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A B ST R A C T

This thesis investigates how the morphological features of the lower

vocal tract impact the singing voice of professional singers. Within

the limitations of the source-filter theory, the resonances of the vocal

tract are investigated, first under the lens of theoretical predictions for

one tube, then with numerical and experimental results of a series of

vocal tract models, and eventually with MRI-based vocal tracts mea-

sured for a group of professional solo singers. The method used is

a comparison between theoretical predictions, numerical simulations

(Finite Volume Method and Finite Element Method) and experimen-

tal results (measurement of MRI-based 3D-printed vocal tracts). The

results suggest a strong and explainable correlation between the mor-

phological dimensions of the hypopharyngeal cavities and the vallec-

ula and the voice classification of an individual singer.
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Part I

I N T R O D U C T I O N



1 H Y P OT H E S I S

1.1 singularity of the singing voice

Although much research has been carried out on the subject, the hu-

man voice remains one of the most curious, mysterious and thrilling

ways of conveying musical content.

The vocal tract (VT) is roughly 17-20 cm long for the male adult

and 15-18 cm long for the female adult [102, 20, 119]. Regarding other

instruments of a comparable size, the panel of possibilities in terms

of range, dynamics, registers and spectra is much wider for the voice

[99]. Moreover, it is the only ’embodied’ instrument: the individual

being the exciter of the vibrating body as well as the source of the ra-

diated sound [99]. As a consequence, there is a discrepancy between

how the inner and outer ear perceive the sound produced [102]. Emo-

tions directly affect phonation since they are intertwined with breath-

ing and voice production [102].

Another particularity of the human voice is the text sung along with

the melody. It helps to convey more information about the message

beyond the music, but it makes this instrument more complicated to

analyse.

1.2 how the voice works

Like other wind instruments, the voice is produced by the air passing

through a valve (the glottis) situated between an upstream tube (from

the lungs through the trachea) and a downstream tube (the vocal

2
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tract) [119]. The glottis is composed of vocal folds which repeatedly

open and close, letting air jets flow out [102]. When the upstream pres-

sure is higher than the downstream one, it forces the vocal folds to

open, and when the air goes through the glottis, which has a smaller

cross-section than the trachea, it is accelerated. Due to Bernouilli’s ef-

fect, it creates a suction that pulls the vocal folds together [102, 119].

These antagonist movements repeat in the form of an oscillator, gen-

erating acoustic waves that propagate through the vocal tract.

The vocal folds and the glottis are in a plane which defines two

acoustic spaces relevant to speech production, i. e. the subglottal and

supraglottal vocal tracts [66]. The subglottal cavity shape remains rel-

atively constant during speech, but the supraglottal cavity undergoes

complex modifications which create the various patterns of airflow

and acoustic resonance that produce speech/singing [66]. The supra-

glottal vocal tract, or more commonly the Vocal Tract (VT) plays the

role of a filter, shaping the harmonic signal generated by the oscil-

lating vocal folds with a transfer function related to its shape and

dimensions [32, 102, 109, 99]. In the larynx, at the glottis, the reg-

ular opening-closing of the vocal folds produces a harmonic signal

with a fundamental frequency f0 and its multiples [32, 102]. The VT

then acts as a filter, enhancing several frequency bands, whose peaks

are called formants [32]. The frequency response of such a filter is

highly dependent on the shape and dimensions of the vocal tract

[32, 102, 109, 99]. The sound produced is then radiated from the lips

to propagate into the open atmosphere.
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1.3 hypothesis

"The hypopharyngeal cavities and the vallecula play a predominant

spectral role in the singing voice"

Decomposition of Hypothesis

The hypopharyngeal cavities

The hypopharyngeal cavities consist of the laryngeal cavity and the

two piriform fossae, both fitting posteriorly at the bottom of the phar-

ynx [66], as detailed on Figs 1.1, 1.2b and 1.2a.

• The laryngeal cavity extends from the end of the trachea to the

connection with the pharynx. The vocal folds, whose narrow

triangular separation is called the glottis, divides the laryngeal

cavity into two parts:

1. The supraglottal cavity is situated above the vocal folds. It is

a short basal segment of the vocal tract between the glottis

and the bottom of the mesopharynx [48] and consists of:

– The laryngeal ventricles, or Morgani sinuses, a bilateral

recess between the vocal folds and the ventricular folds

[48]

– The laryngeal vestibule, a narrow tract above the laryn-

geal ventricles [48]

2. The infraglottic cavity is situated below the vocal folds

• The piriform sinuses, or piriform fossae, are the "pear-shaped"

cavities lateral to the laryngeal vestibule [48], as seen on Figs

1.1, 1.2b and 1.2a. It is a pair of bilateral tubes of a conical shape

formed by the aryepiglottic folds and the lateral hypopharyn-

geal wall, located above the closed entrance of the oesophagus

[48]. Physiologically, they serve as side branches which "cap-
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ture" foreign bodies, sometimes food and mucuses [3]. Some flu-

ids must reside in the piriform fossae between swallow events

[66].

The valleculae

The valleculae epiglotticae are depressions (vallecula) just behind the

root of the tongue; they constitute a borderline area between the phar-

ynx and the larynx: these depressions serve as a temporary saliva

reservoir to prevent from swallowing [10].

Predominant spectral role

These cavities largely influence the spectrum of the voice.

Figure 1.1: Vocal Tract and hypopharynx cavities superimposed on MRI

mid-sagittal slice
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piriform fossa

(left)

piriform fossa

(right)

laryngeal vestibule

laryngeal ventricle

glottis

(a) Lateral view.

piriform fossa

(left)

piriform fossa

(right)

laryngeal vestibule

laryngeal ventricle
glottis

(b) Frontal view.

Figure 1.2: Hypopharynx details.
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1.4 thesis outline

This thesis is organised as follows:

Part I: Introduction

Chapter 1 introduces the hypothesis and a brief summary of the

voice production.

Chapter 2 gives an overview of singing voice production, fol-

lowed by the Source-filter theory, focussing on the Vocal Tract and

the origin of its resonances. This leads to an explanation of formants

and the importance of the hypopharynx in relation to the Singer’s For-

mant Cluster. The chapter concludes with an overview of the meth-

ods used to measure the Vocal Tract resonances and a summary of

the results found in the literature regarding voice classification.

Part II: Materials and Methods

Chapter 3 explores the numerical techniques used to simulate the

resonances of the Vocal Tract models. The chapter starts with an in-

troduction of the Finite Volume Method in the time-domain, followed

by the Finite Element Method in the frequency domain. To conclude,

a note is given about the meshing which consists of dividing a 3D

structure (here) into small linked volumes or elements linked to each

other: the numerical methods need meshing as a preprocessing pro-

cedure.

Chapter 4 introduces a novel transducer-independent technique,

adapted from the sine sweep method used mostly in room acoustics

to measure the impulse response (and subsequently the transfer func-
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tion) of the 3D-printed cavities (from simple models of the Vocal Tract

to actual MRI-based 3D printed Vocal Tracts).

Chapter 5 describes the steps involved in the process from the

acquisition of MRI data of professional singers phonating in a scanner

to the 3D printing of their Vocal Tract.

Part III: Results

Chapter 6 introduces the theoretical predictions of the resonances

of one tube and a twin-tube, emphasising the importance of the Open

End Correction. The production of an extra resonance by appending

one tube to another is introduced, as well as its consequences on

the spectrum. The next section applies the findings to MRI-based Vo-

cal Tracts of six professional singers and compares them with mor-

phological dimensions. Eventually, it introduces a new metric for the

Singer’s Formant Cluster.

Part IV: Conclusion

Chapter 7 concludes and summarises the findings, suggesting

areas for further development.
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1.5 contributions

The novel contributions of the research carried out within the frame-

work of this thesis are as follows:

• A novel transducer-independent technique, to measure the trans-

fer functions of cavities, adapted from the method of Farina in

room acoustics.

• Identification of the spectral impact of the epilaryngeal tube

dimensions (length and radius) of Vocal Tract analogues.

• A tested new metric for the Singer’s Formant Cluster.

• A formula for predicting the Singer’s Formant Cluster related

to the dimensions of the hypopharyngeal cavities.

In the framework of this research, I have:

• Confirmed the results found in the literature regarding the spec-

tral impact of the piriform fossae and vallecula for MRI-based

Vocal Tracts, both numerically and experimentally.

• Confirmed, for 6 professional singers, that the Singer’s Formant

Cluster predicted from their anatomical dimensions matches

the one derived from their Vocal Tract resonances.



2 S I N G I N G VO I C E P R O D U C T I O N

Pioneers such as Fant [32] have investigated the basic principles of

acoustic production in speech and singing, Sundberg [102] and Titze

[109] explored the mechanisms at work in singing voice production

and Stevens [89] focused on speech production. This chapter focuses

mainly on the aspects of voice production relevant to this thesis. After

an introduction about the speech/singing sounds and the anatomy

of singing production, the source-filter theory is explained. The Vocal

Tract (VT), acting as a filter, will then be given more attention, intro-

ducing the concept of formants and the so-called "Singer’s Formant

Cluster", thought to originate from the hypopharyngeal cavities di-

mensions. An overview of the methods used amongst the scientific

community to measure the VT resonances follows, with a special de-

velopment given to the VT shapes acquired by medical imaging. This

chapter closes with a literature review on singing voice classification.

Speech/singing sounds

Speech/singing sounds are similar to any other sounds, in the way

that they are microscopic and rapid fluctuations of air pressure around

a reference pressure (usually the atmospheric pressure) [102]. Singing

sounds are generated when the vocal organs set the air in movement.

While speaking or singing, the acoustic energy is radiated through the

air and when the pressure fluctuations reach the ear of the listener,

the eardrum fluctuates in and out; in when the pressure is above the

reference pressure, out when it is under [118]. The acoustical energy

is then converted into mechanical energy, which will in turn be trans-

10
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formed into neural energy so that the listener’s brain can perceive

and process the sound/voice they are hearing/listening to [113].

Speech waves

The sound is radiated from the lips and the speech/singing wave

is distributed at any given instant, as an air pressure perturbation

around the speaker/singer. A transducer placed in the radiating field

emerging from the speaker/singer can, at any given point in space,

transform the acoustical energy and convert it into electrical energy to

record its fluctuations, as a time-pressure function, or a time-pressure

wave [118].

Frequency

Looking closer at the waves recorded by the transducer, one can see

rapid air pressure fluctuations around atmospheric pressure. These

variations are periodic, with repetitive patterns, or oscillations. Mea-

suring the time duration between two successive oscillations gives

the period T of this oscillation. Taking the inverse of the period leads

to the frequency f = 1
T

expressed in s−1 or Hz [81]. For instance, the

modern tuning A = 440Hz given by the oboe before the start of a

concert with orchestra to tune the instruments, or given by the tun-

ing fork to set the pitch of a piece in an a cappella concert, means

that the air pressure follows a cycle being above and then under the

reference pressure 440 times per second [81].

Fundamental frequency

A transducer placed in the radiating field of a singer phonating on

the pitch A = 440Hz would record a pressure-time wave whose fluc-

tuations would have different repetitive patterns. Measuring the time

between two adjacent cycles of the longest repetitive pattern, and in-
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verting it would give a frequency of 440Hz, called the fundamental fre-

quency, noted f0 [81]: this can be defined as the frequency at which the

slowest pressure fluctuation of a complex sound oscillates [113]. In

the case of a singer, phonating in normal conditions, i. e. no strohbass

register or overtone singing, this corresponds to the rate at which the

Vocal Folds (VFs) vibrate [113]. The temporal duration of each glottal

flow pulse determines the fundamental frequency f0 [102].

Partials

During phonation, the vibrating VFs do not only give rise to one sin-

gle tone: instead, a series of tones or a spectrum is produced [102]. The

lowest tone of this series is called the fundamental and the other tones

are called the overtones. The fundamental plus the overtones form the

partials: their frequencies form a harmonic series [102]. This means that

the partial n has a frequency n times that of the fundamental. The fre-

quencies of the partials are the multiple integers of the fundamental

frequency f0 [99, 102].

Fourier Analysis

The French mathematician Joseph Fourier developed the idea that

any complex signal can be decomposed into an infinite sum of basic

periodic signals, like cos or sin, for instance [88].

Spectrum

Taking the Fourier Transform of the sound speech/singing wave de-

composes the signal in a series of frequencies (the fundamental and

its harmonics) which are assigned a weight, or an amplitude, depend-

ing on their contribution in the speech/singing wave. There are sev-

eral conventions to define the Fourier transform, such as in [88]:

f̂(ξ) =

∫∞
∞ f(x)e−2πixξdx (2.1)
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where the independent variable x represents the time and the trans-

form variable ξ the frequency.

Timbre

In the spectrum, several frequency bands are enhanced, others are de-

creased. The spectral envelope changes from one voice to the other and

makes differentiation between two voices possible: this characteristic

is called the timbre [102]. As will be seen in subsection 2.4, the vowel

quality and voice colour (timbre) are determined by the shape of the

VT [102, 99].

2.1 anatomy of singing production

The anatomical parts involved in the production of speech and singing

can be divided into two categories : the ones taking part in the phona-

tion and the ones in the articulation [49]. The speech organs of phona-

tion include the lungs and the larynx, whereas the ones of articulation

include the cavities above the larynx plus the tongue, teeth and lips.

The organs taking part in the speech/singing production are repre-

sented in Fig 2.1.
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Figure 2.1: A sagittal view of the human speech/singing production, from

[38]

2.1.1 Phonation

From the ancient Greek ϕωνή meaning voice, the term phonation re-

lates to all the processes involved in the production of voice, whatever

the form, i.e. laugh, cry, speech, singing, etc. The phonatory organs

generate the acoustic source which will be modified by the articula-

tors to produce the speech/singing. The first organs of phonation, the

lungs, are also the largest: they act as a reservoir and provide the air

necessary to create pressure fluctuations around the singer [113]. The

diaphragm muscularly causes the lungs to inflate or deflate, expelling

the air through the trachea to reach the larynx [102, 89].

The second organ of phonation, the larynx, which can be seen in

Fig 2.2, hosts the Vocal Folds (VFs), which can be held shut through

muscular coordination [66, 74]. The triangular opening made by the

VFs during the opening phase is referred to as the Glottis [89]. Be-
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sides its important role in phonation, from the evolutionary point of

view, the larynx stands as a mechanism for fixation of the thoracic

volume, a protective closure of the airway and expulsion of foreign

particles trapped in the airway [66]. This allows closure of the respira-

tory system while swallowing food or liquid for instance [74]. When

the VFs are sealed, as in effort closure, the larynx can be used to in-

crease the abdominal pressure during physically demanding efforts

such as weight lifting [66, 74].
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Figure 2.2: The entrance to the larynx, viewed from behind, Coronal section

of larynx and upper part of trachea and Laryngoscopic view of

interior of larynx. From Henry Gray (1825-1861). Anatomy of

the Human Body. 1918. Figs 955, 954 and 956
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In the phonation framework, the larynx is used, with the glottis

opening and closing, as a generator of a quasi-periodic acoustic source,

as can be seen in Fig 2.3. VFs are adducted during phonation, so

that the space between them, the glottis, decreases. The air flowing

through this constriction produces a pressure drop, resulting in a

pressure excess from the lungs which tends to force the VFs apart

and to accelerate air through the glottis [102, 110, 119]. The flow

of air through the glottis creates a suction that tends to pull the

folds back together (”Bernouilli effect”, myoelastic-aerodynamic the-

ory, Van Den Berg, 1958) [102, 119]. The myoelastic-aerodynamic the-

ory (Van Den Berg, 1958) hypothesised that the vibration of the VFs

is an interplay between these two forces [74], as can be seen in Fig

2.3.
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Figure 2.3: Vocal Folds vibratory cycle. The Vocal Folds are first held shut

by muscular tension, but the increasing subglottal pressure

eventually manages to open the sealed Vocal Folds. As air is

passing through the glottis, the transglottal pressure decreases

(Bernouilli’s principle), causing a suction effect, causing the seal-

ing of the Vocal Folds [102]. When the glottis is closed, the sub-

glottal pressure is greater than the epiglottal pressure: if the

vocal folds are adjusted for phonation, they cannot resist this

gradient of pressure and open again [102].

The vibratory cycle of the Vocal Folds generates an acoustic sig-

nal, usually called the glottal flow signal [102, 89, 110, 74]. The air

pressure and tension of the VFs determines their vibrating frequency,

as in singing [102]. The vibrating Vocal Folds (VFs), by opening and

closing periodically, generate airflow pulses in the Vocal Tract [99].

The VFs convert a quasi-steady air flow from the lungs to an oscillat-

ing air flow in the VT: in electrical analogy, this would mean that
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the VFs convert a DC flow into an AC flow [119]. The VFs open

and close at a certain rate, called the fundamental frequency f0. The

integer multiples of this fundamental frequency, called the harmonics,

f2 = 2 · f0, . . . , fn = n · f0 are excited as well, so that the source

(vibrating VF in the larynx) generates a harmonic spectrum (f0 +

its harmonics, of an exponentially decaying amplitude) [99, 102, 58].

Muscles do not directly generate the vocal folds vibration, which is a

passive aeromechanical effect (Van Den Berg, 1958), but contribute to

its control [109].

2.1.2 Articulation

Articulation encompasses all the manoeuvres that change the vocal

tract shape [102]. The puffs of air expelled out of the Glottis travel

through the Vocal Tract (VT), made of the larynx, the pharynx, the

oral cavity and the nasal cavity to radiate through the lips and the nos-

trils (see Fig 2.4) [38]. The articulators such as the pharynx, the tongue,

the jaw opening, the soft palate (velum) and the lips can modify the

geometry of the VT to shape the sound [102].

The Vocal Tract is a single multi-chambered tube starting at the

glottis and ending at the lips, but for nasal sounds like /m/ or /n/,

the nasal cavity acts as a parallel chamber to the oral cavity, creating

two radiating ends, i. e. the nostrils and the lips respectively [74]. Fig

2.4 shows a schematic of the voice production.

2.2 source-filter theory

Around 1960, the Swedish scientist Gunnar Fant originated the idea

that speech production could be explained by the Source-Filter theory

[32]: it describes speech production as a filter plugged into a source,



2.2 source-filter theory 20

Figure 2.4: Schematic of the Speech/Singing production system, from [38]

both being independent of one another. The division between source

and filter was described in the previous section, i. e. the phonation

plays the role of the source whereas the articulation holds for the filter

[102, 74]. The basic principle is that the acoustic signal generated at

the Vocal Folds is shaped by the resonances and anti-resonances of

the Vocal Tract [99], acting as a filter, and then radiated at the lips

(and the nostrils) to the environment.

2.2.1 Framework

In the Source-Filter theory, the interactions between the filter and the

source are neglected, i. e. it is considered that the sound waves in the

Vocal Tract do not have an influence on the Vocal Folds vibration and

vice-versa [32]. This hypothesis is valid as long as the fundamental

frequency produced by the Vocal Folds is low in comparison with the

first resonance of the Vocal Tract (see section 2.3, page 22).
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2.2.2 The model

In Fig 2.5, the vibrating VFs are shown to produce the glottal flow

spectrum at the level of the Glottis, whether it is a discrete spectrum

(on the left), made of the fundamental frequency and its harmonics

(in singing) or a continuous spectrum (on the right) in whispering.

The continuous transfer function of the Vocal Tract is then superim-

posed to the glottal source spectrum, with its resonances and anti-

resonances, as well as the radiation impedance spectrum which has

a positive slope: high frequencies are better radiated at the lips [119].

A schematic of the resulting output sound spectrum is plotted at the

bottom of Fig 2.5, at the left in singing, at the right in whispering.

Since the vertical axis of the plots are logarithmic, a simple addition

of the spectra gives the resulting spectrum.

The output spectrum contains the fundamental frequency plus the

harmonics (forming together the partials), but their respective am-

plitude has been modified by the vocal tract resonances: harmonics

near resonance frequencies are enhanced in amplitude whereas those

distant from resonance frequencies are reduced [99]. Therefore, the

glottal flow spectrum samples the frequency response of the Vocal

Tract to express, via the sound output, information about both the har-

monic content of the source and the resonances related to the shape

of the Vocal Tract [99].
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Figure 2.5: A schematic of the source-filter model, after [28]. The glottal

source spectrum is produced at the glottis, whether is is periodic

(singing, upper left) or continuous (whispering, upper right).

The continuous transfer function of the vocal tract, as well as

the positive radiation impedance spectrum are superimposed to

the glottal source spectrum to form the output sound spectrum,

either in singing (bottom left) or in whispering (bottom right).

2.3 vocal tract

”The upper part of the larynx, together with the pharynx, nares, and mouth,

constitutes a passage-way, or tube, of variable size and shape, through which

the vibrating current of air is passed. It is here that the voice is moulded,

so to speak, on its way to the ear, and the shape of the passage-way largely

determines the quality or timbre of the voice.”

A.G. Bell, Mechanism of Speech, 1910 [7].
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As mentioned previously, speech/singing is produced when air

goes from an upstream duct (the trachea) to a downstream duct (the

vocal tract), passing through a valve (glottis + vocal folds). The down-

stream duct (the vocal tract) has several strong resonances which can

be modified by changing its geometric shapes [119].

The influence of the duct on the source depends mainly on the

frequency of the first resonance of the duct. When the frequency of

the valve f0 is low in comparison with the first resonance of the tract

(as is the case with most low pitched speech/singing), the duct has

little or no influence on the fundamental frequency (f0) but the ge-

ometry of the duct sets the threshold pressure for the oscillation [39].

The first resonance of the tract typically sits between 300 and 800 Hz

[119]. In male singing, the f0 of speech/singing is usually situated

below this frequency, in which case the tract has little or no influence

on f0 [119]. However, the harmonics may fall near resonances or anti-

resonances. In "normal" use of the voice (i. e. not for high-pitch use),

it is therefore the tract resonances that have a great influence on the

spectral envelope of the output sound rather than f0 [119]. It is hence

of importance to know how these resonances are created.

2.3.1 Origin the Vocal Tract resonances

The VT is roughly 15-20 cm long from the lips to the glottis and

its resonances depend upon the length and the local constrictions of

the tract [102, 20, 119]. The pressure wave, originated at the glottis,

propagates through the airspace formed by the relative positions of

the tongue, jaw, lips, and velum, and convey information about the

shape of the tract which is eventually carried to the listener’s ears [99].

This airspace, from the glottis to the lips/nares aperture, is called the

vocal tract: it generates the acoustic characteristics of the sound output

produced by a singer [99].
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In their review, Wolfe et al. [119] develop extensively the notions

of resonance and impedances. The present section is largely inspired

by this review.

To understand the origins of the VT resonances, it is necessary to

introduce the notion of acoustic impedance:

Z =
p

U
(2.2)

which is the ratio between the acoustic pressure p and the acoustic

flow velocity U [32, 109, 89]. Note that the acoustic pressure repre-

sents the variation of pressure from the steady reference pressure

(such as the atmospheric pressure, for instance) and that the flow ve-

locity is measured for a given section, e. g. at the glottis. Z is a complex

quantity which varies with frequency. It takes different values along

the length of the vocal tract. Its real part expresses pressure and flow

in phase, whereas its imaginary part represents the flow and pressure

90°out of phase [119].

The real part dissipates acoustic energy (often in heat, through

viscous friction) whereas the imaginary part accumulates acoustic en-

ergy [119]. A positive imaginary component occurs when the pres-

sure is ahead of the flow. It is an inertive impedance, because it is

related to the inertia of the mass of air: it needs a pressure difference

to be accelerated and the acoustic energy is stored in its kinetic en-

ergy [119]. A negative imaginary component occurs when the flow is

ahead of the pressure. It is a compliant impedance and the acoustic

energy is stored by compressing and dilating the mass of air [119].

It can be compared with the well-known case of a spring oscillating

around its equilibrium position. The mechanical energy oscillates be-

tween the kinetic and potential energy. The positive imaginary part

of the acoustic impedance is like the kinetic energy of the spring

whereas the negative imaginary part is like the potential energy of

the spring. On the other hand, the real part is like the losses gener-

ated by friction from the spring and a surface or the air. The sign
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of the impedance measured along a tract changes at each resonance

[119].

At the lips, the sound coming from the VT sees the radiation

impedance Zrad, which is the pressure p needed to accelerate the

mass of air just outside the mouth and produce an acoustic flow Urad.

This mass is small (cf. the Acoustical Length in 6.1, page 120). Con-

sequently, Zrad is small. From (6.4) page 128, it follows that the end

correction decreases when the frequency increases. Hence, increasing

the frequency decreases the mass of air to be accelerated outside the

mouth. The pressure difference needed to set this mass of air in mo-

tion is smaller and therefore the radiation impedance decreases with

frequency [119, 58]. Conversely, the transfer function increases with

frequency making it easier for high frequency to propagate, hence the

spectrum in Fig 2.5.

In the Vocal Tract as well as in a duct of a wind instrument, the

impedance highly depends on the reflections of the sound waves. One

of the strongest reflections happens at the lips, as the sound wave trav-

els from a relatively high impedance inside the VT to a small radia-

tion impedance [119]. If a high pressure burst is emitted at the glottis

at the same exact moment that a high pressure burst, coming back

from the lips, reaches the glottis, both their amplitude add up, gener-

ating a high impedance. Conversely, if a high suction burst, coming

from the lips, reaches the glottis at the same moment of the emis-

sion of a high pressure burst, they (almost) annihilate and generate

a small impedance. Resonances occur when the glottal flow creates

large changes in flow or pressure at the lips [119]. These are happen-

ing at the minima of Z seen from the glottis (see Fig 2.7).

The most simple approximation of a Vocal Tract consists of an

open cylinder, i. e. opened at the lips and closed at the Glottis. If the

cylinder is of length L, the 3 first maxima of the transfer function
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Figure 2.6: Pressure of the 3 first modes of an open cylinder, i. e. for λ1 = 4L

(⇒ L = λ1/4 in red), λ3 = 4L/3 (⇒ L = 3λ3/4 in blue) and

λ5 = 4L/5 (⇒ L = 5λ5/4 in cyan).

occur for wavelengths of approximately λ1 = 4L, λ3 = 4L/3, λ5 =

4L/5, . . . or for frequencies f1 = c/4L, f3 = 3c/4L = 3f1, f5 = 5c/4L =

5f1, . . . , as shown in Fig 2.6. Adding a narrow constricted opening

at the glottis, this cylinder roughly behaves like the VT of a sub-

ject phonating on the mid-central vowel ”schwa”. Fig 2.7, taken from

[119], shows the difference between an open glottis and a narrow con-

stricted opening at the glottis. In the ideal case, the minima of Z occur

between the maxima of Z, but appending a narrow constricted glot-

tis moves the minima of Z (pressure node, flow antinode) towards

lower frequencies. For a sufficiently small glottis, the slopes in Z(f)

are almost vertical: the maxima and minima of the impedance func-

tion happen at very close frequencies, and so do the maxima in the

transfer function, which are the resonances of the tract.
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Figure 2.7: Figure taken from [119]. Part A shows successively a straight-

ened Vocal Tract, emphasising the location of the different con-

strictions from the glottis to the lips, The conversion between a

DC flow coming from the trachea and the lungs to an AC flow in

the Vocal Tract, with successive reflections at the mouth and at

the glottis, and then the first resonances of an open tube (closed

at the glottis and opened at the lips). Part B gives the impedance

and transfer function of a cylindrical vocal tract of length=170

mm and radius=15 mm with and without an appended narrow

constricted glottis.

2.4 formants

The term "formant" has been used to designate different things across

disciplines. Originally, Fant [32] gave the definition: "The spectral peaks

of the sound spectrum |P(f)| are called formants." He defines resonances

as the peaks of the gain function of the tract |T(f)|: "The frequency loca-

tion of a maximum in |T(f)|, i. e. , the resonance frequency, is very close to the

corresponding maximum in spectrum P(f) of the complete sound", adding
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"Conceptually these should be held apart but in most instances resonance

frequency and formant frequency may be used synonymously." Wolfe et al.

[119] observe that for some voice researchers, the formant is a peak

in the sound spectrum (a property of the speech/singing sound), for

others it is a resonance of the vocal tract (a physical property of the

tract), while a third group thinks of it as the pole in a mathematical

filter model of the vocal tract (a property of a model). In this the-

sis, both the concepts of VT resonances, R1, R2, . . . , Ri and formants

F1, F2, . . . , Fi as peaks in the sound output are used.

2.4.1 Consequences for the human voice

The acoustic energy generated at the glottis is more effectively radi-

ated near the resonances of the tract, giving rise to broad peaks in

the output sound spectrum, the formants [119]. The Vocal Tract (VT)

of a singer acts as a filter on the acoustic output from the vibrating

vocal folds, enhancing some of the harmonics of the glottal signal

[102, 119, 99]. The formants F1 and F2 (and to a lesser extent F3) are

responsible for the vowel identification [78, 72, 102, 47, 58] whereas

higher formants (F3, F4, F5, ...) relate to the voice quality [99], or tim-

bre [119, 58], or tone colour [32, 102]. Lowering the velum (soft palate)

couples the nasal tract with the oral tract. Not only does this allow for

the production of nasal consonants and vowels, but it modifies the fre-

quency and amplitude of the oral resonances, subsequently changing

the behaviour of the formants of the sound output [36, 13].

There are many possibilities to use the previously mentioned ar-

ticulators to act on the resonances of the tract(s), but the Vocal Tract

also includes some regions, like the hypopharynx, whose geometry

are almost fixed, which would result in an individual speaker’s tim-

bre of voice [57].
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2.4.2 The Singer’s Formant Cluster

The overall voice quality can be significantly influenced by the rela-

tive proximity of the resonances R3, R4 and R5 of the vocal tract: it

is in this region that the so-called ”singer’s formant”, or ”singing for-

mant”, or ”singer’s formant cluster” appears [99]. An example can

be seen in Fig 2.8, where the LTAS of a tenor shows a broad peak of

spectral energy in the region around 3000 Hz, which is generally pro-

duced by a cluster of two or more resonances of the vocal tract, whose

positions are close to each other, according to Sundberg [101, 102].

Figure 2.8: Long time average spectrum (LTAS) of a tenor. A singing for-

mant is apparent in the range of 2500-3500 Hz (from [99]).

Bartholomew [6] seems to have been the first to highlight the pres-

ence of a broad peak around 2800-2900 Hz in the spectrum of male

operatic singers. He termed it the ”high formant” and suggested

that it exists ”regardless of whether produced by a tenor or a bari-

tone,... and regardless of fundamental pitch [f0], the vowel or inten-

sity”. Bartholomew narrowed the origin of this ”high formant” to the

part of the vocal tract between the ”rima glottidis [glottis]” and the

top rim of the ”laryngo-epiglottal funnel”, or essentially what is now

called the epilarynx (see 2.4.3.1). Lewis [62] questioned the theory
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that the singing formant was issued by a fixed resonator. He per-

formed a spectral analysis on several male singers. His data showed

a spectral prominence around 2800-3200 Hz but he suggested that

the frequency location was dependent on the singer and the vowel

being sung. Chiba and Kajiyama [14] regarded the formant around

2800-3200 Hz observed by Lewis as the resonance frequency of the la-

ryngeal cavity, because the frequency matched with the resonance fre-

quency computed from an effective laryngeal cavity of a tube length

of 2.8 cm.

Figure 2.9: Idealised vocal tract modification to generate a singing formant.

(a) Uniform tube (dashed) and the uniform tube with a narowed

epilarynx (solid). (b) Frequency response functions of both the

vocal tract shapes in (a) using the same respective line styles; the

gray line represents the frequency response of the epilaryngeal

tube in isolation. Figure taken from [99].

Originally, Sundberg [101] described the singer’s formant as a spec-

tral envelope peak around 2-4 kHz, typically observed in adult male

western opera singers, which is independent of the vowel being sung:

he suggested that the ”singer’s formant” was generated by the epi-

larynx tube which can act as an independent resonator as long as the

ratio of its cross-section to that of the pharyngeal entry is equal to or

less than 1:6. The singer has control of the epilarynx tube by lowering



2.4 formants 31

the larynx and/or constricting the epiglottal and lower pharyngeal

region [99]. Story shows the effect of an epilaryngeal tube resonator

in Fig 2.9: a pseudo-midsagittal plot of an idealised VT configured

first as a uniform tube (dashed lines) with a 5 cm2 cross section then

with the epilaryngeal portion constricted to a 0.5 cm2 (solid lines)

[99]. The frequency response is shown on the right panel of Fig 2.9,

where the constricted epilarynx generates a spectral prominence by

moving F3 and F4 towards each other. The newly acquired proximity

of F3 and F4 causes their respective filter skirts to overlap and create a

cumulatively greater amplitude response than when F3 and F4 were

further apart (in the original setting of the uniform tube) [99]. The

grey line shows the frequency response of the standalone epilarynx

tube, whose resonance frequency can be computed with the formula

of a closed-open tube, f = c/4L [99]. Therefore, conceptually, the epi-

larynx resonance frequency acts as a ”formant attractor” [99, 108].

A narrowed epilarynx is a possible mechanism to elicit the creation

of a singer’s formant: measurements of this narrowing have been re-

ported in numerous studies [91, 93, 96, 96, 98, 108, 110, 27, 101, 50, 18,

57, 104, 105]. However, the existence of the singer’s formant without

an apparent lengthening and narrowing of the epilarynx tube has

been reported by other researchers. Detweiler [23], using magnetic

resonance imaging (MRI), stroboscopy, and acoustic analysis, found

that the singers in her study produced a spectral prominence around

2800-3200 Hz, but did not show a 1:6 ratio of cross-sectional area

of the epilarynx to the entry of the pharynx. Moreover, Wang [116]

reported that the singer’s formant can be achieved with both a low

and a high larynx. Both studies suggest that the singer’s formant can

be produced by vocal tract modifications other than lengthening or

narrowing the epilarynx.

The acoustic power of an orchestra steadily declines with fre-

quency above a couple of hundred hertz, giving the opportunity for

a voice exhibiting the "singer’s formant" to be heard over a large or-
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chestra in a big opera theatre or concert hall without any electronic

amplification [119]. The ”singer’s formant” is now termed "singer’s

formant cluster" (SFC) due to its manifestation through a cluster of

the third, fourth and/or fifth resonance of the tract [101, 102, 119]. If

two or more of these resonances are close to one another, they can

produce a single broad peak in the spectrum [119, 99].

Based on small-perturbation analyses, of area functions, Sundberg

[103] reported that F4, in particular, but also F5 of the sung vowel /a/

and /i/, is highly sensitive to the area function of the laryngeal cavity,

although other regions of the area function also affect the locations of

these formants.

Due to wide harmonic spacing, the SFC in the voices of women,

especially (high) sopranos, either seems to be weaker, not well docu-

mented or non-existent [117, 114]. The previously mentioned use of

the singer’s formant does not appear to be a necessary or useful con-

dition at high f0’s to be heard over an orchestra. Indeed, in these cases,

the fundamental frequency can be far above the threshold frequency

from which the acoustical power of the orchestra steadily declines

[119]. Moreover, high voices take advantage of resonance tuning strat-

egy, as explained below [45].

Combining the high harmonics produced by the rapid closure

of the glottis with a strong SFC enhances the energy radiated in the

range 2-4 kHz, which corresponds both to the frequency region to

which the human hearing apparatus is most sensitive [39, 48] and

where the spectral power of the orchestra has drastically fallen [119].

This appears to be a reason why professional singers use the SFC

to be able to perform in large venues without amplification [119].

Another advantage of radiating more energy in the range 2-4 kHz

resides in the directivity of these frequencies. Indeed, at low fre-

quencies, the wave-length is big in comparison with the VT dimen-

sions and it radiates rather omnidirectionnaly, whereas in the 2-4 kHz
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range, the wavelength is of the order of λ = c/f = 340ms−1/2000Hz =

17cm to λ = c/f = 340ms−1/4000Hz = 8.5cm, which corresponds to

the length of the VT or smaller [102, 119]. In that case, it radiates

mostly in the direction of the mouth opening. Since performers usu-

ally sing facing the audience [38, 55], the use of the SFC can be seen

as a means to not "waste" acoustic energy radiating in all directions

by focusing a part of this energy towards the audience, who will even-

tually receive the acoustical energy [119].

a note about resonance tuning

High voices, such as sopranos, typically sing in a range in which

fundamental frequencies overlap with the range of the first resonance

of the tract, i. e. 300-800 Hz. When they increase f0 and try to maintain

typical resonance values associated with particular vowels, two prob-

lems occur. Firstly, for some vowel-pitch combinations, f0 would fall

above R1 or even R2, losing the benefit of impedance matching of the

first and/or second resonance, which allows the singer to produce

sustained singing with relatively small vocal effort [119]. Secondly,

the sound output would exhibit large variations across vowel-pitch

combinations, making the voice highly inhomogeneous [119]. It is

therefore sometimes necessary in singing to modify a vowel in or-

der to achieve desired production of a certain note [110]. If a musical

score, for instance, requires the note F4 = 349Hz to be sung on an

/i/ vowel, a singer could not use the /i/ vocal tract shape without

sacrificing vowel identity and possibily stability of phonation [108].

This is due to the fact that R1 of the vocal tract configuration of /i/ is

around 300 Hz, which is below f0. The solution is to slightly modify

the /i/ shape so that R1 is increased to be slightly higher than f0 [99].

A number of studies suggest singers adopt what is termed "reso-

nance tuning strategy" [53]: they adjust the resonances of the tract

in order that the resonances such as R1 and/or R2 match the fun-

damental frequency f0 or its multiples (2f0 , 3f0, . . . ). Joliveau et al.
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[53] and Bresch et al. [9] showed that at low pitches, sopranos sing

with typical R1 and R2, but when f0 rises, they adjust the value of

R1, so that R1 falls slightly above f0, as seen in Fig 2.10 from [53].

This results in two effects: above a certain pitch, the vowel is altered

and the voice is more homogeneous for any vowel-pitch combination.

Henrich et al. [45] showed that voice types other than sopranos are

also concerned with resonance tuning. They measured R1 and R2 for

22 classically trained sopranos, altos, tenors, and baritones while they

were singing four different vowels over their normal pitch range, by

injecting a broadband acoustic current into their tract while phonat-

ing. The results indicated that resonance tuning was used across all

voice ranges, and that different resonance tuning strategies were used

for lower voice types.

Figure 2.10: The fundamental frequency f0 versus the first resonance R1

for sopranos. When f0 is of equal or greater value than R1,

sopranos tune R1 to a value slightly abovef0. Taken from [53]
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2.4.3 The Hypopharynx

The hypopharyngeal cavities consist of the laryngeal tube and the pir-

iform fossae (see Figs 1.2a and 1.2b). The laryngeal tube (or epilarynx)

is divided into the laryngeal vestibule and the laryngeal ventricles[57].

The laryngeal ventricles (or Morgagni’s sinuses) correspond to a nar-

row bilateral hiatus between the vocal and vestibular folds and the

laryngeal vestibule forms a narrow conduit from the ventricles to the

opening into the mesopharynx [48]. The piriform fossae are bilateral

cavities, located on each side of the laryngeal vestibule. These two

cavities, shaped as an inverted cone, are opening into the lower part

of the pharynx [57].

The hypopharynx is involved in vital human activities of phona-

tion, respiration and deglutition [48]. The vocal and vestibular folds

abduct to expand the laryngeal airway during respiration, while the

same structures form the laryngeal ventricles and vestibule for voice

production [48]. The piriform fossae contribute to the widening of

the laryngeal airway, acting as a reservoir for full abduction of the

arytenoid cartilages [48].

F3, F4 and F5 are thought to relate to the geometry of the hy-

popharyngeal cavities [102], with large inter-speaker variations and

small intra-speaker (i.e., inter-phoneme) variations [57]. The shape of

the hypopharynx is relatively stable during the phonation of a vowel,

regardless of vowel type, whereas the rest of the vocal tract (termed

the Vocal Tract proper [104], VTp in this thesis) shows large changes

during vowel production [57, 67].

Kitamura et al. [57] were looking for a region in the vocal tract

which would account for the speakers’ acoustical individualities, with

large inter-speaker variations and small intra-speaker (i. e. inter-phonemes)

variations. One region potentially satisfying these conditions is the

lower part of the vocal tract, i. e. the hypopharynx: Dang et al. [18]
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observed that the area function (see section 2.5.1) of the piriform fos-

sae is relatively stable during the phonation of different vowels with

the same individual, whereas it exhibits large variations across indi-

viduals. Takemoto et al. [105] reported that the area function of the

laryngeal vestibule was almost constant across vowels phonated by a

male subject, obtained by a 3D cine-MRI technique.

Considering this potential area as the root for small intra-speaker

and large inter-speaker variability repsectively, Kitamura et al. [57]

analysed MRI data obtained from four subjects and carried out mor-

pholigical analysis on the mid-sagittal and transverse planes. Finally,

they performed an acoustical simulation using a transmission line

model to investigate the spectral intra-speaker / inter-speaker vari-

ability due to the hypopharyngeal cavities. Their results indicate that

the hypopharynx shows relatively small intra-speaker variation and

relatively large inter-speaker variation. They conclude by suggesting

that the global shape of the vocal tract provides speaker individual-

ities in the lower frequency region of speech spectra, while the hy-

popharynx provides those in the higher frequency region.

These results were supported later by Takemoto et al. [104] who

reported that the volume from the glottis to the lower pharynx was

almost constant (0.39 cm3 standard deviation) during the utterance of

a sequence of Japanese vowels /aiueo/.

Honda et al. [48] also found that the shape of the hypopharynx is

relatively stable during natural vowel production regardless of vowel

types, whereas the rest of the vocal tract region (vocal tract proper)

shows large changes during vowel production [57, 67].

Based on the findings presented above, the hypopharyngeal cavi-

ties resonances play an important role in determining the voice qual-

ity, because it influences the frequency region to which human ears

are most sensitive [39, 48] and it is engaged in vocal control for

singing [48].
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The singer’s formant cluster (SFC) is a well-established feature

of the acoustic output from the VT of trained opera singers that is

independent of the vowel being sung [101]. It is commonly described

as a cluster of F3, F4 and F5. This suggests that it is related to a

region of the VT that does not change greatly in shape with vowel

articulation; anatomically, this relates to the hypopharyngeal cavities.

Honda et al. [48] explains the creation of this broad peak with three

actions:

1. Laryngeal manoeuvres to lower the peak frequency of the laryn-

geal cavity resonance, either by widening the laryngeal ventri-

cles or by constricting the laryngeal vestibule.

2. Extra-laryngeal forces to widen the piriform fossae by advanc-

ing the laryngeal structures so as to deepen the antiresonance

trough and lower the fifth resonance frequency.

3. Vocal Tract adjustment for raising the third formant frequency

if it is necessary.

They add that ”These actions result in a relatively constant amplitude level

of the formants up to the singing formant with a sharply declining spectral

slope above the peak frequency of the singing formant.”. They conclude

with this paragraph:

The hypopharyngeal-cavity resonance is also important as one of the causal

factors of individual vocal characteristics [...] individual differences in vocal-

fold length and vocal-tract length are clear causal factors of speaker idiosyn-

crasy. [...] there is a frequency region that signals speaker-specific sound char-

acteristics. [...] the hypopharyngeal cavity resonance contributes to realising

the idiosyncratic nature of voice by determining the higher frequency spectra,

presumably together with a speaker-specific distribution of vowel formants

including a certain spectral interaction between the hypopharyngeal-cavity

resonance and the higher formants from the vocal tract proper.
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2.4.3.1 The epilarynx

The term epilarynx or epilaryngeal tube defines both the spaces it en-

closes and the physical structures it comprises [66]. Seeing the trachea

and the larynx as a long tube, the epilarynx is the supraglottal, tube-

shaped, upper extension of this tube, and is roughly 2 cm long for

males [66]. In the framework of the vocal tract, the epilarynx is a tube

that opens into the larger pharyngeal tube [101]. The vocal folds, the

epilarynx and the pharynx together form the lower posterior region

of the supraglottal vocal tract (or lower vocal tract), as illustrated in Fig

2.11: the epilarynx is presented as a ”tube in a tube”; the upper part

of the tube which fits into the inferior region of the pharynx [66]. It

can be noticed from Fig 1.1, that the pharynx does not simply blend

continually into the epilarynx, but prolongates laterally, downwards,

to terminate at the bottom of the piriform fossae. Hence, it is referred

to as a tube within a tube [66].

The epilarynx defines the set of structures comprised of the ven-

tricular and aryepiglottic folds, the epiglottis and the arytenoid carti-

lage [66] (see Fig 2.12). It encloses two (acoustical) spaces as defined in

Figs 2.12 and 2.13: the laryngeal ventricles and the laryngeal vestibule

[66].

Physiologically, the role of the epilarynx reflects the evolution-

ary origin of the larynx as a mechanism for fixation of the thoracic

volume, protective closure of the airway, and expulsion of foreign

bodies trapped in the airway [66]. Due to the low position of the

larynx relative to the velo-pharyngeal port, humans are potentially

vulnerable to fatal aspiration of food or other substances, especially

during swallowing; the epilarynx plays a role in the closure mecha-

nism that protects us [66]. The closure of the epilarynx during throat

clearing and coughing allows for the build-up of a sufficiently high

intra-thoracic pressure; when the epilarynx opens, the abrupt high-
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velocity of air expels any intrusive substance within the airway of the

epilarynx [46]. In effort closure, such as coughing or heavy weight lift-

ing, the bulging of the folds (both ventricular and vocal) become sub-

stantial to the extent that the entire epilaryngeal tube is narrowed and

eventually closed off, as an effective hermetic seal [77]. As a protective

function, the aryepiglottic folds and epiglottis are essential in prevent-

ing foreign matter to enter the laryngeal airway [66]. Moreover, the

aryepiglottic folds create a steep wall which allows moderate pool-

ing of fluid in the piriform fossae during a continuous manoeuvre

of drinking [37]. Note that the ventricles secrete mucous providing

lubricant for both the vocal folds and the larynx [66].
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Figure 2.11: The epilarynx as a tube-in-a-tube. The tube-shaped epilarynx is

found at the bottom of the pharynx tube; together these struc-

tures define the lower vocal tract. The action of these tubes are

pharyngeal constriction (1) and epilaryngeal constriction (2).

From [66].
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Figure 2.12: Anatomical sketch of the larynx. Sagittal section (a); posterior

view (b). A = arytenoid cartilage; C = cricoid cartilage; T =

thyroid cartilage; VF = vocal fold. Illustrations of laryngeal

anatomy important to the epilaryngeal tube. From [66], after

[122].

Figure 2.13: Functional planes of the larynx. Arrows indicate the axes of ac-

tivity in each plane, the opposed vertical arrows between the

ventricular and glottis plane indicate that these planes make

contact. The dashed lines inscribed on the ellipses indicate lines

of stricture. Dimension: x-axis is lateromedial; y-axis is inferio-

superior; z-axis is posterioanterior. From [66].
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The laryngeal cavity, or epilarynx, is the region from the glottis

to the junction at which its narrow exit is connected with the en-

trance of the wide pharyngeal cavity [104]. The epilarynx being of

an intermediate diameter between the glottis opening and the phar-

ynx, its characteristic impedance has an intermediate value, between

the one at the glottis and the one at the entrance of the pharynx,

turning the epilarynx tube into an impedance matcher at some fre-

quencies [108, 112]. An impedance matcher is ideal to transmit acous-

tical power both downstream and upstream [119]. Downstream, it in-

creases the transmission of the acoustic energy for some frequencies,

enhancing some frequency bands of the sound output from the reso-

nances of the tract. Upstream, it allows for a source-filter interaction,

with pressure waves of the tract on the folds [119].

Fant [32] performed perturbation analysis on the six Russian vow-

els and found that the laryngeal cavity had a significant influence on

the F4 of /a/, /u/, /i/, and on F5 for all the vowels except for /i/.

Titze et al. [108] reported that a narrow epilarynx acts as a formant at-

tractor, attracting the formants in the region 2.5-3 kHz, confirming the

attraction of all the formants frequencies toward a single frequency fo-

cus observed by Sundberg [101]. Titze et al. add that the combination

of a narrow epilarynx tube and a wide pharynx is ideal for main-

taining a positive and steadily rising inertive reactance for 0− Fe1, at

the expense of a more compliant reactance above Fe1, where Fe1 is

the first resonance frequency of the epilarynx, as a quarter-wave res-

onator. Fant and Båvegård [31] showed that the length of the laryn-

geal tube affects the frequencies of F4 and F5, reporting that shorten-

ing the laryngeal cavity by 0.5 cm increases F5 greatly and F4 to a

lesser extent. Titze [110] suggests that a narrow epilarynx tube helps

in maintaining a highly inertive vocal tract, which is the key to a reso-

nant voice. Takemoto et al. [105] found that the expansion (resp. con-

striction) of the laryngeal ventricle or constriction (resp. expansion) of

the laryngeal vestibule reduced (resp. increased) the frequency of F4.
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Takemoto et al. [104] studied the transfer functions of the whole vocal

tract, the laryngeal cavity, and the vocal tract proper (VTp, the whole

vocal tract deprived of its laryngeal cavity) from the area functions

for the five Japanese vowels obtained from an adult male speaker

and reported that the laryngeal cavity generates F4 and that both

the laryngeal cavity and the piriform fossae only slightly affect the

other formants. Honda et al. [48] suggested that the epilarynx acts

as a Helmholtz resonator, with wide ventricles (cavity) and narrow

vestibule (neck), to produce a spectral peak around 3-3.5 kHz: in the

vowel spectra, this resonance is found as an extra formant that am-

plifies the spectral level around the resonance frequency with no sig-

nificant amplification on formants in the lower and higher frequency

regions.

2.4.3.2 The piriform fossae

The piriform fossae are bilateral depressions, on each side of the lar-

ynx, formed in part by the aryepiglottis folds [66]. The pharynx ter-

minates well below the epilaryngeal border, at the bottom of the pir-

iform fossae (see a tube within a tube, 2.4.3.1). Painter [77] claims that

the volume of the piriform fossae cannot be actively enlarged but ac-

tion of the inferior pharyngeal constrictor muscles, posteroanterior

expansion of the epilarynx, or raising the larynx can actively reduce

their volume.

The piriform fossae, or piriform sinuses, owe their name to their

pear shape. This pair of bilateral cavities is located posteriorly at the

bottom of the pharynx, just above the oesophageal entrance [18].

Fant [32] made an observation about the role of the piriform fossae

in the vowels formants. He used X-ray simulation to demonstrate that

the spectral effect of the piriform fossae is to significantly lower the

formants of vowels. Later, Sundberg [101] noted that the fossae play

a significant role in the singer’s formant between 2 and 3 kHz.

Baer et al. [5] estimated the vocal tract transfer functions with and

without piriform fossae. They demonstrated an increase of the vowels
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formants frequencies, due to the piriform fossae, in agreement with

Fant’s work. They suggested that their volume can be alterated dur-

ing articulation and become smaller during the production of back

vowels. Davies et al. [21], using the data from Baer et al. [5], found a

decrease of around 5% in F1, F2 for the vowel /a/ when the fossae

were incorporated as side branches to the vocal tract.

Dang and Honda [18] carried out a study of the piriform fossae on

mechanical models as well as on human subjects, injecting water in

the piriform sinuses of humans phonating in a supine position and in

mechanical models of the lower half of Vocal Tracts. Comparing the

acoustic output with and without piriform fossae they found that the

fossae behave as side branches of the main tract and have a significant

effect on the transfer function. They suggest that the piriform fossae

need to be incorporated as side branches in any realistic model of

speech production. For both models and humans, they found that the

epilarynx tube resonance was enhanced, and that the fossae not only

affected the spectral shape in the neighbourhood of its antiresonance

but also decreased the lower resonance frequencies [18, 48].

The piriform fossae, as side branches of the Vocal Tract (VT), are

thought to produce troughs in the region of 4 to 5 kHz [104, 48]. Titze

and Story [108] found that the formant frequencies are slightly shifted

when appending the piriform fossae to the main tract. In particular,

they qualify the fossae as a formant repellent, generally pushing F1, F2,

F3 and F4 lower and F5 higher.

The piriform fossae usually show left-right asymmetry to various

degrees [48]. Mokhtari et al. [68] suggested that when the bilateral

fossae from two side branches with large asymmetry, vowel spectra

result in two zero-pole pairs, while a single zero may be observed

when the fossae are symmetrical.

sum-up A common consensus as to the acoustic effects of the hy-

popharyngeal cavities does not exist, as they have been related to

affect F4 and F5 [32], to define F3 and F4 [101], to exert influence over
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a wide frequency range above approximately 2.5 kHz [57], to produce

a spectral peak at 3-3.5 kHz [48] or to define F4 [104].

2.4.3.3 The valleculae

The valleculae epiglotticae are depressions (vallecula) just behind the

root of the tongue; they constitute a borderline area between the phar-

ynx and the larynx: these depressions serve as a temporary saliva

reservoir to prevent from swallowing [10]. Physiologically, the vallec-

ulae play a role in feeding: they contribute to the process of swal-

lowing by storing temporarily a bolus of food or liquid before it is

propelled into the oesophagus [87].

Vampola et al. [115] reported for their female subject a large in-

crease (64%) of the volume of the valleculae between before and after

having phonated into a tube.

2.5 volumetric imaging

In the last two decades, various imaging techniques have become

available to characterise the vocal tract configurations of human sub-

jects. Volumetric imaging, or 3D imaging, includes obtaining a con-

tiguous set of image slices of the body part encompassing the vocal

tract, segmenting the airway from its bordering tissues and subse-

quently reconstructing the vocal tract in three dimensions [114, 5, 91,

92]. Images can be acquired by Magnetic Resonance Imaging (MRI)

or by Electron Beam Computed Tomography (EBCT) [93, 94, 115].

MRI has the clear advantage of presenting no adverse effects (no haz-

ardous effects have been observed from short term exposure to mag-

netic fields used in MRI scanners [114, 91, 94, 100]). Due to the poten-

tial health hazards associated with exposure to ionizing radiations,

it is no longer possible to use lateral X-Ray imaging (as in [32, 14])

for a nonmedical use [15], unless a consent form relating the poten-

tial hazards has been signed by the subject [115]. However, MRI has
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some shortcomings when it is used to obtain images of airways [5],

including limited image resolution and accuracy. Air-to-tissue bound-

aries can be distorted due to MRI artefacts [91], having the effect of

blurring the edges of the vocal tract. Tissue with poor hydrogen den-

sity, such as bones and teeth also appear to be at the same gray scale

density as air [91, 15]. Moreover, MRI acquisition time is long in com-

parison with EBCT (4-5 min [91] against 12-18 s [93]) [15]. On the

other hand, EBCT has a higher resolution, a faster acquisition time,

and allow teeth imaging, but necessitates the speaker/singer to be

allowed only very low doses of radiation [94].

Several studies have used MRI to investigate the vocal tract shape

during vowel phonation [91, 5, 92, 100], others used Computer To-

mography (CT) [93, 94, 115]. Story et al [91, 92], Baer et al. [5] and

Sulter et al. [100] used MRI to find the cross-sectional areas within

planes perpendicular to the centreline extending from the glottis to

the opening of the mouth to produce an area function (see 2.5.1).

More recently, Vampola et al. [115] used CT to assess the vocal tract

shape changes due to exercising phonating into a tube. Echternach

et al. [27] have used MRI volumetry to analyse the vocal tract con-

figuration changes across registers (modal and falsetto voice) of 10

profesionnal tenors. Laukkanen et al. [59] investigated the effects of

phonation into a straw on the vocal tract adjustments and formant fre-

quencies via MRI. Rua Ventura et al. [82] carried out an MRI-based

study to assess the morphological differences in the Vocal Tract reso-

nances of voice profesionnals.

A study conducted by Honda et al. [48] used refined MRI acquisi-

tion and visualisation techniques to highlight the significant effects

of the hypopharyngeal cavities in speech.

Takemoto et al. [104] have developed a 3D cine-MRI technique to

acquire the dynamic pattern of the vocal tract during the utterance

of the short sequence of vowel /aiueo/ in Japanese, from which area

functions were extracted frame-by-frame. A potential application of
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this method is to measure the movements of the hypopharynx during

changes of voice quality and fundamental frequency.

2.5.1 Vocal Tract Area

The Vocal Tract Area function is a useful representation of the VT

from which the overal acoustical characteristics of the sound spec-

trum can be derived. Volumetric imaging (such as MRI or EBCT,

see section 2.5) of humans phonating can be used to approximate

the shape of the vocal tract by an area function: the variation of the

cross-sectional area of the vocal tract as a function of the distance

to the glottis [91, 92, 93, 94, 95, 97, 99]. The acoustic resonances of

the tract can be calculated based on the shape of the area function,

and will define the location of the formants [97]. Based on the as-

sumption of one-dimensional wave propagation, a transmission line

model [90] can be used, where the vocal tract is approximated by a

series of cylinders whose dimensions are given by the area function.

The cross-sectional areas are evaluated within planes perpendicular

to the centreline which runs from the glottis to the mouth. The al-

gorithm, called iterative bisection algorithm, works as follows [91]: a

straight line is drawn between both extremities of the Vocal Tract (the

glottis and the centroid of the cross-section made by the lips). The

bisecting plane of this straight line delimits a cross-sectional area on

the vocal tract. Taking the centroid of this cross-sectional area deter-

mines a new point. This delimits two segments to approximate the

vocal tract. Iterating the process leads to both the creation of a centre-

line for the vocal tract and a set of oblique cross-sectional areas which

will constitute the area function.

Story [97] uses the acoustic sensitivity function to allow the area

functions to be modified so that their formant frequencies reach a

set of targets. The sensitivity of a particular formant frequency to a
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change in vocal tract cross-sectional area is defined as the difference

between the kinetic energy (KE) and the potential energy (PE), as a

function of the distance from the glottis, divided by the total energy

of the system (TE) [33]. An acoustic sensitivity function can be written

as

Sn(i) =
KEn(i) − PEn(i)

TEn
n = 1, 2, 3, . . . and i = [1, . . . ,Nareas]

(2.3)

where i is the section number (being numbered such as section 1 is

just above the glottis and section Nareas is at the lips), n the formant

number, and

TEn =

Nareas∑
i=1

[KEn(i) + PEn(i)] (2.4)

The potential and kinetic energy for each formant are based on the

volume velocity Un(i) and pressure Pn(i) calculated for each section

of the area function. They are computed as follows:

KEn(i) =
1

2

ρl(i)

a(i)
|Un(i)|

2 (2.5)

and

PEn(i) =
1

2

a(i)l(i)

ρc2
|Pn(i)|

2 (2.6)

where a(i) and l(i) are the cross-sectional area and length of element

i, ρ and c are the density of air and the speed of sound respectively.

2.6 studying the vocal tract resonances

This section reviews some techniques to measure Vocal Tract reso-

nances. The ratio pm(f)/pg(f) of the pressure at the mouth pm(f) to

the pressure at the glottis pg(f) gives the transfer function of the

tract |T(f)|, the relevant function to understand the timbre or the

voice quality. Unfortunately, a direct measure would be too invasive
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and therefore voice researchers have had to use different techniques

which mostly fall into three categories: measure of the voice output

itself, the use of an external stimulus, or an image-based model. A 4th

category of VT resonances measurement has been used recently, the

measurement of the resonances of an image-based 3D-printed VT.

2.6.1 Output sound after excitation at the glottis

A method consists of analysing the sound output when the VT is

submitted to a glottal excitation such as in speech/singing. A com-

mon approach to estimate the VT resonances is to use the linear pre-

diction of an autoregressive filter which would fit best the output

spectrum [4, 63, 1]. The poles of this filter indicate approximately the

resonances of the tract.

Quasi-periodic vibration of the VFs as in speech/singing is com-

monly used as a stimulus of the VT resonances. But it has two disad-

vantages: the source function, i. e. the glottal flow, is not known and

the frequency resolution of the output depends on f0. For instance,

for a fundamental frequency of f0 = 400Hz, the harmonics will be

spaced by 400 Hz, not offering good frequency resolution.

Instead of using a harmonic spectrum as the source, it is possible

to use a broadband signal, such as in whispering [79] or by ingres-

sive phonation [65] for instance. This has the advantage of providing

a continuous spectrum, whose frequency resolution is no longer de-

pendent on the fundamental frequency of the source. The major draw-

back of this kind of method is that the glottal aperture in whispering

and breathing in is usually bigger than during speech/singing. As

a consequence, R1 is risen [52]. Another inconvenience is that articu-

lation may change from phonation in speech/singing to whispering,

altering the resonances [39, 54].
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The third method is to stimulate the VFs mechanically, from out-

side the neck, while the subject is phonating. Different signals have

been used as excitation: sinusoids [40], white noise [12] or pseudo-

random excitation [24]. One of the limitations is that the subject has

to maintain the same articulatory position for a long time. Moreover,

this method needs a high signal-to-noise ratio, in order to compen-

sate for the damping of the signal when it travels through the skin

and cartilage, which has been reported to be uncomfortable for the

subject [24]. The transfer function from the outside of the neck to the

larynx (skin, tissue, cartilage) is also unknown [79].

2.6.2 Output sound after excitation at the lips

Another method consists of measuring and analysing the response of

the tract to an acoustical stimulation at the lips. Synthesised acoustic

currents have been used for this purpose [28, 26, 53]. The method

consists of injecting an acoustic current into the mouth, while si-

multaneously recording the sound pressure at the mouth. The ratio

Z = pm(f)/Um(f), gives the impedance at the mouth, with pm(f)

the pressure measured at the mouth and Um(f) the acoustic current

flow injected from the mouth. This method presents different disad-

vantages. First, the impedance measured at the mouth is in parallel

with the radiation impedance. Therefore, the injected acoustic current

needs not to be too weak, especially in the case of loud phonation at

low frequency, because the radiation impedance is small for low fre-

quencies. Second, it measures the vocal tract impedance, seen from

the lips, and not from the glottis [119].
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2.6.3 Numerical simulation of the transfer function of an image-

based VT

The third approach is to use Magnetic Resonance Imaging or X-ray

imaging to deduce the shape of the Vocal Tract and run acoustic mod-

els to obtain the transfer function [100, 5, 65, 92, 104]. One of the

possible limitations is the many processes implied between the im-

age acquisition and the production of a 3D model of the tract: image

resolution and accuracy are limited [5], and air-to-tissue boundaries

can be distorted due to MRI artefacts [91], having as effect to blur the

edges of the vocal tract.

2.6.4 Measurement of an image-based 3D-printed VT

More recently, another method has been used to evaluate the reso-

nances of the tract. It measures the transfer function from 3D printed

replicas of MRI-based Vocal Tracts while phonating [106]. One of the

limitations is the fact that the walls of the 3D vocal tract are rigid and

have different absorption behaviour than real VTs [106].

2.6.5 Methods used in this thesis

The present thesis uses the last two methods: numerical simulation

of the transfer function of an image-based VT and measurement of

an image-based 3D-printed VT. This choice was made because image-

based VT allows to use a refined representation of a real VT to inves-

tigate the spectral impact of its sub-structures on the acoustic output

of the human voice. Furthermore, numerical and experimental meth-

ods are applied on an image-based VT: this provides benchmarking

between both.
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2.7 voice classification

According to Titze [109], professional singers can usually be clas-

sified into six major categories, three per gender, i. e. low, medium

and high voices [16]: from the lowest to the highest voice category,

one finds Bass, Baritone, Tenor, Contralto, Mezzo-Soprano, Soprano.

Traditionally, singing teachers tend to classify singers according to

voice range, tessitura and timbre, which is a subjective classification

method [109, 83, 84]. Titze suggested that objective measurements of

the Vocal Tract dimensions including its length and volume could be

significant to voice classification [109]. Voice researchers have been

investigating factors such as f0, vocal fold length, formant frequen-

cies, vocal tract dimensions and the Singer’s Formant Cluster to sort

singers into different voice types [8, 16, 25, 80]. [16] and [25] were the

first to investigate the relationships between vocal tract dimensions,

the SFC and voice types. [8] reported a correlation between the SFC

and the voice type.

Cleveland [16] investigated the correlation between formant fre-

quencies and voice classification of three vocal categories of male

singers, i. e. bass, baritone and tenor. For this study, eight professional

singers sang five different vowels, at the same pitch. The formant fre-

quencies were directly measured from the sound output and singing

teachers were asked to sort the eight singers into the three vocal cat-

egories. Results showed that the average four lower formants were

correlated with the voice classification: voices with high formant fre-

quencies were chosen as tenors, whereas voices with low formant

frequencies were classified basses. Cleveland also found that formant

frequencies in particular vowels gave a more significant voice classifi-

cation than others.
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Figure 2.14: Relationship between the SFC and the dimensions of the VT,

from [25]

Dmitriev and Kiselev [25] found that the dimensions of the VT

were related to the production of low and high formants and to the

voice classification. They measured the Vocal Tract length of 20 Rus-

sian professional opera singers from the Great Theatre with X-ray

imaging. They also recorded the sound outputs to measure the for-

mant frequencies. The results are shown in Fig 2.14 and Table 2.1: the

shorter the VT, the higher the frequency of the high singing formant.

From Basses, Baritones, Tenors, Mezzo-sopranos, Sopranos and high

Sopranos are classified accordingly, with basses having the longest VT

and lowest frequency of the high singing formant, up to the high so-

pranos with the shortest VT and highest frequency of the high singing

formant. The second column of Table 2.1 gives a relation between the

voice classification and the frequency of the high singing formant: the

lower the voice classification, the lower frequency of the high singing

formant.

Berndstson et al. [8] used a listening test with synthesised vowel

stimuli to investigate the importance of the centre frequency of the
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Voice type Frequency of the

low singing formant

[Hz]

Frequency of the

high singing for-

mant [Hz]

Length of the Vocal

Tract [cm]

High soprano 760-800 3100-3500 15.3-16.3

Soprano 700-760 2800-3100 16.8-18.5

Tenor 600-640 2700-2900 19.0-22.0

Baritone 540-600 2500-2700 21.5-24.0

Table 2.1: Frequency of the low singing formant, frequency of the high

singing formant, and the length of the vocal tract for different

voice categories, from [25]

singer’s formant to voice classification. They found that the centre fre-

quency of the singer’s formant clearly influenced the categorisation of

synthesised voices into bass, baritone, tenor, and contralto voice cat-

egories. They also reported that the centre frequency of the singer’s

formant was relevant to the naturalness of soprano synthesis.

Roers et al. [80] studied the relationship between the VF length

and voice classification. They measured the larynx and VF length

of 132 professional singers with X-rays, of which there were 40 so-

pranos, 22 mezzo-sopranos, 9 altos, 19 tenors, 23 baritones and 19

basses. They also measured directly the VF length of 29 singers. The

results showed that VF length is strongly correlated with the anterior-

posterior diameter of the subglottis and trachea. The data was used to

predict the VF length of the 132 singers and a covariation between the

VF length and voice classification was found, yielding to an average of

14.9, 16.0, 16.6, 18.4, 19.5, and 20.9 mm for sopranos, mezzo-sopranos,

altos, tenors, baritones and basses respectively. The data support the

fact that there are consistent anatomical differences amongst singers

of different voice categories.
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In a recent study, Yan et al. [120] have used an acoustic pharyn-

gometer, a non-invasive device, relying on Acoustic Reflection Tech-

nology (ART) which can directly measure the vocal tract dimensions

and volume. It is very similar to a sonar in that it sends a sound wave

into the airway. A fraction of the acoustic wave is reflected back at

each point of discontinuity in the upper airway and is recorded by

a microphone [56]. The signal can then be transformed into dimen-

sional data. The changes in cross-sectional area can then be used to

deduce the length and volume of (a portion of) the tract. Yan et al.

[120] suggest that the voice classification is related to the length and

volume of the vocal tract: higher voices exhibit a smaller VT volume

and higher formant frequencies than lower voices.



Part II

M AT E R I A L S A N D M E T H O D S
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To analyse the spectral effect of the hypopharynx on the singing

voice, the Vocal Tract (VT) will be approximated successively by four

types of Vocal Tract Models (VTMs) as can be seen on Fig 2.15: in

order of increasing complexity/realism, VTM-1, VTM-2, VTMCh&K,

VTM-MRI:

1. VTM-1: a single tube, of length 142 mm, radius 30 mm and

thickness 2 mm, representing the Vocal Tract proper (VTp), de-

fined as the VT without the epilarynx (introduced by [104], see

section i). Note that the VTp is termed oropharynx in the section

iii of this thesis.

2. VTM-2: a twin-tube, composed of VTM-1 and an appended

tube representing the epilarynx, whose length and radius are

changed from 16 to 28 mm and from 2 to 9 mm respectively.

3. VTM-Ch&K: variable cross-sectional tube, from the average cross-

sectional area of the Vocal Tract derived from X-Rays of Japanese

speakers [14].

4. VTM-MRI: actual VT shape acquired by MRI of six professional

singers.
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Figure 2.15: Vocal Tract Models used in this thesis. By order of increasing

complexity/realism, VTM-1, VTM-2, VTM-Ch&K and VTM-

MRI.
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note1 : The VTM-Ch&K represent the 5 Japanese vowels /a/,

/e/, /i/, /o/ and /u/.

note2 : The VTM-MRI are based on the VTs of 6 professional

singers (spread across voice categories). The corpus is composed of 1

Soprano, 2 Mezzo-Sopranos, 1 Tenor, 1 Bari-Tenor and 1 Bass-Baritone.

In order to maintain anonymity, each singer has been assigned a

name which mnemonically serves to indicate their voice type.

• BarnaBy is a Bass-Baritone, aged 31.

• BarTholomew is a Bari-Tenor, aged 34.

• Timothy is a Tenor, aged 30.

• MariStela is a Mezzo-Soprano, aged 29.

• MariSa is a Mezzo-Soprano, aged 35.

• Sophy is a Soprano, aged 30.

The data of Barnaby, Bartholomew and Maristela were acquired in the

York Neuroimaging Centre (YNiC) of the University of York, in the

United Kingdom (labelled protocol ”York” in this thesis). The other

set of MRI data (Sophy, Marisa and Timothy) were acquired in the

Department of Radiology of the University Medical Center Freiburg,

in Germany (labelled protocol ”Freiburg” in this thesis). Both proto-

cols are detailed in subsection 5.1.1, page 103. For more details about

the singers, refer to Table 2.2, which shows their age, classification

according to the Bunch and Chapman criteria [11], range, sung pitch

and vowel and protocol acquisition.

note3 : Bartholomew sang on 5 different registers named accord-

ing to his own terminology: Chest, on F#3; Mixed, on F4; Squillo, on

A4; Rinforzando, on B4; Falsetto, on A4.
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Singers data

Age Classification Range Pitch Vowel Protocol

Sophy 30 National G3-D6 G5 /hard/ Freiburg

Maristela 29 National F3-C#5 C4 /hard/ York

Marisa 35 International D3-A5 A4 /hard/ Freiburg

Timothy 30 National F2-C#5 (E5) F4 /hard/ Freiburg

Bartholomew 34 International E2-D5 (G5) F#3 /hard/ York

Barnaby 31 National C2-A4 (A5) G#2 /hard/

/port/

/stern/

/food/

/neap/

York

Table 2.2: Age, classification according to the Bunch and Chapman criteria

[11], range, sung pitch (between brackets for falsetto), vowel and

protocol acquisition for the 6 professional singers.

note4 : To benchmark the numerical method, some VTM-MRI

were 3D-printed. Only a few could be printed due to budget restric-

tions. According to [85], the data of Barnaby were acquired during a

rather stable phonation which defines clear edges between structures

on the MRI images. Therefore, the VTM-MRI of Barnaby was chosen

for printing. The five vowels printed are those as in /hard/, /port/,

/stern/, /food/ and /neap/.

The different VTMs used for this thesis can be visualised on the

diagram of Fig 2.16.
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Figure 2.16: Diagram of the different VTMs used in the thesis. By order of

complexity/realism, VTM-1 (1 tube), VTM-2 (2 tubes), VTM-

Ch&K (based on Chiba & Kajiyama’s [14]) and VTM-MRI, ac-

tual VT shape acquired by MRI of six professional singers.

Note that Bartholomew’s VT has been processed for 5 registers

and Barnaby’s VT for 5 vowels.



2.7 voice classification 62

This section is divided into three parts:

• Numerical simulations

• Experimental measurements

• From MRI to 3D printing

The first section refers to the numerical methods chosen, i. e. the

Finite Volume Method (FVM) which works in the time-domain and

the Finite Element Method (FEM), which works in the frequency-

domain. The open-source code OpenFOAM (see section 3.2, page

64) implements the FVM whereas the software ACTRAN is used for

FEM.

The second section develops a novel method to experimentally

measure the impulse response of a cavity and derive its transfer func-

tion. This approach is inspired from the method used by Farina [34]

in room acoustics.

The third section lists and develops the steps from the acquisition

of MRI data of professional singers phonating in a supine position

to the segmentation, meshing and 3D-printing of their reconstructed

Vocal Tract.



3 N U M E R I C A L S I M U L AT I O N S

This chapter explains the numerical methods used to compute the

transfer functions of the different VTMs. The Finite Volume Method

(FVM) and Finite Element Method (FEM) are both largely used in a

variety of fields, such as automotive engineering, aerospace, aircrafts,

civil engineering, military engineering, architecture, etc [29]. It first in-

troduces the notion of computational domain, then describes the two

methods used: FVM and FEM. For extensive development of these

two methods, refer to Appendix B and C respectively. The chapter

closes with a section about meshing; an indispensable tool to turn

real life objects into usable geometric data for FVM/FEM.

3.1 computational domain

For both FVM and FEM, the computational domain or domain of

computation represents the physical space on which the phenomenon

of interest (here, the lossless wave propagation through a cavity closed

at one end and opened at the other) is simulated. This domain is en-

closed by boundaries sorted in different boundary condition patches

(see Boundary Conditions in the next sections). For the present case,

the walls and glottis end of the VTMs are set as walls, offering a re-

flection of the waves, according to a preset absorption coefficient, and

the radiating end (as an extension of the lips end) exhibits a reflection-

free boundary. For an example of the computational domain for VTM-

1, see Fig. 3.1.

63
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Figure 3.1: Computational domain of VTM-1: separation of the boundary

between two patches: the VT walls and the radiating cavity.

3.2 finite volume method

The open source code OpenFOAM® (Open Field Operation and Ma-

nipulation, www.openfoam.com) was used to implement the lossless

wave propagation of an impulse inside the VTMs. The code being

open and modulable, OpenFOAM offers users complete freedom to

customise and extend its existing functionality. For the purpose of this

thesis, a lossless wave equation was implemented on OpenFOAM,

along with suitable boundary conditions. The numerical schemes used

(see hereunder, Euler Explicit and Gauss Linear) were the ones in-

cluded in the software. OpenFOAM is a Computational Fluid Dy-

namic (CFD) software working in the time domain with the FVM. For

more extensive development about the Finite Volume Method (FVM),

refer to Appendix B.
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3.2.1 Wave equation

The 3D (incompressible) wave equation is as follows:

∂2ϕ

∂t2
= c2∇2ϕ (3.1)

where ϕ is a scalar potential, t is the time and c is the speed of sound.

If p is the acoustic pressure and U the acoustic particle velocity, ϕ can

be defined such as:

p =
1

ρ

∂ϕ

∂t

U = −∇ϕ

where ρ is the medium density, so that (3.1) is considered to represent

a linear sound propagation [81]. (3.1) is implemented in OpenFOAM

on the whole domain, and solved with Euler explicit (for more de-

tails about the numerical scheme, refer to Appendix B) for the time

derivative and Gauss linear for the Laplacian.

3.2.2 Impulse Response

The FVM works in the time-domain. Therefore, the impulse response

is first numerically simulated and then transformed into the frequency-

domain in order to obtain the transfer function. The initial and bound-

ary conditions are set as follows:

3.2.2.1 Initial condition

At the time t = 0, the velocity is equal to zero everywhere and

the pressure is equal to the atmospheric pressure everywhere ex-

cept at the glottis with a point source, implemented under the form

e−||(x,y,z)||, to elicit the propagation of an impulse.

3.2.2.2 Boundary Conditions

The domain is divided into two different boundary conditions, i.e. the

Vocal Tract walls (including the closed glottis) and the radiating cavity.
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This thesis uses the so-called "convective outlet", an incompressible

reflection-free boundary condition taken from [107].

The convective outlet used for the wave equation boundary condi-

tion is given by

∂ϕ

∂t
+ Vn

∂ϕ

∂n
= 0 (3.2)

with the convective velocity Vn represented by

Vn =
Zn

ρ
(3.3)

and Zn being the normal acoustic impedance relating to the absorp-

tion factor α by

α = 1−

∣∣∣∣(Zn/ρc) − 1

(Zn/ρc) + 1

∣∣∣∣2 (3.4)

note

• The Vocal Tract walls are assigned an absorption coefficient of

0.01[76].

• The open end, which radiates the sound outwards, is assigned

an absorption coefficient of 1. This allows for a reflection-free

boundary at the end of the radiating field [76].

The boundary conditions are as follows:

1. Vocal Tract walls

∂ϕ

∂t
+ 136791.7

∂ϕ

∂n
= 0 (3.5)

2. Radiating cavity

∂ϕ

∂t
+ 343.7

∂ϕ

∂n
= 0 (3.6)

The values in 3.5 and 3.6 have been computed for a speed of sound

of 343.7 m · s−1 and a density of 1.205 kg · m−3 [81].
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3.2.3 Transfer function

The impulse response (pressure recorded by a virtual microphone

after 0.04 s, which was the minimum time duration to obtain a good

resolution spectrum) was converted into a transfer function with an

FFT, with no windowing. Note that the virtual microphone is placed

3cm far from the centre of the cross-sectional area of the VT at the

lips end (see Fig 3.2). This matches the condition set further in the

experimental measurements, in section 4.

Figure 3.2: Computational domain for VTM-MRI-Barnaby-/stern/, with

the different boundary conditions (Vocal Tract walls and Radi-

ating cavity). The virtual probe microphone is located 3 cm far

from the centre of the cross-sectional area of the lips opening

and the point source (in yellow) is located at the glottis. Note

that in the case of the experimental measurement of the 3D

printed VTM-MRI, the (transducer) source and the microphone

are interchanged.
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3.3 finite element method

The software ACTRAN by FFT (Free Field Technologies, www.fft.be)

was used to run the FEM simulations. This commercial CFD code is

based on FEM. The user can simulate various cases of acoustic propa-

gation by entering different parameters for the boundaries, excitation,

material, etc. For an extensive development about the FEM, refer to

Appendix C.

3.3.1 Transfer function

Actran computes the frequency response of the system to a given ex-

citation (here, a source point at the glottis) for a range pf frequencies.

The equation solved by Actran at each frequency is:

(
K+ iωC−ω2M

)
x(ω) = F(ω) (3.7)

with the stiffness matrix K, the admittance matrix C and the mass ma-

tricM. Actran solved this equation for the range 20-10000 Hz by steps

of 20 Hz. The response of the system to each frequency is computed

by a virtual microphone situated 3cm far from the centre of the cross-

sectional area of the VT at the lips (see Fig 3.2). The transfer function

then simply consists of the adjunction of each frequency response of

the system.

3.3.1.1 Boundary conditions

The absorption coefficients of the different boundaries are set respec-

tively to:

• α = 0.01 for the walls of the tract.

• α = 1 for the open end, which radiates the sound outwards.

The values are those prescribed by Oshima et al. [76]. Note that

the absorption coefficient of the walls has been adjusted to the value
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of α = 0.02 for the MRI-based Vocal Tracts, to match the experimental

measured bandwidth of the formants, referring to the method used

in [71].

3.4 meshing

In the Appendices B and C, the physical domain Ω needs to be di-

vided into small cells, Ωi, i = 1, ...,N with Ω =
∪
i

Ωi. This operation

is called meshing. In this research, the open source Salome is used for

the meshing.

SALOME (http://www.salome-platform.org) is an open-source

software that provides a generic platform for Pre- and Post-Processing

for numerical simulation.

Scripts in Python were written to build the different VTMs in

the geometry module of Salome and to generate meshes in the mesh

module with NetGen 1D-2D-3D algorithm for tetrahedralisation and

triangulation, with manual settings in the zones of interest. The VTM-

MRIs are directly imported into the mesh module of Salome and

meshed with NetGen automatic tetrahedralisation.

3.5 block-diagram

The different processes at work can be seen on the block-diagram 3.3.

The diagram is divided into 3 main processes:

• Pre-processing

– Salome is provided with python scripts which create ge-

ometric models, meshes and boundary condition patches

(VTM-1, VTM-2 and VTM-Ch&K).
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– ITK-Snap (see section 5 segments MRI data into a volume

and exports it to STL (stereolithography format) (VTM-MRI).

– Blender inverts the face orientation of the STL file (VTM-

MRI).

– NetGen smooths the surface of the STL with automatic

triangulation (VTM-MRI).

– Blender is used to manually select the faces of the STL

which correspond to the boundary patches (VTM-MRI).

– Salome is used to mesh the corresponding STL, assigning

boundary conditions to each patch (VTM-MRI).

• Simulation

– OpenFOAM is implemented with a lossless wave equa-

tion, boundary conditions and initial condition on the com-

putational domain defined by the mesh and boundary patches

provided by Salome (VTM-1, VTM-2, VTM-Ch%K).

– ACTRAN is given boundary conditions and initial condi-

tion on the computational domain defined by the mesh

and boundary patches provided by Salome (VTM-1, VTM-

2, VTM-Ch&K, VTM-MRI).

• 3D printing

– Salome provides geometric models under the .STL format

to be printed (VTM-1, VTM-2, VTM-Ch%K).

– ITK-Snap provides .STL file from the segmentation of MRI

data (VTM-MRI).

– Magics edits the STL file (see section 5) (VTM-MRI):

1. Creates a shell (give the STL surface a thickness)

2. Splits the VTM in two parts, to make it foldable, for

research purposes.

3. Creates a hinge, to deal with the opening of the VTM.
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4. Appends an ”insert” so that it can be plugged onto a

cabinet, for demonstration purposes.
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Figure 3.3: Block-diagram of the processes at work for the numerical sim-

ulations and 3D printing of VTM-1, VTM-2, VTM-Ch&K and

VTM-MRI. The processes are divided into three categories: the

pre-processing, the simulation and the 3D printing. For VTM-

1, VTM-2 and VTM-Ch&K (blue arrows): a script in Python is

written in Salome to create the different geometries and sub-

sequent meshes, assigning boundary conditions to the patches

which are then used both for FVM (OpenFOAM) or FEM (Ac-

tran), which implement the equation to be solved as well as

the boundary and initial conditions on the computational do-

main. VTM-MRI follows the red arrows: ITK-Snap is first used

to segment the MRI data from the singers, exported into Blender

which inverts the face orientation, then to NetGen which auto-

matically meshes the volume with tetrahedrons, then to Blender,

which manually selects the faces to split the domain into patches

which will be assigned different boundary conditions in Salome.



4 E X P E R I M E N TA L

M E A S U R E M E N T S

This chapter is about the experimental set-up used to measure the

VT transfer functions, as described in Fig 4.1. First, the method used

to measure the transfer function of a cavity, including the input sig-

nal and its inverse filter, will be explained step by step. This will be

followed by further explanation regarding the material used for the

measurement, i.e. the speaker, the cabinet and the microphone.

4.1 method

The method used to measure the impulse response and consequently

the transfer function of the different VT models (VTM-1, VTM-2,

VTM-Ch&K and VTM-MRI) is based on the methodology developed

by Farina in [34] to measure simultaneously the linear impulse re-

sponse and harmonic distortions of a room with an exponential sine

sweep. This method is applied to a cavity, the VTM (Vocal Tract

Model).

Fig 4.1 is an overview of the method which will be developed in

further detail in the following sections:

1. A driver is given an input signal, ESS, which is recorded through

a probe microphone (see section 4.2 page 76).

2. The output recorded by the microphone is then convolved with

the inverse filter of the input signal, i.e. ESS−1.

73
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3. As a result, the impulse response is "linearised", i.e. the Linear

Impulse Response (LIR) and the harmonic distortions are split

apart.

4. An FFT is performed on the LIR, giving the pressure-pressure

transfer function.

5. The transfer function of the driver alone is subtracted from the

one with the VTM, giving as a final result the transfer function

of the VTM, independent of the driver’s frequency response.

• NB: in this thesis, processes 2 to 3 are termed "Linearisation of

the impulse response"

The processes (1 to 4 in Fig 4.1) are repeated twice: once with the

VTM, once without. The spectra obtained are then subtracted from

one another (5 in Fig 4.1) to provide the transfer function of the VTM.

The driver is located 3 cm from the centre of the cross-section of the

lips opening (driver+VTM) or from the microphone standalone to

match the condition of the numerical simulations of section 3 (see Fig

3.2).
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Figure 4.2: 6-sided anechoic chamber.

4.2 material

The experiment was carried out in a 6-sided anechoic chamber (see

Fig 4.2). A probe microphone G.R.A.S. type 40SA was located at the

glottis end. The signal was pre-amplified by a power Module type

12AA before being written on a USB type device with a 96 kHz sam-

pling rate on a 24 bits WAV file. A transducer is situated 3 cm far

from the radiating end (lips end) of the VTMs and radiates the sine

sweep towards the VTM. This matches the condition set in section 3.

The sine sweep is 10 s long and is swept from 10 Hz to 11000 Hz.

4.2.1 The driver

To measure the transfer functions of the different VTMs, a driver ex-

hibiting a flat frequency response (±3dB between 0.1-10 kHz) was

chosen, as can be seen in Fig 4.3. Then, a cabinet was designed to

enclose the driver. The cabinet can be seen in Fig 4.4.

Figure 4.3: Frequency response of the driver VISATON SC 8 N 8 Ω
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Figure 4.4: 3D-printed cabinet, designed to enclose the VISATON driver

4.3 exponential sine sweep

Audio measurements, whether for room acoustics or audio equip-

ment, are represented by two kinds of measurements: the linear trans-

fer function of a system and its harmonic distortions [34]. Amongst

the well-known methods, it is found in the literature that periodic

pulse or Maximum Length Sequence (MLS) have been widely used

as excitation signals; using a periodic pulse has proved to have a

poor SNR (Signal-to-Noise Ratio) since the stimuli need to have a

low energy to remain within a linear frame, i.e. to prevent from non-

linear distortions[64]. MLS is usually employed to improve SNR, but

has been shown to be inefficient when the non-linearities are too im-

portant [34]. These traditional methods prevent the separation of the

linear impulse response from the harmonic distortions [64].

Another family of signals used for acoustic measurements, the

swept sines, vary the frequency continuously and allow a better SNR

and provide ways to separate the linear impulse response from its
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harmonic distortions by a linear convolution of the output signal with

the analytical inverse filter processed from the excitation signal [44].

The most common sweeps can be performed in two ways: linearly or

exponentially [70].

The linear sweep increases its frequency with a fixed rate:

ω2 −ω1

t2 − t1
= const

and it has a white spectrum: it contains the same amount of energy at

each frequency.

The exponential sweep increases its frequency with a fixed rate

of the ratio of two frequencies:

ln(ω2/ω1)

t2 − t1
= const

and it has a pink spectrum: it contains the same amount of energy per

octave.

The linear sweep spends the same time between 20 Hz and 40

Hz and between 100 Hz and 120 Hz whereas the exponential sweep

spends the same time between 20 Hz and 40 Hz (an octave) and be-

tween 10 kHz and 20 kHz (also an octave). This results in a white (flat)

spectrum for the linear sweep, i.e. every frequency receives the same

energy, and a pink (not flat) spectrum for the exponential sweep, i.e.

the energy per octave is constant. The main advantage of the expo-

nential sweep over the linear sweep is its possibility to separate the

linear response from its harmonic distortions, as shown in Figs 4.5a

and 4.5b (representation of spectrograms adapted from [34]): the sys-

tem response to an exponential sweep excitation is composed a linear

response and its harmonic distortions. Since the harmonic distortions

are parallel to the linear response, both can be split apart by convolu-

tion. This is not possible for the linear response for which the linear

response and harmonic distortions are not parallel. Fig 4.5 represents
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an actual spectrogram of the system response to an exponential sine

sweep. The most powerful (the amplitude is represented by a colour

scale) is the linear response, the line on the bottom right.
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Figure 4.5: Spectrogram of the system response to an exponential sine

Sweep in the case of a weakly nonlinear system, displaying the

linear response of the system (main line on the bottom right)

and its harmonic distortions (parallel lines to the main line). The

amplitude is represented by a colour scale.

Generally, an exponential sine sweep is written in the form:

s(t) = sin [θ(t)] = sin

K ·

e tL − 1

 (4.1)

Posing

d

K ·

e tL − 1


dt

∣∣∣∣
t=0

= ω1

d

K ·

e tL − 1


dt

∣∣∣∣
t=T

= ω2

determines

K =
T ·ω1

ln
(
ω2

ω1

) , L =
T

ln
(
ω2

ω1

)
where ω1 and ω2 represent the lower and upper frequency of the

sweep respectively. T is the time duration of the sweep, in seconds,

and t the time. The instantaneous frequencyω(t) (the first time deriva-

tive of θ(t)) is then given by

ω(t) =
d [θ(t)]

dt
=
K

L
· e
t

L (4.2)
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Let us now examine the time delay ∆t needed by the sweep to go

from one frequency f to N times this frequency, i.e.

ω(t+∆t) = Nω(t) (4.3)

Expressing (4.3) according to (4.2), we find that

K

L
· e
t+∆t

L = N · K
L
· e
t

L

from which we find

e

∆t

L = N

and finally

∆t = L · lnN (4.4)

which means that ∆t remains constant once the order N has been

fixed. In other words, the time ∆t needed by the sweep between a

pitch of frequency f and the same pitch 3 octaves higher, i.e. 23 · f =

8 · f, ∆t will be given as ∆t = L · ln 8 whatever the frequency f is.

Indeed, as described before, the sweep spends the same time between

20 Hz and 40 Hz (one octave) and between 10 kHz and 20 kHz (also

one octave).

For a frequency-varying signal, the energy at a specific frequency

is proportional to the time duration during which the signal oscil-

lates at that specific frequency [64]. Since the energy signal E(t) is

proportional to the time at a specific frequency, it follows that E(t)

is inversely proportional to the rate of change of the instantaneous

frequency ω(t). Thus, it follows that

E(t) ∝ 1

d [ω(t)]

dt

=
L2

K
· e

−
t

L (4.5)

Taking the Fourier transform of (4.5) leads to a formulation of the

energy as a function of frequency:

E(jω) ∝ L2

K
· 1

L+ jω
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Defining k as a constant of proportionality, the energy can be ex-

pressed as:

E(jω) =
kL2

K
· 1

L+ jω
(4.6)

This formula illustrates the important fact that the energy of an ESS

decreases with frequency. This can be physically explained by the

fact that the sweep spends more time at low frequencies than at high

frequencies (cf. the example above with 20-40 Hz and 10-20 kHz). In

particular, if we double the frequency, i.e. if we replace the factor 1
ω

by 1
2ω

in (4.6), we observe an energy drop of 10 log10
1
2
∼= −3dB. This

means that the energy spectrum of the ESS has a −3dB/octave slope,

as can be seen in Fig 4.6.

4.4 linearisation of the impulse response

Let r(t) be the room/cavity response to the excitation signal s(t)

defined in (4.1). The room/cavity impulse response h(t) can be ex-

tracted by convolving r(t) with the inverse filter of s(t) [34] [35] [64].

The exponential sweep (which is a causal signal) is temporally re-

versed and then delayed to obtain a causal system [44]. However,

if we time-reverse the excitation signal s(t) (see Fig 4.7), it still ex-

hibits a −3dB/octave. Therefore, we need to compensate this energy

drop by modulating the amplitude of the time-reversed signal with a

+6dB/octave envelope so that the inverse filter exhibits a +3dB/octave

slope [34] [64]. Let us create an inverse filter f(t) so that, after being

convolved with the system response, it yields to the impulse response.

h(t) = r(t) ∗ f(t) (4.7)
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Figure 4.6: The spectrum of the exponential sine sweep displays an energy

drop of -3dB/octave
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Figure 4.7: The spectrum of the time-reversed exponential sine sweep dis-

plays an energy drop of -3dB/octave
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This is termed post-modulation, in opposition to a pre-modulation

suggested by [64], which modulates the input signal directly so that

it has a flat spectrum and the reversed-time signal also exhibits a

flat spectrum. The pre-modulation necessitates adjustments prior to

the recording. Therefore the robustness of the post-modulation was

chosen for this experiment. The form of the post-modulation is [64]:

m(t) =
A

ω(t)
= A

[
K

L
· e

t
L

]−1

(4.8)

where A is a scalar representing the modulation amplitude. At time

t = 0, the instantenous frequency ω equals ω1. In this condition, we

can solve for A in (4.8), assuming arbitrarily that m(t) = 1 at t = 0:

m(0) =
A

ω(0)
→ 1 =

A

ω1

→ A = ω1

from which we can now write (4.8) as

m(t) =
ω1

ω(t)
= ω1 ·

K
L
· e
t

L

−1

Modulating the time-reversed signal gives:

f(t) =
ω1

ω(t)
· sin[θ(T − t)] = ω1 ·

L

K
· e

−
t

L · sin[K · (e
T − t

L − 1)] (4.9)

and exhibits a slope of +3dB/octave as can be seen in Fig 4.7.
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Figure 4.8: The spectrum of the amplitude-modulated exponential sine

sweep displays an energy rise of +3dB/octave

Now having designed an inverse filter which counter-balances the

−3dB/octave, it has to be convolved with the system response. The

convolution results in a series of impulse responses, separated on the

time axis. As can be seen in Fig 4.9, the Linear Impulse Response (LIR)

of the system and its harmonic distortions are temporally separated

on the time axis. Hence, access can be gained simultaneously to the

LIR and the impulse response of each harmonic distortion.
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Figure 4.9: Convolution of the system response with the inverse filter signal.

The plots are spectrograms: the horizontal axis is the time and

the vertical axis is the frequency. On the upper left part, the

system response is plotted (the thick line is the linear response

of the system and the parallel lines are the harmonic distortions).

On the upper right part is the inverse filter of the input signal.

Both are convolved in the time domain (horizontal axis). The

convolution process is shown at different times (t1, t2, t3, t4) on

the bottom part of the figure: the intersections of the system

response with the inverse filter leads to the LIR split from its

harmonic distortions (bottom right).

4.4.1 Note about the harmonic distortions

Electro-mechanical transducers, such as those used in speakers and

microphones, are non-linear systems, i.e. they do not react propor-

tionally to the input signal with which they are provided. On top of

the linear response of the system, the transducer resonates at several

frequencies; the harmonics of the linear response. These harmonic
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Figure 4.10: Result after the convolution of the system response with the

inverse filter: the harmonic distortions are packed before the

linear response on the time axis, parallel to the latter. Scale is

in dB to enhance visualisation.

are called harmonic distortions and are inherent to every transducer.

Therefore, the method described in 4.4 allows access to the linear re-

sponse deprived from the harmonic distortions generated in both the

speaker and the microphone. Therefore, this method is essentially in-

dependent of the speaker and the microphone.

The convolution packs the harmonic distortions before the linear

response on the time axis, parallel to the latter, as can be seen on Fig

4.10. The linear response is situated at the time duration of the sweep

and the harmonic distortions are parallel to it. ∆t in (4.4) gives the

distance on the time axis between the linear response and the Nth

harmonic.

The big improvement with the method developed in [34] resides in

the fact that applying a Fast Fourier Transform (FFT) to the Linear
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Figure 4.11: Spectrum of the LIR (in red) and its harmonic distortions (in

blue).

Impulse Response or the harmonic distortions of the system allows

a clear image of the transfer function of the system in the frequency

domain to be seen, both for the linear response and for the non-linear

distortions behaviour.

4.5 fast fourier transform

Each impulse response, starting with the LIR, is manually isolated

from the other impulse responses and an FFT (Fast Fourier Trans-

form) is performed on it, leading to the linear transfer function of the

system. In Fig 4.11, one can see the transfer function of each harmonic,

including the linear response.

To isolate the LIR, the software Audacity was used to zoom onto a

window encompassing only the linear response, then the amplitude

was switched to a logarithmic scale to assess more accurately where

the impulse response starts and ends.
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To perform the FFT, an algorithm (shown in Fig 4.12) was used on

each impulse response p of time duration l, representing a series of

recorded pressure taken at each 1/fs second, where fs represents the

sampling rate:

1. Find the next power of 2

a : 2a ⩾ l

2. Normalisation

p = p
max|p|

3. Zero-padding

p(1 : round((2a − l)/2)) = 0,

p(2a − round((2a − l)/2) : 2a) = 0

4. FFT

20 · log10 |FFT(p, 2a)|

This process is realised 5 times per sound sample and averaged in

order to clear the inherent noise.

Figure 4.12: Algorithm used to obtain the transfer function out of an im-

pulse response.
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4.6 final transfer function

As described in the introduction section 4.1, in Fig 4.1, we need to per-

form the processes 1 to 4 twice, once to obtain the transfer function

of the VTM + point source (from the driver), once to obtain the trans-

fer function of the point source from the driver alone. We can then

subtract both spectra to get the transfer function of the VT model,

independently from the driver.

4.7 note about ess and ess
−1

Using the ESS (4.1) as an input signal, the inverse filter (4.9), and

plotting spectrograms (frequency versus time), it can be seen that

there is an instantaneous burst of energy at the start and at the end of

the sweep (see the green vertical lines in Fig 4.15). These are due to

the fact that the sweep starts and ends non-smoothly, i.e. the slope is

not continuous at the time t = 0 and the sweep does not necessarily

cross the time axis at t = T . If we convolve both those signals we end

up with an impulse response and its echoes in the frequency-time

space, as in Fig 4.15. The idea is to provide the sine sweep with a

fade-in and a fade-out.

4.7.1 A smooth start

Fig 4.13 shows that the transition at the start of the sweep is not

smooth. This is due to the fact that before the sweep, the signal has

a constant zero value, with a zero slope, and suddenly, at the start

of the sweep, the slope is different than zero, there is no continuous

transition and this results in a burst of energy on the whole spectrum,

preceding the sweep.
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Figure 4.13: The start of the sweep is not smooth. After applying the en-

velope described in (4.10) and (4.11), the signal goes smoothly

from zero to the start of the sweep.

The first derivative at the time origin gives the transition slope. The

first time derivative of (4.1) is

d [s(t)]

dt

∣∣∣∣
t=0

=
d [sin[θ(t)]]

dt

∣∣∣∣
t=0

=
K

L
· e
t

L · cos

K ·

e tL − 1

 ∣∣∣∣
t=0

=
K

L

= ω1

which gives a slope different from zero.

To smooth the transition, the start of the signal was multiplied by

a squared-sinus envelope (the result is displayed in Fig 4.13). Being
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part of the sigmoid family, it ensures a smooth transition between a

threshold value and a fixed value. This transition is applied between

the start frequency of the sweep, f1 and ends at a frequency fixed by

the user, fin. The algorithm works as such:

1. Find the time at which the instantaneous frequency is equal to

fin.

tin = L · ln(2πfin · L/K)

2. Find the maximum sampled time lesser than or equal to tin.

t[in] = max(t[in] ⩽ tin)

3. Generate the envelope.

sin2(at+ b)

4. Multiply the signal by the envelope from t = 0 to t = t[in].

The purpose is to find a formula of a squared sinus such that it

starts at zero at the frequency f1 and reaches the value 1 at the fre-

quency fin, after a quarter of a period. In other words, find parame-

ters a and b such as

sin2(at+ b)

∣∣∣∣
t=0

= 0 ⇒ b = 0 (4.10)

sin2(at+ b)

∣∣∣∣
t=t[in]

= 1 ⇒ a =
π

2t[in]
(4.11)

Once the pre-envelope has been applied, we see that the left vertical

green line (the broad-band burst of energy preceding the sweep), the

"pre-ringing", to quote Farina [34] disappears as shown on Fig 4.15.

4.7.2 A smooth end

The sweep stops abruptly as soon as the frequency upper limit has

been reached (see Fig 4.14). And it is very unlikely that this frequency

stops when the sinus crosses the axis. For this reason, the sine sweep
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Figure 4.14: The sweep does not stop smoothly. After applying the envelope

described in (4.10) and (4.11), the signal goes smoothly from

the end of the sweep to zero.

defined in (4.1) generally creates a broad-band burst of energy, occur-

ring at its end. Similarly to the method applied for the pre-envelope, a

post-envelope needs to be performed to smooth down the end of the

sweep onto zero. For this purpose, we apply a squared sinus which

takes the value 1 at an upper fixed frequency fout and goes smoothly

to zero at f2.

The algorithm works as follows:

1. Find the time at which the instantaneous frequency is equal to

fout.

tout = L · ln(2πfin · L/K)

2. Find the minimum sampled time greater than or equal to tout.

t[out] = min(t[out] ⩾ tout)

3. Generate the envelope.

sin2(at+ b)
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4. Multiply the signal by the envelope from t = [out]0 to t = T .

We need to find parameters a and b such as the squared sinus

goes from the value 1 at t = t[out] to zero at t = T

sin2(at+ b)

∣∣∣∣
t=t[out]

= 1 ⇒ at[out] + b =
π

2
(4.12)

sin2(at+ b)

∣∣∣∣
t=T

= 0 ⇒ aT + b = 0 (4.13)

Subtracting (4.13) from (4.12) gives

a =
π

2(T − t[out])
(4.14)

Once the pre- and post-envelopes have been applied, we see that

both the left and the right vertical green line (the broad-band burst

of energy preceding and following the sweep respectively), the "pre-

ringing" and the "post-ringing" [34] disappear as shown on Fig 4.15.
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Figure 4.15: An Exponential Sine Sweep (ESS) of the form (4.1) has a burst

of energy across the whole spectrum both at its start and at its

end (A1). Once convolved with its inverse filter (A2), it leads to

an impulse response and its echoes in the frequency-time space

(A3). Providing a smooth start to the (ESS) (B1), and convolv-

ing it with its inverse filter (B2) removes the pre-ringing (B3).

Providing the (ESS) with both a smooth start and a smooth end

(C1), and convolving it with its inverse filter (C2) removes both

the pre- and the post-ringing (C3).
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Figure 4.16: Driver-independent experimental method. Measured transfer

functions of the resonance of VTM-1 with 2 different speakers:

a 952.210UK driver unit (in blue) and a VISATON SC 8 N 8 Ω

transducer (in red).

4.8 benchmarking

This section illustrates the driver-independence of the experimental

method and the implications of changing the distance of the probe

microphone in the numerical simulations as well as the absorption

coefficient.

4.8.1 Driver-independent

On Fig 4.16, one can see that the experimental method is essentially

driver-independent. The resonances of a single tube (VTM-1) of Length

= 142 mm, Radius = 15 mm, Flange = 2 mm were excited by 2 inex-

pensive drivers at the lips end: a 952.210UK driver unit (in blue) and

a VISATON SC 8 N 8 Ω transducer (in red). Both drivers show very

similar results, making the experimental method essentially speaker-

independent.
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Figure 4.17: Distance-dependence of the resonances of VTM-Ch&K-/a/.

Simulated transfer functions of the resonances of VTM-Ch&K-

/a/, when the distance between the lips opening and the vir-

tual probe takes the values 1cm, 2cm, 3cm, 5cm and 10 cm.

4.8.2 Distance dependence

Figs 4.17 and 4.18 illustrate the distance dependence of the numerical

method for the probe location for VTM-Ch&K-/a/ and VTM-MRI-

Barnaby-/hard/ respectively. The further the probe is from the lips

the more the overall amplitude of the spectrum decreases, as expected

from a sound source radiation, the radiated power of which decreases

as the inverse of the squared distance. The radiation propagates better

the high frequencies, as seen in subsection 2.3.1.

4.8.3 Absorption coefficient dependence

To simulate the walls’ reflections and the absorbent behaviour of the

actual material (and of the VT walls) in the numerical method, a nor-

mal acoustic admittance is applied on the walls of the VT models.

This is performed by a simple method given in [121], see chapter 3.

The acoustical absorption coefficient is given as
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Figure 4.18: Distance-dependence of the resonances of VTM-MRI-Barnaby-

/hard/. Simulated transfer functions of the resonances of VTM-

MRI-Barnaby-/hard/, when the distance between the lips

opening and the virtual probe takes the values 1cm, 2cm, 3cm,

5cm and 10 cm.

α = 1−

∣∣∣∣Zn/(ρc) − 1

Zn/(ρc) + 1

∣∣∣∣2 (4.15)

where α is the absorption coefficient, Zn the normal acoustic impedance,

ρ the density of air, c the speed of sound. (4.15) leads to

Zn = ρc
1+

√
1−α

1−
√
1−α

(4.16)

From 4.16, the normal admittance can be derived as

An =
1

Zn
(4.17)

In the conditions of the experiment (T = 5°), the different values can

be computed:
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Absorption

α An

0.001 6.1075× 10−7

0.01 6.03226× 10−6

0.03 1.8593× 10−5

0.1 6.4301× 10−5

The results can be seen on Figs 4.19 and 4.20, which display the

transfer functions with the different absorption coefficients from ta-

ble 4.8.3 for VTM-Ch&K-/a/ and VTM-MRI-Barnaby-/hard/ respec-

tively. It can be seen that the more absorbent the VT walls are, the

more the amplitude of all the formants decrease. This leads progres-

sively to the assimilation of F4-F5 and quasi assimilation of F1-F2

in Fig 4.19, and the assimilation of F1-F2 and F3-F4-F5 in 4.20 for

the most absorbent coefficient shown (α = 0.1). It is observed that a

greater absorption coefficient of the Vocal Tract walls tends to cluster

the formants together.
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Figure 4.19: Absorption-dependence of the resonances of VTM-Ch&K-

/a/. The simulated transfer function of VTM-Ch&K-/a/ is

plotted for different values of absorption coefficient (α =

0.001, 0.01, 0.03, 0.1).

Figure 4.20: Absorption-dependance of the resonances of VTM-MRI-

Barnaby-/hard/. The simulated transfer function of VTM-MRI-

Barnaby-/hard/ is plotted for different values of absorption

coefficient (α = 0.001, 0.01, 0.03, 0.1).



5 F R O M M R I TO 3 D P R I N T I N G . . .

The previous chapter described the material and method used to mea-

sure the transfer functions of the different models of the Vocal Tract.

This chapter explains the methodology employed from the data col-

lection of a singer phonating in an MRI scanner to the measurement

of their 3D-printed tract.

5.1 magnetic resonance imaging

Magnetic resonance imaging has been used to acquire 3D representa-

tion of the head and neck of a singer phonating. This allows to recon-

struct the shape of the VT during phonation. This shape will be used

either for rapid prototyping (3D printing) or as a basic computational

domain for numerical simulation using the FEM. For an extensive

development on MRI technique, refer to Appendix D. Obtaining op-

timal results with the MRI technique requires a compromise between

minimal capture time (to reduce motion artefacting) and maximal

resolution: a single image can be captured in the midsagittal plane in

under a second, but a 3D capture necessitates parallel slices acquisi-

tion and requires the subject to remain stationary for the duration of

the scan [86].

102
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5.1.1 Acquisition and protocol

As mentioned in section ii, data from six professional singers were ac-

quired in two research facilities, the ”York” and ”Freiburg” protocols

respectively.

5.1.1.1 Protocol ”York”

The scans of Maristela, Bartholomew and Barnaby (pseudonyms for

the singers, see section ii) have been acquired according to the proto-

col described in [86]. In this study, participants were asked to phonate

on a phoneme (see Table 2.2) for as long as comfortably possible, and

instructed to then attempt maintaining the articulatory setting in an

unvoiced condition whilst breathing for the remainder of the scan

[86]. Scans are made at the York Neuroimaging Centre (YNiC), us-

ing a General Electric 3.0 T HDx Excite MRI Scanner. The scan de-

veloped was a 3D fast gradient echo sequence, the details of which

are summarised in Table 5.1. From [85]: Acquisition is isotropic 2mm in

a 192× 192 matrix. Output is then interpolated to 512× 512 using 50%

slice overlap giving an effective anisotropic output of 0.75× 0.75× 1mm.

A stack of 80 images is produced in the midsagittal plane in approximately

16 s. Maristela and Barnaby’s MRI data were acquired by Matt Speed

[85] whilst Bartholomew’s MRI data was acquired by the author of

this thesis.

5.1.1.2 Protocol ”Freiburg”

The other set of MRI data i. e. Sophy, Marisa and Timothy were ac-

quired in the Department of Radiology of the University Medical

Center Freiburg, in Germany. The subjects were examined radiologi-

cally with the 3.0 T TIM TRIO (Siemens, Germany) MRI. The subjects

sustained a tone for 20 s, sung on the vowel /a/ (as in /hard/, see

Table 2.2) in modal register; they were asked to sustain the tone as

consistently as possible [27]. The data for the acquisition: an effective
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”York” Protocol

Te 1.7ms

TR 4.8ms

Flip Angle 5◦

Bandwidth ±41.67Hz

FOV 260mm3

Slice Width 2mm (50% separation)

Matrix 512× 512

Table 5.1: ”York” protocol: technical data for the MRI data acquisition of

Maristela, Bartholomew and Barnaby.

anisotropic output of 1× 1× 1.3mm in the midsagittal plane acquired

in approximately 12.93s (see Table 5.2).

5.1.1.3 Quality of MRI data

Limitations in MR image resolution and accuracy [5] (in section i) as

well as air-to-tissue boundaries distortions due to MRI artefacts [91]

can lead to the blurring of the edges. The protocol ”Freiburg” has

a resolution of 224× 256 versus a 512× 512 matrix for the protocol

”York”. Therefore, the image acquired with the latter are of a better

resolution and accuracy than the former. Artefacts due to movements

during phonation for Maristela [85] and Marisa also blurred the pic-

tures, and made them more difficult to segment accurately. So the

quality of the acquired MRI data can be ranked by order of increasing

quality: Marisa, Sophy, Timothy, Maristela, Bartholomew, Barnaby.

5.1.2 Segmentation

The MRI acquisition gives a stack of 2D images, from which the vol-

ume of the tract is reconstructed in 3D. For that purpose, ITK-Snap
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”Freiburg” Protocol

Te 1.67ms

TR 4.85ms

Flip Angle 12◦

Bandwidth ±123Hz

FOV 260× 227.5× 62.4mm3

Slice Width 1.3ms

Matrix 224× 256

Table 5.2: ”Freiburg” protocol: technical data for the MRI data acquisition

of Marisa, Timothy and Sophy.

(www.itksnap.org) is used; this open-source software allows segmen-

tation of structures in 3D medical images. It can manipulate images

from MRI scan (such as .DICOM files) and perform a semi-automatic

or manual segmentation. Segmenting an anatomical structure in ITK-

Snap involves assigning a label to each voxel (volumetric pixel) in the

structure.

Fig 5.1 shows the mid-sagittal slice of a singer phonating. The pro-

cess for the segmentation performed with ITK-Snap can be summed

up in the following steps:

1. Resampling the region of interest (see Fig 5.2a).

2. Intensity Regions: parametrise the contrast to clearly display

the borders of the region of interest (see Fig 5.2b).

3. Bubbles: propagate bubbles so that they swell until they meet

a border (the different steps are illustrated on Figs 5.3).

4. Manual Editing: necessary post-processing after the semi-automatic

segmentation, to clean the segmentation of bubbles leaking, teeth,

etc (see Fig 5.4, pre- and post- manual editing).
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The segmented structure can now be exported as an .STL file (Stere-

olitography, see subsection 5.2.1) for further processing (see Fig 3.3),

e.g.

• Meshing for FEM simulation

• 3D printing

5.1.2.1 Note about the teeth

The proton density of the teeth makes them appear as air on MRI pic-

tures, so that special care needs to be taken to remove the teeth from

the vocal tract, by manually editing the semi-automatic segmentation.

On Fig 5.5, it can be seen that the teeth appear as air in the Vocal Tract

and need to be removed.
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Figure 5.1: MRI mid-sagittal slice.
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(a) Sagittal slice: pre-segmentation (b) Sagittal slice: intensity regions

Figure 5.2: MRI sagittal slice pre-segmentation and intensity regions.
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(a) First bubble (b) Bubbles

(c) Bubble expansion: start (d) Bubble expansion

(e) Bubble expansion: end

Figure 5.3: Bubbles expansion process: bubbles are placed in the vocal tract

and expand until they reach a boundary defined by the intensity

region.
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(a) Segmentation editing: with teeth (b) Segmentation editing: without teeth

Figure 5.5: Manual editing for the teeth

5.2 3d printing

3D printing provides the opportunity to mould MRI-based VTs and

subsequently measure the transfer function of the tract in vitro. Pre-

viously, measurement was performed in vivo [45, 41], which is indu-

bitably invasive and necessitates the glottis of the subject to be closed,

in order not to account for any subglottal resonances and/or acousti-

cal coupling.
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The industry of 3D printing has been expanding very rapidly

since its creation in 1984 when Charles W. Hull first introduced the

term stereolithography, a printing process that enables a 3D object to

be created from a digital file. This technology is used to create a 3D

model from a picture and gives the users the possibility to test a

design before launching a larger manufacturing program. At the time,

it was too expensive for industry for manufacturing, but 30 years later

the costs of 3D printing have dropped dramatically and it has become

affordable even for the private customer. Nowadays, the applications

of 3D printing cover a broad range of fields, including architecture,

engineering, industrial design, automotive design, aerospace, dental

and medical industries, biotech, etc.

3D printing is also called additive manufacturing because it cre-

ates objects by adding layers of material, as opposed to subtracting

manufacturing, which was the more traditional method used in the

past to manufacture pieces for industry. Subtracting process is based

on taking bits away from a solid (metal, wood, plastic, ...) by drilling,

grinding and milling, especially with metallic components, whereas

the additive process consists in depositing material on a platform, layer

by layer, until full completion of the object to print.

5.2.1 Technical data

The objects to be printed are provided as .STL files (Standard Triangu-

lation Language), which approximate a surface with triangular faces.

The machine used to print the VTMs is called Objet24 3D Printer.

Objet printers create models by jetting thin layers of printing materi-

als on a platform, called the build tray, layering up the cross-sections

of the object until the complete model is formed. This process uses

two types of material:

• Model material which is what the finished model is made of.
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• Support material which fills gaps and spaces in the model,

supporting the overhanging features during printing, and is re-

moved after printing

Materials used for printing models with Objet printers are made of

resins, which are composed of reactive monomers and oligomers,

called photopolymers, i.e. they can bind to one another when ex-

posed to light, for instance. VeroWhitePlus Opaque is used as model

material and FullCure 705 as support. The printer has a 28-micron

resolution printing, which means that the particles (3D dots) used in

the photopolymer stereolithography are around 28 µm in diameter.

The maximum dimensions of a single model printed are:

• X axis: 233.00 mm (9.17 inches)

• Y axis: 191.00 mm (7.52 inches)

• Z axis: 148.30 mm (5.83 inches)

5.2.2 Pieces printed

The cabinet which encloses the speaker was first printed, followed

by VTM-1 and VTM-2 respectively. Finally, the MRI-based VTs (VTM-

MRI) were printed. Note that the VTM-Ch&K did not need to be 3D

printed, as the VT replicas made by Arai [2], from Chiba & Kajiyama

measurements [14] were used.

The VT, as its simplest model, can be approximated by one cylin-

der (VTM-1), which represents the oropharynx. Appending another

tube fulfilling the role of the epilarynx (VTM-2) allows to gain access

into the spectral impact of this cavity.

The first piece under investigation (VTM-1) is a cylinder whose

dimensions (height 142mm, radius 15mm, flange 2mm) match the

outline dimensions of VTM-Ch&K without the epilaryngeal tube. It
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height [mm] radius [mm]

1 tube 142 15

2 tubes 16 6

1 6 (x10)

20 5

20 4

20 3

20 2

Table 5.3: Dimensions of the different 3Dprinted pieces used to be com-

bined to model the Vocal Tract (VTM-1 and VTM-2).

is represented in orange in Fig 5.6. A second tube (in purple) is then ap-

pended to VTM-1, whose height and inner radius can be modulated

between 16 and 26mm and 2 and 6mm respectively. This 2nd tube

represents the epilaryngeal tube which can be lengthened and/or nar-

rowed in combination with the pieces in purple on Fig 5.6. The pieces

in Fig 5.6 can be combined in several ways to assess the change in

the transfer function when one goes from one tube (VTM-1) to two

tubes (VTM-2), varying the length and the radius of the second. The

dimensions of the different tubes are given in Table 5.3

The final pieces printed were the MRI-based VTs (VTM-MRI),

two of which can be seen on Fig. 5.7. It exhibits a distinct insert at

the base, which plugs onto the matching horn on top of the driver

to play a glottal signal through the vocal tract for demonstration pur-

poses. It is also provided with a hinge designed to allow the opening

of the VT, to fill the piriform fossae or valleculae with plasticine to

assess their spectral impact, for instance.
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Part III

R E S U LT S
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This section exposes the results obtained with the methods de-

scribed in part ii. The results chapter derives the theoretical predic-

tions of the resonances of one tube (VTM-1) and a twin-tube (VTM-2)

and compares them with the numerical simulations and experimen-

tal measurements. The next section explores the relation between the

dimensions (length and radius) of the epilarynx tube and the extra

formant which is generated when it is appended to the orophar-

ynx tube (from VTM-1 to VTM-2). It then switches to a more com-

plex/realistic model of the VT, the VTM-Ch&K. Finally, the results

of the most realistic VTM, i. e. VTM-MRI, are displayed with differ-

ences across vowels for the same singer (Barnaby), for SFC across

registers (Bartholomew) and across singers from different voice clas-

sifications ((Sophy, Marisa, Maristela, Thimothy, Bartholomew, Barn-

aby)). A new metric is then introduced, in order to be able to compare

the SFC across singers, vowels and registers. Finally, the data from

VTM-MRI are being visualised at the light of the new metrics, and

a formula linking the dimensions of the hypopharynx to the SFC is

suggested.
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This chapter first focuses on the spectral impact of the epilarynx, then

on the spectral impact of the piriform fossae and the vallecula. It

starts with the derivation of the theoretical predictions of the reso-

nances of simple structures approximating the Vocal Tract, such as a

single tube (VTM-1) or a twin tube (VTM-2). The notion of Open End

Correction Coefficient is then introduced and the theoretical predic-

tions are confronted with the experimental results and the numerical

simulations. The next sections display the results of different mod-

els of the VTM, by order of increasing complexity/realism, VTM-1,

VTM-2, VTM-Ch&K and VTM-MRI. A new metric is then introduced

to measure the SFC. The last section visualises the data at the light of

new metric.

In this chapter the results will be presented under different forms.

To avoid confusion, here is a concise description of what each term

refers to:

• Theoretical predictions: resonance frequencies of simple struc-

tures such as VTM-1 or VTM-2 analytically predicted by theory.

• Numerical simulations: transfer functions obtained through nu-

merical methods (FVM or FEM) introduced in the section 3.

• Experimental measurements: measurements obtained in the ane-

choic chamber with the novel experimental method developed

in section 4.

119
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6.1 theoretical predictions

To ensure the reliability of the numerical simulations and experimen-

tal measurements, these two approaches are tested against theoretical

predictions. In this section, the theoretical predictions of the resonant

frequencies of one tube (VTM-1) and a twin-tube (VTM-2) are de-

rived. The notions of acoustical length and Open End Correction Co-

efficient are introduced. These theoretical predictions are compared

with numerical simulations. In Fant [32], the VT is approximated by

a twin-tube resonator to model the different vowels whereas here the

choice has been deliberately made such that both tubes act as the epi-

laryngeal and the oro-pharyngeal tube, to account for the creation of

the Singer’s Formant Cluster (SFC).

6.1.1 VTM-1

Let us first examine a tube with a uniform cross-section. The modes

of an open-closed cylinder are of the form :

Ψnz,m(n) = Jm(kr,m(n)r)eimϕsin(kzz)

with the eigenvalues

kz =
(2n+ 1)

L

π

2
(6.1)

giving the name of a quarter wavelength resonator. (see the Appendix

A for an extensive development of this solution).

When its length is large in comparison with the wavelength, the

resonant frequencies of a cylinder can be approximated under the 1D

assumption of plane wave propagation. The cross-sectional dimen-

sion of the tubes should be less than a half-wavelength [69], which

means it is valid up until about 5 kHz (VTM-1 has a diameter of 30
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mm, see section ii). Under this assumption, the acoustic modes are

given as the solutions of [69, 101]

A cot
2πfL∗

c
= 0 (6.2)

where L∗ is the acoustical length of the tube, A is its cross-section, c

is the speed of sound and f is the frequency.

The resonances of VTM-1 (whose dimensions are: Length = 142

mm, Radius = 15 mm, Flange = 2mm) are displayed on Fig 6.1. The

theoretical predictions are the roots of the equation (6.2), plotted in

red. These are linked to the numerical simulation (FEM) in black and

experimental result in grey by the dotted lines. The experimental and

numerical results match the theoretical predictions of the resonant

peaks in frequency.
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Figure 6.1: Theoretical predictions, numerical simulations (FEM) and exper-

imental measurements of the resonances of one tube. On the up-

per part of A, the theoretical predictions are given as the roots of

the equation (6.2), plotted in red. On the lower part of A, these

are linked to the numerical simulation (FEM) in black and exper-

imental result in grey in by grey dotted lines. B shows VTM-1

and its respective dimensions.
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6.1.2 VTM-2

For a twin-tube resonator (VTM-2), the acoustic modes are given as

the solutions [101, 57] of

A1 tan
2πfL∗1
c

= A2 cot
2πfL∗2
c

(6.3)

which are solved graphically on Figs 6.2, 6.3 and 6.4 (A1 and A2

as the cross-sections of the epilaryngeal and oro-pharyngeal tubes,

respectively, c is the speed of sound and f is the frequency). L∗1 and

L∗2 used in the equations represent the acoustical length of the oro-

pharyngeal and epilaryngeal tubes respectively.

In all the coming figures, the oro-pharyngeal tube is in red, whereas

the epilaryngeal tube and its related effects are in blue. The greyscale

pattern represents the model of the whole VT (blue + red). Figs 6.2,

6.3 and 6.4 illustrate the creation of an extra resonance when a sec-

ond tube is appended to the cylinder of Fig 6.1 (i. e. , from VTM-1

to VTM-2), via numerical simulations (FEM and FVM) and experi-

mental results respectively. This extra resonance is synonymous with

an extra formant and the creation of the SFC once the VT model is

evolved into a more sophisticated model, the VTM-MRI.

Figs 6.2B, 6.3B and 6.4B show the simple tube (red) and the twin-

tube resonator (blue + red). On Figs 6.2A, 6.3A and 6.4A, we can

see the resonances of the simple tube, whose theoretical predictions

are given by the roots of the red function (6.2) or right-hand term of

the (6.3), symbolised by red triangles whereas the numerical results

are plotted in red, with white labels for the resonances. In blue, the

asymptote of the blue function (left-hand term of (6.3) gives the the-

oretical prediction of the first resonant frequency for the standalone

epilaryngeal tube. The intersections between this blue function and

the red function give the predicted resonance frequencies for the twin-

tube resonator (black diamonds on On Figs 6.2A, 6.3A and 6.4A).

The corresponding numerical (experimental) results are plotted in
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greyscale. The dashed black lines link the theoretical predictions and

the numerical (experimental) results for the formant frequencies of

the twin-tube resonator.

On Figs 6.2A, 6.3A and 6.4A, we can see that the numerical re-

sults are consistent the theoretical predictions. The blue arrows show

that the red R4 (associated with the simple tube alone) splits into

the black R4 and R5 (associated with the twin-tube) because the blue

function is now intersected twice around its asymptote, which corre-

sponds to the first resonant frequency of the epilaryngeal tube. The

overall spectral effect is a boost around the first resonant frequency

of the epilaryngeal tube that affects the neighbouring resonances and

creates an extra resonance. This leads to a more appropriate definition

of the Singer’s Formant Cluster (SFC) as the combination of this extra for-

mant and a local spectral shaping of its neighbouring formants caused by the

additional (epilaryngeal) tube. This supports the results found by Titze

et al. [108] where the resonance frequency of the standalone epilarynx

is described as a formant attractor, which attracts the neighbouring

formants.
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Figure 6.2: FEM numerical simulations of the resonances of one tube and

a twin tube, showing the effect of appending an extra tube

and generating an extra resonance. On A, in red, the reso-

nances of the oro-pharyngeal tube (VTM-1): theoretical predic-

tions (red triangles) and numerical simulation (red plot). In

blue, the resonance of the epilaryngeal tube (asymptote). In

black, the twin-tube (VTM-2) resonances: theoretical predictions

(black diamonds) and numerical simulations (greyscale plot). B

shows VTM-2, with the dimensions of the epilaryngeal and oro-

pharyngeal tubes respectively.
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Figure 6.3: FVM numerical simulations of the resonances of one tube and

a twin tube, showing the effect of appending an extra tube

and generating an extra resonance. On A, in red, the reso-

nances of the oro-pharyngeal tube (VTM-1): theoretical predic-

tions (red triangles) and numerical simulation (red plot). In

blue, the resonance of the epilaryngeal tube (asymptote). In

black, the twin-tube (VTM-2) resonances: theoretical predictions

(black diamonds) and numerical simulations (greyscale plot). B

shows VTM-2, with the dimensions of the epilaryngeal and oro-

pharyngeal tubes respectively.
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Figure 6.4: Experimental results of the resonances of one tube and a twin

tube, showing the effect of appending an extra tube and generat-

ing an extra resonance. On A, in red, the resonances of the oro-

pharyngeal tube (VTM-1): theoretical predictions (red triangles)

and experimental results (red plot). In blue, the resonance of the

epilaryngeal tube (asymptote). In black, the twin-tube (VTM-2)

resonances: theoretical predictions (black diamonds) and experi-

mental results (greyscale plot). B shows VTM-2, with the dimen-

sions of the epilaryngeal and oro-pharyngeal tubes respectively.
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Acoustical length

The lengths L∗1 and L∗2 used in (6.2) and (6.3) are actually the acousti-

cal lengths of the tubes, i.e. the physical length plus the end correction

which accounts for the small volume of air outside the tube vibrating

along with the air inside [51] . The end correction factor is known

analytically for 2 extreme cases, i.e. a cylinder with a circular flange

of infinite and zero dimensions [61, 73] . The length correction for

low frequencies in these two cases is δ∞ = 0.8216R and δ0 = 0.6133R,

where R is the radius of the cylinder. A fit formula for an infinite

flange is given by Dalmont et al. [17] after Norris and Cheng (1989)

for kR < 3.5 :

δ̃∞ = δ∞
[
1+

(0.77kR)2

1+ 0.77kR

]−1

(6.4)

where δ∞ = 0.8216R, R is the radius of the inner tube and k = ω/c0

is the wavenumber.

OECC

The Open End Correction Coefficient (OECC) is the coefficient by

which δ∞ has to be multiplied to account for the finiteness of the

flange (note that the end correction factor is only known analitycally

for 2 extreme cases, i.e. a cylinder with a circular flange of infinite

and zero dimensions). Based on experimental data, Dang et al. [19]

after Hall (1987) give the following empirical formula describing the

relation between the OECC and the width of the flange for a low-

frequency approximation,

α1 = 0.821− 0.13 [(W/R) + 0.42]−0.54 (6.5)

where R is the radius of the open end and W is the width of the

flange.

OECC for a confined region

Ingard [51] establishes the OECC for the interior of the neck of a

Helmholtz resonator :
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α2 = 0.48(A)1/2 [1/r− 1.25/R] (6.6)

where A and r are the area and the radius of the smaller-area sec-

tion. R is the radius of the larger area section. This fit formula is valid

as long as r < 0.4R, which corresponds to a 1:6 ratio, which Sundberg

[101] cited as the minimum ratio between the epilaryngeal and the

pharyngeal opening required to generate the SFC.

Application to a twin-tube

The resonant frequencies are given by the solution of (6.3), i.e.

A1 tan
2πfL∗1
c

= A2 cot
2πfL∗2
c

(6.7)

L∗1 and L∗2 are the acoustical lengths of the epilaryngeal and oro-

pharyngeal tubes (see Figs 6.2B, 6.3B and 6.4B), respectively:
L∗1 = L1 + δi for the epilaryngeal tube

L∗2 = L2 − δi + δe for the oro-pharyngeal tube

(6.8)

where δi and δe are the interior and exterior open end corrections,

respectively, with
δi = α2r

δe = α1R
[
1+

(0.77kR)2
1+0.77kR

]−1

(6.9)

Note that the interior end correction δi is added to the epilaryngeal

tube, whereas it is subtracted from the oro-pharyngeal tube.
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6.2 vtm-2 : changing the dimensions of the

epilaryngeal tube

It was shown in subsection 6.1.2 that appending the epilaryngeal tube

to the oropharyngeal tube creates an extra resonance and shapes the

local spectrum around it, leading to a more appropriate definition of

the SFC: the combination of this extra formant and a local spectral shaping

of its neighbouring formants caused by the additional (epilaryngeal) tube.

Note that for the remainder of this thesis, both terms resonance

and formant are used interchangeably to avoid confusion with a hy-

pothetical Singer’s Resonance Cluster (SRC) and a Singer’s Formant

Cluster (SFC).

In a twin-tube resonator (VTM-2), the behaviour of this SFC al-

ters when the dimensions of the epilaryngeal tube are changed. Figs

6.5 and 6.8 show the effect of changing the length of the epilaryn-

geal tube whereas Figs 6.6 and 6.7 show the effect of changing its

radius, for the FEM and FVM approach respectively. For all the fig-

ures, the greyscale plots represent the simulated transfer functions of

VTM-2, the red plots represent the simulated transfer functions of the

oropharyngeal tube (VTM-1 in this case) and the blue plots represent

the first resonance frequency of the standalone epilarynx tube. The

dimensions of the oro-pharyngeal tube (in red) remain the same as

that of the Figs 6.2, 6.3, 6.4. Only the dimensions of the epilaryngeal

tube (blue) change.

6.2.1 Changing the length of the epilaryngeal tube

Figs 6.5 and 6.8 show the effect of changing the length of the epila-

ryngeal tube in VTM-2 for the FEM and FVM approach respectively.

The upper part of the Figs shows the first resonance frequency of the
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standalone epilaryngeal tube when its length is changed. A longer

length defines a lower resonant frequency (see right-hand term of

(6.3)). This supports the results highlighted by Titze et al. [108] and

predecessors: ”Our findings confirm the earlier results of Sundberg [101]

that the epilarynx tube clusters the third, fourth, and fifth formants to gen-

erate the vocal ring (singers formant). The focal point in the spectrum is

the uncoupled (free) resonance frequency of the epilarynx tube, which can

be computed simply on the basis of tube length”[108]. The lower part of

the Figs shows the simulated transfer functions of VTM-2 when the

epilaryngeal tube changes from 16 mm to 28 mm. The SFC (extra

formant plus a local shaping of the neighbouring formants) follows

the path given by the first resonance frequency of the epilaryngeal

tube (upper part of the Figs), decreasing in frequency as the length of

the epilarynx increases. It is very clear on Fig 6.8, where the ”snowy

peaks” (symptoms of a local spectral uplifting around a resonant fre-

quency, in other words the SFC) move towards lower frequencies as

the epilaryngeal length increases. Notice how the blue arrow (first

resonance frequency of the epilaryngeal tube) moves from a position

in between F4 and F5 (4-5 kHz) for a length of 16 mm to F3 (3 kHz)

for a length of 28 mm.

6.2.2 Changing the radius of the epilaryngeal tube

Figs 6.6 and 6.7 show the effect of changing the radius of the epilaryn-

geal tube in VTM-2 for the FEM and FVM approach respectively. The

blue arrow shows the first resonance frequency of the standalone epi-

laryngeal tube; as the radius of the epilaryngeal tube decreases from

9 mm to 2 mm, its frequency remains constant whereas its amplitude

increases. This effect is illustrated on Fig 6.9, where the amplitude

of the SFC increases as the radius decreases. Note that the change

in radius effects the OECC in L∗2, but non-significantly. Observe that

both on Figs 6.6 and 6.7, F5 clusters with F4 as the radius of the epi-
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laryngeal tube decreases. F3, to a lesser extent, is getting closer to F4.

This is due to the fact that the attraction role of the first resonance

of the epilarynx tube (the SFC is a formant attractor [108]) increases

as the tube narrows. As the SFC appears and gains in amplitude, its

attraction power on the neighbouring formants increases, leading to

F5 and F3 getting closer to F4, ”clustering” as the radius of the epi-

laryngeal tube decreases. This corresponds to a decrease of the SFC

bandwidth.

Sundberg hypothesised that the condition needed to elicit the

creation of the SFC is a ratio of at least 1:6 between the cross-sectional

area of the epilarynx and the entrance of the pharynx [101]. However,

on both Figs 6.6, 6.7 and 6.9, it can be seen that the SFC appears

continuously. This suggests that the observation of Sundberg should

rather be replaced by a gradual increase in SFC prominence.

The effects of both lengthening and narrowing the epilaryngeal

tube in VTM-2 can be summarised as follows:

• Reducing the radius of the epilaryngeal tube increases the am-

plitude of the SFC (Figs 6.6, 6.7 and 6.9) and decreases its band-

width accordingly, contributing to the ”clustering” of the neigh-

bouring formants of the first resonance frequency of the stan-

dalone epilaryngeal tube.

• Increasing the length of the epilaryngeal tube lowers the centre

frequency of the SFC (Figs 6.5 and 6.8), along the path given

by the resonant frequency of the standalone epilaryngeal tube

(upper part of Figs 6.5 and 6.8, the blue curve with dots repre-

sents the asymptote of A1 tan 2πfL∗
1

c
for different lengths of the

epilaryngeal tube).
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• The SFC centre moves from being coincident with F5 (for L1 =

16 mm in Figs 6.5 and 6.8) to being between F3 and F4 for L1 =

28mm and the amplitudes of the formants around this peak are

locally raised.

• The condition "The cross-sectional area in the pharynx must be at

least six times wider than that of the larynx tube opening" [101] to

obtain the SFC was not confirmed. Rather we observed a grad-

ual increase in SFC prominence.
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Figure 6.5: FEM simulated transfer functions when the epilaryngeal tube

length of VTM-2 varies from 16 mm to 28 mm (lower part of

the figure). The upper part of the figure represents the first res-

onance of the standalone epilaryngeal tube, which decreases in

frequency as the epilaryngeal tube length varies from 16 mm to

28 mm.
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Figure 6.6: FEM simulated transfer functions when the epilaryngeal tube ra-

dius of VTM-2 varies from 9 mm to 2 mm. In blue, the evolution

of the first resonance frequency of the standalone epilaryngeal

tube when its radius changes from 9 mm to 2 mm.

Figure 6.7: FVM simulated transfer functions when the epilaryngeal tube

radius of VTM-2 varies from 9 mm to 2 mm. In blue, the evolu-

tion of the first resonance frequency of the standalone epilaryn-

geal tube when its radius changes from 9 mm to 2 mm.



6.2 vtm-2 : changing the dimensions of the epilaryngeal tube 136

Figure 6.8: FVM simulated transfer functions when the epilaryngeal tube

length of VTM-2 varies from 16 mm to 28 mm (lower part of

the figure). The upper part of the figure represents the first res-

onance of the standalone epilaryngeal tube, which decreases in

frequency as the epilaryngeal tube length varies from 16 mm to

28 mm.
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Figure 6.9: Variation of the SFC amplitude (from Fig 6.7) in relation with

the epilaryngeal radius in VTM-2.
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6.3 vtm-ch&k

In order to ascertain the nature of the effects observed in the pre-

vious section in a vocal tract model that is closer to reality, the di-

mensions of the epilaryngeal tube in the Chiba and Kajiyama’s Vocal

Tract Models (VTM-Ch&K) [14] are changed. These VTMs represent

the cross-sectional area changes in the VT, approximated from early

mid-sagittal X-Ray imaging for 5 Japanese vowels, i.e. VTM-Ch&K-

/a/, VTM-Ch&K-/i/, VTM-Ch&K-/u/, VTM-Ch&K-/e/ and VTM-

Ch&K-/o/.

Fig 6.10 shows the effect of changing the radius of the epilaryngeal

tube of VTM-Ch&K-/i/. Fig 6.11 shows the effect of changing the

length and the radius of the epilaryngeal tube in VTM-Ch&K-/a/.

Figs 6.12, 6.13, 6.14, 6.15 and 6.16 show the effects of changing the

length of the epilaryngeal tube in the VTM-Ch&K-/a/, VTM-Ch&K-

/i/, VTM-Ch&K-/u/, VTM-Ch&K-/e/ and VTM-Ch&K-/o/.

As before, the red plot is the oro-pharyngeal tube (the VTp, Vocal

Tract proper), the grayscale plot is the full VT and the blue vertical

arrow indicates the asymptote of A1 tan 2πfL∗
1

c
(the first resonant fre-

quency of the standalone epilaryngeal tube).

6.3.1 Changing the radius

Fig 6.10A shows the spectral effects on the simulated transfer function

(FVM) when of VTM-Ch&K-/i/ (Fig 6.10B) when its epilaryngeal

radius decreases from 10 mm to 4 mm. The blue arrows represent

both the first and second resonances of the standalone epilaryngeal

tube.

Note that a second SFC, as described by Titze [111] and Lee [60],

is confirmed on this Fig: the metaphorical ”snowy peaks” around 10-

12 kHz are associated with the second resonance frequency of the

standalone epilaryngeal tube. Observe that the SFC frequency centre



6.3 vtm-ch&k 139

varies slightly (see subsection 6.2.2) whereas the changes are more

visible for the second SFC frequency centre. This is due to the fact

that the frequency centre (and therefore its changes) are multiplied

by 3: a quarter wavelength resonator has resonant modes on (2n+1)
L

π
2

,

see (6.1). Besides, the VTM-Ch&K-/i/ epilaryngeal tube has a slightly

conical shape, instead of a cylinder as in VTM-1 and VTM-2. This

has an effect on its first frequency resonance whose behaviour differs

slightly from the theoretically known case of a cylinder.

An arbitrary amplitude threshold has been chosen to visualise (in

blue) the increase in amplitude in the spectrum around the SFC. It can

be seen that reducing the radius of the epilaryngeal tube from 10 mm

to 4 mm increases the spectral power radiated in the frequency region

surrounding the SFC and the peaks highlighted in blue are clustering

around 4-5 kHz. A similar clustering is noticeable on Fig 6.11A on

the right, where decreasing the radius of the epilaryngeal tube from

9 mm to 3 mm is clustering F4 and F5 around 4kHz. Note that as

before, no 1:6 threshold is observed, but rather a gradual increase of

the SFC prominence.

In section 6.3.2, the effect of the blue arrow (symbolising the first

resonance of the epilaryngeal tube) uplifting the red plot locally (rep-

resenting the simulated transfer function of the oropharyngeal tube)

was defined theoretically, because the formula can be derived for two

cylinders. However, in this section, the oropharyngeal tube is of a

more complex shape, and the exact location of the action of the first

resonance frequency cannot be theoretically determined. It can be ob-

served that this effect is occurring close to but not precisely at the

location of the first resonance frequency. This depends on the differ-

ent shapes of the oropahryngeal tube, as can be seen on the Figs 6.10,

6.11, 6.12, 6.13, 6.14, 6.15 and 6.16.
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6.3.2 Changing the length

Figs 6.11, 6.12, 6.13, 6.14, 6.15 and 6.16 show the effects of changing

the length of the epilaryngeal tube in the VTM-Ch&K-/a/ (FVM and

FEM) and VTM-Ch&K-/i/, VTM-Ch&K-/u/, VTM-Ch&K-/e/ and

VTM-Ch&K-/o/ (FVM). In these Figs, A represents the simulated

transfer function (FVM or FEM) of the VTM-Ch&K’s drawn on B.

Increasing the length of the epilaryngeal tube of VTM-Ch&K-/a/

(Figs 6.11 and 6.12) from 16 mm to 28 mm decreases the SFC fre-

quency centre from around 5 kHz to around 3 kHz. Changing the

length of the epilaryngeal tube of VTM-Ch&K-/i/ (Fig 6.13) from

14.5 mm to 26.5 mm decreases the SFC frequency centre from around

5-6 kHz to around 3-4 kHz. Varying the length of the epilaryngeal

tube of VTM-Ch&K-/u/ (Fig 6.14) from 15 mm to 27 mm decreases

the SFC frequency centre from around 5 kHz to around 4 kHz. In-

creasing the length of the epilaryngeal tube of VTM-Ch&K-/e/ (Fig

6.15) from 14 mm to 26 mm decreases the SFC frequency centre from

around 5 kHz to around 3 kHz. Changing the length of the epila-

ryngeal tube of VTM-Ch&K-/o/ (Fig 6.16) from 14 mm to 26 mm

decreases the SFC frequency centre from around 5-6 kHz to around

3-4 kHz. Therefore, the overall trend of the SFC shift towards lower

frequencies as the epilaryngeal length is increased supports the pre-

viously observed results (VTM-2, in section ). This can be linked with

the key difference that is observed between singers when moving

from a soprano to a bass range [16]: moving from a soprano voice to

a bass voice decreases the SFC frequency centre.

As can be seen on Figs 6.11, 6.12, 6.13, 6.14, 6.15 and 6.16, F1, F2

(and to a lesser extent F3) remain constant as the epilaryngeal tube

length decreases: only the formants close to the ”formant attractor”

(name given by Titze et al. [108]) feel its local spectral influence. F1

and F2 being far from the attractor are essentially not affected spec-
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trally. Since they are preserved, the vowel quality remains essentially

the same.

As formulated before (subsection 6.3.1), the second SFC moves

three times further than its equivalent (first) SFC. From the ”snowy

peaks”, It is clear that the first resonance frequency "lifts up" its neigh-

bouring formants to spectrally shape the SFC.

The new results can be summarised as follows :

• Decreasing the radius of the epilaryngeal tube increases the

amplitude of the SFC, increasing the spectral power radiated

around the SFC frequency centre (see Fig 6.10). Note that the

first and second resonances of the epilaryngeal tube deviate

slightly towards higher frequencies when the radius is reduced

(because r varies in (6.6)).

• No threshold ratio of 1:6 is observed as reported in [101]. A

gradual increase of the SFC prominence was observed instead.

• Increasing the length of the epilaryngeal tube shifts the centre

of the SFC towards lower frequencies. This is a key difference

that is observed between singers when moving from a soprano

to a bass range [16].

• No significant variation of F1, F2 (and to a lesser extent F3)

is in evidence when the epilaryngeal tube length is changed.

Therefore, the vowel identification remains the same.

Fig 6.17 displays the different VTMs of Chiba & Kajiyama across

the different vowels. It can be seen that below 2500 Hz, F1 and F2

vary according to the vowels, as expected, but above 2500 Hz, there is

a common ”pattern” (the region of the ”snowy peaks”) related to the
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dimensions of the epilaryngeal tube, which is of similar dimensions

across vowels.
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Figure 6.10: FVM simulated transfer functions (A) when changing the epi-

laryngeal tube radius in Chiba & Kajiyama VTM-Ch&K-/i/ B

from 10 mm to 4 mm. In red, the oropharyngeal transfer func-

tion. The blue arrows indicate the resonances of the standalone

epilaryngeal tube. The blue area visually aids to see the increas-

ing radiated power of the SFC as the epilaryngeal tube radius

decreases.
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Figure 6.11: FEM simulated transfer functions (A) when changing the epi-

laryngeal tube length and radius in Chiba & Kajiyama VTM-

Ch&K-/a/ B from 16 mm to 28 mm and from 9 mm to 3 mm

respectively. In red, the oropharyngeal transfer function. The

blue arrows indicate the resonances of the standalone epilaryn-

geal tube.
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Figure 6.12: FVM simulated transfer functions (A) when changing the epi-

laryngeal tube length in Chiba & Kajiyama VTM-Ch&K-/a/ B

from 16 mm to 18 mm. In red, the oropharyngeal transfer func-

tion. The blue arrows indicate the resonances of the standalone

epilaryngeal tube.
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Figure 6.13: FVM simulated transfer functions (A) when changing the epi-

laryngeal tube length in Chiba & Kajiyama VTM-Ch&K-/i/ B

from 14.5 mm to 26.5 mm. In red, the oropharyngeal transfer

function. The blue arrows indicate the resonances of the stan-

dalone epilaryngeal tube.
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Figure 6.14: FVM simulated transfer functions (A) when changing the epi-

laryngeal tube length in Chiba & Kajiyama VTM-Ch&K-/a/ B

from 15 mm to 27 mm. In red, the oropharyngeal transfer func-

tion. The blue arrows indicate the resonances of the standalone

epilaryngeal tube.
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Figure 6.15: FVM simulated transfer functions (A) when changing the epi-

laryngeal tube length in Chiba & Kajiyama VTM-Ch&K-/e/ B

from 14 mm to 26 mm. In red, the oropharyngeal transfer func-

tion. The blue arrows indicate the resonances of the standalone

epilaryngeal tube.
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Figure 6.16: FVM simulated transfer functions (A) when changing the epi-

laryngeal tube length in Chiba & Kajiyama VTM-Ch&K-/o/ B

from 14 mm to 26 mm. In red, the oropharyngeal transfer func-

tion. The blue arrows indicate the resonances of the standalone

epilaryngeal tube.
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Figure 6.17: FEM simulated transfer functions for VTM-Ch&K. From top to

bottom, VTM-Ch&K-/i/, VTM-Ch&K-/u/, VTM-Ch&K-/e/,

VTM-Ch&K-/o/, VTM-Ch&K-/a/.
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6.4 vtm-mri

This section contains the numerical simulations (FEM) of the transfer

functions of the VTM-MRI of 6 professional singers (spreading across

voice categories). The corpus is composed of 1 Soprano, 2 Mezzo-

Sopranos, 1 Tenor, 1 Bari-Tenor and 1 Bass-Baritone (for more details,

see part ii).

6.4.1 Comparison across voice categories

Fig 6.18 displays the simulated transfer functions (FEM) of the differ-

ent singers, from the Bass-Baritone (Barnaby) to the Soprano (Sophy)

singing on /hard/. Table 6.1 shows the pitch sung, along with the

five first resonance frequencies, the average of the third, fourth and

fifth resonant frequencies and their corresponding statistical average

and standard deviation.

A first observation shows that some singers diverge from the ex-

pected values of R1 and R2 vowels for /hard/ (µ(R1) = 612Hz and

µ(R1) = 1200Hz respectively): Sophy for R1 and R2, Maristela for

R2, Bartholomew for R1. But the other singers have a fairly constant

combination of R1-R2. Sophy is probably using the resonance tuning

strategy, tuning R1 (866 Hz) slightly above f0 (784 Hz) and R2 (1519

Hz) slightly under 2f0 (1568 Hz). Maristela seems to use as well the

tuning resonance strategy to tune R2 (1322 Hz) to 5f0 (1310 Hz). Re-

garding Bartholomew, a possible explanation as to the lower value of

R1 (441 Hz for µ(R1) = 612Hz) is the fact that his segmented VT has

been cleared from a velar opening leading to a resonance cavity. Since

the canals and sinuses linking this cavity to the nares are very thin

and blurry on the MR image, it was chosen to remove this velar con-

nection. It is thought that removing the acoustical side branch might
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alter the first resonance. Future study will investigate the effect of an

open velum on the first resonance.

Note that the statistical distribution the five first resonances shows

a different spreading across the vowel-type resonances (R1, R2) and

the timbre-type resonances (R3, R4 and R5) in Table 6.1. The vowel-

type resonances spread are statistically less spread across the spec-

trum (σ = 139Hz and σ = 187Hz respectively than the timbre-type

resonances (σ = 364Hz, σ = 540Hz and σ = 613Hz respectively).

This supports the fact that F1, F2 are associated with vowel quality

[78, 72, 102, 47, 58] and show small inter-individual variations [57],

whereas F3, F4, F5 are associated with voice quality [99, 119, 58, 32,

102] and show large inter-individual variations [57]. Regarding higher

resonances, the last column of Table 6.1 shows that the group R3-R4-

R5 shifts towards higher frequencies when the voice type is higher: in

order of lower voice to higher voice, µ(R3,R4,R5) = 2746Hz, 2777Hz,

3044Hz, 3613Hz, 3552Hz, 3923Hz respectively, with µ(µ(R3,R4,R5)) =

3276Hz and σ(µ(R3,R4,R5)) = 488Hz. Note that µ(R3,R4,R5) in-

creases of 43% from for Barnaby to Sophy. This supports the results

previously introduced with VTM-2 and VTM-Ch&K (see section 6.3):

as the epilarynx length increases, the SFC frequency centre decreases.

This can be seen on Fig 6.18: the ”snowy peaks” corresponding to the

SFC are migrating towards lower frequencies as the voice category

goes from the highest voices (soprano) to the lowest voices (bass).

The length of the epilarynx for each singer will be examined in the

next section.



6.4 vtm-mri 153

Figure 6.18: FEM transfer functions of different voice types phonating on

/hard/. From top to bottom, Barnaby, Bartholomew, Timothy,

Marisa, Maristela, Sophy. Details of the phonation and reso-

nance data are given in Table 6.1.
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Resonance frequencies across voice categories

Pitch f0 R1 R2 R3 R4 R5 µ(R3,R4,R5)

Sophy G5 784 866 1519 3005 4153 4611 3923

Maristela C4 262 579 1322 3075 3699 3883 3552

Marisa A4 440 569 1060 2919 3489 4432 3613

Timothy F4 349 617 1169 2486 3192 3456 3044

Bartholomew F#3 185 441 1082 2279 2874 3178 2777

Barnaby G#2 104 599 1045 2298 2699 3241 2746

µ 612 1200 2677 3351 3800 3276

σ 139 187 364 540 613 488

Table 6.1: Sung pitch, corresponding f0, five first resonance frequencies (in

Hz) across voice categories for VTM-MRI-/hard/, average of R3,

R4 and R5 and their statistical distribution (average µ and stan-

dard deviation σ).

6.4.2 Dimensions of the Vocal Tract

The dimensions of the Vocal Tract across voice categories have been

listed in Table 6.2. EV is the Epilaryngeal Volume (cm3), ECS the

epilaryngeal Cross-Section (cm2), ER the equivalent Epilaryngeal Ra-

dius (mm), VTL the Vocal Tract Length (mm), OL the Oral Length

(mm), PL the Pharyngeal Length (mm), EL the Epilaryngeal Length

(mm), PW the Pharyngeal Width (mm), VTV the Vocal Tract Volume

(cm3), PV the piriform fossae volume(cm3), % the ratio of PV/VTV

expressed in %, SFC (pred) (in Hz) the SFC frequency centre pre-

dicted from the dimensions of the hypopharynx (see subsection 6.4.2.1).

ER, the equivalent Epilaryngeal radius is calculated as follows:

ER =

√
ECS
π

(6.10)

ER therefore represents the radius that the epilaryngeal opening would

have at the pharyngeal opening if it were circular.
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Dimensions of the Vocal Tract and prediction of the SFC center

EV ECS ER VTL OL PL EL PW VTV PV % SFC (pred)

Sophy 1.09 1.18 6.13 158.63 83.62 58.71 16.30 24.39 82.54 1.7 2.06 4,002.19

Maristela 0.81 1.29 6.41 152.01 81.18 52.11 18.72 36.00 44.58 3.47 7.78 3,529.05

Marisa 0.77 6.36 14.23 190.96 89.41 83.62 17.93 30.28 111.82 1.8 1.61 3,529.33

Timothy 1.79 2.09 8.15 178.16 89.93 65.78 22.45 28.90 67.26 2.51 3.73 2,971.09

Bartholomew 2.58 1.68 7.31 187.82 99.35 64.01 24.46 36.50 37.32 1.7 4.56 2,789.19

Barnaby 1.36 1.16 6.07 202.08 88.04 87.47 26.57 33.43 80.49 1.69 2.1 2,671.22

µ 1.40 2.29 8.05 178.28 88.59 68.62 21.07 31.58 70.67 2.15 3.64 3249

σ 0.69 2.02 3.13 19.47 6.30 14.00 4.04 4.64 27.33 0.723 2.32 519

σ in % of µ 49.18 88.26 38.88 10.92 7.11 20.41 19.19 14.7 38.68 33.69 63.85 15.98

Table 6.2: Vocal Tract dimensions versus SFC prediction. Epilaryngeal

Volume (cm3), Epilaryngeal Cross-Section (cm2), equivalent

Epilaryngeal Radius (mm), Vocal Tract Length (mm), Oral

Length (mm), Pharyngeal Length (mm), Epilaryngeal Length

(mm), Pharyngeal Width (mm), Vocal Tract Volume (cm3),

Piriform fossae Volume(cm3), % the ratio of PV/VTV (in %), SFC

(pred) (in Hz) the SFC frequency centre predicted from the di-

mensions of the hypopharynx (see subsection 6.4.2.1)
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The largest variations of the VT dimensions are observed in the

epilarynx with a standard variation σ (reported in percentage of the

average µ) raising to 49 % in volume across individuals and 88 %

in cross-section. The third column corresponds to a fictive epilaryn-

geal dimension and cannot be compared as such across singers. Both

the volumetric and the cross-sectional dimensions of the epilarynx

vary on average by 69 % around their respective average dimension

across singers. In comparison, the average of the length dimensions

variation around their average value is 15 %, so more than a fourfold

difference between the relative variations of the Vocal Tract length-

related dimensions to the epilaryngeal dimensions across singers. The

volumetric variations of the vocal tract, the piriform fossae and the

epilarynx across singers are of 39 %, 34% and 49% respectively. The

hypopharyngeal volumetric variation (piriform fossae + epilarynx)

across singers is 41 %. This supports the large inter-individual varia-

tions of the hypopharynx, as reported by Kitamura et al. [57]

6.4.2.1 Prediction of the SFC center according to VT dimensions

The equations (6.8, 6.9, 6.6) give the first resonance frequency of the

epilaryngeal tube in the twin-tube model, by:

f =
c

4 ·
(
L+ 0.48

√
A

(
1

r
−

1

1.25R

)
· r
) (6.11)

where c is the speed of sound, L the length of the epilaryngeal tube,

A the cross-section of the epilaryngeal tube, r the radius of the epila-

ryngeal tube and R the radius of the oropharyngeal tube.

The geometry of an actual VT is much more complicated. In-

spired by (6.11), the SFC centre is suggested to be predicted based

on the dimensions of the epilaryngeal tube and the pharyngeal open-

ing by replacing L by EL, A by ECS, r by ER and R by PW/2, leading

to the formula:
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f =
c

4 ·
(
L+ 0.48 ·

(√
A−

2.5A
√
π

πPW

)) (6.12)

Note that EL is measured from the mid-point of the glottis to the

centre of the cross-section of the epilaryngeal tube at the pharyngeal

opening and PW measures the width of the pharynx at the pharyn-

geal opening, as shown in Fig 6.20.

The predicted values of SFC frequency centre following the sug-

gested formula (6.12) are given as the last column of Table 6.2. The in-

verse correlation between the epilarynx length and the SFC frequency

centre predicted from 6.12 is shown on Fig 6.19: the lower the voice

category, the longer the epilarynx, the lower the SFC frequency cen-

tre. This supports the findings of Dmitriev et al. [25] (Fig 2.14): they

found that the dimensions of the VT were related to the production

of singing formant and to the voice classification.

Figure 6.19: Variation of the SFC frequency centre predicted by 6.12 in rela-

tion with the Epilarynx Length across singers: Soprano Sophy,

Mezzo-Soprano 1 Maristela, Mezzo-Soprano 2 Marisa, Tenor

Timothy, Bari-Tenor Bartholomew and Bass-Baritone Barnaby.
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Epilaryngeal length

Pharyngeal width

Figure 6.20: Epilaryngeal length (EL) and Pharyngeal width (PW) in the

suggested formula 6.12 to predict the SFC centre.
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6.4.3 Effect of the epilarynx

This subsection examines the spectral impact of the epilarynx when

it is appended to the Vocal Tract proper (terminology introduced by

[106] standing for the Vocal Tract whose epilarynx has been removed)

and when it is lengthened downwards.

6.4.3.1 Vocal Tract proper vs Vocal Tract

The Figs 6.21, 6.22, 6.23, 6.24, 6.25, 6.27, and 6.27, 6.28, 6.29, 6.30, 6.31

show the difference in the transfer function between the Vocal Tract

(VT) and the Vocal Tract proper (VTp) of different voice types (Sophy,

Marisa, Maristela, Timothy, Bartholomew and Barnaby) and Barnabas

singing on different vowels (/hard/, /port/, /stern/, /food/ and

/neap/ respectively). The transfer function of the VT is plotted in

grayscale whereas the one of the VTp is plotted in red atop. The blue

arrow indicates the SFC centre predicted by the suggested formula

(6.12), based on the hypopharynx dimensions.

On Fig 6.21 (Sophy), it can be seen that the predicted SFC fre-

quency centre (blue arrow) arises at 4002 Hz, near F4 on the VTp

transfer function. Appending the epilarynx results in the creation of

an extra formant: F4 splits into F4 and F5 (around 4-5 kHz) and the

spectrum amplitude is locally lifted up around the blue arrow. Note

that the data of Marisa were of bad quality (see section ii): this is

the reason why Fig 6.22 does not provide the expected results as the

other singers did. On Fig 6.23 (Maristela), it can be seen that the pre-

dicted SFC frequency centre (blue arrow) arises at 3529 Hz, near F4

on the VTp transfer function. Appending the epilarynx results in the

creation of an extra formant: F4 splits into F4 and F5 (around 4 kHz)

and the spectrum amplitude is locally lifted up around the blue arrow.

On Fig 6.24 (Timothy), it can be seen that the predicted SFC frequency

centre (blue arrow) arises at 2971 Hz between F3 and F4 on the VTp

transfer function. Appending the epilarynx results in the creation of
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an extra formant: F4 splits into F4 and F5 (above 3 kHz) and the spec-

trum amplitude is locally lifted up around the blue arrow. On Fig

6.25 (Bartholomew), it can be seen that the predicted SFC frequency

centre (blue arrow) arises at 2789 Hz between F3 and F4 on the VTp

transfer function. Appending the epilarynx results in the creation of

an extra formant: F4 splits into F4 and F5 (around 3 kHz) and the

spectrum amplitude is locally lifted up around the blue arrow. On

Fig 6.27 (Barnaby), it can be seen that the predicted SFC frequency

centre (blue arrow) arises at 2671 Hz near F3 on the VTp transfer

function. Appending the epilarynx results in the creation of an extra

formant: F3 splits into F3 and F4 (under 3 kHz) and the spectrum

amplitude is locally lifted up around the blue arrow.

On Fig 6.28 (Barnaby singing on /port/), it can be seen that the

predicted SFC frequency centre (blue arrow) arises at 2707 Hz near

F4 on the VTp transfer function. Appending the epilarynx results in

the creation of an extra formant: F4 splits into F3 and F4 (slightly un-

der 3 kHz) and the spectrum amplitude is locally lifted up around

the blue arrow. On Fig 6.29 (Barnaby singing on /stern/), it can be

seen that the predicted SFC frequency centre (blue arrow) arises at

2769 Hz between F3 and F4 on the VTp transfer function. Append-

ing the epilarynx results in the creation of an extra formant: F4 arises

between F3 and F4 of the VTp (slightly under 3 kHz) and the spec-

trum amplitude is locally lifted up around the blue arrow. On Fig

6.30 (Barnaby singing on /food/), it can be seen that the predicted

SFC frequency centre (blue arrow) arises at 2796 Hz near F4 on the

VTp transfer function. Appending the epilarynx results in the cre-

ation of an extra formant: F4 splits into F4 and F5 (around 3 kHz)

and the spectrum amplitude is locally lifted up around the blue ar-

row. On Fig 6.31 (Barnaby singing on /neap/), it can be seen that the

predicted SFC frequency centre (blue arrow) arises at 2508 Hz near

F3 on the VTp transfer function. Appending the epilarynx results in

the creation of an extra formant: F3 splits into F3 and F4 (under 3
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kHz) and the spectrum amplitude is locally lifted up around the blue

arrow.

Figure 6.21: FEM simulated transfer function of VTM-MRI-Sophy-/hard/,

with (grayscale) and without (red) epilarynx. The blue arrow

indicates the SFC centre predicted by the formula (6.12), de-

rived from the dimensions of the hypopharynx.

Figure 6.22: FEM simulated transfer function of VTM-MRI-Marisa-/hard/,

with (grayscale) and without (red) epilarynx. The blue arrow

indicates the SFC centre predicted by the formula (6.12), de-

rived from the dimensions of the hypopharynx.
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Figure 6.23: FEM simulated transfer function of VTM-MRI-Maristela-

/hard/, with (grayscale) and without (red) epilarynx. The blue

arrow indicates the SFC centre predicted by the formula (6.12),

derived from the dimensions of the hypopharynx.

Figure 6.24: FEM simulated transfer function of VTM-MRI-Timothy-

/hard/, with (grayscale) and without (red) epilarynx. The blue

arrow indicates the SFC centre predicted by the formula (6.12),

derived from the dimensions of the hypopharynx.
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Figure 6.25: FEM simulated transfer function of VTM-MRI-Bartholomew-

/hard/, with (grayscale) and without (red) epilarynx. The blue

arrow indicates the SFC centre predicted by the formula (6.12),

derived from the dimensions of the hypopharynx.

Figure 6.26: FEM simulated transfer function of VTM-MRI-Barnaby-

/hard/, with (grayscale) and without (red) epilarynx. The blue

arrow indicates the SFC centre predicted by the formula (6.12),

derived from the dimensions of the hypopharynx.
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Figure 6.27: FEM simulated transfer function of VTM-MRI-Barnaby-

/hard/, with (grayscale) and without (red) epilarynx. The blue

arrow indicates the SFC centre predicted by the formula (6.12),

derived from the dimensions of the hypopharynx.

Figure 6.28: FEM simulated transfer function of VTM-MRI-Barnaby-/port/,

with (grayscale) and without (red) epilarynx. The blue arrow

indicates the SFC centre predicted by the formula (6.12), de-

rived from the dimensions of the hypopharynx.
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Figure 6.29: FEM simulated transfer function of VTM-MRI-Barnaby-

/stern/, with (grayscale) and without (red) epilarynx. The blue

arrow indicates the SFC centre predicted by the formula (6.12),

derived from the dimensions of the hypopharynx.

Figure 6.30: FEM simulated transfer function of VTM-MRI-Barnaby-

/food/, with (grayscale) and without (red) epilarynx. The blue

arrow indicates the SFC centre predicted by the formula (6.12),

derived from the dimensions of the hypopharynx.
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Figure 6.31: FEM simulated transfer function of VTM-MRI-Barnaby-

/neap/, with (grayscale) and without (red) epilarynx. The blue

arrow indicates the SFC centre predicted by the formula (6.12),

derived from the dimensions of the hypopharynx.

From the dataset of six professional singers (see Figs 6.21, 6.22,

6.23, 6.24, 6.25, 6.27, 6.28, 6.29, 6.30, 6.31, the following was observed:

• Appending the epilaryngeal tube to the VTp creates an extra

formant and locally shapes the neighbouring formant.

• The SFC frequency centre derived from the hypopharynx di-

mensions (blue arrow) provides a good prediction of the fre-

quency around which the spectrum is locally shaped (the focal

point in the spectrum, from Titze et al. [108]).

• Local resonances of the VTp smaller (resp. greater) than the

predicted SFC frequency centre decrease (resp. increase) in the

VT and an extra resonance arises in between.

This is in accordance with the results previously introduced when the

epilaryngeal tube is appended to the oropharyngeal tube (see sections

6.1, 6.3.2).
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The dataset of six professional singers provided in this thesis

showed a correlation between SFC frequency centre, the epilarynx

length and voice type: a longer epilarynx is synonymous with a lower

SFC frequency centre and a lower voice type (see Table 6.2 and Fig

6.19). From the suggested formula (6.12) which predicts the SFC fre-

quency centre from the hypopharynx dimensions, it is hypothesised

that:

• A greater epilaryngeal length leads to a lower SFC and hence

a lower vocal fach

• To a lesser extent:

– A wider epilaryngeal cross-section at the pharyngeal open-

ing increases the acoustical length of the epilaryngeal tube,

lowering the SFC frequency centre, to the expense of the

amplitude of the SFC (see section 6.3.2).

– A wider pharyngeal opening increases the acoustical length

of the epilaryngeal tube, lowering the SFC frequency cen-

tre.
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6.4.3.2 Effect of lengthening the epilaryngeal tube

Figs 6.32, 6.33, 6.34, 6.35, 6.36 and 6.37 show the effect of lengthening

the epilaryngeal tube on VTM-MRI.

Figure 6.32: FEM simulated transfer functions of VTM-MRI-Sophy-/hard/,

with (greyscale) and without (red) the epilaryngeal tube when

it is lengthened by 2 mm step downwards from 0 mm to 10

mm. Each step is plotted +2 dB from the previous one, for a

better visualisation.
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Figure 6.33: FEM simulated transfer functions of VTM-MRI-Marisa-/hard/,

with (greyscale) and without (red) the epilaryngeal tube when

it is lengthened by 2 mm step downwards from 0 mm to 10

mm. Each step is plotted +2 dB from the previous one, for a

better visualisation.

Figure 6.34: FEM simulated transfer functions of VTM-MRI-Maristela-

/hard/, with (greyscale) and without (red) the epilaryngeal

tube when it is lengthened by 2 mm step downwards from

0 mm to 10 mm. Each step is plotted +2 dB from the previous

one, for a better visualisation.
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Figure 6.35: FEM simulated transfer functions of VTM-MRI-Timothy-

/hard/, with (greyscale) and without (red) the epilaryngeal

tube when it is lengthened by 2 mm step downwards from

0 mm to 10 mm. Each step is plotted +2 dB from the previous

one, for a better visualisation.

Figure 6.36: FEM simulated transfer functions of VTM-MRI-Bartholomew-

/hard/, with (greyscale) and without (red) the epilaryngeal

tube when it is lengthened by 2 mm step downwards from

0 mm to 10 mm. Each step is plotted +2 dB from the previous

one, for a better visualisation.
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Figure 6.37: FEM simulated transfer functions of VTM-MRI-Barnaby-

/hard/, with (greyscale) and without (red) the epilaryngeal

tube when it is lengthened by 2 mm step downwards from

0 mm to 10 mm. Each step is plotted +2 dB from the previous

one, for a better visualisation.

When the epilaryngeal tube is lengthened downwards by 2 mm

steps, from 0 mm to 10 mm, R1 and R2 remain essentially the same,

i. e. the vowel quality remains constant, whereas the higher resonance

frequencies, such as R3, R4 and R5 are globally shifting towards lower

frequencies (see Table 6.3), resulting in a lower SFC, which in this

dataset corresponds to a lower vocal fach. This is in accordance with

the results given in section 6.3.

The values given in Table 6.3 represent the shift (in %) of the

resonant frequencies when the epilarynx is lengthened downwards

from 0 mm to 10 mm (these are the values of the peaks from Figs

6.32, 6.33, 6.34, 6.35, 6.36 and 6.37). The last column gives the shift of

the SFC frequency centre computed with the new metric (see section

6.5).
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Resonance frequencies shift (in %)

R1 R2 R3 R4 R5 SFC

Sophy -3.23 -3.04 -3.46 -13.77 -9.5 -13.52

Marisa -1.61 -0.28 -0.44 -3.43 -1.23 (1.74)

Maristela -0.68 0 -12.45 -14.30 -3.09 -12.88

Timothy -2.12 -1.03 -5.99 -11.5 -5.27 -10.02

Bartholomew -2.71 -0.37 -14.99 -8.77 -2.55 -13.57

Barnaby -1.17 -0.57 -13.61 -0.96 -4.66 -8.98

(µ) (-1.92) (-0.88) (-8.49) (-8.79) (-4.38) (-9.54)

µ -1.98 -1 -10.1 -9.86 -5.02 -11.79

(σ) (0.95) (1.11) (6) (5.52) (2.9) (5.85)

σ 1.05 1.19 5.06 5.43 2.74 2.14

R1&R2 R3&R4&R5

µ -1.49 -8.33

Table 6.3: Resonance frequencies shift (in%) when the epilarynx is length-

ened downards by 10 mm. Note that Marisa’s MRI data showed

some artifacts and were therefore more difficult to segment ac-

curately: this is why the data obtained by lengthening the seg-

mented epilarynx are not reliable and therefore put in between

brackets.
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Note that Marisa’s MRI data showed some artifacts and were

therefore more difficult to segment accurately: this is why the data

obtained by lengthening the segmented epilarynx are not reliable and

therefore put in between brackets.

The SFC frequency centre shows a clear trend of decreasing its

frequency when the epilarynx is lengthened downwards, with an av-

erage of 11.79 % decrease (without Marisa). This trend is confirmed

graphically with the Figs 6.38, 6.39, 6.40, 6.41, 6.42 and 6.43. These

Figs represent the view from the top of Figs 6.32, 6.33, 6.34, 6.35,

6.36 and 6.37) respectively. They show the 5 first resonant frequencies

varying with the lengthening of the epilarynx from 0 mm to 10 mm

(in grey) and the SFC frequency centre computed with the new met-

ric from section 6.5 (in purple). Observe that the formants and SFC

describe different patterns of shifting depending on the singers. For

instance, for Sophy (Fig 6.38), R4 and R5 get closer to each other for

an epilaryngeal lengthening from 0 mm to 4 mm where they clus-

ter, before diverging again as the epilarynx is lengthened further. In

the case of Maristela (Fig 6.40), R4 and R5 cluster at a lengthening

of 0 mm, coincide at 2 mm and then diverge with R3 getting closer

and clustering with R2. The SFC (in purple) follows the clustering of

the resonances accordingly. For Timothy (Fig 6.41), the SFC follows

essentially the path of R4 (which is the dominant shift in the higher

resonances: -11.5 % versus -5.99 % for R3 and -5.27 % for R5). R4

and R5 converge until a lengthening of 4 mm before diverging. In

the case of Bartholomew (Fig 6.42), the SFC follows a path parallel

to those of R3 and R4, which have a respective shift of -14.99 % and

-8.77 % against only -2.55 % for R5. The case of Barnaby (Fig 6.43)

shows a lesser SFC shift than the other singers (-8.98 % versus values

between -10 % and -13.57 %) with a clear shift of R3 (-13.61 %), to a

lesser extent R5 (-4.66 %) and a stable R4 (-0.96 %) which results in a

diverging R3-R4 and converging R4-R5.
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In Table 6.3, it can be seen that R1 and R2 remain essentially

constant when the epilarynx is lengthened with a average of -1.98 %

and -1 % respectively, whereas the higher resonances R3, R4 and R5

follow more significant changes, -10.1 %, -9.86 % and -5.02 % respec-

tively. The average shifting for R1 and R2 is -1.49 % to be compared

with -8.33 % for the higher resonances. This is in accordance with

the results given in section 6.3: a lengthening of the epilarynx does

not affect greatly F1 and F2, maintaining the frequency content which

leads to the vowel identification, whereas the higher formants F3, F4

and F5 vary greatly and change therefore the vowel quality as well as

the SFC frequency centre, and therefore the voice classification (see

Fig 6.19).
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Figure 6.38: Five first resonance frequency values for VTM-MRI-Sophy-

/hard/, when the epilarynx is lengthened by 2 mm step down-

wards from 0 mm to 10 mm. In purple, the SFC frequency cen-

tre computed from the new metric, in section 6.5. This is the

view of 6.32 from the top.

Figure 6.39: Five first resonance frequency values for VTM-MRI-Sophy-

/hard/, when the epilarynx is lengthened by 2 mm step down-

wards from 0 mm to 10 mm. In purple, the SFC frequency cen-

tre computed from the new metric, in section 6.5. This is the

view of 6.33 from the top.
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Figure 6.40: Five first resonance frequency values for VTM-MRI-Maristela-

/hard/, when the epilarynx is lengthened by 2 mm step down-

wards from 0 mm to 10 mm. In purple, the SFC frequency cen-

tre computed from the new metric, in section 6.5. This is the

view of 6.34 from the top.

Figure 6.41: Five first resonance frequency values for VTM-MRI-Timothy-

/hard/, when the epilarynx is lengthened by 2 mm step down-

wards from 0 mm to 10 mm. In purple, the SFC frequency cen-

tre computed from the new metric, in section 6.5. This is the

view of 6.35 from the top.
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Figure 6.42: Five first resonance frequency values for VTM-MRI-

Bartholomew-/hard/, when the epilarynx is lengthened

by 2 mm step downwards from 0 mm to 10 mm. In purple,

the SFC frequency centre computed from the new metric, in

section 6.5. This is the view of 6.36 from the top.

Figure 6.43: Five first resonance frequency values for VTM-MRI-Barnaby-

/hard/, when the epilarynx is lengthened by 2 mm step down-

wards from 0 mm to 10 mm. In purple, the SFC frequency cen-

tre computed from the new metric, in section 6.5. This is the

view of 6.37 from the top.
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6.4.4 Effect of the piriform fossae

Appending the piriform fossae to the VTp + epilaryngeal tube, (two

”peer-shaped” pockets located posteriorly at the bottom of the phar-

ynx) adds a trough around 4-5 (6) kHz in the output spectrum, proba-

bly enhancing the perception of the SFC: a broad peak, followed by a

trough [48]. Similar findings are visually illustrated on Figs 6.44, 6.45

experimentally and on Figs 6.46, 6.47, 6.48, 6.49, 6.50, 6.51 and Figs

6.51, 6.52, 6.53, 6.54, 6.55 numerically for the 6 singers and Barnaby

on 5 vowels respectively.

On the Figs 6.44 and 6.45, the greyscale plots represent the trans-

fer function derived from experimental measurement on VTM-MRI-

Barnaby-/food/ and VTM-MRI-Barnaby-/neap/ respectively. For the

experimental measurement, plasticine was used to fill the piriform

fossae. It is difficult to manually smooth the plasticine in the piri-

form fossae and fill the entire gap, which is probably why Fig 6.45

exhibits a behaviour less clear than Fig 6.44 for instance. By filling the

piriform fossae, their spectral effect is removed from the overall trans-

fer function: the red (blue) plot represents the VTM-MRI without the

left (right) piriform fossa. Note that each piriform fossa has its own

shape and dimensions, and it is very unlikely that the piriform fossae

are completely symmetrical. Therefore, each piriform fossa acts as a

side branch which brings its own antiresonance frequency, as can be

seen on Figs 6.44 and 6.45 where both spectral zeros (troughs in the

red and the blue plots) are distinct from each other. The blue and

red spectral zeros in VTM-MRI-Barnaby-/food/ are closer than those

from VTM-MRI-Barnaby-/neap/: this suggests that the piriform fos-

sae are of VTM-MRI-Barnaby-/food/ are more similar in shape and

dimensions than those of VTM-MRI-Barnaby-/neap/. It can be seen

that the main frequency region affected by the piriform fossae is be-

tween 4 and 5 kHz. The formants below and above this region are

repelled: the formants whose frequencies are lower/greater than the
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resonance frequency of the fossae are decreased/increased respec-

tively when the fossae are appended to the tract. This agrees with

the results found in [48, 18, 21, 108].

Figs 6.46, 6.47, 6.48, 6.49, 6.50, 6.51 and Figs 6.51, 6.52, 6.53, 6.54,

6.55 show the simulated transfer functions (FEM) for the 6 singers

and Barnaby on 5 vowels respectively. The green arrow represents

the resonance frequency of the piriform fossae derived from their

length (see Table 6.4). Titze et al. suggested to use the quarter-wave

resonator formula (eq (13) from [108])

Fsn = (2n− 1)
c

4Ls
(6.13)

where Fsn is the nth resonance of the piriform sinuses, c the speed of

sound and Ls the length of the sinuses. The predicted spectral zeros

are in good accordance with the numerical simulations: the longer the

sinus, the lower the resonance frequency. Knowing more accurately

the acoustical length of the fossae (accounting for the end correction

effect) would give a more accurate prediction of the resonance fre-

quency.

The mean antiresonance frequency across singers is 5057 Hz with

a standard deviation of 1037 Hz whereas the mean value across the

vowels of Barnaby is 4182 Hz with a standard deviation of 179 Hz.

The average length of the piriform sinuses across singers is 17.10 mm

with a standard deviation of 2.83 mm whereas this average is 20.01

mm with a standard deviation of 0.86 mm across the vowels of Barn-

abas. The data show naturally more consistency and less variation in-

traindividually than interindividually. The variability differs amongst

genders, with a standard deviation for the length piriform sinuses for

females of 2.98 mm versus 1.50 mm for the males, which gives a ratio

2:1. The resonance frequency of the fossae gives 1135 Hz for the fe-

males versus 273 Hz for the males. Figs 6.46, 6.47, 6.48, 6.49, 6.50, 6.51

and Figs 6.51, 6.52, 6.53, 6.54, 6.55 visually confirm the experimental

results: the piriform fossae act as formants repellents, the formants



6.4 vtm-mri 180

with a lower/greater frequency than the resonance frequency (green

arrow) see their frequency decreased/increased.

Vocal Tract and piriform fossae dimensions

Ls f VTV PV %

Sophie - hard 12 6965 82.54 1.7 2.06

Maristela - hard 17.63 4741 44.58 3.47 7.78

Marisa - hard 16.5 5065 111.82 1.8 1.61

Timothy - hard 17.63 4741 67.26 2.51 3.73

Bartholomew - hard 18.31 4565 37.32 1.7 4.56

Barnaby - hard 20.50 4077 80.49 1.69 2.1

µ 17.10 5057 70.67 2.15 3.63

σ 2.83 1037 27.33 0.72 2.32

µ(females) 15.38 5723 79.65 2.32 3.82

σ(females) 2.98 1135 33.71 0.99 3.44

µ(males) 18.81 4392 61.69 1.97 3.46

σ(males) 1.50 273 22.11 0.47 1.25

Barnaby - hard 20.50 4077 80.49 1.69 2.1

Barnaby - port 19.97 4185 65.61 3.64 5.55

Barnaby - stern 19.00 4399 65.29 3.43 5.25

Barnaby - food 19.42 4304 57.67 4.79 8.31

Barnaby - neap 21.18 3946 65.48 3.58 5.47

µ(vowels) 20.01 4182 63.48 3.42 5.33

σ(vowels) 0.86 179 9.41 1.11 2.20

Table 6.4: Ls is the averaged length of the two piriform sinuses [mm], f,

the antiresonance frequency generated by the sinuses [Hz], VTV

is the volume of the Vocal Tract [cm3], PV is the volume of the

piriform fossae [cm3], % is the ratio PV/VTV expressed in per-

centage. The corresponding statistical average (µ) and standard

deviation (σ) are also given.
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It is interesting to note that the ratio of the volume of the piriform

fossae and the Vocal Tract (penultimate column in Table 6.4) is related

to the amplitude of their effect on the spectrum: the bigger the frac-

tion, the bigger the impact on the transfer function. See for instance

Maristela, whose piriform fossae constitute 8% of the Vocal Tract vol-

ume: her piriform fossae have a relatively larger spectral impact than

those of the other singers.

From Figs 6.46, 6.47, 6.48, 6.49, 6.50 and 6.51, it can be seen that

the female voice tends to show a spectral trough due to the piriform

fossae at a higher frequency range (around 4-5 to 6 kHz) than males

(around 3.5 to 5 kHz), which is consistent with the fact that the spec-

tral role of the piriform fossae is to emphasise the SFC.

Moreover, the physiological role of the piriform fossae is to serve

as side branches to "capture" foreign bodies, instead of swallowing

them, but also a part of the food (at least temporarily) and the mu-

cous, for instance when one has a cold [3]. It is suggested, therefore,

that singers with large piriform fossae may be more affected than

others in the production of a "resonant voice" when they have a cold

or when they have just eaten certain foods which would obstruct the

fossae.
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6.4.4.1 Experimental results

Figure 6.44: Experimental results for VTM-MRI-Barnaby-/food/ with

(grayscale) and without left (red) or right (blue) piriform fossa.

Figure 6.45: Experimental results for VTM-MRI-Barnaby-/neap/ with

(grayscale) and without left (red) or right (blue) piriform fossa.
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6.4.4.2 Numerical simulations

Figure 6.46: Numerical results for VTM-MRI-Sophy-/hard/ with

(grayscale) and without (green) piriform fossae. The green

arrow represents the antiresonance frequency of the piriform

fossae.

Figure 6.47: Numerical results for VTM-MRI-Marisa-/hard/ with

(grayscale) and without (green) piriform fossae. The green

arrow represents the antiresonance frequency of the piriform

fossae.
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Figure 6.48: Numerical results for VTM-MRI-Maristela-/hard/ with

(grayscale) and without (green) piriform fossae. The green ar-

row represents the antiresonance frequency of the piriform fos-

sae.

Figure 6.49: Numerical results for VTM-MRI-Timothy-/hard/ with

(grayscale) and without (green) piriform fossae. The green

arrow represents the antiresonance frequency of the piriform

fossae.
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Figure 6.50: Numerical results for VTM-MRI-Bartholomew-/hard/ with

(grayscale) and without (green) piriform fossae. The green ar-

row represents the antiresonance frequency of the piriform fos-

sae.
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Figure 6.51: Numerical results for VTM-MRI-Barnaby-/hard/ with

(grayscale) and without (green) piriform fossae. The green

arrow represents the antiresonance frequency of the piriform

fossae.

Figure 6.52: Numerical results for VTM-MRI-Barnaby-/port/ with

(grayscale) and without (green) piriform fossae. The green

arrow represents the antiresonance frequency of the piriform

fossae.
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Figure 6.53: Numerical results for VTM-MRI-Barnaby-/stern/ with

(grayscale) and without (green) piriform fossae. The green

arrow represents the antiresonance frequency of the piriform

fossae.

Figure 6.54: Numerical results for VTM-MRI-Barnaby-/food/ with

(grayscale) and without (green) piriform fossae. The green

arrow represents the antiresonance frequency of the piriform

fossae.



6.4 vtm-mri 188

Figure 6.55: Numerical results for VTM-MRI-Barnaby-/neap/ with

(grayscale) and without (green) piriform fossae. The green

arrow represents the antiresonance frequency of the piriform

fossae.

6.4.5 Effect of the vallecula

The effect of the vallecula seems to enhance the SFC by accentu-

ating the dip created by the piriform fossae (Figs 6.56, 6.57 from

Barnaby phonating on /neap/ and /food/ respectively). The spec-

tral effect of the vallecula could only be assessed on the 3D-printed

VTM-MRI (through the placement of plasticine inside the correspond-

ing cavities) because the twisted structure of the vallecula prevented

BLENDER from any mesh manipulation without severe alteration.

Like the piriform fossae, they act as side branches to the main tract,

damping a frequency range around 4-5 kHz.
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Figure 6.56: Experimental results of MRI-based 3D-printed VT of Barnaby,

phonating on /neap/ with (greyscale) and without (blue) val-

lecula.

Figure 6.57: Experimental results of MRI-based 3D-printed VT of Barnaby,

phonating on /neap/ with (greyscale) and without (blue) val-

lecula.



6.4 vtm-mri 190

6.4.6 Numerical versus experimental

Figs 6.58, 6.59, 6.60, show the comparison between numerical simula-

tions (in blue) and experimental results (in red) for Barnaby phonat-

ing on /port/, /food/ and /stern/ respectively. The numerical simu-

lations match rather well the experimental results, although there are

differences, mostly due to the fact that the simulation propagates a

lossless wave equation whereas the actual Vocal Tract implies fluid

dynamics with turbulence, vorticity, viscous layers, heat losses, etc.

Moreover, the absorption coefficient of the simulation is not frequency

dependent.

Figure 6.58: Numerical (blue) simulation versus experimental (red) results

of Barnaby singing on /port/.
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Figure 6.59: Numerical (blue) simulation versus experimental (red) results

of Barnaby singing on /food/.

Figure 6.60: Numerical (blue) simulation versus experimental (red) results

of Barnaby singing on /stern/.

Table 6.5 shows the comparison between the simulated and mea-

sured formant frequencies, and their relative difference for Barnaby. It

is to be noted that, apart from the 3D -printed VT of Barnaby phonat-

ing on /hard/, the numerical results are in a good agreement with

the experiment. VTM-MRI-Barnaby-/hard/ experienced a problem

in the 3D-printing process (see the only peak for F3-F4-F5); it needed

to go through a completely new segmentation process for simula-
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tion purposes. The numerical and experimental Vocal Tract shapes of

Barnaby come from two different segmentations and lead naturally

to discrepancies in the resonant frequencies.
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6.5 a new metric to compare singer’s formant

clusters

In the last section, it could be observed that the Singer’s Formant

Cluster (SFC) exhibits many different patterns, and is difficult to

compare them in practice: its constituent formants tend to vary in

frequency, amplitude and bandwidth across singers, vowels and reg-

isters. To address this issue, a new metric of the SFC is suggested.

It consists in approximating the SFC by a Gaussian curve based

on the amplitude and frequency of each of its N constituent formants.

Each formant Fi is defined by its frequency f(Fi) and its amplitude

A(Fi). Let us first define the centre, the amplitude and the width of

the SFC:

1. The amplitude of the SFC is represented by Height and is de-

fined as an average of the amplitude of each of its constituents:

Height =
1

N

N∑
i=1

A(Fi) (6.14)

2. The centre frequency of the SFC is represented by Centre and is

defined as a weighted average of the frequency of its constitu-

tive formants:

Centre =
1

N · Height

N∑
i=1

f(Fi) ·A(Fi) (6.15)

A Gaussian curve centred at the origin is of the form

f(x) = Ae
−

(x
a

)2

(6.16)

as plotted on Fig 6.61.
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Figure 6.61: Gaussian function.

From the plot, it follows that A represents the Height of the SFC.

Indeed,

Height = f(0) = Ae
−

(
0

a

)2

= A (6.17)

B and C are the inflexion points of the curve, i. e. the points where the

curvature changes sign. It implies that the second derivative is null

for these points:

[f(x)] ′′x=B,C = 0−2Ax
a2

· e
−

(x
a

)2
 ′

x=B,C

= 0

−2A
a2

· e
−

(x
a

)2

·
(
−1+

2x2

a2

)
x=B,C

= 0

leading to

B = −
a√
2

C =
a√
2

In statistics, the parameter a (a2) represents the standard deviation

(variance) of a normal distribution. To approximate the SFC, points

B and C need to match the transfer function. It therefore defines two

standard deviations, one on the left, one on the right, since the SFC is
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not symmetric in general. The distance between B and C is called the

Width of the SFC.

The graph of the Gaussian curve is then translated horizontally

to the Centre and vertically to the offset given by the transfer function

(see Fig 6.62).

The SFC Gaussian curve can then be written:

f = Height · e
−

(
x− Centre

a

)2

+ Offset (6.18)

where Offset is defined by

Offset = y0 − Height · e
−

(
x0 − Centre

a

)2

(6.19)

with (x0,y0) being the coordinates of the spectral trough between F2

and F3. The parameter a is defined as

a =
Width√

2
(6.20)

This parameter is declined with a left and a right version in case one

wants to approximate the SFC by an asymmetrical Gaussian curve, as

is the case here.

Figure 6.62: New metric for the SFC.
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6.5.1 Test with prototypical cases

The behaviour of the metric is benchmarked with prototypical cases

shown on Fig 6.63: a set of one to three peaks, each under the form

of a Gaussian, is varied across its constitutive parameters such as its

amplitude or height H and its bandwidth B.

For the convenience of computation, the figures have been drawn

with an amplitude H=6 dB so that the bandwidth B (width at -3 dB)

is measured at half the maximum amplitude.

Note that the parameter Width (6.20), referred to as the distance BC

in Fig 6.61 measures the width of the function to be approximated (in

black) at half its maximum height. For instance,

• In Fig A, Width=B;

• In Fig B, Width=2(
1

2
·B+

1

2
·W) =W +B;

• In Fig C, Width=
1

2
·B/2+ 1

2
·W +

1

2
·W +

1

2
·B.

One peak (A)

The SFC (in purple) suggested by the new metric fits exactly the Gaus-

sian peak function, centred around zero.

Two peaks (B, C, D, E)

The metric is centred around zero for B and C. Indeed, the centre

(6.15) of 2 peaks of the same height gives
1

2
(−W/2 ·H+W/2 ·H) = H.

The only minor difference between B and C is that the gaussian sur-

face is totally symmetrical in B whereas it is is slightly more promi-

nent on the right side of C: the left Width of C is slightly smaller

than its right counterpart. Both left and right Widths in B are equal

to
1

2
·B+

1

2
·W whereas the left Width of C is equal to

1

2
·B/2+ 1

2
·W

and the right Width to
1

2
·B+

1

2
·W.

D and E have a Height equal to
1

2
(H/2+H) = 3H/4 and are centred

around
1

2 · 3H/4
(−W/2 ·H/2+W/2 ·H) = 1

2 · 3H/4
WH/4 =W/6. The
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only difference between D and E is a slight asymmetry in E due to a

left Width slightly smaller than the right Width.

Three peaks (F, G, H, I)

The metric is centred around zero for F and G. Indeed, the centre

(6.15) of 3 peaks of the same height gives
1

3
(−W ·H+ 0 ·H+W ·H) =

H. The only minor difference between F and G is that the gaussian

surface is totally symmetrical in F whereas it is is slightly more promi-

nent on the right side of G: the left Width of G is slightly smaller than

its right counterpart.

H and I have a Height equal to
1

3
(H/2+H/2+H) = 2H/3 and are

centred around
1

3 · 2H/3
(−W ·H/2+0 ·H/2+W ·H) = 1

3 · 2H/3
WH/2 =

W/4. There is no difference between H and I since the Width of both

(width of the function at half its maximum height) equals W +W +
1

2
·B.

When both the height and the bandwidth are changed, only the

change in height matters (I).

To summarise:

• The Height and Centre of the SFC are only determined by the

height and centre of its constituent peaks; the bandwidth has

no influence.

• The Centre of the SFC is the average of the frequencies of its

constituent peaks, weighed by their height.

• The Width of the SFC is predominantly determined by the dis-

tance between the external peaks and to a lesser extent by their

respective bandwidth.

This new metric is aimed at facilitating the visual representation

of complex patterns of SFC to compare them across singers/vowel-

s/registers. Visually, it represents the statistical distribution of the

peaks constituting the SFC.
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Figure 6.63: Benchmarking of the new metric against prototypical cases.

The behaviour of the new metric is being scrutinised on pro-

totypical cases made of 1, 2 or 3 peaks of a Gaussian form,

whose parameters (height, width, bandwidth) are varied.
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6.6 data visualisation with the new metrics

The introduction of the new metric allows to compare the singer-

s/vowels/registers from a different perspective.

6.6.1 Comparison with the dimensions

The SFC simulated by the new metric is compared with the SFC pre-

dicted by the Vocal Tract dimensions in Table 6.6 which shows suc-

cessively: the anatomically predicted SFC, the metric SFC, and their

relative difference expressed in %. For the dataset of six singers used

for this thesis, the SFC predicted by the dimensions of the hypophar-

ynx is consistent within 3% (2.52%) with the SFC obtained by the

new metric: this adequation supports the formula (6.12) correlating

the dimensions of the epilaryngeal tube, the pharyngeal width and

the SFC.

SFC: predicted versus simulated

SFC (pred) [Hz] SFC (met) [Hz] ∆(%)

Sophy 4,002 4,025 0.57

Maristela 3,529 3,574 1.28

Marisa 3,529 3,552 0.65

Timothy 2,971 3,046 2.52

Bartholomew 2,789 2,780 -0.32

Barnaby 2,671 2,652 -0.71

Table 6.6: Comparison between the SFC predicted (pred) from anatomical

dimensions and the SFC obtained with the new metric (met).
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6.6.2 Experimental versus Numerical

A comparison between the SFC obtained by the new metrics on nu-

merical and experimental results shows good agreement between the

experimental and numerical results (see Table 6.7)

SFC: simulation versus experimental

SFC (num) [Hz] SFC (exp) [Hz] %

port 2,674 2,793 4.45

stern 2,627 2,603 -0.91

food 2,608 2,771 6.25

Table 6.7: SFC: comparison between the experimental and numerical results

based on the new metric.

6.6.3 Singers Classification

The new metric of the SFC may visually facilitate the classification

of singers into voice categories: having an arbitrary gradient scale for

the SFC centre from 2 kHz (blue) to 4kHz (red), it clarifies the voice

type which the singer belongs to. Fig 6.64 illustrates this principle on

the six professional singers of this thesis, whose Vocal Tracts are rep-

resented on Fig . It is suggested that the use of the new metric helps

visualising the differences across singers, from Fig 6.18, page 153 to

Fig 6.64. On Fig 6.64, the SFC obtained with the new metric is super-

imposed to the transfer function of each singer. The SFC frequency

centre determines the colour on the gradient scale, facilitating the

identification of the voice type: towards red, the SFC and voice type

are higher, towards blue, the SFC and voice type are lower. Note that

Marisa and Maristela are quite close in terms of SFC, which is in

agreement with the fact that they are both Mezzo-Sopranos.
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6.6.4 Same singer, different vowels

If the same principle is applied to the same singer, Barnabas, singing

in different vowels (see Figs 6.66 and 6.67), it is observed that different

SFC patterns appear, depending on the vowels being sung.

Figure 6.66: VTM-MRI of Barnaby singing on different vowels.

Figure 6.67: Barnaby singing on different vowels, with the SFC represented

by the new metric.
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6.6.5 Registers

Fig. 6.68 shows different SFC patterns when Bartholomew is singing

on different registers. Fig 6.68 shows a strong nasal coupling via the

velum except for the Falsetto register.

Hard

Chest Mixed Squillo Rinforzando Falsetto

Figure 6.68: Bartholomew singing on different registers on /hard/.

Figure 6.69: Bartholomew singing in different registers, with the SFC repre-

sented by the new metric.
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6.6.6 Singer hallmark

Obtaining the SFC pattern for combinations vowel-register might give

us more insight into the timbre characteristic of a singer’s voice. An

example is shown for Barnaby phonating on /hard/ in Fig 6.70. This

figure shows a sum-up of the spectral effects of the hypopharyngeal

cavities. On the upper left is the VTM-MRI-Barnaby-/hard/, with the

epilarynx of Barnaby coloured in purple. On the upper right is the

transfer functions of the VT (greyscale) and of the VTp (red). The

purple Gaussian curve is the new metric aimed at facilitating the vi-

sual representation of the SFC. Note that its centre match closely the

blue arrow which represents the SFC predicted by the anatomical

dimensions of the hypopharynx (see formula (6.12) and Table 6.6).

Note also that appending the epilarynx to the VTp spectrally shapes

the VTp transfer function (in red) around the epilarynx resonance fre-

quency (blue arrow) to form the VT transfer function (greyscale). On

the bottom left, in red, the transfer function of the VTp, in greyscale,

the transfer functions of the VT when the epilaryngeal tube is length-

ened downwards by 2 mm steps from 0 mm to 10 mm. On the bottom

right, in greyscale, the transfer function of the VT, in green, the trans-

fer function of the VT without the piriform fossae. The green arrow

is the antiresonance frequency generated by the piriform fossae.
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Figure 6.70: Barnaby singing on /hard/



Part IV

C O N C LU S I O N



7 C O N C LU S I O N

Over the last few decades, many voice researchers have contributed

to a better understanding of the human voice. Pioneers such as Fant,

Sundberg, Titze and their predecessors unravelled the basic principles

of voice production. Following their legacy, there are now several ap-

proaches to study voice production: the source-filter theory, which

hypotheses no interaction between the source of the voice (glottal sig-

nal) and the filter (Vocal Tract), the glottal source itself, the Vocal tract

itself, and the interactions between them. This thesis investigated the

spectral impact of the hypopharyngeal cavities on the singing voice,

within the framework of the source filter-theory and contributed in

the following novel aspects:

• A novel transducer-independent experimental method to mea-

sure the transfer function of 3D-printed Vocal Tract Models.

• Identification of the spectral impact of the epilarynx dimen-

sions (length and radius) on Vocal Tract analogues (VTM-Ch&K).

• A new metric for the SFC is proposed, aimed at facilitating the

visual comparison of the SFC patterns across singers, vowels

and registers.

• A formula is suggested to predict the SFC frequency centre

related to the dimensions of the hypopharynx.

In the framework of this research, the findings:

• Support both numerically and experimentally the results found

in the literature regarding the spectral impact of the piriform

fossae and vallecula on the transfer function of MRI-based Vocal

Tracts (VTM-MRI).

209
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• Suggest, in the limitations of the data collected on six profes-

sional singers, that their SFC frequency centre is correlated to

their hypopharyngeal dimensions and voice classification.

This chapter is structured as an overview of this thesis: the first

part gave a background for the thesis, the second part introduced the

methods (both numerical and experimental) used, the third part ex-

posed the results. This is followed by a discussion, a model proposed

for the hypopharyngeal cavities, the contributions, the shortcomings

and further development.

7.1 background

This thesis has focused on the resonances of the filter (Vocal Tract)

within the framework of the source-filter theory. A general knowl-

edge of the production of speech/sound was first introduced, fol-

lowed by a development of source-filter theory. Concentrating on the

filter, the notions of impedance - resonance were explained and ap-

plied to the Vocal Tract. The formants, and especially the Singer’s

Formant Cluster (SFC) were explained. A literature review on the

particular role of the hypopharyngeal cavities and their relationship

to the SFC was given, but a consensus amongst the scientific commu-

nity has not been reached regarding the spectral impact of the epi-

laryngeal tube. Furthermore, techniques to measure the Vocal Tract

resonances were listed and explained. This was followed by a brief

review on how previous researchers tried to relate the voice types of

singers with parameters such as VT length, formant frequencies, SFC,

VF lengths, etc.
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7.2 brief summary of the method used

The method chosen was based on the comparison between numerical

(FEM, FVM) and experimental approaches to measure the resonances

of VTMs (Vocal Tract Models).

The FEM (Finite Element Method) simulates the transfer function

of the VTMs directly in the frequency domain whereas the FVM (Fi-

nite Volume Method) propagates an impulse in the VTMs, via the

wave equation ∂2ϕ

∂t2
= c2∇2ϕ in the time domain. The impulse re-

sponse is recorded and processed with an FFT (Fast Fourier Trans-

form) to give the transfer function of the VTM. An absorption coeffi-

cient is implemented on the VTM walls and reflection-free boundary

conditions and infinite elements are used at the radiation field bound-

ary by the FVM and FEM respectively.

VTMs provide a series of shapes approximating the Vocal Tract,

from the simplistic single tube (VTM-1), to a twin tube (VTM-2), a

VTM based on Chiba & Kajiyama’s Vocal Tract replicas (VTM-Ch&K,

[2] from [14]) and eventually an MRI-based Vocal Tract of six pro-

fessional singers while singing in a supine position (VTM-MRI). The

different VTMs have been modelled and meshed for the use of the

numerical methods. They have been 3D printed for the experimen-

tal approach. The MRI scan of the head of a singer while phonating

on different vowels/registers gives slices in the 3 spatial directions,

which need to be segmented to produce a 3D model of the vocal

tract aimed at being meshed and used in the framework of numerical

methods or being 3D-printed for experimental use.
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7.2.1 A novel transducer-independent experimental method

The novel experimental approach exploits a technique widely used

in room acoustics to measure an impulse response [34]: exciting the

cavity of the VTM with an ESS (Exponential Sine Sweep) as an in-

put signal, the response of which is convolved with the inverse filter

of the ESS, splitting the linear impulse response from its harmonic

distortions. The linear impulse response can then be converted into

a transfer function by FFT. The adaptations/additions to the method

used in [34] are as follows:

• The acoustical response of a cavity (and not a room) is mea-

sured: the VTM is excited at the lips end and the sound output

is recorded at the glottis end.

• The process is handled twice: once with the driver only, once

with the driver+VTM, so that the transfer function of the stan-

dalone VTM is simply obtained by subtracting the two spec-

tra (when the amplitude is represented logarithmically).

• A pre/post-envelope is applied on a frequency range (and not

on a time interval) at the beginning and the end of the sweep,

respectively.

7.3 summary of findings

The thesis proceeded to systematic acoustical analysis of a series of

Vocal Tract models, by increasing order of complexity/realism: VTM-

1, VTM-2, VTM-Ch&K and VTM-MRI. The first aspect developed con-

cerns the spectral impact of the epilarynx, the extra resonance it gen-

erates and the spectral shaping around it. Its dimensions (length and

radius) are varied and the spectral impacts are observed accordingly.

These results are extended and being tested on real vocal tract shapes
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(VTM-MRI). The effects of the piriform fossae and vallecula are inves-

tigated.

A theoretical background was first introduced to derive the reso-

nances of a simple cylinder closed at one end and opened at the other.

This represents the simplest model of a Vocal Tract (VTM-1) that is

closed at the glottis end and opened at the lips end. The experimental

result and numerical simulations matched the theoretically predicted

transfer function.

Then, a smaller tube was appended at the glottis end of VTM-

1, to form the VTM-2. The latter represents the epilaryngeal tube,

whereas the former stands for the oropharyngeal tube. Introducing

the OECC (Open End Correction Coefficient) which accounts for the

small volume of air vibrating along with the air inside the VTM, the

resonance frequencies of this twin tube are theoretically predicted

and match those obtained by experimental set-up and numerical sim-

ulations. Appending a tube creates an extra resonance and spectrally

shapes its neighbouring resonances. The centre frequency of this "spec-

tral perturbation" corresponds to the first resonance frequency of the

appended tube: the cross-section difference between the epilaryngeal

tube and the oropharyngeal tube makes the former a 1/4-wave res-

onator. This supports the findings of [91, 93, 96, 96, 98, 108, 110, 27,

101, 50, 18, 57, 104, 105], see Fig 2.9 from [99] for an illustration of the

generation of a singing formant (later termed the SFC). The method is

applied for different lengths/radii of the epilaryngeal tube for VTM-

2, VTM-Ch&K and VTM-MRI.
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7.3.1 Identification of the spectral impact of the epilaryngeal tube

on VTM-Ch&K

The new findings for VTM-Ch&K extend the results obtained for

VTM-2:

• Decreasing the radius of the epilaryngeal tube increases the

amplitude of the SFC, increasing the spectral power radiated

around the SFC frequency centre (see Fig 6.10).

• No threshold ratio of 1:6 is observed as reported in [101]. A

gradual increase in SFC prominence was observed instead.

• Increasing the length of the epilaryngeal tube shifts the centre

of the SFC towards lower frequencies. This SFC shift is a key

difference that is observed between singers when moving from

a soprano to a bass range [16]; see Fig 2.14 from Dmitriev et al.

[25].

• No significant variation of F1, F2 (and to a lesser extent F3)

is in evidence when the epilaryngeal tube length is changed.

Therefore, the vowel identification remains the same.

7.3.2 A new Metric for the SFC

Classically trained singers produce a broad energy peak in the re-

gion 2-4 kHz, termed the Singer’s Formant Cluster, which enables

them to be heard over an orchestra without amplification [119]. This

SFC originates from the resonance of the epilaryngeal tube [101]. The

spectra obtained for VTM-MRI showed that real singers exhibit dif-

ferent SFC patterns (see Fig 6.64). For the purpose of analysing and

characterising the spectral differences across singers, vowels and reg-

isters, a new metric has been introduced to represent the SFC. It is

aimed at facilitating the visual comparison between the SFC of differ-

ent singers/vowels/pitches. It represents the statistical distribution



7.3 summary of findings 215

of the clustering resonance peaks contributing to the SFC: the peaks

frequencies are averaged and weighted by their amplitude to yield

the SFC frequency centre. The amplitude of the SFC is an average of

the amplitude of its constituent peaks. The SFC is approximated by

a Gaussian curve: this provides a straightforward visual comparison

of different SFC patterns as well as the statistical distribution of the

peaks constituting the SFC.

7.3.3 A formula to predict the SFC frequency centre based on the

hypopharynx dimensions

From the findings of VTM-2 (see section 6.3.2) and VTM-Ch&K sum-

marised in subsection 7.3.1, it appears that the SFC frequency centre

is determined by two factors:

1. Predominantly by the length L of the epilaryngeal tube

2. To a lesser extent by the width of the pharyngeal opening PW

and the cross-section A of the epilaryngeal tube at the pharyn-

geal opening (which accounts for the OECC for the interior of

the neck of a resonator such as in (6.6), a fit formula from [51],

valid as long as
√
A/π < 0.2PW)

This is illustrated in the suggested formula to predict the SFC fre-

quency centre:

f =
c

4 · (L+ 0.48 · (
√
A−

2.5A
√
π

π · PW
))

(7.1)

This suggests that, all other things being equal,

1. A longer epilaryngeal tube generates a lower SFC centre

2. A wider epilaryngeal cross-section at the pharyngeal opening

increases the acoustical length of the epilaryngeal tube, low-

ering the SFC centre, until
√
A/π < 0.2PW, so at the expense

of the SFC amplitude.
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3. A wider pharyngeal opening increases the acoustical length

of the epilaryngeal tube, lowering the SFC centre.

7.3.4 Findings

The hypothesis states that the hypopharyngeal cavities and the val-

lecula play a predominant spectral role in the timbre of the singing

voice. The findings of this thesis suggest that:

• The amplitude of the SFC is inversely related to the cross-

section of the epilaryngeal tube A at the pharyngeal opening:

a smaller cross-section increases the amplitude of the SFC and

therefore the acoustical power radiated in this frequency re-

gion, slightly changing the SFC centre frequency. This can be

seen on Fig 6.10 for VTM-Ch&K, which builds on the results

found for VTM-2 on Figs 6.6 and 6.7.

• The piriform fossae and epiglottic vallecula both act as side

branches to the Vocal Tract, creating an anti-resonance in the

4-5 kHz region. It is likely that this trough perceptually en-

hances the effect of the SFC emerging from the spectrum, cre-

ating an acoustical energy gap which probably "isolates" the

SFC signature in the acoustic output.

• The dataset of six professional singers provided in this thesis

shows a clear correlation between the epilarynx dimensions,

the SFC frequency centre and voice classification as can be

seen on Fig 6.19: from Soprano to Bass-Baritone in the de-

scending order, a lower voice type corresponds to a lower SFC

and a longer epilarynx. This supports the findings of Dmitriev

et al. [25] (Fig 2.14): they found that the dimensions of the

VT were related to the production of singing formant and to

the voice classification. The length of the epilaryngeal tube
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(and both the width of the pharyngeal opening and the cross-

section of the epilaryngeal tube to some extent, see formula

7.1) are therefore hypothesised to be related to the voice clas-

sification (see Fig 6.19): a longer epilarynx is related to a lower

voice type.

• Based on the data of one singer in each case, the SFC of the

same singer phonating on the same pitch on different vow-

els (Barnaby), or singing the same vowel on different regis-

ters (Bartholomew), exhibit different configurations of SFC

(in terms of frequency centre, width and amplitude), see Figs

6.67 and 6.69 respectively.

• In the dataset obtained from six professional singers for this

thesis, the SFC frequency centre predicted by the dimensions

of the hypopharynx (formula 7.1) is consistent with the SFC

frequency centre determined by the new metric within 3%

(see Table 6.6).

7.4 discussion

A systematic acoustical analysis of Vocal Tract Models was conducted,

by increasing complexity/realism order: VTM-1, VTM-2, VTM-Ch&K

and VTM-MRI. The dataset of six professional singers provided in

this study show a clear correlation between the SFC frequency centre

and voice classification (Fig 6.19), supporting the results of the litera-

ture (Fig 2.14, from [25]). The predicted SFC frequency centre based

on hypopharynx dimensions (formula 7.1) is consistent with the SFC

frequency centre determined by the new metric within 3% (see Table

6.6) for the singers in this study. It is therefore suggested that the hy-

popharynx dimensions are related to the voice classification: the au-

thor hypotheses that the length of the epilarynx may determine the

main voice classification while variations of the width of the pharyn-
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geal opening might nuance this classification. Note that the orophar-

ynx offers many different anatomical configurations across singers.

The spectral action of the epilarynx on each of these oropharynges

will therefore yields a great diversification of voices.

Titze et al. [108] states that ”a narrow epilarynx tube acts a bit like

the mouthpiece of a brass instrument, matching the high internal impedance

of the glottis to the lower impedance of the vocal tract and free space”. As an

impedance matcher, the epilarynx faces different impedance values

of the oropharynx at the pharynx opening for different vowels. This

might suggest why some vowels need to be adjusted and why some

vowels-frequency range are more difficult to produce than others, de-

pending on the singers.

Regarding vowel adjustments performed by singers at higher

pitches, resonance tuning strategy [45] was observed for Sophy and

Maristela. Note that both the tenor and the baritenor appeared to

lower the velum (soft palate) which probably resulted in a strong

acoustical coupling of the nasal tract and the oral tract, changing the

amplitude and resonances of the oral tract, suggesting that this velar

coupling was performed to tune one of the first two resonances to the

fundamental frequency f0 or one of its multiple.

7.5 model for the hypopharyngeal cavities

As an extension of the results of this thesis, a model for the spectral

impact of the hypopharyngeal cavities on the voice output is pro-

posed on the schematic of Fig 7.1:

The Vocal Tract proper determines the lower formants of the voice

associated with its vowel quality. Appending the epilarynx, the pir-

iform fossae and the vallecula reshapes the higher formants of the

voice associated with its timbral quality.



7.5 model for the hypopharyngeal cavities 219

The epilarynx length (plus the end correction depending on the

cross-section of the epilarynx and the pharyngeal width) determines

the frequency centre of the SFC, the epilaryngeal cross-section and

the pharyngeal width impact on the amplitude and the width of the

SFC. As a result, the VTp transfer function gains an extra resonance

and its amplitude is locally increased around the first resonance fre-

quency of the epilarynx (typically between 2-4 kHz). Appending the

piriform fossae and the epiglottic vallecula adds side branches to the

Vocal Tract, which create an anti-resonance around 4-5 kHz, spectrally

enhancing the SFC even more.
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7.6 contributions

This thesis investigated the spectral impact of the hypopharyngeal

cavities on the singing voice and contributed to these novel aspects:

• A novel transducer-independent experimental method aimed

at measuring the trasnfer functions of cavities.

• A new metric for the SFC aimed at facilitating its visual repre-

sentation and comparison across singers/vowels/registers.

• A suggested formula to predict the SFC from the hypophar-

ynx dimensions.

• The impact of the epilarynx dimensions on the transfer func-

tions of VTM analogues (VTM-Ch&K).

• A suggested model of the hypopharyngeal cavities spectral

impact.

The findings of this thesis may be useful to the voice researchers

community to highlight the potential relation between the hypophar-

ynx structures and the voice classification. The new metric may help

comparing more systematically the SFC patterns inter-singers and

intra-singers (different vowels, registers).

7.7 shortcomings

The methods used in this thesis show the following shortcomings:

1. The sample of professional singers was insufficient to draw gen-

eral conclusions regarding voice classification.

2. The transfer functions, both measure and simulate the reso-

nances of the VT + radiation at the lips, not only those of the
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VT. This results in the transfer function of the VT + the slope of

the radiation.

3. This study was performed within the limits of the Source-Filter

theory, so no interaction between the Vocal Folds and the Vocal

Tract has been addressed.

4. The accuracy of the MRI gave at best a 1 mm-resolution. This

resolution could be slightly increased with a sinc (sin(x)/x) in-

terpolation performed by ITK-Snap between the MRI slices and

a post-processing smoothing the surface with NetGen.

5. The frequency resolution of the FEM is dependent on the size

of the mesh.

6. The FVM needs a timestep of the order of 10−9 s to perform a

good time resolution with the same mesh as the FEM and re-

sults therefore in long simulations which would typically take

about 6h. On the other hand, the frequency resolution is there-

fore largely increased.

7. Only the oral tract transfer function was measured: no velar

coupling was accounted for in the simulations.

7.8 further development

This thesis concludes with further developments which could poten-

tially improve our understanding of the spectral impact of the hy-

popharyngeal cavities and their role in the timbral characteristics of

the voice.

Regarding the numerical model, implementing a frequency-dependent

admittance at the vocal tract walls, or even semi-porous walls could

provide more accuracy in the amplitude of formants and their band-

width. The location of the different formants, however, should not be
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too affected, as seen in subsection 4.8.3. The implementation of the

full set of 3D Navier-Stokes equations in the time domain, with the

FVM would give a more accurate insight on the actual fluid dynam-

ics at work in the VT, embodying turbulences, viscous layers, heat

transfer and vorticity. In a model of voice production where the tract

is coupled to the source (aero-acoustic framework), the use of Navier-

Stokes would be relevant, but if the aim is only to investigate the

resonances of the tract by propagating an impulse and measuring its

response, the difference might not be relevant.

Concerning the measurement of the Vocal Tract geometry, an

acoustic pharyngometer based on Acoustic Reflection Technology (ART)

was used to measure the Vocal Tract length and volume of profes-

sional singers [120]. This works like a sonar: it sends an acoustic wave

into the Vocal Tract and measures the reflections of this wave at each

discontinuity, reconstructing the cross-sections and the volume. Fur-

ther development of this technology might provide better volumetric

representations of the Vocal Tract, which is less expensive than MRI.

Optical wave propagation may also be considered as a non-invasive

way to measure the tract geometry while phonating, and deduce the

voice classification of a singer.

A more extensive study encompassing a greater number of pro-

fessional singers would give more insight into the potential link be-

tween the hypopharynx dimensions, the SFC frequency centre and

the voice classification. The new metric might provide a means to

visually compare the SFC patterns of representatives of each voice

category, in terms of vowels and registers.

Regarding the epilarynx, some questions remain unsolved and

might be relevant to our understanding of voice classification. The

epilarynx tube acts as an impedance matcher between the Glottis and

the rest of the Vocal Tract [119]: it transmits optimally acoustical en-
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ergy in several frequency bands downstream (to the tract) and up-

stream (sound waves from the tract on the Vocal Folds). The tessitura

and the voice classification are then probably linked through the epi-

larynx, which acts as an impedance matcher, facilitating the vibration

of the folds at several frequencies and enhancing the Vocal Tract res-

onance in some frequency ranges, and conversely. However, it is not

yet understood whether the length of the Vocal Folds, and therefore

the possible range of f0 determines the length of the epilarynx or the

other way round. Potentially, both probably evolve in such a way that

for a healthy voice, the first resonator of the VT, i. e. the epilarynx

and the glottal signal source, i. e. the Vocal Folds match each other in

terms of impedance. However, more research is needed to investigate

these aspects.

To what extent can the epilarynx tube be extended or constricted

(changing the SFC centre, amplitude and width)? Can it be trained?

What are the geometric modifications of the epilarynx at work in the

different registers? In a singer’s ease to produce a musically appeal-

ing and healthy operatic sound, in what proportion is it due to the

epilarynx/oropharynx innate geometry or to the training to optimise

the transmission of acoustical energy with the morphology the singer

has been provided with?
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A A C O U ST I C M O D E S F O R A N

O P E N C Y L I N D E R

The eigen-function Ψ(r,n) satisfies the Helmholtz equation at any

point r(r,ϕ, z) in the cylinder

[∇2 + k20(n)]Ψ(r,n) = 0 (A.1)

where k0(n) are the eigenvalues.

The eigenfunctions must satisfy the rigid boundary condition at the

surface of the open cylinder, i.e.

∂Ψ(r,n)
∂n̂

= 0 (A.2)

where n̂ is the surface normal.

In cylindrical coordinate system, ∇2 is given by

∇2 =
∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂ϕ2
+
∂2

∂z2
(A.3)

To solve the eigen-value problem, we assume the eigen-functions

can be factored into a form Ψ(r,n) = R(r)eimϕZ(z). The Helmholtz

equation is reduced to

1

R

[
∂2R(r)

∂r2
+
1

r

∂R(r)

∂r

]
−
m2

r2
+

1

Z(z)

∂2Z(z)

∂z2
+ k20 = 0 (A.4)

Applying separation of variables, we obtain independent equations

for the axial factor Z(z) and the radial factor R(r). The axial factor Z(z)

satisfies

∂2Z(z)

∂z2
+ k2zZ(z) = 0 (A.5)
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and also boundary conditions


∂Z(z)
∂z

= 0 at the closed end z = −L

Z(z) = 0 at the open end z = 0

(A.6)

Therefore, the axial factor Z(z) is the solution of the above equa-

tions, which is Z(z) = sin(kzz), and the eigen values kz = 2nz+1
L

π
2

for nz = 0, 1, 2, 3, ...

The radial factor must satisfy

∂2R(r)

∂r2
+
1

r

∂R(r)

∂r
−

(
k2r −

m2

r2

)
R(r) = 0 (A.7)

where k2r = k20 − k
2
z, and the rigid boundary condition is

∂R

∂r
= 0, r = a (A.8)

The solution to the above equation is the cylindrical Bessel function

Jm(krr), where m is the order and kr the eigenvalue. The eigenval-

ues (kr,m(n)) are the roots of the derivative of the cylindrical Bessel

function at r = a, that is

J ′m(kr,m(n)a) = 0 (A.9)

Therefore, the eigenfunction for an open rigid cylinder is given by

Ψnz,m(n) = Jm(kr,m(n)r)eimϕsin(kzz) (A.10)



B F I N I T E VO LU M E M E T H O D

The Finite Volume Method is a discretisation method for the approx-

imation of partial differential equations translating the conservation

or balance of one or more quantities [29]. This method suits a wide

range of numerical problems such as heat and mass transfer, fluid dy-

namics or petroleum engineering [30]. The partial differential equa-

tions (PDEs) are called conservation laws and typically relate the par-

tial derivatives of unknowns such as density, temperature, pressure,

with the variables of the domain under investigation (time, space, ...).

As in the FEM, the domain is partitioned, or meshed into smaller

cells called control volumes. Each control volume is given a local bal-

ance equation, the result of the integration of the PDEs. This set of

equations is then discretised with respect to a set of discrete un-

knowns [29]. The critical point in FVM resides in the fact that the

numerical fluxes at the boundaries between adjacent cells must be:

• conservative, i. e. the flux coming from the control volume A

to the control volume B must be the opposite of the one from B

to A at any time.

• consistent, i. e. as the mesh size vanishes, the numerical flux

tends to the continuous flux.

This results in a system of discrete equations with discrete un-

knowns which are related to one another either lineraly or non-linearly.

The system is then solved or approximated, using for instance itera-

tive solvers and Newton methods in the case of linear and non-linear

equations respectively.

228
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b.1 basic principles

The FVM is used for the discretisation of conservation laws. Let q(x, t)

denote a quantity depending on time (t) and space coordinates (x). A

conservation law expresses the conservation of a quantity q, e. g. the

mass, the energy, the momentum, the number of moles of a chemical

reactant, etc. A local form of the conservation law can be expressed

as follows:

qt(x, t) +∇ · F(x, t) = f(x, t) (B.1)

where

• qt is the partial time derivative of q

• ∇· is the space divergence operator: ∇·F =
∂F1

∂x1
+ ...+

∂Fd

∂xd
with

F = (F1, ..., Fd)

• F is the flux: it represents the transport mechanism of q

• f is the source/sink term: it defines any volumetric exchange/-

force, e. g. product during a chemical reaction, gravity, etc.

1d euler equation

As an example, here is the 1D Euler Equation for real gases at

equilibrium [30]. With

q =


ρ

ρu

E

 F =


ρu

ρu2 + p

u(E+ p)


where ρ is the density, u the velocity, E the total energy per unit

volume and p the pressure.
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The system of equations contains more unknowns than equations.

It can be closed if p and E are related to the specific volume τ = 1
ρ

and

the entropy s, yielding to 2 constitutive laws:

p =
∂ϵ

∂τ
(τ, s) , E = ρ

(
ϵ(τ, s) +

u2

2

)
where ϵ is the internal energy per unit mass, which is a given function

of τ and s.

The equation (B.1) can be understood as the expression of the

local conservation of q in an infinitesimal domain: it is equivalent to∫
K

q(x, t2)dx−
∫
K

q(x, t1)dx+
∫t2
t1

∫
∂K

F(x, t) ·nK(x)dγ(x)dt =
∫t2
t1

∫
∂K

f(x, t)dxdt

(B.2)

for any subdomain K and for any time t1 and t2, where nK is the unit

vector normal to the boundary ∂K, at the point x, pointing outward

K. (B.2) expresses the conservation of the quantity q in the cell K

between the times t1 and t2. dx represents the integration symbol for

the d-dimensional Lebesgue measure in Rd and dγ is the integration

symbol for the (d− 1)-dimensional measure [30].

b.2 time discretisation

Let (tn)n∈N denote an increasing time series with t0 = 0. The time

step can be variable or constant (as in this demonstration). Let k ∈

R∗
+ denote the time step so that tn = nk for n ∈ N. Note that B.1

can also be written with a time-space divergence. This leads to two

possibilities in terms of time discretising (see Table B.1):
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Implicit Scheme Explicit Scheme

time-space divergence space divergence

space-time

finite volume discretisation

space

finite volume discretisation

+ time finite difference scheme

Conservation Law integrated

over time and space

Conservation Law integrated

over space

Time derivative approximated

by a time difference scheme

Table B.1: Comparison between implicit and explicit schemes.

This classifies the time discretisation in two families of schemes:

implicit and explicit. Explicit Euler, for instance, discretises the time

derivative as such:

(q)t ∼=
q(n+1) − q(n)

k

with q(n+1) and q(n) representing the quantity q at times n+ 1 and

n respectively. Note that implicit schemes and higher orders might

also be used.

b.3 space discretisation

For a space discretisation of (B.1), a mesh T of the domain Ω of Rd

needs to be introduced, such that Ω = ∪K∈TK, where K is an element

of T, an open subset of Ω called a control volume [30].

q
(n)
K represents an approximation of the quantity q in the volume

control K at the time tn. The principle of the finite volume method is
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to integrate (B.1) over each cell K of the mesh T to obtain the conser-

vation under a nonlocal form for the volume K. Using Euler explicit,

this gives [30]:∫
K

qn+1(x) − qn(x)
k

dx+
∫
∂K

F(x, tn) ·nK(x)dγ(x) =
∫
∂K

f(x, tn)dx

(B.3)

The last step is to approximate the flux, i. e. to express F(x, tn) · nK(x)

across the boundary ∂K of each control volume (see Fig B.1), in terms

of q(n)
L , L ∈ T. Let K|L = K ∩ L with K, L ∈ T, the exchange term

(from K to L)∫
K|L

F(x, tn) · nK(x)dγ(x)

from the control volume K to the control volume L between times tn

and tn+1, is approximated by some quantity F(n)
K,L, which is a function

of u(n)
M , M ∈ T. Note that F(n)

K,L = 0 if the Hausdorff dimension of

K∩ L is less than d− 1 (e. g.K∩ L is a point in the case d = 2 or a line

in the case d = 3)[30]. Here are two important features of the finite

volume method:

1. Conservativity: F(n)
K,L = −F(n)

L,K ∀K,L ∈ T and ∀n ∈ N

2. Consistency of the approximation of F(x, tn) ·nK(x), which needs

to be defined for each relation between F and the unknowns.

b.4 comparison with other methods

The Finite Volume Method is often compared with the Finite Dif-

ference Method (FDM) and the Finite Element Method (FEM), and

although there are similarities, the main differences are described be-

low [30].

The Finite Difference Method is based on a set of discretisation

points, each of which is assigned one unknown and one discretised
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Figure B.1: Boundary between two adjacent volume controls K and L.

equation [30]. At each point, the derivatives are replaced by a finite

difference, using a Taylor expansion to the neighbouring points. In

comparison with the FDM, the FVM discretises the balance equation

and not the PDE itself. One of the shortcomings of FDM is that it

cannot deal with discontinuous coefficients, for instance in the case of

heterogeneous media. By opposition, with the FVM, this problem can

be handled quite easily by choosing the control volumes adequately

so that their boundaries coincide with the separation between the

different media.

The Finite Element Method is based on a variational formulation,

for both the discrete and the continuous problems. It consists of mul-

tiplying the original equation by a so-called test function. The continu-

ous unknown is approximated by a linear combination of shape func-

tions, which are the test functions for the discrete variational formula-

tion (this is called the Garlekin Expansion) [30]. The resulting equation

is then integrated over the whole domain. Sometimes, the FVM is

called as a discontinuous FEM, in the sense that you can choose a test

function defined as 1K(x) = 1, if x ∈ K, and 1K(x) = 0, if x ∈ K and

use a linear combination of shape functions for the discrete unknown.
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FEM is a very successful method across the engineering world, mostly

because of two principles on which its is based [75]:

1. The domainΩ in Rd is partitioned intoN small, non-overlapping

domains, called finite elements, over which functions are approx-

imated by local functions, usually polynomials [42].

2. The boundary- and initial-value problems are formulated in a

weak form, or integral form, so that each subdomain contributes

to the whole domain by summing up the integrals over each

domain.

The second point probably played an important role in the major

success encountered by FEM, because the local subdomain approx-

imations are summed up to determine the contributions to the full

domain.

c.1 basic principles

The Finite Element Method consists in seeking an approximated func-

tion uh(x, t) of the exact solution u(x, t), continuous piecewise on

subdomains of the domain Ω. The N subdomains are defined such as

N∪
i=1

Ωi = Ω and Ωi ∩Ωj = ∅ ∀ i ̸= j (C.1)

where Ωi designates the interior of Ωi. In other words, {Ωi} is a

partition of Ω.
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Note that u(x, t) can be a scalar, vectorial or tensorial field, de-

pendent on the space coordinates in the domain Ω and the time t.

The fields uh
i (x, t), defined for each sub-domain, are chosen amongst

an arbitrary family of functions (which are generally polynomials in

the FEM).

• The local field family is called element interpolation functions space

• The global field family is called domain interpolation functions

space

The field in each subdomain Ωi is determined by a finite num-

ber of values of the field (or its derivatives) evaluated at points of

the subdomain arbitrarily chosen called nodes. The local field is then

an interpolation between the values at the nodes. The subdomain to-

gether with its interpolation is called element *.

Seeking a solution in the sense of FEM consists in determining

which local field is attributed to subdomains so that the global field

uh(x, t) obtained by juxtaposition of these local fields uh
i (x, t) gets

close to the exact solution u(x, t).

The quality of the approximation depends on:

• The partition of the domain: refinement of the mesh, adaptable

mesh to the geometry, structured/unstructured grid, etc.

• The choice of the family of local fields: polynomials, etc.

• The continuity conditions imposed at the boundaries inter-subdomain:

C0,C1, ...

To solve a problem with the FEM, the following steps would be

employed [42]:
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1. Formulate a problem in physics as a system of (partial) differen-

tial equations to be satisfied in every point of a domain Ω, with

boundary conditions on the boundary ∂Ω

2. Derive an integral formulation of the differential system to be

solved, along with its boundary conditions: this is the variational

formulation of the problem

3. Divide Ω in subdomains: this is the meshing

4. Choose the the family of local fields, i. e. :

• the position of the nodes in the subdomains

• the polynomials (or other functions) which define the local

field with respect to the values (and possibly its deriva-

tives) at the nodes

5. Formulate the problem discretely: this is the discretisation. In-

deed, each approximated solution is entirely determined by its

value at the nodes of the elements. It then "only" needs to find

the values to confer to the nodes to describe an approximated

solution. The fundamental principle of the FEM can be summed

up in two questions:

a) How to choose the discrete problem whose solution is "close"

to the exact solution?

b) How to define "close"?

6. Solve the discrete problem: this is the resolution

These principles are better understood when illustrated by a sim-

ple example. To that purpose, the case of Poisson equation in 2D will

be examined, with first an incursion to the Garlekin method to ex-

plain what the variational form is about.
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c.2 garlekin method

The purpose is to find an approximated solution of a problem *. The

variational form can be written under the form:

Find u in V such as a(u, v) =< f, v > ∀ v ∈ V (C.2)

where

• V is vectorial space whose elements are functions

• (u, v) 7→ a(u, v) is a bilinear function on V × V

• v 7→< f, v > is a linear form on V

In the case of Poisson problem with homogeneous Dirichlet condi-

tions, the vectorial space on which we seek solutions is V = {u contin-

uous and C1 piecewise on Ω, u = 0 on ∂Ω} and the forms a(., .) and

< f, . > are defined by

a(u, v) =
∫
Ω

u ′(x)v ′(x)dx , < f, v >=
∫
Ω

f(x)v(x)dx (C.3)

The solution space V being of infinite dimension, the principle of

Garlekin method consists of replacing it by a vectorial space Vh of

finite dimension and solving the approximated problem:

Find uh in Vh such as a(uh, vh) =< f, vh > ∀ vh ∈ Vh (C.4)

As Vh is of finite dimension, solving (C.4) consists of solving a linear

system (i. e. inverting a matrix). Indeed, if (ϕ1, ...,ϕN) is a base of

Vh, the approximated solution uh can be decomposed onto that base

following

uh(x) =

N∑
j=1

ujϕj(x) (C.5)
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Solving (C.4) is then equivalent to finding a vectorU = (u1, . . . ,uN) ∈

RN such as

a

 N∑
j=1

ujϕj(x), vh

 = < f, vh >, ∀vh ∈ Vh

⇐⇒
N∑
j=1

a(ϕj(x), vh)uj = < f, vh >, ∀vh ∈ Vh

⇐⇒
N∑
j=1

a(ϕj(x),ϕi)uj = < f,ϕi >, ∀i ∈ {1, ...,N}

since (ϕ1, . . . ,ϕN) is a base of Vh. By setting the matrix

A = (Aij)1⩽i,j⩽N ∈ RN×N, Aij = a(ϕj,ϕi) (C.6)

and the vector

F = (Fi)1⩽i⩽N ∈ RN, Fi =< f,ϕi > (C.7)

we obtain the linear system

AU = F (C.8)

So, if the matrix A is invertible, the vector U is equal to U =

A−1F and it is unique, which proves that the problem (C.4) has a

unique solution. Matrix A is called the stiffness matrix, referring to the

mechanical problems when it was first introduced.

c.3 poisson problem

The problem of Poisson can be written in the form: −∆u = f in Ω

u = 0 on ∂Ω
(C.9)

The 2D problem is being considered, i. e.Ω is an open bounded of

R2. Let us assume that the variational formulation of this problem

admits a solution u in the space

V = {u continuous and C1 piecewise on Ω, u = 0 on ∂Ω}
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and try to approach it by a function uh solution of the same varia-

tional problem, but where V is replaced by an approximation space

Vh.

To describe the points of the domain, we need the two space

variables x and y.

c.3.1 Choice of the mesh, the nodes and the local fields

The domain Ω is arbitrarily divided in triangles as shown on Fig C.1.

The example is illustrated with 3 nodes per triangle and polynamials

of degree 1 for the local field family. See Fig C.2 for the possibilities

of elements in Actran. Each local field can then be determined with

respect to the values at the 3 nodes. Note that using nodes at the

summits of the triangles has two advantages:

1. The number of nodes is reduced, because there are common

nodes to two adjacent elements

2. The C0 continuity of the approximated solution is then ensured:

the local fields of two adjacent elements will have the same

value at the common node

Note that there is no obligation in providing each element with the

same number of nodes: we could have taken elements with two nodes

and others with three nodes for instance.

Fig C.1 shows that the mesh can be generated from a series of

mappings (Fk) from a master triangle Fk to the subdomain Ωk. Each

local field can then be expressed in function of the values at the nodes.

Indeed, there exists only one polynomial of degree 1, vhk(x,y) =
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Figure C.1: A triangular finite element partition of a domain Ω into ele-

ments over which test functions are piecewise linear functions

of the coordinates (x,y).

vh|Ωk
(x,y) = ax + by + c which satisfies the following conditions:


ax1 + by1 + c = v1

ax2 + by2 + c = v2

ax3 + by3 + c = v3

(C.10)

where v1, v2 and v3 denote the values of Vh at the nodes labelled 1,

2 and 3 respectively.

The system (C.10) can be rewritten:
x1 y1 1

x2 y2 1

x3 y3 1



a

b

c

 =


v1

v2

v3

 (C.11)
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and is solved by inverting the 3x3 matrix:
a

b

c

 =


x1 y1 1

x2 y2 1

x3 y3 1


−1

v1

v2

v3



=
1

2Ak


y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1

x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y3



v1

v2

v3


where Ak represents the area of the triangle Ωk, which is defined by

Ak =

∣∣∣∣∣∣∣∣∣∣
xk,1 yk,1 1

xk,2 yk,2 1

xk,3 yk,3 1

∣∣∣∣∣∣∣∣∣∣
(C.12)

The local function can be written

vhk(x,y) = v1ψk
1(x,y) + v2ψk

2(x,y) + v2ψk
2(x,y) (C.13)

where the ψi are the element shape functions, which are given, ac-

cording to the systems above:

ψk
1(x,y) =

1

2Ak

[
(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y

]
ψk

2(x,y) =
1

2Ak

[
(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y

]
ψk

2(x,y) =
1

2Ak

[
(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y

]
(C.14)

If (xi,yi) are the coordinates of node i, and Ak is the area of Ωk,

the linear function has the property:

ψk
i (xj,yj) =

 1 if i = j

0 if i ̸= j
(C.15)

The elements are then all connected together to create the full com-

putational domain Ω. By doing so, it creates the global piecewise
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Figure C.2: Element topologies supported in Actran, from www.fft.be.

linear basis function ϕi, corresponding to each node i in the con-

nected mesh. These hat functions are the result of grouping the ele-

ment shape functions together, as shown in Fig C.3. The global test

functions are linear combinations of these basis functions. For a mesh

with M interior nodes,

vh(x,y) =
M∑
i=1

vh(xi,yj)ϕi(x,y) (C.16)

The process described with the stiffness matrix now needs to be per-

formed, as in the subsection describing Garlekin Method.
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Figure C.3: A global basis function ϕi for the spaces Uh and Vh, created by

assembling element shape functions which have the node i in

common. The basis function is defined everywhere in Ω but is

nonzero only on the subdomains surrounding the node i.
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In 1974, Paul Lauterbur and Peter Mansfield independently published

about magnetic resonance imaging (MRI) [43]. They were awarded with

the Nobel Prize. Thirty years of development later, five MRI-related

works have received the Nobel Prize.

The rise of the MRI would not have been possible without im-

portant findings in the fields of mathematics and physics, whose pio-

neers were [43]:

• Jean Baptiste Joseph Fourier (1768-1830) to whom we owe the

Fourier transform, which enables a fast processing of the fre-

quency and phase signals from the nuclear magnetic resonance

(NMR) data yielding to the image reconstruction. In 1975, Richard

Ernst was the first to use Fourier transform in the framework of

MRI and it has been used ever since.

• Nikola Tesla (1856-1943) who discovered the rotating magnetic

field which constitutes the basis of almost every alternative-

current based machinery nowadays.

• Sir Joseph Larmor (1857-1942) from whom we inherited the

Larmor equation which states that the frequency precession (i.e.

spinning on its axis) of the nuclear magnetic moment ω is pro-

portional to the product of the magnetic field amplitude B0 and

the gyromagnetic ratio γ: ω = γB0. The Larmor equation is

relevant in NMR because it gives the frequency at which the nu-

cleus will absorb/emit energy, when immersed in a magnetic

field. When the nucleus absorbs this energy, it will result in an

alteration of its alignment.

244
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Thanks to these important findings, the path to the MRI as we know

it nowadays could be traced with important steps such as in [43]:

• 1937, Isidor Rabi observed and measured the magnetic mo-

ments of nuclei (1 in Fig D.1).

• 1946, Edward M. Purcell and Felix Bloch described indepen-

dently of each other the phenomenon known as magnetic reso-

nance: when certain nuclei are placed in a magnetic field, they

absorb energy in the electromagnetic spectrum, which they resti-

tute once they return to their original state. (2 and 3 in Fig D.1).

• 1971, Raymond Damadian discovered that the nuclei of Hydro-

gen in cancerous tissues take a longer time to return to their

original state compared to those from healthy tissues.

As a final step towards the beginning of the MRI Era, Paul Lauterbur

and Peter Mansfield, without knowledge of each other’s work, de-

scribed how it was possible to locate NMR spatially with a magnetic

field gradient (4 in Fig D.1)). The MRI was born.

d.1 basic principles

Magnetic Resonance Imaging, or MRI is a method used to get an

image of the interior of a structure (tissue, bone, ...). An MRI Scan

is composed of a magnet, magnetic gradient coils, a radio-frequency

transmitter and receiver and a computer that control the RF (radio-

frequency) emission and reception, acquisition of signals and imag-

ing. If an atomic Nucleus is exposed to a static Magnetic field, it

Resonates when a varying magnetic field is applied at the proper fre-

quency [22]. This phenomenon is called the Nuclear Magnetic Res-

onance or NMR. Each nucleus in resonance sends a signal whose

frequency and phase allow a reconstruction of the sources spatially

and an image can be computed. This is the MRI.
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Figure D.1: NMR: processes at work.
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In nature, the nuclei of many atoms, like Hydrogen, are behav-

ing like tiny magnets (1 in Fig D.1). Bathed in the Earth’s magnetic

field, they tend to line up (2 in Fig D.1). Being composed of 2/3 of

water, the human body contains a large number of atoms of Hydro-

gen. Therefore, the simple fact of walking on Earth makes the tiny

compasses all over our body precessing (spinning on their axes like

gyroscopes), aligned with the Earth’s magnetic field (2 in Fig D.1).

To create an MR image, this tendency of the nuclei to line up in the

direction of an external magnetic field can be measured and changed

[22]. By applying a gradient magnetic field, it is possible to act on the

precession of the nuclei in the different part of the body, giving them

a different frequency (their magneto-resonance frequency) according

to their spatial location (4 in Fig D.1). After relaxing the nuclei, i.e.

bringing them to their original state, they will release the energy ab-

sorbed at a certain frequency, yielding radio signals that are location

dependent (3 in Fig D.1). From these signals, it is possible to compute

and reconstruct a spatial image of the different tissues in the body.

When bathed in an external magnetic field B0, the atomic nucleus

has an energy E which depends on its orientation. This energy is

related to the resonance frequency ν by Planck’s constant h:

E = hν (D.1)

and determines the strength of the signal which will be re-emitted

once the nucleus returns to its steady state. The amount of energy E

depends on the amplitude of the magnetic field B0 and of a magnetic

property of the nucleus called the gyromagnetic ratio γ. A fundamen-

tal equation of NMR and MRI links the resonance frequency ν of a

nucleus to its gyromagnetic ratio γwhen it is immersed in an external

magnetic field B0. This is called Larmor equation:

ν =
γ

2π
B0 (D.2)
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Combined with (D.1), this gives the energy absorbed/radiated by a

nucleus of gyromagnetic ratio γ when it is plunged into an external

magnetic field B0:

E = hν = γ
h

2π
B0 (D.3)

To the static field B0 is added a transient field B1, which, when

switched off, let the nuclei return to their steady state by emitting a

radio wave whose energy is given by (D.3) when B0 is replaced by

B1. On the many atoms nuclei that are susceptible to NMR, just a

few emit a signal strong enough to be processed in reconstructing

an image in MRI. The nucleus of Hydrogen has the largest gyromag-

netic ratio and, due to (D.3), has the highest energy and therefore

the largest signal at any given field strength [22]. The human body is

composed of 2/3 of water (H2O). Hence there is a large abundance

of Hydrogen nuclei in the human body. This, combined with the fact

that it displays the strongest signal makes it the perfect candidate to

get a high resolution.

To obtain the spatial location of the emission of the radio wave,

it is necessary to superimpose a spatial gradient magnetic field G =

(Gx,Gy,Gz) to the static field B0 so that each nucleus will be im-

mersed in a unique magnetic field, which gives the possibility of

uniquely determining the spatial location of the nucleus according to

the radio wave received in each of the three directions (x,y, z); (D.3)

is modified accordingly:

∆E = hν = γ
h

2π
(B0 +G) (D.4)

for each direction (x, y, z). Since the atomic nuclei in different posi-

tions experience different values of (B0 +G), the image will be recon-

structed by interpreting the spectral frequencies.
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Figure D.2: http://www.nobelprize.org/nobel_prizes/medicine/

laureates/2003/illpres/ Diagram of an MRI system.

d.2 acquisition and protocol

A major difference of MRI compared to all other human imaging tech-

niques resides in the high quality of contrast especially amongst soft

tissues [22]. The contrast of a typical MR image depends on the nu-

clei density and the exponential relaxation times of the signals con-

sequent to the transient B1 pulse. Different tissues may exhibit dif-

ferent proton concentration and/or different proton relaxation times.

This enabled Raymond Damatian to differentiate cancerous tumours

from healthy tissues [43]. The relaxation time T1 (for spin lattice relax-

ation) is sin 1s for biological water protons: it is the time constant for

the system to return to its thermal equilibrium [22], during which the

the atomic nuclei are relaxing and loose the energy acquired by the

transient B1 to their environment (the lattice). However, the signals

usually become too weak before the complete duration of T1 because

they dephase or become incoherent: this process is called spin-spin or

T2 relaxation and is ∼ 1s for biological water protons [22]. Therefore,
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depending on the diagnoses, one can choose to weigh the parameters

T1 and T2 to offer the best contrast for the image of the object under

examination.
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