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Abstract

This project is an investigation of current and novel methods of
analysing genotype data from fine-mapping association studies, where
a single, unknown causal variant is present in a genomic region
known to be associated with disease risk. The analysis methods
are all univariate and can be used to filter the genetic variants in
an association region, reducing them to a set of candidate causal
variants.

Initially, a number of methods including p-value, likelihood, genetic
map distance and linkage disequilibrium based analyses are com-
pared using simulated data. A method that we call likelihood per-
centile is found to generally be the most effective, in various scenarios
that may occur in fine-mapping studies. I also investigate the ef-
fects of varying such things as the causal variant, genomic region and
genetic effect on the efficacy of likelihood percentile filtering. To ex-
plain the difference in filtering results using two different likelihood
based methods, I consider the likelihood surface as a function of the
numbers of case and control subjects with the risk genotype. In
addition, I examine the effect of imputing missing genotype dosage,
as is common practice in fine-mapping studies, on the efficacy of
variant filtering.

The use of Bayes factors to filter genetic variants is investigated,
assuming that a prior on the natural logarithm of the odds ratio of
the form N ∼ (0,W ) is considered appropriate. It is shown that
filtering efficacy is sensitive to W , so several methods of inform-
ing the choice of W are compared. These include defining W as a
function of minor allele frequency, an empirical Bayes method and
several novel forms for the Bayes factor which put a prior on W ,
thus taking into account prior uncertainty about W .

Several appropriate methods are applied to a large dataset of a fine-
mapped region from the Collaborative Oncological Gene-environment
Study.



vi



Publications

A. V. Spencer, A. Cox and K. Walters. Comparing the efficacy of SNP
filtering methods for identifying a single causal SNP in a known association
region. Annals of Human Genetics, 78(1):50-61, 2014.
A. V. Baddeley, K. Walters, A. Cox and W. Y. Lin. Using Bayes factors to
analyse fine-mapped genotype data. Genetic Epidemiology, 36:763-764, 2012.
(Poster abstract for Annual meeting of the International Genetic Epidemiol-
ogy Society (IGES), Oct 18-20 2012, Stevenson, WA, USA; as Amy Victoria
Baddeley.)

vii



viii



Thesis summary

This thesis is a comparison of statistical methods for analysing genotype data
on the fine-mapping level. Only methods which analyse variants individually
are considered, so that only marginal effects and no interactions are taken into
account. No attempt is made to classify variants as statistically ‘significant’
or otherwise. The methods are compared on their ability to rank the causal
variant highly among all the variants in a region of interest.

Chapter 1 is the introduction and begins with the basic genetic background
to which the statistical methods are applied. All the relevant genetic terminol-
ogy is explained in this chapter. It also contains descriptions of genome-wide
association studies and fine-mapping studies and of the current standard meth-
ods of analysis used in these studies. Genetic effects based on different modes of
inheritance are described and it is explained how these may be modelled using
logistic regression. Throughout the thesis, software is mentioned that has been
used to aid analysis. This software is all commonly used in genetic analysis and
its use is described in this chapter. There is also a brief introduction to the
original research, with what is referred to as the filtering framework described,
and some of the methods used to compare the efficacy of different filters, such
as receiver operating characteristic curves, are explained. The genotype data
from the Collaborative Oncological Gene-environment Study that is later used
to illustrate the application of the methods is described in this chapter.

Chapter 2 is a thorough comparison of methods that fit into the filter-
ing framework and use only the genotype data from a fine-mapping study to
calculate the filtering statistics. The different filtering statistics used in this
chapter are described, with some based on p-values, some on likelihoods and
some on the structural relationship between variants. Simulated data is used
to compare the overall efficacy of these methods. Certain methods have highly
variable outcomes in terms of the number of false positive signals they generate
and this is investigated in detail. The most efficacious method appears to be
that labelled likelihood percentile, so a sensitivity analysis is carried out using
this method. Its sensitivity to the causal variant, the size and type of effect of
that variant and the sample size of the study are all investigated. The likelihood
surface dependant on the number of case and control subjects with the causal
variant is used to explain the difference in results of two likelihood-based meth-
ods, likelihood percentile and relative likelihood. It is now common practice to
impute missing genotypes in genome-wide and fine-mapping association studies,
so included in this chapter is a comparison of the same analysis on simulated
genotype data and the same data but with the majority of the variants having
only imputed genotype doses. It should be noted that much of the work con-
tained in this chapter has been published in Annals of Human Genetics in an
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article by Spencer, Cox and Walters, the author and supervisors of this thesis
[46].

Chapter 3 is an investigation into using Bayes factors in filtering. These
must be approximated and, initially, an approximation method developed by J.
Wakefield is used. This requires a specific form of prior distribution to be put
on the effect size (the log-odds ratio) of the variants. Using Bayes factors as
the filtering statistic, the sensitivity of the results to the variance of this prior
is investigated. Several methods which may be used to choose the variance of
this prior are described, including choosing variant-specific variances based on
MAF and choosing a universal variance based on empirical information from
the genotype data. Several novel forms of Bayes factor are also described in
this chapter which allow for added uncertainty in the variance by putting a
hyperparametric distribution on it. Finally, a method is described which allows
for the inclusion of prior functional information on the variant level. This is
done by specifying a prior probability of association for each variant, based on
the available information, and combining this with the Bayes factor for that
variant to calculate a posterior probability of association, which is then used as
the filtering statistic.

Chapter 4 is an illustration of the application of some of the methods
included in the thesis to genotype data from a real fine-mapping study. The
most appropriate methods investigated in the previous chapters are applied
to the data from the Collaborative Oncological Gene-environment Study, and
their results are compared and discussed. Because this study has a very large
sample size, some of the analyses were repeated on a smaller subset of the study
population. Some advantages and limitations to using the different filtering
methods with smaller fine-mapping studies are demonstrated with this subset.

Chapter 5 contains a summary of the project outcomes and some con-
clusions from the work. Advice on choosing an appropriate sample size and
filtering method, dependent on the available resources, is given, as well as limi-
tations which may restrict the choice in some cases. The methods contained in
this thesis are discussed in relation to other methods which have recently been
published. Some possible avenues for further work are also considered.
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1.1 Genetic background to the project

Genetic epidemiology is the study of the relationship between genetic factors

and health outcomes. Using a combination of biological, chemical and statistical

techniques, it is possible to uncover relationships between variations in DNA and

variations in physical traits. These include our basic appearance, for example

eye, skin and hair colour and, perhaps more importantly, susceptibility to many

diseases.

Research began in the early 1900s and RA Fisher was a famous pioneer

in this area. During the 1950s and 1960s, significant advances were made on

linkage (genetic patterns in families) with NE Morton publishing one particular

landmark paper [38]. With the completion of the Human Genome Project in

2003 [4] much of the current research into genetic association in populations

was made possible. Several major discoveries were found through family-based

(linkage) studies and population-based studies such as genome-wide association

studies (GWAS). In particular, linkage was a powerful tool in the discovery of

high penetrance variants (those with a large effect on disease risk), whereas

GWAS enabled variants with lower penetrance to be identified. Many of the

variants discovered using these methods result in the risk of developing a disease

more than doubling when one allele (version of the variant) is present compared

to when the other allele is present. However, it is likely that by now most genetic

variants with such large effects have already been discovered. Such studies have

also made huge progress in finding many genes and regions of chromosomes

with very low penetrance with relation to a particular disease. However, within

such a genetic region thousands of variants may be found, and identifying those

which are causal is still a difficulty. Pinpointing the precise variants causing such

associations could open up possibilities of medicine targeted at causal genetic

loci or the downstream products (such as proteins) affected by those variants.

Fine-mapping is a branch of genetic epidemiology which aims to find the

precise causal variants, usually in a region where there is already known to be

an association with a disease.

1.1.1 DNA inheritance

Population based association studies rely on the knowledge that all humans, as

a single species, share almost all of their DNA. However, the minute variations

that do occur result in the differences in our natural physical appearance as

well as how prone we are to different diseases, and these physical outcomes are

known as our phenotypes.

DNA is present in human cell nuclei in the form of molecules called chromo-
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somes. Almost everybody has 46 chromosomes in each of these cells; 22 pairs

of autosomes (chromosomes 1 to 22) and a pair of sex chromosomes (two X

chromosomes for females and an X and a Y chromosome for males). Humans

also have small DNA molecules which are found in another part of the cell, the

mitochondria. This complete set of DNA is known as the genome, but from

now on we will consider only chromosomal DNA. The chromosomes are a dou-

ble stranded string of nucleotide bases, carried on a sugar-phosphate backbone,

which pair in a very specific way. There are 4 possible bases: adenine (A), cyto-

sine (C), guanine (G) and thymine (T). Because of the types of chemical bonds

they are able to form, an A base on one strand of DNA pairs with a T base

on the other strand, and similarly, C pairs with G. Therefore, when carrying

out any sort of analysis, it is only necessary to take into account the sequence

of bases on one of the strands as the opposite sequence can be inferred from it.

The chromosomes vary in length from about 47 million (Chr 21) to about 247

million (Chr 1) pairs of nucleotide bases. Identical copies of a person’s DNA

are present in the nucleus of almost all the cells in their body.

To understand the variation in DNA, it helps to understand the process

of inheritance. Figure 1.1 illustrates, in simple terms, meiosis, which is the

creation of the sex cells (ovum and sperm) in the female and male bodies. The

creation of most other cells involves an identical copy of the DNA being made

to be incorporated in the new cell, but the same is not true with meiosis. The

full DNA is present in the nucleus of the original cell (1). In this figure, we

consider only 2 pairs of chromosomes, but in reality there are 23 pairs. One

copy of each pair will have been maternally inherited and these are represented

in red, whereas those represented in blue were paternally inherited. These

chromosomes are replicated, so that they are made up of two chromatids, joined

together at the centromere and giving an X-shaped appearance. As meiosis

begins, the homologous chromosomes (the matching maternally and paternally

inherited ones) pair up and begin to exchange material during what is known as

crossover or recombination (2). The cell then divides in two, with one copy of

each partially divided chromosome going into each of the new cells (3). Finally,

the pairs of chromatids split fully from one another and the new cells divide

again, with one copy of each chromatid going to each new cell (4). As can be

seen the in the diagram, the new sex cells (gametes) have only one copy of each

chromosome (a total of 23), rather than pairs. They are thus known as haploid,

rather than diploid like most human cells. Because of the recombination of

DNA between the original copies of the chromosomes, each new sex cell has a

different mix of DNA.

A new individual’s DNA is created when they are conceived. Figure 1.2
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Figure 1.1: Meiosis. (1) Original cell; (2) splitting into chromotids (replication)
and recombination; (3) cell division; (4) gametes (sex cells).

demonstrates how this occurs, using the person whose cells were shown in the

previous example as one of the parents. The other parent’s gametes will also

have been produced by meiosis and parts of their maternal (purple) and paternal

(orange) chromosomes will have also recombined to create new chromosomes.

When the gametes, one ovum and one sperm, meet at fertilisation (5), the DNA

from the two parent’s cells combine to produce the offspring’s diploid DNA (6).

This means that the newly conceived child will have it’s own different mix of

DNA, including parts from all four grandparents.

1.1.2 DNA code

The sequence of nucleotide bases (As, Ts, Cs and Gs) can be thought of as

a code that other structures in the cells are able to read and interpret. It

is a triplet code, with 3 consecutive bases coding for a unique amino acid,

and dependant on the overall sequence, different amino acids combine to make

different proteins. In turn, these proteins build the structures in the body and

carry out the chains of chemical reactions which are needed for life. A section

of DNA that codes for a single protein is called a gene and each chromosome

contains hundreds or thousands of genes.
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Figure 1.2: Conception. (5) Parents’ haploid gametes; (6) offspring’s diploid
cell.

It is the few variations in DNA between human subjects that are of interest,

and these variations can be passed on from parents to offspring through meiosis

and conception. These come in several forms, for example, a minority of the

population could have extra bases (insertions), missing bases (deletions) or some

sort of rearrangement of bases at a particular position (locus) in the DNA.

However, the majority of this work concerns only the most common type of

DNA variant, single nucleotide polymorphisms (SNPs, termed snips).

A SNP occurs when a single nucleotide base at a specific locus of DNA varies

between different people. For example, a part of a particular chromosome may

have the bases TGTAGCTGGC in 80% of the population of that chromosome,

but the bases TGTACCTGGC in 20% of the population. The fifth locus in this

sequence is a SNP with the two alleles G and C, where C is the minor allele with

minor allele frequency (MAF) = 0.2. Generally, SNPs only have two alleles. As

any individual has two copies of each chromosome, they will have two copies

of the SNP. These make up their genotype, which can be homozygous (GG

or CC) or heterozygous (GC) depending on which alleles they have inherited

from their parents. A person’s genotypes can be determined using biological

and chemical processes known as genotyping. Ideally, we would like to know

the two different haplotypes. In this context, haplotype refers to the specific

ordered sequence of alleles on one of the two copies of a chromosome. However,

genotyping is not usually able to provide this information, so that although we

are able to discover that a person has a heterozygous genotype at one SNP, we

won’t know which copy of the chromosome each allele is located on.

Although a SNP is a change in the DNA code, a single one may make no
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difference to the resulting phenotype for several reasons. For example, different

sections of DNA are used differently by the body. As previously mentioned, a

section which codes for a protein is known as a gene, but only around 1% of

DNA is genes, with the parts in between known as intergenic regions. Each

gene is also split into several intronic and exonic regions, but only the exons

code directly for the protein. Although we would expect a SNP to have a more

noticeable effect if it is located in an exon, rather than an intron or an intergenic

region, only a small proportion of SNPs are exonic. Also, the codes for amino

acids are made up of sequences of 3 consecutive bases and, because there are 4

possible bases, there are 43 = 64 possible sequences of 3 bases. However, there

are only 20 different amino acids, so many of these have multiple 3-base codes

relating to them (3 of these codes are also stop codons, which tell the cell to

stop creating amino acids from the DNA code). This non-uniqueness is known

as the code being degenerate. For example, all of the sequences ATT, ATC

and ATA code for the amino acid isoleucine, so if there was a SNP at the last

base in a sequence which normally coded for isoleucine, then a change in amino

acid would only occur if the minor allele was a G. In that case, the SNP would

be non-synonymous and methionine would be produced instead. Otherwise, it

would be known as a synonymous SNP and isoleucine would still be produced.

If a SNP does result in a different amino acid being produced, this may result in

a change of phenotype in people with the different SNP genotypes. If the SNP is

in an important gene, then it could result in a significant qualitative effect, but

more often the effect is smaller and even SNPs in intergenic regions can affect

the level at which a neighbouring gene is expressed, resulting in quantitative

changes.

1.1.3 Genetic recombination and DNA structure

Recombination fractions and genetic distance

In §1.1.1, it was explained that one of the reasons for each person having unique

DNA is the recombinations (or crossovers) which occur during meiosis in the

formation of ovum and sperm cells. This was represented by (2) in Figure 1.1.

There are usually only a small number of recombinations on each chromosome.

Two loci on the same chromosome can be thought to be related in terms of

the number of recombinations that occur in the interval between them. Two

loci that are very close together are very unlikely to have a recombination oc-

cur between them, but the further apart they lie, the larger the probability of

a recombination becomes. Where the loci in question have different possible

alleles (for example, if they are SNPs), families can be genotyped to determine
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whether or not a new combination of alleles occurred after meiosis. For exam-

ple, take a person with two copies of Chromosome 1 who has genotype AB at

loci A and B on one copy of the chromosome and ab at the same loci on the

other copy. Any gametes they produce which have haplotypes AB or ab are

known as non-recombinant, whereas any which have Ab or aB genotypes are

recombinant. It should be emphasised, though, that non-recombinant gametes

have not necessarily had no recombinations between these two loci. In fact they

can have had any possible even number of recombinations, just as recombinant

gametes can have had any possible odd number of recombinations. Because

of this it is difficult to measure the probability of a single recombination be-

tween two loci, so what is usually recorded is the recombination fraction, the

proportion of gametes which are recombinant for two loci.

Recombination fractions can be used to determine the genetic distance be-

tween two loci. Genetic map distance is measured in morgans (M) and centi-

morgans (cM, of which there are 100 in a morgan). Using Haldane’s mapping

function, 1cM is defined as the genetic distance between two loci with a re-

combination fraction of 0.01 [24]. This corresponds to approximately 1 million

bases (one mega-base, Mb) in most of the human genome, but does vary to

some extent. The variation is due to different recombination rates, for example,

between the chromosomes and the sexes.

Although genetic map distances can be thought of in this way, they are

not additive across large distances [49]. Because even numbers of crossovers

between two loci result in a non-recombinant, the recombination fraction never

exceeds 0.5. This is also the recombination fraction between two loci on different

chromosomes, as it is pure chance whether or not they are passed on together.

However, on an additive scale, this would equate to only 50cM, and many

chromosomes are longer than this. Recombinations are also not independent.

A phenomenon known as interference results in one recombination inhibiting

another close by.

LD structure

As was explained above, two loci close together on a chromosome are unlikely

to have a recombination between them. Therefore, in most cases, the SNP

alleles that are close together are passed on together from one generation to the

next. This means that certain SNP alleles are almost always found together

(are highly correlated). This correlation is caused by genetic linkage and is

termed linkage disequilibrium (LD). There are two common measures of LD

which can be calculated from population data to get a good idea of which SNPs
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are commonly found together. These measures of LD are D′ and r2.

When the allele frequencies at two loci are completely independent, those

loci are said to be in linkage equilibrium, and D′ is a scaled value of deviation

from this equilibrium. For two alleles at separate loci, A and B, pA, pB and pAB

are the frequencies of these alleles and the frequency at which they both occur

on the same chromosome, respectively. pApB = pAB would hold if A and B were

in linkage equilibrium and deviance from this is measured as D = pAB − pApB.

However, this value depends on allele frequency, so is scaled by dividing by

Dmax = min(pApb, papB) if D ≥ 0 or Dmax = max(−pApB,−papb) if D < 0

(where a and b are the alternative alleles at the A and B loci). This gives

D′ = D/Dmax,

a measure of LD.

Alternatively, the squared correlation coefficient, r2, can be used. Using the

same notation as above, this is calculated

r2 =
D2

pApapBpb
.

Although D′ and r2 are related, one cannot necessarily be calculated from

the other. Therefore, in different circumstances, one may describe LD in a more

appropriate way than the other, and when considering the LD structure of a

region, it is often worth looking at both.

Haploview [10] is a piece of software which allows the input of genotype

data and outputs the structure of the region in terms of LD. This helps to

identify LD blocks of highly associated SNPs which are likely to be passed on

together. The software outputs r2 values as well as D′ values for each pair of

SNPs in the input dataset and can produce heat-map style diagrams showing

which parts of the region of interest have more correlation.

Figure 1.3 is an LD plot produced in Haploview which shows the LD

structure of some SNPs in chromosome 2. This plot has been generated using

publicly available SNP data. The plot in Figure 1.3 represents single SNPs in

order of location on the chromosome across the top, with diagonal lines coming

down from them to the left and right. Where the lines from two SNPs intercept,

the plot represents the D′ value of that pair of SNPs as a shade of red, with

darker shades representing higher values (NB: in this kind of plot, the blue also

represents high D′ but low LOD score, the log10 of the likelihood odds ratio

[38], which Haploview uses as ‘a measure of confidence in the value of D′’).
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Figure 1.3: Linkage disequilibrium plot of part of chromosome 2. The size of the
D′ value between two SNPs is indicated by the depth of colour at the intercept
of the diagonal lines between them.

1.2 Current statistical analysis in genetic asso-

ciation studies

Now that it is possible to genotype DNA (to read the bases at targeted chro-

mosomal loci), studies can be carried out analysing the effect of known DNA

variants on susceptibility to diseases. Determining the genotypes uses biological

and chemical technologies, but the analysis must be carried out using statisti-

cal techniques. Historically, this was done largely through family based linkage

studies, taking subjects from families in which the disease of interest occurs in

multiple members. However, these kinds of studies do not measure LD or asso-

ciation with a disease in a whole population and are not so useful at identifying

variants that only slightly affect disease risk, as in those cases it is less likely

that the disease will affect multiple close family members.

With modern technology and ever-reducing costs, population based case-

control studies have come to the forefront of genetic epidemiology. A case-

control study is a kind of epidemiological study which takes a group of subjects

with a disease and a group of subjects who are disease-free. Statistical analyses

compare physical and environmental factors such as age, weight and exposure

to cigarette smoke and look for significant differences between the two groups

of subjects. Any factors which appear to be significant are associated with the

disease. They may be having a causal effect on the disease themselves, or they

may be associated in some way to another factor that is causal. Similar methods

can be applied to genetic data by seeing whether genotypes tend to be different
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in cases compared to controls.

1.2.1 Genome-wide association studies and fine-mapping

The human genome has now been fully mapped (ie. the whole sequence has

been read).As well as the Human Genome Project [4] (completed in 2003),

which sequenced all of the DNA for one person, the 1000 Genomes Project

[8], which aims to characterise genetic variation in populations, is well under

way. In addition to this, smaller regions of DNA have been sequenced in more

people for smaller projects. Therefore, we now know the location of many SNPs,

in particular those with MAF >0.005, and information about these is widely

available from online databases such as dbSNP [3].

A DNA microarray, also known as a chip, is a piece of equipment used

to identify the bases at specific locations in the DNA. These can be targeted

so that they are the locations of known SNPs, allowing testing for just those

nucleotides, rather than the whole of a subject’s DNA, saving time and money.

n recent years this technology has been used to carry out many genome-wide

association studies (GWAS). These are case-control studies, often population-

based, in which association between the alleles of a large number of SNPs located

throughout the genome and a particular disease are analysed.

In these kinds of studies we can also use the LD structure to our advantage.

Software such as Haploview (§1.1.3) can be used to analyse the LD structure

of the SNPs that may be of interest in the study. One of the things that the

software does is to divide the SNPs into LD blocks. If these groups of highly

correlated SNPs can be identified, then only one of them needs to be included in

a GWAS and it represents or ‘tags’ the other SNPs as well. Plots of the type in

Figure 1.3 can help with the choice of tagSNPs for genotyping studies, as large

blocks of dark red represent LD blocks. From these blocks, the alleles of only

one or two SNPs need to be genotyped to infer the rest with high accuracy.

In most GWAS the arrays used collect information on between 500,000 and

1,500,000 SNPs, a small proportion of all the SNPs in human DNA.

A GWAS usually has a fairly large sample size, for example, 5000 cases

and 5000 controls for a specified disease, and very often uses a standard, mass

produced genotyping chip which tests for the alleles of SNPs thought to tag most

of the common SNPs in the genome. The results of genotyping can be output

as binary data (major/minor allele at each locus) which can then be analysed

statistically. The main analysis often takes the form of a Cochran-Armitage

test (a modified χ2 test) for association between each SNP and the disease.
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These tests output p-values, but because so much multiple testing occurs when

analysing so many SNPs, only those with p < 5 × 10−8 are considered to have

genome-wide significance [30].

Generally, a genomic region is only considered to be confirmed as associated

with a disease when associations have been demonstrated in at least two study

populations. It could be that a single SNP, or multiple SNPs that are located

close together, are found to be be associated with the disease, but this does not

necessarily mean that any of these SNPs cause the disease. The tagging, which

is helpful in identifying a region of association, hinders the actual pin-pointing

of the causal SNP. Because of the high correlation between SNPs that is likely

to occur in the associated region of DNA, we can only be sure that there is a

variant somewhere in the region which affects the risk of the disease.

The purpose of fine-mapping is to look in more detail at a known area of

association, analysing more SNPs in that region. To get more comprehensive

results, it is necessary to use even larger samples, perhaps a total sample size

of 50,000 or more. Whilst more SNPs may be directly genotyped, it is unlikely

that they all will be, so sophisticated software may be used to impute the

alleles of any other known SNPs in the region [33]. Carrying out association

analysis again will still not necessarily highlight the true causal SNP as the most

significant, though. The SNPs being analysed are now going to be even closer

together and more highly correlated. As well as this, the disease in question is

likely to be complex with lots of risk factors, both genetic and environmental,

with interactions between some of these risk factors. Therefore, the causal SNP

may only have a small effect size (for example, a causal allele relative risk of 1.2

or smaller) and this will be very difficult to identify even in very large sample

sizes.

Analysis is further complicated by the fact that causal effects may take sev-

eral different forms, which are modelled differently. There is also the possibility

that the disease may not be affected by a single SNP in the region of interest

but by several, making the situation even more complex. These multiple SNPs

may or may not be in LD with each other, and may or may not interact with

each other. If they do interact, there are several possible types of interaction.

Different analysis techniques will pick up different effects and may miss others.

This project reviews some statistical methods used for fine-mapping and

attempts to develop novel methods for locating causal SNPs, or at least signifi-

cantly reducing the set of candidate causal SNPs in a region. The main focus is

methods for identifying a single causal SNP within a known association region.
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1.2.2 Statistical modelling

Logistic regression modelling

One of the main techniques used to analyse the association between single SNPs

and disease outcomes is logistic regression modelling. This kind of model is

common in statistical analysis within many areas, and is used to analyse data

where there are only two possible outcomes. Therefore, it is suited to genetic

disease analysis where the outcome of interest is simply whether or not the

disease is present. It would not be suitable if the outcome of interest was, for

example, disease severity, or time from diagnosis to death. To model these,

another method such as linear regression may be used.

The two possible outcomes are coded as 0 and 1 and the model predicts the

probability of outcome 1 occurring under certain conditions, which are repre-

sented by independent model variables. The usual way to code a disease model

is 0 for no disease and 1 for disease present, so the model predicts y, the prob-

ability (absolute risk) of the disease occurring dependent on conditions which

may be genetic, environmental or a mixture of the two.

The model can be considered in two parts, the first being the logistic (or

logit) link:

y =
ez

1 + ez
(1.1)

The value of z is calculated using the linear predictor:

z = β0 + β1x1 + β2x2 + β3x3 + ...+ βkxk. (1.2)

This kind of model allows any number and type of independent variables to be

input as the values of the xis and the logit link will always transform the output

to a value between 0 and 1. The maximum likelihood estimates (MLEs) of the

regression coefficients can be calculated by fitting the model in a statistical

software program, such as R [41], and the MLE of βi is written β̂i. For any xi,

the corresponding βi is the natural log of the odds ratio (OR) for a unit increase

in that variable, when all other variables are kept the same. We refer to this

as the logOR. Although this is quite difficult to interpret in itself, a positive βi

means that an increase in the variable xi will increase the probability, y, of the

outcome of interest, in this case the risk of the disease. Conversely, a negative

βi means that an increase in the variable xi will decrease the probability of this

outcome.
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Using logistic regression to model marginal genetic effects

As discussed in §1.1.2, a person can carry 0, 1 or 2 copies of the minor allele

at a SNP depending on whether they inherited it from neither, one or both

parents. The genotype is homozygous if the alleles are the same (in the case of

a causal SNP, homozygous wildtype indicates no risk alleles and homozygous

risk indicates 2 risk alleles), and heterozygous if there is one of each allele

present. Because different parts of the genome carry out biological processes

in different ways, some causative alleles may have different kinds of effects to

others. Although there are some exceptions, most effects can be classified as

either additive, recessive or dominant. A SNP has an additive effect if each

copy of the risk allele that is present increases the disease risk by the same

magnitude. If, however, the risk only increases when there are two risk alleles

present, the effect type is recessive and the odds, and therefore the ORs and

logORs, are the same for homozygous wildtype and heterozygous genotypes.

Finally, a dominant effect is one for which the increase in the risk is the same

no matter whether there are one or two risk alleles present, because the risk

allele is dominant over the wildtype allele.

The following form of logistic regression model is used throughout the the-

sis. It analyses the association between the disease and each SNP individually.

This is done by modelling the probability (yij) of subject j having the disease

dependent on their genotype at SNP i, as well as on any covariates, using a

logistic regression model, with linear predictor

zij = β0i + β1ixij + β2iv2j + ...+ βnivnj. (1.3)

In this model, xij is the number of copies (0, 1 or 2) of the allele coded ‘1’

(usually the minor allele) for SNP i present in subject j. Therefore, the model

is an additive model and β1i is the per-allele log odds ratio (logOR) of disease

for the allele coded ‘1’ compared to the allele coded ‘0’. The covariates are given

in the model by vhj and may be measured environmental factors or principal

components derived to account for population diversity in the study sample.

When we use simulated data (see §1.2.4), there are no covariates to include in

the model.

1.2.3 Statistics used to compare variants

Hypothesis testing and p-values

A common method of analysing data is to carry out a statistical hypothesis test.

There are many such tests, but they all require the specification of a null (H0)
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Genotype
Disease Homozygous Heterozygous Homozygous Row
status wildtype (0) (1) risk (2) totals

Control (0) N00 N01 N02 R0

Case (1) N10 N11 N12 R1

Column totals C0 C1 C2 N

Table 1.1: Contingency table of genotype and disease status, as required for
Cochran-Armitage trend test.

and an alternative (H1) hypothesis. In considering the association between a

single genetic variant and a disease, a suitable null hypothesis would be that

that there is no association, and the alternative would be that there is some

association. Using the notation in Equation (1.3), H0 : β1i = 0; H1 : β1i 6= 0.

Typically, hypothesis tests output an observed value of a test statistic. How

extreme this value is relates to how unusual the data is, if it is assumed that the

null hypothesis is true. The probability of obtaining a value as extreme, or more

extreme, than the one observed is called the p-value. A very small p-value is

evidence that the data is unlikely to come from the population described by the

null hypothesis and in a hypothesis test, a significance level will be pre-specified.

If the p-value is below this level, the null hypothesis will be rejected.

In genetic association, p-values are often obtained from Wald tests or Cochran-

Armitage tests. For the Wald test, the test statistic is

β̂1i − βN
var(β̂1i),

(1.4)

where βN is the value of β1i given by the null hypothesis, in this case 0. The

Cochran-Armitage test does not require the fitting of regression models, but

summarises the different combinations of genotypes and disease status in the

data. Using the values given in Table 1.1, the trend test statistic is

2∑
g=0

wg(N0gR1 −N1gR0) (1.5)

where wg are the weights of the different genotypes, so that for an additive

effect the weights (w0, w1, w2) = (0, 1, 2) are used. The test statistics for both

of these tests are compared to a χ2 distribution to obtain the p-values. In this

case the relevant distribution is that with 1 degree of freedom. A disadvantage

of using p-values from Cochran-Armitage tests compared to statistics that come

from regression models is that there is no way to adjust for covariates.

It is common in GWAS studies to rank SNPs based on how small their p-
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values from one of these tests are, and these methods are also sometimes used

in fine-mapping studies [36] [7]. Often, only p-values below a particular value

are considered to be significant. In a single statistical test, it is common, for

example, to consider the test significant if p < 0.05, because this indicates that

the null hypothesis is only likely to be true for 1/20 samples with as extreme

or more extreme results than were observed. However, consider testing around

million SNPs in a GWAS. The number of observed data points which have p <

0.05, but for which the null hypothesis is in fact true, is increased by the number

of SNPs tested. Therefore the level of significance is adjusted accordingly, often

using a Bonferroni correction, such that p < 0.05/s is considered significant,

where s is the number of SNPs [30]. With a million SNPs, this threshold

becomes p = 5×10−8. We do not, however, consider any particular significance

level in the original work, but only rank the SNPs from the smallest p-value.

Likelihood

The likelihood of a set of parameter values in a logistic regression model (β =

(β0i, β1i, ..., βni)) is the probability of the observed data having occurred giving

these are the true parameter values. If x is the data, then the likelihood,

L(β|x) = P (x|β). In the case where there are no covariates, this can be written

L(β0i, β1i|yi) =
n∏
j=1

p(xij)
yij(1− p(xij))(1−yij). (1.6)

When regression models are fitted, the MLEs of the regression coefficients, β̂,

are chosen such that the likelihood of the model is as large as possible, according

to an algorithm implemented by the program.

The SNPs in the models with the largest likelihoods can be considered as

the most likely to be causal. A method which is sometimes used in fine-mapping

[17] [52] [53] [19] to identify the SNPs to take forward for further analysis is

to identify the largest of all likelihood values and take forward those SNPs for

which the model parameters have a likelihood within a particular ratio of this

value, for example within 1/100.

LD

As previously mentioned, it is unlikely that a SNP which is a ‘hit’ in a GWAS

(usually based on it having a p-value below genome-wide significance), is actu-

ally causal. It is more likely that it is in high LD with the the causal variant.

Therefore, when candidate causal SNPs are chosen, it is normally all those that

have r2 above a particular threshold with the tagSNP. Recently, a method was
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published that scores SNPs based on preferential LD (PLD) [62]. This not only

takes into account the LD between each untyped (not genotyped) SNP and

the hit tagSNP, but also between that SNP and all the other tagSNPs. If an

untyped SNP is in fact causal, it is likely that all tagSNPs in high LD with it

will be hits. This method allows for SNPs to be taken forward based on them

being in higher LD with the hit than other tagSNPs, thus taking more available

information into consideration.

Bayes factors

Bayesian methods of statistical analysis allow for the inclusion of data other

than the data gained directly from the main study in the analysis. In a genetic

association study, the main data are the genotypes but prior data from previous

studies could also be incorporated.

The Bayes Factor is a Bayesian hypothesis testing method defined as the

ratio of the probability of observed data having occurred under the alterna-

tive hypothesis to the probability of it having occurred under the alternative

hypothesis:

BF =
P (data|H1)

P (data|H0)
. (1.7)

It is derived from Bayes theorem and is the factor by which a prior odds should

be multiplied to obtain a posterior odds [28], where δ is defined as the prior

probability and ∆ as the posterior probability, ∆/(1−∆) = δ/(1− δ)×BF. In

the case of genetic association, these are the prior and posterior probabilities of

a SNP being associated with the disease. However, when BF is used to prioritise

SNPs in fine-mapping, it is common to assume that all SNPs have equal prior

probability [48] [32].

Analysis of multiple variants simultaneously.

There are several methods used which analyse multiple variants together, for

example by including them all in a single model, rather than one at a time in

individual logistic regression models. This is particularly useful if is possible

that there are multiple causal SNPs in a region and may allow for the modelling

of interaction between variants. Several such methods have been reviewed by

Ayers and Cordell [9] and Abraham et al. [6]. One popular method is pe-

nalised logistic regression and this is often implemented using HyperLASSO

[27]. Bayesian methods can be implemented through the pi-MASS software

[23].
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1.2.4 Software and computing aids

Snptest, Hapgen2 and Impute2

These are the up to date versions of three pieces of software from the Oxford

genome-wide analysis software suite. Snptest [33] is able to carry out a number

different standard and more specialised single SNP analyses on genotype data.

Hapgen2 [47] [50] is a computer program that simulates haplotypes for

a case-control study. It uses a reference set of haplotypes to determine the

general structure of the region of interest in terms of MAFs of SNPs and LD

structure and simulates new haplotypes based on this structure. The reference

haplotypes used throughout this project are from the 1000 Genomes Study [8].

The software requires input in terms of the start and end base-pair numbers of

the region to be simulated, the location of the selected disease causing SNP(s),

the relative risks for heterozygous and homozygous causal genotypes and the

number of case and control haplotypes to be simulated. The output includes

binary haplotype data for the required case and control subjects as well as

information on the SNPs included.

Impute2 [34] [33] is a program written by the same group of researchers

which uses similar methodology to impute missing genotype data. For a given

subject with some genotypes known, it uses these and the same sort of reference

data to determine the probabilities of the 3 possible genotypes at the remaining

loci.

These programs use the same file formats, making it convenient to use them

in combination with one another.

Haploview

Haploview [10] is a piece of software which uses a reference set of haplotypes

(again the 1000 Genomes data was used for this project) to calculate pairwise

r2 and D′ values for all SNPs in a selected region. It also has features which

generate various heat-map style diagrams to display this information visually

(see §1.1.3).

R

R [41] was used for all statistical analyses not specific to any other package

mentioned.
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iceberg

Much of the computer intensive work was carried out on iceberg, the Linux based

High Performance Computing Cluster at the University of Sheffield [5]. This

includes the simulation and imputation carried out using Hapgen2 and Im-

pute2, some of the analyses in R and some image generation using Haploview.

1.3 Introduction to the original research

Genome-wide association studies (GWAS), as described in §1.2.1, and candidate

gene studies (which investigate a gene known to be involved in a mechanism

which could be involved with the disease of interest) have highlighted regions

of the genome containing variants affecting disease susceptibility. The identifi-

cation of the causal variants in such regions is confounded by high correlation

between variants so close together in the chromosome. Because of this corre-

lation (LD) and the effect of sampling variation, when tests of association are

carried out at a fine-mapping level, the causal variant will not necessarily be

the variant with the largest likelihood or smallest p-value.

This project considers the use of a single general methodological framework

for fine-mapping analysis, which is referred to as filtering. Rather than high-

lighting a single variant and suggesting that this is causal, filtering works by

removing as many variants as possible to leave a smaller group of candidate

causal variants. This project investigates several ways of carrying out statisti-

cal filtering and analyses how successful different statistics (called filters) are

at reducing the initial set of variants as far as possible whilst still retaining the

causal variant with high probability. Although filtering alone is unlikely to be

able to identify a causal variant, the hope is that it will provide a vital step by

identifying the best set of variants to take forward for further biological testing.

These techniques, which may include the biological analysis of pathways in cell

lines or animal models, are expensive, so it is highly important to reduce the

number of variants to be tested to as few as possible. Single nucleotide poly-

morphisms (SNPs) are considered to be the variants of interest throughout this

work, but any other type of genetic variant able to be modelled using logistic

regression could be analysed in this way.
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1.3.1 Statistical analysis of genotype data and the filter-

ing framework

Using the glm command in R [41], we fit models as described in §1.2.2. This can

be used to obtain, for h ∈ (0, n), β̂hi, the maximum likelihood estimate (MLE)

of βhi, the variance of this estimate and the likelihood of the model, which we

refer to as the likelihood for SNP i, and denote Li. Statistical tests such as the

Cochran-Armitage test and Wald test can also be carried out on the raw data

or model parameters to obtain p-values.

Filtering is our terminology for the ranking of SNPs based on a chosen

statistic and the removal of all SNPs with a value of that statistic below a

pre-specified threshold. All remaining SNPs are considered causal candidates

and will be taken forward to any future analysis, but any SNPs that have been

removed are considered very unlikely to be causal. We investigate the use of

several filtering statistics which all use the output from the described logistic

regression models in their calculation. As filtering statistics are obtained by

modelling the association between each SNP and the disease individually, this

methodology will not always be applicable in fine-mapping. We assume that

there is a single causal SNP in an association region, but if there are multiple

interacting causal SNPs, using filtering may not be effective. It will still help to

find the SNP with the largest marginal effect, but in a scenario where multiple

causal SNPs have strong interactive effects, their marginal effects may only be

small and in this case they have a high probability of being removed by filtering.

1.3.2 Assessing the efficacy of different methods

Simulating data with which to test methods

We used Hapgen2 [47] [50] in conjunction with the European haplotypes of

the August 2010 release of the 1000 genomes data [8] to simulate case-control

genotype data on which we were able to test different filtering methods (see

§1.2.4), so they should give a good representation of real data and the problems

associated with them, such as high levels of short range LD and low MAF. As

the causal SNP is user-specified in simulation, it is possible to carry out filtering

and know whether or not the causal SNP is retained. To evaluate the sensitivity

of the results to the location of the causal SNP, its MAF and effect size as well

as the sample size, we simulated data with a variety of combinations of these

features, and we refer to each unique combination as a scenario. We focus on

small effect sizes (usually, additive effects with per-allele ORs of 1.06 to 1.36)

as it is expected that many yet to be investigated loci are likely to have such
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effects. Although results are not shown for every scenario, we considered many

combinations of the ORs given above, causal SNPs with MAFs from 0.05 to 0.43

and sample sizes from 4000 to 50,000. We generally refer to the total sample

size, with equal numbers of cases and controls. For each scenario multiple

independent datasets (usually 1000) were simulated to take into account random

sampling and to give a more complete assessment of filter efficacy.

The majority of simulated genotype scenarios were based on a region of

chromosome 2 which evidence suggests may include variants which have a small

effect on several complex diseases including breast cancer [14] [11] [39] [25] [16].

In the studies which found this evidence, possible association with tagSNPs only

just, or nearly, reached genome-wide significance. This suggests that while there

may be an associated SNP, it is likely to have a small effect on the risk of the

disease, so current analytic techniques may not be powerful enough to find it.

The simulated region is one mega-base in size (1Mb, one million bases), ranging

from 201,566,128 to 202,566,128 bases in the Hg19 build of chromosome 2 and

contains 2871 SNPs in the 1000 genomes data. This region includes the CASP8

gene, as well as around 20 other known genes including CASP8 homologues

CFLAR, CASP10 and several ALS2CR genes.

CASP8 appears to be a suitable candidate for a gene which could affect

cancer susceptibility as it codes for caspase 8, a protein that is involved in the

biological process of apoptosis, or programmed cell death. Cells in the body

are constantly being replicated, so it is necessary that some should die. Also,

if a cell is damaged in some way, it is much better that the cell dies, reducing

the chances of any damage being passed on to other cells. If apoptosis does not

happen then the replicating cells cannot be controlled and may form a tumour.

If one of the biochemical substances involved in the normal apoptosis process,

such as caspase 8, does not function correctly, it is feasible that a cancer could

be caused in this way, and one reason for caspase 8 not to function correctly

could be that it is encoded differently to normal due to a variant in the CASP8

gene.

Output of simulation analyses

Successful filters will reduce the initial set of SNPs down to a much smaller group

in which it is highly probable that the true causal variant remains. Equivalently,

they will have a low false positive rate (FPR) and a high true positive rate

(TPR). To display the FPR and TPR at each threshold graphically, we present

the results of filtering for a single simulated scenario as a receiver operating

characteristic (ROC) curve. The TPR at a single threshold is plotted on the
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y-axis against the FPR at that same threshold on the x-axis. ROC curves

are commonly used for plotting the outcome from a single dataset, but we have

multiple simulated datasets of the same scenario. There is not a single standard

method of combining such results into one ROC curve, and this is discussed in

a paper by Fawcett [18]. Of the three possible methods he describes, we use

‘threshold averaging’. The FPR is the proportion of non-causal SNPs retained

after filtering, which, unless stated otherwise, will be the mean FPR across the

datasets of one scenario. We also use the mean TPR, the proportion of datasets

in which the known true causal SNP is retained. Fawcett highlights the fact

that combining the results in such a way will result in variation around the

means that are presented. In the case of the FPR, this variation is due to the

range of FPR values in the set of datasets. On the other hand, the TPR is the

proportion of a sample of n datasets which have a binomial outcome. Therefore,

the variance of the TPR is given by TPR(1− TPR)/n.

On some plots, the TPR and FPR at a specific filtering threshold have been

highlighted as a point on the ROC curve. A y = x line is often included to

indicate the outcomes that would be expected if the removal of SNPs using this

filter was random. Some of the figures that are given are not the full ROC

curves, but specific parts that are of particular interest. This is the case if the

range of both axes is not (0,1).

Area under the curve (AUC) is a common measure of a classifying method,

such as filtering. Where we state AUCs, they are given as a percentage of the

total possible area. An AUC of 100% would indicate that at any given threshold,

the FPR = 0 and the TPR = 1. An AUC greater than 50% indicates that a

ROC curve must at some thresholds lie above the y = x line and therefore the

filtering method is better than the removal of random SNPs. However, AUC

does not give any indication about how the filter performs at specific thresholds,

or the TPR at a given FPR, and many different shapes of ROC curve may result

in the same AUC. We have calculated mean and variances of the AUCs using

the method described in a paper by Valdar et al. [55]. If a curve is based

on the results of a set of simulated datasets, D1, ..., Dd, then mean(AUC) =

d−1
∑d

i=1 AUC(Di) and var(AUC) = (d−1)−1
∑d

i=1 (mean(AUC) - AUC(Di))
2.

The confidence interval (CI) around a mean(AUC) is calculated using 100(1−
α)% CI = mean(AUC)± Φ−1(1− α/2)

√
var(AUC).

1.3.3 Applying the methods to a real dataset

Chapter 4 consists of the application of the most appropriate methods investi-

gated and developed during this project to a real dataset from the Collaborative
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Oncological Gene-Environment Study (COGS) [2]. This study has developed

an Illumina genotyping array (the iCOGS chip) concentrating a large number

of target SNPs in regions of the genome thought to be associated with several

types of cancer, including ovarian, breast and prostate cancers [35]. By being

selective in this way, it allows regions of particular interest to be studied in

more detail. In general, these association regions are analysed separately using

fine-mapping techniques.

COGS is a collaborative study involving seven consortia all of which have

been investigating the genetic contribution to the risk of the cancers of interest.

Each consortium selected regions of the genome that they wished to include in

the study and the SNPs which should be genotyped from those regions. One

of the regions selected by the Breast Cancer Association Consortium (BCAC)

[1] comprises base positions 201500074 to 202569992 of chromosome two, and

contains the gene CASP8, which is described in §1.3.2.

BCAC originally selected 585 SNPs in the CASP8 region to be genotyped

using the iCOGS chip and 501 passed quality control checks. Impute2 [33] was

used to sucessfully impute the genotypes of a further 1232 SNPs, resulting in

1733 SNPs in total. The sample consisted of 89,050 subjects, with 46,450 cases

and 42,600 controls.



Chapter 2
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2.1 Comparison of filtering statistics

Consider a fine-mapping study of region that is assumed to have a single causal

SNP. There is no current gold-standard analysis method, but a statistic which

has been used in several studies [17] [52] [53] [19] is something we call relative

likelihood (RL). It is often referred to as the “likelihood ratio”, but we avoid

using this term to remove any confusion with the ratio used in the likelihood

ratio test, a standard statistical method. To determine how suitable RL analysis

is, we have carried out a thorough simulation study comparing it to several other

statistics. All of the statistics that are examined in this chapter could be used

as filters to remove non-causal variants from the set of all candidate causal

variants. We refer to these as filters which use the genotype data only, as they

do not require the input of any external functional data. However, imputed

genotype doses may also be used and this practice is scrutinised in §2.5. This

set of methods has not previously been compared in a thorough simulation study

such as this. Each variant is analysed separately and they are then ranked in

some way based on their probability or likelihood of being causal. Filtering is

simply the removal of all variants from a dataset with a value of the relevant

statistic below a pre-specified threshold. So when carrying out RL filtering at

threshold of 1/100, only variants with RL > 1/100 are retained to be included

in any further investigation or analysis.

The filters were tested on simulated datasets generated using Hapgen2 as

described in §1.3.2. The CASP8 region of chromosome 2 which we describe in

that section was used, with 2871 SNPs identified in the 1000 genomes data [8].

To assess the effect of LD structure on filter efficacy, we also used two other

chromosomal regions, chosen to have very different structures to each other and

to the CASP8 region. This region of chromosome 2 has a mixture of both large

and small LD blocks, with an average size of approximately 22kb in length. A

study by Smith et al. [45] contained results which we were able to use to select

regions which had particularly high and particularly low levels of LD. We chose

a region of chromosome 11 from 55Mb-56Mb (11q11-12), which has LD blocks

with an average size of approximately 130kb and contains 6247 SNPs. The

other region we chose, due to it having minimal LD, is located in chromosome

16p13 (9-10Mb), and has LD blocks with an average size of 8kb and 6200 SNPs

in total.

Most datasets were simulated using a causal SNP with an additive effect,

varying the per-allele odds ratio (OR) between 1.06 and 1.36. Two regions

which have been analysed using RL filtering in previously published studies are

FGFR2 and 16q12 [52] [53] [17]. The effect sizes in these regions are at the top
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of this range, but effect sizes for SNPs involved in complex diseases can be much

smaller and are therefore generally more difficult to detect. Some scenarios were

also simulated with causal SNPs with different types of effect (both dominant

and recessive), to investigate whether such SNPs could also be identified using

the filtering framework.

2.1.1 Definitions of filters

Likelihood filters

The relative likelihood (RL) [17] [52] [53] [19] for the ith SNP is the ratio between

the likelihood for that SNP and the largest of the maximised likelihoods over

all p SNPs in the region:

RLi =
L(β̂0i, β̂1i|data)

max
k∈{1,p}

{L(β̂0k, β̂1k|data)}
. (2.1)

This results in RLi ∈ (0, 1],∀i ∈ {1, ..., p}. The SNP which has an RL of 1 is

referred to as the ‘top hit’ or SNPmax. SNPs are ranked by RL and a threshold

of a pre-specified ratio is applied. All SNPs with likelihoods within this ratio of

that of SNPmax are retained in the set of candidate causal variants. Previously,

an RL filter threshold of 1/100 had been used in published fine-mapping studies

[52] [53], meaning that only SNPs with RL ≥ 1/100 are retained. We consider

the suitability of this and other RL thresholds for filtering.

We suggest an alternative method of filtering also based on likelihood to

overcome a potential shortcoming of RL filtering. This is the fact that the

number of SNPs retained is subject to a large amount of variation, dependent

on how extreme the likelihood of SNPmax is. Instead, we suggest ranking the

likelihood values for each SNP and using a proportion of SNPs as the filter,

and call this the likelihood percentile (LP) filter. We may specify a threshold of

95%, meaning that the top ranked 5% of SNPs will be retained. Therefore, the

number of SNPs retained is not subject to variation and so any extreme effects

of sampling variation are reduced.

p-value filters

An alternative to the likelihood is to use a p-value from a test of association. It

is common in GWAS to rank SNPs by p-values either from Cochran-Armitage

trend tests or from Wald tests and both of these methods have now also been

used in the context of fine-mapping [36] [7]. For SNP i it is simple to carry out

such tests and we refer to the p-value from the Cochran-Armitage test as pCA
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and that from the Wald test as pW . These can be used as filtering statistics

by choosing a threshold value which may based on a Bonferroni correction, for

example.

Cochran-Armitage and Wald tests are both hypothesis tests, where the null

hypothesis in this case is no association between a SNP and the disease. The

p-value indicates the probability of encountering data as or more extreme than

that which was observed, given that the null hypothesis is true. Whereas the

likelihood is the probability of encountering the observed data, given that the re-

gression coefficients in the model are correct, the Wald test is a test for whether

these regression coefficients are statistically significantly different from 0. An-

other common hypothesis test is the likelihood ratio test, which compares the

likelihoods of nested models. This test tends to give rankings very similar to

those of the other hypothesis test we consider. However, the models we wish to

rank (each containing one SNP) are not nested, so the RL and LP methods are

not equivalent to a likelihood ratio test and it is possible that ranks based on

p-value and likelihood will differ. These methods are described in more detail

in §1.2.3.

Structural filters

The remaining methods relate to LD structure. Within a small chromosomal

region, linkage disequilibrium (LD) can be high between SNPs. When the top

hits from GWAS are found, these are not assumed to be the causal SNPs, but it

is often postulated that the causal SNP lies within the same gene or LD block

as the tagSNP. Alternatively, a handful of candidates may be suggested based

on high LD with the tagSNP (r2 > 0.9, for example).

We formalise three filtering methods based on these ideas. SNPs were ranked

by either genetic map distance in centimorgans (cMs) from SNPmax or by pair-

wise D′ or r2 values with SNPmax (see §1.1.3). Genetic map distances were

obtained from the 1000 genomes data [8] and pairwise LD (D′ and r2) values

were calculated using the simulated haplotypes. Once again, thresholds were

specified so that SNPs further away in distance or with lower LD values than

those thresholds were filtered out.

The final filtering method comes from a paper by Zhu et al. [62] and was

also based on r2 between each SNP and SNPmax. For this method, rather

than ranking based on that single r2 value, a preferential LD (PLD) score was

calculated for SNPi. Although we use the analyses set out by Zhu et al. [62],

we use it in a slightly different setting, as it is designed for use with GWAS

data, making use of the panel of tagSNPs from the genotyping array. PLDi
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is the proportion of tagSNPs for which r2 between them and SNPi is greater

than between SNPmax and SNPi. For the simulated regions, since all SNPs have

been ‘genotyped’, we chose to use those on the Illumina 300 array in the regions

we were fine-mapping as our tagSNPs. To complete the Zhu method, a second

filtering step is required, which involves calculating an empirical p-value testing

the r2 value between SNPi and SNPmax [62]. Specifically, this p-value ‘estimates

the probability of observing the same or better r2 value for two random variants

with the same frequencies’ [62]. This is done by permuting the genotypes 2000

times in each dataset.

2.1.2 Relative efficacy of different filtering methods

We give the results of filtering using the different methods on 1000 datasets

simulated using the 11q11-12 region as ROC curves in Figures 2.1(a) and 2.1(b).

This is the region with overall high levels of LD and the scenario simulated was

a sample size of 20,000 and a causal SNP with OR 1.1 and MAF 0.08. We have

split the methods into those that are p-value and likelihood based in Figure

2.1(a) and those that are proximity and LD based in Figure 2.1(b). Figures

2.1(c) and 2.1(d) are the ROC curves of the equivalent filtering outcomes in

the mixed LD (CASP8 ) region and Figures 2.1(e) and 2.1(f) are those of the

low LD (16q13) simulated datasets. Similar causal SNP scenarios were used

in all simulated regions. Something to note is that only one of the p-value

methods (specifically pCA) is shown as this gave very similar results to the

alternative, pW . When analysing real data these will not be the same as the

Wald test takes into account the effect of covariates, whereas the Cochran-

Armitage test does not. Therefore, it may be more advantageous to use pW

in a real study. Also, the Zhu method (PLD) was only tested on a subset of

100 datasets. The second step of this method involves permuting genotypes

2000 times. However, this number of permutations was too computationally

expensive when analysing 1000 simulated datasets, as were analysed by all the

other methods. For this method there were 77 tagSNPs (from the Illumina 300

array) in both the CASP8 and 11q11-12 (mixed and high LD) regions and 135

in the 16q13 (low LD) region.

Table 2.1 contains the mean area under the curve (AUC) values, and their

95% confidence intervals (CIs), for all of the ROC curves in Figure 2.1. It is

explained how these are calculated in §1.3.2. When filtering a set of thousands

of candidate causal SNPs, though, it is important to significantly reduce this

set, so the parts of the ROC curves that are most of interest are those which

result in the lowest FPRs. Therefore we examine these in more detail in Figure



Genomic region
Filtering method High LD Mixed LD Low LD

Likelihood (LP threshold) 93% 90% 96%
(93%, 93%) (90%, 90%) (96%, 96%)

p-value 92% 89% 96%
(83%, 100%) (83%, 94%) (94%, 97%)

Likelihood (RL threshold) 87% 80% 90%
(69%, 100%) (55%, 100%) (75%, 100%)

Preferential LD (Zhu) 76% 69% 65%
(60%, 93%) (37%,100%) (32%, 98%)

r2 72% 64% 68%
(53%, 91%) (35%, 92%) (48%, 88%)

Genetic map distance (GMD) 60% 59% 67%
(53%, 67%) (30%, 88%) (54%, 80%)

D′ 44% 35% 44%
(6%, 82%) (0%, 75%) (7%, 81%)

Table 2.1: Mean (and 95% CI) area under curve (AUC, given as a percentage)
for ROC curves of different filters. Three different 1Mb regions of the genome
were used but in each the causal SNP has an OR of 1.1, a MAF of 0.08 and the
sample size is 20,000.

2.2 and Table 2.2, considering the part of the curves for which mean FPR≤ 0.1.

It should be noted that the maximum possible partial AUC as given in Table

2.2 is 10%.

It can clearly be seen that the likelihood and p-value based methods are

generally more efficacious than the methods which filter based on proximity to,

and LD with, SNPmax for these scenarios. In particular, D′ filtering is often

not able to produce FPRs less than 0.4. Of the structural based methods, PLD

usually results in the largest AUC overall, but r2 appears to perform better when

FPR ≤ 0.1 (Tables 2.1 and 2.2). The likelihood method using LP thresholds

resulted in the ROC curves with the highest AUCs, with the AUCs for the p-

value methods (pCA and pW ) only slightly lower. The similar efficacies of these

methods can also be seen by looking at specific FPRs of interest. For example,

in the results of the CASP8 simulation analyses, where these methods both

have an FPR of 0.1 (so approximately 287 of the total 2871 of the total SNPs

are retained) the corresponding TPRs are 0.695 for LP filtering and 0.694 for

pCA filtering.

Although these three regions were carefully chosen so that their LD struc-

tures were all very different, the results, including the AUCs are similar (Table

2.1). In particular, LP gave the best results in all three regions, although the

results of p-value methods were similar to these, so if p-values were more read-

ily available, it would be acceptable to use them for filtering. RL filtering was
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(a) p-value and likelihood filtering in
a high LD region (1Mb 11q11-12 re-
gion).
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(b) Proximity and LD filtering in a
high LD region (1Mb 11q11-12 re-
gion).
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(c) p-value and likelihood filtering in
a mixed LD region (1Mb CASP8 re-
gion).
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(d) Proximity and LD filtering in a
mixed LD region (1Mb CASP8 re-
gion).
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(e) p-value and likelihood filtering in a
low LD region (1Mb 16p13 region).
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(f) Proximity and LD filtering in a low
LD region (1Mb 16p13 region).

Figure 2.1: Comparing the effectiveness of filters for fine-mapped data in 3
regions of the genome. Using the LD structure of each region, 1000 datasets were
simulated and then analysed using each method (only 100 were analysed using
the Zhu method). Panels (a), (c) and (e) show the efficacy of filtering using ranks
and thresholds based on p-values from Cochran-Armitage tests (pCA), relative
likelihoods (RLs) and likelihood percentile points (LPs). Panels (b), (d) and (f)
show the results using genetic map distance (GMD) from and pairwise r2 or D′

values with the top hit and the Zhu method using preferential r2. The causal
SNPs all have an OR of 1.1, a MAF of 0.08 and the sample size is 20,000.
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(a) Filtering to a small proportion of SNPs
in a high LD region (1Mb 11q11-12 region).
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(b) Filtering to a small proportion of SNPs
in a mixed LD region (1Mb CASP8 re-
gion).
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(c) Filtering to a small proportion of SNPs
in a low LD region (1Mb 16p13 region).

Figure 2.2: Comparing the effectiveness of filters for fine-mapped data in 3
regions of the genome, focussing on the results for which FPR≤ 0.1. Using the
LD structure of each region, 1000 datasets were simulated and then analysed
using each method (only 100 were analysed using the Zhu method). Partial
ROC curves show the efficacy of filtering using p-values from Cochran-Armitage
tests (pCA), relative likelihoods (RLs), likelihood percentile points (LPs), genetic
map distance (GMD) from and pairwise r2 values with the top hit and the Zhu
method using preferential r2 (PLD). The causal SNPs all have an OR of 1.1, a
MAF of 0.08 and the sample size is 20,000.
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Genomic region
Filtering method High LD Mixed LD Low LD

Likelihood (LP threshold) 4.6% 4.7% 7.3%
(4.5%, 4.8%) (4.4%, 5.0%) (7.3%, 7.4%)

p-value 4.7% 4.7% 7.2%
(0.4%, 9.0%) (2.1%, 7.2%) (6.2%, 8.1%)

Likelihood (RL threshold) 4.8% 4.9% 6.9%
(0.6%, 9.0%) (1.2%, 8.5%) (4.3%, 9.5%)

Preferential LD (Zhu) 2.7% 2.9% 2.5%
(0%, 6.8%) (0%, 6.3%) (0.4%, 4.7%)

r2 4.2% 2.8% 3.1%
(0.8%, 7.6%) (0.2%, 5.3%) (1.8%, 4.5%)

Genetic map distance (GMD) 0.2% 1.4% 2.3%
(0%, 0.5%) (0%, 4.1%) (1.5%, 3.0%)

D′ 0.01% 0% 0.05%
(0%, 0.1%) (0%, 0%) (0%, 0.5%)

Table 2.2: Mean (and 95% CI) area under curve (AUC, given as a percentage)
for portions of ROC curves of different filters for which FPR ≤ 0.1. Three
different 1Mb regions of the genome were used but in each the causal SNP has
an OR of 1.1, a MAF of 0.08 and the sample size is 20,000. The maximum
percentage of AUC for such a portion is 10%.

always considerably worse than LP filtering, as were all of the LD-based meth-

ods, so these should not be used. The results shown in Figures 2.1 and 2.2 are

all based on a single sample size, causal SNP OR and MAF. However, we also

examined results for other scenarios (see the ranges specified in §1.3.2). The

relative efficacies of the filters seem to apply generally within these scenarios, so

we would recommend the use of LP filtering over the other methods examined

here. We look in detail at the use of LP filtering in some of these scenarios in

§2.3.

2.2 Variability in FPR

2.2.1 Relative likelihood filtering

Although we found several published fine-mapping studies [19] [52] [53] [17]

using RL filtering, it appears that the somewhat simpler likelihood percentile

(LP) filtering method is more efficacious. This is demonstrated by the larger

AUCs for the averaged ROC curves and is illustrated in Figure 2.3(a). The

common threshold of RL = 1/100 is marked on the RL ROC curve in this

figure. For this particular scenario it results in a TPR of 0.686 and a mean

FPR of 0.197. To retain the same number of SNPs by using LP filtering, we
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(a) LP filtering compared to RL filtering
with results highlighted at filtering thresh-
olds which produce equivalent mean FPRs.
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(b) RL filtering plotted using the median
and quartiles of the FPR with the thresh-
olds of 1/100 and 1/200 highlighted using
boxplots.

Figure 2.3: Comparing the effectiveness of RL filtering and likelihood percentile
(LP) filtering for fine-mapping data. The causal SNP has an OR of 1.1, a MAF
of 0.08 and the sample size is 20,000. 1000 datasets were simulated using the
LD structure of the CASP8 region.

apply a filter of 80%. Therefore, using both methods, a mean number of 568

SNPs will be retained, but by using the LP method, the TPR increases to 0.855.

A further disadvantage to RL filtering is the large amount of variation in

the FPR between simulated datasets when using a specified RL threshold, as

shown in Figure 2.3(b). This figure shows the results of RL filtering on the

1000 CASP8 simulations with 20,000 subjects and a causal SNP with an OR

of 1.1 and a MAF of 0.08. However, instead of the mean FPR, ROC curves

are plotted at the FPR quartiles. Box plots for filtering thresholds of 1/100

and 1/200 are marked on this plot. As previously mentioned, the TPR at an

RL of 1/100 (the proportion of the 1000 datasets in which the causal SNP was

retained) is 0.686. The median FPR (across the 1000 datasets) is 0.109 but

the interquartile (IQ) range of the FPR is (0.045, 0.228) and the full range is

(0.0003,1), indicating that as few as 1 or as many as all of the SNPs may be

retained. At the threshold of RL = 1/200, which results in a more acceptable

TPR of 0.797, the interquartile range can be seen to be even wider, at 265 to

1728 of the total SNPs.

The range of FPRs decreases for RL filtering as the OR increases. A per-

allele OR of 1.24 is similar to the estimated effect sizes of the causal SNPs in the

studies which have used this type of filtering before [17] [53] [52]. The sample

size of 20,000 in the simulated datasets was also chosen to closely match the

sample sizes used in these studies. The results for RL filtering for this scenario
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are not shown, but the AUC (with mean FPR) is very close to 1 and there

is very little variability in FPR, suggesting that in general RL filtering was a

suitable method to use in these studies. In particular, the mean FPR and TPR

at a threshold of 1/100 are 0.031 and 0.986 respectively. The median and IQ

range of the FPR are 0.015 and (0.009, 0.037).

The variability between simulations is a clear limitation of RL filtering and

we recommend filtering based on likelihood but using a percentile threshold

chosen based on simulation analysis. To further understand the relative per-

formance of RL and LP filters, we considered the log-likelihood surface as a

function of the number of controls with the risk genotype and the number of

cases with the risk genotype. This is detailed in §2.4.

2.2.2 Variability in other filtering methods

Likelihood percentile filtering specifies the proportion of SNPs to be retained,

which is approximately equal to the FPR, so there is virtually no variability

in FPR for this method. However, any other filtering method for which the

retention threshold is not based on specific numbers or proportions of SNPs

will result in some variability. Here we examine that variability for some of the

alternative filtering methods.

Figure 2.4(a) displays the results of pCA filtering in a similar way to how

they were displayed for RL filtering in Figure 2.3(b). The results also come

from filtering on the same datasets. When using p-values, a threshold is often

specified based on a Bonferroni correction [36] [7]. In this case, that would

result in a p-value threshold of 0.05/2871 = 1.74× 10−5. However, a Bonferroni

correction results in a very conservative threshold and if this was used for this

simulated data it would result in a TPR of 0.001 and a median FPR of 0.

Therefore, we suggest using a higher threshold. The box plots on this figure

illustrate the results at p-value thresholds of 0.05 and 0.1.

We have already seen that pCA filtering gives very similar results to LP

filtering, and it (or pW filtering) was suggested as a reasonable alternative if

likelihoods were not so readily available. We can now see that there is, in fact,

relatively little variability in FPR for the p-value filtering methods (once again,

pW gives similar results). For example, for this scenario, a filter threshold of

pCA = 0.1 results in a TPR of 0.751 and a median FPR of 0.1257. The IQ

range for FPR at this threshold is (0.0926, 0.1607) and the full range is (0.0240,

0.3480). These reasonably narrow ranges (especially the IQ ranges, which are

shown on the figure for all filtering thresholds) reinforce the suitability of p-

values as alternative filtering statistics.
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(a) Results of pCA filtering with the thresh-
olds of p = 0.05 and p = 0.1 highlighted.
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(b) Results of r2 filtering with the thresh-
olds of r2 = 0.01 and r2 = 0.001 high-
lighted.

Figure 2.4: The results of two methods of filtering plotted using the median
and quartiles of the FPR with specific thresholds highlighted using boxplots.
The same simulated data was analysed using both methods. The causal SNP
has an OR of 1.1, a MAF of 0.08 and the sample size is 20,000. 1000 datasets
were simulated using the LD structure of the CASP8 region.

Similarly derived results are shown for r2 filtering on the same datasets in

Figure 2.4(b). This was one of the most efficacious LD-based methods. How-

ever, when plotted using mean FPR, the AUCs showed that it was not really

a suitable alternative to LP filtering (for this scenario the AUC was 64% com-

pared to 90% for LP filtering). Figure 2.4(b) illustrates further shortcomings of

the use of this filtering method. As can be seen from the plotted FPR quantiles,

the range of FPR values at most r2 filtering thresholds is very large, and this is

further illustrated by the box plots for the two r2 thresholds (0.01 and 0.001)

that are given. Giving the boxplots for these thresholds also demonstrates the

sort of threshold values that would have to be used for r2 filtering to work at

all. Higher thresholds commonly result in very few SNPs being retained after

filtering. For example, an r2 threshold of 0.4 results in a TPR of 0.1290 and a

median FPR of 0.0014 with this data.

2.3 The use of LP filters in different scenarios

In §2.1, we described several methods of filtering and compared their efficacy

using a single causal SNP scenario in three different regions of the genome.

Now we consider using SNP filtering in other causal SNP scenarios. We carried

out analyses on simulated data covering various scenarios for all of the filtering
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methods. It was clear that the relative efficacies of the methods generally varied

very little. LP filtering is generally the most efficacious of all these methods,

so in this section, we focus on this method and we would recommend its usage

over the other given statistics.

2.3.1 LP results for different causal SNP MAFs and LD

structures

Figure 2.5 shows the how the results of LP filtering vary dependent on the local

LD structure and MAF of the causal SNP. The effects of MAF and LD structure

are not only important when carrying out genetic association studies in different

regions of the genome, but also when studying the same region across multiple

populations which may have different LD patterns.

As well as the effects of LD and MAF, we use Figure 2.5 to examine the effect

of filtering at different LP thresholds. Figure 2.5(a) compares the LP filtering

results for the three different chromosomal regions that were examined in §2.1.2.

There are two outcomes of interest, the true and false positive rates (TPR and

FPR). With LP filtering, we fix the total proportion of SNPs retained, and as

there is only one causal SNP, this proportion is almost identical to the FPR.

For example, at a filtering threshold of 95% (as given in this figure), 5% of all

SNPs will be retained and the FPR will be approximately 0.05. If there is a

fixed proportion of SNPs that can be taken forward (due to experimental costs,

for example) a threshold may be chosen based on this. Figure 2.5(b) shows the

results from filtering for causal SNPs that are located in the same 1Mb chromo-

somal region but different LD blocks within that region. We use this figure to

demonstrate that if a particular FPR does not yield a high enough TPR, then

the filter threshold could be relaxed from the 95th to the 85th percentile, say.

It is perhaps more relevant to focus on what threshold is required to achieve a

particular TPR. Therefore, the thresholds given in Figure 2.5(c) (filtering for

SNPs with different MAFs within the same LD block) are those that result in

a TPR of 0.95. We focus on these thresholds as we examine the separate plots

in more detail.

Figures 2.5(a) and 2.5(b) show that when filtering for different causal SNPs,

even if the MAFs and ORs of these SNPs are the same, there will still be some

variability in the results due to the unique LD pattern of each SNP. Every SNP

is related to the SNPs around it through the amount of LD between it and those

SNPs. We hypothesised that there may be a relationship between the levels of

LD that a causal SNP has associated with it and the outcome of filtering when

that SNP is causal. We therefore examined filtering for ‘similar’ causal SNPs
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(with the same MAF and per-allele OR) in chromosomal regions with different

overall levels of LD (as examined in 2.1.2 and given in Figure 2.5(a)) and located

within different sized LD blocks in the same 1Mb region of the genome (Figure

2.5(b)). These figures do not indicate any clear, simple relationship between

local LD and filtering results, but do give an idea of the levels of variation.

Overall, the AUCs are fairly similar. If we consider the filtering thresholds that

would be required to give a TPR of 0.95, these vary between 61% and 90%

for the five causal SNPs examined in these figures (3 within one chromosomal

region and 2 in other regions).

For the scenarios for which the analysis results are given in Figure 2.5(c),

causal SNPs were carefully selected from a single LD block within the CASP8

region such that they had a range of MAFs. Datasets were then simulated using

each of the causal SNPs with a sample size of 20,000 subjects and an OR of 1.1.

We hoped that by comparing the results using SNPs with different MAFs in

the same LD block we would reduce as far as possible any confounding effects

of LD structure. Figure 2.5(c) clearly demonstrates the general result that LP

filtering is more efficacious the larger the MAF of the causal SNP. At smaller

MAFs this effect is more profound, with the AUCs for causal SNPs with MAFs

0.08, 0.10 and 0.13 equal to 0.8809, 0.9501 and 0.9890 respectively. Filtering of

datasets with causal SNPs with MAFs larger than 0.13 results in ROC curves

with only slightly larger AUCs. We have also marked on each ROC curve in this

figure a point at the threshold which results in a TPR of 0.95. For the scenarios

in which the SNPs have MAF 0.08, 0.1, 0.13 and 0.31, these thresholds are

49%, 80%, 95% and 97% respectively. For any given FPR, the TPR increases

as MAF (within a single LD block) increases. This is also the case as causal

SNP OR and sample size increase, as we go on to examine in more detail.

2.3.2 LP results for different causal SNP ORs

Figure 2.6(a) shows the results of applying LP filtering as the per-allele odds

ratio of the causal SNP varies. The data has been simulated under an addi-

tive model, as with most of the examples shown throughout this work. For

completeness, we decided to test whether LP filtering would produce similar

results if the causal SNP was inherited under a different model. Figures 2.6(b)

and 2.6(c) show ROC curves for LP filtering applied to data simulated under

recessive and dominant models, respectively (see §1.2.2). Different effect sizes

were also examined for these types of inheritance models. In all the simulations,

the sample size was 20,000 subjects and the same causal SNP with a MAF of

0.08 was used. In a fine-mapping study it is likely that the mode of inheritance
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(a) LP filtering for causal SNPs with a
MAF of 0.08 located in different chromoso-
mal regions. The threshold of the 95th like-
lihood percentile is highlighted. The LD
structures used for simulation were part of
the 11q11-12 region (high LD), the CASP8
region (mixed LD) and part of 16p13 (low
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(b) LP filtering for 3 causal SNPs, all with
a MAF of 0.08, in the CASP8 region. The
causal SNPs are located in different LD
blocks within the region and have different
levels of LD associated with them. Filter-
ing thresholds of the 85th and 95th likeli-
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(c) LP filtering for causal SNPs with MAFs
of 0.08-0.31 located within the same LD
block in the CASP8 region. Each causal
SNP has a per-allele OR of 1.1 and for each
scenario, an LP threshold which results in a
TPR of approximately 0.95 is highlighted.

Figure 2.5: Receiver Operating Characteristic (ROC) curves showing the effec-
tiveness of likelihood percentile (LP) as a fine-mapping filter dependent on the
chromosomal region, the local LD structure within a single region and MAF of
the causal SNP for which filtering is carried out. 1000 datasets were simulated
using a sample size of 20,000 for each scenario and the results of filtering at
specific thresholds are highlighted. All causal SNPs have per-allele ORs of 1.1.
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of the casual SNP will be unknown. Therefore, in all cases, we test the efficacy

of filtering using likelihoods from fitted logistic regression models with additive

SNP effects, as described in §1.3.1.

For the data simulated with an additive effect (Figure 2.6(a)), the per-allele

ORs took values between 1.06 and 1.24. This results in heterozygous ORs of

1.06-1.24 and risk homozygous ORs of 1.12-1.54. Although we can see that

when the causal SNP has a small OR, for example 1.06, most of the SNPs in

the region would need to be retained to achieve a high TPR, it is also clear

that efficacy improves with effect size. To illustrate this point, we consider the

filtering thresholds required to achieve a TPR of 0.9. When the causal SNP

has per-allele OR 1.06, this threshold is 27%, but when it is 1.14, a threshold of

93% can be used to achieve this same TPR. Similarly, if we consider a TPR of

0.95 for these two ORs, thresholds of 14% and 87%, respectively, are required,

equivalent to retaining approximately 2469 or 373 SNPs of the 2871 in this

dataset.

We used similar effect sizes for the data simulated under different inheritance

models. For recessive effects, the heterozygous OR was fixed at 1, but the risk

homozygous OR was varied between 1.06 and 1.24. For dominant effects, the

risk homozygous and heterozygous ORs were always equal, and these were also

varied between 1.06 and 1.24. The different models are quite distinct, so using

the same ORs for different types of effect is not really equivalent. However,

we can see from Figure 2.6 that using different models with the same range of

ORs results in similar ROC curves. The filter thresholds needed to retain the

causal SNP with a TPR of 0.95 are given on each figure and can be seen to be

close, ranging from 13% to 15% for the smallest effect sizes and from 98% to

99% for the largest effect sizes. The AUCs are also very similar. For the data

simulated under additive models, the AUCs range from 71.1% to 99.6%, while

for dominant models the range is 69.6% to 99.6% and for recessive models it is

69.1% to 99.4%.

2.3.3 LP results for different sample sizes

We use Figure 2.7 to demonstrate the effect of sample size on LP filter efficacy.

We simulated 1000 datasets with a causal SNP with an OR of 1.1 and a MAF

of 0.08, each with a sample size of 50,000. We then analysed these full datasets,

as well as subsets of them, using different numbers of the samples (always with

equal numbers of cases and controls). As in previous figures, we have marked

the points on the ROC curve at which the TPR is 0.95. The filtering threshold

required to achieve this TPR is 15% with a sample size of 10,000 (retaining 85%
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(a) LP filtering for a causal SNP with an
additive effect, where the per-allele OR is
varied between 1.06-1.24.
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(b) LP filtering for a causal SNP with a
recessive effect, so that the heterozygous
OR is always 1, but the risk homozygous
OR is varied between 1.06-1.24.
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(c) LP filtering for a causal SNP with a
dominant effect, so that the heterozygous
OR and the risk homozygous OR are equal,
and this value is varied between 1.06-1.24.

Figure 2.6: Receiver Operating Characteristic (ROC) curves showing the ef-
fectiveness of likelihood percentile (LP) as a fine-mapping filter dependent on
the effect size of the causal SNP. Analyses were carried out on data simulated
under 3 different types of inheritance model. 1000 datasets were simulated for
each scenario using the LD structure of the CASP8 region and the results of
filtering at the thresholds which result in a TPR of 0.95 are highlighted. The
same causal SNP with MAF of 0.08 and a sample size of 20,000 was used for
all simulations.
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Figure 2.7: Receiver Operating Characteristic (ROC) curves showing the effec-
tiveness of likelihood percentile (LP) as a fine-mapping filter dependent on the
sample size used. Sample sizes of 10,000 to 50,000 were used and the thresholds
required to retain the causal SNP with 95% probability are highlighted. 1000
datasets were simulated using the LD structure of the CASP8 region and a
causal SNP with a per-allele OR of 1.1 and a MAF of 0.08.

of the total SNPs), but this increases to 49% at a sample size of 20,000 and

thresholds of 75%, 86% and 93% at sample sizes of 30,000, 40,000 and 50,000,

respectively. With this particular scenario, to be 95% sure of capturing the

causal SNP whilst retaining less than 5% of all SNPs, sample sizes larger than

50,000 would be required.

2.4 Using likelihood surfaces to understand re-

sults

The outcome of both LP and RL filtering is determined by maximised likeli-

hoods from the individual SNP models. By examining the likelihood we are able

to consider the effect that other quantities have on it. Although most of the

simulations described in this work are based on an additive model, we concen-

trate now on a causal SNP with a dominant effect. This simplifies calculations

and yields explicit expressions for the maximum likelihood estimates (MLEs),

but demonstrates the general effects of different relevant quantities on the like-

lihood. In §2.3.2, we showed that for the range of ORs we are interested in, LP

filtering for a dominant causal SNP with a particular OR (both heterozygous
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and risk homozygous) will give similar results to LP filtering for an additive

causal SNP with the same per-allele OR.

Consider a causal SNP for which the disease risk follows a dominant model.

For this scenario, take a sample of n1 cases and n0 controls in which it is assumed

that the true causal SNP has an OR of λ, a MAF of f . Table 2.3 shows some

further notation used throughout this section. The sampling distribution of D0

and D1 is derived in terms of λ and f and the likelihood for any realisation of

D0 and D1 is also derived.

Risk genotype Wildtype genotype
AA/Aa (xj = 1) aa (xj = 0)

cases (yj = 1) D1 E1 n1

controls (yj = 0) D0 E0 n0

D E n

Table 2.3: The number of cases and controls with the risk and wildtype geno-
types for the causal SNP, where a is the wildtype allele and A is the risk allele.

2.4.1 Deriving the likelihood

The association of the causal SNP with the phenotype can be modelled using

a logistic regression model with linear predictor β0 + β1xj. The likelihood of β0

and β1 given the data is

L(β0, β1|y) =
n∏
j=1

p(xj)
yj(1− p(xj))(1−yj). (2.2)

The likelihood that is of primarily of interest here is the likelihood based on

sampling randomly and not determined by disease status (the prospective like-

lihood). As the type of data considered here is case-control study data, the

disease status is known prior to sampling, so the only likelihood that can be

derived is the retrospective likelihood. However, this is not problematic be-

cause, as is shown by Prentice and Pike [40], the prospective and retrospective

likelihoods are in fact the same.

When using the logistic regression analysis described above to model the

probability of disease (being a case) given the genotype for the jth subject, this

likelihood (L) can be written as
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L(β0, β1|y) =

(
eβ0

1 + eβ0

)E1
(

1

1 + eβ0

)E0
(

eβ0+β1

1 + eβ0+β1

)D1
(

1

1 + eβ0+β1

)D0

.

(2.3)

Taking the natural logarithm of this gives the log-likelihood (`), which after

some simplification can be shown to be

`(β0, β1|y) = E1ln(eβ0)− E1ln(1 + eβ0)− E0ln(1 + eβ0) +D1ln(eβ0+β1)

−D1ln(1 + eβ0+β1)−D0ln(1 + eβ0+β1) (2.4)

= E1β0 − Eln(1 + eβ0) +D1(β0 + β1)−Dln(1 + eβ0+β1). (2.5)

This can then be used to find the maximum likelihood estimators (MLEs)

of β0 and β1. For additive models this log-likelihood would be maximised using

an iterative numerical algorithm, but for a dominant model it is possible to

derive the MLEs analytically using differentiation. This gives β̂0 = ln(E1/E0)

and β̂1 = ln(D1E0/D0E1). These are intuitive results, as β̂0 is the log-odds of

disease when there are no risk alleles present (xj = 0) and β̂1 is the logOR of

disease for a risk genotype compared to a wildtype genotype (xj = 1 compared

to xj = 0). Substituting these MLEs back into Equation (2.3) and simplifying

further gives

L(β̂0, β̂1|y) =

(
E1

E

)E1
(
E0

E

)E0
(
D1

D

)D1
(
D0

D

)D0

. (2.6)

This can simply be written in term of the total numbers of cases and controls,

n1 and n0, and the numbers with the risk genotypes, D1 and D0:

L(β̂0, β̂1|y) =

(
n1 −D1

n−D

)n1−D1
(
n0 −D0

n−D

)n0−D0
(
D1

D

)D1
(
D0

D

)D0

. (2.7)

Figure 2.8 shows a contour plot of the maximised log-likelihood as a function

of D0 and D1.

2.4.2 Deriving the sampling distributions of D0 and D1

The allele frequencies in the general population are f for allele A and 1− f for

allele a. Assuming Hardy-Weinberg equilibrium, the risk and wildtype genotype
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Figure 2.8: A contour plot showing maximised log-likelihood based on the num-
ber of controls (D0) and cases (D1) with the risk genotype when the sample
size is n0 = n1 = 10, 000.

frequencies can be written as

p(xj = 1) = f 2 + 2f(1− f) = 2f − f 2, (2.8)

p(xj = 0) = (1− f)2. (2.9)

If the disease is rare so that there is only a small proportion of cases in the

general population, then the sample of controls will approximate a completely

random sample from the whole population. Therefore, these probabilities will

be approximately the same in the controls as they are in the general population:

pD0 = p(xj = 1|dj = 0) ≈ p(xj = 1) = 2f − f 2. The probability distribution for

D0, the number of controls with a risk genotype is binomial with parameters

n0 and pD0 :

P (D0 = k) =

(
n0

k

)
(2f − f 2)k(1− f)2(n0−k). (2.10)

The odds ratio (λ) of having a risk genotype (xj = 1) in cases compared to

controls can be written as
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OR = λ =
pD1/(1− pD1)

pD0/(1− pD0)
. (2.11)

where pD1 = P (xj = 1|case). With pD0 = 2f − f 2, this can be rearranged to

give pD1 in terms of λ and f :

pD1 =
λ(2f − f 2)

λ(2f − f 2) + (1− f)2
. (2.12)

The probability distribution for D1, the number of cases with a risk genotype

is binomial with parameters n1 and pD1 , so

P (D1 = k) =

(
n1

k

)(
λ(2f − f 2)

λ(2f − f 2) + (1− f)2

)k (
(1− f)2

λ(2f − f 2) + (1− f)2

)n1−k

.

(2.13)

2.4.3 An illustration

As in Figure 2.8, the diagrams in Figure 2.9 show part of the log-likelihood

surface as a function of D0 and D1, this time as a 3-dimensional surface. Figure

2.9(a) illustrates the scenario of a sample size of 20,000 and a causal SNP with

a MAF of 0.05 and an OR of 1.05. The joint probability distribution of D0

and D1 is shown as a coloured circular region, with red for the most likely and

blue for the least likely values. Figure 2.9(b) illustrates a similar situation but

where the SNP has an OR of 1.2. This surface can help to explain how changing

the OR of the causal SNP affects the (log-) likelihood and hence the filtering

results.

D1 − D0 is a measure of the distance from the D0 = D1 line and since

D0 and D1 are independent and have known probability distributions, it is

straightforward to derive an approximation for the expectation of D1−D0 and

to show that this expectation increases with the OR:

E(D1 −D0) = E(D1)− E(D0) (2.14)

=
λ(2f − f 2)n1

λ(2f − f 2) + (1− f)2
− (2f − f 2)n0. (2.15)

The fraction part of this is the only part that changes with the OR (λ). As λ

increases, the numerator increases, but only part of the denominator increases.

Therefore, this fraction, and the whole of the expectation increases with in-
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(a) The log-likelihood surface, showing the joint probability
for a SNP with an OR of 1.05 and a MAF of 0.05.
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(b) The log-likelihood surface, showing the joint probabil-
ity for a SNP with an OR of 1.2 and a MAF of 0.05.

Figure 2.9: Part of the log-likelihood surface for SNPs, as a function of the
number of cases and controls with the risk genotype for a sample with 10,000
cases and 10,000 controls. In both figures, the joint probability of controls with
the risk genotype and cases with the risk genotype is shown as a coloured circular
region with red representing highly probable values and blue unprobable values.
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creasing λ. Figures 2.8 and 2.9 show that the likelihood is approximately a

function of D1−D0. So increasing the OR yields larger likelihoods on average.

If the causal SNP has an OR of 1.05 then the joint probability distributions of

D0 and D1 for SNPs in strong LD with it will have a large overlap with the

joint probability distributions for SNPs with ORs of 1. A likelihood-based filter

will capture many of the SNPs including those with ORs of or close to 1 in

this case. If the causal SNP has an OR of 2, the joint probability distributions

for SNPs in high LD with it will not overlap those for SNPs with ORs of 1

very much. In this case the filter will mainly capture SNPs in high LD with

the causal SNP and generally less SNPs in total. When there is some overlap

in these joint probabilities, the variability in FPR will also be higher, as high

FPRs will result if the causal SNP happens to lie in the overlapping part of

the probabilities, with likelihoods close to many other SNPs. There is some

probability, though, that it will have a higher likelihood, producing low FPRs

in these cases.

The shape of the 3-dimensional likelihood surface also helps us to under-

stand the reason why LP filtering can be advantageous over RL filtering. Figure

2.9(a) demonstrates that the majority of the probability for a causal SNP with

an OR close 1 lies close to the lowest possible likelihoods (in this realisation,

log-likelihoods of around -13,860 to -13,855). When carrying out RL filtering at

an RL threshold of 1/100, all SNPs with RL ≤ 1/100 compared to SNPmax are

retained. This is the SNP with the highest log-likelihood, and this RL is equiv-

alent to a difference in log-likelihoods of approximately 4.61. Due to repeated

tests (thousands of SNPs) it often occurs that a very small number will result

in an unusually high likelihood, one of these being SNPmax. Therefore, very few

SNPs will have RL ≤ 1/100, say, and be retained after RL filtering. The causal

SNP’s log-likelihood could occur anywhere in the range of probable values, so

may be retained, but unless it is at the top of this range that is unlikely. How-

ever, if LP filtering is used instead, the number of SNPs retained is fixed, so

the effect of a single extreme likelihood value will be reduced significantly. In

LP filtering, only the rank of the SNPs based on their likelihood is important,

rather than the specific values of the likelihoods, as in RL filtering.

2.5 Imputation

Although fine-mapping studies will genotype a large number of SNPs in a region,

difficulties such as the high costs mean that not every SNP will be targeted, and

the causal SNP may be missed. To reduce the probability of this, and make fine-

mapping analysis as thorough as possible, it is common to impute the unknown
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genotypes of SNPs, as described in §1.2.4. To determine whether the methods

we have considered so far would be effective under these circumstances, we

have compared the analysis results of some of our simulated datasets to the

same analysis results when a subset of the genotypes were removed and then

re-imputed into these datasets.

Using the CASP8 data, for several scenarios, we simulated 100 datasets

with the same 2871 SNPs as previously and carried out filtering on these. For

the iCOGS fine-mapping study of this region, which is described in §1.3.3, a

panel of tagSNPs were chosen which included all SNPs with r2 ≥ 0.1 with two

previous hits in the region and further SNPs to ensure that all known SNPs were

tagged at r2 ≥ 0.9. The set of SNPs we had simulated included 469 of these

tagSNPs, so we reduced the simulated datasets down to the genotypes for these

469 SNPs alone. We then used impute2 [33] (§1.2.4) to impute the missing

genotype doses based on the MAFs and LD of the region and re-analysed these

new datasets. We had purposefully chosen a causal SNP for each scenario that

was not one of the tagSNPs, so would always be imputed.

2.5.1 Robustness of filters when imputation is used

The best performing filters so far have been the LP and pW filters, and we

wished to see if these would perform as well on datasets where the majority of

SNPs had been imputed. The results of filtering on fully genotyped data and

partially imputed data using both of these filters are compared in Figure 2.10.

These results are for a causal SNP scenario with an OR of 1.1, a MAF of 0.13

and a sample size of 10,000 and are given in the form of ROC curves. The ROC

curves demonstrate the similarity of the outcomes for this particular scenario,

whether all SNPs are genotyped or only an informative subset are genotyped

and the causal SNP is among the majority of SNPs in having their genotype

doses imputed. In fact they are so similar that for both methods, the AUCs

agree to the nearest 1%. This similarity was also observed when testing the

methods on other scenarios, leading us to conclude that these methods should

be suitable to analyse fine-mapped data when a suitable panel of tagSNPs has

been used to impute the genotype doses of further SNPs.

2.6 Summary of filtering using only genotype

data

This chapter has considered the efficacy of a number of currently-used and

novel methods as fine-mapping filters to significantly reduce the number of
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(a) Filtering using likelihood percentile
points (LP). The AUC using the fully geno-
typed data is 93.08% and the AUC using
the partially imputed data is 93.02%.
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(b) Filtering using p-values from Wald
tests (pW ). The AUC using the fully geno-
typed data is 92.87% and the AUC using
the partially imputed data is 92.80%.

Figure 2.10: The effectiveness of LP and pW filtering for fine-mapping data
which has been partially imputed compared to its effectiveness for data which is
fully genotyped. The causal SNP has an OR of 1.1, a MAF of 0.13 and a sample
size of 10,000. A set of 100 datasets were simulated using the LD structure of
the CASP8 region containing 2871 fully genotyped SNPs. These were then
reduced to contain 469 genotyped informative SNPs and the remaining 2402
SNPs were imputed.

SNPs considered as causal candidates. The statistics we suggest for filters are

all easily computed using univariate logistic regression models and require only

the genotype data. We compared the true and false positive rates of these filters

when used on a number of simulated datasets. We tried to replicate data similar

to what would be expected with currently undiscovered causal SNPs, giving our

simulated causal SNPs ORs of less than 1.3.

The motivation for this work was to examine how efficacious relative likeli-

hood (RL) filtering is as a method for choosing the SNPs to take forward from

a fine-mapping study. RL filtering with a threshold of 1/100 has been used for

fine-mapping the FGFR2 and the 16q12 loci [53], [52]. We have shown that

with a moderate effect size, such as at these loci, and a similar sample size to

these studies of 20,000, that this method works well. With smaller ORs, how-

ever, the RL filtering is less effective, and with a similar sample size it would be

difficult to detect causal SNPs with per-allele ORs of less than 1.2 (see §2.1.2

and §2.2.1). A limitation of this method is the high levels of uncertainty in the

number of SNPs that will be retained after filtering, demonstrated by the vari-

ability in FPRs across analyses of multiple realisations of the same causal SNP

scenario. The variability in FPR increases as sample size and causal SNP OR
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and MAF decrease. An alternative likelihood filtering method using likelihood

percentiles avoids this variability. In this case the number of SNPs retained

will be set in advance, which is particularly useful if the experimental design

of future stages of investigation limits the number of SNPs which can be taken

forward.

In §2.1 and §2.3 we were able to demonstrate that whilst both likelihood

and p-value based filters can be efficacious in the analysis of fine-mapped data,

likelihood percentile (LP) is generally the most effective of these methods, and

we therefore recommend its use over other methods. We showed this using

simulated data for scenarios covering the very different LD structures of three

regions of the genome, but observed similar results in each of these regions. We

hope that our results will therefore generalise to a variety of different genomic

regions for which fine-mapping is required. The investigation into the effect

of short range LD on the results within the CASP8 region examined causal

SNPs with the same MAF and OR, but located in different LD blocks (with

approximate sizes of 10kb, 72kb and 225kb). As with the results from different

regions, these filtering results did not change in a uniform way but there was

some variation between the results for the causal SNPs in the different LD

blocks. In addition, we were able to demonstrate that filtering may be used on

data for which only an informative subset of SNPs in a region are genotyped,

with the genotype doses of the rest being imputed using impute2 [33]. We

observed similar true and false positive rates when fully ‘genotyped’ data were

simulated and analysed to when partially imputed data were analysed.

The filters based on the structural relationships between variants that were

also investigated in §2.1 produced less encouraging results. For the scenarios

we considered, the relatively complex PLD score developed by Zhu et al. [62]

appeared to be only slightly more efficacious as a filter than simply filtering

using r2 with or genetic map distance from the SNP with the highest maximised

likelihood. None of these methods produced ROC curves with AUCs as high

as those for the LP or p-value filters. It may be that these or similar methods,

such as taking into account LD with the top few hits, rather than just the single

top hit, would be useful under certain circumstances.
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3.1 Bayes Factors and the Wakefield approxi-

mation

3.1.1 Using a Bayesian method for SNP filtering

So far, we have examined a number of methods for filtering SNPs in fine-

mapping analysis. These methods all assume a single causal SNP model and

are based on genotype data alone. We were able to show that some methods, in

particular the likelihood percentile (LP) method were able to appreciably reduce

the set of candidate causal SNPs whilst retaining the causal SNP with a high

probability. However, we expect such causal SNPs to have small effect sizes and

these effects to be confounded by extremely high levels of short range linkage

disequilibrium (LD). The simulated data we tested the methods on reflected

these issues and we found that even in very large samples of tens of thousands

of subjects, as are currently being employed by international consortia, it is not

possible to identify a single SNP alone as having the causal effect.

Functional information is now widely available for much of the genome,

largely from the encode project [15], including some at SNP level. Incorpo-

rating information such as this in a filtering statistic should help to distinguish

between variants that are likely and those that are unlikely to be causal. This

could result in an increase in the probability of retaining of the causal SNP at a

given false positive rate. The filtering statistics we considered previously were

all based on frequentist statistical methods. Frequentist methods focus on the

fact that statistical tests are performed on a sample of the whole population,

and that there are many possible permutations of the population. Parame-

ters are assumed to be fixed, whereas the data itself is variable. Therefore, a

frequentist test is based on the frequency with which the observed data could

have occurred under the null hypothesis. The other major approach to statis-

tical analysis, which is sometimes used with genetic data, is Bayesian analysis.

Using this methodology, the focus shifts to the fact that the only thing that

is completely known is the collected data, so it is this that is presumed fixed

and parameters are unknown. The likely values of the parameters are described

probabilistically. Priors, which are often subjective, are specified, and inference

is based on posterior distributions.

Bayesian analysis readily lends itself to the combination of multiple sources

of data. This may include expert opinion, in that an investigator will have

a prior degree of belief that a particular feature describes the true situation,

and this belief could be formulated into a prior distribution. After observing

new data, we would expect their degree of belief to change to take this evi-
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dence into account, and we can combine priors with observed data using formal

methodology derived from Bayes’ theorem. Information that could be used in

this way may come from experts such as geneticists, genetic epidemiologists

and biochemists. By using Bayesian methods in genetic fine-mapping, it is also

possible to take into account known features of the SNPs, such as whether they

occur in sequences that are well conserved across different species. Another

important feature of Bayesian analysis is that it also allows for uncertainty to

be modelled.

The Bayes Factor (BF) [28] is a Bayesian statistic which is already being

used in genetic analysis [59] [60] [48]. The calculation of BFs is now implemented

in genetic analysis software such as Snptest2 [34], and their use is becoming

increasingly more popular as a filter in fine-mapping studies [32]. A BF is

the value which can be multiplied with a prior odds to calculate a posterior

odds, according to the formula ∆/(1−∆) = δ/(1− δ)×BF, where ∆ and δ are

the posterior and prior probabilities, respectively. Derived from Bayes Theorem

[28], the Bayes Factor is the ratio of the probabilities of observed data occurring

under two differing hypotheses:

BF =
P (data|H1)

P (data|H0)
. (3.1)

We continue to focus on methods that analyse the association between each

SNP and the disease separately, without taking any interactions into consider-

ation. To calculate a BF for each SNP, consider the hypotheses that the SNP

has no association, or alternatively some association, with the disease. This

methodology can be applied to fine-mapped genotypes by once again using in-

formation from the same fitted single-SNP logistic regression models that we

used previously,

yij =
eβ0i+β1ixij

1 + eβ0i+β1ixij
. (3.2)

For SNP i, H0 : β1i = 0 and H1 : β1i 6= 0, such that the BF formally compares

the evidence for association to the evidence for no association. BFi may then

be combined with a prior probability of association specific to SNP i, δi, to

determine a posterior probability of association, ∆i [48].

3.1.2 Wakefield’s approximate Bayes Factor

The BF, as given in Equation (3.1), includes marginal likelihoods which lead to

intractable integrals in most cases. It is common to use a Laplace approximation

[28], which has been shown to work well and this method is integrated into

several pieces of software, including Snptest2 [34]. We have instead chosen
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to use an approximation derived by Wakefield [59] [60]. This is much easier

to compute and we have shown it agrees closely with Laplace approximations

from Snptest2 for sample sizes ≥ 10,000 and a variety of MAFs and effect

sizes (data not included). In their review of Bayesian statistical methods for

genetic association studies, Stephens and Balding [48] also comment that the

Wakefield approximation is an appropriate and convenient alternative to the

Laplace approximation. Both methods are based on asymptotics and all the

datasets we use have very large sample sizes, so the approximations are expected

to be good.

The Wakefield approximate Bayes Factor (WBF) is derived by writing Equa-

tion (3.1) as

WBF =

∫
p(β̂1|β1)π(β1)dβ1

p(β̂1|β1 = 0)
, (3.3)

where π(β1) is the prior over β1, the logOR of the SNP, and β̂1 is the maximum

likelihood estimate (MLE) of β1. This can be simplified by considering a prior

of the form β1 ∼ N(0,W ), and the fact that, asymptotically, β̂1 ∼ N(β1, V ).

We use V estimated from the data. Using these distributions, Wakefield showed

that

WBF =

√
V

V +W
exp

(
β̂1

2
W

2V (V +W )

)
. (3.4)

The full derivation of the WBF approximation is given in Appendix A. Note

that in his papers [59] [60], Wakefield considers the inverse of this BF. Here the

evidence in favour of the association model over the null model is of interest, so

we use the form in Equation (3.4), such that values >1 signify more evidence in

favour of a model with an association term. In general, the greater the value,

the more evidence there is of an association.

3.2 SNP filtering using Wakefield Bayes Fac-

tors

We consider whether the posterior probability of association, ∆, (or equivalently

the odds) is an efficacious filtering statistic. To calculate this, a prior probability,

δ, must be specified for each SNP and this can be problematic. However, in

many cases, investigators may have little or no prior information about the
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region and therefore it can be appropriate to assign equal δ to each SNP. In

this case the rankings of SNPs using ∆ will be the same as those using BF. For

now we assume this scenario and therefore do not need to specify δ values, but

simply filter using WBF approximations.

3.2.1 Wakefield Bayes factor sensitivity analysis

The WBF has a N(0,W ) prior on β1. As we are assuming that there is no prior

information available with which to differentiate between individual SNPs, the

same value of W can be assigned to all SNPs. A suitable value of W must

be chosen. We decided to carry out analysis to determine how sensitive the

results are to this choice. W is a variance and therefore must be positive. We

believe that fine-mapping is only likely to be necessary for causal SNPs with

ORs < 2.25, so priors with 99.5th percentiles below 2.25 should be appropriate.

This corresponds to 0 < W ≤ 0.1.

Figure 3.1 contains threshold averaged receiver operating characteristic (ROC)

curves [18] showing the results of filtering using WBF. Each curve illustrates

the results for filtering using a different value of W (the prior variance of the

logOR) on the same 1000 simulated datasets. The methods used for simulation

and plotting ROC curves are the same as previously. We have also included

in this figure the results for likelihood percentile (LP) filtering on the same

datasets for comparison. This figure suggests that BFs are a promising tool for

filtering, giving comparable ROC curves to LP filtering when certain values of

W are used. In particular, when W = 0.01, WBF filtering is able to produce

higher TPRs at FPRs < 0.16 than LP filtering. When combining BFs with ap-

propriate prior information through δ, if the causal SNP is given a large value

of δ, the TPR will increase. If most of the other SNPs are given smaller values,

the FPR will decrease, potentially resulting in ROC curves with higher AUCs

than those for LP filtering. If WBF is used for genetic analysis, W should be

chosen carefully, as we can see from Figure 3.1 that the results are highly sensi-

tive to this choice, even within the viable range we specified. Of the four WBF

analyses carried out on these specific datasets we observed AUCs in the range

0.82 (when W = 0.1) to 0.87 (when W = 0.01), but the value of W which gives

the largest AUC differs dependent on the causal SNP scenario. One approach

for choosing an appropriate W is to carry out elicitation with an expert on the

particular problem that is being investigated.
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Figure 3.1: Receiver operating characteristic (ROC) curves of BF filtering re-
sults, each using the Wakefield approximation and N(0,W ) prior for the logOR
with a different value of W . The filtering was carried out on 1000 datasets
simulated using the LD structure of the CASP8 region for a scenario with a
causal SNP that has an OR of 1.1 and a MAF of 0.08 and a total sample size of
20,000. The results for likelihood percentile filtering on the same datasets are
also shown.
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3.2.2 A prior for log(OR) dependent on MAF

So far we have assigned the same value of W , the prior variance of the logOR, to

all SNPs. However, if we have some prior information about individual SNPs,

we may be able to assign different values. There is some evidence to suggest

that causal SNPs with lower MAFs are more likely to have larger effects [61], so

in his paper [60], Wakefield suggests a method of allowing W to vary dependent

on MAF. For a SNP with MAF M and prior β1 ∼ N(0,W (M)), Wakefield

gives the formula W (M) = α0 exp(−α1 ×M). To test this in the setting of

breast cancer genetics, elicitation was employed with a breast cancer geneticist

to determine suitable values for α0 and α1, following the guidelines set out

by Wakefield. Subject-specific 99% centralised probability intervals (PIs) for

ORs were elicited for SNP association with breast cancer at 4 different MAFs.

However, there was no possible way to closely fit a W (M) equation of the form

given by Wakefield to the data elicited from the expert.

A new formula for W (MAF)

To get a better fit to the elicited percentiles, more parameters were added to

give the form:

W (M) = α0 + α1 exp(α2 + α3 ×M). (3.5)

To fit an equation of this form to the data, the R package nleqslv was employed.

Many combinations of different starting values for the α parameters were used

to estimate appropriate values fitting the equation to the elicited points as

closely as possible. Figure 3.2(a) shows the results of the output from 9 of these

combinations in terms of W plotted against MAF. The “best fitting” equation

was chosen as the one with the least sum of the squared distances between

predicted W and elicited W at the 4 given MAFs. This is shown as a dashed

red line in Figure 3.2(a) and the four elicited values of W are plotted as squares.

The line has the equation

W (M) = 0.0123 + 0.172 exp(−0.451− 20.3M), (3.6)

and this relationship is also plotted in Figure 3.2(b) in terms of the upper value

of the 99% centralised probability interval (PIu) plotted against MAF. The

elicited points are plotted as well as the predicted values of PIu at the same

MAFs according to the fitted relationship, showing how closely they agree.
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(a) Nine fitted equations obtained by solv-
ing non-linear equations using different
starting values and the four elicited points
shown on the figure. The “best fitting”
equation is shown as a red, dashed line.
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(b) The dependence of PIu, the upper
value of the 99% probability interval for
the per allele OR of a SNP, on MAF, de-
rived from the “best fitting” W (M) equa-
tion. The elicited points are shown, as well
as the predicted values of PIu at the same
MAFs.

Figure 3.2: Fitted equations for dependence of W on MAF (M) according to
W (M) = α0 +α1 exp(α2 +α3×M), where W is the prior variance of the logOR
for a SNP with the relevant MAF. The “best fitting” equation based on least
squares has the form W (M) = 0.0123 + 0.172 exp(−0.451− 20.3M).

Filtering using Bayes Factors with W (MAF)

The use of BF filtering with SNP-specific logOR priors of the form N(0,W (M))

was tested on simulated datasets using different causal SNP and sample size

scenarios. The results from these analyses were compared to the results of using

N(0,W ) with the same value of W for all SNPs. Figure 3.3 shows that when

the expert’s beliefs fit the causal SNP scenario reasonably well, this method

produces good results. In this case, the causal SNP had a small effect size (OR

of 1.06) and large MAF (0.31), and the AUC of the ROC curve when W (M) was

employed was 93%. This is larger than the AUCs of three of the ROC curves

produced using a fixed W , but slightly smaller than when W = 10−6, which has

an AUC of 96%. As might be expected, the results are not so positive when

the causal SNP scenario differs somewhat from the prior belief. Therefore, this

seems like it may be a good method to use if it is not possible to determine

a prior W that an expert is confident about, but it is possible to elicit such a

relationship between W and MAF. Because of the sensitivity of results to the

choice of W , the strengths of an experts beliefs should be considered before a

decision is made on the prior to use, whether it is a fixed value or dependent

on MAF. We go on to explore the possibility of including such uncertainty of
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Figure 3.3: Comparison of BF filtering using W (MAF) = 0.0123 +
0.172 exp(−0.451 − 20.3MAF) to using fixed values of W . 1000 datasets were
simulated with a causal SNP with a per-allele OR of 1.06, a MAF of 0.31 and
20,000 subjects. They were simulated using the LD structure of the CASP8
region. A prior on the logOR of the form N(0,W ) and the Wakefield approxi-
mation were used.

beliefs in §3.3.

3.2.3 Choosing the prior on the log(OR) based on the

data

Although standard Bayesian methods require a prior distribution to be fixed

before the data is obtained, an alternative is to estimate a prior from the data,

in what is called an empirical Bayes method. We hypothesised that a way to

optimise filtering results would be to use the data to attempt to choose a prior

which would maximise the BF approximation for the causal SNP, whilst not

maximising those of other SNPs. To do this, we must first find the value of W

which maximises a WBF approximation.

The numerator of the WBF can be re-written as follows:
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∫
p(β̂1|β1)π(β1)dβ1 =

1√
2π(V +W )

exp

(
− β̂1

2

2V
+

β̂1

2
W

2V (V +W )

)
(3.7)

=
1√

2π(V +W )
exp

(
− β̂1

2

2(V +W )

)
(3.8)

=p(β̂1|β̂1 ∼ N(0, V +W )). (3.9)

Therefore the WBF itself can be written as

WBF =
p(β̂1|β̂1 ∼ N(0, V +W ))

p(β̂1|β̂1 ∼ N(0, V ))
. (3.10)

If β̂1 and V are held constant, the denominator is constant, so to maximise the

WBF, only the numerator must be maximised. Calculus is employed to find the

value which maximises WBF with respect to (w.r.t.) W . Where the numerator

is f(W ),

f(W ) =
1√

2π(V +W )
exp

(
− β̂1

2

2(V +W )

)
(3.11)

=g(W ) · exp(h(W )). (3.12)

Using the product and chain rules we find

f ′(W ) =g′(W ) · exp(h(W )) + g(W ) · exp(h(W )) · h′(W ) (3.13)

=
−1

2
3
2π

1
2 (V +W )

3
2

exp

(
− β̂1

2

2(V +W )

)

+
1√

2π(V +W )
exp

(
− β̂1

2

2(V +W )

)
· 2β̂1

2

(2(V +W ))2
(3.14)

=

(
β̂1

2

2
3
2π

1
2 (V +W )

5
2

− 1

2
3
2π

1
2 (V +W )

3
2

)
exp

(
− β̂1

2

2(V +W )

)
(3.15)

All stationary points of f(W ) (and therefore the WBF) will be found at values

of W for which f ′(W ) = 0, and we denote such values Ŵ . In this case, either

the exponential or its multiplier must be equal to 0 at any such points. As there

are no exponentials which are equal to 0, if there are any stationary points they
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can be found by solving:

β̂1

2

2
3
2π

1
2 (V + Ŵ )

5
2

− 1

2
3
2π

1
2 (V + Ŵ )

3
2

= 0 (3.16)

⇒ β̂1

2

V + Ŵ
= 1 (3.17)

⇒ Ŵ = β̂1

2
− V (3.18)

By finding the second order differential of the numerator of the WBF w.r.t.

W , we can show that f(Ŵ ) is in fact a maximum rather than another type of

stationary point:

f ′′(W ) =
−6β̂1

2
+ 3(V +W ) + β̂1

4
(V +W )−1

2
5
2π

1
2 (V +W )

7
2

exp

(
− β̂1

2

2(V +W )

)
. (3.19)

Substituting in Ŵ , we find:

f ′′(Ŵ ) =
−6β̂1

2
+ 3β̂1

2
+ β̂1

4
β̂1

−2

2
5
2π

1
2 |β̂1|7

exp

(
− β̂1

2

2β̂1

2

)
(3.20)

=
−1

2
3
2π

1
2 |β̂1|5

exp

(
−1

2

)
(3.21)

≈−0.121

|β̂1|5
. (3.22)

The powers which are multiples of 1
2

are derived from the square root in the

normal distribution, which is taken to be a positive square root, therefore, these

will also be positive. This is why |β̂1|, rather than β̂1, applies in the denominator.

Thus, f ′′(Ŵ ) will always be negative, proving that the unique stationary point

of WBF that occurs at Ŵ is a maximum point.

We wish to use WBF with prior logOR ∼ N(0, Ŵ ). This is problematic if

V > β̂1

2
, as Ŵ would then be negative. As WBF must be strictly decreasing

after its unique maximum at Ŵ , we can see that in this case, the variance which

maximises WBF is the smallest positive value possible. In practice, we use

WEB = max(β̂1

2
− V, 10−12), (3.23)

where the subscript, EB, indicates the empirical Bayes nature of such a value.
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Filtering using Bayes Factors with WEB

In practice using WEB is not as simple as it may seem. To maximise W for the

causal SNP, one would need to calculate WEB using the β̂1 and V of the causal

SNP. The causal SNP is not known, so we need to find good approximations

to its SNP-specific β̂1 and V values. V is dependent on several quantities,

including MAF and sample size. There is no way to pre-determine the MAF

of the causal SNP, but the sample size is equal for all SNPs. When cases and

controls are equal, V is inversely proportional to sample size [44] and we suggest

using the median V from all SNPs in the dataset, as a representative value for

that sample size, and we denote this Vm. As the SNP that produces the model

with the largest likelihood (SNPmax) is likely to be in high LD with the causal

SNP, we hypothesised that this SNP may have a β̂1 value close to that of the

causal SNP. We chose to use β̂1 of SNPmax (β̂1max) on a number of simulated

scenarios, but soon discovered that it is not an effective estimate of β̂1 of the

causal SNP.

We already discussed in Chapter 2 how this can occur, especially with very

small effect sizes. However, we would expect the SNPs in very high LD with

the causal SNP to at least have higher ranks on average than the rest of the

SNPs in the region. This led to the next method for estimating β̂1 of the causal

SNP, which is to take the top p% of SNPs ranked by likelihood and take the

median value of |β̂1| for this group, denoted β̂1p. The choice of the median was

due to the lower bound of zero and the skewed distribution. We investigated

using different values of p in various causal SNP scenarios, and found that, in

general, values around p = 30 work well for the region we have simulated.

Figure 3.4 shows simulation filtering analysis results for two scenarios using

the Wakefield Bayes factor where W , the prior variance of the logOR, is equal

for all SNPs in a dataset. The causal SNP used in both scenarios has a MAF

of 0.08 and the sample size is 20,000, but we have simulated data for an OR

of 1.1 and also an OR of 1.14. The solid ROC curves show the results for a

range of pre-specified W s, whilst the dashed lines use WEB values calculated

in different ways. Figures 3.4(a) and 3.4(b) give the full ROC curves for the

two scenarios, and Figures 3.4(c) and 3.4(d) focus on the parts of these curves

for which FPR ≤ 0.5 and TPR ≥ 0.5. For both scenarios, the curves which

clearly have the largest AUCs (94% and 97%) are from the analysis where WEB

is calculated using the values of β̂1 and V of the true causal SNP (β̂1c and Vc).

This represents the ideal upper bound. For the analyses that give the other

two dashed lines, the median of V across all SNPs was used (Vm). The figure

shows that using β̂1max in ineffective, giving the ROC curves with the lowest
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AUCs (76% and 89%) in both of these plots. However, we can see that using

a β̂1 value estimated using the top 30% of SNPs ranked using likelihood (β̂1p)

improves filtering efficacy noticeably. In fact, for both of the scenarios shown,

the AUCs for the ROC curves using these values of WEB (89% and 96%) are

just slightly higher than the largest AUCs of the ROC curves using pre-specified

W values (87% and 95%).

We tested this method on a variety of fine-mapping scenarios and it seems to

be generally effective. We therefore recommend empirically choosing a value of

W for the prior logOR ∼ N(0,W ) using the formula WEB = β̂1

2

p=30−Vm; where

β̂1p=30 is the median |β̂1| of the top 30% of SNPs ranked by likelihood, and Vm

is the median V of all SNPs, obtained by fitting logistic regression models. The

value of 30% was chosen through investigation with simulated data using the

set of 2871 SNPs that we are interested in, but a slightly different value may

produce better results in a study concerned with a set of SNPs with a different

MAF and LD structure. Therefore, we suggest investigating this with relevant

simulated datasets prior to using WEB on the real data. The utility of such a

method is also likely to be restricted to scenarios with a single causal SNP.

3.3 Bayes factor approximations incorporating

uncertainty

A limitation of the WBF is that the prior distribution of the logOR, β1, must

take the form N(0,W ). We suggest that elicitation is performed with an ex-

pert in order to identify the most appropriate value of W to use, by finding

p(β1 < β1,p|β1 ∼ N(0,W )) = p; where β1,p is the pth percentile of the distribu-

tion function of β1. W is calculated using Φ, the distribution function of the

standard normal distribution: W = {β1,p/Φ
−1(p)}2

[60]. With values elicited

with our breast cancer expert, we compared the closeness of their fit to a normal

distribution, as described, and their fit to a variety of Student’s t-distributions,

allowing for heavier tails. We found that the normal distribution generally fit

best, but that there was uncertainty in the expert’s beliefs. We expect this

expert uncertainty about the value of W to be a common occurrence. This

may be problematic, as we have already shown that the results of fine-mapping

analysis using WBF are highly dependent on the choice of W . In a situation

where the expert is only confidently able to specify that the 80th percentile

of the prior distribution for the OR is likely to be between 1.05 and 1.3, we

have that 0.003 ≤ W ≤ 0.1. We therefore wanted to allow for this uncertainty

about W in the BF calculations. We have been able to determine a number
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(a) Filtering results from data simulated
with a causal SNP OR of 1.1.
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(b) Filtering results from data simulated
with a causal SNP OR of 1.14.
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(c) Filtering results from data simulated
with a causal SNP OR of 1.1, focussing
on the parts of the ROC curves for which
FPR ≤ 0.5 and TPR ≥ 0.5.
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(d) Filtering results from data simulated
with a causal SNP OR of 1.14, focussing
on the parts of the ROC curves for which
FPR ≤ 0.5 and TPR ≥ 0.5.

Figure 3.4: Receiver operating characteristic (ROC) curves of BF filtering re-
sults, each using the Wakefield approximation and N(0,W ) prior for the logOR
with a different value of W , some based on empirical information (WEB). Those
which use empirical Bayes methods have subscripts denoting whether they are
based on the causal SNP (c), the likelihood-based top hit (max), the median
across all SNPs (m) or the median across the top p% of SNPs (p). The filter-
ing was carried out on 1000 datasets simulated using the LD structure of the
CASP8 region for two scenarios with a causal SNP that has a MAF of 0.08 and
a total sample size of 20,000.
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of prior distributions for W which lead to BF approximations that can be eas-

ily calculated. Although the ease of calculation informed our choice of priors,

they are flexible enough to accommodate a wide range of beliefs about expert

uncertainty.

3.3.1 Novel Bayes factors allowing for uncertainty in W

By using similar methodology to Wakefield [60], we were able to develop 4 novel

forms of Bayes factor approximation which still have the prior β1 ∼ N(0,W ),

but each also puts a different prior on W . Theoretically, W could have a prior

distribution of any form, but we wished to determine tractable Bayes factor

approximations. The Bayes factor approximation includes integration over the

variable parameters, in this case β1 and W . As Wakefield integrated out β1

using the normal density, W can also be integrated out if the integral is in the

form of a standard probability density for which the cumulative distribution

function can be expressed exactly. We were able to work backwards from some

of these probability densities to come up with four prior forms for W . Three of

these priors take the form of parametric families and the fourth is less flexible

but may be useful in some scenarios. The range of distributions that these

prior forms yield make them able to allow for a variety of different kinds of

expert uncertainty. Table 3.1 contains these forms for the prior on W (up to

proportionality) and the derivations of the BF approximations are demonstrated

below. All 4 new BFs can be easily calculated in R [41] (code is provided in

Appendix B). In all cases 0 < a ≤ W ≤ b .

Name of prior f(W ) ∝ Restrictions on
hyperparameters

Power (V +W )k k < −1
2

Exponential exp (−cW/2) c > 0

Hybrid (V +W )k exp

(
− d

2(V +W )

)
d > −β̂1, k < −1

Reciprocal
1

(V +W )
exp

(
−(V +W )

2

)
Table 3.1: Density functions for each of the four prior forms (applies for 0 <
a ≤ W ≤ b).

Deriving the Bayes factor when f(W ) = q(V +W )k for k ≤ −1/2

The power prior Bayes factor (PPBF) approximation can be written
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PPBF =

∫
W

∫
β1
p(β̂1|β1)f(β1|W )f(W ) dβ1 dW

p(β̂1|β1 = 0)

=
1

Q

∫
W

∫
β1

1√
2πV

exp

(
−(β̂1 − β1)2

2V

)
1√

2πW
exp

(
− β2

1

2W

)
q(V +W )k dβ1 dW,

(3.24)

where

q =

{
(k + 1)[(V + b)k+1 − (V + a)k+1]−1 k 6= −1

[ln(V + b)− ln(V + a)]−1 k = −1

is the normalising constant of the prior, andQ = p(β̂1|β1 = 0) = 1√
2πV

exp
(
− β̂1

2

2V

)
.

As demonstrated by Wakefield in his approximation, β1 can be integrated out

by rearranging the integrand into the density of a normal distribution in β1,

giving

PPBF =
q

Q

∫
W

1√
2π(V +W )

exp

(
− β̂1

2

2(V +W )

)
(V +W )k dW

=
q

Q
√

2π

∫
W

(V +W )k−
1
2 exp

(
− β̂1

2

2(V +W )

)
dW. (3.25)

Similarly, the integrand above takes the form of an inverse gamma density

f(y;α, γ) = γα

Γ(α)
y−(α+1) exp

(
−γ
y

)
with shape and scale parameters −(k + 1

2
)

and β̂1

2
/2, respectively, although for this to apply, we must restrict k < −1

2
.

PPBF =
q

Q
√

2π

Γ(−k − 1
2
)

(β̂1

2
/2)−k−

1
2

∫ W=b

W=a

(β̂1

2
/2)−k−

1
2

Γ(−k − 1
2
)

(V +W )k−
1
2 exp

(
− β̂1

2

2(V +W )

)
dW

=
q

Q
√

2π

Γ(−k − 1
2
)

(β̂1

2
/2)−k−

1
2

∫ W=b+V

W=a+V

(β̂1

2
/2)−k−

1
2

Γ(−k − 1
2
)
W k− 1

2 exp

(
− β̂1

2

2W

)
dW

=
q

Q
√

2π

Γ(−k − 1
2
)

(β̂1

2
/2)−k−

1
2

Γ(−k − 1
2
, β̂1

2

2W
)

Γ(−k − 1
2
)

W=b+V

W=a+V

,

where Γ(s, x) =
∫∞
x
ts−1 exp(−t) dt is the upper incomplete gamma function.

Substituting in Q and the normalising constant q in the forms given above re-

sults in
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PPBF =



(k+1)
√
V

[
Γ

(
−k− 1

2
,
β̂1

2

2(b+V )

)
−Γ

(
−k− 1

2
,
β̂1

2

2(a+V )

)]
(
β̂1

2
/2
)−k− 1

2
exp

(
− β̂1

2

2V

)
[(V+b)k+1−(V+a)k+1]

k 6= −1

√
2V

[
Γ

(
1
2
,
β̂1

2

2(b+V )

)
−Γ

(
1
2
,
β̂1

2

2(a+V )

)]
β̂1 exp

(
− β̂1

2

2V

)
ln( V+b

V+a)
k = −1.

Deriving the Bayes factor when f(W ) = r exp
(
−cW

2

)
for c > 0

The normalising constant for the exponential prior is

r =
c

2

[
exp

(
−ca

2

)
− exp

(
−cb

2

)]−1

.

To derive the exponential prior Bayes factor (EPBF), the initial steps are the

same as those that lead to Equation (3.25) for the PPBF. The equivalent result

with this prior is

EPBF =
r

Q

∫ b

a

1√
2π(V +W )

exp

(
− β̂1

2

2(V +W )

)
exp

(
−cW

2

)
dW,

using the same definition of Q as previously. In this case, the integrand can be

re-written in the form of a generalized inverse Gaussian density with parameters

c > 0 , β̂1

2
and 1

2
:

EPBF =

2r exp( cV
2

)K 1
2

(√
cβ̂1

2
)

Q
√

2π(c/β̂1

2
)
1
4

×
∫ W=b

W=a

(c/β̂1

2
)
1
4 (V +W )−

1
2

2K 1
2

(√
cβ̂1

2
) exp

(
− β̂1

2

2(V +W )
− c(V +W )

2

)
dW

=

2r exp( cV
2

)K 1
2

(√
cβ̂1

2
)

Q
√

2π(c/β̂1

2
)
1
4

∫ W=b+V

W=a+V

(c/β̂1

2
)
1
4W− 1

2

2K 1
2

(√
cβ̂1

2
) exp

(
− β̂1

2

2W
− cW

2

)
dW

=

2r exp( cV
2+β̂1

2

2V
)
√
V K 1

2

(√
cβ̂1

2
)

(c/β̂1

2
)
1
4

∫ W=b+V

W=a+V

(c/β̂1

2
)
1
4W− 1

2

2K 1
2

(√
cβ̂1

2
) exp

(
−cW

2
− β̂1

2

2W

)
dW.
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where K 1
2
(.) is a modified Bessel function of the second kind. There is no closed

form expression for the distribution function of a generalized inverse Gaussian

density, but the integrand, W ∼ GIG(c, β̂1

2
, 1

2
), can be calculated in R using

the pgig command.

Deriving the Bayes factor when f(W ) = s(V +W )k exp
(
− d

2(V +W )

)
for d > −β̂1

2
, k < −1

The hybrid prior takes the form of an inverse gamma density, and this can be

used to find the normalising constant,

s =

(
d

2

)−k−1 [
Γ

(
−k − 1,

d

2(b+ V )

)
− Γ

(
−k − 1,

d

2(a+ V )

)]−1

.

However, this intrinsically applies the limit k < −1.

Following the steps which result in Equation (3.25) for the PPBF, the hybrid

prior Bayes factor (HPBF) takes the form

HPBF =
s

Q
√

2π

∫ b

a

(V +W )k−
1
2 exp

(
− β̂1

2

2(V +W )

)
exp

(
− d

2(V +W )

)
dW.

As with the PPBF, the integrand above takes the form of an inverse gamma

density for the values of k we have specified. In this case the shape and scale

parameters are −(k + 1
2
) and (β̂1

2
+ d)/2, respectively.

HPBF =
s

Q
√

2π

Γ(−k − 1
2
)

((β̂1

2
+ d)/2)−k−

1
2

×
∫ W=b

W=a

((β̂1

2
+ d)/2)−k−

1
2

Γ(−k − 1
2
)

(V +W )k−
1
2 exp

(
− (β̂1

2
+ d)

2(V +W )

)
dW

=
s

Q
√

2π

Γ(−k − 1
2
)

((β̂1

2
+ d)/2)−k−

1
2

∫ W=b+V

W=a+V

((β̂1

2
+ d)/2)−k−

1
2

Γ(−k − 1
2
)

W k− 1
2 exp

(
−(β̂1

2
+ d)

2W

)
dW

=
s

Q
√

2π

Γ(−k − 1
2
)

((β̂1

2
+ d)/2)−k−

1
2

Γ(−k − 1
2
, (β̂1

2
+d)

2W
)

Γ(−k − 1
2
)

W=b+V

W=a+V

=

√
2V exp

(
β̂1

2

2V

)[
Γ

(
−k − 1

2
, (β̂1

2
+d)

2(b+V )

)
− Γ

(
−k − 1

2
, (β̂1

2
+d)

2(a+V )

)]
(β̂1

2
+ d)−k−

1
2dk+1

[
Γ
(
−k − 1, d

2(b+V )

)
− Γ

(
−k − 1, d

2(a+V )

)] .
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Deriving the Bayes factor when f(W ) = t
(V +W )

exp
(
− (V +W )

2

)
The reciprocal prior approximate Bayes factor (RPBF) is a specific prior dis-

tribution with normalising constant t = [Γ (0, (a+ V )/2)− Γ (0, (b+ V )/2)]−1.

The form of the upper incomplete gamma function Γ (0, z) is a special case

and is calculated using the relationship Γ (0, z) = −Ei(−z) = −γ − ln(z) −∑∞
n=0(−1)n zn

nn!
, where Ei is the exponential integral and γ is the Euler-Mascheroni

constant [22].

The RPBF can be written

RPBF =
t exp(−|β̂1|)

Q

∫ b

a

1
√

2π(V +W )
3
2

exp

(
− β̂1

2

2(V +W )

)

× exp

(
−(V +W )− 2|β̂1|

2

)
dW,

which can be further simplified by writing the integrand as the density of an

inverse Gaussian distribution with mean and scale parameters of |β̂1| and β̂1

2

respectively.

RPBF =
t exp(−|β̂1|)

Q

∫ W=b

W=a

1
√

2π(V +W )
3
2

exp

−
(

(V +W )− |β̂1|
)2

2(V +W )

 dW

=
t exp(−|β̂1|)

Q|β̂1|

∫ W=b+V

W=a+V

[
β̂1

2

2πW 3

] 1
2

exp

(
− β̂1

2
(W − |β̂1|)2

2β̂1

2
W

)
dW

=
t exp(−|β̂1|)

Q|β̂1|

[
Φ+(W ) + exp(2|β̂1|)Φ−(W )

]W=b

W=a
,

where

Φ+(y) = Φ

(√
y + V − |β̂1|√

y + V

)
, Φ−(y) = Φ

(
−
√
y + V − |β̂1|√

y + V

)

and Φ(.) is the distribution function of the standard normal distribution. So

RPBF =

√
2πV exp

(
β̂1

2

2V
− |β̂1|

) [
Φ+(b)− Φ+(a) + (Φ−(b)− Φ−(a)) exp(2|β̂1|)

]
|β̂1|

[
ln
(
V+b
V+a

)
+
∑∞

n=1
(−1)n

nn!

((
b+V

2

)n − (a+V
2

)n)] .
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3.3.2 Properties of the priors on W defined for the novel

Bayes factors

The dependence of the prior densities of W upon the genotype data

As with the WEB prior variance described in §3.2.3, three of the prior forms,

the power, hybrid and reciprocal priors, contain information from the genotype

data. In this case, they depend on V , the asymptotic variance of the estimate of

the logOR, and therefore may not be considered true priors. However, in order

to carry out the integration in the BF calculations, such forms were necessary

and we are able to show that, for the values likely to be encountered in large

association studies, V has quite a small effect on the prior density of W .

In §3.2.3, we discussed the dependence of V on MAF and sample size. Once

again, it is necessary to choose appropriate values of V for our investigations.

The sample sizes we are considering should have the power to detect associations

with most SNPs, except those with very small MAFs. We therefore we consider

the V s corresponding to SNPs with MAF ≥ 0.005 in one of our simulated

datasets of size 20,000. These V values were distributed with minimum, median

and maximum of 0.00040, 0.00176 and 0.02211 respectively. Using fixed values

of the hyperparameters, we plotted the prior densities for W for the power,

hybrid and reciprocal priors for these 3 values of V and these are given in Figure

3.5. These plots show the extent to which the prior for W can be expected to

vary dependent on V in a sample size of 20,000. In particular, there appears to

be little difference between the densities using the minimum and medium values

of V for each prior, and larger V values up to the maximum are also reasonably

similar.

We next consider SNPs with extreme values of V as these may lead to

extreme priors and potentially large BFs. Because V is bounded below by 0,

we only need to consider extreme large values of V . To consider the largest

values of V likely to occur, we refer back to the largest value for a SNP with

MAF ≥ 0.005 in the simulated sample of 20,000, which was 0.02211. If the

number of cases and controls are equal and denoted by n, Slager and Schaid

[44] showed that V ∝ 1/n approximately. We assume no fine-mapping studies

with total sample size less than 2000 would be successful, and we can infer

that studies of this size will yield most values of V ≤ 0.2 for SNPs with MAF

greater than 0.005. At smaller sample sizes such as this, we can expect to

observe occasional rare SNPs (with MAFs less than 0.005) which will result in

unusually large values of V . Although this will have a significant impact on the

prior, these SNPs will have broad likelihoods and as such are unlikely to have

high BFs. Therefore, although a small proportion of SNPs may have priors
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Figure 3.5: Prior densities of W given for minimum, median and maximum
values of V for SNPs with MAF> 0.005 in a sample size of 20,000.
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that are different from the rest due to unusual V values, they are likely to be

removed in the filtering process.

The dependence of the prior densities of W upon hyperparameters

All four forms of the prior must be defined over an interval 0 < a ≤ W ≤ b and

each of the power, exponential and hybrid priors are in fact families of priors

dependent on further hyperparameters. We suggest choosing the values of a, b

and the hyperparameters c, d and k via expert elicitation, which we go on to

describe in §3.3.3.

Using V = 0.003 for those priors which depend on V , we give the densities

of some possible priors in Figure 3.6, demonstrating the range of prior beliefs

they are able to capture. The single reciprocal prior only allows for the support

to be varied and therefore is very limited. Like this prior, the majority of other

distributions also place most of the prior weight of W close to the value of a,

the lower limit of the support. However, choosing a value of c close to 0 with

the exponential prior results in an almost uniform distribution over W . This,

along with its independence of the genotype data, is one of the main advantages

for using this family of priors. The hybrid prior also has a unique advantage,

as it is the only form which is not necessarily monotonically decreasing with

W and can have a stationary point. Its hyperparameters can be chosen such

that the mode is located anywhere in the support, specifically it is found at

W = −(V + d/2k). This allows for much more flexibility, and can model many

more types of uncertainy.

Are these priors consistent with rare alleles having larger effects?

In §3.2.2 we attempted to define a formula for W (MAF) to take into account

the suggestion that the effect size of causal SNPs may increase with decreasing

MAF [61]. We now investigate whether the three forms of prior which depend

on the data through V implicitly have this property. To assess this we examine

how E(W ) changes with V , over a support relevant to studies with sample

sizes of 2000 or more. Since SNPs with lower MAFs have larger V [44], an

appropriate prior would possess the property that E(W ) is a non-decreasing

function of V . Then as the MAF decreases, V increases and rarer SNPs have a

priori larger effects on average.

Either using integration by parts with respect to (w.r.t.) W , or integrating

w.r.t. (V + W ) and then using the property E(W ) = E(V + W )− V , we were

able to find the expected value of W for each of the prior forms. These are given

in Table 3.2 and their dependence on V (where relevant) is plotted in Figure
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Figure 3.6: Densities of three families of tractable priors and one specific prior
for f(W ) (0 < W ≤ 0.1) where β1 is log odds ratio with β1 ∼ N(0,W ). A value
of V = 0.003 is used in plots (a), (c) and (d).
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3.7 for values of V likely to occur. For those forms that are dependent on V , we

were unable to show algebraically that the expectation of W is a non-decreasing

function of V , although Figure 3.7(c) shows that the reciprocal prior possesses

this property. We can see that this is also the case for the power priors plotted in

Figure 3.7(a), which use quite different hyperparametric values, so we assume

that this applies to all values likely to be used. However, dE(W )/dV < 0

in places for some realisations of the hybrid prior, as shown in Figure 3.7(b).

Based on our observations, we suggest that researchers who have prior beliefs

that there is a negative relationship between effect size and MAF take care if

they wish to use a hybrid prior. In particular, we recommend restricting the

value of d to close to zero. Investigators can check whether they believe the

dependence on V is appropriate using E(W ) as given in Table 3.2.

If it is not possible to find a form for the prior on W which fits an expert’s

overall beliefs closely and also fits their beliefs about the relationship between

MAF and effect size, it may be better not to employ our novel BFs, but instead

use a generalization of the Savage-Dickey density ratio [56]. We have limited

the forms of prior available, as our BF calculations require integration, but the

generalization of the Savage-Dickey density ratio approximates the BF without

the need to do this. Therefore, many more priors are available and a prior of

the form W k exp (−d/2W ), for example, could be used to calculate a BF using

this method. The BF calculation is instead based on posterior sampling, using

a method such as MCMC.

Type of prior E(W ) Limitations

Power
[b(k + 1)− V ](V + b)k+1 − [a(k + 1)− V ](V + a)k+1

(k + 2)[(V + b)k+1 − (V + a)k+1]
k < −1

2

Exponential
(a+ 2

k
) exp

(
−ka

2

)
− (b+ 2

k
) exp

(
−kb

2

)
exp

(
−ka

2

)
− exp

(
−kb

2

) c > 0

Hybrid
d[Γ
(
−k − 2, d

2(V+b)

)
− Γ

(
−k − 2, d

2(V+a)

)
]

2[Γ
(
−k − 1, d

2(V+b)

)
− Γ

(
−k − 1, d

2(V+a)

)
]
− V d > −β̂1, k < −2

Reciprocal
2
(
exp

(
−V+a

2

)
− exp

(
−V+b

2

))
ln
(
b+V
a+V

)
+
∑∞

n=1
(−1)n

nn!

((
b+V

2

)n − (a+V
2

)n) − V
Table 3.2: Expected value of W for each of the four prior forms.

3.3.3 Eliciting hyperparameters of the priors for W

The motivation for putting a prior distribution on W was inconsistency or un-

certainty by experts when elicitation was employed to determine a fixed value
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Figure 3.7: E(W ) as a function of V for empirical forms of the the prior (0 <
W ≤ 0.1). E(W ) is given over a range of V likely to been seen in sample sizes
of 2000 or greater with different values of the hyperparameters, where relevant.
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of W . However, we have now specified a whole range of possible prior distri-

butions and are still faced with the problem of how to find the one that fits an

expert’s beliefs most closely. For all forms, the support of Wat least must be

specified, but it is likely that one of the forms with further hyperparameters

will be required and therefore these will also need to be defined.

The appropriate distribution can be elicited from an expert using a similar

method to when W was fixed. We give an example using the power prior form.

To begin with the cumulative distribution is needed:

F (W ) =
(V +W )k+1 − (V + a)k+1

(V + b)k+1 − (V + a)k+1
a ≤ W ≤ b. (3.26)

If it is possible to elicit a single value, w1, at the pth
1 percentile of the distribution

of W , Equation (3.26) can be equated to p1 and solved to find k by replacing W

with w1. However, a better fit will be found if more percentiles can be elicited,

for example, h percentiles (p1, p2, ..., ph) of W (w1, w2, ..., wh). These values can

then be used to solve

k̂ = argmink

h∑
i=1

(
(V + wi)

k+1 − (V + a)k+1

(V + b)k+1 − (V + a)k+1
− pi

)2

. (3.27)

Similar methods can be employed with the exponential and hybrid priors, using

their distribution functions, as given in Table 3.3, although the hybrid prior

requires a search over a two dimensional space for the pair of hyperparameters

which optimise the prior.

Type of prior F (W ) Limitations

Power
(V +W )k+1 − (V + a)k+1

(V + b)k+1 − (V + a)k+1
k < −1

2
, k 6= −1

ln
(
V+W
V+a

)
ln
(
V+b
V+a

) k = −1

Exponential
exp

(
− cW

2

)
− exp

(
− ca

2

)
exp

(
− cb

2

)
− exp

(
− ca

2

) c > 0

Hybrid
Γ
(
−k − 1, d

2(V+W )

)
− Γ

(
−k − 1, d

2(V+a)

)
Γ
(
−k − 1, d

2(V+b)

)
− Γ

(
−k − 1, d

2(V+a)

) d > −β̂1, k < −1

Reciprocal
ln
(
W+V
a+V

)
+
∑∞

n=1
(−1)n

nn!

((
W+V

2

)n − (a+V
2

)n)
ln
(
b+V
a+V

)
+
∑∞

n=1
(−1)n

nn!

((
b+V

2

)n − (a+V
2

)n)
Table 3.3: Distribution functions for each of the four prior forms.

Practically, it can be difficult for experts to choose percentiles from a distri-
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bution as described. One way which can make it slightly more user-friendly is to

instead ask experts to think about the distribution of ORs and to envisage cen-

tral probability intervals (PIs) for this distribution. We suggest encouraging the

subject to choose the particular zi% probability intervals themselves. These can

then be used to find pi = 1− (1−0.01zi)/2. The expert should be asked to give

their estimate of PIu,i, the upper limit of the zi% centralised probability interval

for the OR, from which we are able to calculate wi = (ln(PIu,i)/Φ
−1(pi))

2.

When carrying out elicitation for either the power or hybrid priors, the op-

timisation applies to a single value of V , but V is SNP-specific and we ideally

want to find the best hyperparameters for all SNPs in the dataset. We suggest

fitting the univariate logistic regression models to the data and finding the set

of V s (the squares of the standard errors of the parameter estimates) that apply

to those SNPs. The median V can be used in the elicitation, as a representative

value for all SNPs. To calculate k̂, we also need to specify the limits of the

support of W , a and b. For this purpose, it may be possible to elicit a range of

plausible values of W at a single percentile, p, once again using the centralised

probability interval (PI) method and denoting the elicited minimum and max-

imum as PIu,min and PIu,max. The lower limit of the support, a, would then

be calculated using a = (ln(PIu,min)/Φ−1(p))2, and similarly the upper limit, b,

would be found replacing PIu,min with PIu,max.

To demonstrate this elicitation method, we have carried it out with our

expert on breast cancer genetics to determine the prior on W that best fits

their beliefs about the causal SNP in the CASP8 region of chromosome 2.

They believe that there is a causal SNP with a small effect size in this region,

and we initially asked them to give a range of possible values relating to a single

percentile of the OR. They were confident that the 80th percentile of the OR

would be in the range of 1.05 to 1.3, which gives us a = 0.003 and b = 0.1. They

were able to give more specific estimates for the 95%, 75% and 50% centralised

PIs of the ORs. They provided upper limits of 1.43, 1.21 and 1.14 for these three

PIs respectively, yielding (w1, w2, w3) = (0.0333, 0.0275, 0.0377). Previously

we found the median V in a simulated dataset of size 20,000 to be 0.00176. Using

this as the V in the calculations, we were able to find the hyperparameters that

resulted in the power, exponential and hybrid priors that fitted the experts

beliefs most closely. For example, carrying out a search over −10 ≤ k < −0.05

at intervals of 0.01 for the PPBF, we found that the minimum sum of squared

differences occured at k = −1.83. Similarly, we were able find the best fitting

priors to be using c = 145 for the EPBF and d = 0.001, k = −1.86 for the

HPBF. However, the sum of squared differences for both of these priors was

slightly larger than that for the best fitting power prior, so this is the prior that
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we would choose to use.

We have written R code to carry out a search over the hyperparameters for k̂

which can be used to find the most appropriate forms of the power, exponential

or hybrid priors. We used the values of the hyperparameters in Figure 3.6 to

inform the space over which to search, and the code is given in Appendix C.

The required form of the prior must be specified, but the output includes the

minimum sum of squares from Equation (3.27) (or the equivalents for the EPBF

and HPBF), so that it can be run for all forms and that which has the best

fit (smallest minimum sum of squares) can be determined. Alternatively, the

hyperparameters may be determined by empirical Bayes methods, in which they

are signified by (Λ) and argmaxΛ(p(data|Λ)) must be solved. In the case of our

priors, this would involve the maximisation of the BF over Λ, which cannot be

done analytically.

3.3.4 Fine-mapping using novel BFs on simulated data

We carried out filtering using likelihood percentiles (LP), WBFs and our new

BFs on simulated data for several scenarios. We present results for 1000 sim-

ulated datasets with a single causal SNP with a MAF of 0.08, an OR of 1.1

and a sample size of 20,000, as well as for data simulated with the same causal

SNP but a sample size of only 4000 and several different ORs. Table 3.4 shows

the area under the curve (AUC) for ROC curves using the true and mean false

positive rates calculated from these analyses. We have highlighted the methods

which have resulted in the three highest AUCs for each scenario. Using this

measure, LP, which we found to be the most efficacious method that doesn’t

require prior specification, is constantly ranked among the top three of the fil-

ters we have considered, although the most successful BF methods have similar

AUCs. When the small sample size of 4000 is used with BF filtering, the prior

has much more weight, so the specification is more important. None of the

fixed W values we used happened to produce particularly good results for these

scenarios, so they do not rank in the top AUCs, but it was possible to achieve

better AUCs with some realisations of the novel BFs. It also appears that there

is a little more variation in the AUCs when W is varied in the WBF compared

to varying the hyperparameters for the PPBF or the HPBF. These new priors

average over the WBFs as W varies and are therefore a powerful tool for dealing

with uncertainty in W .

Table 3.5 shows the median rank (and other quartiles) of the causal SNP

across the 1000 datasets for each scenario using the different filtering meth-

ods. In this table, the methods which produce the 3 smallest median ranks for
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Analysis Parameter values Sample size and odds ratio
method SS=20,000 SS=4000 SS=4000 SS=4000

OR=1.1 OR=1.1 OR=1.14 OR=1.18

LP 90 62 72 80
WBF W = 0.003 89 60 70 79

W = 0.03 85 58 68 76
W = 0.1 82 55 65 73

PPBF k = −0.51 85 58 68 76
k = −1.5 87 60 70 78
k = −5 89 63 71 79

HPBF d = 0.01, k = −1.1 86 59 69 76
d = 0.01, k = −5 88 62 71 79
d = 0.05, k = −1.1 85 57 66 74
d = 1, k = −1.1 83 58 67 74
d = 1, k = −5 83 59 68 76
d = 1, k = −10 83 58 67 74
d = 5, k = −10 83 59 69 76

RPBF 86 60 68 77

Table 3.4: Results of different methods of filtering on several simulated scenarios
in terms of the area under the curve (AUC) of receiver operating characteristic
curves, given as a percentage. For the power, hybrid and reciprocal prior Bayes
factors (PPBF, HPBF and RPBF), we use 0.003 ≤ W ≤ 0.1, and the Wakefield
Bayes factor (WBF) and likelihood percentile (LP) methods are also included.
For each scenario, 1000 datasets were simulated using the LD structure of the
CASP8 region for a scenario with a single causal SNP that has a MAF of 0.08.

each scenario are highlighted. However, care should be taken when using this

to measure the efficacy of filters, as the upper quartile is sometimes high for

these same methods. It is interesting to see that using this measure, LP is not

always ranked among the top three methods. In particular, for the scenario

with sample size 4000 and OR 1.18, it only has the 8th smallest median rank

for the causal SNP. This suggests that when using a very small sample size,

including information through a prior variance for the logOR can be important.

The median rank of the causal SNP is highly variable dependent on the method

of filtering, especially for scenarios with very small sample sizes and ORs.

Figure 3.8(a) shows several of the ROC curves resulting from the analysis

with 20,000 samples. It includes the results of filtering using the WBF approx-

imation with several values for W and also the results of filtering using one

power prior and two forms of hybrid prior for comparison. There is clearly a

lot of variation in the effectiveness of the Wakefield BF filter as W changes.

Putting too much prior weight on large effect sizes clearly leads to poor perfor-

mance of the WBF when the actual causal effect size is small, as in this case.

The power prior shown puts much of the weight close to a = 0.003 but also
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Analysis Parameter Sample size and odds ratio
method values SS=20,000 SS=4000 SS=4000 SS=4000

OR=1.1 OR=1.1 OR=1.14 OR=1.18

LP 126 896 504 344
(39, 348) (335,1778) (164,1309) (118,782)

WBF W = 0.003 91 1270 356 278
(32, 241) (250,1986) (148,1792) (126,624)

W = 0.03 122 1516 488 244
(30, 688) (232,1922) (100,1760) (79,1367)

W = 0.1 188 1528 1088 484
(42, 839) (416,1909) (137,1756) (92,1422)

PPBF k = −0.51 146 1502 740 333
(56, 615) (324,1940) (157,1764) (134,1375)

k = −1.5 133 1380 533 331
(55, 385) (320,1877) (169,1672) (142,1209)

k = −5 119 1052 472 365
(56, 307) (323,1832) (188,1582) (188,836)

HPBF d = 0.01, 143 1472 611 332
k = −1.1 (54, 519) (316,1947) (160,1763) (136,1325)
d = 0.01, 131 1134 519 367
k = −5 (68, 317) (353,1966) (237,1707) (190,862)
d = 0.05, 151 1538 1110 418
k = −1.1 (56, 739) (394,1906) (171,1756) (135,1430)
d = 1, 197 1542 1120 397

k = −1.1 (64, 847) (345,1887) (211,1760) (164,1445)
d = 1, 198 1562 972 327
k = −5 (73, 862) (326,1879) (197,1768) (145,1462)
d = 1, 171 1513 1118 464
k = −10 (69, 886) (438,1879) (226,1757) (154,1396)
d = 5, 211 1516 736 330
k = −10 (77, 844) (321,1912) (155,1761) (133,1371)

RPBF 150 1474 766 376
(67, 475) (388,1952) (313,1776) (190,1320)

Table 3.5: Results of different methods of filtering on several simulated scenarios
in terms of the median rank (and other quartiles) for the true causal SNP
(among 2871 SNPs in total). For the power, hybrid and reciprocal prior Bayes
factors (PPBF, HPBF and RPBF), we use 0.003 ≤ W ≤ 0.1, and the Wakefield
Bayes factor (WBF) and likelihood percentile (LP) methods are also included.
For each scenario, 1000 datasets were simulated using the LD structure of the
CASP8 region for a scenario with a single causal SNP that has a MAF of 0.08.
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(a) ROC curves for BF filtering results us-
ing a total sample size of 20,000.
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(b) ROC curves for BF filtering results us-
ing a total sample size of 4000.

Figure 3.8: ROC curves showing the results of WBF filtering using 3 different
values of W compared to the results for the PPBF with a prior distribution
on W (k = −5) with most of the weight close to a = 0.003 and the HPBF
with a prior (d = 1, k = −1.1) with most of the weight close to b = 0.1. Also
shown is HPBF with a prior (d = 0.05, k = −1.1) that is close to uniform. The
filtering was carried out on 1000 datasets simulated using the LD structure of
the CASP8 region for two scenarios with a single causal SNP that has an OR
of 1.1 and a MAF of 0.08, but different sample sizes.

puts some weight at higher values of W and can be seen to provide an effective

way of dealing with the uncertainty in W . The new BFs can be thought of as

a weighted average of the BFs over the support of W and so shouldn’t suffer to

the same degree as using WBF with a value of W that doesn’t provide much

support for the information in the likelihood. The hybrid prior with d = 1 and

k = −1.1 puts most of the weight close to b = 0.1 and, as expected, produces

a ROC curve similar to WBF with W = 0.1. The other hybrid prior which

has been used here (d = 0.05 and k = −1.1) was specifically chosen because it

gives an approximate uniform prior over the support of W representing the case

where an expert believes that all the values of W in the support are approxi-

mately equally likely. For this prior, the ROC curve has an AUC approximately

halfway between those of the two ROC curves obtained when W is at the ends

of the support. The eqivalent ROC curves for the same scenario but using a

smaller sample size of 4000 are given in Figure 3.8(b). It can be seen that,

although filtering is generally less effective with such a small sample size, the

same relative efficacies of the methods apply.
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Restrictions on the uses of different priors

We have concentrated on the results for the PPBF and HPBF methods, as

practically these appear to be the most appropriate. Unlike the families of

hyperparametric priors, the reciprocal prior cannot be varied, other than to

adjust the support of W . Therefore, it is unlikely to provide the best fit to an

expert’s prior beliefs and it is unsurprising that it does not provide the ROC

curve with the largest AUC, or the highest median rank for the causal SNP for

the particular scenarios we have considered.

We have also not provided any results for filtering using EPBF. This is

because we discovered that there are computational difficulties. In particular,

when β̂1 of a SNP is small, we are not able to produce a value for the EPBF.

This is due to the part of the expression which is a generalised inverse Gaussian

density. One of the parameters for this distribution is β̂1

2
and the density cannot

be computed in R if this parameter is close to 0. In fact, it typically cannot

be computed if β̂1 < 0.01, which is likely to apply to a large proportion of the

SNPs in a fine-mapping study, possibly including the causal SNP.

There are also some computational limitations when the HPBF method is

used, although these are far less likely to cause a significant problem. We illus-

trate the combinations of hyperparameters and β̂1 and V values for which there

may be problems in Table 3.6, in which ‘A’ indicates no problems calculating

HPBF and ‘D’ indicates that HPBF cannot be calculated at all. Where, in the

table, a ‘B’ appears under a combination of hyperparameters, HPBF can be

calculated unless both β̂1 is large (approximately ≥ 1) and V is small (approx-

imately ≤ 0.1). Where ‘C’ appears, HPBF cannot be calculated using these

hyperparameters if V is small (approximately ≤ 0.1). This problem is caused

by both the numerator and the denominator of the HPBF being so close to 0

that R processes them as if they were both 0.

3.4 Incorporating external functional data

We chose to use Bayes Factors as an analysis method due to the fact that

functional information can be incorporated into the analysis through the priors.

So far we have concentrated on how to specify the prior distribution for the effect

size, and the options considered have not included functional data. The most

intuitive way to include functional information is into the prior probability of

association, δ. If we can find a suitable way of doing this, functional information

will be incorporated along with the information from the genotype data into

the key filtering statistic, the posterior probability of association (∆), through
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d =
k = ≤ 3 4 5 8 10 15 20

-1.1 A B B C C D D
-2 A B B C C C D
-5 A A A B C C D
-10 A A A A B C C
-20 A A A A A B C

Table 3.6: Limitations of the HPBF, as indicated for different combinations of
the hyperparameters. ‘A’ indicates no limitations; ‘B’ indicates that HPBF can
only be calculated for SNPs which do not have both a large β̂1 and a small V ; ‘C’
indicates that HPBF can only be calculated for SNPs which do not have small
V ; ‘D’ indicates that HPBF cannot be calculated at all using this combination
of hyperparameters.

the formula ∆/(1−∆) = δ/(1− δ)× BF. We would hope that if this could be

done effectively, filtering results should be improved.

3.4.1 Using elicitation in conjunction with available func-

tional information

The prior probability of association can be seen to be distinct from the prior on

the logOR. δi is a measure of the belief that SNP i has a causal association with

the disease, but does not quantify the size of the association, whereas β1i is a

measure of the size of any association, whether it is causal or not (through LD

and/or sampling variation). One way of assigning δ values to SNPs is by using

functional genetic data. The choice of the δ values is completely subjective and

should be based on the types of functional information that the investigator

believes are relevant to the disease they are studying.

We have previously mentioned using elicitation with our expert to determine

a distribution for β1i. Now we aim to elicit values for δi for each SNP, i.

Elicitation is the process of working with an expert (on the subject of interest)

to formulate a numeric representation of their beliefs about a certain quantity.

There are different methods for carrying out elicitation and Garthwaite et al.

give a thorough review on the topic [21]. They discuss some issues which are

important in the context of our work. First of all, we talk about an expert,

and in the example that we give there is a single geneticist whose expertise we

seek. Alternatively, multiple experts may also be used, but this adds to the

complexity by necessitating the combination of multiple opinions into a single

prior. This also slightly changes the problem, as a combination prior is not a

subjective prior in the same way that a single expert’s opinion is, and therefore

the resulting value or distribution does not have an intuitive meaning.
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It is important to understand, too, that any prior elicited is subjective and

there is no “correct” prior in an objective sense. Section 4 of the Garthwaite

et al. paper deals with the adequacy of elicitation. The section begins with a

discussion on how some researchers have defined an expert’s “true” probabili-

ties. The authors suggest that a compromise may be “the result of a method

that leads the expert to view the problem from as complete and unbiased a

perspective as possible through appropriate use of cognitive tools” [21]. Several

such tools are then discussed and examples given.

Here we describe one particular method for assigning prior probabilities

based on expert knowledge of breast cancer causal variants and using functional

information that is publicly available from the encode database [15]. The

method could be adapted to assign prior probabilities relevant to other diseases.

The encode database

The Encyclopaedia of DNA Elements (encode) [15] is a huge online database,

available to view using the UCSC Genome Browser, containing much of the

known functional information about the human genome. A huge number of

variables are recorded at the SNP-level, some of which are likely to be related

to whether or not a SNP will have a causal effect on a disease.

Generating prior probabilities of association based on functional and

expert prior information

We give an example of a method of assigning δ values that combines functional

data from the encode database [15] with expert knowledge of a specific disease.

Rather than treating each SNP separately, we assign them to a small number

of groups and give all the SNPs in each group the same δ value. This is done

using the following steps.

Step 1 : Choose a subset of the (many available) encode variables, relevant

to the disease of interest.

Step 2 : If appropriate, group the encode variables into summary variables

indicating broader functionality and choose values of the original variables at

which to bifurcate the SNPs into “more likely” and “less likely to be causal”

subsets for the relevant broad functionality.

Step 3 : By determining the relative importance of the summary variables

in terms of probability of causality, use them to divide the SNPs into a small

number of prior probability groups, ordered from “very unlikely” to “very likely”

to be causal.

Step 4 : Determine the probability of no causal SNP in the region of interest
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and the relative probability of a SNP in each of the prior probability groups

being causal. Use this information, and the number of SNPs assigned to each

group, to determine δg, the prior probability of a SNP being causal given that

is is assigned to group g, for each value of g.

Once BFi has been calculated from the genotype data for SNP i, this can

be combined with δi to calculate ∆i, which can then be used for filtering.

Using these steps we were able to assign prior probabilities of association

to SNPs in the CASP8 region based on an expert’s knowledge of the genetics

of breast cancer. The encode variables [15] that we chose for step 1 and

the summary variables we assigned for step 2 are given in Table 3.7. There

is a lot of missing data in the encode variables, with “gene” being the only

one we used that didn’t have any values missing. A value of 0 was assigned

for all missing values in numeric variables as all given values were positive.

Each of the variables that make up Histone modification have missing values

for between 31% and 39% of SNPs, but only 6% are missing values for all

three of these. A larger number of values were missing for the variables that

make up Availability and Conservation, between 71% and 95% for the numeric

variables and 98% of “OpenChromSynthGm12878Pk” have no indicator. Figure

3.9 shows diagrammatically how we used these summary variables to group all

SNPs into 4 classes (step 3 ), depending on the SNP-specific outcomes and the

expert’s belief about how much each summary variable influences the probability

of the SNPs being causal. This resulted in 1698 SNPs in the CASP8 region

being assigned to the “very unlikely to be causal” group 1, 780 to group 2, 362

to group 3 and 31 to the “very likely to be causal” group 4.

For step 4, we were able to elicit the expert’s belief that there was no causal

SNP in the region as “approximately 0.4”. Therefore,

2871∏
n=1

(1− δn) ≈0.4 (3.28)

⇒ (1− δg=1)1698(1− δg=2)780(1− δg=3)362(1− δg=4)31 ≈0.4. (3.29)

Using binomial expansions and considering the fact that all δg are expected to

be very small relative to the exponent, we can further approximate

(1− 1698δg=1)(1− 780δg=2)(1− 362δg=3)(1− 31δg=4) ≈0.4 (3.30)

⇒ 1698δg=1 + 780δg=2 + 362δg=3 + 31δg=4 ≈0.6. (3.31)

To solve this equation we chose what our expert believed to be an appropriate

limitation of δg=4 = 5δg=3 = 52δg=2 = 53δg=1. This can now easily be solved to



86 CHAPTER 3. BAYES FACTOR BASED METHODS OF FILTERING

 

Availability 

Histone modification Histone modification 

Regional location Regional location Regional location 

Conservation Conservation Conservation 

low high 

0 high 0 high ≥1 high ≥1 high 

CASP8 or 
ALS2CR12 

CASP8 or 
ALS2CR12 

CASP8 or 
ALS2CR12 

elsewhere elsewhere elsewhere 

none some none none some some 

n1 = 1698 

Group 1: 
Very unlikely 
to be causal 

n2 = 780 n3 = 362 n4 = 31 

Group 2: 
Somewhat 

unlikely to be 
causal 

Group 3: 
Somewhat 
likely to be 

causal 

Group 4: 
Very likely to 

be causal 

Figure 3.9: Flow diagram showing how SNPs in the CASP8 region were divided
into four groups, depending on four summary variables: Regional location, Hi-
stone modification, Availability and Conservation. The groups represent the
subjective belief of a breast cancer geneticist about how likely SNPs are to be
causal.
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Summary Values of encode variables Values of encode
variable for which SNPs are variables for which

likely to be causal SNPs are unlikely
unlikely to be causal

Regional gene given as elsewhere
location CASP8 or ALS2CR12
Histone layeredGm12878H3k4me1StdSig ≥ 5
modification or layeredHmecH3k4me3StdSig ≥ e1.5 otherwise

or layeredHmecH3k27acStdSig ≥ e1.75

TranscriptionGm12878 ≥ e1.5

Availability or TxnFactorChip ≥ 100 otherwise
or any indicator for

OpenChromSynthGm12878Pk
Conservation Conservation score > 0 otherwise

Table 3.7: Four summary variables to describe the SNPs in the 1Mb region sur-
rounding CASP8. These are determined based on the following variables down-
loaded from the encode database: gene, layeredGm12878H3k4me1StdSig,
layeredHmecH3k4me3StdSig, layeredHmecH3k27acStdSig, Transcrip-
tionGm12878, TxnFactorChip, OpenChromSynthGm12878Pk and Con-
servation. Values given in the table were used to determine how likely SNPs
with that description/score are to be causal, compared with other SNPs in the
region.

give, approximately, δg=1 = 3.2×10−5, from which we can infer δg=2 = 1.6×10−4,

δg=3 = 8× 10−4 and δg=4 = 4× 10−3.

3.4.2 The effect of including prior probabilities of asso-

ciation

Filtering using ∆ thresholds was tested on simulated datasets using the δ values

assigned to the SNPs as described above. Datasets were simulated to represent

4 scenarios in which the causal SNP had each of the four different prior δ values.

All the causal SNPs had a per-allele OR of 1.1 and a similar MAF (in the range

0.037 to 0.049) and were chosen to be in high LD with each other. All pairwise

D′ values for these four causal SNPs were 1 except for one pair with D′ = 0.916.

However, in this case, the r2 value was very high (r2 = 0.839). The simulations

were analysed using WBF, with a prior on the logOR of N(0,WEB) (using the

30% of SNPs with the highest likelihoods to calculate WEB). Using SNPs in

such high LD limited the effect of using different causal SNPs so that most of

the differences seen would be the result of the different δ values assigned. In

fact, we found that the results of filtering using just Bayes Factors to be very

similar for each of these four causal SNPs (this is demonstrated in Table 3.8, in
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the column headed BF filtering).

Figure 3.10(a) shows the results of filtering using posterior probabilities for

four scenarios as described. The results of filtering using BF alone for one of the

scenarios has also been included for comparison. It can be seen that when the

causal SNP was in group 1 and given a very low δ value it was a lot less likely

to be retained than when it was assigned any of the other possible δ values.

Causal SNPs with the other three δ values also give noticeably different results

to each other, but in the case of the scenarios tested here, all resulted in higher

TPRs than BF filtering at FPRs ≥ 0.18. If the causal SNP is in group 3 or 4,

the TPR > 0.95 at FPRs as small as 0.11. When δ is assigned by group in this

way, the filtering results vary dependant on both the relative numbers of SNPs

in each group and the precise δ values used.

Some investigators might worry that if their expert has made an incorrect

judgement and the causal SNP has in fact been assigned the lowest probability,

the possibility of retaining the causal SNP after filtering is reduced significantly.

The scenarios for which the results are illustrated in Figure 3.10(a) have causal

SNPs with low OR and MAF and a reasonably small sample size for a collabo-

rative fine-mapping study. As these values increase, the information in the data

increases and filtering produces better results in general (as demonstrated for

LP filtering in §2.3), but this also has the effect of reducing the weight of the

priors. If a larger sample size cannot be used and it is suspected that the causal

SNP OR and MAF may be very small, or if little is known about the region,

investigators may wish to assign δ values to SNPs that are more similar. The

prior probabilities could, for example, be assigned according to the limitation

δg=4 = 2δg=3 = 22δg=2 = 23δg=1, and Figure 3.10(b) shows the results for the

same datasets when this is the case. The ROC curves for filtering using ∆ are

all slightly closer to the BF ROC curve in this figure. When the causal SNP is

in group 2, 3 or 4, the ROC curves in Figure 3.10(b) have larger AUCs (89%,

96% and 99%) than the ROC curve for filtering using BF alone (AUC = 84%).

However, the AUC is quite a lot smaller when the causal SNP is in group 1

(67%).

We also compared the results of posterior probability filtering to those of

BF filtering by examining the numbers of SNPs (both causal and non-causal)

retained when the TPR is fixed at 90% for the four scenarios (and two methods

of assigning prior probabilities) considered here. These results are given in Table

3.8. This emphasises how much it is possible to reduce the set of candidate

causal SNPs (perhaps 28 or fewer) with posterior probability filtering, but only

if prior probabilities are assigned appropriately and with confidence. These

results also indicate that if SNPs cannot be accurately grouped, for example if
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(a) ROC curves for each of the four prior
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assigned to the SNPs in the four groups
were 0.000032, 0.00016, 0.0008 and 0.004.
A ROC curve of the results for filtering us-
ing BF alone is given for comparison.
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(b) ROC curves for each of the four
prior probability scenarios when the val-
ues of δ assigned to the SNPs in the four
groups were 0.00012, 0.00024, 0.00048 and
0.00096. A ROC curve of the results for
filtering using BF alone is given for com-
parison.

Figure 3.10: Effectiveness of posterior probability of association (∆) as a fine-
mapping filter according to the prior probability of association (δ) of the causal
SNPs. 1000 datasets were simulated for each of four scenarios using causal
SNPs with per-allele OR of 1.1, MAFs close to 0.04 and a total sample size of
20,000 using the LD structure of the CASP8 region. All SNPs were assigned
to one of four prior probability groups and for each scenario a different causal
SNP was selected so that it came from each of these groups. A prior on the
logOR of N(0,WEB) and the Wakefield approximation were used.
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δg=4 = 5δg=3 = δg=4 = 2δg=3 =
Causal BF 52δg=2 = 53δg=1 22δg=2 = 23δg=1

SNP group filtering ∆ filtering Inter- ∆ filtering Inter-
(prior mean (s.d.) mean (s.d.) section mean (s.d.) section
probability) threshold threshold mean (s.d.) threshold mean (s.d.)

Group 1 1514 (351) 2059 (211) 1514 (351) 1926 (284) 1514 (351)
(δg=1) 0.84 2.70 × 10−5 1.01 × 10−4

Group 2 1515 (433) 814 (124) 638 (182) 823 (156) 692 (184)
(δg=2) 0.88 1.41 × 10−4 2.11 × 10−4

Group 3 1701 (457) 264 (61) 255 (65) 315 (76) 309 (78)
(δg=3) 0.83 6.63 × 10−4 3.98 × 10−4

Group 4 1678 (441) 28 (12) 28 (12) 62 (42) 62 (42)
(δg=4) 0.83 3.32 × 10−3 7.97 × 10−3

Table 3.8: The numbers of SNPs retained out of the total 2871 in the region,
such that the true positive rate (TPR) is 0.9. For four scenarios with similar
causal SNPs (each in a different prior probability (δ) group), Bayes factor (BF)
filtering was carried out and the results are given in the second column. Group-
specific δ values were assigned in two different ways, indicated in the top row.
Posterior probability (∆) filtering was carried out and the results are given for
this and for the intersection of SNPs retained using the two different methods
of filtering. Results are given as the mean and standard deviation (s.d.) of
the numbers of SNPs retained and for the two filtering methods, the BF or
∆ threshold required to achieve this TPR is given. For each scenario, 1000
datasets, with a causal SNP with a per-allele OR of 1.1, a MAF of 0.037 to
0.049 and a sample size of 20,000 was simulated using the LD structure of the
CASP8 region. To calculate the BFs, a prior on the logOR of N(0,WEB) and
the Wakefield approximation were used.

it is not know what functional information is important, then BF alone should

be used for filtering.

3.5 Summary of filtering using Bayes factors

Several methods of Bayes Factor (BF) analysis were considered in this chapter.

There are two filtering statistics that can be used, BF itself and ∆, the posterior

probability of association. This probability is calculated using ∆/(1 − ∆) =

δ/(1− δ)× BF, where δ is the prior probability of association. Filtering using

BFs alone is equivalent to assigning all SNPs equal δ, and this method was

employed by Maller et al [32]. Whichever of these filters is being used, to

calculate the BF for a SNP, a prior on the logOR (natural logarithm of the

per-allele odds ratio) must be specified. We have examined in detail several

methods of calculating BF using different priors on the logOR, and considered

the scenarios for which they are most appropriate and efficacious.
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A simple method of calculating the BF is to use the Wakefield BF (WBF)

approximation [59] [60] which requires the prior logOR distribution to be of the

form N(0,W ). A normal distribution centred around 0 appears to be appropri-

ate, but the choice of the variance, W , is still problematic. If a suitable value

of W is used (assigning the same value to all SNPs), then filtering using these

BFs produces higher TPRs at particular FPRs than likelihood percentile (LP)

filtering, which we found to be the most efficacious method tested in Chapter

2. However, we found the results of filtering to be sensitive to the choice of W .

Collaboration with experts on the genetic region of interest is key when

carrying out BF analysis. If a lot is known and it is possible to confidently

elicit a single value of W , this can be used. However, if less is known, it is

still possible to choose appropriate priors for the logOR based on N(0,W ).

For example, little may be known about the effect size in the region being

investigated, but an expert may be confident that there is a relationship between

the causal SNP MAFs and effect sizes in relation to the disease of interest. We

have further developed a method published by Wakefield [60] of assigning SNP-

specific W (MAF) values based on such a relationship, which will improve the

results of filtering if the investigator’s beliefs hold for the particular causal SNP

in that region. If very little is known, an empirical W value for all SNPs can

be assigned with the aim of maximising the BF for the causal SNP, but not for

all SNPs. This is done using WEB = max(β̂1

2
− V, 10−12) which often results in

a higher TPR for a particular FPR than most values of W .

Whether a single W value is elicited from an expert or chosen empirically

using WEB, or SNP-specific W values are assigned according to MAF, all these

priors are applied using the WBF. However, we have also developed several

new forms of approximate Bayes factor which can be used as an alternative to

WBF. These are applicable if an expert has some ideas about the prior logOR,

but these are not consistent with a single W value. Our method allows for the

calculation of BFs where N(0,W ) is believed to be an appropriate form for the

prior, but where there is uncertainty in W , by allowing W to vary according to

some prior distribution. The priors on W that we have developed include three

parametric families and one fixed form.

If other prior information is available, it can be incorporated through δ

and filtering carried out using ∆. In particular, this work was motivated by

the large quantities of SNP level functional data now freely available online.

Incorporating external data such as these could be a way of countering the

problems encountered by fine-mapping studies including high levels of short

range LD, enabling smaller samples to produce results with suitable power. A

common methodology to determine between the large number of SNPs in a
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region is to use the results of GWAS and then systematically examine func-

tionality databases to justify the top hits. We have attempted to formalise the

incorporation of the functional information within the analysis through using

it to specify δ values and combining these with BFs. Our illustration clearly

shows that the power of the study can be increased so long as prior probabilities

are appropriately assigned to SNPs and we have given an example of how this

could be carried out using expert knowledge to select appropriate functional

variables from the encode database [15].



Chapter 4

An illustrative example: the

iCOGS data

93



94 CHAPTER 4. AN ILLUSTRATIVE EXAMPLE: THE ICOGS DATA

4.1 The association between the CASP8 re-

gion and breast cancer

To demonstrate the use of some of the methods described in Chapters 2 and 3,

we have applied the most appropriate to genotype data from the Collaborative

Oncological Gene-environment Study (COGS). Specifically, the data analysed

in this chapter are the genotypes and imputed genotype doses of the SNPs in the

CASP8 region, which include 501 genotyped SNPs, chosen by the Breast Cancer

Association Consortium (BCAC), as well as 1232 imputed SNPs. Although

the study recorded the cases/control status of subjects with respect to several

cancers, the analyses we have carried out all concern the association of SNPs

with breast cancer.

After a borderline association between the D302H variant (rs1045485) in the

CASP8 region and breast cancer was observed in a meta-analysis of 3 studies,

Cox et al. [16] included it in a candidate variant study with a sample of size

33,532. The observed association in this sample had a p-value of 1.1 × 10−7

and a per-allele odds ratio (OR) and 95% confidence interval (CI) of 1.14 (1.09,

1.19) (with the major allele conveying the increase in risk). A further candidate

variant study for this region was carried out in a Korean population by Han et

al. [25]. The population size was 3135, and the variant rs1861270 (5-UTR C >

T) was considered to be associated with breast cancer with a p-value of 0.02.

The OR and 95% CI for the one and two risk allele genotypes were 1.13 (0.95,

1.34) and 1.48 (1.04, 2.10), respectively. The same variant in the CASP8 region

that had been included in the Cox et al. [16] study was considered in another

candidate variant study by Palanca Suela et al. [39], this time in relation to

modifying the risk of breast cancer in carriers of the known high risk mutations

in BRCA1 and BRCA2. This study had a small sample size of 390, and the p-

value was 0.01. The investigators considered this to be a significant association

in this sample of the sub-population, with an OR of 3.41 and 95% CI (1.33,

8.78) (again, the major allele was the risk allele). Camp et al. [14] carried out

a fine-mapping study on a smaller scale than COGS (3888 subjects), but on

the same region. Haplotype analysis uncovered the most significant association

(as measured using p-value), a three-SNP haplotype, with a dominant risk ratio

and 95% CI of 1.28 (1.21, 1.35).

Associations have also been found between variants in this region and other

types of cancer. A GWAS carried out by Barrett et al. [11] also found an

association between variant rs13016963 in this region and the risk of melanoma,

which had a significant p-value of 8.6 × 10−10. Another GWAS by Berndt et

al. [12] investigated association with chronic lymphocytic leukemia. A variant
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which is classified as either in CASP8 or CASP10 (rs3769825) was found to

be associated with an OR and 95% CI of 1.19 (1.12, 1.25) and a p-value of

2.50× 10−9.

With mounting evidence suggesting there is a breast cancer causal variant

in the CASP8 region, BCAC chose to include this region in their large scale

(89,050 subjects) fine-mapping study with the aim of refining this signal. More

information about the COGS study is given in §1.3.3, with further details avail-

able on the website [2] and in the main study paper, by Michailidou et al. [35].

4.1.1 Preliminary analyses

The analyses in this chapter are supplementary to the main analysis carried

out on this data by the COGS CASP8 fine-mapping research group. This

analysis is included in a currently pre-publication paper entitled Identification

and fine-mapping of novel associations in the CASP8 region on chromosome

2 with Breast Cancer risk by Lin et al. Details are given in this paper about

the study populations, although we only consider the European subjects in this

project. There is also information about ethical approval, the selection of SNPs

for inclusion on the genotyping chip, the quality control measures taken, and

how missing genotypes and further SNPs were imputed.

Logistic regression models were fitted, each including one SNP. COGS was

a collaboration between many study groups from around the world, so a group

identifier and 7 principal components for ancestry were included as covariates

in the models. Information about the principal component analysis is given

in Michailidou et al. [35]. SNPs were chosen to be taken forward to in-silico

bioinformatic analysis in Lin et al. (pre-publication) using both relative like-

lihood (RL) filtering and r2 filtering. The intersection of these two methods

was used, such that SNPs would only be retained for further analysis if they

had both RL < 1/100 and r2 > 0.4 with SNPmax. In Chapter 2, we found that

these two methods were less effective than several other filtering methods, so

we tested those methods of filtering we believed to be most appropriate based

on the results of previous chapters. However, the logistic regression analysis

carried out by Wei-Yu Lin was used as the basis for all further analyses in this

described in this chapter.
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4.2 Fine-mapping the CASP8 region using geno-

type data only

Initially we analysed the genotype data alone. In Chapter 2, the most effective

method of this kind was found to be likelihood percentile (LP) filtering. Al-

though this was closely followed by p-value filtering, we would not recommend

choosing SNPs using p-value, as we have demonstrated the improved efficacy

when LP is used. In the investigation of Bayes factor (BF) filtering methods

which was carried out in Chapter 3, we also developed a way to use the Wake-

field Bayes factor (WBF) using only information from the data, by using the

empirical Bayes prior on the log OR N(0,WEB). Using LP filtering may appeal

to investigators who are not comfortable with Bayesian or empirical Bayesian

methodology, and generally it is a very efficacious method. However, in §3.2.1,

we showed that compared to LP filtering, when using WBF, higher true pos-

itive rates (TPRs) could be achieved at low false positive rates (FPRs). It is

these low FPRs we are interested in, but this advantage only occurs with cer-

tain values of W . It is likely that WEB would be such a value, and therefore

we have decided to carry out this analysis. Using BFs in this way does have

certain other advantages. For example, they can be be easily combined with

other information at a later date, as demonstrated by Knight et al. [29]. We

have also included some of the results obtained by carrying out LP and p-value

filtering for comparison.

The empirical Bayesian method for using WBF filtering places a prior on

the logOR of the form N(0,WEB), and requires the calculation of WEB =

max(β̂1

2
− V, 10−12), using appropriate values of β̂1

2
and V in order to try and

maximise the Bayes factor for the causal SNP. The investigation we carried out

previously using simulations of this same region suggested that the median of

the set of V for all SNPs and the median of the set of β̂1

2
for the top 30% of

SNPs ranked by likelihood were appropriate. In the case of this dataset, this

resulted in a value of WEB ≈ 0.04402 − 0.0002 ≈ 0.0018.

The top 40 SNPs (2.3%) ranked by WBF using WEB are given in Table 4.1.

For each of these SNPs we give the SNP number (the 1733 SNPs included in

the investigation are numbered by the order of their chromosomal position).

We also give the MLE of the per-allele OR from the fitted logistic regression

models, along with a 95% confidence interval (CI) and the MAF of the SNP

within the whole study population. We have used superscripts to indicate the

SNPs for which the major allele conveyed the increase in disease risk and those

SNPs that were fully imputed. The SNPs are given in the table in order of their

ranks based on the BFs, and these BFs are given. The ranks based on both
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likelihood and p-value are also included.

It can be seen that the ranks are quite similar for these three methods. In

particular, the ranks based on likelihood and p-value are identical for all but

one of the SNPs given in this table (SNP number 438, which is ranked 38th

by likelihood and 39th by p-value). If we limit the proportion of SNPs to take

forward to the next stage of analysis to the top ranked 10% (173 SNPs), the

same SNPs would be taken forward whether likelihood or p-value was used as

the filter. Using WBF, 170 of these SNPs are also the same as those taken

forward based on the other methods. To retain the top 10% of SNPs, a WBF

filter threshold 7.7 is applied. It can easily be deduced that if an LP filter were

used, the filter which results in 10% retention has a 90% threshold, but if this is

translated to a relative likelihood (RL) filtering threshold, it is 1/460, and only

48 SNPs (2.8%) would be retained if an RL threshold of 1/100 was applied.

For this dataset, if p-value filtering were used, a threshold of 0.075 would

have to be applied to retain 10% of SNPs. It may also be of interest that the

highest ranked SNP had a p-value of 1.08×10−5 and that if a p-value threshold

of 10−4 were applied to this data, 9 SNPs would be retained. If a p-value

threshold of 10−3 were applied, this number would increase to 41.

4.3 Fine-mapping the CASP8 region using Bayes

factors

Throughout this project we worked with a breast cancer geneticist who had

worked on several studies of the CASP8 region. They had valuable knowledge

of the association signal in this region, as well as about breast cancer causal

variants across the genome. We were therefore able to include some of their

prior knowledge to specify prior distributions, and used these to calculate Bayes

factors. We were able to carry out analyses using both WBF with SNP-specific

W (MAF) values, and the most appropriate of the novel BF approximations

described in §3.3.

We described the methodology for determining parameters for our modified

W (MAF) formula

W (M) = α0 + α1 exp(α2 + α3 ×M). (4.1)

in §3.2.2, and showed that with the values elicited from our expert, this gave us

W (M) = 0.0123 + 0.172 exp(−0.451− 20.3M). (4.2)
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WBF Ranking
SNP OR (95% CI) MAF with WEB likelihood p-value WBF (WEB

number = 0.0018 = 0.0018)

980 b 1.048 (1.027, 1.071) 0.294 1932 1 1 1
1027 1.046 (1.024, 1.068) 0.285 955 2 2 2
992 b 1.045 (1.022, 1.067) 0.287 488 3 3 3
909 1.043 (1.021, 1.065) 0.287 352 9 9 4
838 1.041 (1.020, 1.062) 0.338 330 5 5 5
950 b 1.043 (1.021, 1.065) 0.286 326 10 10 6
960 b 1.043 (1.021, 1.065) 0.285 320 7 7 =7
961 b 1.043 (1.021, 1.065) 0.285 320 8 8 =7
985 b 1.043 (1.021, 1.066) 0.286 310 4 4 9
837 1.042 (1.021, 1.064) 0.299 306 6 6 10
907 1.042 (1.020, 1.064) 0.287 255 11 11 11
896 1.042 (1.020, 1.064) 0.287 254 13 13 =12
912 1.042 (1.020, 1.064) 0.287 254 15 15 =12
956 a,b 1.052 (1.025, 1.078) 0.170 210 16 16 14
1272 a 1.075 (1.036, 1.116) 0.071 190 14 14 15
885 1.041 (1.019, 1.063) 0.287 184 19 19 16
878 a 1.081 (1.039, 1.125) 0.061 177 12 12 17
1004 a,b 1.051 (1.024, 1.078) 0.173 167 18 18 18
999 a,b 1.050 (1.023, 1.077) 0.174 152 20 20 19
955 a,b 1.050 (1.023, 1.078) 0.173 152 21 21 20
993 a,b 1.049 (1.023, 1.076) 0.176 140 22 22 21
681 a 1.074 (1.035, 1.116) 0.069 133 17 17 22
994 a,b 1.049 (1.022, 1.076) 0.178 124 24 24 23
945 a,b 1.049 (1.022, 1.076) 0.176 124 25 25 24
958 a,b 1.048 (1.022, 1.075) 0.181 120 26 26 25
924 a,b 1.048 (1.021, 1.075) 0.176 109 27 27 26
928 a,b 1.048 (1.021, 1.074) 0.176 106 28 28 27
602 a,b 1.074 (1.033, 1.116) 0.072 101 23 23 28
1036 a 1.049 (1.021, 1.077) 0.143 62 30 30 29
438 b 1.045 (1.018, 1.072) 0.176 49 38 39 30
656 a 1.059 (1.024, 1.096) 0.087 45 33 33 31
1029 a,b 1.057 (1.023, 1.092) 0.100 44 35 35 32
523 a,b 1.044 (1.018, 1.072) 0.164 39 44 44 33
971 a,b 1.083 (1.034, 1.135) 0.049 37 31 31 34
840 b 1.035 (1.014, 1.057) 0.313 35 45 45 35
933 a,b 1.083 (1.034, 1.135) 0.049 35 32 32 36
903 a,b 1.081 (1.033, 1.132) 0.047 34 34 34 37
844 1.036 (1.014, 1.058) 0.269 34 47 47 38
901 a 1.080 (1.032, 1.131) 0.046 33 36 36 39
947 a,b 1.082 (1.033, 1.134) 0.049 31 37 37 40

aFor these SNPs, the major allele is associated with a higher disease risk.
bThese SNPs were not genotyped but imputed.

Table 4.1: Top ranked SNPs in CASP8 region based on Wakefield Bayes fac-
tor (WBF) approximation with empirical prior logOR ∼ N(0,WEB = 0.0018).
Rankings using likelihood and p-value are also included, as is the logistic re-
gression estimate and 95% confidence interval (CI) of the odds ratio (OR) for
each SNP. The genotype data for CASP8 region comes from the iCOGS study
and has a total sample size of 89,050 and 1733 SNPs.



4.3. FINE-MAPPING THE CASP8 REGION USING BAYES FACTORS 99

In §3.3.3, we also showed how to choose the best fitting prior for one of the

novel BF methods, such that W is allowed to vary in way that closely fits an

expert’s beliefs. We also demonstrated this with values elicited from our expert.

With this methodology, we use the median of V from the data in the fitting of

the distribution. The median V from the iCOGS dataset was approximately

1.74×10−4, and although all the other values were kept the same as previously,

this resulted in a very slightly different prior. Again, a power prior form had

the closest fit, but with hyperparameter k = −1.66.

Although Equation (4.2) describes our expert’s beliefs about the relationship

between MAF and effect size for breast cancer causal variants in general, they

were unsure whether this pattern would apply in this region, so although we

have carried out both types of analyses, it is the PPBF results we focus on, and

would use for the selection of SNPs to take forward for further analysis. The

results for the top 40 SNPs ranked by PPBF are given in Table 4.2, along with

ranks based on WBF filtering using both W (MAF) and WEB for comparison.

In total there are 23 SNPs with BF > 100 and 113 with BF > 10.

Although the rankings for the methods in Table 4.2 are not so close as those

shown in Table 4.1, there is still a lot of similarity, particular between WBF

with W (MAF) and PPBF. The most noticeable deviation from similarity is

SNP number 1098, which is ranked 27th by both of these methods, but only

76th by WBF with WEB. Applying a filter to retain 10% of SNPs (173) would

result in 168 of the same SNPs whichever of these methods were used. The BF

thresholds which would need to be applied at this level are 4.85 for PPBF and

3.3 for WBF with W (MAF).

Even though the prior logORs for all these methods have the form N(0,W ),

it would be expected that the results would differ because of the different choices

for W . However, in a sample size as large as this, the BF estimates are more

highly weighted by the data than the prior. Perhaps it also should not be sur-

prising that PPBF produces similar ranks to WBF using W (MAF), because we

showed in §3.3.2 that the power prior was consistent with rarer alleles gener-

ally having larger effects. In fact, this can be seen by plotting the estimated

ORs against the sample MAF. Figure 4.1(a) is such a plot created using all

1733 SNPs, and it can be seen that SNPs with MAFs anywhere in the possible

range, 0 < MAF ≤ 0.5, have estimated ORs with a variety of values. Any

relationship between MAF and OR for the CASP8 SNPs is unclear, except

that only rare SNPs achieve the highest ORs (for example, the only SNPs with

OR > 1.08 have MAF < 0.07). However, as can be seen in Figure 4.1(b), if

only the top 10% of SNPs, as ranked by PPBF, are include in the plot, there is

a clear relationship between MAF and OR.
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Ranking
SNP number OR (95% CI) MAF PPBF WBF with W = PPBF

W (MAF) 0.0018

980 b 1.048 (1.027, 1.071) 0.294 1387 1 1 1
1027 1.046 (1.024, 1.068) 0.285 664 2 2 2
992 b 1.045 (1.022, 1.067) 0.287 334 3 3 3
909 1.043 (1.021, 1.065) 0.287 234 4 4 4
878 a 1.081 (1.039, 1.125) 0.061 228 11 17 5
1272 a 1.075 (1.036, 1.116) 0.071 217 12 15 6
950 b 1.043 (1.021, 1.065) 0.286 217 5 6 7
838 1.041 (1.020, 1.062) 0.338 213 6 5 8
960 b 1.043 (1.021, 1.065) 0.285 213 7 =7 =9
961 b 1.043 (1.021, 1.065) 0.285 213 8 =7 =9
985 b 1.043 (1.021, 1.066) 0.286 206 9 9 11
837 1.042 (1.021, 1.064) 0.299 200 10 10 12
907 1.042 (1.020, 1.064) 0.287 167 13 11 13
896 1.042 (1.020, 1.064) 0.287 166 14 =12 =14
912 1.042 (1.020, 1.064) 0.287 166 15 =12 =14
956 a,b 1.052 (1.025, 1.080) 0.170 159 16 14 16
681 a 1.074 (1.035, 1.116) 0.069 149 19 22 17
1004 a,b 1.051 (1.024, 1.078) 0.173 124 18 18 18
885 1.041 (1.019, 1.063) 0.287 118 17 16 19
955 a,b 1.050 (1.023, 1.078) 0.173 112 21 20 20
999 a,b 1.050 (1.023, 1.077) 0.174 112 20 19 21
602 a,b 1.074 (1.033, 1.116) 0.072 112 24 28 22
993 a,b 1.049 (1.023, 1.076) 0.176 102 22 21 23
994 a,b 1.049 (1.022, 1.076) 0.178 90 23 23 24
945 a,b 1.049 (1.022, 1.076) 0.176 89 25 24 25
958 a,b 1.048 (1.022, 1.075) 0.181 85 26 25 26
1098 a 1.148 (1.064, 1.238) 0.016 79 27 76 27
924 a,b 1.048 (1.021, 1.075) 0.176 77 28 26 28
928 a,b 1.048 (1.021, 1.074) 0.176 75 29 27 29
971 a,b 1.083 (1.034, 1.135) 0.049 46 31 34 30
1036 a 1.049 (1.021, 1.077) 0.143 45 30 29 31
933 a,b 1.083 (1.034, 1.135) 0.049 43 33 36 32
903 a,b 1.081 (1.033, 1.132) 0.047 42 34 37 33
901 a 1.080 (1.032, 1.131) 0.046 40 38 39 34
947 a,b 1.082 (1.033, 1.134) 0.049 39 37 40 35
656 a 1.059 (1.024, 1.096) 0.087 38 35 31 36
940 a,b 1.082 (1.033, 1.133) 0.049 38 39 42 37
931 a,b 1.082 (1.032, 1.133) 0.049 37 40 44 38
888 a,b 1.081 (1.032, 1.132) 0.047 36 41 43 39
1029 a,b 1.057 (1.023, 1.092) 0.100 36 36 32 40

aFor these SNPs, the major allele is associated with a higher disease risk.
bThese SNPs were not genotyped but imputed.

Table 4.2: Top ranked SNPs in CASP8 region based on power prior Bayes factor
(PPBF) approximation with hyperparameter k = −1.66 and a = 0.003 ≤ W ≤
b = 0.1. Rankings using WBF with W (MAF) and WEB are also included, as
is the logistic regression estimate and 95% confidence interval (CI) of the odds
ratio (OR) for each SNP. The genotype data for CASP8 region comes from the
iCOGS study and has a total sample size of 89,050 and 1733 SNPs.
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Figure 4.1(b) also highlights clusters of SNPs, and if we examine results from

Haploview [10], we see that these are SNPs that are in strong LD. This effect

can also be seen in Table 4.2. For example, the top hit has OR and 95% CI of

1.048 (1.027, 1.071) and MAF of 0.294. In total, there are 12 other SNPs in

the top 10% with 1.04 < OR < 1.05 and 0.28 < MAF < 0.30, and these are all

ranked in the top 19. Eleven of these SNPs have r2 > 0.9 with the top hit, and

the twelfth (number 837, the only one with a MAF greater than that of the top

hit) has r2 > 0.7. It is likely that, if any, only one of these 13 SNPs is causal,

with the others being associated only through LD. Another such cluster which

is clear in both the table and figure are those SNPs with 1.045 < OR < 1.055

and 0.170 < MAF < 0.185. There are 10 such SNPs ranked between 16th and

29th by PPBF. In the case of this group, it is always the major allele which is

associated with the increase in risk. These SNPs all have 0.07 < r2 < 0.10 with

the top hit and r2 > 0.8 with each other.

4.4 Fine-mapping the CASP8 region using prior

probabilities

In §3.4.1, we demonstrated the use of a combination of expert elicitation and

information from the encode database to determine prior probabilities of asso-

ciation (δ) for each of the SNPs. We used the same summary variables described

in this section to divide the SNPs into four prior probability groups. However,

the set of SNPs in this study were different to those used in the simulations,

and the total number in each group (from those least likely to those most likely

to be causal) were 994, 497, 227 and 15. To find the appropriate values of

δ, a solution to the following approximation must be found in order to satisfy

the expert’s beliefs about the probability of there being no causal SNP in the

region:

1733∏
n=1

(1− δn) ≈0.4, (4.3)

which is approximately equivalent to

994δg=1 + 497δg=2 + 227δg=3 + 15δg=4 ≈0.6. (4.4)

Applying the limitation of δg=4 = 5δg=3 = 52δg=2 = 53δg=1 to this approximation

gives δg=1 = 5.44 × 10−5, δg=2 = 2.72 × 10−4, δg=3 = 1.36 × 10−3 and δg=4 =

6.8× 10−3.
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In §4.3, we explained that of the different BF approximations, we are most

confident about those calculated using PPBF. We therefore calculated the pos-

terior probability (∆) for SNP i using

∆i/(1−∆i) = δi/(1− δi)× PPBFi. (4.5)

The posterior probabilities and the ranks based on them are given for the 40

SNPs with the highest ∆ in Table 4.3, and are signified by ‘∆ (5)’. In this table

we also provide the PPBF values and ranks, as well as the ∆ values and ranks

obtained by assigning less extreme δ values to each group (δg=4 = 2δg=3 =

22δg=2 = 23δg=1 ⇒ δg=1 = 2 × 10−4, δg=2 = 4 × 10−4, δg=3 = 8 × 10−4 and

δg=4 = 1.6 × 10−3), signified by ‘∆ (2)’. The number of the prior probability

group that each SNP was assigned to are also included for these SNPs, where

the groups are numbered 1 to 4 in order of increasing prior probability.

It can be seen that, whilst all the methods we have examined previously

have generally resulted in very similar ranks for the top 40 SNPs, ranking by ∆

is quite different. Posterior probability filtering with the δ values elicited from

the expert is the only method for which SNP number 980 is not the top hit,

due to the fact that it was assigned a prior suggesting it was ‘fairly unlikely to

be causal’ (group 2). However, using this method, the prior odds and the BF

have equal weighting in the calculation of the posterior odds, so because it has

such a large PPBF, it is still ranked 4th. It can be seen the top two ranked

SNPs were assigned the highest prior probability (group 4), but also have very

high BFs. However, there are no SNPs in the top 40 that were assigned the

smallest prior probability (group 1). When the δ values limited by a factor

of 2 are used, the SNP rankings based on ∆ generally lie somewhere between

the ranking by PPBF and the ranking by ∆ calculated using the more extreme

prior probabilities. Using these δs, SNP 980 is still the top hit and there is one

SNP in the top ranked 40 (36th) that has δg=1. This is SNP number 602, which

is ranked 22nd by PPBF.

Considering the top 10% of ranked SNPs using ∆ calculated with the elicited

δs, there are only 99 of the 173 which are also in the top 10% as ranked by PPBF.

Of these 173 SNPs, thirteen were assigned the highest prior probability, 91 the

next highest and 61 and 8 the two lowest probabilities, respectively. These are

equivalent to approximately 87%, 40%, 12% and 1% of the total SNPs assigned

to each of the prior probability groups. The highest ranked SNP which had

the lowest δ (group 1) is again SNP 602, which is ranked only 73rd in this

case. The SNP in the top 10% based on these ∆s that is ranked lowest by

PPBF is SNP number 786, which only has the 1502nd highest PPBF value, but
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SNP PPBF filtering ∆ filtering
number OR (95% CI) MAF PPBF rank ∆ (2) rank ∆ (5) rank δg

838 1.041 (1.020, 1.062) 0.338 213 8 0.255 3 0.593 1 4
837 1.042 (1.021, 1.064) 0.299 200 12 0.243 4 0.578 2 4
1027 1.046 (1.024, 1.068) 0.285 664 2 0.347 2 0.475 3 3
980 b 1.048 (1.027, 1.071) 0.294 1387 1 0.357 1 0.274 4 2
893 a,b 1.080 (1.032, 1.131) 0.047 36 41 0.054 19 0.196 5 4
896 1.042 (1.020, 1.064) 0.287 166 =14 0.118 6 0.185 6 3
885 1.041 (1.019, 1.063) 0.287 119 19 0.087 7 0.139 7 3
839 b 1.035 (1.013, 1.057) 0.270 16 =62 0.024 35 0.096 8 4
992 b 1.045 (1.022, 1.067) 0.287 334 3 0.118 5 0.083 9 2
909 1.043 (1.021, 1.065) 0.287 234 4 0.086 8 0.060 10 2
971 a,b 1.083 (1.034, 1.135) 0.049 46 30 0.036 24 0.059 11 3
878 a 1.081 (1.039, 1.125) 0.061 228 5 0.084 9 0.058 12 2
1272 a 1.075 (1.036, 1.116) 0.071 217 6 0.080 10 0.056 13 2
950 b 1.043 (1.021, 1.065) 0.286 217 7 0.078 11 0.056 14 2
960 b 1.043 (1.021, 1.065) 0.285 213 =9 0.079 =12 0.055 =15 2
961 b 1.043 (1.021, 1.065) 0.285 213 =9 0.079 =12 0.055 =15 2
903 a,b 1.081 (1.033, 1.132) 0.047 42 33 0.033 28 0.054 17 3
985 b 1.043 (1.021, 1.066) 0.286 206 11 0.077 14 0.053 18 2
901 a 1.080 (1.032, 1.131) 0.046 40 34 0.031 29 0.051 19 3
888 a,b 1.081 (1.032, 1.132) 0.047 36 39 0.020 33 0.047 20 3
907 1.042 (1.020, 1.064) 0.287 167 13 0.063 15 0.043 21 2
912 1.042 (1.020, 1.064) 0.287 166 =14 0.062 16 0.043 22 2
956 a,b 1.052 (1.025, 1.080) 0.170 159 16 0.060 17 0.042 23 2
883 a,b 1.080 (1.031, 1.131) 0.047 31 44 0.025 34 0.041 24 3
681 a 1.074 (1.035, 1.116) 0.069 149 17 0.056 18 0.039 25 2
1004 a,b 1.051 (1.024, 1.078) 0.173 124 18 0.047 20 0.033 26 2
890 1.028 (1.008, 1.048) 0.386 5 171 0.008 59 0.032 27 4
862 a,b 1.076 (1.028, 1.125) 0.048 24 47 0.019 37 0.031 28 3
955 a,b 1.050 (1.023, 1.078) 0.173 112 20 0.043 21 0.030 29 2
999 a,b 1.050 (1.023, 1.077) 0.174 112 21 0.043 22 0.030 30 2
840 b 1.035 (1.014, 1.057) 0.313 21 50 0.016 40 0.028 31 3
844 1.036 (1.014, 1.058) 0.269 20 51 0.016 41 0.027 32 3
993 a,b 1.049 (1.023, 1.076) 0.176 102 23 0.039 23 0.027 33 2
994 a,b 1.049 (1.022, 1.076) 0.178 90 24 0.035 25 0.024 34 2
945 a,b 1.049 (1.022, 1.076) 0.176 89 25 0.034 26 0.024 35 2
958 a,b 1.048 (1.022, 1.075) 0.181 85 26 0.033 27 0.023 36 2
1098 a 1.148 (1.064, 1.238) 0.016 79 27 0.031 30 0.021 37 2
843 1.035 (1.013, 1.058) 0.269 15 64 0.012 48 0.021 38 3
924 a,b 1.048 (1.021, 1.075) 0.176 77 28 0.030 31 0.021 39 2
928 a,b 1.048 (1.021, 1.074) 0.176 75 29 0.029 32 0.020 40 2

aFor these SNPs, the major allele is associated with a higher disease risk.
bThese SNPs were not genotyped but imputed.

Table 4.3: Top ranked SNPs in CASP8 region based on posterior probability
(∆ (5)) filtering. These values are calculated by combining prior probabilities
(δg=4 = 5δg=3 = 52δg=2 = 53δg=1) with power prior Bayes factors (PPBF) with
hyperparameter k = −1.66 and a = 0.003 ≤ W ≤ b = 0.1. Values of PPBF and
∆ (2) using more similar δ and the ranks based on these are also included, as
are the estimated OR and MAF for each SNP. The genotype data for CASP8
region comes from the iCOGS study (89,050 subjects and 1733 SNPs).
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due to having been assigned the highest prior probability, it is ranked 168th by

posterior probability.

We now compare these to the top 10% when ∆ is calculated with the more

conservative δ values. Based on these probabilities, there are 155 SNPs in

the top 173 as ranked by PPBF. The numbers of these 173 SNPs assigned to

each of the prior probability groups (from highest prior probability to lowest,

respectively) are 7, 48, 54 and 64, which are approximately 47%, 21%, 11% and

6% of the total SNPs in each of the groups. If the top 10% of SNPs were taken

forward using these ∆s, the SNP that would be included that has the lowest

rank by PPBF is SNP number 798. This is ranked 341st by PPBF value, but

118th by this formulation of ∆.

Figures 4.1(c) and 4.1(d) plot the estimated OR against the sample MAF for

the top 10% of SNPs ranked using the two different sets of ∆ values. Comparing

these to the top 10% ranked by PPBF, as plotted in Figure 4.1(b), we observe

that using the more conservative δ values produces a similar plot, because of

the high amount of overlap in these two groups, but there are far more SNPs

which are not clustered close to other SNPs in Figures 4.1(c). This suggests

that including other functional data through prior probabilities of association

can help to break up the large groups of SNPs in high LD with each other,

particularly when dissimilar prior probabilities are assigned to the SNPs.

4.5 Analysis of a subset of the CASP8 data

COGS was a collaborative study with a very large number of subjects. In §2.3.3,

we demonstrated how the efficacy of likelihood percentile filtering increases

with sample size. The same effect can also be shown for the other methods of

analysis, as larger studies have more power to distinguish between causal and

coincidental associations, for example, those attributed to SNPs in high LD with

the causal SNP. With such a large sample size, the Bayesian methods we have

used which incorporate external information through prior distributions have

been very highly weighted by the likelihood compared to the prior. Therefore,

all the methods have produced reasonably similar rankings for most of the SNPs.

Many studies will not have such a large sample size as this, so we now give an

example of the same analyses used on a stratified random subset of the iCOGS

subjects, with 2721 cases and 2517 controls (5238 total).

The results given in Table 4.4 include the top 40 SNPs ranked by PPBF,

which due to a different median V across the SNPs, had a different hyperpa-

rameter in this analysis, of k = −1.96. Also given for these SNPs are the

ranks by likelihood, p-value, WBF with β1 ∼ N(0,W (MAF)), WBF with
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(a) All iCOGS CASP8 SNPs.
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(b) The top 10% of SNPs ranked using
power prior Bayes factor (PPBF) with k =
−1.66.
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(c) The top 10% of SNPs ranked using
posterior probabilities of association, cal-
culated using PPBF with k = −1.66 and
δg=1 = 5.44 × 10−5, δg=2 = 2.72 × 10−4,
δg=3 = 1.36× 10−3 and δg=4 = 6.8× 10−3.
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(d) The top 10% of SNPs ranked using
posterior probabilities of association, cal-
culated using PPBF with k = −1.66 and
δg=1 = 2 × 10−4, δg=2 = 4 × 10−4, δg=3 =
8× 10−4 and δg=4 = 1.6× 10−3.

Figure 4.1: Estimated OR plotted against sample MAF for SNPs in the iCOGS
CASP8 fine-mapping study
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β1 ∼ N(0,WEB), where WEB = 0.0126, and ∆, calculated using PPBF and

δg=1 = 5.44 × 10−5, δg=2 = 2.72 × 10−4, δg=3 = 1.36 × 10−3, δg=4 = 6.8 × 10−3.

We see that in general, in a sample this size, these methods do not have the

power to detect the small effect sizes that were observed in the full sample size

of 89,050. However, there is also less agreement in the ranks of these SNPs than

we observed with the top 40 ranked SNPs using the larger dataset. Previously,

we observed that likelihood and p-value gave almost identical rankings and these

were also similar to the WBF rankings using WEB. Although the ranks based

on these methods are still close, there is much more divergence than previously.

It can be seen that, as would be expected, ranks based on BF with different

priors are much more variable for this data, as the priors have more influence

on the BF values in a smaller sample such as this. Interestingly, the WBF

rankings using W (MAF) are similar to the likelihood and p-value ranks, but

they vary somewhat from those based on WBF using WEB and PPBF. For

example the SNP ranked 1st using the empirical Bayes method is only ranked

10th by PPBF and 22nd using WBF priors based on MAF. Even in the large

sample size, we observed that the single method which generally resulted in the

largest deviations in ranks from the other methods was ∆ filtering. However,

all the SNPs ranked 1 to 21 by PPBF were also ranked in the top 30 by ∆. In

this sample size, the SNP ranked 19th by PPBF is ranked 196th by ∆ and 12

SNPs ranked in the top 40 by PPBF are ranked between 200 and 300 by ∆.
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Ranking
SNP OR (95% CI) MAF likeli- p- WBF with W = PPBF ∆
number hood value W (M) WEB

822 b 1.514 (1.215, 1.886) 0.037 1 1 1 3 1 1
807 b 1.520 (1.216, 1.900) 0.036 2 2 2 6 2 2
820 b 1.515 (1.213, 1.893) 0.036 3 3 3 7 3 3
824 b 1.514 (1.212, 1.891) 0.036 4 4 4 8 4 4
868 b 1.508 (1.209, 1.881) 0.038 5 5 5 9 5 26
378 b 1.431 (1.174, 1.745) 0.046 7 7 7 4 6 5
858 b 1.495 (1.198, 1.866) 0.036 6 6 6 10 7 30
379 b 1.409 (1.162, 1.709) 0.047 8 8 8 5 8 6
854 1.470 (1.181, 1.829) 0.036 9 9 9 11 9 7
346 1.262 (1.099, 1.449) 0.093 26 22 22 1 10 37
845 b 1.469 (1.180, 1.829) 0.037 11 11 10 12 11 8
879 b 1.480 (1.184, 1.851) 0.037 10 10 11 14 12 39
823 b 1.480 (1.183, 1.851) 0.036 12 12 12 15 13 9
339 b 1.266 (1.099, 1.459) 0.091 30 28 27 2 14 44
705 b 1.430 (1.161, 1.761) 0.043 15 15 15 13 15 50
752 b 1.449 (1.168, 1.798) 0.039 14 14 14 16 16 51
900 b 1.475 (1.177, 1.849) 0.036 13 13 13 21 17 11
698 b 1.454 (1.167, 1.812) 0.036 16 16 16 22 18 57
699 b 1.454 (1.167, 1.812) 0.036 17 17 17 23 19 196
700 b 1.432 (1.159, 1.771) 0.038 20 20 19 17 20 58
701 b 1.453 (1.166, 1.811) 0.036 18 18 18 24 21 12
704 b 1.452 (1.165, 1.810) 0.036 19 19 20 26 22 13
694 b 1.454 (1.165, 1.814) 0.036 21 21 21 27 23 208
697 1.427 (1.155, 1.763) 0.038 =23 =24 =23 =19 =24 211
702 1.427 (1.155, 1.763) 0.038 =23 =24 =23 =19 =24 14
693 b 1.451 (1.163, 1.811) 0.036 22 23 25 31 26 225
690 b 1.443 (1.160, 1.796) 0.038 25 26 26 30 27 226
691 b 1.425 (1.153, 1.761) 0.039 27 27 28 25 28 232
687 b 1.422 (1.151, 1.757) 0.039 32 32 30 28 29 15
692 b 1.446 (1.159, 1.804) 0.036 28 29 29 42 30 251
771 1.419 (1.149, 1.753) 0.038 35 35 33 29 31 75
688 b 1.439 (1.156, 1.791) 0.037 31 31 31 40 32 16
706 b 1.439 (1.156, 1.792) 0.036 33 33 34 43 33 254
756 b 1.433 (1.153, 1.780) 0.038 36 36 36 36 34 256
707 b 1.433 (1.154, 1.781) 0.037 34 34 35 38 35 257
689 b 1.430 (1.152, 1.775) 0.038 37 37 37 35 36 17
746 b 1.425 (1.150, 1.765) 0.038 38 38 39 =33 =37 =259
747 b 1.425 (1.150, 1.765) 0.038 39 39 38 =33 =37 =259
1005 b 1.466 (1.165, 1.845) 0.035 29 30 32 55 39 79
710 b 1.414 (1.145, 1.746) 0.038 41 41 40 32 40 264

bThese SNPs were not genotyped but imputed.

Table 4.4: SNP rankings using different filters on a subset of the genotype data
for CASP8 region from the iCOGS study, which has a total sample size of 5238
and 1733 SNPs. The top 40 SNPs ranked by power prior Bayes factors (PPBF;
k = −1.66, a = 0.003 ≤ W ≤ b = 0.1) are given in the table. Estimated ORs,
MAF and ranks based on likelihood, p-value, Wakefield Bayes factor (WBF)
with W based on both MAF (W (M)) and empirical Bayes estimation (WEB)
and posterior probability (∆) using PPBF are also included.
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5.1 Scope of the project

This project was an investigation of different statistics that could be used to

filter the set of candidate causal SNPs in a known disease-association region,

following dense genotyping of the region. Each of these statistics can be cal-

culated individually for every variant and they do not take into account any

interactions between variants.

We investigated the relative efficacy of a number of different methods, in-

cluding some based on likelihoods, p-values, genetic structure and Bayes fac-

tors. We chose to use Bayes factors with a prior distribution on the logOR

of the form N(0,W ), but considered several different methods of choosing W ,

and when these methods might be appropriate. We also described one method

of choosing SNP-specific prior probabilities of association, based on functional

genetic data and expert knowledge.

We compared the use of different methods using simulated fine-mapping data

and took into account the possibility that much of it may be imputed. To allow

for variation, many simulations of each causal SNP scenario were generated,

and results of only a selection of the scenarios analysed are given in the thesis.

Multiple other scenarios were examined to ensure that overall trends were still

observed when other combinations of causal SNP effect, MAF, genomic location

and sample size were simulated.

A thorough analysis of real fine-mapped genotype data was also carried out.

The data came from the Collaborative Oncological Gene-environment Study

and was examining the association between the CASP8 region on chromosome

2 and breast cancer. We focused on analysing the data using power prior Bayes

factors (PPBF), as we believed this to be the most appropriate method, but

also compared the results to those from several different analyses.

5.2 Recommendations

5.2.1 Choosing a filtering statistic

We would recommend the use of Bayes factors (BF) in statistical analyses such

as these. The prior distribution of the SNP logOR can be chosen to repre-

sent the knowledge of the genetic association being fine-mapped, whether that

knowledge is specific or vague. They also have the advantage that they can

be combined with any other relevant information, through either prior odds

of association, or other BFs [29]. Methods which combine the genotype BFs

with external information through other BFs allows for the possibility of do-
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ing this at a later date, if new information comes to light. If an investigator

is not comfortable with Bayesian methodology, we would recommend they use

the likelihood percentile method of filtering, as the analyses of simulated data

showed that this was consistently the most efficacious method which does not

require the specification of any priors.

If it is decided to proceed with a BF analysis, the prior on the logOR (β1)

should be chosen carefully. We advocate collaboration with one or more experts

on the genetics of the disease or, if possible, the region of interest. Elicitation

can be employed with such experts to determine their prior beliefs (this should

be done before they see the data), and prior distributions can be formed based

on this elicited information. All the distributions on β1 we have considered in

this project take the general form N(0,W ), but software such as Snptest [33]

allows for the calculation of BFs with other prior distributions, so these may

be used if they appear to fit the beliefs of an expert more closely. Throughout

Chapter 3, we made suggestions on what could be elicited to determine either

a fixed value of W for all SNPs, SNP-specific values based on their MAF, or a

variable W , dependent on a hyperparametric distribution. In the latter case,

we also provide code in Appendix C to determine the most appropriate values

for the hyperparameters. Initially, though, a judgement should be made on

which prior form is the most appropriate. If the expert is very confident about

the effect size in the fine-mapped region, a fixed value of W is probably best.

If they have some idea, but are not confident, or multiple values elicited from

them are not consistent with a single W , a variable W would be better. Most

of the priors we suggest for W put most of the weight of W at the lower end of

the support but the exponential prior allows for an almost uniform prior which

is useful when an expert believes a range of values of W are equally likely a

priori. The hybrid prior can be specified so that the mode is anywhere in the

given range. This might be useful when an expert has a strong prior belief in a

particular value of W but wants to allow for some uncertainty in it.

If the expert knows little about the association in the region of interest, but

has prior knowledge about a relationship between the effect sizes and MAFs of

causal SNPs for the disease of interest, this can be used to choose W (MAF).

If the expert considers the hypothesis that rarer alleles have larger effects to

be appropriate and also does have some prior knowledge of the region of inter-

est, the power and reciprocal priors for the novel Bayes factor approximations

would be appropriate, because in these cases, the expectation of W appears

universally to be an increasing function of V . Depending on the values of the

hyperparameters, E(W ) may be a decreasing function of W when the hybrid

prior is employed. Such a prior would be inappropriate to use if it was believed
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that rare causal SNPs do indeed have larger effect sizes. To represent both this

belief and a prior on the variance of the logOR that cannot be represented by the

power or reciprocal priors, we suggest a Savage-Dickey density ratio approach

[56].

In the case where no such expert is available, BF analysis can still be used,

and we would recommend using the empirical Bayes method of choosing W , as

described in 3.2.3. The choice of WEB is based on the fact that using W =

β̂1

2
− V for any particular SNP maximises the BF for that SNP. However, we

only wish to maximise the BF for the causal SNP, so we suggest using the

median β̂1 across the top p% of SNPs (ranked by likelihood) and the median

V across all SNPs in the region. In the analysis of simulations of the CASP8

region, we found that p = 30 generally gave ROC curves with close to the

highest AUCs, but this may not be the case for other regions. The encouraging

results of analysis using WEB occur because it is data-driven, but this deviates

from purist Bayesian theory as it is not chosen prior to data analysis. Three of

the prior forms for the novel Bayes factors also depend upon the genotype data

through V , so may not be considered appropriate by purist Bayesians.

Elicitation

Elicitation can be a difficult process, but it is important to obtain the most

appropriate values to describe numerically the beliefs of the experts and their

certainty in their beliefs. The value of feedback in the elicitation process is worth

emphasizing. Take, for example, elicitation to determine the hyperparmeters

for a distribution on W , when one of the novel BF approximations is to be em-

ployed. Once a distribution for W has been determined based on the quantiles

elicited from the expert, it is important to relay back to them what this means

about other quantiles not elicited to check that these are acceptable. A web-

based tool, MATCH, which may help with this purpose is now available [37].

We have also included R code in Appendix C which can be used to determine

the most appropriate hyperparameteric values from elicited OR values.

5.2.2 Choosing a filter threshold

In fine-mapping studies, investigators will need to choose an appropriate filter

threshold to apply, guided by either the true positive rate (TPR) that they wish

to achieve or the false positive rate (FPR) that they are willing to tolerate. We

have shown that the relationship between these outcomes will vary dependent

on several quantities including the sample size and the MAF and OR of the

causal SNP. We suggest estimating the OR by fitting the univariate logistic
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regression models required for this analysis and then using the median values of

the fitted ORs across the top 30% of SNPs, ranked by likelihood, as we showed

this worked well in the empirical Bayes method of choosing a prior logOR. Care

should be taken to ensure that ORs are adjusted so that they are all greater

than 1 (the reciprocal should be taken if the fitted value is less than 1), as it is

the magnitude and not the direction of the effect that is of importance in this

case. There is also no simple way to estimate the MAF of the causal SNP, but

that of the the highest ranked SNP may act as a guide.

For this particular problem, where there is only a single causal SNP among

many, the TPR and FPR equate to the probability of retaining the true causal

SNP and the approximate proportion of SNPs retained, respectively. These

are competing outcomes, which increase together (non-linearly), and it can be

difficult to decide what levels of these quantities are acceptable. However, this

must be done to justify the choice of a corresponding filter threshold. Bayesian

decision theory could be used to help deal with these competing quantities,

and a method of this kind has been developed by Wakefield [58]. However, this

method still requires the specification of a ratio of the cost of false non-discovery

to the cost of false discovery. It is likely that many investigators would find it

difficult to confidently quantify such a value.

5.2.3 Choosing a sample size when designing a study

Causal SNP MAF crucially affects the efficacy of LP filtering as we show in

Figure 2.5(c), and even with sample sizes as large as 50,000, LP and BF filtering

may have a high probability of failing to capture the causal SNP if it has a MAF

less than 0.05. Analysing simulated data based on the region of interest and

the likely range of causal SNP MAFs and ORs should inform the appropriate

sample size required. Such simulation results should also inform appropriate

filtering thresholds, taking into account the trade-off that is incurred by using

a more lenient threshold: higher TPR but at a cost of higher FPR, as can be

seen in Figure 2.5(b).

The appropriate sample sizes to use with RL has been investigated in detail

by Udler et al. [54], and in §2.3.3 we showed that sample size has a large

impact on the efficacy of fine-mapping filters. The Udler paper [54] included

the development of an online tool to calculate the required sample size to achieve

any given power to ‘discriminate between highly correlated SNPs’. We used this

tool to discover that if the causal SNP had a MAF of 0.12 and OR of 1.12 and

was in LD at r2 = 0.4 with SNPmax, a sample size of 46,000 would be required

to achieve a power of 0.9 when filtering at a threshold of RL=1/100. However,
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for a similar scenario, but with the causal SNP in LD at r2 = 0.7 with SNPmax,

a sample size of 92,000 would be required to achieve the same power, due to

the increase in difficulty to differentiate between the two SNPs when they are

in such high LD.

5.3 Limitations

5.3.1 Computational restrictions of novel Bayes factor

approximations

All novel BF approximations can be calculated in R (we give code in Appendix

B), although the EPBF is computationally intensive and cannot produce results

for SNPs that have a small MLE of the logOR, which is likely to be a large pro-

portion of SNPs in a fine-mapping study. Although we also showed in §3.3.4

that there are some combinations of hyperparameters and β̂1 and V for which

HPBF also cannot be computed, these are generally extreme combinations, and

will rarely occur. The computation for the other forms is simple and efficient.

If initial investigation suggests an EPBF should be used, we recommend using

PPBF or HPBF instead. In most cases hyperparameters can be found which re-

sult in power or hybrid priors very similar to the desired exponential prior. The

RPBF is very limited due to there being only a single reciprocal prior form with

no hyperparameters and this prior is unlikely to be an appropriate replacement

for the desired exponential prior. We would suggest that the EPBF only be

used if the investigator particularly does not want to include any information

from the data in the prior, and then to proceed with caution. It is the only one

of the four prior distribution forms for W which possesses this property.

5.3.2 Incomplete functional data

To carry out ∆ filtering, we assigned SNP-specific δ values based on functional

SNP-level data found in encode [15]. However, this data is currently limited

as information is not complete for all the SNPs across the genome. This means

that as well as any uncertainty around the specific values of prior probabilities,

there is likely to also be uncertainty about what to do with SNPs for which

there is some functional information missing. Of the four summary variables

combining the results of several encode variables that we used, Availability

and Conservation in particular had a large amount of missing information. We

dealt with missing values in the encode data by replacing them with zeros,

but it is unclear how appropriate this is. For some variables, this may not give
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a good representation of the true missing values. It may be more appropriate

to impute these values, using the recorded values for SNPs in close proximity

to inform the imputed value for a SNP.

More complete sources of data are expected to come along in the near future

and large databases such as encode are regularly updated. We hope that such

methods as those described here will become more relevant as these data emerge.

5.4 The project in the context of current ge-

netic analysis

5.4.1 Multiple causal SNP scenarios

This investigation has been restricted to regions of the genome with a single

causal SNP. In many cases it will not be clear whether one or more SNPs

will be present in the genomic region being investigated. However, several

methods aimed at identifying multiple causal variants in a single region have

been published, including some which analyse variants simultaneously. These

types of methods have been scrutinised in reviews by Ayers and Cordell [9]

and Abraham et al. [6] and include penalised and non-penalised regression

methods and MCMC routines. One popular penalised logistic regression method

is HyperLASSO [27], which was demonstrated to be effective in carrying out

the analysis of fine-mapped data to uncover the nature of the association in

the HLA region with Rheumatoid Arthritis [57]. pi-MASS [23] is a piece of

software which implements fully Bayesian analyses through MCMC. Many of

these methods can be applied through the PUMA (Penalized Unified Multiple-

locus Association) framework, which was used to show that carrying out such

multiple SNP analyses may result in higher TPRs for a given FPR than single

variant p-value analyses, given there are multiple causal SNPs [26]. One problem

with using univariate analysis is that if there is some sort of interaction between

causal SNPs, then fitting them in single SNP logistic regression models may not

result in high enough likelihoods for LP filtering to be effective, particularly if

the marginal effect of a SNP is small.

5.4.2 Alternative methods of including functional data

There is a strong tradition within genetics of making data and results pub-

licly available, and such information can be utilised in fine-mapping analysis

to increase the power to detect causal effects. This applies whether there is

a single or are multiple causal SNPs present in a region. In Chapter 3 we
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investigated several ways to include both the prior knowledge of experts and

SNP-level data from the Encyclopaedia of DNA Elements [15]. However, there

are several other published methods which attempt to include external data,

such as p-value weighting [42] and a Bayesian latent variable model (BLVM)

[20]. Another Bayesian method is stratified false discovery rates [51] [43].

We also stress that in our example of ∆ filtering, the given method for

assigning δ values to the SNPs in a region is one example of many possible

such ways. An alternative method of grouping is to obtain SNP scores from

the RegulomeDB database [13]. These categorical scores are assigned based

on the regulatory potential of variants and draw information from multiple

sources including encode [15]. In this case, a score is between 1 (for most

likely to be causal) and 7 (for least likely), although some of these categories

have sub-categories such as 1a and 1b. It would be the decision of the analyst

of how to assign prior probabilities to these groups. Rather than grouping,

a different strategy is to use some sort of continuous score for SNPs. Several

such scoring methods have been published recently, based on a SNP’s individual

likelihood of affecting disease susceptibility, for example the FS score published

by Lee and Shatkay [31]. The FS score has the advantage that it integrates a

large amount of data from multiple publicly available data sources. It formally

combines scores from a number of bioinformatics tools using weighting based on

the “reliability” of these tools to give a score between 0 and 1. These scores can

be obtained from the F-SNP database. With a continuous scoring method, a

function would have to be defined to derive prior probabilities from the scores.

Other sources of functional data are also limited, as we explain in relation to

the encode database [15] in §5.3.2.

A slightly different way to integrate functional information into this kind of

analysis is to use it to form a Bayes Factor rather than a prior probability [29].

This method is effective because “prior knowledge” can be updated any number

of times using BFs. Once a posterior odds of association has been calculated,

this can be used as a prior odds and multiplied by another BF to get a new

posterior odds. Therefore, beginning initially with all SNPs having equal prior

probabilities of association, two separate BFs can be used, one containing the

association information from the genotyping, as detailed in this study, and the

other containing the functional information. Knight et al. give some specific

values that may be used for these functional BFs [29].
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5.5 In conclusion

The problem that we tried to solve was to find the most effective method of

filtering SNPs whilst retaining the causal SNP. There is not a simple answer to

this problem, as the most appropriate method is likely to depend on what infor-

mation is available to the investigators and the reliability of that information.

Also, we limited our investigations to scenarios where there was a single casual

SNP, but this may not be the case. However, we determined that, in general,

the best filters to use are likelihood percentile (LP) and Bayes factor (BF). In

this chapter, we have aimed to give guidance on when it may be suitable to use

LP and the different BF filters, and the sample sizes and thresholds to use with

these filters. We have also outlined the limitations of these filters, which may

restrict their application in certain situations.

Genetics and genetic epidemiology are still fast growing research areas and

we hope that newly available information will aid further applications of the

methods discussed here. For example, with more complete reference data, im-

putation results are likely to become closer to the truth. In particular, though,

there is a high potential for including functional information in genotype anal-

ysis as the databases that contain this information continue to grow. This

incorporation is made simple through the use of Bayes Factors.
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Appendix A: Derivation of

Wakefield’s Bayes factor

approximation

We use the Wakefield Bayes factor approximation (WBF) for all calculations

where we assign to the logOR (β1) a prior distribution of N(0,W ) with a fixed

value of W . We also used it as a basis for our novel BF approximations. The

derivation of the WBF is given below, but this is the reciprocal of the BF

approximation that Wakefield himself uses in his papers [58] [59] [60].

WBF =
P (data|H1)

P (data|H0)
(5.1)

=

∫∫
p(β̂F , β̂1|βF , β1)π(βF , β1)dβFdβ1∫
p(β̂F , β̂1|βF , β1 = 0)π(βF )dβF

(5.2)

=

∫
p(β̂F |βF )π(βF )dβF

∫
p(β̂1|β1)π(β1)dβ1∫

p(β̂F |βF )π(βF )dβF × p(β̂1|β1 = 0)
(5.3)

=

∫
p(β̂1|β1)π(β1)dβ1

p(β̂1|β1 = 0)
, (5.4)

where H0 and H1 are the null and alternative hypotheses; β1 is the logOR;

βF = βC + I01
I00
β1, where βC is a vector of all other logistic regression coefficients

and I is the information matrix; and π(.) is the prior over all parameters.

This is simplified by considering a prior of β1 ∼ N(0,W ), and the fact that,

asymptotically, as the sample size increases, β̂1 ∼ N(β1, V ). Consider first the

numerator:
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∫
p(β̂1|β1)π(β1)dβ1 =

∫
1√

2πV
exp

(
−(β̂1 − β1)2

2V

)
1√

2πW
exp

(
− β2

1

2W

)
dβ1

(5.5)

=
1√

2π(V +W )
exp

(
− β̂1

2

2V
+

β̂1

2
W

2V (V +W )

)

×
∫ √

V +W

2πVW
exp

(
−(β̂1W (V +W )−1 − β1)2

2VW (V +W )−1

)
dβ1.

(5.6)

Here, the integrand is the pdf of a normal distribution, and integrates to 1.

Hence the WBF can be written as:

WBF =
1√

2π(V +W )
exp

(
− β̂1

2

2V
+

β̂1

2
W

2V (V +W )

)
÷ 1√

2πV
exp

(
− β̂1

2

2V

)
(5.7)

=

√
V

V +W
exp

(
β̂1

2
W

2V (V +W )

)
. (5.8)



Appendix B: R code to calculate

the new Bayes factors

The R code given below will calculate a vector of approximate Bayes factors

for a set of SNPs which have been genotyped and analysed using single SNP

logistic regression models. These models should all include the same relevant

covariates. The first two inputs are betas and vars, which are both vectors of

length n, where n is the number of SNPs in the genotyping study. Respectively,

they should be the fitted logOR estimates (β̂1) and their variances (V ) from

the logistic regression models. The other inputs are form, which can be either

"PPBF", "EPBF", "HPBF" or "RPBF" indicating the form of approximate BF to

be used; hyper, indicating the values of the hyperparameters, which is a single

value if form="PPBF" or "EPBF", a vector of length 2 (c(d,k)) if form="HPBF"

and null if form="RPBF"; a and b, the limits of the range (a < b) over which W

should be defined.

BFapprox<-function(betas,vars,form,hyper,a=0.003,b=0.1){
nSNP<-length(betas)

betasq<-betas^ 2

#define Q, the denominator

Q=((2*pi*vars)^ -0.5)*exp(-betasq/(2*vars))

#####################################################

switch(form,

#Power prior form

PPBF={
k=hyper

#normalising constant for prior

if(k!=-1){
q<-(k+1)/((vars+b)^ (k+1)-(vars+a)^ (k+1)) }
if(k==-1){
q<-(log(vars+b)-log(vars+a))^ (-1) }
#BF

num<-gamma(-k-0.5)*(pgamma(betasq/(2*(vars+a)), -k-0.5)-pgamma(
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betasq/(2*(vars+b)), -k-0.5))

denom<-sqrt(2*pi)*(betasq/2)^ (-k-0.5)

PPBF<-(q*num)/(Q*denom)

return(PPBF)},
#Exponential prior form

EPBF={
c=hyper

#normalising constant for prior

r=c/(2*(exp(-c*a/2)-exp(-c*b/2)))

#integrand

library("GeneralizedHyperbolic")

int<-rep(NA,nSNP)

for(i in 1:nSNP){
if(abs(betas[i])>=0.01){
intA<-pgig(a+vars[i], param = c(betasq[i],c,1/2))

intB<-pgig(b+vars[i], param = c(betasq[i],c,1/2))

int[i]<-intB-intA }}
#BF

num<-2*exp(c*vars/2)*besselK(sqrt(c*betasq), 0.5, expon.scaled =

FALSE)

denom<-sqrt(2*pi)*(c/betasq)^ 0.25

EPBF<-(r*num*int)/(Q*denom)

return(EPBF)},
#Hybrid prior form

HPBF={
d=hyper[1]

k=hyper[2]

#normalising constant for prior

inc.gamma.part<-gamma(-k-1)*(pgamma(d/(2*(vars+a)), -k-1)-pgamma

(d/(2*(vars+b)), -k-1))

s<-(d/2)^ (-k-1)/inc.gamma.part

#BF

num<-gamma(-k-0.5)*(pgamma((betasq+d)/(2*(vars+a)), -k-0.5)-pgamma

((betasq+d)/(2*(vars+b)), -k-0.5))

denom<-sqrt(2*pi)*((betasq+d)/2)^ (-k-0.5)

HPBF<-(s*num)/(Q*denom)

return(HPBF)},
#Reciprocal prior form

RPBF={
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#approximation of sum for incomplete gamma with 0 term:

abfun<-function(n){
((-1)^ n)*(((b+vars)/2)^ n-((a+vars)/2)^ n)/(n*factorial(n)) }
absum<-0

for(i in 1:1000){
absum<-absum+abfun(i)}
#normalising constant for prior

t<-1/(log((b+vars)/(a+vars))+absum)

#integrand

ap<-pnorm(sqrt(a+vars)-abs(betas)/sqrt(a+vars))

am<-pnorm(-sqrt(a+vars)-abs(betas)/sqrt(a+vars))

bp<-pnorm(sqrt(b+vars)-abs(betas)/sqrt(b+vars))

bm<-pnorm(-sqrt(b+vars)-abs(betas)/sqrt(b+vars))

int<-bp-ap+(bm-am)*exp(2*abs(betas))

#BF

RPBF<-(t*exp(-abs(betas))*int)/(Q*abs(betas))

return(RPBF)},
)}
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Appendix C: R code to find f (W )

that best fits an expert’s beliefs

The R code given below will, for the power, exponential or hybrid forms of

the prior distrbution on W , find the values of the hyperparameters that best

fit an expert’s beliefs. The main elicited values which are used as inputs are q

and PIu, which should be vectors of equal length and for which PIui should be

the upper limit of the qi% centralised probability interval for the logOR. We

also suggest that a and b, the limits of the range (a < b) over which W should

be defined are elicited from an expert. For the power and hybrid priors, the

data-specific value of the variance of the logOR for which you wish to find the

best-fitting hyperparameters should be specified as V, and we suggest using the

median of all V s from the dataset. Finally, form can be either "PPBF", "EPBF"

or "HPBF" indicating the form of approximate BF to be used. The output is a

vector of length two when form="PPBF" or "EPBF", with the first value being

the value of the hyperparameter (k or c) which results in the smallest sum of

square distances and in the case where form="HPBF", the output is a vector of

length three, with the first values being the two hyperparameters (d followed

by k). The final value is always the sum of squared differences that the given

hyperparameters produce, and we provide this value so that different forms

can be fitted and the best fit discovered as being the one which results in the

smallest value.

priorfit <- function(q, PIu, a=1e-6, b=0.1, V, form) {
#calculate percentiles, quantiles of normal dist and W values

p=1-(1-0.01*q)/2

quant=qnorm(p)

W=(log(PIu)/quant)^ 2

switch(form,

#Power prior

PPBF={
#define space over which to search

ks=seq(-10,-0.5,0.01)
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fullk=rep(NA,length(ks))

for(j in 1:length(ks)){
k<-ks[j]

sum=0

for(i in 1:length(W)){
sum=sum+(((V+W[i])^ (k+1)-(V+a)^ (k+1))/((V+b)^ (k+1)-(V+a)^ (k+

1))-p[i])^ 2

}
fullk[j]=sum

}
#add k=-1 at end

sum=0

for(i in 1:length(W)){
sum=sum+((log(V+W[i])-log(V+a))/(log(V+b)-log(V+a))-p[i])^ 2

}
min1k=sum

ks=cbind(ks,-1)

fullk=c(fullk,min1k)

#find k for which the argument is lowest

mink=which.min(fullk)

return(c(ks[mink],summary(fullk)[1]))},
#Exponential prior

EPBF={
#define space over which to search

cs=seq(0,1000,1)

fullc=rep(NA,length(cs))

for(j in 1:length(cs)){
c<-cs[j]

sum=0

for(i in 1:length(W)){
sum=sum+((exp(-c*W[i]/2)-exp(-c*a/2))/(exp(-c*b/2)-exp(-c*a/2))-p[i])^ 2

}
fullc[j]=sum

}
#find c for which the argument is lowest

minc=which.min(fullc)

return(c(cs[minc],summary(fullc)[1]))},
#Hybrid prior

HPBF={
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#define the upper incomplete gamma function

inc.gam<-function(gama,gamx){
pgamma(gamx, gama, lower=FALSE) * gamma(gama)}
#define space over which to search

ds=c(seq(0,1,0.001),seq(1,2,0.01),seq(2,5,0.1))

ks=c(seq(-10,-6,0.5),seq(-6,-4,0.1),seq(-4,-1,0.01))

fulldk=matrix(NA,length(ds),length(ks))

for(j in 1:length(ds)){
d<-ds[j]

for(h in 1:length(ks)){
k<-ks[h]

sum=0

for(i in 1:length(W)){
sum=sum+((inc.gam(-k-1,d/(2*(V+W[i])))-inc.gam(-k-1,d/(2*(V+a))))/

(inc.gam(-k-1,d/(2*(V+b)))-inc.gam(-k-1,d/(2*(V+a))))-p[i])^ 2

}
fulldk[j,h]=sum

}
}
#find d, k combo for which the argument is lowest

mindk=which.min(fulldk)

col=floor(mindk/dim(fulldk)[1])

mink<-col+1

mind<-mindk-dim(fulldk)[1]*col

return(c(ds[mind],ks[mink],fulldk[mind,mink]))}
)}
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