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Abstract 

Treatment of chronic lymphocytic leukaemia (CLL) has greatly improved with 

the use of combination chemo-immunotherapy but the treatment of relapsed 

and fludarabine refractory CLL is still challenging with the current agents. 

Large amounts of mRNA expression data are publicly available but identifying 

suitable targets requires validation at the protein level.  

I used available RNA expression data to identify candidate antigens that could 

be screened for protein level expression using commercially available 

monoclonal/polyclonal antibodies. To test new molecules I optimised an in-

vitro viability assay system using mononuclear cells and standard viability 

assessments. To study pathway interactions, B-cell receptor (BCR) was 

stimulated using goat F(ab’)2 anti-human IgM or IgD and signalling responses 

were assessed by SYK-phosphorylation (SYK pY348PE) and calcium-flux 

measured by ratiometric difference in florescent intensity of Fluo-3/Fura-red.  

I assessed 84 antigens and 15 showed binding on CLL cells and/or normal B-

cells but not other leucocytes. I found that 7 of the 15 molecules have a 

recognised role in neurotransmission, such as the nicotinic acetyl choline 

receptor subunit β4 and dopamine receptor D4. This observation indicated 

that these molecules and pathways were potentially involved in the 

pathophysiology of CLL and I therefore further investigated their importance. 

In exploring the newly identified targets, I found that dopamine and D2 

antagonist domperidone reduced CLL cell survival in vitro, in a dose 

dependent manner. While elucidating the downstream mechanisms for the 

above effect, I observed that dopamine significantly reduced SYK 

phosphorylation and calcium flux induced by stimulation of the BCR pathway 

using goat F(ab’)2 anti-human IgD. In vitro testing also demonstrated a 

synergistic effect in blocking of the D2 and the BCR pathways as a 

combination of PI3-kinase δ inhibitor (GS-1101) with domperidone reduced 

CLL cell viability more efficiently than either agent alone.  

Therefore I have identified a number of novel molecules expressed in CLL 

and further investigated their biological importance in the disease 

pathophysiology. These novel molecules provide several potential untested 

therapeutic targets in CLL. 
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1. Introduction 

1.1 Chronic Lymphocytic Leukaemia 

Chronic lymphocytic leukaemia (CLL) is the most common leukaemia of the 

western world and is characterised by an accumulation of monomorphic, non-

proliferating, small, mature, functionally abnormal B-lymphocytes in peripheral 

blood, bone marrow and lymphoid tissues. Even though leukaemia was first 

described in 1845, CLL was recognised as a separate clinical disorder 

towards the beginning of the 20th century (The Edinburgh Medical and 

Surgical Journal, 1845). There were several case summaries reported in the 

early part of the last century and some mention about CLL in the textbook 

published by Sir William Osler, The Principles and Practice of Medicine. The 

first comprehensive clinical reports on 80 patients with CLL were published by 

Minot and Isaacs in 1924 (Minot B, 1924) (Osler, 1909) (Rai, 1993).  

1.1.1. Demographics 

The incidence of CLL varies hugely across the world, being highest in North 

America and extremely rare in the Far East. In the UK CLL accounts for 

approximately 11% of all newly diagnosed haematological neoplasms. The 

incidence of CLL in the UK is 6.9 per 100,000 population with a male to 

female ratio of 1.7 (“HMRN - Cancer Information,” 2011). CLL is a disease of 

older age with a median age at diagnosis of 71 years and is virtually unknown 

before the age of 15. The age-wise incidence of the disease in the UK is 

shown in Figure 1.1 (“HMRN - Cancer Information,” 2011). This data is taken 

from statistical data published by the Epidemiology & Cancer Statistics Group 

at the University of York.  Although most patients are elderly, approximately 

10% of the patients are younger than 50 years old (de Lima et al., 1998) 

(Mauro et al., 1999). The incidence of CLL has not increased over the past 30 

years, in contrast to the other non-Hodgkin’s lymphomas.  

Initially, morphology was the sole modality of diagnosis, as with any other type 

of leukaemia. Over many years, as diagnostic armamentarium improved in 

medicine, several diagnostic tests were introduced which helped to distinguish 

the various low grade lymphoproliferative disorders with somewhat similar 

morphological appearance, which were originally all considered to be CLL 

(Rozman and Montserrat, 1995). Currently the diagnosis of CLL can be made 

in a majority of patients by morphology and immunophenotyping of peripheral 
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blood, but a minority of patients need an integrated approach including 

immunohistochemistry and the analysis of chromosome deletions, 

duplications and translocations to make an accurate diagnosis (J. B. 

Johnston, 2003). The distinction of CLL from other similar LPDs is important 

prognostically and is used increasingly to target specific therapies. 

 

Figure 1.1 Estimated age specific  incidence of CLL in UK  

This figure is taken from statistical data published by the Epidemiology & Cancer 

Statistics Group at the University of York.(“HMRN - Cancer Information,” 2011) 

Historically the disease was considered as a homogeneous disease of 

immature, minimally self-renewing B-cells which are immunologically 

incompetent. These cells were considered to have a faulty apoptotic 

mechanism and thereby they accumulate persistently (Hoffman et al., 2009) 

(Dameshek, 1967).  But according to the current concept there is 

considerable heterogeneity in all aspects of biological and clinical profiles of 

CLL including cellular morphology, phenotype, cell biology, molecular 

genetics and prognosis (Chiorazzi et al., 2005). Clinically, in about a third of 

patients the disease has a very stable course without the requirement for any 

treatment. In about another third, the disease initially has an indolent course 

but later progresses and requires treatment. In the remaining third the disease 

has a very aggressive behaviour and the patients die within a span of few 

years due to disease-related causes, despite treatment (Dighiero, 2005) 

(Chiorazzi et al., 2005).  Patients with an indolent form of CLL survive more 
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than 10 years after diagnosis, on average, and often do not require immediate 

treatment, while patients with an aggressive form of CLL have an average 

survival of 2 years despite several lines of treatment (Abrisqueta et al., 2009) 

(Chiorazzi et al., 2005). 

1.1.2. Cell Biology and Cell of Origin 

There are several controversies regarding the cell of origin in CLL (Dighiero et 

al., 1996). It was originally thought that CLL arose from naive, antigen-

inexperienced B-lymphocytes that circulate in the resting state due to their 

appearance as small lymphocytes with high nuclear-to-cytoplasmic ratios and 

their surface membrane co-expression of immunoglobulin-M (IgM) and IgD 

(Bennett et al., 1989) (Caligaris-Cappio et al., 1993) (Coffman and Cohn, 

1977). CLL cells express CD5, a T-lymphocyte marker, along with CD23 and 

weak surface immunoglobulin: a phenotype of mature, activated B 

lymphocytes. These cells are similar to the B1 cells in mice (Kantor, 1991) 

and it was assumed that the normal counterpart was CD5+ B lymphocytes 

which are present in the mantle zone of secondary lymphoid follicles (Dighiero 

et al., 1996) (Schena et al., 1992) (Kovaleva et al., 2012). This cell type is 

also present in the peripheral blood in small numbers and is the predominant 

B-cell population in foetal spleen and peripheral blood. Despite this unique 

surface phenotype, there is considerable heterogeneity among patients with 

regards to various molecular, functional and clinical aspects. So it is difficult to 

draw any conclusion on cell of origin based on phenotypic markers alone. 

This is especially pronounced in the observation that patients with CLL can 

almost equally be divided into two distinct groups: some have somatic 

mutations in the immunoglobulin variable region of the heavy-chain (IGHV) 

genes (VH mutated) and others have immunoglobulin gene sequences very 

close to the germ-line sequence (VH unmutated).  Normal human CD5+ B 

lymphocytes lack mutation of the IGHV genes (Brezinschek et al., 1997).  If 

this is put into the context of normal B-cell differentiation, then VH unmutated 

CLL would be derived from a pre-germinal centre naive B-cell and VH mutated 

CLL from a memory B-cell, which has traversed the germinal centre, based on 

the fact that memory B-cells have mutated V genes which give higher affinity 

for antigen. Interestingly these two forms of CLL have been documented to 

have preponderance for different genetic abnormalities. Those with mutation 

are more likely to have 13q14 deletion and those without mutation 

predominantly have trisomy 12 (Oscier et al., 2002) (Damle et al., 1999) 

(Krober et al., 2002). Clinically also they behave very differently, as patients 

with mutated clone have a good prognosis compared to unmutated. From the 
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functional aspect marginal- zone B-cells could be the precursors of both 

unmutated and mutated CLL cells, because B-cell receptors in some cases 

are structurally similar to antibodies that react with autoantigens and 

carbohydrate components of infectious agents (Chiorazzi and Ferrarini, 2003) 

(Ghiotto et al., 2004) (Messmer et al., 2004).  

Gene expression profile data using twelve thousand genes has shown 

remarkable similarity between both groups in most of the genes with the 

exception of 23 that were differentially expressed. The CLL expression profile 

also showed excellent resemblance to memory B-cells rather than to normal 

naive B-cells, germinal cells or normal CD5+ B-cells (Klein et al., 2001a). 

Other groups have also shown similar results even (Rosenwald et al., 2001) 

though the number of differentially expressed genes was not the same. 

Notably, a single gene can consistently differentiate between both groups.  

The ZAP70 kinase, which is predominantly involved in transducing signals 

from the T-cell receptor, is consistently expressed at a higher level in 

unmutated patents. All CLL cells express CD27, which is a memory cell 

marker. Most normal CD27+ B-cells have IGHV mutations but a small fraction 

does not. Expression of membrane markers of cellular activation, presence of 

mRNA for a wide variety of cytokines as well as the presence of specific 

memory cell markers like CD27 prompt us to conclude that both mutated and 

unmutated CLL originate from two types of CD27+ memory cells, one with 

IGHV mutation and the other without the mutation, although the clonal 

evolution on antigen stimulation may differ in both groups (Chiorazzi et al., 

2005). Normal B-cells when maturing in the bone marrow undergo 

immunoglobulin variable gene segment rearrangement, which translates into 

the immunoglobulin molecule of the B-cell receptor for binding the antigen. 

These cells then actively divide in the germinal centre of lymphoid follicle and 

undergo variable gene somatic hypermutation. The cells with high antigen 

binding affinity proliferate rapidly, but the ones with poor affinity and those that 

bind autoantigens eventually get deleted. These processes can happen either 

in the germinal centres, which is T-cell dependent, or in marginal zones 

around lymphoid follicles as a response to carbohydrates of encapsulated 

bacteria or viruses, which is T-cell independent, but the mutation rates in the 

T-cell independent cells are low. Both these processes generate memory B-

cells (Kelsoe, 1994) (de Vinuesa et al., 2000) (Toellner et al., 2002) (William 

et al., 2002).  

However there were several pitfalls for these studies (Seifert et al., 2012). 

None of these studies included splenic marginal zone (sMGZ) B cells in their 
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analysis, memory B cells were isolated as bulk CD27+ B cells (Klein et al., 

2001b) and not separated as class-switched, CD27+ B cells and 

IgM+IgD+CD27+ B cells (Klein et al., 1998) and CD5+ B cells were isolated 

from cord blood, which are mostly transitional B cells and not mature CD5+ B 

cells as seen in adult peripheral blood. 

Seifert et al in 2012 published transcriptome analyses of CLL and the main 

normal B cell subsets from human blood and spleen including PB naive B 

cells, memory B cell subsets (class-switched, IgM+IgD+CD27+, and IgM-only 

B cells), CD5+ B cells (excluding transitional B cells), and sMGZ B cells. This 

comparison has shown that CD5+ B cells as the normal B cell subset with the 

most similar gene expression to CLL. They have shown that both unmutated 

CLL and mutated CLL were highly similar to CD5+ B cells, which are mostly 

IgV unmutated.  They have demonstrated that unmutated CLL was derived 

from unmutated mature CD5+ B cells and mutated CLL was derived from a 

distinct, previously unrecognized CD5+CD27+ post–germinal centre B cell 

subset (Seifert et al., 2012). 

Even though chromosomal translocations are common in other types of B cell 

malignancies and could be considered as the triggering event in oncogenesis, 

in CLL chromosomal translocations are rare and there are no unifying 

mutations identified for oncogenesis. Despite cytogenetic abnormalities being 

rare in the early stage during disease progression some abnormalities appear, 

the most common being deletion 13q14.3 which happens in around 50% of 

patients (Dohner et al., 2000) (Stilgenbauer and Zenz, 2002) (Peterson et al., 

1992) (Juliusson et al., 1990). As this region of chromosome contains two 

microRNA genes, which regulate the function of many other genes, down 

regulation of these genes will predispose the leukaemic clone to undergo 

additional mutations. Deletion of the 13q14-minimal deleted region, which 

encodes the DLEU2/miR-15a/16-1 cluster, in mice causes a clonal 

lymphoproliferative disorders, mimicking CLL (Klein et al., 2010). The other 

common alterations are deletion of chromosome 17p13 and 11q22-23 which 

will involve TP53 and ATM genes, respectively. These genes are important in 

regulating apoptosis and deletion of these genes will induce resistance to 

chemotherapy. These abnormalities are seen in only relatively low proportion 

of patients. 17p deletion is found in only 5% of untreated patients and in 31% 

of previously treated patients. Likewise ATM deletion is seen in only 15% of 

untreated patients and 25% of previously treated patients (Zenz et al., 2010b) 

(Bergmann et al., 2007) (Dohner et al., 2000) (Rossi et al., 2009) (S. 

Stilgenbauer et al., 2008) (Stilgenbauer et al., 2009) (Zenz et al., 2009). The 
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increased proportion in previously treated patients indicates the progression 

of the selected clone which is resistant to chemotherapy or accumulation of 

genomic aberrations over time (William et al., 2002). 

Currently there is evidence to suggest that antigenic stimulation has a 

significant role in CLL cell proliferation and avoidance of apoptosis. This 

antigenic stimulation should work in conjunction with other co-stimulatory cells 

and cytokines.  The strong evidence for antigen stimulation comes from 

remarkable similarity in the B cell receptor (BCR) complex in different groups 

of patients. This stereotypy is found in around 30% (Murray et al., 2008) of the 

patients and is usually in the unmutated group with a very poor prognosis. In 

some groups of patients these similarities are found in a portion of the 

antigen-binding pocket localised to the heavy (H) chain where there is a 

similarity in the mutations seen in the VH gene as well as the preferential 

combination with particular D or JH segments. In other groups there is a 

remarkable similarity in the entire antigen-binding region coded by both heavy 

and light chains (Chiorazzi et al., 2005) (Tobin et al., 2002) (Tobin et al., 

2003) (Ghiotto et al., 2004) (Tobin et al., 2004) (Widhopf et al., 2004). This 

resemblance is simply not by chance as the probability of finding two cases of 

CLL with such structurally similar B-cell receptors is more than 1 in a million 

cases. The precise nature of this antigenic stimulation is not clear. The causal 

association with specific antigens are well described in related malignancies 

like gastric marginal zone lymphoma. Helicobacter pylori can be 

demonstrated in this type of lymphoma and eradication of the bacteria can 

cure the malignancy (Zullo et al., 2010). While the nature of the antigenic 

stimulus in CLL is unknown, various latent viruses and commensal bacteria 

have been proposed as the source. Another possibility is environmental 

antigens or auto-antigens such as the myosin heavy chain could stimulate 

clonal expansion (Chu et al., 2008). The expression of polyreactive receptors 

on the CLL cell surface, which could bind both autoantigens and microbial 

antigens, substantiate this theory (Bröker et al., 1988) (Sthoeger et al., 1989) 

(Borche et al., 1990) (Schwartz and David Stollar, 1994). The signals from the 

B-cell receptors are transmitted to the nucleus by various intermediary 

molecules, the detail of which is described in a separate chapter. CLL-like 

normal B-cells could respond to external stimulus through the BCR or could 

be anergic to the stimulus due to previous exposure. In some early stage 

disease, whose cells are unresponsive to BCR triggering in vitro, MAPK, 

extracellular signal-regulated kinase (Erk) and Mek are constitutively 

phosphorylated and shows NFAT transcription factor activity, but lack both Akt 
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and Bad phosphorylation (Muzio et al., 2008).  These molecular features are 

also seen in anergic B-lymphocytes in the mouse system, suggesting similar 

mechanism in anergic CLL cells (Muzio et al., 2008) (Merrell et al., 2006). 

This absence of response could be due to the structural alterations in the 

BCR complex or downstream molecules. This type of response to the 

stimulus predominantly occurs in unmutated CLL (Merrell et al., 2006).  

1.1.3. Apoptosis 

It was previously thought that CLL is a disease in which there are significant 

abnormalities in apoptosis and therefore the abnormal cells accumulate. Even 

though there is a defect in the apoptotic pathway, it is now clear that there is 

an active proliferative fraction of cells. This has been shown by experiments 

with deuterated water in patients (Messmer et al., 2005). Nineteen patients 

were given deuterated water daily for 84 days, and using gas chromatography 

and mass spectrometry 2H incorporation into the deoxyribose moiety of DNA 

of newly divided B-CLL cells was measured. These analyses demonstrated 

that the leukaemic cell population of each patient had definable and in some 

cases substantial proliferative rates, varying from 0.1% to greater than 1.0% 

of the entire clone per day. Proliferative rates greater than 0.35% per day was 

seen in patients with active or progressive disease compared with those with 

lower proliferative rates. Thus, CLL is now considered not as a static disease 

that results simply from accumulation of long-lived lymphocytes but rather a 

dynamic process involving an active proliferative component as well.  

The critical step in apoptosis is activation of caspases, which are cysteine 

proteases that activate other caspases from inactive pro-forms to active 

enzymes by proteolytic cleavage at aspartate residues (Hengartner., 2000) 

(Herr and Debatin., 2001) (Johnstone et al., 2002). Apoptosis can be initiated 

by two pathways, the mitochondrial/cytochrome c (intrinsic) pathway or the 

tumour necrosis factor (TNF) death receptor (DR) (extrinsic) pathway 

(Hengartner., 2000). 

The intrinsic pathway is typically activated by DNA damage either by 

chemotherapy or by radiation that activates the p53 pathway.  Subsequently 

this produces a change in the ratio of Bcl-2: Bax which increases the level of 

cytochrome-c in cytosol. Cytochrome, in conjugation with deoxyadenosine 

triphosphate (dATP), activates apoptosis activating factor-1 (Apaf-1). Apaf-1 

can activate caspase-9 which then activates caspase-3 and further 

downstream apoptotic pathway components (Salvesen and Dixit, 1999). 

Proteins such as Smac and DIABLO are also released from mitochondria into 
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the cytosol where they bind to and antagonise a family of proteins that are 

inhibitors of apoptosis, thereby again promoting apoptosis. Certain drugs such 

as fludarabine promote apoptosis as derivatives of fludarabine for example 2-

chlorodeoxyadenosine (CdA) can substitute for dATP in binding to Apaf-1 and 

induce direct activation of caspase-9 and -3 (Salvesen and Dixit, 1999) (Jia et 

al., 2001) (Leoni et al., 1998) (Genini et al., 2000a) (Chandra et al., 2002).  

The tumour necrosis factor death receptor pathway induces apoptosis by 

triggering one of the members of the 8 major death receptors which includes 

tumour necrosis factor receptor 1 (TNFR1); (also known as DR1, CD120a, 

p55 and p60), CD95 (also known as DR2, APO-1 and Fas), DR3 (also known 

as APO-3, LARD, TRAMP and WSL1), TNF-related apoptosis-inducing ligand 

receptor 1 (TRAILR1; also known as DR4 and APO-2), TRAILR2 (also known 

as DR5, KILLER and TRICK2), DR6, Ectodysplasin A receptor (EDAR) and 

nerve growth factor receptor (NGFR) (French and Tschopp, 2003) (Wajant, 

2003). All these receptors have a cytosolic domain called the death domain 

which is composed of around 80 amino acids. With appropriate stimulus of 

receptors by ligands, a number of adapter proteins like Fadd/Mort-1 are 

recruited to the receptor complex. Two types of signalling complex can be 

associated with these receptors. The first is a death inducing signalling 

complex (DISCs) that is associated with CD95, TRAILR1 or TRAILR2 and 

triggers apoptosis mainly by cleavage of procaspase-8 to caspase-8 (Peter 

and Krammer, 2003). The second pathway mediated by TNFR, DR3 and DR6 

can either form a complex that triggers NF-κB thereby inducing a survival 

signal or form a second complex that activates procaspase 8 and downstream 

death signalling (Micheau and Tschopp, 2003). Chemotherapeutic agents 

may up-regulate some of the receptors, but their mechanism of action cannot 

be extrapolated fully to this pathway alone (Friesen et al., 1996) (Fulda et al., 

2000) (Wen et al., 2000) (Gibson et al., 2000) (Jones et al., 2001). 

These pathways can be modified by a variety of proteins mainly belonging to 

the BCL-2 family. There are around 20 members in this family which can 

either promote or inhibit apoptosis, and are located in different organelles of 

cells including the cell membrane, nuclear membrane and mitochondrial 

membranes. They predominantly function by binding to other proteins or 

changing the permeability of the mitochondrial membrane and thereby 

increasing the release of cytochrome c from the mitochondria (Jiang and 

Wang, 2004). Different members of this family of proteins have distinct and 

sometimes opposing roles. Some of them like BAX, BCL-Xs, BAK and BAD 

promote apoptosis while BCL-2, BCL-XL and MCL-1 inhibit apoptosis (Hanada 
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et al., 1993) (Robertson et al., 1996) (Johnston et al., 1997) (Kitada et al., 

1998) (Pepper et al., 1999) (Bellosillo et al., 1999). Additional examples like 

bag-1 can influence the activities of others. CLL cells have a high level of 

BCL-2, BAX and BAK, but have low levels of BCL-xL and BAD, which will 

contribute to survival of CLL cells. The transcription factor NF-κB induces the 

expression of several anti-apoptotic genes, and its nuclear protein level is 

higher in CLL (Furman et al., 2000). Phosphorylation of IκB leads to its 

coupling with ubiquitin and proteososmic degradation. This releases NF-κB 

from IκB which translocates NF-κB  to nucleus (Furman et al., 2000). The 

level of active NF-κB increases when CLL cells are stimulated by cytokines. 

The protein kinase Akt can suppress apoptosis by phosphorylation of bad, 

caspase-9 and several other proteins. Akt itself is activated through 

phosphatidylionositol 3’-kinase (PI3K) (Datta et al., 1999) (Wickremasinghe et 

al., 2001). 

The tumour suppressor gene TP53 located in the 17p13 region deleted in a 

portion of CLL cases plays a key role in chemotherapy resistance in CLL. p53 

protein is phosphorylated and stabilised after DNA damage (Johnstone et al., 

2002) (Vogelstein et al., 2000). Stabilised p53 protein binds to specific 

sequences in DNA and activate the transcription of adjacent genes (El-Deiry, 

1998). Some of these genes regulate 'nucleotide-excision' repair of DNA, 

chromosomal recombination and chromosome segregation which helps the 

cell to repair itself (Smith and Seo, 2002). p53 protein can also promote entry 

of cell into apoptosis after DNA damage by inducing Bax proteins or inhibition 

of cell cycle by stimulating the expression of p21WAF1/CIP1 , an inhibitor of 

cyclin-dependent kinases (CDKs) (Reed, 1999) (Wahl et al., 1997). That is the 

reason why a small proportion of CLL patients whose p53 is deleted or 

mutated are resistant to most conventional chemotherapeutic agents. Another 

gene called ATM located in chromosome 11q22-23 is responsible for 

phosphorylation and activation of p53 after DNA damage (Pettitt et al., 2001) 

(Vogelstein et al., 2000). Deletion or mutation of the ATM gene also produces 

a similar defect as observed with p53 mutation (Stankovic et al., 2002). 

1.1.4. Clinical Features 

50% of patients are asymptomatic at diagnosis but are picked up by full blood 

counts done for unrelated reasons (Rozman and Montserrat, 1995). Routine 

physical examination can occasionally prompt the diagnosis by revealing a 

lymphadenopathy or splenomegaly. Symptomatic patient usually complain of 

fatigue or a vague sense of not feeling well. They can also present with 
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symptoms of complications like bacterial pneumonia. Other symptoms like 

fever, night sweats and weight loss occur only in a minority of patients. Fever 

occurs in 9%, night sweats in 24.6% and weight loss in 10.6% of patients with 

CLL (Shanafelt et al., 2007). Patients can also present with symptoms of 

anaemia due to infiltration of bone marrow, autoimmune haemolytic anaemia 

or rarely aplasia. Bleeding manifestation can rarely be a presenting feature 

due to thrombocytopenia, either due to bone marrow infiltration or immune 

causes.  Physical examination shows lymphadenopathy in 80% of 

symptomatic patients and splenomegaly in 50%. Lymphadenopathy is usually 

painless and predominantly involves the cervical region (Johnston, 2003). 

1.1.5. Diagnosis and differential diagnosis   

Diagnosis of CLL is made when a peripheral B-lymphocyte count is at least 

more than 5x109/L and the clonality of the circulating B-lymphocytes 

confirmed by flow cytometry (Hallek et al., 2008). Peripheral blood 

morphology is usually the initial evaluation in the diagnosis of CLL. The 

lymphocyte count can range from slightly above normal to greatly elevated 

and typically have a uniform appearance of small to medium size cells, but in 

around 20% of patients cells can have an atypical appearance (Matutes et al., 

2003).   

The diagnosis of CLL is predominantly done by immunophenotyping using 

flow cytometric methods. The characteristic immunophenotype for CLL is 

weak expression of sIg, which is usually IgM or IgM with IgD with either κ or λ 

light chain restriction combined with expression of CD5, CD23, CD43, CD11c 

and B-cell–associated antigens (CD19, CD20, CD22 and CD79a).  Matutes et 

al have recommended a scoring system based on 5 markers to differentiate it 

from other related B-cell malignancies as shown in Table 1.1 (Matutes et al., 

1994). 

Differential diagnosis for CLL varies depending on the clinical scenarios 

(Table 1.2). For presentation as lymphocytosis and cytopenias the main 

diseases to be differentiated are mantle cell lymphoma, marginal zone 

lymphoma and Prolymphocytic leukaemia. Very rarely splenic diffuse red pulp 

small B-cell lymphoma, leukaemic presentation of follicular lymphoma and 

hairy cell leukaemia can give diagnostic confusion (J. B. Johnston, 2003). 

Immunophenotyping using flow cytometry is the main method for 

differentiating these disorders. When CLL presents as predominant 

lymphadenopathy, follicular lymphoma and diffuse large cell lymphoma need 

to be clearly differentiated. In most cases morphological features and 
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immunohistochemistry are adequate to differentiate these disorders. 

Lymphocytic infiltration at extranodal sites can be a feature of any of the 

above conditions and again morphology and immunohistochemistry serves as 

a differentiating tool in most cases. 

Table 1.1 Scoring system for diagnosis of CLL   

Adapted from Morphological and Immunophenotypic Features of Chronic 

Lymphocytic Leukaemia. Review in Clinical and Experimental Hematology 

2000; 4:22-47 (Matutes and Polliack, 2001). 

Marker Intensity Score Intensity Score 

sIg weak 1 strong 0 

CD5 + 1 - 0 

CD23 + 1 - 0 

CD22/CD79b weak 1 strong 0 

FMC7 - 1 + 0 

Score of 4 or 5 makes the diagnosis of CLL highly likely 

1.1.6. Prognosis 

Because of the heterogeneity of the disease, various markers have been 

added that are taken into consideration for prognostication. The most 

important prognostic factors in CLL are clinical stage, markers of tumour load 

(e.g., thymidine kinase (TK) and β2 microglobulin (β2MG)), cellular protein 

expression (e.g., CD38 and ZAP70), and genetic parameters including 

immunoglobulin heavy chain variable gene segment (IGHV) mutational status, 

genomic aberrations and individual gene mutations. Two separate clinical 

staging systems by Rai and Binet consider physical examination findings 

including lymphadenopathy and organomegaly, and platelet and haemoglobin 

values on blood count. Even though the prognostic impact of these staging 

systems was confirmed in many independent studies, there is still 

heterogeneity in the course of the disease of patients within a single stage 

group (Rai et al., 1975) (Binet et al., 1981). Various parameters of disease 

activity and tumour burden such as the lymphocyte count, the lymphocyte 

doubling time, the serum LDH level or the bone marrow (BM) infiltration 

pattern were shown to be of prognostic relevance in CLL (Zenz et al., 2010b).  

 



-12- 
 

Table 1.2 Differential diagnosis of CLL - Immunophenotypic features 

Marker CLL 

 

MCL MZL /LPL 

/WM /SLVL 

PLL HCL FL 

SIg Weak Strong Strong Strong Strong Positive 

CD5 Positive Positive Negative Negative or 

positive 

Negative Negative 

CD23 Positive Negative 

or weak 

Usually 

Negative 

Positive Negative 

or weak 

Variable 

FMC7 Negative or 

weak 

Positive Positive Positive Strong Positive 

CD79b Negative or 

weak 

Positive Positive Positive Positive Positive 

CD20 weak Positive Positive Strong Strong Positive 

CD22 Negative or 

weak 

Positive Positive Strong Strong Positive 

CD19 Positive Positive Positive Strong Strong Weak 

CD79a Positive Positive Positive Strong Positive Positive 

CD43 Positive Positive Negative Positive Variable Negative 

Cd11c Variable Weak or 

negative 

Variable Weak Positive Negative 

CD10 Negative Negative Negative Negative Variable Positive 

CD103 Negative Negative Negative Negative Positive Negative 

CD25 Variable Variable Variable Negative or 

weak 

Positive Negative  

Cyclin D1 Negative Positive Negative Negative Weak Negative 

SOX11 Negative Positive Negative Negative Weak Negative 

 

A number of serologic parameters such as thymidine kinase (TK), β2-

microglobulin, TNF-α and soluble CD23 have been shown to provide some 

information on outcome as well (Wierda et al., 2009) (Hallek et al., 1999) 



-13- 
 

(Montserrat et al., 2008) (Rozman et al., 1984) (Kantarjian et al., 1992). There 

are however currently little data to suggest that they have predictive 

properties, which could be used to guide treatment decisions. 

1.1.6.1. IGHV mutational status and surrogate markers 

CLL cases can be divided into two broad classes based on the degree of 

somatic hypermutation in the immunoglobulin gene region; those with mutated 

IGHV genes and those with unmutated IGHV genes. The cut-off value 

underlying this separation is taken as less or more than 98% sequence 

identity with the germ line sequence (Krober et al., 2002) (Damle et al., 1999) 

(Hamblin et al., 1999). The approximate frequency of this in various stages of 

treatment are shown in Table 1.3 (Dohner et al., 2000) (Stilgenbauer et al., 

2009). 

Table 1.3 Frequency of mutated and unmutated CLL based on stage of 

treatment 

Adapted from "Moving from prognostic to predictive factors in chronic 

lymphocytic leukaemia (CLL)". Best Practice & Research Clinical Haematology 

(Zenz et al., 2010b) 

 

Early 

stage CLL  Untreated 

After 1st line 

treatment 

Refractory 

CLL  

mutated IGHV 61% 46% 34% 24% 

unmutated 

IGHV 39% 54% 66% 76% 

 

The two groups differ widely in their clinical progression; while CLL with 

unmutated IGHV follows an unfavourable course with rapid progression and 

earlier death, CLL with mutated IGHV often shows slow progression and long 

survival (Damle et al., 1999). IGHV mutation status is of prognostic 

importance in all groups of patients including unselected patient cohorts, after 

treatment, as well as in early stage (Binet A) patients (Catovsky et al., 2007) 

(S. Stilgenbauer et al., 2008). These groups differ in prognosis not simply by 

chance, but due to significant biological differences. Unmutated IGHV CLLs 

have higher levels of the intracellular expression of protein kinase Zeta 

associated protein 70 (ZAP70) and surface expression CD38. There is a 

difference in mRNA expression profile between these groups as described 

earlier in this chapter. Upon stimulation of the BCR complex the unmutated 

CLL cells have a higher potential of generating downstream signalling 
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cascades (Kipps, 2007) (Klein et al., 2001b) (A Rosenwald et al., 2001) 

(Wiestner et al., 2003). A high proportion of IGHV unmutated CLL cases carry 

stereotyped rearrangements of the VDJ gene segments, with very similar 

complementarity determining region (CDR) 3 regions. In general, more than 

20% of CLL patients carry these stereotypic BCRs. Stereotyped BCRs are 

less likely to occur in IGHV mutated CLL. CLL with unmutated IGHV are more 

likely to have  polyreactive B-cell receptors to antigens derived from 

endogenous or exogenous proteins whereas cases with mutated IGHV exhibit 

restricted antigen binding with oligo- or monoreactive BCRs (Zenz et al., 

2010c). Specific V-genes in the VDJ rearrangement appear to be associated 

with distinct biological and clinical features (e.g., VH3-21) (Ghia et al., 2005) 

(Murray et al., 2008) (Stamatopoulos et al., 2007) (Tobin et al., 2004).  

As routine use of IGHV sequencing is difficult in all labs certain surrogate 

markers were developed. ZAP70 expression is widely used in this context as 

it was identified based on gene expression profiling studies (A Rosenwald et 

al., 2001). In all patients in whom at least 20% of the leukaemic cells were 

positive for ZAP70 by flow cytometry, IGHV was unmutated, whereas IGHV 

mutations were found in 21 of 24 patients in whom less than 20% of the 

leukaemic cells were positive for ZAP70 (Crespo et al., 2003) (Orchard et al., 

2004) (Rassenti et al., 2004) (Kröber et al., 2006). The prognostic impact of 

ZAP70 expression has been confirmed in many studies and several studies 

have shown a correlation of high ZAP70 expression and unmutated IGHV 

genes and BCR function (Chen et al., 2002). But this correlation is discordant 

in 25% of cases and the proportion of this discordance may be particularly 

high in the distinct subgroups with V3-21 usage and 17p or 11q deletion 

(39%) (Kröber et al., 2006). In the absence of high-risk genomic aberrations, 

the status of IGHV and ZAP70 may have a similar prognostic impact, and 

might therefore be alternatively applied. A major problem concerning ZAP70 

determination in routine clinical practice is the challenge in the standardisation 

of an FACS assay for its measurement (Rossi et al., 2010). 

 CD38 is another surrogate marker, which is a molecule widely expressed in a 

variety of haematopoietic cells, including thymic cells, stem cells, activated T-

cells, B-cells and plasma cells. The expression of CD38 is an important 

prognostic marker in CLL. The initial studies suggested that CD38 could be 

used as a surrogate marker for mutational status, as CD38 positivity was 

associated with the unmutated group and has a poor prognosis compared to 

the CD38 negative group, which is associated with mutated group and better 

prognosis (Damle et al., 1999). However, later studies have shown that CD38 
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has an independent prognostic value in CLL and some studies suggest that 

combination of CD38 and IGHV mutational status has an even greater 

prognostic power than either marker alone (Damle et al., 1999) (Krober et al., 

2002) (Ibrahim et al., 2001) (Jelinek et al., 2001) (Hamblin et al., 2002) (Matrai 

et al., 2001) (Vasconcelos et al., 2003). The pattern of CD38 expression can 

be homogenously positive, homogenously negative or can be bimodal where 

subsets of CD38-positive and CD38-negative cells are seen in the same 

population (Ghia et al., 2003). The prognostic significance of this bimodal 

pattern is not clear. Some studies have shown a concordance between 72 

and 95% when ZAP70 is used as a surrogate marker (Crespo et al., 2003) 

(Dürig et al., 2003) (Rassenti et al., 2004), but another study has shown that 

analysing CD38, ZAP70 and IGHV  mutational status together will give a more 

discriminatory prediction of time to first treatment and overall survival (Matutes 

et al., 2008).  Unfortunately, such discordant results are difficult to interpret.  

Another molecule of interest as a surrogate marker is FCRL (human Fc 

receptor-like molecules) (Li et al., 2008). There are 5 human Fc receptor–like 

molecules (FCRL1-5) which have tyrosine-based immunoregulatory potential 

and are expressed by B-lineage subpopulations. In a study of 107 CLL 

patients FCRL1, FCRL2, FCRL3 and FCRL5 were found at markedly higher 

levels on CLL cells with mutated IGHV genes than on unmutated CLL cells. 

Univariate analysis showed that FCRL expression was strongly associated 

with IGHV mutation status and FCRL2 specifically maintained independent 

predictive value by multivariate logistic analysis. FCRL2 demonstrated 94.4% 

concordance with IGHV mutation compared with 76.6% for CD38 and 80.4% 

for ZAP70. The median treatment-free interval was 15.5 years for patients 

with high FCRL2 expression compared with 3.75 years for FCRL2 low 

patients (Li et al., 2008). 

Another area of interest is epigenetic markers as they are very stable which 

makes them excellent molecular markers compared to measurement of levels 

of proteins or RNA that may change in the course of disease. Therefore, DNA 

methylation of genes whose products have been associated with a prognostic 

value such as ZAP70 or CD38 can be used in this context and they have 

been found to correlate with prognosis and IGHV mutation status (Corcoran et 

al., 2005) (Esteller, 2008). 

Gene expression profiling has shown that a number of other genes could be 

identified with differential expression based on IGHV status, suggesting that 

expression levels of these genes may be used as surrogate markers.  In one 
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study using unpurified samples from 130 CLL patients, genes were tested 

with real time quantitative polymerase chain reaction (RQ-PCR) (van’t Veer et 

al., 2006). Multivariate logistic regression analysis showed that expression 

levels of LPL, ZAP70, ADAM29 and SEPT10 were the most highly correlated 

with IGHV mutational status. Among these, expression of LPL was the single 

best predictor in multivariate analysis. Another study using CD19+ selected 

samples from 151 CLL patients with same technique on genes including 

ADAM29, ATM, CLLU1, DMD, GLO1, HCSL1, KIAA0977, LPL, MGC9913, 

PCDH9, PEG10, SEPT10, TCF7, TCL1, TP53, VIM, ZAP70, and ZNF2. 

ZAP70 has achieved the highest assignment rate (81%) for patients with 

genetic risk (IGHV unmutated, V3-21 usage, 11q- or 17p-), followed by LPL 

and TCF7 (76% both). This rate was improved to 88% if ZAP70, TCF7, DMD 

and ATM were combined. Multivariate analysis of treatment-free survival has 

shown that IGHV mutation status and expression of ADAM29 were of 

independent prognostic value besides disease stage (Kienle et al., 2010). For 

overall survival (OS), expression of ATM, ADAM29, TCL1 and SEPT10 

provided independent prognostic information in addition to clinical and genetic 

factors. But these factors are only in the early stage of development which 

needs further evaluation in independent studies to confirm their validity (van’t 

Veer et al., 2006) (Kienle et al., 2010). 

1.1.6.2. Chromosomal aberrations 

Recurrent chromosomal abnormalities are found in approximately 80% of CLL 

cases. Some of these have significant prognostic impact. The frequency at 

various stages is shown in Table 1.4 (Dohner et al., 2000). 

1.1.6.2.1. Deletion 13q14 

The most common structural aberration found in CLL is deletion of 13q14 and 

it is associated with a favourable prognosis, mutated IGHV gene and classical 

CLL cell morphology (Dohner et al., 2000). Approximately 50% of the 

abnormalities involve an interstitial deletion and this is usually associated with 

loss of the RB gene encoding the tumour suppressor protein Retinoblastoma 

(Juliusson and Merup, 1998) (Juliusson et al., 1990). The other half involves a 

translocation affecting the RB gene region. Retinoblastoma is involved in 

cellular proliferation and loss of the same causes cell cycle progression and 

tumour development (Kornblau et al., 1994) (Stilgenbauer et al., 1993). 

Recent evidence has shown that miR15 and miR16 lie within a small region of 

chromosome 13q14 that is deleted in more than 65% of CLL and that allelic 

loss in this region correlates with down-regulation of both miR15 and miR16 
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expression suggesting that these genes represent the targets of inactivation 

by allelic loss in CLL (Calin et al., 2002) (Cimmino et al., 2005) (Lagos-

Quintana et al., 2001). 

Table 1.4 Frequency of chromosomal abnormalities based on stage of 

treatment 

Adapted from "Moving from prognostic to predictive factors in chronic 

lymphocytic leukaemia (CLL). Best Practice & Research Clinical Haematology" 

(Zenz et al., 2010b). 

 

Early stage 

CLL 

Untreated 

After 1st 

line 

treatment 

Refractory 

CLL  

deletion 13q14 

as single 

aberration 48% 36% 36% 22% 

trisomy 12 12% 15% 14% 12% 

deletion 11q23 9% 15% 21% 25% 

deletion 17p13 3% 5% 5% 31% 

TP53 mutation unknown 10% 8% 37% 

1.1.6.2.2. Deletions of 11q22-q23 

This deletion is seen in around 20% of cases of predominantly younger 

patients and usually is associated with marked lymphadenopathy, rapid 

disease progression and poor survival (Dohner et al., 2000) (Monni and 

Knuutila, 2001) (Sembries et al., 1999) (Aalto et al., 2001). The deleted region 

at 11q22-q23 involves the radixin (RDX) gene which has homology to the 

neurofibromatosis-type 2 (NF-2) tumour suppressor gene and the ATM 

(‘Ataxia Telangiectasia Mutated’) gene (Sembries et al., 1999). Mutations 

have been shown to be present in 12% of all patients and about a third of 

cases with 11q deletion (Austen et al., 2005) (Austen et al., 2007). The ATM 

protein kinase is crucial in the cell’s response to DNA damage and DNA 

double-strand breaks caused by chemotherapy or irradiation. Even though 

earlier trials have shown that this deletion is associated with poor outcome, 

interestingly, there is evidence from recent clinical trials that more intensive 

combination chemotherapy may be particularly beneficial in patients with 11q 

deletion and the addition of the anti-CD20 antibody rituximab may further 

enhance efficacy ( S. Stilgenbauer et al., 2008). In the German CLL8 trial the 
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addition of rituximab to fludarabine and cyclophosphamide increased the 

complete remission CR rate from 15.5% to 53.2% in the subgroup of patients 

with 11q deletion and progression-free survival (PFS) (p < 0.001) and overall 

survival (OS) (p=0.004) were also markedly improved. These data may 

suggest that chemo-immunotherapy may overcome the prognostic impact of 

11q deletion (Hallek et al., 2010a). 

1.1.6.2.3. Deletions of 17p13 and TP53 mutations 

Deletion of 17p13 is found in about 3–7% of CLL at diagnosis and at initiation 

of first treatment but is much higher in relapsed refractory patients. The 17p 

deletion always affects band 17p13 which includes the tumour suppressor 

TP53 (Dohner et al., 1995) (Zenz et al., 2010). The p53 pathway is critical in 

the cellular response to DNA damage, either by facilitating the repair of the 

damaged DNA or, if the damage is too great, leading to cell-cycle arrest 

and/or apoptosis (Prives and Hall, 1999). Most cases with 17p deletion show 

loss of one copy and mutation of the remaining copy (Dicker et al., 2008) 

(Rossi et al., 2009) (Zenz et al., 2008) and only a very few cases with 17p 

deletion will have a functional p53 pathway. Several trials have shown that 

17p deletion has been associated with poor response to chemotherapy 

including alkylating agents and purine analogues and short survival (Dohner 

et al., 1995). For example, in the German CLL8 trial, the complete remission 

rate for patients with 17p-deleted CLL treated with FCR was 5% compared 

with 50% for those patients who did not have this genetic abnormality (Hallek 

et al., 2010a). The median progression-free survival PFS for patients with 17p 

deletion was only 11.2 months, compared with 51.8 months for FCR generally 

and with only 38.1% surviving 36 months after frontline FCR therapy in 

patients with 17p deletion. There is reasonable evidence to suggest that the 

mechanism of action of non-chemotherapeutic agents such as steroids, anti-

CD52 antibody alemtuzumab, lenalidomide and flavopiridol is independent of 

the p53 pathway and may be associated with a better outcome in treating 

patients with p53 dysfunction (Stilgenbauer et al., 2009) (Byrd et al., 2007) 

(Chanan-Khan et al., 2006) . However, this has to be tested in prospective 

randomised controlled trials. The current guidelines for CLL treatment 

recommend testing for 17p deletion before treatment and if positive they 

should be treated with these agents and possibly upfront allogeneic stem cell 

transplantation (Oscier et al., 2012). Mutations of TP53 are found in roughly 

10% of patients with untreated CLL (Dohner et al., 1995) (Zenz et al., 2008) 

(El Rouby et al., 1993) (Trbusek et al., 2006) and the behaviour of cases with 
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only the TP53 mutation is very similar to cases with deletion of one allele and 

mutation of the remaining allele (Dicker et al., 2008) (Rossi et al., 2009). 

1.1.6.2.4. Trisomy 12 

Trisomy 12q13 is a frequent aberration in CLL (10–20%) and occurs as a 

duplication of one homologue. The oncogenes targeted by the trisomy are 

unknown. Earlier trials have shown that the survival is shortened when 

trisomy 12 is assessed by conventional cytogenetics, but in prospective trials 

using by FISH analysis poor outcome for this group has not been confirmed 

with regard to overall survival OS when assessed according to the 

hierarchical model (i.e., trisomy 12 without 17p or 11q deletion) (Dohner et al., 

2000) (Juliusson et al., 1990) (S. Stilgenbauer et al., 2008). Trisomy 12 is not 

selected over time, as the incidence of does not increase with advanced stage 

or progression to refractory disease.  

Other important prognostic markers, which are important in the post treatment 

context, are fludarabine refractoriness and MRD status. Biological poor 

prognostic markers like 17p del, 11q del and unmutated IGHV did not show 

any survival disadvantages in this fludarabine refractory group of patients. 

This was demonstrated in the UK CLL202 CAMFLUD trial and German 

CLL2H study (Varghese et al., 2010b) (Stilgenbauer et al., 2009). Another 

important marker of post treatment prognosis is the MRD after the treatment. 

Retrospective and prospective analyses have shown that MRD status post 

treatment is an independent predictor of PFS and OS. The details are given 

as a separate section in this chapter.  

1.1.7. Treatment 

1.1.7.1. Chemotherapy 

Until recently, the treatment of symptomatic CLL was  alkylating agents like 

chlorambucil, which gave an overall response rate of 40-60% and complete 

remission (CR) rate of 4 to 10% (Rai et al., 2000) (Sawitsky et al., 1977) 

(Knospe and Huguley, 1974) (Robak et al., 2000). Alkylating agents produce 

an anti-tumour effect by binding covalently with DNA, RNA and proteins 

(Begleiter et al., 1996) (Panasci et al., 2001). Steroid added to the 

chlorambucil improved the speed of response, but the response rate and 

survival hasn’t changed much (Han et al., 1973). Various combination 

regimens have been tried to improve the response rate and survival over 

chlorambucil. Combinations like cyclophosphamide, vincristine and 

prednisolone (COP) (Liepman and Votaw, 1978) (French Cooperative Group, 
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1990);  (French Cooperative Group, 1986)  (French Cooperative Group, 1989) 

(Hansen et al., 1987); cyclophosphamide, doxorubicin and prednisolone 

(CAP); cyclophosphamide, bischloroethylnitrosourea, melphalan and 

prednisolone; prednisolone, vincristine, cytosine arabinoside, 

cyclophosphamide and doxorubicin (POACH) (Keating et al., 1988); 

vincristine, doxorubicin, dexamethasone (VAD) (Friedenberg et al., 1993) did 

not improve the response rate or survival compared to chlorambucil. A meta-

analysis of ten randomised trials involving 2035 patients comparing 

chlorambucil plus or minus prednisolone with various combination regimens 

including COP, CHOP and chlorambucil/epirubicil did not show any survival 

advantage for these combination regimens over chlorambucil (Trialists’ 

Collaborative Group, 1999).  

Another major group of drugs used in CLL treatment are nucleoside 

analogues. Among these fludarabine is the most commonly used in the 

treatment of CLL. Its active metabolite F-ara-A is formed by rapid 

dephosphorylation in plasma. It is lethal to lymphocytes in different ways. 

Firstly its triphosphate form can induce DNA breaks and damage which 

indirectly release cytochrome c from the mitochondrial membrane to the 

cytosol. This activates caspase-9 by triggering the intermediary molecules 

and thereby pushing cell into apoptosis (Genini et al., 2000a). Secondly 

increased levels of triphosphate can enhance the effect of endogenous dATP 

on the apoptosome inducing apoptosis (Genini et al., 2000b) (Genini et al., 

2000a). Various groups have compared fludarabine with chlorambucil or 

combination chemotherapies (Johnson et al., 1996) (Leporrier et al., 2001) 

(Rai et al., 2000) (Catovsky et al., 2007). The European cooperative group 

compared six courses of fludarabine against CAP regimen. In previously 

untreated patients the response rates were similar, but duration of response is 

slightly better for the fludarabine group (Johnson et al., 1996). There was a 

tendency for better survival in the fludarabine group but the follow up was too 

short to draw a statistically significant conclusion. In previously treated 

patients the response rate was better in the fludarabine group without any 

difference in duration of response or survival. The French Cooperative Group 

compared CHOP, CAP and fludarabine. The response was better with CHOP 

and fludarabine compared to CAP but similar to each other (Leporrier et al., 

2001). There was no significant difference in time to relapse or survival 

duration. North American Intergroup study compared fludarabine with 

chlorambucil or a combination of fludarabine and chlorambucil. The 

combination arm was stopped in between due to the concerns of toxicity (Rai 
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et al., 2000). The response with fludarabine was better than chlorambucil but 

this has not been translated to a survival advantage in this trial also. In 2007 

the LRFCLL4 trial was published which was an international randomised 

control trial comparing fludarabine plus cyclophosphamide (FC) vs. 

fludarabine vs. chlorambucil involving 777 patients (Catovsky et al., 2007). It 

showed a statistically significant superiority for FC compared to fludarabine or 

chlorambucil in complete response, overall response rates and progression-

free survival at 5 years, without much difference in overall survival.  

1.1.7.2. Monoclonal antibodies 

1.1.7.2.1. Anti-CD20 antibodies 

The chimeric monoclonal antibody rituximab, containing a human IgG1 

immunoglobulin constant region and a murine variable region, was the first 

monoclonal antibody approved by the US Food and Drug Administration 

(FDA) for the treatment of a human malignancy initially in relapsed or 

refractory, low-grade or follicular and CD20+ non-Hodgkin’s lymphomas. 

Rituximab is targeted against the cell surface antigen CD20 which is important 

in B-cell activation, differentiation and proliferation. The anti-tumour effect has 

shown to be due to various mechanisms like complement-mediated 

cytotoxicity, antibody-dependent cell-mediated cytotoxicity and by direct 

induction of apoptosis (Maloney et al., 2002) (Byrd et al., 2002). Following the 

demonstration of its activity in NHL, it was tried in patients with CLL/small 

lymphocytic lymphoma (SLL) as a single agent. Response rates in relapsed or 

refractory CLL/SLL are very modest with a PR rate of only 10–15% without 

any complete response (O’Brien et al., 2001a) (Lin et al., 2003). When used in 

previously untreated patients higher response rates of 51% with 4% CR were 

observed; but responses were not durable, with a median PFS of only 18.6 

months (Byrd et al., 2001)  Several small trials have shown that rituximab in 

combination with chemotherapy improved the outcome compared to these 

agents used on their own. In 2010, two randomised control trials, REACH and 

the German CLL8 trial, have shown that adding rituximab to chemotherapy 

(Fludarabine and cyclophosphamide) will improve the overall response, 

complete remission, progression free survival and overall survival in 

previously treated and untreated patients, respectively (Hallek et al., 2010a) 

(Hallek et al., 2009), and now FCR is accepted as the standard of care in the 

treatment of CLL in a subset of patients. There are two newer anti-CD20 

antibodies available for the treatment of CLL.  GA-101 and ofatumumab are 

fully humanised monoclonal antibodies targeting an epitope of the CD20 
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molecule distinct from that of rituximab. In vitro experiments with ofatumumab 

has shown better binding to CD20 than rituximab, a slower off-rate, stronger 

complement-mediated toxicity and ability to kill rituximab-resistant cells as 

well as those with low expression of CD20, as exhibited by CLL cells. 

Ofatumumab has been licensed for use in fludarabine and alemtuzumab 

refractory CLL, as it has shown a response rate of around 50% in this group 

of patient, but unfortunately the response is not very durable (Wierda et al., 

2010).  

1.1.7.2.2. Anti-CD52 antibody 

Alemtuzumab, which is a humanised monoclonal antibody specific for CD52, 

is another antibody useful in the treatment of CLL (Stilgenbauer et al., 2009) 

(Keating et al., 2002) (Hillmen et al., 2007). It has the ability to cause cell lysis 

via complement fixation and antibody-dependent cell-mediated cytotoxicity. 

There is some evidence that alemtuzumab also effects cell killing directly by 

apoptosis (Nückel et al., 2005). When used as an intravenous (IV) formulation 

in fludarabine refractory patients it gave an ORR of 33% and a median OS of 

16 months (Keating et al., 2002). Other studies have also shown that in 

previously treated patients alemtuzumab can give a response rate of up to 

70% (Osterborg et al., 1997) (Bowen et al., 1997) (Rawstron et al., 1997).  As 

a result of these studies alemtuzumab was granted a product licence in 2001 

for the treatment of patients with CLL who had previously received alkylating 

agents and were refractory to purine analogues. 

There are several other monoclonal antibodies against different targets which 

have been tried in various trials, but none of them were found to be clinically 

useful (J. C. Byrd et al., 2006) (Leonard et al., 2003) (Frankel et al., 2006). 

1.1.7.3. Chemoimmunotherapy  

Chemoimmunotherapy is the term used when chemotherapy is combined with 

monoclonal antibodies like rituximab. Even though this approach has 

improved the treatment outcome in previously untreated CLL and minimally 

treated CLL, treatment in the relapsed and refractory setting is much more 

difficult (Brown, 2011). When fludarabine was used as monotherapy, 20%-

37% of patients at initial treatment would fit the standard definition of 

fludarabine refractoriness (Keating et al., 1998) (Rai et al., 2000). In a single 

centre study of 147 such patients, only 22% responded to their first salvage 

therapy, and the median OS was 10 months (O’Brien et al., 2001b). The 

maximum response rates seen in those groups of patients were 37% where 

salvage therapy included purine analogues with alkylators. Combinations of 



-23- 
 

purine analogue with alkylator agent and with rituximab have reduced 

fludarabine refractoriness to 14.5% with FC (fludarabine plus 

cyclophosphamide) or 7.6% with FCR (fludarabine, cyclophosphamide, 

rituximab) in the German CLL Study Group CLL8 trial (Hallek et al., 2010b). In 

addition to this refractory subgroup, the overall survival of those patients 

relapsing within 24 months is also very poor, 21.9 months for those with PFS 

< 6 months, 21.2 months for PFS 6-12 months, and 47.3 months for PFS 12-< 

24 months, compared with median OS not reached for those with PFS >24 

months. Therefore, even with FC or FCR, approximately one-third of patients 

had significant treatment resistance. Not surprisingly, there was a high 

proportion of 17p deletion in this group, which was present in 34% of the 

refractory group (Zenz et al., 2010a). 

Combination immunochemotherapy like FCR, FCMR (mitoxantrone with 

FCR), OFAR (oxaliplatin, fludarabine, cytarabine, rituximab), alemtuzumab on 

its own or combination with FCR (CFAR) and ofatumumab are used in this 

situation (Badoux et al., 2011) (Badoux et al., 2009) (Tsimberidou et al., 2008) 

(Wierda et al., 2010). But disease becomes increasingly resistant to 

treatment. Given that conventional chemo-immunotherapy is not a good 

option in these patients, alternatives include other approved or available 

therapies with better activity, stem cell transplantation (SCT), or novel 

investigational agents (Brown, 2011).  

1.1.7.4. Newer agents 

Several agents have shown promising results in early phase trials. 

Lenalidomide, an immunomodulatory drug has shown some efficacy in 

relapsed refractory patients, but has poor tolerability in many patients due to 

myelosuppression and has no long-term control of the disease (Chanan-Khan 

et al., 2006). Flavopiridol, a pan-inhibitor of cyclin-dependent kinases, 

including CDK9, that potentially induces apoptosis in primary human CLL 

cells, has shown significant preclinical activity as well as reasonable clinical 

activity (Byrd et al., 2007). However, the development of this drug has been 

suspended due to severe toxicity including grade 3 or greater tumour lysis 

syndrome (19%), infection (32%), and diarrhoea (17%). Dinaciclib a potent 

and selective inhibitor of the cyclin dependent kinases CDK 1, 2, 5, and 9 has 

shown some clinical response in phase 1 trial (Flynn et al., 2010). ABT-263 

(navitoclax) is a small-molecule that potently inhibits BCL-2, BCL-xL, and 

BCL-w and is able to induce apoptosis in primary CLL cells in vitro with a half-

maximal effective concentration (EC50) of 4.5nM. Phase 1 trial has shown 
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ORR of 31%, all PRs, with median PFS and time to progression of 25 months 

(Roberts et al., 2012), but significant thrombocytopenia limited the use of this 

drug in relapsed and refractory patients. ABT-199, a selective BCL-2 blocker 

has shown promising activity with a response rate of 84%, including 20% CR 

in relapsed refractory patients in a phase 1 trial (Seymour et al., 2013). 

Another interesting target for CLL treatment is the B-cell receptor signalling 

pathway. Two molecules has shown very promising activity, GS-1101 (GS-

1101 is a specific inhibitor of the delta isoform of Phosphatidylinositol-3-kinase 

(PI3K) inhibitors and ibrutinib, an irreversible covalent inhibitor of BTK, a 

kinase that is required for B-cell development and function (Byrd et al., 2013) 

(Furman et al., 2010). These molecules have shown significant response in 

early phase trials and the details of these drugs will be described in a later 

chapter. 

Biologic disease characteristics are very important in determining the 

treatment resistance. Loss or mutations of TP53 in chromosome 17 and ATM 

in chromosome 11 are well-established reasons for chemotherapy resistance 

in CLL (Figure 1.2).          

            

Figure 1.2 p53 pathway  

DNA damage by chemo or radiotherapy activates p53 through the activation of ATM. 

P53 induces either cell cycle arrest or apoptosis through different targets. Various 

drugs like steroids, Alemtuzumab, lenolidamide and MDM2 inhibitors bypass the p53 

pathway.  
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Their role in cell cycle arrest and apoptosis, when DNA damage occurs due to 

chemotherapy and radiotherapy, could explain this. But only a proportion of 

drug-resistant cases are explained by the currently identified factors, such as 

p53 and ATM (Zenz et al., 2009). 

1.1.8. Minimal Residual Disease 

Minimal residual disease (MRD) is the term used for small numbers of 

disease cells that remain during or after treatment, when the patient is in 

remission according to conventional criteria (Hallek et al., 2008). It has been 

well established that patients attaining complete remission (CR) have a better 

survival rate than poor responders (Wierda et al., 2005). This finding led to the 

concept of improving the quality of response to the greatest possible extent, 

up to the point of eradication of MRD. With the advent of combination 

immunochemotherapy, the goal of treatment has changed from disease 

control in a chronic indolent disease to eradicating the disease to a point 

where there is no MRD detected and potentially a cure. This has increased 

the demand for finding newer agents, especially to treat resistant disease.  

Diagnosing disease at the MRD level is also challenging. It is now widely 

accepted that MRD negativity in CLL should be set at a threshold of less than 

a single CLL cell in 10,000 cells per μL, as this is the level that can be reliably 

detected by modern techniques (Hallek et al., 2008). This is accepted in the 

guidelines of the International Workshop on Chronic Lymphocytic Leukaemia 

(IWCLL) in 2008 (Hallek et al., 2008). Current methods for the detection of 

MRD in CLL use either flow cytometry or PCR. The initial flow cytometric 

analyses for MRD used the diagnostic technique itself, which is basically 

detection of co-expression of CD5 and CD19 together with monoclonality of 

light-chain expression. MRD was considered positive if more than 25% of 

CD19+ cells co-expressed CD5. Although these techniques are more 

sensitive than a morphologic assessment, they are only capable of detecting 

a single malignant cell in about 200 normal cells. Techniques using additional 

antigens such as CD79b and CD20 were also described, but they were not 

applicable to everyone, as there are inter-patient variations in antigen 

expression. The PCR technique initially described used consensus primers, 

which amplify the immunoglobulin heavy chain (IgH) gene. Again, the 

sensitivity with this technique was limited, and it was applicable to only 70% to 

80% of patients because of IgH gene mutation. Later, allele-specific 

oligonucleotide PCR (ASO-PCR) was developed, in which individual patient-

specific oligonucleotide primers were designed to detect MRD in follow-up 

samples. This technique has the highest sensitivity (as low as 1 in 106) but is 
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expensive, labour-intensive, and impossible to perform in a significant 

proportion of patients, such as those whose pre-treatment sample is not 

available. In 2001, Rawstron et al. described a flow cytometric technique that 

can differentiate CLL cells from their normal counterparts on the basis of 

multicolour flow cytometry studying CD19/CD5/CD20/CD79b expression 

(Rawstron et al., 2001). This assay is rapid and sensitive, detecting one CLL 

cell in 104 to 105 leukocytes; it is also applicable to all patients, even when no 

pre-treatment specimen is available. Since then, various groups have 

described other antibody combinations. In 2007, the European Research 

Initiative on CLL (ERIC) proposed an international standardised approach 

after analysing various combinations of antibodies and comparing them 

against the ASO-PCR technique (Rawstron et al., 2007). After analysing 728 

paired blood and bone marrow samples, they derived several conclusions: 1) 

Blood analysis was equally or more sensitive than marrow in 92% of samples, 

but marrow analysis was necessary to detect MRD within 3 months of 

alemtuzumab therapy; 2) The κ/λ/CD19/CD5 combination can be used to 

screen samples and avoid extended analysis in cases with clear evidence of 

residual disease where all B-cells are CD5+ with light-chain restriction; 3) A 

CD45/CD14/CD19/CD3 combination or an equivalent can be used to provide 

a control for CLL cell enumeration and to define the limit of detection; 4) The 

combination of CD5/CD19 with CD20/CD38, CD81/CD22, and CD79b/CD43 

is the best panel to detect MRD with low inter-laboratory variation, low false 

detection rates and an accuracy of 95.7%. Current methods involve either 

using allele-specific PCR or flow cytometry. The sensitivity of both techniques 

is similar, but the PCR technique has several practical limitations. The current 

flow cytometric technique uses a combination of several antibodies for an 

accurate estimation of the minimal residual disease. Even though a 

combination of CD5/CD19 with CD20/CD38, CD81/CD22, and CD79b/CD43 

is the best panel to detect MRD, the search for an ideal antibody or 

combination of antibodies is still continuing.  

Over the years several studies have looked into the difference in survival 

between patients who attained MRD negativity and those who have not after 

their standard treatment. Most of these studies have concluded that patients 

who attained MRD negativity will have longer response duration and some of 

them have shown survival advantage (O’Brien et al., 2003) (Bosch et al., 

2002) (Del Poeta et al., 2005) (Tam et al., 2008) (Hillmen et al., 2007) 

(O’Brien et al., 2003). Attainment of MRD negativity has been demonstrated 

as an independent predictor of OS and PFS by Kwok et al (Kwok et al., 2009). 



-27- 
 

In this study, data was collected retrospectively from 137 patients who 

attained at least a PR after their standard treatment, and in whom an MRD 

assessment was done using a sensitive four-colour flow cytometry. 

Multivariate analysis showed that achieving MRD negativity in CLL is an 

independent predictor of survival even with a variety of different treatment 

approaches and regardless of the lines of therapy. In patients after their first 

line of treatment, the 5-year PFS was 89% (95%-CI 55-97%) vs. 0% (95%-CI 

<1%) (p<0.001) and the 5-year OS was 95% (95%-CI 61-99%) vs. 53% (95% 

CI-15-74%) (p<0.001) for MRD-negative vs. MRD-positive patients 

respectively. This data suggests that achieving MRD-negativity after first-line 

therapy has a profound effect on survival. The most convincing evidence is 

from the German CLL8 trial which was a randomised control trial assessing 

the efficacy of FC vs. FCR in previously untreated patients (Hallek et al., 

2010b). MRD levels were prospectively quantified in 1,775 blood and bone 

marrow samples from 493 patients from both arms. Patients were categorised 

into different MRD groups according to the level of persistent disease- low 

<10-4, intermediate ≥ 10-4 to <10-2, and high ≥10-2. Median PFS was 68.7, 

40.5, and 15.4 months for low, intermediate, and high MRD levels, 

respectively and median OS was 48.4 months in patients with high MRD and 

was not reached for lower MRD levels when assessed 2 months after therapy. 

When compared with patients with low MRD level there is a greater risk of 

disease progression with intermediate and high MRD levels (hazard ratios, 

2.49 and 14.7, respectively; both P < .0001). In multivariate analyses that 

included the most important pre-therapeutic risk markers in CLL, MRD 

remained an independent predictor for OS and PFS. Another important 

observation is that PFS and OS did not differ between FC and FCR arms 

once MRD is attained, even though FCR has higher tendency to induce low 

MRD levels more frequently than FC (Böttcher et al., 2012). Several small 

trials have looked into consolidation treatment after standard chemotherapy. 

The only randomised control trial trying to address it prospectively was 

prematurely stopped due to toxicity issues (Wendtner et al., 2004). But long-

term follow up of the small cohort of patients who were consolidated with 

alemtuzumab has shown that there is a significant survival advantage for the 

patients who attained MRD negativity post-consolidation (Schweighofer et al., 

2009). A recent UK trial, CLL207, was a phase 2 trial which assessed 

alemtuzumab consolidation post-chemotherapy in patients who responded 

with low levels of disease. MRD eradication from blood and bone marrow was 
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attained in 83% of patients at the end of alemtuzumab consolidation. The 

long-term survival data from this trial is still awaited (Varghese et al., 2010a).  

1.1.9. Antigens expressed on CLL cells 

Immunophenotyping using flow cytometry for identifying and distinguishing 

CLL from other B-cell disorders was reported in the early 80’s (Koziner et al., 

1980) (Wang et al., 1980) (Dillman et al., 1983). During that period several 

papers were published which identified the co-expression of CD5 (Leu1) and 

pan–B-cell markers as the phenotypic hallmark of classical chronic 

lymphocytic leukaemia (Koziner et al., 1980) (Wang et al., 1980) (Dillman et 

al., 1983). Surface immunoglobulin was used as a marker of B-cell lineage. 

Since then several markers have been identified that have substantially aided 

in studying the biology of the disease (Table 1.5). Currently, 

immunophenotyping is the most useful diagnostic technique available to 

evaluate various aspects of CLL. Expression of B-cell associated antigens 

varies in CLL cells. Most of them are either weak or not expressed, which 

helps to distinguish it from other mature B-cell malignancies. Expression of 

CD20, a phosphoprotein that may act as calcium channel and plays an 

important role in cell-cycle progression and differentiation, is dim on CLL cells. 

CD20 is expressed on all stages of B-cell development except on pro-B-cells 

or plasma cells. This is a crucial molecule in terms of treatment for CLL. 

Expression of CD19, another pan-B-cell marker, is also dim on CLL cells. 

CD19 is an important molecule in B-cell activation.  It functions as an adaptor-

like protein, mediating the recruitment and activation of signalling molecules to 

B-cell receptor microclusters (Harwood and Batista, 2008).  

In contrast to other B-cell diseases, the extracellular epitopes of CD79b and 

CD22 are either expressed at a low density or absent in CLL. This has been 

confirmed by antibody binding capacity using a quantitative flow cytometry 

method to provide an accurate estimation of antigen expression (Cabezudo et 

al., 1999).  

Although early reports suggested that most CLL cases were CD79b negative, 

a monoclonal antibody has shown that CD79b is expressed weakly in most 

CLL cases (Harwood and Batista, 2008) (Cabezudo et al., 1999) (Thompson 

et al., 1997). The level of CD79b, also known as B29, directly correlates with 

the level of sIg expression in CLL. CD79b, in association with CD79a, plays a 

major role in B-cell receptor complex formation. This multimeric complex with 

the sIg translates the Ig stimulation into a B-cell response (Thompson et al., 

1997) (Figure 1.3). Under-expression of CD79b has been attributed to the 
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development of mutations in the coding sequences of the CD79B gene in CLL 

patients that produce a truncated form of the protein, thereby explaining the 

reduced expression of sIg (Alfarano et al., 1999). This is a very helpful marker 

in differentiating CLL from other B-cell malignancies as it is strongly 

expressed in most of them. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 CLL cell signalling through B-cell receptor 

The B-cell receptor (BCR), an integral membrane protein complex, is composed of two 

immunoglobulin (Ig) heavy chains and light chains and two heterodimers of Igα 

(CD79a) and Igβ (CD79b). After BCR ligation by antigen, three main protein tyrosine 

kinases LYN, SYK and BTK are activated. This then activates the downstream 

signalling pathways. ZAP70 protein upregulate BCR signaling by an adaptor role 

independent of its kinase activity. 

CD22 is a BCR-associated transmembrane protein, the cytoplasmic tail of 

which contains three immunoreceptor tyrosine-based inhibitory motifs. These 

motifs are phosphorylated upon BCR-crosslinking, and can act as negative 

regulator of signalling from the BCR (Nishizumi et al., 1998). So the under-

expression of these two molecules may explain the aberrant signal 

transduction in CLL cells similar to that of anergic normal B lymphocytes. 

BCR 
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Ig production  
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CD5, an antigen consistently positive in CLL cells, is a pan T-cell marker. CD5 

is also present in some B-cells and these are usually found in mantle cells of 

secondary lymphoid follicles. 15% of normal B-cells express the CD5 marker 

in peripheral blood. CD5 is expressed by normal CD5– B-cells upon mitogenic 

stimulation (Morikawa et al., 1993), and conversely CD5+ B-cells may lose the 

expression of CD5 upon activation (Caligaris-Cappio et al., 1989). CD5+ B-

cells have been implicated in producing autoantibodies and it is interesting to 

note that CLL has a high frequency of association with autoimmune 

phenomena (Shirai et al., 1991).  

There is also evidence that cells from a proportion of CLL express the CD40 

ligand, CD154 (Ewart et al., 2002). CD154 is a member of the tumour 

necrosis family which is usually expressed on activated CD4+ T-cells. 

Normally when B-cells present antigens to CD4+ T-cells, the T-cell 

synthesises CD40L if it recognises the peptide. The CD40L binds to the B-

cell's CD40 receptor, activating the cognate B-cell. As a result of this 

interaction, the B-cell undergoes division, antibody isotype switching and 

plasma cell differentiation and thereby produces specific antibodies. Cells 

from CLL cases that are CD40L positive seem capable of inducing IgG 

production in normal B lymphocytes and it has been suggested that this may 

account for the production of abnormal antibodies by B-cells in some CLL 

cases. CD5+ B-cells were thought to be the cell of origin in CLL initially but 

current lines of evidence argue against this, as discussed earlier (Chiorazzi et 

al., 2005). 

Another interesting molecule expressed on CLL cells is CD23, which is an 

immunophenotypic hallmark of CLL. CD23 is a 45-kd transmembrane 

glycoprotein that functions as a low-affinity receptor for IgE and as an 

adhesion molecule by virtue of its ability to promote T-B-cell interactions and 

B-cell homotypic interactions when it engages its ligand CD21. It is expressed 

at low levels in normal B-cells, but upon activation, high expression is seen on 

B-cells, and yet, it is characteristically expressed in CLL in which the 

neoplastic lymphocytes are believed to be dormant. There are two isoforms of 

CD23, CD23a which is restricted to B-cells and CD23b which could be 

expressed by B-cells as well as other haemopoetic cells like 

monocytes/macrophages, T-cells, eosinophils and platelets, when they are 

stimulated (Delespesse et al., 1991).  In normal B-cells their expression is 

determined by various exogenous stimuli that signal through transcription 

factors that can regulate the promoter regions of either or both of these 

isoforms (Ewart et al., 2002). In CLL the mechanism by which CD23 
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expression is regulated is controversial. In normal B-cells IL-4 is the main 

inducer and IFN- is the main repressor, but this differential stimulating ability 

is lost in CLL and both isoforms are expressed (Fournier et al., 2008) (Goller 

et al., 2002). In vitro data suggests that ligation of CD23 will increase 

intracellular nitric oxide, which protects the CLL cells from apoptosis (Kolb et 

al., 2001).  High levels of soluble CD23 are found in sera from CLL patients, 

which directly correlate with disease activity (Reinisch et al., 1994) (Sarfati et 

al., 1988). Soluble CD23 serves several functions like extending survival of B 

lymphocytes and the induction of differentiation and proliferation of several 

cell subtypes, including B-lymphocytes. Some studies have shown that the 

expression of CD23 is significantly higher in the prolymphocytoid large cells 

present in the proliferating centres than in the small lymphocytes, suggesting 

that the former are the main source of the soluble levels of this molecule 

detected in the serum (Lampert et al., 1999). 

CD27, a member of tumour necrosis factor receptor super family, together 

with its ligand CD70 plays a major role in regulating B-cell activation and 

immunoglobulin synthesis. All CLL cells are CD27+, which is typically a 

marker of the memory B-cells. Most normal memory B-cells have IGHV gene 

mutation, but a small fraction do not (Klein et al., 1998) (Tangye et al., 1998). 

The presence of CD27 on CLL cells as well as the presence of both IGHV 

mutated and unmutated CD27+ memory cells supports the idea that CLL cells 

evolve from memory B-cells. 

Recently it has been shown that CLL cells show specific changes in 

membrane protein expression during different stages of cell cycle (Bennett et 

al., 2007). Proliferating and resting fractions in CLL display differential 

patterns of surface markers. Expression of proteins CD39, CD86, CD95 and 

CD23 were uniformly increased during cell cycle. Except CD23, the other 

molecules were not thought to be associated with proliferation in CLL. The 

level of CD38 expression was generally increased in proliferating CLL cells 

compared with resting cells; although there was considerable inter-patient 

variation. In contrast, the CXC chemokine receptors, CXCR4 and CXCR5, as 

well as CD24 and CD69 were down-regulated during the cell cycle. CD24 

modulates B-cell activation responses by promoting antigen dependent 

proliferation of B-cells, and prevents their terminal differentiation into antibody-

forming cells. Its expression was only down-regulated when CLL cells entered 

S-phase. CXCR4 binds stromal cell-derived factor-1 (SDF-1) and these 

molecules are centrally involved in the chemo attraction of CLL cells to the 

stromal cells responsible for their survival (Burger, 2011). This study suggests 
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that resting CLL cells express high levels of CXCR4 and migrate to stromal 

cells that secrete SDF-1 but on contact, CXCR4 expression is decreased on 

the CLL cells as they enter into cell cycle.  

Another interesting group of molecules studied in CLL is cell surface adhesion 

molecules. Several markers including integrins, selectins, homing receptors, 

as well as the serum levels of some of these molecules has been studied 

(Lucio et al., 1998). Adhesion molecule expression is heterogeneous in CLL, 

with low LFA-1 (CD18/CD11a) and CD54 (ICAM-1) (Kimby et al., 1994) 

(Molica et al., 1995) (Inghirami et al., 1988), high L-selectin (CD62L) and 

CD44 (HCAM), and variable CD11c characterising CLL. Expression of 

CD11c/CD18, CD31, CD48 and CD58 are significantly lower in CLL cases 

with 11q23 deletions (Sembries et al., 1999). High levels of expression of 

CD11a, CD18, CD29, and CD11c on the surface of the leukaemic cells were 

found in cases with splenomegaly and LFA-1 is expressed in patients with 

predominant lymphadenopathy (Baldini and Cro, 1994). Serum levels of 

intercellular adhesion molecule 1 (CD54) are significantly elevated in CLL 

patients compared with healthy subjects. It correlates with tumour burden and 

hepatosplenomegaly in the advanced clinical stage of CLL (Lucio et al., 1998) 

(Christiansen et al., 1994) (Molica et al., 1997). Similarly, CLL cells invariably 

express one or more isoforms of the lymphocyte homing receptor CD44 and 

of the CD62L (L-selectin), which is different from that of related low grade B-

cell disorders and strong expression of these also correlate with poor 

prognosis in CLL (Horst et al., 1990a) (Horst et al., 1990b) (Jalkanen et al., 

1990). Strong expression of CD36, a thrombospondin receptor, correlates 

with diffuse pattern of bone marrow involvement and poor prognosis (Rutella 

et al., 1999). Compared to other NHLs, β-integrins are generally under-

expressed. CD49d is another molecule which is variably expressed in CLL 

and functionally acts as adhesion structure for extracellular matrix 

components or mediates cell-cell interactions through the binding with 

fibronectin or vascular cell adhesion molecule-1, and was shown to be an 

independent prognosticator for overall survival and time to first treatment 

(Gattei et al., 2008). 

Another important prognostic marker that could be detected either by 

immunohistochemistry, immunocytochemistry or flow cytometry is p53 protein 

expression. The wild-type p53 protein is normally undetectable by 

immunohistochemical analysis using anti-p53 monoclonal antibodies; 

however, the mutated p53 is detected by immunohistochemical methods as 

this protein has a prolonged half-life. This may be due to the fact that wild-



-33- 
 

type p53 protein is targeted to MDM-2–mediated ubiquitination and 

subsequent degradation (Piette et al., 1997). This abnormal p53 protein is 

expressed in both mutation at the chromosomal region or in hemizygous 

deletion of the region (Bártek et al., 1991) (Lepelley et al., 1994) (Chang et al., 

2010). At the genetic level, TP53 abnormalities are detected by 

fluorescence in situ hybridization (FISH) or direct gene sequencing and at 

protein level by immunohistochemistry, immunocytochemistry or flow 

cytometry (Carter et al., 2004) (Schlette et al., 2009) (Cordone et al., 1998). It 

has been shown that all these methods have the same significance in 

assessing the prognostic significance in CLL.  

Table 1.5 Antigens used in the diagnosis of CLL 

Antigen Cell function Presence in CLL and 

clinical implication 

Reference 

CD20 Acts as calcium channel and 

plays a role in B-cell 

activation, proliferation and 

differentiation. 

Dim  

Target for monoclonal 

antibody, rituximab, in 

treatment of CLL 

(Tedder and Engel, 

1994) 

CD19 Assembles with BCR 

complex to decrease the 

threshold for antigen receptor 

dependent stimulation 

Positive 

Preclinical data on 

monoclonal antibody 

against CD19 in CLL 

(XmAb5574) 

(Carter and Fearon, 

1986) (Awan et al., 

2010) 

CD5 Regulates intracellular signal 

strength induced by antigen 

receptors in both T- and B-

cells 

Positive  (Raman, 2002) 

CD79b Signal transmitting unit of 

BCR complex 

Weak or negative 

Preclinical data on 

antibody drug conjugate 

(anti-79b-vc-MMAE) 

(Cassard et al., 1996) 

(Dornan et al., 2009) 

CD43 Implicated in the regulation of 

cell adhesion, activation and 

survival 

Positive (Park et al., 1991) 

(De Smet et al., 1993) 

(Bazil et al., 1995) 

CD81 CD19/CD21/CD81 complex Weak (Matsumoto et al., 
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enables B lymphocytes to 

respond to low concentration 

of antigens and induces 

homotypic cellular 

aggregation 

1993) 

CD52 In presence of antibody, it is 

a good target for complement 

action and activates cell 

proliferation in T-cells, but 

function in the absence of 

antibody is unknown 

Positive  

Target for monoclonal 

antibody, Alemtuzumab, 

in treatment of CLL 

(Valentin et al., 1992) 

CD200 Interaction with its receptor 

CD200R sends inhibitory 

signal to macrophages. In T-

cells it alters the cytokine 

profile from Th1 to Th2 and it 

suppresses the antitumor 

immunity 

Positive  

Preclinical data on 

CD200 blocking 

antibodies enhancing 

the tumour specific 

immunity 

(Kretz-Rommel et al., 

2008) (Kretz-Rommel 

et al., 2007) (Hoek et 

al., 2000) (Gorczynski 

et al., 1999) 

CD23 Acts as a low affinity receptor 

for IgE 

Positive 

Phase 1/2 clinical data 

on anti-CD23 

(Lumiliximab) antibody 

in combination with 

chemotherapy 

(Yodoi and Ishizaka, 

1979) (J. C. Byrd et 

al., 2006) 

CD22 Acts as B-cell associated 

adhesion protein and 

regulates B-cell activation 

Negative or positive 

Phase 1/2 clinical data 

on anti-CD22 

(Epratuzumab) antibody 

treatment  

(Pezzutto et al., 1987) 

(Pezzutto et al., 1988) 

(Stamenkovic and 

Seed, 1990) (Torres 

et al., 1992) (Leonard 

et al., 2003) 

CD25 Part of IL2 receptor  Variable  

Phase 2 clinical data on 

antibody conjugated 

with diphtheria toxin 

(denileukin diftitox) 

(Leonard et al., 1982) 

(Frankel et al., 2006) 
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CD10 Metalloendopeptidase that 

cleaves small peptides like 

angiotensins, bradykinin, 

enkephalins and oxytoxin. It 

also controls neutrophil 

chemotaxis and inflammation. 

Negative (Gafford et al., 1983) 

(Schwartz et al., 

1981) (Johnson et al., 

1985) (Johnson and 

others, 1984) 

(Connelly et al., 1985)  

CD38 Serves as an ectoenzyme 

that catalysis the synthesis 

and hydrolysis of cyclic ADP-

ribose which is a calcium 

mobilising agent. This helps 

in transmembrane signalling 

thereby affecting 

differentiation and 

proliferation of various 

immunoregulatory cells. 

Positive or negative 

Prognostic marker in 

CLL 

(Lee and Aarhus, 

1991) (Lee et al., 

1994) (Mehta et al., 

1996) 

CD103 Presence on T regulatory 

cells helps these cells to 

adhere to epithelial cells on 

which its ligand, E-cadherin, 

is present. 

Negative (Belkaid et al., 2005) 

(Agace et al., 2000) 

CD11c CD11c/Cd18 complex is a β2 

integrin expressed in 

granulocytes, monocytes NK 

cells and dendritic cells. 

Helps in cell adhesion and B-

cell activation. 

Variable (Postigo et al., 1991) 

(Larson and Springer, 

1990) 

FMC7 An epitope on CD20 

molecule whose expression 

is sensitive to the level of 

membrane cholesterol 

Negative or weak (Polyak et al., 2003) 

CD79a Signal transmitting unit of 

BCR complex 

Positive (Campbell and 

Cambier, 1990) (Pao 

et al., 1998) 
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1.2 B-cell receptor complex 

The B-cell receptor (BCR) is the key regulator of normal B-cell survival and 

function and CLL is no exception. The interest in BCR in CLL emerged in late 

90’s following the discovery of two clinically distinct subsets of CLL, based 

solely on the level of somatic mutation in the Ig variable region genes. In CLL 

cells, surface Ig is always present, usually as both IgM and IgD with a 

predominant IgD expression, although a minor subset of CLL expresses IgG 

or IgA.  The BCR of all B-cells consists of sIg non-covalently associated with a 

CD79a (Igα)/CD79b (Igβ) forming a multimer (Tolar et al., 2009). This 

mutimeric form is important in signal transduction in B-cells. Antigen-

dependent effects on B-cells are influenced by various factors; strength and 

duration of interaction, nature and molecular form of the antigen and its 

intrinsic affinity, the maturational state of the B-cell and environmental factors 

provided by stromal cells or T-cells (Packham and Stevenson, 2010). To 

produce a good signal antigen should be macromolecular or membrane-

bound. When these forms of antigen come into contact with B-cells it leads to 

the formation of BCR microclusters. This induces the spreading of the B-cell 

membrane over the antigen contact area with formation of additional 

microclusters (Treanor et al., 2009). CD19 is recruited to this complex which 

then provides a scaffold for key signal transduction molecules (Depoil et al., 

2007). An immune synapse is formed which undergoes internalisation as a 

prelude to antigen presentation to CD4+ T-cells. 

Triggering of the B-cell by antigen will stimulate an intracellular signalling, 

which leads to proliferation, apoptosis, endocytosis or anergy. There is now 

convincing evidence to suggest that CLL cells also engage with antigen in 

vivo. The evidence is provided by the expression of markers of activation 

(Damle et al., 2002) and the fact that partially or completely anergised sIgM 

responses from mutated and unmutated subsets can recover both sIgM 

expression and signal capacity spontaneously in vitro (Mockridge et al., 

2007). This reversal of down-regulation, which could happen to variable 

extents in vivo, is a strong indicator of an on-going interaction with antigen. 

Several candidate antigens have been proposed including bacterial antigens 

and autoantigens. In vivo this antigen exposure occurred in tissue 

compartment (BM, lymph nodes, and spleen), where antigen is present 

together with microenvironmental support. Following the antigen exposure, 

that is presumably presented to the CLL cells by components of the 

microenvironment and is recognised by the BCR on the surface of the CLL 
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cell, they receive a proliferative stimulus. This is a two-way interaction 

whereby CLL cells in reverse recruit the cells of the microenvironment 

including macrophages, follicular dendritic cells, T-cells and nurse-like cells. 

This will form proliferation centres which are readily visible by light microscopy 

(Audrito et al., 2013a) (Figure 1.4).  

 

 

Figure 1.4 Proliferation centre 

Lymph node from a CLL patient processed in formalin and stained with hematoxylin 

and eosin. A) Low power view of the pseudofollicles or proliferation centers in lymph 

node biopsy which appears as ill defined paler staining areas (magnification 40X). B) 

High power view of the pseudofollicles in lymph nodes (magnification 200X).  

B 

A 
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In these proliferative areas, which significantly express the proliferation 

marker Ki-67 the CLL cells cross-talk with the cells of the microenvironment. 

Antigen exposure to the BCR along with several other co-stimulatory 

molecules such as CD40/CD40L, CD38/CD31, CXCR5/CXCL13 (BCA-1), 

CXCR4/stromal cell-derived factor-1 (SDF-1), and possibly other molecules, 

plays a key role here (Hillmen, 2011) (Burger, 2011). This will lead to 

downstream signalling in the CLL cell and a proliferative burst. The cell then 

migrates from the proliferating centres back to the peripheral blood, where the 

cell stops dividing. The CLL cell then either undergoes apoptosis or surviving 

cells will resynthesise sIg and possibly re-enter the tissue sites for a second 

round of exposure (Hillmen, 2011). This potentially imposes a problem in 

studying the BCR signalling in CLL, as the readily available tissue is 

peripheral blood where the cells has already engaged sIg in vivo and it 

represent only a part of the ‘life cycle’ of CLL cells. The blood contains a 

spectrum of these antigen engaged cells having left the tissue compartments 

at various times, contributing to heterogeneity within the malignant clone. This 

sequence of events is supported by the proliferative and activation markers in 

proliferation centres. 

There is some difference between the mutated and unmutated subsets' ability 

to signal in vitro via engagement of sIgM which is higher in unmutated CLL 

than in mutated CLL (Packham and Stevenson, 2010) (Mockridge et al., 

2007) (Lanham et al., 2003) (Guarini et al., 2008) which also correlate with 

other prognostic markers including ZAP70 and CD38, and with clinical 

outcome (Chen et al., 2002) (Zupo et al., 1996) (Deglesne et al., 2006). 

1.2.1. BCR signalling pathways 

In normal B-cells, when the immunoglobulin molecule is ligated, signalling is 

triggered by phosphorylation of the cytoplasmic immunoreceptor tyrosine-

based activation motifs (ITAMs) of CD79a and CD79b (Packham and 

Stevenson, 2010) (Niiro and Clark, 2002) (Dal Porto et al., 2004). This 

phosphorylation is predominantly catalysed by the Src family kinase Lyn and 

spleen tyrosine kinase (SYK) (Kulathu et al., 2008) (Geahlen, 2009). This 

phosphorylation and activation is a critical event in BCR signalling (Jiang et 

al., 1998) (Takata et al., 1994) leading to the formation of a plasma 

membrane-associated signalling complex (signalosome) which includes many 

kinases and adaptor proteins, including the kinases SYK, Bruton tyrosine 

kinase (BTK), and Lyn, the guanine exchange factor Vav proteins, and the 

adaptor proteins Grb2 and B-cell linker (BLNK) which mediate activation of 
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downstream signalling pathways (Woyach et al., 2012). This activation is 

amplified by several protein kinases. SYK phosphorylates both CD79a/CD79b 

and Lyn provides amplification of the signal through recruitment of other 

protein tyrosine kinases together with formation of a complex with 

costimulatory molecules including CD19  that reduce the threshold of B-cell 

activation (Yamamoto et al., 1993) (Rolli et al., 2002) (Fearon et al., 2000). 

This results in BCR aggregation and formation of a microcluster or lipid raft on 

the plasma membrane (Cheng et al., 1999). Signal propagation from the BCR 

occurs via multiple pathways, predominantly through phospholipase C-γ2 

(PLC-γ2) and phosphatidalyinositol-3-kinase (PI3K). After initial 

phosphorylation of ITAMs by SYK and Lyn, BLNK is phosphorylated by SYK 

when it is recruited to the non-ITAM tyrosines of CD79a, where it binds via its 

Src homology2 (SH2) domain (Engels et al., 2001) (Kabak et al., 2002). BTK 

then binds to this complex and together BTK and SYK activate PLC-γ2 by 

dual phosphorylation. Activation of PLC-γ2 produces the second messengers 

diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3) from the plasma 

membrane lipid phosphatidylinositol 4,5-bisphophate (PIP2) (Dal Porto et al., 

2004).  DAG activates protein kinase C, and IP3 releases calcium from the 

endoplasmic reticulum and the extracellular compartment (Roos et al., 2005) 

Calcium release directly activates a number of transcription factors, including 

NF-κB, Jun, and nuclear factor of activated T-cells (NFAT). NFAT proteins are 

indirectly activated by calcium through the calcium dependent activation of the 

phosphatase calcineurin. Dephosphorylated NFAT proteins are translocated 

to the nucleus and subsequently regulate cytokine production and other 

effectors of the immune response (Rao et al., 1997). NF-κB plays a broad role 

in B lymphocyte proliferation and class switching and also mature B-cell 

survival (Ruland and Mak, 2003) (Stadanlick et al., 2008). The canonical NF-

κB pathway is also an important survival effector in BCR signalling. NF-κB 

exists in inactive form in the cytoplasm as dimers consisting of p50, p52, 

p65/RelA, RelB, or c-Rel with the most usual dimers being the p50/p65 

heterodimer and the p50/p50 homodimer (Ghosh et al., 1998). In the inactive 

form it is also bound to I-κB. On stimulation via BTK, PI3K or Akt the I-κB 

kinase complex causes phosphorylation and subsequent proteasomal 

degradation of I-κB. This results in nuclear translocation of NF-κB and gene 

transcription. NF-κB activates a wide variety of genes responsible for 

inflammation, proliferation and B-cell survival (Ghosh et al., 1998) (Stadanlick 

et al., 2008).  
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Increased intracellular calcium (iCa2+) along with PKC and direct activation by 

Vav and Grb2 activates mitogen-activated protein kinase (MAPK)-family 

kinases, including extracellular regulated kinase (ERK), c-JUN NH2-terminal 

kinase (JNK) and p38 MAPK. The MAPK pathway regulates a number of 

transcription factors, including Elk1 and c-Myc through Erk, c-Jun and ATF2 

through JNK, and ATF2 and Max through p38 MAPK (Stadanlick et al., 2008) 

(Vigorito et al., 2005) (Johnson and Lapadat, 2002).  

Initial phosphorylation and complex formation also activates the PI3K 

pathway. PI3K has two subunits, the p85 subunit, which is a regulatory 

component and p110 subunit, which is a catalytic subunit. At rest they remain 

in close association but on activation of the BCR complex, the p85 subunit is 

recruited to the plasma membrane where it complexes with the Src kinases 

Lyn and Fyn (Woyach et al., 2012) (Pleiman et al., 1994). p85 also binds to 

CD19, and this complex activates the p110 subunit, which then 

phosphorylates PIP2 to phosphatidylinositol 3,4,5-triphosphate (PIP3). PIP3 

recruits a number of BCR signalling molecules with a pleckstrin homology 

domain to the plasma membrane, like the serine/threonine kinase AKT, BTK 

and other kinases. Active AKT is important for BCR-induced survival and 

proliferation pathways. It inactivates the pro-apoptotic BCL2 family protein, 

BAD, and forkhead family transcription factor FOX03a. It enhances activation 

of NF-κB through phosphorylation and inhibition of glycogen synthase kinase 

3 which is also a negative regulator of MYC and D-type cyclins (Downward, 

2004).  

BTK is a member of the tyrosine protein kinase (Tec) family of kinases and 

also has a critical role in the amplification of the BCR signal. This is 

exemplified by profound BCR signalling defects in X-linked 

agammaglobulinemia (XLA) (also known as Bruton’s Agammaglobulinemia or 

Congenital Agammaglobulinemia) and its mouse counterpart X-linked 

immunodeficiency (XID). In these conditions, there is a failure in B-cell 

development at the pre-B to immature B-cell stage and subsequent defective 

B-cell signalling and reduced immunoglobulin production, all leading to 

profound humoral immune deficiency (Tsukada et al., 1993) (Vetrie et al., 

1993). The major molecular defect is a mutation in the pleckstrin homology 

domain of BTK which prevents effective membrane recruitment by PIP3. This 

will cause defect in calcium flux associated with BCR signalling and thereby 

the downstream signalling (Roos et al., 2005). 
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BTK is mainly involved in the initial phosphorylation events and deficiency 

produces defects in early BCR phosphorylation, whereas increasing 

intracellular calcium can restore downstream effects of BCR signalling (Khan 

et al., 1995). SYK and Lyn phosphorylate BTK at the Y551 site of the kinase 

domain. This step is usually followed by amplification through auto 

phosphorylation of the Y223 site in the SH3 domain (Park et al., 1996). In 

addition, BTK recruits phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) 

which are responsible for synthesis of PIP2, and after phosphorylation by 

PI3K to PIP3 results in continued recruitment of BTK. BTK also activate IκB 

kinase, which phosphorylates the NF-κB inhibitor I-κBα, allowing NF-κB to 

translocate to the nucleus (Saito et al., 2003). 

The activation of positive BCR signalling pathways is tightly regulated by 

inhibitory signals to prevent the unrestrained activation that can result in 

development of autoimmune conditions and malignancies (Woyach et al., 

2012). This is mainly mediated by inhibitory regulators, such as CD22 or 

FcγRIIb (CD32) and various phosphatases, including SH2 domain-containing 

tyrosine phosphatase-1 (SHP-1) and SH2 domain-containing phosphatidyl 5-

phosphatase (SHIP) -1 and -2 and kinases with differential activation and 

inhibitory properties, like Lyn. CD32 when co-clustered with BCR induces a 

negative signal by recruiting SHIP to the plasma membrane which eliminates 

the membrane binding of PLC-γ2, BTK, and Akt by hydrolysing PIP3 (Ono et 

al., 1996). SHP-1 can associate with ITIM-containing molecules, and activated 

SHP-1 dephosphorylate various substrates (Scharenberg et al., 1998) (Carver 

et al., 2000) (Bolland et al., 1998). Coligation of the BCR and CD32 results in 

the reversal of SHP-1 autoinhibition, SHP-1 is also associated with the BCR 

at rest, which gets disrupted by BCR stimulation, suggesting that SHP-1 is 

involved in preventing signal transduction in resting B-cells (Pani et al., 1995). 

These phosphatases are activated downstream of Lyn, and therefore Lyn 

plays both positive and negative roles in signal transduction via the BCR. It 

has been shown that Lyn knockout mice demonstrate BCR hyper-

responsiveness and develop lethal autoimmune glomerulonephritis (Hibbs et 

al., 1995) (Nishizumi et al., 1995).This is due to the fact that Lyn is required 

for phosphorylation of both SHIP  and FcγRIIb  making it a crucial kinase in 

the regulation of the BCR (Hibbs et al., 2002) (Nishizumi et al., 1998). 

1.2.2. BCR signalling in CLL 

Similar to normal B-cells, activation of sIgM on CLL cells by cross-linking 

antibodies triggers a range of signalling pathways. Signalling responses are 
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more prominent in patients with unmutated IGHV genes, ZAP70 positive and 

CD38 positive than those without these poor prognostic markers (Chen et al., 

2002) (Chen et al., 2008). In CLL also, like normal B-cells, the signalling 

response stimulates Ca2+ mobilisation and the phosphorylation and activation 

of various phosphoproteins including SYK, PLCγ2, ERK, NF-κB and AKT. 

Some of these kinase molecules could be constitutively phosphorylated. Lyn 

and SYK are upregulated (Woyach et al., 2012), Lyn at the protein level but 

not at the transcriptional level, but SYK in both mRNA and protein level 

(Contri et al., 2005).  In vitro experiments has shown that both SYK inhibitor 

R406 and Lyn inhibitors PP2 and SU6656 abrogate CLL cell survival after IgM 

stimulation and reduce downstream targets of BCR signalling in terms of 

phosphorylation activity. Abnormal activation of the Akt/PI3K pathway has 

also been demonstrated in CLL. Some of the phosphorylation sites of Akt and 

PI3K are constitutively phosphorylated and inhibitors of PI3K activity have 

been demonstrated to be pro-apoptotic in CLL cells in vitro and in vivo. BTK is 

also up-regulated in CLL compared to normal B-cells and inhibition of BTK 

has shown good in vitro as well as in vivo activity in treating CLL (Contri et al., 

2005) ZAP70  enhances BCR signalling by acting as an adapter molecule 

which is independent of its kinase activity. ZAP70 mediated signals can also 

enhance migration toward chemokines and response to survival stimuli from 

the microenvironment. Tissue-based comparison by microarray has 

demonstrated enhanced up-regulation of NF-κB target genes and other genes 

associated with BCR activation in bone marrow and lymph nodes compared 

with peripheral blood especially in ZAP70 positive/U-CLL (Herishanu et al., 

2011). Immunohistochemistry has also shown that in proliferation centres 

there is higher expression of phosphorylated IκBα, and active NF-κB and 

NFATc1 (Packham and Stevenson, 2010) (Rodríguez et al., 2004) (Herreros 

et al., 2010). Higher levels of nuclear NF-κB are seen also as exaggerated 

responses to stimulation with CD40L, which also help prolonged cell survival. 

However the current evidence suggests that a role for alternate signalling 

pathways in activation of these molecules cannot be excluded. Even in 

responsive samples there is a limited degradation of IκBα and very infrequent 

activation of JNK (Petlickovski et al., 2005).  

Anti-apoptotic proteins Erk1/Erk2, which belongs to the MAPK pathway, are 

dysregulated in CLL. In samples which lack of signal response there could be 

a constitutive activation of Erk and NFAT, which could be similar to anergic B-

cells suggesting constant antigen engagement. But those CLL samples which 

are not constitutively phosphorylated have shown inducible phosphorylation 
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and cell survival in the presence of phorbol ester (Muzio et al., 2008) 

(Barragán et al., 2002). Expression of the transcription factor Myc is also 

dependent on Erk1/2 activation after BCR stimulation, suggesting the 

importance of this pathway in  CLL survival and proliferation (Krysov et al., 

2012). 

It is logical to infer that the signalling of sIgM in CLL will trigger an anti-

apoptotic pathway in the cell, but actual in vitro experiments have shown 

conflicting data on the outcome of sIgM signalling. It was shown that if the 

stimulatory antibody is in solid phase as in whole goat anti-IgM bound to 

Dynabeads it will increase cell survival and suppress fludarabine-induced 

apoptosis. In contrast soluble intact anti-IgM promoted apoptosis in 

responsive samples (Petlickovski et al., 2005). But other groups have shown 

that soluble antibody especially if it is F(ab)2 portion of the antibody, it will 

induce prosurvival signals. So several variables including cell density, 

antibody specificity (monoclonal versus polyclonal), antibody affinity/avidity 

might all influence responses to anti-IgM treatment (Bernal et al., 2001a) 

(Zupo et al., 2000) (Deglesne et al., 2006). 

In CLL sIgM signalling will produce increased expression of the BCL2-related 

survival protein MCL1, which has been linked to chemo resistance and the 

presence of poor prognostic markers (Kitada et al., 1998) (Hewamana et al., 

2009). This has also been evidenced by the fact that down-modulation of 

MCL1 by siRNA induces apoptosis of CLL cells (Longo et al., 2008). This 

MCL1 induction is linked to the PI3K/AKT pathway as overexpression of 

constitutively phosphorylated AKT is sufficient to induce MCL1 expression. 

Inhibition of PI3K pharmacologically also prevents induction of MCL1 and 

promotes apoptosis (Petlickovski et al., 2005) (Bernal et al., 2001a). In 

contrast to MCL1, BIM, a proapoptotic BCL2 family member is downregulated 

by proteasomal degradation after phosphorylation (Ewings et al., 2007).  

In vivo experiments with heavy water have shown that CLL cells proliferate in 

the body at a rate of 1-2% (Messmer et al., 2005). But in vitro experiments 

designed to replicate this have not been very successful. However, there are 

few studies demonstrating the expression of ki-67 when stimulated by 

antibody to IgM (Guarini et al., 2008) (Nédellec et al., 2005).  

Another important event that usually happens in normal B-cells after BCR 

activation is cell migration and tissue homing. This aspect of B-cell biology is 

vital during the clonal expansion that follows antigen exposure in the 

microenvironment. CLL cells also show similar properties following sIgM 
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activation of CLL. Cell migration and expression of markers, which are 

involved in cell adhesion and migration, vary with the type of activating 

antibodies used in the experiments. So there are conflicting data in literature 

regarding the expression of these adhesion molecules following activation as 

some of the experiments have demonstrated that BCR activation increased 

expression of CD40, CD54 and CD62L, but decreased expression of CXCR4 

even though there was increased migration towards the chemokines SDF-1 

and CXCL13 and increased pseudoemperipolesis (the migration of cells 

beneath mesenchymal stem cells) (Quiroga et al., 2009a) but other 

experiments have shown that anti-IgM decreased expression of both CXCR4 

and CD62L and reduced migration towards CXCL12 and adhesion to 

lymphatic endothelial cells (Vlad et al., 2009). 

1.2.3. The role of sIgD 

CLL cells co express sIgM and sIgD, which share identical antigen-binding 

specificities even though the level of expression is variable in IgM. IgD is 

strongly expressed when assessed by flow cytometry.  The downstream 

activation of BCR signalling pathways is variable following the stimulation of 

sIgM but the response to sIgD activation with increased SYK phosphorylation 

and rapid increases in iCa2+ will happen in almost all samples (Mockridge et 

al., 2007) (Lanham et al., 2003). It is unclear why differences in sIgM 

responses correlate with prognostic markers and clinical outcome, while the 

capacity to signal via sIgD does not appear to impact on the clinical behaviour 

of CLL. However, there are data suggesting that sIgD signalling is capable of 

initiating early responses but it does not effectively couple to survival and 

proliferation promoting pathways (Packham and Stevenson, 2010).  

The variability in responsiveness of CLL cells to signalling via sIgM is 

dependent on various factors. In mutated CLL, down-modulation of sIgM 

appears to play a major role, whereas sIgM expression may not be as 

important in unmutated CLL (Mockridge et al., 2007). But even in M-CLL there 

is a significant variation in signalling capacity, even with similar expression 

levels. This clearly suggests that there are additional factors involved rather 

than just the expression of sIgM. Indirect evidence showing that the 

expression of some molecules like Lyn, CD38, SHIP-1, and p66SHC correlate 

with signalling may suggest a role for these molecules, and potentially other 

prognostic markers, in the response (Lanham et al., 2003) (Zupo et al., 1996) 

(Contri et al., 2005) (Capitani et al., 2010) (Gabelloni et al., 2008). 
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More direct evidence for molecules like CD79b, ZAP70, TCL1 and PKCβII, 

may be provided by expression profiling and pharmacological inhibition. In 

CLL CD79b, which is an adapter molecule in the BCR complex, is expressed 

as a truncated form compared to the molecule expressed in normal B-cells. 

This truncated form lacks the extracellular Ig-like domain and is generated by 

alternative splicing (Alfarano et al., 1999) (Cragg et al., 2002). The truncated 

form is highly expressed in CLL cells that are non-responsive to signalling via 

sIgM (Nédellec et al., 2005). Expression of wild-type CD79b into a CLL cell 

line that expressed truncated CD79b increased sIgM expression (Minuzzo et 

al., 2005). 

ZAP70 is another important molecule in this context. It is a SYK-family protein 

tyrosine kinase that plays a key role in signalling via the T-cell receptor (Chu 

et al., 1998). A proportion of CLL patients have ZAP70 expression, which is to 

certain extent associated with unmutated IGHV and poor prognosis. Therefore 

it is thought to be a positive regulator of BCR signalling. Over-expression of 

ZAP70 increases prolonged activation of downstream signalling pathways 

including iCa2+ mobilisation and phosphorylation/activation of SYK, BLNK and 

PLCγ2. Over-expressed ZAP70 enhances sIgM signalling, independently of 

its kinase activity (Chen et al., 2008). Based on these findings, ZAP70 plays a 

role as a facilitator in sIgM-mediated signalling in CLL cells, rather than simply 

acting as a direct functional homologue of SYK. Increased ZAP70 expression 

also correlates with enhanced migratory and survival responses (Richardson 

et al., 2006) suggesting that its roles in CLL may extend beyond modulation of 

BCR signalling. 

The kinase PKCβII plays positive and negative regulator function in BCR 

signalling (Venkataraman et al., 2006) (Kang et al., 2001). It is over-

expressed in CLL cells and its activity inversely correlates with sIgM signalling 

responses suggesting a negative regulatory role (Abrams et al., 2007). 

Inhibition by pharmacological agents enhances sIgM-induced iCa2+ 

mobilisation in CLL cells consistent with its known function in deactivating 

BTK. 

Thus, a variety of factors influence positive and negative regulation of 

signalling from the BCR complex. The lack of signalling in non-responsive 

CLL samples is consistently associated with a failure to trigger some of the 

earliest events in the BCR signalling cascade, including phosphorylation of 

SYK (Lanham et al., 2003) and CD79a (Allsup et al., 2005), pointing to a key 

role for modulation at the level of sIgM itself, rather than of downstream 



-46- 
 

signalling. Additional downstream molecules like TCL1 and PKCβII may 

modify signalling responses, but these are not critical for CLL. 

1.3 Microenvironment 

The concept of ‘microenvironment’, where the CLL cells interact with various 

other cells is one of the new key concepts in CLL biology. CLL cells in the 

bone marrow and secondary lymphatic tissues engage in complex cellular 

and molecular interactions with stromal cells and matrix. By these interactions 

several pathways that are involved in the CLL cell survival and proliferation 

are activated (Audrito et al., 2013a). This has been shown by gene expression 

arrays and in vitro assays. The key example of this transformation is the 

proliferation centre, a focal aggregate of pro-lymphocytes and para-

immunoblasts that cluster in pseudofollicular structures (Soma et al., 2006) 

(Ponzoni et al., 2011). These nodular areas without mantles are seen in lymph 

nodes and bone marrow and represent the histopathological hallmark of CLL. 

Active proliferation in pseudofollicles are demonstrated by aggregates of Ki-

67+ proliferating tumour cells which express CD5, but differ from reactive 

germinal centre B-cells by being CD10-, BCL6-, and BCL2+ (Ciccone et al., 

2012). New blood vessels are also found in the area sprouting in response to 

the production of vascular endothelial growth factor (VEGF) by actively 

proliferating malignant B-cells (Pileri et al., 2000) (Chen et al., 2000) (Molica 

et al., 2002). The cells that have been shown to be involved in the 

microenvironment include mesenchymal stromal cells (MSCs), monocyte-

derived nurse-like cells (NLCs), and T-cells (Figure 1.5). Bone marrow stromal 

cells (BMSCs), which are key players in normal haematopoiesis, were found 

to be the first stromal cells to support CLL cell growth. Much of this data is 

derived from co-culturing CLL cells with these stromal cells in vitro. Co-

culturing results in migration of CLL cells underneath the BMSCs which 

induces a cobblestone-like appearance that depends upon CXCR4 and VLA-4 

expression by leukaemia cells (Burger, 2011) (Burger et al., 1999). This 

process is called pseudoemperipolesis. Recently it was shown that this 

support by stromal cells is species independent as murine stromal cells, in 

addition to human stromal cells, were found to support the anti-apoptotic 

effect on CLL cells. The cross-talk between CLL and MSCs is bi-directional, 

causing activation of both CLL cells and MSCs, and the CXCR4 (CD184, 

Fusin, HM89, LCR1, LESTR-CXCL12 axis plays a crucial role in this 

interaction (Ding et al., 2009). CLL cells have a high affinity for BMSCs.  

Similar to bone marrow mesenchymal cells, actin (αSMA+) positive 
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mesenchymal stromal cells and follicular dendritic cells (FDCs) support the 

CLL cells in other tissues such as the secondary lymphatic tissues. Follicular 

dendritic cells are closely associated with CLL cells in the early phase of 

lymph node involvement. Furthermore, in vitro culture with FDC prevents 

leukemic cells from early apoptosis by direct cell contact, dependent on 

ligation of CD44 and on up-regulation of MCL1, and the crosstalk between 

CD100 and plexinB1 (Pedersen et al., 2002). The homing of CLL cells to the 

microenvironment niche is a complex process involving various steps. The 

first step involves a motility programme that is a response to the binding of 

chemokines to the receptors on CLL cells which reorganises the cytoskeleton. 

Then the CLL cells adhere to the endothelial cells and negotiate a passage 

through the endothelial layer, mainly mediated by integrins and their ligands. 

This is followed by a phase in which several matrix metalloproteases (MMPs) 

are secreted that allow lymphocytes to move within tissues and to reach their 

final destination (Ley et al., 2007). 

CXCR4 is expressed at high levels on the surface of CLL cells circulating in 

peripheral blood and mediates many homing activities including chemotaxis, 

migration across vascular endothelium, actin polymerisation and 

pseudoemperipolesis (Burger et al., 1999). CXCR4 surface expression is 

down-regulated by its ligand CXCL12 (stromal cell-derived factor-1/SDF-1) via 

receptor endocytosis and by BCR triggering. Therefore, the level of CXCR4 

expression is characteristically different in CLL cells in circulation and those in 

tissues. In tissues, proliferating CLL cells which are Ki-67+ shows significantly 

lower levels of CXCR4 and CXCR5 than do non-proliferating CLL cells 

(Bennett et al., 2007). This is also demonstrated by in vivo studies with 

deuterium labelling of CLL cells showing lower CXCR4 surface levels in cells 

with increased deuterium incorporation (Calissano et al., 2009). BCR 

signalling down-modulates CXCR4 and this enhances chemotaxis toward 

CXCL12 and CXCL13 (Vlad et al., 2009) (Quiroga et al., 2009a). This 

relationship with the BCR signalling has been corroborated by the fact that 

ZAP70+ CLL cells display increased chemotaxis and survival in response to 

CXCL12 compared with ZAP70- CLL cells, as ZAP70 expression is 

associated with a higher responsiveness to BCR stimulation (Richardson et 

al., 2006) (Chen et al., 2002). Similarly, CD38+ CLL cells also show increased 

levels of chemotaxis (Deaglio et al., 2005). CD38 blocking using anti-CD38 

mAb inhibits chemotaxis.  CXCR4 can be specifically blocked by CXCR4 

antagonists (Burger and Peled, 2009)  such as plerixafor, which 
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Figure 1.5 Interactions of CLL cells with T-cells, stromal cells, nurse like 

cells  and  follicular dentritic cells in proliferation centres.  

CLL cells produce CCL22, CCL3 and CCL4 which is a chemoattractant to CD4+CD40L+ 

T-cells. Interaction between CD40 and CD40L along with IL4 may produce more CCL22  

CCL3 and CCL4.  Stromal cells and nurse like cells attract CLL cells by chemokines 

like CXCL12 expressed on their surface interacting with receptors like CXCR4 and 

CXCR5 expressed on CLL cell surface.  Follicular dentritic cells induce upregulation of 

the anti-apoptotic BCL-2 family protein MCL-1 

inhibits CLL cell activation by CXCL12 and reverses, to certain extent, stromal 

cell–mediated drug resistance (Vaisitti et al., 2010) (Burger et al., 2005). 

Pertussis toxin can stimulate CXCR4 signalling in CLL cells and induces 

downstream signalling like calcium mobilisation, activation of PI3Ks and 

p44/42 MAPKs and serine phosphorylation of STAT3 (Burger et al., 2000) 

(Burger et al., 2005). These signalling cascades can also be inhibited by PI3K 

inhibitors, SYK inhibitors, and BTK inhibitors leading to impaired migration of 

normal B-cells and CLL cells (Niedermeier et al., 2009) (Quiroga et al., 2009a) 

(de Gorter et al., 2007). 

Another key player in the microenvironment is nurse like cells (NLCs) which 

are derived by differentiation from monocytes into large, round, adherent cells 

in vitro. When mononuclear cells from the blood of CLL patients are cultured 
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in vitro without stromal cells, an adherent cell population to which CLL 

lymphocytes are attached are consistently found. This population actively 

protects leukaemic cells from spontaneous apoptosis in vitro (Burger et al., 

2000). They are similar to thymic nurse cells that nurture developing 

thymocytes and CD68+ myeloid cells and are predominantly found in the 

spleen and secondary lymphoid tissue. Similar to mesenchymal cells they 

protect CLL cells from undergoing spontaneous or drug-induced cell death in 

a contact dependent fashion (Burger et al., 2009a) (Burger et al., 2000). The 

gene expression profiling of the CLL cells after NLC co-culture is similar to 

CLL cells isolated from secondary lymphatic tissues (Burger et al., 2009b) 

(Herishanu et al., 2011). The predominant pathways activated are BCR and 

NF-κB pathways. The recruitment of NLC can be activated by CLL cells 

through the secretion of CCL3 and CCL4, which in turn, is triggered in 

response to signals mediated by the BCR and by CD38 (Burger et al., 2009b) 

(Zucchetto et al., 2009). There is an increase in the expression of reciprocal 

cross-talk molecules CXCL12 and CXCL13 in NLC and CXCL12 in BMSC 

which has been demonstrated at mRNA and protein level both in vitro and in 

vivo. There is an increased expression of chemokine receptors CXCR3, 

CXCR4, CXCR5 and CCR7 which help CLL cells to home into the lymphatic 

tissue. These G protein-coupled chemokine receptors help NLCs and BMSCs 

attract CLL cells expressing high levels of CXCR5 and stimulation with 

CXCL13 induces activation via G proteins, PI3Ks and p44/42 MAPK resulting 

in actin polymerisation, CXCR5 endocytosis, and chemotaxis. Normally in 

lymph node follicles CXCR5 (CD185), which is the receptor for the chemokine 

CXCL13, regulates lymphocyte homing and positioning (Bürkle et al., 2007). 

CXCR5 knock-out mice show defects in formation of primary follicles and 

germinal centres in the spleen and payer patches, and lack inguinal lymph 

nodes. 

Other important molecules helping in cell-to-cell adhesion are integrins, 

particularly VLA-4 integrins (CD49d), expressed on the surface of CLL cells 

interacting with ligands on the stromal cells (VCAM-1 and fibronectin) (Burger, 

2011).  Integrins are heterodimeric glycoproteins consisting of various α and β 

subunits that mediate the attachment between a cell and the tissues that 

surround it, such as other cells or the extracellular matrix (ECM). Studies 

using fluorescence-activated cell sorting (FACS) and immunoprecipitation, 

showed that heterodimer expression of CLL patients consists of β1 

expression, with a variable α chain (α1-α6). Functionally the CLL cells can 

bind to unstimulated endothelial cells at a lower level using β2/intercellular 
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adhesion molecule (ICAM), but this interaction is markedly enhanced when 

the endothelium was stimulated. CLL cells expressing α4β1 adhere strongly 

to stimulated endothelium via the α4β1 ligand, vascular cellular adhesion 

molecule-1 (VCAM-1) (Zucchetto et al., 2012). CLL cells showed variable 

adhesion to fibronectin, which is important in cell migration. Activated CLL 

lymphocyte populations showed an increased capacity to adhere to both 

endothelium and matrix. Ex vivo CLL cells after cytokine stimulation showed a 

capacity to migrate through endothelium/stroma, which they were unable to 

do before stimulation.  The α4β1 integrin VLA-4 (CD49d) plays a particularly 

important role in interactions between normal and malignant hematopoietic 

cells and the BM microenvironment. VLA-4 integrins interact with CXCR4 in 

CLL cell adhesion to BMSCs (Burger et al., 1999). VLA-4 expression on CLL 

cells also has prognostic impact, (Shanafelt et al., 2008) (Majid et al., 2011) 

indicating the relevance of these interactions in vivo. Engagement of 

CD49d/CD29 (α4β1 integrin) is followed by activation of the PI3K pathway 

with production of MMP-9 (Redondo-Muñoz et al., 2006). CD38 expression on 

the CLL cell membrane significantly enhances CD49d-mediated adhesion by 

inducing a more complex distribution of F-actin filaments and a marked 

phosphorylation of the guanine nucleotide exchange factor Vav-1 (Zucchetto 

et al., 2012). CD38+/CD49d+ CLL clones that adhere to recombinant V-CAM-

1 are also more resistant to apoptosis than CD38-/CD49d+ clones.  The 

interaction between CD38 and CD49d has been mainly demonstrated by co-

localization and co-immunoprecipitation experiments. 

Another adhesion molecule that is important in CLL survival is CD44, which 

belongs to a family of transmembrane receptors for hyaluronic acid, a major 

component of the extracellular matrix, and is also involved in selected 

adhesion functions and in bidirectional signal delivery (Ilangumaran et al., 

1999). CD44 is an integral component of the CD74 receptor complex, which 

binds migration inhibiting factor (MIF) (Shi et al., 2006) (Gore et al., 2008). 

CD44 transmits signals after MIF is bound to CD74 (Gordin et al., 2010). 

CD74 is involved in the maturation of normal B-cells through a pathway 

leading to the activation of transcription mediated by the NF-κB p65/RelA 

homodimer and its coactivator TAFII (Gore et al., 2008). This circuit is also 

operative in CLL cells. Milatuzumab (Immunomedics), a novel humanised 

mAb that targets CD74 has been found to be effective in treating CLL in early 

trials (Stein et al., 2007) (Hertlein et al., 2010). Matrix metalloproteases 

(MMPs) are proteolytic proenzymes involved in degradation of the 

extracellular matrix during the early steps of tumorigenesis (Hua et al., 2011) 
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and also play a role in the late stages of tumour progression, invasion and 

metastasis (Gialeli et al., 2011) in solid malignancies. MMP-9 is the dominant 

MMP produced by CLL cells and contributes to their tissue infiltration 

(Redondo-Muñoz et al., 2006). Furthermore, its expression correlates with 

advanced clinical stages of the disease (Molica et al., 2003). MMP-9 triggers 

intracellular signalling pathways, including LYN activation, STAT3 

phosphorylation, and MCL1 up-regulation and prevents CLL apoptosis 

(Redondo-Muñoz et al., 2010). CD38, CD49d, MMP9 and CD44 were recently 

found to act in close association with CD38 acting as a link between the 

discrete steps of the homing process (Buggins et al., 2011). Daratumumab 

(GenMab), a human anti-human CD38 mAb, entered a phase I/II clinical trial 

for patients with multiple myeloma and CLL with the rational of attempting to 

disrupt this interaction.  

Another study showed the role of β2 integrins and their ligands in the 

regulation of apoptosis. When CLL cells were treated with monoclonal 

antibodies directed against β2 integrins, specifically against the I-domain of 

the chain of CD11b/CD18, this inhibited apoptosis. The physiological ligand or 

counter-receptor for β2 integrins that was required for the inhibition of 

apoptosis induction was identified as iC3b. Free iC3b levels were elevated in 

CLL patients indicating that this ligand is available in vivo where it may 

interact with β2 integrins on CLL B-cells and sustain their viability by 

preventing activation of the programmed cell death pathway (Plate et al., 

2000). 

Survival signals are provided by various molecules and pathways. The TNF 

family members BAFF and APRIL expressed on NLC and interact with 

corresponding receptors B-cell maturation antigen (BCMA), transmembrane 

activator and calcium modulator and cyclophilin ligand interactor (TACI), and 

BAFF receptor (BAFF-R) on CLL cells (Burger, 2011).  This induces activation 

of the canonical NF-κB pathway and protects CLL cells from apoptosis (Nishio 

et al., 2005) (Endo et al., 2007). CD38 molecules on CLL cells interact with 

CD31, expressed on stromal and NLCs. Along with this, the BCR pathway is 

activated by antigen stimulation. In vitro experiments have shown that BCR 

stimulation and co-culture with NLCs induces CLL cells to secrete 

chemokines (CCL3, CCL4, and CCL22), which recruit additional immune cells 

including T-cells and monocytes. Normally CCL3 and CCL4 are secreted by 

B-cells after activation by the BCR and CD40 ligand. Similarly CLL cells also 

secrete CCL3 and CCL4 in response to BCR stimulation. Plasma levels of 

CCL3 and CCL4, are high in CLL patients and plasma levels of CCL3 
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correlate with established prognostic markers and time to treatment (Krzysiek 

et al., 1999) (Burger et al., 2009b) (Sivina et al., 2011). This is demonstrated 

by a study on 351 patients which showed that the level of CCL3, advanced 

clinical stage, poor-risk cytogenetics, and CD38 expression were independent 

prognostic markers in multivariable analysis (Sivina et al., 2011). Thus CCL3 

produced by CLL cells direct T-cells to activated CLL cells for a direct 

interaction which helps in CLL cell proliferation. Based on these findings, CLL 

cells have been shown not to be inert cells, but rather are actively expressing 

and secreting chemokines thereby creating a favourable microenvironment.  

Another interesting area is the role of T-cells in CLL cell survival. In untreated 

CLL patients, both the CD4 and the CD8 populations are increased, unlike 

other malignancies where T-cells are usually reduced in number. These T-

cells are functionally impaired and fail to form appropriate immunological 

synapses with CLL cells (Ramsay et al., 2008). This dysfunction to a certain 

extent can be reversed with immunomodulatory drugs like lenalidomide, which 

has a wide range of immunomodulatory activities, including stimulation of T-

cells through CD28, enhancement of the expression of cytokines (including IL-

2 and IFN-γ), repression of regulatory T-cells with concomitant induction of 

Th17 and increase of NK-cell and of antibody-dependent cytotoxicities 

(Gorgun et al., 2009). In proliferation centres, activated CD4+ T cells co-

localise with proliferating  CLL cells suggesting that T-cell subpopulations 

promote the expansion of the CLL clone (Patten et al., 2008). This is 

supported by recent in vivo evidence in immunodeficient mice that activated 

CD4+ T-cells support CLL cell proliferation in a CLL-transfer model. CLL cells 

themselves plays an active role in the accumulation of T lymphocytes by 

secreting CCL22, CCL3 and CCL4, which are involved in T-cell recruitment to 

the LN. However, this migration in response to CXCL12, CCL21 and CCL19 

of T-cells from CLL patients is partially defective, as compared to T-cells from 

healthy adults even though CXCR4 and CCR7 expression is similar. This 

defect is more prominent in good prognostic ZAP70-/CD38- CLL patients 

where the low migratory response towards CXCL12 in T-cells may favour the 

indolent clinical course of the disease in these patients (Borge et al., 2010). 

CD40L (CD154) expression on the T-cells in the proliferation centre is high 

which interacts with the CD40 on CLL cells, rescuing them from apoptosis  

and mediated by up-regulation of the pro-survival protein survivin, repression 

of BCL2 and induction of BCL-XL and BCL2A1 (Plander et al., 2009) 

(Granziero et al., 2001) (Vogler et al., 2009).  The hypo-responsiveness of the 

T-cell compartment of CLL patients may be due to the inefficient antigen 
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presentation effected by neoplastic cells, which is partly due to the low 

expression of CD40L, resulting in diminished co-stimulation via CD40. Over-

expressing CD40L on CLL cells increases antigen presentation by leukaemic 

cells. Surface expression of CD40L on CLL cells after gene therapy treatment 

promotes expression of costimulatory molecules including CD40, CD80 and 

CD86 on neighbouring bystander CLL cells, thereby making them better 

costimulants for T-cell activation (Wierda et al., 2000). 

Reprogramming of autologous T-cells to target specific tumour antigens is an 

area of intense investigation and has involved the use of an antibody-derived 

antigen-binding moiety fused with an internal signalling domain such as CD3f 

to form a chimeric antigen receptor (CAR) (Urba and Longo, 2011). CARs 

have been found to be successful and as the therapy uses the patient’s own 

cells, the risk of graft-versus-host disease is not an issue. Low doses of 

autologous T-cells infected with a CD19-targeted CAR infused into a CLL 

patient induced tumour lysis syndrome followed by persistent clinical 

response (Porter et al., 2011). 

Considerable evidence indicates that an immune response is not solely 

determined by antigenic stimulation, but rather by complex interactions 

between the endocrine, nervous and immune systems helps to regulate the 

immune system (Souza-Moreira et al., 2011).  Nucleotides such as adenosine 

triphosphate (ATP) and the enzymes involved in their metabolism could be 

involved in CLL cell survival and apoptosis. In the LN proliferation centres, 

CLL cells can activate an adenosinergic axis, which involves the ectoenzymes 

CD39 and CD73; causing the accumulation of adenosine and activation of 

A2A receptors which can protect CLL cells from spontaneous or drug-induced 

apoptosis and can inhibit chemotaxis (Serra et al., 2011). This protective 

effect is possibly mediated by cAMP through the activation of the NF-κB 

pathway (Himer et al., 2010). Potentially, this axis could be therapeutically 

targeted in CLL by blocking CD73, which is used in solid tumours, or by using 

antagonists of the A2A receptor, which could limit the increase in cytoplasmic 

cAMP levels associated with anti-apoptosis and chemoresistance (Smit et al., 

2007) (Stagg et al., 2010).  

Another agent involved in this axis is nicotinamide, the main precursor of 

NAD+. There are experiments showing that treatment of CLL cells with 

nicotinamide triggers a rapid activation of apoptosis, which is mediated by a 

functional loop that involves SIRT1 as the key player. SIRT1 is the main 

member of the sirtuin family and inactivates p53 by deacetylating a critical 
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lysine residue. Nicotinamide blocks SIRT1, resulting in increase of active p53. 

Chemotherapeutic agents, known to activate the p53 pathway potentiate this 

effect and the combination of DNA-damaging chemotherapeutics and 

nicotinamide should yield optimal apoptotic responses (Audrito et al., 2011).  

The treatment of CLL has advanced significantly over the last decade and 

there are effective first line treatments in the form of combination 

immunochemotherapy. But the treatment of relapsed and refractory disease is 

still very difficult. Advances in the knowledge of specific pathways activated in 

CLL like BCR pathway, helped to develop more specific, targeted treatments 

in CLL, which is still in early phase of development. This project is mainly 

directed on exploring new pathways that could be activated in CLL, and the 

manipulation of the same could have therapeutic benefit. 

1.4 Hypothesis 

The data from gene expression profiling could be used to delineate antigens 

with therapeutic potential in chronic lymphocytic leukaemia 

1.5 Aims and Objectives  

1) To systematically screen cell surface proteins using flow cytometry and 

to describe new antigens expressed on the surface of CLL cells that 

could be used as diagnostic, prognostic or therapeutic targets. 

2) To establish an in vitro CLL cell culture system to explore whether 

these antigens play any role either in the survival or apoptosis of CLL 

cells and thereby establishing the therapeutic potential of manipulating 

their pathways. 

3) To test new agents inhibiting the BCR pathway signalling molecules, as 

potential therapeutic agents and exploring the physiological changes in 

CLL cells including phosphorylation and Ca2+ flux using flow cytometry. 

4) To explore any relationship between BCR signalling pathway and the 

pathways of newly identified molecules to identify any synergistic 

therapeutic potential.  
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2. Materials and Methods 

2.1 Patient and control groups 

Patient material used in this study is from patients with a diagnosis of CLL 

according to NCI-Working Group (WG) criteria who were previously untreated 

or had not received any treatment for the last 6 months. Samples were 

anonymised and no patient-identifiable information was recorded as part of 

this study. All patients were attending the CLL clinic at St James’s University 

Hospital, Leeds. A normal control group was also evaluated for certain 

experiments. Analyses were performed according to specific research ethics 

protocols (LREC Number-04/Q1205/125) and samples were collected in tubes 

with ethylenediaminetetraacetic acid (EDTA) as anticoagulant. Samples were 

either processed on the same day or were stored in 4oC until processing. 

2.2 Flow cytometry 

2.2.1. Instrumentation 

Three Flow cytometry instruments were used for the whole project. 

1. BD FACSCanto™ which was mainly used for the antibody identification 

experiments. Blue, red and violet lasers were used and the filters used are 

shown in Table 2.1 

Table 2.1 Filter sets used BD FACSCanto™ 

Filter 
set 

Possible fluorochromes 

B530/30 FITC, AF488, Fluo-3  

B585/42 PE 

B670/40 PerCP, PerCP-Cy5, PerCP-Cy5-5, PE-Cy5, PE-Cy5-5, 7-AAD, 
Fura-Red 

B780/60 PE-Cy7, PC7 

R660/20 APC, AF647 

R780/60 APC-Cy7, APC-H7, AF750, APC-AF750 

V450/50 V450, Pacific Blue, VioBlue 

V515/50 V500, V500-C, Pacific Orange 

 

2. BD LSRFortessa™ in which majority of cell viability, phosflow and calcium 

flux experiments were done. This machine was also used for the viability 
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experiments using high throughput cytometry (HTC). Blue, red and violet 

lasers were used and the filters used are shown in Table 2.2 

Table 2.2 Filter sets used in BD LSRFortessa™ 

Filter 
set 

Possible fluorochromes 

B530/30 FITC, AF488, Fluo-3  

B575/26 PE 

B610/20 PE-Texas Red, ECD 

B695/40 PerCP, PerCP-Cy5, PerCP-Cy5-5, PE-Cy5, PE-Cy5-5, 7-AAD, 
Fura-Red 

B780/60 PE-Cy7, PC7 

R670/14 APC, AF647 

R730/45 AF700, APC-AF700 

R780/60 APC-Cy7, APC-H7, AF750, APC-AF750 

V450/50 V450, Pacific Blue, VioBlue 

V525/50 V500, V500-C, Pacific Orange 

V605/12 Qdot605 

 

3. BD LSRFortessa™ with additional ultraviolet laser in which calcium flux 

experiments using indo-1 were done. Blue, red, violet and ultraviolet lasers 

were used and additional filters included for Indo-1 at 395nm (Indo-1 with 

intracellular calcium) and 525nm (Indo-1 without intracellular calcium). 

The daily performance of the machines was checked using cytometry setting 

and tracking (CS&T) beads (BD Biosciences) and rainbow beads (BD 

Biosciences). 

CS&T beads are composed of equal concentrations of dim, mid, and brightly 

dyed polystyrene beads with low intrinsic coefficients of variation in MFI. With 

the help of BD software they automatically determine and create baseline 

performance values and daily running of the beads will maintain the settings 

consistent in the same range. 

Rainbow beads have particles with a mixture of fluorochromes that are 

spectrally similar to the fluorochromes used in flow cytometry. The running of 

these beads helps in day-to-day performance verification, and long-term 

performance tracking of different flow cytometer channels in one run.   

Fluidics maintenance for the BD FACSCanto™ was done using automated 

start-up and shut-down fluidics programmes which uses cleaning solutions 

like FACS clean (BD Bioscience) and FACS rinse (BD Bioscience).  

For the BD LSRFortessa, 2% solution of Contrad 70 (Decon labs), FACS 

rinse and distilled water were run manually for 5 minutes each. 
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The alignment of the HTC was checked prior to use, using automated 

programmes available on the BD LSRFortessa™.  

PMT voltages were set using an unstained sample of lymphocytes. The 

voltages were adjusted such that the unstained cells appear in the first 

decade (or first quartile) of a 4-decade logarithmic scale for each 

fluorochrome to be measured. 

Compensations for standard fluorochromes were done using stained and 

unstained beads and adjusting with BD compensation software.  For tandem 

conjugates, wherever possible individual antibodies were compensated 

separately. For non-standard fluorochromes like 7-AAD compensations was 

done manually using stained and unstained cells.     

In the initial screening experiments no controls like isotype control or 

fluorescence-minus-one controls were used as the idea was to subjectively 

identify antibodies that have the highest expression on CLL cells or B-cells. 

In further experiments, which objectively analysed the expression of the 

screened antibodies, negative controls like CD14 for direct antibodies and 

CD2 for indirect antibodies were used.  

2.2.2. Red cell lysis 

Microtitre plates were used for flow cytometry experiments. Leucocytes were 

isolated by incubating whole blood with a 4-fold excess of ammonium chloride 

(8.6 g/l in distilled water) for 5 min at 37oC to lyse red cells. Plates were 

centrifuged at 2000 x g for 60 seconds and cells were washed twice in 200l 

of FACS Flow (BDIS) containing 0.3% bovine serum albumin (BSA) (Sigma-

Aldrich).  

2.2.3. Direct staining using commercially conjugated antibodies 

1 x 106 leucocytes were stained with the appropriate volume of pre-titered 

directly conjugated antibodies and the test antibody for 20 min at 4oC in the 

dark. The antibodies used were CD5 conjugated to allophycocyanin (APC), 

CD19 conjugated to PECy7, CD45 conjugated to fluorescein isothiocyanate 

(FITC) and the test antibody conjugated to phycoerythrin (PE). (Details of the 

antibodies used in appendix 1). The samples were then washed twice in 

FACS flow BSA and re-suspended for acquisition in FACS flow.  

The antibodies tested by direct conjugation are listed in Table 2.3 along with 

their basic characteristics.  



-58- 
 

Table 2.3 Direct antigens  

Data in this table is taken from the following websites. References are made where there is additional data  
http://www.ncbi.nlm.nih.gov/gene 
http://omim.org/entry 
http://www.uniprot.org/uniprot 
 

Antigen Alternative names Gene 
names 

Type of 
membrane 
protein 

Expression and functions 

CD51 ITGAV 
Integrin alpha-V, 
Vitronectin 
receptor subunit 
alpha 

ITGAV 
VNRA, 
MSK8 
VTNR 

Single-pass 
type I 
membrane 
protein. 

CD51 is a type I integral membrane glycoprotein, known as vitronectin receptor α 
chain, or integrin αV. Integrins are major receptors for extracellular matrix mediated cell 
adhesion and migration, cytoskeletal organization, cell proliferation, survival, and 
differentiation. Alpha-V integrins comprise a subset sharing a common alpha-V subunit 
combined with 1 of 5 beta subunits. Most alpha-V integrins recognise the sequence 
RGD in ligands like vitronectin, fibronectin, osteopontin, bone sialoprotein, 
thrombospondin, fibrinogen, von Willebrand factor, tenascin, and agrin. In the case of 
alpha-V-8, laminin and type IV collagen. Expressed on endothelial cells, fibroblasts, 
macrophages, platelets, osteoclasts, neuroblastoma, melanoma, and hepatoma cells. 
It plays important roles in leukocytes homing and rolling, mediates bone absorption and 
angiogenesis. 

CD85j Leukocyte 
immunoglobulin-
like receptor 
subfamily B 
member 1 
LIR-1 
CD85 antigen-like 
family member J 
ILT-2 
Monocyte/macrop
hage 
immunoglobulin-
like receptor 7 

LILRB1 
ILT2, LIR1, 
MIR7 

Single-pass 
type I 
membrane 
protein. 

CD85 is a group of Ig superfamily tansmembrane glycoproteins called Ig-Like 
Transcripts (ILTs) or Leukocyte Immunoglobulin-like Receptors (LIRs). LIRs are a 
family of immunoreceptors expressed predominantly on monocytes and B-cells and at 
lower levels on dendritic cells and natural killer (NK) cells. All members of LIR 
subfamily B, such as LILRB1, contain a cytoplasmic immunoreceptor tyrosine-based 
inhibitory motif (ITIM) which serves an inhibitory function. Upon engagement by MHC 
class I or other ligands which phosphorylate tyrosine residue of the ITIM and recruit 
intracellular protein-tyrosine phosphatases, such as SHP1, an inhibitory signal cascade 
ensues. Most members of LIR subfamily A, such as LILRA1 have short cytoplasmic 
regions that lack ITIMs, but have transmembrane regions that contain a charged 
arginine residue which can initiate stimulatory cascades. One member of subfamily A, 
LILRA3, lacks a transmembrane region and is presumed to be a soluble 
receptor(Borges et al., 1997). It is found on the surface of B-cells, plasma cells, 

http://www.ncbi.nlm.nih.gov/gene
http://omim.org/entry
http://www.uniprot.org/uniprot
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MIR-7 dendritic cells, monocytes, subsets of NK and T-cells. Its cytoplasmic tail provides 
inhibitory signals by recruiting SHP-1 

CD97 leukocyte antigen 
CD97; 
seven-span 
transmembrane 
protein; 
seven 
transmembrane 
helix receptor; 
seven-
transmembrane, 
heterodimeric 
receptor 
associated with 
inflammation 
 

CD97 
TM7LN1 

Multipass 
Membrane 
protein 

CD97 is a seven-span transmembrane glycoprotein belonging to the secretin receptor 
superfamily. It is 75-to 85-kD and is present on the surface of most activated 
leukocytes. The 722-amino acid protein has a C-terminal region contains 7 
hydrophobic domains as seen in various G-protein associated transmembrane 
receptors. CD97 is a member of a superfamily that includes the receptors for secretin, 
calcitonin, and other mammalian and insect peptide hormones. CD97 has an 
extracellular region of 433 amino acids with 3 N-terminal epidermal growth factor-like 
domains of which 2 of them are calcium-binding sites and a single arg-gly-asp (RGD) 
motif. Structural features characteristic of extracellular matrix proteins and 
transmembrane proteins suggests that CD97 is a receptor involved in both cell 
adhesion and signalling. (Hamann et al., 1995) CD55 is the cellular ligand for CD97. 
Expressed on monocytes/ macrophages, granulocytes, dendritic cells, and smooth 
muscle cells. It is also expressed in thyroid, colorectal, gastric, oesophageal and 
pancreatic carcinomas.  In resting T- and B-lymphocytes expression is at low level, but 
is rapidly unregulated upon activation. 
Expression is increased under inflammatory conditions in the CNS of multiple sclerosis 
and in synovial tissue of patients with rheumatoid arthritis. Increased expression of 
CD97 in the synovium is accompanied by detectable levels of soluble CD97 in the 
synovial fluid. CD97 has been shown to mediate cell adhesion and co-stimulation of T-
cell proliferation. 

CD119 Interferon gamma 
receptor 1 

IFNGR1 Single-pass 
type I 
membrane 
protein. 

CD119 is a type I protein, also known as IFN-γ R α chain or IFN-γRI. Defects in 
IFNGR1 are a cause of mendelian susceptibility to mycobacterial disease (MSMD) also 
known as familial disseminated atypical mycobacterial infection which is a rare 
condition predisposing patients to illness caused by moderately virulent mycobacterial 
species, such as Bacillus Calmette-Guerin (BCG) vaccine and environmental non-
tuberculous mycobacteria, and also by the more virulent Mycobacterium tuberculosis. 
The inheritance is autosomal recessive, autosomal dominant or X-linked. The 
pathogenic mechanism underlying MSMD is the impairment of interferon-gamma 
mediated immunity which could make patient susceptible to overwhelming 
mycobacterial disease with lepromatous-like lesions in early childhood, whereas others 
develop, later in life, disseminated but curable infections with tuberculoid granulomas. 
Other microorganisms rarely cause severe clinical disease is Salmonella which infects 
less than 50% of these individuals. A genetic variation in IFNGR1 is associated with 
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susceptibility to Helicobacter pylori infection also. The IFN-γ receptor is expressed at 
moderate levels on virtually every cell with the exception of erythrocytes. Involved in 
signal transduction using Jak1 and Jak2 protein kinases and STAT1 activation(Basler 
and García-Sastre, 2002) 

CD137L Tumour necrosis 
factor ligand 
superfamily 
member 9 
4-1BB ligand 

TNFSF9 
 

Single-pass 
type II 
membrane 
protein. 

4-1BB ligand, also known as CD137L, is a 97 kD member of the tumour necrosis factor 
(TNF) superfamily. This transmembrane cytokine is a bidirectional signal transducer 
that acts as a ligand for TNFRSF9/4-1BB. This serves as a costimulatory receptor 
molecule in T lymphocytes and is involved in the antigen presentation process and in 
the generation of cytotoxic T cells. This has also been shown to reactivate anergic T 
lymphocytes in addition to promoting T lymphocyte proliferation and is involved in 
optimal CD8 responses in CD8 T cells, APCs, activated B and T-cells. 
 Expression in peripheral CD14 positive monocytes was significantly higher in patients 

with chronic hepatitis B than in healthy controls (J. Wang et al., 2010). 
CD141 Thrombomodulin 

Fetomodulin 
THBD 
THBM 

Single-pass 
type I 
membrane 
protein. 

Defects in THBD are the cause of some thrombophilia due to thrombomodulin defect. 
Defects in THBD are a cause of susceptibility to haemolytic uremic syndrome atypical 
type 6, which is an atypical form of haemolytic uremic syndrome, a complex genetic 
disease characterized by microangiopathic haemolytic anaemia, thrombocytopenia, 
renal failure and absence of episodes of enterocolitis and diarrhoea. Atypical forms 
have a poorer prognosis, with higher death rates and frequent progression to end-
stage renal disease compared to the typical form. Thrombomodulin is a specific 
endothelial cell receptor that forms a 1:1 stoichiometric complex with thrombin. This 
complex is responsible for the conversion of protein C to the activated protein C. Once 
evolved, activated protein C triggers cofactors of the coagulation mechanism, factor Va 
and factor VIIIa, and thereby reduces the amount of thrombin generated. 

CD155 Poliovirus 
receptor 
Nectin-like protein 
5 
NECL-5 
PVS; HVED;  
TAGE4;  

PVR 
PVS 

Single-pass 
type I 
membrane 
protein 

CD155, known as poliovirus receptor (PVR) or nectin-like 5, is a 70 kD type I 
transmembrane glycoprotein CD155 mediates NK cell adhesion and triggers NK cell 
effector functions. This binds two different NK cell receptors, CD96 and CD226 leading 
to the formation of a mature immunological synapse between NK cell and target cell 
and these synapses accumulates at the contact site. The formation of these synapses 
triggers the secretion of lytic granules and IFN-gamma which in turn stimulate cytoxicity 
of activated NK cells. This synapse sometimes transfer the PVR to NK cells which is 
more important in some tumour cells expressing a lot of PVR, which in turn activates 
the NK cells, providing tumours with a mechanism of immuno-evasion and mediating 
tumour cell invasion and migration. PVR also serves as a receptor for poliovirus 
attachment to neuronal cells and play a role in axonal transport of poliovirus. Virion-
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PVR-containing endocytic vesicles are transferred to the microtubular network through 
interaction with DYNLT1 and drive the virus-containing vesicle to the axonal retrograde 
transport. Expressed on endothelial cells, monocytes, epithelia and central nervous 
system. CD155 is an adhesion molecule involved in cell-cell and cell-matrix adhesion. 
CD155 mediates NK cell adhesion and triggers NK cell effector functions.  The external 
domain mediates cell attachment to the extracellular matrix molecule vitronectin, while 
its intracellular domain interacts with the dynein light chain Tctex-1/DYNLT1. 

CD167a Epithelial 
discoidin domain-
containing 
receptor 1;  
Cell adhesion 
kinase; 
Discoidin receptor 
tyrosine kinase; 
HGK2; 
Protein-tyrosine 
kinase 3A; 
Protein-tyrosine 
kinase RTK-6; 
TRK E; 
Tyrosine kinase 
DDR; 
Tyrosine-protein 
kinase CAK 

DDR1, 
CAK, 
EDDR1, 
NEP, 
NTRK4, 
PTK3A, 
RTK6, 
TRKE 

Single-pass 
type I 
membrane 
protein 

CD167a is a membrane type II receptor kinase, containing a factor VIII-like domain. 
CD167a expression can be upregulated by p53. It is expressed on epithelial cells of 
colon mucosa, thyroid follicles, and distal tubules of kidney and over expressed in 
some breast carcinomas cells, epidermoid carcinoma cells, melanoma cells, colon 
carcinoma cell lines. It is a tyrosine kinase that functions as cell surface receptor for 
fibrillar collagen proteins like collagen type II alpha 1, collagen type III alpha 1, collagen 
type V alpha 2, collagen type XI alpha 1; It thereby controls various cell functions like 
attachment to the extracellular matrix, cell migration, differentiation, survival and 
proliferation. It interacts with a variety of other proteins including phospholipase gamma 
1, SHC, and the lipid-anchored docking protein FRS2. Collagen binding triggers a 
signalling pathway that involves SRC and leads to the activation of MAP kinases. 
Regulation of remodelling of the extracellular matrix is usually by up-regulation of the 
matrix metalloproteinases MMP2, MMP7 and MMP9. This facilitates cell migration and 
wound healing. It also promotes smooth muscle cell migration, and hence arterial 
wound healing.  It is also required for normal blastocyst implantation during pregnancy, 
for normal mammary gland differentiation and normal lactation. Also plays a role in 
tumour cell invasion. 

CD205 Lymphocyte 
antigen 75; C-
type lectin domain 
family 13 member 
B; 
DEC-205; 

LY75SCD2
05CLEC13
B 

 Single-
pass type I 
membrane 
protein 

CD205 is a 210 kD C-type lectin transmembrane protein, known as DEC-205. 
Expressed on dendritic cells, thymic epithelial cells and low levels on T- and B-cells, 
NK cells and monocytes. Detected in myeloid, B-lymphoid cell lines and Reed-
Sternberg (HRS) cells. It serves as an endocytic receptor, functions in antigen uptake 
from extracellular space, processing and clearance of apoptotic cells. Causes reduced 
proliferation of B-lymphocytes. 

CD210 Interleukin-10 
receptor subunit 
alpha; Interleukin-
10 receptor 

IL10R, 
IL10R 

Single-pass 
type I 
membrane 
protein. 

CD210, also known as the IL-10 receptor, is a 90-110 kD protein which belongs to the 
class II cytokine receptor family. Defects in IL10RA are the cause of inflammatory 
bowel disease type 28 which is a chronic, relapsing inflammation of the gastrointestinal 
tract with crohn’s disease or ulcerative colitis phenotypes. It is expressed weakly on 
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subunit 1 pancreas, skeletal muscle, brain, heart, and kidney, intermediate level on placenta, 
lung, and liver and strongly on monocytes, B-cells, large granular lymphocytes, and T-
cells express high levels. The IL-10 receptor is involved in signal transduction by 
inducing phosphorylation of STAT1a and STAT3 and by inducing activation of Jak1 
and Tyk2 kinases.  It has been shown to mediate the immunosuppressive signal of 
interleukin 10, and thus inhibits the synthesis of proinflammatory cytokines 

CD279 Programmed cell 
death protein 1 

PDCD1, 
PD1 

Single-pass 
type I 
membrane 
protein. 

The program death 1 (PD-1) receptor CD279 is a 55 kDa member of the 
immunoglobulin superfamily. PD-L1 (B7-H1) and PD-L2 (B7-DC) are ligands of 
CD279/PD-1 and are members of the B7 gene family.    Genetic variation in PDCD1 is 
associated with susceptibility to systemic lupus erythematosus type 2. It is thought to 
represent a failure of the regulatory mechanisms of the autoimmune system. 
Expressed on activated T-cells, B-cells and myeloid cells. It plays a key role in 
peripheral tolerance and autoimmune disease. Interaction of CD279: PD-Ligands 
results in inhibition of T-cell proliferation and cytokine secretion.  

CD298 Sodium/potassiu
m-transporting 
ATPase subunit 
beta-3; 
Sodium/potassiu
m-dependent 
ATPase subunit 
beta-3; ATPB-3 

ATP1B3 Single-pass 
type II 
membrane 
protein 

CD298 or the β3 Na+/K+ ATPase, is a 42 kDa type II transmembrane protein, also 
known as ATP1B3 which is a part of Na+/K+ -ATPase. This is an integral membrane 
protein which helps to maintain the electrochemical gradients of Na and K ions across 
the plasma membrane which in turn helps in osmoregulation, sodium-coupled transport 
of organic and inorganic molecules, and electrical excitability of nerve and muscle. This 
enzyme is composed of two subunits, alpha and beta, and the beta subunit regulates, 
the number of sodium pumps transported to the plasma membrane. It has broad tissue 
distribution, including all leukocytes and many other tissues. 

CD337 Natural 
cytotoxicity 
triggering receptor 
3; 
Activating natural 
killer receptor 
p30; 
Natural killer cell 
p30-related 
protein; 
NKp30 

NCR3, 
1C7, LY117 

Single-pass 
type I 
membrane 
protein. 

CD337 is a type I protein, member of the natural cytotoxicity receptor family that 
contains one immunoglobulin-like domain. NCR3 is expressed in all resting and IL-2 
activated NK cells and forms a complex with CD3-zeta. CD337 enhances NK cell 
triggering and cytolysis of tumour targets and other target cells deficient in MHC class I 
molecules.  Engagement of NCR3 by BAG6 also promotes dendritic cell (DC) 
maturation, by inducing NK cells to release TNFA and IFNG, which promotes DC 
maturation. It also destroys those DCs that did not properly acquire a mature 
phenotype. 

DR3 Tumour necrosis 
factor receptor 

TNFRSF25 
APO3, 

Single-pass 
type I 

DR3 is a member of the TNF receptor family. It activates two distinct signalling 
cascades including apoptosis and NF-kappa-B signalling by interacting with TNFRSF1 
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superfamily 
member 25; 
Apo-3; 
Apoptosis-
inducing receptor 
AIR; 
Apoptosis-
mediating 
receptor TRAMP; 
Lymphocyte-
associated 
receptor of death;  

DDR3, 
DR3, 
TNFRSF12
WSL, 
WSL1 
 

membrane 
protein. 

and TRADD. It is expressed in thymocytes lymphocytes and prostate.  

ErbB3/ 
HER3 

Receptor 
tyrosine-protein 
kinase erbB-3; 
Proto-oncogene-
like protein c-
ErbB-3; 
Tyrosine kinase-
type cell surface 
receptor HER3 

HER3; 
LCCS2; 
ErbB-3; c-
erbB3; 
erbB3-S; 
MDA-BF-1; 
c-erbB-3; 
p180-
ErbB3; 
p45-
sErbB3; 
p85-sErbB3  

Single-pass 
type I 
membrane 
protein 

ErbB3/HER3 is a receptor tyrosine kinase and a member of the epidermal growth 
factor receptor family. Defects in ERBB3 are the cause of lethal congenital contracture 
syndrome type 2, also called Israeli Bedouin multiple contracture syndrome type A 
which is inherited as autosomal recessive. LCCS2 is a neonatally lethal arthrogryposis 
that is associated with atrophy of the anterior horn of the spinal cord and characterised 
by multiple joint contractures, and markedly distended urinary bladder.  
ErbB3 is expressed in kidney, lung, brain, placenta, skin and stomach and 
overexpressed in prostate, bladder, and breast tumours. As this membrane-bound 
protein has no active kinase domain it heterodimers with other EGF receptor family 
members with kinase activity which leads to the activation of pathways in cell 
proliferation or differentiation.  

IFN-γ R β 
chain 

Interferon gamma 
receptor 2; 
Interferon gamma 
receptor 
accessory factor 
1; 
AF-1 

IFNGR2, 
IFNGT1 

Single-pass 
type I 
membrane 
protein. 

It is a member of the class II cytokine receptor family.  Defects in IFNGR2 can cause 
mendelian susceptibility to mycobacterial disease (MSMD), or familial disseminated 
atypical mycobacterial infection which is genetically heterogeneous with autosomal 
recessive, autosomal dominant or X-linked inheritance which makes patients 
susceptible to moderately virulent mycobacterial species, like Bacillus Calmette-Guerin 
(BCG) vaccine and non-tuberculous mycobacteria, as well as by virulent 
Mycobacterium tuberculosis. IFN-γ R β chain is broadly expressed on a variety of cells 
at low levels and upregulated on some activated B-cells.  

Integrin 
β7   

Gut homing 
receptor beta 
subunit 

ITGB7 Single-pass 
type I 
membrane 

Integrin β7 is a member of the Ig superfamily and is usually expressed in association 
with integrin α4 or αE chain forming heterodimers α4/β7 or αE/β7. It expressed on 
majority of peripheral lymphocytes, small subsets of thymocytes and bone marrow 
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protein. progenitors. Integrin alpha-4/beta-7 (Payer’s patches-specific homing receptor LPAM-
1) acts as an adhesion molecule directing lymphocyte migration and homing to gut-
associated lymphoid tissue (GALT). It also interacts with MADCAM1, an adhesion 
molecule expressed by the vascular endothelium of the gastrointestinal tract as well as 
with VCAM1 and fibronectin. It also binds to HIV-1 gp120, which allows the virus to 
enter GALT. Integrin alpha-E/beta-7 (HML-1) acts as a receptor for E-cadherin. 

CD114 Granulocyte 
colony-stimulating 
factor receptor 

CSF3R 
GCSFR 

Multi-pass 
membrane 
protein. 

CD114 is the receptor of the colony stimulating factor 3 (CSF3). The extracellular 
domain consists of an immunoglobulin-like domain, a cytokine receptor homologue 
domain, and three fibronectin type III repeats. CD114 is expressed in all stages of 
granulocyte differentiation and in monocytes, platelets, endothelial cells, placenta and 
trophoblasts. The binding of CSF3, results in the activation of many signalling 
molecules such as SYK, Lyn, Jak1, Jak2, Tyk2, SOCS3, SOCS1, STAT5, and Shp1, 
resulting in the expression of different target genes that will increase neutrophil 
precursor survival, proliferation and maturation. 

GRM4 Metabotropic 
glutamate 
receptor 4 
mGluR4 

GRM4 
GPRC1D, 
MGLUR4 

Multi-pass 
membrane 
protein. 

GRM4 is G protein-coupled receptor for L-glutamate which is a major excitatory 
neurotransmitter in the central nervous system and is involved in several areas of 
normal brain function and pathologic conditions. It stimulates ionotropic as well as 
metabotropic glutamate receptors. It is strongly expressed in the cerebellum but at low 
levels in hippocampus, hypothalamus and thalamus.  

CD268 Tumour necrosis 
factor receptor 
superfamily 
member 13C;  
BAFF receptor; 
BLyS receptor 3; 
BAFFR; CVID4; 
BROMIX; prolixin 

TNFRSF13
C; BAFFR, 
BR3,  

 Single-
pass type 
III 
membrane 
protein 

B cell-activating factor (BAFF) is a regulator of the peripheral B-cell population. In vitro 
it has been shown to enhance B-cell survival. Abnormally high BAFF level is proposed 
to be involved in autoimmune disorders by enhancing the survival of auto-reactive B-
cells as its level is shown to be high in SLE patients and overexpression of BAFF in 
mice will result in SLE like disease. Expression is high in spleen and lymph node, and 
in resting B-cells and low in activated B-cells, resting CD4+ T-cells, thymus and 
peripheral blood leukocytes.  
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2.2.4. Gating strategy for direct staining 

In each case, samples were first gated on size and granularity characteristics 

to limit analysis to live lymphocytes and monocytes. Doublets were also gated 

out using forward and side scatter plot. Cell populations were identified based 

on their expression of CD19 and CD5 as shown in the Figure 2.2.  

The expression of each of the new antigens was evaluated on these cell 

subsets. Figures 2.1 and 2.2 depict the gating strategy.  

 

 

Figure 2.1 Gating strategy for direct staining. 

 In the first plot mononuclear cells are gated based on forward (x-axis) and side scatter 

(y-axis). In the second plot cells were divided into four quadrants based on CD19 and 

CD5 expression as explained in Figure 2.2. The expression of the test antibody (y-axis) 

against side scatter is shown in the third plot and in the fourth plot against CD19 

expression.  
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Figure 2.2 Quadrant plot for CD5 and CD19 expression on different cell 
types.  

This figure explains the type of cells seen in the quadrant plot in Figure 2.1 based on 

CD19 and CD5 expression. B-cells: CD19+, CD5- ; CLL cells: CD19+,CD5+ ; Monocytes 

and NK cells: CD19-,CD5- ; T-Cells: CD19-,CD5+. The colour coding used here is 

maintained throughout the experiments using these antibodies to represent the 

corresponding cells. 

2.2.5. Indirect staining 

The majority of antibodies available were rabbit polyclonals. Unlike directly 

conjugated monoclonal antibodies, which are routinely used in flow cytometry, 

most of these polyclonal antibodies have not been tested by flow cytometry 

before. As they are not conjugated to fluorochromes commercially, indirect 

staining was used to detect them. The flow cytometric protocol needed 

optimisation for testing these antibodies.  

The control antibody should also be a rabbit polyclonal against an 

extracellular epitope of B or T-cell antigen expressed on plasma membrane. 

Of the available such antibodies, anti-CD3 antibody was selected because of 

the ease of combining with the other antibodies. 

Following red cell lysis 1x 106 leucocytes were stained with the appropriate 

volume of pre-titered directly conjugated antibody and the test antibody for 20 

min at 4oC in the dark as in direct staining. The cells are then washed twice 

with FACS flow BSA. Fluorochrome conjugated goat anti-rabbit secondary 

antibody (Alexa Fluor 647 goat anti-rabbit antibody) was then added and 

incubated for 20 min at 4oC in the dark. This was washed again twice in FACS 

flow BSA and then re-suspended for acquisition in FACS flow 

The details of the antibodies used for indirect staining are shown in Table 2.4

 

CD5 

C
D

19
 

B-cells CLL cells 

Monocytes T-Cells 
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Table 2.4 Indirect antigens 

Data in this table is taken from the following websites. References are made where there is additional data  
http://www.ncbi.nlm.nih.gov/gene 
http://omim.org/entry 
http://www.uniprot.org/uniprot 
 
Antigen Alternative names Gene 

names 
Type of 
membrane 
protein 

Expression and function 

ADAM19  

Disintegrin and 
metalloproteinase domain-
containing protein 19, Meltrin-
beta, Metalloprotease and 
disintegrin dendritic antigen 
marker, MADDAM 

ADAM19, 
MLTNB, 
FKSG34 

Single pass 
type 1 
membrane 
protein 

It is a metalloprotease expressed in several tissues and cancer cell lines. 
It serves as a marker for dendritic cell differentiation It is involved in 
several physiological processes like cell migration, cell adhesion, cell-cell 
and cell-matrix interactions, and signal transduction. It has a regulatory 
role in neurogenesis and synaptogenesis of glial cells.Pathologically it is 
involved in some cancers, inflammatory diseases, renal diseases, and 
Alzheimer's disease. 

GPR18  
N-arachidonyl glycine receptor, 
NAGly receptor, G-protein 
coupled receptor 18 

GPR18, 
GPCRW 

Multi-pass 
membrane 
protein. 

Described in detail in chapter 6 

CHRNB4  

Neuronal acetylcholine receptor 
subunit beta-4, cholinergic 
receptor, nicotinic, beta 4 
(neuronal) 

CHRNB4 Multi-pass 
membrane 
protein 

Described in detail in chapter 6 

APLP1 

amyloid beta (A4) precursor-like 
protein 1, AMYLOID 
PRECURSOR-LIKE PROTEIN 
antibody, C30 antibody, APLP 

APLP1 Single-pass 
type I 
membrane 
protein. 

Described in detail in chapter 6 

DRD4 
D(4) dopamine receptor, D(2C) 
dopamine receptor, Dopamine 
D4 receptor, D4DR 

DRD4 Multi-pass 
membrane 
protein 

Described in detail in chapter 6 

GPR12 
G-protein coupled receptor 12, 
FLJ18149 antibody, FLJ97704 
antibody, GPCR12; GPCR21, 

GPR12 Multi-pass 
membrane 
protein 

It is a G-protein coupled receptor signaling through cAMP. It has a 
physiological role in promoting neurite outgrowth. 

http://www.ncbi.nlm.nih.gov/gene
http://omim.org/entry
http://www.uniprot.org/uniprot
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9909
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MGC138349 antibody 

ROR1 

Tyrosine-protein kinase 
transmembrane receptor ROR1, 
Neurotrophic tyrosine kinase, 
receptor-related 1receptor 
tyrosine kinase-like orphan 
receptor 1, NTRKR1 

ROR1, 
NTRKR1 
 

Membrane; 
Single-pass 
type I 
membrane 
protein. 

It is a tyrosine kinase-like orphan receptor. It plays a role in neurite growth 
in the central nervous system.  B-cell chronic lymphocytic leukaemia 
shows an increased expression of ROR1 and anti-ROR1 antibodies can 
induce apoptosis to CLL cells. (Baskar et al., 2012) (Daneshmanesh et al., 
2012)Physiologically there is a high expression in human heart, lung and 
kidney, and weak expression in the central nervous system. A short 
isoform is expressed in malignancies originating from neuroectoderm. 

TAG1 

Contactin-2, Axonal glycoprotein 
TAG-1, Axonin-1, Transient 
axonal glycoprotein 1, TAX-1, 
CNTN2 

CNTN2 
AXT, 
TAG1, 
TAX1 

GPI-anchor Described in detail in chapter 6 

5HTR7 
Serotonin receptor 7, 
5-hydroxytryptamine receptor 7, 
5-HT-X 

HTR7 Multi-pass 
membrane 
protein 

Described in detail in chapter 6 

JAG1  

Protein jagged-1, Jagged1, hJ1, 
CD339 

JAG1, 
JAGL1 

Single-pass 
type I 
membrane 
protein. 

Jagged 1 is the ligand for the receptor notch 1 and is expressed in uterine 
cervical cells, squamous cell carcinoma and bone marrow cell line HS-
27a. It signals through notch 1 and play a role in haematopoiesis, 
development of mammalian cardiovascular system and angiogenesis. 
Mutation affecting this protein can cause Alagille syndrome I which is 
characterized by hepatic, cardiac, skeletal, and ophthalmologic features. 

ACCN1  

Acid-sensing ion channel 2, 
ASIC2, Amiloridesensitive brain 
sodium channel, 
Amiloridesensitive cation 
channel 1, Amiloride-sensitive 
cation channel neuronal 1, Brain 
sodium channel 1, BNC1, 
BNaC1 

ASIC2, 
ACCN, 
ACCN1, 
BNAC1, 
MDEG 
 

Multi-pass 
membrane 
protein 

Described in detail in chapter 6 

GYPC glycophorin C, Glycoconnectin, 
Glycophorin-D, Glycoprotein 
beta 
PAS-2', Sialoglycoprotein D 

GYPC, 
GLPC,  
GPC 
 

Single-pass 
type III 
membrane 
protein 

Glycophorin C (GYPC) is a membrane sialoglycoprotein on human 
erythrocytes. Glycophorin-C includes blood group Gerbich antigens and 
receptors for Plasmodium falciparum merozoites and is important for 
maintaining the mechanical stability of red cells. 

SLC2A3 
solute carrier family 2, facilitated 
glucose transporter member 3, 

SLC2A3, 
GLUT3 

Multi-pass 
membrane 

It is highly expressed in brain tissues and acts as a glucose transporter in 
neuronal tissues. 

http://www.uniprot.org/locations/SL-0162
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9905
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9909
http://www.uniprot.org/locations/SL-9909
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Glucose transporter type 3 protein. 

EFNB1 

Ephrin-B1, 
EFL-3, ELK ligand, 
ELK-L, LERK-2 
EPH-related receptor tyrosine 
kinase ligand 2 

EFNB1, 
EFL3, 
EPLG2, 
LERK2 

Single-pass 
type I 
membrane 
protein 

It belongs to a family of receptor protein-tyrosine kinases and is involved 
in development of nervous system and in erythrocytes. It is expressed on 
heart, placenta, lung, liver, skeletal muscle, kidney and pancreas. 

GPR56  

G protein-coupled receptor 56, 
Protein TM7XN1 

GPR56, 
TM7LN4 
TM7XN1 

Multi-pass 
membrane 
protein 
 

This is G protein-coupled receptor containing 7 transmembrane domains 
and a mucin-like domain in the N-terminal region and it binds to 
transglutaminase 2 in the extracellular space. Overexpression of this 
protein can suppress tumor growth and metastasis and it is 
downregulated in melanoma. It is expressed on thyroid gland, brain heart 
and a number of tumor cells. 

RAMP3  

receptor (G protein-coupled) 
activity modifying protein 3, 
Calcitonin-receptor-like receptor 
activity-modifying protein 3, 
CRLR activity-modifying protein 
3 

RAMP3 Single-pass 
type I 
membrane 
protein 

This belongs to a family of proteins, called receptor (calcitonin) activity 
modifying proteins (RAMPs) which are required to transport calcitonin-
receptor-like receptor (CRLR) to the plasma membrane. It is expressed in 
lung, breast, immune system and fetal tissues.  

MR1 

tumor necrosis factor receptor 
superfamily, member 1A, Tumor 
necrosis factor receptor 1 

TNFRSF1
A, 
TNFAR, 
TNFR1 

Single-pass 
type I 
membrane 
protein.  

It is major receptors for the tumor necrosis factor-alpha and it recruits 
caspase-8 through adapter molecule FADD thereby activating the 
downstream cascade of caspases mediating apoptosis.   

CDH15 

cadherin 15, type 1, M-cadherin 
Cadherin-14, Muscle cadherin 

CDH15, 
CDH14,C
DH3 

Single-pass 
type I 
membrane 
protein 

Cadherins are calcium-dependent cell adhesion proteins and is expressed 
in brain, cerebellum and muscles. M-cadherin is important in myogenesis 
and provides a trigger for terminal muscle differentiation. 

SLC20A1 

solute carrier family 20 
(phosphate transporter), 
member 1, Gibbon ape leukemia 
virus receptor 1, 
Leukemia virus receptor 1 
homolog, Phosphate transporter 
1, Solute carrier family 20 
member 1 

SLC20A1, 
GLVR,1 
PIT1 

Multi-pass 
membrane 
protein 

This is a ubiquitously expressed protein which plays a crucial role in 
phosphate transport in cells. It may also act as a retroviral receptor 
making human cells vulnerable to infection to Gibbon Ape Leukemia Virus 
(GaLV), Simian sarcoma-associated virus (SSAV), Feline leukemia virus 
subgroup B (FeLV-B) and 10A1 murine leukemia virus. 

SLC4A1 solute carrier family 4, sodium SLC4A10, Multi-pass It plays an important role in regulating intracellular pH by acting as a 
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bicarbonate transporter, 
member 10 
Sodium-driven chloride 
bicarbonate exchanger, 
Solute carrier family 4 member 
10 

NCBE membrane 
protein 

sodium/bicarbonate cotransporter in exchange for intracellular chloride.   

PLAUR 

Urokinase plasminogen activator 
surface receptor, Monocyte 
activation antigen Mo3, 
CD87 

PLAUR, 
MO3, 
UPAR 
 

Lipid-
anchor 
GPI-anchor 

It acts as the receptor for urokinase plasminogen activator and promotes 
plasmin formation which causes localized degradation of the extracellular 
matrix. It is expressed in the brain. 

EDA  

ectodysplasin A receptor, 
Tumor necrosis factor receptor 
superfamily member EDAR, 
Anhidrotic ectodysplasin 
receptor 1, 
Downless homolog, EDA-A1 
receptor, Ectodermal dysplasia 
receptor, Ectodysplasin-A 
receptor 

EDAR, 
DL 

Single-pass 
type I 
membrane 
protein 

This belongs to tumor necrosis factor receptor family and act as a receptor 
for the soluble ligand ectodysplasin A, which then activate NFκB, JNK, 
and caspase-independent cell death pathways. It has functional role in 
development of hair, teeth, and other ectodermal derivatives. It is 
expressed in fetal kidney, lung, skin and cultured neonatal epidermal 
keratinocytes. 

NG2  

chondroitin sulfate proteoglycan 
4, Chondroitin sulfate 
proteoglycan NG2, Melanoma 
chondroitin sulfate proteoglycan, 
Melanoma-associated 
chondroitin sulfate proteoglycan 

CSPG4 
MCSP 

Single-pass 
type I 
membrane 
protein 

This is a chondroitin sulfate proteoglycan expressed by human malignant 
melanoma cells which plays a role in endothelial basement membrane 
spread of melanoma cells. 

EDG4  

lysophosphatidic acid receptor 
2, 
LPA-2, 
Lysophosphatidic acid receptor 
Edg-4 

LPAR2 
EDG4, 
LPA2 

Multi-pass 
membrane 
protein 

This is a G protein-coupled receptors which functions as a 
lysophosphatidic acid (LPA) receptor leading to Ca2+ mobilization, 
through Gi and Gq proteins. Expressed in leukocytes, testes, pancreas, 
spleen, thymus and prostrate. 

AMFR  

E3 ubiquitin-protein ligase 
AMFR, Autocrine motility factor 
receptor, AMF receptor, 
RING finger protein 45, 
gp78 

AMFR 
RNF45 

Multi-pass 
membrane 
protein 

This is a member of the E3 ubiquitin ligase family of proteins which acts 
as a ligand, for autocrine motility factor which is a tumor motility-
stimulating protein secreted by tumor cells. It catalyzes ubiquitination and 
proteosomal degradation of specific proteins. 
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LTK  

Leukocyte tyrosine kinase 
receptor, Protein tyrosine kinase 
1 

LTK, 
TYK1 

Single-pass 
type I 
membrane 
protein 

This is an orphan receptor protein with a tyrosine-protein kinase activity 
and plays a role in neurite outgrowth, and cell survival. Signalling appears 
to involve the PI3 kinase pathway and genetic variations in LTK that cause 
up-regulation of the PI3K pathway has been demonstrated in systemic 
lupus erythematosus (SLE). 

ACVRL1  

Serine/threonine-protein kinase 
receptor R3, Activin receptor-like 
kinase 1, TGF-B superfamily 
receptor type I 

ACVRL1, 
ACVRLK1
, ALK1 

Single-pass 
type I 
membrane 
protein 

It is the receptor for TGF-beta family ligands BMP9/GDF2 and BMP10 and 
is involved in normal blood vessel development. Mutation of the gene 
causes hereditary haemorrhagic telangiectasia.  

ADAM28  

Disintegrin and 
metalloproteinase domain-
containing protein 28, 
Epididymal metalloproteinase-
like, disintegrin-like, and 
cysteine-rich protein II, 
Metalloproteinase-like, 
disintegrin-like, and cysteine-rich 
protein L 

ADAM28, 
ADAM23, 
MDCL 

Single-pass 
type I 
membrane 
protein 

ADAM28 is a metalloprotease involved in a number of biological functions 
including cell-cell and cell-matrix interactions, involved in fertilization, 
muscle development, and neurogenesis. This may also play a role in 
lymphocyte migration and ectodomain shedding of lymphocyte surface 
antigens like CD40L. It is expressed in lymphoid organs like spleen and 
lymph node and lipid tissues associated with gastrointestinal tract and 
respiratory tract. 

TMPRSS
6  

Transmembrane protease serine 
6, Matriptase-2 

TMPRSS
6, 
UNQ354, 
PRO618 

Single-pass 
type II 
membrane 
protein 
 

This is a serine protease which plays a role in matrix remodelling of liver 
and hydrolyses a range of proteins including type I collagen, fibronectin 
and fibrinogen. It is also involved in the regulation of iron homeostasis. 
This is predominantly expressed in liver. Genetic mutation affecting the 
gene can cause iron refractory iron deficiency anaemia. 

CNR2  

Cannabinoid receptor 2, CX5 CNR2 Multi-pass 
membrane 
protein 

This is a G protein-coupled receptor for 2-arachidonoylglycerol which acts 
as an inhibitory signal by down regulating adenylate cyclase. Higher 
expressions of these are seen in B-cells, NK cells, hair follicles and 
microglial cells in brain. This protein plays an active role in cannabinoid-
induced CNS effects experienced by users of marijuana. 

GPR15  
G-protein coupled receptor 15, 
Brother of Bonzo 

GPR15  Multi-pass 
membrane 
protein 

The function of this is not very clear and may act as a chemokine receptor 
and an alternative co-receptor with CD4 for HIV-1 infection. 

ATP1B1 

Sodium/potassium-transporting 
ATPase subunit beta-1, 
Sodium/potassium-dependent 
ATPase subunit beta-1 

ATP1B1, 
ATP1B 

Single-pass 
type II 
membrane 
protein 

The protein found in most tissues is an integral membrane protein 
responsible for establishing and maintaining the electrochemical gradients 
of Na and K ions across the plasma membrane which are essential for 
osmoregulation, transport of a variety of organic and inorganic molecules 
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across membranes, electrical excitability of nerve and muscle and 
maintaining epithelial cell polarity. 

EGF 

Pro-epidermal growth factor, 
Urogastrone 

EGF Single-pass 
type I 
membrane 
protein 

This protein acts a stimulant factor for growth, proliferation and 
differentiation of numerous cell types. Mutation in the gene encoding this 
protein can cause hypomagnesaemia type 4 and is associated with the 
growth and progression of certain cancers. Expression of this protein is 
found in kidney, salivary gland, cerebrum and prostate. 

MMP14 

Matrix metalloproteinase-14, 
MMP-X1,  
Membrane-type matrix 
metalloproteinase 1 

MMP14 Single-pass 
type I 
membrane 
protein  

Expression of this matrix metalloproteinase is found in stromal cells of 
colon, breast, head and neck and lung tumours. This may activate 
progelatinase A on surface of tumour cells and thereby stimulating 
invasion by tumour cells. This may also regulate cell growth and migration 
indirectly by activating MMP15. 

ATP1B2 

Sodium/potassium-transporting 
ATPase subunit beta-2, 
Adhesion molecule in glia, 
Sodium/potassium-dependent 
ATPase subunit beta-2 

ATP1B2 Single-pass 
type II 
membrane 
protein 

Similar to ATP1B1 described above 
 
 
 
   

GPR35  
G-protein coupled receptor 35, 
G-protein coupled receptor 35 

GPR35 Multi-pass 
membrane 
protein 

This is a G-protein coupled receptor and  expressed predominantly in 
immune system and gastrointestinal system and act as a receptor for 
kynurenic acid which is involved in tryptophan metabolism 

FPRL1  

N-formyl peptide receptor 2, N-
formyl peptide receptor 2, N-
formyl peptide receptor 2, 
HM63,  
Lipoxin A4 receptor, LXA4 
receptor 
RFP 

FPR2, 
FPRH1, 
FPRL1, 
LXA4R 

Multi-pass 
membrane 
protein 

This is a G-protein coupled receptor for N-formyl-methionyl peptides, 
which are potent neutrophils chemotactic factors and causes activation of 
neutrophils and is expressed in lungs, spleen and testis besides 
neutrophils. 

MD1  

Lymphocyte antigen 86,   
MD-1 

LY86, 
MD1 

Associated 
with CD180 
at the cell 
surface 

This is found in association with CD180 and TLR4 on cell surface of B-
cells, monocytes and tonsil and is involved in innate immune response to 
bacterial lipopolysaccharide (LPS) and cytokine production. 

RVK     No information 

GLUT1  
Solute carrier family 2, facilitated 
glucose transporter member 1, 
Glucose transporter type 1, 

SLC2A1,
GLUT1 

Multi-pass 
membrane 
protein 

This protein is expressed in many human tissues, acts as a transport 
protein for a wide range of aldoses including pentoses and hexoses as 
well as a receptor for human T-cell leukaemia virus (HTLV) I and II. The 
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erythrocyte/brain, HepG2 
glucose transporter  

mutation of the gene encoding this protein can cause a neurological 
disorder called GLUT1 deficiency syndrome. 

F2RL3  

Proteinase-activated receptor 4, 
Coagulation factor II receptor-
like 3, 
Thrombin receptor-like 3 

F2RL3, 
PAR4 

Multi-pass 
membrane 
protein 

This protein serves as a receptor for activated thrombin or trypsin and 
stimulates phosphoinositide hydrolysis through G proteins. It is expressed 
in lung, pancreas, thyroid, testis and small intestine and may play a role in 
platelets activation. 

NMDAR1  

Glutamate receptor ionotropic, 
NMDA 1, Glutamate [NMDA] 
receptor subunit zeta-1 
N-methyl-D-aspartate receptor 
subunit NR1 

GRIN1, 
NMDAR1 

 Multi-pass 
membrane 
protein 

This is a glutamate-gated ion channel with high permeability to calcium 
and a key regulator for synaptic plasticity, synaptogenesis, excitotoxicity, 
memory acquisition and learning. 

DGCR2  

Integral membrane protein 
DGCR2/IDD  

DGCR2. 
IDD, 
KIAA0163 

Single-pass 
type I 
membrane 
protein 

It serves as an adhesion receptor, required for normal cell differentiation 
and migration and is predominantly expressed in brain, heart, lung and 
fetal kidney. As it is involved in neural crest cells migration, mutation in the 
gene can cause DiGeorge syndrome. 

CRHR2  
Corticotropin-releasing factor 
receptor 2 

CRHR2, 
CRF2R, 
CRH2R 

Multi-pass 
membrane 
protein 

This function as a receptor for corticotropin releasing factor and urocortin 
I, II and III. Its activity is mediated by G proteins which activate adenylyl 
cyclase. 

ADAM15  

Disintegrin and 
metalloproteinase domain-
containing protein 15, 
Metalloprotease RGD disintegrin 
protein 
Metalloproteinase-like, 
disintegrin-like, and cysteine-rich 
protein 15, Metargidin 

ADAM15, 
MDC15 

Single-pass 
type I 
membrane 
protein 

This is a metalloproteinase with multiple functional domains including a 
zinc-binding metalloprotease domain, a disintegrin-like domain, and an 
EGF-like domain. It interacts with the integrin beta chain, beta 3 by its 
disintegrin-like domain. It may function in cell-cell adhesion and cellular 
signalling by interacting with Src family protein-tyrosine kinases It is 
expressed in colon, small intestine airway smooth muscle and glomerular 
mesangial cells. 

CDH16 

Cadherin-16, Kidney-specific 
cadherin 

CDH16 Single-pass 
type I 
membrane 
protein 

Cadherins are calcium-dependent membrane-associated glycoproteins 
which serves as cell adhesion proteins. Expression is kidney specific, 
where it functions as a mediator of homotypic cellular recognition, playing 
a role in the morphogenic direction of tissue development. 

KIA0319    No data available 

GABBR1 

Gamma-aminobutyric acid type 
B receptor subunit 1 

GABBR1, 
GPRC3A 

 Multi-pass 
membrane 
protein 

It functions as a receptor for GABA, the main inhibitory neurotransmitter in 
the mammalian central nervous system, mediating the effects through G-
proteins related signalling. It is highly expressed in brain and to some 
extend in heart, small intestine and uterus. 
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NRG2 

Pro-neuregulin-2, Divergent of 
neuregulin-1,  Neural- and 
thymus-derived activator for 
ERBB kinases 

NRG2, 
NTAK 

 Single-
pass type I 
membrane 
protein 

It serves as a direct ligand for ERBB3 and ERBB4 tyrosine kinase 
receptors which induces the growth and differentiation of epithelial, 
neuronal, glial, and other types of cells.  Its expression is restricted to the 
cerebellum in the adult. 

NRAMP1  

Natural resistance-associated 
macrophage protein 1 

SLC11A1, 
LSH, 
NRAMP, 
NRAMP1 

Multi-pass 
membrane 
protein 

This protein functions as a divalent transition metal (iron and manganese) 
transporter. It is involved in iron metabolism and host resistance to certain 
pathogens especially macrophage-specific membrane transport function. 
Besides macrophages it is expressed on peripheral blood leukocytes, 
lung, spleen and liver. 

ENT1  

Equilibrative nucleoside 
transporter 1, Equilibrative 
nitrobenzylmercaptopurine 
riboside-sensitive nucleoside 
transporter, Equilibrative 
NBMPR-sensitive nucleoside 
transporter, Nucleoside 
transporter-es-type,  
Solute carrier family 29 member 
1 

SLC29A1, 
ENT1 

 This function as an equilibrative nucleoside transporter localized to the 
plasma and mitochondrial membranes and facilitates the cellular uptake of 
nucleosides from the surrounding medium.  It is expressed in heart, brain, 
mammary gland, erythrocytes and placenta. 

SDC3  

Syndecan-3 SDC3, 
KIAA0468 

Single-pass 
type I 
membrane 
protein 

 The main function of this protein is in maintaining cell shape by affecting 
the actin cytoskeleton. It is expressed in the nervous system, adrenal 
gland, and the spleen. 

LTB4R  LTB4R2 protein LTB4R2  No data available 

GPR3 

G-protein coupled receptor 3, 
ACCA orphan receptor 

GPR3, 
ACCA 

Multi-pass 
membrane 
protein 

This is a G-protein coupled receptor with possible role in multiple brain 
functions, including behavioural responses to stress. Besides predominant 
expression in central nervous system, it is expressed at a low level in 
lung, kidney, testis, ovary and eye. 

HPN  

Serine protease hepsin, 
Transmembrane protease serine 
1 

HPN, 
TMPRSS
1 

Single-pass 
type II 
membrane 
protein 

This is a type II transmembrane serine protease that may be involved in 
various cellular functions, including blood coagulation, maintenance of cell 
morphology and growth and progression of cancers, particularly prostate 
cancer. .It is expressed in most tissues with highest level in liver. 

RHBDL1 
Rhomboid-related protein 1  RHBDL1, 

RHBDL 
Multi-pass 
membrane 
protein 

It is an intramembrane serine proteases involved in intramembrane 
proteolysis and release of functional polypeptides from their membrane 
anchors. It is expressed in heart, brain, skeletal muscle and kidney. 
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SLC9A1 

Sodium/hydrogen exchanger 1, 
APNH 
Na(+)/H(+) antiporter, amiloride-
sensitive 
Na(+)/H(+) exchanger 1, Solute 
carrier family 9 member 1 

SLC9A1, 
APNH1, 
NHE1 

 Multi-pass 
membrane 
protein 

This protein is a plasma membrane transporter which plays a central role 
in regulating pH homeostasis by eliminating acids generated by active 
metabolism or to counter adverse environmental conditions. This protein 
has been proposed to be involved in tumour growth also. It is expressed in 
kidney and intestine. 

TGFA 

Protransforming growth factor 
alpha, Transforming growth 
factor alpha, EGF-like TGF, TGF 
type 1 

TGFA Single-pass 
type I 
membrane 
protein 

It is a ligand for the epidermal growth factor receptor, and promotes 
signalling pathway for cell proliferation, differentiation and development. 
Pathologically it is involved in many types of cancers, and in some cases 
of cleft lip/palate. It is expressed in keratinocytes and tumour-derived cell 
lines. 

JTB 

Protein JTB, Jumping 
translocation breakpoint protein,  
Prostate androgen-regulated 
protein,  

JTB Single-pass 
type I 
membrane 
protein 

It is a component of the chromosomal passenger complex (CPC), a 
complex required by centromere for accurate chromosome alignment and 
segregation during normal cytokinesis in mitosis. It is expressed in all 
normal human tissues. 

STIM1 

Stromal interaction  
molecule 1 

STIM1, 
GOK 

Single-pass 
type I 
membrane 
protein 

It is a ubiquitously expressed protein that plays a role in mediating Ca2+ 
influx after depletion of intracellular Ca2+ stores by gating of store-
operated Ca2+ influx channels (SOCs) where it acts as a  as Ca

2+
 sensor 

in the endoplasmic reticulum. 

PRRG1 
PRRG1 protein  PRRG1  This protein is required for post-translational gamma-carboxylation of 

specific glutamic acid residues by a vitamin K-dependent gamma-
carboxylase. It is highly expressed in spinal cord. 
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2.2.6. Non-specific expression 

Anti-CD3 antibody, which was used as the control antibody, should bind T-

cells but not CLL cells, as CD3 antigen is T-cell specific. Unfortunately, during 

the optimisation experiments the control antibody did not bind to the T-cells 

and showed non-specific binding to CLL cells and monocytes (Figure 2.3).  

 

Figure 2.3  Rabbit polyclonal CD3 antibody.  

The gating strategy and colour coding of the cells are similar to the experiments in 

direct staining technique. This shows non-specific binding of CD3 antibody to CLL 

cells (red) and monocytes (blue) and minimal binding to T-cells (purple) which is 

contrary to its usual expression pattern.  

To a certain extent the secondary antibody displayed some non-specific 

binding (Figures 2.4 and 2.5) and this was true with any fluorochrome used 

(Figures 2.6, 2.7 and 2.8). The secondary antibody was goat anti-rabbit IgG 

antibody, which was affinity purified and was adsorbed against human IgG 

and serum, mouse IgG and serum, and bovine serum to minimise cross-

reactivity. 

 

Figure 2.4 No primary test antibody. 

Cells were identified using CD5 on PE, CD19 on PECy7 and CD45 on FITC. Cells were 

then stained with secondary goat anti-rabbit IgG antibody conjugated to Alexa Fluor 

647. There is non-specific staining on all types of cells with the secondary antibody. 
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Figure 2.5 Secondary antibody alone.  

Cells were stained with secondary goat anti-rabbit IgG antibody conjugated to Alexa 

Fluor 647 alone without any conjugated antibodies to seperate the cells. Mononuclear 

cells were gated using forward and side scatter. This also shows non-specific staining 

with the secondary antibody. 

 

Figure 2.6 CD3 on PE.  

CLL cells were identified using CD19 on PECy7. Cells were then stained using rabbit 

polyclonal anti-CD3 as primary antibody and goat anti-rabbit IgG conjugated to PE as 

secondary antibody. Non-specific staining was observed on monoctyes and CLL cells. 

There was no seperation of T-cells using this CD3 antibody. 
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Figure 2.7 CD3 on APC.  

CLL cells were identified using CD19 on PECy7. Cells were then stained using rabbit 

polyclonal anti-CD3 as primary antibody and goat anti-rabbit IgG conjugated to APC as 

secondary antibody. Non-specific staining was observed on monoctyes and CLL cells. 

There was no seperation of T-cells using this CD3 antibody. 

 

Figure 2.8 CD3 on FITC.  

CLL cells were identified using CD19 on PECy7. Cells were then stained using rabbit 

polyclonal anti-CD3 as primary antibody and goat anti-rabbit IgG conjugated to FITC as 

secondary antibody. Non-specific staining was observed on monoctyes and CLL cells. 

There was no seperation of T-cells using this CD3 antibody. 
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2.2.7. Blocking Experiments 

Several blocking experiments were done to minimize the non-specific binding. 

Initially casein 0.08% (w/v) was tried at 2 different strengths, as casein is used 

in immunohistochemistry to block non-specific binding of polyclonal 

antibodies. This combination did not give any significant reduction in non-

specific binding (Figure 2.9). 

            

Casein 0.5μl                          Casein 5μl 

Figure 2.9 Blocking of non-specific binding with casein.  

Attempt to block non-specific binding of CD3 antibody using casein 0.08% (w/v) at two 

different dilutions. Non-specific binding was shown on CLL cells with both 

concentrations. 

Other blocking agents were tried, including FcReceptor (FcR) blocking agent 

(Miltenyi Biotec), Human IvIg at a concentration of 5% and goat serum (total 

protein of 6-9 g%). The data summarising these results are shown in Figures 

2.10, 2.11 and 2.12 respectively. 

 

Figure 2.10 Blocking of non-specific binding with FcR blocking reagent. 

 Attempt to block non-specific binding of CD3 antibody using FcR blocking agent. As 

per manufacturer's recommendation 10µl of the reagent was added before adding the 

antibody. Non-specific binding was shown on CLL cells.  
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Figure 2.11 Blocking of non-specific binding with human IvIg.  

Attempt to block non-specific binding of CD3 antibody using 10µl of human IvIg at a 

concentration of 5%. Non-specific binding was shown on CLL cells. 

 

 

Figure 2.12 Blocking of non-specific binding with goat serum.  

Attempt to block non-specific binding of CD3 antibody using 10µl of goat serum (total 

protein of 6-9%). Non-specific binding was shown on CLL cells.  

Individual agents were then tested in 3 different patients with increasing 

concentration of the blocking agent. The MFI of combined CLL cells and 

monocytes are expressed graphically (Figures 2.13, 2.14 and 2.15).  

   

Figure 2.13 Titration of FcR blocker.  

MFI of combined CLL cells and monocytes on using increasing strength of FcR 

blocker. Increasing concentration of the blocker is acquired by doubling the volume of 

blocker in each well starting from 2.5μl and making up the total volume to 80μl 

(maximum volume of blocker used) with FACS flow. 
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Figure 2.14  Titration of goat serum. 

MFI of combined CLL cells and monocytes on using increasing strength of goat serum. 

Increasing concentration of the blocker is acquired as in the previous experiment. 

 

Figure 2.15  Titration of human immunoglobulin. 

MFI of combined CLL cells and monocytes on using increasing strength of human 

immunoglobulin. Increasing concentration of the blocker is acquired as in the previous 

experiment.  

It was noted that individual blockers were differentially affecting expression 

levels on the individual cell populations. Therefore different combinations of 

these blockers were tested and are represented in Figure 2.16. 

 

Figure 2.16 Titration of combination of blocking agents.  

MFI of combined CLL cells and monocytes on CD3 and ADAM 8 using different 

combination of blocking agents. The volumes of each blocking agent in individual 

experiments are shown in X-axis. The order is FcR blocker-Human immunoglobulin-

Goat serum. The volume of individual blockers were based on the previous 

experiments. 
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Based on the above experiment, a combination of 20μl of IvIg and 10μl of 

goat serum was selected as the blocking agent. This combination resulted in 

the lowest non-specific binding while also remaining economical. To 

determine the efficacy of this combination, a selection of antibodies to the new 

antigens were tested with and without the blocking antibodies. Their log MFI 

on CLL cells and monocytes are shown in Figure 2.17. Expression of 

Nicastrin is shown in Figure 2.18 as an example plot. The ratio of signal (MFI 

on CLL cells) and signal-to-noise (ratio between MFI on CLL cells and 

monocytes) between blocked and non-blocked experiments of individual 

antibodies are graphically represented in Figure 2.19. 
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Figure 2.17 Expression various antibodies using IVIg and goat serum as 
blocking agents. 

Log MFI of various antibodies on CLL cells and monocytes using a combination of 20μl 

of IVIg and 10μl of goat serum as the blocking agent. Nicastrin shows almost a 

hundred-fold reduction in MFI on CLL cells and MNC when blocked with this 

combination. 

 

Figure 2.18 Example of antibodies tested using combination of 20μl of 
IVIg and 10μl of goat serum as the blocking agent.  

Expression of Nicastrin is shown here as a representative plot. Left panel is without 

the blocking reagent and the right panel is with the blocking reagent. 
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Figure 2.19 Ratio of signal between blocked and non-blocked MFIs of 
different antibodies.  

Mean MFI (n=2) of CLL cells were taken to calculate the signal ratio and mean MFI of 

CLL cells and monocytes were taken for signal-to-noise ratio. Signal ratio considerably 

below 1 and ratio of signal-to-noise between blocked and non-blocked experiments 

remaining very low as in anti-nicastrin suggests that non-specific binding is reduced 

by blocking agents. 

Some of the antibodies like nicastrin and CD99 had a significant reduction in 

the ratio of signal to noise between blocked and non-blocked MFIs while 

others like TNFRSF14, porimin and DAP 12 did not show any reduction. 

However, nicastrin is the only antibody which showed a reduction in noise 

ratio. This implies that antibodies like TNFRSF14, porimin and DAP12 may 

have specific expression on CLL cells while CD99 has expression on both 

CLL cells and monocytes and nicastrin does not have specific expression on 

either cell type. Given these results, the blocking agent was thought to be 

working in an appropriate manner. 

Following the evaluation of blocking agents, some of these antibodies were 

titered for optimal amount of test antibody to be added for the experiment 

(Figure 2.20). In the plots shown below, the concentration of the antibody just 

before the ratio falls is the ideal concentration to be used. The signal intensity 

for staining on CLL cells (blue line) plateaus and falls after a certain 

concentration. Signal-to-noise ratio both against monocytes (purple line) and 

T-cells (yellow line) should peak and then fall. Ideally the signal intensity 

should be maintained until the ratio peaks; however, none of the graphs 

presented below met these criteria. 
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Figure 2.20  Titration of antibodies. 

Neat antibody used was 5μl (1μg of CD99 and 5μg of other antibodies) Antibodies were 

serially diluted halving the concentration in subsequent wells up to a dilution of 1 in 

128. The concentration of antibodies varied from 0.1μg to 2.5μg. 

Even though the initial experiments suggested that the blocking was 

adequate, studies with further antibodies gave a uniform pattern of 

expression. This gave the impression that the problem of non-specific 

expression was not eliminated using the IvIg/goat serum blocking agent. 

Blocking with an increased volume of the goat serum also brought down the 

specific expressions and the non-specific expression blocking was not 

consistent (Figures 2.21, 2.22 and 2.23).  
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Figure 2.21 Titration of combination of human immunoglobulin and goat 
serum as blocking agents using CD3 antibody.  

Blocking with increasing concentration of goat serum from 0 to 250µl, maximum 

blocking effect was found at around 20 µl beyond which there was no meaningful fall in 

non specific expression. Volume of IVIg was kept constant at 20 µl. Statistical 

calculations were not possible due to small numbers. 
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Figure 2.22 Titration of combination of human immunoglobulin and goat 
serum as blocking agents using CD99 antibody.  

Blocking with increasing concentration of goat serum from 0 to 250µl blocked specific 

binding beyond 40 µl (Figure 2.23). Volume of IVIg was kept constant at 20 µl. 

Statistical calculations were not possible due to small numbers. 

 

Figure 2.23 Blocking with higher volume of goat serum.  

Increasing the amount of goat serum affected the monoclonal antibodies and the cells 

were no longer separated based on cell surface markers. CD3 on left panel and CD99 

on right panel. 

In order to overcome this difficulty, a further experiment with blocking in two 

steps i.e. initial blocking before adding the primary antibody and further 

blocking before adding the secondary antibody was conducted. This particular 

sequence seemed to reduce the problem of non-specific binding without 

affecting the specific binding (Figures 2.24 and 2.25).  
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Figure 2.24 CD3 and CD99 staining with double blocking.  

Initial blocking before adding the primary antibody and further blocking before adding 

the secondary antibody reduces the problem of non-specific binding (CD3) without 

affecting the  specific expression (CD99). 

   

Figure 2.25 MFI of different cell types with various blockers used for 
double blocking.  

The combination of IvIg + goat serum (GS) eliminates non specific binding without any 

major effect on specific expression. Sample size too low (n=2) for statistical analysis. 

This may be based on the principle that the binding of the antibody to the Fc 

receptor may be weak and will be affected by washing steps thereby exposing 

the Fc receptor again, before adding the secondary antibody. 

The following experiment confirms the abolition of non-specific binding of 

secondary antibody with combination of goat serum and IvIg. (Figures 2.26 

and 2.27). Expression was analysed with the secondary antibody alone 

without adding any primary antibody and the combination of both remove 

most of the non-specific binding of the secondary antibody. 
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Figure 2.26 Non-specific binding on different cell types with no block, 
IvIg alone, goat serum, and the combination of both.  

Only secondary antibody conjugated to APC was added without any primary antibody. 

This experiment shows that the secondary antibody itself has some non-specific 

binding, which can be eliminated by adding the combination of IvIg and goat serum 

before adding the secondary antibody.  

 

Figure 2.27 MFI of CD3 on CLL cells and monocytes using various 
concentration of IvIg and goat serum.  

From the titration experiment it was determined that 2.5μl of IvIg or 20μl of goat serum 

(GS) with or without the other agent is sufficient to reduce the non-specific binding. 

From all the above experiments it was concluded that a combination of 2.5μl 

of IvIg and 20μl of goat serum successfully reduce non-specific binding to an 

acceptable level. It was therefore decided to use this combination for testing 

the new antibodies. These blocking agents were used in 2 steps, both before 

adding primary and secondary antibodies.  
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Some of these antibodies were titrated for optimum concentration for further 

experiments as shown in Figure 2.28. 

 

 

 

 

Figure 2.28 Titration of antibodies.  

Neat antibody used was 10µg. Antibodies were serially diluted halving the 

concentration in subsequent wells up to a dilution of 1 in 128. 

Even though the above method was helpful to reduce the non-specific binding 

there were several pitfalls: 

1. There were several steps involved and it was very time consuming for 

large-scale screening.  

2. There was variation in expression between patients for the same antibody 

and to differentiate between specific and non-specific variation was difficult. 
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The next attempt to eliminate non-specific expression was to use the F(ab)2 

portion of the secondary antibody rather than the intact version. Several steps 

were done to optimise this secondary antibody (Figures 2.29, 2.30 and 2.31). 

 

Figure 2.29 Auto-fluorescence of mononuclear cells. 

 

Figure 2.30 F(ab)2 secondary antibody alone without any primary 
antibody or test antibody. 

 

Figure 2.31 F(ab)2 secondary antibody with standard diagnostic 
antibodies without any test antibody. 

To begin with, the background fluorescence was evaluated. These 

experiments suggest that the secondary antibody had minimal non-specific 

binding either to cells or to other mouse monoclonal primary antibodies. 

In the next part of the evaluation, primary conjugated antibodies were added 

either with the test antibody and adding the secondary antibody as the second 

step, or by adding the test antibody first followed by secondary antibody and 
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then by the primary conjugated antibodies with washes in between each step. 

The flow plots depicted in Figure 2.32 show the difference between these two. 

Three antibodies were selected: one was standard IgD which is usually 

expressed on CLL cells but not on T cells and monocytes, the second one 

was a test antibody (CD99) which is found to be positive on all cells from 

previous experiments and the third one (AMFR) was not expressed on any 

blood cells examined.  

  

  

  

Figure 2.32 Experiment comparing two methods of addition of test 
antibody.  

Primary conjugated antibodies were added either with the test antibody and adding the 

secondary antibody as the second step (Left panel) or by adding the test antibody first 

followed by secondary antibody and then by the primary conjugated antibodies with 

washes in between each steps (Right panel). Top to bottom are IgD, CD99 and AMFR 

as test antibodies.  
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These experiments suggest that there is minimal difference between whether 

the primary mouse monoclonal antibodies are added in the beginning with test 

antibodies or toward the end. 

The final parameter that required investigation was blocking of non-specific 

binding by IvIg and goat serum (Figure 2.33). 

   

 

   

 

Figure 2.33 MFI on CLL cells, monocytes and T-cells of IgD using 
different concentration of blocking agents.  

The top panel shows blocking with goat serum and the bottom panel with IVIg.The 

volumes of each blocking agent in individual experiments are shown on the X-axis. 

This shows that 1.2µl of IVIg on itself can eliminate non-specific binding when using 

F(ab)2 secondary antibody.    
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This experiment shows that IvIg even at a low concentration can eliminate 

most of the non-specific binding, but goat serum was not effective. The 

titration of the secondary antibody is shown in Figure 2.34. 

 

Figure 2.34 Titration of secondary antibody.  

Neat antibody used was 2μl.  The antibody was serially diluted halving the 

concentration in subsequent wells up to a dilution of 1 in 128. The primary test 

antibody used was IgD. Signal on CLL cells (blue) and signal-to-noise ratio on T-cells 

(yellow) and monocytes (pink) are shown in the graph. Titration was done without 

using IvIg as a non-specific blocker and with 1.25µl of IvIg as a blocker. 

Based on these experiments it was concluded that the best method for 

screening polyclonal antibodies using flow cytometry is to use F(ab)2 portion 

as the secondary antibody and to use 1.25µl of human IVIg as the non-

specific binding blocking agent. 

2.2.8. Zenon  labelling  

Zenon labelling was done using manufacturer's recommended method, the 

steps of which are as follows: (Figure 2.35) 1 μg of antibody was prepared in 

≤20 μL phosphate-buffered saline (PBS) 5 μL of the Zenon mouse IgG 

labelling reagent (Component A) was added to the antibody solution. This was 

incubated for 5 minutes at room temperature. 5 μL of the Zenon blocking 

reagent was then added. This solution was incubated for 5 minutes at room 

temperature and was used within 30 minutes. The rest of the steps are as 

standard flow cytometry steps. 
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Figure 2.35 Principles of Zenon labelling. This figure was directly taken from the 

Molecular Probes website. 

http://www.invitrogen.com/site/us/en/home/brands/Molecular-Probes/Key-Molecular-

Probes-Products/Zenon-Labeling-Technology.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.invitrogen.com/site/us/en/home/brands/Molecular-Probes/Key-Molecular-Probes-Products/Zenon-Labeling-Technology.html
http://www.invitrogen.com/site/us/en/home/brands/Molecular-Probes/Key-Molecular-Probes-Products/Zenon-Labeling-Technology.html
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2.3 Cell Culture 

2.3.1. Isolation of mononuclear cells (MNC) using Lymphoprep 

Blood was collected in tubes with EDTA as anticoagulant. Blood was diluted 

by adding equal amount of 0.9% sterile sodium chloride (NaCl) solution. The 

diluted blood was then layered over half the volume of lymphoprep in a 15ml 

centrifuge tube. After capping the tube was centrifuged at 800 x g for 20 

minutes at room temperature in a swing-out rotor without applying brakes. If 

the blood was stored for more than 2 hours the centrifugation time was 

increased to 30 minutes. Mononuclear cells form a distinct band at the sample 

medium interface (Figure 2.36). 

 

 

 

 

 

 

 

 

 

 

Figure 2.36 MNC separation using lymphoprep.  

After centrifugation mononuclear cells (MNC) form a distinct layer at the interphase 

between lymphoprep and plasma and the red cells (RBC) along with 

polymorphonuclear cells (PMN) sink to the bottom.  

The cells were removed from the interface using a pasture pipette without 

removing the upper layer The harvested fraction was diluted with medium to 

reduce the density of the solution and pellet the cells by centrifugation for 10 

min at 250 x g. Cells were the counted using an automated cell counter 

(Sysmex KX-21N). 

2.3.2. Isolation of CLL cells using B-cell isolation kit 

MNC were isolated as before and diluted in MACS separation buffer. The cell 

number was determined by automated cell counter. Cell suspension was 
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centrifuged at 300 x g for 10 min and the supernatant was aspirated. Cells 

were resuspended in 40μl of buffer per 107 cells followed by addition of 10μl 

of B-CLL Biotin-Antibody Cocktail per 107 cells. This was incubated for 10 min 

at 4oC. Cells were then washed with 1ml of buffer per 107 cells and 

centrifuged at 300 x g for 10 min. Supernatant was aspirated completely 

followed by addition of 80μl of buffer per 107 cells. 20μl of Anti-Biotin 

Microbeads per 107 cells was then added and incubated in at 4oC for 15 min. 

This was washed again with 1ml of buffer per 107 cells and centrifuged at 300 

x g for 10 min. Supernatant was aspirated and cells were resuspended in 

500μl of buffer. CLL cells were then separated using negative selection with 

B-cell isolation kit (B-CLL) (Miltenybiotec) and an auto-MACS separator. 

Purity was then assessed using flow cytometry by calculating the percentage 

of CD19 and CD5 positive cells. 

2.3.3. Maintenance of cell lines 

M210B4 (American Type Culture Collection) (Lemoine et al., 1990) cells and 

CD40L mouse fibroblast L cells (kindly donated by Dr. Sean Diehl, University 

of Vermont) (Diehl et al., 2002) were used as supporting cells for co-culture 

experiments. Roswell Park Memorial Institute (RPMI) 1640 with 10% Foetal 

Bovine Serum (FBS) and 1% penicillin-streptomycin (pen-strep) was used for 

M210B4 cells and Iscove's Modified Dulbecco's Medium (IMDM) with 10% 

FBS and 1% pen-strep was used for CD40L fibroblast cells. The cells were 

maintained in a 37°C incubator with 5% CO2 in air with 95% humidity. Cells 

were grown to confluence and passaged every 3-4 days.  

2.3.4. Preparation of mitomycin-c inactivated feeder layers 

Mitomycin-c was available as 2 mg powder vials. This was dissolved in 

distilled water to a make a concentration of 0.5 mg/ml. This was then added to 

the flasks in which feeder cells are grown to make a final concentration of 

10μg/ml (i.e. 600μl of the previous solution to flask containing 30 ml of 

medium). This was incubated at 37oC for 2.5 to 3 hours. The media with 

mitomycin-c was then removed and the flask was washed with 10 ml media 

once, followed by Hank’s Buffered Saline Solution (HBSS) twice. The cells 

were detached using trypsin-EDTA. They were then counted and used either 

for plating the wells or were frozen. 

2.3.5. Preparation of irradiated feeder layers 

1x108 CD40L fibroblasts cells in 40ml IMDM were irradiated with 50 grey at 

0.5 G/min. Following irradiation cells were stored in liquid nitrogen. 
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2.3.6. Absolute cell count 

Absolute cell count was determined using flow cytometry. 'Absolute Count 

Standard' beads were used which is a microsphere suspension of a known 

concentration, internally labelled with multiple fluorochromes. For 24 well 

plates the wells were transferred to individual tubes. The wells were then 

washed with PBS and the wash solution was added to corresponding wells. 

The tubes were then made up to 4 ml in total. 1 ml was transferred to another 

tube for cell counting using beads; the remaining 3 ml were used for viability 

assessments. This method eliminated the loss of cells by washing if cell count 

and viability are assessed simultaneously. For 96 well plates, adequate 

volume of beads was added directly to the wells. 50μl from the wells were 

acquired on a BD LSRFortessa™ using high throughput flow cytometry 

(HTC). The voltage was adjusted to make the beads fall in the plot separate 

from the cells. The plates are then taken out and the remaining contents in 

each well were then used for viability assessment. 

The cell count was determined using the formula:  

         [beads]                                                X 
                                      =                 
# of beads counted                       [(# cells counted)]  

where: X = cells/mL, beads = (concentration reported on CoA in ml)  

2.3.7. Assessment of cell viability 

Micro titre plates were used for flow cytometry experiments. Annexin-V, 7-

AAD-detection kit (ebioscience) was used for assessing viability. For 24 well 

plates, after harvesting the cells into a tube from the tissue culture plate, 

media was centrifuged and discarded. The cells are transferred to the 

microtitre plate and were washed with FACS flow BSA. For 96 well plates the 

plates were centrifuged and media discarded. 

Antibodies used to differentiate viable, early apoptotic and late apoptotic CLL 

cells include: 

•CD20-Pacific blue                          -0.5μl 

•Annexin-V-FITC                             -5μl 

•CD2-PE                                         -0.00625μg 

•7-AAD in the range of PE-Cy5     - 0.25μg 

•CD19-PE-Cy7                               -0.025μg 

•CD5-APC                                      -0.0125μg 

•CD45-APC-Cy7                            -0.2μg 
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After adding the antibodies, cells were incubated for 15 minutes. The cells 

were then washed with 100μl of standard binding buffer of the viability 

detection kit followed by addition of another 100μl of standard binding buffer 

and appropriate volume of annexin-V and 7-AAD. This was again incubated at 

room temp for 15 minutes followed by addition of another 100μl of standard 

binding buffer and acquired on the flow cytometer.   

2.4 Calcium Flux 

2.4.1. Labelling of cells with Ca2+ binding dyes 

To measure the intracellular Ca2+ flux, cells were resuspended in Hank's 

Balanced Salt Solution (HBSS) buffer supplemented with 1mM CaCl2, 1mM 

MgCl2 and 1%FCS (HBSS-CMF) at a concentration of 1x106 cells/ml. Indo-1 

solution was added to the cell suspension to give a final concentration of 3 

µg/ml or, alternatively, if fluo-3/fura-red was used fluo-3 was added at a 

concentration of 2.6 μM and fura red at a concentration of 5.5 μM. After an 

incubation of 30 min at 37oC, cells were washed twice with HBSS-CMF, and 

resuspended at a final concentration of 1x106 cells/ml. Where indicated, cells 

were then additionally incubated with the appropriate drugs for 30 min at 37oC 

prior to analysis. 

2.4.2. Sample Acquisition 

Samples were acquired on a flow cytometer with 350nm UV laser after pre-

warming the tube to 37oC for 5 min before acquiring. Samples were acquired 

at a rate of 100-200 events/second. Photomultiplier voltages (PMT) were set 

to make the cell population of interest to be in the centre of the dot plot of 

405/530 emission and therefore has a ratio of 1. After acquiring the baseline 

emission data for 60 seconds, stimulant was quickly added and data was 

recorded for another 4 minutes. The stimulants vary depending on the type of 

experiment and are defined with each experiment.   

2.5 Phosflow 

1x106 cells were diluted in normal saline to make it to a volume of 100μl. 

Appropriate tubes were then incubated with drugs for 30 minutes at 37oC. 

After staining with extracellular antibodies including CD45, CD19 and CD3, 

cells were stimulated with IgM or IgD for 60 seconds, followed by fixation with 

lyse fix buffer. Cells were then permeabilized using BD Phosflow Perm/Wash 

buffer I and stained with phosflow antibodies before acquiring. Perm/Wash 
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buffer I was used for all antibodies as it was compatible with most phosflow 

antibodies used in the experiments. Due to time restriction optimisation of the 

buffers for each antibody was not done.  

2.6 SYK and ZAP70 expression 

SYK and ZAP70 expression were analysed using standard intrasure (BD 

Biosciences) protocol. To briefly describe the procedure, 1 x 106 cells were 

initially stained with surface antibodies CD19 on PECy7 and CD3 on APC or 

PacO. Cells were then fixed with reagent A followed by red cell lysis with BD 

FACS lysing solution. Subsequently permeabilization was done using reagent 

B before staining with intracellular antibodies, ZAP70 on PE and SYK on 

FITC. 

2.7 RNA Identification 

2.7.1. RNA Extraction Method 

RNA extraction was performed using 1ml of Trizol and 200μl chloroform 

followed by 0.5ml of isopropanolol/ml of Trizol (Life Technologies) used to 

store the sample. The pellet formed by centrifugation was washed with 1ml of 

75% ethanol, air dried and resuspended in 10μl of RNase free water. DNA 

was removed using 1μl of buffer and 1μl of turbo-DNA free (Life 

Technologies) followed by 1.5μl of stop solution.  

2.7.2. Reverse Transcription 

RNA amplification was done in a 0.2ml thin walled tube by mixing 1μl of 

extracted RNA (<1μg) with 0.2μl of random hexamer (0.5μg) and making up 

volume to 5μl using RNase free water (2 tubes per sample). This was 

incubated on thermal cycler 70oC for 5 minutes, then cooled for 5 minutes 

Reverse transcription was done using the following master mix with and 

without reverse transcriptase. All reagents were purchased from Promega. 

Improm II reaction buffer- 4μl 

RNase free water- 3.1μl 

25mM MgCl2  - 2.4μl 

2.5mM dNTP mix - 4μl 

RNAsin inhibitor - 0.5μl 

Improm II reaction buffer- 4μl 

RNase free water- 4.1μl 

25mM MgCl2  - 2.4μl 

2.5mM dNTP mix - 4μl 

RNAsin inhibitor - 0.5μl

Improm II reverse transcriptase -1μl 
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15μl of RT+ mix and RT- mix was aliquoted into each of the 2 annealed 

samples. This was incubated using a thermal cycler at 25oC for 5 minutes, 

42oC for 60 minutes, 70oC for 15 minutes. 

2.7.3. Primers 

An exonic sequence involving the maximum number of isoforms of a subunit 

was selected from PubMed gene database (Table 2.1). Primer sequences 

were obtained from the PubMed Primer-BLAST program and were purchased 

commercially (Sigma Aldrich). Primers were diluted to 10μM using RNase free 

water. 

Table 2.1 Details of primer pair for each subunit  

Subunit FORWARD PRIMER REVERSE PRIMER 
Produ

ct size 

CHRNA1 CATCGTCAACGTCATCATCC ATTTTCCAATCAAGGGCACA 188 

CHRNA2 CCACCAACGTCTGGCTAAAA CATCTCAGAAGGGACCCTGA 101 

CHRNA3 GGAGATCTACCCCGACATCA AAATGCACAGGGTCACCTTC 158 

CHRNA4 GCTGGACTTCTGGGAGAGTG AGGGGATGATGAGGTTGATG 161 

CHRNA5 
TGAAATTTGGTTCTTGGACTT

ATG 
AGCAACAGCTGTCGGTTCTG 150 

CHRNA6 GGCTGTGCAACTGAGGAGA GGCCACTTCAAAGTGTACCG 111 

CHRNA7 TGGAGAATGGGACCTAGTGG GAAATCTTCTCCCCGGAATC 210 

CHRNA9 TACAATGGCAATCAGGTGGA TGAATGTGACATCCGGGTAA 157 

CHRNA10 TCCAGGCCACCTGAGTTATC AGGGCCATGGAGAAGAAGAT 239 

CHRNB1 
GAGTGGACTGACTACAGGCT

GA 
GAGGACACCACGACGCTAAT 161 

CHRNB2 GATCCTTCCCGCTACAACAA AGCCAGATGTGTTTGGAAGG 230 

CHRNB3 CCACATCGGTCTTGGTTTCT GGGTGGTACGTGGAAGAAGA 187 

CHRNB4 AGCGCAAGCCTCTGTTCTAC CACGATCTTGGAGATGAGCA 170 

CHRND CCTGGCTCAGTCTGTCTTCC TGTTCGGAAGTGGATGTTGA 157 

CHRNE GCGGAGGAGCTGATACTGAA CCTCCTGATCTCTCGTGCTC 175 

CHRNG GCTAACCCTCACCAACCTCA CGTTGTTCTCCAGCACGATA 185 

GAPDH CTGCCGTCTAGAAAAACC CCAAATTCGTTGTCATACC 223 
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2.7.4. PCR 

PCR was done in 0.2ml thin walled PCR strips by assembling the following 

components for each primer pair, including the positive control GAPDH 

primers. 

Reverse transcribed cDNA (with control RT for each primer pair) - 1μl 

Primer pair- 2μl 

RNase free water- to make up to 20μl in total. 

Phusion flash 2x Master mix 

Additional magnesium chloride - for gradient PCR 

This was amplified in the thermal cycler with 35 cycles programme. Amplified 

products were visualised using agarose gel. Gradient PCR was done using 3 

Mg2+ concentrations (1.5, 2.5, 3.5mM) and 3 temperatures (63, 65, 68oC). 

Cycle programme was as follows: 

stage 1 2 3 

cycles x1 x35 x1 

step 1 1 2 3 1 2 

temp (oC) 98 98 variable 72 72 4 

time (sec) 10 1 5 10 60 α 

 

2.7.5. DNA extraction for sequencing 

DNA extraction was done using ZymocleanTM Gel DNA recovery kit. The 

technique was adopted from manufacturer's recommendation. Briefly, 3 times 

volume of agarose dissolving buffer (ADB) buffer was added to each volume 

of gel and incubated at 55oC for 5-10 minutes. Melted agarose solution was 

centrifuged using Zymo-Spin column for 30 seconds. Columns were washed 

using 200μl of wash buffer twice. DNA was eluted from columns using 6-10μl 

of water. 



  
 

3. Antigen expression by flow cytometry as screen for 

treatment targets  

As explained in the introductory chapter new, highly expressed antigens in 

CLL could be explored as therapeutic targets. The aim of these experiments 

was to identify new antigens expressed on the surface of CLL cells by initially 

screening published gene expression profiling data and then confirming 

expression by flow cytometry.    

3.1 Antigen identification 

Gene expression profiling of B-cell malignancies on a genomic scale has 

been done previously and is available on dataset browsers (Klein et al., 

2001b) (A. Rosenwald et al., 2001) (Haslinger et al., 2004). This has identified 

specific signature patterns for RNA expression in CLL compared with other B-

cell malignancies and normal B-cells. Comparative analysis of large numbers 

of samples, especially when using supervised analysis tools, allows the 

identification of genes that are specifically up- or down- regulated in CLL. 

Identification of corresponding gene products is important in diagnosis, 

prognosis and to direct potential therapeutic approaches. However, the mRNA 

expression may not correlate directly with the protein content of the cell. The 

amount of protein produced depends on various factors like the physiological 

state of the cell, the gene it is transcribed from, the speed with which the 

mRNA is degraded in the cell before translation, etc (Rogers et al., 2008) 

(Dhingra et al., 2005). Moreover the functions of several proteins depend on 

post-translational modification like phosphorylation, glycosylation and complex 

formation with other proteins. A single transcript can occasionally give rise to 

different proteins by methods like alternative splicing (Black, 2003). Therefore, 

direct identification of the protein expression will be more helpful in detecting 

potential diagnostic and therapeutic targets. Antigens with plasma membrane 

surface epitopes are easier targets for standard diagnostic 

immunophenotyping by flow cytometry as well as for therapeutic treatment 

with monoclonal antibodies. 

Microarray data from the Gene Expression Omnibus database was analysed 

for genes expressed in CLL.The study, in which there was maximum number 

of cases when this project was initiated, was selected for the analysis 

(Haslinger et al., 2004). The selected study analysed 100 CLL patients and 11 
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control B-cell samples using a synthesised oligonucleotide array. These cases 

were well defined with regards to their genomic aberrations as well as their 

IGHV mutational status. From the original excel spreadsheet, patients’ data 

was selected and the median expression for individual genes was calculated. 

The gene ontology cellular component column explaining the subcellular 

expression from the original platform was then attached to this spreadsheet. 

Genes were then rearranged by the descending order of their median 

expression. These were then filtered for plasma membrane expression using 

Excel (Table 3.1). Out of the 12586 genes in the original database, 2872 had 

plasma membrane expression. These antigens were then individually 

searched for availability of antibodies binding to extracellular epitopes from 

commercial suppliers. Further analysis of any antigen was excluded if it has 

been already studied in CLL. 760 antigens were examined, in the descending 

order of their expression, and of these 121 had antibodies available (Table 

3.2).  

Table 3.1. The appearance of the data associated with an individual gene 
after filtering for plasma membrane expression. 

ID_REF IDENTIFIER Subcellular expression Median 

37039_at HLA-DRA 0005764 // lysosome // inferred from direct 

assay /// 0005886 // plasma membrane // not 

recorded /// 0005886 // plasma membrane // 

inferred from direct assay /// 0005887 // 

integral to plasma membrane // non-

traceable author statement /// 0009897 // 

exter 

125008 

Table 3.2.The 760 antigens associated with plasma membrane 
localisation in the descending order of median expression in gene 
expression profiling.  

The tested antigens are shown in bold.  

Row 
Number 

IDENTIFIER Row 
Number 

IDENTIFIER Row 
Number 

IDENTIFIER 

1 HLA-DRA 256 SPINT1 510 TNK1 

2 IGHM 257 TMPRSS6 511 HYAL2 

3 GNB2L1 258 RAC3 512 ATP6AP2 

4 CXCR4 259 CD247 513 PDE2A 

5 CD37 260 SPTAN1 514 NCKAP1L 

6 LAPTM5 261 DLGAP4 515 ITGAV 

7 HLA-DPA1 262 RAP1A 516 JUP 

8 CD74 263 M6PR 517 BSCL2 

9 OAZ1 264 ITPR1 518 MTMR4 

10 HLA-DPB1 265 CRKL 519 ILVBL 

11 GNAS 266 JAG1 520 TMEM184B 
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12 HLA-DMA 267 KIDINS220 521 SLC46A3 

13 GAPDH 268 USP24 522 SNN 

14 CYBA 269 TMEM131 523 CEACAM3 

15 SYNGR2 270 EXTL3 524 TYMP 

16 HLA-DMB 271 LIPE 525 TM9SF2 

17 CD79A 272 RAB31 526 DPEP1 

18 HLA-F 273 DGCR2 527 ABCA6 

19 HLA-E 274 SLC6A7 528 SYNGR3 

20 IL23A 275 SLC30A3 529 CD3D 

21 CD83 276 MADD 530 ELMO1 

22 JTB 277 LY86 531 SLC39A14 

23 HLA-DQB1 278 SEC61B 532 MCF2L 

24 IFITM1 279 ACP5 533 CDH16 

25 VAMP2 280 PIGC 534 SLC29A1 

26 ATP6V0C 281 STOM 535 CYP2A6 

27 ANXA2 282 DNAJC4 536 TXNDC13 

28 HLA-J 283 BLCAP 537 GPR15 

29 EMP3 284 CTSD 538 LILRB3 

30 RAC2 285 STX7 539 FAIM2 

31 CCR7 286 ICAM2 540 RALBP1 

32 HLA-G 287 DEGS1 541 ABCC10 

33 IL4R 288 PIP4K2B 542 CDK3 

34 ARHGDIB 289 SEC11A 543 LAIR1 

35 CD53 290 SH2B2 544 CYP4F12 

36 PTP4A2 291 C7orf23 545 OFD1 

37 SSR2 292 TMEM87A 546 IL2RB 

38 TAGLN2 293 PLOD3 547 COBLL1 

39 TMEM123 294 PTPRN 548 PARVB 

40 IGHD 295 MAP3K7IP2 549 PTPN4 

41 GDI1 296 PIGA 550 CSF2RB 

42 C2orf24 297 IFNGR1 551 SEMA7A 

43 LAMP1 298 GGT5 552 DRD2 

44 SELL 299 PLXNB2 553 CD40 

45 DGKA 300 PIGB 554 C12orf51 

46 CSK 301 SLC5A6 555 LETMD1 

47 LILRB1 302 C5orf15 556 ATP6V1A 

48 ITGB1 303 SIT1 557 NKTR 

49 FCER2 304 VPS39 558 CACNA1C 

50 HLA-DOB 305 CNP 559 PTGER4 

51 CSF1 306 VAMP7 560 GPR12 

52 SLC2A3 307 STIM1 561 CDH4 

53 PNPLA2 308 PLXND1 562 ITM2A 

54 CD81 309 SACM1L 563 AAMP 

55 UGCG 310 SLC7A7 564 PTPRE 

56 MS4A1 311 MPPE1 565 IL27RA 

57 PTPRCAP 312 PKN1 566 CD70 

58 SYPL1 313 PLEKHB2 567 MAGI1 

59 ADD3 314 ROR1 568 PDE4A 
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60 P2RX5 315 ORAI2 569 DPAGT1 

61 DYNLL1 316 CHMP2A 570 LAMA5 

62 AP2M1 317 CLPTM1 571 ATP11A 

63 RHOH 318 MUC3A 572 SLC13A2 

64 APOL1 319 LRRC32 573 PDCD1 

65 CAP1 320 TMEM63A 574 TGFBR3 

66 LY6G6C 321 GNG7 575 ATP6V0A1 

67 DGKD 322 KCNH2 576 FLT3LG 

68 IGHG1 323 DPM2 577 CR2 

69 WBP2 324 RHBDL1 578 TAOK3 

70 ATP6V0B 325 ALG3 579 JAG2 

71 INPP5D 326 SLC7A5 580 IL11RA 

72 BTN3A1 327 CLDND1 581 ACVRL1 

73 IL10RA 328 FKBP2 582 ABCC1 

74 CIB1 329 VCL 580 CBARA1 

75 CKAP4 330 ITGA2B 581 IFNAR2 

76 CD99 331 MMP15 582 ABCC8 

77 GDI2 332 CTNNA1 583 TM7SF2 

78 HERPUD1 333 UBE2J1 584 GBAS 

79 IL2RG 334 CD3E 585 LRP3 

80 CD27 335 CRHR2 586 GP2 

81 VAMP8 336 LY6E 587 CYBB 

82 MFSD10 337 AATK 588 CACNA2D2 

83 ARF6 338 SLC9A1 589 MFSD5 

84 PLCG2 339 GRIP2 590 VNN2 

85 GRIK5 340 CD14 591 THBD 

86 NCF4 341 PFDN1 592 KIAA1128 

87 RASGRP2 342 C7orf44 593 STAB1 

88 IFNGR2 343 RNF19B 594 GPSN2 

89 EPOR 344 VPS26A 595 ARFIP2 

90 CRLF3 345 KRAS 596 CD59 

91 TMC6 346 KCNJ4 597 MEG3 

92 CD48 347 BTN3A2 598 P2RX4 

93 CD69 348 RAMP3 599 TGFA 

94 GRK6 349 SKAP2 600 CD7 

95 EVI2B 350 CD5 601 GBP2 

96 PLEC1 351 CD24 602 FRY 

97 SSR4 352 IL7R 603 SGCE 

98 RAP1B 353 SLC10A3 604 AAK1 

99 AP2A2 354 GRK5 605 ENTPD1 

100 PTDSS1 355 CAPZA2 606 NTNG1 

101 ICAM3 356 PIK3IP1 607 TRAM1 

102 FTH1 357 STARD3 608 SLC7A4 

103 BASP1 358 MR1 609 CLCN6 

104 PCDH9 359 EHD1 610 NPHP4 

105 GRM4 360 SLC4A2 611 SDF2 

106 ADRBK1 361 AP2B1 612 NRG2 

107 PTPN1 362 PEX11B 613 KCNMB1 
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108 SYP 363 GPR56 614 ALG8 

109 DDOST 364 FNDC3A 615 AQP8 

110 ADCY6 365 RHCE 616 CYP2F1 

111 IFITM2 366 SLC38A10 617 PVR 

112 ARHGAP1 367 C6orf105 618 MMD 

113 IGSF9B 368 ADCY3 619 STX2 

114 GPR18 369 GRM2 620 EFNA2 

115 TYROBP 370 TAP1 621 ARL6IP5 

116 NPTXR 371 KIAA0319 622 HCK 

117 RAC1 372 PHKB 623 GUCA1A 

118 ATP6V1F 373 RFTN1 624 F7 

119 CD200 374 P2RX1 625 SLAMF1 

120 ARHGEF1 375 ACCN1 626 CDC42EP3 

121 PITPNM1 376 TAZ 627 EFNB1 

122 KIAA0922 377 GNG5 628 POR 

123 IL10RB 378 SLC4A3 629 ADA 

124 DNAJA1 379 MAL 630 PCTK1 

125 P2RY10 380 ATP1B1 631 C9orf61 

126 CD22 381 IL17RA 632 ENPP2 

127 CD55 382 ITPR2 633 ATP10D 

128 RAPGEF2 383 DDR1 634 MRC2 

129 RTN4 384 BTN2A1 635 STMN1 

130 DAD1 385 SEC31A 636 SLC37A4 

131 FLOT2 386 EDA 637 TM4SF5 

132 SERP1 387 DPM1 638 BAIAP2 

133 FOLR1 388 ADCY7 639 CADM4 

134 GPR161 389 GCS1 640 FPR2 

135 PIP5K3 390 CNPY2 641 LY75 

136 ADAM8 391 ITGAL 642 TLR6 

137 ATP2B1 392 HEXA 643 INSIG2 

138 TCIRG1 393 CD72 644 SLC2A1 

139 CXCR5 394 VPS11 645 TEX28 

140 EPS15 395 LTK 646 IL6ST 

141 TNFRSF14 396 VAV1 647 PPM1A 

142 NKG7 397 EFR3A 648 SEC62 

143 CAPN1 398 CNR2 649 GPM6A 

144 ATP6V1G1 399 MMP14 650 MAP3K12 

145 HLA-DQA1 400 INPPL1 651 RALB 

146 TMEM147 401 SCN4A 652 SLC43A1 

147 ADAM19 402 PIP5K1C 653 TIMP2 

148 CD47 403 C16orf42 654 ACCN3 

149 KCNN4 404 HPN 655 TRPM2 

150 DOCK2 405 SLC16A3 656 F2RL3 

151 ATP1B3 406 LRBA 657 LTB4R 

152 PLK3 407 TUBB3 658 SLC12A4 

153 FCGRT 408 ATP6V1B2 659 SLC7A11 

154 EDEM1 409 LRPAP1 660 KLRB1 

155 LRP10 410 APOM 661 SLC16A6 
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156 PRF1 411 CD8B 662 SLC11A1 

157 ATP6V0E1 412 CD2 663 TMEM41B 

158 LY9 413 MBOAT7 664 LYPD3 

159 LILRA4 414 ATP2A2 665 MPP3 

160 GYPC 415 ESD 666 STXBP3 

161 TEX261 416 GLB1 667 RGS14 

162 FAM134C 417 TNFRSF25 668 ABCC5 

163 TMEM59 418 SEC61G 669 LILRA3 

164 KCNAB2 419 ITGA3 670 TMEM115 

165 SDC3 420 INSIG1 671 TNFRSF10C 

166 MTMR1 421 CACNB1 672 CD1D 

167 HLA-DOA 422 ADIPOR2 673 TLN2 

168 PTK2B 423 NCR3 674 CLDN9 

169 FAM38A 424 DNAJC16 675 LRIG1 

170 RHOG 425 PTPLB 676 CD300C 

171 GPAA1 426 AGPAT2 677 RALGPS1 

172 CD97 427 HTR7 678 EHBP1 

173 MARCKSL1 428 RRAS 679 LGMN 

174 DIAPH1 429 ATP8A1 680 BID 

175 TNK2 430 MTMR3 681 CNKSR1 

176 AGPAT1 431 TSPAN31 682 CYP2C19 

177 RNF103 432 ACVR1B 683 LEPROT 

178 ANXA6 433 ENO2 684 ABCB1 

179 SHC1 434 STX4 685 ITGAE 

180 S1PR4 435 VAMP3 686 SRC 

181 GRINA 436 ACAA1 687 BTN3A3 

182 SLC23A2 437 ZDHHC18 688 TMEM11 

183 NPTN 438 CD63 689 CX3CR1 

184 SPTLC1 439 NAE1 690 CDH15 

185 RHOC 440 CD34 691 FDFT1 

186 CLTA 441 CD8A 692 CSF3R 

187 STAM 442 LANCL1 693 OPRL1 

188 EI24 443 RHOQ 694 LEPROTL1 

189 NISCH 444 GIPC1 695 ITGB1BP1 

190 CHRNB4 445 SEC63 696 PRRG1 

191 YME1L1 446 UTRN 697 KCNN1 

192 ADAM28 447 PPT1 698 ALPPL2 

193 SPINT2 448 SLC7A6 699 RASGRF1 

194 ITGB7 449 ILK 700 DNAJB12 

195 ATXN2L 450 PECAM1 701 ARSA 

196 FCGR2B 451 KCTD2 702 CNTNAP2 

197 BNIP2 452 PDCD10 703 GLT8D1 

198 SORL1 453 FGFR1 704 SCARB1 

199 ULK1 454 OR2F1 705 APLP1 

200 ATP11B 455 MAGED1 706 CAPRIN1 

201 SERINC1 456 TMCC1 707 ERBB3 
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202 KIAA0247 457 TBC1D9B 708 GRIN1 

203 MICB 458 UPK1A 709 FAM8A1 

204 BLNK 459 IL8RB 710 KLRC3 

205 CD46 460 ADAM15 711 RAB22A 

206 MXRA8 461 ATG12 712 SLC1A6 

207 CD6 462 NCK2 713 GPR3 

208 GABBR1 463 RHEB 714 EGF 

209 LPAR2 464 AQP5 715 CYB5R1 

210 CNTN2 465 KRIT1 716 LILRB4 

211 TNFRSF13B 466 SCRIB 717 MPP2 

212 MARS 467 FAM127A 718 SLC6A9 

213 RHOD 468 NECAP1 719 SLC11A2 

214 AKR1A1 469 SLC18A3 720 KRT1 

215 RRAS2 470 DHCR7 721 CCKBR 

216 PIGO 471 CYP4B1 722 POL3S 

217 FYN 472 TRD@ 723 DDX10 

218 ITGAX 473 SLC22A18 724 DRD4 

219 RCE1 474 ABHD14A 725 GNPAT 

220 RAB8A 475 CD1C 726 AVPR1B 

221 PPP1R16B 476 SLC4A1 727 PLEKHB1 

222 TNFSF9 477 ATP4A 728 SLC5A2 

223 LMTK2 478 SDC1 729 VEGFA 

224 MC2R 479 SMPD2 730 SEC31B 

225 KIAA1109 480 BCAM 731 SLC7A1 

226 MYD88 481 PHKA2 732 CYB561D2 

227 AP2S1 482 CSPG4 733 IL1RL1 

228 SYNPO 483 SELPLG 734 FCER1G 

229 CAPN2 484 SLC1A5 735 MFAP3 

230 KTN1 485 KCNQ1 736 RGS9 

231 TNFRSF10B 486 ATP1B2 737 FAM119B 

232 BZRPL1 487 ATP13A3 738 MYO7A 

233 RNF167 488 HPS1 739 ICOS 

234 RRBP1 489 SSTR5 740 SLC22A6 

235 FADS1 490 RAB4B 741 GNA15 

236 RASGRP3 491 C1orf95 742 GJB1 

237 CLCN7 492 MGST3 743 PLCH2 

238 SLC20A1 493 SLC9A3R1 744 VRK2 

239 PNPLA6 494 TNFRSF1A 745 IER3 

240 CXCR3 495 LHFPL2 746 PTGER3 

241 FAM62A 496 YIPF2 747 PIGQ 

242 RAB14 497 SLC30A1 748 GPR107 

243 TRAM2 498 ATP6V0A2 749 PRAF2 

244 PLAUR 499 EBP 750 RYK 

245 KIAA0195 500 psiTPTE22 751 MAP3K7IP1 

246 VAPA 501 PIGR 752 TLR1 

247 SPG7 502 C10orf26 753 PTPRA 

248 AMFR 503 SLC35D1 754 PMP22 

249 RAB5B 504 CYP4A11 755 SEMA5A 



-108- 
 

 
 

250 EFNA3 505 KIAA0317 756 LPGAT1 

251 PSD4 506 AQP7 757 SYNGR4 

252 GPR35 507 TSPAN3 758 FAAH 

253 ALOX5AP 508 LPL 759 GUCA1B 

254 ITGB2 509 FCGR3B 760 GRM1 

255 MAG     

3.2 Antibody identification 

The detection of a cell surface antigen by flow cytometry requires recognition 

of a preserved epitope. Amongst the commercially available antibodies to the 

antigens of interest, there was a mixture of antibodies that had previously 

been used for flow cytometry applications as well as untried reagents. 

Moreover, the list included both polyclonal and monoclonal preparations. The 

relative advantages and disadvantages of these are described in detail below.  

3.2.1. Polyclonal antibodies  

Polyclonal antibodies are combination of immunoglobulin molecules secreted 

against different epitopes of a specific antigen. These antibodies are typically 

produced by inoculation of a suitable animal such as rabbit, chicken, goat, 

guinea pig, hamster, horse, mouse, rat, and sheep of which rabbit is the most 

frequently used one. An antigen is injected into the mammal which induces 

the B-cells to produce immunoglobulin specific for the antigen. Large proteins 

usually result in better engagement of antigen presenting and antigen 

processing cells for a satisfactory immune response. If smaller antigens are 

used then they are conjugated to a carrier protein like keyhole limpet 

hemocyanin (KLH) and bovine serum albumin (Harlow and Lane, 1988). This 

polyclonal Ig is purified from the mammal’s serum by various techniques like 

ultra-filtration, dialysis, ion exchange chromatography size exclusion 

chromatography and protein A/G affinity chromatography. The bound 

antibodies are eluted from the column using high salt concentration or pH 

changes (Grodzki and Berenstein, 2010) (Leenaars and Hendriksen, 2005). 

Polyclonal antibodies usually recognise multiple epitopes on any one antigen 

and the serum obtained will contain a heterogeneous complex mixture of 

antibodies of different affinity. Therefore polyclonal antibodies are not useful 

for probing specific domains of an antigen because polyclonal antiserum will 

usually recognize many domains. But relatively large amounts of antibodies 

can be produced in a short time span and with minimal expense. As 

polyclonals will recognize multiple epitopes on any one antigen, it is 

advantageous to amplify signal from target proteins with low expression level, 
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as the target protein will bind more than one antibody molecule on the multiple 

epitopes, which generally provides a more robust detection (Harlow and Lane, 

1988). However, this would be disadvantageous for quantification 

experiments like flow cytometry, as the results could become inaccurate as 

the antigenicity may vary between batches and the standardisation is difficult. 

Due to recognition of multiple epitopes, polyclonals are often the preferred 

choice for detection of denatured proteins can give better results in Western 

blotting and immunoprecipitation. They are not affected by minor changes in 

the antigen like polymorphism, heterogeneity of glycosylation, or slight 

denaturation, as are monoclonal (homogenous) antibodies (Lipman et al., 

2005). They are useful to identify proteins of high homology to the immunogen 

protein or to screen for the target protein in tissue samples from species other 

than that of the immunogen e.g. polyclonal antibodies are sometimes used 

when the nature of the antigen in an untested species is not known. This also 

makes it important to check the immunogen sequence for any cross-reactivity. 

Polyclonal antibodies have a huge batch-to-batch variation and they can 

contain large amounts of non-specific antibodies that can sometimes give 

background signal in some applications (Nelson et al., 2000). 

3.2.2. Monoclonal antibodies 

Monoclonal antibodies are antibodies produced by a single B lymphocyte 

clone. They are typically made by hybridomas obtained by fusing myeloma 

cells with the splenic cells from a mouse that has been immunised with a 

desired antigen (Köhler and Milstein, 1975). The hybridomas can be grown 

indefinitely in a suitable cell culture medium or can also be injected into the 

peritoneal cavity of a mouse, which produces tumours secreting antibody-rich 

ascitic fluid. Antibodies are then purified by various techniques like ultra-

filtration, dialysis, ion exchange chromatography, size exclusion 

chromatography and protein A/G affinity chromatography.  As monoclonal 

antibodies detect only one epitope on the antigen and consist of only one 

antibody subtype, where a secondary antibody is required for detection, an 

antibody against the correct subclass should be chosen.  Monoclonals usually 

have less background staining in various applications (Lipman et al., 2005). 

As they are more specifically detecting one target epitope, they are less likely 

to cross-react with other proteins. Compared to polyclonal antibodies, 

homogeneity of monoclonal antibodies is very high. If experimental conditions 

are kept constant, results from monoclonal antibodies will be highly 

reproducible between experiments. But monoclonal antibodies are more 

vulnerable to the loss of epitope through chemical treatment of the antigen 
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than are polyclonal antibodies (Harlow and Lane, 1988). Also their production 

requires labour-intensive technology that is expensive and time consuming. 

Polyclonal antibodies, produced in either rabbit or mouse, are the commonest 

used in our experiments. If there was a monoclonal antibody conjugated to a 

fluorochrome available commercially, then that was the first order of 

preference. These antibodies are commercially tested and optimised for flow 

cytometry. Out of the 84 antibodies tested 20 antibodies were commercially 

conjugated mouse monoclonal antibodies, 44 were rabbit polyclonals and 20 

were unconjugated mouse monoclonals.  For testing these antibodies 

standard flow cytometry procedures were adopted.  

3.3 Analysis of direct staining 

Based on the difference in gene expression between normal controls and CLL 

samples, it is predicted that certain cell surface proteins may act as unique 

identifiers of CLL. To test this, samples from 10 patients and 3 controls were 

evaluated using direct staining.  

Monoclonal antibodies conjugated to a PE used for direct staining included 

CD167a, CD85j, CD298, CD119, ERB, CD205, CD97, Integrin b7, DR3, 

CD137, CD51, CD141, IFN-γ R β chain, CD210, CD155, CD279, CD337.  

Example plots for antigen expressions using direct staining from patient (left 

panel) or control (right panel) are shown in Figure 3.1.  

  

CD85j 
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CD298 

Figure 3.1  Example plots for  antigens tested using direct staining 
technique.  

The left panel represents the expression on CLL cells (red) and the right panel shows 

the expression on normal B-cells (green). The name of the antigen is identified on the 

bottom of each plot.  

For each antigen, the median fluorescence intensity (MFI) of staining was 

calculated. The average MFI ± sd on individual cell subsets from the 10 

patients and 3 controls are shown in Figure 3.2. By comparing the MFI on the 

different cell populations, it appeared as though ERB, DR3, CD141, GRM4, 

CD337 and CD114 were not detectably expressed. In contrast, CD279 was 

expressed on all lymphocytes and CD205, CD97, CD298 and CD210 were 

expressed equivalently on all of the populations. CD85j, CD167a, CD155, 

CD137, IFNGRB and CD268 were found on both normal and CLL B-cells. 

Amongst this group of antigens, CD51, ITGB7 and CD119 displayed higher 

expression levels on normal B-cells as compared to the CLL counterpart. 

There were no antigens specifically expressed on CLL cells. Based on these 

findings, antigens belonging to the first two groups would not be considered 

attractive candidates for further investigation, whereas those falling into the 

latter categories are potentially interesting for CLL discrimination.  
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Figure 3.2 Spread of MFI on each cell type.  

Box and Wisker graph showing the expressions of antigens analysed by fluorochrome conjugated mouse monoclonal antibodies  on individual 

cell subsets from the 10 patients and 3 controls. The cells are identified with colour coding as shown in the graph legend. The expressions on 

monocytes and T-cells are shown only from patients and not from controls. As this experiment was to screen for antibodies the expressions were 

analysed subjectively without any objective definitions using isotype controls. The antigens were grouped based on their expression on individual 

cell subsets as shown in  in Table 3.3.



  
 

3.4 Indirect staining 

3.4.1. Indirect staining - Analysis of expression  

Based on the optimisation experiments described in materials and methods 

several rabbit polyclonal antibodies were screened using F(ab)2 portion of 

goat anti-rabbit antibody as the secondary antibody and 1.25µl of human IVIg 

as the non-specific binding blocking agent. The details of the antibodies 

tested are shown in Table 2.4. Example plots for antibody expressions are 

shown in Figure 3.3. 

  

 

 

Figure 3.3 Example plots for  antigens tested using indirect staining. 

Examples of antigens tested using rabbit polyclonals as the primary antibody, F(ab)2 

portion as the secondary antibody and IvIg as the non-specific expression blocking 

agent. The left panel represent the expression on CLL cells (red) and the right panel 

shows the expression on normal B-cells (green). The name of the antigen is identified 

on the top of each plot.  
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For each antigen, the median fluorescence intensity of staining was 

calculated. The average median fluorescence intensity ± sd on individual cell 

subsets from the 10 patients and 3 controls are shown in Figures 3.4: A, B 

and C. As with the results for direct staining, there was a range of observed 

patterns associated with the different antigens. SLC2A3, EFNB1, GPR56, 

RAMP3, EDA, NG2, EDG4, AMFR, LTK, ACVRL1, ADAM28, TMPRSS6, 

CNR2, GPR15, GPR35, FPRL1, MD1, RVK, GLUT1, F2RL3, NMDAR1, 

DGCR2, CRHR2, ADAM15, NRAMP1, ENT1, SDC3, LTB4R, GPR3, MMP15, 

HPN and TNFR1 were not detected on any of the populations using the 

available reagents. JAG1 and ACCN1 on the other hand were found equally 

on all cells tested. In terms of potentially interesting markers that showed 

skewed expression on B-cells, these included ADAM19, GPR18, CHRNB4, 

APLP1, DRD4, GPR12, ROR1, TAG1 and 5HTR. However, these antigens 

did not distinguish CLL cells from normal B-cells, nor did any other antigens 

tested in this panel. Several of these antigens are linked to neuronal signalling 

and will be discussed in more detail in subsequent chapters.   
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Figure 3.4 Spread of MFI on each cell type.  

A,B and C- Box and Wisker graph showing the expressions of antigens analysed by rabbit polyclonal antibodies  on individual cell subsets from 

the 10 patients and 2 controls. The cells are identified with colour coding as shown in the graph legend. The expressions on monocytes and T-

cells are shown only from patients and not from controls. As this experiment was to screen for antibodies the expressions were analysed 

subjectively without any objective definitions using isotopic controls. The antigens were grouped based on their expression on individual cell 

subsets  as shown in Table 3.3.



  
 

3.5 Zenon  labelling  

20 of the antibodies available were mouse monoclonal antibodies. As all the 

other standard antibodies used to identify cells were mouse monoclonal 

antibodies, labelling of the test antibody using secondary antibodies were not 

possible. In this context Zenon labelling can be a useful technique providing 

rapid labelling of small quantity of antibodies which does not require any 

purification. Mouse monoclonal antibodies were labelled with fluorochromes 

using Zenon labelling technology which utilises a fluorophore labelled Fab 

fragment directed against the Fc portion of an intact IgG primary antibody in 

order to form a labelling complex. Separate labelling kits were used for 

specific mouse monoclonal antibody isotype: IgG1, IgG2a or IgG2b. An 

unlabelled antibody was incubated with the Zenon labelling reagent, 

containing a fluorophore-labelled Fab fragment which binds to the Fc portion 

of the IgG antibody. Excess Fab fragment was neutralised by the addition of a 

nonspecific IgG. The addition of non-specific IgG prevents cross-labelling of 

the Fab fragment when multiple primary antibodies of the same type were 

used. Table 2.4 gives the details of the antibodies tested using this technique.  

CD2 and CD37 were used as control antibodies to test the technique. The 

following are the representational plots for these antibodies, which show that 

the technique worked very efficiently in the experimental conditions previously 

described Figure 3.5. 

  

Figure 3.5 Control antibodies for Zenon labelling.  

The expression of CD37 was evaluated on CLL cells (red) and that of CD2 on T-cells 

(purple). Specific positive staining is shown for CLL cells on the left and T-cells on the 

right. 

Since the conditions appeared to produce clear staining patterns, the 

procedure was carried out using each of the antibodies for the following 

antigens: GYPC, RHBDL1, SLC9A1, MR1, ATP1B1, CDH16, TGFA, CDH15, 
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EGF, KIA0319, JTB, SLC20A1, MMP14, GABBR1, STIM1, SLC4A1, ATP1B2, 

NRG2, PRRG1, PLAUR. The details of these antigens are shown in Table 

2.4.The results for each cell type are graphically displayed in Figure 3.6. 
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Figure 3.6 Expression of various antigens on different cell types using 
Zenon labelling.  

The expression of  20 different antigens was determined by flow cytometry on CLL 

cells (red circles), monocytes (blue squares) and T-cells (purple triangles) from n= 5 

patients. As this experiment was to screen for antibodies the expressions were 

analysed subjectively without any objective definitions using controls.    

As evident from the figure, except Glycophorin C no other antigens showed 

expression on any of the cell types tested. The following method was used to 

confirm the true negativity of expression. CLL cells were negatively selected 

using magnetic beads. The negatively selected cells were stained using the 

primary test antibody followed by secondary antibody which is a F(ab)2 rabbit 

anti-mouse antibody using standard flow cytometry techniques. The gating 

strategy and control antibodies used in these experiments are shown below in 

Figure 3.7. 
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Figure 3.7 Control antibodies for testing antigen expression by cell 
selection technique.  

CLL cells were negatively selected using magnetic beads.  Lymphocytes were gated 

using forward and side scatter excluding the doublets as in plot 1. The other two plots 

shows CD37 (positive control) and CD2 (negative control) expression, which shows 

expression of CD37 and absence of expression of CD2 which is expected in CLL. As 

CD2 is not expressed in CLL cells the baseline of the positive expression is kept at the 

top of CD2 fluorescence. 

Each of the test antibodies was then assayed in this manner. The 

representational flow plots of test antibodies are shown below in Figure 3.8. 

 

Figure 3.8 Representational plot for testing antigen expression by cell 
selection technique.  

The expression of of glycophorin C and uPA were tested using negative selection of 

CLL cells and using mouse monoclonals as the primary antibody and F(ab)2 rabbit 

anti-mouse antibody as the secondary antibody. The name of the antigen is identified 

on the top of each plot.  
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3.6 Analysis of antigen expression 

Based on the expression on different cell types antigens can be grouped as 

shown in Table 3.3. There were no antigens that were expressed solely on 

CLL cells. 15 antigens showed some expression on CLL cells as well as 

normal B-lymphocytes. These antigens have two main implications; one from 

therapeutic point and other for minimal residual disease analysis point. CD20 

is a good example of such an antigen that is currently in use. Even though the 

expression of CD20 is low in CLL cells compared to normal B-cells 

combination of CD20 antibody, rituximab, with chemotherapy is currently the 

standard treatment in CLL. Similarly CD20 in combination with other antigens 

is also useful in MRD analysis due to the differential expression on CLL cells 

and normal B-cells. Similar to that these 15 antigens can be explored for 

therapeutic potential as well as MRD analysis. Additionally, antigens 

expressed on all lymphocytes and pan-expressing antigens also could be 

explored for therapeutic potential. This could be extrapolated from the use of 

alemtuzumab, a CD52 antibody. CD52 is a pan-expressing antigen expressed 

even on several non-haematopoetic tissues as well. But this can be used for 

treatment of refractory CLL with good clinical efficacy and affordable toxicity. 

For MRD analysis there should be differential expression between CLL cells 

and all normal lymphocytes. 

From Table 3.3 it is clear that there are several antigens expressed on CLL 

cells that could be potentially explored as therapeutic targets. Based on the 

experience of Rituximab and Alemtuzumab it is known that an antibody 

against an antigen either expressed on CLL cells as well as normal B-cells or 

a pan-expressing antigen could be useful as therapeutic molecule with 

acceptable side effects. A general description of these antigens along with 

their known function as well as expression is given in Tables 2.3 and 2.4. 

Most of the antigens except CD268 and ROR1 were not studied in CLL 

before. Detailed descriptions of some of these antigens are given in Chapter 

7.  



  
 

CLL cells 

alone  

CLL and 

normal B-

cells 

 

 

All 

lymphocytes 

Pan-

expressing 

More on normal B-cells 

compared to CLL  
Negative on all cells 

 
CD85j CD279 CD205 CD51 ERB EDA  GPR35  NRAMP1  

 
CD167a 

 
CD97 ITGB7 DR3 NG2  FPRL1  ENT1  

 
CD155 

 
CD298 CD119 CD141 EDG4  MD1  SDC3  

 
 CD137 

 
CD210 

 
GRM4 AMFR  RVK  LTB4R  

 
IFN-γ R β  

 
JAG1  

 
CD337 LTK  GLUT1  GPR3 

 
CD268 

 
ACCN1  

 
CD114 ACVRL1  F2RL3  MMP15  

 
ADAM19  

 
GYPC 

 
SLC2A3 ADAM28  NMDAR1  HPN  

 
GPR18  

   
EFNB1 TMPRSS6  DGCR2  TNFR1 

 
CHRNB4  

   
GPR56  CNR2  CRHR2  RHBDL1 

 
APLP1 

   
RAMP3  GPR15  ADAM15  SLC9A1 

 
DRD4 

   
MR1 ATP1B1 CDH16 TGFA 

 
GPR12 

   
CDH15 EGF KIA0319 JTB 

 
ROR1 

   
SLC20A1 MMP14 GABBR1 STIM1 

 
TAG1 

   
SLC4A1 ATP1B2 NRG2 PRRG1 

 
5HTR  

   
PLAUR 

   

Table 3.3 Grouping of antigens based on expression on different cell types.  

Direct staining; Indirect staining; Zenon labelling
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3.7 Differential expression test vs. control antibodies  

20 antigens that have shown at least a minimal expression were selected for 

further evaluation of differential expression on more patients. The expression 

of the test antigens were compared in relation to a negative antigen on CLL 

cells in both direct conjugate and indirect conjugate experiments. One direct 

conjugate and one indirect conjugate were paired simultaneously in multi-

colour flow cytometry to limit the number of experiments. CD14 and CD2 were 

selected as negative controls for direct conjugate and indirect conjugate, 

respectively. Normal controls were from patients below the age of 40 who 

were admitted for unrelated reasons. Younger controls were selected to avoid 

the possibility of monoclonal B-cell lymphocytosis in those samples. The 

gating strategy is shown in the flow plot below (Figure 3.9): 

 

 

Figure 3.9 Gating strategy for differential expression experiment.  

One direct conjugate and one indirect conjugate were paired simultaneously. CD14 and 

CD2 were selected as negative controls for direct conjugate and indirect conjugate, 

respectively. CD14 was selected as a negative control for direct conjugates due to its 

ease of availability in the lab as well as satisfying other criteria for direct conjugates 

and CD2 was selected as a negative control for indirect conjugates as it satisfied all 

other criteria for rabbit polyclonal antibodies like presence on plasma membrane and 

availability of  an antibody to an extracellular epitope. CLL cells were identified using 

CD19 and CD5. Expression of CD2 on APC and CD14 on PE are shown in subsequent 

plots.  
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Figure 3.10 demonstrates the difference in MFI of various polyclonal 

antibodies compared to the control antibody CD2. At first glance, these results 

suggest that with the exception of CHRNB4, there appears to be a differential 

expression of the other antigens on CLL cells versus T-cells or monocytes. 

Statistical analysis confirmed a significant difference in expression for 

ACCN1, CHRNB4 and TAG1. It is notable that apart from CD2, monocytes 

displayed higher expression levels for each of the antigens tested, while T-

cells showed the lowest expression. 
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Figure 3.10 Difference in MFI of various polyclonal antibodies compared 
to the control antibody CD2.  

Box and Wisker graph showing the expression levels of antigens analysed by rabbit 

polyclonal antibodies on individual cell subsets from 7 patients. The cells are identified 

with colour coding as shown in the graph legend. The assoicated statistical analysis is 

shown in Table 3.4 

Table 3.4 P value of the difference in MFI of various polyclonal 
antibodies on CLL cells compared to that of CD2.  

P value was calculated using Mann Whitney test.  The difference is statistically 

significant for ACCN1, CHRNB4 and TAG1. 

 

  

 

 

 

 

 

P value  P value 

5HTR 0.71 DRD4 0.62  

ACCN1 0.0006  GPR12 0.259  

ADAM19 0.128  GPR18 0.259  

APLP1 0.535  ROR1 0.9  

CHRNB4 0.0006  TAG1 0.007  
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Figure 3.11 demonstrates the difference in MFI of various monoclonal 

antibodies compared to the control antibody CD14. Unlike the data in Figure 

3.10, the differences amongst these antigens are less pronounced with the 

exception of CD268, which displays uniquely high levels on CLL cells. The 

antigens CD119, CD205, CD137 and CD85j were also significantly different. 
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Figure 3.11 Difference in MFI of various monoclonal antibodies 
compared to the control antibody CD14.  

Box and Wisker graph showing the expression levels of antigens analysed by mouse 

monoclonal antibodies on individual cell subsets from 6 patients. The cells are 

identified with colour coding as shown in the graph legend. The assoicated statistical 

analysis is shown in Table 3.5 

Table 3.5 P value of the difference in MFI of various monoclonal 
antibodies on CLL cells compared to that of CD14.  

P value is calculated using Mann Whitney test. The difference is statistically significant 

in CD119, CD205, CD268, CD137 and CD85j. 

 

P value  P value 

CD119 0.01  CD137 0.026  

CD155 0.07  CD51 0.337  

CD167a 0.14  CD85j 0.006  

CD205 0.001  GRB 0.62  

CD268 0.006  Int B 0.749  
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3.8 Differential expression - CLL vs. normal B-cells 

The results in Figures 3.10 and 3.11 suggest that a number of the newly 

identified antigens may be used to distinguish CLL cells from T-cells and 

monocytes, but these may be of limited value if the expression levels are the 

same on normal B-cells. To evaluate this, the MFI of various antibodies on 

CLL cells were compared to normal B-cells from healthy volunteers as shown 

in Figure 3.12. The p value of the difference was calculated using a Mann 

Whitney test and is shown in Table 3.6. Of the 7 antibodies showing 

difference INTGβ7 is the most striking one. As it is more expressed in normal 

B-cells it may not be very relevant as a therapeutic target, but this difference 

could be explored as a potential MRD marker. 
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Figure 3.12 MFI of various antibodies on CLL cells were compared to 
normal B-cells from healthy population.   

6 patient and 5 control samples  were used for this analysis. Red represents CLL cells 

and green represents normal B-cells. 

Table 3.6 P values of MFI of various antibodies on CLL cells were 
compared to normal B-cells from healthy population 

 

P value  P value 

CD14 0.0043 CD2 0.7551 

CD119 0.0087 5HTR 0.0480 
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CD155 0.4103 ACCN1 0.5303 

CD167a 0.0043 ADAM19 0.6389 

CD205 0.1775 APLP1 0.5303 

CD268 0.2468 CHRNB4 0.0025 

CD137 0.1255 DRD4 0.4318 

CD51 0.0043 GPR12 0.2020 

CD85j 0.1775 GPR18 0.7551 

IFNGRB 0.0353 ROR1 0.0735 

INTGβ7 0.0043 TAG1 0.0177 

3.9 Expression on Bone marrow progenitors 

These antibodies were further evaluated for any difference in expression in 

bone marrow progenitor cells and differentiated B-cells. This has potential 

therapeutic implications, as if any of these antigens are less expressed on 

progenitor cells then therapeutic manipulation involving this antigen will have 

less impact on normal progenitor cells and thereby on normal 

haematopoiesis.  

The gating strategy is shown in Figure 3.13 
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Figure 3.13 Gating strategy for assessing expression in bone marrow 
cells.  

The B-cell populations in bone marrow were divided into 4 groups based on CD38 and 

CD27 as labelled in the figure. Expression of test antigen using a polyclonal antibody 

labelled with APC and a monoclonal antibody labelled with PE was assessed 

simultaneously. 

The MFI of expression of various antigens on different B lymphocyte subtypes 

are shown in Figure 3.14. There was no significant difference in expression on 

various B-cell types. 
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Figure 3.14 Differential expression in bone marrow B-cells.  

MFI of the indicated antigens was assessed on different B-cell populations. There was 

no significant difference in expression of any antigens between the cells analysed 

including B-cell progenitors, naive B-cells, memory cells and plasma cells. 

3.10 Induced expression 

The ability to generate a difference in expression of any antigens when co-

cultured with fibroblasts also has potential therapeutic implications. It has now 

been conclusively shown that for survival and proliferation of CLL cells, 

stimulation from different cells in the microenvironment is essential (Burger, 

2011) (Audrito et al., 2013a) (Lanasa, 2010). These supporting cells can 

upregulate or downregulate the expression of various antigens in CLL cells so 

it is important to be aware of these changes when deciding on a therapeutic 

strategy. The expression levels of 64 antigens on CLL cells were tested 

before and after co-culturing with CD40L-expressing fibroblasts for 24 hours 

to analyse any changes in the pattern of expression. None of the tested 

antigens showed any significant difference in expression as shown in Figure 

3.15. Ideally this experiment should have been done with some positive 

control with antibodies for antigens already known to be induced in coculture 

system like CD38, CD69, CD44 and ITGA4 (Hamilton et al., 2012). 
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Figure 3.15 Expression of antigens on CLL cells before and after co-
culturing with CD40L fibroblasts.  

The MFI of 64 differented antigens were assessed on cells from a single patient before 

and after 24 hours of co-culture with DC40L fibroblasts. None of the tested antigens 

showed any significant difference in expression.  

3.11 Discussion 

In the data presented here, several antigens expressed on cell surface were 

identified form previously published gene expression profiling data that were 

not extensively studied in CLL and had antibodies available from commercial 

sources. 

Expressions of these antigens were studied at protein level using flow 

cytometry. Directly conjugated, indirectly conjugated or Zenon labelling 

techniques were used to screen these antibodies, depending on the type of 

antibodies available. 

As indirectly conjugated antibodies were mostly rabbit polyclonal antibodies 

and were not previously tested using flow cytometry several steps were 

required to optimise this technique. 

None of the antigens identified were purely expressed on CLL cells without 

expression on any other cells. Several antigens which were expressed on 

CLL cells and B-cells were identified, including seven that may allow 

discrimination between normal and neoplastic cells.  It is interesting to note 

that, of antigens which show differential expression between normal and CLL 

B-cells, both CD51 and ITGB7 are adhesion molecules that have been 
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associated with the pathogenesis of multiple myeloma (Van Riet and Van 

Camp, 1993) (Neri et al., 2011). CD119 is the alpha component of the IFN-

gamma receptor, which pairs with IFNGRB to make a functional molecule and 

both are down-modulated on CLL cells compared to normal B-cells.  IFN-

gamma has been shown to protect CLL cells from undergoing spontaneous 

apoptosis in vitro (Mainou-Fowler and Prentice, 1996), so it is somewhat 

surprising that the receptor is expressed at a relatively lower level in vivo. 

ROR1 has been previously shown to be over-expressed in CLL 

(Daneshmanesh et al., 2012) (Baskar et al., 2012), however the results 

presented here, while showing the same trend, did not unequivocally confirm 

this observation. ROR1 encodes several distinct isoforms, so the results here 

may be related to the ability of the antibodies to detect. Another antigen 

showing increased expression is CD167 (or DDR1), which is statistically 

different from the level of expression on normal B-cells. DDR1 belongs to a 

family of receptor tyrosine kinases that respond to stimulation by collagen and 

have been proposed to play a role in a variety of tumours including lung, colon 

and brain (Valiathan et al., 2012). A recent publication has also shown that 

collagen activation of DDR1 in the setting of EBV infection protects lymphoma 

cells from death (Cader et al., 2013). Furthermore selective DDR1 inhibitors 

have been described that may be useful in future studies (Gao et al., 2013).    

An intriguing observation was that, of the 23 antigens, which showed some 

expression on CLL cells, 8 had a significant role in neurotransmission. GPR18 

is involved in N-arachidonoyl glycine (NAGly) signalling and induces 

migration, proliferation and perhaps other MAPK-dependent phenomena 

involving recruitment of microglia to sites of neuronal injury (McHugh et al., 

2010). APLP1 plays a role in synaptic function by localising to the 

'postsynaptic density' which is a specialised region containing proteins 

required for signalling and regulate neurite outgrowth through binding to 

components of the extracellular matrix such as heparin and collagen (Kim et 

al., 1995). GPR12 is another molecule regulating neurite outgrowth along with 

neuronal differentiation and synapse formation (Tanaka et al., 2007) (Lu et al., 

2012). TAG1 is a neuronal membrane protein that may be involved in the 

formation of axon connections in the developing nervous system (Walsh and 

Doherty, 1991). 5-HTR7 is a receptor for the neurotransmitter serotonin, which 

physiologically might be involved in mood changes and learning and possibly 

maintenance of circadian rhythm and pathologically may play a role in certain 

psychiatric disorders like depression (Glennon et al., 2002). ACCN1 is a 

cation channel that plays a physiological role in perception of sensations like 
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taste, pain and mechanical stimulus and pathologically in development of 

multiple sclerosis (Wemmie et al., 2006) (Bernardinelli et al., 2007). CHRNB4 

is one of the subunits that form the nicotinic acetyl choline receptor which is a 

major neurotransmitter receptor in central and autonomic nervous system as 

well as neuromuscular junction. There is now evidence that nicotinic receptors 

are also found in non-neuronal tissues like lymphocytes, macrophages (Wang 

et al., 2003) and polymorphonuclear cells (PMN) in the peripheral blood (Hoss 

et al., 1986)(Hiemke et al., 1996)(Lebargy et al., 1996); small cell lung 

carcinomas (Quik et al., 1994), skin keratinocytes (Grando, 1997), respiratory 

epithelial and vascular endothelial cells (Conti-Fine et al., 2000), and T 

lymphocytes (Kawashima and Fujii, 2000) even though their role in these 

locations is still not known. DRD4 is another neurotransmitter receptor which 

acts as an inhibitory receptor for dopamine through G-protein. Besides 

nervous system dopamine plays a role on the immune system which is 

demonstrated by various factors like the presence of dopamine receptors 

(Basu et al., 1993) (Ricci and Amenta, 1994) and an endogenous dopamine 

transport system in leukocytes (Bondy et al., 1992) (Basu et al., 1993) as well 

as the endogenous synthesis of this monoamine in leukocytes (Bergquist et 

al., 1994) (Cosentino et al., 1999). 

Nicotinic acetyl choline receptor β4 was the antigen with maximum MFI and 

therefore it was the first antigen explored for therapeutic potential. 

A number of potential therapeutic targets for CLL have been identified as 

shown in this chapter and in the next chapter an in vitro culture system was 

developed to allow the testing of new treatments, including reagents 

developed against the antigens identified in this chapter. 
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4. Development of in vitro culture system for testing 

treatment targets 

The key aim of the project is to identify new antigens on the surface of CLL 

cells that can act as potential therapeutic targets. Development of an in vitro 

system is therefore a crucial step in testing these targets.  It has been shown 

that CLL cells when removed from the in vivo microenvironment and placed in 

suspension cultures undergo spontaneous apoptosis after few days (Collins et 

al., 1989). Previous studies have shown that when CLL cells are cocultured 

with different adherent stromal cells, including mesenchymal marrow stromal 

cells (Lagneaux et al., 1998) (Panayiotidis et al., 1996) (Burger et al., 2000), 

CD68+ nurselike cells derived from monocytes (Nishio et al., 2005) 

(Richardson et al., 2006), and follicular dendritic cells (Pedersen et al., 2002) 

induce leukaemia cell survival and prevent spontaneous apoptosis. It has 

been shown that different human and murine MSC lines as well as primary 

human MSC have similar effects on CLL cells in vitro (Kurtova et al., 2009). 

To test the effect of new drugs on CLL cells, especially in relation to the 

microenvironment interaction, it is important to develop a system, where CLL 

cells are cultured on their own as well as in presence of stromal cells as 

stromal cells provide pro-survival signals to CLL cells and breaking this 

contact is key to induce apoptosis is CLL cells. 

 Various short term and medium term culture conditions have been shown to 

support the culture of CLL cells. There are studies which show that certain 

specific media specifically can also support CLL cell survival (Levesque et al., 

2001) (Zent et al., 2004). Our aim was to try various alternatives to find an 

optimal condition that will support CLL cell survival for medium term and then 

study the effect of antibodies or small molecules targeted against the antigens 

identified in the flow cytometry experiments.  

4.1 Viability assessment of purified CLL cells 

CLL cells were harvested from patient blood samples using lymphoprep 

density centrifugation and magnetic purification with a cocktail of antibodies 

designed to negatively select CLL B-cells. The purified cells were then seeded 

into the various culture conditions. To determine the effect of these 

procedures, a combination of vital dye and Annexin-V staining were 
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employed. Examples of viability assessment plots on day 0 are shown in 

Figure 4.1 

 

Figure 4.1 Gating strategy for viability assessments 

 Flow cytometric analysis of viability of cells from an in vitro cell culture system. In the 

first plot leukocytes were separated from the stromal cells (P3) using CD45 expression 

and CLL cells were identified using coexpression of CD45 and CD19 (P1). CLL cell 

viability is assessed using annexin-v and 7-AAD as shown in plot 3. The viable cells 

were both negative (Q3) and dead cells were both positive (Q2). The early apoptotic 

cells were annexin-v positive and 7-AAD negative (Q1). The percentage viability was 

obtained from statistics plot.  

Sometimes for practical reasons seeding of the cells in the culture medium 

may not be possible on the same day itself. The viability of the CLL cells from 

the same samples was assessed sequentially by keeping the whole blood in 

refrigerator for 15 days followed by room temperature. The experiment 

demonstrated that the viability remains the same up to a week if samples 

were kept in the refrigerator (Appendix 4). 
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4.2 CD40L expressing fibroblasts and M210B4 stromal cells 

prolong CLL cell survival in vitro 

CLL cells were seeded at different densities in the presence or absence of 

CD40L expressing fibroblasts or M210B4 stromal cells. Additionally, cultures 

were evaluated using two different types of media, IMDM or RPMI.  Prior to 

plating cell viability was assessed. Samples were incubated for a period of 2 

weeks. Representative samples were removed from each well at frequent 

intervals for assessing viability. The percentages of viable CLL cells on day 0, 

1, 3, 10 and 15 are shown in Figures 4.2 and 4.3. It is evident from the graph 

that stromal cells helps to keep CLL cells viable up to 15 days and it is also 

suggests that a seeding ratio of 1:50 or above is required for keeping the cells 

viable to that duration. There is not much difference between using CD40L 

fibroblasts or M210B4 stromal cells as the supporting cells. 
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Figure 4.2 Percentage viability of CLL cells in co-culture experiments.  

MNCs were either cultured in RPMI or co-cultured with M210B4 cells. The quantities of 

stromal cells used were 1x10
4
/ml.  3 different quantities of MNC were tested: 1x10

5 

cells, 5x10
5 
cells and 1x10

6 
cells/ml. Cells were analysed for viability on days 0, 1, 3, 5, 

7, and 15. (M=M210B4, R=RPMI) (n=2). The number in the initial 3 columns represents 

the ratio between stromal cells and MNC.  
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Figure 4.3 Percentage viability of CLL cells in co-culture experiments.  

MNCs were either cultured in IMDM or co-cultured with CD40L expressing fibloblasts. 

The quantities of stromal cells used were 1x10
4
/ml.  3 different quantities of MNC were 

tested: 1x10
5 
cells, 5x10

5 
cells and 1x10

6 
cells/ml. Cells were analysed for viability on 

days 0, 1, 3, 5, 7, and 15. (F=CD40L fibroblast, I=IMDM) (n=2). The number in the initial 3 

columns represents the ratio between stromal cells and MNC 

Since the supporting cells used were not irradiated or treated with mitomycin-

c, over a few days the wells were very turbid due to the overgrowth of these 

cells. The flow plots also had a considerable percentage of these cells as 

shown in the following Figure 4.4 

 

Figure 4.4  Day 10 CLL cells with fibroblast co-culture.  

Plot 1 shows the overgrowth of CD45-ve fibroblasts which represent 62% of total 

events on day 10. The initial seeding ratio was 1:100 of fibroblasts to MNC. 
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To prevent the overgrowth of support cells mitomycin-c treated stromal cells 

were used and viability of the CLL cells was assessed as shown in Figure 4.5. 

These experiments demonstrated that excess of stromal cells either added 

upfront or by rapid growth when not treated by mitomycin-c, will deprive the 

medium of essential nutrients and thereby reduce the viability of the CLL cells.  
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Figure 4.5 Coculture with mitomycin-c treated and untreated stromal 
cells. 

MNC were co-cultured with untreated and mitomycin-c treated cells in two 

concentrations for 14 days and viability of the CLL cells were assessed at fixed time 

points. Absolute cell count was shown in the top plot and % viability is shown in the 

bottom plot. MNC were co-cultured with both CD40L fibroblasts and M210B4 bone 

marrow stromal cells. (MMU =Untreated M210B4 cells, MMT =Mitomycin-c treated 

M210B4 cells, FMU= Untreated CD40L fibroblasts, FMT= mitomycin-c treated CD40L 

fibroblasts) (n=2).  
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In the next experiment the viability of negatively selected CLL cells were 

compared with viability of CLL cells cultured as MNC in stromal layer co-

cultures. This experiment showed that the viability of CLL cells is significantly 

better when cultured as MNC rather than negatively selected CLL cells. This 

may be due to the presence of other supporting cells like T-cells and 

monocytes, which can develop into nurse like cells (NLC) (Figure 4.6). This 

concept was previously demonstrated by other groups (Burger et al., 2000) 

NLCs are derived in-vitro from CD14+ peripheral blood mononuclear cells of 

CLL patients which form large, round, adherent cells that assist in the survival 

of CLL cells. 
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Figure 4.6 Co-culture with mitomycin-c treated cells  

MNC and negatively selected CLL cells were co-cultured with mitomycin-c treated cells 

for 14 days and viability of the CLL cells were assessed at fixed time points. Absolute 

cell count is shown in the top plot and % viability in the bottom plot. MNC and CLL 

cells were co-cultured with both CD40L fibroblasts and M210B4 cells. (MMT =MNC in 

Mitomycin-c treated M210B4 cells, MCT= CLL cells in Mitomycin-c treated M210B4 

cells, FMT= MNC in mitomycin-c treated CD40L fibroblasts FCT=CLL cells in 

mitomycin-c treated CD40L fibroblasts) (n=2). 
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4.3 Comparison of Media 

Previously it was shown that AIM-V medium is better in maintaining CLL cell 

viability than RPMI or IMDM (Levesque et al., 2001). So this medium was 

tested using cells derived from a single patient. There was some improvement 

in viability in the AIM-V medium compared to IMDM (Appendix 4) (Levesque 

et al., 2001). However, there was no evidence in the literature that this 

medium could be effectively used to maintain the stromal cells in these 

assays.  As stromal cell support is essential for future experiments this 

method was not further explored. 

4.4 Titration of DMSO concentration 

Standard chemotherapeutic agents were tested next. Most chemotherapeutic 

agents were dissolved in DMSO. Therefore a titration of the vehicle was 

performed to assess the safest concentration of DMSO that will not affect the 

viability of CLL cells and stromal supporting layer. Two types of exposures to 

DMSO were done in the first experiment which included exposure of MNC 

and CLL cells to different concentrations of DMSO for 2 hours followed by 

washing and re-seeding on CD40L fibroblasts or alternatively MNC and CLL 

cells were seeded on CD40L Fibroblast and DMSO added to the medium at 

different concentrations (Figure 4.7). 

A 

B

Transient exposure MNC- count

D
0

D
1

D
2

D
5

D
15

0

500000

1000000

1500000

2000000
MNC0

MNC0.1

MNC0.2

MNC0.5

MNC1

MNC5

Days

c
o

u
n

t

Transient exposure MNC-% Viability

D
0

D
1

D
2

D
5

D
15

0

20

40

60

80

100
MNC0

MNC0.1

MNC0.2

MNC0.5

MNC1

MNC5

Days

%
 v

ia
b

il
it

y

 

Transient exposure CLL-count

D
0

D
1

D
2

D
5

D
15

0.0

500000.0

1000000.0

1500000.0

2000000.0

2500000.0
CLL0

CLL0.1

CLL0.2

CLL0.5

CLL1

CLL5

days

c
o

u
n

t

Transient exposure CLL-% Viability

D
0

D
1

D
2

D
5

D
15

0

20

40

60

80

100
CLL0

CLL0.1

CLL0.2

CLL0.5

CLL1

CLL5

Days

%
 v

ia
b

il
it

y

 



-140- 
 

 
 

C 

D

Continous exposure MNC-count

D
0

D
1

D
2

D
5

D
15

0

1000000

2000000

3000000

4000000
MNC0

MNC0.1

MNC0.2

MNC0.5

MNC1

MNC5

Days

c
o

u
n

t
Continous exposure MNC-% Viability

D
0

D
1

D
2

D
5

D
15

0

20

40

60

80

100
MNC0

MNC0.1

MNC0.2

MNC0.5

MNC1

MNC5

Days

%
 v

ia
b

il
it

y

 

Continous exposure CLL-count

D
0

D
1

D
2

D
5

D
15

0.0

500000.0

1000000.0

1500000.0

2000000.0

2500000.0
CLL0

CLL0.1

CLL0.2

CLL0.5

CLL1

CLL5

Days

c
o

u
n

t

Continous exposure CLL-% Viability

D
0

D
1

D
2

D
5

D
15

0

20

40

60

80

100
CLL0

CLL0.1

CLL0.2

CLL0.5

CLL1

CLL5

Days

%
 v

ia
b

il
it

y

 

Figure 4.7 Titration of DMSO concentration.  

DMSO was exposed continuously (C and D) or transiently (A and B) for 2 hours 

following which DMSO is thoroughly washed off and then the CLL cells are seeded  on 

to the stromal cells. The concentration of DMSO exposure is from 0.1µM to 5 µM 

(number at the end) as shown in the Figure. Both MNC (A and C) and negatively 

selected CLL cells (B and D) were exposed separately. Viability was assessed at 

various time points. In transient exposure there is no difference between different 

concentrations of DMSO but in continuous exposure cells tolerate doses up to 1 µM 

without significant difference in viability.    

This experiment suggests that up to 1 µM DMSO is safe to the CLL cells even 

if there is a continuous exposure, beyond that it will affect the viability of CLL 

cells. But for most of the drug dilutions the cells will be exposed to a much 

lower concentration of DMSO. 

Further evaluation on 3 samples was performed to see the consistency of the 

effect. This experiment suggests that 1 µM may have some effect on the 

viability of CLL cells but not below 0.5 µM. Most experiments with drugs use 

DMSO at a final concentration of less than 0.1 µM which will not adversely 

affect CLL viability according to this experiment. (Figure 4.8) 
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Figure 4.8 Titration of DMSO concentration.  

MNCs were exposed continuously to DMSO at various concentrations on 3 samples.  

The concentration of DMSO exposure is from 0.5 µM to 5 µM as shown in the Figure. 

Viability was assessed at various time points. Cells tolerate doses up to 0.5 µM without 

significant difference in viability.    

The consistency of the counting by flow cytometry using the counting beads 

was assessed on day 6 by repeating the count on same sample multiple times 

(Figure 4.9). Standard error was minimal confirming the consistency; therefore 

this procedure was subsequently used in all experiments requiring 

enumeration of cells. 
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Figure 4.9 Consistency of bead counting.  

The same sample was counted multiple times (n=4) to assess the consistency of bead 

counting.  

4.5  Evaluation of protocols to generate mitotically inactive 

support cells 

Mitomycin-c treatment is very effective in terms of stopping proliferation, but it 

can also affect viability. Therefore cell number and viability after mitomycin-c 
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treatment were evaluated over one week of culture. Although, cell numbers 

declined, there were reasonable numbers of viable cells present even after a 

week, to support the CLL cells (Figures 4.10 and 4.11). 
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Figure 4.10 Absolute number of mitomycin-c treated CD40L fibroblasts.   

Absolute count of total and viable CD40L fibroblasts decline after mitomycin-c 

treatment  determined by flow cytometry. 
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Figure 4.11 Viability of CD40L fibroblasts  

The percentage viability was determinted assessed using annexin-v/7-AAD over a 9-

day period after mitomycin-c treatment.   

The main disadvantage for mitomycin-c treatment is that fresh cells have to 

be prepared for each experiment. Irradiated fibroblasts can be frozen in 

DMSO and can be used without loss of efficacy. So irradiated fibroblasts were 

compared to mitomycin-c treated fibroblasts as stromal support for 

maintaining CLL cell viability. The experiment demonstrates that both 

methods are equally efficient in maintaining CLL cell viability at a ratio of 1:10 

fibroblasts to MNCs (Figure 4.12).  
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Figure 4.12 Comparison of irradiated and mitomycin-c treated CD40L 
fibroroblasts as stromal support for maintaining CLL cell viability.  

The percentage viable cells was determined by flow cytometry at 4 time points during 

in vitro culture of CLL cells with fibroblasts (n=2). The fibroblasts were either irradiated 

(I) or treated with Mitomycin-c (M).  There was no significant difference between the 

two methods as far as the ratio of 1:10 fibroblasts to MNCs is maintained.  

From the above experiments it was concluded that CLL cells could be kept 

viable for more than 48 hours if cultured in supportive media like IMDM or 

RPMI. However, the viability could be significantly prolonged if co-cultured 

with CD40L expressing fibroblasts or M210B4 cells which are inactivated by 

mitomycin-c or irradiation, consistent with previously published results 

(Lagneaux et al., 1998) (Panayiotidis et al., 1996) (Burger et al., 2000). The 

viability of CLL cells improved if cultured as MNC rather than negatively 

selected CLL cells, suggesting that other populations such as monocytes, 

could be providing pro-survival signals (Nishio et al., 2005). The in-vitro 

system developed was suitable to test various drugs and agents that could 

affect the pathways of antigens identified in the previous chapter. 

4.6 Drug exposure 

To determine the suitability of the system to test new drugs, standard 

chemotherapeutic agents were tested first. Previous studies have reported 

effects of standard chemotherapeutic agents in similar system (Klein et al., 

2000) (Kurtova et al., 2009). 5-fludarabine-monophosphate (5-FMP), the 

active compound of fludarabine, doxorubicin and chlorambucil were tested in 

the current system.  The viability of the fibroblasts was tested sequentially to 

assess the effect of 5-FMP on fibroblasts. 70% of fibroblasts retain viability on 

day 7 as shown in Figure 4.13 confirming that 5-FMP has no significant lethal 
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effect on fibroblasts and can be used in the co-culture setting without 

substantially affecting the stromal support.  

Fibroblast viability in Fludarabine
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Figure 4.13 Effect of 5-FMP on fibroblast viability.  

Fibroblast viability was assessed using annexin-v/7-AAD on day 0,1,5 and 7. There was 

only around 10% viability loss even after a week of incubation with 5-FMP. 

4.6.1. The effect of fludarabine on CLL cell viability with and 

without fibroblasts 

MNC or negatively selected CLL cells were incubated with or without 

fibroblasts in varying concentrations of 5-FMP. Percentage viability and cell 

counts were determined at 24, 48 and 72 hours as shown in Figures 4.14 and 

4.15. Regardless of the purification procedure employed, there was a 

significant drop in viability and cell count in stroma free wells while even after 

72 hours there was no consistent drop in viability or cell count in stroma 

supported wells.  
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Figure 4.14 Effect of 5-FMP on CLL cells in presence or absence of 
stromal cells when seeded as MNC.  

MNCs were incubated with or without fibroblasts in concentrations of 5-FMP varying 

from 125 µM to 2000 µM. Percentage viability (top figure) and cell counts (bottom 

figure) are shown in the above chart. (MF = MNC in fibroblast, MI= MNC without stroma, 

numbers are the concentration of 5-FMP in µM). 
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Figure 4.15 Effect of 5-FMP on CLL cells in presence or absence of 
stromal cells when seeded as negatively selected CLL cells.  

Negatively selected CLL cells were incubated with or without fibroblasts in 

concentrations of 5-FMP varying from 125 µM to 2000 µM. Percentage viability (top 

figure) and cell counts (bottom figure) are shown in the above chart. (CF = negatively 

selected CLL cells in fibroblasts, CI= negatively selected CLL cells without stroma, 

numbers are the concentration of 5-FMP in µM). 
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4.6.2. Continuous and transient exposure to drugs with or without 

fibroblasts 

In an in vivo setting, different populations of cells may experience different 

levels of exposure to drugs. To mimic this in vitro, 5-FMP, chlorambucil and 

doxorubicin were tested in varying concentrations. Drugs were exposed either 

transiently or continuously. In transient exposure the cells were incubated in 

presence of drugs for 2 hours, following which cells were washed twice and 

then plated in fresh medium. Viability was assessed at sequential time points, 

5-FMP up to 7 days, chlorambucil and doxorubicin up to 3 days (Figures 4.16, 

4.17, 4.18). Experiments with all three drugs have demonstrated that viability 

of CLL cells was reduced if exposed to drugs continuously. Stromal cells 

protected the cells from chemotherapy induced apoptotic death. 
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Figure 4.16 Continuous and transient exposure to 5-FMP with or without 
fibroblasts. 

In transient exposure the cells were incubated in presence of 5-FMP for 2 hours, 

following which cells were washed twice and then plated in fresh medium. Viability was 

assessed on day 0, 1, 5 and 7 (MFL=MNC in fibroblast exposed to 5-FMP, ML= MNC 

exposed to 5-FMP, CFL= CLL in fibroblast exposed to 5-FMP, CL= CLL exposed to 5-

FMP). 
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Figure 4.17 Continuous and transient exposure to doxorubicin with or 
without fibroblasts. 

In transient exposure the cells were incubated in presence of doxorubicin for 2 hours, 

following which cells were washed twice and then plated in fresh medium. Viability was 

assessed on day 0, 1, 2 and 3. (MFD= MNC in fibroblast exposed to doxorubicin, MD= 

MNC exposed to doxorubicin, CFD= CLL in fibroblast exposed to doxorubicin, CD= 

CLL exposed to doxorubicin).  

 

 

 

 

 



-148- 
 

 
 

Continuous exposure

M
FC

0

M
FC

50

M
FC

10
0

M
FC

40
0

M
C
0

M
C
50

M
C
10

0

M
C
40

0

C
FC

0

C
FC

50

C
FC

10
0

C
FC

40
0

C
C
0

C
C
50

C
C
10

0

C
C
40

0

0

20

40

60

80

100

D0

D1

D2

D3

Drug conc µM

%
 v

ia
b

il
it

y

 

Transient exposure

M
FC

0

M
FC

50

M
FC

10
0

M
FC

40
0

M
C
0

M
C
50

M
C
10

0

M
C
40

0

C
FC

0

C
FC

50

C
FC

10
0

C
FC

40
0

C
C
0

C
C
50

C
C
10

0

C
C
40

0

0

20

40

60

80

100

D0

D1

D2

D3

Drug conc µM

%
 v

ia
b

il
it

y

 

Figure 4.18 Continuous and transient exposure to chlorambucil with or 
without fibroblasts. 

In transient exposure the cells were incubated in presence of chlorambucil for 2 hours, 

following which cells were washed twice and then plated in fresh medium. Viability was 

assessed on day 0, 1, 2 and 3. (MFC= MNC in fibroblast exposed to chlorambucil, MC= 

MNC exposed to chlorambucil, CFC= CLL in fibroblast exposed to chlorambucil, CC= 

CLL exposed to chlorambucil).  

4.7 Antibody mediated cytotoxicity assessment 

Monoclonal antibodies like alemtuzumab, ofatumumab and GA101 on their 

own or in combination with chemotherapy like rituximab are highly effective 

clinically in treating CLL (Ferrajoli et al., 2003) (Hillmen et al., 2007) (Wierda 

et al., 2010) (Morschhauser et al., 2009) (Hallek et al., 2010b). At least three 
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different mechanisms have been proposed for the action of these drugs 

including antibody dependent cellular cytotoxicity (ADCC), complement 

dependent cytotoxicity (CDC) and induction of programmed cell death (Nückel 

et al., 2005) (Zent et al., 2008) (Stanglmaier et al., 2004) (Maloney et al., 

2002) (Byrd et al., 2002). One study has shown that the programmed cell 

death is mediated by a caspase independent apoptotic pathway (Stanglmaier 

et al., 2004). A later study has shown that rituximab has no in vitro activity on 

CLL cells but alemtuzumab induces 67% (range 15-100%) rapid (at 1 hour) 

complement dependent cytotoxicity (Zent et al., 2008).   

The current in vitro system needed optimisation for testing antibodies. 

Complement dependent cytotoxicity was assessed for alemtuzumab and 

rituximab. In the initial experiment MNCs were exposed to these antibodies for 

30 minutes and the remaining antibodies were washed off before plating into 

the culture media. Viability was assessed after 48 hours.  There was no 

significant cytotoxicity observed with either rituximab or alemtuzumab (Figure 

4.19). 
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Figure 4.19. Assessment of antibody mediated cytotoxicity with 
transient exposure to rituximab and alemtuzumab.  

MNC were exposed to antibodies for 30 minutes and then washed off. Cells were then 

plated in the presence or absence of CD40L fibroblasts. Complement activity was 

added to corresponding wells by adding patients’ own fresh serum. No cytotoxicity 

was observed with either rituximab or alemtuzumab in 48 hours viability assessment 

(n=3). 

The most obvious explanation for this is inadequate exposure duration to the 

antibodies.  Antigen and antibody are usually held by weak forces and when 

diluted in fresh medium for washing, antibodies get detached. Therefore in the 

subsequent experiment antibodies were added directly into the culture 

system. Both rituximab and alemtuzumab were added at 2 different 



-150- 
 

 
 

concentrations, 5µg/ml and 50µg/ml. MNCs were cultured with or without the 

presence of stromal cells. Complement activity was supplemented by adding 

patients’ own serum into the medium. Alemtuzumab induced cell death even 

at lower concentration despite the presence of stromal cells (Figure 4.20). 
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Figure 4.20 Assessment of antibody mediated cytotoxicity with 
continuous exposure to rituximab and alemtuzumab   

MNC were incubated with antibodies at two different concentrations, 5µg/ml and 

50µg/ml,in the presence or absence of CD40L fibroblasts. Complement activity was  

provided in appropriate wells by adding patients’ own fresh serum. Alemtuzumab as 

opposed to rituximab induced cytotoxicity both in presence and absence of stroma at 

48 hours viability assessment (n=3).   
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4.8 BCR Stimulation 

Antigenic stimulation through the BCR receptor has given conflicting results in 

the in vitro systems (Petlickovski et al., 2005) (Bernal et al., 2001a). Whole 

goat anti-IgM bound to Dynabeads has been shown to increase cell survival 

and suppress fludarabine-induced apoptosis while soluble anti-IgM promoted 

apoptosis in responsive samples (Petlickovski et al., 2005). But there are 

studies which have shown that soluble antibody in the form of F(ab)2 portion 

of the antibody, will induce  pro-survival signals (Bernal et al., 2001a). Studies 

are lacking in which anti-IgD is used as the antigenic stimulant. But there are 

previous studies which has shown that anti-IgD is a better stimulant for 

inducing calcium flux in the CLL cells than F(ab)2 portion of anti-IgM 

(Mockridge et al., 2007).  

The in vitro system developed above was used to test these agents. F(ab)2 

portions of goat anti-human IgM or IgD were used as the antigenic stimulant.  

Stimulation with anti-IgM showed significant improvement in percentage 

viability and cell count as shown in Figure 4.21. Initial results with anti-IgD 

have shown the opposite effect. There was significant apoptosis in 48 hours 

viability assessment as shown in Figure 4.22. Careful examination of the 

reagents has shown that boric acid was used as preservative in the anti-IgD 

while the anti-IgM had no preservatives in it. Boric acid is known to cause cell 

death (Barranco and Eckhert, 2004). Anti-IgD was therefore dialysed into 

preservative free medium. Using the boric-acid free anti-IgD improved the cell 

count and percentage viability similar to the results obtained with anti-IgM 

stimulation (Figure 4.23).  CLL cells predominantly express IgM and IgD and 

do not express class-switched immunoglobulin. To explore the possibility that 

there were differences in the ability of class switched Ig improve viability, the 

experiment was extended to include stimulation with anti-IgG (Figure 4.23). 

This experiment demonstrates that pro-survival signal can be delivered by 

both IgM and IgD stimulation but not IgG. 

Differences in levels of surface immunoglobulin could impact on the ability to 

transmit a pro-survival signal. With BCR stimulation there was no significant 

difference in viability or cell count between IgM expressing patient samples 

and those who have not expressed IgM significantly (Figure 4.24). The IgM 

expression was determined on these patients on routine laboratory assay and 

the data was taken from the records. The cut off used to determine whether 

IgM was expressed or not was based on isotype control. This may explain the 

above observation of not seeing any difference in viability between IgM 
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positive and negative patient samples. In patients without significant 

expression of IgM there may be minimal expression which is enough for BCR 

stimulation. 
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Figure 4.21 Stimulation of BCR with F(ab)2 portion of anti-IgM MNC were 
incubated with 10µg/ml of F(ab)2 portion of anti-IgM.  

Viability and count assessed at 48 hours (n=35). Significance was tested by paired t-

test. BCR stimulation with F(ab)2 portion of anti-IgM significantly improved percentage 

viability and cell count. 
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Figure 4.22 Comparison of stimulation with F(ab)2 portion of IgM, IgD 
and IgG.  

MNC were incubated with 10μg/ml of antibodies. Viability and count were assessed at 

48 hours.  
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Figure 4.23 Comparison of stimulation with F(ab)2 portion of IgM, IgD 
and IgG.  

MNC were incubated with 10μg/ml of antibodies. Viability and count were assessed at 

48 hours and significance calculated using paired t-test. IgM and IgD showed 

increased viability but IgG shows no difference in this experiment. IgD was dialysed to 

preservative free buffer. 
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Figure 4.24 Difference in viability between patients with significant IgM 
expression or not.  

Percentage increment in viability and cell count from unstimulated sample is shown in 

y axis. Significance was calculated using unpaired t-test.  

The difference in viability between mutated and unmutated patients was also 

not significant as shown in Figure 4.25. The mutational status was determined 

on these patients on routine laboratory assay and the data was taken from the 

records. So although there is evidence to suggest that mutated versus 

unmutated CLL may have different signalling properties (Mockridge et al., 

2007), these results suggest that the differences were not sufficient to 

manifest large changes in viability in the in vitro setting.                                                          



-154- 
 

 
 

IgM stimulation um/m %viab

U
M M

0

50

100

150

200
%

 I
N

C
R

E
M

E
N

T
 F

R
O

M
 U

N
S

T
IM

U
L

A
T

E
D

p=0.49

IgM stimulation um/m count

U
M M

0

50

100

150

200

%
 I
N

C
R

E
M

E
N

T
 F

R
O

M
 U

N
S

T
IM

U
L

A
T

E
D p=0.43

 

Figure 4.25 Difference in viability between mutated and unmutated 
patients.  

Percentage increment in viability and cell count from unstimulated samples is shown 

in the y-axis. Significance was calculated using an unpaired t-test. 

4.8.1. Single and multiple exposures to BCR Stimulus 

To test the postulate that CLL cells maintain their viability in vivo by getting 

exposed to antigenic stimulus repeatedly in the proliferation centres, single 

and multiple exposures to BCR stimulus was tested. With BCR stimulation 

cells maintain good viability up to 10 days even with a single antigenic 

stimulation at the beginning. In contrast there is no role for repeated stimulus 

in vitro (Figure 4.26).   
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Figure 4.26 Single and multiple exposure to anti-IgM F(ab)2.  

In single exposure 10μg/ml of anti-IgM was added once when the cells were plated. In 

multiple exposure anti-IgM was added every 24 hours until the wells were harvested for 

testing viability.  
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4.9 Discussion 

The above experiments demonstrate the development of a robust in vitro 

system for testing various new drugs in CLL. MNC or negatively selected CLL 

cells can maintain good viability for up to 48 hours in IMDM, RPMI or AIM-V 

medium and seeding as MNC is better to maintain the viability than seeding 

as negatively selected CLL cells. This is due to the presence of other 

supporting cells like monocytes and T-cells which is previously published 

(Burger et al., 2000) (Ghia et al., 2002). Monocytes may form nurse like cells 

as shown by Burger et al., but this is not formally tested in this experiment. 

Moreover Seiffert et al have shown that monocytes help in the survival of CLL 

cells by secreting soluble CD14 which in turn activate NFκB (Seiffert et al., 

2010). This duration is adequate to test the relative viability of the cells in 

presence of drugs compared to the control sample. Stromal support with 

either CD40L fibroblasts or M210B4 cells will prolong the duration of viability 

beyond 2 weeks. This will also confer a drug resistance environment for CLL 

cells when treatment with conventional chemotherapeutic drugs. These 

observations are also consistent with literature (Lagneaux et al., 1998) 

(Panayiotidis et al., 1996) (Nwabo Kamdje et al., 2012). Lagneaux et al. 

showed that bone marrow derived stromal cells reduces the apoptosis of CLL 

cells in a contact dependent manner through adhesion mediated by β1 and β2 

integrins. In the paper by Panayiotidis et al., both spontaneous and 

hydrocortisone induced apoptosis of CLL cells were significantly reduced by 

contact with bone marrow derived stromal cells. Nwabo Kamdje et al in their 

paper demonstrated that bone marrow derived mesenchymal stromal cells 

protected CLL cells from spontaneous apoptosis and that induced by various 

drugs like fludarabine, cyclophosphamide, bendamustine, prednisone and 

hydrocortisone. They have also shown that this protective effect was aborted 

by day 3 by a combination of anti-Notch-1, Notch-2 and Notch-4 antibodies or 

γ-secretase inhibitor XII even in presence of the drugs, suggesting the role for 

Notch signalling in CLL cell survival and chemo-resistance. BCR stimulation 

with F(ab)2 anti-IgM or IgD also support CLL cell survival but not anti-IgG as 

shown in previous studies (Bernal et al., 2001b). Study by Bernal et al. 

showed that anti-IgM F(ab)2 reduced the spontaneous apoptosis rate from 

41% to 3.8% as against a polyspecific goat F(ab)2 fragments (36%). The 

antigenic stimulation system may be useful for testing the BCR kinase 

inhibitors in CLL and provide the most physiologically relevant model.  
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5. Development of phosflow and calcium flux assays to 

assess physiological pathways of survival signal inhibition 

As discussed in the introductory chapter the B-cell receptor (BCR) is essential 

for survival and functioning of normal peripheral B-cells. There is convincing 

evidence to suggest that it has a role in survival and growth of malignancies 

derived from mature B-cells. This is true in the case of CLL also even though 

the levels of surface immunoglobulin (sIg) are low compared to normal B 

lymphocytes and to other B-cell malignancies. 

Following engagement of antigen, B-cell receptor complex aggregates leading 

to phosphorylation of several downstream Src-family tyrosine kinases 

(Woyach et al., 2012). Of these phosphorylation of SYK is an important early 

component, which then activates intracellular signalling cascades. 

Phosphorylation of SYK therefore is an indicator of the proximal events 

happening in the membrane which depend on the structural integrity and 

oligomeric form of the BCR. There is evidence that response to ligation of 

sIgM in CLL varies between the subsets of CLL with an increased tendency 

for unmutated CLL to phosphorylate SYK (Lanham et al., 2003) (Chen et al., 

2002). Furthermore, data suggests that mutated CLL which fail to signal 

through sIgM can instead utilise sIgD to transmit intracellular signals (Lanham 

et al., 2003). Phosphorylation of ZAP70 with recruitment to the BCR has also 

been observed as a parallel pathway (Chen et al., 2002). 

The downstream phosphorylation pathway triggers phospholipase C γ (PLCγ), 

an enzyme that hydrolyses polyphosphoinositide, producing inositol 1,4,5-

triphosphate (IP3) and diacylglycerol (DAG). DAG activates protein kinase C, 

and IP3 releases calcium from the endoplasmic reticulum and the 

extracellular compartment (Roos et al., 2005). Calcium release directly 

activates a number of transcription factors, including NFκB, Jun, and nuclear 

factor of activated T cells (NFAT) which thereby transmit a survival signal to 

the nucleus of the cell (Yarilina et al., 2011). As phosphorylation and the rise 

in calcium are key events in the response to ligation of the BCR in CLL, and 

this correlates with the downstream events, measuring these early events will 

provide evidence of the physiological responses the cells undergo when 

triggered by a survival signal. This can also be used to measure the lack of 

response in cells when these pathways are inhibited by specific blockers.  
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5.1 Calcium Flux 

Calcium flux can be monitored by several techniques based on various 

factors, such as the cell type, nature of the receptor, the stimulus required, 

sensitivity of the measurement and availability of the instruments. Techniques 

using flow cytometry have an advantage of testing relatively large numbers of 

cells and sequential samples when they are in cell suspension. If 

multiparameter flow cytometry is used calcium flux studies can be combined 

with cell markers to permit sub-population analysis and the sorting of events 

of interest (Burchiel et al., 2000). 

The basic principle of Ca2+ flux measurement by flow cytometry is based on 

changes in fluorescence intensity or emission wavelength of a fluorophore 

following chelation of calcium ions. This is plotted as fluorescence intensity 

against time. Single dye fluorescence difference can be used to measure 

calcium flux but there are several variables such as photo-bleaching, leakage, 

uneven loading, and varying cell thicknesses in mixed populations, which can 

affect the fluorescent intensity (Rabinovitch et al., 1986) (Novak and 

Rabinovitch, 1994). There are problems with variations in cellular auto 

fluorescence and selective removal of the fluorophore by ion pumps. All of 

these can affect Ca2+ binding to the fluorophore and fluctuations in the 

fluorescence intensity on a cell-by-cell basis. Ratio metric analysis of 

fluorescent intensity of dye bound to Ca2+ to unbound can minimise the 

technical problems described earlier and as a ratio of two parameters is 

comparatively insensitive to small changes that may be observed in a single 

parameter (Rabinovitch et al., 1986). 

Indo-1 is the most commonly used fluorophore for ratio metric measurement 

of intracellular calcium (Grynkiewicz et al., 1985). It has an excitation peak at 

330–346 nm, depending upon the Ca2+ concentration, but requires a UV 

capable laser with a line between 325 and 360 nm for excitation. Ratio metric 

analysis with Indo-1 as a single dye can be attained as the peak fluorescence 

emission for Ca2+ bound is 405 nm and for Ca2+ free Indo-1 is 475 nm. Ratio 

metric Ca2+ flux is determined by calculating the ratio of the mean 

fluorescence intensity (MFI) of Indo-1 emission at 405 nm to the MFI of 

emission at 475 nm. The obvious disadvantage of Indo-1 is the requirement of 

UV capable laser for excitation and it is not widely available. But this has had 

an advantage of preserving access to a 488 nm line allowing the 

simultaneous use of fluorescein-conjugated antibodies. 
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An alternative to Indo-1 is the combination of 2 dyes for ratio metric 

assessment like fluo-3 and fura red (Minta et al., 1989) (Novak and 

Rabinovitch, 1994).  Fluo-3 excites at 506 nm and emits at 526 nm and fura 

red in low Ca2+ conditions excites at 472 nm and emits at about 657 nm, and 

in high Ca2+ conditions it excites at 436 nm and emits at 637 nm. The MFI of 

fluo-3 increases upon binding Ca2+ and that of fura red decreases and the 

ratio of the MFI fluo-3 to fura red can be used for ratio metric analysis of Ca2+ 

using the more commonly available 488 nm laser line. 

Both methods were used in the current study. Initial experiments were done 

using Indo-1 in a cytometer that was already optimised for the assay and later 

fura-red/fluo-3 dyes were used once the flow cytometer was optimised for 

these reagents. Using these assays, the ability of CLL cells to respond to 

BCR ligation and the impact of therapeutic kinase inhibitors was investigated.  

Mockridge et al has published experiments on calcium flux signalling by 

stimulating the BCR receptors using flow cytometry (Mockridge et al., 2007). 

Even though Ca2+ flux signalling to anti-IgM generally correlated with an 

increase in SYK phosphorylation measured by immuno-precipitation of 

phosphorylated SYK, there was discordance in both ways. Considering 

samples with more than 5% cells fluxing calcium, sIgM-mediated signalling is 

more commonly detected in U-CLL compared to M-CLL. Even though there 

was an overall correlation of sIgM expression and signalling capacity, when 

comparing M-CLL and U-CLL only M-CLL showed correlation between sIgM 

expression and Ca2+ flux. Unlike sIgM, sIgD stimulation triggered Ca2+ flux in 

a very high proportion of samples and there was no difference between M-

CLL and U-CLL. Signalling capacity and surface expression of IgM was 

recoverable to certain extent by culturing the cells in vitro for 24 to 48 hours. 

Prior to embarking on the main experiments a number of tests were 

performed to establish the correct instrument settings. Figure 5.1 shows the 

gating strategy for determining the relative amount of Indo-1 blue versus Indo-

1 violet in total lymphocytes. As a positive control, the Ca2+ ionophore, 

ionomycin was added. When a strong calcium fluxing stimulus like ionomycin 

is added the calcium is released into the cytoplasm and Indo-1 binds more 

calcium, shifting the emission spectrum from predominantly blue to violet and 

when this ratio is plotted against time there will be an upward shift in the 

calcium fluxing cells. This plot can be represented as a line graph using 

FlowJo software (Figure 5.1D). The graph shows three phases. The first 

phase is the resting phase when the cells are unstimulated and after the 
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stimulation there is a maximum response phase which is followed by a dip in 

the response and that response is maintained as a plateau phase for a 

prolonged time for a strong stimulus like ionomycin. However, if the response 

is recorded for a sufficiently long interval, then it should fall to the base line. 

A B  

C D  

Figure 5.1.Gating strategy for calcium flux experiments.  

Live lymphocytes were gated using forward and side scatter (A). The top time-course 

panel is the control unstimulated sample (B) and the bottom panel shows the response 

to ionomycin with an increase in the amount of violet emission (C). Line graph using 

FlowJo software is shown in D. 1is the unstimulated phase, arrow indicates the 

addition of ionomycin, 2 is the peak stimulation phase and 3 is the plateau phase.  

The major physiological trigger for calcium flux in CLL cells is through BCR 

ligation. To test how well the assay worked as readout for CLL cells, MNC 

from patients were stimulated with F(ab)2 antibody to IgM and assessed by 

flow cytometry. Examples of three types of response to IgM stimulus are 

shown in Figure 5.2 suggesting that the response is variable in patients. 

Among those tested, the first patient had essentially no response whereas the 

other two showed measurable Ca2+ fluxes.  As mentioned previously, 

activation of SYK kinase is a crucial early event downstream of BCR 

triggering. To determine the effect of SYK inhibition on Ca2+ signalling, CLL 
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cells were incubated with the inhibitor GSK143 (details of the compound in the 

next chapter) and then assayed following IgM stimulation. Figure 5.3 shows 

that treatment of the two samples that generated strong Ca2+ fluxes with 

GSK143 completely inhibited the signal. 

A  

B  

C  

Figure 5.2 Ca2+ flux in CLL patients in response to anti-IgM.  

Flowplot is shown in the left panel. Right panel shows the graphical analysis done by 

flowJo software. The black and blue lines represent the stimulation using IgM without 

or with the presence of a SYK inhibitor, respectively. All responses are almost 

completely inhibited by pre incubating with SYK inhibitor. The above 3 plots shows 

different response to the stimulus in different patients. A shows no response, B mild 

response and C shows the maximum response. 
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5.1.1. Fluo-3/fura-red optimisation 

In addition to the Indo-1 optimisation detailed above, similar steps were 

employed to optimise the use of fluo-3/fura-red. As shown in Figure 5.3, the 

concentrations of fura-red and Fluo-3 were titrated so that the MFI fell within 

scale. In the last plot the ratio of the MFI of fluo-3 to fura-red was plotted 

against time. When the cells are stimulated and flux calcium, fluo-3 MFI 

increases and that of fura-red falls making the ratio high.  

   

 

Figure 5.3 Optimisation of Fura-red and fluo-3.  

In the first plot lymphocytes are gated using forward and side scatter. In the second 

and third plots MFI of fura-red and fluo-3 were plotted against time. In the fourth plot 

the ratio of MFI of Fluo-3 to Fura-R is plotted against time. The fluorochromes are 

titrated, so that the ratio will fall in the bottom quarter of the graph when the cells are 

unstimulated. 

Initial experiments using Indo-1 were tested on negatively selected CLL cells, 

but this was time consuming and expensive. So calcium flux was tested on 

MNC prepared by lymphoprep. The CLL cells were identified using multi-

colour flow cytometry. Various antibodies used to mark the cells were tested 

individually to make sure that these antibodies by themselves were not 

inducers of calcium flux. The antibodies and different antigenic stimulation 

tested are represented in Figure 5.4. The plots demonstrate that there is no 

calcium flux when using antibodies against CD19 or CD3 and therefore these 



-162- 
 

 
 

Calcium flux using CD19                                Calcium flux using CD3 

R
at

io
 F

lu
o

-3
/F

u
ra

-R
 

X10 sec X10 sec

R
at

io
 F

lu
o

-3
/F

u
ra

-R
 

 

Calcium flux using IgD                                    Calcium flux using IgM 

X10 sec

R
at

io
 F

lu
o

-3
/F

u
ra

-R
 

X10 sec

R
at

io
 F

lu
o

-3
/F

u
ra

-R
 

 

In the following figures cells were stained previously with CD3 and CD19 

Calcium Flux using IgG.                        Calcium Flux using IgM.  
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Figure 5.4 Calcium flux with cell staining antibodies and different 
antigenic stimulation.  

Cells were evaluated after staining using population identification antibodies against 

CD19 or CD3. Calcium flux was also evaluated after stimulation with cross-linking 

antibodies against immunoglobulins IgM, IgD and IgG. The percentage of fluxed cells 

are shown as the number in P2 gate. 
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antigens can be used to mark the CLL cells. The strongest stimulus among 

immunoglobulins was IgD and the weakest was the IgG (Mockridge et al., 

2007). This reflects the expression of these immunoglobulins on CLL cells 

and is consistent with previous literature (Mockridge et al., 2007).  Multi-

parametric flow cytometry was used for further experiments to identify CLL 

cells using CD19 and CD3 antibodies. The gating strategy for using this 

combination is shown in Figure 5.5. 

    

  

Figure 5.5 Multi-colour flow cytometry for calcium flux in CLL cells.  

Lymphocytes were gated using forward and side scatter (P1). CLL cells were then 

gated using CD19 (P2) and T-cells using CD3 (P3). Calcium flux in CLL cells and T-cells 

are shown separately in the time:ratio plot. Fluxed CLL cells are gated as P4. 

As IgD ligation was the most consistent trigger for Ca2+ flux in CLL cells, the 

optimal dose range was explored further. The concentration of the amount of 

anti-IgD required for maximum calcium flux was titrated as shown in Figure 

5.6. Anti-IgM and IgG were used as controls and showed only very minimal 

calcium flux (Figure 5.7). Increasing concentrations of anti-IgD show 

incremental values in cells fluxing calcium up to a concentration of 10 μg/ml 

(IgM -1.9%, IgG -0.4%, IgD (1.25 μg/ml) -6.7%, IgD (2.5 μg/ml) -8.7%, IgD (5 

μg/ml) -9.5%, IgD (10 μg/ml) -24.2% IgD (20 μg/ml) -6.9%. 

 



-164- 
 

 
 

 

 

 

 

Figure 5.6 IgD titration for calcium flux.  

CLL cells were stimulated with 2-fold increments of anti-IgD up to a concentration of 20 

μg/ml. The percentage of fluxed cells are shown as the number in P4 gate.. 
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Figure 5.7   IgD is a more potent stimulant for calcium flux than IgM.  

The average percentage of fluxing CLL cells in response to IgM or IgD ligation was 

determined (n=6). p value was calculated using paired t-test.  
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Calcium flux can vary with the storage condition of the sample. To determine 

how processing of samples can influence the ability to respond to BCR 

stimulation an experiment was performed to examine the degree of Ca2+ 

signalling (Figure 5.8). Flux was maximal if tested immediately after bleeding 

the patient. There was a reduction in calcium flux if tested after storage of the 

same sample either at room temperature or refrigerated, even though the 

difference is not statistically significant.  
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Figure 5.8 Calcium flux based on the storage condition of the sample.  

24 Hrs RT = sample kept at room temperature for 24 hours, 24 Hrs Refri= sample kept 

at 4
o
C for 24 hours. p value calculated using paired t-test. 

5.2 Detection of signalling events using Phosflow analysis 

In addition to Ca2+ flux, phosphorylation of key proteins is central to 

propagating the downstream signal. A number of antibodies that are specific 

for the phosphorylated versions of these proteins are commercially available 

and suitable for flow cytometry. Daudi and Jurkat cells were used as control 

cells for optimising the phosflow antibodies. Cells were mixed and identified 

using intracellular CD3 staining which was used along with the phosflow 

antibodies. The same method was used to separate T-cells and CLL cells 

from the MNC prepared by lymphoprep in the phosflow experiments. The 

gating strategy is shown in Figure 5.9. The initial experiments evaluated the 

effect of IgM ligation on the detection of phosphorylated SYK. The MFI of 

phospho SYK in Daudi cells shifted considerably once stimulated by IgM 

signalling. Unlike Daudi cells, Jurkat T-cells show no shift when stimulated 

using anti-IgM. 
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A 

 

B 

 

Figure 5.9 Phosphorylation of SYK in response to IgM ligation.  

Daudi (P1) and Jurkat cells (P2) were identified using anti-CD3. Isotypic control, 

unstimulated Daudi cells and Jurkat cells shows similar expression for phospho SYK 

(PE mouse anti-SYK (pY348). The MFI of phospho SYK in Daudi cells (A), but not in 

Jurkat cells (B), shifted considerably once stimulated by IgM signalling (SYK-M). 

Similar to the above experiment MNC isolated by lymphoprep from CLL 

patients were subjected to IgM stimulation (Figure 5.10). The first patient 

showed a significant shift in MFI while the second one showed no shift after 

IgM stimulation. 
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Figure 5.10 SYK phosphorylation by IgM stimulation on CLL cells.  

The left panel is the level of phospho SYK in resting cells and the right panel depicts 

the response to IgM stimulation for 60 seconds measured by MFI of phospho-SYK 

antibody on 2 different patients.  

Two other downstream molecules were also tested for phosphorylation, which 

are shown in Figure 5.11. Two AKT antibodies with different phosphorylation 

sites and NFκB phosphorylation were evaluated. The first AKT antibody 

detects phosphorylation at S473 and the second one phosphorylation at 

T308. Site T308 seems to be constitutively phosphorylated in CLL without 

significant shift after IgM stimulation while site S473 shows a shift in MFI after 

stimulation with IgM. There was no discernible change in NFκB 

phosphorylation. These negative results should ideally be confirmed using 

positive controls like CD40L for NFκB, but due to time constraints these 

experiments were not done. 
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Figure 5.11 Testing downstream phosphorylation by IgM stimulation.  

The top panel shows staining with anti-phospho AKT S473, the middle panel shows 

phospho AKT T308 and the bottom shows NFκB phosphorylation. In each instance the 

left panels indicate resting cells and the right panels show detection after IgM 

stimulation (t=60 sec).  

For the initial experiments only intracellular CD3 was used to separate T-cells 

from CLL cells. Later multi-colour flow cytometry was used to test different 

phosflow molecules simultaneously. Here surface antibodies were used to 

separate cells. The expression of the surface antibodies seems to be distorted 

if cells were stained after fixation and permeabilization, i.e. when surface 

antibodies were added along with the phosflow antibodies (Figure 5.13). 

Therefore the staining of surface antibodies was performed prior to the 

fixation of cells as demonstrated in Figure 5.12. These data demonstrate that 

the surface antibody (CD19) staining is better before fixing the cell. SYK 

phosphorylation status was significantly altered by IgD stimulation and not by 
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IgM or IgG. With the antibodies used there was no significant shift 

demonstrated in phosphorylated AKT or BTK with any of the stimuli. 

A  B  

C D  

E F  

G H  
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Figure 5.12 Gating strategy for testing phosphoproteins using 
multicolour flow cytometry: Staining with surface antibodies before 
fixing. 

Lymphocytes were gated using CD45 and side scatter (A). T cells and B-cells were 

separated using CD19 and CD3 (B). The subsequent plots shows phosphorylation 

status of phosphoproteins including SYK (C,D,E,F), AKT(s473) (G,H,I,J), and BTK 

(K,L,M,N) molecules in unstimulated cells (C,G,K) and using various stimulus including 

anti-IgD (D,H,L), IgM (E,I,M) and IgG (F,J,N) (t = 60 sec). 
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Figure 5.13 Gating strategy for testing phosphoproteins using 
multicolour flow cytometry. Staining with surface antibodies along 
with phosphoprotein antibodies after fixing. 

Lymphocytes were gated using CD45 and side scatter (A). T cells and B-cells were 

separated using CD19 and CD3 (B). The subsequent plots shows phosphorylation 

status of phosphoproteins including SYK (C,D,E,F), AKT(s473) (G,H,I,J), and BTK 

(K,L,M,N) molecules in unstimulated cells (C,G,K) and using various stimulus including 

anti-IgD (D,H,L), IgM (E,I,M) and IgG (F,J,N) (t = 60 sec). 

The data in Figures 5.9 and 5.10 showed that phosphorylated SYK was 

detected in Daudi and CLL cells following IgM stimulation. To improve the 

assay a dose titration curve was plotted for phospho SYK antibody to find the 

optimum concentration (Figure 5.14). MNC prepared using lymphoprep were 

compared with whole blood, with the optimum concentration of phospho SYK 

antibody titrated using whole blood. Both signal-to-noise ratio and the 

percentage increment in signal from unstimulated to stimulated were also 

maximum with 10μl which was half the manufacturer’s recommended 

concentration.  
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Figure 5.14 Dose titration curve for phospho SYK.  

Whole blood was used to titrate the antibody starting with a neat solution of 20μl, 

which was the manufacturer recommented concentration. The difference in expression 

of phospho SYK (secondary y-axis) between IgM stimulated and unstimulated cells are 

maximum with 0.5 times dilution of the neat solution. 

The above experiments proved that the downstream signalling of B-cell 

receptor pathway can be stimulated by crosslinking with F(ab)2 anti-IgD 
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antibody in CLL cells as demonstrated by SYK phosphorylation and to a 

lesser degree phosphorylation of AKT at site S473. Phosphorylation of other 

molecules like BTK and AKT at site T308 could not be demonstrated, but it 

would need several optimisation experiments including ideal fixing and 

permeabilizing buffer, optimum stimulation time, positive and negative 

controls etc. before definitively concluding that they are not phosphorylated. 

Titration experiments demonstrated that half the recommended concentration 

of SYK phosflow antibody could be used effectively to distinguish a positive 

signal. These optimisations were conducted to streamline further experiments 

in the next chapter. 

5.3 SYK and ZAP70 expression 

In addition to SYK, the homologous kinase ZAP70 is expressed in a cohort of 

CLL samples. To distinguish between the relative expression levels of these 

two kinases, an experiment was performed using whole blood from a healthy 

volunteer and B- and T-cells gated using CD19 or CD3, respectively (Figure 

5.15).  The antibodies used allowed a clear demarcation of SYK expressing 

B-cells and ZAP70 expressing T-cells. To further improve the assay a titration 

of both antibodies was performed (Figure 5.16). The signal-to-noise- ratio 

suggests that 5μl of ZAP70 and 1μl of SYK antibodies were optimum for 

further experiments. The results suggest that SYK and ZAP70 expression 

levels can be accurately determined. This is an important variable to consider 

when assessing the viability of cells when treated with inhibitors affecting 

phosphokinases of BCR pathway, as demonstrated in the next chapter. 
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Figure 5.15 Gating for SYK and ZAP70 expression. 

 Lymphocytes were gated using forward and side scatter. T (P2) and B (P1) 

lymphocytes were seperated using CD19 and CD3. The expression of ZAP70 and SYK 

above the isotype control (vertical bar represents the maximum expression of isotype 

control) is shown in the bottom plots.  
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ZAP70 titrated on T cells from CLL patients 
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Figure 5.16 ZAP70 and SYK antibodies were titrated for optimum 
concentration.  

10µl of ZAP70 and 2µl of SYK antibodies were used as neat solution. Both were titrated 

on normal as well CLL patients.  

5.4 Discussion 

B-cell receptor complex aggregates following engagement by antigen leading 

to phosphorylation of several downstream Src-family tyrosine kinases 

(Woyach et al., 2012). Of these, phosphorylation of SYK is an important early 

component, which then activates intracellular signalling cascades including 

calcium flux, ultimately leading to activation of the transcription factor NF-κB 

(Mackay et al., 2010). BCR signalling plays an important role in the 

pathogenesis of CLL (Zenz et al., 2010c) and blocking this pathway will 

induce apoptosis in CLL cells (Buchner et al., 2010) (Gobessi et al., 2009). 

When studying the effect of inhibitors of phospho-kinases in the pathway as 
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potential therapeutic agents it is important to be able to show changes in 

phosphorylation and calcium flux and thereby demonstrate the inhibition of 

pro-survival signals. Changes in phosphorylation of SYK protein have been 

previously demonstrated by immuno-blotting (Herishanu et al., 2011). Here 

we optimised a flow cytometric method to study this effect, which allows the 

detection of SYK phosphorylation at the cell level, rather than relying on an 

assessment of a bulk population. Similarly IgM cross-linking has been shown 

to stimulate calcium flux in CLL cells and this effect has been studied by flow 

cytometry (Mockridge et al., 2007). In this study both these techniques were 

used to explore the effect of a new SYK inhibitor (GSK 143) as well as to 

study the effect of manipulation of pathways of new antigens identified in the 

earlier chapter. 
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6. Testing the effect of BCR kinase inhibitors on CLL 

Previously CLL cells were characterised by a defective apoptosis response 

rather than an increased proliferation as most of the circulating cells are 

arrested in the G0/G1 phase of the cell cycle, and express high levels of anti-

apoptotic proteins (Kitada et al., 1998). But now it is clear, from the heavy 

water experiments, that a small fraction of CLL cells actively proliferates in 

vivo (Messmer et al., 2005). This usually happens in the proliferation centres 

in the tissue microenvironment, where contact dependent signals are 

delivered by various accessory cells such as nurse-like cells, follicular dentritic 

cells, marrow stromal cells and T-cells (Audrito et al., 2013b). Various 

chemokine receptors and adhesion molecules expressed on CLL cells help in 

their trafficking and homing into the microenvironment (Audrito et al., 2013b). 

Once in the microenvironment another crucial activation pathway stimulated is 

the BCR pathway (Burger, 2011). This can be engaged by either microbial or 

autoantigens the nature of which is still not very clear (Chu et al., 2008) 

(Catera et al., 2008). Now there is good evidence to suggest that antigen 

stimulation of the BCR and the downstream signals derived from that play a 

critical role in pathogenesis and prognosis of CLL. This signalling pathway is 

detailed in the introductory chapter. Several phosphoproteins are recruited 

and activated in this pathway including SYK, BTK, LYN, AKT and PI3Kδ. Now 

it is evident from various in vitro studies that manipulation of the activation of 

some of these molecules can inhibit further downstream signalling and 

thereby the stimulation and proliferation of the cells. Inhibitors of some of 

these molecules have already entered different phases of clinical trials.   

6.1 SYK inhibitor R406 

The SYK inhibitor R406 has been studied by a number of groups. This is the 

active metabolite of the clinically used pro-drug R788 (fostamatinib disodium) 

which is rapidly converted to R406 in vivo. A study by Quiroga et al has 

shown that this molecule can affect various aspects of CLL cell survival 

signalling. It can inhibit IgM mediated increased viability as well as the viability 

of CLL cells in nurse-like cells co-cultures (Quiroga et al., 2009b). R406 

blocks CCL3 and CCL4 secretion by CLL cells in response to BCR triggering. 

It abrogates the change in expression of adhesion molecules and chemokine 

receptors, specifically up-regulation of CD40, CD44, CD54, and CD62L, and 



-179- 
 

 
 

down-regulation of CXCR4 on CLL cells triggered by BCR activation.  R406 

antagonizes the increased chemotaxis towards CXCL12 and CXCL13 and 

migration beneath marrow stromal cells (pseudoemperipolesis) of CLL cells 

after BCR triggering. Immunoblotting has demonstrated that anti-IgM induced 

phophorylation of SYK and downstream molecules, p44/42 mitogen-activated 

protein kinase (ERK), and AKT activation were inhibited by R406 (Quiroga et 

al., 2009b). Anti-IgM induced intracellular calcium flux was also significantly 

inhibited by this compound.  

A paper by S Gobessi et al has shown that SYK was constitutively 

phosphorylated at the activating Y352 residue in CLL B-cells by 

immunoblotting and confocal microscopy similar to DLBCL cell lines DHL-4, 

DHL-6, WSU and DHL-10 (Gobessi et al., 2009). Treatment of CLL cells with 

R406 resulted in a dose-dependent reduction in basal AKT phosphorylation 

and the phosphorylation of its direct substrates glycogen synthase kinase 

(GSK)-3 and FOXO1/3a. In addition, they showed a basal phosphorylation of 

ERK and that was reduced by R406. In contrast, the high basal DNA binding 

activity of NF-κB displayed by CLL cells was not affected by R406. This may 

also suggest that the high basal NF-κB activity of CLL cells is not a 

consequence of constitutive SYK activation. R406 also blocked the anti-IgM 

induced signalling downstream of SYK, as evidenced by absent or reduced 

phosphorylation of AKT and GSK-3 and increase in MCL-1 expression and 

the consequent increase in leukaemic cell viability (Gobessi et al., 2009). 

Buchner et al demonstrated the role of SYK in molecularly defined pathways 

that mediate the CLL-microenvironmental crosstalk independent from the 

BCR (Buchner et al., 2010). There is an increased phosphorylation of SYK at 

tyrosine 352 and also AKT phosphorylation on contact with the murine stromal 

cell line M2-10B4, human cell line HS-5, and to primary stromal cells. R406 

inhibits this AKT phosphorylation and downstream actin polymerization. To 

find the molecular pathway for stromal induced phosphorylation, homing and 

adhesion molecules including CXCL12, and VCAM-1 were tested and found 

to activate SYK and AKT phosphorylation, actin polymerisation and cell 

adhesion. R406 seems to inhibit all these effects. Their experiments have also 

shown that cell adhesion mediated drug resistance by stromal contact to 

chemotherapeutic agents like F-ara-A were completely abrogated in the 

presence of R406. 
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6.2 BTK inhibitor 

Another clinically interesting molecule affecting the BCR pathway is the BTK 

inhibitor PCI-32765. Ponader et al showed that PCI-32765 interferes 

significantly with anti-IgM induced and NLC-mediated survival (Ponader et al., 

2012). Preincubation with 1µM PCI-32765 before anti-IgM stimulation 

significantly reduced CLL cell viability to 98%±8% of unstimulated controls 

(normalised to 100%), compared to 27%±12% increase in viability with anti-

IgM stimulation after 24 hours. CLL cells from the TCL1 mouse model display 

a similar response to anti-IgM stimulation and PCI-32765 in vitro. The uptake 

of 3H-thymidine by CLL cells co-cultured with NLCs was significantly reduced 

by PCI-32765 in a dose-dependent manner suggesting that a subset of 

proliferating CLL cells in the co-culture are inhibited by PCI-32765. The level 

of CCL3 and CCL4, which are chemokines secreted by CLL cells in response 

to BCR activation and during co-culture with NLCs, significantly dropped after 

treating with PCI-32765. CLL cell chemotaxis toward CXCL12 and CXCL13 

and intracellular F-actin content was inhibited after pre-treatment with PCI-

32765. Studies on the EµTCL1 adoptive transfer mouse model that resembles 

CLL in patients showed that 5 weeks after cell transfer, control mice and mice 

treated for 2 weeks with the suboptimal dose of PCI-32765 exhibited signs of 

disease including lethargy, hunched posture, ruffled and lost fur, and weight 

loss along with massive lymphocytosis, hepatosplenomegaly, and 

lymphadenopathy (Ponader et al., 2012). In contrast mice receiving the 

optimal dose of PCI32765 appeared to be healthy, with significantly smaller 

livers and spleens with markedly reduced leukaemic infiltration. Treated mice 

also showed significantly repressed levels of phospho-PLCγ2 in spleen cells 

suggesting that PCI32765 considerably delays CLL progression in vivo. 

Herman et al. showed that the BTK expression at protein level is variable 

among patients with CLL but not at the mRNA level suggesting a disrupted 

post transcriptional modification of the protein (Herman et al., 2011). This is 

not true in case of normal B-cells from a control population. The variation in 

CLL cells does not correlate with any known prognostic markers like IGHV 

mutational status. Herman et al have also demonstrated that PCI-32765 

exhibited a significant dose-dependent cytotoxicity in CLL cells. However 

there was a big variation in cytotoxicity among patients, which also has no 

correlation with the known prognostic markers as well as the BTK level. PCI-

32765 induced PARP cleavage in a dose-dependent manner confirming 

activation of caspase-3 after PCI-32765 treatment suggesting a caspase 
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dependant apoptotic pathway. Inhibition of caspase activity by z-VAD-fmk 

completely prevented the induction of apoptosis provided by PCI-32765, 

confirming the above findings. PCI-32765 can induce cell death in normal B-

cells also but to a lesser extent compared to CLL cells. Even though naive T-

cells showed expression of BTK at mRNA level to a significantly lesser extent 

compared to normal B-cells, they lack BTK expression at protein level both in 

naive T-cells and after CD3 ligation (Herman et al., 2011). There was no 

significant cytotoxicity in T-cells for doses which are cytotoxic to B-cells and 

CLL cells, but there was a significant inhibition of production of inflammatory 

cytokines such as IL-6, IL-10, and TNF-α; which suggests that PCI-32765 

probably affects alternative kinase(s) expressed in T-cells. PCI-32765 has 

been shown to reduce the level of phosphorylated BTK and the downstream 

molecules ERK1/2 in patients who have these molecules phosphorylated 

constitutively. Additionally, the induction of phosphorylation of AKT and 

binding of NF-κB to a consensus binding site following CD40L stimulation was 

completely reversed by treatment with even low doses of PCI-32765. PCI-

32765 has also been shown to antagonise CpG oligonucleotide induced CLL 

cell proliferation demonstrated by thymidine uptake (Herman et al., 2011). Co-

treatment with PCI-32765 seems to abrogate the protection induced by many 

microenvironment stimuli like CD40L, BAFF, TNF-α, IL-6, and IL-4.  PCI-

32765 also seems to reduce the viability of CLL cells in co-culture conditions 

with the HS-5 stromal cell line (Herman et al., 2011).  

6.3 Phosphoinositide 3'-kinase delta inhibitor, GS1101 (CAL-

101) 

Phosphoinositide 3'-kinases (PI3Ks) are key molecules that integrate and 

transmit downstream signals from various surface molecules, such as the 

BCR, chemokine receptors, and adhesion molecules. This family of kinases 

are therefore crucial molecules in regulating key cellular functions like growth, 

survival, secretion and migration. PI3Ks can be mainly divided into 3 groups, 

I, II, and III (Leevers et al., 1999). Class I isoforms phosphorylate inositol 

lipids to form second messenger phosphoinositides in the cell membrane that 

recruit, via binding to the amino-terminal pleckstrin homology domain, 

downstream signalling protein kinases like Tec kinases, phosphatidylinositol-

dependent kinase, AKT, integrin-linked kinase, and Rac guanine exchange 

factor. The class I kinases has 4 isoforms namely PI3K α, β, γ and δ.  PI3K α 

and β isoforms are expressed universally while PI3Kγ isoform is 

predominantly expressed in T-cells and plays a major role in T-cell activation 
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(Sasaki et al., 2000). PI3Kδ is predominantly expressed in haematopoietic 

cells including B-cells and plays a critical role in B-cell homeostasis and 

function. Transgenic mice with mutations inactivating PI3Kδ have various B-

cell defects. They show a lower B1 and marginal zone B-cell count, their 

immunoglobulin levels are reduced, display poor immunisation response, 

downstream signalling of BCR and CD40 stimulation is defective, and can 

develop inflammatory bowel disease (Jou et al., 2002) (Okkenhaug et al., 

2002) (Clayton et al., 2002). Biochemically, B-cells derived from PI3Kδ 

knockout mice also show less AKT phosphorylation when activated and have 

decreased downstream molecules like phosphatidylinositol 3,4,5-triphosphate 

levels and phosphopeptide activity (Vanhaesebroeck et al., 2005). In contrast, 

PI3Kγ isoform knockout mice have predominately a T-cell defect with normal 

B-cell development and function, suggesting that isoform-specific targeting of 

the PI3Kδ isoform may be cytotoxic to B-cells with minimal toxicity to other 

hematopoietic cell types. GS-1101 is a potent and highly selective PI3Kδ 

inhibitor. Previous in vitro data has shown that GS-1101 promotes apoptosis 

in B-cell lines and primary cells from patients with different B-cell 

malignancies, including CLL, mantle cell lymphoma and multiple myeloma. In 

these cells GS-1101 inhibits constitutive and CD40, TNFα, fibronectin, and 

BCR-derived PI3K signalling leading to suppression of AKT activation and 

thereby disrupting the survival signals in these cells (Lannutti et al., 2011) 

(Herman et al., 2010) (Ikeda et al., 2010). 

Hoellenriegel et al has shown that GS-1101 inhibits CLL cell chemotaxis 

towards chemokines CXCL12 and CXCL13 and migration beneath marrow 

stroma cells TSt-4 and 9-15C (pseudoemperipolesis) (Hoellenriegel et al., 

2011). Anti-IgM stimulation induced increase in CLL cell viability as well as 

NLC induced increase in cell viability were abrogated by GS-1101. GS-1101 

also inhibits BCR and NLC induced secretion of the chemokines, CCL3, 

CCL4, and CXCL13. GS-1101 treatment down modulates the increased 

secretion of several other chemokines and cytokines including CCL7, 

sCD40L, TNFα, CCL17 and CCL22 in CLL-NLC co-culture. GS-1101 seems 

to abrogate the protective effect of stromal cells on CLL cells to 

chemotherapeutic agents as it seems to sensitise CLL cells to cytotoxic 

agents like bendamustine, fludarabine, and dexamethasone. It also seems to 

inhibit AKT and ERK phosphorylation in response to anti-IgM stimulation, and 

CXCL12 or CXCL13 stimulation respectively suggestive of affecting both BCR 

activation pathway as well as stromal cell stimulated survival pathway. 

Hoellenriegel et al have also shown that there is a statistically significant 
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reduction in the plasma level of chemokines CCL3, CCL4, and CXCL13, as 

well as phospho AKT levels in circulating CLL cells after 28 days of treatment 

with GS-1101. 

Herman et al also studied the in vitro activity of GS-1101 on CLL cells 

(Herman et al., 2010). It has been demonstrated that CLL cells overall have a 

statistically higher intrinsic PI3K activity compared with normal B-cells. GS-

1101 showed a dose dependent cytotoxicity in vitro after 48hrs of analysis 

and there was no difference in cytotoxicity between patients in different 

chromosomal or IGHV prognostic groups. They have also shown that at a 

higher concentration GS-1101 can induce cytotoxicity in normal B-cells even 

though the activity is only minimal compared to CLL cells. GS-1101 induced 

PARP cleavage in a dose-dependent manner confirming activation of 

caspase-3 after treatment with drug suggesting a caspase dependant 

apoptotic pathway. Inhibition of caspase activity by z-VAD-fmk completely 

prevented the induction of apoptosis provided by GS-1101, confirming the 

above findings. Even though GS-1101 does not show cytotoxicity toward T-

cells or NK cells it reduces cytokine production by T-cells as measured by IL-

6, TNF-α and IL-10 production after anti-CD3 stimulation and IFN-γ production 

by NK cells stimulated with plate-immobilized alemtuzumab (Herman et al., 

2010). LY294002, a pan-PI3K inhibitor is cytotoxic to CLL cells as well as NK 

cells (Plate, 2004), but GS-1101 showed selective cytotoxicity to B-cells 

compared to NK cells confirming the selective cytotoxic potential. Treatment 

of CLL cells with GS-1101 could decrease, in a dose dependent manner, 

although not completely prevent, the increase in AKT phosphorylation at the 

Ser473 site and the downstream molecule GSK3β seen with CD40L 

stimulation. Similarly the increase in MCL-1 expression after CD40L 

stimulation was reversible by GS-1101 treatment (Herman et al., 2010). GS-

1101 also abrogates the protective effect from microenvironmental stimuli 

including BAFF, TNF-α and fibronectin which all act through an increase in 

phosphorylation of AKT at the Ser473 site, similar to what was observed with 

CD40L treatment. GS-1101 treatment of CLL cells co-cultured with HS-5 cells 

resulted in a similar proportion of cytotoxicity compared with treatment of CLL 

cells without co-culture also suggesting that GS-1101 has the potential to 

mediate cytotoxicity independent of the protective effect of contact with 

stromal cells(Herman et al., 2010). 
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There is now convincing evidence to suggest from phase 1 and phase 2 

clinical trials that both BTK inhibitor PCI-32765 (ibrutinib) and PI3Kδ inhibitor 

GS-1101 are clinically active in CLL without much toxicity. Both these drugs 

are going into phase 3 trials for comparing the efficacy with the current 

standard treatment. Results of the phase I/phase II trials on the BTK inhibitor 

was published in NEJM recently showing a very impressive result (Byrd et al., 

2013). At a median follow-up of 20.9 months 64% continued to receive 

treatment and 36% discontinued due to various reasons including disease 

progression (13%), adverse events (8%) and investigator’s decision including 

stem cell transplantation (15%). Overall response rate was 71% both in 

420mg cohort and 840mg cohort. There was no significant difference in 

response in patients with traditional high-risk prognostic features. At 26 

months the PFS of the whole group was 75% and OS was 83%. The most 

common adverse events of grade 3 or higher were pneumonia (12%) and 

dehydration (6%) and grade 2 or lower were diarrhoea, fatigue, and upper 

respiratory tract infection. More recent trials on ibrutinib combined with 

chemoimmunotherapy are also showing very promising results (Burger et al., 

2012).  

Similarly GS-1101 has been evaluated in a phase I trial in previously treated 

CLL patients (Furman et al., 2010).  GS-1101 reduced lymphadenopathy in all 

32 (100%) patients where at least one post-treatment tumour response 

assessment was possible with 91% achieving a 50% reduction in target 

lymph node size. Absolute lymphocyte count reduction of >50% from baseline 

was observed in 60% of patients at initial assessments. Considering nodal 

and peripheral blood changes together, partial responses according to the 

IWCLL criteria were observed in 33% of patients. The median duration of 

response had not been reached when the study was reported; but 7 patients 

had response durations of 6 months. Of 20 patients with CLL-related 

thrombocytopenia where baseline platelet counts <100,000/µL, 75% had 

either an improvement to >100,000/µL or a >50% increase from baseline. 

Considering the toxicity Grade 3, pneumonias occurred in 24% patients; 

haematological laboratory abnormalities included neutropenia in 24%, 

thrombocytopenia in 11% and anaemia in 8%. Flow cytometric analysis of 

CLL cells from patients showed that after 1 week of treatment with GS-

1101 constitutive expression of phospho AKT was reduced to the background 

levels  (p<0.0001), demonstrating pharmacodynamic inhibition of 

activated PI3K signalling. Plasma concentrations of several chemokines 

including CCL3, CCL4, and CXCL13 were elevated at baseline in the patients 
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which decreased significantly within 1 cycle of GS-1101 administration 

(p<0.001 for all comparisons).  

 A phase 1/2 clinical trial of fostamatinib disodium (FosD), the first clinically 

available oral SYK inhibitor, was published in 2010 involving 68 patients with 

recurrent B-cell non-Hodgkin lymphoma (B-NHL) including 11 CLL/SLL 

patients (Friedberg et al., 2010).  All patients with SLL/CLL had an initial 

increase in circulating lymphocyte count which was observed during the first 

29 days of therapy. Dose-limiting toxicity in the phase 1 portion was 

neutropenia, diarrhoea, and thrombocytopenia.  Common other toxicities 

observed were diarrhoea, fatigue, and cytopenias. This is similar to toxicities 

observed in rheumatoid arthritis studies that used lower doses of FosD. 55% 

(95% CI, 23%-83%) patients with SLL/CLL had a PR to therapy assessed 

according to standard lymphoma response criteria. The median PFS for 

patients with SLL/CLL was 6.4 months (95% CI, 2.2-7.1 months). Among all 

groups of NHL the highest response rate was observed in patients with 

SLL/CLL.  

This molecule was not developed as treatment in CLL for various reasons. 

One of the reasons is that the specificity of the molecule is not confined to 

SYK alone. 

6.4 GSK143 

 It was reported previously that diaminopyrimidine carboxamide (DAPC) 

displayed good SYK inhibitory activity. The aminoethylamino moiety at the 2-

position of the pyrimidine ring was important for SYK inhibitory activity as 

shown by enzyme screening.  If an anilino moiety was substituted at the 4th 

meta position the resulting compound showed high selectivity for SYK, 

compared to other kinases, such as ZAP70, c-Src, and PKC, and exhibited 

good inhibitory activities against 5-HT release from RBL cells (Liddle et al., 

2011). A more recent paper has shown that this compound has a high level of 

activity towards hERG together with moderate selectivity over Aurora B 

kinase, a kinase essential for cell proliferation (Liddle et al., 2011). GSK has 

done lead optimisation of the DAPC series of SYK inhibitors and discovered a 

compound GSK143 which is a potent and highly selective SYK inhibitor 

showing good efficacy in the rat Arthus model (Yamamoto et al., 1975). 

Activity was assayed by both a SYK mechanistic assay as evidenced by 

inhibition of anti-IgM induced Erk1/2 phosphorylation in Ramos cells (Klein et 

al., 1975)and also by human whole blood assay evidenced by inhibition of 
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anti-IgM induced CD69 surface expression in primary B-cells (Liddle et al., 

2011). A summary of the characteristics of GSK143 is listed in Table 6.1 and 

its molecular structure is depicted in Figure 6.1.  

Table 6.1 Kinase selectivity profile of GSK143 

Kinase pIC50 Fold selectivity 

SYK 7.5 - 

ZAP70 4.7 630 

LCK 5.3 125 

LYN 5.4 125 

JAK 1/2/3 5.8/5.8/5.7 50/40/63 

Aurora B 4.8 500 

 

 

Figure 6.1 The chemical structure of GSK143.  

This molecule was kindly donated by GSK for the current study. (Liddle et al., 2011) 

6.5 Testing the effects of inhibitors 

As mentioned in the introduction of this chapter inhibitors of phospho-kinases 

of BCR pathway are effective in treating CLL. The main aim of this chapter is 

to test a new SYK inhibitor, GSK 143, as a potential agent inducing apoptosis 
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in CLL cells. To optimise the in vitro system developed for testing the new 

SYK inhibitor two known BCR kinase inhibitors were tested. BTK inhibitor 

PCI-32765 was kindly donated by Pharmacyclics and PI3Kδ kinase inhibitor 

GS1101 was donated by Gilliad pharmaceuticals. To assess the physiological 

changes in the pathway both SYKSYK phosphorylation and calcium flux were 

studied using flow cytometry as described in the previous chapter. 

6.5.1. BTK Inhibitor 

The initial assessment of the BTK inhibitor showed reduction in percentage 

viability at day 3 even though it was less compared to fludarabine (Figure 6.2). 

This response was similar if MNC or negatively selected CLL cells were 

cultured. The protective effect of stroma was not abrogated, by either BTK 

inhibitor or combination of fludarabine and BTK inhibitor. 
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Figure 6.2 Effect of BTK inhibitor on CLL cell viability.  

BTK inhibitor was incubated at a concentration of 10µM with either MNC or negatively 

selected CLL cells with or without fibroblasts. Viability was assessed on day 1, day 2 

and day 3. Control samples were also incubated with cells alone or with fludarabine or 

DMSO (M=MNC, C=negatively selected CLL cells, BTK= BTK inhibitor, 

Flu=Fludarabine). 
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There was considerable variation when the BTK inhibitor was tested on 

multiple patients and there was no statistically significant reduction in viability 

or cell count when tested in 4 patients, even though 3 patients showed an 

absence of increment in cell count seen with IgM stimulation when treated 

with BTK inhibitor (Figure 6.3). Furthermore, the dose-dependency of BTK 

inhibition was examined using both MNC and negatively selected CLL cells 

(Figure 6.4). The dose response curve was not sufficiently conclusive to 

produce an IC50. 
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Figure 6.3 MNC were incubated with BTK inhibitor at a concentration of 
10µM. 

 Antigenic stimulation was performed using the F(ab)2 portion of anti-IgM and F(ab)2 

anti-IgG was used as a negative control. The left panel shows the mean values and the 

right panel shows the individual sample spread. There was no significant reduction in 

viability or cell count with BTK inhibitor.  
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Figure 6.4 Dose response curve for BTK inhibitor.  

The Y-axis represents normalised cytotoxicity which is 100 minus nomalised 

percentage viability. Normalisation was done to the sample without the inhibitor. The 

X-axis represents the log of the concentration in nM (1, 10,100, 500, 1000, 5000 and 

10000). IC50 was calculated with graphpad prism software using a variable slope 

equation. The 0-value (defines the incubation with media) was demonstrated as 0.01 

due to the log application on the X-axis. The bottom graph shows the response in an 

individual sample. 6 samples from 3 patients were tested. From each patient MNC (dark 

colour) and negatively selected CLL cells (light colour) were analysed. (M=MNC, 

C=CLL, G, T and B are different patient samples) 

6.5.2. GS-1101 (CAL-101) 

PI3Kδ kinase inhibitor GS-1101 was tested next. MNC were incubated with 

10μM GS-1101 and viability assessed after 48 hours (n=6). There was 

significant reduction in the percentage viability when samples were treated 

with GS-1101 (Figure 6.5). 
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Figure 6.5 Effect of GS-1101 on viability.  

MNC were incubated with 10μM GS-1101 (n=6). Percentage viability assessed after 48 

hours showed significant reduction in viability with GS-1101. p value was calculated 

using a paired t test. The right graph shows the spread of individual samples. 10μM 

was selected from literature where there was definite reduction in viability (Herman et 

al., 2010) 
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IgM induced survival benefit was abrogated by GS-1101 as demonstrated in 

Figure 6.6. As GS-1101 inhibits a downstream molecule in the BCR pathway, 

attempts were made to correlate SYK and ZAP70 expression with cytotoxicity 

of GS-1101. Based on flow cytometric evaluation, the level of SYK expression 

significantly correlated with GS-1101 induced cytotoxicity while ZAP70 

expression has no correlation (Figure 6.7). 
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Figure 6.6 Effect of GS-1101 on anti-IgM induced survival benefit.  

MNC were incubated with 10μM GS-1101 (n=7) and F(ab)2 anti-IgM in corresponding 

wells. Percentage viability assessed after 48 hours showed significant reduction in 

viability with GS-1101 compared to samples incubated with IgM alone. p value was 

calculated using a paired t-test. The right graph shows the spread of individual 

samples.  

The inhibition of calcium flux in response to anti-IgM stimulation by GS-1101 

was assessed.  The observed response was variable among patients as 

shown in Figure 6.8.  In example 1 there was a complete inhibition of 

response to anti-IgM and in example 2 there was no inhibition at all. In the first 

case the degree of maximal flux was less than that in the second sample and 

may therefore have been more susceptible to inhibition. 

 



-191- 
 

 
 

GS-1101 syk expression

3000 3500 4000 4500 5000 5500 6000
55

60

65

70

75

80

r² 0.7608

P value 0.0105

SYK MFI

p
ro

p
o

rt
io

n
 o

f 
v
ia

b
le

 c
e
ll
 c

o
u

n
t

GS-1101 T method

0 20 40 60 80 100
55

60

65

70

75

80

r² 0.03317

P value 0.6959

ZAP70- T METHOD
 

Figure 6.7 Correlation of SYK and ZAP70 expression and effect of GS-
1101 on cell viability.  

Proportion of viable cell count = (viable cell count in GS-1101+IgM treated cell/ IgM 

treated cells) x100. Decrease in viability correlated directly with SYK expression (top 

panel)  but has no significant correlation with ZAP70 expression (bottom panel). 

Correlation was calculated using linear regression. ZAP70 expression in CLL cells was 

calculated by T-method which was taken as the percentage of CLL cells above the 

lower limit of ZAP70 expression in T-cells (Rossi et al., 2010). 

Example of Inhibition of ca flux by GS-1101 

 

Example of Ca Flux not inhibited by GS-1101 

 

Figure 6.8 Effect of GS-1101 on calcium flux in CLL cells.  

GS-1101 has variable effect on calcium flux in CLL cells. The left side plots are 

samples not incubated with the inhibitor and the samples on the right are preincubated 

with GS-1101 for 30 minutes before the stimulus was applied. 



-192- 
 

 
 

6.5.3. SYK Inhibitor GSK143 

The selective SYK inhibitor GSK143 has never been tested in a similar in vitro 

system. To establish the effects of GSK143, first MNC and negatively 

selected CLL cells were incubated with the drug at concentrations ranging 

from 10nM to 1μM (Figure 6.9). Cells were plated with or without the presence 

of stromal cells. Cells treated with fludarabine were also incubated in parallel 

to compare the efficacy. Viability was assessed sequentially every 24 hours 

for 3 days. The viability and count of the cells incubated in presence of the 

drug at concentration above 100nM was lower compared to control cells, but 

the effect was not as pronounced as fludarabine. Dose response curve using 

normalised cytotoxicity as the end point gave an IC50 of 32.3nM (95% CI- 

5.74 to 18261) (Figure 6.10). At the concentrations tested the stromal 

protective effect was not abrogated by the presence of GSK143 even when 

combined with fludarabine. This implies that cytoprotection by stromal cells is 

not mediated through SYK pathway.  

Low conc MNC% Viability

M
0
M

10

M
10

0

M
10

00
M

FL

M
FLS

M
0
M

10

M
10

0

M
10

00
M

FL

M
FLS

M
0
M

10

M
10

0

M
10

00
M

FL

M
FLS

M
0
M

10

M
10

0

M
10

00
M

FL

M
FLS

0

20

40

60

80

D0

D1

D2

D3

%
 V

ia
b

il
it

y

Low conc MNC Count

M
0
M

10

M
10

0

M
10

00
M

FL

M
FLS

M
0
M

10

M
10

0

M
10

00
M

FL

M
FLS

M
0
M

10

M
10

0

M
10

00
M

FL

M
FLS

M
0
M

10

M
10

0

M
10

00
M

FL

M
FLS

0.0

200000.0

400000.0

600000.0

800000.0

D0

D1

D2

D3

c
o

u
n

t

 

Low conc CLL% Viability

C
0
C
10

C
10

0

C
10

00

C
FFL

C
FLS C

0
C
10

C
10

0

C
10

00

C
FFL

C
FLS C

0
C
10

C
10

0

C
10

00

C
FFL

C
FLS C

0
C
10

C
10

0

C
10

00

C
FFL

C
FLS

0

20

40

60

80

100

D0

D1

D2

D3

%
 V

ia
b

il
it

y

Low conc CLLCount

C
0
C
10

C
10

0

C
10

00

C
FFL

C
FLS C

0
C
10

C
10

0

C
10

00

C
FFL

C
FLS C

0
C
10

C
10

0

C
10

00

C
FFL

C
FLS C

0
C
10

C
10

0

C
10

00

C
FFL

C
FLS

0

200000

400000

600000

D0

D1

D2

D3

c
o

u
n

t

 

Low conc on Fibroblast MNC% Viability

M
F0

M
F10

M
F10

0

M
F10

00

M
FFL

M
FFLS

M
F0

M
F10

M
F10

0

M
F10

00

M
FFL

M
FFLS

M
F0

M
F10

M
F10

0

M
F10

00

M
FFL

M
FFLS

M
F0

M
F10

M
F10

0

M
F10

00

M
FFL

M
FFLS

0

20

40

60

80

D0

D1

D2

D3

%
 V

ia
b

il
it

y

Low conc on Fibroblast MNC Count

M
F0

M
F10

M
F10

0

M
F10

00

M
FFL

M
FFLS

M
F0

M
F10

M
F10

0

M
F10

00

M
FFL

M
FFLS

M
F0

M
F10

M
F10

0

M
F10

00

M
FFL

M
FFLS

M
F0

M
F10

M
F10

0

M
F10

00

M
FFL

M
FFLS

0.0

500000.0

1000000.0

1500000.0
D0

D1

D2

D3

c
o

u
n

t

 



-193- 
 

 
 

Low conc on Fibroblast CLL% Viability

C
F0

C
F10

C
F10

0

C
F10

00

C
FFL

C
FFLS

C
F0

C
F10

C
F10

0

C
F10

00

C
FFL

C
FFLS

C
F0

C
F10

C
F10

0

C
F10

00

C
FFL

C
FFLS

C
F0

C
F10

C
F10

0

C
F10

00

C
FFL

C
FFLS

0

20

40

60

80
D0

D1

D2

D3

%
 V

ia
b

il
it

y
Low conc on Fibroblast CLLCount

C
F0

C
F10

C
F10

0

C
F10

00

C
FFL

C
FFLS

C
F0

C
F10

C
F10

0

C
F10

00

C
FFL

C
FFLS

C
F0

C
F10

C
F10

0

C
F10

00

C
FFL

C
FFLS

C
F0

C
F10

C
F10

0

C
F10

00

C
FFL

C
FFLS

0.0

200000.0

400000.0

600000.0

800000.0
D0

D1

D2

D3

c
o

u
n

t

 

Figure 6.9 Effect of SYK inhibitor GSK143 on CLL cell viability.  

SYK inhibitor GSK143 was incubated at a concentration of 10nM to 1μM with either 

MNC or negatively selected CLL cells with or without fibroblasts. Viability was 

assessed on day 1, day 2 and day 3. Control samples were also incubated with cells 

alone or with fludarabine (M=MNC, C=negatively selected CLL cells, F=fibroblasts, 

Fl=Fludarabine, S=SYK inhibitor). 

Higher concentrations from 1uM to 10μM were also tested to see whether 

stromal protection could be overcome (Figure 6.11). But even at higher 

concentrations the stromal protective barrier was not broken by GSK143. 
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Figure 6.10 Dose response curve for SYK inhibitor.  

The Y-axis represents normalised cytotoxicity which is 100 minus nomalised 

percentage viability. Normalisation was done  to the sample without the inhibitor. The 

X-axis represents the log of the concentration in nM (1,10,100,500,1000, 5000 and 

10000). IC50 was calculated with graphpad prism software using variable slope 

equation. The 0-value (defines the incubation with media) was demonstrated as 0.01 

due to the log application on the X-axis. The bottom graph shows the response in 

individual samples. 6 samples from 3 patients were tested. From each patient MNC 

(dark colour) and negatively selected CLL cells (light colour) were analysed (M=MNC, 

C=CLL, G, T and B are different patient samples).   
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Figure 6.11 Higher dose of SYK inhibitor GSK143.  

SYK inhibitor GSK143 was tested at a higher concentration ranging from 1μM to 10μM 

with either MNC or negatively selected CLL cells in presence of fibroblasts. Viability 

was assessed on day 1, day 2 and day 3. Control samples were also incubated with 

cells alone or with fludarabine and DMSO (M=MNC, C=negatively selected CLL cells, 

S= SYK inhibitor, Fl=Fludarabine). 
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6.5.3.1. Response to IgM stimulation 

The above experiments demonstrated that GSK143 was effective only when 

CLL cells were not cultured in the presence of stromal cells. To determine 

whether BCR triggering is sufficient to overcome the effect of the inhibitor, 

MNC from CLL patients were treated with the drug with or without 

accompanying IgM stimulation. GSK143 abrogates the survival response to 

IgM as observed in Figure 6.12. Even on prolonged incubation for up to 14 

days there was no significant change to the viability when incubated with 

stromal support.   
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Figure 6.12. Response to stimulation by anti-IgM and prolonged 
incubation with fibroblasts.  

MNC (n=4) were incubated with GSK143 at two different concentrations (1 and 10µM) 

and anti-IgM with or without stroma. Plates were incubated up to day 14 and viability 

assessed at day 2, 7 and 14.  

The effect of GSK143 was then tested on multiple patients with or without IgM 

stimulation. GSK143 significantly eliminated the advantage in viability and 

count induced by IgM stimulation as shown in Figure 6.13.  Deletion of 

chromosome 17p13.1 containing the p53 gene is one of the strongest 

laboratory predictors of CLL response to chemotherapy (Byrd et al., 2006). 

Similarly, IGHV gene mutational status has strong influence on the duration of 

remission to standard therapies (Montillo et al., 2005). Attempts were made to 
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compare the effect of the drug on viability of CLL cells from patients with 

these prognostic markers. These markers were done routinely as a standard 

investigation for these patients in the laboratory. There was no significant 

difference in response between IGHV mutated and unmutated group or p53 

deleted and non-deleted group (Figure 6.14). However these results should 

be interpreted with caution as the sample size for these comparisons was 

very low. But this result was consistent with previous studies with similar 

agents like GS-1101(Herman et al., 2010).   
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Figure 6.13 Effect of GSK143 on anti-IgM induced survival benefit.  

MNC were incubated with 1μM GSK143 (n=35) and F(ab)2 anti-IgM in corresponding 

wells. Percentage viability assessed after 48 hours showed a significant reduction in 

viability with GSK143 compared to samples incubated with IgM alone. p value was 

calculated using a paired t-test. The left graph shows the percentage viability and the 

right graph shows the count.  
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Figure 6.14 Assessment of difference in response to GSK143 with 
respect to various established prognostic markers.  

Markers included: mutated/unmutated(U/UM), p53deleted/not deleted (p53del/N) and 

previously treated/not treated patients. P value was calculated using unpaired t-test. 

There was no statistically significant difference between these prognostic groups in 

viability or cell count even though the number of samples may be low to establish 

these difference.  

6.5.3.2. Response of SYK inhibition to single and multiple 

exposures to BCR stimulation 

The above experiments were carried out using a single application of anti-

IgM. In vivo CLL cells are potentially exposed to antigen more than once. To 

determine whether repeated IgM ligation would have an effect on the 

response to GSK143, MNC were exposed to multiple rounds of anti-IgM 

exposure (Figure 6.15). Repeated stimulation of IgM did not abolish the pro-

apoptotic response induced by GSK143. 
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Figure 6.15 Single and multiple exposure to F(ab)2 anti-IgM in presence 
of SYK inhibitor.  

In single exposure 10μg/ml of anti-IgM was added once when the cells were plated. In 

multiple exposures anti-IgM was added every 24 hours until the wells were harvested 

for testing viability.  

6.5.3.3. Calcium flux and SYK phosphorylation 

To assess the physiological response of SYK inhibition, calcium flux and SYK 

phosphorylation were tested. The cells were incubated with GSK143 for 30 

minutes at 37oC before stimulating with anti-IgM. All other steps of the 

experiment were similar to the one described in previous chapter. As 

demonstrated in Figure 6.16, pre-incubating with GSK143 can inhibit the 

calcium flux induced by IgM stimulation. As the compound was dissolved in 

DMSO control experiments with DMSO were also performed to establish that 

the vehicle had no influence on calcium flux (Figure 6.17).  
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Figure 6.16 Examples of three types of response to IgM stimulus are 
shown. 

 (same as Figure 5.3) Flowplots are shown in the first two columns The one on the left 

is without the inhibitor and the one on the right is with the inhibitor . The third column 

shows the graphical analysis done by flowJo software. The black and blue lines 

represent the stimulation using IgM without or with the presence of a SYK inhibitor, 

respectively.  
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Figure 6.17  Effect of DMSO on calcium flux.  

Three different concentrations of DMSO, which were used to dissolve the SYK 

inhibitor, were assayed for the effect on Ca
2+

 flux in response to IgM ligation. DMSO 

had no any effect on Ca
2+

 flux on the concentrations used to dissolve GSK143.  
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Figure 6.18 Calcium flux with SYK inhibitor.  

Calcium flux was assessed on parallel samples with or without pre-incubating with the 

SYK inhibitor (n=9). P value was calculated using paired t-test. There is a significant 

drop in Ca
2+

 flux induced by IgM ligation when pre-incubated with GSK143.   

SYK phosphorylation status was also tested to assess the downstream signal 

response. It has been previously established that there is a definite shift in the 

MFI of fluorochrome conjugated anti-SYK phophoprotein when cells are 

stimulated with anti-IgM or IgD compared to unstimulated cells. This shift is 

partially abrogated by preincubating cells in GSK143 before stimulating it with 

anti-IgM, however the effect on IgD-mediated phosphorylation is more 

pronounced. Example flow plots are shown in Figure 6.19 and the mean MFI 

calculated on 5 different samples shows the significance of the observation 

(Figure 6.20). These results suggest that CLL cells may be differentially 

susceptible to GSK143 according to the relative dependency on IgM 

signalling. 

 

Figure 6.19 SYK phosphorylation by IgM stimulation on CLL cells is 
partially inhibited by GSK143. 

 The response to IgM stimulation on SYK phosphorylation measured by MFI of 

phospho SYK antibody in the presence of GSK143. The plots depict levels after 60 sec 

of stimulation. 
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Figure 6.20 Effect of IgD stimulation and GSK143 on SYK 
phosphorylation.   

MNC from CLL patients (n = 5) were pre-incubated with DMSO or GSK143 and then 

stimulated with anti-IgD for 60 seconds. The amount of SYK phosphorylation was 

determined by intracellular staining and flow cytometry. P value was calculated using 

paired t-test. 

6.6 Discussion 

The above experiments demonstrated that the established in vitro system was 

suitable to test BCR kinase inhibitors. GS-1101, a previously proven inhibitor 

was tested and was found to be functioning. The system was then extended 

to test a new inhibitor to SYK phosphoprotein, a proximal molecule in the BCR 

pathway. The inhibitor had been previously established to be more specific for 

SYK inhibition compared to other kinases as described in the introduction of 

this chapter (Liddle et al., 2011). It was established that the SYK inhibitor 

GSK143 induces apoptosis in CLL cells when plated as MNC or negatively 

selected CLL cells on their own. This is comparable to dose- and time-

dependent cytotoxicity mediated by GS-1101 as shown by Herman et al. 

Similar to their experiment there was no significant difference in cytotoxicity 

between prognostic groups based on their cytogenetics and IGHV mutational 

status (Herman et al., 2010). It also abrogates the pro-survival signal 

delivered by BCR stimulation given in the form of F(ab)2 portion of anti-IgM 

which is comparable with the effects noticed with R406. In the paper by 

Quiroga et al. CLL cells stimulated with anti-IgM displayed an increased 
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viability of 144.6% plus or minus 13.1% at 48 hours of respective controls and 

treatment with R406 reduced the viability to 62.7% plus or minus 6.9% 

(Quiroga et al., 2009b). In contrast GSK143 failed to eliminate the fibroblast 

induced stromal support established in the in vitro system either by itself or in 

the presence of fludarabine. This observation is contradictory to the findings in 

a study where the authors showed that GS-1101 abrogated the protective 

effect established by stromal cells (Herman et al., 2010). Several variabilities 

could play a part in this discrepancy, including the type of stromal cells (the 

GS-1101 study used HS-5 cell line), the difference in the drug itself or the 

differences between patients. More experiments are required to determine if 

the failure to overcome the protective effect of stromal cells is specific to 

GSK143. Further physiological stimuli in the pathway were explored in the 

form of phosphorylation of SYK and alteration in calcium flux. It has been 

shown that both SYK phosphorylation and calcium flux induced by BCR 

stimulation can be significantly inhibited by GSK143 thereby showing 

evidence of disruption of the pro-survival signal established by this pathway. 

The study withR406 has shown similar effects but the phosporylation was 

demonstrated by immunoblotting than flow cytometry (Quiroga et al., 2009b). 

In summary, GSK143 is a potent inhibitor of BCR signal transduction in CLL 

cells and appears to behave in a comparable fashion with existing kinase 

inhibitors that therapeutically target this pathway. 
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7. Expression of neuronal markers in CLL and their potential 

therapeutic role 

An intriguing observation noted in the antigen expression study was that, of 

the 23 antigens, which showed some expression on CLL cells, 8 of them had 

a significant role in neurotransmission. The following neuronal markers were 

expressed on CLL cells and their functional role in nervous system is briefly 

explained below. 

7.1 GPR18  

GPR18 is involved in N-arachidonoyl glycine (NAGly) signalling, which is an 

endogenous metabolite of the endocannabinoid anandamide and acts as an 

efficacious agonist at GPR18 (Bradshaw et al., 2009). It induces migration, 

proliferation and perhaps other MAPK-dependent phenomena involving 

recruitment of microglia to sites of neuronal injury (McHugh et al., 2010).   

GPR18 is highly expressed in peripheral blood leukocytes and several 

haematopoietic cell lines (Kohno et al., 2006) as well as being highly 

expressed in the spleen (“N-arachidonyl glycine receptor - Homo sapiens 

(Human),” n.d.). It is reported to have anti-inflammatory effects mediated 

through NAGly (McHugh et al., 2010). 

7.2  APLP1  

APLP1 plays a role in synaptic function by localising to the 'postsynaptic 

density' which is a specialised region containing proteins required for 

signalling (Kim et al., 1995). APLP1 increases during cortical synaptic 

development, suggesting a role in synaptogenesis or synaptic maturation. It’s 

C-terminal fragment, ALID1, which is processed by gamma-secretase, 

triggers transcription activation through APBB1 (Fe65) binding (Walsh et al., 

2003). It can regulate neurite outgrowth through binding to components of the 

extracellular matrix such as heparin and collagen (“Amyloid-like protein 1 

precursor - Homo sapiens (Human),” n.d.). 

7.3 GPR12  

GPR12 Tanaka et al has shown that GPR12 along with GPR3 and GPR6 

plays a key role in neurite outgrowth through Gs signalling and upregulating 
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cAMP. Neuro2a neuroblastoma cells get transformed into neuron-like cells 

once transfected with GPR12 (Tanaka et al., 2007). X. Lu et al. has shown 

that GPR12 transfected PC12 cells (cell line derived from 

a pheochromocytoma of the rat adrenal medulla) differentiate into neuron-like 

cells as evidenced by enlarged cell size and neurite outgrowth. This study  

also showed that GPR12 induced neuronal differentiation and synapse 

formation was mediated by Erk1/2 phosphorylation and significantly increased 

the expression of Bcl-2, Bcl-xL and synaptophysin (SYP) (Lu et al., 2012). 

7.4 TAG1 

TAG1 is a member of the immunoglobulin superfamily that functions as a cell 

adhesion molecule. It is a glycosylphosphatidylinositol (GPI)-anchored 

neuronal membrane protein that may be involved in the formation of axon 

connections in the developing nervous system (Walsh and Doherty, 1991). 

The path-finding of axons toward their targets is an early crucial step in the 

development of the nervous system. The extension of axon and its 

localisation in the appropriate position involves selective interactions between 

molecules on the surface of the axon and those in the local microenvironment. 

In vitro functional studies of the axonal surface showed that several 

glycoproteins are involved in cell adhesion and in the promotion of neurite 

outgrowth. Some of these glycoproteins, including TAG1, are expressed by 

restricted subsets of central and peripheral neurons during the initial phase of 

neurite outgrowth (Dodd et al., 1988). It may also be involved in glial 

tumourogenesis and this could have potential implication on therapeutic 

interventions (“OMIM Entry - * 190197 - CONTACTIN 2; CNTN2,” n.d.) 

(“CNTN2 contactin 2 (axonal) [Homo sapiens (human)] - Gene - NCBI,” n.d). 

7.5 5-HTR7 

5-HTR7 is a receptor for the neurotransmitter serotonin (5-hydroxytryptamine, 

5-HT). 5-HT is involved in a wide range of neuron activity, with its different 

physiological roles mediated through interaction with multiple receptors. 

These receptors decide the functional outcome of the neurotransmission by 

serotonin and have been implicated as playing important roles in certain 

pathological and psychopathological conditions (Glennon et al., 2002). Seven 

distinct families of 5-HT receptors have been identified (5-HT1–5-HT7), and 

several of these receptors have subpopulations (Glennon et al., 2002).  A total 

of 15 subpopulations have been cloned thus far. The 5-HT7 receptor is 
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expressed mainly in the central nervous system, but a low level of expression 

has been detected in the peripheral nervous system also. It has been cloned 

from several species including rat, mouse, guinea pig and human.  Two splice 

variants have been identified in the rat. The short form contains 435 amino 

acids and the long form, contains 448 amino acids. The orthologous human 5-

HT7 receptor has 445 amino acids. There is <50% transmembrane sequence 

homology between 5-HT7 receptors and other 5-HT receptors. Gene mapping 

studies have shown that the human 5-HT7 receptor gene is located on 

chromosome 10. Physiologically 5-HT7 receptors might be involved in mood 

changes and learning and possibly maintenance of circadian rhythm (Glennon 

et al., 2002).  It has been proposed that 5-HT mediated relaxation of canine 

coronary artery may be mediated by 5-HT7 receptors. Pathologically it is 

thought that 5-HT7 receptors may play a role in certain psychiatric disorders 

like depression. Several agents with high affinity for 5-HT7 receptors are 

known, with serotonin, 5-CT, 5-methoxytryptamine, and 8-OH DPAT acting as 

agonists, whereas methiothepin, mianserin, mesulergine, ritanserin, 

spiperone, NAN-190, LY215840 and clozapine acting as antagonists 

(Glennon et al., 2002). Several anti-depressants and anti-psychotic agents 

like fluphenazine, acetophenazine, chlorprothixene, zotepine, clorotepine, 

clozapine, fluperlapine, pimozide, tiospirone, and risperidone have high 

affinity for 5-HT7 receptor. Multiple lines of evidence suggest that the 5-HT7 

receptor is positively coupled to adenylate cyclase which links the various 

agonists to downstream effects (Glennon et al., 2002). 

7.6 ACCN1 

ACCN1 is a member of the family of cation channels with high affinity for 

sodium, which is gated by extracellular protons and inhibited by the diuretic 

amiloride (Waldmann et al., 1996). It encodes the Mammalian Degenerin 

(MDEG) protein, a proton-gated channel permeable to sodium, lithium and 

potassium. The function of these channels is to generate ionic currents 

involved in neurotransmission (Lingueglia et al., 1997). Two isoforms, MDEG1 

and MDEG2, with different biological properties have been isolated 

(Lingueglia et al., 1997). MDEG1 is mainly expressed in the postsynaptic 

membrane of granule cells and in the Purkinje cells of the cerebellum. It is 

activated by a low pH (Lingueglia et al., 1997). It can form an active ionic 

channel either on its own, or by binding other proteins of its family. MDEG2, 

on the other hand is mainly expressed in sensory neurons of the brain. It 

cannot form an active ionic channel on its own, but can form an active ionic 
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channel by forming heterodimeric molecule with another protein of its family. 

There is evidence that MDEG participates in mechanosensation, perception of 

taste, perception of pain and possibly in neurotransmission and 

neuromodulation (Wemmie et al., 2006). Pathologically there is convincing 

evidence showing the role of ACCN1 in development of multiple sclerosis 

(Bernardinelli et al., 2007). 

Two molecules identified in the antigen analysis that have been studied in 

depth in the current project are nicotinic acetyl choline receptor subunit β 4 

(CHRNB4) and dopamine receptor D4 (DRD4). CHRNB4 was selected initially 

as it showed the highest expression in the antigen identification study. DRD4 

was then selected as it also showed good expression in the antigen 

identification study and there were several dopamine receptor type specific 

agonists and antagonists available commercially which could be explored for 

therapeutic potential.  

7.7 Nicotinic acetyl choline receptor 

Nicotinic acetyl choline receptor is the major receptor involved in transmission 

of impulse along the neuro-muscular junction, where it mediates fast chemical 

transmission of electrical signals in response to ACh released from the nerve 

terminal into the synaptic cleft. The nicotinic ACh receptor is a member of the 

pentameric “Cys-loop” superfamily of ligand gated ion channels that contain a 

pair of disulphide-bonded cysteines in their amino terminus, which are 

separated by 13 residues (Karlin, 2002) (Kao and Karlin, 1986) (Ortells and 

Lunt, 1995) (Tsunoyama and Gojobori, 1998).This family includes neuronal 

and muscle type ACh receptors, γ-aminobutyric acid type A (GABAA) and 

GABAC receptors, 5-HT3 receptors, glycine receptors, invertebrate glutamate 

and histidine receptors. It is a glycoprotein formed by 5 subunits assembled in 

a circular order, like barrel staves around a central channel. There are 17 

subunit subtypes and they assemble together depending on the type of 

receptor. There are two major classes of receptors based on their expression 

pattern- muscular type, seen in the neuromuscular junction and the neuronal 

type, seen in the central and peripheral nervous system. In case of the 

muscle-type receptors, α1, β1, ε and δ subunits should assemble at 2:1:1:1 

ratio in adult form and in embryonic form ε is replaced by γ. This gives two 

ligand-binding sites at the α1-δ and α1-γ(ε) subunit interfaces. With neuronal 

nAChRs, it is either penta-heteromeric combination of several types of a (α2-

α10) and β (β2-β4) subunits or penta-homomeric combinations like (α7)5. The 
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types of receptors based on the subunit and their locations are given in Table 

7.1. 

Table 7.1 Nicotinic acetyl choline receptors 

Type of Receptor Location 

Muscle type: (α1)2β1δε or (α1)2β1δγ Neuromuscular Junction 

Ganglion-type: (α3)2(β4)3 Autonomic ganglia 

Heteromeric-CNS-type:(α4)2(β2)3, 

(α3)2(β4)3 

Brain 

Homomeric-CNS-type: (α7)5 Brain 

Structurally these receptors have three domains- an extracellular ligand 

binding domain, a transmembrane domain and an intracellular domain (Karlin, 

2002). The extracellular domain is found at the N terminus followed by 3 

helical transmembrane units, a cytoplasmic unit and another helical 

transmembrane portion towards C terminal end (Figure 7.1). 

 There are four functional states described in ACh receptors: the resting 

(closed) state, the open state, the fast-onset desensitised (closed) state, and 

the slow-onset desensitised (closed) state. In the absence of agonist the 

resting state is the most stable state, and the slow-onset desensitized state is 

the most stable state in the presence of agonist. The open state and the fast 

onset desensitized state are metastable states, where their concentrations 

rise transiently and reach a very low value at equilibrium (Karlin, 2002). 

Although the neuronal nicotinic receptor gene family is expressed 

predominantly in brain, there is evidence that they can be localised elsewhere 

as well. Ganglionic expression of α3, α5, and α7, has been well established 

(McGehee and Role, 1995)(Lukas et al., 1993) and α7 subunit expression has 

been reported in developing muscle (Romano et al., 1997). There is now 

evidence that nicotinic receptors are also found in non-neuronal tissues like 

lymphocytes, macrophages (Wang et al., 2003) and polymorphonuclear cells 

(PMN) in the peripheral blood (Hoss et al., 1986) (Hiemke et al., 1996) 

(Lebargy et al., 1996) small cell lung carcinomas (Quik et al., 1994) skin 

keratinocytes (Grando, 1997), respiratory epithelial and vascular endothelial 

cells (Conti-Fine et al., 2000), and T lymphocytes (Kawashima and Fujii, 

2000). Their role in these locations is still not known, but such localisation 

suggests that peripheral nicotinic receptors have a more ubiquitous 
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expression, and they may have nonsynaptic roles. This might involve calcium 

modulation and peptide release (Quik et al., 1997) (Zia et al., 1997).  

 

Figure 7.1 Structure of nicotinic acetyl choline receptor.  

a | The threading pattern of receptor subunits through the membrane. b | A schematic 

representation of the quaternary structure, showing the arrangement of the subunits in 

the muscle-type receptor, the location of the two acetylcholine (ACh)-binding sites 

(between an - and a -subunit, and an - and a -subunit), and the axial cation-

conducting channel. c | A cross-section through the 4.6-Å structure of the receptor 

determined by electron microscopy of tubular crystals ofTorpedo membrane 

embedded in ice. Dashed line indicates proposed path to binding site. Figure and 

legend taken from Emerging Structure of the Nicotinic Acetylcholine Receptors-  

Nature Reviews Neuroscience (Karlin, 2002). 

There is now good evidence to suggest a significant role of neurotransmitters 

in the immune system. Neurotransmitters, like acetyl choline can come from 

nerve endings or can be produced by lymphocytes. Acetylcholine receptors 

like α7 homopentamers are widely expressed in various immune mediating 

cells like T lymphocytes, B lymphocytes, dendritic cells, monocytes, 

macrophages, neutrophils, and microglia cells (Wang et al., 2003) (De Rosa 

et al., 2005). In lipopolysaccharide-stimulated human macrophage cultures, 

acetylcholine significantly attenuated the release of cytokines (tumour 

necrosis factor (TNF), interleukin (IL)-1β IL-6 and IL-18), but not the anti-

inflammatory cytokine IL-10 (Borovikova et al., 2000). In rats during lethal 
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endotoxaemia, direct electrical stimulation of the peripheral vagus nerve 

releases acetylcholine, the principle neurotransmitter in vagus nerve, which 

inhibits TNF synthesis in liver, attenuates peak serum TNF amounts, and 

prevents the development of shock (Borovikova et al., 2000).  

In T lymphocytes, impairment of cell activation was associated with nicotine 

treatment as evidenced by chronic exposure of rats to nicotine inhibits the 

antibody-forming cell response, impairs the antigen-mediated signalling in T-

cells, and induces T-cell anergy caused by impairing the antigen receptor-

mediated signal transduction pathways and depleting the inositol-1,4,5-

trisphosphate-sensitive calcium stores (Kalra et al., 2000). Acetyl choline 

receptor α7 seems to play a critical role in the immunosuppressive function of 

CD4+CD25+ Tregs. Nicotine increases Treg-mediated immune suppression 

of lymphocytes via α7 nAChR which can be reversed by a selective α7 

nAChR antagonist, α-bungarotoxin (D. Wang et al., 2010). This effect is 

mediated by the up-regulation of CTLA-4 as well as Foxp3 expression on 

nicotine stimulation in Tregs (D. Wang et al., 2010). Nicotine activates the 

nuclear factor of activated T-cells (NFAT) transcription factor in lymphocytes 

and endothelial cells, which leads to alterations in cellular growth and vascular 

endothelial growth factor production. Nicotine induces paradoxical effects on 

T-cell survival. Treatment with nicotine potentiated FasL expression in 

activated lymphocytes, which induces the appearance of a caspase or 

caspase-like activity. This suggests that it could facilitate apoptosis both of 

target cells that bear nicotinic receptors and of neighbouring cells in their local 

microenvironment. Paradoxically nicotine induced Survivin expression in 

primary T-cells upon stimulation that promotes transition across the 

G0/G1boundary and escape from apoptosis (Oloris et al., 2010). 

Interestingly, it is known that lymphocytes synthesise acetylcholine. Rinner et 

al. showed choline acetyl transferase at RNA level in thymic, splenic and 

peripheral blood lymphocytes of rats using RT-PCR (Rinner et al., 1998). 

They also measured acetylcholine in thymic, splenic and peripheral blood 

lymphocytes using a sensitive radioimmunoassay (Rinner et al., 1998).  The 

level of acetylcholine was 3 times higher in T-cells as compared to B-cells, 

and CD4+ cells showed significantly higher levels as compared to CD8+ cells. 

This can play a role as autocrine or paracrine functional regulator (Fujii, 

2004). This is evidenced by the observation that acute stimulation of nAChRs 

with ACh or nicotine causes rapid and transient Ca2+ signalling in T- and B-

cells, probably via α7 nAChRs subunit-mediated pathways. On the other hand 
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chronic nicotine stimulation causes down-regulation of nAChR expression and 

suppresses T-cell activity.  

Nicotinic acetyl choline receptor subunit expression has shown conflicting 

results in the literature. Hiemke et al demonstrated the expression of α3 and 

α4 nAChR subunits in lymphocytes using immunohistochemistry and in situ 

hybridisation (Hiemke et al., 1996). But later several other groups failed to find 

either α3 or α4 expression in lymphocytes (Sato et al., 1999) (Mihovilovic and 

Roses, 1993). K. Benhammou et al showed that α4 and β4 are present in 

both lymphocytes and PMN at mRNA level, but expression was low compared 

to those found in brain (Benhammou et al., 2000). α3, α7, and β2, mRNA was 

detectable in some individuals and not in others. Protein level expression for 

α3, α4, α7 and β2 was seen in lymphocytes while PMN expressed a moderate 

level of α3, and low levels of α4, α7, and β2 protein. α3 and β4 were co-

immunoprecipitated from lymphocytes and PMN at a significant level and α4 

and β2 were co-immunoprecipitated at a high level from lymphocytes but at 

lower levels in PMN. These results suggest the possibility of α4β2, α3β4, and 

α7 subtypes in lymphocytes, of the subunits examined, and α3β4 in PMN.  

Skok et al have shown expression of α4, α5, α7, β2 and β4 nAChR subunits 

in B-lymphocytes by flow cytometry and enzyme-linked immunosorbent assay 

(ELISA) (Skok et al., 2007). The highest expression of α4 and α5 subunits 

was observed in immature newly generated (B220+IgM+) B lymphocytes of 

the bone marrow, while the number of α7 subunits expanded as the B-cells 

underwent maturation in the spleen. Further radioligand binding assays and 

ELISA data suggested that main nicotinic receptor subtypes found in B 

lymphocytes were homomeric α7 and heteromeric α4β2. Functionally, it was 

shown that mice deficient in nicotinic receptor subunits α4, β2 or α7 had less 

serum IgG and IgG-producing cells in the spleen, but showed stronger 

immune responses to both protein antigen in vivo and CD40-specific antibody 

in vitro than wild-type mice. Proliferation of B lymphocytes stimulated by anti-

CD40 was inhibited with nicotine from β2 knockout mice, but not wild-type 

mice. This suggests that signalling through nicotinic receptors affects both the 

pre-immune state and activation of B lymphocytes in the immune response, 

possibly via CD40-dependent pathway (Skok et al., 2007). 

A further experiment from the same group showed that α7 nAChR was 

present in about 60%, while α4β2 and α9 (α10) nAChRs in about 10% and 

20% of mouse spleen B lymphocytes, respectively; relative amounts of these 

nAChR subtypes varies between different species (Koval et al., 2011). In vitro 
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activation using anti-CD40 specific antibody up-regulated the expression of 

α4β2 and α7, but not α9(α10) nAChRs. Antibody interference studies have 

shown that the binding of CD40-specific antibody was inhibited with α7 or α9 

specific antibodies, and that of IgM or CD23 specific antibody was decreased 

with α4, β2 or β4 specific antibodies. Experiments using knockout mice and 

specific subunit inhibitors have demonstrated an inhibitory role for α7 and 

α9α10 nAChR to CD40-related proliferative function with α7 functioning much 

more efficiently than α9α10. In contrast α4β2 nAChR potentiates the 

stimulatory IgM-related proliferative effect. Physiologically α7 nAChRs could 

be involved in T-cell-B-cell interaction through the immune synapse. The 

engagement of CD40 in the immune synapse has been previously 

documented by Barcia et al (Barcia et al., 2008) and T lymphocyte expression 

of α7 nAChRs in conjunction with the TCR signalling module CD3ζ has been 

demonstrated by Razani-Boroujerdi et al (Razani-Boroujerdi et al., 2007). 

This, along with endogenous ACh production by T and B lymphocytes 

suggests that ACh is an additional mediator modulating T and B lymphocytes 

interactions.  

De Rosa et al. have detected mRNA of a7 nAChR and at least one muscle 

nAChR subunit in peripheral human lymphocytes and determined that its 

expression is highly variable among individuals and within the same individual 

at different times (De Rosa et al., 2005). Also mRNAs encoding for the 

different muscle subunits were not all present in the same individual 

simultaneously. Incubation of lymphocytes with nicotine or α-bungarotoxin 

increased the expression of α7 consistently and decreased the percentage of 

apoptotic cells induced by the exposure to cortisol, suggesting that α7 

nAChRs are involved in the modulation of cortisol-induced apoptosis. 

7.7.1. Subunit expression by flow cytometry 

In the study for antigen expression the one which showed the maximum 

expression among all antigens was CHRNB4 as shown in chapter 2. Both 

CLL cells and normal B-cells showed expression of this antigen even though 

the expression on normal B-cells were significantly higher compared to CLL 

cells. Due to this significant expression and suggestion in literature that acetyl 

choline receptors could be involved in B-cell proliferation and apoptosis the 

therapeutic implications of these receptors in CLL were further evaluated. The 

ranking of the subunits from the original expression array list is shown in 

Table 7.2. 
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1244 CHRNB4 

5395 CHRND 

5549 CHRNA2 

5942 CHRNB1 

6793 CHRNE 

7021 CHRNB2 

9193 CHRNA4 

9745 CHRNA7 

10600 CHRNA1 

10746 CHRNB3 

10780 CHRNA6 

11861 CHRNA5 

12255 CHRNA3 

Table 7.2 Ranking of the acetyl choline receptor subunits from the 
original expression array list:  

This ranking was based on the data from the gene expression array described in 

chapter 2. From the expression data genes were arranged in descending order of their 

median expression and the number on the left shows their actual ranking in that order. 

The shaded rows are the antigens for which commercial antibodies were available. 

CHRNG was not in the expression list. 

All commercially available antibodies for subunits were tested. The available 

antibodies were CHRNA1, CHRNA2, CHRNA3, CHRNA4, CHRNA6, 

CHRNA7, CHRND, CHRNE and CHRNG. All were rabbit polyclonals and 

none had been previously optimised for flow cytometry. They were tested with 

methods described in chapter 2 for testing rabbit polyclonal antibodies. 5 

patients and 2 controls were tested. Definite positive and negative controls 

were difficult to obtain as evidence in literature was poor and definite positive 

cells were specific neuronal cells which were difficult to obtain and test in flow 

cytometry.  

The MFI of expression of different subunits on each cell type is shown in the 

Figure 7.2 and the expression of CHRNB4 is shown as an example in Figure 

7.3. 
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Figure 7.2 The MFI of expression of each receptor subunit on the 
designated cell populations. 

The expression of acetyl choline receptors on the surface of MNC populations in CLL 

samples was evaluated by flow cytometry (n=5).  

 

  

Figure 7.3 CHRNB4 expression 

CHRNB4 expression is shown as an example of acetyl choline receptor subunit 

expression. The one on the left is sample from a CLL patient and the one on the right is 

from a healthy control showing the B-cells. CHRNB4 is highly expressed in CLL cells 

and B cells. 

The majority of staining for acetyl choline receptors appeared to be uniform 

across the cell populations examined, with the exception of CHRNB4, which 

showed specific expression on CLL cells and B-cells. 

This result cannot exclude the expression of the additional subunits on CLL 

cells for various reasons: the antibodies were not optimised for flow 

cytometry, the epitope of the antigen may not be exposed for antibody binding 

in 3 dimensional structures, and a positive control was not available to test the 

efficacy of the antibody.  
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7.7.2. Subunit expression by RT-PCR 

Because the above finding was inconsistent with the literature it was decided 

to test the RNA expression by RT-PCR. In this instance positive controls for 

each subunit were available (Table 7.3).  

Subunit control  

α1 Rat brain cDNA  

α2 HepG2  

α3 HepG2 

α4 HepG2  

α5 nil  

α6 THP1 cell line  

α7 HepG2  

α9 Jurkat  

α10 HELA  

β1 Human brain cDNA  

β2 Jurkat  

β4 Human brain cDNA  

δ Jurkat  

ε HepG2  

γ MCF7  

Table 7.3. Positive controls for each subunit.  

cDNA derived from the specified cell line or tissue source were used in RT-PCR. The 

shaded ones were not available for testing for practical reasons.  

To determine the correct conditions for amplifying each subunit, a series of 

PCR reactions were carried out in which the annealing temperatures and 

MgCl2 concentrations were varied. A compilation of the optimal conditions for 

PCR is listed in Table 7.4.  
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Table 7.4. Gradient PCR - Optimum temperature and Mg concentration 

Subunit product size result temp mg 

α1 188 - 

  α2 101 - 

  α3 158 + 65 3.5 

α4 161 faint 63 3.5 

α5 150 + 63 3.5 

α6 111 - 

  α7 210 + 63 3.5 

α9 157 + 63 1.5 

α10 239 + 63 2.5 

β1 161 + 65 2.5 

β2 230 + 63 2.5 

β4 170 + 63 3.5 

δ 157 + 63 2.5 

ε 175 + 65 1.5 

γ 185 - 

  With optimum annealing temperature and magnesium concentration 

determined, PCR reactions for each subunit were tested in 7 patients. In 

terms of the alpha subunits, 3, 5, 9, 10 appeared to be relatively consistently 

expressed and α4 was only minimally detected in two patients (data not 

shown). Intriguingly, α7 appears to be differentially expressed. The expression 

pattern of β4, δ and ε subunits showed a uniform expression, however β1 and 

β2 showed a difference between patients. The expression of these subunits 

have not previously been studied in CLL but the expression pattern on normal 

B-cells is known, as described in the introduction of this chapter. This data in 

conjunction with the literature suggests that these receptors may play a 

significant role in the pathophysiology of CLL cells and could be potentially 

explored as a therapeutic target. 

To confirm the specificity of the amplicons obtained by RT-PCR, Sanger 

sequencing (commercially outsourced to Biosciences) was performed on DNA 
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extracted from the gels. The obtained sequences were compared with the 

NCBI gene database and the Table 7.5 shows the results. All sequence 

except A4 and B4 matched with the gene database. 

Table 7.5. Comparison of obtained sequence with NCBI gene database 

 Sequencing quality  Alignment with database 

A3 good match 

A4 poor poor alignment 

A5 good match 

A7 poor match 

A9 good match 

A10 good match 

B1 good match 

B2 good match 

B4 good poor alignment 

D good match 

E good match 

 

7.7.3. Effect of pan nicotinic acetylcholine receptor agonist and 

antagonist on CLL cells in the culture system 

To test the role of acetyl choline receptors on CLL cell viability MNC were 

cultured in the presence of acetyl choline (a pan acetyl choline receptor 

agonist) and/or mecamylamine (a pan acetyl choline receptor antagonist) with 

or without antigenic stimulation with anti-IgM. The results are plotted in Figure 

7.4. There was no significant effect on viability with either pan agonist or 

antagonist of acetyl choline receptors. 
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Figure 7.4 Effect of acetyl choline and mecamylamine on CLL cell 
viability.  

MNC was incubated in presence of acetyl choline and/or mecamylamine with or 

without antigenic stimulation by F(ab)2 anti-IgM. Percentage viability was normalised to 

the viability of MNC after 48 hours without any of the above agents.  

Functionally the activation of nicotinic AChRs causes the movement of cations 

through the opening of an ion channel, with the influx of calcium ions (Shen 

and Yakel, 2009). To test this physiological effect, calcium flux in CLL cells 

was studied using the techniques described in Chapter 4. The effects of both 

pan receptor agonist and antagonist were tested. Acetyl choline was used as 

the pan agonist and mecamylamine was used as the pan antagonist. Indo-1 

was used as the calcium detecting dye and flux was analysed using flowJo 

software. The plots are shown in Figures 7.5 and 7.6. Neither the agonist nor 

the antagonist caused a significant alteration to calcium flux. 
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Figure 7.5. The effect of acetyl choline on calcium flux in CLL cells.  

CLL samples were treated with the pan-agonist acetyl choline and the resulting 

calcium flux was monitored by flow cytometry. Results from 4 patient samples are 

shown.  

 

  

Figure 7.6 The effect of mecamylamine on calcium flux in CLL cells.  

CLL samples were treated with the pan-antogonist mecamylamine and the resulting 

calcium flux was monitored by flow cytometry. Results from 3 patient samples are 

shown.  

From the above experiments it is evident that a number of acetyl choline 

receptor subunits are expressed on CLL cells. Subunits like α3, α4, α5, α9, 

α10, ε and δ are universally expressed but there is variation between patients 
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in the expression of α7, β1, β2. These targets were identified at mRNA level. 

Protein level expression was identified for β4 only. This may be due to 

technical reasons like the antibodies used were not suitable for flow 

cytometry, or due to physiological reasons like mRNA gets degraded before 

translation or a post-translational modification is needed for surface 

expression of the protein. To differentiate this, protein level expression for 

these subunits should be identified using standard techniques like Western 

blotting or immunohistochemistry. Attempts were made to identify the 

expression of these subunits using Western blotting, but because of time 

constraints it was not completed.  

The sequencing of β4 subunit yielded a product.  But the sequences appear 

to be CHRNB2 rather than CHRNB4. Comparing both sequences showed 

similarity in both sequence over an extensive stretch of sequence. 

Unfortunately the primers used will bind to either sequence and will give the 

same product. This needs to be re-sequenced using different primers away 

from the common region.  

Even though the expressions of several subunits were demonstrated the 

functional significance of these could not be established as demonstrated by 

the absence of calcium flux on stimulation with acetyl choline. Acetyl choline 

receptor stimulation or blocking using a pan receptor agonist and antagonist 

did not have any effect on CLL survival. As one of the main aims of the project 

was to identify antigens with therapeutic potential, further work on acetyl 

choline receptors were abandoned.  

7.8 Dopamine receptors 

Dopamine receptors are neurotransmitter receptors which are G-protein 

coupled, and are involved in a number of central nervous system functions 

including emotional control, memory, cognition, learning and fine motor 

control (Schultz, 2007) (Missale et al., 1998). In the periphery, it regulates 

blood pressure, heart rate, gut motility, kidney functions and several 

neuroendocrine reflexes (Missale et al., 1998). There are 5 subtypes of 

dopamine receptors which can be broadly divided to 2 subtypes based on 

their functional categories.  

7.8.1. D1-like receptor family   

D1-like receptors, which include D1 and D5, signal through the G proteins, 

Gαs and Gαolf. Both play a stimulatory role and Gαs is more universal while 
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Gαolf is predominantly present in certain areas of the brain like neostriatum, 

nucleus accumbens and olfactory tubercle (Neve et al., 2004) (Zhuang et al., 

2000) (Hervé et al., 2001). On activation these proteins bind to adenylate 

cyclase, increasing its catalytic activity. Adenylate cyclase catalyzes the 

conversion of ATP to cyclic AMP, which binds to the regulatory subunits of the 

protein kinase A (PKA). PKA then disinhibit the catalytic subunits and 

phosphorylates a number of proteins involved in signal transduction and 

regulation of gene expression, like DARPP-32 (dopamine and cyclic AMP-

regulated phosphoprotein, 32 kDa) which inhibits protein phosphatase 1 (PP1) 

when phosphorylated on Thr34 and inhibits PKA when phosphorylated on 

Thr75 (Hemmings et al., 1984) (Bibb et al., 1999) (Nishi et al., 2000). D1-like 

receptor activation of PKA also increases the phosphorylation of numerous 

voltage- and ligand-gated ion channels. D1 receptor stimulation also induces 

the expression of a number of transcription factors like cyclic AMP response 

element-binding protein (CREB) (Liu and Graybiel, 1996) (Konradi et al., 

1994). D1 or D1-like receptors also signals mobilisation of intracellular 

calcium via phospholipase C-dependent and cyclic AMP-independent 

pathway.  

7.8.2. D2-like receptor family  

D2-like receptors, which include D2, D3 and D4, signal through the 

heterotrimeric G proteins Gαi and Gαo. These pertussis toxin-sensitive G 

proteins inhibit adenylate cyclase and prevent cyclic AMP accumulation (De 

Camilli et al., 1979) (Stoof and Kebabian, 1981). D2 receptor signalling via 

inhibition of adenylate cyclase acts in opposition to agents that stimulate 

adenylate cyclase, i.e. decreasing the phosphorylation of PKA substrates. For 

example stimulation of D2-like receptors decreases PKA-stimulated 

phosphorylation of DARPP-32 at Thr34 and increases phosphorylation at 

Thr75 (Nishi et al., 2000) (Nishi et al., 1997). D2-like receptors modulate 

many other signalling pathways in addition to adenylate cyclase, including 

phospholipases, ion channels, MAP kinases, and the Na+/H+ exchanger, 

through G protein βγ subunits that are released by receptor activation of Gαi/o 

proteins. D2 stimulation decreases cell excitability by increasing K+ currents 

in most brain areas by dissociation of Gβγ subunits, rather than by Gαi-

dependent inhibition of adenylate cyclase activity. All D2-like receptors 

decrease the activity L, N, and P/Q-type calcium channels by Gβγ subunits. 

Like many other G-protein coupled receptors, activation of the D2 receptor 

stimulates MAP kinases, including the two isozymes of extracellular signal-

regulated kinase (ERK) and stress-activated protein kinase/Jun amino-
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terminal kinase (SAPK/JNK). This activation is mediated by pertussis toxin-

sensitive G proteins, Gβγ, phosphatidylinositol 3-kinase, Ras, and the MAP 

kinase kinase MEK. D3 and D4 dopamine receptors also activate ERK. MAP 

kinases transmit stimuli to the cell nucleus, thus participating in cell 

proliferation, differentiation, and survival (Neve et al., 2004). D2 receptor 

activation of ERK stimulates DNA synthesis and mitogenesis in many different 

cell types. D2 receptors in neostriatal neurons activate a cytosolic, Gβγ- 

stimulated form of phospholipase C, PLCβ1, causing inositol triphosphate-

induced calcium mobilisation that activates calcium-dependent proteins such 

as the protein phosphatase, calcineurin, and ultimately reducing L-type Ca2+ 

currents.  In addition to interactions between dopamine receptors and G 

proteins, other protein-protein interactions such as receptor oligomerisation or 

receptor interactions with scaffolding proteins like spinophilin and signal-

switching proteins Nck, Grb2, and c-Src which contain Src homology 3 (SH3) 

domains are critical for regulation of dopamine receptor signalling (Neve et al., 

2004). 

Besides conventional roles of neurotransmitters in neural communication, 

there is convincing evidence that several neurotransmitters are involved in 

cross-talk between the nervous and immune systems. Among several 

neurotransmitters, dopamine (DA) plays an active role in this.  The functional 

role of DA on the immune system is demonstrated by various factors like the 

presence of dopamine receptors (Basu et al., 1993) (Ricci and Amenta, 1994) 

and an endogenous DA transport system in leukocytes (Bondy et al., 1992) 

(Basu et al., 1993) as well as the endogenous synthesis of this monoamine in 

leukocytes (Bergquist et al., 1994) (Cosentino et al., 1999).  

Several human leukocytes have been shown to express dopamine receptors 

(Ferrari et al., 2004) (Kirillova et al., 2008) (McKenna et al., 2002) (Nakano et 

al., 2009). Le Fur et al. initially demonstrated the presence of DA receptors in 

mammalian lymphocytes in 1980s which triggered the concept of DA as a 

regulator of functional activities of immune effector cells (Le Fur et al., 1980). 

Later several groups have demonstrated the presence of all types of 

dopamine receptors on human lymphocytes by radioligand binding and mRNA 

expression studies (Basu et al., 1993) (Santambrogio et al., 1993) (Ricci and 

Amenta, 1994) (Barili et al., 1996) (Caronti et al., 1998), but some studies 

have failed to detect the presence of any D2 like receptors (Vile and Strange, 

1996). Flow cytometric experiments using rabbit polyclonal antibodies have 

shown that B-cells and NK cells show the highest expression among 
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leucocytes, followed by eosinophils and neutrophils, while T-cells and 

monocytes show low expression.  

Lymphocytes are capable of producing dopamine (Josefsson et al., 1996); 

(Bergquist and Silberring, 1998) and express the rate-limiting enzyme of 

dopamine synthesis, tyrosine hydroxylase (McKenna et al., 2002). Capillary 

electrophoresis method has demonstrated picomole levels of DA in 

lymphocytes, neutrophils and macrophages with a big variation in the level in 

various leucocytes. It is mainly stored in cytoplasmic vesicular structures but a 

very small amount is found in the nucleus suggesting its possible regulatory 

role on nuclear components. Active synthesis of dopamine by leucocytes has 

been demonstrated by various techniques. Inhibitors of tyrosine hydroxylase, 

a rate-limiting enzyme for DA synthesis, depleted cells of dopamine. 

Intracellular DA content in lymphocytes increased after incubation with DA 

precursor, L-dopa (Bergquist et al., 1994) (Musso et al., 1996). Release of 

catecholamines into extracellular medium by human mononuclear cells was 

also demonstrated (Marino et al., 1999). There is also evidence that in 

lymphocytes dopamine and D1 agonist SKF-38393 through D1 receptor 

stimulation can inhibit protein kinase C-induced tyrosine hydroxylase mRNA 

expression resulting in reduced intracellular catecholamine levels (Ferrari et 

al., 2004).  

There is some evidence to suggest that dopamine plays a significant role in 

lymphocyte proliferation from experiments on T- and B-cell hybridomas and 

murine and human lymphocytes (Bergquist et al., 1997). Several groups have 

demonstrated that dopamine and its immediate precursor L-Dopa inhibit 

lymphocyte proliferation and induce apoptotic death (Cook-Mills et al., 1995) 

(Offen et al., 1995) (Josefsson et al., 1996) (Bergquist et al., 1997) (Slominski 

and Goodman-Snitkoff, 1992). Contrary to these in vitro experiments, in vivo 

experiments on normal and experimental tumour-bearing mice showed 

stimulation of T- and B-cell proliferation following pharmacological doses of 

DA (50 mg/kg). Another group has also shown that intravenous injection of D1 

and D2 specific agonists, SKF-38393 and LY 171555, enhanced LPS- and 

Con A-stimulated lymphocyte proliferation (Tsao et al., 1997).  and dopamine 

receptor antagonist, haloperidol, inhibited cell growth (Tsao et al., 1998).  

Dopamine has also been shown to inhibit the phagocytic function of 

neutrophils (Wenisch et al., 1996). In macrophages it stimulates tumoricidal 

activity (Dasgupta and Lahiri, 1987) and induces phagocytosis (Sternberg et 

al., 1987). In mice dopamine administration significantly increased the number 
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of large granular lymphocytes in blood and the tumour cell killing ability of 

specific NK cells in vitro (Basu et al., 1993). Cosentino et al. have 

demonstrated that CD4+CD25+ regulatory T lymphocytes (Tregs) contain 

substantial amounts of DA which forms an autocrine loop controlled by 

suppressing IL-10 and TGF-β synthesis after being released by acting on the 

D1 receptors present in the same cells (Cosentino et al., 2007). Similarly, a 

paracrine regulatory loop links dendritic and T-cells (Nakano et al., 2009). 

Dopamine stored in human monocytic-dendritic cells when released acts on 

the D1 receptors present on naïve T-cells, increasing intracellular cyclic AMP 

and causing differentiation into the Th2 lineage in response to anti-CD3 plus 

anti-CD28 mAb while in absence of DA release, T-cell differentiation shifts 

towards Th1 lineage. In dentritic cells the released dopamine auto-regulates 

its synthesis by acting through D1 receptors present in these cells. In normal 

resting peripheral human T lymphocytes, stimulation of D2 and D3 receptors 

activate α4β1 and α5β1 integrins in these cells, thereby promoting adhesion 

of these cells to the extracellular matrix component, fibronectin (Levite et al., 

2001) which is important for trafficking and extravasation of T-cells across the 

blood vessels and tissue barriers. Dopamine also stimulates adhesion of 

CD8+ T cells to fibronectin and ICAM through integrins, mediated through its 

D3 receptors (Watanabe et al., 2006). Dopamine induced chemotactic 

migration of naïve CD8+ T-cells is synergistic with chemokines like CCL19, 

CCL21 and CXCL12. In T-cells, stimulation of D3 and D1/D5 receptors 

increase the secretion of TNF-α and stimulation of D2 receptors induces IL-10 

secretion (Besser et al., 2005). 

Even though dopamine activates resting T-cells, it has also been shown that 

dopamine, at a concentration observed in the plasma (48.6 pg/ml) of human 

subjects suffering from acute uncoping stress, inhibits anti-CD3 and IL-2 

induced proliferation and cytotoxicity of CD4+ and CD8+ T-cells (Saha et al., 

2001). This is thought to be mediated by D1 receptor inducing an increase in 

the intracellular cAMP. Through D2 and D3 receptors in T-cells, dopamine 

inhibits T-cell receptor induced cell proliferation, and secretion of IL-2, IFN-γ 

and IL-4 by down-regulating the expressions of non receptor tyrosine kinase 

lck and fyn (Ghosh et al., 2003). Stimulation of D4 receptors in human T-cells 

during T-cell receptor activation is associated with its quiescence (Sarkar et 

al., 2006) by up-regulating the transcription factor, KLF2 via inhibition of 

ERK1/ERK2 in these cells. Like normal human T-cells, Jurkat cells also 

express D1 and D2 dopamine receptors. But, unlike activated normal T-cells, 

where dopamine, through D2 and D3 receptors, inhibit T-cell receptor induced 
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cell proliferation, stimulation of these dopamine receptors in Jurkat cells fails 

to inhibit their T-cell receptor-induced proliferation. In normal T-cells D1 

stimulation results in intracellular cAMP accumulation, but this observation 

was not seen in Jurkat cells. Sequencing of the D1 gene did not show any 

functionally significant mutation to account for this effect. But pharmacological 

inhibition of phosphodiesterase, the enzyme responsible for cAMP 

breakdown, with theophylline, along with D1 DA receptor stimulation resulted 

in cAMP accumulation and inhibition of proliferation in Jurkat T-cells, 

suggesting that failure of D1 receptor-mediated anti-proliferative effect on 

Jurkat cells was due to increased catabolic activity of the phosphodiesterase 

enzyme resulting in accelerated breakdown of cAMP in Jurkat cells. On the 

other hand D2 receptor stimulation inhibited intracellular cAMP accumulation 

and inhibited T-cell receptor (TCR)-induced cell proliferation and secretion of 

IL-2, IFN-γ, and IL-4 mediated by down-regulating phosphorylation of ZAP70, 

an important downstream signalling molecule that helps in T-cell proliferation 

and activation. This effect was not observed in Jurkat cells suggesting a 

defect in this signal transduction. Sequencing of D2 receptor gene has shown 

a missense mutation that could result in lower efficiency in activating the α 

subunit of the G protein heterotrimer to transduce downstream signals 

resulting in failure of the D2 receptors to down-regulate ZAP70 

phosphorylation (Basu et al., 2010). 

Meredith et al have shown that monoamines including dopamine, adrenaline, 

noradrenaline, and serotonin are anti-proliferative for normal and a spectrum 

of malignant B-cells representing various stages of maturation arrest from pre-

B cells through to plasma cells, with dopamine as the most potent one 

(Meredith et al., 2006). Dopamine has an EC50 of 5±0.3µM for growth arrest at 

the lowest cell density (2.5x105 per ml). RT-PCR for dopamine receptors has 

shown that D1 and D2 were widely expressed both among the malignant and 

normal B-cells, D3 in some cell lines, D4 was uniformly undetectable, and D5 

was limited to the diffuse large B cell lymphoma line DOHH2 and K1106 

derived from a patient with primary mediastinal B cell lymphoma (Meredith et 

al., 2006). The anti-proliferative effect of dopamine is unlikely to be mediated 

through dopamine receptors as antagonism of D1-like receptors (D1 and D5) 

with SCH23390 or D2-like receptors (D2, D3, and D4) with fluphenazine, 

haloperidol, or spiperone failed to reverse DA’s anti-proliferative actions. 

Similarly pharmacological blockade of dopamine transporter protein with the 

high-affinity compounds mazindol or GBR12909 and inhibiting monoamine 

oxidases, which convert intracellular DA into oxidative metabolites, with 
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clorgyline, L-deprenyl, or pargyline had no effect on dopamine mediated anti-

proliferative effect. These experiments suggested that catecholamines 

generate reactive oxidation species by autooxidation and this may be the 

mechanism for the anti-proliferative effect. This was supported by the 

observation that, catalase, an endogenous enzyme that neutralizes H2O2, was 

fully effective in reversing hydrogen peroxide’s anti-proliferative effect on 

L3055 cells and significantly attenuated the anti-proliferative effects of DA, L-

DOPA, and apomorphine (Meredith et al., 2006).  

Thus from the literature it is evident that dopamine has a significant role in   

normal and malignant B-cell function and survival. In addition to the effect 

produced by exogenous dopamine these cells can produce dopamine on their 

own and can have an autocrine or paracrine effect. There is good evidence 

that dopamine plays a role in proliferation and survival of these cells. But the 

mechanism by which it acts as an anti-proliferative agent is not clear. There 

are different postulations in the literature regarding this. This could be 

mediated by dopamine receptors as suggested by some studies or could be 

independent of receptors and mediated by oxidative stress as suggested by 

another study (Basu et al., 2010) (Meredith et al., 2006).  

7.8.3. Dopamine receptor study 

As demonstrated in Chapter 3 screening for expression of antigens in CLL 

cells has shown that dopamine receptor D4 (DRD4) is expressed in CLL cells 

(Figure 7.6). Unfortunately, even though initial screening on a limited number 

of patient samples showed low level of expression, there was no statistical 

difference from control antigen when applied the same antibody on multiple 

samples (Figure 7.7). This could be due to low affinity of the antibody tested 

to the antigen or due to genuine low expression of DRD4 antigen and 

variation between patients to manifest as a statistically meaningful data. The 

ranking of the subunits from the original expression array list is shown in 

Table 7.6. This suggests that the expression of DRD2 and DRD4 are 

reasonably higher up in the list. 

Table 7.6. Ranking of the dopamine receptor subunits from the original 
expression array list 

3485 DRD2 

4592 DRD4 

5828 DRD3 

10142 DRD1 

11489 DRD5 
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Figure 7.6 Screening for DRD4 expression  

Initial screening for dopamine receptor expression levels on MNC populations from 3 

patients, showing low level expression of DRD4 on CLL cells and B-cells compared to 

monocytes and T-cells.  
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Figure7.7 DRD4 expression on multiple samples.  

 Screening for expression of DRD4 on more  patient samples (n=7) and comparing with 

background staining (CD2) showed no statistically significant difference between 

control antibody (CD2) and DRD4 (Table 7.7). 

Table 7.7. Statistical analysis of differences in staining between control 
antibody and test antibodies listed. 

Antigen P value 

5HTR 0.71 

ACCN1 0.0006  

ADAM19 0.128  

APLP1 0.535  

CHRNB4 0.0006  

Antigen P value 

DRD4 0.62 

GPR12 0.259  

GPR18 0.259  

ROR1 0.9  

TAG1 0.007  
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As the results depicted in the above figures were inconsistent with the 

literature, about expression on B-cells, more DRD4 antibodies recognising 

different epitopes were screened. For the original antibody (LS-C22939) the 

antigen was a 17 amino acid sequence from the N-terminus. Two other 

antibodies were tested, AP19016PU-N (antigen was amino acid sequence 1-

11 of the N-terminus) and BP123S (amino acid sequence was 176-185 of 

DRD4 receptor which belongs to the second extracellular loop). The 

expression of DRD4 as assessed by the BP123S antibody was highly 

significant compared to CD2, but the other 2 antibodies did not show 

differential expression (Figure 7.11). Expression levels on different cell 

populations were also examined and it was determined that there was no 

significant difference in expression of DRD4 on CLL cells compared to normal 

B-cells (Figure 7.12). To establish that the staining conditions using the 

BP123S anti-DRDB4 were appropriate, a serial titration experiment was 

performed (Figure 7.13). It was determined that the optimum amount of 

antibody to be used should be around 0.5 to 0.25 μg.  
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Figure 7.11 Expression of 3 different DRD4 antibodies.  

MFI of all three antibodies on the MNC populations from 12 different patients were 

compared to CD2 expression to eliminate non-specific binding. P value of the 

difference in expression of all antibodies compared to CD2 is shown in Part B.  

The results obtained from flow cytometry supported the idea that DRD4 was 

expressed on CLL cells, however further evidence for this expression was 

sought. The presence of DRD4 was confirmed by RT-PCR in 2 out of 3 CLL 

samples as shown in Figure 7.14. In the sample in which DRD4 was not 

detected, there was not an adequate amount of DNA as determined by the 
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intensity of the GAPDH band to make a valid assessment. A fourth sample did 

not produce meaningful results since no GAPDH was amplified. 

A- Comparison CLL and Normal B-cells
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Figure 7.12 MFI of all three antibodies on CLL cells (n = 12) compared to 
normal B-cells (n = 3).  

P value of the difference in expression of all antibodies on B-cells versus CLL cells is 

shown in Part B. 

 

Figure 7.13 Titration of DRD4 antibody.  

Neat antibody used was 4µg (Conc: 1mg/ml). Antibodies were serially diluted halving 

the concentration in subsequent wells upto a dilution of 1 in 64.  

  

 

Figure 7.14. RT-PCR of DRD4 in samples from 4 CLL patients.  

The DRD4 amplicon is indicated by red arrows.  D=DRD4, G=GAPDH, L=Ladder 
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7.8.4. Effect of Dopamine on CLL cell viability  

As discussed in the introductory section of this chapter, monoamines 

particularly dopamine were found to be pro-apoptotic to cell lines of B-cell 

origin (Meredith et al., 2006). Therefore it is reasonable to postulate that CLL 

cells will also have similar response.  MNC were incubated with dopamine at 

100μM for 48 hours and viability assessed. There was a significant drop in 

viability and cell count after 48 hours even though the drop was not uniform in 

all patients as demonstrated in Figure 7.15. A dose titration curve for 

dopamine is shown in Figure 7.16. The concentration used ranged from 

500nM to 500mM and the IC50 was 8.22μM. To test for consistency at lower 

concentrations more patient samples were tested at 10µM. Even at this low 

dose there was significant toxicity (Figure 7.17).  
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Figure 7.15 Initial assessment of the effect of dopamine on CLL cell 
viability.  

MNC were incubated with dopamine at a concentration of 100μM and viability and cell 

count assessed after 48 hours (n=16).  



-230- 
 

 
 

dopamine dose titration (n=6)

-0.5 0.0 0.5 1.0 1.5 2.0 2.5
0

50

100

150

Log conc. µM

n
o

rm
a
li
s
e
d

 c
o

u
n

t

spread

0
0.

5 1 5 10 50 10
0

50
0

0

50

100

150

200

Log conc. µM

n
o

rm
a
li
s
e
d

 c
o

u
n

t

 

Figure 7.16 Dose titration curve for dopamine.  

MNC from 6 patients were incubated with dopamine at concentrations of 500nM, 1µM, 

5µM, 10µM, 50µM, 100µM and 500µM. Viability and counts were assessed after 48 

hours. Count was normalised to the sample without any dopamine. IC50 was 

calculated using non linear fit curve with variable slope in graphpad prism. IC50= 

8.218µM (95%CI- 5.205 to 12.98). 
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Figure 7.17 Assessment of viability to test the effect of dopamine at 
lower concentrations. 

 MNC were incubated with dopamine at a concentration of 10μm and 100μM and 

viability and cell count assessed after 48 hours (n=12).  
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7.8.5. Effect of Dopamine on stromal support and antigenic 

stimulation  

To assess the effect of dopamine on the microenvironment support of CLL 

cells the viability was assessed in media with fibroblast support. Dopamine by 

itself was ineffective in dissipating the stromal support provided by CD40L 

fibroblasts (Figure 7.18). Similarly the effect of antigenic stimulation was 

assessed using F(ab)2 anti-IgM. Unfortunately most samples tested did not 

show much stimulation with the antibody. However, for the patients who 

showed the increment in viability and count with antibody stimulation, 

dopamine partially negated the increment observed (Figure 7.19). This test 

needs to be repeated on more patients to test for statistical significance.  
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Figure 7.18  Effect of dopamine on micro-environmental support.  

MNC were incubated with dopamine at a concentration of 100μM in media supported 

by CD40L fibroblasts and viability and cell count assessed after 48 hours (n=12).  
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Figure 7.19 Effect of dopamine on antigenic stimulation.  

MNC were incubated with dopamine at a concentration of 100μM in media stimulated 

by F(ab)2 anti-IgM and viability and cell count assessed after 48 hours (n=6).  

7.8.6. DRD4 agonist (CP226269) and antagonist (sonepiprazole) 

To explore the pathway by which dopamine exerts the above observed effect, 

the rational approach would be to test the effect mediated by dopamine 

receptors. Individual receptor specific agonists and antagonists are available 

commercially. As DRD4 receptor was expressed at the protein level in CLL 

cells, DRD4 receptor specific agonist and antagonist were tested first. As 

shown in Figure 7.20 there was no significant effect on viability mediated by 

DRD4 agonist or antagonist when tested at two concentrations, one being the 

commercially available EC50 on binding assays and the second one being a 

much higher concentration to obtain the maximum effect in screening. The 

effect of dopamine was not blocked by DRD4 antagonist, suggesting that the 

effect of DA is not mediated by DRD4 receptors. 
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Figure 7.20 Effect of DRD4 agonist, CP226269, and antagonist 
sonepiprazole on CLL cell viability.  

MNC were incubated with dopamine, CP226269 and sonepiprazole with or without 

dopamine. Viability and cell count was assessed after 48 hours (n=3).  

MNC=Mononuclear cells, CP= CP226269, SO= sonepiprazole, DOP= Dopamine, the 

numbers correspond to concentration of the compound in the media where CP226269 

and sonepiprazole concentrations are in nM and dopamine concentration is in μM. 

7.8.7. Protective effect of catalase 

A previous study has reported that the anti-proliferative effects of dopamine 

on malignant B-cell lines were mediated by reactive oxidation species 

generated by auto oxidation (Meredith et al., 2006). These conclusions were 

supported by the observation that, catalase, an endogenous enzyme that 

neutralizes H2O2, was fully effective in reversing hydrogen peroxide mediated 

anti-proliferative effect and significantly attenuated the anti-proliferative effects 

of DA, L-DOPA, and apomorphine. To test this hypothesis on CLL cells MNC 

were incubated with dopamine with or without the presence of catalase. Even 

though there was some reduction in the level of cell death estimated by 

percentage viability and cell count in presence of catalase it was not 

significant enough to suggest protective effect as shown in Figure 7.21. 

As discussed in the introductory section of this chapter dopamine receptors 

are mainly divided into two groups, D1 and D2 type, which exert almost 

opposite physiological effects in cells. If dopamine is exerting the proapoptotic 

effects through one of the receptors then a pan D1 or D2 group specific 

agonists or antagonists should show similar effect as dopamine. To prove this 

postulate MNC were incubated with pan D1 and D2 receptor agonist and 

antagonist with or without dopamine (Figure 7.22).  
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Figure 7.21 Assessment of protective effect of catalase on dopamine 
induced cell death  

 MNC were incubated with dopamine with or without catalase. Viability and cell count 

were determined after 48 hours (n=11).  

The compounds used were SKF83822 (D1 agonist), SCH13390 (D1 

antagonist), pramipexole (D2 agonist) and domperidone (D2 antagonist). Of 

these compounds pan D2 receptor antagonist, domperidone significantly 

reduced the survival of CLL cells in vitro. This effect is significantly enhanced 

when dopamine is combined with domperidone. The dose titration curve for 

domperidone gave an IC50 of 6.65μM (Figure 7.23). 
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Figure 7.22 Effect of pan D1 agonist SKF83822, D1 antagonist 
SCH13390, D2 agonist pramipexole and D2 antagonist 
domperidone on CLL cell viability.  

MNC were incubated with dopamine alone or with SKF83822, pramipexole, 

SCH13390 and domperidone with or without dopamine. F(ab)2 anti- IgM and IgD were 

added as BCR stimulants. Viability and cell count were assessed after 48 hours 

(n=8).  
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Figure 7.23 Dose titration curve for domperidone.  

MNC from 3 patients were incubated with domperidone at concentrations of 0.1uM, 

0.5uM, 1uM, 5uM and 50uM. Each sample was duplicated with or without anti-IgM 

and IgD added as BCR stimulants.  Viability was assessed after 48 hours. 

Cytotoxicity was calculated as 100-% viability of corresponding sample. IC50 was 

calculated using non linear fit curve with variable slope in graphpad prism. IC50= 

7.69µM (95%CI- 0.01217 to 4868). 

7.8.8. Ca Flux-Dopamine 

In neuronal cells intracellular calcium mobilisation is a physiological 

response to dopamine stimulation. In B-cells calcium mobilisation by BCR 

stimulation is known to produce several prosurvival and stimulatory signals. 

Calcium flux in response to dopamine stimulation was assessed in CLL 

cells even though the final effect of pro-apoptotic ability of dopamine was 

not explainable by the intracellular calcium flux. There was no increase in 

calcium flux for dopamine stimulation as demonstrated in Figure 7.24. To 

explain the pro-apoptotic effect of dopamine the more physiological 

response would be inhibition of BCR stimulation mediated calcium flux by 

dopamine. To test this hypothesis cells were incubated with dopamine and 

calcium flux was assessed using fura-red/fluo-3 as described in Chapter 4. 

There was a significant reduction in cells fluxing calcium when pre-

incubated with dopamine proving the above postulate that dopamine 

inhibited the downstream signalling of BCR pathway (Figure 7.25). To prove 

this hypothesis further, other parameters like phosphorylation were tested. 

Figure 7.26 demonstrates that there was a significant inhibition of SYK 

phosphorylation after IgM stimulation when CLL cells were pre-incubated 

with dopamine, similar to the effect seen with the SYK inhibitor, even 

though the effect was not as pronounced as the SYK inhibitor.  
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Figure 7.24 Calcium flux by dopamine.  

CLL cells were stimulated with 100μM dopamine and Ca flux monitored by fura-

red/fluo-3.  
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Figure 7.25 Effect of dopamine on BCR mediated calcium flux.  

Calcium flux was assessed on parallel samples stimulated with anti-IgM with or 

without pre-incubating with dopamine (n=9).  
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Figure 7.26 Effect of dopamine on IgD stimulation of SYK 
phosphorylation.  

The MFI of SYK phosphorylation in CLL samples was determined after stimulation 

with anti-IgD with or without pre-incubating with dopamine (n=10). 
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From the above experiments it is clear that dopamine plays a role in the 

BCR stimulation pathway and treating cells with dopamine prevents further 

downstream signalling. From the therapeutic point this observation has 

great significance. It is now well established by clinical trials that CLL can 

be effectively treated by inhibiting BCR signalling pathway at different levels 

(Byrd et al., 2013) (Furman et al., 2010). Domperidone has been used in 

clinical practice over decades as an antiemetic (Helmers, 1977). To 

determine the effect of combining these two agents on CLL cell viability in 

vitro, samples were treated with GS-1101 or Domperidone alone or in 

combination. As evidenced from Figure 7.27 there is significant reduction in 

viability with GS-1101 and domperidone on their own but the effect was 

doubled when they were combined. 
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 Figure 7.27 Effect of combining BCR kinase inhibitor and D2 receptor 
antagonist.  

MNC from 3 patients were incubated with GS-1101 (10μM), domperidone (5μM) or a 

combination of both. Each sample was duplicated with or without anti-IgM and IgD 

added as BCR stimulants. Viability was assessed after 48 hours.  

 

 

 

 

 



-239- 
 

 
 

7.9 Discussion 

These experiments have shown that there are several neuronal markers 

expressed on CLL cells which are likely to a have physiological role in cell 

survival. Acetyl choline receptor subunit β4 was expressed on CLL cells at 

protein level as demonstrated by flow cytometry and mRNA level by RT-

PCR. Several other subunits were also demonstrated to be expressed at 

mRNA level but failed to be demonstrated to be expressed at protein level 

by flow cytometry. Further experiments to explore the physiological role and 

possible therapeutic role of acetyl choline receptors have failed to 

demonstrate any benefit. Similarly dopamine receptor DRD4 was shown to 

be expressed at protein level and mRNA level. Further experiments have 

shown that dopamine was proapoptotic to CLL cells in the in vitro system. 

These results are consistent with the finding of Meredith et al, that 

monoamines including dopamine, adrenaline, noradrenaline, and serotonin 

are anti-proliferative for normal and a spectrum of malignant B-cells 

representing various stages of maturation arrest from pre-B cells through to 

plasma cells, with dopamine as the most potent one and the inhibition of T-

cell receptor induced cell proliferation noticed on normal T-cells by Basu et 

al (Meredith et al., 2006) (Basu et al., 2010). However in contrast to the 

published results of Meredith et al., the results described in this study could 

not find any protective effect of catalase in preventing apoptosis in CLL 

cells. Furthermore this study has shown that dopamine down-regulates the 

SYK phosphorylation and downstream signalling of calcium flux mediated 

by BCR stimulation.  Finally the results have shown that a combination of 

pan D2 inhibitor domperidone along with BCR pathway kinase inhibitor (GS-

1101) is much more efficient in inducing apoptosis in CLL cells than either 

of these agents on their own. Thus manipulation of dopamine receptors on 

CLL cells offers the possibility of a new therapeutic strategy.  
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8. General Discussion: Dopamine activates apoptosis in 

CLL cells by down regulating SYK phosphorylation and 

pan D2 inhibitor potentiates the proapoptotic effect of 

BCR pathway kinase inhibitors  

CLL is considered as an indolent disorder with a relapsing and remitting 

course. There are effective treatments available now for bringing the 

disease into remission even reaching an MRD negative status. The current 

standard approach would be combination chemo/immuno-based treatment 

which induces an effective remission, but invariably the disease relapses 

over a period of time (Oscier et al., 2012). Even though the remission period 

after chemo/immuno therapy in a majority of patients is many years, in a 

substantial number of patients the disease relapses very quickly and 

treatment options are limited. Even with allogeneic transplant the disease 

related death is considerably high in this group of patients (Delgado et al., 

2009). This poor prognostic group include those patients with specific 

cytogenetic abnormalities, which make them biologically resistant to 

chemotherapy. Even in patients that remain in remission for many years the 

disease will ultimately relapse. It may respond to the same treatment or to a 

different combination therapy, but over a period of time the remission 

duration shortens until finally it become resistant to most standard 

treatments. So until now CLL has been considered as an incurable disease 

(O’Brien and Keating, 2005).  

Recent years have shown a huge interest in CLL research especially in 

developing newer treatments.  One of the major discoveries in the last few 

years in this field is the role of antigen stimulation in the pathophysiology of 

initiation and maintenance of the disease (Ghia et al., 2008). This 

knowledge has led to the development of B-cell receptor kinases as 

potential therapeutic targets for treating CLL. Similar to other malignancies 

there is still a huge necessity for developing newer treatment agents for 

CLL. Identification of malignancy specific targets is of vital importance in 

diagnosis, prognosis and developing targeted treatments in malignancy. 

Gene expression profiling is a powerful tool that can identify genes that are 

expressed at RNA level in cells on a massive scale. Several studies have 

tried to identify the differentially expressed genes in CLL. These studies 

were unfortunately not successful in identifying any CLL specific targets that 

could have any potential therapeutic implications.  But these studies have 
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provided evidence of the overall expression of genes in the CLL cells (Klein 

et al., 2001b) (A. Rosenwald et al., 2001) (Haslinger et al., 2004). This may 

not correspond to the level of proteins expressed in the cell which will 

depends on various other factors like the physiological state of the cell, the 

gene it is transcribed from, the speed with which the mRNA is degraded in 

the cell before translation, and the functional status of several of these 

proteins depend on post-translational modification like phosphorylation, 

glycosylation and complex formation with other proteins. This study is an 

attempt to identify these proteins expressed on the plasma membrane of 

the CLL cells based on their mRNA expression in the gene expression array 

by flow cytometry. Monoclonal as well as polyclonal antibodies were used 

for flow cytometry. While most monoclonal antibodies were optimised for 

flow cytometry, polyclonal antibodies have to be conjugated and optimised 

for such experiments. Even though no antigens confined to CLL cells were 

identified there were several antigens expressed on CLL cells but 

expressed on other cell types also, predominantly on B-cells. The 

expression of these antigens on other cells is not a restriction for them to be 

developed as a therapeutic target. This is substantiated by the experience 

with antigens like CD20 and CD52. The levels of expression of some of 

these antigens which include CD119, CD51, IFNGRB, INTGβ7, CHRNB4 

and TAG1 were higher on B-cells compared to CLL cells even though the 

MFI varies widely between these antigens. Their differential expression on 

B-cells and CLL cells can be exploited for developing these antigens as 

potential prognostic and MRD markers.  

Another intriguing observation noticed was that several of the antigens 

expressed on CLL cells were neuronal markers which acts as receptors for 

neurotransmitters. Acetyl choline receptors, dopamine receptors and 

serotonin receptors were the predominant ones. Literature search has 

shown that some of them are expressed in normal haemopoietic cells and 

that there is a physiological role for these transmitters and receptors (Wang 

et al., 2003) (De Rosa et al., 2005) (Basu et al., 1993) (Ricci and Amenta, 

1994). But their role in the pathophysiology of CLL is not clear. 

Therapeutically the more important question would be whether any of these 

transmitters and their receptors is involved in the CLL cell survival pathway.  

Several other antigens were also identified, but studying the pathways for 

all identified antigens would be beyond the scope of this project. In this 

study as acetyl choline receptor subunit β4 showed the maximum MFI 

among all antigens studied by flow cytometry, it was decided to explore the 
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acetyl choline pathway first. Numerous studies have shown that several 

acetyl choline subunit combinations exist in cells of immune system. In B-

cells some of these receptors like α4β2 are involved in IgM-related 

proliferative effects while receptors like α7 and α9α10 play an inhibitory role 

in CD40-related proliferation.  In our study several subunits were expressed 

at the mRNA level even though the protein level expression was found only 

for the β4 subunit.  The most likely reason for this is the poor quality of the 

antibodies for flow cytometry experiments.  Even though several subunits 

were expressed, neither acetyl choline nor its antagonist had any effect on 

CLL cell survival, so further exploration of the pathway was temporarily 

suspended. 

The next receptor studied was dopamine receptor DRD4 as it was also 

found to be expressed in the screening process.  Interestingly, there are 

several studies in the literature which showed that dopamine receptors were 

involved in B-cell survival and function.  Some studies have shown that B-

cells are capable of producing dopamine on their own which can exert an 

autocrine or paracrine effect (Ferrari et al., 2004). Additional studies have 

shown that dopamine can induce an apoptotic effect on lymphocytes and 

malignant cell lines derived from B-cell precursors. Studies differ in their 

evidence on the mechanism by which dopamine produce this effect 

(Meredith et al., 2006) (Basu et al., 2010). In neuronal cells the main 

mechanism by which dopamine mediates its effect is through cAMP as it is 

a G-protein coupled receptor. Cyclic AMP triggers a number of downstream 

signalling pathways by phosphorylating several proteins and voltage and 

ligand gated ion channels. Dopamine receptors can be divided into two 

major groups, D1 and D2, based on their cellular functions, which wield 

opposite effects in cells by upregulating and downregulating cAMP, 

respectively (Neve et al., 2004).  

In this study we have shown that at least one receptor for dopamine, DRD4 

is expressed on CLL cells. The expressions of other receptors were not 

studied due to time restrictions. The study also demonstrated that dopamine 

induced apoptotic cell death in CLL in a dose dependent manner. A 

previously described mechanism by which dopamine induces 

antiproliferative effect in a malignant B-cell line was through auto-oxidation 

and was prevented by catalase-mediated decomposition of H2O2 (Meredith 

et al., 2006). However, in our study we could not find any protective effect of 

catalase in preventing apoptosis in CLL cells. This directed us to the 

possibility of dopamine receptors as the mediators of this pro-apoptotic 
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effect. Dopamine receptors are G protein coupled receptors; most of the 

downstream effects are mediated by regulating the catalytic activity of 

adenylate cyclase, thereby controlling level of cyclic AMP inside the cell. 

Several studies in the past have shown that cAMP can have a pro-apoptotic 

or anti-apoptotic effect depending on the type of cell and the condition 

under which experiment is carried out (Insel et al., 2012). Examples of cells 

in which cAMP induced pro-apoptotic effects are cardiac myocytes, 

adrenocortical cells, breast cells, fibroblasts, 

leukocytes/lymphomas/leukaemias, neuronal/glial cells, lung carcinoma 

cells, melanoma cells, osteoblasts, ovarian cancer and granulosal cells, 

renal mesangial cells, vascular endothelial and smooth muscle cells. 

Several of these cells can have either a proapoptotic or an antiapoptotic 

effect depending on the condition in which experiment is conducted. For 

example, increased levels of cAMP usually induces apoptosis in murine 

S49 lymphoma cells, but if treated with pro-apoptotic agents like anti-Fas 

and ultraviolet light, it shows a transient anti-apoptotic response to cAMP 

(Yan et al., 2000) (Zhang and Insel, 2004) (Insel et al., 2012). The exact 

mechanism by which cAMP mediates these outcomes is not very clear. As 

discussed before cAMP mediates its effect through three main targets: 

protein kinase A (PKA), the GTP-exchange protein EPAC and the cyclic-

nucleotide-gated ion channels. PKA phosphorylates several target proteins 

and the downstream effect depends on the type of protein it 

phosphorylates. The nature of the proapoptotic proteins it phosphorylates is 

still to be elucidated. However experiments with various S49 lymphoma cell 

mutants lacking expression or function of distinct cAMP signalling 

components, including Gs and PKA, provides evidence that the pro-

apoptotic effects, to some extent is mediated by PKA activation (Yan et al., 

2000). There are limited data to suggest that EPAC proteins can also 

mediate pro-apoptotic or anti-apoptotic effects.  

In our study the pro-apoptotic effect of dopamine could be mediated by 

cAMP pathway as dopamine increases its level through D1 receptors. This 

postulation is further substantiated by the observation that a pan-D2 

antagonist, domperidone, potentiates the effect of dopamine as D2 

mediated inhibition of adenylate cyclase is blocked by the antagonist, 

thereby enhancing the D1 mediated effect. Domperidone is found to be 

proapoptotic by itself to a lesser extent probably mediated by dopamine 

generated by CLL cells itself or the supporting mononuclear cells in the 

medium exerting an autocrine or paracrine effect.  
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Literature review has shown that dopamine signalling through D2 receptors 

inhibits T-cell receptor induced proliferation by down-regulating ZAP70 in 

normal T cells but not in Jurkat cells due to a missense mutation in the D2 

receptor (Basu et al., 2010). Another interesting study related to the 

mechanism of cAMP related proapoptotic effects has been published by 

Smith et al (Smith et al., 2005). They observed that PDE4B2 is the major 

phosphodiesterase isoform in DLBCL and it is overexpressed in 

fatal/refractory DLBCL. PDE4B limits the growth-inhibitory effects of cAMP 

in DLBCL cell lines and PDE4B inactive mutant cell lines are more 

vulnerable for cAMP induced apoptosis (Smith et al., 2005). Interestingly 

they have demonstrated that the pro-apoptotic effect of cAMP is 

independent of PKA and EPAC and was mediated by downregulation of 

phosphoAKT which modulated the phosphorylation of BAD protein. 

Expression of constitutively active AKT protects DLBCL cell lines from 

cAMP-mediated growth inhibition. Further exploration of this pathway by 

another group demonstrated that the cAMP mediated inhibitory effects 

toward PI3K/AKT were actually transduced via SYK (Kim et al., 2009). In 

normal B-cells the elevation of cAMP levels also resulted in a marked down-

regulation of SYK Tyr525/526 phosphorylation without any changes in the 

phosphorylation levels of LYN and SRC (Kim et al., 2009). 

Increasing cAMP levels resulted in marked decrease in phosphorylation of 

AKT (S473) in DHL6 lymphoma cells expressing a vector encoding PDE4B, 

but these inhibitory events were absent in DHL6 cell mutants expressing 

constitutively phosphorylated SYK. Functionally, SYK inhibition with 

piceatannol induces higher apoptosis with a lower IC50 in DLBCL cell lines 

with reduced PDE4B expression compared to those cells expressing high 

PDE4B levels, corroborating the observation that higher cAMP level 

potentiates the effect of SYK inhibition. However Moon et al in another 

study have shown that in CLL cells elevation of cAMP by either rolipram, a 

prototypic PDE4 inhibitor, or forskolin, an adenylate cyclase activator 

induces apoptosis by activating protein phosphatase 2A induced 

dephosphorylation of pro-apoptotic Bcl-2 family members such as Bad. 

Their study did not show whether up-regulation of PP2A-like phosphatase 

activity was potentiated by PKA mediated phosphorylation (Moon and 

Lerner, 2003). 

Our study has clearly shown that dopamine down-regulates the SYK 

phosphorylation mediated by BCR stimulation. This pathway inhibition is 

further substantiated by modulation of calcium flux, a downstream signal. 
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Finally the results have shown that a combination of pan D2 inhibitor 

domperidone along with BCR pathway kinase inhibitor (GS-1101) is much 

more efficient in inducing apoptosis in CLL cells than either of these agents 

on their own. This could be mediated indirectly by upregulation of cAMP by 

dopamine secreted by CLL cells or other mononuclear cells due to inhibition 

of D2 receptor by domperidone. In this case the uninhibited D1 pathway is 

amplified, which in turn modulates the IgM mediated SYK phosphorylation 

and downstream pathways. This observation has a major therapeutic 

implication as both these agents are already in clinical use, although 

domperidone is used as an antiemetic (Friedberg et al., 2010) (Helmers, 

1977). Thus, this combination can be safely tried in CLL patients. The 

possible interaction between these pathways are summarised in Figure 8.1. 
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Figure 8.1 Proposed interaction between dopamine receptors and BCR 
pathway.  

Activation of excitatory dopamine pathway either by stimulating D1 type of receptors 

or by inhibiting D2 type of receptors increases the cAMP level in the CLL cells. This 

in turn can downregulate SYK phosphorylation, the exact mechanism of which is not 

clear. Inhibition of SYK phosphorylation can further downregulate the pro-survival 

signals from BCR stimulation.            inhibitory stimulation            excitatory stimulus  



-246- 
 

 
 

This study also explored effect of a new SYK specific inhibitor on CLL cell 

viability in vitro. Previously SYK inhibitors were shown to induce apoptosis 

in CLL cells, but these inhibitors were not very specific for SYK 

phosphoprotein. GSK pharmaceuticals have produced a highly specific SYK 

inhibitor. Our study has shown that this highly specific SYK inhibitor is also 

proapoptotic to CLL cells. It abrogates the antigen mediated prosurvival 

signals in the BCR kinase pathway as demonstrated by inhibition of SYK 

phosphorylation and calcium flux thereby negating the survival advantage 

offered by B-cell receptor stimulation. There was no difference in response 

when established poor prognostic markers like 17p deletion and unmutated 

IGHV were compared to their good prognostic counterparts. This molecule 

could be further explored as a potential therapeutic agent in CLL either on 

its own or in combination with other agents like D2 antagonists as 

demonstrated in previous experiments.  

Future studies arising from this work should include experiments to 

establish the molecular links between several of these observations. The 

expression of different dopamine receptors should be established at mRNA 

and protein level. Secretion of dopamine by CLL cells or other MNC should 

be ascertained by experimental evidence. Cyclic AMP levels following 

dopamine stimulation in CLL cells should be measured quantitatively along 

with the levels following D2 receptor block by domperidone. These levels 

should be correlated with the level of apoptosis in CLL cells. Further 

clarification is needed regarding the mechanism by which dopamine 

induces cell death. Assuming that it is through a cAMP mediated pathway, 

the link molecules that trigger the downstream signalling need to be 

established. The data in this study showed that dopamine down-regulates 

SYK phosphorylation, but the intermediary molecules between these steps 

are not fully understood. To prove that dephosphorylation of SYK is the 

primary mechanism by which dopamine induces apoptosis, other cAMP 

mediated pathways including PKA activation and EPAC protein activation 

should be tested. Changes in phosphorylation status induced by dopamine 

to other phosphokinases upstream and downstream of SYK in the BCR 

pathway should also be identified.  

Even though the results presented herein identified that D2 group specific 

receptor antagonists can be pro-apoptotic, identification of specific 

dopamine receptors involved in apoptotic induction require further 

experiments with available receptor specific agonists and antagonists. The 

role of dopamine receptors in microenvironment interaction can be 
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established by various co-culture experiments with fibroblasts, including the 

variation of expression in the receptors when coming in contact with stromal 

cells, secretion of dopamine by fibroblasts, change in level of cAMP in CLL 

cells during contact with fibroblasts, and effect of various dopamine receptor 

agonists and antagonists on the viability of CLL cells in stromal co-culture.  

Several other interesting receptors were also identified through the antigen 

identification study. Some of them like INTGβ7 are preferentially expressed 

on normal B-cells compared to CLL cells. This differential expression can 

be further explored as a potential MRD marker. This has to be assessed on 

multiple samples and validated for this use. Another interesting molecule 

identified is CD85j which is a type I transmembrane protein of 

immunoglobulin superfamily which functions to suppress intracellular kinase 

activity by recruiting the phosphatase SRC homology domain containing 

phosphatase 1 (SHP-1) to phosphorylated tyrosines (Lamar et al., 2010). 

This inhibitory stimulus can be further explored as potential therapeutic 

option as it potentially could deactivate the kinases in BCR pathway. It is 

intriguing to observe that CD205 an apoptotic cell recognising molecule 

involved in recognising ligands expressed during apoptosis and necrosis of 

multiple cell lines is expressed in CLL cells (Shrimpton et al., 2009).  The 

role of this particular receptor also warrants further evaluation.  

In conclusion, this study allowed the identification of the expression of 

several new antigens on the surface of CLL cells. One of the antigens 

identified was dopamine receptor, which was found to have potential 

therapeutic implications. Two established BCR kinase inhibitors and one 

new inhibitor were tested in the in vitro system to assess their proapoptotic 

effect on CLL cells. All three were found to be effective using multiple 

assays. A potential synergistic effect was seen with BCR kinase inhibitors 

and dopamine receptor antagonists in inducing apoptosis in CLL cell in 

vitro. Thus, the initial observation of differential mRNA expression lead to 

the identification of a functional pathway in CLL cells that may be used to 

therapeutic advantage and can be explored in clinical trials.  
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10. Appendix 

10.1 Appendix 1. Sequencing of acetyl choline receptor 

subunits 

α3 subunit 

 

NNNNANNNNNNNNNGCCTTGTTCTACNCCATCAACCTCATCATCCCCTGCCTGCTCAT

CTCCTTCCTCACTGTGCTCGTCTTCTACCTGCCCTCCGACTGCGGTGAGAAGGTGAC

CCTGTGCATTTAAGNCCNNTACNNCNTGTGGGCTTATCGCTNGTNCANTCCTCATGGA

NNNTNTCTTGCCCGTTCTCCCNNNGGTGTGNTGGGATGGGCANAGTTTTNTTANCTAG

CCNATTTGNNAGATATCAGNTTGGTTTTAAAGCAAGGGNAAGNNAAATNTTTATACNC

GACTCTGAAAGCCACATGCTCGGGCCTCGCCCTTACCACGGAATTTTTAAANNTNAGT

CCCCTTCTCGGGTATCGTTTNGGACTGCTCTCCCNAAAGGGTTGGCACAACCTGCCC

CAANTCATATAAGAAATANGAANAGAAGTGTGCTGCCCCTAGANCCAACNNAGCCNNC

AACGGTCGCAGAAGAACCTATTAAGGAGGAGAATCCTCCCCTCACNACTGAAAAAAC

GAAGGANAAAAAANAACATCTTCCATGGAAGACCACCTTATCTTCTATGAATCAATAAT

AACACTA 

α4 subunit 

 

NNNNNNNNNNNNNNNNNNNNNNANNNNGTGCTNNGTGNATTNTGNNNNATAGGTACA

TTGCCCATTATANNATTCTGTACTCTGTGTCTTGTAAGCAGTATTCACGGGGCTTTCTT

TNGTCCNGTCAGGTCAGGCTTGCTTCNCCCTGCTTTCTTCANTCTCCCNAAANTCCCA

NAANNCCCANAAATTCCAAANCNNGGNAGCGTGGAAATAACANNAACTTCTCCTACAA

TAACAATTTGCAAGGATATCAAGCTGGTTTCAAACCACAGTCTCGAGGTGTGTCTTTGA

ACGACATTTTAAAGCAACCAAATCCGGCCGCTCCTTAACCAAAGAAGACTTAAAAGCT

TGTCTCCAGTCCCGGTANNNNTTGGCCNTGCNNNCAGNNNGNTGGNNANNCCCTGN
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CCAATNTGATNNNCAACAGNNGTANAAGTCTGNTTAAACAAANAGACAACCCAGTCCA

CACAGAAGGACAAAAAACCGATAAATCAGAACGTAAAACNN 

 

α5 subunit 

 

NNNNGNNGANTATTCTAGAGGACNGATGTAGACAGAGAGATTTTTTTGATAATGGAGA

ATGGGAGATTGTGAGTGCAACAGGGAGCAAAGGAAACAGAACCGACAGCTGTTGCTC

NNNNTACNCCCCANTANNCCCNCNGAGGNCTATGGGTGGACCNCCCTNNTNGANNNT

ATCTGCATCTTCTCTCCNCNGNGGNGNGNNGGGATGTACTGAATTTTCTACTNCTACC

ACNATGCACGGGGATATCNAGCTGGTTAAAAAACACGGGCAAGGTGTATGCNNATGC

NTGACTTTAAAAAGAAACCTGCTCGCGCCTCTCCCNCACCAAAGAACACTAAAAAGCG

TGTCCCAAGCTCCNGTCTCAANGTNGACTGTGATCCCGANNGTGGTNGCACAACCTG

NCGCATCTCAGATAANATAGNNNAAGANNACTCCGCAGACCACAAAGCCCACNAAAG

AGACCCCACANNNGGANNANCTTNNNNTAAAATNGNNNTNNNCNCNCTNCACNGNGN

NNNANACNGNGGAGAAANGANNNNNTCTCNNAGCGGANNAGCTCNNAGTCTCTCNN

NNTCCNCATANTACCTGCNNTGNCNANGTTNNNTCGGCTGATGANGNCNNTCTATNN

GNGANGNANANATGNATGACCANNATGTTCANNATANNCCAGGNTTCTNNNNAGAGA

ACTCTTCNCTNANTGNCTCACTCTCGTGTGTNNTNNGTGGTGGTGATGAT 

α7 (forward primer) subunit 

 

NNNNNNNNNNNNNNNNNGNNGAGTACNNCNAGAGCCCTACCCCGANGTCACCTTCA

CAGTGATTTGCGNCNNNNGNCACTCTACTATGGCCTCAACCTGCTGATCCCCTGNGT

GCTCATCTGCGCCCTCGCCCTGCTGGTGTTCCTGCTTCCTGCANATTCCGGGGAGAA

GATTTCAANTTCTCANCANTTCNTCCCTCAAGGTGGAGGNGGAGGATTTTACAAATTC

TTCTACTACTCNNCTNTTTGNGGATATANNTGGTGGTTTCCNCACNGGCTCGGNTNTN

TCTCTTTNAGANTTTTTNNTGACACCAGTANGGGTCTCCCNATCGCCAATGAANTTTNA

AAAGTTTGTCCAAATCCTGCCTCAATCTNATGNNTGCTNNNAAGANANNTCTGNTGAA
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ACCTGCCCACCAATGATANNGCCAGCAAAGGNNNNNNTNGATTCNNNNGCAGACAAA

CCAGTCCACACTGGAGAAAGAACCGCCGAAAAAACAGGACTACCCAAGGTACAANAC

CGAAAAAACNNTGAATCAATACNAANTNCCATTAGCGGAAGAGTTCCCAGTGTCTNTG

CCTTGATCANGNCNNNAAGACNATGTGNACTATGNNGTTGTTNTCGTTCATGGATGGA

ACTACGATTCGCTGGAGCAAGAGTCNTATTATCCTTCCTGGCTGTCGATTTACAACAA

CTCNCCTTTGNAATAGTCTNNNNTCATGTTGCTTTTTTNCTGATGGTAAATGCGCACNN

TNNTTANNTGGCTGNAGAGNGGAGANGCGATGGCNCCATTCGCNNNACATAACNNTT

GCTTNNNNTGAANTACTNN 

α7 (reverse primer) subunit 

 

NNNNGNNNNNNNNNNNNNNGNCGAGGGCGGAGATGAGCACACAGGGGATCAGCAG

GTTGAGGCCATAGTAGAGTGTCCTNNNNCGCATGGTCACTGTGAAGGTGACATCGGG

GTAGGGCTCTTTGCNGCACTCATAGAACCTTTCACTCCTCTTGCCGGGGATTCCCACT

AGGTCCCATTCTCCAA 

α9 subunit 

 

NNNNNNNNNNNGNNANTCTCTGACTTCTTGAAGATGTGGAATGGGAGGTCCATGGCA

TGCCCGCTGTGAAGAATGTGATCTCCTATGGCTGCTGCTCTGAGCCTTACCCGGATGT

CACATTCAAACCGNAGCCCCCNNCCCTGGGGATGCCANGTGGANTAGTTCATNNNGN

NNATGCACATCNTNTTTNTNGNGCCTCAGCCGAGNAGATCNCAATGTTTCAACTGNCC

NACNGNNGNNANNATNCACTGTGGTTAANNNCGGTCNCNCNGCGTCCCTATTTNAAC

NAATTTCTAGAAACCTGCTCCNGTGTCGCATTCACGAAGGCANCTTAAAAGGTTAGNC

CNAAACCTGCCTAATCTNATCNAAATGACGAATAAAAGTCTGCTTAAACCANACCNCC

ANTTAGANANNTGGAAAGGTCTAAGAGCGCANAAAACANCTTGAGAANTCAGTCCAGA

CTGTTGAAAAAACTGCGGAAAAANTAGAACATCTATANGTACATNANCTAAAAATCNNT

GGATCAACACAAAGTAGTTTCAGCGNAATAGTTCACAGTNCTGAGGCCTCGATATAGG

CCCACTNNAAGAAGTTGATTAGGATTTGTCGACNATCCGCGGGNGAGCTCCNATCTC

GCCCTACCANGANTCGCACTACNNTCNCGGGCTCTCGTTNATGNAGACNTTNCTAGG
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NANACNTNNNCCCTACGTTCNNTANNCTCGGTNTGNGACNACNNCNTTCNCCNCTTG

CCNNANAGCAAGAGGNCNTGCNNCGATCGNNCNNCATANCCNNGNNNNCNNGNNNN

NNNANNANACACCTCCTGTACCGGCGNNNTCTNNNNNNNGA 

α10subunit

  

 

NNNNNNNNNNNGGCTGGNNNNNAGCGGGCCCTTGCCACGAGCCACGATGTCTGTGC

CGCCAGGAAGCCCTACTGCACCACGTAGCCACCATTGCCAATACCTTCCGCAGCCAC

CGAGCTGCCCAGCGCTGCCATGAGGACTGGAAGCGCCTGGCCCGTGTGATGGACCG

CTTCTTCCTGGCCATCTTCTTCTCCATGGCCCTNNNCNNCNTGTGCTGNNTGTNATAA

ANTGNCCGNCTNGCGCCNTACNCANGCTCTGNGGTTAANANATGCTAAAACTGNGTG

TANTATAATNTGATNTGGAGAAACCTGCAGCAGCGTCCACTNTCCAAAGNATTNTNAA

AAGCTTNCCAAATCCTGATTAACATATTCCAAGGGANNAGTAAAAGTGAGNTTGCCCC

ACATCGCCTATTAGACNANCTGGANGGGTCTAAGGGCCANGACTCCNATTTAAAACC

GAATCCGAGATTTGNATTNNCTTGAGANTAAAAAGAAAATTAAAAGNTTCAGTNCATTT

GAACCNNGGAGCAAGGAAAAGCTGTTNTAGCNGAATATCTCACTGGACTTAGTGCCTT

NCTAACANCNGCTAGTTNAGGATGGTCTGGATGTTTGTTCTATCATGGGTGAAGNNGA

CAAATTAACCAANATTCTCATANATACCTGGGACTCTCGNNTATGAAGAACTNCAACNA

ATNNCT 

β1 subunit 

 

NNNNNTNNNNNNNNNNGGCATCGATTCGCTCCGCATCACGGCGGATCCGTGTGGCT

CCCTGACGTGGTGCTACTGAACAACAATGATGGGAATTTTGACGTGGCTCTGGACATT

AGCGTCGTGGTGTCCTNNNAGCNNNNGGTCTCAGNNTTTTNNNCTGTGNNGGTNNTA

NGANNTTGAGCCATCCCNTCTTATAAAANTGTAGNNNNNNNAGTGATAAATTTTTTCCA

CTCCCNCGCNATGTGCAAAATATAAACTGATGANAANNCGCGCTTCAN 
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β2 subunit 

 

NNNNNNNNCCNNNNNTCTGANCTGGTGACAGTACAGCTTATGGTGTCACTGGCCCAG

CTCATCAGTGTGCATGAGCGGGAGCAGATCATGACCACCAATGTCTGGCTGACCCAG

GAGTGGGAAGATTATCGCCTCACCTGGAAGCCTGAAGAGTTTGACAACATGAAGAAA

GTTCGGCTCCCTTCCAAACACATCTGGCTNANCCTACCCATCTGGCTNNAAAAATCTG

GCNNTAACCCCCTCTTGCGGCAAAAAGGTAGTNGTTATTACACAACATTCTTTCATGA

CAACTNCAGTAAATAGCCGCAAGCAAACGGCNTA 

β4 subunit 

 

NNNNNNNNNNNNNNNNNNNNNNNNNGCTNGCTNNNAGTGACACCTACNNTNNNNTA

CATACTTTTGTTGTCNNNNNAGCCACNNNNNNNNAACCGGCCAATTTCTTTGAANNNA

NATTTGNANCNTCAAAAACTATTCTTTAATGCTTAACCCTGGTTACGACGTANTGCTTA

CTAACTTGCTTGTACCTTCTTACATGTGTGCTGGGNTAGGGGCGAGTTTTAATTACATC

NCCCAACCCTTTACAAGCAAATTGGCTTATATAAAAAAGGTAGGCGTAACTTNCAAACT

TACCCCTGAAATACCTATACCTGCTGGACGTTTCTACCACGGACTNNCAATGAACAAC 

δ subunit 

 

NNNNNNNNNTCTGCNGNNNNTCCNTGGCCATCCCCCTTATCGGCAAGTGAGTGACGC

TCAAGCCCGGCCTCACCCTGCTTGCCAGCCCAGCCCTGGGAGCTCCAAGCTGAGTGT

TTGCCCACAGGTTCCTGCTCTTCGGCATGGTGCTGGTCACCATGGTTGTGGTGATCT

GTGTCATCGTGCTCAACATCCACTTCCGAACAAANGAGAGANGNGNCGAGATATAAA

GACCTCCCACCACCCTTCACAAACAAATTATTNTATATGTAAAGGATGGGTACGTTACA
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AACTTACCCCTGAAACATCTTAAATACNTGGACCATTTTTCTACGGAATTNTTGAATGA

GAAACA 

ε subunit 

 

NNNNNNNNNTCNNNTNNAGGGGCAGAGGCACCGGCAGGGGANCTGGACGGCTGCC

TTCTGCCAGAGCCTGGGCGCCGCCGCCCCCGAGGTCCGCTGCTGTGTGGATGCCGT

GAACTTCGTGGCCGAGAGCACGAGAGATCAGGAGGNNNNTTNNTNNGNTNGTCTGTA

TTNNACTGAGTTGNCTGTATCNCCTTTCATGTGTGCTGGGTTAGGGGGGANTTANATT

AAGATCNCCGACAACNCTATACGAAAATAGGNTTTNNTTTGAAAGGGNNGGGTATGTT

ATAAGCCTACGCCTGAAATTTCTTTNATACCTGGAGGTTTTTCCCACGGAATTCTNNAT

GAACAANN 

10.2 Appendix 2 Antibodies used  

Antigen  Conjuga

te 

Clone/Anim

al 

concentration Amount 

used 

Volume manufactur

er 

CD5 PE L17F12 6.25μg/ml 0.0125μg 2μl BD 

Bioscience 

CD5 APC L17F12 6.25μg/ml 0.0125μg 2μl BD 

Bioscience 

CD19 PE-Cy7 SJ25C1 25μg/ml 0.025μg 1μl BD 

Bioscience 

CD45 FITC 2D1 50μg/ml 0.1μg 2μl BD 

Bioscience 

CD20  Pacific 

Blue 

B9E9 unavailable   Beckman 

Coulter 

CD2 PE S5.2 6.25μg/ml 0.00625 

μg 

1μl BD 

Bioscience 

CD45 APC.Cy

7 

2D1 100μg/ml 0.2 μg 2μl BD 

Bioscience 

CD167a PE 51D6   5 μl Biolegend 

CD85j PE GH1/75   5 μl Biolegend 

CD298 PE LNH-94 50 μg/ml 0.25 μg 5 μl Biolegend 

CD279 PE EH12.2H7   5 μl Biolegend 
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CD137L PE 5F4 100 μg/ml 0.5 μg 5 μl Biolegend 

CD97 PE VIM3b   5 μl Biolegend 

CD205 PE HD30 50 μg/ml 0.25 μg 5 μl Biolegend 

IFN-γRβ 

chain 

PE 2HUB-159   5 μl Biolegend 

CD51 PE NKI-M9 25 μg/ml 0.125 μg 5 μl Biolegend 

Integrin β 

7 

PE FIB504 12.5 μg/ml 0.0625 μg 5 μl Biolegend 

CD119 PE GIR-94   5 μl Biolegend 

DR3 PE JD3   5 μl Biolegend 

CD337 PE P30-15 5 μg/ml 0.025 μg 5 μl Biolegend 

erbB3 PE 1B4C3 12.5 μg/ml 0.0625 μg 5 μl Biolegend 

CD141 PE M80 100 μg/ml 0.5 μg 5 μl Biolegend 

CD210 PE 3F9 100 μg/ml 0.5 μg 5 μl Biolegend 

CD155 PE TX24 50 μg/ml 0.25 μg 5 μl Biolegend 

CD114 PE LMM741 50 μg/ml 0.25 μg 5 μl Biolegend 

Anti-

rabbit 

F(ab)2 

Alexa 

fluor 

647 

Goat 2mg/ml 0.4 μg 0.2 μl Invitrogen 

Anti-

rabbit 

Alexa 

fluor 

647 

Goat 2mg/ml 0.4 μg 0.2 μl Invitrogen 

CD3  Rabbit 0.25 mg/ml 1 µg 4µl Abcam 

CD99   Rabbit 0.2 mg/ml 1 µg 5µl Abcam 

ADAM19  Rabbit 1 mg/ml 1µg 1µl Abcam 

GPR18  Rabbit N/A  1µl Abcam 

CHRNB4  Rabbit 1 mg/ml 1µg 1µl Abcam 

APLP1  Rabbit 0.2 mg/ml 1µg 5µl Antibodies 

online 

DRD4  Rabbit 1 mg/ml 1µg 1µl Antibodies 

online 

GPR12  Rabbit 1 mg/ml 1µg 1µl Antibodies 

online 

ROR1  Rabbit 0.25mg/ml 1µg 4µl Abcam 

TAG1  Rabbit N/A  1µl Abcam 

5HTR  Rabbit 0.6 mg/ml 1µg 1.6µl Abcam 

JAG1  Rabbit 1 mg/ml 1µg 1µl Abcam 

ACCN1  Rabbit N/A  1µl Abcam 

SLC2A3  Rabbit 1 mg/ml 1µg 1µl Antibody 

online 
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EFNB1  Rabbit N/A  1µl Antibody 

online 

GPR56  Rabbit N/A  1µl Abcam 

RAMP3  Rabbit 0.5 mg/ml 1µg 2µl Abcam 

EDA  Rabbit 1 mg/ml 1µg 1µl Abcam 

NG2  Rabbit 0.2 mg/ml 1µg 5µl Abcam 

EDG4  Rabbit 0.25 mg/ml 1µg 4µl Abcam 

AMFR  Rabbit 0.5 mg/ml 1µg 2µl Abcam 

LTK  Rabbit 0.25 mg/ml 1µg 4µl Abcam 

ACVRL1  Rabbit 0.25 mg/ml 1µg 4µl Abcam 

ADAM28  Rabbit 1 mg/ml 1µg 1µl Abcam 

TMPRSS

6 

 Rabbit 1 mg/ml 1µg 1µl Abcam 

CNR2  Rabbit 0.5 mg/ml 1µg 2µl Abcam 

GPR15  Rabbit 0.5 mg/ml 1µg 2µl Abcam 

GPR35  Rabbit N/A  1µl Abcam 

FPRL1  Rabbit 1 mg/ml 1µg 1µl Abcam 

MD1  Rabbit 1 mg/ml 1µg 1µl Abcam 

RVK  Rabbit 0.25 mg/ml 1µg 4µl Abcam 

GLUT1  Rabbit 0.2 mg/ml 1µg 5µl Abcam 

F2RL3  Rabbit N/A  1µl Abcam 

NMDAR1  Rabbit 0.8 mg/ml 1µg 1.25µl Abcam 

DGCR2  Rabbit 1 mg/ml 1µg 1µl Abcam 

CRHR2  Rabbit N/A  1µl Abcam 

ADAM15  Rabbit 1 mg/ml 1µg 1µl Abcam 

NRAMP1  Rabbit 1 mg/ml 1µg 1µl Abcam 

ENT1  Rabbit N/A  1µl Abcam 

SDC3  Rabbit N/A  1µl Abcam 

LTB4R  Rabbit N/A  1µl Abcam 

GPR3  Rabbit 1 mg/ml 1µg 1µl Antibody 

online 

MMP15  Rabbit 0.2 mg/ml 1µg 5µl Abcam 

HPN  Rabbit N/A  1µl Abcam 

TNFR1  Rabbit 1 mg/ml 1µg 1µl Abcam 

GYPC  BRIC10 1 mg/ml 1µg 1µl Abcam 

MR1  Mouse 1 mg/ml 1µg 1µl Abcam 

CDH15  21G4 N/A  1µl Abcam 

SLC20A1  Mouse 1 mg/ml 1µg 1µl Abcam 

SLC4A1  BIII 136 N/A  1µl Abcam 
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PLAUR  R-4 1 mg/ml 1µg 1µl Abcam 

ATP1B1  464.6 1 mg/ml 1µg 1µl Abcam 

EGF  EGF-10 2.3 mg/ml 1µg 0.4µl Abcam 

MMP14  LEM-2/63.1 1 mg/ml 1µg 1µl Abcam 

ATP1B2  Mouse 1 mg/ml 1µg 1µl Abcam 

CDH16  4H6/F9 N/A  1µl Abcam 

KIA0319  Mouse N/A  1µl Abcam 

GABBR1  Mouse 1 mg/ml 1µg 1µl Abcam 

NRG2  Mouse 1 mg/ml 1µg 1µl Abcam 

RHBDL1  Mouse 1 mg/ml 1µg 1µl Abcam 

SLC9A1  Mouse 1 mg/ml 1µg 1µl Abcam 

TGFA  P/T1 0.2 mg/ml 1µg 0.5µl Abcam 

JTB  Mouse 1 mg/ml 1µg 1µl Abcam 

STIM1  Mouse 1 mg/ml 1µg 1µl Abcam 

PRRG1  Mouse 1 mg/ml 1µg 1µl Abcam 

CHRNA1  Rabbit N/A  1µl Abcam 

CHRNA2  Rabbit 1 mg/ml 1µg 1µl Abcam 

CHRNA3  Rabbit 1 mg/ml 1µg 1µl Abcam 

CHRNA4  Rabbit 1 mg/ml 1µg 1µl Abcam 

CHRNA6  Rabbit 1 mg/ml 1µg 1µl Abcam 

CHRNA7  Rabbit 1 mg/ml 1µg 1µl Abcam 

CHRNB1  EP2067Y N/A  1µl Abcam 

CHRND  Rabbit 1 mg/ml 1µg 1µl Abcam 

CHRNE  Rabbit 1 mg/ml 1µg 1µl Abcam 

CHRNG  Rabbit 1 mg/ml 1µg 1µl Abcam 

DRD4  Rabbit 1.0 mg/ml 1µg 1µl Acris 

antibodies 

DRD4  Rabbit 1.9 mg/ml 1µg 0.53 µl Acris 

antibodies 

AKT 

(pT308) 

PE J1-223.371   20µl BD 

Bioscience 

NF-κB 

p65 

(pS529) 

Alexa 

Fluor 

647 

K10-

895.12.50 

  20µl BD 

Bioscience 

Akt 

(pS473) 

V450 M89-61   5 µl BD 

Bioscience 

SYK 

(pY348) 

PE I120-722   20 µl BD 

Bioscience 

BTK Alexa 24a/BTK   20 µl BD 
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(pY551) 

& Itk 

(pY511) 

Fluor 

488 

(Y551) Bioscience 

ZAP70 PE SBZAP 0.1 mg/ml   Beckman 

Coulter 

SYK FITC 4D10 0.5 mg/ml   BD 

Pharminge

n 

Zenon 

Alexa 

Flour 647 

mouse 

IgG2a 

labelling 

kit 

Zenon mouse IgG2a  

labeling reagent 

 

Zenon blocking 

reagent (mouse IgG) 

200 μg Fab fragment/mL 

 

5 mg/mL 

5 µl 

 

 

5 µl 

 

Invitrogen 

Zenon 

Alexa 

Flour 647 

mouse 

IgG1 

labelling 

kit 

Zenon mouse IgG1  

labeling reagent 

 

Zenon blocking 

reagent (mouse IgG) 

200 μg Fab fragment/mL 

 

5 mg/mL 

5 µl 

 

 

5 µl 

 

Invitrogen 

Zenon 

Alexa 

Flour 647 

Rabbit 

IgG 

labelling 

kit 

Zenon rabbit IgG  

labeling reagent 

 

Zenon blocking 

reagent (rabbit IgG) 

200 μg Fab fragment/mL 

 

5 mg/mL 

5 µl 

 

 

5 µl 

 

Invitrogen 

 

10.3 Appendix 3 Reagents used  

Lymphoprep Axis-Shield Sodium diatrizoate - 9.1% (w/v) 

Polysaccharide – 5.7% (w/v) 

Ammonium Chloride Sigma-

Aldrich 

8.6g/l in distilled water 

FACSflow  BD 

Biosciences 

 

Bovine Serum Albumin Sigma 0.3% in FACSflow 
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Aldrich 

BCell Isolation Kit (B-CLL) Miltenyibiote

c 

1. B-CLL Biotin Antibody cocktail- 

mAb against CD2,CD4, CD11b, 

CD16, CD36, Anti-IgE,CD235a 

2. Microbead conjugated to 

monoclonal antibiotin antibodies 

 

RPMI (Roswell Park 
Memorial Institute) Media 
1640 
 

GIBCO Component                                       
Conc(mg/L) 
Glycine 10 
L-Alanyl-Glutamine 446 
L-Arginine 200 
L-Asparagine 50 
L-Aspartic acid 20 
L-Cystine 50 
L-Glutamic Acid 20 
L-Histidine 15 
L-Hydroxyproline 20 
L-Isoleucine 50 
L-Leucine 50 
L-Lysine hydrochloride 40 
L-Methionine 15 
L-Phenylalanine 15 
L-Proline 20 
L-Serine 30 
L-Threonine 20 
L-Tryptophan 5 
L-Tyrosine 20 
L-Valine 20 
Biotin 0.2 
Choline chloride 3 
D-Calcium pantothenate 0.25 
Folic Acid 1 
Niacinamide 1 
Para-Aminobenzoic Acid 1 
Pyridoxine hydrochloride 1 
Riboflavin 0.2 
Thiamine hydrochloride 1 
Vitamin B12 0.005 
i-Inositol 35 
Calcium nitrate (Ca(NO3)2 4H2O) 100 
Magnesium Sulfate (MgSO4-7H2O)
 100 
Potassium Chloride (KCl) 400 
Sodium Bicarbonate (NaHCO3) 2000 
Sodium Chloride (NaCl) 6000 
Sodium Phosphate dibasic(Na2HPO4)
 800 
D-Glucose (Dextrose) 2000 
Glutathione (reduced) 1 
Phenol Red 5 
 

IMDM (Iscove's Modified 
Dulbecco's Medium) 
 

GIBCO Glycine                                          30 
L-Alanine                                       25 
L-Alanyl-L-Glutamine                    812 
L-Arginine hydrochloride               84 
L-Asparagine (freebase)               28.4 
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L-Aspartic acid                               30 
L-Cystine                                       70 
L-Glutamic Acid                             75 
L-Histidine hydrochloride-H2O       42 
L-Isoleucine                                    105 
L-Leucine                                        105 
L-Lysine hydrochloride                    146 
L-Methionine 30 
L-Phenylalanine 66 
L-Proline 40 
L-Serine 42 
L-Threonine 95 
L-Tryptophan 16 
L-Tyrosine disodium salt 104 
L-Valine 94 
Biotin 0.013 
Choline chloride 4 
D-Calcium pantothenate 4 
Folic Acid 4 
Niacinamide 4 
Pyridoxal hydrochloride 4 
Riboflavin 0.4 
Thiamine hydrochloride 4 
Vitamin B12 0.013 
i-Inositol 7.2 
Calcium Chloride (CaCl2-2H2O) 219 
Magnesium Sulfate (MgSO4-7H2O) 200 
Potassium Chloride (KCl) 330 
Potassium Nitrate (KNO3) 0.076 
Sodium Bicarbonate (NaHCO3) 3024 
Sodium Chloride (NaCl) 4500 
Sodium Phosphate monobasic  141 
Sodium Selenite (Na2SeO3-5H20) 0.017 
D-Glucose (Dextrose) 4500 
HEPES 5958 
Phenol Red 15 
Sodium Pyruvate 110 

AIM V GIBCO Not Available 

Hank’s balanced salt 

solution (HBSS) 

Invitrogen KCl              400 

KH2PO4        60 

NaHCO3      350 

NaCl           8000 

Na2HPO4      48 

Dextrose    1000 

Phenol red     10 

Penicillin Streptomycin Invitrogen Penicillin 5000units 

Streptomycin 5000μg   per ml 

Trypsin-EDTA Invitrogen Trypsin      2.5g/L  

EDTA      0.38g/L 

HBSS 

Mitomycin-c Sigma 

Aldrich 

2mg vial 

Dissolve in distilled water 0.5mg/ml 

Flow Cytometry Absolute Bangs 1060000 particles/ml 
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Count Standard Laboratories 

FcR Blocking reagent Miltenyibiote

c 

 

Human IvIg Viagam 5g% 

Casein Vector Labs Concentration 0.08% (w/v) 

Goat Serum  Sigma 

Aldrich 

 

Annexin V Apoptosis 

detection Kit FITC 

ebioscience Annexin V on FITC 

10X Binding Buffer 

Annexin V Apoptosis 

detection Kit APC 

ebioscience Annexin V on APC 

10X Binding Buffer 

7-AAD viability staining 

solution 

ebioscience  

AffiniPure F(ab')2 

Fragment Goat Anti-

Human IgM, Fcγ Fragment 

Specific  

Jackson 

Immuno 

Research 

1.3mg/ml 

Buffer- 0.01M Sodium Phosphate, 0.25M 

NaCl, pH 7.6 

Preservative - none 

AffiniPure F(ab')2 

Fragment Goat Anti-

Human IgG, Fcγ Fragment 

Specific  

Jackson 

Immuno 

Research 

1.2mg/ml 

Buffer- 0.01M Sodium Phosphate, 0.25M 

NaCl, pH 7.6 

Preservative - none 

Goat F(ab’)2 Anti-Human 

IgD-UNLB (purified) 

SouthernBiot

ech 

0.5mg/ml 

Buffer- borate buffered saline, pH 8.2 

Preservative - none 

Goat F(ab’)2 Anti-Human 

IgD-UNLB (Dialysed) 

SouthernBiot

ech 

1mg/ml 

Buffer- 0.01M Sodium Phosphate, 0.25M 

NaCl, pH 7.6 

Preservative - none 

   

Lyse/Fix Buffer BD Bio 

Science 

5X 

Perm/Wash Buffer I BD Bio 

Science 

10X 

BD intraSure Kit BD Bio 

Science 

 

Acetylcholine chloride Sigma 

Aldrich 

Stock solution - 550.5mM in sterile water 

Mecamylamine 

hydrochloride 

 Stock solution - 49.08mM in sterile water 

Doxorubicin Sigma Stock solution - 50mg/ml in DMSO 
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Aldrich 

2-Fluoroadenine-9-β-
D-arabinofuranoside 
 

Sigma 

Aldrich 

Stock solution - 10mM in DMSO 

Chlorambucil Sigma 

Aldrich 

Stock solution - 1g/ml in DMSO 

CP226269 (DRD4 agonist) Sigma 

Aldrich 

Stock solution - 10mg/ml (32.22mM) in 

DMSO 

Sonepiprazole (DRD4 

antagonist) 

Sigma 

Aldrich 

Stock solution - 10mg/ml (24.9mM)  in 

DMSO 

Dopamine Sigma 

Aldrich 

Stock solution - 100mM in sterile water 

Pramipraxole Sigma 

Aldrich 

Stock solution - 70mM in sterile water 

Domperidone Sigma 

Aldrich 

Stock solution - 100mM in DMSO 

SKF38393 Sigma 

Aldrich 

Stock solution - 17.1mM in sterile water 

SCH23390 Sigma 

Aldrich 

Stock solution - 15.4mM in sterile water 

Catalase from bovine liver Sigma 

Aldrich 

Available as suspension of catalase 

crystals in water containing 0.1% (w/v) 

thymol. 

Thymol removed by centrifugation and 

dissolving in 50 mM phosphate buffer, pH 

7.0 

GSK143 GSK Stock solution - 10mM in DMSO 

CAL101 (GS1101) Gilead 

Pharmaceuti

cals 

Stock solution - 10mM in DMSO 

PCI-32765 (BTK inhibitor) Pharmacyclic

s 

Stock solution - 50mM in DMSO 

ImProm-II™ Reverse 

Transcriptase 

Promega MgCl2 

ImProm-II™ 5X Reaction Buffer 

ImProm-II™ Reverse Transcriptase 

dNTP Mix Promega 10mM 

Recombinant RNasin® 

Ribonuclease Inhibitor 

Promega 20–40u/μl 

Phusion™ Flash High-

Fidelity PCR Master Mix 

Thermo 

Scientific™ 

2X 
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Zymoclean Gel DNA 

Recovery Kit 

Zymo 

research 

 

Brain, Human normal 

cDNA 

Invitrogen  

Calcium chloride Sigma 

Aldrich 

1M 

Magnesium Chloride Sigma 

Aldrich 

1M 

Indo-1, AM, Cell-permeant  Molecular 

Probes 

1mg/ml  solution in DMSO 

Fluo-3, AM, Cell-permeant Molecular 

Probes 

1 mg/ml solution in DMSO 

Fura Red, AM, Cell-

permeant 

Molecular 

Probes 

1 mg/ml solution in DMSO 

10.4 Appendix 4 Optimisation of sample storage and culture 

medium. 
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Figure 10.1 Viability of refrigerated cells.   

MNC was prepared using lymphoprep sequentially on the same samples (n=2) at day 0, 

2, 7 and 15 whilst the sample was refrigerated. This was followed by 2 samples on day 

16 and day 21 when the samples were kept at room temperature.  Samples were 

assessed for percentage of viable CLL cells after incubating in culture media for 48 

hours. This experiment demonstrates that the samples retained almost 100% viability 

even up to 1 week if refrigerated.   
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Frozen cell
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Figure 10.2 Viability of the frozen cells.  

MNC were separated using lymphoprep and frozen in 10% DMSO in IMDM. Cells are 

retrieved at a later date and assessed for viability. MNC and negatively selected CLL cells 

were seeded at 2 different concentrations. Viable CLL cell count assessed serially at 

different days. Approximately less than 50% cells were only viable at day 0. Viable cell count 

seems to go up in first 24 hours and retained up to 9 days if MNC were seeded and up to 6 

days if CLL cells were seeded. 
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Figure 10.3 Comparison of the effect of IMDM and AIM-V media on CLL 
viability.  
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