencing factors on driver workload. This finding further verifies the importance 

of social interaction patterns in driver workload, as highlighted by Wilde (1976); the 

presence of other drivers increased anxiety and attention when driving in heavy 

traffic and the sense of invasion of one’s personal space when other drivers come to 

close (i.e within close proximity). Although participants in this study were instructed 

to drive in the middle lane of a three lane motorway, the effect of a lane change was 

higher than the effect size of lane change found in the first experimental study; lane 

change proximity’s effect size was 0.794 whilst lane origin’s effect size stood at 

0.873. (see Section 5.3.4.1). With a greater flexibility to manipulate the lane change 

characteristics systematically, the effect of a lane change on drivers can be measured 

more accurately, reflected in the larger effect size as compared to the first study. 

Results showed that the presence of a cut-in within 20m or less significantly affected 

driver workload. Furthermore, relative workload (i.e. workload increase) was the 

highest when the cut-in occurred within 10m or less. Additionally, participants 

experienced a higher increment in workload when the cutting-in vehicle originated 

from the slow lane as compared to the fast lane, suggesting that slow lane cut-ins 

were more demanding or perhaps more threatening than fast-lane cut-in. 

 Additionally, this thesis also shows that the presence of lane changes in dual-

task conditions can negatively affect driver workload. In the third study, drivers were 

found not only to brake more slowly due to the distraction of a secondary task 
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presented prior to or concurrently with a critical cut-in, but they were also found to 

experience higher workload in these situations. The results indicated that, when a 

delay was presented to avoid the overlapping of the secondary and driving task, 

driver workload was lower. This suggests that the lane change effect on driver 

workload was not only being observed in driving-only conditions, but also in dual-

task conditions. Thus, the presence of these lane changes can be potentially 

hazardous to drivers in real-world driving scenarios, especially involving dual 

tasking during critical cut-in conditions.   

 

7.1.4 Do drivers delay the start of an interrupting task?  

 Drivers are not passive recipients of distracting activities but rather they play 

an active role in initiating and managing these activities (Lee and Strayer, 2004). 

Studies have shown that drivers may moderate in-vehicle activities based on the 

traffic conditions (e.g. Stutts et al., 2005; Lerner and Boyd, 2005; Pӧysti et al., 2005; 

Esbjörnsson, Juhlin and Weilenmann, 2007), whereby they have a strong inclination 

to engage in in-vehicle activities so long as the driving conditions allow. Horrey and 

Lesch (2009), for example, conducted a study to investigate drivers’ strategic 

coordination of in-vehicle activities while driving around a closed track of varying 

demand and difficulty (e.g. narrow road sections requiring precise handling; easy 

straight road sections). In this study, participants were asked to perform one of the 

four in-vehicle tasks (e.g. phone conversation, read a text message, find an address 

and pick up object on the floor) and were given the opportunity to decide when to 

initiate these tasks within a set of time. Horrey and Lesch (2009) found that, despite 

participants being fully aware of the relative demands of the road (as measured by 

the NASA-TLX), they did not strategically postpone the initiation of the in-vehicle 

tasks. Participants were found to have initiated tasks even in high workload 

conditions. However there are two main criticisms to this study: firstly, the NASA-

TLX questionnaire was used to evaluate the demand of the driving condition. Due to 

the fact that the questionnaire was administered post-study, workload was not 

measured in real-time. This technique does not accurately embrace the dynamic 

nature of workload. Secondly, it is possible that the driver may engage in some form 

of adaptation by delaying their response times to initiate the task (i.e. to take place at 
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a less busy time), but this delay could be relatively small (i.e. within the time scale 

of seconds).  

 In contrast to Horrey and Lesch’s (2009) findings that drivers did not delay 

initiation of a secondary task despite being aware of the increasing driving demand, 

the second study in this thesis has proven otherwise, whereby the participants were 

found to delay the secondary task, but the delay duration was insufficient. For 

example, the workload recovery measured in the study has shown that the presence 

of lane change has an effect on driver workload recovery with an average minimum 

recovery period of 12s (for 30m lane change proximity). When a distracter task alert 

was given concurrently with the lane change event, drivers were found to delay 

initiating the task, by 10s on average, from the start of the alert in all driving 

conditions.  

 Although the second study has shown that drivers do delay their response to 

an interrupting task, the duration of delay (i.e. 10s) was lower than workload 

recovery time (i.e. 12s). This can be attributed to the varying motivations for 

undertaking concurrent in-vehicle activities (Lerner and Boyd, 2005; Hancock et al, 

2009). For example, drivers may find difficulty to resist reading or even responding 

to an alert of an incoming text message (Lansdown, 2012). Coupled with drivers’ 

nature to be overly optimistic about their ability to perform in-vehicle activities 

(Horrey, Lesch, and Gabaret, 2008; Wogalter and Mayhorn, 2005), drivers may not 

be effective at gauging the appropriate times to perform in-vehicle tasks. Therefore, 

there will be obvious instances where it would be expected to break-down (Hancock 

et al., 2003), despite drivers perceiving that they could partition the in-vehicle task 

into more manageable chunks (e.g. Wierwille, 1993). This study has thus shown that 

despite drivers being aware of the changes in the primary task demand and 

employing a delay in initiating the secondary task in all cut-in situations, there is an 

indication that the duration of delay may be insufficient. This also highlighted the 

superiority of CSR as a real-time workload measure, as drivers’ adaptation to the 

fluctuations in driving demand can now be measured and analysed as to whether 

such delay (also known as interruption lag; Altmann and Trafton, 2002; Trafton, 

2003) is sufficient to minimise the disruptive effects of the secondary task (i.e. 

interrupting task) in dual-task conditions.  
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7.1.5 Is a workload manager beneficial during safety-critical situations 

involving critical cut-ins? 

 Various automobile companies are focusing on developing more advanced 

workload managers which monitor driving performance in real time, for example, 

the ‘Do Not Disturb’ option feature developed by the Ford Research Company 

which helps driver to stay focused on the road during high-demand situation. 

Although workload managers to monitor driving performance in real-time have been 

proposed, it is also important that these systems are consistent with the moment to 

moment coordination of multiple tasks with the fluctuating demands of the driving. 

Workload managers that manage interruptions based on a particular driving demand 

and in-vehicle distraction may have merit. 

 Therefore, the use of a workload manager during safety-critical situations 

was explored in the third study of this thesis. In this study, the distracter task alert 

was given either before a lane change or concurrently with the lane change. Thus, 

workload arises not only from each task but also from task switching itself (Pashler, 

2000). In the dual task situation, a driver will have to make an evaluation of the 

effort required for the secondary task as compared to the effort required for the 

primary task in order to decide whether to surrender the secondary task. Results from 

the study showed that drivers’ brake response times were impaired by the secondary 

task, as distracted drivers allocated less attention to the surroundings and were less 

aware of the driving situation. Braking responses times were longer when the drivers 

were distracted with a secondary task before a lane change. 

 However, when a workload manager was in use (i.e. an implementation of 

12s delay on the secondary task), there was an improvement in braking reaction time 

in both dual-task conditions. With the use of a workload manager, the requirement to 

respond to both tasks simultaneously can be avoided; with this assistance support, 

there was also a reduction in driver workload suggesting that the use of system 

intervention improves both driver workload and performance. Additionally, drivers 

were involved in lower collisions as they could now allocate more attention to the 

primary task driving. This also suggests greater awareness of the surrounding traffic. 

As such, a delay of 12 seconds in the secondary task was found to be useful in 

reducing driver workload and improving driver performance.   
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7.1.6 Which age group of drivers benefited from the workload manager? 

 When comparing the brake reaction times for two different age groups in 

dual-task conditions, older drivers performed slower in both driving and secondary 

tasks, as compared to the younger drivers. Older participants were more affected by 

dual task performance, showing longer response times and poorer performance (i.e. 

higher error rate) on the secondary task in comparison to the younger drivers. This 

could be attributed to the fact that older drivers need more time to inspect the visual 

messages on the dashboard or that older drivers have partly given up the secondary 

task and focused on the driving task.  

 It is interesting to note that older drivers did manage the dual-task situations 

to some extent. In this study, older drivers (aged 60-72) appeared to surrender 

performance on the secondary task at high workload level as indicated by a high 

percentage of missed signals on the secondary task as compared to younger drivers. 

Although this suggests that older drivers may have insufficient resources for task 

switching, it also indicates that they were more cautious in driving. Despite slower 

reaction times, older drivers were also involved in fewer collisions as compared to 

the younger participants. This is possibly due to the higher number of years of 

driving among older drivers despite the fact that both age groups had similar annual 

mileage. With greater driving experience and perhaps due to older drivers choosing 

to surrender the secondary task, they experienced lower levels of effort in 

completing the driving task (i.e. lower rating in RSME, NASA-RTLX and CSR) in 

comparison to younger drivers who chose not to surrender the secondary task.  

 In general, participants of both age groups benefited from the use of a 

workload manager (i.e. delay of the in-vehicle task) in all critical cut-in situations. 

With this support system, there is an improvement across all age groups in driver 

workload and driving performance. Additionally the  percentage of collisions among 

the younger drivers was also reduced, which suggests that the use of a workload 

manager in these dual-task situations may have merit not only for the benefit of older 

drivers but also for the younger drivers, who may otherwise be overwhelmed by the 

workload arising from the two tasks. 
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7.1.7 Can these results be generalised to the real-world driving 

scenarios? 

 There are many reasons as to why an accident may occur, ranging from lack 

of driver skills to unexpected events that drivers might not be adequately prepared 

for. Based on an analysis of distraction-related crashes from the US national crash 

databases, Tijerina et al., (2003) suggests two main converging findings regarding 

drivers’ engagement in secondary activities. Firstly, drivers tend to engage in 

discretionary in-vehicle activities under conditions where they expect no trouble. 

Examples of these no-trouble conditions highlighted were driving in daylight on 

straight roadway sections, driving on dry pavement in clear weather, or driving with 

speed between 45 mph and 55 mph (varying up to 65 mph). Secondly, it was found 

that when these expectations of the traffic conditions were violated due to some 

random, unpredictable events occurring on the road, crashes may ensue. Often, these 

crashes occur due to excessively high demands at a point in time when a hazardous 

event on the road had also occurs, whereby both the driving and secondary tasks 

require the attention and a response from the driver. It is this co-occurrence which 

disrupts the human’s capacity for multitasking performance. This thesis has 

highlighted traffic events which could be potentially hazardous to drivers, under 

conditions where drivers would expect no trouble (i.e. on dry pavement in clear 

weather). A thorough investigation of this traffic event (i.e. a lane change performed 

by neighbouring vehicle), measuring drivers’ effort in performing the driving task as 

well as the interruption of secondary tasks were attempted. This was to provide an 

overall view of how driver workload would evolve with the unpredictability of these 

lane changes and also, to investigate how drivers would respond to such lane 

changes under dual-task conditions.  

 To ensure that the findings can be generalised to real-world driving, 

contributing both to the knowledge of traffic behaviour research and the design of a 

workload manager, this thesis focuses on a distracting task that is relevant to drivers. 

For example, a surrogate mobile phone task was used as the distracting task in the 

second study to examine driver’s task prioritisation. Following the identification of 

high workload conditions associated with specific characteristics of traffic 

behaviours in the second study, for example lane changes at 10m of less, these 

critical cut-in conditions were explored further in the subsequent study. In the third 
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study, the effect of a short duration in-vehicle task was examined. The list of 

warning messages was obtained from a vehicle manufacturer to ensure that the 

messages used were valid messages utilised in the real-world. The intention of this 

work was to demonstrate the distraction potential of low demand tasks, so as to 

highlight the fundamental human performance limitations that should be considered 

in the design and presentation of in-vehicle tasks. The understanding of driver 

momentary workload suggested that suppressing the in-vehicle messages during 

critical cut-in situations should be included as part of a workload manager function. 

Moreover, on-going in-vehicle messages should be interrupted or modulated to 

reduce their influence on driver workload and braking response.  

 Additionally, all three experimental studies were conducted using a high 

fidelity driving simulator. The differences in the safety cost of a failed braking 

response and in driver priorities relative to on-road driving suggest that testing is 

required in a real-world driving scenario before these results can be fully generalised 

to everyday driving situations. 
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7.2 Thesis Contribution 

 This thesis is presented in chronological order beginning with a study 

(Chapter 4) that examined multiple workload measures under varying traffic 

complexity. Based on the selected workload measure (i.e. CSR) and traffic event 

(i.e. lane change) highlighted in the first study as being worthwhile constructs, these 

findings were explored further in single- and dual-task conditions in Chapter 5. The 

thesis then concluded by investigating dual-task conditions relating to the use of a 

workload manager (in Chapter 6). Throughout the thesis, the focus was on the 

application of the findings on reducing driver workload and improving driving 

performance, with following three major contributions by: 1) developing and 

validating a robust method for measuring real-time driver workload 2) applying that 

method to assess the effect of traffic on driver workload and showing that traffic 

behaviour was more important than traffic density in causing high workload, and 3) 

showing that a workload manager could provide useful assistance in limiting excess 

workload during safety-critical situations caused by cut-ins of other vehicles in dense 

traffic. Following this, the main key findings were: 

 Subjective measures of workload were found to be a more sensitive measure 

than objective measures within the scope of traffic complexity explored in 

this thesis. 

 Driver workload is influenced by traffic complexity, particularly by traffic 

behaviour. In this study, this refers to the presence of a lane change 

performed by neighbouring vehicle. 

 Traffic behaviours such as Lane Change Proximity and Lane Origin affect 

driver momentary workload. While driver momentary workload increases 

with increasing Lane Change Proximity, a lane change performed by a 

cutting-in vehicle that originated from the slower lane has a stronger effect 

on driver workload than if the pulling-in vehicle originated from the faster 

lane.  

 Drivers’ delay to initiating secondary tasks were found to be insufficient 

during cut-ins at a lane change proximity of less than 10m. As such, these 

lane change conditions were considered as critical cut-ins. 
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 Dual-tasking increases driver workload. Secondary tasks which are initiated 

before or concurrently with a critical cut-in can increase driver workload and 

impair performance.  

 There is a potential benefit of the use of a workload manager in managing 

driver workload during safety-critical situations involving a critical lane 

change. A message delay of 12 s or more during critical cut-in situations was 

found to have a positive benefit on both age groups of drivers (younger and 

older), in reducing driver workload and improving driving performance. 

There are however limitations in the study with respect to balancing the amount of 

lane changes that occur and the duration of the drive. Although this study attempted 

to create scenarios which are naturalistic, this method has several limitations. For 

example, the exact location and timing of the lane changes could not be pre-

determined beforehand. Therefore this runs into the problem of variability in the 

duration of the run as the triggering of the lane change events would depend on 

meeting the criteria of availability of space ahead of the participant’s vehicle and 

relative well-controlled speed from the driver. Although this provided the benefit of 

increasing the unpredictability of lane changes, it does however, come with the 

disadvantages of slightly longer runs than expected- on average, an increase of up to 

5 minutes- as they had to drive until a certain number of lane changes had occurred. 

Though this may increase the risk of fatigue, participants were given rest time 

between each experimental drives and were allowed longer if required to ensure that 

fatigue was kept to a minimum. 

 Additionally, the lack of face validity of a driving simulator in terms of its 

ability to replicate the cutting-in characteristics may account for some of the 

differences found between the simulator and on-road studies (Sultan et al., 2002; 

Lee, Olsen and Wierwille, 2004). In the second and third study examined in this 

thesis, the cutting-in vehicles were scripted to stay in front of the participant’s 

vehicle for 10 s after pulling-in and then sped up to create a gap ahead of the 

participant’s vehicle for the preparation of the next lane change to occur. It is 

possible that for lane changes experienced on-road, these cutting-in vehicles may 

continue to be the participant’s lead vehicle for a duration longer than 10 s and thus 

may have a greater influence on driver workload. Therefore further work can be 
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carried out, whereby participants can interact with a cutting-in vehicle for a much 

longer period of time than was examined in this research. Longer interactions with 

the surrounding traffic may have bigger impacts on driver workload.  

 In terms of the workload measure, temporal workload was measured every 

7s, which was initially determined by the size of the tiles used in the simulator road 

layout (i.e. 252 m) in the first study. Since this thesis has proven that CSR (i.e. rating 

scale of 1 to 10) is a sensitive measure of momentary workload, it is possible that 

workload ratings can be collected at a smaller time interval for more accurate 

measurement of temporal workload.  

 The secondary task employed could be criticised for the lack of realism (i.e. 

due to the nature of a simulator study whereby a participant encounters numerous 

events within a short drive as opposed to one or few surprising events within a long 

drive). This imperfect construct of a simulator study is however the best available 

technique to investigate these high-workload driving task in a safe environment. 

After all, the goal of this research is to improve driver safety by addressing traffic 

behaviour factors attributed to driver error and crashes. 

This thesis, overall, aims to add knowledge into the research of traffic safety 

and to enable knowledge transfer into the automotive industry (i.e. knowledge 

application) by constructing the studies using the current workload manager and 

sensor functions. To ensure the findings were useful to the automotive industry, the 

studies in this thesis were designed and constructed with inputs and advice from an 

international automobile company.  
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7.3 Recommendations for Future Work 

 A driver workload toolkit with several measures and stages of assessment is 

needed.  Firstly, workload metrics must come with a detailed standard methodology 

that specifies standard test equipment, procedures, participants, data treatment, 

analysis procedures, criteria and decision rules. The lack of a standardised workload 

test that can provide the necessary measures of safety and the small number of 

studies which explore driver workload comprehensively leads to the difficulty of 

cross-referencing for experimental design. In this thesis, a specific measure of 

workload (i.e. subjective ratings) and a specific test environment (i.e. high validity 

driving simulator) were utilised throughout the study to ensure consistency of 

methodology and to allow comparison of workload in different situations. As CSR is 

utilised in a very similar nature of experimental design (i.e. lane change scenarios on 

a motorway based in virtual environment) across the three studies in this thesis, CSR 

can also be utilised in different experimental environments involving other 

demanding driving scenarios such as pedestrian crossing or roundabout. This may 

provide insight of the effort invested and highlight problematic traffic situations 

which can be considered for improving workload manager functionalities. 

Additionally, CSR can also be administered to analyse drivers’ momentary workload 

when ADAS or satellite navigation systems are in-use in varying traffic situations.  

Following the findings in this thesis that a lane change performed by a 

neighbouring vehicle can influence driver workload and performance, it is possible 

that the use of an alert to attract drivers’ attention during these distracted safety 

critical situation may have merit. For example, a haptic alert via steering or brake 

pedal could be useful. Previous research by Donmez et al, (2006a) demonstrated that 

drivers trust visual feedback the most due to their reliance on sight throughout their 

daily lives. Visual feedback requires a high level of driver attention and is most 

effective in vehicles when combined with another form of feedback (Dingus et al., 

1997). Auditory feedback can also produce excellent results when used as a driver 

warning feedback method (Jensen et al., 2007) and was found to reduce crash rate 

especially for older drivers (warning tone of 1000Hz; May et al., 2006). Some 

studies however have shown auditory warnings to lengthen reaction times and to be 

the cause of confusion when combined with auditory disturbances such as road noise 
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(Wiese and Lee, 2004). To direct a person’s attention to a particular location, studies 

have shown have indicated a crossmodal connection in spatial attention between 

vision and touch (Butter, Buchtel and Santucci, 1989; Spence and Driver, 2004). 

This can be taken as a strength of tactile signals as vibrotactile warning signals not 

only can direct driver’s attention to the spatial direction, but also can trigger a driver 

to respond appropriately (such as a braking response). Ho, Reed and Spence (2006) 

demonstrated that incorporating vibrotactile feedback (with vibrotactile frequency of 

290Hz) through tactors fastened to the driver’s stomach and back, decreased braking 

response times and directed visual attention to the appropriate location, thus helping 

to prevent front and rear-end collision.  

Incorporating haptic feedback into the steering wheel of a vehicle proved to be 

effective in reducing reaction times for lane departure (Suzuki and Jansson, 2003) 

and improvement in avoiding hitting obstacles when introduced as supplemental 

feedback to the driver. Furthermore, the Forward Collision Warning (FCW) system 

is currently limited to operational millimeter wave radar and laser radar systems with 

horizontal field of view (FOV) of up to ±15° while horizontal FOV for a vision-

based system might be ±30° to ±40°. When an obstacle suddenly appears in the 

participant’s vehicle path, such as critical scenarios involving lane changes 

performed by a neighbouring vehicle, the FCW system may not have adequate time 

to detect the obstacle and provide a warning to the driver as the sensor performance 

has been exceeded. Direct feedback such as a directional vibrating steering wheel 

may be an effective way to attract driver attention to the road when the adjacent 

vehicles cross the lane divider within close proximity (i.e. critical lane change 

distance of less than 10m). Therefore in the presence of critical lane changes, there 

may be benefits in providing a vibrotactile cue (i.e. when the vehicle crosses the lane 

divider) to alert the driver of the potential danger and to provide time-critical 

directional information. Additionally, seat-belt retraction which increases the 

seatbelt tension to prompt drivers to take preventive action could also potentially be 

an example of notifications to the drivers. With such alerts, drivers’ reaction time to 

braking may perhaps improve further with the use of these alerts.  

 Additionally, there are other driver characteristics which have not been 

examined in this thesis but could be considered in future studies. The influence of 

personality factors such as neuroticism or sensation seeking, on driver workload 
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could be explored. For example, in a study of measuring the perceived workload of a 

vigilance task measured using the NASA-TLX questionnaire, Rose et al. (2002) 

found that neuroticism was related to perceived frustration. In some other studies of 

examining the benefit of driver support system such as the impact of ACC system on 

their driving, general personality trait such as sensation seeking, was taken into 

account and was found to influence drivers’ subjective assessment of the impact of 

the system on their driving (Ward et al., 1995; Rudin-Brown and Parker, 2004). 

Their results indicate that the higher sensation seekers reported lower level of 

arousal and effort when driving with ACC than the low sensation seekers. As such, 

understanding of individual differences may help contribute in improving the 

workload manager functionality as the workload manager can be personalised to the 

driver’s personality. 

 Overall, it is hoped that this thesis offers potential methods for understanding 

the effect of traffic behaviour on driver workload and the management of driver 

workload and driving performance, specifically in safety-critical situations where the 

driver is required to prioritise the driving task. In addition, it is anticipated that the 

suggestions for future research will encourage further investigations and refinements 

of these workload measures and an exploration of more traffic events, which could 

also improve the functionality of a workload manager. 
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9 Appendix I: Rating Scale of Mental Effort 
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10 Appendix II: NASA-RTLX  
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11 Appendix III: Study 1 Post Study Questionnaire 

1. What factors affects how you give your rating? 

2. Would you prefer a smaller rating scale? 

3. Please rank the factors below in terms of influencing your driving task 

difficulty. 

a) Lead vehicle braking 

b) The adjacent vehicle pulling into your lane 

c) The number of vehicles in front of you 

4. Is the TDT task stimuli too long or of the correct length? 

5. Any other comments: 

________________________________________________________ 

________________________________________________________ 

6. Observations by experimenter 

 

 


