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Abstract 

 

A study of exchange bias systems has been made focusing on the characteristics of 

the interfacial spin clusters found in-between the bilayers. The materials studied were 

primarily IrMn (10nm) / CoFe (2nm) thin films of varying grain sizes. They were 

selected as the bulk properties have already been well characterised and they exhibit 

the effects being looked for. 

 

A combination of vibrating sample magnetometry and electron microscopy has been 

used to investigate the nature of the interfacial spin clusters. Measurements were 

selected which specifically highlight the properties of the clusters. The first set of 

measurements consisted of increasing the setting field. The second, reducing the 

measurement temperature of median blocking curve measurements. The third 

involved taking hysteresis loops at liquid Helium temperatures. 

 

The first set of measurements clearly showed an increase in the exchange bias that 

was due to the interfacial spin clusters. This increase was shown to correlate with the 

spin cluster size of the samples and showed quasi-superparamagnetic behaviour. The 

second set of measurements showed a temperature dependent variation in coercivity 

that implied the coercivity was due to the interfacial spin clusters. The final set of 

measurements showed a change in behaviour of the spin clusters whereby they 

started to act as a spin glass, which again was cluster size dependent. All of these 

results could be explained by virtue of an energy barrier distribution of the spin 

clusters whereby they could take on one of three different states, thermally unstable, 

partially stable, or fully stable. Taken as a whole, the results and conclusions give a 

good insight into the nature of the interfacial spin clusters and their effects on the 

exchange bias and coercivity of IrMn / CoFe polycrystalline thin films. 
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1. Applications of Exchange Bias 

1.1 Spin Valves 

1.1.1 History of Spin-Valves 

 

There is an unending quest to store the ever increasing volume of data that is being 

generated, and one of the most successful ways of doing this has been on magnetic 

hard disk drives. The most important element of a hard disk drive is arguably the 

read / write head. The write head uses an inductive method to generate magnetic 

fields that can induce magnetisations of a particular direction in the hard disk drive. 

The read head makes use of the spin valve. This thesis focuses on a very particular 

aspect of the spin valve, but before this, there is a brief overview of its history. 

The history of the spin valve has a number of important milestones. The first was in 

1857 when William Thomson [Thomson,1857] discovered that the resistance of a 

ferromagnet varied when a magnetic field was applied. 

 

Figure 1: GMR read-write head with inductive writer and GMR location 

[Hitachi]. 
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In 1896 [Thomson,1897] J. J. Thomson discovered the electron, in 1936 Sir Neville 

Mott predicted the existence of two separate spin channels in a charge current 

[Mott,1936] and in 1956 Meiklejohn [Meiklejohn and Bean,1957] discovered 

exchange bias. Finally, in 1988, Albert Fert and Peter Grünberg discovered giant 

magnetoresistance (GMR) [Baibich,1988]. 

Figure 1 shows where the giant magnetoresistance read sensor is located in a read / 

write head of a hard disk drive. Although a relatively small part of the overall 

instrument, its size is still very important in ultimately how much data can be stored 

on a disk. The smaller the read head, the smaller the bit size on the disk, which in 

turn leads to an increase in data density [Fontana,2005]. 

 

Figure 2: Reduction in read sensor size with the introduction of GMR [Hitachi]. 

 

At the time of the discovery of giant magnetoresistance, anisotropic magnetic 

resistance (AMR) read heads were being used in hard disk drives. When the AMR 

read head was initially used, it was the first time that the read head and write head 
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had become separate components, previously, both tasks had been carried out by 

same inductive unit. The AMR read head took advantage of the dependence of 

electrical resistance on the angle between the direction of electrical current and 

orientation of the magnetic field. However, GMR produced significantly more 

sensitive read heads. It took about 10 years to perfect the design of the giant 

magnetoresistance spin valve for use in hard disk drives after its discovery, but once 

this had happened, the conversion of the manufacturing procedure was relatively 

straight forward. The result of this was that by 2004 the dimensions of the read head 

sensor had reduced from 64nm thick and 4.5 µm wide to 14nm thick and 0.3 µm 

wide (Figure 2). This reduction in size along with other improvements led to the 

areal density improving from over 5 Gbits/in
2
  in 2000 to over 500 Gbits/in

2
 in 2012 

[IHS Technology].  

 

1.1.2 Development of GMR read head 

 

 

Figure 3: Resistor network model of GMR [Thompson,2008]. 

 

The basic principle behind a spin valve is relatively simple. A charged current 

consists of two carriers, spin up electrons and spin down electrons. Magnetism in a 
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material is due to it having a more electrons in one spin direction than the other. 

When a current passes through a magnetised material, the electrons whose spins are 

in the same direction as the orientation of the magnetisation will have less collisions 

and therefore experience lower resistance than the electrons whose spin is in the 

opposite direction. Looking at the left hand diagram in Figure 3, only the down spin 

channel will experience a high resistance (Equation 1-1), whereas with the right hand 

diagram (Equation 1-2), both spin channels experience a high resistance. Therefore, 

the antiparallel configuration has a higher overall resistance than the parallel 

configuration. 

 

 

 

 

   
    

     
 

 

Eqn. 1-1 
 

 

 

 

 
    

     

 
 

 

Eqn. 1-2 
 

where RP is the resistance in the parallel configuration, RAP is the resistance in the 

antiparallel configuration, R↑ is the resistance experience by the up spin electrons 

and R↓ is the resistance experienced by the down spin electrons. It is one thing 

establishing the principle, but the application of this to the detection of the direction 

of a magnetic field poses an immediate problem. The purpose of one of the layers is 

to respond to the external magnetic field, but the other layer is required to be 

‘pinned’.  

 

The first spin valves did not rely on the exchange bias effect, instead, it just relied on 

using ferromagnets of different coercivities [Fert,2003]. However, the most 

successful method by far was to take advantage of the exchange bias effect which 

had been discovered in 1956. Up until the concept of the spin valve, exchange bias 

was only of scientific curiosity, but when it was realised that it could be utilised in 
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spin valves the hard disk drive industry invested a great deal of effort into its 

understanding. The result was a proliferation of papers which dominated the research 

world of magnetism and is the primary subject of this thesis. 

 

Figure 4: Schematic of spin valve with corresponding hysteresis loop. 

A basic spin valve can be grown relatively easily and Figure 4 shows an example of 

the thickness of layers involved. The hysteresis loop nicely shows the advantage of 

using an antiferromagnet to pin the fixed ferromagnetic layer as the coercivity of the 

free layer is significantly lower than the exchange bias of the fixed layer. 

 

Figure 5: GMR read sensor [Hitachi]. 
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Figure 5 shows how this system is adapted for actual use in a hard drive and can now 

be directly compared to Figure 1 which locates the position of the GMR sensor 

(lateral dimensions for this type of sensor have been given in Figure 2). 

 

 

Figure 6: Relative magnetisations of GMR head [Fontana,2005]. 

 

A simple cross sectional schematic of the orientations of the free ferromagnetic layer 

(such as in Figure 3) suggests it rotates 180 degrees. This is not the case, the 

magnetisation of the free layer is actually aligned perpendicular to the fixed layer and 

it oscillates little more than 30 degrees (Figure 6). 

 

 

 

  

 
       

 

Eqn. 1-3 
 

 

As can be seen in Figure 7, the variation in magnetoresistance is at its greatest at 90 

degrees and a 30 degree rotation of the free layer results in a sufficient change in the 
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resistance that can be measured. Equation 1-3 describes this function where M1 and 

M2 are the directions of magnetisation of the two layers and R is the resistance. 

 

 

Figure 7: Cosine dependence of giant magnetoresistance. 

 

1.2 Current Induced Magnetic Reversal 

 

The spin valve was the first practical application of spintronics, or 

magnetoelectronics, in the data recording industry. As the technology has developed 

new concepts utilising spintronics have been discovered. With the spin valve, the 

effect of a magnetic field from a ferromagnet on a current is utilised, however, with 

current induced magnetic reversal, it is the effect of the current on the field that is of 

significance. 

 

In 1996 Slonczewski [Slonczewski,1996] theoretically predicted what would happen 

when a current flowed perpendicularly to two parallel magnetic films connected by a 

normal metallic spacer. He suggested that, due to spin transfer torque, the switching 

of magnetic states could be achieved. Four years later Katine [Katine,2000] made a 

device which experimentally proved that this could happen. 
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Figure 8: Schematic of pillar device [Katine,2000]. 

 

Figure 8 shows a schematic of the device. It was fabricated by sputtering 120nm Cu / 

10nm Co / 6nm Cu / 2.5nm Co / 15nm Cu / 3nm Pt / 60nm Au on a silicon substrate. 

Electron beam lithography, evaporation and lift-off were used to pattern 100nm 

diameter pillars. The difference between the thicknesses of the Cobalt layers is so 

that the magnetisation of the thicker layer can be fixed.  

 

Figure 9: dV / dI of a pillar device exhibiting hysteretic jumps as the current is 

swept [Katine,2000]. 

 

Figure 9 shows the hysteretic variation in resistance as a function of the device 

current in the presence of a steady magnetic field. Two loops are shown, one when 
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1200 Oe was applied and another when 1600 Oe was applied. There are a number of 

aspects to this figure. The general curve increase in resistance is attributed to 

increased electron-magnon and electron-phonon scattering. The 1200 Oe sample 

starts at I=0 in a low resistance state and, as the current is increased, the resistance 

increases in two jumps until it reaches the higher resistance state. If the current is 

reduced and then reversed, the system returns to the low resistance state. The 1600 

Oe sample shows similar behaviour. The low resistance state is assumed to be when 

the magnetic layers are in parallel alignment and the high resistance state is when the 

layers are antiparallel. However, the curious jumps are not easy to explain, they 

could possibly be due to quasi-stable magnetic domain configurations. 

 

 

Figure 10: Structure of MRAM [Fert,2003]. 

 

Katine demonstrated how a single cell would work. Figure 10 scales this up to a full 

useable magnetic random access memory (MRAM) device and, by using this 

structure, each cell can be individually accessed. A spin current of around 10
8
 Acm

-2
 

can be passed through a cell aligning the layers either parallel or antiparallel. The 

state of the cell can then be detected by using a standard giant magnetoresistance 

technique. The advantages of magnetic random access memory are that it is non-

volatile, has radiation hardness and is low on energy consumption. 
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2. Magnetism in Thin Films 

2.1 Exchange Interactions 

2.1.1 Molecular Field 

 

The first major step forward in understanding magnetism was the work carried out 

by Wiess. He is sometimes referred to as the father of modern magnetism and his 

theories, although modified now, are still used today. He came up with insights 

that can only be explained by the use of Quantum Mechanics, an area of Physics 

which he pre-dated. According to the Langevin theory of paramagnetism, the 

magnetic carriers of magnetic moments in a substance are non-interacting. 

However, in order to explain some of the features of ferromagnetism, Wiess 

postulated that there was interaction between them, and he called this interaction 

the ‘molecular field’. This could be used to explain why ferromagnets are able to 

spontaneously magnetise to saturation under relatively low fields. He suggested 

that this ‘molecular field’, HM , was proportional to the magnetisation and took the 

following form 

       Eqn. 2-1 
 

 

where γ is the constant of proportionality. From a non-quantum mechanical 

perspective, the magnetic carriers would take the form of dipoles. Given the Curie 

temperature of Iron is ~ 770
O
C this would result in an internal magnetic field of 

around 720T which is clearly unrealistic [Cullity,1972].  

However, he did come up with other ideas which were accurate. For example, in 

order to explain the presence of unmagnetised ferromagnets, he introduced the 

concept of domains. Each domain has been magnetised to saturation, but the 

domains are randomly oriented so that the net magnetisation is zero. A greater 

understanding of the molecular field was only achieved with the advent of 

quantum mechanical exchange forces.  
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2.1.2 Direct Exchange 

 

Heisenberg was concerned with the question of how the two electrons in a 

hydrogen molecule could occupy what is virtually the same space given that they 

were fermions. The answer was that electrons possessed a quantum state called 

spin and that each electron had opposite spin, this allowed them to be in the same 

orbital. If there are two hydrogen atoms that are close enough for there to be some 

over lapping of the electron orbits then the electrons can both be in the same spin 

state, but this results in the two atoms being in a higher energy state. 

 

This variation in energy state is called the exchange energy, the name comes from 

the fact that the electrons are able to exchange position. As it is also due to an 

interaction between electrons, it is electrostatic in nature. The value (EX) is given 

by Equation 2-2 where Si and Sj are the spins of two electrons and JEX is the 

exchange integral. 

               Eqn. 2-2 

 

 

This exchange energy is the quantum mechanical origin of Wiess’ molecular field 

and can be used to explain many aspects of magnetism. However, the influence 

and effect of this energy is determined by the values of the exchange integral, and 

in here lies some problems. The above equation only relates to a two electron 

system and even now it has not been successfully extended to a giant crystal of 

iron without any impurities even with modern day computers. 

 

However, there have been a number attempts to solve the exchange energy 

equation for large systems using various assumptions which are used in order to 

simplify the maths. Exchange forces only act over short distances as they follow a 

1/r
6
 law, so by making the assumption that these only interact with nearest 
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neighbour atoms, the complexity of the solution is reduced. One of the more 

successful of these solutions is the one which has become known as the Bethe- 

Slater Curve. Its success is based on the fact that it is able to predict the magnetic 

properties a number of elements (Figure 11). 

 

 

 

Figure 11: Bethe-Slater Curve [Cullity,1972]. 

 

The curve shows the variation of the exchange integral with the ratio ra / r3d, 

where ra is the radius of an atom and r3d is the radius of the 3d shell of electrons. 

Whether the exchange integral is positive or negative relates to whether the 

element is ferromagnetic or anti-ferromagnetic, and the size of exchange integral 

relates to either the Curie temperature or Néel temperature. When the distances 

between the atoms are the same as that in the figure, Chromium has a higher Néel 

temperature than Manganese and Cobalt has the highest Curie temperature of the 

ferromagnets. Above these temperatures, the thermal energy over comes the 

exchange energy and they all become paramagnetic.  
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2.1.3 Indirect Exchange 

 

Figure 12: Variation of RKKY interaction [O'Handley,2000]. 

. 

As is often the case in magnetism, one theory may well be able to explain one 

effect but not another and another question in magnetism that needed to be 

answered was why rare earth metals and alloys were magnetic. Although the 

underlying reason is similar to the Bethe-Slater Curve, there is actually a different 

physical explanation which can be introduced here in order to explain this. The 

exchange force considered in the Bethe-Slater Curve is only over very short 

distances such as nearest neighbour atoms, hence it is called a direct exchange. 

The force that explains why rare earth metals are magnetic acts of over much 

longer distances and is called an indirect force. 

The magnetic moment of a rare earth metal is due to the spin state of electrons in 

the 4f orbital, but the radius of the 4f orbital is only about 10% of the interatomic 

spacing [O'Handley,2000]. However, the polarised electrons in this 4f orbital 

interact with the conduction electrons in the 5d
1
 and 6s

2
 bands. The now weakly 

polarised conduction electrons have an extended wave function and therefore 

interact with 4f electrons at other atomic sites, this indirect exchange is called 

RKKY interaction.  Returning to the exchange integral, calculations can now be 

performed which predict its value for different atomic spacing (Figure 12). 

Depending on these values the material can either be ferromagnetic, 

antiferromagnetic or helimagnetic. 
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2.1.4 Super Exchange 

 

There is also a third from of exchange interaction which results in 

antiferromagnetism. Like direct exchange, the basis of it is the Pauli Exclusion 

Principle, however, unlike direct exchange, magnetic sites are not nearest 

neighbours, instead there is an oxide ion that lies in-between two transition metals 

ions. 

 

 

Figure 13: Superexchange mechanisms in transitions metal oxides (Figure a 

shows the relative location of the orbits. Figure b shows how the electrons take up 

an antiferromagnetic state). 

 

The 3d orbitals of the transition metals are half occupied, but after the transfer of 

electrons to the Oxygen atom, its outer orbital is completely full. Due to the Pauli 

Exclusion Principle, these electrons must take up opposite spins. If electrons are 

now exchanged between the oxygen ion and the transition metal, their spin must 

be conserved, this then results in effectively an antiferromagnetic coupling 

between the transition metals and is referred to as superexchange (Figure 13). 

Cobalt Oxide is a good example of this kind of antiferromagnet as it was this 

material which first demonstrated exchange bias (see section 3.1.1). 
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2.1.5 Interlayer Coupling 

 

The paper that Fert published [Baibich,1988] which presented the results of GMR 

used Iron/Chromium magnetic superlattices. By either applying or removing a 

magnetic field, the Fe layers would either align parallel or anti-parallel, and the 

resistance would change accordingly. This was an example of antiferromagnetic 

coupling between two ferromagnetic layers with a spacer. 

This antiferromagnetic behaviour was also demonstrated by Parkin et. al. where 

he varied the thickness of the spacer  [Parkin,1990]. The experiment was based on 

a trilayer system where a spacer layer of Ruthenium of varying thickness was 

inserted between two layers of Cobalt. The sample was then tested to find out how 

large a field was required in order to saturate it. There was a significant variation 

in this field as the Ruthenium’s thickness varied (Figure 14). 

 

 

Figure 14: Variation of interlayer exchange coupling in Co/Ru multilayers 

with varying Ru thickness [Parkin,1990]. 
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This was explained as being due to a change in the coupling between the two 

layers with the nature of the interlay coupling varying from ferromagnetic to 

antiferromagnetic. In terms of an exchange integral, its value is oscillating from 

positive to negative. The form of the exchange integral (Equation 2-3) is similar to 

that of direct exchange 

                 Eqn. 2-3 

 

where M1 and M2 are the magnetisations of the ferromagnetic layers and A is the 

area. The reason for the oscillation is that the spacer layer acts as a potential well 

for the conduction electrons. These electrons will experience different 

probabilities of transmission or reflection within the potential well walls 

depending on their energy.  

A conduction electron whose spin is parallel to the magnetisation of the Cobalt 

will experience a different energy barrier to one whose spin is anti-parallel. 

Therefore, as the spacer layer thickness varies along with the height of the 

potential wall, either antiferromagnetic or ferromagnetic coupling will be 

favoured depending on the spin and energy of the electron. 

 

2.1.6 Inter Granular Coupling 

 

The exchange bias samples in this project typically consist of a ferromagnet 

deposited on an antiferromagnet. They are grown in a sputtering system (see 

section 5.1.2) and the resulting bilayers are known to be granular (Figure 15). For 

the Cobalt Iron layer the atomic magnetic sites within a grain experience direct 

exchange and so, according to the Bethe-Slater Curve, all the moments will be 

aligned. 
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In Cobalt Iron, RKKY interaction results in indirect exchange between the grains. 

Reversal mechanisms then occur by a nucleation site which reverses first, usually 

at corner where the demagnetisation field is strongest, and then, by virtue of 

RKKY interaction, the rest of the layer reverses by domain wall motion. 

 

 

Figure 15: Bright field and dark field images of typical exchange bias sample 

consisting of CoFe and IrMn. 

 

The antiferromagnet also consists of grains which are ordered. These ordered 

regions, when examined under a TEM, obey the Bragg Diffraction Law (see 

section 5.4.3) and appear black in a bright field image (Figure 15). If a dark field 

image is taken, all of the disordered region now appears black, however, only the 

grains that are orientated in a certain direction appear as white. As can be seen in 

the images, there are more black grains in the bright field image than there are 

white ones in the dark field image. This means that the grains have an angular 

distribution within the sample. The result of this distribution is that there is no 

possibility of the type of coupling described by Parkin as adjacent grains are very 

unlikely to be oriented in the same direction and they are a reasonable distance 

from each other. There is also no possibility of RKKY interaction as an 

antiferromagnetic grain does not have a net magnetic moment. It is for these 

reasons that in the model proposed by O’Grady et al. (section 4.1) the assumption 

is made that there is no intergranular coupling in the antiferromagnet. 
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. 

2.2 Magnetic Domains in Cobalt Iron 

2.2.1 Domain Structures 

 

Wiess not only postulated why materials were magnetic, he also wondered why it 

was possible for ferromagnetic materials not to be magnetised even though they 

possessed, what he called, the molecular field. The answer he came up with was 

that the material was still magnetised but that this magnetisation occurred in 

regions, or domains, whose orientation was random. This would then mean that 

the net magnetisation was zero. 

 

Figure 16: Division into domains [Cullity,1972]. 

 

Below its Curie temperature, an ‘unmagnetised’ ferromagnet is actually in its 

lowest energy state. This is because domains form in order to minimise the 

magnetostatic energy (Figure 16). There are a number of energetic balances going 

on here. Clearly, the smaller the domains, the lower the magnetostatic energy, 

however, a domain wall costs energy because throughout the wall, magnetic 

moments are not aligning parallel. Within the wall lie other energetic balances. 

Not only does the exchange force want to align all moments parallel but there is 

also an anisotropic energy cost in taking the moment out of the plane of its easy 

axis. Both of these effect the size of the domain wall, which in turn affects the 

overall size of the domains. For bulk Cobalt a typical domain width would be 

around 10
-3

 cm [Cullity,1972]. 
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2.2.2 Néel and Bloch Walls 

 

 

Figure 17: Directions of rotation of magnetic moment for Bloch walls and 

Néel walls. 

 

There are two types of domain walls, Bloch walls and N el walls. With the Bloch 

walls the moment rotates out of the plane of the sample, with N el walls the 

moment rotates in the plane of the sample (Figure 17). Given that the Cobalt Iron 

layers are usually around 2nm in the samples grown for this project, the N el wall 

is much preferred as the energy required to rotate a moment perpendicular in such 

a thin sample is significantly higher than keeping the moment in plane (Figure 

18). 

 

Figure 18: Energy per unit thickness of a Bloch wall and a Néel wall as a 

function of film thickness [O'Handley,2000]. 
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2.3 Anisotropy  

2.3.1 Magnetocrystalline Anisotropy 

 

Anisotropy is when a property or characteristic behaves differently in different 

directions, as opposed to isotropy which is when a property behaves the same in 

different directions. The following section will examine different types of 

magnetic anisotropies. The first one to be discussed will be the most important 

one, an intrinsic anisotropy, afterwards a few extrinsic anisotropies will be 

covered. 

The crystallographic structure of a material influences the orbits of the electrons. 

The spins of the electrons are coupled to their orbits by spin-orbit coupling. The 

combination of these interactions results in the spins of the electrons preferentially 

aligning in a certain direction. This direction is called the easy axis and a material 

will saturate more readily in this direction than in any other. In order to saturate 

the material in another direction this spin-orbit coupling needs to be overcome, 

however, this coupling is relatively weak. 

The easy axis is not always simple to predict for example in bcc Iron, the easy 

axis is <100> and the hard axis is <111> whereas in fcc Nickel the easy axis is 

<111> and the hard axis is <100>. In this project, both Cobalt Iron and Iridium 

Manganese are cubic. The energy required to magnetise a cubic material in a 

given direction (EK) is given by 

 

                         +            …  Eqn. 2-4 

 

where KO, K1 and K2 are anisotropy constants for a given material and α1, α2 and 

α3 are cosines of the angles between the saturation magnetisation MS and the 

crystal axes. 
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Jung [Jung,2003] carried out anisotropy measurements on 50nm of Cobalt Iron 

sputtered on to various seed layers such as Copper, Tantalum  and Ruthenium, he 

found that the uniaxial anisotropy for the Copper seed layer was 2.4x10
4
ergs/cc. It 

is assumed that the characteristics of the Cobalt Iron layers in this project are 

similar to this. The work by carried out by O’Grady et al.  proposes a method to 

calculate the anisotropy of Iridium Manganese in thin film sputtered materials, the 

theory behind this is explained in section 4.1. 

 

 

2.3.2 Shape Anisotropy 

 

Shape anisotropy is due to the formation of uncompensated free poles at the 

surface of a magnetised material. These free poles generate the demagnetisation 

field, a field which tends to reduce the total magnetisation of the sample. The field 

is given by the following equation 

          Eqn. 2-5 

 

where HD is the demagnetising field,  MS  is the saturation magnetisation, and ND 

is the demagnetising factor. ND can vary between 0 and 4π and is a function of the 

shape of the material. The size of the demagnetising factor is inversely 

proportional to the separation of the free poles. Hence, in a sample whose 

dimensions are 5mm x 5mm x 2nm, it would be very difficult to magnetise the 

sample out of the plane. Demagnetisation fields are still important though as they 

will be high at the corners of a magnetised ferromagnetic sample with the above 

dimensions which is experiencing a reverse field. Thus, it is usually the corners 

that are the nucleation sites for the magnetic reversal process.  
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2.3.3 Stress Anisotropy 

 

A further form of anisotropy is called stress anisotropy. If a magnetic field is 

applied then, due to the spin-orbit coupling, the crystallographic electrostatic field 

is changed, this affects the positions of the atomic sites and the dimensions of the 

material change. Correspondingly, the act of stress on a ferromagnetic material 

can vary the magnetisation of that material. However, no stress was applied to the 

samples during this project.  

 

 

2.4 Antiferromagnets 

 

2.4.1 Susceptibility of Antiferromagnets 

 

The first papers published which studied antiferromagnets were authored by L. 

Néel [Neel,1932] and the work was based on susceptibility measurements.  Figure 

19 shows the temperature dependence susceptibly of an antiferromagnet (χ). The 

first thing to note is that the susceptibility shows a maximum at a temperature that 

became known as the Néel temperature. Above this value the magnetic behaviour 

is paramagnetic in nature. This is proven by plotting the inverse of the 

susceptibility and noting that it is a straight line. However, in this region, the 

antiferromagnet does not behave as an ideal paramagnetic because of the 

influence of exchange interactions. 

Below the Néel temperature the thermal energy is reduced to a point where these 

exchange interactions can take dominance. Here, the susceptibly reduces 

significantly, although never to zero. 
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Figure 19: Variation of χ with temperature as material changes from 

paramagnetic to antiferromagnetic [Jiles,1991]. 

 

2.4.2 Sublattices of Antiferromagnets 

 

 

Figure 20: Structure of sub-lattices in IrMn. 

 

Néel predicted what was causing this behaviour and he explained it as being due 

to adjacent magnetic sub-lattices arranging themselves in opposite directions, as in 

Figure 20. In terms of the molecular field, this can be explained as one sub-lattice 

acting on the other by the following equations 
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          Eqn. 2-6 

and 

           Eqn. 2-7 

 

where MA and MB are the magnetisations of sublattice ‘A’ and ‘B’ respectively and 

HmA and HmB are the molecular fields experienced. The source of the negative sign 

in the equations can be linked back to the Beth-Slater curve where in certain 

circumstances the exchange integral is negative. 

 

 

Figure 21: Temperature variation of sub-lattice magnetisation 

[Crangle,1991]. 

Figure 21 shows the temperature variation of the magnetisation of the sub-lattices. 

As can be seen, as the temperature decreases below the Néel temperature, the 

system tends towards a purely antiferromagnetic state at a rate which corresponds 

to the decrease in susceptibility as seen in Figure 19. However, in a real system 

zero susceptibility is never reached due to imperfections and impurities. 
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2.4.3 Spin Structure of Antiferromagnets 

 

 

Figure 22: Néel temperature for various phases of IrxMn1-x alloy system 

[Yamaoka,1974]. 

 

In 1974 Yamaoka [Yamaoka,1974] carried out extensive characterisation of the 

Néel  temperature of Iridium Manganese in it’s different phases as a function of 

composition. The composition took the form of IrxMn1-x where x ranged from 0.1 

to 0.3. The region of most interest is that where x varies from 0.2 to 0.3. The 

composition can take the form of either an ordered phase where the structure is 

shown in Figure 23 or it can take disordered phases shown in Figure 24. As can be 

seen from Figure 22, an increase in the percentage of Iridium gradually increases 

the Néel temperature, but the change from the disordered phase to the ordered 

phase significantly increases it. 
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The spin structure of the ordered phase takes up one form, whereas the spin 

structure of the disordered phase can take three different forms, 1Q, 2Q and 3Q. It 

is thought that different phases contribute differently to exchange bias effects and 

although neutron studies are able to identify the 2Q state, it is unable to separate 

the 1Q and 3Q states [Sakuma,2003]. 

 

 

 

Figure 23: Spin structure of ordered IrMn3 phase (The black circles are Ir, the 

white circles indicate Mn) [Tomeno,1999]. 

 

Figure 24: 1Q (a), 2Q (b), 3Q (c), spin structures for IrMn disordered phase 

(The circles at the vertices locate the Ir, the face centred circles are Mn) 

[Sakuma,2003]. 
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Imakita [Imakita,2004] experimented with substrate heating of up to 200°C during 

deposition and annealing of up to 400°C post deposition. This resulted in a 

significant increase in the exchange bias and they attributed this to the presence of 

the ordered phase. All of this means that the state of the Iridium Manganese is 

highly dependent on its composition and the seed layer upon which it is grown, 

and there are probably a variety of phases present in any one sample. As it is 

impossible to carry out neutron diffraction on a single layered thin film, it is 

impossible to know exactly which form the spins take. This means that the 

research carried out in this area has to be done so in a more indirect manner. 
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3. Models of Exchange Bias 

 

3.1 Early Models 

 

3.1.1 Meiklejohn and Bean 

 

It was in 1956 [Meiklejohn and Bean,1957] that the phenomenon of exchange bias 

was first reported. The group was growing Cobalt particles with an applied field 

in order to induce an easy axis. The process of extraction required the particles to 

be oxidised, however, when a hysteresis loop was taken they saw something 

unexpected (Figure 25), the hysteresis loop was no longer symmetric. 

 

 

 

Figure 25: Meiklejohn and Bean exchange biased loop [Meiklejohn and 

Bean,1957]. 
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Figure 26: Effect of field cooling Co, CoO particles. 

 

Figure 26 shows the experimental procedure for setting a sample in order for it to 

exhibit exchange bias. The sample is first heated above the Néel temperature of 

the antiferromagnetic Cobalt Oxide, which thermally activates it. If a large field is 

applied both the ferromagnetic and antiferromagnetic layer are aligned. As the 

sample is field cooled to below the Néel temperature the Cobalt Oxide settles into 

an antiferromagnetic configuration. Now the Cobalt Oxide is set, the field can be 

reversed which reverses the ferromagnetic Cobalt, but not the Cobalt Oxide.  

 

Meiklejohn and Bean proposed a theory as to what might be producing this effect. 

Their model, although basic, was the first step towards gaining an understanding 

of exchange bias. They assumed that the interface between the ferromagnetic and 

the antiferromagnetic was perfectly smooth, the ferromagnet was in a single 

domain state and coupled to the antiferromagnet, and that when the ferromagnet 

reversed during measurement, all of the antiferromagnet spins remained fixed. 

They created an equation that predicted the energy per unit area of the exchange 

bias system. 
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                   Eqn. 3-1 

 

where H is the applied field, Ms is the saturation magnetisation of the 

ferromagnetic layer, tF is the thickness of the ferromagnetic layer, KAF is the 

anisotropy of the antiferromagnet, tAF is the thickness of the antiferromagnet and 

JINT is the interface coupling constant. The ferromagnetic and antiferromagnetic 

easy axis are assumed to lie along the same direction and the angles θ, β and α are 

defined as the angle between this axis and the applied field, ferromagnetic 

magnetisation and the antiferromagnetic magnetisation respectively (Figure 27). 

 

 

Figure 27: Diagram of relative axis in AF. 

 

If the energy of the this equation is minimised it reduces to  

     
    

     
  Eqn. 3-2 

 

where HEX is the exchange bias. Unfortunately, the values of exchange bias 

predicted by this equation were out by about two orders of magnitude.  
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3.1.2 The Néel Model 

 

The next main development of the understanding of exchange bias was to take 

into account the fact that the interface was not perfectly smooth. This was first 

introduced by Néel [Néel,1967] who suggested that there would be both 

compensated and uncompensated interface spins structures due to both 

antiferromagnet sub lattices being present at the interface (Figure 28). This spin 

structure would allow for irreversible changes in the interface and thus predicted 

the training effect. The training effect is where HEX reduces after repeated 

hysteresis measurements (see section 4.2.3). Unfortunately, the values predicted 

for this reduction by the model were again out by an order of magnitude. It also 

did not account for the effect where the value of the exchange bias would change 

with time. 

 

Figure 28: Partially compensated interface due to roughness. 
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3.2 Domain Models 

 

 

There have been a series of models proposed which can be categorised as Domain 

Models. These all attempt to explain some of the properties of exchange bias by 

suggesting that there is a domain wall in the antiferromagnet. These domain walls 

have taken on a number of different forms, some have been parallel to the 

interface, some perpendicular and some cyclical. However, these models are 

mainly applied to single crystal systems where there is strong exchange coupling 

within the antiferromagnet and thus domain walls can form. The samples that 

were grown for this project are granular and the exchange coupling is thought to 

be very weak (see section 2.1.6). However, some of the work carried out using the 

domain model does have relevance to the polycrystalline samples used in this 

work. 

 

In 2002, Shull [Shull,2003] published a paper which demonstrated an interesting 

interaction between the ferromagnetic layer and the antiferromagnetic layer. The 

samples were grown while a small field of 40 Oe was applied. This was done so 

as to induce a degree of magnetic order in the ferromagnet, but not fully saturate 

it. Therefore, domains were present in the ferromagnet during growth. After 

deposition, a magneto-optic indicator technique (MOIF) was used to map the 

ferromagnetic domains while no field was applied. If a field was then applied to 

the sample and then removed, it was seen that the domains had returned to their 

original positions. This was explained as the ferromagnet ‘imprinting’ its own 

domain structure on the antiferromagnet during deposition. After deposition, the 

state of the antiferromagnet therefore remained unchanged and, due to the  

exchange interaction between the layers, induced the ferromagnet to return to its 

original domain structure. This implies that antiferromagnetic domains can form. 
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3.2.1 Malozemoff’s Random Interface Model 

 

 

Figure 29: Atomic moment configurations of an antiferromagnet -

ferromagnetic system [Malozemoff,1987]. 

 

Malozemoff incorporated the concept of random interface roughness which gives 

rise to a random field acting on the interface spins [Malozemoff,1987]. He 

suggested that the antiferromagnet broke up into domains whose size was 

determined by the competition between the exchange energy and the anisotropy 

energy. These domains can be seen in Figure 29 where the crosses shown 

represent a frustrated area of the interface. Image b is fully unfrustrated, image a 

is semi-unfrustrated, image c has a fully unfavourable interface, and image d 

shows how the energy state can be reduced by the formation of perpendicular 

domain walls in the antiferromagnet. To ensure the domain wall has a vertical 

incidence at the interface a hemispherical domain results (Figure 30). 
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Figure 30: Schematic of a hemispherical domain [Malozemoff,1987]. 

 

The total energy of this hemisphere is equal to the interfacial energy plus the 

surface energy. The equilibrium size is given by  

 

 

 
   √

   

   
  

Eqn. 3-3 

 

 

where L is the domain diameter, AAF is the exchange stiffness and KAF is the 

anisotropy of the antiferromagnet. This leads to  

 

 
    

  √      

      

  

Eqn. 3-4 

 

as the expression for the overall exchange bias where z is a dimensionless 

parameter describing the frustration of moments at the interface, MF is the 

magnetisation of the ferromagnet and tF the thickness of the ferromagnet. 

This model was able to predict phenomena such as the training effect but did not 

take into account the size of the antiferromagnetic grains which is an important 

part of this study. For example, one of the assumptions was that the 

antiferromagnet was infinitely thick. 
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3.2.2 Domain State Model 

 

 

Figure 31: Schematic of domain wall in AF. 

 

Nowak [Nowak,2002] produced more work that was based on domains forming in 

the antiferromagnet. The effect they were trying to explain was the increase in 

exchange bias when impurities were introduced into the bulk of the 

antiferromagnet. The theory saw domains forming in the bulk, as shown in Figure 

31, where the black dots represent defects such as nonmagnetic ions or vacancies. 

Inside the line is one domain and outside of it is another. It can be seen that inside 

there are three uncompensated spins which would give the domain a net 

magnetization. This net magnetization then couples to the ferromagnet and results 

in exchange bias. The reason these impurities increase the exchange bias is 

because they reduce the energy required for a domain wall to form and so the 

domains form more readily. However, there is an issue that arises from this. The 

domain boundaries are represented as thin lines, implying that the domain walls 

are effectively one atom wide. The energy required to produce such a thin wall 

would make the formation of such domains highly unfavourable. 
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Figure 32: IrMn thickness dependence of exchange bias field [Ali,2003]. 

 

Ali [Ali,2003] produced a paper that was based on the domain state model whose 

experimental results are of relevance to the work presented in this thesis. Figure 

32 shows the dependence of exchange bias on the thickness of the Iridium 

Manganese. The 8 different results are showing exchange bias effects at different 

temperatures, what is of interest, however, are the peaks shown at around 20Å. Ali 

attributed this peak to the ease with which a domain wall can form. At very low 

thickness there is not enough space for a domain wall.  

 

‘Above this thickness the decline in HEX is caused by the fact that with increasing 

antiferromagnetic thickness it becomes more and more difficult to form domain 

walls since these are oriented perpendicular to the interface extending through 

the whole antiferromagnetic layer’ 
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3.2.3 The Model of Stamps 

 

Stamps produced a topical review on exchange bias based on natural 

antiferromagnets [Stamps,2000]. It started off building a theoretical model from 

first principles based on energy stability. This led to a prediction of the coercive 

fields based on the interlayer exchange coupling (Equation 3-5 and Equation 3-6) 

and also to the well-known inverse relationship between exchange bias and 

ferromagnetic thickness (Equation 3-7).  

 

 

 

    
     

   
  Eqn. 3-5 

 

 

     
     

   
  

Eqn. 3-6 

   

     
 

   
  Eqn. 3-7 

 

 

HC1 and HC2 are the coercive fields, J is the interlayer exchange and KF is the 

anisotropy of the ferromagnet 

 

Next Stamps’ paper moved onto calculating the energy in a twisted domain wall 

within a ferromagnetic chain. It then considered a chain of antiferromagnetic 

coupled moments connected to the ferromagnetic chain by an exchange energy. 

This represented the interface of the bilayer and by twisting these chains, partial 

domain walls could form. An interesting artefact of this partial domain wall was 

that the ferromagnet could align perpendicular to the antiferromagnetic easy axis. 

In this situation extra terms have to be considered in the energy equation, but by 

doing so it is possible to predict exchange bias in a fully compensated system. The 
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model then extended to more complex situations where both sublattices are 

present at the interface (Figure 33). However, the samples used in this project are 

not natural antiferromagnets, nor single crystal, but instead are granular. 

 

 

Figure 33: Interface region of ferromagnet and antiferromagnet 

[Stamps,2000]. 

 

 

3.2.4 The Model of Stiles and McMichael 

 

Stiles and McMichael’s model bridges the concept of domain models and the 

granular models as it assumes a granular antiferromagnet which contains a domain 

wall [Stiles and McMicheal,1999(a),(b),2001]. Their model is based on the 

following equation 
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Eqn. 3-8 
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where E is the energy of a grain coupled to the ferromagnet, N is the number of 

spins at the interface, a is the lattice constant, Jnet is the direct coupling, Jsf is the 

spin-flop coupling, σ is the energy of a 180 degree domain wall in the 

antiferromagnet, MFM is the direction of the ferromagnet magnetisation, m(0) is 

the net sublattice magnetisation direction at the interface and ±u are the two easy 

directions of the uniaxial anisotropy in the antiferromagnet. The first term 

describes the direct coupling at the interface and is a reduced value from the 

standard exchange integral. The second term is the spin-flop coupling. A spin-flop 

transition occurs in an antiferromagnet when, due to a weak anisotropy, the two 

magnetic sublattices in the presence of an applied field rotate perpendicular to 

both the applied field and easy axis of the material. Koon [Koon,1997] had 

borrowed this term to describe the interfacial exchange coupling that occurs when 

there is a perpendicular orientation between the magnetic moments of the 

ferromagnet and antiferromagnet. The third term is the energy of the partial 

domain wall which is wound through an angle. 

 

Figure 34 shows an antiferromagnetic grain with a ferromagnetic layer on the top. 

As the direction of magnetisation of the ferromagnet is rotated, a partial domain 

wall is wound up in the antiferromagnet. The manner of the coupling between the 

ferromagnet and antiferromagnet is assumed to be both direct and spin-flop. 

Unlike some of the domain wall models where the domain wall is assumed to be 

infinitely thin which then implies an infinitely large anisotropy, the domain wall 

width here is more realistically of finite thickness. 

 

The model of Stiles and McMichael suggested that there were a number of 

complex processes taking place during the measurement of a hysteresis loop. 

Initially, some of the grains would go through reversible transitions as the field 

was reversed and some would go through irreversible transitions. There was also a 

difference in the reversal process for the case of the field increasing and the field 

decreasing. When the field is increasing, the ferromagnet is exerting a torque on 
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the antiferromagnet, whereas when the field is decreasing it is the antiferromagnet 

exerting a torque on the ferromagnet. 

 

 

Figure 34: Two configurations of an antiferromagnet grain coupled to a 

ferromagnet layer [Stiles,1999]. 

 

There are a number of assumptions in the model, some of which can be applied to 

the materials used in this thesis, and some which cannot. One of the assumptions 

was that the ferromagnet was coupled to independent grains and the stability of 

these grains was temperature dependent, this is shared with the model proposed by 

O’Grady. Another assumption was that, although there could be a twisted domain 

wall in the antiferromagnet, the grains could not be multidomain. One of the 

differences is that Stiles and McMichael assumed a perfectly flat interface and 

this, unfortunately, does not allow for the possibility of spin clusters, which is the 

main topic of this work. 
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3.3 Granular Models 

 

3.3.1 The Thermal Fluctuation Aftereffect Model 

 

 

Figure 35: Antiferromagnet particles coupled to underlying ferromagnet 

[Fulcomer,1972]. 

 

While the various domain models were being developed, Fulcomer and Charap 

developed the Thermal Fluctuation Model [Fulcomer and Charap,1972] based on 

Stoner-Wohlfarth theory [Stoner,1948]. The main difference between this and the 

domain state models at the time was that this work was based on the assumption 

that the antiferromagnet is an assembly of non-interacting particles. The actual 

samples used to compare the theory with experiment were oxidised Nickel Iron 

films where the oxide was in the form of small discrete particles whereby no 

interaction between them was possible (Figure 35). It also attempted to explain 

some of the time dependent effects in terms of thermal activation which was an 

approach that the domain state models were not taking. 
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One of the interesting measurements they took was how the exchange bias would 

vary with temperature. It was found that the exchange bias would decrease as 

temperature increased up to a value they called the blocking temperature (TB), at 

which point the exchange bias would reduce to zero. The curious aspect of this 

was that this temperature was noticeably lower than the Néel temperature. Their 

explanation for this was that the Blocking temperature had been reached when the 

largest antiferromagnetic grain had become randomly oriented. They made one 

assumption that is particularly important in the context of the O’Grady model; 

 

‘We assume that the distribution of the area, thickness and contact fraction is 

such that all areas are equally probable up to some maximum area and that there 

are no larger particles, and further that the distribution of thickness and contact 

fraction are of a similar nature.’. 

 

Section 4.1.4 will detail how O’Grady’s model differs from this. Further studies 

were carried out using the thermal fluctuation model. Some were able to predict 

the exchange bias and coercivity as a function of temperature [Grimsditch,2003], 

others investigated Nickel Iron / Iron Manganese systems [Nishioka,1996] and 

Cobalt/ Chromium Manganese Platinum systems [Nishioka,1998] and some even 

predicted the temperature dependence of the blocking temperature [Xi,2005]. 

Again, none of these systems is appropriate to the work carried out in this project 

as they do not relate to polycrystalline samples whose grain size follows a log 

normal distribution. 
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3.3.2 Calculations of Van der Heijden 

 

An extension of this model was carried out by van der Heijden [van der 

Heijden,1998] Here, instead of just measuring the exchange bias as a function of 

temperature, they measured  it as a function of time at various temperatures with 

the sample having the ferromagnetic layer reversed (Figure 36). They found that 

the decease of exchange bias increases with temperature and they interpreted it as 

a thermally assisted reversal of magnetic domains in the antiferromagnetic layer. 

There was even reversal of the exchange bias. In some ways this experiment is a 

precursor to the work of O’Grady (section 4.1).  

 

 

Figure 36: Time dependence of exchange bias [van der Heijden,1998]. 

 

Like Fulcomer and Charap, Van der Heijden modelled the system as non-

interacting single domain antiferromagnetic particles and, like Fulcomer and 

Charap, there was agreement between theory and experiment. 
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4. The York Model 

 

4.1 Theory 

 

4.1.1 Introduction 

 

As has already been said, the spin-valve had found great use in the industry of 

magnetic recording along with the exchange bias effect that occurred when an 

antiferromagnet is grown next to a ferromagnet. Given the usefulness of exchange 

bias it was only natural for the magnetic recording industry to fund research into 

how its effect could be optimised Thus, great numbers of research papers were 

produced investigating it [Mauri,1987, Malozemoff,1987, Stiles and McMichael, 

1999, Nowak,2002]. Although the exchange bias effect itself was relatively easy 

to replicate, researching into exactly how it came about provided a number of 

challenges. The first one is the fact that it has no net moment so it cannot be 

examined by a conventional magnetometer. Only by examining its effect on a 

ferromagnet can anything be deduced about it. The second problem was that it 

was not easy to make reproducible measurements. Until this problem was solved, 

gaining a deeper understanding was always going to be a challenge. 

 

4.1.2 Thermally stable temperature. 

Generating reproducible results was the first challenge that O’Grady et al. tried to 

overcome [O’Grady,2009]. Given the fact that exchange bias reduces if the 

sample is heated up, thermal stability is clearly of importance so the first step is to 

insure that the bilayer is thermally stable throughout the measurement. To test 

this, the sample is first set in a field of 5000 Oe at 225
0
C for 90 minutes and then 

field cooled to the measurement temperature. The training effect is removed, a 

hysteresis loop is taken, and then the sample is held at the measurement 
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temperature for 30 minutes. A second loop is then taken and if there is a variation 

between the two, it can be assumed that the antiferromagnet is not thermally 

stable. The process is then repeated at decreasing temperatures until a thermally 

stable temperature is reached, and this is called the temperature of no thermal 

activation (TNA). Once this has been established, all further measurements are then 

taken at this temperature. 

 

4.1.3 Median Blocking Temperature. 

As has been said, if the sample is heated up and then cooled back down to the 

measurement temperature, the exchange bias reduces. The concept of heating up 

the sample in a reverse field was then thought of and some interesting effects were 

then seen. It was found that it was actually possible to systematically vary the 

amount of exchange bias in controlled way. The temperature of no thermal 

activation is found and the sample is first set in the usual manner. Then, under a 

reverse field, it is heated up by 25
0
C, held there for 30 minutes, field cooled, and 

another measurement is taken. Once this done, it is found that the exchange bias 

has reduced. 

 

 

Figure 37:  Hysteresis loops showing varying exchange bias. 
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Figure 37 shows what happens if this is then repeated for increasing temperatures. 

As can be seen, it is now possible to fully reverse the antiferromagnet. The 

temperature the sample is heated up to is called the activation temperature (TACT). 

This procedure was carefully documented and is shown in Figure 38 [Vallejo-

Fernandez,2010]. 

 

Figure 38:  Schematic of York protocol [Vallejo-Fernandez,2010]. 

 

 

Having carried out this procedure, it is then possible to plot the exchange bias as a 

function of the activation temperature (Figure 39). With this graph, it is possible 

to make a number of assertions as to the character of the antiferromagnet which is 

producing the exchange bias effect. 
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One of the elements of this data, which is used shortly, is the activation 

temperature at which the exchange bias becomes zero, this is now called the 

median blocking temperature (<TB>). This graph can be compared to the 

traditional blocking temperature measurement, where the sample is heated up and 

cooled down in the absence of a field (Figure 40) [O’Grady,2009]. 

 

Figure 39:   Curve showing how <TB> is experimentally derived. 

 

 

Figure 40:  Conventional Blocking Temperature Measurement 

[O’Grady,2009]. 
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4.1.4 Grain Volume Distribution 

 

What has just been described is how characteristics of the antiferromagnet can be 

found out by the use of magnetometry. This section introduces the idea of imaging 

it by using a transmission electron microscope (see section 5.4 for more details). 

As has already been said, Fulcomer and Charap [Fulcomer and Charap,1972] 

assumed that the exchange bias was proportional to the fraction of 

antiferromagnetic grains that were orientated in a certain direction. In 1976, 

Granqvist [Granqvist,1976] conducted detailed grain size distributions on 

evaporated ultrafine metal particles and came to the following conclusion; 

 

‘Size distributions have been investigated in detail, and consistently the logarithm 

of the particle diameter has a Gaussian distribution to a high precision for the 

smallest sizes.’ 

 

(small sizes were defined as being below 20nm). Van der Heijden [Van der 

Heijden,1998] performed transmission electron microscopic analysis on the 

diameters of the grains of the antiferromagnet and also discovered that they 

followed a log normal distribution. Similar work was carried out by O’Grady et 

al. which agreed with this. A log normal distribution can be described by two 

parameters, its mean and its standard deviation. A variable is log normally 

distributed if its log follows a normal distribution 

 

             
 

√   
   [ 

(       )
 

   ]          Eqn. 4-1 

 

where D is the grain diameter, μ is the mean of lnD (   ) and σ is the standard 

deviation of lnD [O’Grady,1983]. 
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The median grain volume, as shown in Figure 41, soon becomes significant. A 

grain is defined as an ordered region of antiferromagnet which shows up in a 

transmission electron microscope image as black, due to it obeying the Bragg 

condition of refraction (see section 5.4.3). When looking at the image in Figure 

41, the grey areas are not considered to be grains. 

 

 

 

Figure 41:  Grain volume distribution showing VM and a TEM image.  
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4.1.5 Mathematical Groundwork 

 

In order to combine the grain size analysis with the magnetic measurements a 

number of assumptions are now made. The first is that the only region of the 

antiferromagnet that contributes to the exchange bias is that which is considered 

to be a grain. There is assumed to be no coupling between the grains (see section 

2.1.6). The grains are assumed to be single domain, primarily due to their small 

size. The angular distribution of the grains both within the plane of the sample and 

out of the plane of the sample is not considered. There are no partial domain 

walls, or cyclic rotation of the magnetisation within the grain. 

 

Once the grain has been defined in this way, based on the energy barrier equation 

from the Stoner-Wohlfarth theory, Equation 4-2 can be derived for a single 

domain particle. 

 

 

 
       (  

  

  
 )

 

 
Eqn. 4-2 

 

 

where ∆E is the energy barrier of reversal for a grain, KAF is the anisotropy 

constant, V is the grain volume, H* is the exchange field from the ferromagnetic 

layer and HK* is the pseudo anisotropy field. 
  

  
  is considered to be negligible for 

thin films [Vallejo-Fernandez,2008]. This means that Equation 4-2 reduces to 

Equation 4-3  

 

         Eqn. 4-3 

 

The reversal of the magnetic direction of the gain, when subject to heating, can 

now be evaluated with the application of the Néel-Arrhenius law  
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         [

  

   
] 

Eqn. 4-4 

 

 

where τ is the relaxation time, fO is the attempt frequency, kB is Boltzmann’s 

constant, and T is the temperature. 

 

Before all of these concepts so far described can be tied together, one more 

equation needs to be introduced. It is known that the anisotropy of a grain is 

temperature dependent and has been assumed to take the following form 

[Stiles,1999] 

 

 

 
                 [  

    

  
] 

Eqn. 4-5 

 

where TN is the Néel Temperature. 

 

4.1.6 Calculation of Anisotropy 

 

Now the various aspects of the work can be brought together and what follows is 

the most important part. When the sample is heated up in a reverse field to a low 

activation temperature, the smaller grains are reversed. As the activation 

temperature is increased, larger and larger grains become reversed and the 

exchange bias shifts across the axis. When the exchange bias has shifted so that 

the hysteresis loop is now symmetrical, half of the antiferromagnetic is oriented in 

one direction and the other half in the opposing direction. 
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It is known what this activation temperature was and also how long the sample 

was held at this value. Therefore, by application of the Néel-Arrhenius law, the 

energy barrier to reversal for the grain which has reversed at this temperature can 

be calculated. What now ties both the magnetometry and the microscopy together 

is the assumption that the volume of this grain is the median grain calculated from 

the grain size distribution. Eliminating ∆E from Equations 4-3 and 4-4 yields an 

equation that calculates the value of the anisotropy of the antiferromagnet at the 

median blocking temperature 

 

 
          

                 

  
 

Eqn. 4-6 

 

where tACT is the setting time. Once the anisotropy of the antiferromagnet is 

known at the median blocking temperature, it can now be calculated for the other 

two important temperatures in the measurement, the setting temperature and the 

measurement temperature by using Equation 4-5. An important term in this 

equation is TN, in bulk materials it is quoted as 690K [Nogues,1999] however it is 

thought that this value could be lower in thin films. 

 

 

4.1.7 Calculation of Largest Settable Grain and Smallest Stable 

Grain. 

 

Once the anisotropy of the antiferromagnet is known, more detail can be added to 

Figure 41 in order to generate Figure 42. Equations 4-7 and 4-8 are used to 

calculate the volume of the largest grain that can be set during the setting process 

and the smallest stable grain during the measurement; 
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Figure 42:  Equal volumes of the AF set in opposite directions. 

 

 

 
     

                  

         
 

Eqn. 4-7 

 

 

 
   

                

        
 

Eqn. 4-8 

 

where VSET is the largest settable grain, TSET is the setting temperature, tSET is the 

setting time and VC is the smallest stable grain during measurement, TMS is the 

measurement temperature and tMS is the measurement time. The grains that are 

larger than VSET are thought to be randomly oriented, and so can be ignored in 

their contribution to the exchange bias. The grains that are smaller than VC are 

thought to be unstable during the measurement so, again, their contribution to the 

exchange bias is also deemed to be zero (see Figure 43).  



4 York model 

69 

 

 

 

Figure 43:  Grain Size Distribution [O’Grady,2009]. 

 

 

4.1.8 Calculation of Maximum Exchange Bias. 

 

The two limits seen in Figure 43 define the settable fraction of the antiferromagnet 

that contributes to the exchange bias and the following equation can be written. 

 

 
         ∫       

    

  

 
Eqn. 4-9 

 

For a given anisotropy, the upper and lower limits are constant. However, the 

amount of antiferromagnet that falls within these limits can be changed by either 

varying the thickness of the layer in the sample, or by varying the grain size 

distribution (Figure 44).  
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Figure 44:  Variation of grain size distributions [Vallejo-Fernandez,2008(b)]. 

 

 

Therefore, Equation 4-9 is able to predict the variation of exchange bias for both 

varying the thickness of the antiferromagnet and varying grain size, as seen in 

Figure 45 and 46. Figure 45 can actually be compared to Figure 32 from earlier. 

The differences though are that the experimental data produced by Ali [Ali,2000] 

only showed a peak when the temperature was reduce to below 200K and it was at 

a much higher antiferromagnetic thickness of 25nm. The variations of exchange 

bias as a function of either antiferromagnetic thickness or grain size diameter have 

all been calculated by evaluating the volume of the antiferromagnet that falls 

within the settable limits.  
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Figure 45:   Exchange bias verses antiferromagnet layer thickness [Vallejo-

Fernandez,2008(b)]. 

 

 

 

Figure 46:  Exchange bias as a function of grain diameter for various 

antiferromagnetic thicknesses [Vallejo-Fernandez,2008(b)]. 
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4.1.9 Interface effects 

 

After having come up with a model of the bulk of the antiferromagnet the nature 

of the interface in between the Iridium Manganese and the Cobalt Iron was 

postulated.  In order to continue with the uncoupled, independent granular concept 

of the bulk of the antiferromagnet, the idea of interfacial spin clusters was 

conceived. Essentially, the interfacial spin clusters are thought to sit on top of the 

grains (Figure 47). They behave semi-independently, take the same diameter as 

the grain on which they sit and consist of N spins, where N ranges from 10 to 50 

[O’Grady,2009]. 

 

Figure 47: Interfacial Spin Clusters. 

 

The effect of the interfacial spin clusters are described in a modified version of 

Equation 4-9 whereby they are represented by a C
*
 

 

           ∫       
    

  

 
Eqn. 4-10 

 

Their effects on the value of the exchange bias and coercivity are subject to a 

detailed investigation in section 6. 
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4.1.10 York Model Evaluation 

 

There are some simplifications made in the model in order to help it work. As has 

already been said, the angular distribution of grains within the plane is not 

considered. Maybe the assumption could be made that there is an equal 

distribution at all angles. However, there is a magnet suspended above the sample 

during deposition in order to induce an easy axis. The easy axis and hard axes can 

be seen if the sample is placed, by mistake, in the wrong direction in a 

magnetometer. But whether this means all grains are now aligned in the direction 

of the easy axis is not known. 

If one was to perform a grain size analysis on the image in Figure 42, there are 

actually not that many grains that would be counted as there are only a few clearly 

distinct grains. This means that the large grey and white areas are disregarded in 

the model. The distance between the grains does mean there is little chance of 

there being any interaction between them, so they can be considered as discrete. 

However, it still remains that a majority of the sample is assumed to have no 

contribution in the calculated exchange bias. 

There is also an interdependence introduced when the values of VC and VSET are 

then derived by the value of VM. If the assumption that the exchange bias during 

the median blocking temperature measurement is equal to zero when the median 

grain reverses was inaccurate, then VC and VSET could still be calculated and 

theoretical data obtained, despite being the wrong values. 

There are further issues with the limits of VC and VSET as well. In order to create a 

theoretical line that fits the data, the measurement time is reported as being 100 

seconds [O’Grady,2009]. This is not the case, as the measurement time is at least 

1200 seconds and sometimes up to 3600. Also, if the model is disregarding a large 

portion of the sample’s contribution to the exchange bias, this would lead to an 

increase in the calculated value of the anisotropy. This is seen when comparing 

the anisotropy value to other work [Carey,2001]. Such a high value is also 

somewhat in conflict with the polycrystalline nature of the samples. 
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4.2 Experimental Aspects 

 

This section is an overview of the work that has been carried out based on the 

model explained in section 4.1 and there are three main topics. The first describes 

what happens by varying the seed layer of the antiferromagnet. The second 

describes what happens if impurities are introduced to the antiferromagnet. The 

third investigates the training effect.  

 

4.2.1 Texture 

 

The samples used for this research were Si (100) / seed (5nm) /  IrMn (10nm) / 

CoFe (3nm) / Ta (10nm). The different seed layers used were Ruthenium, Copper 

and Nickel Chromium. Ruthenium and Copper were used as they are known to 

have a close lattice match to Iridium Manganese (Table 1), and Nickel Chromium 

was used as it was recommended by Seagate. 

 

The composition of the Nickel Chromium used was Ni60Cr40 and is known to be 

non-magnetic [Jette,1934]. 5nm of seed layer was chosen because work carried 

out by Tsunoda [Tsunoda,2006] showed that the effect of the seed layer thickness 

on the antiferromagnetic texture increased up to that value but there was little 

variation above it. 10nm of Iridium Manganese was chosen as it has been found 

by O’Grady et al that this thickness of Iridium Manganese is stable at room 

temperature, which means measurements can be taken without the need for liquid 

Nitrogen cooling. 3nm of Cobalt Iron was chosen as this gives the magnetometers 

a large enough signal to be measured without compromising the values of 

exchange bias. Tantalum was the last layer to be deposited because although it 

does oxidise, once it has it acts as a good capping layer. 
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Material Structure Lattice 

Constant 

d(111)/d(0001) Lattice Mismatch 

to IrMn 

  a(Å) c(Å)  (%) 

IrMn FCC 3.78 - 2.67 0 

Ru HCP 2.70 4.67 2.70 1.2 

NiCr FCC 3.56 - 2.52 -5.8 

Cu FCC 3.61 - 2.56 -4.4 

 

Table 1: Lattice constants of IrMn and seed layer materials [Peng,2009]. 

 

 

Figure 48: Grazing angle scans for samples with NiCr, Ru and Copper 

[Aley,2008(a)]. 

The samples were characterised using X-rays diffractometry and magnetometers. 

Figure 48 shows the results of a grazing angle scan. The primary section of 

interest is the Iridium Manganese (111) region where 2θ is around 40 degrees. 

The interesting result is that Nickel Chromium does not show a peak whereas 

Ruthenium and Chromium do. The geometry of the grazing angle is such that 
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crystal planes parallel to the substrate do not diffract, this means that the (111) 

diffraction of Ruthenium and Chromium are actually from crystals out of plane. 

This result therefore implies that the Nickel Chromium seed layer significantly 

increases the number of crystals whose (111) plane is parallel to the substrate.  

Previous to this work, Fecioru-Moraiu [Fecioru-Moraiu,2007(a)] had also carried 

out investigations into the effects of seed layers. Initially they deposited Iridium 

Manganese on amorphous Cobalt Iron Boron and found there to be no exchange 

bias. They then inserted increasingly thick layers of Nickel Iron in between the 

Cobalt Iron Boron and Iridium Manganese and found that the exchange bias 

correspondingly increased. They also performed X-ray diffraction which 

confirmed increased crystallinity. 

 

A full set of magnetic measurements were taken of the samples which followed 

the procedure described in section 4.1 (Figure 49). As can be seen from the 

results, the Ruthenium and Copper seeds layers show a greater degree of 

symmetry than the Nickel Chromium. This implies that they undergo a full 

reversal of the antiferromagnet, whereas the Nickel Chromium is not fully 

reversed by 500K. The two other aspects of the results is that after initial setting, 

the Ruthenium sample has a noticeably lower exchange bias than the other two 

samples and that the sample grown on Nickel Chromium has a significantly 

higher median blocking temperature. 

 

A further measurement of the Nickel Chromium sample was carried out using a 

higher setting temperature (Figure 50). As can be seen on this occasion the 

antiferromagnet is successfully reversed and aligned, also the measurements 

almost precisely overlap. It can be seen that the increase in the initial setting 

temperature does not increase the initial exchange bias. The most probable reason 

for this is that there is a 500 Oe magnet suspended one cm above the substrate 

during deposition. The purpose of this is to induce an easy axis during the growth 

of the sample. What may also happen is that, despite Iridium Manganese being an 
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antiferromagnet, during its growth the newly arriving atoms are subject to the 

magnetic field. The result is that Iridium Manganese is effectively fully set during 

deposition. 

 

 

Figure 49: Thermal activation measurements to determine <TB> for samples 

with Ru, Copper and NiCr seed layers [Aley,2008(a)]. 

 

 

There is also a second important conclusion to draw from the fact that the points 

overlap. When looking at the blocking curves in Figure 49, the fact that the 

Iridium Manganese is not fully reversed by the end of the experiment might make 

one mistrust the value of the median blocking temperature. Given that this 

remains constant confirms its value. 
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Figure 50: Blocking Curve where sample was set at 498K and then at 553K. 

 

 

Seed 

Layer  

Dvm  

(nm)  

±0.5nm  

Vvm  

(nm3)  

σ (lnD)  <TB>  

(K)  

±2K  

HEX  

(Oe)  

±5Oe  

KAF  

(erg·cm-

3)×10
7
  

NiCr 3.9 119±25 0.42 477 350 2.9±0.6 

Ru 6.0 283±40 0.38 386 233 0.69±0.1 

Cu 10.7 899±100 0.37 367 315 0.20±0.02 

 

Table 2: Summary of results for seed layer experiment. 

 

The X-ray diffractometry results suggest that that Nickel Chromium seed layer 

promotes (111) in-plane orientation. Table 2 combines the blocking temperature 

measurements along with grain size analysis and anisotropy calculations and gives 

some more insight into the three samples. The most surprising value in the table is 

the median grain size of Nickel Chromium. If the grain size distribution of all 

three samples were the same, then the improved (111) orientation in the Nickel 
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Chromium would result in an increased anisotropy and, in turn, would result in a 

corresponding increase the value of median blocking temperature. 

 

However, the median grain diameter, and therefore the median grain volume of 

the Nickel Chromium sample is significantly smaller than the other samples, 

especially the Copper. So, although the median blocking temperature of Nickel 

Chromium is only 10% higher than the other samples, the anisotropy is much 

greater. 

 

There have been other methods used to measure the anisotropy of the 

antiferromagnet in thin films. In 1987 Mauri [Mauri,1987] used an in situ Kerr 

rotational measurement to study the coupling between the antiferromagnetic and 

ferromagnetic layers. He derived a relationship from the equations that describe 

the energy per unit surface of the interface as an exchange bias system 

 

 

 
    

      

   
 

Eqn. 4-22 

 

 

where tCR is the thickness of the antiferromagnetic layer above which there is a 

sharp onset of exchange bias, tF is the thickness of the ferromagnetic layer and M 

is the saturation magnetisation. The value obtained from this for the anisotropy of 

Iron Manganese was given as 1.35 x 10
5
 ergs / cm

3
. Carey performed anisotropy 

calculations on Nickel Chromium and Iridium Manganese based on an Arrhenius-

type model where the grains were assumed to be able to reverse independently. 

The values were found to be 5x10
5
 and 2x10

6
 ergs / cm

3
[Carey,2001] 
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4.2.2 Composition 

 

The samples used for this research were Si (100) / NiCr (5nm) / Ru (5nm) /  

[IrMn] (1-x  Copper x (10nm) / CoFe (2nm) / Ta (3nm). There is a variation in the 

seed layer from the previous set of samples because now two different seeds 

layers are used. This was done in order to take advantage of characteristics from 

both. 

 

The Nickel Chromium was used to induce a high level of (111) in-plane 

crystallinity as shown in the previous section. However, using only Nickel 

Chromium as a seed layer meant that the median grain size was very small, which 

resulted in it being more difficult to perform a measurement of the grain size 

distribution.  

 

The consequence of adding the Ruthenium on top of the Nickel Chromium was to 

increase the median grain size from around 3nm to about 6nm. Again, 10nm of 

Iridium Manganese was chosen so that the antiferromagnet was stable at room 

temperature. 

 

The Iridium Manganese was then doped with Copper. This was because Copper (a 

= 3.61Å) and Iridium Manganese (a = 3.78Å) have similar lattice constants, this 

means that the Iridium Manganese can be diluted without introducing significant 

lattice strain. The impurities were introduced to the sample by modifying an 

Iridium Manganese target (Figure 51). 
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Figure 51: Schematic of the target designed for sputtering IrMn with varying 

Copper impurity level. 

 

Holes were drilled into the target so that small pieces of Copper could be inserted 

which would introduce an unknown quantity of Copper. To determine this, a 

separate sample was grown which stopped after the Iridium Manganese layer and 

a scanning electron microscope with an energy dispersive X-ray spectroscopy 

system was used. 

 

Figure 52: Results of thermal activation measurements for varying Copper 

impurity levels [Aley,2008(b)]. 
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Figure 52 shows the blocking temperature measurements taken of the 6 different 

samples with varying levels of doping. Clearly, the exchange bias is severely 

reduced for the samples with 10.5 at.% and 17.7 at.% which suggests that the 

level of impurity is so high that the antiferromagnetic nature of the Iridium 

Manganese broke down. However, the other four samples show an unusual 

behaviour where the 1.9 at.% has a very similar form to the 0 at.% and the 3.2 

at.% has a very similar form to the 1 at.%. If it is assumed that the doping of each 

of the samples has resulted in a relatively uniform distribution of the dopant, then 

a possible explanation is that the antiferromagnet is going through various 

different phases as it increases. This is possible as pure Iridium Manganese can 

take up a number of different phases as described in section 4.2.3. 

 

Copper 

Impurity 

(at.%) 

Dvm 

(nm) 

±0.5nm 

ln(D) <TB> 

(K) ±2K 

KAF×10
6
 

(ergs/cc) 
  𝑋  𝑋 

(Oe) 

±5Oe 

0 6.4 0.40 486 12±2 782 

1.0 5.4 0.37 421 11±2 483 

1.9 6.0 0.48 479 12±2 465 

3.2 5.16 0.49 396 10±2 351 

10.5 5.58 0.44 314 5.3±1 20 

17.7 5.70 0.39 304 4.8±1 5 

 

Table 3: Summary of compositional analysis, grain size analysis and thermal 

activation measurements. 

 

Table 3 shows the median diameters along with the blocking temperatures. This 

shows that the grain diameters are relatively constant, which is good as it means 

that the samples are more comparable. There is also a clear decrease in the 

exchange bias as the doping level is increased. This indicates that the Copper 

doping is disrupting the exchange bias effect of the antiferromagnetic grains. The 
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decrease in anisotropy also suggests that the antiferromagnetic nature is also being 

reduced. 

Previous to this work, Fecioru-Moraiu [Fecioru-Moraiu,2007(b]] had also carried 

out investigations into the nonmagnetic dilutions in the antiferromagnet. On this 

occasion, their results were completely different. Upon dilution, they initially 

witnessed an increase in the exchange bias, as opposed to only a decrease in the 

work of Aley. However, there is an explanation for the difference,. The samples 

used in the work of Fecioru-Moraiu were grown by molecular beam epitaxy, and 

the average grain size was around 65nm. In the work carried out by Aley, the 

samples were grown by deposition and the average grain size was 6nm. In 

epitaxially grown materials, domain wall in the antiferromagnet can easily form 

and, thus, their behaviour varies significantly. 

 

4.2.3 The Training Effect 

 

 

Figure 53: Hysteresis loops showing the training effect [Kaeswurm,2010]. 
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This section describes the experimental aspects of the training effect in exchange 

bias systems. Figure 53 shows two hysteresis loops that show the training effect 

which is where the left hand side of the loop varies with subsequent cycling. 

 

The sample was a standard Cu (5nm) / IrMn (10nm) / CoFe (3nm) / Ta (5nm) 

exchange bias bilayer with the measurement taken at room temperature. The 

figure shows how HEX, HN, HC1, HC2 and ∆HC1 are defined, where HEX is the 

exchange bias, HN is the nucleation field which is the field required to nucleate the 

first reversed domain, HC1, is the left hand coercivity, HC2 is the right hand 

coercivity and ∆HC1 is the training effect. 

 

 

Figure 54: Training effects measured above TNA and below TNA. 

 

Figure 54 shows hysteresis measurements taken with the same sample as in Figure 

53. However, where Figure 53 was merely demonstrating what the training effect 

is, this investigates it more thoroughly and it does so in two ways. Firstly, the 

training effect is investigated for a number of loops. Secondly, one set of 
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measurements is taken below TNA and another set is taken above TNA. TNA is 

defined as the temperature of no thermal activation, which is the temperature 

where the antiferromagnetic layer of the sample remains stable throughout the 

course of the measurement. 

This implies that by taking subsequent hysteresis loops below this temperature, 

any variation in the loop is not due to the antiferromagnetic grains thermally 

relaxing. When the loops are taken above this temperature then the sample is not 

thermally stable and, as can be seen from the results, there is a noticeable change 

in ∆HC1. This is due to changes in the bulk as some of the grains thermally relax. 

 

 

Figure 55: Experimental results showing the effect of reversing the setting 

field. 

 

Figure 55 again shows hysteresis loops taken of the previous sample, except on 

this occasion the setting field had its direction reversed. Although simple, this 

demonstrates the axial symmetry of the training effect. The actual value of ∆HC1 

in the positive field was 73 Oe, and in the negative field was 64 Oe. This slight 

difference could just be down to an error in the measurement due to the non-

central location of the sample in the magnetometer, or it might suggest a slight 

asymmetry is the coercivity along this axis due to the sample being 

polycrystalline. 
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Figure 56: Training effect from using a NiCr seed layer. 

 

 

 

Figure 57: Training effect from using a Ru seed layer. 
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Figure 58: Training effect from using a Cu seed layer. 

 

Figure 56, Figure 57 and Figure 58 show the variation in training when the seed 

layer in changed from Copper to Ruthenium and Nickel Chromium. As explained 

in Section 4.2.1, these different seed layers significantly change the 

crystallography of the Iridium Manganese and this clearly has a major impact on 

the training effect. These results are also shown in Table 4. The training effect is 

usually a relatively small one so the consequence of varying the seed layer has a 

very significant effect.  

Seed Dm(nm) <TB> [K] KAF(293)[x10
7
 

ergs/cc] 

∆HC1(293) 

[Oe] 

NiCr 3.9±0.5 477±5 2.9±0.2 6±2 

Ru 6.0±0.5 386±5 0.7±0.1 38±2 

Copper 10.7±0.5 367±5 0.2±0.1 100±2 

 

Table 4:  Median grain size, blocking temperature, anisotropy and training 

effect of three different seed layers. 
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The value of exchange bias is known to vary as the inverse of the thickness of the 

ferromagnetic layer. As far as the training effects goes, there is a clear decrease as 

the thickness increases, however, if this is taken as a percentage of the exchange 

bias then the opposite trend is seen (Table 5). 

tF 

[nm] 

<TB> 

[K] 

KAF (293) 

[x10
6
ergs/cc]  

±0.05 

Loop 1 Loop 2 ∆HC1 

 

∆HC2 

 

∆HC1/ 

HC1 

(n=2) 

HC1 

[Oe] 

HC2 

[Oe] 

HC1 

[Oe] 

HC2 

[Oe] 

3 315 

±5 

4.59 -915 

±20 

-300 

±20 

-795 

±20 

-320 

±20 

-120 

±25 

20 

±28 

0.15 

±0.04 

4 312 

±5 

4.54 -555 

±20 

-221 

±20 

-490 

±20 

-233 

±20 

-65 

±25 

12 

±21 

0.13 

±0.04 

8 290 

±5 

3.94 -242 

±5 

-95 

±5 

-220 

±5 

-95 

±5 

-22 

±7 

0 

±7 

0.10 

±0.03 

12 220 

±5 

2.61 -160 

±2 

-45 

±2 

-145 

±2 

-45 

±5 

-15 

±3 

0 

±3 

0.10 

±0.02 

 

Table 5: Variation of training effect as a function of ferromagnetic thickness. 

 

Figure 59: Trilayer measurements showing training [Kaeswurm,2011]. 
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Hoffman [Hoffmann,2004] came up with an explanation of the training effect. He 

suggested that before the first loop was taken, the magnetisation of the 

antiferromagnetic sublattices lay perpendicular to each other, but after the first 

loop, they aligned antiparallel. This would require a change in the state of the bulk 

of the antiferromagnet. Figure 59 shows the results of measuring a tri layer 

[Kaeswurm,2011]. Due to the split nature of the loop, it is possible to reverse only 

one of the ferromagnetic layers. If this is done, the training effect can be removed 

for that layer. However, this does not remove the training effect of the opposite 

layer. Therefore, the conclusion to be drawn from this experiment is that there is 

not in fact a change in the properties of the bulk of the antiferromagnet but rather 

the interface.  
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5. Experimental Techniques 

5.1 Sample Growth  

5.1.1 Thin Film Growth 

 

Sputtering was first observed in 1853 by R.R. Grove [Grove,1852] while he was 

investigating the electrical conductivity of gases and has advantages over other 

deposition methods, such as molecular beam epitaxial (MBE) growth because of 

its high growth rate. The vast majority of sputtering machines are magnetron 

sputterers. An Argon plasma is generated above a target which is at a negative 

potential of several hundred volts. A magnetic field is also applied which confines 

the plasma and results in an enhanced collision probability with more efficient 

sputtering. However, the field has strong flux lines which results in the plasma 

being highly concentrated on certain parts of the target. This means there is an 

area of the target which is eroded at a much high rate and leads to the 

characteristic race track erosion profile. The substrate is held at around 4cm above 

the target, although this can be varied (Figure 60).  

 

 

Figure 60: Schematic of magnetron.  
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If a compound target is used which has atoms of significantly different sizes, then 

they will sputter at a different rate. However, when the target becomes particularly 

rich in one type of atom, its rate of sputtering increases so an equilibrium is 

achieved. This process does have one consequence which is that a new target has 

to be ‘conditioned’ before use. This means it has to be exposed to plasmas for up 

to 30 minutes before sputtering so that the surface can reach its ideal state. 

 

5.1.2 HiTUS Sputtering 

 

The samples studied for this research were grown by using a sputtering system 

called a HiTUS. The name HiTUS stands for High Target Utilisation and comes 

from the fact that unlike a magneton sputterer, which uses only a small fraction of 

the target, up to 95% is used (Figure 61).  As can be seen, the system consists of a 

side arm where the plasma is generated remotely. The Argon plasma is generated 

by a helically wound three turn antenna which is powered by a 13.56 MHz, 2.3 

kW RF power supply. There is also a matching unit between the power supply 

and antenna to ensure that the power supply experiences a constant load.  

 

 

Figure 61: Schematic of HiTUS sputtering system [Vopsaroiu,2005(a)]. 
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The plasma is launched into the main chamber by virtue of the launch 

electromagnet and is then guided onto the target by the steering magnet, of 

strengths 500 Oe and 50 Oe respectively. The Ar
+
 ions follow a chiral path along 

the field lines generated by the magnets and are contained by the coupled 

magnetic flux lines between the magnets, with the resulting beam having a 6 cm 

cross sectional diameter. Due to the plasma being generated remotely, a density of 

10
12

 – 10
13

 ions/cm
3
 can be achieved as opposed to a conventional magnetron 

system which only reaches 10
10

 ions/cm
3
 under the same working conditions  

[Vopsaroiu,2005(a)]. 

 

Figure 62: Photo of HiTUS sputtering system. 

 

A negative bias is then applied to the target and, as can be seen in Figure 63, the 

target current saturates at around 100V. This means that potentials of up to 1000V 

can be applied to the target without affecting the plasma density, and varying this 

actually becomes the primary method of controlling the grain size of the sputtered 

films. The substrate is held 20cm above the target, this means the beam of  
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impinging atoms is very uniform across and results in the sample having a very 

flat surface. 

 

 

Figure 63: Target current versus bias voltage [Vopsaroiu,2005(b)]. 

 

5.1.3 Control of Grain Size 

 

There are three different ways in which the rate of sputtering can be varied, either 

increase the radio frequency power, increase the process pressure, or increase the 

voltage applied to the target (see Figure 64, Figure 65 and Figure 66). The first 

two of these methods result in a change in the density of the plasma. The third, 

however, only increases the energy of the plasma. Although varying the RF power 

gives the widest range of grains sizes, the stress such changes put on the matching 

unit can be avoided by only varying the bias voltage, so this is how the grain sizes 

were controlled. 
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Figure 64: Mean diameter as a function of RF power [Vopsaroiu,2004]. 

 

 

Figure 65: Mean diameter as a function of process pressure [Vopsaroiu,2004]. 

 

 

Figure 66: Mean diameter as a function of bias voltage [Vopsaroiu,2004]. 
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Although it has been shown that the target bias voltage gives some control over 

the mean grain diameter, the actual growth mechanism is not fully understood. 

The system’s growth rate monitor confirms that the higher the bias voltage, the 

faster the rate of deposition, and this results in larger grains. 

 

 It is believed that the variation of growth rate could be related to crystal 

symmetry. The crystals which form at a higher growth rate show a higher level of 

symmetry, therefore adjacent crystals are then more likely to fuse together. X-ray 

diffraction has also confirmed that the larger crystal do show greater crystallinity. 

 

The growth rate is monitored by an INFICON XTM/2 Deposition Monitor. This 

comprises of a quartz crystal that is subject to an a.c. voltage which causes it to 

oscillate. This rate of oscillation will vary as material is deposited upon it 

according to the following equation 

 

 

 

  

  
 

    

  
  

Eqn. 5-1 

 

where MF is the change in the mass due to deposition, MQ is the original mass of 

the quartz crystal, ΔF is the change in frequency of the crystal and FQ is the 

uncoated resonant frequency of the crystal [Sauerbrey,1957]. The crystal rate 

monitor cannot be located directly next to the substrate so a tooling factor is 

incorporated in the calculation to take this into account.  
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Figure 67: Picture of normal and composite target. 

 

It is possible to introduce impurities into a deposited layer in a controlled manner. 

This is done so that the effect of these impurities on, for example, the anisotropy 

of Iridium Manganese can be investigated (section 4.2.2). Figure 67 shows an 

array of 16 holes that were drilled into a target, small pegs of pure copper can then 

be inserted into the holes. The concentration of impurities within the sample can 

be determined by using Energy Dispersive X-ray Analysis (EDX). 

 

5.1.4 Pressure and Regeneration  

 

The whole chamber and side arm is pumped down to a base pressure of less than 

5x10
-7

 mbar by three different pumping systems which are used sequentially. The 

first is a rotary pump, the second a turbo pump, and the third is a Helium 

cryopump. For deposition, however, a process pressure of around 2x10
-3

 mbar is 

used (see Figure 65 for effects of varying this value). This pressure is maintained 

by a Mass Flow Controller which is set to 10sccm. During deposition, the opening 

to the Helium cryopump is set to a ‘half open state’ where the aperture is large 

enough for a low pressure to be maintained, but not so large that plasma can enter 

into it. If this occurs and the cryopump warms up to above 20K, then a 2 hour 

regeneration process needs to be carried out so that it can return to is operating 

temperature of ~ 10K.  
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5.2 Vibrating Sample Magnetometer 

 

5.2.1 Principles of Operation 

 

 

The concept of a vibrating sample magnetometer (VSM) was first proposed by 

Foner in 1956 [Foner,1956]. It is based upon Faradays electromagnetic law of 

induction where if a magnetic sample experiences a changing magnetic field then 

an electromotive force (emf) is produced which is proportional to the magnetic 

moment of the sample. The equation, takes the following form 

 

 
      

  

  
  

Eqn. 5-2 

 

where N is the number of turns in the coils, Φ is the magnetic flux and m is the 

moment. The original design used a speaker to generate the oscillations at a set 

frequency. This is usually chosen to be around 81 Hz so there is as little electrical 

interference from mains frequencies as possible. The amplitude of oscillation can 

be anywhere between 0.1 to 2 mm. The sample is then vibrated within a field 

which is as uniform as possible. To ensure this, accurate centring procedures must 

be followed. 

 

5.2.2 Layout of Components 

 

For a non-vector system four detection coils are placed either side of the sample. 

They are wound in series opposition so the electromotive force induced in the 

coils by external stray magnetic fields cancel each other out, whereas that induced 

by a sample with in them add together. There is also a reference sample near the 
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top of the oscillating sample holder which is also placed between two more 

detection coils. This is done so that changes in vibration amplitude and frequency 

can be accounted for.  

 

 

 

Figure 68: Schematic of VSM [Foner,1956]. 
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5.2.3 Calibration 

 

Calibration of such an instrument is complex since during operation there are a 

number of different interacting systems. For example, it is important to accurately 

know the magnetic field being applied, however, this means the Hall probe and 

gaussmeter being used must first be calibrated against external references. Once 

this is done a calibration sample can be used to calibrate the actual moment 

measured. 

 

Different calibration samples have different advantages. A Nickel sample easily 

reaches saturation magnetisation which then remains constant for a wide range of 

fields. The disadvantage is that the total moment is much larger than the moments 

measured in the thin films produced in this project. To successfully calibrate very 

small moments, a Pauli paramagnet is used such as Palladium, which has a 

number of useful characteristics. By accurately measuring the mass of the sample, 

its susceptibility can be calculated and, as its magnetisation is proportional to the 

field being applied, a range of small calibration values can be obtained. This 

susceptibility is largely temperature independent at measurement conditions, also 

Palladium does not corrode. 

 

It is preferential for the calibration sample to be of a similar size and shape to the 

samples that are to be measured, this is so that each sample experiences the same 

demagnetising field effects. Once the magnetometer has been calibrated with the 

calibration sample, a further measurement has to be taken of just the sample 

holder so that this contribution can be subtracted from the final measurement. 
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5.2.4 Microsense Model 10 

 

 

Figure 69: Pick up coil configuration of Microsense Model 10. 

 

 

The vibrating sample magnetometer used for the measurements in this project was 

a Microsense Model 10 which, although based on the same basic principles, is 

significantly more advanced than earlier models. Rather than four measurement 

coils, there are eight placed orthogonally to the sample (Figure 69), this means 

that vector measurements can be made with an accuracy of better than +/- 1.5%. 

The magnets are located on a rotating plate which gives them +/- 540
o
 freedom, 

finding the easy axis of a sample can therefore be carried out simply. The sample 

chamber has a temperature range of 100 K to 770 K with a stability of +/- 1K, the 

value of which is determined by a Proportional Integral Differential controller 

(PID). 

 

In a PID, the first term relates to the difference between the set point temperature 

and the actual temperature; the second term sums the difference between the set 

point temperature and actual temperature over time; the third term is related to the 

rate at which the actual temperature is approaching the set point temperature. This 

system, along with the sophisticated software, is the magnetometer’s most 
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important capability for the purposes of the research performed in this work. 

Complicated measurements which require a variety of accurately known setting 

temperatures can be programmed to run for any duration of time. These 

procedures can be run over night, resulting in a high volume of measurements 

being produced. 

 

5.3 Alternating Gradient Force Magnetometer  

5.3.1 Principles of Operation 

 

The concept of the first alternating gradient force magnetometer (AGFM) was 

thought of by Zijlstra [Zijlstra,1970] where a microscopic magnetic particle was 

attached to the end of a thin wire. A non-homogeneous magnetic field was applied 

and the deflection of the wire was observed by the means of a microscope. The 

idea was developed further in 1988 where a piezoelectric element, rather than a 

microscope, was used to measure the movement of the sample [Flanders,1988]. It 

operates according to the following principles. The force experienced by a 

magnetic sample is proportional to the gradient of the field applied (Equation 5-3) 

 

 
     

   

  
 

Eqn. 5-3 

   

where FX is the force, m is the magnetic moment and 
   

  
 is the gradient of the 

magnetic field. Clearly, if both the gradient of the applied field is known along 

with the force that is generated, then the magnetic moment of the sample can be 

deduced. Once placed in the magnetometer, the sample is subject to two fields. 

One is a large direct field and the second is a small alternating field. The small 

alternating field results in the oscillation of the sample which is a function of the 

force it experiences. This deflection is measured by the voltage of the 

piezoelectric element in the sample holder (Figure 70). 
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Figure 70: AGFM Schematic (Figure a shows the location of the probe within 

the pole pieces, Figure b shows the layout of the probe itself). 

 

Prior to the actual measurement being taken the fundamental resonant frequency 

(ƒo) of the system has to be found. During this the large dc field is held constant 

and the small ac is field varied from 100Hz to 1000Hz until the resonant 

frequency is found. This is actually determined by which frequency has the 

highest Q factor, values can vary from 10 to 100 and can depend on an number of 

elements. Equation 5-4 describes the value of ƒo where Y is the Young’s modulus, 

ρ the density, w the width and l the length of the quartz legs of the probe. 

 

 
   

 

  

 

  
(
 

 
)

 
 ⁄

 
Eqn. 5-4 

 

5.3.2 Advantages and Disadvantages of AGFM 

 

The alternating gradient force magnetometer used for some of the magnetic 

measurements in this project was a Princeton Measurements Corporation Model 

2900. The advantages of this apparatus are that this non-inductive method can be 

up to 100 times more sensitive than if the sample is vibrated in a conventional 

way and is much quicker than a super conducting interference device 
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magnetometer (SQUID). This means that it is useful for time dependent 

measurements and for sample screening. The disadvantages are its sensitivity is so 

high that back ground acoustic interference can result in noise in the 

measurement. The other restriction is that it is not an easy procedure setting it up 

to carry out temperature measurements, therefore the Model 10 VSM was 

primarily used. 

 

5.4 Transmission Electron Microscope 

 

5.4.1 Principles of Operation 

 

The first transmission electron microscope (TEM) was invented by Knoll and 

Ruska in 1932 [Knoll and Ruska,1932] and in less than four years it was being 

produced commercially. They have been continually developed over the years 

and, despite high running costs, have found themselves to be an invaluable 

research tool. For an optical microscope the resolution, δ, is given by the Rayleigh 

criterion 

 

 
  

     

     
 

Eqn. 5-5 

 

where λ is the wavelength of the radiation, µ the refractive index of the viewing 

medium and β is the semi angle of collection of the magnifying lens. With the use 

of green light this gives a resolution limit of around 300nm. By utilizing the wave 

properties of electrons and by applying the de Broglie relationship 

 

 

 
  

 

  
 

Eqn. 5-6 
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where λ is wavelength, h is Planck's constant, m is the mass of a particle moving 

at a velocity v, a theoretical resolution limit for a 100-keV electron beam can be 

calculated to be around 0.004nm [Williams,1996].  Although this limit can never 

been achieved in reality, the JEOL JEM FS2200 Cs double corrected microscope 

in the York-JEOL Nano centre can achieve a resolution of 0.8 nm which gives sub 

atomic resolution. The limiting factor of the resolution is not, in fact, the 

wavelength of the electrons; rather it is the performance of the electron lenses. 

There are two main types of aberrations that occur, chromatic and spherical. 

Chromatic aberrations can be reduced by using an electron source with as narrow 

an energy spread as possible. Spherical aberrations have to be corrected by extra 

lenses. 

 

 

5.4.2 Layout of TEM 

 

The electron source for the microscope used in this project (JEOL JEM – 2011) 

was a thermionic gun using a LaB6 filament. The filament is heated resistively to 

operating temperature and is held at a voltage of 100kV with respect to the anode. 

Surrounding the tip of the filament is a Wehnelt cylinder whose purpose is to help 

focus the emitted electrons. The electrons then pass through a condenser lens, the 

sample itself, and a number of other lens systems until they impinge on a 

fluorescent projection screen or digital camera. Electrons can be focussed by the 

use of electrostatic fields, however, in this microscope only magnetic lenses are 

used (Figure 71). 

 

As has been mentioned before it is the quality of the magnetic lenses that 

determines the resolution of the instrument. The various issues that arise are 

spherical aberration, chromatic aberration and astigmatism. How successfully a 

microscope deals with these problems determines the quality of the instrument. 
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Figure 71: TEM schematic and lens diagram [Williams,1996].  
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5.4.3 Imaging Mode 

 

There are many ways in which the electrons can be used to elucidate information 

from a sample. These include, amongst others, Electron Energy Loss 

Spectroscopy (EELS), High Angle Annular Dark Field Imaging (HAADF) and 

diffraction patterns. The primary method used for this project was bright field 

imaging which is the method most similar to a normal optical microscope. An 

image is formed of the sample which results from two different types of contrast. 

 

The first is mass-thickness contrast, the other is Bragg diffraction. Mass-thickness 

contrast comes from the incident electrons being scattered by interactions with 

atomic electrons in the sample. The degree of scattering is a function of both the 

atomic number of the material and its thickness and is primarily used in non-

crystalline samples. 

 

 

 

Figure 72: Picture of JEOL JEM 2011 and a typical bright field image. 
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The second contrast is by virtue of Bragg diffraction where the electrons are 

reflected off crystallographic planes according to Bragg’s Law 

           Eqn. 5-7 

 

where d is the lattice spacing, θ the angle between the wave vector of the incident 

plane wave and the lattice planes, λ the wave length and n is an integer. 

Crystallographic regions will therefore be seen as dark areas on the image, 

whereas amorphous regions will appear brighter. This means that the images can 

be used to determine the size distribution of the crystallographic regions in the 

sample. 

5.4.4 Dark Field 

 

To achieve high quality pictures, various apertures can be inserted to limit the 

number of electrons that form the final image. Figure 73 shows how, if the 

electrons undergo Bragg diffraction, they are not included in the final image due 

to them being absorbed by the objective aperture. 

 

 

Figure 73: Diagrams of bright field and dark field imaging set up 

[Williams,1996]. 
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However, if the objective aperture is placed so that only the diffracted electrons 

can pass through it, then a dark field image is obtained. Here, the amorphous 

regions appear dark and the crystallographic regions appear bright, similar to a 

negative. This technique can be used to confirm that the dark area being examined 

is, indeed, crystallographic. However, this method is not completely fail safe as 

the crystallographic orientation of the region does have to be in a direction such 

that the diffracted electrons do go through the aperture. 
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6. Results 
 

6.1 Median Blocking Temperature Measurements 
 

6.1.1 Introduction 
 

The work by O’Grady et al. describes the effect of the bulk of the antiferromagnet 

on the exchange bias of polycrystalline thin film media. The primary aim of this 

work is to further understand  the role of the interface, and more specifically, the 

interfacial spin clusters in these systems. During the course of this project 

attempts were made to investigate the magnetic nature of the spin clusters by use 

of neutron diffraction. Unfortunately, the equipment was not sensitive enough to 

detect them, therefore, other methods of characterisation have been employed. 

Like the bulk of the antiferromagnet, the interfacial spin clusters cannot be 

directly measured in a vibrating sample magnetometer. So, just like the bulk, their 

characteristics have to be inferred from their effect on the ferromagnet, and 

primarily the coercivity and exchange bias. However, there are two difficulties 

that present themselves here. The first is that of isolation. The challenge here is to 

work out how the effect of the interfacial spin clusters can be separated from the 

bulk. The second is that the effect of the clusters can sometime be very small. 

These two issues have to be solved before a reasonable characterisation of them 

can be achieved. The following chapter explains how these challenges have been 

overcome. 

 

6.1.2 Sample Structure 

 

The samples used throughout the following measurements are all very similar in 

nature, except for one set which needed a small change (Figure 74). There are all 

grown on a 5mm x 5mm silicon substrate in the HiTUS with a magnetic field of 

500 Oe applied during deposition. This was done in order to induce a known 

direction of the easy axis, an advantage the HiTUS has over a magnetron 
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sputterer. 5 nm of Tantalum was deposited on the silicon, the purpose of this was 

to smooth out the rough surface of the silicon then on top of this, 5nm of 

Ruthenium was deposited. There are three main seeds layers that could be chosen, 

Copper, Ruthenium and Nickel Chromium. It has been shown that a Copper seed 

layer results in the lowest quality of crystallinity in the Iridium Manganese and 

the Nickel Chromium results in a much smaller medium grain size [Aley,2008(a)]. 

Therefore, as a compromise, Ruthenium was chosen and in order to maintain 

consistency was used in all measurements.  As was mentioned in section 4.2.1, 5 

nm was deposited as it has been shown that the crystallinity of the Iridium 

Manganese improves up to this thickness of seed layer but beyond this, no 

noticeable improvement is seen. 

 

 

Figure 74: – Structure of samples 

 

Iridium Manganese was used as the antiferromagnet because it is highly resistant 

to corrosion and is the choice of industry. However, there are some considerations 

to be made when choosing the thickness of the antiferromagnet. All of the 

subsequent measurements could be carried out again, but with varying thicknesses 
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of the antiferromagnet. The justification for this is simply that by reducing its 

thickness, the bulk effects are reduced and so the interfacial characteristics are 

effectively increased. There is a good argument here and, if time were not an 

issue, this might have been done. However, for these samples, a standard 

thickness of 10nm was chosen and used throughout the experiments. The reason 

for this is an attempt to solve the challenge posed earlier, which is to isolate the 

effects of the interface from the bulk. By using a 10nm thickness, the majority of 

the grains in the sample are stable at around room temperature and can be set in a 

known state without too much difficulty [Vallejo-Fernandez,2007]. If the bulk of 

the antiferromagnet can be set then any effects that are witnessed during an 

experiment can be attributed to the interface. This is not an exact method and bulk 

effects still need to be considered, but it is the decision that was taken before 

growing the samples and it was continued throughout, again, in order to maintain 

consistency.  

 

In previous works that have been carried out on this topic by this research group, 

Nickel Iron was chosen as the ferromagnet [Fernandez-Outon,2008]. However, 

Cobalt Iron was chosen for these samples because its moment is four times higher 

and it is used in industry. The higher moment also becomes very significant in 

some of the later experiments. Various thicknesses could have been chosen in 

order to gain the same results, however, 2nm was primarily used throughout the 

experiments. The inverse relationship between the exchange bias and the 

thickness of the ferromagnet means the ferromagnetic layer should be as thin as 

possible. The Microsense Model 10 VSM can comfortably measure a 2nm Cobalt 

Iron layer, which results in an exchange bias of around 500 Oe. For the last set of 

measurements a Princeton magnetometer was used which had a lower sensitivity, 

and also the sample was placed inside a cryostat. Here, 2nm of Cobalt Iron was 

not enough to take the measured signal above the noise base so various 

thicknesses were experimented with and, in the end, 10nm was chosen as a 

balance between having a large enough moment along with a large enough 

exchange bias. 
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6.1.3 Sample Variation 

 

 

Figure 75:  Log normal distributions for the six samples [Cramp,2012]. 

 

The previous section describes the common aspects of all the samples, this section 

briefly describes the variation within a set of samples. As was described in part 

5.1.2, the HiTUS can be used to vary the grain size distribution, and as was 

described in section 4.1.4, this log normal distribution can be described by two 

parameters, its mean and its standard deviation. Although there is some control 

with regards to the mean grain size, there is no control over the standard deviation 

and what is produced has to be accepted in this. However, by varying the bias 

voltage applied to the target during deposition, the medium grain size can also be 

varied. Figure 75 shows the log normal distributions of the diameters for the first 

set of samples. As can be seen there is only a small increase in the diameter 

(~1nm), but this corresponds to a 30% increase in volume. 

The assumption is now interfacial spin clusters sit on the grains and are of the 

same diameter. The hypothesis is then size dependent interfacial spin clusters 

effects can be seen, once isolated from bulk effects. 
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6.1.4 Blocking Temperature Distribution 

 

 

Figure 76: Blocking temperature measurements [Cramp,2012]. 

 

The grain size analysis performed in the previous section is a standard procedure 

carried out on all samples. The blocking temperature measurements described in 

this section are also standard procedures which are detailed in section 4.1. As can 

be seen from Figure 76, all of the curves have flattened off by around 300K which 

means the bulk of the antiferromagnet is stable at this temperature and justifies the 

earlier decision to use 10nm of antiferromagnet. If an experiment can now be 

devised which highlights the effect of the interfacial spin clusters, hysteresis loops 

can now be taken at room temperature safe in the knowledge that the bulk of the 

samples are stable and can therefore be ignored. Being able to do this can save a 

great deal of time, effort and resources. Having said that, the number of 

measurements actually carried out at room temperature throughout the rest of this 

chapter is in the minority. As can be seen from the graph, the curves have only 

just started to flatten out at room temperature and so, clearly, any further reduction 

in measurement temperature would be welcome. 
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6.1.5 Anisotropy Calculations 

 

When the medium grain size values are combined with the medium blocking 

temperature values, the anisotropy of the antiferromagnet can be determined by 

application of Equation 6.1 as described in section 4.1.6 

 

          
                  

  
 

Eqn. 6.1 

 

Table 6 shows the median diameter, median volume, median blocking 

temperature and anisotropy values. The anisotropy values show a curious 

behaviour in that they decrease as the gain volume increases. Ideally, it should be 

a constant, however, it is calculated individually for each sample and, due to the 

variations in the crystallinity of each sample, the anisotropy varies. This decrease 

is not easily understood, one explanation is that there is a slight size dependence 

on the anisotropy. However, if this is the case, this variation in the anisotropy of 

the bulk has no effect on the rest of this work which concentrates on the interface. 

 

DM 

(nm)±0.1 

σlnD 

±0.01 

 

VM 

(nm
3
)±7 

σlnV 

±0.03 

 

<TB> 

(K)±5 

KAF(293K) 

(±0.5×10
6 

ergs/cc) 

6.6 0.27 342 0.81 456 1.1 

6.7 0.25 352 0.75 448 1.0 

7.0 0.28 385 0.84 440 0.9 

7.2 0.30 407 0.90 434 0.8 

7.5 0.27 442 0.81 439 0.7 

7.6 0.28 454 0.84 430 0.6 

 

Table 6: Key parameters for the samples. 
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6.1.6 Coercivity Variation 

 

Figure 77: Coercivity vs activation temperature. 

Although the blocking temperature measurements are not the core result of this 

section, it was possible to analyse the results slightly further than is usually 

performed. The key aspects of the blocking curves are the exchange bias and 

activation temperatures, yielding the median blocking temperature. However, a 

relatively simple analysis of the data gives the variation of the coercivity. This is 

examined in more detail in further experiments later on, so it is of some value to 

start considering it now. There is no real trend between the grain size and 

coercivity, however, it does show variations around the median blocking 

temperature. At this value, equal proportions of the antiferromagnet are set in 

opposite directions, hence the reduction of the exchange bias to zero. What is not 

known is the state of the interfacial spin clusters. It is assumed that they are also in 

a state where half are magnetically ordered in one direction and the other half in 

the opposite direction. The fact that some of the samples show an increase in 

coercivity at this point and some show a decrease is not fully understood. 

However, as will be examined later on, the coercivity is believed to be strongly 

related to the interfacial spin clusters and, therefore, the figure does seem to 

suggest that they go through a degree of re-ordering around the median blocking 

temperature. 
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6.1.7 Field Dependent Measurements 

 

For the previous set of measurements, the field which was applied during the 

setting process was 2000 Oe. This was chosen in order to ensure that the 

ferromagnet was fully saturated and is clearly sufficient as it is possible, within 

the maximum limits, to set the exchange bias to any value desired.  It has been 

known by industry for some time that if a large field of, for example, 50000 Oe is 

applied during the annealing process, the exchange bias of the pinned layer in the 

spin valve is increased. If this increase is sufficient, it can then lead to a reduction 

in the thickness of the antiferromagnet in order to reach the required amount of 

exchange bias. This then means the size of the read head can be reduced along 

with the amount of material used. The rest of section 6.1 is now going to give an 

explanation as to why this increase in setting field leads to an increase in 

exchange bias. 

 

Figure 78: HSET results. 

 

The samples used here were grown concurrently with the samples in the previous 

section and, therefore, experienced exactly the same growth conditions. They are 

not the same samples, however, as it has been found the subsequent measurements 
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can only be carried out once on a sample. The measurements can be repeated, but 

only with new samples, which suggests that some irreversible process occurs in 

them during the measurement. 

The measurement procedure is to set the sample in a positive field for 90 minutes 

at 225
o
C and then field cool the sample down to the measurement temperature of 

30
o
C, remove the training effect, and then take a hysteresis loop. This is then 

repeated for increasing sizes of setting field. 90 minutes and 225
o
C were chosen to 

correspond to the standard setting time and temperature of previous work 

[Vallejo-Fernandez,2008(d)]. For some of the measurements the training effect 

was investigated, however, no correlation was seen between either setting field or 

grain size 

 

Figure 79: Expanded HSET results [Cramp,2012]. 

 

Figure 78 shows the raw data from the measurements and, given that there is no 

correlation between the maximum exchange bias and the grain size, there does not 

seem to be a great deal of value in them. However, if the measurements are 

normalised to the maximum exchange bias and the area of the graph where the 

exchange bias varies the most is expanded, then a grain size dependent trend can 

be seen (Figure 79). The lines in Figure 79 are guides to the eye.  
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6.1.8 Interfacial Spin Clusters 

 

As has already been said, the field that needs to be applied to a ferromagnet in 

order to modify the state of the adjacent antiferromagnet is around 1000 Oe. The 

minimum amount can actually be less than that as all that is actually required is 

that the ferromagnet is saturated. The question that arises then is, why does the 

exchange bias continue to increase under a setting field greater than the 

ferromagnetic saturation value. There must be some component of the system that 

is responding to the magnetic field. Given that in the bulk of the antiferromagnet, 

each magnetic plane is compensated by an adjacent opposing one, and an 

antiferromagnet gives no magnetic signal in a magnetometer, what part of the 

bilayer is responding to the field. There must be some other part which has 

magnetic properties. 

 

It has been suggested that at the interface between the antiferromagnet and 

ferromagnet, interface spin clusters form [Baltz,2010]. As these samples are 

polycrystalline and grown by sputtering, there will be both magnetic sublattices of 

the antiferromagnet present at the interface. There will also be a degree of 

diffusion between the layers during growth. This leads to region which consists of 

a mixture of both layers. What seems to happen, somewhat surprisingly, is that 

this region appears to take on its own characteristics and starts to behave semi-

independently to both the ferromagnetic layer and the antiferromagnetic layer. It 

has been suggested [O’Grady,2009] that these interfacial spin clusters behave 

superparamagnetically, if so then they would demonstrate certain behaviours. The 

rest of this section is going to take this idea forward by modelling them as quasi-

superparamagnetic particles and seeing if any parallels can be drawn between the 

experimental results and this hypothesis. If so, then some of their characteristics 

could possibly be described. 
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6.1.9 Superparagmagnetic Particles 

 

For a standard paramagnetic system the magnetisation can be derived to be 

[Culity, 1972] 

 

  
       

 

 
    Eqn. 6-2 

 

where M is the magnetisation, MS is the saturation magnetism and a is given by 

the following    

       ⁄      Eqn. 6-3 

 

where µB is the Bohr magneton, H is the applied field, k is Boltzmann’s constant 

and T is the temperature. We will now consider an interfacial spin cluster which 

consists of N spins. Because the diameter of them is so small (5 to 10nm), thermal 

fluctuations will overcome any inherent anisotropy within the cluster and result in 

it being demagnetised in the absence of a field. However, as soon as a field is 

applied, they will begin to align themselves in a manner that is similar to a 

paramagnet and so can, in certain circumstances, be modelled paramagnetically. 

But, rather than having the moment of a few Bohr magnetrons, if there are 50 

spins in the cluster, the overall moment will be proportionally increased. Thus, as 

Bean and Livingston suggested [Bean and Livingston,1959], they could be 

considered to be superparagmagnetic. An important aspect of this system is, of 

course, the temperature. The measurements shown in this section of the results 

were taken at 300K, and this should be high enough for the clusters to 

demonstrate superparamagnetic behaviour. The measurements shown later on 

which were taken with liquid Helium suggests that at very low temperatures the 

clusters don’t behave superparamagnetically. This corresponds to there being 

insufficient thermal energy in the system to overcome the inherent anisotropy 

within the cluster. 
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6.1.10 Superparamagnetism in interfacial spin clusters 

 

In order to modify Equation 6-3 to represent superparagmagnetic behaviour all 

that needs to be added is an N on the numerator which represents the number of 

spins in a cluster. Figure 80 shows Equation 6-3 plotted as a function of a. As a is 

proportional to the applied field, if the temperature is kept constant, then the x-

axis can be imagined to be the applied field. As can be seen, at low values of a 

there is a proportional relationship, but at high values the equation tends towards 

saturation. 

 

 

Figure 80: Langevin function. 

 

After converting Equation 6-4 to a superparagmagnetic system, the next step is to 

modify it in order to work with interfacial spin clusters. There are two challenges 

here. The first is that due to the number of variables in the functions, a few 

assumptions have to be made in order to produce any kind of theoretical data. The 

second is that, unlike normal superparagmagnetic systems, these do not reduce 
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back to an unaligned state when the field is removed, instead, the order is ‘frozen’ 

in during the annealing process. Arguably, these two challenges are never truly 

overcome, and the model is being stretched somewhat. However, theoretical data 

can be obtained which at least suggests super-paramagnetic behaviour of the 

interfacial spin clusters. 

 

The main difficulty in the first challenge is determining what N is and, therefore, 

what the saturation moment of an individual cluster is. Unfortunately, the nature 

and consistency of the cluster can only really be guessed. However, given the 

moment of Iron Cobalt is around 1400 emu/cc, if the clusters are a result of equal 

diffusion between the layers at the interface, then the moment of a cluster has 

been estimated to be 700 emu/cc. Even if this value is out by several factors, the 

final conclusion of this section will still hold. Next, an estimation of the thickness 

of the spin cluster is chosen. The presented data uses 1nm, although various 

thicknesses can easily be selected. Then the volume of the clusters can be 

considered by multiplying the grain diameter distribution function by the 

thickness. This will then solve Equation 6-2 for a given applied field and 

temperature (Equation 6-4) 

  

 

  
 ∫ (    

    

  
 

  

    
)       

 

 
    Eqn. 6-4 

 

Various changes and modifications can be made to the constants that are entered 

into this equation. However, there is always one common aspect to all the data 

which is generated, and that is that the median grain diameters of the samples 

have been accurately determined along with the values of the standard deviation. 

If the distributions of the six samples are then entered in the function, curves can 

be generated, which are discussed in the next section.  
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6.1.11 Fitting the Theoretical data to the experimental 

results  

 

Once the theoretical curves have been generated, it can be immediately seen that 

the samples with the larger grain sizes tend towards saturation more quickly than 

the smaller ones (Figure 81). 

 

 

Figure 81: Theoretical results. 

 

Also, as can be seen from Figure 81, the theoretical magnetisation of a purely 

superparagmagnetic system starts from zero. In the actual samples, the 

superparamagnetic state is represented as a frozen in order in the exchange bias. 

However, the exchange bias is not determined solely by the interfacial spin 

clusters, rather, it is a combination of both the bulk and the interface, and the bulk 

is significantly more dominant, hence, this initial zero value is not reflected in the 

experimental results. In Figure 79, which shows the experimental results, 6 lines 
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were added which were merely guides to the eye. Having just explained the theory 

behind how superparamagnetism can be applied to the interface spin clusters, it is 

now possible to superimpose the superparagmagnetic curves from Figure 81 onto 

the experimental data from Figure 79. When looking closely at the data in Figure 

79, it can been seen that in two of the samples there is a greater degree of noise in 

the measurements than in the other 4, as a result, it is much more difficult to fit a 

good theoretical line through them. Therefore, the theoretical lines have only been 

fitted to 4 of the samples. However, the fit shown in Figure 82 is good and does 

confirm that a superparamagnetic model can be applied. 

 

 

Figure 82: Fit of superparamagntic curve over experimental results. 

 

It is possible that at low fields they follow the low field proportional relationship 

of the Langevin function. Unfortunately, it is difficult to test and verify this 

because at low fields the bulk itself is varying its state and so its effects will 

dominant in this region. 
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6.2 Effect of varying Measurement Temperature 

 

6.2.1 Experimental Procedure 

 

The intention of the next set of measurements was also try to isolate the effect of 

the interfacial spin clusters so that they could be investigated. The procedure was 

to carry out a standard blocking temperature measurement and then repeat it, but 

with a lower measurement temperature. This was done for measurement 

temperatures of 303K, 273K, 223K and 173K and was performed on three 

samples of differing grain sizes with the same structure as the previous 

measurements. After taking images with a transmission electron microscope the 

median grain size diameters were found to be 7.2 nm, 7.3nm and 7.8 nm (Figure 

83), now called small grains, medium grains and large grains for the rest of this 

discussion. 

 

Figure 83:  Log normal distributions for the three samples. 

Carrying out a normal blocking curve with 12 points takes over 16 hours. The 

initial idea was to take measurements at 4 different measurement temperatures for 

6 different samples, this amount of measurement time would have impacted other 
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research so reductions were made. The first step was to reduce the number of 

samples measured to three, the second was to consider reducing the number of 

points in a blocking curve. 

For each sample, a complete blocking curve was taken at a measurement 

temperature of 303K. Part of the reason for this was to insure that the sample was 

behaving properly, but the main reason was to determine the medium blocking 

temperature. For subsequent measurements, the measurement temperature was 

reduced, which would have, in effect, added more points to the curve. Instead, 

only three points were taken at the lowest temperatures, then three more at or 

around the medium block temperature. This was decided upon because the main 

area of interest in this investigation was what was happening to the curve at the 

lower temperatures. However, it was also worth checking that the medium 

blocking temperature was remaining constant, despite lowering the measurement 

temperature. 

 

6.2.2 Blocking Curves 

 

 

Figure 84: HEX vs TACT, median grain diameter 7.2 nm. 
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Figure 85: HEX vs TACT, median grain diameter 7.3 nm.  

 

 

 

Figure 86: HEX vs TACT, median grain diameter 7.8 nm. 
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The first trend that can be seen from the blocking curves is how quickly the 

exchange bias reaches reverse saturation (Figures 84, 85 and 86). From the 

figures, the larger the grains the sooner a complete reversal is reached. This is 

counter intuitive to the work described in section 4.1, for, according to grain size 

distributions, the sample with the smaller grains should reach saturation at a lower 

activation temperature. One explanation for this is that the smaller grains are less 

well formed and therefore do not have a constant anisotropy for a given size. This 

means the larger grains are better behaved and so reach saturation at a lower 

activation temperature 

 

The blocking curves for the 7.3nm grain sizes show that the median blocking 

temperature remains constant despite reducing the measurement temperature. This 

is of great importance. At the median blocking temperature, half of the settable 

fraction of the antiferromagnet is in one direction and the other is in the opposite, 

which is a property of the bulk. This successfully shows that the behaviour of the 

bulk remains the same, despite the change in the measurement temperature. It also 

shows that some of the points in the curve can be missed out without determent. 

Unfortunately, for the smaller and larger grain sizes, the median blocking 

temperature was missed, however, there is still sufficient overlap of data for the 

above conclusion to hold. 

 

As has been said before, the bulk of the antiferromagnet can be considered stable 

if the blocking curve has flattened off. As seen in these results, the curve is 

relatively straight for all samples at around 300k. However, what was then hoped 

was that at lower temperatures there would be a noticeable variation in the 

behaviour between the samples of different grain sizes. Unfortunately, no such 

variation could be seen and the subtle effects of the interface clusters in this data 

remained hidden. 
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6.2.3 Theoretical Fit of Blocking Curves 

 

Although the effect of the interfacial spin clusters could not be seen in the 

blocking curves, it is possible to take the evaluation of this data further in the 

context of the model that was described in chapter 4. According to the work of 

O’Grady et al., the blocking curve produced by the magnetic measurements is a 

result of the reversal of the antiferromagnetic grains as seen in the grain size 

analysis. Therefore, given the grain size analysis, it should be possible to predict 

what the magnetic blocking curve will look like. 

 

  

Figure 87:  Theoretical curves evaluated from grain size distribution. 

Figure 87 shows what the theoretical blocking curve looks like based on the grain 

size analysis given in Figure 83. The theoretical line produces a fully reversible 

system as the model is based on values that are defined by the median grain size 

and the activation temperature at which the exchange bias has become zero. As 

per what should be expected, the sample with the smaller grain sizes does indeed 

have a lower blocking temperature. This corresponds to the smaller grains having 

a lower energy barrier to reverse over. There is a mild curvature of the lines which 
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is due to the peak of the grain size about which the median volume is defined. 

However, this is not nearly as pronounced as in the experimental data, and there is 

no levelling off at the highest and lowest activation temperatures. 

The lack of curvature in the theoretical lines is not easy to explain. It can 

reasonably be assumed that due to the polycrystalline nature of the 

antiferromagnet, for each grain size, there is actually a distribution of anisotropies. 

But, this would result in a less curvature in the experimental data not more. 

However, this difference between theory and experiment does now give good 

insight into what is going on. If the model proposed by O’Grady et al. is taken at 

face value, then the extra curvature of the experimental data suggests that the 

anisotropy of the antiferromagnet not only has a temperature dependence, but it 

also has a grain volume dependence as well and the nature of this grain volume 

dependence is such that the larger grains increase in anisotropy. An explanation 

that fits in here is that the larger grains are better structured and have a higher 

degree of crystallinity than the smaller ones. Unfortunately, it would prove very 

challenging to measure this subtle change. 

The lack of the levelling off in the theoretical lines is a natural consequence of the 

maths behind them. What is now interesting is considering what, in the samples 

themselves, might be causing the levelling off in the experimental results. Clearly, 

from the grain size analysis, there is not an abrupt point where suddenly there are 

no larger grains. But, from the experimental data, the samples become fully 

reversed at a fairly distinct point, and there is a clear trend where the samples with 

the largest grain sizes level off sooner than the smaller ones. According to the 

model, the samples with the smaller grain sizes should level off sooner than with 

the larger grains and, if the magnetic measurements can be based on the grain size 

analysis, there should be no distinct levelling. The problem with the lack of 

curvature in the theoretical data can be explained away without too much 

difficulty, however, this levelling off is far harder to explain and is an aspect of 

the model which could do with some more investigation. 
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6.2.4 Coercivity Curves 

 

Although this is labelled as section 6.2.3, in some ways, here starts the second part 

of the results chapter because from now on, the discussion will focus on coercivity 

and the role that spin clusters might take in this aspect of exchange bias. 

As has been the case for all of the previous measurements, the coercivity was also 

determined. Throughout the blocking curves in Figures 84, 85 and 86, the 

coercivity remained relatively constant. So, in order to simplify the results, 

Figures 88 is a summary of how the coercivity varies as a function of median 

grain size and measurement temperature. As can be seen for all the samples, as the 

measurement temperature decreases and the grain size increases, the coercivity 

increases. The possible reasons for this will be discussed shortly, but first, there 

will be a brief over view of the common explanations for what causes coercivity 

in exchange bias systems. 

 

Figure 88: Coercivity vs measurement temperature. 
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6.2.5 Explanations of Coercivity at high temperatures 

 

 

The variation in coercivity in exchange bias systems was reported along with its 

other features in 1956 [Meiklejohn and Bean,1957] and has been the subject of a 

number of investigations. Although it has never been given the same prominence 

as the shift in the hysteresis loop, it is an aspect of exchange bias and if a 

complete model is to be presented then it must include a discussion on coercivity. 

The temperature dependence of coercivity has often been investigated 

[Fulcomer,1972, Nishioka,1996,  Nishioka,1997,  Ali,2003,  Baltz,2010 ] but  

there is a different kind of behaviour depending on the temperature region being 

considered. The first temperature region being considered is around the blocking 

temperature and will be discussed in this section, 6.2. The second temperature 

region is what happens around 4.2K and is discussed in Section 6.3. 

 

 

Coming back to the first temperature region, it has been seen before 

[Nishioka,1997,  Ali,2003] that the coercivity tends to peak at around the blocking 

temperature. The source of the increase in exchange bias systems is usually 

attributed to thermally unstable antiferromagnetic grains that are coupled to the 

ferromagnet. During magnetic reversal, these grains, along with the ferromagnet, 

are also reversed and add an extra ‘drag’ to the process, thus increasing coercivity. 

As the temperature of the system approaches the blocking temperature, there are 

more of these thermally unstable antiferromagnetic grains which increase the 

coercivity. As the blocking temperature is passed, the antiferromagnetic structure 

starts to break down, the grains no longer behave antiferromagnetically, and so the 

coercivity reduces.  
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6.2.6 Spin Cluster effect in Coercivity 

 

Although coercivity is often attributed to thermally unstable antiferromagnetic 

grains coupled to the ferromagnet [Baltz, 2010], it is not possible to reconcile this 

explanation with the results shown in Figure 88. If the coercivity is due to 

thermally unstable grains then there should be a range of grain sizes which fall 

into this category. This range would make up part of a grain size distribution and 

would have a lower limit consisting of the smallest grains in this category, and a 

higher limit consisting of the largest grains in this category. Now, this lower limit 

would remain the same regardless of conditions, whereas the higher limit would 

depend on the measurement temperature. The higher limit actually defines the 

point at which an antiferromagnetic grain goes from being unstable and 

contributing to the coercivity to being stable and therefore contributing to the 

exchange bias. The position of this limit is defined by the temperature of the 

measurement. 

 

It, therefore, follows that as the temperature is reduced so does this higher limit. 

By reducing the measurement temperature, one is in effect, reducing the number 

of thermally unstable grains contributing to the coercivity and this should then 

result in a decrease in coercivity. In Figure 88, the opposite it seen. This then 

implies that perhaps the thermally unstable grains are not so significant in their 

contribution to the coercivity. Instead, the entity that might be creating the 

increase in coercivity is, in fact, the spin clusters. If they were, then an increase in 

the spin cluster size would result in an increase in coercivity, which is seen in the 

results. If the spin clusters also have an anisotropy that is temperature dependent, 

then, as the temperature decreases, the anisotropy would increase as would the 

coercivity and this is also seen. The concept of the spin clusters having a 

significant effect on the coercivity is discussed more in section 6.3. 
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6.2.7 Anisotropy Calculations from Coercivity. 

 

For some systems it is actually possible to calculate the anisotropy form the 

coercivity. By minimizing the energy in the basic equation postulated by 

Meiklejohn and Bean (Equation 3-1), it is possible to derive an expression that 

relates the coercivity to the anisotropy of a magnetic system 

 

 

   
  

  
  Eqn. 6-5 

 

where HC is the coercivity, Ms is the saturation magnetisation and K is the 

anisotropy (the same value of Ms as used in section 6.1 has been used here). From 

this, anisotropy values can be calculated given the coercivities in Figure 88. 

               Temperature 

 

Medium Grain Size 

    173 K 

 

   223 K 273 K 303 K 

7.2 nm 5.8x10
4 

4.1x10
4
 3.2x10

4
 3.0x10

4
 

7.3 nm 8.8x10
4
 7.2x10

4
 6.2x10

4
 5.6x10

4
 

7.8 nm 9.4x10
4
 8.2x10

4
 7.2x10

4
 6.8x10

4
 

 

Table 7: Anisotropy values when varying measurement temperature (ergs/cc) 

Si/Ta(5nm)/Ru(5nm)/IrMn(10nm)/CoFe(2nm)/Ta(5nm). 

The main positive aspect of equation 6-5 is the ability to calculate the anisotropy 

of the samples given the coercivity, and then compare these values to each other 

and to different systems. The main drawback is down to what equation 3-1 is 

based on, which is a basic Stoner-Wohlfarth system. A Stoner-Wohlfarth system 

is modelled on a single domain particle reversing, where as it is far more complex 

in an exchange biased system. The other problem is the temperature dependence 

of the anisotropy. A temperature dependent form of the anisotropy for the bulk 

was suggested in Chapter 4, however, so little is known about the nature of the 

interfacial spin clusters, it is not possible to establish a temperature dependent 

function for them. All that can be said is that as the temperature decreases, so does 

the anisotropy. 
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6.3 Low Temperature Measurements 

 

6.3.1 Modifications to Measurements 

 

The final set of measurements taken used liquid Helium in order to get down to as 

low a temperature as possible. A number of trail sessions were needed in order to 

get sufficient signal to measure and resulted in some changes to the set up. The 

first change required was to increase the thickness of the ferromagnetic layer as 

the 2 nm did not give a large enough moment. Various thickness were 

experimented with to find a good balance between sufficient signal and sufficient 

exchange bias, which is given by Equation 6-6 below 

 

      
 

  
  Eqn. 6-6 

 

 

It was found that 10nm was a good compromise. The reasons for the reduced 

signal was a combination of the fact that the sample had to be placed in a cryostat, 

which effectively added extra shielding for the sample, along with the vibrations 

of the cryostat due to the workings of the cryopump. 

 

As mentioned by Vallejo-Fernandez [Vallejo-Fernandez, 2008], increasing the 

thickness of the ferromagnet significantly increases the exchange field the 

antiferromagnet experiences from the ferromagnet. This can have a very 

noticeable effect on the properties of the bilayer and reduces, for example, the 

value of the median blocking temperature. However, as long as there is an 

awareness of the effects which the above paper outlines, then the ferromagnetic 

thickness can be changed, but with caution. 
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The original idea was to set the sample at 225 
O
C for 90 minutes and then field 

cool to the measurement temperature and then reset it again before the next 

measurement. The issue here was that the cryostat would only go up to 100
 O

C 

and so, in order to get to 225 
O
C, the sample had to be removed and placed in 

another annealing furnace. It was found that when this was done, the results were 

of a very low quality, most probably due to the sample not staying in exactly the 

same position throughout the procedure. 

Therefore, the measurement was changed to setting the sample, field cooling 

down to the initial temperature of 4.2K, taking a hysteresis loop, raising the 

temperature and taking another loop. In this case, the only change between each 

measurement is an increase in the temperature, if the bulk is assumed stable at 

such low temperatures, then any variation seen is due to an increase in the 

disorder at the interface due to thermal energy. 

As per the other samples, grain size analysis was performed. The median 

diameters were found to be 5.0 nm, 6.3 nm and 7.1 nm (Figure 89). Again, these 

will be referred to in the text as being small, medium and large grain sizes. 

 

 

Figure 89:  Log normal distributions for the three samples used in the 

Helium measurements. 
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6.3.2 Magnetic Measurements 

 

Section 6.2 looked at the coercivity at relatively high temperatures, this section is 

going to look at what happens to the coercivity at low temperatures. The effect of 

a significant increase in the coercivity at liquid Helium temperatures has been 

known for some time [Nishioka,1996,  Ali, 2003], however, there has never been a 

serious attempt to explain it. Here, a relatively simple comparison to what 

happens to the exchange bias in this temperature region will be made and used to 

help explain this phenomenon, which will also lend support to the argument of the 

spin cluster contribution to coercivity. 

 

 

Figure 90: HC vs TMEAS, median grain diameter 5.0 nm. 
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Figure 91: HC vs TMEAS, median grain diameter 6.3 nm. 

 

 

 

Figure 92: HC vs TMEAS, median grain diameter 7.1 nm. 
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It has been reported before [Fernandez-Outon,2008] that when the temperature of 

an exchange bias system approaches 4.2K, the exchange bias can increase by up 

to 25%. Now, well above this temperature the vast majority of the bulk of the 

antiferromagnet has become stable, so the question is what is causing such a 

significant increase. The suggestion made in order to explain such an effect is that 

the interfacial spin clusters are entering a highly ordered state similar to that of a 

spin glass. Therefore, if the coercivity also increases in this temperature region 

where the interfacial spin clusters are going through this change of state, then the 

spin clusters must surely be contributing the coercivity.  

 

Figures 90, 91 and 92 show the coercivity measurements at low temperatures. 

Again, just like in section 6.2, there is a clear grain size variation in the results. 

All three samples show a levelling off at around 150 Oe, and this similarity 

between them could suggest that this residual coercivity is actually due to the 

bulk. The significant increase which starts between 30K and 50K can then be 

attributed to the interfacial spin clusters entering into a spin glass state. If the grain 

diameters are then converted into volumetric rations, then there is a similarity 

between the increase in volume compared to the increase in coercivity. 

 

6.3.3 Calculation of anisotropy values 

 

               Temperature 

 

Medium Grain Size 

    4.2 K 

 

   223 K 

7.2 nm 4.5x10
4 

2.7x10
4
 

7.3 nm 5.4x10
4
 2.6x10

4 

7.8 nm 5.8x10
4 

2.4x10
4 

 

Table 8: Anisotropy values for Helium measurements (ergs/cc) 

Si/Ta(5nm)/Ru(5nm)/IrMn(10nm)/CoFe(10nm)/Ta(5nm). 
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Using Equation  6-5, the anisotropies of the samples can be calculated (Table 8). 

The first, most obvious difference between table 7 and table 8 is the reduction in 

anisotropy from the samples in 6.2 to the samples in 6.3. This is due to the 

increase in size of the ferromagnetic layer from 2nm to 10nm. This fivefold 

increase significantly reduces any effect that the antiferromagnetic bulk or spin 

clusters have on the ferromagnetic layer. If the layer size could have remained 

constant between the two experiments, then a better comparison could have been 

made, but, as was explained in section 6.3.1, this was not possible. 

 

 

6.3.4 Grain size distribution of spin clusters 

 

Baltz shared the view of Ali and Nishioka [Baltz,2010 , Nishioka,1996,  Ali,2003] 

where he thought the coercivity was not a product of the interfacial spin clusters, 

but rather due to any thermally unstable grains during the measurement.   Again, 

as with the coercivity work at high temperatures, this hypothesis conflicts with the 

results in the work presented here. If the coercivity is due to the thermally 

unstable grains, then, as the temperature of a sample is increase, the number of 

thermally unstable grains would increase which would result in an increase in the 

coercivity. The opposite is seen in Figures 89, 90 and 91. 

 

As mentioned in section 4.1.10, there are a number of assumptions made in the 

work carried out by O’Grady et al. with regards to what constitutes a grain and 

what its antiferromagnetic behaviour is. There are other schools of thought 

[Ali,2003] that might not want to limit an antiferromagnet domain to the discrete 

black regions shown on the TEM images in Figures 41. However, the model 

proposed by O’Grady et al. is the foundation upon which this research has been 

carried out and the interpretations presented here are, therefore, an extension of 

the model. 



6 Results 

140 

 

 

This is important to note because the whole concept of the spin cluster is that it 

resides on the uppermost surface of the discrete antiferromagnetic grains. The 

assumption made is that the spin clusters share the diameter of the 

antiferromagnetic grain, however, unlike the grain, may be interacting with its 

neighbours. This is then extended, in the maths presented in section 6.1.10, to the 

belief that the grain size distribution determined for the bulk grains can be directly 

applied to the grain size distribution of the spin clusters. When these assumptions 

were made, the theoretical fit to the experimental fit as shown in Figure 82 was 

good. 

 

Having re-establish this, the next thing to deal with is the hidden issue in the 

results presented in the whole of section 6. In the first set of spin cluster 

measurements (Section 6.1), the magnetic entity in the sample which responds to 

the increasing setting field beyond the saturation point of the ferromagnet is said 

to be the spin clusters. This order is then set in while field cooling. During the 

hysteresis measurement, the field is fully cycled and the exchange bias is retained, 

but the spin clusters which have contributed to the significant increase in 

exchange bias do not reverse. 

 

The latter experimental results presented in section 6 discuss the spin clusters 

contribution towards coercivity. Here, a decrease in temperature always results in 

an increase of coercivity. It has already been explained how this is counter to the 

hypothesis that the unstable grains are responsible for coercivity. Also, at the low 

temperatures used in section 6.3.2, the bulk is stable, so the variation to coercivity 

must be attributed to the spin clusters. Here comes the hidden issue, in this 

situation during a hysteresis measurement, if one is considering the spin cluster 

contribution to coercivity, the spin clusters now reverse. There needs to be attempt 

to explain the difference in behaviour between the irreversible spin clusters in 

section 6.1 and the reversible spin clusters in section 6.3.  
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It is known that the coercivity of an exchange bias system passes through a peak 

as the temperature is lowered.  This is consistent with an entity consisting of an 

energy barrier distribution passing through a consequent blocking temperature 

distribution.  In the work of Fernandez-Outon et al. [Fernandez-Outon,2008] the 

measurements were invariably made at temperatures where the bulk of the 

antiferromagnetic grains is stable and hence there must be a second entity the spin 

clusters which gives rise to the peak in the coercivity.  The hypothesis is that a 

fraction of the spin clusters are able to reverse in the field whilst a second fraction 

are unable to reverse.  This gives rise to an irreversibility in the spin clusters 

consistent with a grain size distribution deriving from the antiferromagnetic 

grains. 

It can now be suggested that the larger, more thermally stable ones, have their 

order set in during the setting process, and this order remains during cooling so 

that they are irreversible during hysteresis. Whereas, the smaller, less thermally 

stable ones contribute towards coercivity. Given this explanation, it is tempting to 

propose the following segregation between the two states that the spin clusters can 

be in.

 

Figure 93: Two phase diagram of spin clusters. 
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Unfortunately, this theory does not fit in with the results given in Section 6.3.2. If 

this theory was true then, as the temperature decreases, there would be less 

thermally unstable spin clusters and the coercivity would decrease, not increase as 

is seen in the results. 

However, there is an explanation that can attribute the coercivity to the spin 

clusters and also explain why the coercivity increases with decreasing 

temperature. It is worth restating here that at very low temperatures, the bulk 

grains are stable so the coercivity increase is being attributed to a variation in the 

state of the spin clusters. Another set of results of importance in this line of 

argument is that of from the work of Fernandez-Outon [Fernandez-Outon,2008]. 

Here, he presents experimental data which shows that at low temperatures, the 

Exchange bias increases by up to 25%. This is attributed to the interfacial spin 

clusters entering a more highly ordered state and are starting to taking on a spin 

glass nature. This again demonstrates that the spin clusters are contributing 

significantly to the state of the sample and are going through a transitional phase. 

 

Figure 93 gives a grain size distribution of the spin clusters which, as has already 

been said, fails to explain the variation of coercivity at low temperatures, but a 

small change to this can help (Figure 94). 

 

Figure 94: Three phase diagram of spin clusters. 



6 Results 

143 

 

 

Instead of a distinct line, it is suggested that there is, in fact, a very broad 

transitional phase from stable to unstable. So now, rather than there being two 

states to consider, there are three, the unstable, the partially stable and the stable. 

 

When it is suggested that the coercivity is attributable to the unstable grains 

[Nishioka,1996], their size and volume is such that it is conceivable that they 

would induce a ‘drag’ on the reversal of the ferromagnet and, thereby, increase its 

coercivity. However, in the situation of the spin clusters, they are so small that 

when fully thermally unstable, they would not have any noticeable effect on the 

ferromagnet and would, therefore, not contribute to the coercivity. But, the 

situation is different for those spin clusters which, when looking at Figure 94, are 

in the transitional phase. These clusters which are becoming more stable are 

starting to couple more strongly to the already set bulk. They are not fully set 

though, as otherwise they would cease to contribute to the coercivity and instead 

contribute towards the exchange bias. Now it is possible to explain why a 

decrease in temperature increases coercivity because as the measurement 

temperature is reduced, this transitional region increases, which, in turn, increases 

the coercivity. 

 

The next phase of the model would be to attempt to determine where these 

boundaries lie. The spin clusters are undergoing a very complex relationship with 

both the ferromagnet above them and the bulk antiferromagnet below them. The 

relationship between these three elements is further complicated by the fact that 

there is most probably no clearly defined boundary between the three. The spin 

clusters themselves reside at the blurred interface between the antiferromagnet 

and the ferromagnet, and due to the diffusion that will occur during deposition, 

attempts to model them will become very complex. 
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Regardless of the complications of producing an accurate, all round, model of the 

spin clusters, explanations of how the spin clusters, when irreversible, contribute 

towards the exchange bias and, when reversible, contribute towards the coercivity 

have been given. These explanations satisfy the results that have been seen and 

add extra insight the nature of exchange bias. 
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 7. Conclusion and Future Work 

 

7.1 Conclusions 

 

The work of O’Grady et al. as described in section 4.1 explains how, when 

considered as discrete entities, the bulk of the antiferromagnet contributes to the 

exchange bias and, by following the protocol described, it is possible to accurately 

control the exchange bias of a system. However, although it may be able to 

predict the exchange bias as a function of the bulk, there are a number of effects 

that it does not explain mathematically such as the training effect, high field 

effects, variations in coercivity, and low temperature effects. 

 

Whenever a set of measurements have been taken during this work, the training 

effect has always been calculated and considered. Whether it was carrying out 

normal blocking curves, increasing the setting field or reducing the measurement 

temperature, no correlation or pattern was ever found. It has already been 

established that the training effect is an interfacial property [Kaeswurm,2011], but 

beyond that, there is little that can be said for certain, other than it is an 

irreversible effect that occurs as a product of field cycling. 

 

In regards to the other effects, experiments have been carried out that successfully 

demonstrate non-bulk properties which can be explained by the interfacial spin 

cluster concept which sit on top of an ordered grain. In the results described in 

section 6.1, the clusters were modelled as consisting of a number of disordered 

spins which behave in a quasi-superparagmagnetic manner. It is possible that at 

low fields they follow the low field proportional relationship of the Langevin 

function. However, it is difficult to test and verify this as the bulk effects are 

dominant in this region. At higher fields, there was clearly a component of the 

bilayer which responded to an increasing magnetic field, and this component 
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showed a grain size dependence. It is not too large a step to attribute this response 

to that of the interfacial spin clusters. 

 

In section 6.2, a variety of measurements were carried out, some of which 

overlapped the work carried out by previous people [O’Grady,2009]] and others 

which started to investigate variations in coercivity. The main point to be drawn 

from these was the idea that, perhaps, rather than the coercivity being solely due 

to thermally unstable grains, there was actually another entity contributing to it. 

 

The low temperature results of section 6.3, seemed to further lend weight to the 

above argument and even led to the idea that a significant contribution to the 

coercivity was actually from the interfacial spin clusters. A model was also put 

forward that explained the trends in the data which was based on the various 

thermal states the spin clusters could be in, all of which showed a grain size 

dependence. 

 

Attributing the increase in coercivity in an exchange bias system to the interfacial 

spin clusters is not widely accepted, but it does fit in well in the context of the 

work by O’Grady et al. The initial aim of this work, as per the title of the thesis, 

was to characterise the interfacial spin clusters in polycrystalline thin films and, in 

this regard, good progress has been. 
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7.2 Future Work 

 

 

There was a time when the exchange bias of thin films made a large contribution 

to magnetic conferences, now the effort put in to this research is diminished. 

Many of the research groups who studied the phenomenon have moved on to 

other work, as shown by the dates of the major topical reviews on this subject. 

There are probably not many more significant papers that will be written on 

exchange bias in thin films. 

 

If the work of this particular thesis was to be continued in a focussed manner, 

then, as has been said, all of the experiments that have been described could be 

repeated for ever thinner antiferromagnetic thicknesses. In this way it might be 

possible to pin point when the bulk effects become less dominant and the interface 

effects become more so, which might lead to greater insight into the nature of 

interfacial spin clusters. 

 

However, research into exchange bias and its applications are far from over as 

there are new and exciting technologies that can and do find a use for it.  In these 

other areas, the antiferromagnet is not extended across a substrate of up to 5mm x 

5mm. Instead, much small dimensions are being studied, such as nano-pillars. 

These are most applicable to the science of MRAM, where the current desire is to 

increase data density. 

 

In this technology, new challenges are posed in the form of edge effects. In the 

work presented in this thesis, the edge and corner effects remain largely 

unconsidered due to the relative size over which the sample is extended in the 

horizontal plane when compared to the vertical height of the stack. However, 
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when the dimensions of the device are reduced, they become of great importance. 

Research is already being carried out in these areas with progress being made in 

the understanding of how exchange bias works on such a small scale [Vallejo-

Fernandez,2009, Baltz,2010(b)].  

 

In terms of gaining understanding into the nature of interfacial spins clusters, 

adding the new complications that come about from significant downsizing in the 

horizontal plane probably does not make the challenge any easier. In fact, it might 

even make a topic that is only partially understood even more complicated. 

However, investigating how exchange bias can be used on devices such as nano-

pillars is the correct direction for the continuing research to go in. 
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8. List of Symbols 

 

A 

A Area 

a Lattice constant 

AC Alternating current 

AF Antiferromagnet 

AGFM Alternating Gradient Force Magnetometer 

AMR Anisotropic Magnetic Resistance 

 

 

B 

β 
Angle between ferromagnet magnetisation and 

antiferromagnet magnetisation 

μB Bohr magneton 

bcc Body centred cubic crystal 

 

 

C 

  

CIP Current in plane 

CIS Current induced switching 

CPP Current perpendicular to plane 

C* Interfacial coupling constant 

 

 

D 

 ̅ Mean diameter 

d Lattice Spacing 

<DV> Volume fraction diameter 

DC Direct current 
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ρ Density 

  

 

 

E 

ΔE Energy barrier 

E Energy 

EDX Energy Dispersive X-ray Analysis 

EELS Electron Energy Loss Spectroscopy 

emf Electromotive force 

EK Crystal anisotropy energy 

EX Interlayer exchange energy 

 

 

F 

f0 Attempt frequency 

F Ferromagnet 

FX Force 

Fq 
Uncoated resonant frequency of quartz crystal in 

thickness rate monitor of HiTUS 

f(D) Grain diameter distribution 

f(ΔE) Energy barrier distribution 

f(V) Grain volume distribution 

fcc Face Centred Cubic crystal 

Φ Magnetic flux 

 

 

G 

GMR Giant Magnetoresistance Resistance 
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H 

h Plank’s Constant 

H Applied field 

HAADF High Angle Annular Dark Field Imaging 

H* Exchange field from ferromagnet 

HC Coercivity 

HC1 
Coercive field on descending branch of hysteresis 

loop 

HC2 Coercive field on ascending branch of hysteresis loop 

ΔHC1 Training effect on descending branch 

ΔHC2 Training effect on ascending branch 

HD Demagnetising field 

HEX Exchange bias 

HK Anisotropy field 

HK
*
 Pseudo anisotropy field in a ferromagnet 

HN Nucleation field 

HM Molecular field 

HmA Molecular field experience by sublattice A 

HmB Molecular field experience by sublattice B 

HSET Setting field 

hcp Hexagonal closed packed 

HiTUS High Target Utilisation Sputtering 

 

 

I 

I Current 

 

 

J 

JEX Exchange integral 
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JINT Interface coupling constant 

Jsf Spin-flop coupling 

JNET Direct coupling constant 

J Interlayer exchange 

 

 

K 

K Crystalline anisotropy 

KAF Anisotropy constant of antiferromagnet 

KF Anisotropy constant of ferromagnet 

KSC Anisotropy constant spin cluster 

kB Bolztmann constant 

 

 

L 

  Length 

L Domain diameter 

 

 

M 

M Magnetisation 

m Moment 

m(0) Net sublattice magnetisation direction 

µ Median 

mAF Sublattice  magnetisation 

MA Magnetisation of Sublattice A 

MB Magnetisation of Sublattice B 

Mf Change in mass of quartz crystal due to deposition 

MF Ferromagnetic magnetisation 

Mq Mass of quartz crystal 

MS Saturation magnetisation 

MBE Molecular Beam Epitaxy 
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MRAM Magnetic Random Access Memory 

MOKE Magneto Optical Kerr Effect 

MOIF Magneto-Optic Indicator Technique 

 

 

N 

N Integer number 

ND Demagnetising factor 

 

 

O  

             Oe                Oested 

 

 

P 

              PID Proportional Integral Differential controller 

 

 

R 

R Resistance 

RP Resistance – parallel configuration 

RAP Resistance- antiparallel configuration 

RAM Random Access Memory 

ra Atomic radius 

r3d Radius or 3d subshell 

RF Radio Frequency 

  Resistivity 

RKKY Ruderman Kittel Kasuya Yosida 

δ Resolution of Optical Microscope 

μ Refractive Index 
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S 

S Magnetic viscosity coefficient 

Si   , Sj Spin quantum number 

σ Standard deviation 

SQUID Super Conducting Interference Device 

  

 

T 

T Temperature 

t Time 

τ 
Time in which magnetisation decays to 1/e of 

original value 

θ Angle between single axis and applied field 

t0 constant  

TACT Thermal activation temperature 

tACT Time of thermal activation 

tAF AF thickness 

TB Blocking temperature 

<TB> Median Blocking temperature 

TC Curie point 

tCR Critical thickness in Mauri model 

TEM Transmission Electron Microscope 

tF Thickness of ferromagnet 

TMEAS Measurement temperature 

TN Néel temperature 

TNA Temperature of no thermal activation 

TSET Setting temperature 

tSET Setting time 

TMR Tunnelling Magnetoresistance 
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U 

u Easy directions of the uniaxial anisotropy 

 

 

 

V 

<V> Median grain volume 

V Volume 

VACT 
Volume of largest grain that can be aligned at a given 

activation  temperature TACT 

VC Critical grain volume 

Vm Median grain volume 

VSC Volume of spin cluster 

VSET 
Volume of the largest grain that can be set at a given 

setting temperature TSET 

VSM Vibrating Sample Magnetometer 

 

 

W 

w Width 

λ Wave length 

 

 

Y 

Y Young’s Modulus 

 

Z 

Z 

 

Dimensionless parameter 
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