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Abstract 

The standard approach to open pit design is to optimize the pit shape using the 

criterion of maximum total profit on the basis of a revenue block model of the 

orebody. There are some difficult problems inherent in such an approach. For 

example, scheduling and production rates will have a significant effect on the shape 

of the pit; if the bulk of the rich (and thus high revenue earning) ore is at the bottom 

of the pit and will not be mined until near the end of the life of the mine, then the 

time value of money may make the simple revenue block approach meaningless. In 

addition, optimality is a function of economic parameters which may change 

significantly over time. 

The aim of the parametric approach is to express the solution (Le., the 

optimal pit shape) as a function of one or more parameters such as costs, prices or 

cut-off grade. Matheron's parametric approach is to use a grade block model 

together with the techniques of functional analysis without making any economic 

assumptions. This leads to a set of technically optimal nested pits which can be used 

for mine scheduling. 

Whittle uses the traditional revenue block approach with the Lerchs

Grossmann algorithm and finds a set of optimal pits which are functions of the 

price/cost ratio. 

The aim of this project is to combine the two approaches mentioned above 

and provide a complete parametric solution in terms of technical and economic 

parameters. The project includes the development of an interactive computer 

program for the parametric design and scheduling of open pits. 

The author reviews the literature on optimal open pit design and scheduling 

and then provides an overview of the parameterization method. In this research 

project the parameterization method has been extended to allow for the selection of 

Abstract 
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an economically optimum pit. Scheduling is then discussed in detail and a new 

method that combines linear programming and user-activated simulation is 

introduced. 

All software developed during this project is described in detail in the final 

Chapter. 
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1. Optimal open pit design 

1.1 Introduction 

An open pit mine is characterised physically by a large hole in the ground. The 

determination of the shape and location of this hole with respect to the mineralization 

are the essential features of the optimality problem. Once the optimal shape and 

location of the pit are determined the mine must be equipped with the necessary 

operating plant and labour. This development requires the investment of a large 

amount of capital which must be repaid as quickly as possible. Many studies (eg, 

Dowd, 1976, Lane, 1964) have shown that the combination of the time value of 

money and the need to pay back the initial investment as quickly as possible require 

operations to begin with a relatively high cut-off grade which then declines over the 

life of the mine. Estimation of block grades and consequent cut-off grades is thus 

essential for optimal mine planning. These estimations are based on the available 

information gathered during the exploration and feasibility stages by a drilling and 

sampling programme. From this information a model of the orebody is constructed 

in the form of estimated block grades which are then used as the basis on which the 

optimum open pit is designed and the optimal production schedule for mine design 

is determined. 

The objective of any optimal open pit design algorithm is to determine the 

final pit limits of an orebody and its associated grade and tonnage, which will 

maximize some specified economic and! or technical criteria whilst satisfying 

practical operational requirements. Since the advent and widespread use of 

computers, open pit design has been implemented by the application of different 

methods and various algorithms, all with a common objective: 

to maximize the overall mining profit within the designed pit limit 
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One of the most important economic aspects of open pit mining is the cut-off 

grade. There are many different types of cut-off grade each defined and used for a 

different purpose. In the most general sense a cut-off grade is any grade: 

or 

• that is used for distinguishing between two different courses of action (e.g. to 

mine or not to mine; to process or not to process; to separate marginal ore 

from run-of-mine ore) 

• that is used to classify material (e.g. into ore and waste; into graded fractions) 

For the purposes of this work the term cut-off grade is used in its general 

economic sense to distinguish between ore and waste. The cut-off grade is a very 

important factor in mine planning as it affects the overall reserves of ore and the 

amount of waste and overburden to be removed. 

Cut-off grades are known as technico-economic parameters and are a complex 

function of grade distributions and variables such as mining costs, processing costs 

and metal prices. They define what is mined and what is milled from a mine's 

output. To be optimal a cut-off grade must be such that it maximizes the realisable 

total net discounted value of the orebody. If the cut-off grade is too high it will 

reduce the mineral recovered and possibly the life of the mine; if it is too low the 

cut-off will reduce the average grade (and hence profit) below acceptable levels. 

It is important to differentiate between planning and the operational cut-off 

grades. There are a number of techniques available for optimising cut-off grades. 

Roman (1973) introduced dynamic programming as a means of optimising 

production rates and Dowd (1976) extended this work to include cut-off grades. 

Lane (1964) is generally regarded to have provided landmarks in the understanding 

and general communication of cut-off grade theory and its application. He introduced 

(Lane, 1964) three stages in determining the optimal cut-off grade: extraction, 

processing and marketing. Costs were determined for each stage as well as the effect 
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on the Present Value of each stage of varying cut-off grade. Blackwell (1970) 

revised Lane's method, again with three stages as the pit, the concentrator and the 

market constraints. With the inclusion of an additional time cost to be borne by the 

operation, he was able, by the use of a computer-based algorithm, to determine the 

maximum Net Present Value, which resulted again in a declining cut-off grade. 

Perhaps one of the best definitions of cut-off grade is that of Taylor (1972). 

Taylor fIrstly defmes the breakeven grade as that grade from which the recoverable 

revenue exactly balances the costs of mining, treatment and marketing, and the cut

off grade is any grade that, for any specifically reason is used to separate two 

courses, e.g. to mine or to leave, to mill or to dump according to their appropriate 

conditions. Such a definition allows the forecasting of future marketing conditions 

in terms of probability. 

The essential difference between planning and operational cut-off grades is 

the time scale to which they relate. Planning cut-off grades are long term and 

generally required before production starts to define geographically and 

quantitatively the potential ore limits. Operating cut-off grades are those required 

during production to defIne on a shorter term basis those parcels of ore that may 

contribute to unmined ore reserves or to streams of broken ore. 

The use of a planning cut-off grade constructed on breakeven principles 

certainly appears justifIable for the determination of pit limits, whereas the operating 

cut-off grade appears justifIed for production scheduling. In the first specification it 

is assumed that when a cut-off grade is applied to the block then the whole block is 

either above or below the cut-off grade, i.e. the selective mining unit is the whole 

block. The second specification allows for selective mining on a scale smaller then 

the planning block. 

Almost all methods are based on orebody block models which are either a : 
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or a 

o Revenue block model obtained by dividing the deposit into blocks 

and assigning a revenue value to each block according to its estimated 

grade and tonnage above a specified cut-off grade 

o Block grade model which is usually in the form of average grade 

above a specified cut-off grade. 

There are a number of other methods which are essentially based on 

geological models and ignore the block concept but, in general, these are only 

applicable in the simplest of orebodies such as those described in section 1.3.1 of 

this Chapter. More general applications of geological models are not considered here 

because the models are not suited to pit design. 

Although many methods have been proposed over the past 30 years very few 

enjoy any significant use today. The major reason for this is that most methods 

cannot be guaranteed to yield a true optimum. 

The initial section of this thesis examines the general understanding behind 

the concept of optimal pit detennination followed by some of the techniques which 

are applicable in mining operations. 

1.2 Optimization criteria 

The frrst step in any optimization problem is to define the optimization criteria. For 

pit design there can be any number of criteria: technical, geological, economic or 

a combination of all three. The most commonly used criteria are economic such as 

maximum profit, maximum extraction of metal, maximum net present value, optimal 

mine life. Of these, the most widely accepted are variants of maximum profit. 

However, an orebody can be mined at a range of cut-off grades each of which (at 

least over practical values) will yield similar amounts of metal for different tonnages 
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of ore mined. Because of the time value of money it will always be more profitable 

to mine at a higher cut-off grade in the early years and then at a declining cut-off 

grade over the later years. Thus the optimizing criterion should be maximum net 

present value rather than maximum total profit. There are, however, very difficult 

problems with implementing net present value as an optimizing criterion which will 

be discussed in Chapter 2. 

For manual methods of pit design it is generally very difficult, if not 

impossible, to use criteria such as maximum net present value or even maximum 

total profit as an optimizing criterion. The implicit optimizing criterion in most 

manual methods is, for a given cut-off grade, either maximum extraction of metal 

or minimum extraction of waste. 

Whatever the method the optimizing criteria may be overridden by other 

considerations such as technical constraints (e.g., safe pit slopes), environmental and 

planning requirements or government policies, the latter often imposed in the form 

of taxation schemes. Although these factors are important they are not explicitly 

considered in the remainder of this thesis. The purpose here is to examine and derive 

methods that optimize economic criteria. However, many technical constraints (such 

as pit slopes) will be included inherently in the methods or the formulation of the 

models. 

1.3 Review of methods for open pit optimization 

In this review of the literature attention is restricted to those optimization techniques 

in common use. In particular, attention is focused on those techniques used 

frequently in commercial and research software for the determination of the optimum 

open pit limits; these methods include the Lerchs-Grossmann algorithm, the various 

moving cone algorithms, dynamic programming, the corrected form of the Korobov 
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algorithm and the parameterization technique. In addition, traditional pit design, in 

its original form and in its later, computerised form will be discussed. 

1.3.1 Traditional pit design 

For simple, well-defined mineralizations there is often no need to use sophisticated 

computer algorithms to design optimal pits: the true optimum can be found by the 

application of well-known, elementary mathematical techniques. An example of such 

simple cases (taken from Dowd, 1994a) is in the mining of dipping, stratigraphically 

defined structures of uniform grade as shown in figure 1. As the pit is deepened 

more and more waste must be removed. Here the pit shape can be defined as a 

function of the net value of mining ore and waste down to a given depth. Once the 

pit slopes are defined the objective is to determine the depth which gives the 

maximum profit. Simple calculus can be used to determine the optimal depth and 

thus optimal pit shape. To illustrate this consider the simple case shown in figure 1. 

Assume that the ore has 

constant width wand a strike 

length of f. Table 1 shows the 

derivation of the optimal 

mining depth. Similar, but 

more complex, formulas can 

be derived for more 

" " " " " " " " e " / 

Figure 1 

/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

d 

realistically shaped and oriented stratigraphic deposits or sequences. 

In the more general case, where the grades vary in three dimensions and the 

ore is not confined to simple stratigraphic boundaries, such exact elementary 

approaches are not possible and a more complex algorithmic solution is required. A 

few years ago, even in cases such as this, the determination of optimum pit limits 

was done by hand using traditional, logical pit design methods based largely on 

cross-sectional interpretations of the mineralization and on grade contour maps. In 
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the manual version of this method it is not possible to use a total systems approach, 

Le. to take into account simultaneously all relevant geological, technical and 

economic factors. However, the method can be largely computerized and a systems 

approach then becomes possible; the only role of the computer is in speeding up 

manual calculations. 

Tonnage of ore mined To 
Tonnage of waste T w 

Profit 

= 
= 
= 
= 

selling price per tonne of ore 
cost of mining one tonne of ore 
cost of mining one tonne of waste 
cost of processing one tonne of ore 
specific gravity of ore 
specific gravity of waste 
depth of mining 
strike length of orebody 
width of orebody 
wall slope of pit 
processing recovery 

dxwxtxg, 
2 x Ih x d x d/tan8 x t x & 
S x r x To - Co x To - G x 1;, - G.. x 't 
d x w x t x go x (rS .. G, - G) - d2 

X ~ x &. x 
l/tan8 

Differentiating profit with respect to depth and setting to zero gives optimum mining depth: 

dept = w x tan8 x go x (rS - G, - G) 
2 x gw x Cw 

Table 1 : Derivation of optimum mining depth for 
case illustrated in figure 1 (from Dowd, 1994a) 

In the manual approach it is not possible to work completely in three 

dimensions and a two-dimensional (or, at best, "two-and-a-half dimensional It) 

approach is used based on vertical and/or horizontal sections. These vertical and 
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horizontal sections (or, in fact, sections of any orientation) are only approximations 

to the three-dimensional shape of the pit; the pit shape on any section is designed 

independently of the shape on the other sections and the results are then modified 

to create a continuous (smoothed) pit surface. 

This "two-and-a-half dimensional" approach was also applied in the early 

computerised attempts at optimal open pit design. The best example of this is 

Johnson's dynamic programming algorithm (Johnson, 1971), which is described in 

section 1.3.4. Whilst it is easy to find examples for which such an approach fails to 

fmd the optimal solution it was, nevertheless, a useful, approximate technique at a 

time when computers were very much slower and less powerful than they are today. 

1.3.2 Lerchs-Grossmann algorithm 

The fITst rigorously optimal method for the general case was proposed by Lerchs and 

Grossmann (1965). This method overcomes the limitations of traditional pit design 

and can be proved always to yield the optimal solution. The Lerchs-Grossmann 

algorithm is based on Graph Theory. 

1.3.2.1 Graph theory 

The graph theory approach developed by Lerchs and Grossmann (1965), for the 

determination of the optimum pit limit is based on the construction of a maximum 

closure of a graph. The l..erchs-Grossmann algorithm converts the three-dimensional 

grid of blocks in the orebody model into a directed graph. Each block in the grid is 

represented by a vertex which is assigned a mass equal to the net revenue value of 

the corresponding block. The vertices are connected by arcs in such a way that the 

connections leading from a particular vertex to the surface define the set of vertices 

(blocks) which must be removed if that vertex (block) is to be mined. A simple two

dimensional example is shown in figure 2. 
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Figure 2 : Directed graph representing a 2-D deposit model 

nodes represent blocks and arcs define mining constraints 

Vertices connected by an arc pointing away from a vertex are termed 

successors of that vertex, i.e. the vertex y is a successor of the vertex x if there 

exists an arc directed from x to y. The set of all successors of x is denoted rx. For 

example, in figure 2, rX9 = {X2' X3 , ~ }. A closure of a directed graph, which 

consists of a set of vertices X, is a set of vertices Y C X such that if x E Y then 

rx E Y. For example, in figure 2, Y = {x l' X 2' X3' X4 , Xs , Xs , X9 , "0 } is a 

closure of the directed graph. The value of a closure is the sum of the masses 

(revenue values) of the vertices in the closure. Each closure defines a possible pit; 

the closure with the maximum value defines the optimal pit. 

This method is the only method which can be proved rigorously, 

mathematically always to lead to the correct optimal solution. However, a number 

of recently published new methods have also made similar claims but they remain 

to be independently verified. 

Most of the stated disadvantages of the Lerchs-Grossmann are perceived 

rather than real. The most commonly stated disadvantages are: 

• Complexity of the method 

• Computing time 

• Difficulty of incorporating variable pit slopes 
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Complexity 

In principle, it is desirable that users of a technique understand the mechanisms 

being used otherwise it becomes a "black box" which may generate results that 

cannot be properly assessed and questioned. However, it might also be said that once 

a technique has been proved and implemented in a validated software package it is 

no longer necessary for the user to have a detailed knowledge of the workings of the 

algorithm. After all, no user of a proprietary CAD package demands to understand 

the algorithms that it employs before he or she agrees to use it. Thus complexity of 

the algorithm cannot really be accepted as a disadvantage. The important things are 

for the user to be aware of any limitations in the algorithm and! or in the software 

implementation. 

Computing time 

There is no doubt that the Lerchs-Grossmann algorithm requires significantly more 

computing time than most of its (non-optimal) competitors. Increased computing 

time is the price to be paid for a truly optimal solution. However, computing speed 

is rapidly being increased and a PC can now solve optimal open pit problems that 

only a few years ago could only be attempted on large mainframes. Computing tim~ 

is fast becoming irrelevant. 

Variable pit slopes 

This has been a problem in the past because of the difficulty of defining the joining 

arcs in the network (see figure 2) in any general and flexible sense. However, there 

are now a number of published solutions to this problem; see, for example, Dowd 

and Onur (1993). 

1.3.2.2 Maximal flow techniques 

It can be easily verified that finding the maximal closure of a graph, on which the 

Lerchs-Grossmann algorithm method is based, is essentially the same as finding the 

maximal flow through a network. Maximal flow techniques have been applied with 
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some success, but they do not seem to have been adopted to any great extent largely 

because they share the same perceived disadvantages as the Lerchs-Grossmann 

method. 

Of the various known alternative algorithms which have been employed to 

overcome the perceived disadvantages and limitations of the Lerchs-Grossmann 

algorithm the most well-known are the moving cone algorithm, dynamic 

programming, the corrected form of the Korobov algorithm and the parameterization 

technique. 

1.3.3 Moving cones 

The main alternatives, in current use, to the Lerchs-Grossmann algorithm are the 

various versions of the floating or moving cone algorithm in which the extraction 

volume for each block is defined by a cone that is centred on that block. The 

moving cone is the simplest method for determining the optimal pit shape and is the 

most widely used of the heuristic algorithms. Each block is assigned a cone which 

is defined by the pit wall slopes in all directions around the block. This cone is 

called a removal cone as it dermes all blocks which must be mined in order to mine 

the block on which the cone is positioned. The optimum pit is a combination of sets 

of removal cones of blocks as shown in figure 3. 

I .... 
~e 1 - :>ne2 

roo--
1e ~ J co c co 

Figure 3 : Pit outline formed by the combined removal 

cones of three blocks 

I 
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There is a serious problem with moving cone methods as illustrated in figures 

4 and 5 where, for example, the value of the removal cone for the first positive 

block is equal to -1 and so the block is rejected as shown in figure 4. 

Similarly, the value 

of the removal cone for the 

next positive block is also 

-1. Treated separately, 

neither of the positive 

valued blocks would be 

removed and the optimal 

solution is not to mine this 

,:-: ::-: 

l:::::: 1:::,:-: lot: 

'!'OJ 

:,;, ... 
.:: ::-: 

:: 

:T1 ::. -::::. .. ....•... :.:.:: ........ . 
/-:::' ::,::: ::::: 

:::. ::-:::::: 

::: ... 

::::, 

simple, two-dimensional orebody. However, if the blocks are removed together, as 

in figure 5, the value of their combined removal cones is +4 and the blocks can be 

profitably mined. 

.... ::: It is thus not 
:: 

:::! i:' :::::: 

"-"'1: .::2- :,: I:>: :~~\: 
::: 

sufficient to consider the 
: ::: 

} 
::: 

::: ::::; "j.: :;:::. :;; :.:':,:.; ::::::::::>: 

:;1. 
:::: 

:F:: :\./:::: :.:; 

;: removal cone of each block 

independently of all other 
::::: :::: ·n :en :: 

:: 
1:':::1::-:: ::::.: ::: 

.: removal cones which 
.::: c:'::::.:.:.: :::::: .. ';' ::::: intersect it. Various 

techniques have been 
... ::i!-:f :en:','" ·i.J111 ;1,. fJ t)ll 'e blocks': 

:;::-: ::: proposed to overcome this 

problem but the numerous forms of the moving cone method remain heuristic 

algorithms for which rigorous proofs of optimization are not possible and for which 

a counter example of non-optimisation can usually be found. 
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1.3.4 Dynamic programming algorithm 

Dynamic programming was advanced as an early alternative to the Lerchs

Grossmann algorithm. 

Dynamic programming is the name given to a technique used to find optimal 

sequences of decisions for problems which can be described as sequential decision 

processes. Problems to which the technique can be applied must be such that they 

can be divided into a sequence of smaller problems for each of which an optimal 

solution can be found. Problems which can be solved by dynamic programming are 

characterized by : 

@a system 

@stages 

@state 

@optimal policy 

etransfer function 

erecursive relationship 

which defines the problem to be optimized. 

which are sub-problems into which the overall problem 

can be divided; they usually correspond to periods of 

time. 

the condition of the system at any given stage. 

sequence of decisions which optimizes a criterion 

function. 

an expression which defines the manner in which the 

state of the system at one stage is related to the state 

of the system at the preceding stage, ie the manner in 

which the next state will be determined by the current 

state and decision. 

is a mathematical expression which defines the optimal 

solution at each stage. 
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Dynamic programming is based on the application of a simple property of 

multi-stage decision processes. This property has been formulated by Bellman (1957) 

in his principle of optimality as: 

An optimal policy has the property that whatever the initial state and initial 

decision are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from the first decision. 

In other words, an optimal set of decisions has the property that if a 

particular decision is optimal, all subsequent decisions that depend on that decision 

must also be optimal. 

Unlike techniques such as linear programming there is no standard 

mathematical formulation of dynamic programming and so particular equations 

(transfer functions and recursive relationships) must be developed to fit each 

individual situation. As a theory, dynamic programming was first formulated by 

Bellman (1957). It has been applied successfully to a number of mining problems 

(David and Dowd, 1976, Dowd, 1976, Dowd, 1980, Dowd and Elvan, 1987, Onur 

and Dowd, 1993). 

The dynamic programming formulation of the optimal open pit problem is 

relatively simple. The decisions are all of the possible combinations of blocks which 

satisfy the mining constraints and the problem is to choose the sequence of decisions 

which maximises the net present value. This is a particularly attractive approach as 

it will solve the problem on the basis of the ideal criterion. In principle, dynamic 

programming will yield the correct optimal solution. However, in practice, the large 

numbers of blocks (and hence combinations of decisions) in orebody block models 

result in too many alternative decisions and, as a consequence, computing time and 

storage are prohibitive, even allowing for recent advances in PC technology. 
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In an attempt to overcome these problems the method has been implemented 

by subdividing the orebody block model into a sequence of two-dimensional vertical 

slices of blocks and applying dynamic programming to these two-dimensional arrays 

(Johnson, 1971). This leads to a series of correct solutions for each of the two

dimensional slices, i.e. considering each slice as a separate, independent "orebody". 

The sequence of two-dimensional optima are then combined, by another dynamic 

programming technique, into a quasi-optimal solution for the total three-dimensional 

block model. This approach may yield a solution which is not significantly different 

to the true optimum. However, there is no way of knowing how close any solution 

is to the true optimum and, in practice, the difference may be highly significant. It 

is very easy to devise simple examples for which the two-dimensional, approximate 

dynamic programming method will yield solutions significantly different to the true 

optimum. 

Notwithstanding the time and storage problems associated with the full 

implementation of the dynamic programming method it still attracts interest as a 

possible method for optimal open pit design. To be practical and efficient an 

accurate method must be found to eliminate all sub-optimal decision sequences as 

soon as they arise. Such an approach would be a fruitful avenue for future research. 

1.3.5 The Korobov algorithm 

This method is originally due to Korobov (1974) and is reported in David, Dowd 

and Korobov (1974), Dowd and Onur (1993). It is a cone based algorithm which 

uses the idea of allocating values from positive blocks against the negative or zero 

blocks contained in the extraction cones of the positive blocks. A flowchart for the 

algorithm is given in Korobov (1974). 

An extraction cone is assigned to every positive block in the orebody model 

and the positive block values within each cone are allocated against the negative 

block values within the cone until no negative block remains or until the values of 
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the positive block have all been allocated. If, when this allocation is completed, the 

positive block on which the extraction cone is based remains positive, then this 

extraction cone is accepted as a member of the optimum solution set. When a non

empty extraction cone is added to the solution set, the algorithm starts again from 

the beginning with original block values restored to the blocks not yet extracted from 

the block model. If an extraction cone is empty the positive block is added to the 

solution and the algorithm proceeds on the current or next level. 

The method can best be explained by means of a simple, two-dimensional 

example based on that given in Dowd and Onur (1993). For the sake of simplicity 

slope angles are assumed to be 45° in all directions and the blocks are squares. The 

initial block values are shown in figure 6. There are two numbers in each block: the 

upper one designates the block number and the lower one is the value of the block. 

1 2 3 4 5 6 7 8 9 10 

1 1 2 3 4 5 6 7 8 9 10 

11 

11 

+1 -1 -1 -1 +1 +1 -2 -2 +1 +1 +1 
2 12 13 14 15 16 17 18 19 20 

+2 -1 -1 -1 -1 +1 +1 +1 +1 
3 21 22 23 24 25 26 27 

-2 -1 +2 +2 -1 -1 -1 
4 28 29 30 31 32 

-1 -1 +4 +4 +4 

Figure 6 : example of orebody block model 

upper number is block identifier; lower number is block value 

Step 1: The procedure starts with the first (uppermost) level and by 

convention, works from left to right. All blocks with positive values (blocks 

1,5,6,9,10,11) are removed from level 1 and added to the solution set. Blocks from 

level 2 are then added as shown in step 1 of figure 7. The value of the extracted 

blocks is 6 units. 
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Step 2: On level 2 there are five positive blocks (12,17,18,19,20). The 

extraction cone of block 12 comprises blocks 1, 2 and 3 with block 1 already 

removed. A value of + 1 is allocated from block 12 to block 2 leaving block 2 with 

a value of 0 and block 12 with a value of + 1. The remaining + 1 value of block 12 

is then allocated against block 3 leaving block 3 with a value of 0 and block 12 with 

a value of O. In the same manner cones are established for blocks 17, 18, 19 and 20 

and the positive values of these blocks are allocated against the negative block values 

within their extraction cones. The result of these allocations is shown in step 2 figure 

7. As block 20 remains positive and its extraction cone is empty it is added to the 

solution set which now has a value of 7. As none of the remaining blocks on level 

2 are positive the next step is to add level 3 as shown in step 3 figure 7. 

Step 3: For level 3, the two units of block 23 are allocated against blocks 4 

and 14 leaving all three blocks with values of O. Step 4: The two units of block 24 

are allocated to blocks 15 and 16 leaving the values of all three blocks with values 

of zero as shown in step 4 in figure 7. There are no positive blocks left on level 3 

after allocating the positive values of blocks 23 and 24 and so no further blocks can 

be added to the solution set at this stage. Step 5: Add level 4 to the other levels as 

shown in step 5 of figure 7. 

Step 6: Now consider block 30. Of the blocks within the extraction cone of 

block 30 (3, 4, 7, 8, 14, 15, 16, 17, 18, 23, 24, 25) only blocks 8 and 25 have 

negative values and two units from block 30 are allocated against these two blocks 

as shown in step 6 figure 7. After allocation block 30 remains positive (+ 2) and so 

this block and all blocks within its extraction cone are added to the solution set. The 

net value of this extraction cone, given that blocks 5, 6 and 9 have already been 

extracted, is zero; the net pit value remains at 7. As the extraction cone for block 

30 is non-empty the algorithm starts again at the beginning with the original values 

restored to all non removed blocks. 
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Step 1 S = 1 + 1 + 1 + 1 + 1 + 1 = 6 

1 2 3 

1 2 3 
-1 -1 

2 12 13 
+2 -1 

Step 2 S = 6 + 1 = 7 
1 

2 

Step 3 
1 

2 

3 

2 
0 

12 
0 

2 
0 

12 
0 

Step 4 S = 7 
1 2 

0 

2 12 
0 

3 

3 
0 

13 
-1 

3 
0 

13 
-1 
21 
-2 

3 
0 

13 
-1 
21 
-2 

4 5 6 

4 
-1 
14 15 16 
-1 -1 -1 

4 
-1 
14 15 16 
-1 -1 -1 

4 
-1 
14 15 16 
-1 -1 -1 
22 23 24 
-1 +2 +2 

4 
0 

14 15 16 
0 0 0 

22 23 24 
-1 0 0 

7 8 9 10 

7 8 
-2 -2 
17 18 19 20 
+1 +1 +1 +1 

7 8 
0 -1 

17 18 19 20 
0 0 0 +1 

7 8 
0 -1 

17 18 19 
0 0 0 

25 26 27 
-1 -1 -1 

7 8 
0 -1 

17 18 19 
0 0 0 

25 26 27 
-1 -1 -1 

Figure 7 : steps in Korobov algorithm applied to example in figure 6 
(continued •••••• ) 
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Step 5 

1 

2 

3 

4 

2 
0 

12 
0 

3 
0 

13 
-1 
21 
-2 

4 
0 

14 
0 

22 
-1 
28 
-1 

Step 6 S = 7 + (0) = 7 
1 

2 

3 

4 

Step 7 

1 

2 

Step 8 
1 

2 

2 3 4 
0 0 0 

12 13 14 
0 -1 0 

21 22 
-2 -1 

28 
-1 

S=7+1=8 
2 

-1 
12 13 

+2 -1 

S=8+1=9 
2 
0 

12 13 
+1 -1 

7 
0 

15 16 17 
0 0 0 

23 24 25 
0 0 -1 

29 30 31 
-1 +4 +4 

7 
0 

15 16 17 
0 0 0 

23 24 25 
0 0 0 

29 30 31 
-1 +2 +4 

8 
-1 
18 
0 

26 
-1 
32 
+4 

8 
0 

18 
0 

26 
-1 
32 
+4 

19 
0 

27 
-1 

19 
0 

27 
-1 

fl9l 
~ 

Figure 7 ( •••••••• continued •••••••• ) 
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Step 9 S = 9 

2 13 
-1 

3 21 22 
-2 -1 

4 28 
-1 

Step 10 S = 9 + 3 + 3 = 15 

2 

3 

4 

Step 11 

1 

2 

3 

4 

13 
-1 
21 22 
-2 -1 

28 
-1 

13 
-1 
21 22 
-2 -1 

28 
-1 

26 27 
-1 -1 

29 31 32 
-1 +4 +4 

26 27 
0 0 

29 31 32 
-1 +3 +3 

29 
-1 

S = 15 

Figure 7 ( ••••• continued) 

Add level 1; there are no positive blocks and thus none can be removed. Step 

7: Add level 2 as shown in step 7 in figure 7. The extraction cone of block 19 is 

empty and this block is added to the solution giving a net pit value of 8. Step 8: 

Block 2 is the only block within the extraction cone of positive block 12 and one 
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unit from the latter is allocated against the former. Block 12 and its extraction cone 

are removed giving a net pit value of 9 as shown in step 8 in figure 7. 

Step 9: Add level 4 as shown in step 9 in figure 7. Step 10: Block 26 is 

allocated one unit from block 31 and block 27 is allocated one unit from block 32 

as shown in step 10 in figure 7. Step 11: As blocks 31 and 32 remain positive after 

allocation they and the blocks in their extraction cones are added to the solution set 

giving the final pit shape shown in step 11 of figure 7. The net pit value is 15 and 

the only unmined blocks remaining in the block model are 13, 21, 22, 28 and 29. 

Soon after the method had been introduced it was realised that the algorithm 

did not reach the optimum solution in all cases. For some types of block models the 

optimum solution is missed by the algorithm as shown by the example in figure 8. 

1 2 3 4 5 6 

1 1 2 3 4 5 6 
-1 -1 -1 -1 -1 -1 

2 7 8 9 10 
-1 -1 -1 -1 

3 11 12 
3 7 

Figure 8: example in which Korobov algorithm will not yield optimal solution 

The frrst positive block encountered is on level 3 (block 11), the three units 

of which are allocated against blocks 1, 2 and 3 (figure 9a). The extraction cone of 

block 12 now contains six negative valued blocks each of which becomes zero after 

allocation of values from block 12 (figure 9b). After allocation, block 12 has a value 

of + 1 and it, together with its extraction cone, is added to the solution set (figure 

9c). 
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1 2 3 4 5 6 1 2 3 4 5 

1 1 2 3 4 5 6 1 2 3 4 5 
0 0 0 -1 -1 -1 0 0 0 0 0 

2 7 8 9 10 7 8 9 10 
-1 -1 -1 -1 -1 0 0 0 

3 11 12 11 12 
0 +7 0 +1 

(a) (b) 

1 1 
0 

2 7 
0 

3 11 
+1 

(c) 

Figure 9 : steps in the Korobov algorithm applied to the example in figure 8 

The extraction cone of block 12 has a value of -1 which is the net pit value 

at this stage. The algorithm now starts again from the beginning with the original 

values restored to the non-removed blocks. There are two negative valued blocks (1 

and 7) in the extraction cone for block 11 and after allocation (figure 9c) block 11 

remains positive. Block 11 and the blocks within its extraction cone, with a net value 

of + 1, are added to the solution set. The solution yielded by the algorithm is thus 

to mine all blocks at a net profit of zero. 

The error is caused by blocks which are common to both extraction cones. 

Blocks 2, 3, 4, 5, 8 and 9 are common blocks. Blocks 1 and 7 are only members 

of extraction cone 1 and are not in common with extraction cone 2. If the allocation 

procedure began with these non-common blocks the error would not occur. Thus if 
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two or more cones have blocks in common, allocation must first be made against the 

non-common blocks; allocation against common blocks is done only after the values 

of all non-common negative blocks have been reduced to zero. 

1.3.6 Corrected form of the Korobov algorithm 

The fault in the Korobov algorithm was rectified by Dowd and Onur (1993). The 

correction to the Korobov algorithm is based on the following logic: 

If two or more cones have blocks in common, then blocks not in common 

must be paid for first; common blocks are only paid for after all blocks not 

in common have been paid for. 

The number of cone searches is significantly reduced by means of paths 

which define links between zero valued blocks in an extraction cone and any 

negative block in an intersecting cone. A flowchart for the algorithm is given in 

Dowd and Onur (1993). The corrected form of the Korobov algorithm can be 

demonstrated by means of the simple, 3-D example taken from Dowd and Onur and 

shown in figure 10. 

Suppose that there are two levels and the slope angle is 45°. The block 

dimensions are the same for all directions. In this example, extraction cones for 

blocks on level 2 are dermed by taking the 9 blocks on level lover a positive block 

on level 2. The extraction cone for positive block (i,j,2) on level 2 consists of 

blocks (m, n, 1) where m=i-l,i+l and n=j-l,j+1. 

As there is no positive block on level 1 the search moves to level 2 and starts 

from block (2,2,2) (as this is the first cone of the model it will be called cone 1). 

The member blocks for cone 1 are blocks (m, n, 1) where m= 1,3 and n= 1,3. The 

original allocation is shown in figure 11 in which each block has two numbers. The 

upper number designates the cone from which this block has been allocated a value; 

the lower number is the net block value after allocation. 
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1 2 3 4 5 

1 -1 -1 -1 -1 -1 

2 -1 -1 -1 -1 -1 

3 -1 -1 -1 -1 -1 

4 -1 -1 -1 -1 -1 

5 -1 -1 -1 -1 -1 

2 2 2 2 

3 4 4 4 

4 2 2 2 

Figure 10 : three-dimensional block model (level 1 above; level 2 below) 

Within cone 9 there are 8 blocks allocated values by cones other than cone 

9. Blocks (3,3,1), (3,4,1), (4,3,1) have been allocated values by cone 5, blocks 

(3,5,1), (4,4,1) and (4,5,1) have been allocated values by cone 6 and blocks (5,3,1) 

and (5,4,1) have been allocated values by cone 8. Consider cone 5 first. Take out 

all the blocks of cone 5 which are in common with cone 9 and determine whether 

any of the remaining blocks in cone 5 are negative. There are no such blocks but 

there are some blocks allocated values by cones 2, 3 and 4. Consider cone 3 and 

determine whether there are any negative blocks in cone 3 which are not in common 

with the intersection of cones 5 and 9. There are two such blocks: (1,4,1) and 

(1,5,1). A path has now been established from the positive valued extraction cone 
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9 via cones 5 and 3 to a negative block. The path, in terms of blocks is: (5,5,1), 

(3,3,1), (2,3,1), (1,4,1). This path defines the re-allocation: the value (+1) 

previously allocated to block (2,3,1) by cone 3, is re-allocated to block (1,4,1); the 

value (+ 1) which was previously allocated to block (3,3, 1) by cone 5 is re-allocated 

to block (2,3,1); block (3,3,1) is allocated a value of +1 from cone 9 (ie, block 

(4,4,2». There are no positive values in the block model and the algorithm stops. 

The final form of the result is shown in figure 12. 

1 2 3 4 5 

1 1 2 3 
0 0 0 -1 -1 

2 1 2 3 5 6 
0 0 0 0 0 

3 4 4 5 5 6 
0 0 0 0 0 

4 4 4 5 6 6 
0 0 0 0 0 

5 7 7 8 8 9 
0 0 0 0 0 

2 1 2 3 
0 0 0 

3 4 5 6 
0 0 0 

4 7 8 9 
0 0 +1 

Figure 11 : step 1 in the corrected Korobov algorithm applied to 
the example in figure 10 
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1 2 3 4 5 

1 1 2 .; .; 

0 0 0 0 -1 

2 1 k .; ::> 6 
0 0 0 0 0 

3 4 4 , , () 

0 0 0 0 0 

4 4 4 5 6 6 
0 0 0 0 0 

5 7 7 8 8 9 
0 0 0 0 0 

2 1 2 3 
0 0 0 

3 4 5 6 
0 0 0 

4 7 8 9 
0 0 0 

Figure 12 : step 2 in the corrected Korobov algorithm applied to 
the example in figure 10 

Note that an alternative path to a negative block could have been defined via 

cone 2 - (5,5,1), (3,3,1), (2,2,1), (4,4,1) .. When alternative paths are available it is 

irrelevant which is chosen : the algorithm will always lead to the same solution. 

The corrected Korobov algorithm has also been applied to the same example 

in figure 8, where the original Korobov algorithm misses the optimum solution. The 

basis of the extraction cones for the positive blocks (3,3) and (3,4) are in level 3. In 

a similar way after allocation each block of the two-dimensional example is 

represented by two numbers. The upper number designates the cone from which this 

block has been allocated a value; the lower number is the net block value after 

allocation. 
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Blocks (1,2), (1,3), (1,4), (1,5), (2,3) and (2,4) are common blocks for both 

cones 1 and 2. Bocks (1,1) and (2,2) are only members of extraction cone 1 and are 

not common to cone 2. The same is true for blocks (l,6) and (2,5) which are only 

members of extraction cone 2 and are not common to cone 1. 

The non-common blocks are paid fIrst, starting with the extraction cone 1, two 

units are allocated for blocks (1,1) and (2,2) leaving block (3,3) with a value of +1. 

Two units are allocated against blocks (1,6) and (2,5), leaving block (3,4) of the 

extraction cone 2 with a value of +5. These allocations are shown in the following 

figure(a). 

1 

2 

3 

1 

10 1 

2 

-1 

o 1 

3 4 5 6 

-1 -1 -1 o 21 
-1 -1 0 2 
+11 +ri 

Figure(a) 

The algorithm re-starts again by paying the common blocks of the two cones. 

One unit is allocated against block (1,2) leaving block (3,3) with a value of zero. 

Five units are allocated against blocks (1,3), (1,4), (1,5), (2,3) and (2,4), leaving 

block (3,4) with a value of zero. After this allocation is completed, the positive 

blocks on which the extraction cones 1 and 2 were based are zero as shown in the 

following fIgure(b). The algorithm stops. 
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1 

2 

3 

1 

10 1 

2 

o 1 

o 1 

3 4 5 6 

o 2 o 2 o 2 o 21 

0 2 o 2 02 

o 1 0 2 

Figure(b) 

The solution is thus not to mine at a zero profit, as neither extraction cone is 

part of the optimum solution. In contrast, in the original Korobov algorithm, both 

extraction cones were part of the solution. 

1.3.7 The parameterization technique 

Some methods such as the 'pillar method' have been shown to produce non 

rigorously optimal solutions that have been abstracted to uses for which they were 

proposed. 

An alternative approach to pit optimization is to parameterize the pit design 

as a function of a number of variables. This algorithm, which uses grade values 

instead of a revenue block model, is based on techniques of functional analysis. The 

parameterization method was developed and implemented at the Paris School of 

Mines at Fontainebleau, France. The aim of this method is to transform a parametric 

optimization problem with severe geometric constraints into a simple one with no 

constraints; it does not take any economic parameters into account. 

This technique could also be applied for the determination of mining 

sequences for the optimization of the recoverable reserves of any particular pit, 

where in economic terms the mining sequence is more important during the early 

stages and plays a major role in capital investment. 
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The technique, described briefly above, is not rigorous, and has some 

weaknesses on the economic side in comparison with other algorithms. It fonns the 

fundamental basis behind Chapter 2 where it is discussed in detail. 

2. Production schedule optimization 

2.1 Introduction 

Production scheduling is of vital importance in pit design and mine planning. 

Production scheduling is the development of a sequence of depletion schedules 

leading from the initial state of the deposit to the ultimate pit limits. Production 

scheduling can be either long range or short range depending on the duration of the 

scheduling period. Short range scheduling is the development of a depletion sequence 

on a daily, weekly or monthly basis; long range scheduling is mainly concerned with 

yearly plans and includes ore reserves, stripping ratios and capital investments. 

The main objective of short and long range mine planning (scheduling) in an 

open pit operation is to maximize the profits realized within every mining period and 

throughout the life of the mine. 

Although in practice production scheduling for both surface and underground 

mining operations is similar in nature, a large range of techniques is applied in 

solving such planning problems. The techniques consist of both rigid operational 

research (OR) methods and practical procedures which are heuristically based. 

It is widely expected that new and improved OR and mathematical techniques 

will lead to better and more efficient methods of solving production scheduling 

problems. The combination of these methods with the geostatistical simulation of 
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orebodies should lead to realistic scheduling packages which take adequate account 

of uncertainties, errors in variables and risk. 

In spite of their potential, very few OR techniques have been applied to the 

solution of production scheduling problems in the mining industry and attention has 

been focussed on the simplest of such techniques such as Linear Programming. 

Although such techniques have been under-used this does not imply that they are not 

applicable. Furthennore, the lack of use is attributed to a combination of many 

causes, some of which are no longer relevant today. 

Based on what has already been achieved, (operational research and computer 

techniques) goal programming can be effectively applied to solve the problem of 

open pit production planning optimization (Zhang, Cheng and Su (1993». Goal 

programming is applied to overcome the limitations of single objective linear 

programming applications. 

A common approach to the solution of the problem of optimal open pit 

production scheduling involves combining two or more operational research 

techniques. In the work described in this thesis, Simulation and Linear Programming 

have been combined to provide the basis of a method for the solution of the 

problem. 

The success of production scheduling methods will undoubtedly continue to 

increase and spread to areas of mining where these methods have not yet been 

applied. Success depends on the ability to fonnulate good operational research and 

computer models. 
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2.2 Review of previous techniques for the optimization of 

production schedules 

The following sections give short resumes of some the operational research 

techniques that are applicable to production scheduling problems in mining 

operations. 

2.2.1 Simulation 

Simulation can be described as the use of a model to experiment with any given 

system. It is one of the most powerful and versatile of the operational research 

techniques available for assessing complicated, non-analytical problems. In 

production scheduling problems, simulation is often used to help choose the correct 

number of haulers assigned to an excavator, to evaluate different sizes of equipment, 

or to assess the output of a given operating subsystem. However, it does not 

guarantee the optimality of the solution and needs considerable computing time. 

2.2.2 Linear programming 

Linear programming is the most frequently applied operational research technique 

in the solution of production scheduling problems in both surface and underground 

mining. The most frequent applications have been in surface mining where the size 

of the operation and the difficulty of meeting grade and resource constraints combine 

to create a problem ideally suited to the technique. The Linear Program can be 

solved by a general procedure known as the simplex method. A major restriction 

still facing the implementation of the technique is the number of constraints which 

must be kept relatively small. In some cases the complexity of multilevel open pit 

mining, especially the precedence constraints, can lead to very large linear 

programming models that can be computationally expensive, or in some cases 

impossible, to solve. 
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2.2.3 Integer programming 

In recent years, the use of integer programming methods has become more popular. 

However, the applications of integer programming to production scheduling 

problems seem to be oriented towards truck and shovel assignment problems. Integer 

Programming is a less frequently used technique in optimal open pit scheduling 

because of the complexity of the solution algorithms. A special group of integer 

programming models is the 0-1 integer programming model, where each variable is 

allowed to take a value of only 0 or 1. Such a model would be ideal for a production 

scheduling problem since it permits the assignment of a 0-1 variable to each block 

of the block model. For example a block can have a 0 value if it is not mined within 

a mining period or a value of 1 if it is designated to be mined in that period. 

However, the solution time of a 0-1 integer programming model tends to increase 

exponentially with the number of variables. Although the solution algorithms 

improve with time, there is little hope of even being able to solve really large 

problems, such as the optimal open pit production scheduling problem. 

2.2.4 Dynamic programming 

Dynamic programming (D P) is another operational research technique that has been 

used in solving open pit scheduling problems, e.g. Onur and Dowd (1993). It was 

frrst applied to the open pit scheduling problem by Roman (1974). Wright (1989) has 

also applied dynamic programming to the open pit scheduling problem. 

The following formulation is taken from Onur and Dowd (1993). The system 

is the orebody, the stages are mining periods and the state at any stage is the set of 

blocks remaining in the ore body. 

Let a be the ore/waste ratio, 

b be the allowable limits of the grade, 

c be the minimum operating room for equipment, 
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d be the working slope angle, 

e be the maximum movement distance of the shovels, 

r be the discount rate, 

g be the production rate. 

Further, let : 

s 

Itn(p,m(a,b,c,d,e,r,g» 

be the total discounted profit after n decisions placing 

the system in state p when an optimal decision policy 

has been followed. 

be the set of all possible decisions which satisfy all the 

scheduling constraints. 

be the immediate profit obtained by taking the decision 

m, which is a function of a, b, c, d, e, r, g, and thus 

placing the system in state p. 

T(n-l,p,m(a,b,c,d,e,r,g» be the state of the system at step n-l as a result of 

taking decision m(a,b,c,d,e,r,g) at step n. i.e. the 

transfer function (noting that the method uses reverse 

chronology). 

The principle of optimality is then expressed in the following recursive relationship: 

fip) =( ( b dmax ) E S){Rn(p,m(a,b,c,d,e,r,g)+tl (T(n,p,m(a,b,c,d,e,r,g»} 
m a, ,c, ,e,r,g 

The dynamic programming formulation of the scheduling problem can best 

be explained with a simple example taken from Onur and Dowd (1993). In this 

example some assumptions have been made for the sake of simplicity but in a real 

case all relevant characteristics of the mine and the orebody must be applied to the 

formulation. 
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In this example the assumptions are : 

1) the working slope angle is 45° 

2) a total of three positive blocks (which represent ore) and between three and 

five negative blocks (which represent waste) can be mined in the same stage 

to represent a specific stripping ratio, 

3) the discount rate is 10%, 

4) minimum access space is one block, 

5) there are no limitations on the number of shovels or on where they can work. 

The orebody to be scheduled is shown in figure 13. 

1 2 3 4 5 6 7 8 9 

1 0.5 0.5 0.5 0.5 0.5 0.5 1.0 1.5 1.5 
-1 -1 -1 -1 -1 -1 +2 +3 +3 

2 1.0 1.0 1.0 0.5 0.5 0.5 0.5 
+2 +2 +2 -1 -1 -1 -1 

3 0.5 1.5 0.5 0.5 1.5 
-1 +3 -1 -1 +3 

4 1.5 2.0 2.5 
+3 +4 +5 

Figure 13 : orebody to be scheduled 
upper number is grade; lower number is revenue x lOZ 

To keep the example simple, only the four possible schedules shown in 

figures 14, 15, 16 and 17 will be considered here; table 2 displays the discounted 

value of each decision in each stage. 
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1 2 3 4 5 6 7 8 9 

1 4 3 2 2 2 1 1 1 1 

2 4 3 2 2 2 1 1 

3 4 3 3 3 2 

4 4 4 3 

Figure 14 : solution no. 1 to scheduling problem in figure 13 
number in block is the period in which block is mined 

1 2 3 4 5 6 7 8 9 

1 3 2 2 2 2 1 1 1 1 

2 3 2 2 2 2 1 1 

3 3 3 3 4 4 

4 3 4 4 

Figure 15 : solution no. 2 to scheduling problem in figure 13 
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1 

2 

3 

4 

1 

1 

2 

1 

1 

3 4 

1 1 

1 1 

2 2 

3 

5 6 7 8 9 

1 2 2 3 3 

2 2 3 4 

3 4 4 

4 4 

Figure 16 : solution no. 3 to scheduling problem in figure 13 

1 

2 

3 

4 

1 2 3 4 5 6 7 8 9 

1 1 1 1 1 2 2 2 3 

1 1 1 2 2 3 4 

3 3 3 4 4 

3 4 4 

Figure 17 : solution no. 4 to scheduling problem in figure 13 
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Schedule Discount Discounted Schedule 
Year 1 2 3 4 factor 1 2 3 4 

1 500 500 100 100 0.91 455 455 91 91 
2 0 -200 100 200 0.83 0 -166 83 166 
3 700 500 700 600 0.75 525 375 525 450 
4 700 1100 1000 1000 0.68 476 748 680 680 

Total 2200 2200 2200 2200 1450 1412 1379 1387 

Table 2: 
discounted cash flows for the four mining sequences in figures 14-17 

There are two options satisfying all requirements for the first stage (period). 

These are the groups of blocks {(1,6), (1,7), (1,8), (1,9), (2,7), (2,8)} and {(I,I), 

(1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4)}. The other stages shown in the figures 

are the stages resulting from the blocks chosen in the first stage. 

From the four possibilities given, the optimal policy is given by the sequence 

beginning in stage 1 with the schedule with a value of 500; the states resulting from 

this decision are f2(0), f3(700), f4(700). 

This path gives the optimum schedule as far as NPV is concerned and was 

obtained after all other paths had been considered. Discounted cash flow for each 

possible schedule is shown in figure 18. 
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Figure 18 : discounted cash flows for mining alternatives given in 

figures 14-17 

The tree representation of the example is as shown in figure 19. 

0 
I 

I I 
500 100 

I I 
I I I I I I 

a -200 100 200 
I I I I I 

700 500 700 600 
I I I I 
I I I I 

700 1100 1000 1000 

Figure 19 : tree representation of npv of mining sequences from figures 14-17 
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The main problem with the dynamic programming approach is the limitation 

in terms of the total number of variables and constraints that can be taken into 

account. Every dynamic programming model suffers from the 'dimensionality curse'. 

Only a limited number of mining periods and possible states (production rates) can 

be examined each time. 

2.2.5 Graph and network theory 

Graph and network theory have also been applied to production scheduling 

problems. A graph is set of junction points ordinarily called nodes which may be 

connected together by lines called branches. A simple graph is illustrated in figure 

20. 

The graph shown is called a 

connected graph because each node 

is connected to every other node by 

one or more of the branches 

provided, ignoring the direction 

arrows. If we take a graph and 

consider a situation where the 

branches are associated with some 

sort of flow, then the mathematical 

structure is called a network. If all the flows are given a particular sense of 

direction, then the network is said to be oriented with a flow in the specified 

direction, e.g. from left to right as shown in figure 21. 

Many problems can be expressed 

in a network format. The most common 

',y~::<::::::::::::~ of these are the critical path method 

(CPM) and the project evaluation and 

review technique (PERT). These network 

problems are used in project control but 

are used only occasionally in typical 

production scheduling applications. 
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The area of maximizing the flow through a network is another important use 

of network theory. This problem is characterized by a network containing branches 

with a given capacity. The objective is to maximize the total flow quantity through 

the network. 

The area of graph and network theory has found some application in 

production scheduling. However, the methods applied have differed considerably, 

and no one method has been extensively utilized. The most useful of the methods 

applied to practical problems from the area of graph and network theory are CPM 

and PERT. 

2.2.6 Heuristic methods 

Heuristic methods are procedures which are not mathematically proven or centred 

but which are based upon practical or logical operating procedures. 

Heuristic models are common in the solution of mining problems but seldom 

appear in the operational research literature. The reason is simply that these methods 

are often quite subjective and apply only to one particular operation. However, a few 

of these models have appeared in the mining literature. 

3. The objectives of the research programme 

In many cases the application of a single operational research approach imposes 

limitations, especially for the rigorous optimization methods which usually require 

strict constraints and a single optimum solution. The limitation of methodology has 

been an obstacle to the general solution of the optimal scheduling problem. In recent 

years there has been a tendency to combine two or more different operational 

research methods to solve complicated mining problems. 

The optimal open pit design method adopted in this work is parameterization. 
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This method is an application of technical parameterization and the subsequent 

optimization of the results. As such, it does not include mine scheduling and takes 

no account of the effects of roadways and other facilities. 

The objective of this research was to develop methods, and associated 

software, for the determination of optimum mining sequences and the optimal open 

pit shape. 

The research programme was divided into two main parts : 

@1 optimum pit limit 

§> 2 optimum mining schedule 

The fIrst part is done independently of the second using the parameterization 

technique, which gives a set of nested pits, which includes the optimum pit. This 

part includes the selection of the optimum pit from the nested set of pits for a 

specified set of economic conditions. 

The second part deals with the mining schedule of the material within the 

optimum open pit limits obtained in the first part, using a combination of physical 

and economical parameters. A new approach, 'Simulation-linear programming' has 

been developed for the optimal scheduling of the mining blocks within the optimal 

open pit. 

The simulation part of the model handles the extraction of ore and waste 

blocks once they are scheduled by the linear programming module. The development 

of sets of blocks is controlled by the geometrical (mining access) constraints. These 

sets of blocks are then submitted to the linear programming part of the model where 

the movements of ore and waste are optimized. The two parts of the model operate 

separately to overcome the difficulties of having a large number of constraints within 

a single technique. 
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1. Introduction 

1.1 The concept of parameterization 

The basic idea of parameterization is to provide a solution to a problem in a 

parametric form, Le. as a function of one or more parameters. For example, the 

formula: 

v = u + at 

is a parametric solution to the problem of determining, after t seconds, the velocity 

(v mls) of an object that is moving with an initial velocity of u mls and accelerates 

at a rate of a m/s2
• Rather than providing a solution for a specific instance the 

formula provides a general solution in terms of all relevant parameters. By 

substituting values of the parameters (u, a and t) all possible solutions can be found 

rather than fmding individual solutions from first principles. 

For open pit optimization the objective is to generate a family of pits as a 

function of one or more parameters. For example, to generate the pits corresponding 

to all possible cut-off grades. The optimal open pit problem may be parameterized 

as a function of a single variable or as a function of several variables. However, 

only the single variable parameterization has been successfully implemented. Two

variable parameterization has met with limited success but it is doubtful whether 
j 

general multivariable parameterization of the open pit problem will ever be 

successfully implemented because of: 

• the complexity of the problem 

• the computing power and time that would be required 

• the doubt that any more than a single variable (cut-off grade) 

parameterization is really needed 

------------------Chapter 2: Parameterization 



page 46 ------------

1.2 Need for parameterization 

The design of an open pit is based on an orebody model which, in tum, is based on 

estimated grades and tonnages. Estimated grades and tonnages are subject to 

significant errors which depend on the amount and location of information (drilling 

and other forms of sampling) which are available for estimation. Each orebody 

model is only one possible representation of the orebody constructed from the 

information available. The reserves, final pit design, location of roadways and 

operating requirements are only as good as the model of the ore body. All standard 

algorithms for open pit design are based on a revenue block model which is 

constructed from the orebody model. Each block in the revenue block model is 

assigned a net revenue value calculated from the estimated recoverable grade and 

tonnage in the block and from predicted costs, prices, cut-off grades, mining dilution 

and mill recovery. The "optimal" open pit derived from this model will not be the 

same as the true optimal open pit based on perfect information. The difference 

between the true optimal pit and the estimated optimal pit may be significant and has 

important implications for feasibility studies, cash flows, risk analysis and all 

subsequent mine design and planning. 

The two major problems associated with the traditional approaches to optimal 

open pit design are: 

• the inability to optimize on the basis of maximum net present value 

• the need to solve the problem separately for each change in the value 

of a variable (e.g., cut-off grade, price, costs) 

The first of these problems has been discussed, amongst others, by Dowd 

(1994b) and Dowd and Onur (1993) and can be stated as : 
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The net present value of a block cannot be determined until it is known when 

the block will be mined. However, it is not known when the block will be 

mined until the pit is designed and a mining sequence is established. But the 

pit cannot be designed on the basis of maximizing net present value until each 

block is assigned its net present value. 

This is an intractable problem for the traditional approaches based on moving 

cones, graph theory (Lerchs-Grossmann), flows through a network and related 

techniques. 

The second problem is largely operational. A single pit design based on a 

fixed set of costs, prices and cut-off grades can often provide a misleading picture 

of the possible working pit and of the minable reserves. It is always advisable to test 

the sensitivity of the pit design to changes in all of the variables used to calculate the 

revenue block model. In addition, it is also advisable to test the pit design to 

sensitivity to grade and tonnage estimation errors (cf. Dowd, 1994b). These types 

of analyses could result in the need to generate several dozen pit designs each of 

which could take significant computing time. The problem is that optimal open pit 

design algorithms do not express the solution parametrically, i.e. as a function of 

the parameters that were used to calculate the block model or of other design 

parameters such as pit wall slopes. A parametric solution to optimal open pit design 

might also lead to a method of solving the problem of optimizing on the basis of 

maximum net present value. 

The parameterization method of pit design was developed and implemented 

in the early 1980s at the Ecole N ationale Superieure des Mines de Paris at 

Fontainebleau, France. This algorithm uses the grade values of blocks instead of a 

revenue block model and is based on the techniques of functional analysis. The aim 

of this method is to transform a parametric optimization problem with severe 

geometric constraints into a simple one with no constraints. The method does not 

take into account any economic parameters and this is the fundamental difference in 
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its approach. It is also the cause of most of the controversy which the method has 

attracted. 

Parameterization could also be applied to the determination of mining 

sequences for the optimal extraction of the recoverable reserves of any particular pit. 

In economic terms the mining sequence is more important during the early stages 

and plays a major role in capital investment. This aspect is discussed in Chapter 3. 

The variables used in the technique are the total tonnage, selected 

tonnage, the quantity of metal and the method of exploitation. These variables 

depend on a number of parameters including the raw data and the manner in which 

they are used to generate a block grade model; the cutoff grade used to define ore 

and waste; and the operational objectives which may have a significant influence on 

initial pit designs and hence the evaluation of the economic potential of the mineral 

deposit. 

The method is not rigorous, and has some weaknesses on the economic side 

when compared to other economic or revenue based algorithms. However, the aim 

of this study is to stress the advantages of the theoretical and practical aspects of 

technical parameterization, as applied to an estimated block grade model of an 

orebody, and to present the additional work done by the author during the course of 

this research project in: 

• improving the software implementation of the method 

• implementing ways of graphically displaying and interrogating the 

parametric solutions generated by the method 

• determining economically optimum pit limits from a parametric 

family of technically optimal pits 
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• using the results generated by a parameterization program as the basis 

for optimal scheduling of the mining operation 

Standard computer programs which implement the parameterization algorithm 

only apply technical parameterization and optimize the results; they do not include 

any economic optimization and do not determine mining sequences, mine scheduling, 

roadway design or other factors. 

The main areas undertaken in this research project were : 

1. The development of a computer program to implement the 

parameterization method and include the economic optimization for 

a [mal operating pit design. Such parameterization is based on metal 

content, though it is acknowledged that other parameters need to be 

considered if the work is continued. 

2. Development of an algorithm for the determination of mining 

sequences which will optimize the net present value of recovered ore. 

This is a critical element in optimization because in economic terms 

the mining sequence is more important during the early stages of 

mining and plays a much greater role in investment decisions than 

does the shape of the ultimate open pit. 

3. Development of a computer program to determine the optimal mining 

schedule and integration of this program with the parameterization to 

determine the optimal mine schedule. 
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2. The parameterization model 

This section is based largely on Moks (1983b) and Dowd (1992). The basic idea of 

the parameterization technique is to reduce the number of parameters to those which 

are of primary interest and then, as far as possible, separate the technical parameters 

from the economic ones. It is then easy to deal with the determination of the optimal 

pit limits for an orebody using only the technical parameters and leaving the 

economic ones to be considered post-optimization. The original version of the 

technique has been presented in a number of papers, principally Matheron (1975a, 

1975b, 1975c), Francois-Bongarcon (1978,1980), Francois-Bongarcon and Guibal 

(1980, 1981, 1982). 

The parameterization algorithm developed by Matheron (1975a,b,c) works 

with estimated block grades and is used to find a family of technical pits which 

maximise the quantity of metal for a given total tonnage and selected (above a cut

off grade) tonnage, without assuming any values for the economic parameters. 

Amongst this family of technically optimum pits there is at least one which satisfies 

the criteria for an economic optimum. However, the objective is to find a total 

family of technically optimum pits corresponding to every possible value of total 

tonnage and selected tonnage. For this purpose a fundamental hypothesis is made: 

The technical factors which influence the definition of a particular pit are : 

(i) Mineralization 

(ii) Mining method 

(iii) Total tonnage (T J 
(iv) Selected tonnage (Ts) 

(v) Planning cut -off grade 

(vi) Metal quantity 

(vii) Pit geometry 
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These interdependent factors do not constitute an exhaustive list but they are 

the most significant. If the problem is considered as a comparison of the possible 

options for a particular deposit (Le. a block grade file), then the mineralization and 

basic mining method can be assumed fixed. Furthermore, the mining method is 

mainly represented by geometric constraints; in particular the limiting pit slope. This 

slope is defined for the deposit on rock and soil mechanics criteria. 

The planning cut-off grade is used directly for the selection of ore and waste 

at the planning stage and, for a given total tonnage, defines the selected tonnage of 

ore and quantity of metal within the selected tonnage. 

The total tonnage of the pit is perhaps the most fundamental factor in 

defining that pit. Once this factor is assigned a value then the shape and position 

of the pit is also dermed provided that the following fundamental hypothesis is made. 

2.1 Fundamental hypothesis 

The fundamental hypothesis in parameterization is that, for a given set of conditions 

and technical factors, the pit plan of particular interest is that which maximises the 

quantity of metal. 

This hypothesis is generally true, because most revenue functions increase 

with metal quantity Q. This allows a pit to be defined for a particular deposit by a 

minimum number of technical parameters: 

• metal quantity Q 

• total tonnage Tt 

• selected tonnage Ts 
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For given Tt and Ts the optimal pit (B) is then : 

(2-1) 

Provided that Qmax can be found for given values of T, and Ts ,this will 

also define the position and shape of the pit Bi subject to the geometric access 

constraints. 

2.2 Defining the orebody and the pits 

The resource model E consists of a finite set of blocks x E E. Each block has a 

total tonnage, T(x) > 0, and a tonnage, Q(x) ~ 0, of the valuable constituent(s). 

The grade of a block is then q(x) = Q(x)/T(x). 

The extraction cone of a block x is denoted rex) and is such that: 

Y E rex) <=> r(y) c rex) (2-2) 

A feasible pit B consists of the union or intersection of extraction cones; in 

particular: 

B = U {r(x): x E B } (2-3) 

3. Single selection parameterization 

The formulation given above is very awkward, since for a given T, and 1; there 

exists an extremely large number of feasible pits and the direct calculation of these 

would be prohibitive in terms of time and money. To avoid searching a vast number 

of alternatives the problem is reformulated in terms of convex analysis techniques. 
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3.1 Convex analysis 

Each particular pit Bi can be viewed as a point in the three-dimensional space of (Q, 

Tt , Ts). As there is a finite number of blocks in any deposit model, the number of 

blocks in any pit, even without geometric constraints, is also finite. Thus there is a 

finite number of possible pits or points in this space. These points form a cloud 

within a sub-domain of this space. Their limits are determined by the following 

constraints: 

Q, Ts' Tt all positive 

Tt < deposit total tonnage To 
Ts < Tt < To 

Q < Ts < To 

This sub-domain is shown in figure 22. 

Q 

X 
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Figure 22: 

Sub-domain of feasible pits 

(2-4) 

T 
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According to the fundamental hypothesis not all the points in the space are 

of interest, only those which maximise the surface of the cloud of points relative to 

the Q axis. A further reduction in the number of these points is made by considering 

only the convex hull of the cloud surface as shown in figure 23. 

Q 
x 

T 
Figure 23 

The pits that constitute the convex hull are shown by vertical lines; the 
remainder are not considered further. A point lying on the hull which does 

not correspond to a change of gradient (A) of the hull is also omitted. 
Extension to a third dimension requires a convex hull defined by planes. 

The points eliminated during this reformulation are assumed to be surrounded 

by points representing similar or larger quantities of metal; this approximation is 

known as convex analysis, Matheron (1975a, 1975b, 1975c), Fran~ois-Bongar~on 

(1978). However, it is assumed that the critical points of the convex hull occur in 

sufficient density as to include all the possible conditions for which the optimal pit 

might exist. 
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4. Double selection parameterization 

Instead of taking this direct approach, Matheron (1975) replaced the problem by its 

dual equivalent. The objective of this re-formulation is to find the family of pits 

which satisfies the following expression: 

Bj = max (Q - A'I; - 8'{) (2-5) 

where A and 8 are cutoff parameters for two levels of selection (which tonnage Tt 

to extract and how much, Ts' of that tonnage to select as ore) and they correspond 

to different gradients of the planes on the convex hull of the points in the space (Q, 

Tt , Ts). These parameters, however, can be applied on a local scale to individual 

blocks, as will be seen later. 

The new formulation of the problem defmes a pit in terms of A and 8 and the 

problem now is to find the family of pits which maximizes expression (2-5) for all 

values of A and 8. 

The re-formulation can also be found in Dagdalen and Fran~ois-Bongar~on 

(1982), Coleou (1989), Fran~ois-Bongar~on and Guibal (1981), all of which can be 

consulted for a more detailed presentation. 

The examination of the dual problem was considered in the simplest possible 

situation of free selection of blocks in which there are no geometric or other access 

constraints. 
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4.1 Free selection 

A simple way to examine the problem as expressed in (2-5) is to consider the case 

where no geometric or other constraints of access exist. In this unrealistic case there 

can only be one level of selection and therefore only one selection parameter (); and 

the problem becomes: 

Bj = max (Q - 8T) (2-6) 

In this case, the maximum is always reached by arranging the blocks in 

decreasing order of grade and, for any particular extraction tonnage, taking the 

blocks of highest grade until that tonnage is reached. Thus in this case, Q is always 

a convex function of T (see figure 24) and defines a cut-off grade in the selection. 

Q 

0 1 t------,y 

00 

T 

Figure 24 

At a given To the corresponding tonnage Qo of metal is obtained. If the 

tonnage is increased to T l' then the total tonnage will be increased by 11 - ~ = ~ T . 

This block ~T will increase the quantity of metal by Ql - Q = dQ. The average 

grade of this marginal block is, of course, llQ/~T = (). Thus () acts as a cut-off 

grade in the selection, so the maximum in (2-6) can be reached for a given () by 

taking all blocks of grade greater than or equal to (). 
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The double selection with constraints (2-5) is approached in a very similar 

way. One selection parameter 8 is fixed 8=80 and then the quantity (Q-80 Ts )/1; 

is projected onto a particular functional space which is characterised by its automatic 

satisfaction of those constraints. A free selection can then take place on the projected 

value A by the cut-off parameter A. The approach to the final solution of the 

parameterization problem relies on the definition of the functional space on which 

the projection of the quantity (Q - 80 Ts)/Tt is made. 

4.2 The functional space 

To extract a block x, all of the blocks in its extraction cone r(x) must also be taken. 

This is a free selection only if all of the blocks y' E r(x) are of grade higher than 

or equal to that of x and all blocks y f£ r(x) outside this cone of grade below that 

ofx. 

Thus the ordered relationship provided by the extraction cone can be used to 

characterise this particular functional space F. 

A function f is in this space if, for every block y in the extraction cone of x, 

f(y) > f(x) for each block x. Such a function is said to be r-increasing, i.e.: 

f E F ~ {f(y) ~ f(x) , V y E r(x)} V x (2-7) 

In practice, (2-7) is replaced by an approximation which decomposes the 

space into a series of linear identities. The cone, of circular or elliptical base, is 

replaced by one of polygonal base, usually of six sides in conformance with 

Matheron's method (1975a, 1975b) (see figure 25). 
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I( x) 

x x 

Figure 25: Approximation of the extraction cone 

In most cases the six-sided polygonal base is sufficient to describe the cone 

and the six linear fonns can then be divided into two groups of three independant 

shapes (cPl' ~, 4>J> and (cP4 , cPs , cP6 ) which are chosen in such a way that each of 

the two groups corresponds to a triangle circumscribed by the base curve (horizontal 

directrix) of the cone as illustrated in figure (a). 

Figure (a): Illustration of the cone co-ordinates transfonnation 

Each of the sides k of the approximate extraction cone r' (x) can be defined 

by equal values of a nonnal axis cPk. In the same way t a block y is within the 

extraction cone of x if and only if: 

v k = 1,6 (2-8) 
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A simple linear transformation of a block's coordinates from the Cartesian to the 

pyramidal cPk can be achieved: y = (Y. , Y2 , ••• , Y6 ), x = (Xl ,X2 , ••• , ~ ) and 

y is in the extraction cone of x if and only if (Y I ~ Xl 'Y2 > X2 , •••• , Y6 ~ 

X 6). It is now easier to characterise the functional space F. 

4.3 The projection 

The projection of q = (Q - OoTs)/Tt onto the functional space F is denoted by: 

A - IT q- F (2-10) 

Even with the simplification in the characterisation of this space, A has to be 

approached iteratively. This is done by decomposing the space F of 6 coordinates 

into two spaces F 1 and F2 of 3 coordinates each : 

(2-11) 

and then approximating A by projecting q onto the space of A1A2• 

(2-12) 

This two-dimensional projection is very quick and easy to compute and 

allows the further approximation of approaching Al and ~ by a series of similarly 

two-dimensional projections. Matheron (1975a, 1975b) developed two methods for 

this approximation, the first is the spiral method and the second is the triangle . 

method. The latter method is more powerful in its approach but can be blocked at 

a false solution, which can then be unblocked by the former method. Details of the 

two methods are given in section 5. 
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5. Practical techniques 

This section again draws heavily from the works of Matheron (1975a, 1975b, 1975c) 

and Fran90is-Bongar90n (1978). The functional space F has been defmed and the 

existence of the projection A of grade onto this space proved. However, as this 

projection cannot be obtained directly, the space is decomposed and the projection 

approached iteratively. This method is not rigorous because there is no guarantee 

that the limiting projection found iteratively is the required projection. 

5.1 r -increasing space 

The extraction cone, r(x), can be represented by an infinite family I of linear 

identities on R3 such that: 

y E r(x) ~ CPj(Y) ~ ~ (x) (2-13) 

By modifying the cone slightly, I can be assumed finite, say 6, which 

amounts to approximating the base of the cone by a polygon: r is now defined by 

6 linear identities: 

i = 1,2, .... ,6 (2-14) 

With r dermed by (2-14), a function f on E is said to be r -increasing if and 

only if: 

~ ~ ki, I = 1, 6 ~ f(ki, k2' .... ,~) ~ f(k;, k2' .... , k6) (2-15) 

The space of r-increasing functions F is the family of functions of the fonn: 

f(CPl(X), <P2(x), •••• , <Ai(x» where f is increasing on R6 in relation to the six variables 
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simultaneously: 

(kj ~ k~, V I = 1, 6) ~ f(~, k2' .... ,~) ~ f(k{, k~, .... ,~) (2-16) 

5.2 Spiral theorem 

This theorem and its proof are found in Matheron (1975a); the proof will not be 

given here. The functions can be regarded as vectors whose dimension is equal to 

the number of blocks in E. 

The problem is to calculate A' = IIF('P
I
,'P2' .... , 'P,) q knowing any function Al 

of F(cpI 'cp2' •••• ,cpp). The recurrence relationship: 

Y = II q n ~ 1; i = n modulo p 
n (f"_I' 'PI) 

(2-17) 
with: Y. - II q I - F(AI• 'PI) 

defmes a set of functions {Y n} in F( cP l' cP 2, ••••• , CPp ) which converge in a finite 

number of iterations towards a limit 110. Moreover: I Y n+ I I > I Y n I V n ~ 1 

with equality only if Yn+ 1 = Yn • 

5.3 Triangle theorem 

This theorem and its proof are found in Matheron (1975b). 

The problem is to calculate A" = IIF(lft 1ft ) q knowing three independent 
TI·T2·'Pl 

functions Xo, Yo, ~ of F(cp I , CP2 , CP3). The triple recurrence relationship: 
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Xn II q 
F(Yn- l• Zn_l) 

n ~ 1 

Yn = II q 
F(zn-l' Xn-1) 

n ~ 1 (2-18) 

Zn = II q 
F(Xn-1• Yn-1) 

n ~ 1 

defmes three sets of functions {Xn}, {Yn}, {~} of F(tp 1 , tp2 , <P3 ) which converge 

in a fmite number of iterations towards the same limit A{;. Moreover, I Xn+21 ~ 

I Xnl V n ~ 0 with equality only if X n+2 = Xn . The same is true for {Xt } and 

{Zn}· 

This algorithm is an iterative projection algorithm which uses dynamic 

programming for the maximization process. It provides a complete h

parameterization (maximising the expression Q - OT for each value of h). 

The projections of Al and A2 are obtained by iterative processes where 

every step has the form: 

(2-19) 

and the elementary projection is of the form : 

Z = IIF(x. f) q (2-20) 

The problem is now a projection in a two-dimensional matrix (X, Y). 

The matrix is constructed by assigning values of the parameter h (cut-off 

grade) to each block using a modified two-dimensional I...erchs-Grossmann algorithm; 

the critical values of A are determined in such a way as to avoid missing pits. 
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5.4 Computation 

The six linear identities <Pi(X), i = 1,2, .. ,6 are easily calculated for each block x 

from its Cartesian coordinates and the pit slopes in each of the six directions. 

The triangle method is then used to find the projection ~ of grade onto the 

r-increasing space of F(cpt, <P2, <PJ). The coordinates CPt (x), <P2 (x), <P3 (x) themselves 

can be used as initial functions. The blocked solution ~ can then be used as an 

initial function for the spiral method to obtain A:,. This amounts to finding a family 

of pits which satisfy the constraints of an extraction cone of triangular base. The 

same is done with axes <pix), <Ps (x), <P6 (x) to obtain the projection ~' and the final 

projection is found from: 

An = n}{~. A{j'> q (2-21) 

This computation requires the ability to achieve the two-dimensional projections. 

5.5 The two-dimensional projection 

At Fontainebleau, this projection is done by assigning values of A and then using a 

modified (Francois-Bongar(;on, 1978) version of the two-dimensional Lerchs

Grossmann (1965) algorithm. This algorithm is extremely rapid and efficient. A 

search is then made for the critical values of A by first calculating Amin and Xmax and 

then progressively subdividing this interval. 

At Leeds, Moks (1983) and Dowd (1992) approached the problem differently. 

They search for all of the critical values of A directly by an iterative method. similar 

to the moving cone method. This approach has been used in the current research 
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project and has been incorporated into the software. 

The formulation of the two-dimensional parameterization is analogous to the 

development of the three-dimensional parameterization outlined in section 3. 

If the grades of blocks x E E are projected onto the two-dimensional space 

~ defmed by functions X and Y, then the cloud of points in this plane corresponds 

to the blocks x E E. The grades are unchanged. 

6. Using simple examples to explain the concept of parameterization 

The projection of the function A can be illustrated by some simple examples in one 

and two dimensions where the function A can be easily determined by sight. In the 

grade matrices suppose that each block has a weight of one tonne. 

Example 1 

r-increasing : to remove a block, all blocks above it must be removed first. This is 

illustrated by the example in figure 26. 

1 6 

2 1 

3 4 

4 1 

a 
Figure 26 

Start by considering the high grade values; the block of grade 6 must be the 

first that is removed. To remove' blocks 1 and 2, the value of A decreases because 

the average grade of the two blocks is 3.5. The third block will increase the values 

of pits 1 and 2, therefore the following pit will contain blocks 1, 2, and 3 (average 
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grade 3.666). Finally, for A less than or equal to 1 all four blocks will be taken. 

As the function A will take a constant value for all blocks ( average grade) 

this will give the arrangement shown in figure 27. 

6 6 2.5 <AS 6 
.. critical value A = 2.5 

1 2.5 1 SAS 2.5 

4 2.5 critical value A = 2.5 
4-

1 1 o SAS 1 

q A 

Figure 27 

Example 2 

Blocks as in figure 28 and same analysis as in example 1. If the high value of A is 

chosen then the third block will be removed first. Because of the r-increasing 

constraint this block can only be removed if blocks 1 and 2 have already been 

removed. This gives an average grade of 5.0 for each block. For A less than or 

equal to 1.0 all blocks will be chosen as shown in figure 28. 

4 5 

5 5 

6 5 critical value A = 1 
~ 

1 1 

q A 

Figure 28 

----------------------Chapter 2: ParameteriZJZtion 



page 66 ------------

Example 3 

This is a two-dimensional example with oriented X and Y axes. In this example, a 

particular block can only be removed by the removal of the blocks of coordinates 

greater than or equal to those of that block. In figure 29 the marked area is the 

extraction cone of block (X =4, Y =3) , which has a grade value of 4. Following the 

same reasoning as above the results shown in figure 29 are obtained. NB. It is 

convention to commence this exercise from the top right hand corner. 

4 

3 

2 

1 

3 

3 

3 

5 

Example 4 

6 

3 

2 

4 

2 

5 

3 

3 

3 

3 

q 

5 6 

4 5 

2 4 

3 1 

4 5 

Figure 29 

3 5.33 5.33 5.33 6 

3 3 3 4 5 

2.88 2.88 2.88 2.88 4 

2.88 2.88 2.88 2.88 2.88 

A 

Consider the two-dimensional example with natural extraction cone shown in figure 

30. If the extraction cone is defined by single block steps, then A, the projection of 

the grade onto a r-increasing space, can be found directly by searching for the pit 

(cone or set of cones) with the highest average grade. This average grade, A, is then 

assigned to each block in the pit and the search then starts again for the pit with the 

highest average grade amongst the remaining blocks. This process is repeated until 

a solution is found. As can be seen the pits obtained are those with cone values 

greater than or equal to the value of each block. 
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1 1 4 1 5 4 4 1 1 

2 1 3 4 1 1 1 

2 2 1 2 1 

1 2 1 

1 

q 

I 

4 5 4 1.33 1 
I 

- . - - --, \ , 
1~5 2.66 1 , 

~ 
\ - "' .... , 

1.33 1 
I , 

--
1 1 

1 

A 

Figure 30 

Example 5 

A second two-dimensional example is shown in figure 31 together with the 

extraction cone used in the example. This time A, the projection of the grade onto 

a r-increasing space, can be found directly by searching for the pit (cone or set of 

cones) with the highest average grade where valid pits are defined with reference to 

the extraction cone. This average grade, A, is then assigned to each block in the pit 

and the search then starts again for the pit with the highest average grade amongst 
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the remaining blocks. In this example, the pits of highest average grade have a value 

of 0.60; there are two consisting of one block each, one consisting of four blocks 

and one of nine blocks. The largest pit is always chosen. This process is repeated 

until the solution shown in figure 31 is found. 

1 0.1 0.1 0.3 0.4 0.3 0.2 0.4 0.6 0.4 0.6 0.3 0.2 0.3 0.2 I 
0.1 0.2 0.4 0.3 0.4 0.6 0.8 0.8 0.6 0.4 0.2 0.1 

0.1 0.2 0.4 0.3 0.5 0.8 0.9 0.4 0.2 0.2 

0.2 0.2 0.3 0.3 0.5 0.9 0.5 0.3 

0.3 0.5 0.3 0.6 0.8 0.4 

0.1 0.2 0.4 0.6 

Figure 31(a): two-dimensional example; block grades 

I I 

X 

Figure 31(b): extraction cone r(x) for two-dimensional example 

10.16 0.24 0.37 0.40 0.43 0.53 0.60 0.60 0.60 0.60 0.60 0.48 0.40 0.3°1 

0.16 0.24 0.37 0.38 0.43 0.53 0.60 0.60 0.60 0.48 0.40 0.30 

0.16 0.24 0.37 0.38 0.43 0.53 0.60 0.48 0.40 0.30 

0.16 0.24 0.33 0.38 0.43 0.48 0.40 0.30 

0.16 0.24 0.33 0.38 0.40 0.30 

0.10 0.20 0.33 0.30 

Figure 31(c): A values for the example in figure 31(a) 
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The A values are seen to be r-increasing, i.e. for any given block, the A 

values of all blocks within its extraction cone are greater than or equal to the A 

value for that block. Thus for any given cut-off value A, the set of blocks defined 

by A ~ A constitute a feasible pit. Moreover, every technically optimal pit is 

completely defined by a parameter A. 

7. Implementation of parameterization 

The parameterization algorithm is implemented by using the triangle and spiral 

methods. The triangle method is applied to determine the projection of Al onto the 

r-increasing space F(fPl' <P2, <P3) using the grade and volume of the selected blocks. 

The blocked solution can then be used as an initial function for the spiral method to 

find the optimal solution of pits which sa~isfy the constraints of an extraction cone 

of triangular base. The same is true for A2 but this time for the r-increasing space 

F(fP4' fPS,fP6) 

The projections of Al and ~ are obtained by iterative processes which yield 

two-dimensional matrices of functions (x,y). The projections are done by assigning 

grade and tonnage values to each block and then using the two-dimensional Lerchs

Grossmann algorithm. 

The orebody block model is divided into parallel sections and the modified 

Lerchs-Grossmann method is applied to each section to determine the optimal shape 

of the two-dimensional pit for each level on this section. Thus for each section there 

will be an optimum pit limit by level together with the corresponding optimal value. 

These values are then accumulated into columns, which determine a two-dimensional 

numerical matrix for the pit. 
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When the two-dimensional matrix is found for all sections representing the 

pit then a parameterization method is issued to parameterize the two-dimensional 

matrix. In this study the search of the matrix is based on the two-dimensional 

parameterization algorithm written by Moks (1983) and modified by Dowd (personal 

communication). The algorithm is the reverse of the original one. Instead of the 

search for the right hand quadrant, Moks saw in his study that the larger pits 

corresponding to lower values of grade are of interest and he thus found it desirable 

to reverse the solution procedure by defming the lower left hand quadrant, and 

searching and removing the pits satisfying the extraction cone of minimum grade. 

The two-dimensional matrix is searched for the panel with the minimum 

grade for its left hand quadrant. The minimum grade of each quadrant is compared 

with that of the previous one; if it is less than the previous one, the two quadrants 

are accumulated together and removed. If not, then all the panels are set back to 

their original values and the procedure recommences for the next quadrant. The 

results of each procedure are stored and compared with the previous one. The final 

results are returned to the main program. 

During the use of the triangle and spiral methods it sometimes happens, after 

a certain number of iterations, that the norm gives only slight changes around a few 

pits. In such cases efficiency is improved by stopping the convergence procedure. 

The subroutine stack is used in the subroutine projection to control the norm 

value for each projection. It is then checked against the following value until the last 

iteration of the subroutine (six iterations with six norm values for the triangle 

method and only three for the spiral method). If the norm stops increasing or shows 

only a few variations around the pits then the solution is blocked. 

To ensure convergence of the projection after a finite number of iterations 

its progress should be systematically checked. At the end of each projection a 

subroutine test is called to check whether the norm values are similar. If so, 
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convergence is deemed to have been reached and the procedure is halted; if not, the 

procedure continues. The maximum number of iterations is set by the user. 

When the pits are found, they are returned to the main program and a 

number of characteristic values of each individual pit are calculated. These 

characteristic values are: 

• the average grade 

• the selected tonnage 

• the total tonnage 

• the quantity of metal 

• the stripping ratio and 

• the ore-total tonnage ratio. 

8. Economic optimization 

8.1 Selection of the final pit 

Matheron (1975) approaches the economic parameterization very theoretically 

and derives the parameterizing function which characterises the optimum for 

maximum revenue. The isovalue curves of this function might give the optimum pit 

design. The aim of this method was to consider the variability of an optimum pit 

when a given economic parameter A changes. For each block the profit value will 

appear as a function W(A) of this parameter (monotonic function). This can also be 

seen in the paper by Francois-Bongarcon and Marechal (1976). 
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In this work the final pit limits have been estimated by methods which are 

based upon two factors : 

(1) the orebody block model, on which all calculations are based, consists 

of values estimated from sparse data and it is thus subject to 

uncertainty and error 

(2) the cost constraints are applied through what is called a 

parameterizing function which is based on both geometrical 

constraints and varying economic values. 

The objective of the ultimate pit limit design is to detennine the projected 

[mal pit limits of an orebody and its associated projected grade and tonnage, which 

will maximize some pre-specified economic criteria while satisfying practical 

operational requirements. 

The parameterization approach enables us to present various alternative pit 

designs to the user so that the best plan, as defined by a specific combination of 

parameters (mining and processing costs etc ... ) can be selected. This is not possible 

with the standard block revenue model approach as applied by such methods as the 

original Lerchs-Grossmann algorithm (though it can be handled by the Whittle 

(1988) 4-D proprietary software). 

The objective is to select the pit that has the maximum net worth attainable 

within an acceptable risk range and within any given constraints. For our purposes, 

this plan is the optimal plan. 
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8.1.1 Profit matrix 

The determination of optimal ultimate pit limits, by nearly all of the computerised 

techniques, requires the transformation of the block grade matrix into a revenue 

block matrix which can be optimised (scheduled) according to a pre-determined 

economic criterion subject to geometric constraints of access. 

Block profit comes from the evaluation of a function of many variables such 

as grade of ore, mining costs, transportation costs, price of mineral, etc. The net 

value for each block is the actual cost or profit realised by mining and processing 

a block. Blocks with positive profit have a final value which covers all costs 

(mining, production, transport, etc.) whereas negative profit blocks do not. 

8.1.2 The general costing equation 

The selection of the optimum pit amongst the set of pits produced by the 

parameterization method is done by using a simple profit function of the form: 

where: 

A-(B+C) 

A is the revenue from the sale of the finished metal, 

B is the total processing cost, and 

C is the mining cost. 

Clearly A, Band C are all functions and it is assumed that: 

(i) all variables affecting profit are included in the functions A, B or C, 

and 

(ii) blocks of all grades are acceptable for processing. However, very low 

grades may give no finished metal, so A = o. 
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Clearly: 

(i) If A < B then profit < - C. In this case the block would be of very 

low grade, regarded as waste and not processed. This gives A = B 

= 0 and profit = - c. 

(ii) If A > (B + C) then a positive profit is realized from mining and 

processing a block regarded as ore. 

(iii) If A > B and A < (B + C) then by mining and processing the ore 

a loss is incurred but the loss is less than mining with no subsequent 

processing. In practice this is marginal ore and is regarded here as 

ore. 

The cut-off grade is used as a constraint. If the block grade gi is greater than 

or equal to the cut -off grade then it is treated as an ore block, if it is less than the 

cut-off grade then it is treated as a waste block. Normally, ore blocks have positive 

net profit values and waste blocks are negative. The plant cut-off grade is that for 

which A = B. 

In practice, of course, this representation is too simplistic and it is necessary 

to allow for taxation, overheads, capital investment and other financial features. 

S.1.3 The optimum pit 

Ideally, mining is done in such a manner as to maximize profit throughout the mine 

life while maintaining operational continuity. To illustrate the use of the above 

formulation the simplest revenue formula is usually of the type: 

Pr(i) = A V q(i) - B V - C V if ore q(i) ~ COG 

Pr(i) = - C V if waste q(i) < COG 
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Where: 

Pr(i) is the profit value of block i 

q(i) is the grade of block i 

COG is the cut -off grade 

V is the tonnage of block i 

A is the sale price of metal per tonne 

B is the processing cost per tonne 

C is the mining cost per tonne 

For this revenue formula, the implicit assumptions are : 

1. The economic values assigned are constant throughout the mine and 

throughout the mine life. 

2 The profit motive (maximizing revenue) is in use, but without time 

discounting. 

3. The mining costs are the same for ore and waste. 

4. The price is net of transport and marketing costs. 

By applying the profit function to each block, a block profit matrix is 

generated. Pit profit is obtained by summing the profit of each block that has to be 

mined within that pit limit to produce the required profit. 

Such a definition (selection) of an optimum pit is taken to be the 

configuration of blocks whose pit profit is a maximum. 
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9. Application of parameterization 

9.1 Computer program 

The application of the parameterization method and the interpretation of the results 

in terms of conventional open pit characteristics require additional work. This extra 

work involves the construction of plan, metal inventories and ore-waste ratios for 

each pit dermed by a critical cutoff grade. These calculations have been incorporated 

into a computer program. 

The program which has been used in this study is based on an original coding 

by Moks (1983), updated and amended by Dowd, and written in FORTRAN 77. The 

original versions have been extended in the current project to include the choice of 

the fmal pit and the integration with a scheduling algorithm for more detailed mine 

planning. The performance of the software has been improved to enable it to run 

faster and more efficiently and in a more interactive manner. The original 

parameterization method is retained in the new developments. 

9.2 Input and Output 

The user provides to the interactive part of the program : 

• the cutoff grade, _ 

• the block dimensions, 

• the specific gravity of the ore, -

• the pit wall slope angle --
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• the estimated set of data (block grades) stored in a computer file in 

3-D form, (including X, Y and Z co-ordinates). 

The program then produces a set of nested pit designs (characteristics and 

plans), based on the specified input data, at an average of approximately 30 seconds 

of computer run time on a Sun workstation. The output is provided in two forms. 

The first is a binary file created for efficient storage and data transfer to other 

programs (not discussed here). The second file contains full details of the complete 

characteristics and plans and a summary of each individual pit. The plans of the 

nested pits are given as grade distributions or level heights, both of which can be 

used to provide pit contours. The characteristics are those parameters which define 

the pits in economic terms such as cash flows. 

The characteristics associated with each pit design, such as metal content, 

total tonnage, average grade and stripping ratio, are easily calculated and 

interpreted. But the most difficult is the representation and the location of the shape 

in the form of an open pit design. However, the design of pits is always determined 

by boundaries rather than by internal grade distributions and the contour plan is the 

better tool for these representations. 

9.3 Interpretation and presentation: display of output 

A program was written to process the numerical data into graphical output and 

produce graphical representations of the characteristics (metal content, total tonnage, 

average grade, stripping ratio, etc ... ) of any pit plan. The program was written for 

a Sun workstation using graphics routines from the UNlRAS package (1989). 

UNlRAS is a software system consisting of a set of subroutines and functions 

(UNlRAS Reference and User Manuals) used by an applications program to generate 

images and pictures on display input/output devices. The graphics display program 

developed in this research project was written in FORTRAN 77, and is designed to 
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provide users with the choice of generating the following output: 

1- Selection of the final pit 

2- Two-Dimensional contouring of mining levels 

3- Three-Dimensional representation of the optimum pit plan 

4- Cross-sectional representation of pit elevations 

5- Three-dimensional views of blocks mined 

The graphics display programs will be presented and described more 

comprehensively, and examples will be given to illustrate their use, in Chapter 6 of 

this thesis. 

10. Conclusions 

The parameterization method allows the calculation of many optimal pits at the same 

time, corresponding to different values of the parameter A . These pits are obtained 

without considering economic parameters, and also construct the relationship 

between cutoff grade and tonnage, or the quantity of metal and total tonnage of 

exploitation. In one computer run, it gives all possible pits of the orebody for a 

given parameter A. The user can decide the size of the blocks to be optimised 

without creating a problem about the presentation of the results. 

The objective of parameterization is to find a complete family of technically 

optimal pits corresponding to every possible value of the total tonnage and the 

selected tonnage. The crucial assumption for the success of the method is that this 

family contains the pit that is optimal for any specified sets of economic parameters. 

The only drawback is the limitation on the slope angle of the cone. 
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However, practical applications of parameterization are not well documented 

and some questions remain about the general applicability of the method. It is still 

not clear whether there are significant practical cases in which the following may 

prevent a true optimum being reached: 

1 Approximating the surface found by Qrnaxi (at any T) by the convex 

hull Q - AT is likely to miss some pit designs. 

2. Approximating the extraction cone by one of polygonal base. 

3. The grouping of blocks by their polygonal coordinates into discrete 

ordered subsets. 

4. The approach to the projection by decomposition and iteration. 

5. If used, the imposition of a minimum significant tonnage between 

pits. 

However, parameterization appears to be at least as good as most algorithms 

and better than most in respect of the computing time and, more importantly, the 

block model it uses. Even with the introduction of technical parameterization as the 

most recent development the problem is not yet solved to everybody's satisfaction. 
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1. Introduction 

A major problem in mine planning and design is the determination of the mining 

sequence which will optimize some specified criterion. The criterion of most 

interest, especially during feasibility studies, is maximum net present value. Ideally, 

the maximum net present value should also be the criterion for the optimal open pit 

design. However, as noted in Chapter 2, this involves an intractable circular 

argument. The optimal open pit design problem with net present value as the 

optimizing criterion could also be viewed as a scheduling problem: 

Schedule the mining of the blocks, subject to mining access constraints, in 

such a way that the maximum net present value is achieved. 

The solution to this problem must also yield the pit shape which has 

maximum net present value. However, whilst the problem can be formulated in this 

manner and solution algorithms are available (e.g., dynamic programming), the 

number of blocks comprising most practical orebody models means that algorithms 

are prevented from reaching a solution because of prohibitive storage requirements 

or equally prohibitive computing times or a combination of the two. 

1.1 Scheduling as a general problem 

The problem of scheduling arises in many other applications outside the mining 

industry and there is an extensive literature on the subject in many of these non

mining applications. 

In general, scheduling problems can be subdivided into two categories 

deterministic scheduling and stochastic scheduling. 
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The deterministic scheduling approach is to formulate the problem in such 

a way that there is only one (deterministic) solution. However, in many applications 

the variables have uncertain values and solutions can, or at least should, be 

expressed in terms of likelihood or probability. In essence the deterministic approach 

assumes that the values of all variables are fIXed and known whereas the stochastic 

scheduling approach recognizes and includes the uncertainty on each variable. 

A realistic approach to mine scheduling should formulate the problem as a 

stochastic scheduling problem. However, in this thesis a deterministic approach has 

been adopted mainly because this is seen as an essential first step towards a 

stochastic formulation. For example, the linear programming approach described in 

the next Chapter could readily be adapted to stochastic linear programming and this 

is an area for further work and development of the methods described here. 

Deterministic scheduling problems can be subdivided into two further 

categories (Garey and Johnson, 1979) : 

P-problemsfor which there exist optimal solution algorithms of polynomial 

complexity. 

NP-hard problems which can only be solved by algorithms of non

polynomial complexity. 

There are four major methods applied in the solution of NP-hard problems : 

Relaxation 

In these approaches the original problem is replaced by a similar one in 

which restrictions on one or more parameters have been weakened or relaxed 

and/or some additional constraints have eliminated possibilities and reduced 

the solution space. 
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Approximate optimization 

Either a heuristic approach is taken or an existing optimizing algorithm is 

assisted by the addition of some heuristic aspects. An example of this 

approach in mine design is the modified moving cone method of open pit 

optimization. 

Optimization by enumeration 

This approach enumerates all possibilities and then seeks the optimal 

sequence. As such it leads to the true optimal solution. An example of this 

approach is dynamic programming as applied, for example, to the mine 

scheduling problem. Other examples include branch and bound methods and 

iterative methods. 

Artificial intelligence approaches 

These approaches include expert systems, genetic algorithms and neural 

networks. Neural network techniques, in particular, offer the possibility of 

reaching optimal or near optimal solutions to the mine scheduling problem. 

1.2 Parameterization as a means of scheduling 

The parameterization method could be used as a means of scheduling. Each pit in 

the nested family generated by the application of the parameterization algorithm 

represents a set of blocks of a given average grade. On the assumption that net 

profit is directly proportional to grade, sets of blocks arranged in descending order 

of grade correspond to sets of blocks that maximize net present value (provided that 

the sets are not restricted by size). Consider the two-dimensional example in figure 

31 of Chapter 2. Each grade increment could be regarded as a pushback as shown 

in figure 32 in which blocks comprising the first few grade increments are shown 

by different shadings. 
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0.16 0.24 0.37 0.40 IW/.~ 

Figure 32: 

Parameterization results from the example given in figure 31 used as 

production schedule that maximizes net present value 

The difficulty of course is that the grade increments do not necessarily 

coincide with production increments or multiples of such increments and it may not 

be possible to satisfy production capacities by blocks belonging to these increments. 

Nevertheless, this approach offers the possibility of a good practical approximation. 

1.3 Simplifying the problem 

In practice the optimal open pit scheduling problem can be significantly reduced in 

size simply because it is impractical to schedule a mining operation for more than 

relatively short time periods (usually 1 to 2 years maximum and occasionally even 

less than 1 year). The reasons for this are: 

• Financial variables, especially metal prices, cannot be predicted with 

any accuracy beyond this period. Significant changes in metal prices 

will have a significant effect on the revenue block model which in 

tum will alter the optimal mining sequence. 
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• Grade and tonnage values assigned to blocks are only estimates not 

true values. These estimates are based on relatively sparse data and 

are subject to error. In general, the error decreases as more data 

become available and are used in the estimation. In addition, the 

estimated grades and tonnages may change significantly as more data 

become available. Inevitably, in the initial stages, the most accessible 

blocks will be better estimated than those at greater depth. As mining 

progresses, more data will become available and the revenue block 

model may change significantly. 

• Many other variables and factors may change throughout the life of 

the mine. Such variables include geotechnical properties and 

conditions which may affect wall slopes (and hence the mining access 

constraints) . 

Given these restrictions on the time period over which scheduling can 

realistically be applied a sensible approach is : 

1 Design an optimal open pit on the basis of any of the common 

optimizing criteria (maximum total undiscounted revenue or 

maximum metal recovery). This pit defines an outer shell within 

which all scheduling (and therefore mining) will be done. This pit 

also defines total minable reserves. 

2 Schedule blocks within the pit shell over specified scheduling periods 

updating the schedule over time and/or as the values of significant 

variables (e.g., financial, geological, geotechnical) change. 

In certain circumstances, developments during any scheduling period may 

require the re-definition of the optimum pit. This feature has not been addressed in 

this thesis and remains an important issue to be tackled if the work continues. 
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1.4 Pit scheduling 

Unlike the problem of determining optimal open pit limits, there are very few 

references available which address the subject of pit sequencing in a practical way. 

Those papers which do cover the subject recognize the fact that orebodies are 

normally mined in stages or sequences. The principles behind open pit mine 

scheduling were first clearly stated by Lerchs and Grossmann (1965) : 

The same optimal open pit limits could be reached by a multitude of mining 

sequences each of which will produce a different cash flow. Therefore there 

exists an optimum mining sequence which can be defined as that sequence 

which maximizes the present wonh of the deposit. The possible sequences 

from which to choose from are of course limited by various constraints 

imposed by pit wall stability, the ore requirements of the mill and good 

mining practice. The optimum pit limits, therefore, cannot be defined without 

first determining an optimum '!lining sequence. 

The basis of the most commonly accepted methodology and its underlying 

philosophy are discussed in a number of papers and textbooks, most notably, Lerchs 

and Grossmann (1965), Roman (1973), Dowd (1976), Wilke and Reimer (1979), 

Wilke, Mueller and Wright (1984), Huang (1993), Fytas, Hadjigeorgiou and Collins 

(1993). 

A new approach, which the author has called the 'combination of linear 

programming and simulated, user-activated waste stripping' method, has been 

developed as part of this PhD research project. The method consists of three parts: 
r 

waste stripping, linear programming and simulation modules. 

These references are used to introduce the general concepts of the method 

that forms the fundamental basis of the present and the following Chapter. 
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The algorithms have been developed for complete three-dimensional 

implementation although they could equally well be applied to two-dimensional cases 

(e.g., strips of mineable material). The algorithm has been used for a three

dimensional case study and the results have been validated; part of this case study 

is given in Chapter 6. 

1.5 Characteristics of mining sequences 

As mentioned earlier the optimization procedure is required to select the material to 

be mined in each sequence of a mining period, to maximize the output at the early 

stages, that is to quickly reach the rich ore of the technically optimum pit. This will 

maximize the chosen fmancial objective over the life of the mine, satisfying a 

carefully selected set of operational constraints. However, mining could proceed 

along unlimited alternate paths each of which would generate a unique cash flow 

pattern. The path with the highest discounted cash flow should be selected as the 

best mining sequence. 

The following simple example, taken from Gnur and Dowd (1993), illustrates 

the general concepts raised in the previous paragraph. 

1.5.1 Illustration 

The simple example shown in figure 33 illustrates the importance of net present 

value in the detennination of mining sequences. In this example the same section of 

an orebody is depleted in the same time period with a discount rate of 10% by using 

two different planning sequences. The results are shown in table 1. 
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_ mining pwh backs mining pwhbacka -

Figure 33 : two possible mining sequences 

It can be seen from table 1 that the best way of mining the orebody is to 

mine the most profitable parts during the early stages of the mining operation. The 

same results are presented graphically in figure 34. 

Time Alternative 1 Alternative 2 Discount Discounted Discounted 

period Profit Profit Rate Alternative 1 Alternative 2 

1 100 60 0.909 90.9 54.4 

2 90 70 0.826 74.3 57.8 

3 80 80 0.751 60.1 60.1 

4 70 90 0.683 47.8 61.5 

5 60 100 0.621 37.3 62.1 

Total 400 400 310.4 296.0 

Table 1 : Discounted cash flows from two mining sequences 
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Figure 34: graphical form of results in table 1 

1.5.2 General characteristics 

Long range production scheduling is mainly concerned with such criteria as ore 

reserves, stripping ratios and major investment usually on a year by year basis. 

Short range scheduling, on the other hand, is the development of a sequence of 

depletion schedules on a daily, weekly or monthly basis, which complies with 

restrictions imposed by the long range plans, plant capacities, inventories, equipment 

availability and the existing mining operation. 

Regardless of the type of ore or mineral product mined, there are certain 

basic data that are required in any production scheduling problem. These are : 

1) the tonnage and grade of each block 

2) specific gravity of ore and waste 

3) the revenue value of each block 

4) deposit block model 

5) present pitl quarry layout or overall optimum limits of the pitl quarry 
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to be scheduled, 

6) mine life or production rate (depending on whether short term or long 

term scheduling is used) 

7) the maximum and minimum allowable grade to be mined or to be fed 

to the processing plant in any time period 

8) maximum and minimum allowable production rate of waste and ore 

9) working slope angle in the pit 

10) minimum pit bottom dimensions 

11) discount rate 

12) preproduction rate and period, (if required) 

Because of the large number of blocks in most orebody block models it is not 

practical to optimize a schedule which simultaneously includes the entire model 

covering all periods of the mine life and all types of mining constraints. For this 

reason the scheduling problem has been divided into a set of sequential sub

problems. The two major divisions are for time and mining constraints. These 

divisions can be summarized as : 

Time 

The scheduling process proceeds one mine period at a time, and 

Constraints 

Within each time period the constraints are treated in two major classes. 

The simulation 

This part handles the physical constraints and forms the main subject of the 

present Chapter. 

The Linear Programming technique 

This part handles the production constraints and parameters and is the main 

subject of Chapter 4. 
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The blocks to be mined in each mining period are selected subject to the 

given mining access constraints. The constraints on the possible mining sequences 

include both physical constraints on the mining operation and economical constraints. 

Only the physical constraints are dealt with here. 

The following is a list of the operating constraints used in this application and 

which the computer program attempts to satisfy : 

1. Mining access constraints. These constraints define the access to each 

block within the orebody block model. In their simplest form these 

constraints prevent the mining of a block which is directly under 

another unmined block and prevent the mining of a block for which 

any adjacent block has an unmined block above it; in this version 

mining must be done in a step-wise manner. 

2. The one-for-one restriction requires that for every unit volume which 

is mined from a block that is restricted by a number of other blocks, 

at least an equal volume must be removed from each of the restricting 

blocks. 

3. Maximum working slope angle. 

4. Minimum radius of a mining area. This constraint is used to impose 

access for mining equipment to mining blocks and may include such 

specifications as minimum truck turning circle and minimum 

allowable access for loaders. 
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1.6 Mining sequence constraints 

Determination of an allowable mining sequence is primarily a problem of geometry. 

In an actual mining operation the material is removed in such a way that the safe 

wall slope is never exceeded in any direction. The practice of benching gives the 

open pit mine a step-like structure. These conditions justify the representation of the 

outline of a mining plan or the volume of the mineral to be removed, consistent with 

the wall slope constraints and mining practices, by a series of frustums. 

Given the block size, two methods are used to describe the allowable mining 

sequence relative to the block concept; one is to use a cone to define the set of 

allowable or required blocks, Erickson and Pana (1966) and the other is to use a 

pattern or set of blocks which closely approximates a thin frustum to define the 

allowable set Johnson (1968). The second method will be used in the mathematical 

formulation given in this Chapter. 

1.6.1 Cone generation 

A cone (or pit) is generated by the removal of whole blocks from the block matrix. 

As a pit is mined, the slope of the sides must not exceed the angle of failure and 

a maximum pit slope must be defined and observed. The pit slope considered here 

is the average slope generated by a step pattern (as whole blocks are removed). 

Thus, considering different step patterns amounts to considering different slopes. 

Many other authors have considered cone generation, for example, Boyce 

(1969), Hartman, et al (1966), Johnson (1968), Lerchs and Grossmann (1965). The 

method adopted here is that of forming a cone with a single block as a base. Two 

methods are illustrated, both using cubic blocks. Due to the symmetry and uniform 

grid considerations, this requires that alternative benches must have the closest five 

blocks in the case illustrated in figure 35a, and the closest nine blocks in the case 

illustrated in figure 35b, mined in the bench above before the bench can be opened. 

--------------Chapter 3: Optimal mining sequences 



----------------------- page 93------------------------

fiQ. 358 - 5:1 fia. 35b - 9:1 

Figure 35 

The 9: 1 configuration method produces a cone with slopes ranging from 35 0 to 45 0
• 

The 5:1 configuration method produces a cone with slopes ranging from 45 0 to 55°. 

By changing the dimensions of the blocks, i.e. height and width, the slope 

produced by the various methods changes and it should be possible in most instances 

to arrive at block dimensions and a cone generation procedure which will produce 

a close enough approximation to the required pit slope. Block dimensions must, 

however, be kept to reasonable size. 

For convenience, the block height is generally the bench height of the pit but 

the horizontal dimensions are often completely arbitrary. If the size of the block is 

large, however, model coarseness can cause the orebody to be completely 

misrepresented in terms of recoverable ore. 

In attempts to achieve greater precision there is a tendency to reduce the size 

of the block, but this is usually restricted to some extent by the drill hole spacing 

and possibly by the interpolation (estimation) procedure used. For a given area, the 

block size affects the size of the block matrix directly, and hence the storage size 

and the amount of computing time required by the program. In other words, 

accuracy requires small blocks whereas computing economy is achieved with large 

ones; however, the over-riding determinant of block size may be the drilling or 

sampling grid. 
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2. Optimization of mining sequences using linear 
• programnnng 

2.1 Introduction 

In recent years several people have worked on the optimal open pit design problem 

as a means of fmding the optimum mining schedule. The optimization criteria vary 

with application but are usually based on Net Present Value (NPV) or Maximum 

Total Return. 

The optimum schedule depends on both physical and economic parameters 

which can be considered either together or separately. Considering both parameters 

at the same time is computationally time consuming and, for large problems, as the 

number of states increases, the solution may be impossible to attain. 

The problem can be split into two parts. One part uses Linear Programming 

(LP) to find the optimum path, whilst the second part checks the feasibility of the 

fIrst solution in terms of mining constraints and improves the scheduling sequence. 

The effect of this check is that the final LP solution will always be confined to 

blocks which become accessible during the period under consideration. 

The idea of free-ore develops the above consideration further. By submitting 

for LP selection only those blocks which are immediately available for mining, the 

constraints on precedence and accessibility of blocks will be eliminated. Such an 

approach cannot lead to a rigorous overall optimum in the mathematical sense. 

However, the mining constraints, which play the major role in the definition of the 

open pit mine design, are chosen only to constrain the practicability of the solution. 
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In contrast, the use of combinations of different mining constraints in one 

algorithm throughout the scheduling will make the long-term project much more 

flexible especially for quick decision making in the case of unforeseen 

circumstances, such as unexpected sudden changes in ore (waste), or equipment 

break-down etc. 

Scheduling is mainly a combination of the physical restrictions and the 

economic parameters as discussed above, which usually produce optimum results in 

terms of material extracted or in monetary return. Different people have different 

ideas on how to achieve this goal. 

From the above analysis the scheduling model considered here is divided into 

three parts: 

1 Waste stripping module. 

This deals only with waste and overburden to be mined to expose ore blocks. 

2 Linear programming module. 

This deals mainly with the ore blocks to be mined . 

3 Simulation module 

This deals with the re-adjustment of sets of blocks submitted to the LP 

module. 

The approach used to solve the problem is a combination of Linear 

Programming and simulated, user-activated waste stripping with the overall objective 

of maximizing the profit or the Net Present Value (total discounted profit). 

The pit limits part is done independently of the second (scheduling) using all 

combinations which satisfy the mining constraints to give the maximum number of 
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combinations of blocks that can be mined during a given period of time. This part 

has already been described in Chapter 2. 

This approach is the main subject of the next Chapter and deals with the 

mining schedule of the material within the optimum open pit limit obtained by the 

methods described in Chapter 2. 

2.2 Linear programming 

During recent years it has become increasingly apparent that operational 

research and the use of computers can greatly improve mine planning and increase 

the possibility of attaining the management's ultimate goal of total maximum profit. 

The operational research technique which has been applied to more production 

scheduling problems than any other is Linear Programming (LP). 

LP is a mathematical method for determining the optimum allocation of 

limited resources to products or activities e.g. the determination of an optimum 

production mix or the number of items produced to maximize profit or minimize 

costs. The objective is either to maximize the benefits while using limited resources 

or to minimize costs while meeting certain requirements. 

All linear programming problems have three common characteristics : 

1 - A linear objective function: maximize, minimize or equalize z 

where: 

This is a mathematical statement of what management wishes to achieve. 

This could be a statement concerning maximizing profit or minimizing cost. 
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2 - A set of linear constraints : 

The constraints are the physical limitations on the objective function caused 

by factors such as budgets, labour, raw materials etc. Linearity means that the 

constraints are linear and have flXed coefficients. 

3 - A set of non-negative constraints: 

with i=1. .. n 

This limits the solution to positive (or zero) values of the variables. 

Where z = objective function 

a = coefficient matrix 

b = vector of constraint right-hand-side (RHS) 

x = vector of variables 

In all linear programming problems there is a set of possible answers all of 

which satisfy the constraints. These answers constitute the feasible region. LP then 

finds a point in the feasible region which optimises the objective function. 
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LP problems are usually solved by a technique known as the Simplex 

Method, frrst developed in the 1940's. This method works by taking a sequence of 

square sub-matrices of "a" and solving for "x", in such a way that successive 

solutions always improve, until a point in the algorithm is reached where 

improvement is no longer possible. The method is used in this work and is further 

explained in sub-section 2.2.1. 

2.2.1 Simplex method for solving mining scheduling problems 

We frrst need to specify the objective function in standard form, and convert all the 

inequalities to equations. Having specified the problem we convert the inequalities 

to equations by adding non-negative slack variables. The slack variables represent 

any unused capacity in the constraint . Each constraint will have its own slack 

variable. 

For example: 3Xl + 4X2 < 50 becomes 3Xl + 4X2 + XJ = 50 where : X3 ~ 0 

The slack variable represents any unused capacity in the constraint and in this 

case 0 < X3 < 50. Where x 3 = 50 represents the case of zero production and 

X3 = 0 represents the case of full utilisation of the resources and zero unused 

capacity. Each constraint will have its own slack variable. 

The Simplex method is a step by step arithmetic method of solving LP 

problems whereby one moves from a position of zero contribution until no further 

contribution can be made. Each step produces a feasible solution and an answer 

which is better than the previous one. The method is better explained in the 

following example. 
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Maximize the following linear objective function : 

z = 8x 1 + 5X2 + lOx 3 

Subject to the linear constraints : 

2XI + 3x2 + X3 < 400 

Xl + X3 < 150 

2Xl + 4X3 S 200 

X2 S 50 

And the non-negativity constraints: 

Solving the above example first we add the slack variables, 

=400 

= 150 

+ ~ = 200 

+ X7 = 50 

with Xi ~ 0 and i = 1... 7 

Writing the objective function in' standard form: z - 8x1 - 5x2 - 10Xj = 0 

and then the simplex tableau takes the form: 
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Obj. Function 

Constraints 

& 

Slack Var. 

Basic 

z 

X4 

Xs 
X, 
X, 

Xl 
-8 

2 

I 

2 

0 

Xl Xl X4 Xs X, X, Solution 

-5 -10 0 0 0 0 0 

3 1 1 0 0 0 400 
0 1 0 1 0 0 150 

0 4 0 0 1 0 200 

I 0 0 0 0 50 

Table 2 : step 1 in the simplex algorithm 

The basic column identifies the current basic (or basic variables) whose 

values are given in the solution column. This implicitly assumes that these variables 

not present have the value zero. 

The solution above gives the current solution : 

Xl = X2 = X3 = 0, X4 = 400, Xs = 150, X 6 = 200, and X 7 = 50 

If z = 0 (Le. zero production) then the solution is feasible. For a problem 

with n variables (including slack variables) and m constraints. n - m variables must 

be zero and the remaining m variables fonn the basis. In the above example n = 7, 

m = 4, = = = = = > 7 - 4 = 3 zero variables and 4 solution variables. 
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If we examine the current zero variables (xh x 2 and X3) all have negative 

coefficients (-8x.-5x2-10x3) which is equivalent to positive coefficients in the original 

objective function (8Xl +5X2+ 10x3). Since we are maximizing, the value of z can be 

increased by increasing Xl' X2 or X, above the zero value. However, we always select 

the variable with the most negative objective coefficient because such a solution is 

most likely to lead to the optimum solution rapidly (Le. coefficient of x3). 

The optimality condition is, in the case of maximization, i.e. (-8-5-10) = = > 

(0, 0, 0). If all non-basic variables have non-negative values in the z equation in the 

current tableau, the current solution is optimal. Otherwise the non-basic variable 

with the most negative coefficient is selected as the variable entering the basis. 

The feasibility condition determines which variable leaves the basis, this 

variable is the one which will be first to reach zero when the entering variable 

reaches its maximum value. It is identified by dividing the solution value by the 

corresponding positive values in the column of the variables entering the basis. The 

row with the smallest value identifies the variable leaving the basis. 

The algorithm for the above method proceeds as follows: 

Step 1. Identify the largest negative value in the z-row (Le. -10) 

Step 2. Divide the solution quantity by the positive values in this column. 

(Le. 400/1, 150/1, 200/4) 

Step 3. Select the row which has the element with the smallest positive value 

(200/4 = 50) and identify the value that appears in both the row and 

the column. This element is the PIVOT element (Le. 4). 

Step 4. Divide all the elements in the row by the pivot and replace the basic 

variable by the entering variable. In this case X6 is replaced by x 3 • 
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The new pivot equation is equal to the old pivot equation divided by the pivot 

element (Le. new pivot equation). 

The new pivot equation is : 

Xl Xl Xl X4 Xs X6 X7 Solution 

I Xl Yi 0 1 0 0 Y4 0 50 

Step S. Using row operations (Gauss-Jordan method) make all other elements 

in this column zero using the PIVOT row. 

Iteration Basic Xl Xl Xl X4 Xs X6 X7 Solution 

1 z -3 -5 0 0 0 2Yi 0 500 

Xl enters X4 lYi 3 0 1 0 -Y4 0 350 

Xs Y2 0 0 0 1 -Y4 0 100 

X6 leaves Xl Y2 0 1 0 0 Y4 0 50 

X, 0 1 0 0 0 0 1 50 

Table 3 : step 5 in the simplex algorithm 
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This procedure is repeated (Step 1 to Step 5) using the next highest coefficient 

in the objective function, until all the values in the z row are greater than or equal 

to zero. In the above table 2, the new z line is equal to the old line -( -lO)x, new X3 

line. 

Iteration Basic Xl X2 X3 X4 X5 X6 X7 Solution 
2 z -3 0 0 0 0 2Y2 5 750 

Xl enters X4 lY2 0 0 1 0 -v.- -3 200 

X5 Yl 0 0 0 1 -v.- 0 100 

Xl Yl 0 1 0 0 v.- 0 50 

X, leaves X2 0 1 0 0 0 0 1 50 

Table 4 : step 5 iteration 2 in the simplex algorithm 

Iteration Basic Xl Xl Xl X4 Xs X6 X7 Solution 

3 z 0 0 6 0 0 4 5 1050 

Xl enters X4 0 0 -3 1 0 -1 -3 50 

Xs 0 0 -1 0 1 -Yl 0 50 

Xl leaves Xl 1 0 2 0 0 Yl 0 100 

Xl 0 1 0 0 0 0 1 50 

Table 5 : step 5 iteration 3 in the simplex algorithm 
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As all quantities in the z-row are greater than or equal to zero we have 

reached the optimum. 

i.e. Xl = 100, X2 = 50, X 3 = 0, X 4 = 50, X 5 = 50, x 6 = ° and 

x 7 = 0, with a maximum profit of : z = 1050. 

In minimisation problems the entering variable must have the largest 

positive coefficients in the z equation. The solution is reached when all the values 

in the z row are less than or equal to zero and the non-basic variables have non

positive coefficients. 

2.2.2 Other LP algorithms for solving mining scheduling problems 

Other LP algorithms known as Interior-Point methods come from non-linear 

programming approaches proposed in 1958 and further developed in the late 80's. 

These methods can be faster for many large-scale problems. Such methods are 

characterized by constructing a sequence of trial solutions that go through the 

interior of the solution space, in contrast to the Simplex Method which stays on the 

boundary and examines only the comers (vertices). 

Integer LP models are ones where the answers must not take fractional 

values. Integer models may be ones where only some of the variables are to be 

integer and others may be real-valued termed Mixed Integer Linear Programming 

(MILP), or Mixed Integer Programming (MIP); or they may be ones where all the 

variables must be integer termed Integer Linear Programming (ILP). The class of 

ILP is often further subdivided into problems where the only legal values are Binary 

(0,1), and general integer problems. 
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Although various algorithms for MIP have been studied, most if not all 

available general purpose large-scale MIP codes use a method called 'Branch and 

Bound' to try to fmd an optimal solution. Branch and Bound solves MIP by solving 

a sequence of related LP models. Good codes for MIP distinguish themselves more 

by solving shorter sequences of LP's, than by solving the individual LP's faster. 

Even more so than with regular LP, a costly commercial code may prove its value 

if the MIP model is difficult. 

There are certain models whose LP solution always turns out to be integer, 

assuming the input data is integer to start with. The theory of unimodular matrices 

is fundamental here (unimodular is: if every square sub-matrix has a determinant 

equal to 0, + 1, or -1). Such problems are best solved by specialized routines that 

take major shortcuts in the Simplex Method, and as a result are relatively quick

running compared to ordinary LP. 

Nowadays, with good commercial software, models with a few thousand 

constraints and several thousand variables can be tackled on a 386 PC. Workstations 

can often handle models with variables in the tens of thousands, or even more, and 

mainframes can go larger. 

The choice of code can make more difference than the choice of computer 

hardware. It is hard to be specific about model sizes and speed, a priori, due to the 

wide variation in things like model structure and variation in factorizing the basis 

matrices; just because a given code has solved a model of a certain dimension, it 

may not be able to solve all models of the same size, or in the same amount of time. 

For the application of LP to the Mining Scheduling Problem, a code, written 

in "C" language, called lp_solve was supplied to the author by Proll (1995). 

Lp _solve can solve general LP problems or mixed integer LPs. The code uses a 

Simplex Algorithm and sparse matrix techniques, for pure LP problems. If one or 

more of the variables is declared integer, then the simplex algorithm is iterated with 

---------------Chapter 3: Optimal mining sequences 



----------------------page 106------------------------

a Branch and Bound algorithm, until the desired optimal solution is found. Using the 

present code to solve the LP problem an input file has to be created in suitable 

format for lp_solve. 

The input is a set of algebraic expressions and integer declarations in the 

following order : 

- Objective function, is a linear combination of variables, ending 

with a semi-colon, optionally preceded by (max: or min:) to indicate 

whether it is maximization or minimization is sought. 

- Constraint, is an optional constraint name followed by a colon plus 

a linear combination of variables and constants, followed by a 

relational operator, followed again by a linear combination of 

variables and constants, ending with semi-colon. The relational 

operator can be any of the following: less, or less or equal to, equal, 

greater or greater or equal to. 

- Declaration, is of the form: 'int' followed by variable and ending 

with semi-colon, commas are allowed between variables. 

The following is an example of input of general form: 

The problem: minimize Xl + X2 (or maximize -(Xl + X2 » 

subject to: 

Xl ~ 1 

X2 ~ 1 

Xl + x2 ~ 2 

with Xl integer 
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The lp_solve input file is: 

max: -Xl + -X2; 

(or min: Xl + x2 ;) 

Xl ~ 1; 

x2 > 1; 

Xl + X2 ~ 2; 

int Xl; 

The results from Lp _solve are the values of the decision variables, that 

represent the status of the blocks, together with the profit gained from mining that 

set of blocks. The values of the decision variables are 0 (for blocks not mined) and 

1 (for mined blocks) in any given time period examined. More details are given in 

Chapter 6. 

The software is unlimited in size but the computer platform on which it is 

implemented sets upper limits to the size of the problems that can be practically 

solved. 
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1. Introduction 

The production scheduling problem can be stated simply as the determination of the 

sequence in which blocks must be mined, subject to mining, economic and 

geotechnical constraints, so as to optimize a specified objective function. 

In this application the objective is to maximize the net present value of the 

total mined product. The author uses a combination of linear programming and 

simulated, user-activated waste stripping to obtain the optimum schedule. 

2. Linear programming 

To illustrate the linear programming 

formulation assume that the blocks in 

the block model are regular cubes and 

that the pit slope constraints are 45° in 

all directions. It is further assumed that 

the pit slope constraints also define the 

mining access constraints as illustrated 

in figure 36 in which the lower block 

can only be mined in a given period if. 

the nine blocks on the level above have 

I I I 

~ 
Figure 36: 

illustration of mining constraints 

been mined in previous periods and/or are mined in the given period. This simplistic 

example does not in any way constrict the generality of the formulation which 

follows. 

Let bijk(t) be a binary valued variable which takes the value 1 if block (i,j,k) 

is mined in period t and takes the value 0 otherwise. The indices i,j,k are block 

counters in the east-west (x), north-south (y) and vertical (z) directions respectively 
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with k increasing with depth. 

Let Vijk be the net return (in monetary value) obtained from mining, 

processing and selling block (i,j,k) and let r be the discount rate for the mining 

project. 

A linear programming formulation of the optimal sequencing problem is: 

Maximize: 

subject to: 
t' 

L h. m 1-1(t) - bi } 1(t') ~ 0 
t =1 

for: 
~ = i-I, i, i + 1 
m =j-l,j,j+1 
\;f i, j, k, t' 

where Nx, Ny, Nz are, respectively, the number of blocks in the block model in the 

x, y and z directions and T is the total (maximum) number of time periods 

considered. The constraints defme the access to block (i,j ,k) in time period t. These 

constraints can readily be adapted to describe any other slope and access constraints. 

It is also possible to include additional technical and operational constraints but the 

absence of these constraints does not detract from the general nature of the 

formulation given here. 

The difficulty with this formulation is that the number of variables and 

(especially) the number of constraints are prohibitive for any realistic problem. A 

similar problem is encountered with the dynamic programming formulation of the 

problem: the number of possible decision sequences rapidly exceeds any practical 

storage and computing facilities. It is possible to reduce significantly the 

computations involved in the linear programming formulation by taking advantage 
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of the properties of the unimodular matrix formed by the constraints and by using 

various algorithmic approaches that are well documented in the linear and integer 

programming literature. However, the linear program, as formulated above, is still 

too large to be solved for all but the smallest of block models. 

Some authors (Wilke and Reimer (1979), Wilke et. al. (1984) and Huang 

(1993)) have attempted to separate the access constraints from the linear program but 

it is intuitively obvious (and easy to demonstrate) that such approaches cannot 

possibly lead to optimal solutions in any problem that involves sequential decisions. 

In all but the simplest cases they do not even lead to near optimal solutions and thus 

the use of such simplifications is a dangerous approach to optimal scheduling. 

3. Practical solutions: reducing the numbers of constraints and 

variables 

It is possible to adapt the linear programming formulation by recognising some 

subtle differences between optimal open pit design and the optimal sequencing of 

mining blocks and by recognising that the solution yielded by any general 

formulation will not necessarily be a practical mining solution: 

(1) An initial pit will always be 

designed well in advance of any 

need to schedule the mining 

operation: scheduling can be seen as 

the order In which blocks are 

removed so as to reach an ultimate 

pit shape. 

(2) Mining generally proceeds in fronts 
Figure 37: 

simplified block access 
for scheduling 
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and mining access to a particular block is not as stringent as that required for 

pit design. For example, mining is usually done by "push backs" on benches 

and, in its simplest form, access could be defined in terms of one block 

above and one block in front as shown in figure 37. 

(3) Blocks that are already accessible do not require an access constraint. 

(4) For technical and economic reasons blocks must be mined (more or less) 

contiguously in groups. In general it is not feasible, or at least not good 

mining practice, to mine isolated blocks in different parts of the orebody. 

Similarly, mining will not be done on a large number of widely separated 

levels in any given period or even over short to medium sequences of 

consecutive periods; the number of levels opened and the distance between 

them will usually be restricted. 

(5) Scheduling for any practical purposes is very rarely considered for more than 

relatively short periods of time (3 to 5 years maximum) 

4. The model 

The approach adopted here is similar in structure to that of Huang (1993). There are 

three components in the model: 

(1) A user-activated waste stripping module. 

(2) A linear programming module that determines an optimal mining 

sequence from sub-sets of blocks submitted from the overall orebody 

block model. 
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(3) A mining simulator which removes mined blocks from the block 

model and adjusts the subsets of blocks for submission to the linear 

programming module. 

It is assumed that an overall pit has already been designed (in this work by 

means of the parameterization algorithm). This is not an essential requirement but 

it does simplify the procedure. It is further assumed that a minimum amount of ore 

must always be exposed in any given time period. This is a fairly widespread and 

sensible operational requirement. Before production begins, for example, a certain 

amount of overburden and/or waste must be stripped. The final assumptions are for 

access to blocks: 

(I) access to any block in the uppermost layer of the orebody block 

model is determined solely by removal of the waste block 

immediately above it. 

(2) for all other layers in the orebody block model an accessible block 

(i,j,k) is one for which the block immediately above (i,j,k-l) has been 

removed and at least one contiguous block on the upper level has 

been removed: (i-l,j,k-l) or (i,j-l,k-l) or (i,j + I,k-I) or (i + I,j,k-I). 

5. The waste stripping module 

A minimum tonnage of ore must be exposed at the start of each period. This 

minimum tonnage is specified by the user and is determined by the program in terms 

of numbers of accessible are blocks. 

The minimum exposed are tonnage constraint is a common production 
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requirement and, in this application, is a valuable means of reducing the number of 

constraints for the linear programming module. 

on: 

All ore blocks that are not accessible are assigned a priority code depending 

(1) The number of faces of the block (if any) that are already 

exposed. 

(2) The value of the block. 

In descending order of priority each ore block is then examined to determine 

whether access is prevented by a waste block. If so, the waste block is scheduled for 

removal. Stripping continues until the minimum tonnage of ore is exposed. Apart 

from any pre-production stripping, all waste stripping incurred by this module is 

apportioned equally over the periods considered by the linear programming module 

and capacity constraints are adjusted accordingly. 

At any stage the user can intervene to identify specific blocks to be stripped. 

This option can be used to override part or all of the automatic stripping operation. 

When the minimum amount of ore tonnage is exposed control passes to the 

linear programming module. 
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6. The linear programming module 

This module schedules a subset of blocks submitted from the orebody block model. 

Membership of a subset is dermed below. 

be a binary valued variable such that: 

[ 

1 if block (i,j ,k) is mined in period t or earlier 

bijk(t) = 
o otherwise 

Xijk be the tonnage of ore in block (i,j,k) 

Yijk be the tonnage of waste in block (i,j,k) 

Vijk be the net revenue obtained from block (i,j,k) 

r be the discount rate for the project 

Xmin be the minimum ore production requirement per period 

Xmax be the ore production capacity per period 

C be the total (ore and waste) capacity per period 

N 1 be the number of blocks in the block model for the x direction 
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be the number of blocks in the block model for the y direction 

be the number of blocks in the block model for the z direction 

be the mininmum and maximum vertical interval (number of 

levels) of blocks currently considered 

be the number of time periods considered for scheduling 

The linear program is: 

~~~tt Maximize: L.J L L.J bij k{t) ~j k (1 + r)-I 
;=1 j=1 k=Nz(l) 1=1 

subject to: 
I' 

E btj k-l(t) - btj k(t
/
) ~ 0 (1) 

1=1 

t' 

E {bi _Ij k(t} + btj-1 k(t} + bij•1 k(t) + bl +1j k(t}} - btj k(t/} ~ 0 (2) 
1 =1 

with, for (I) and (2): 
i = 1, Nx 
j = 1, Ny 
k = Nz(I}, Nz(2) 

t' = 1, tp 

for t = 1, tp 

N% N Nz(2) 

E t E blj it) (X;j k + 1';j k) ~ C 
;=1 j=1 k=N,(I) 

for t = 1, tp 
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The access constraints for block (i,j ,k) in period t are that the block 

immediately above it (constraint 1) and at least one contiguous block on the same 

level (constraint 2) must have been mined prior to t or be mined in t. The constraints 

for any block which already satisfies these conditions is removed from the linear 

program. This results in a significant reduction in the number of access constraints 

from that required in the general optimal open pit formulation. 

The current formulation is limited to a horizontal array of 2500 (e.g., 50 x 

50) blocks, a maximum of three levels open in anyone time period and an upper 

limit of three time periods in any linear program. These limitations generate a 

maximum of 22,500 variables, 22,500 type (1) access constraints (each containing 

a maximum of 4 variables), 22,500 type (2) access constraints (each containing a 

maximum of 13 variables) and 10 production capacity constraints. The number of 

constraints can (and generally must) be reduced significantly by eliminating those for 

blocks that are already accessible, by using the stripping module to make more 

blocks accessible and, once mining has begun, by limiting the lateral and horizontal 

distances between production areas within and between production periods. This 

reduction in the number of constraints is an essential step in the operation of the 

program. If the linear program is too large to be solved the user is invited to reduce 

the number of constraints, via the waste stripping and mining simulation modules, 

by undertaking additional stripping and/or reducing the extent of working areas. If 

the lateral extent of working areas is reduced the block indices (N x and Ny) in the 

linear program must be adjusted. 
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7. The mining simulation module 

This module: 

(1) removes blocks from the block model for one scheduling period 

(2) adds additional blocks to the set to be considered for scheduling 

(3) applies equipment moving constraints to remove blocks from the 

subset to be considered for future scheduling 

(4) returns control either to the stripping module or to the linear 

programming module 

The linear programming module operates on a subset of blocks from the 

orebody block model. In a simple, three-dimensional rectangular array of blocks this 

subset would initially correspond to the uppermost three layers of the array. The 

solution of the linear program for this subset yields an optimal schedule for three 

periods. The blocks corresponding to the first period are removed from the orebody 

block model and recorded as the scheduled production for the first period. Any 

blocks within three levels immediately below a mined block are now added to the 

subset. If the minimum ore tonnage is exposed control passes back to the linear 

programming module where the subset is scheduled for periods 2, 3 and 4. If the 

minimum tonnage is not exposed control passes back to the stripping module before 

entering the linear programming module. (NOTE that the linear programming 

module may inherently schedule waste to be mined during any production period). 

The program continues in this manner, scheduling three periods at a time, 

selecting only those blocks scheduled for the first of these periods, adjusting the 

subset and then scheduling for a further three periods. 
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Once the very frrst production period is scheduled an additional constraint is 

imposed on membership of the subset of blocks offered to the linear programming 

module. Blocks can only enter the subset if they are within user-specified horizontal 

and vertical distances from the blocks scheduled in previous periods. This condition 

is critical in reducing the numbers of variables and constraints in the linear program 

to yield a formulation that can be solved. 

8. Solving the linear program 

The major problem in this formulation is in obtaining a solution to the linear 

program. Although the formulation is in fact an integer program the nature of the 

access constraints is such that they form a unimodular matrix. The capacity 

constraints can be manipulated so as to conform to the same matrix structure. The 

advantage of this is that the program can be solved as a continuous linear program 

without recourse to the more computationally demanding integer programming. 

If the numbers of variables and/or constraints in the linear program are too 

large control is returned to the mining simulation module where the user is invited 

to reduce the horizontal and vertical distance requirements for membership of the 

subset of blocks. 

It is also possible to use approximate methods of solution such as that 

reported in Dowd (1989). At present, however, the software requires a workstation 

for implementation. Future developments will focus on the possibility of using 

various forms of decomposition to speed up the solution and to reduce storage 

requirements. 
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8.1 Additional constraints 

It is possible to include additional operational constraints. For example, it may be 

desirable for blending or similar purposes to maintain the average grade of 

production in each time period between upper and lower limits: 

where 

for t=l, .. ,tp 

for t=l, .. ,tp 

G I and Gu are the lower and upper limits on grade values 

(these may also be specified as functions of time or 

geographical locations) 

gijk is the grade value of block (i,j,k). 

The inclusion of such additional constraints will however substantially 

increase computing requirements. 

9. Conclusion 

The formulation of the scheduling problem given here allows the determination of 

an optimal mine schedule using the criterion of maximum net present value. It is 

believed that the algorithms used yield a true practical optimum or a solution which 

is very close to the true optimum. At present· the algorithm described is limited to 

a workstation implementation but it is believed that the use of decomposition 
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methods and approximate solution algorithms for the linear programming component 

will ultimately yield a PC version. 
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1. Introduction 

The methods described in the previous Chapters have been coded into a set of . 
programs that have been tested on trial data and on a real data set from a gold 

deposit This Chapter describes the main programs in the software package, presents 

the different types of data input and output, the major paramters and describes the 

execution of the software. 

The programs developed during this research project are: 

Optimal open pit design by parameterization 

Final pit selection 

Mine scheduling 

Graphics display of the results 

All programs are contained in an integrated computer package. The package 

is described, section by section, in this Chapter. 

2. Programming platform 

The software consists of a main program, four main FORTRAN subroutines, and 

five UNlRAS routines. The problem is solved entirely in core. 

The main program calls the major executable subroutines and graphics routines. 
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2.1 Fortran subroutines 

The following are the main Fortran subroutines of the software: 

2.1.1 Subroutine master 

This subroutine fmds the optimal open pit limits using the parameterization technique. 

The result is a set of technically optimum nested pits, one of which will be the 

economic optimum for a given set of economic parameters. 

The parameterization technique can produce a set of nested pit designs for 

a grade block model (characteristics and plans), in about 30 seconds, or less, of 

computer run time on a Sun workstation. 

2.1.2 Subroutine select 

The determination of optimal ultimate pit limits requires the transformation of the 

block grade matrix into a revenue block matrix which can be optimised (scheduled). 

Block profit comes from the evaluation of a function of many variables 

such as grade of ore, mining costs, transportation costs, price of mineral, etc. The net 

value for each block is the actual cost or profit realised by mining and processing that 

block. Blocks with positive profit have a final value which exceeds the total of all 

costs (mining, production, transport, etc.) whereas negative profit blocks do not. 

2.1.3 Subroutine Mstrip 

The subroutine strips waste blocks so as to expose the minimum ore tonnage at the 

start of each mining period. The minimum ore tonnage is specified by the user and 

is determined by the program in terms of numbers of accessible ore blocks. 
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2.1.4 Subroutine Mlinprog 

This is the linear programming subroutine and it is used in conjunction with 

subroutine Mstrip to schedule the mining of a subset of ore blocks submitted from 

the orebody block model. 

2.1.5 Subroutine Msimul 

This is the simulation subroutine and it is used in conjunction with subroutine 

Mlinprog to remove and adjust the subset of blocks being processed by Mlinprog. 

This subroutine checks whether the minimum ore tonnage is exposed and returns 

control either to Mstrip or to Mlinprog depending on whether or not more waste 

must be stripped. 

2.2 Graphics routines 

As explained in section 2.5 Chapter 6, the Graphics routines have been incorporated 

into the software to help to produce better representations of the numerical data 

associated with each optimal pit shape. The routines are designed to produce contour 

plans, three-dimensional views, and cross-sectional views. 

3. Major parameters of the software 

Most of the input data are read in the individual modules of the software. Some of 

the major parameters for the subroutines are described below: 

. mtng 

ibtng 

zc 

ippr 

tp 

nac 

minimum tonnage required (in stripping module) 

total tonnage in each block i (block weight) 

cut-off grade 

production period 

time period 

number of access constraints 
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ncc 

mco 

mcw 

mpc 

pog 

rd 

number of capacity constraints 

mining cost of ore 

mining cost of waste 

processing cost 

price of gold 

discount rate for the project 

irs, jsr, mrs, nrs, isr, jsr - right-hand-side values for the different constraints. 

ile, ieq, ige . - types of constraints, less than or equal to, equal to, and greater 

than or equal to. 

Some parameters are calculated, e.g. 

itbc 

itnc 

nbp 

number of blocks in the subset 

total number of constraints to be considered 

number of blocks to be mined per period 

Parameters not mentioned above are better explained as appropriate in the 

following sections of this Chapter. 

3.1 Determination of the optimum pit limits 

The parameters introduced interactively by the user when running this section of the 

software are: 

zc 

x, y, z 

bw 

alpha 

cut-off grade 

block dimensions 

specific gravity of ore 

the final pit slope (degrees) 
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3.2 Selection of the final pit 

The selection of the final pit plan requires the specification of the following 

parameters: 

Price of the metal 

Mining costs 

Processing costs 

3.3 Production scheduling 

As explained in the previous sections the scheduling section is run in three stages 

where the data are entered via the keyboard or read from files and are passed 

between routines by means of COMMON blocks or as arguments of subroutines. The 

following sections list the parameters that are entered via the keyboard by the user 

in response to requests that appear on the screen for that part of the schedule. 

3.3.1 Waste stripping module 

The following parameters are required for this section: 

itnb total number of variables in the optimum pit plan. 

nnb number of blocks to be exposed (as minimum ore tonnage). 

3.3.2 Linear programming module 

All parameters required by this section (right-hand-side, the rowtype (+/-) for 

different types of constraints) are entered by means of COMMON blocks or as 

arguments. 

The direction of optimization is entered as: + for maximization and 

- for minimization (not used) 

3.3.3 Simulation module 

Block coordinates of the selected ore blocks are the major input parameters for this 

section. 
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4. Data input and output 

To execute the software two types of data are required. The first type of data are 

those supplied from files, COMMON blocks and as parameters; these are explained 

in this section The second type are those entered interactively and these are described 

in the software execution section. 

4.1 Input data read from files 

The software is a set of programs set up for the design of the optimum open pit 

shape and production scheduling. Therefore, most of the data files are common to 

nearly all the sections of the software. The following are the input data files required 

for each section of the software, all of them being in comma-delimited free format. 

4.1.1 Determination of the optimum pit limits 

Beside the interactive input data, the grade file is the major input file for this section 

of the software. 

4.1.2 Selection of the final pit 

The grade file mentioned above is used again in this section to produce an equivalent 

three-dimensional revenue block model file. 

4.1.3 Production scheduling 

These are three sections in the model which work together. 

4.1.3.1 Waste stripping module' 

The grade file is the input for this section, together with a corresponding three

dimensional file, recording the removed blocks. 
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4.1.3.2 Linear programming module 

A subset of blocks, selected by the user, in the fonn of a data file is submitted to this 

section. A simplex matrix for solution of LP module is produced. The matrix 

includes the equation of the objective function and the integer declaration of the 

variables being considered. 

4.1.3.3 Simulation module 

A data file created in the previous section, is submitted to this section as an input 

data file. The file contains the blocks to be removed in each time period. 

4.1.4 Graphics routines 

The grade file and the optimum pit plan are the main data input files for this section. 

Both files are used to produce different graphics representations of the characteristics 

of the optimum pit. 

4.2 Output results written to files 

Each section of the software generates its own output files with the file names set up 

in the software. Each relevant output is described in the following sections. 

4.2.1 Determination of the optimum pit limits 

Output from this section is in two forms. The fITst is a binary file created for efficient 

storage and data transfer when used by other programs (not discussed here). The 

second is an ASCII file containing full details of the characteristics of each individual 

pit. Plans of the nested pits are given as grade distributions or depth levels, and both 

can be contoured. 

4.2.2 Selection of the final pit 

The output from this section comprises pit by pit revenue values together with the 

pit with the maximum revenue value. 
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4.2.3 Production scheduling 

The output files of blocks being selected and removed from the orebody block model 

during the scheduling process are produced in each individual section of this part of 

the software. 

4.2.3.1 Waste stripping module 

The output of this section is a table showing the appropriate priority given to each 

block together with the pit plans showing the blocks removed during the operation 

of the module. 

4.2.3.2 Linear programming module 

The output from this section is a period by period summary of mined blocks and 

final objective function value. 

4.2.3.3 Simulation module 

The outputs of this section are pit plans of each production period showing the 

coding of the removed blocks during the stripping and linear progamming modules. 

4.2.4 Graphics routines 

This section produces different graphic representations (cf. section 2.5 Chapter 6) of 

the optimum pit. 
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5. Software execution 

The software is executed by running the exec file rebh2.exe created by the UNILINK 

system after frrst setting up the UNlRAS environment. The execution starts with the 

pit limit determination, followed by pit sequencing and ends with the graphics display 

of the results. The software requires two types of data : 

The first set is read from files and has been discussed above. The second set 

is entered interactively during the software execution and includes all data that are 

affected daily, monthly or yearly by market conditions. The reading of the data 

depends on the order of the sections where the order is pit limit determination, 

scheduling and finally graphics representations. 

5.1 Determination of the optimum pit limits 

This is the frrst section to be executed and focuses mainly on the pit design. It starts 

with the pit limits determination followed by pit selection (the pit with the highest 

profit). 

Note : There are three options for the output files at the end of the first part 

of the determination of the optimum pit limit. Option (2) is set for the software 

which contains the pit plans (nested pits) produced during the running of that part of 

the software to be optimized. The other two options (1,3) terminate the process. The 

rest of the software is described below: 

Type in the exec file name: rebh2.exe 

Execution starts: 

'Operating in the pit design module' 
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Enter the cut-off grade 

> 

Enter block dimensions (x,y,z directions) and density 

> 

Enter the final pit slope (degrees) 

> 

Solution reached: there are 'n' number of pits. 

Do you want a full output listing (1); 

a pit by pit plan (2); 

or just a pit parameter summary (3). 

When option (2) is selected the process will continue as follows. 

5.2 Selection of the final pit 

Parameters required for the pit selection are passed through common blocks. 

- Price of the metal 

- Mining costs 

- Processing costs 

Once the final pit is selected, which is automatic, programme control passes to the 

following section (Production scheduling). 

5.3 Production scheduling 

This section has three parts: Waste stripping module, Linear Programming module 

and the Simulation module. 

This part starts by: 
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Enter subset dimensions (i, j and k) 

> 

Checks if the coordinates are within the feasible zone of X, Y, Z? 

No - Print' NB of ELEM. should not be exceeded, try again' 

Yes - The process will continue in the next section (stripping). 

5.3.1 Waste stripping module 

The module requires the following parameter : 

Enter the number (nnb) of blocks per period 

> 

Checks if the nnb of blocks is greater than the total nb of blocks ? 

Yes - Print ' NB of ELEM. should not be exceeded, try again' 

No - The process will be resumed as follows: 

Exposes the nnb blocks 

Checks if the minimum ore tonnage is exposed ? 

Yes - Formulate the subset of blocks then continue to the following section 

(linear programming). 

No - Do you want to increase the number of blocks ? 

Yes - Enter the nnb of blocks and control returns to the stripping module 

No - Ends the run. 

5.3.2 Linear programming module 

F or this part of the scheduling moSt of the data are entered in the main program and 

are passed to the LP module through CALLs and COMMON blocks. 

Program starts: 
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Enter direction of optimization : 

> + (plus) for maximization (used in the current example) or 

> - (minus) for minimization (not used in this formulation) 

Formulate the LP input 

Optimization operation takes place 

Is there any solution ? 

Yes - Results are put into table format and the control is returned to the next 

section (simulation). 

No - Means more stripping needed, control is returned to the above section 

( stripping module). 

5.3.3 Simulation module 

The co-ordinates of the selected ore blocks are required here. 

Removes blocks of the first time period of the current production period. 

Adjusts the subset of blocks 

Checks if the minimum ore tonnage is exposed ? 

Yes - Control is returned to the above section (linear programming module). 

No - Control is returned to the above section (waste stripping module). 

Note : The blocks selected and removed from the matrix in each period are 

assigned the current production period number. 
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5.4 Graphics display of the results 

This section will display graphically some of the characteristics of the optimum pit 

plan. 

Do you want a graphics display yes/no ? 

> Yes - The process will continue as below 

> No - Ends the run 

Do you want the graphics display to be ? 

Enter 1. Pitselection 

Enter 2. Optpitj)lan 

Enter 3. Optpit_3d_ view 

Enter 4. Optpit_x_section 

Enter 5. Optpit_inv _section 

> Enter the choice 

Do you want the display to be ? 

Enter 1. For the screen 

Enter 2. For HPGL 

Ente r 3. For BIW PS 

Enter 4. For colour PS 

Enter O. To quit 

> Enter the choice 

Please wait for the graph. 
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To quit the graphics environment press return while the arrow of the cursor 

is on the graphics window Thank you. 
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1. Introduction 

"Optimal open pit design is essentially a computer based implementation of an 

algorithm which is applied to a three-dimensional block model of an orebody. Almost 

all optimal open pit design algorithms, with the exception of elementary methods 

applied to some stratiform deposits, are applied to a regular, fixed, three-dimensional 

block model of an orebody. The orebody is subdivided into regular blocks and a 

value is estimated for each block. This value is almost always the net (undiscounted) 

revenue that would be obtained by mining and treating the block and selling its 

contents. Some methods, such as parameterization, use grade values in the block 

model. Stuart (1992) proposes an irregular three-dimensional model in which the 

orebody is represented by a series of arbitrary geometrical solids. Whilst such a 

model is a useful way of representing highly irregular and complex-shaped stratiform 

deposits it is doubtful whether sophisticated computer algorithms are really necessary 

for the design of optimal pits in such cases." (Dowd, 1994b). The block model is the 

fundamental input to the pit design and the scheduling programs developed during 

this research project. 

The blocks to be mined in each mining period are selected, within the limits 

of the given economic constraints, so as to maximize the Net Present Value (NPV) 

for the life of the mine. 

In general, the production scheduling procedures determine which blocks of ore 

and waste should be removed in each mining period so as to maximize the Net 

Present Value for the mine, subject to the mining and milling operating constraints. 

The scheduling problem is treated in three modules (the modules are documented in 

Chapter 4). This Chapter describes the software and presents the results obtained 

from applying it to some of the data sets. 
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2. Algorithms and their logic 

The programs are best explained by means of individual flow charts along with an 

example solution in the following sections. The pit limit flow chart is not shown here 

and can be found in Moks' thesis (1983). 

2.1 Data requirements 

To facilitate the description of the software a case study will be used. The data come 

from an open pit gold mining operation. The orebody has been subdivided into 20 

m (E-W) x 20 m (N-S) x 10m blocks and the gold grade of each block has been 

estimated. There is a total of 26 (E-W) x 55 (N-S) x 9 (vertical) blocks in the block 

model. The three-dimensional matrix of gold grades of these blocks constitutes the 

block grade model of the orebody. 

Deposit models are usually described in a form in which insufficient edge 

blocks are specified to allow the removal of ore blocks at the bottom edge. In order 

to secure the stability of the pit and render these blocks minable, it is necessary to 

add additional waste blocks all around the lateral boundaries of the deposit. Figure 

38 illustrates the additional blocks added to the deposit model. 

Original block model 

"':J 
~~ ~ x )( )()()(X 

:'\. X X)( x )( x / 
~ ~f)( ~ )c: / 

,>< >< k( , / 

~ : Blocks added to the right and left 
ofa deposit 

~45 

Figure 38 : Two-dimensional representation of mineralized zone 
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Because of the similarity of all the deposit areas the number of blocks added 

is equal in all four cardinal directions and is determined as the number of levels of 

the deposit. The number of blocks added to the orebody block model on the northern 

and southern boundaries as well as on the eastern and western boundaries, must 

satisfy the lowest slope angle of any area of the deposit. 

The initial data required are : 

1. the cut-off grade 

2. the block dimensions (rows, columns, levels, directions) 

3. the specific gravity of ore and waste 

4. the final pit slope 

5. the grade of each block 

The scheduling algorithm requires the block grade model to be transformed 

into a revenue block model which can be used by the optimization module (LP). The 

data and block revenue calculations required are described in the following 

paragraphs. 

For the sake of a simple example, a horizontal subset plane of 100 (i.e., 10 

x 10) blocks, a maximum of three levels open in any time period, and an upper limit 

of three time periods in any linear program has been selected from the total ore body 

block grade model. The subset will be used to show the input data for solving the 

schedule problem in the following sections. 

Each row of the three-dimensional array of data contains the x, y, and z co

ordinates of the mid-point of a block, together with the average grade and the 

tonnage above the cut-off grade in that block. 

The data used in this example are: 

cut-off grade 0.2 glt 
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specific gravity 

ore mining costs 

waste mining costs 

processing costs 

price of gold 

2.74 tlm3 for both ore and waste 

£ 3.00/tonne 

£ 1.50 / tonne 

£ 4.50 / tonne 

£ 9,500/ kg 

The total tonnage of each block is: 20 x 20 x 10 x 2.74 = 10960 tonnes 

The tonnes of waste in each block can be calculated as: 

10960 - ore tonnage in block. 

To illustrate the revenue calculations consider the following record extracted 

from the data file : 

1500.00 750.00 55.00 3.25 3200 

i.e. block is centred on co-ordinates (1500, 750, 55) and contains 3200 tonnes of ore 

above cut-off grade at an average grade of 3.25 g/t. The revenue value of this 

particular block is: 

Amount of waste = 10960 - 3200 = 7760 tonnes 

Cost of mining waste = 7760 x 1.50 = £11640 

Cost of mining ore = 3200 x 3.00 = £9600 

Processing cost = 3200 x 4.50 = £14400 

Value of contained gold = 3200 x 3.25/1000 x 9500 

= £98800 

Net revenue = 98800 - 11640 - 9600 - 14400 

= £63160 

Blocks with missing or unestimated grades and tonnages are recorded as -999.0 

in the data file and are regarded as waste for the purpose of calculating revenue 
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values, i.e. they are treated as 10960 tonnes at 0.0 g/t. (most of these data are around 

the edges and can be deleted from the file to reduce the number of blocks). 

In order to show the applicability of the methodology used in the current study, 

two example solutions are summarized in the following sections. 

Some information and the results of planning with three production periods are 

shown in the tables and figures throughout the following sub-sections of this Chapter. 

Two matrices are used during the process: one representing the states of the blocks 

(mined or not mined) as shown in figure 44 where the removed blocks are 

represented by 1, while the remaining blocks are represented by O. The other matrix 

represents the fmal coding of the removed blocks as shown in figure 45 where, 1,2,3 

represent the sequential removal of blocks during the three different production 

periods. In both matrices, the blocks outside the optimum pit plan are represented by 

N3 + I (Le. the number of levels plus one in the program), i.e. lOin this particular 

example. 

2.2 Determination of the optimum pit limits 

The optimum pit limits are found using the parameterization technique. The following 

parameters are required : cut-off grade, slope angle and the planning parameters. The 

application of an algorithm to the block grade model yields a set of technically 

optimum nested pits, one of which will be the economic optimum for a given set of 

economic parameters. 

The parameterization technique can produce a set of nested pits from a block 

grade model comprising 100,000 blocks in approximately 30 seconds of CPU time 

on a Sun workstation. The results are stored in a number of files to be used by other 

programs. The file used in the following sections contains a two-dimensional plan of 

numbers representing the levels and shows the number of blocks to be mined in each 

vertical column to obtain the maximum profit. The two-dimensional representation 

of the optimum pit plan is shown in figure 39. 
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2.3 Selection of the final pit 

A pit plan file containing the total number of pit plans generated in the previous 

section is used to determine the pit with the highest profit. This pit determination 

requires the transformation of the block grade matrix into a revenue file matrix which 

can be scheduled. 

The simple revenue formula described in Chapter 2, as well as in the numerical 

example in section 2.1 of this Chapter, is used to determine the pit with the highest 

profit as shown in table 1. The data required are the price of the metal, the mining 

costs and the processing costs. 

pit number 
********* 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

value 
***** 
-1.644 
29.820 
30.464 
39.868 
69.431 

105.049 
628.203 
746.419 
793.935 
949.353 

1035.996 
1590.774 
1743.745 
2400.809 
2431.968 
2623.167 
2780.683 
3007.691 
3072.965 

the maximum pit(i) and its value are : 

19 3072.965 

Table 1 : Pit plans evaluation 
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The plan of the pit with the maximum profit is shown in figure 39. 

7 7 7 7 7 7 7 7 7 7 
7 5 5 5 5 5 5 5 5 7 
7 5 3 3 3 3 3 3 5 7 
7 5 3 1 1 1 1 3 5 7 
7 5 3 1 0 0 1 3 5 7 
7 5 3 1 0 0 1 3 5 7 
7 5 3 1 1 1 1 3 5 7 
7 5 3 3 3 3 3 3 5 7 
7 5 5 5 5 5 5 5 5 7 
7 7 7 7 7 7 7 7 7 7 

Figure 39 : The plan of the pit with the maximum profit 

2.4 Production scheduling 

In general production scheduling procedures determine which blocks should be 

removed in each mining period subj ect to the mining and milling constraints so as 

to maximize the Net Present Value of the mine. 

Because of the large number of blocks in most orebody block models it is 

often not practical to optimize a schedule which simultaneously includes the entire 

model covering all periods of the mine life and all types of mining constraints. 

However, it is possible to divide the mining process into time periods. The periods 

can be weeks, months or years. As explained in the previous Chapters the aim of 

production scheduling is to find the best set of blocks per period that leads to an 

overall optimum or a solution that is close to the optimum (near-optimum). 

The approach used to solve the scheduling problem is a combination of three 

priority modules comprising: Waste Stripping module, Linear Programming module 

and Simulation module each of which includes the relevant physical and economic 

constraints. 
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The following parameters were specified for this example: 

250,000 t/year minimum ore production requirement 

500,000 t/year maximum ore production capacity 

1,000,000 t/year total (ore + waste) capacity 

Discount rate 10 %. 

The above parameters are subject to change. The capacity values must be 

varied proportionally with the number of blocks in the subset treated in more than 

one time period. This is to avoid false violation of capacity constraints (see also 

section 6 in Chapter 4). 

A brief illustration of the algorithms is provided in the flow chart in figure 40. 

A more comprehensive explanation with results is provided in subsequent sections. 

The modules are set to run for three production periods (ippr), and a limit of 

three time periods (tp) in any linear program. The determination of an optimal mine 

schedule using the criterion of maximum Net Present Value is the target for each 

production period. 

To start the scheduling part of the software a subset of blocks to be optimized 

is specified fITst. The co-ordinates of the subset should be within the co-ordinates x, 

y and z of the optimum pit limits. The total number of blocks (itbc) of the subset to 

be optimised, the possible total number (itnc) of constraints involved and the number 

of blocks (nbp) to be mined per time period are calculated. 

On calculation of these parameters the program proceeds by calling the 

stripping module (STRIP) to expose a minimum ore tonnage (MOT) before the start 

of any production period. The minimum ore tonnage is a set of blocks specified by 

the user and determined by the module as accessible ore blocks to be exposed before 

production starts. 
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If this condition is not satisfied the process is repeated until the condition is 

satisfied. The waste stripping module proceeds by formulating the subset of blocks 

to be used in the next module (LP). 

The subset of blocks is then transformed into table format and optimized by 

the LP module. If there is no solution to the subset of blocks within the LP module, 

control is returned to the waste stripping module where more stripping takes place. 

However, if there is a solution then the blocks (BK) selected to be removed in each 

time period, are put into table format in terms of co-ordinates and control is sent 

forward to the simulation module. 

The simulation module (SIMUL), then removes the blocks scheduled for the 

frrst time period, adjusts and checks the minimum ore tonnage of the new subset of 

blocks, then returns the control either to the linear programming module for more 

planning or to the waste stripping module for more stripping. 

The process is repeated by iteration between the three modules for the total 

number of production periods. Intermediate results for the different sections of the 

scheduling part of the software can be obtained for each iteration. 
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ll'R - 0 
IPPR -3 

IFLAG -0 
X.Y.Z 

Figure 40 General structure of the schedule model 

------------------- Chapter 6: Case study 



----------------------page 149-----------------------

2.4.1 Waste stripping module 

The selection of the waste blocks to be mined prior to production is, in general, a 

trade-off between minimizing the amount of waste material removed and maximizing 

the value of the ore blocks exposed at the end of the pre-production stripping. 

This module is used only when required to expose a minimum ore tonnage at 

the start of each production period. This would normally be called a pre-production 

module and would be used to schedule waste and overburden and provide access to 

ore blocks. The main steps of the waste stripping module are summarized in figure 

41. 

Waste blocks have to be removed at some time, either during the same period 

that an ore block is mined or at least one period before, i.e. waste blocks directly 

or indirectly overlying ore blocks must be assigned high priority coefficients so that 

they will be mined first. 

To establish the priority of the various blocks to be exposed as ore blocks, the 

grade and the number of exposed sides of blocks are used as constraints (all 

constraints are used simultaneously). 

To run the module for this example the following data were specified: 

1. A minimum ore tonnage to be mined is specified and is translated by the program 

into the number of accessible ore blocks. 

2. A guess of a total number of blocks at a cut-off of 0.2 g/t, that are likely to sum 

up to the minimum ore tonnage specified. The user is then repeatedly prompted to 

provide a better estimate if this tonnage is not met by the current number of blocks, 

until it is. The current module is able to expose any number of blocks up to the total 

number of blocks within the optimum pit plan if necessary. 
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Figure 41 : Main steps of the waste stripping model 
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In due course, this interactive part of the software can be automated through 

a formal iterative numerical scheme. When the requirement is satisfied control is 

passed forward to the LP module for further planning. The internals of the current 

interactive iterative scheme have as follows : 

The selected blocks (BK) are examined one by one. If the grade of a minable 

block is greater than or equal to the cut-off grade a priority coefficient is assigned 

to that block depending first of all on the number of its sides that are currently 

exposed. In a similar way a priority coefficient is assigned to the same block 

depending on its grade value. 

The procedure continues until the minimum ore tonnage requirement is 

satisfied. By then all minable blocks (nnb) should have been examined and assigned 

a priority number. The result of such an operation for 20 minable blocks is shown 

in table 2. 

Selected : Exposed : Grade : Priority of : 
blocks : sides g/t blocks 

-----------------:--------------:------------:------------------: 
11 2 0 2.100 9 
212 0 2.200 8 
312 0 4.900 3 
412 0 3.300 7 
512 0 7.900 '2 
612 0 3.600 6 
712 0 1.900 10 
812 0 1.900 10 

Table 2 : Order of priority of blocks 
(continued ... ) 

------------------------ Chapter 6: Case study 



------------page 152 ------------

912 
1012 
122 
222 
322 
422 
522 
622 
722 
822 
922 

1022 

o 4.800 
o 3.600 
o 2.100 
o 3.300 
o 0.900 
o : 16.100 
o 1.800 
o 3.600 
o 3.700 
o 3.600 
o 1.900 
o 3.600 

Table 2 ( ••• continued) 

4 
6 
9 
7 

12 
1 

11 
6 
5 
6 

10 
6 

In this example the ore blocks are not exposed at the beginning of the first 

production period. As can be seen in table 2, the priority classification is mainly 

based on the grades of the blocks instead of their exposed sides. Block (4,2,2) with 

grade 16.10 g/t, has priority number 1. The priority is given in that order until the 

last block with the lowest grade is given the smallest priority number i.e. block 

(3,2,2) with a grade 0.90 glt has priority number 12. 

The blocks would have been assigned priority numbers in a similar way if 

classification had been based on exposed sides. The block with the highest number 

of exposed sides would have priority number 1 and so on. It is important to note that 
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the basis of classification rests entirely with the software and this can lead to 'mixed' 

prioritization based on both grade and exposed sides as shown in table 3. 

: Selected : Exposed : Grade : Priority of 
blocks sides g/t blocks 

:----------------:--------------:------------:-------------------: 
1 1 2 
812 

1010 2 
823 
224 
624 
724 
824 
924 
734 
834 
294 
635 
735 
835 
645 
745 
845 
655 
336 

3 
4 

.3 
4 
3 
3 
1 
o 
2 
3 
3 
3 
2 
o 
o 
2 
2 
2 
4 
2 

2.100 
1.900 
1.900 
3.000 

: 3.700 
2.200 
2.100 
1.900 
2.900 
1.900 
1.900 
3.100 
2.100 
3.400 
3.000 
2.000 
2.200 
2.200 
3.600 
1.900 

2 
1 
2 
1 
2 
2 
4 
6 
3 
2 
2 
2 
3 
4 
5 
3 
3 
3 
1 
3 

Table 3 : Mixed prioritization of blocks 

The minable blocks (nnb) are then exposed in descending order of their 

priority. In cases where a mixed classification using both constraints has occurred, 

the blocks with exposed sides are prioritised first (based on the number of their 

exposed sides) and the rest of the blocks are prioritised based on their grades. Once 

the blocks to be exposed are selected (table 2). The blocks which obstruct access to 

those blocks are removed and assigned the time period number in which they are 

removed as shown in figure 44. 
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The removal of blocks in this module is based on geometrical constraints. The 

geometrical constraints for this module are: 

- a block can only be mined if the five blocks above it have already been mined 

- the slope angle of 45 degrees must be maintained 

Removed blocks are generally blocks of zero or low grades within the 

optimum pit plan. 

A successful run of the module will expose the ore blocks and, create access 

to them and will reduce the number of constraints in the next module (LP). After 

exposing the selected ore blocks the module will formulate the subset of blocks to 

be used in the next module (LP). In order to minimize movement of equipment, the 

blocks added to the subset are the closest blocks to those exposed in the waste 

stripping module. 

Pre-production stripping usually happens in the first year of operation and it 

would be rare for it to be conducted during the productive life of the mine. However, 

if it does happen during the time horizon of the scheduling algorithms then the 

removed blocks are always considered as part of the current production period. 

2.4.2 Linear programming module 

The linear programming (LP) module optimizes ore removal of a subset of blocks 

from the orebody block model and, as such, it handles the physical and economic 

constraints. The Lp_solve source code described in Chapter 3, section 2.2.2 was 

incorporated into the author's software, to solve the LP part of the work. 
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To take advantage of the general LP solving capability of Lp_solve, it is vital 

that the capacity constraints of the mining problem formulation be manipulated to 

conform to the structure of the access constraints as stated in Chapter 4. The 

constraint matrix will then have a chance of being unimodular and result in integer 

solutions automatically without Lp _solve resorting to its computationally demanding 

branch-and-bound Integer Linear Programming (ILP) solver. The way to achieve this 

is to apply the Row-Echelon Form, Bronson (1989). 

The Row-Echelon Form can only be adopted for a square matrix. 

Unfortunately, the mining problem gives a non-square matrix and so the Row

Echelon Form cannot be applied to it. Branch-and-bround is the only way forward 

and requires some additional constraints to the current formulation, for example, the 

number of blocks to be mined per period (NB(t». If all blocks are of equal size then 

the following inequalities, need to be considered. 

- Block limitation 

Nz Ny Nz<2) N 

E E E bi } k(t) :S ENB(t) 
i=1 j=1 k=Nz<I) i=1 

V t=l, .. ,tp 

- Minimum number of blocks per period, if required: 

V t=l, .. ,tp 

Where : NB - is the number of blocks being considered, with 

N = Nx x Ny (number of blocks in x and y directions) 

Nrnin - is a minimum number of blocks required per period. 

Finally the exclusion constraint, so that each block can only be mined in one time 

period. 
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'if ij,k 

Solving the problem as a Mixed Integer Linear Program (MILP) using branch

and-bound and Lp _solve, some or all of the variables have to be declared as integers. 

In the current problem, it is necessary for all the variables to be specified as integers. 

As the number of variables increases it becomes increasingly difficult to achieve a 

feasible solution in a reasonable time. 

The scheduling is done for three (3) time periods in any linear program for a 

subset of blocks and a maximum of three levels open in any time period. Seven 

physical and economical limitations constraints have been used on the mining 

problem (see Chapter 4 for more details): 

- Two access constraints per block : Type 1: One block above and one next are 

already mined, type 2: one block above and four around have been mined 

- One block limitation constraint per time period 

- One exclusion constraint per block 

- Three capacity constraints 

The idea of solving the problem in a series of subsets of blocks, subject to 

constraints, reduces the size of the problem. As a result the storage requirement and 

processing time are reduced. 

The specification of the number of blocks (nbp) to be scheduled per period 

depends on several parameters such as : - The number of diggers (machinery), 

operators, weather conditions, stock control, market conditions, deposit grade map, 

etc. With respect to all these factors, nbp can be worked out such that each block 

contains 5-10 % of the total tonnage of the deposit, Dowd (personal communication). 
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The nbp for the current study is taken to be the number of blocks on one level (x*y) 

of the deposit for each production period. 

The main steps of an examination of the subset of blocks in the context of the 

LP module are given in figure 42. 

The above fonnulation generates a simplex matrix for solution of LP module 

as MAT(169 ; 324) i.e. 169 constraints and 324 variables using the waste stripping 

module. The matrix includes the elements of the constraint matrix, the equation of 

the objective function and the integer declaration of the variables being considered. 

The computer processing for the above subset of blocks was completed for three 

production periods. 

The elements of the constraint matrix generated depend on the accessibility of 

blocks. If a block is accessible then the accessibility constraints for that particular 

block are eliminated from the matrix. A block is accessible if the block above it and 

at least one of the blocks surrounding it on the same level have already been 

removed. However, if a block is on the uppennost level (level one) then it is always 

accessible because the blocks above it are air blocks. The module considers all air 

blocks are removed first. 

The module can indicate whether or not there is a solution. In either case 

control is always returned to the scheduling algorithm where decisions can be made. 

No solution to the MILP problem may be caused by too large a number of 

blocks, by one of the constraints not being satisfied. In order to continue the 

planning process more ore blocks must be exposed. In such cases control is returned 

to the waste stripping module where more waste blocks are stripped to expose more 

ore blocks. 
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Figure 42 Main steps of the linear programming module 
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However, in the example quoted here an optimum solution exists. The LP 

module generated an optimal solution for the three time periods used. The results 

were the values of the X decision variables which represent the status of the blocks 

to be mined from any specific subset of blocks and the profit that can be gained 

from that subset of blocks during the three time periods. 

The X decision variables are converted into their corresponding block co

ordinates (i,j,k). Due to the exclusion constraint, each block of the subset can only 

be mined in one time period. The method of mining is by push-back. The starting 

block is always the last block to be mined. As can be seen in table 4, the block with 

co-ordinates i=3, j=9, k=3, is considered first in the LP solution, where as it is in 

fact the last block to be mined. 

Scheduling Production Period : 1 

LinProg Periods 3 

No of Removed Block : 36 

-------------------------------------------------------
Time 

Period 1 
Time Time 

Period 2 : Period 3 

BLOCK CO-ORDINATES I J K 

393 
493 
312 
512 
612 
912 

10 1 2 
422 
722 

1022 
432 
932 
142 

293 
593 
893 
993 
412 
712 
222 
622 
822 
132 
232 
732 
832 

693 
793 
1 1 2 
212 
812 
122 
322 
522 
922 
332 
532 
632 
342 

Table 4 : Blocks produced in the first production period 
(continued .•. ) 
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242 
942 
452 
652 
162 
462 
562 
862 
962 
1062 
172 
272 
372 
572 
1072 
482 
682 
982 
392 
492 
992 

1 10 2 
3 10 2 

1032 
442 
542 
252 
352 
552 
752 
852 
262 
972 
282 
382 
582 
1082 
292 
592 
692 
792 
892 

: 1092 
: 2 10 2 
: 7 102 
: 8 10 2 

642 
742 
842 

1042 
152 
952 

1052 
362 
662 
762 
472 
672 
772 
872 
182 
782 
882 
192 

4 102 
5 102 
6 102 

9 102 
: 10 10 2 

Table 4 ( .•• continued) 

2.4.3 Simulation module 

The simulation module is used after the LP module to remove the blocks scheduled 

for the first time period of each run, and to adjust and apply the movement 

constraint. The main steps of the module are explained in the simulation flow chart 

in figure 43. As mentioned in Chapter 4, only the blocks (nnb) of the first time 

period (tp) produced in the LP module (table 4), are removed from the orebody. The 

remaining blocks for time periods 2 and 3 are then considered as members of the 

next subset of blocks. 
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NO 

TP =1 
BK =1 
NBP=4 
1NB=12 

NO 

.__----...... YES 

ffiL-O 
Be -0 

MOT-20 

~---------------

RESUL T SUBSET 

OF BLOCKS & 

MIN. ORE TON. 

Figure 43 : Main steps of the simulation module 
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The blocks obstructing the access to those blocks selected for removal during the 

first time period of the current production period are removed. The removal of 

blocks in this module is based on the usual geometrical constraints : 

- a block can only be mined if the five blocks above it have already been mined 

- a block is accessible only if the block above it and at least one of its 

surrounding blocks have already been mined 

- the slope angle of 45 degrees must be maintained 

At this stage of execution the total number of blocks to be mined from the 

orebody (within the waste stripping module and the LP module) represents the 

scheduling of the first production period. The blocks are removed from the orebody 

block model and assigned the number of the production period in which they are 

removed as shown in figure 44. Only levels reached by the scheduling operation of 

the total matrix are presented here to show the removed blocks for each production 

period. 

The development of the next subset of blocks for the LP module (production 

period 2) continues starting from the last block of the optimum set of blocks 

removed in the previous period, (the coordinates of the last block mined are passed 

automatically to the following section). 

In order to minimize equipment movements from one bench to another, the 

subset is adjusted with the closest blocks to those remaining from periods 2 and 3. 

The minimum ore tonnage (MOT) is then checked for the new subset of blocks 

before control is returned either to the waste stripping module or to the LP module. 

If the minimum ore tonnage is less than that specified, the implication is that 

more stripping must be undertaken. In such cases control is returned to the stripping 

module where more waste blocks are stripped. On the other hand, if the minimum 
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ore tonnage of the blocks selected is met, the subset of blocks is submitted directly 

to the LP module for further scheduling. 

The original fIrst guess of the number of blocks representing the minimum ore 

tonnage remains the same for all production periods unless the remaining blocks 

within the optimum pit plan during the planning process are fewer than that number. 

In that case control is sent to the waste stripping module, where the number of 

blocks can be re-adjusted to meet the requirements. 

level = 1 
RIC: 1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 1 1 1 1 
5 1 1 1 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 

Figure 44 : Coding of the blocks removed in the first production period 
(continued ••• ) 
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level = 2 
RIC: 1 2 3 4 5 6 7 8 9 10 

1 0 0 1 0 1 1 0 0 1 1 
2 0 0 0 1 0 0 1 0 0 1 
3 0 0 0 1 0 0 0 0 1 0 
4 1 1 0 0 0 0 0 0 1 0 
5 0 0 0 1 0 1 0 0 0 0 
6 1 0 0 1 1 0 0 1 1 1 
7 1 1 1 0 1 0 0 0 0 1 
8 0 0 1 1 0 1 0 0 1 0 
9 0 1 1 1 1 0 0 0 1 0 

10 1 0 1 1 0 0 0 0 0 0 

level = 3 
RIC: 1 2 3 4 5 6 7 8 9 10 

1 10 10 10 10 10 10 10 10 10 10 
2 10 0 0 0 0 0 0 0 0 10 
3 10 0 0 0 0 0 0 0 0 10 
4 10 0 0 0 0 0 0 0 0 10 
5 10 0 0 0 0 0 0 0 0 10 
6 10 0 0 0 0 0 0 0 0 10 
7 10 0 0 0 0 0 0 0 0 10 
8 10 0 0 0 0 0 0 0 0 10 
9 10 0 1 1 0 0 0 0 0 10 
10 10 10 10 10 10 10 10 10 10 10 

Figure 44 ( ••• continued) 
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The process will then continue for the remaining production periods. The 

removed blocks will always be assigned the number of the period in which they 

are removed. 

After a successful run of the first production period the scheduling algorithm 

will continue for the next production period by iteration between the three modules 

until an optimal solution is found for each period. Table 5 and table 6 show the 

results of the X decision variables of the LP module for production periods 2 and 3. 

Scheduling Production Period : 2 

LinProg Periods 3 

No of Removed Block : 36 

Time 
Period 1 : 

Time Time 
Period 2 : Period 3 

BLOCK CO-ORDINATES I J K 

243 
443 
543 
943 
253 
263 
963 
273 
473 
283 
383 
483 
583 

643 
743 
843 
353 
753 
853 
363 
463 
663 
373 
573 
673 
773 

343 
453 
553 
653 
953 
563 
763 
863 
973 
683 
693 
793 
893 

Table 5 : Blocks produced in the second production period 
(continued •.• ) 
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983 
293 
993 
412 
222 
622 
822 
232 
732 
442 
542 
252 
352 
752 
852 
262 
472 
282 
582 
692 
792 

2 102 
7 102 

873 
783 
883 
593 
132 
832 

1032 
642 
742 
842 
552 
362 
662 
672 
772 
872 
972 
782 
882 
1082 
892 

1092 
8 102 

1 1 2 
212 
712 
812 
122 
322 
522 
922 
332 
532 
632 
342 

1042 
152 
952 

1052 
762 
182 
192 

5 102 
6 102 
9 102 

: 10 10 2 

Table 5 ( ••• continued) 
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Scheduling Production Period: 3 

LinProg Periods 3 

No of Removed Block : 36 

Time Time: Time 
Period 1 : Period 2 : Period 3 

BLOCK CO-ORDINATES I J K 

364 
464 
564 
964 
374 
474 
574 
484 
984 
294 
394 
494 
994 

754 
854 
864 
974 
584 
684 
594 
694 
794 
894 
423 
743 
353 

554 
654 
954 
264 
664 
764 
274 
674 
774 
874 
284 
384 
784 

Table 6 : Blocks produced in the third production period 
(continued ••• ) 
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523 
623 
723 
823 
923 
433 
533 
733 
833 
933 
343 
643 
843 
853 
363 
463 
563 
373 
573 
883 
522 
922 
832 

753 
663 
863 
673 
773 
873 
973 
683 
783 
593 
693 
793 
893 
712 
132 
1032 
742 
662 
672 
772 
872 
782 
8 102 

884 
223 
323 
233 
333 
633 
453 
553 
653 
953 
763 
1 1 2 
212 
812 
122 
322 
332 
632 
1052 
762 
5 102 
6 102 

: 10 10 2 

Table 6 ( ••• continued) 

The fmal coding of the removed blocks within the waste stripping and the simulation 

modules during the whole scheduling process are shown in figure 45. 1,2,3 represent 

the sequential removal of blocks during the three different production periods. 
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level = 1 
RIC: 1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 
4 1 1 1 1 1 1 1 1 1 1 
5 1 1 1 1 1 1 1 1 1 1 
6 1 1 1 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 

level = 2 
RIC: 1 2 3 4 5 6 7 8 9 10 

1 0 0 1 2 1 1 3 3 1 1 
2 0 2 0 1 3 2 1 2 3 1 
3 0 2 3 1 2 3 2 3 1 3 
4 1 1 2 2 2 2 3 2 1 2 
5 2 2 2 1 2 1 2 2 2 3 
6 1 2 2 1 1 3 3 1 1 1 
7 1 1 1 2 1 3 3 3 2 1 
8 2 2 1 1 2 1 3 2 1 2 
9 2 1 1 1 1 2 2 2 1 2 

10 1 2 1 1 3 0 2 3 2 0 

level = 3 
RIC: 1 2 3 4 5 6 7 8 9 10 

1 10 10 10 10 10 10 10 10 10 10 
2 10 0 0 0 3 3 3 3 3 10 
3 10 0 0 3 3 0 3 3 3 10 
4 10 2 3 2 2 3 0 3 2 10 
5 10 2 3 3 3 0 0 3 3 10 
6 10 2 3 3 3 3 0 3 2 10 
7 10 2 3 2 3 3 0 0 3 10 
8 10 2 2 2 2 0 0 3 2 10 
9 10 2 1 1 3 0 0 3 2 10 

10 10 10 10 10 10 10 10 10 10 10 

Figure 45 : Coding of the removed blocks to production periods (1,2 and 3). 
(continued ... ) 
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level = 4 
RIC: 1 2 3 4 5 6 7 8 9 10 

1 10 10 10 10 10 10 10 10 10 10 
2 10 0 0 0 0 0 0 0 0 10 
3 10 0 0 0 0 0 0 0 0 10 
4 10 0 0 0 0 0 0 0 0 10 
5 10 0 0 0 0 0 0 0 0 10 
6 10 0 3 3 3 0 0 0 3 10 
7 10 0 3 3 3 0 0 0 0 10 
8 10 0 0 3 0 0 0 0 3 10 
9 10 3 3 3 0 0 0 0 3 10 

10 10 10 10 10 10 10 10 10 10 10 

Figure 45 ( .•. continued) 

The results of the optimised discounted alternatives, at a time value of money of 

10%, are shown in table 7. 

: Prod. Sched. : Discounted : Discounted : Discounted 
Periods Period 1: Period 2: Period 3 

1 
2 
3 

584.51 
425.13 
413.13 

239.03 
202.89 
196.64 

62.17 
65.97 
64.23 

Table 7 : Discounted alternatives in each production period 

It can be seen from figure 45 and table 7 that the best way of mining the 

orebody is to mine the most profitable parts during the early stages of the mining 

operations. Based on the above results, we can, therefore conclude that the earlier the 

waste stripping is done, the more practical and profitable, scheduling becomes. 
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However, the difficulty encountered with the Lp_solve coding is that it can 

solve general LP problems up to 30,000 variables and 50,000 constraints. But solving 

problems of similar size with integer variables is much more difficult. With binary 

variables, Lp_solve usually provides fast answers for up to about 100 variables. 

Sometimes Lp_solve can handle much larger problems, but then its success depends 

critically on having a problem definition that results in a lot of integer values 

immediately. Such a definition may be largely due to chance. Even commercial 

codes cannot provide such a guarantee. In these cases, special codes, or heuristics 

have to be resorted to. 

The particular approach adopted in this research subdivides the total problem 

into a number of overlapping sub-problem and finds an optimum solution to each of 

these sub-problems. There is no a priori guarantee that such an approach provides 

an optimum solution to the total problem. 

To test the assertion that the piecewise approach provides an acceptable 

solution a number of comparisons were made on a relatively large problem solved 

using the approach described in this thesis and also solved using XPRESS-MP which 

is a commercial, State-of-the art package devised by Proll (1995); the version 

available here is capable of handling problems of up to 10,000 constraints and 

15,000 variables. XPRESS-MP has two major components; a modeller and an 

optimiser. The modeller takes a linear or integer linear programming problem 

specified in its modelling language and produces the input file for the optimiser. The 

modelling language is very powerful but requires the problem to be specified in a 

completely different way to Lp_solve. In order to change the model as specified for 

Lp_solve into an acceptable model for XPRESS-MP a substantial amount of expert 

hand-editing was required. 

An array from the case study of 1430 (e.g., 26 x 55) blocks, a maximum of 

two levels open in any time period and an upper limit of two time periods in any 

linear program has been considered. A simplex matrix for solution of the LP 
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module is defined equal to MAT(9,742 ; 5,720) using the waste stripping module. 

The matrix was generated on GPSb (General Purpose Server). The model can 

generate any mining problem size as long as enough computer memory is available. 

The computer facilities available at the University of Leeds (i.e. GPS, GPSO, GPSb 

(General Purpose Server), the CIF (Computationally Intensive Facility) and the Sun 

servers) are more flexible with integer matrices than with real matrices. 

Thus it was only possible to complete one run of the model with 9,742 

constraints and 5,760 variables. For this run the optimiser required approximately 5 

minutes of computer time on a Sun Sparc L workstation. 

Because of the large output file of the results, only a brief output summary of 

the results is described below: 

The optimum solution was reached within the first iteration ( first possible 

solution) and the 16th iteration ( final solution) yielding an objective function value 

equal to -1694.37 which represents a net loss if the operation was carried out for the 

two levels of the deposit considered. 

2.5 Graphic representations 

The characteristics of each pit design (metal content, total tonnage, average grade, 

stripping ratio, etc ... ), are easily calculated and interpreted. It is much more difficult 

to provide a representation of the approximate shape and location of the current 

state of the deposit. However, pit shapes are always determined by boundaries and 

these can be represented by contour plans, three-dimensional representations, cross

sectional views, etc. 
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Graphic representations of the orebody and the optimal pit selected during the 

optimization procedure are generated with the aid of routines from the UNIRAS 

package available on the University of Leeds Sun servers. 

The UNIRAS graphics package offers a wide variety of facilities which are 

well documented (references and user manuals). These facilities are set up as 

independent routines that perform specific functions, for example: UNIGRAPH, 

UNIMAP. A graphics display on the screen as well as hard copies can be obtained 

by the user. 

The principal routines used in this work are: 

UNIGRAPH routine: an interactive sub-program from the UNlRAS package 

designed to draw hard and smooth curves, pie charts, etc... . 

UNIMAP routine: an interactive sub-program from the UNIRAS package 

designed to draw hard and smooth two-dimensional contours, three-dimensional and 

four-dimensional views, cross-sections etc... . 

These UNIRAS routines have been incorporated into a program that produces 

graphics representations of the numerical data for any pit plan. All graphics display 

programs developed for this research were written in Fortran 77. The user has the 

choice of setting up the following figures : 

1. Selection of the final pit (graph) 

2. Two-dimensional contouring of mining levels 

3. Three-dimensional pit representation of the optimum pit plan 

4. Cross-section views of pit elevations 

5. Graphics display of the part of the pit that has been mined. 
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Each graphics display routine is described In the following sections and 

examples are given to illustrate their use. 

2.5.1 Selection of the final pit 

This routine provides a graphics representation of the optimal pit, i.e. the pit that 

yields the maximum profit. The display consists of the number of pits (X-axis) and 

the pit values (Y-axis) and an example is shown in figure 46. 
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Figure 46 : Selection of the final pit 
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2.5.2 Two-dimensional contouring of mining levels 

This routine provides a graphics display of the two-dimensional plan-contour that 

represents the optimal pit limits. An example is shown in figure 47. 
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Figure 47 : Two-dimensional contouring of mining levels 
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2.5.3 Three-dimensional representation of the optimum pit plan 

The graphics display provided in this routine is a three-dimensional view of the 

optimal pit design as shown by the example in figure 48. The angles that give the 

position of the three-dimensional space representation of the pit shape (Alpha Beta 

and the Distance) are set up in the source code of the routine: 

x - axis represents the number of blocks in the east-west direction. 

Y-axis represents the number of blocks in the north-south direction . 

Z -axis represents the number of blocks in the vertical direction (the depth of 

the pit) 

o 
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Figure 48: Three-dimensional representation of the optimum pit plan 

----------------------- Chapter 6: Case study 



------------------------ page 177---------------------------

2.5.4 Cross-sectional views of pit elevations 

The graphics display provided in this routine is a pit cross-section in the east-west 

(E-W) direction. The coordinates of the cross-section are initialised in the source 

code of the routine. Figure 49 shows an example of a cross-sectional disp lay in the 

vertical direction. 
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Figure 49 : Cross-section view of pit elevations 
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2.5.5 Display of pit that has been mined 

The three-dimensional representation was also extended to provide a three

dimensional view of the mined out area of the orebody. An example is shown in 

figure 50. 

t 

Figure 50 : Display of pit that has been mined 
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2.6 The validation of the methodology 

The numerical accuracy of the software has been compared and demonstrated by 

running the same example MAT(169 ; 324) of section 2.1 of this Chapter in the 

XPRESS-MP package. Only one run was completed for one production period. The 

results for the three time periods within it are shown in appendix 1, along with the 

Lp_solve solution. The two solutions were identical, thus validating the piecemeal 

approach. 

Refering to the two given solutions, the results can best be explained by 

comparing the optimum paths of blocks selected for each time period. Considering 

position 2 in the value column of solution 1 and the same position in the first row 

of the X decision variables of solution 2, we can see both solutions indicate that the 

same block will be mined in the first time period. The corresponding co-ordinates 

i=3, j=9, k=3 of this block are those shown in table 4 in the first row of the column 

of the first time period. The rest of the blocks are analysed in a similar way. 

The need to further validate the solution of the current study against other 

methodologies from the literature and industrial practice is recognised and will need 

to be pursued during further development of the software, outside this work. 

3. Conclusion 

The aim of the present study was to develop a mathematical model for optimizing 

the schedule for the entire life of a mine. The model developed represents an 

effective tool for scheduling waste and ore production for long-term planning. 

The results obtained from its application on an example open pit mine 

confmns the high economic effectiveness of the early user-activated waste stripping 
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strategy with the overall objective of maximizing the profit or the Net Present Value. 

The division of the entire deposit into subsets of blocks helps to reduce the size of 

the mining problem in terms of computing memory and processing time as seen in 

the previous sections. 

The model is simple to use and can account for varying market conditions 

through several parameters set by the user making parametric studies possible 

without interfering with the computer code. Although the model in its present state 

can only be treated as a prototype, it is fully functional and requires minimum 

programming skills to operate. Developments in the area of user interface and 

diagnostics will need to be made in the future. 

The graphics used in the current study to depict the results are not critical to 

the software, but have been incorporated for completeness of the package. They can 

be extended to include the display of different windows, window menus, different 

graphics representations within one run etc. Some of the routines which produce the 

graphics shown in figures 46, 47, 48, 49 and 50 may have slight errors in 

representing the appropriate shape when considering different data sets. Such errors 

can be rectified by more precise calls of the routines, but these will not affect the 

main logic of the results or even the graphics representations themselves. 

The piecemeal LP methodology has been compared with a high capacity 

commercial package and found to give an identical solution. 
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CHAPTER SEVEN 

Conclusions 

The growth in demand for the raw materials supplied by the mining industry has led 

to the development of increasingly lower grade deposits which requires the 

investment of a large amount of capital which must be repaid quickly as possible. 

Many studies have shown that the combination of the time value of money and the 

need to pay back the initial investment as quickly as possible require operations to 

begin with a relatively high cut-off grade which then declines over the life of the 

mine. Estimation of block grades and cut-off grades is thus essential for optimal 

mine planning. 

The aim of optimal mine planning is to determine the final pit limits for a 

deposit, together with the associated grade and tonnage, which will maximize some 

specified economic and! or technical criteria whist satisfying practical operational 

requirements. 

, 

Since the advent and widespread use of computers, open pit design has been 

approached by the application of many different methods and various algorithms, all 

with a common objective to maximize the overall mining profit within the designed 

pit limit. 

The use of computers in optimal mine planning requires a model of the 

deposit usually in the form of estimated block grades and tonnages. Optimal 

production in such a deposit means fmding the best sequence of extracting blocks 

from amongst all possible sequences. Such an operation applied to blocks within pre

determined, technically optimum pit limits will define, according to economic 

criteria, the blocks which will be removed and those which will remain. As a 

consequence the fmal, economically optimum, pit shape will also be defined. The 
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order in which the blocks are removed is said to be the optimum mining sequence 

with the maximum net present value. 

A large number of techniques have been applied in the search for solutions 

to such planning problems. The techniques consist of both rigid operational research 

methods and practical procedures which are heuristically based such as those 

described in Chapter 1. 

The Lerchs-Grossmann method, which overcomes the limitations of 

traditional pit design, uses graph theory and always finds the optimum solution for 

the case when maximum total profit is the optimising criterion. The limitation of 

computing time and the difficulty in applying variable slope angles initially made the 

method less popular than the sub-optimal moving cone method, though the Whittle 

4-D package has overcome some of these difficulties. 

The Korobov and the corrected Korobov methods give good results. The 

method uses cones to defme the shape of the pit. The cones can be arranged in any 

desired manner so that a realistic pit shape can be obtained. The optimum pit is the 

best combination of these cones. The great advantage of these methods is their 

relative simplicity and the rapid generation of solutions. Although it is not possible 

to provide a rigorous proof that the corrected form of the Korobov algorithm will 

always yield the optimal solution no counter example has yet been found. 

A single pit design based on a fixed set of costs, prices and cut-off grades 

can often provide a misleading picture of the possible working pit and of the 

mineable reserves. It is always advisable to test the sensitivity of the pit design to 

changes in all of the variables used to calculate the revenue block model. In 

addition, it is also advisable to test the sensitivity of the pit design to grade and 

tonnage estimation errors. These types of analyses could result in the need to 

generate several dozen pit designs each of which could take significant computing 

time. The problem is that optimal open pit design algorithms do not express the 
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solution parametrically, i.e. as a function of the parameters that were used to 

calculate the block model or of other design parameters such as wall slopes. A 

parametric solution to optimal open pit design, based on something other than simple 

metal content might eventually lead to a direct method of solving the problem of 

maximum net present value. 

An alternative approach used in this thesis is to parameterize the pit design 

as a function of a number of variables. This algorithm, which uses grade values 

instead of revenue values, is based on techniques of functional analysis. The aim 

of this method is to transform a parametric optimization problem with severe 

geometric constraints into a simple one with no constraints; it does not take any 

economic parameters into account. 

This technique could also be applied for the determination of mining 

sequences for the optimization of the recoverable reserves of any particular pit, 

where in economic terms the mining sequence is more important during the early 

stages and plays a major role in capital investment. 

However, the objective of parameterization is to find a complete family of 

technically optimal pits corresponding to every possible value of the total tonnage 

and the selected tonnage. The only drawback is the limitation of the slope angle of 

the cone. 

The characteristics associated with each pit design, such as metal content, 

total tonnage, average grade, stripping ratio and other information are provided in 

the form of data fIles that can be used for post-processing. Graphics views (contours, 

two-dimensional and three-dimensional) are also provided. 

The method is not rigorous, and has some weaknesses on the economic side 

when compared to other economic or revenue based algorithms. However, 

parameterization appears to be at least as good as most algorithms and better than 
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many in respect of the computing time. 

The selection of the optimum pit amongst the set of pits produced by the 

parameterization method is obtained using a simple profit function. The application 

of the profit function to each block generates a block profit matrix. Pit profit is 

obtained by summing the profit of each block mined within that pit limit. The 

definition (selection) of an optimum pit is taken to be the configuration of blocks 

whose pit profit is a maximum. 

Production scheduling is of vital importance for the operating efficiency of 

an open pit mine and is the last operation in optimal open pit design. A major 

problem in production scheduling is the determination of a mining sequence which 

satisfies the physical and economic constraints whilst ensuring a continuous feed to 

the mill in such a way as to maximize the Net Present Value. 

The optimum schedule depends on both physical and economic parameters 

which can be considered together or separately. Considering both parameters at the 

same time is computationally time consuming and, for large problems as the 

number of states increases, the solution may be impossible to attain. 

In many cases the application of a single operational research technique limits 

the solution to a problem, especially when a rigorous optimum is required for a 

problem which is subject to strict constraints. In recent years there has been a 

tendency to combine two or more different operational research methods to solve 

complicated mine planning problems. These techniques have included dynamic 

programming, computer simulation and interactive techniques, oriented graph 

simulation, simulation and linear programming. 

Such combinations of operational research techniques can split the problem 

into two parts. In this case one part uses linear programming to find the optimum 

path, whilst the other part checks the feasibility of the first solution in terms of 
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mining constraints and improves the scheduling sequence. The effect of this check 

is that the fmal linear programming solution will always be confined to blocks which 

become accessible during the period under consideration. 

The idea of 'free ore" develops the above consideration further. By 

submitting to the linear programming optimization only those blocks which are 

immediately available for mining, the constraints on precedence and accessibility of 

blocks can be eliminated. Such an approach cannot lead to a rigorous overall 

optimum in the mathematical sense but the solution is very close to such an 

optimum. 

Techniques such as linear programming suffer from the "curse of 

dimensionality" as the size of the problem increases it rapidly becomes impossible 

to handle the number of variables. The author has solved this problem by 

minimizing the numbers of variables and constraints at each stage, using a 

combination of linear programming with interactive simulation. The user-activated 

waste stripping module which is applied at the start of operations reduces the size 

of the problem during the execution of the software. This module increases the 

accessibility of ore blocks which then reduces the number of elements (constraints) 

inside the linear programming matrix. 

Such a formulation allows the determination of an optimal mine schedule 

using the criterion of maximum Net Present Value. It is believed that the algorithms 

used will yield a true practical optimum or a solution which is very close to the true 

optimum (the results presented in Chapter 6 demonstrate this). At present the 

algorithm described is limited to a workstation implementation but it is believed that 

the use of decomposition methods and approximate solution algorithms for the linear 

programming component will ultimately yield a PC version. 

Examples of the results obtained from the programs together with tables and 

figures representing removed blocks in each period and their discounted values are 
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given in detail in Chapter 6. The quick and accurate results that can be generated 

by this computer program should lead to a much more flexible approach to optimal 

open pit design and scheduling and thereby improve economic performance. 
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APPENDIX ONE 

Comparison of the results from the XPRESS-MP 

package and the lp_solve 

1. XPRESS-MP package solution 1 

The following is the solution produced by the XPRESS-MP package. The results are 

for one production period and three time periods in one linear program run. The key 

words in the following solution are : 

BS - is the basic variable, 

LL - is the lower limit, and 

UL - is the upper limit. 

Value - status of blocks (0. not mined, 1. mined) 

Problem Statistics 

Matrix mtrx2 

Objective OBJ 

RHS RHSOOOOI 

Problem has 169 rows and 324 structural columns 

Solution Statistics 

Maximisation perfonned 

Optimal solution found after 2 iterations 

Objective function value is 867.420000 

Columns Section 

Appendix 1: comparison of results 
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Number Column At Value Input Cost Reduced Cost 

C 170 x 001 BS .000000 7.690000 .000000 
C 171 x 002 BS 1.000000 7.210000 .000000 
C 172 x 003 BS 1.000000 28.720000 .000000 
C 173 x 004 UL .000000 6.910000 -.080000 
C 174 x 005 LL .000000 2.480000 .720000 
C 175 x 006 LL .000000 3.120000 .550000 
C 176 x 007 BS .000000 3.120000 .000000 
C 177 x 008 BS .000000 9.730000 .000000 
C 178 x 009 LL .000000 2.080000 .640000 
C 179 x 010 LL .000000 3.850000 .480000 
C 180 x 011 UL 1.000000 15.900000 -.620000 
C 181 x 012 BS .000000 7.730000 .000000 
C 182 x 013 UL 1.000000 28.720000 -1.780000 
C 183 x 014 BS 1.000000 9.190000 .000000 
C 184 x 015 LL .000000 4.070000 .450000 
C 185 x 016 LL .000000 2.090000 .640000 
C 186 x 017 BS 1.000000 15.470000 .000000 
C 187 x 018 UL 1.000000 9.730000 -.050000 
C 188 x 019 LL .000000 1.380000 .700000 
C 189 x 020 LL .000000 8.590000 .050000 
C 190 x 021 LL .000000 -.660000 .890000 
C 191 x 022 BS 1.000000 27.590000 .000000 
C 192 x 023 LL .000000 1.330000 .920000 
C 193 x 024 BS 1.000000 9.190000 .000000 
C 194 x 025 UL 1.000000 10.090000 -.090000 
C 195 x 026 BS 1.000000 9.190000 .000000 
C 196 x 027 LL .000000 2.090000 .790000 
C 197 x 028 BS 1.000000 9.730000 .000000 
C 198 x 029 LL .000000 6.110000 .090000 
C 199 x 030 BS .000000 9.190000 .000000 
C 200 x 031 LL .000000 3.190000 .590000 
C 201 x 032 UL 1.000000 68.310000 -5.380000 
C 202 x 033 LL .000000 .480000 .780000 
C 203 x 034 LL .000000 3.120000 .610000 
C 204 x 035 LL .000000 8.500000 .060000 
C 205 x 036 LL .000000 7.210000 .170000 
C 206 x 037 UL 1.000000 14.560000 -.500000 
C 207 x 038 LL .000000 6.350000 .260000 
C 208 x 039 BS 1.000000 37.530000 .000000 
C 209 x 040 BS 1.000000 37.530000 .000000 
C 210 x 041 LL .000000 -1.300000 1.380000 
C 211 x 042 BS .000000 7.730000 .000000 
C 212 x 043 LL .000000 8.690000 .040000 
C 213 x 044 LL .000000 2.480000 .720000 
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C 214 x 045 LL .000000 3.120000 .550000 
C 215 x 046 LL .000000 3.120000 .550000 
C 216 x 047 UL 1.000000 9.730000 -.050000 

C 217 x 048 LL .000000 2.270000 .760000 

C 218 x 049 LL .000000 1.520000 .880000 

C 219 x 050 LL .000000 7.690000 .130000 

C 220 x 051 BS .000000 7.210000 .000000 

C 221 x 052 UL 1.000000 14.560000 -.500000 

C 222 x 053 LL .000000 6.350000 .050000 

C 223 x 054 BS 1.000000 9.730000 .000000 

C 224 x 055 BS .000000 7.690000 .000000 

C 225 x 056 BS 1.000000 9.190000 .000000 

C 226 x 057 LL .000000 2.270000 .630000 

C 227 x 058 LL .000000 -.600000 1.260000 
C 228 x 059 LL .000000 9.190000 .000000 

C 229 x 060 LL .000000 4.070000 .450000 

C 230 x 061 LL .000000 2.090000 .790000 

C 231 x 062 UL 1.000000 15.470000 -.570000 

C 232 x 063 BS 1.000000 9.730000 .000000 

C 233 x 064 LL .000000 .650000 1.040000 

C 234 x 065 LL .000000 3.600000 .520000 

C 235 x 066 BS 1.000000 9.870000 .000000 

C 236 x 067 BS 1.000000 9.470000 .000000 

C 237 x 068 BS 1.000000 15.900000 .000000 

C 238 x 069 BS .000000 9.190000 .000000 

C 239 x 070 BS 1.000000 10.090000 .000000 

C 240 x 071 BS .000000 9.190000 .000000 
C 241 x 072 LL .000000 2.090000 .640000 
C 242 x 073 BS 1.000000 9.730000 .000000 
C 243 x 074 LL .000000 3.120000 .550000 

C 244 x 075 LL .000000 2.520000 .710000 

C 245 x 076 LL .000000 2.270000 .630000 

C 246 x 077 BS .000000 6.910000 .000000 

C 247 x 078 UL 1.000000 15.250000 -.550000 

C 248 x 079 LL .000000 3.120000 .610000 

C 249 x 080 LL .000000 8.500000 .060000 

C 250 x 081 BS .000000 7.210000 .000000 

C 251 x 082 BS 1.000000 14.560000 .000000 

C 252 x 083 LL .000000 6.350000 .050000 

C 253 x 084 UL 1.000000 9.190000 .000000 

C 254 x 085 LL .000000 2.180000 .640000 

C 255 x 086 LL .000000 2.090000 .640000 
C 256 x 087 UL 1.000000 15.470000 -.570000 
C 257 x 088 BS .000000 6.910000 .000000 
C 258 x 089 LL .000000 2.480000 .610000 

C 259 x 090 LL .000000 3.120000 .550000 
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C 260 x 091 BS 1.000000 3.120000 .000000 

C 261 x 092 BS 1.000000 9.730000 .000000 

C 262 x 093 BS .000000 2.270000 .000000 

C 263 x 094 LL .000000 8.200000 .090000 

C 264 x 095 BS .000000 7.690000 .000000 

C 265 x 096 BS .000000 7.210000 .000000 

C 266 x 097 UL 1.000000 28.720000 -1.780000 

C 267 x 098 BS .000000 6.910000 .000000 

C 268 x 099 UL 1.000000 9.730000 -.050000 
C 269 x 100 LL .000000 7.690000 .130000 
C 270 x 101 BS 1.000000 9.190000 .000000 

C 271 x 102 LL .000000 2.270000 .760000 
C 272 x 103 LL .000000 -.600000 1.260000 

C 273 x 104 LL .000000 2.270000 .630000 

C 274 x 105 BS .000000 7.690000 .000000 

C 275 x 106 LL .000000 6.910000 .200000 

C 276 x 107 LL .000000 .080000 1.140000 

C 277 x 108 LL .000000 2.180000 .780000 

C 278 x 109 BS 1.000000 6.990000 .000000 

C 279 x 110 BS .000000 6.550000 .000000 

C 280 x 111 LL .000000 26.110000 1.000000 

C 281 x 112 BS 1.000000 6.280000 .000000 

C 282 x 113 LL .000000 2.260000 .110000 

C 283 x 114 BS .000000 2.840000 .000000 

C 284 x 115 UL 1.000000 2.840000 -.245000 

C 285 x 116 BS 1.000000 8.850000 .000000 

C 286 x 117 BS .000000 1.890000 .000000 

C 287 x 118 BS .000000 3.500000 .000000 

C 288 x 119 BS .000000 14.450000 .000000 

C 289 x 120 UL 1.000000 7.030000 -.130000 

C 290 x 121 BS .000000 26.110000 .000000 

C 291 x 122 LL .000000 8.360000 .000000 

C 292 x 123 UL 1.000000 3.700000 -.010000 

C 293 x 124 BS .000000 1.900000 .000000 

C 294 x 125 LL .000000 14.070000 .570000 

C 295 x 126 BS .000000 8.850000 .000000 

C 296 x 127 BS .000000 1.250000 .000000 

C 297 x 128 BS 1.000000 7.810000 .000000 

C 298 x 129 BS .000000 -.600000 .000000 

C 299 x 130 LL .000000 25.080000 1.680000 

C 300 x 131 LL .000000 1.210000 .210000 

C 301 x 132 LL .000000 8.360000 .000000 

C 302 x 133 BS .000000 9.170000 .000000 

C 303 x 134 LL .000000 8.360000 .000000 

C 304 x 135 LL .000000 1.900000 .150000 

C 305 x 136 LL .000000 8.850000 .050000 
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C 306 x 137 UL 1.000000 5.550000 -.180000 
C 307 x 138 UL 1.000000 8.360000 .000000 
C 308 x 139 LL .000000 2.900000 .050000 
C 309 x 140 BS .000000 62.100000 .000000 
C 310 x 141 BS .000000 .430000 .000000 
C 311 x 142 LL .000000 2.830000 .070000 
C 312 x 143 BS 1.000000 7.730000 .000000 
C 313 x 144 BS 1.000000 6.550000 .000000 
C 314 x 145 BS .000000 13.230000 .000000 
C 315 x 146 BS 1.000000 5.780000 .000000 
C 316 x 147 LL .000000 34.120000 2.580000 
C .317 x 148 LL .000000 34.120000 2.580000 
C 318 x 149 LL .000000 -1.180000 .430000 
C 319 x 150 UL 1.000000 7.030000 -.130000 
C 320 x 151 BS 1.000000 7.900000 .000000 
C 321 x 152 LL .000000 2.260000 .110000 
C 322 x 153 BS .000000 2.840000 .000000 
C 323 x 154 BS .000000 2.840000 .000000 
C 324 x 155 BS .000000 8.850000 .000000 
C 325 x 156 LL .000000 2.070000 .130000 
C 326 x 157 LL .000000 1.380000 .190000 
C 327 x 158 BS 1.000000 6.990000 .000000 
C 328 x 159 UL 1.000000 6.550000 -.170000 
C 329 x 160 BS .000000 13.230000 .000000 
C 330 x 161 UL 1.000000 5.780000 -.210000 
C 331 x 162 LL .000000 8.850000 .050000 
C 332 x 163 UL 1.000000 6.990000 -.130000 
C 333 x 164 LL .000000 8.360000 .000000 
C 334 x 165 BS .000000 2.070000 .000000 
C 335 x 166 LL .000000 -.540000 .370000 
C 336 x 167 BS 1.000000 8.360000 .000000 
C 337 x 168 UL 1.000000 3.700000 -.010000 
C 338 x 169 LL .000000 1.900000 .150000 
C 339 x 170 BS .000000 14.070000 .000000 
C 340 x 171 LL .000000 8.850000 .050000 
C 341 x 172 LL .000000 .590000 .270000 
C 342 x 173 LL .000000 3.270000 .020000 
C 343 x 174 LL .000000 8.980000 .060000 
C 344 x 175 LL .000000 8.610000 .030000 
C 345 x 176 LL .000000 14.450000 .620000 
C 346 x 177 BS 1.000000 8.360000 .000000 

C 347 x 178 LL .000000 9.170000 .090000 
C 348 x 179 UL 1.000000 8.360000 .000000 
C 349 x 180 BS .000000 1.900000 .000000 
C 350 x 181 LL .000000 8.850000 .050000 
C 351 x 182 BS .000000 2.840000 .000000 
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C 352 x 183 LL .000000 2.290000 .110000 
C 353 x 184 BS .000000 2.070000 .000000 
C 354 x 185 UL 1.000000 6.280000 -.200000 
C 355 x 186 BS .000000 13.870000 .000000 
C 356 x 187 LL .000000 2.830000 .070000 
C 357 x 188 BS 1.000000 7.730000 .000000 
C 358 x 189 UL 1.000000 6.550000 -.170000 
C 359 x 190 LL .000000 13.230000 .500000 
C 360 x 191 UL 1.000000 5.780000 -.210000 
C 361 x 192 BS .000000 8.360000 .000000 
C 362 x 193 BS .000000 1.990000 .000000 
C 363 x 194 BS .000000 1.900000 .000000 
C 364 x 195 BS .000000 14.070000 .000000 
C 365 x 196 UL 1.000000 6.280000 -.200000 
C 366 x 197 BS .000000 2.260000 .000000 
C 367 x 198 BS 1.000000 2.840000 .000000 
C 368 x 199 LL .000000 2.840000 .060000 
C 369 x 200 LL .000000 8.850000 .050000 
C 370 x 201 BS 1.000000 2.070000 .000000 
C 371 x 202 BS 1.000000 7.460000 .000000 
C 372 x 203 UL 1.000000 6.990000 -.130000 
C 373 x 204 BS 1.000000 6.550000 .000000 
C 374 x 205 BS .000000 26.110000 .000000 
C 375 x 206 UL 1.000000 6.280000 -.200000 
C 376 x 207 BS .000000 8.850000 .000000 
C 377 x 208 BS 1.000000 6.990000 .000000 
C 378 x 209 LL .000000 8.360000 .000000 
C 379 x 210 LL .000000 2.070000 .130000 
C 380 x 211 LL .000000 -.540000 .370000 
C 381 x 212 BS .000000 2.070000 .000000 
C 382 x 213 UL 1.000000 6.990000 -.130000 
C 383 x 214 BS 1.000000 6.280000 .000000 
C 384 x 215 LL .000000 .070000 .320000 
C 385 x 216 LL .000000 1.990000 .140000 
C 386 x 217 LL .000000 6.350000 .190000 
C 387 x 218 LL .000000 5.960000 .340000 
C 388 x 219 LL .000000 23.740000 3.050000 
C 389 x 220 LL .000000 5.710000 .120000 
C 390 x 221 BS 1.000000 2.050000 .000000 
C 391 x 222 BS 1.000000 2.580000 .000000 
C 392 x 223 BS .000000 2.580000 .000000 
C 393 x 224 LL .000000 8.040000 .185000 
C 394 x 225 UL 1.000000 1.720000 -.150000 
C 395 x 226 BS 1.000000 3.180000 .000000 
C 396 x 227 LL .000000 13.140000 .990000 
C 397 x 228 LL .000000 6.390000 .190000 
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C 398 x 229 LL .000000 23.740000 2.050000 
C 399 x 230 LL .000000 7.600000 .440000 
C 400 x 231 BS .000000 3.370000 .000000 
C 401 x 232 UL 1.000000 1.730000 -.150000 
C 402 x 233 LL .000000 12.790000 1.530000 
C 403 x 234 LL .000000 8.040000 .490000 
C 404 x 235 UL 1.000000 1.140000 -.210000 
C 405 x 236 LL .000000 7.100000 .390000 
C 406 x 237 UL 1.000000 -.550000 -.370000 
C 407 x 238 LL .000000 22.800000 3.640000 
C 408 x 239 BS 1.000000 1.100000 .000000 
C 409 x 240 LL .000000 7.600000 .440000 
C 410 x 241 LL .000000 8.340000 .510000 
C 411 x 242 LL .000000 7.600000 .440000 
C 412 x 243 BS 1.000000 1.730000 .000000 
C 413 x 244 LL .000000 8.040000 .540000 
C 414 x 245 BS .000000 5.050000 .000000 
C 415 x 246 LL .000000 7.600000 .440000 
C 416 x 247 BS 1.000000 2.630000 .000000 
C 417 x 248 LL .000000 56.450000 5.330000 
C 418 x 249 UL 1.000000 .390000 -.280000 
C 419 x 250 BS 1.000000 2.580000 .000000 
C 420 x 251 LL .000000 7.030000 .380000 
C 421 x 252 LL .000000 5.960000 .270000 
C 422 x 253 LL .000000 12.030000 .880000 
C 423 x 254 LL .000000 5.250000 .210000 
C 424 x 255 LL .000000 31.010000 5.370000 
C 425 x 256 LL .000000 31.010000 5.370000 
C 426 x 257 BS 1.000000 -1.070000 .000000 
C 427 x 258 LL .000000 6.390000 .190000 
C 428 x 259 LL .000000 7.180000 .400000 
C 429 x 260 BS 1.000000 2.050000 .000000 
C 430 x 261 UL 1.000000 2.580000 -.060000 
C 431 x 262 UL 1.000000 2.580000 -.060000 
C 432 x 263 LL .000000 8.040000 .490000 
C 433 x 264 BS 1.000000 1.880000 .000000 
C 434 x 265 BS 1.000000 1.250000 .000000 
C 435 x 266 LL .000000 6.350000 .320000 
C 436 x 267 LL .000000 5.960000 .100000 
C 437 x 268 LL .000000 12.030000 .880000 
C 438 x 269 BS .000000 5.250000 .000000 
C 439 x 270 LL .000000 8.040000 .540000 
C 440 x 271 LL .000000 6.350000 .190000 
C 441 x 272 LL .000000 7.600000 .440000 
C 442 x 273 UL 1.000000 1.880000 -.130000 
C 443 x 274 BS 1.000000 -.490000 .000000 
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C 444 x 275 LL .000000 7.600000 .440000 
C 445 x 276 BS .000000 3.370000 .000000 
C 446 x 277 BS 1.000000 1.730000 .000000 
C 447 x 278 LL .000000 12.790000 .960000 
C 448 x 279 LL .000000 8.040000 .540000 
C 449 x 280 BS 1.000000 .540000 .000000 
C 450 x 281 BS 1.000000 2.970000 .000000 
C 451 x 282 LL .000000 8.160000 .560000 
C 452 x 283 LL .000000 7.830000 .490000 
C 453 x 284 LL .000000 13.140000 1.610000 
C 454 x 285 LL .000000 7.600000 .440000 
C 455 x 286 LL .000000 8.340000 .600000 
C 456 x 287 LL .000000 7.600000 .440000 
C 457 x 288 UL 1.000000 1.730000 -.150000 
C 458 x 289 LL .000000 8.040000 .540000 
C 459 x 290 UL 1.000000 2.580000 -.060000 
C 460 x 291 BS 1.000000 2.080000 .000000 
C 461 x 292 UL 1.000000 1.880000 -.130000 
C 462 x 293 LL .000000 5.710000 .050000 
C 463 x 294 LL .000000 12.610000 .940000 
C 464 x 295 BS 1.000000 2.580000 .000000 
C 465 x 296 LL .000000 7.030000 .380000 
C 466 x 297 LL .000000 5.960000 .100000 
C 467 x 298 LL .000000 12.030000 1.380000 
C 468 x 299 BS .000000 5.250000 .000000 
C 469 x 300 LL .000000 7.600000 .440000 
C 470 x 301 UL 1.000000 1.810000 -.140000 
C 471 x 302 UL 1.000000 1.730000 -.150000 
C 472 x 303 LL .000000 12.790000 .960000 
C 473 x 304 LL .000000 5.710000 .050000 
C 474 x 305 UL 1.000000 2.050000 -.110000 
C 475 x 306 BS .000000 2.580000 .000000 
C 476 x 307 BS .000000 2.580000 .000000 
C 477 x 308 LL .000000 8.040000 .540000 
C 478 x 309 BS .000000 1.880000 .000000 
C 479 x 310 LL .000000 6.780000 .360000 
C 480 x 311 LL .000000 6.350000 .190000 
C 481 x 312 LL .000000 5.960000 .270000 
C 482 x 313 LL .000000 23.740000 2.050000 
C 483 x 314 LL .000000 5.710000 .050000 
C 484 x 315 LL .000000 8.040000 .490000 
C 485 x 316 LL .000000 6.350000 .320000 
C 486 x 317 LL .000000 7.600000 .440000 
C 487 x 318 BS 1.000000 1.880000 .000000 
C 488 x 319 BS 1.000000 -.490000 .000000 
C 489 x 320 UL 1.000000 1.880000 -.130000 
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C 490 x 321 LL .000000 6.350000 .190000 
C 491 x 322 LL .000000 5.710000 .250000 
C 492 x 323 BS 1.000000 .070000 .000000 
C 493 x 324 BS 1.000000 1.810000 .000000 

2. Lp_solve solution 2 

The following is the solution produced by Lp_solve. The results are for one production 

period for three time periods in one linear program run. There is a total number of324 

variables, with 108 variables per time period. 

Objective function value is : 867.42 

The X decision variables (0 and 1 for blocks not mined and mined) are : 

X= 0 1 1 0 0 0 000 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 

o 0 0 0 1 0 1 1 0 000 0 0 100 0 0 1 0 1 0 000 1 001 100 1 1 

1 1 1 101 0 0 0 0 1 000 101 001 000 1 100 0 0 101 010 

o 0 0 0 001 0 0 1 001 1 000 I 0 0 1 0 0 0 0 1 000 1 0 1 001 

1 0 0 0 0 1 101 000 1 100 0 0 0 0 1 101 0 1 1 000 1 0 0 0 0 

o 0 0 0 0 000 0 000 1 001 1 0 1 000 0 1 0 1 001 1 1 101 0 

1 0 0 0 0 1 100 0 000 1 100 1 1 000 0 0 100 1 0 1 0 1 000 

1 000 101 1 0 0 0 0 0 0 100 1 1 101 1 0 000 0 0 0 1 100 1 

001 1 0 0 0 000 1 011 100 1 0 0 000 1 100 1 0 0 000 0 0 

o 0 0 0 0 1 1 100 1 1 

The co-ordinates of the mined blocks (unit = 1) for each time period are shown in table 

4 Chapter6. 
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