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Summary of thesis 

 
This thesis investigates the afferent mechanism that may be involved in bladder 

hypersensitivity. The Study primarily focuses on the role of TRPM8 on bladder 

sensory firing. One part of the study also aims to replicate the ice water test in an in 

vitro mouse model to assess the contribution of TRPM8. An interesting aspect that the 

study investigates is the interaction between TRPM8 and TRPV1, TRPA1 and 

purinergic signalling. Finally, the study investigates ERβ KO mice as a model for 

interstitial cystitis. Investigating these parameters may reveal more information of the 

sensory changes that may occur in relation to bladder hypersensitivity, hence revealing 

novel targets for therapy.  
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1.1 Bladder Anatomy 
 

The bladder is a hollow organ with strong muscular walls characterised by its ability 

to distend. The bladder functions to store and void urine that has been excreted by the 

kidneys. The human bladder accommodates approximately 300ml-500ml, however 

has a volume capacity of 1 litre of urine. Storage of urine happens at low pressure, 

while emptying involves a synchronised contraction of the bladder and relaxation of 

the urethra. During its emptying phase a healthy bladder is able to contract and expel 

its contents quickly and completely (Zachoval et al., 2000). When the bladder is empty 

it is located in the lower region of the pelvis, inferior to the peritoneum and lying 

slightly superior to the pubic bones. The position and shape of the bladder differ under 

the pressure of its own contents and neighbouring organs. Ligaments stabilise the 

position of the bladder (Birder et al., 2007). The bladder itself can be divided into 3 

distinct regions: (1) the dome, which is comprised of the detrusor muscle. (2) The 

trigone, which is a smooth triangular area attached by its uppermost corners to the 

ureteral orifices and at the base by the internal urethral orifices. (3)The bladder neck 

is the lower part of the bladder, which surrounds the urethra.  
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Figure 1.1 Schematic diagram of the bladder showing the distinct regions. 

  

Andersson K , and Arner A Physiol Rev 
2004;84:935-986 

(Andersson and Arner, 2004) 
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1.1.1 Bladder histology 

 

The mucous membrane lines the bladder and is covered partially by peritoneal serosa. 

Following the serosa, is the smooth muscle layer, which consists of the detrusor muscle 

(Gray, 1995). It is composed of three layers, (1) inner longitudinal, (2) middle circular 

or spiral; and (3) outer longitudinal fibres. Following the muscle layer is the lamina 

propria. It is a layer of loose connective tissue that connects the musculature layer with 

the epithelial layer known as the urothelium (Birder et al., 2010). 

 

 

 

(Birder and Andersson., 2013) 

Figure 1.2: Cross section of the bladder  
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1.1.2 The urethra 

 

The urethra is a tube that extends from the bladder neck to the exterior of the body. 

The male urethra is approximately 20cm long and is divided into four main regions 

pre-prostatic (intra-luminal part of the urethra), prostatic (crosses through the prostate 

gland), membranous (passes through the external urethral sphincter), and the penile 

urethra, with only the first three contributing to urinary continence. There is a small 

percentage of cholinergic nerves present on the urethral muscle, however it is densely 

innervated by noradrenergic nerves (Gosling et al., 1999). Contrary to the male 

urethra, the female urethra is approximately 3cm long and has a much more uniform 

structure. It is fused with the anterior wall of the vagina and terminates between the 

clitoris and the vagina. The urethra of both males and females is lined by the 

urothelium, which plays a role in function (discussed later in detail) (Booth et al., 

1983; Martini, 2001). Somatic and autonomic nerves control the functions of the 

urethra (Brading et al, 1999). 

 

1.2 Urothelium 

The bladder urothelium is an epithelial lining of the lower urinary tract, between the 

renal pelvis and the urethra.  Because the cell layers appear to change shape as the 

bladder stretches to accommodate the increasing volume of urine, the urothelium is 

also known as the ’transitional’ epithelia. The main functions of the urothelium 

include, providing physical protection and controlling transportation of solutes (Birder 

et al., 2010). 
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The urothelium consists of a minimum of three distinct layers (the exact number 

depends upon the species): a basal cell layer (~10µm diameter cells), which is bound  

to a basement membrane, an intermediate layer, (10-25µm diameter cells) and a 

external apical layer made from large specialised polyhedral cells also known as 

"umbrella cells" (25-250µm diameter). It has been suggested that the umbrella cells 

and intermediate cells may have projections to the basement membrane (Apodaca, 

2004, Birder et al 2004 & Lewis, 2000). 

 

1.2.1 Barrier function  

Many features of the umbrella cells allow the bladder to maintain its barrier function. 

These key features consist of tight junction complexes, such as, many  cytoplasmic 

and transmembrane proteins that decrease the transfer of solutes between cells (Lewis, 

2000). Moreover, specialised molecules of lipid and uroplakin proteins (cover 

approximately 90% of the urothelial cell surface) in the apical cell membrane decrease 

cellular permeability to small molecules (i.e. urea and water) (Birder et al., 2010, 

Apodaca et al., 2004). Another feature that protects the barrier function is the mucin 

layer that lines the surface of the urothelium. This mucin layer is composed of 

sulphated polysaccharide glycosaminoglycan (GAG) and is suggested to function as a 

non-specific anti-adherence factor, providing protection against infection (Parsons et 

al., 1979). Moreover, during filling of the bladder when the umbrella cells change 

shape, they become flat and squamous and this transformation is complemented by 

vesicular trafficking, adding membrane to the apical surface and enlarging the overall 

surface area of the bladder (Balestreire et al., 2007 and Cheng et al., 2002). During 
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bladder filling, the urothelium accommodates by changing its morphology. It is 

thought that the change in shape results from the intermediate and basal cells being 

pushed laterally (Hicks et al., 1975). The umbrella cells change from roughly cuboidal 

morphology to a more flat and squamous shape during bladder filling. It is thought that 

the change in morphology is accompanied by discoidal or fusiform vesicle exocytosis 

(Apodaca, 2004 and  Hwang et al., 2005). This increases surface area of the umbrella 

cell, hence increasing the overall surface area of the bladder, allowing the bladder to 

accommodate increased volumes of urine (Truschel et al., 2002 and Wang et al., 

2003). During emptying of the bladder, endocytosis occurs of the added apical 

membrane. Alternatively, it is also mentioned that the change in shape of umbrella 

cells is achieved by folding or unfolding of the apical plasma membrane (Koss et al., 

1969). These processes permit the bladder to adjust to large volume of urine during 

storage while maintaining the barrier function (Apodaca et al., 2007 and Birder et al., 

2007). If the barrier function is compromised due to inflammation or injury, toxic 

substances can move into underlying tissue. This can result in urinary frequency, 

urgency and even pain during voiding, as seen in interstitial cystitis (discussed later in 

detail) (Apodaca, 2004 and Birder, 2004) 

 

1.2.2 Neuron like properties of the urothelium 

Many reports have reported that urothelial cells display various mechanoreceptive and 

nociceptive characteristics. The urothelium expresses a range of receptors and ion 

channels, normally found on sensory nerves. These include, bradykinin (Chopra et al., 

2005), trkA and p75 (Murray et al., 2004), purinergic receptors (Birder et al., 2004, 

http://ajprenal.physiology.org/cgi/content/full/289/3/F489#R5
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Lee et al., 2000 and Tempest et al., 2004), adrenergic receptors (Birder et al., 1998 

and Birder et al., 2002), muscarinic and nicotinic receptors  (Beckel et al., 2006 and 

Chess-Williams 2002 et al., 2002), protease-activated receptors (D’Andrea et al., 

2003), Na channels (ENaC) (Carattino et al., 2005, Lewis et al., 1985, Smith et al., 

1998 and Araki et al., 2004) and a range of transient receptor potential (TRP) channels 

(Birder et al., 2001, Birder et al., 2002, Birder et al., 2007 Stein et al., 2004 and Streng 

et al., 2008). The urothelium has also been reported to release various 

neurotransmitters in response to mechanical stimulation, including ATP (Ferguson et 

al., 1997), Ach (Yoshida et al., 2006), nitric oxide (NO) (Birder et al., 1998) and 

prostaglandins (Khan et al., 1998; Masunaga et al., 2006). These properties, together 

with the close proximity of the urothelium with sub- urothelial afferent nerves 

innervating the bladder, suggests interaction between both the structures, hence 

together forming a complete sensory structure of its own. It needs to be mentioned that 

the expression profile data varies among researchers. Moreover, the urothelium is 

thought to convey information about changes in intravesical pressure to the afferent 

nerves, resulting in the inhibition of sodium channels and the subsequent release of 

ATP (Ferguson et al., 1997). Release of ATP causes stimulation of P2X receptors 

present on bladder afferents. P2X2/3 deletion studies have shown an increase in 

bladder capacity and a reduction in voiding frequency (Vlaskovska et al., 2001, Rong 

et al., 2002 and  Cockayne et al., 2005). 
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(Birder et al., 2012). 

 

Figure 1.3 schematic diagrams showing the release of various neurotransmitters from the 

urothelium. The neurotransmitters may act on the afferent nerves lying in the sub-urothelial 

plexus or the detrusor muscle  
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1.2.3 Urothelium and bladder tone 

In vitro studies have reported that the urothelium can interact with bladder smooth 

muscle cells through the release of acetylcholine and ATP from the urothelium. This 

release can occur in response to stretch, and results in the modulation of smooth muscle 

contraction. The release of NO has also been postulated to play a role in bladder tone 

(Birder et al., 1998). This is in line with the identification of NOs in the urothelium 

(Birder et al., 2002) and on the bladder smooth muscle (James et al., 1993). Moreover, 

bladder tone changes have also been reported after electrical field stimulation (James 

et al., 1993) and photo induction of  NO (Chung et al., 1996). However, evidence that 

NO plays a significant role in detrusor relaxation or bladder compliance is lacking.  

Apart from stimulatory substances, the urothelium has also been reported to release 

mediators that have an inhibitory effect. These substances are thought to influence 

muscle contraction and may possibly influence afferent nerve signalling. Examples of 

such mediators include nitric oxide, prostaglandins and adenine nucleotides.  

Studies in various animal species have shown that urothelium denuded muscle strips 

show increased agonist induced contractions (Levin et al., 1995). Hawthorn et al., 

(2000) also reported mediator release of fusible inhibitory mediators from the 

urothelium of the pig bladder. Augmentation has also been observed in denuded rat 

muscle strips in response to carbachol (Kosan et al., 2005). Additionally, 

administration of ATP increased carbachol-induced contraction in muscle strips with 

intact urothelium. These responses are comparable to urothelium denuded strips, and 

hence indicate a role of purinergic signalling in this process (Santoso et al., 2010). The 

factor is now known as ‘the urothelium derived inhibitory factor’ (UDIF), the 
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release of which results in ~50% reduction in muscle contraction (Hawthorn et al., 

2000; Templeman et al., 2002). However, a role for this mediator in the 

physiological/pathophysiology of the bladder remains unclear. 

 

1.2.4 Interstitial cells (ICs) in the bladder 

Smett and Jonavicius first described interstitial cells of the bladder in (1996). These 

cells have now been reported throughout the bladder wall (Davidson  and McCloskey, 

2005) of the human, guinea pig,  rabbit and mouse (Smet et al., 1996; Klemm et al., 

1999; Pezzone et al., 2003; Van der Aa et al., 2003; Lagou et al., 2006). The 

identification of bladder ICs has acquired a lot of interest, due to similarities with ICCs 

(interstitial cells of Cajal) in the gut (Ward & Sanders, 2001 and Hirst & Edwards, 

2004). Within the gut, ICCs function as pacemakers, driving the peristaltic movement 

of the gut. Studies conducted on bladder ICs have revealed certain structural and 

functional properties that indicate functional significance of these cell types in the 

bladder. However, current knowledge on the functional aspect of these cells is limited. 

It has been suggested that in the detrusor muscle, ICs might be involved in driving 

smooth muscle contraction (Sanders, 1996). However, isolated smooth muscle cells 

have been shown to generate spontaneous electrical activity (Montgomery & Fry, 

1992, Karkanis et al., 2003, Hashitani et al., 2004 and Sui et al., 2004), contradicting 

the above statement. In the sub-urothelium the ICs are interconnected by gap junctions, 

and may play a role in modulating bladder sensation. The close proximity of these ICs 

with the afferent terminals also suggests a possible influence of these ICs in the 

interaction between afferents and urothelium. The finding that ATP can stimulate 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890411/#b9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890411/#b9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890411/#b28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890411/#b27
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890411/#b27
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bladder ICs (Sui et al., 2004) is in line with this theory, since the urothelium has been 

shown to release ATP in response to stretch (Ferguson et al., 1997). However, 

evidence for a physiological role of bladder ICs is limited. 
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1.3 Bladder innervations 

1.3.1 Generation of action potential 

Investigating electrophysiological properties are important to gain a better 

understanding of the physiological function of neurons. The release of stimulus evoked 

neurotransmitters requires the generation of action potentials in many neurons. The 

generation of these action potentials is mainly controlled by voltage gated sodium, 

potassium and calcium channels. Influx of sodium into the cell via voltage gated 

sodium channels (down a concentration gradient) results in membrane depolarisation. 

Once the depolarisation reaches a threshold level an action potential is generated. This 

influx in turn activates more sodium channels in a positive feedback mechanism. 

Although the membrane is still depolarized, a separate inactivation process results in 

the reduction of sodium influx. Outflux of potassium ions via voltage-dependent and 

independent potassium channels results in the repolarisation phase. The after 

hyperpolarisation phase is then generated by voltage dependent potassium channels to 

allow the recovery of the sodium channels and reset  them for the generation of the 

next action potential.  

 

The function of the lower urinary tract is to store and release urine in a controlled 

manner and this depends on the integration of somatic and autonomic efferent and 

afferent mechanisms that coordinate the activity of the bladder and urethra. 

Sympathetic and parasympathetic nerves arise from distinct lumbar and sacral regions 

of the spinal cord respectively. Hypogastric and pelvic nerves convey autonomic 
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innervation to the bladder and somatic innervation of the external urethra is conveyed 

via the pudendal nerves. Postganglionic autonomic nerves fibres innervating the 

bladder are broadly classified as either adrenergic (sympathetic) or cholinergic 

(parasympathetic) fibres.  

 

1.3.2 Efferent projection 

Parasympathetic pre-ganglionic neurones innervate the intermediolateral grey matter 

of the sacral spinal cord (S2-S4 laminae v-vii) and travel via the pelvic nerve to the 

major pelvic plexus. The axons terminate at the pelvic plexus, or the ganglia located 

in the detrusor muscle.  

(Sullivan and Yalla, 2002). Nicotinic cholinergic pathways mediate synaptic 

transmission in these intramural ganglia. Furthermore, the nicotinic cholinergic 

pathways can be influenced by various other receptors, including adrenergic, 

muscarinic and purinergic receptors (De Groat & Booth, 1980). The bladder dome and 

urethra is densely innervated by postganglionic neurons, which release 

neurotransmitters such as acetylcholine, hence providing excitatory input to the 

bladder and causing bladder contraction through muscarinic receptors.  

Sympathetic preganglionic neurons pathways innervate the intermediolateral horn and 

dorsal gray commissure at the T11- L2 spinal level. The axons project from the spinal 

cord to the lumbosacral sympathetic chain ganglia and the major pelvic ganglion or to 

adrenergic neurones innervating the bladder and urethra (de Groat, 1997). It has been 

reported that some fibres from the sympathetic chain travel along with 

parasympathetic pre-ganglionic neurones to the pelvic nerve (de Groat & Booth, 
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1980). Sympathetic postganglionic nerves release noradrenaline causing the urethra to 

contract via the activation of α-adrenoceptors and the bladder body to relax through β-

adrenoceptors (Andersson & Arner, 2004).  

The somatic pathway is carried from Onufs nucleus in the ventral horn of the spinal 

cord (T11-L2) via the pudendal nerve to the urethra, resulting in muscle contraction 

through the release of acetylcholine (de Groat et al., 2001).  

 

1.3.3 Bladder ganglions 

Various intramural ganglia have been reported to be present within the bladder of 

human, guinea pig, rabbit, rat and mouse (Gabella, 1990, Xu et al., 2008 and Gillespie 

et al., 2006). The pelvic plexus is innervated by both parasympathetic and sympathetic 

ganglion neurons, some of which synapse at this site (De Groat & Booth, 1993). 

Nicotinic receptors are present on the cell bodies of intramural nerves and mediate the 

transmissions between pre-ganglionic and post ganglionic fibres.  
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1.3.4 Afferent projections 

 

Bladder afferents are essential in controlling voiding reflexes. They carry information 

from the bladder to the central nervous system about visceral sensation (Yoshimura et 

al., 2008).  Afferent projections travel from the bladder in pelvic and hypogastric 

nerves to lumbrosacral spinal cord (Morrison., 1999 and Weaver 1985).  Sensory input 

from the bladder neck and urethra travels in the hypogastric and pudenal nerves 

(Fowler et al., 2008). In humans, the cell bodies of the pelvic and pudenal nerves are 

in dorsal root ganglia (DRGs) in the sacrum (S2-S4) and cell bodies of the hypogastric 

nerve in DRGs are located in the thoracolumbar region (T11-L2). From the DRGs the 

afferent projections travel in the posterolateral tract to second order neurons. These 

neurons then convey information to the pontine micturition centre, hence initiating the 

micturition reflex (Blok et al., 1997). Within the bladder the axons of these afferents 

have been found in the epithelium, along the muscularis, in the serosa and on blood 

vessels supplying the bladder (Sharkey et al., 1983 and Su et al., 1986). Innervations 

of the mucosa has the highest density of afferent fibres, forming a plexus in the sub-

urothelial layer (Gabella, 1990). The muscle is innervated by with long axons, running 

parallel to the smooth muscle bundles. The density of this innervation is uniform 

throughout the bladder. 
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(Fowler et al., 2008) 

 

Figure 1.4 Innervations of the lower urinary tract. 
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1.3.5 Classifying bladder afferents 

The bladder afferent fibres consist of small myelinated (Aδ) and unmyelinated (C) 

fibres, with a conduction velocity of ~11.0m/s and  ~1.7 m/s respectively in the rat 

(Sengupta & Gebhart, 1994) (conduction velocity less than 1.3 m second−1) (Morrison 

et al., 1999).  Aδ fibres are mainly present in the detrusor muscle, and carry 

information regarding alteration of detrusor muscle tone, that occurs during bladder 

filling. Unmyelinated sensory C fibres are located mainly in the detrusor muscle, with 

close proximity to the urothelium in the lamina propria (Wakabayashi et al., 1993). It 

has been suggested that C fibres might transmit information regarding changes in 

bladder volume (Morrison et al., 1999). Approximately 90% of C fibres are termed 

silent, since they are unresponsive in normal physiological states (Habler et al., 2003). 

These silent receptors respond to noxious stimuli.  

1.3.6 Low and High threshold afferents 

Studies conducted in cats, guinea pigs and rats have further classified these fibres into 

low and high threshold. Low threshold bladder afferents respond to intravesical 

pressures below ~15mmHg, whereas high threshold afferents respond to pressures 

above 15mmHg (Habler et al., 1990, 1993ª, Sengupta  and Gebhart, 1994 ). Both Aδ- 

and C fibres have been reported to respond to both high and low thresholds. This 

observation suggests that there is no link between conduction velocity and type of 

receptor (Sengupta  and Gebhart, 1994c,  Su et al., 1997 and  Shea et al., 2000). 

Bladder afferents innervating the mouse and rat bladder have been reported to display 
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spontaneous activity (Sengupta & Gebhart, 1994 and Daly et al., 2007) However, other 

studies have contradicted the above findings (Shea et al., 2000; Rong et al., 2002).  

1.3.7 Direct and indirect afferent mechanism 

Afferent activation mechanisms have been categorized into direct and indirect. Direct 

activation of afferents occurs through stimulation of mechano- and osmolarity 

receptors present on nerve endings. The indirect activation of afferents results from 

mediators released from non-neuronal cells in response to mechanical stimulation. An 

example of indirect activation is the activation of purinergic receptors present on 

bladder afferents through ATP that has been released from urothelial cells in response 

to stretch. 

 

1.3.8 Stretch sensitive, stretch insensitive and silent receptors 

Bladder afferents neurons have been separated into different classes. 1) stretch-

sensitive mechanoreceptors, In vivo studies have identified both low threshold and 

high threshold  stretch sensitive bladder afferents (Habler et al., 1990, Sengupta and 

Gebhart, 1994 and Shea et al., 2000).  Low threshold fibres mainly play a role in the 

control of micturition, whereas high threshold fibres are thought to be involved in pain 

sensation (de Groat et al, 1997). 2) chemo-receptors, which are stretch-insensitive 

afferent neurons, are activated by isotonic potassium chloride but not sodium chloride 

(Moss et al., 1997). 3) Around 30% of bladder afferents have been termed “silent 

afferents”, due to lack of response to distension or chemical stimuli. These silent 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VT5-4JMKMY1-2&_user=128590&_coverDate=06%2F30%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000010619&_version=1&_urlVersion=0&_userid=128590&md5=20c8468b9b92d8d6274750cde10d6402#bib8#bib8
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VT5-4JMKMY1-2&_user=128590&_coverDate=06%2F30%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000010619&_version=1&_urlVersion=0&_userid=128590&md5=20c8468b9b92d8d6274750cde10d6402#bib19#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VT5-4JMKMY1-2&_user=128590&_coverDate=06%2F30%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000010619&_version=1&_urlVersion=0&_userid=128590&md5=20c8468b9b92d8d6274750cde10d6402#bib19#bib19
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VT5-4JMKMY1-2&_user=128590&_coverDate=06%2F30%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000010619&_version=1&_urlVersion=0&_userid=128590&md5=20c8468b9b92d8d6274750cde10d6402#bib20#bib20
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VT5-4JMKMY1-2&_user=128590&_coverDate=06%2F30%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000010619&_version=1&_urlVersion=0&_userid=128590&md5=20c8468b9b92d8d6274750cde10d6402#bib5#bib5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VT5-4JMKMY1-2&_user=128590&_coverDate=06%2F30%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000010619&_version=1&_urlVersion=0&_userid=128590&md5=20c8468b9b92d8d6274750cde10d6402#bib16#bib16
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afferents however could become mechanosensitive during an acute inflammation 

(Janig and Koltzenburg, 1993).  

Two groups have further classified these receptors into either; mucosal, muscle-

mucosal, muscle and serosal. Xu et al (2007), defined bladder afferents by their 

activation mechanism, using stretch, probing and stroking of mouse bladder afferents. 

A separate group conducted a similar study, with the addition of a chemical stimulation 

and also characterized these afferents into different functional groups in guinea pig, 

Muscle, muscle mucosal, mucosal high threshold and mucosal low threshold 

mechanoreceptors (Zagorodnyuk et al., 2007). There is a clear overlap in the 

classification of these groups, showing consistency of data. These afferents could be 

activated by compression of their receptive fields with von Frey hairs in the presence 

of nicardipine. It was reported that muscle-mucosal mechanoreceptors, could be 

activated both by distension and by stroking the overlying mucosa with light von Frey 

hairs. Mucosal high-responding mechanoreceptors were not sensitive to stretch but 

responded vigorously to mucosal stroking with light von Frey hairs. Mucosal low-

responding mechanoreceptors were not distension sensitive but could be weakly 

activated by light von Frey hair stroking of their receptive field (Zagorodnyuk et al., 

2007).  

 

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VT5-4JMKMY1-2&_user=128590&_coverDate=06%2F30%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000010619&_version=1&_urlVersion=0&_userid=128590&md5=20c8468b9b92d8d6274750cde10d6402#bib12#bib12
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The spinal cord receives sensory information from the lower urinary tract via primary 

afferent neurons. The cell bodies of sensory neurons are in the DRG, which project 

nerve fibres (axons) to the bladder, where sensory receptors covert chemical thermal 

and mechanical energies they also project axons to the spinal cord, where there central 

endings are terminated on second-order neurons, resulting in perceptions of bladder 

events (Andersson, 2002 and Bielefeldt et al., 2005). 
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(Kanai and Andersson, 2010) 

Figure 1.5 Shows the different classes of afferents and their distribution throughout 

the bladder.  
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The afferent neurons of the bladder are mainly made up of myelinated (A-δ) and un-

myelinated (C-fibres) axons that act in response to chemical and mechanical stimuli. 

It has been shown by immunochemical studies that bladder afferent neurons produce 

various putative neurotransmitters, including, glutamic acid, nitric oxide, aspartic acid 

and neuropeptides. Several receptors and ion channels are also expressed by the 

afferent neurons, including oestrogen receptors, transient receptor potential channels, 

purinergic and neurotrophic factor. Neuronal excitability has been shown to be 

enhanced by the activation of many of these receptors. Moreover, afferent nerves have 

been shown to act in response to chemicals present in urine in addition to chemicals 

released from the bladder wall from nerves, and epithelial cells that line the bladder 

lumen. Pathological conditions change the electrical and chemical properties of 

afferent pathways of the bladder, resulting in various symptoms such as urinary 

urgency, urinary frequency, nocturia and pain. Neurotrophic factors have been 

suggested to play a role in the pathophysiological mechanisms causing sensitization of 

bladder afferent nerves (De Groat et al., 2009). Sensory neurons represent a possible 

target for bladder overactivity. Bladder overactivity affects around 17% of the people 

in USA and Europe (Milsom et al., 2001 and Stewart et al., 2003). However, it is still 

unclear how many different classes of sensory neurons play a role in signalling bladder 

function.  

 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VT5-4JMKMY1-2&_user=128590&_coverDate=06%2F30%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000010619&_version=1&_urlVersion=0&_userid=128590&md5=20c8468b9b92d8d6274750cde10d6402#bib14#bib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VT5-4JMKMY1-2&_user=128590&_coverDate=06%2F30%2F2006&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000010619&_version=1&_urlVersion=0&_userid=128590&md5=20c8468b9b92d8d6274750cde10d6402#bib21#bib21
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1.4 The micturition reflex 

The process of micturition has two phases, a storage phase and a voiding phase. The 

exchanges between these two phases are coordinated and have been described as an 

‘on-off circuit’ between the bladder (reservoir) and urethra (outlet) (Fry et al. 2010). 

These phases are under voluntary control of the central nervous system (de Groat, 

1997). 

1.4.1 The storage phase 

During the filling phase, urine travels from the ureters into the bladder, without a 

significant increase in intravesical pressure. The intrinsic properties of the muscle wall 

(Tang & Ruch, 1955) and low-level afferent discharge have been reported to 

accommodate the urine in the bladder (de Groat, 2006). Although the sympathetic 

input to the lower urinary tract is not essential for the performance of micturition, it 

does contribute to the storage function of the bladder (De Groat et al., 1997). 

The sensory afferent discharge stimulates the sympathetic pathway, leading to the 

release of noradrenaline and relaxation of the smooth muscle through activation of β-

adrenoreceptors.  Noradrenaline also results in contraction of the urethral sphincter 

through activation of α-adrenoreceptors on the urethral outlet (Thor and de Groat, 

2010). As the bladder continuous to fill, there is a gradual increase in intravesical 

pressure, resulting in increased afferent firing and hence the sympathetic firing 

increases causing a negative feedback mechanism.  After a threshold of sensory 

afferent firing in reached, there is inhibition of the sympathetic and somatic pathways 

with activation of the parasympathetic pathway, transferring the storage phase into a 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718009/#R28
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voiding phase. This happens voluntarily in healthy adults and involuntarily in the 

infant. The input to the urethral sphincter is inhibited, resulting in relaxation of  muscle 

via the release of nitric oxide from the parasympathetic nerves (Persson & Andersson, 

1992). Simultaneously, bladder contraction occurs via the activation of muscarinic 

receptors through the release of Ach from the   parasympathetic nerves present in the 

dome and body of the bladder. 
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(Fowler et al., 2008) 

Figure 1.6. The neuronal pathways controlling the micturition reflex.  
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1.5 Overactive bladder 

Overactive bladder (OAB) is a condition characterised by symptoms of urinary 

urgency, with or without urinary incontinence, usually with urinary frequency and 

nocturia (Abrams et al., 2002). In 2003, epidemiological studies have reported a 

prevalence of 16.9% in adults in western Europe and the USA (Stewart et al., 2003). 

OAB is also defined as detrusor overactivity (DO). DO is a bladder filling disorder 

and has been defined as involuntary detrusor contractions (either spontaneous or 

provoked) during bladder filling (Abrams et al., 2002).  

Overactive bladder syndrome can be classified as neurogenic or idiopathic. Idiopathic 

bladder overactivity arises from no recognizable dysfunction. Approximately 90% of 

women with OAB fall into this category (Kleeman et al., 2008).  Neurogenic detrusor 

overactivity is bladder overactivity resulting from neurological condition, such as 

spinal cord injury, cerebro-vascular accident and multiple sclerosis, leading to the 

alteration of neural pathways that control micturition. Neurogenic OAB can be further 

categorised into supraspinal, suprasacral or infrasacral lesions (Simpson et al., 1997). 

Supraspinal OAB results from damage above the pontine micturition centre. This 

results in detrusor overactivity together with normal voiding. Suprasacral results from 

lesion above the sacral part of the spinal cord. This results in loss of input to higher 

centres, causing neurogenic detrusor overactivity concurrent with bladder 

sphincter dyssynergia. The loss of input from the pontine micturition centre results in 

uncoordinated contractions of the detrusor and sphincter. Infrasacral OAB results from 

damage to motor or sensory nerves leading to a loss of input to the bladder.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699645/#b1-cia-1-309
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Overactive bladder conditions are usually associated with increased detrusor 

contractions that are present during detected cystometry while the bladder is filling.  

The exact cause and mechanism responsible for detrusor overactivity remain unclear, 

however myogenic and neurogenic basis are implicated. Neurogenic detrusor 

overactivity is thought to result from alterations in peripheral and central mechanisms. 

For example suprapontine spinal cord damage can result in reduced central and 

peripheral inhibition to the bladder leading to overactivity of the muscle. In line with 

this theory, the cerebral cortex has been reported to have an inhibitory effect on 

voiding function, hence affecting these higher centers could lead to reduced inhibition 

and detrusor overactivity (Fowler, 2001). Changes in nerve innervations may also 

result due to spinal cord injury. Studies in cat have reported increased C-fibre mediated 

afferent input to the spinal cord (de Groat et al., 1990). Additionally, ‘sprouting ‘ of 

afferents has also been suggested in paraplegic animal models (de Groat, 1997). These 

changes may result in alterations in spinal reflex mechanisms and hence lead to 

detrusor overactivity. 

Apart from alteration in afferent mechanism, efferent mechanism could also result in 

an overactive detrusor. Rat studies have shown have alterations in muscarinic 

modulation of transmitter release in the bladder, following spinal cord injury. The M1 

receptors which are low affinity receptors were replaced by the high affinity M3 

receptors, this alteration suggests that ACh release may contribute to hyperactivity 

(Somogyi et al., 2003). Reduced cholinergic innervations has also been observed in 

the bladder samples of patients with neurogenic overactivity compared to control 

groups (Drake et al., 2003). Additionally, M2 receptors have been reported to become 
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the primary mediator of bladder contraction instead of m3 (Braverman et al., 1999; 

Pontari et al., 2004). These alterations may contribute to detrusor overactivity. 

 

Myogenic detrusor overactivity results from autonomous activity resulting in 

increased excitation and conduction of cells.  Sherrington et al., first reported the 

autonomous contraction of isolated bladder tissue in 1982. These experiments were re-

visited in isolated bladder tissue of guinea pigs and mouse, as well as muscle strips 

from the mouse, human and pig (Sibley, 1984). Autonomous activity is described as 

phasic spontaneous contraction, localized stretches of the wall and increase in intra-

vesical pressure. The activation of muscarinic receptors has shown to increase such 

activity. This might suggest that the mechanism involved in regulating such activity is 

separate to those involved in the excitation of the detrusor during micturition. 

 

1.6 Interstitial cystitis 

Interstitial cystitis (IC) also known as painful bladder syndrome is a chronic pelvic 

syndrome with no generally accepted treatment (Dell et al., 2009). This clinical 

condition is manifested by sensory hypersensitivity of the urinary bladder, leading to 

exaggerated pain sensation and/or pressure in response to small volume of urine. IC is 

characterized by the symptoms of pain, frequency, urgency, and nocturia in the 

absence of bacterial infection or any other identifiable pathology (Butrick, 2003) and 

diagnosed mainly in women. Initially, IC was considered to be a rare clinical condition, 

however more recent studies have shown a higher prevalence of IC than previously 

thought (Clemens et al., 2007 and Link et al., 2008). IC can affect over 700 000 women 
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in the US and a large percentage of men with prostatodynia and prostitis (Birder et al., 

2007). A comparable condition is also found in domestic cats, called feline interstitial 

cystitis. The persistent symptoms of IC have shown to be debilitating for many 

patients, and can have a marked negative influence on quality of life (Clemens et al., 

2007). The exact aetiology of interstitial cystitis is unclear, however urothelial 

abnormalities have been reported  (Parsons, 2007). The intra-luminal infusion of 

potassium chloride caused exaggerated pain in patients with IC, suggesting 

impairment of barrier function (Parsons et al., 2005). Alteration of ATP signalling has 

also been reported in IC. Sun et al., reported increased ATP concentration in the urine 

of IC patients compared to controls (Sun et al., 2001). Similarly, increase in ATP 

release has also been reported from cultured urothelial cells of IC patients (Sun et al., 

2001). Additionally, mucosal cells of these patients have been found to have increased 

expression of P2X3 receptors (Sun  and Chai, 2004 and Tempest et al., 2004).  These 

data suggest a prominent role of purinergic signalling in IC.  

Disruption of the glycosaminoglycans (GAGs) has also been reported to play a role in 

the pathogenesis of IC. The GAG layer lines the urothelium and acts as an anti-

adherence factor (Iavazzo et al. 2007; Parsons, 2003). Damage to the GAG layer can 

lead to compromised urothelial call barrier function (Parsons et al., 2007). Other 

bladder epithelial abnormalities observed are production of anti-proliferative factor 

(APF) (Keay et al., 1996), reduced prostaglandin E2 release (Rastogi et al., 2006), 

abnormal cellular architecture and abnormal expression of uroplakins. Alteration of 

afferent signalling has also been reported in IC (Zeng et al., 2007). For example, 

increased density of bladder afferents have been observed in FIC and humans with IC 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721440/#bibr11-1756287213490052
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721440/#bibr20-1756287213490052
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(Pang et al., 1995, Buffington  and  Wolfe, 1998). Similarly, increased excitability has 

been reported in DRGs of cats with FIC (Sculptoreanu et al., 2005). 

 

1.7 ATP and the Bladder 

ATP is an intracellular source of energy in cells. It exerts its effects by acting on P2 

purinergic receptors. P2 receptors consist of the metabotropic receptors (P2Y) and the 

ionotropic receptors (P2X). Eight G-protein coupled P2Y receptor subtypes and seven 

P2X  ligand gated ion channels have been identified to date (Burnstock, 2006). 

Purinergic receptors have been identified in the urinary bladder, including the afferent 

nerve terminals, urothelial cells and detrusor muscle (Burnstock & Williams, 2000; 

Vlaskovska et al., 2001).  

P2X1 receptor has been found to be the dominant subtype present in the urinary bladder 

(Burnstock & Williams, 2000). Valera et al., found mRNA expression of P2X1 on the 

detrusor muscle (Valera et al., 1994; O'Reilly et al., 2001). Similarly, 

immunohistochemical studies have shown that P2X1 is extensively present in the 

bladder (Dutton et al., 1999; Lee et al., 2000). Although P2X1 has been shown to be  

the predominant subtype in the bladder, Various studies have shown  a role of ATP in 

nociception, which is mediated via the  P2X receptors containing the P2X2 and 

P2X3 subunits (Burnstock, 1996, Birder et al., 2004, Vlaskovska et al., 2001). 

 

ATP has been shown to be released from urothelial cells in response to stretch 

(Ferguson et al., 1997). It has been suggested that the released ATP can in turn act on 

http://www.sciencedirect.com/science/article/pii/S1566070209004056?via=ihub#bib16
http://www.sciencedirect.com/science/article/pii/S1566070209004056?via=ihub#bib11
http://www.sciencedirect.com/science/article/pii/S1566070209004056?via=ihub#bib77
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P2X receptors present on sensory nerves lying in the suburothelial plexus and play a 

role in afferent nerve signalling(Burnstock, 1999).  

P2X3 receptors have also been found on bladder nerves. Inhibition of P2X3 has been 

shown to result in reduced sensory nerve firing(Ferguson et al., 1997; Bodin & 

Burnstock, 2001). Similar observation has been made with P2X3 knockout mouse, 

suggesting a role of ATP in mechano-sensory signalling in the bladder (Vlaskovska et 

al., 2001; Rong et al., 2002) 

Intra-vesical administration of ATP has shown to cause an increase in afferent nerve 

firing. Additionally, the same study showed the mechanical activation of “silent fibres” 

after application of α, β-methylATP (Rong et al., 2002). Consistent with this data, the 

intra-vesical administration of ATP in awake rats has been shown to induce bladder 

overactivity via the stimulation of C fibres (Pandita and Andersson, 2002). These data 

suggest that exogenous ATP can result in bladder overactivity through activation of 

P2X2/3 receptors.  

 

1.8 TRP channels  
 

Transient receptor potential channels (TRP channels) are calcium permeable non-

selective ion channels. The discovery of the first TRP (TRPV1) channel in 1997 has 

served as a catalyst for the research of somato sensory and pain transduction, together 

with the identification of other members of the TRP family. TRP channels are 

permeable to cations and consist of six trans-membrane domain (S1–6), with a pore 

loop between the S5 and S6 region and a cytoplasmic N and C terminus (Vriens et al., 

2004 and Clapham et al., 2003). TRP channels assemble a as homo- or hetero-

http://www.sciencedirect.com/science/article/pii/S1566070209004056?via=ihub#bib63
http://www.sciencedirect.com/science/article/pii/S1566070209004056?via=ihub#bib61
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tetramers, forming cation-selective channels (Voets et al., 2005, Schaefer, 2004 

and Hellwig et al., 2005). In mammals, 28 TRP channels have been identified based 

on their sequence homology and are divided into 6 subfamilies: TRPA (ankyrin), 

TRPC (canonical), TRPM (melastat),TRPP (polycystin),TRPV (vanilloid) and TRP

ML (mucolipin) (Clapham et al., 2005, Corey et al., 2003, Delmas et al., 2004, Montell 

et al., 2002, Moran et al., 2004). Importantly, mutations in different TRP genes are 

linked to human diseases (Nilius et al., 2007). The TRPC and TRPM subfamilies 

contain seven and eight members, respectively (TRPC1–7 and TRPM1–8). The TRPV 

subfamily consists of six members (TRPV1–6). TRPA1 is the most recently identified 

family and contains only one member (TRPA1). Both The TRPP and TRPML 

subfamilies have three mammalian members.  

Other than their basic membrane topology and cation permeability, TRP channels 

show great diversity. In general, TRP channels share a very low sequence homology, 

ion selectivity, and mode of activation, tissue expression and physiological function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8.1 TRP channels and bladder 
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In recent years TRP channels have attracted a lot of attention. TRP channels are 

expressed in a wide variety of tissues and changes in the expression pattern have been 

observed in diseased condition. These channels are also expressed in the lower urinary 

tract. More specifically, expression has been found in the urothelium, detrusor muscle 

and sensory neurons of the bladder and urethra. The functional significance of these 

channels in the bladder remains to be elucidated, however they are thought to be 

involved in nociception and mechano-transduction. These TRP channels gained a lot 

of interest in recent years and various studies have indicated a pivotal role of TRPV1, 

TRPV2, TRPV4, TRPM8, and TRPA1 in physiology and pathological bladder 

function (Everaerts et al., 2008).  Further studies are required to elucidate the role of 

these and other TRP channels in the bladder. The expression of these TRP channels in 

the urothelium and their role in sensation is debatable. TRPV1 was the first heat 

sensitive channel to be cloned (Caterina et al., 1997) and is the most investigated TRP 

channel within the bladder. This channel was considered as a TRP channel based on 

the sequence homology and similarity in hydropathy profile to a mutant channel in 

drosophila, which was cloned by Montell and Rubin (1989). TRPV1 is now known to 

be a heat sensitive channel (> 42 °C), activated by various ligands including capsaicin. 

The expression of TRPV1 has been found in the sensory neurons and the urothelium 

(Birder et al., 2002), however the functional expression in the urothelium has been 

questioned (Everaerts et al., 2008).  Despite a lot of morphological and functional 

information, the role of TRPV1 in normal human bladder is still unclear. TRPV4 is a 

stretch-activated cation channel. Abundant expression of this channel has been 

reported in the urothelium and detrusor muscle of rat (Thorneloe et al., 2008, Birder 

http://www.sciencedirect.com/science/article/pii/S0024320512004237#bb0150
http://www.sciencedirect.com/science/article/pii/S0024320512004237#bb0745


   

40 

 

et al., 2007 and Gevaert et al., 2007). It has been suggested that TRPV4 might function 

as a urothelial mechanosensor for bladder distension (Yamada et al., 2009). On the 

other hand, TRPA1 is a cold sensing TRP channel and has also been found on bladder 

sensory nerves. This channel is thought to be activated by noxious cold (Andrade et 

al., 2006) and has been found on capsaicin-sensitive primary sensory neurons (Story 

et al., 2003). The activation of TRPA1 is thought to cause a painful sensation. The 

exact role of this channel in the bladder is unidentified (Everaerts et al., 2008). 

 

Researchers have been long interested in the ability of the bladder to sense cold. In 

2002 the first cold sensing TRP channel was named TRPM8 (McKemy et al., 2002, 

Peier et al., 2002 and Tsavaler et al., 2001). TRPM8 is activated by various cooling 

compounds, including menthol (McKemy et al., 2002 and Peier et al., 2002). TRPM8 

have gained lot of interest, since instillation of cold water has shown to induce a painful 

sensation in patients with interstitial cystitis (Mukerji et al., 2006). TRPM8 has been 

postulated to be involved in the bladder-cooling reflex, since the instillation of menthol 

has also shown to enhance this reflex action in both cats and humans (Peier et al., 2002 

and Geirsson et al., 1999). This reflex is seen in infants and becomes absent with 

maturation of the nervous system, however this reflex may be unmasked by central 

neuropathology. Due to the relatively low expression of TRPM8, it has been extremely 

difficult to investigate the functional significance of this receptor in normal bladder 

function. TRPM8 expression has been shown on the nerve fibres; however the finding 

that TRPM8 is expressed on the urothelium is debatable (Stein et al., 2004).  

 

 

http://www.sciencedirect.com/science/article/pii/S0024320512004237#bb0710
http://www.sciencedirect.com/science/article/pii/S0024320512004237#bb1090
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683630/#R72
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2683630/#R85
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TRP channels are multi-factorial sensors that are expressed throughout the CNS and 

in various tissue types. Numerous reports indicate a link between bladder dysfunction 

and alteration of TRP channel function. However, the physiological relevance of these 

channels in normal bladder function remains poorly understood. This study primarily 

investigates the role of TRPM8 in normal bladder function, in an attempt to gain a 

better insight into link between TRPM8 and bladder afferent function.  
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1.9 TRPM8 

TRPM8, also known as cold and menthol receptor (CMR-1) is a thermo-sensitive TRP 

channel (McKemy et al., 2002). The thermo-sensitive channel gene, trp-p8 was first 

discovered as a prostate specific gene upregulated in malignant tissue (Tsavaler et al, 

2001), encoding a protein with a molecular weight of ~130KDa and bearing significant 

homology to TRP channels. Due to a relatively high (47%) similarity to human 

melastin protein, it was renamed as part of the TRPM family. Using a cDNA library 

from rat trigeminal neurons (Mckemy et al, 2002) and bioinformatics (Peier et al, 

2002), TRPM8 was identified to be a calcium permeable cation channel activated by 

cold and cooling compounds. TRPM8 is now known to be a non-selective voltage 

gated cation channel (Liu et al., 2001 and Defalco et al., 2011). This channel is 

expressed in various tissues both malignant and non-malignant (discussed later in 

detail) (Peier et al., 2002; Tsuzuki et al., 2004). However, its physiological role in 

these tissues remains inconclusive. TRPM8 has been considered as a potential 

pharmaceutical target or diagnostic biomarker for cancer.  

 

 

1.9.1 Expression 

TRPM8 is mainly expressed in somato-sensory neurons, where it has been shown to 

be involved in cooling sensation. Of high importance is the upregulation of TRPM8 in 

malignant tissue, although the mechanism of TRPM8 upregulation is still unclear. 

TRPM8 is also expressed in many non-malignant tissues, these include, colon, skeletal 
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and smooth muscle, prostate, lungs and bladder. The role of this receptor within these 

organs remains to be identified (Harrington et al., 2011, Stein et al., 2004 and Mukerji 

et al., 2006).  

TRPM8 mRNA and protein has been detected at low levels in small diameter TG (10-

15%) and DRG (5-10%) neurones (McKemy et al., 2002, Peier et al., 2002, Okazawa 

et al., 2004, Abe et al., 2005 and Sarria and Gu, 2010). Due to the low level of TRPM8 

it has been very difficult to study the receptor under normal conditions. The co-

expression of TRPM8 with other thermosensitive receptors is controversial (discussed 

later in detail in chapter 4).  

 

1.9.2 Structure 

TRPM8 encodes a protein of 1104 amino acids (Tsavaler et al., 2001). The topological 

arrangement of TRPM8 is comparable to that of a voltage gated potassium channel. 

Functional TRPM8 channels exist as a tetramer, consisting of 4 subunits. The ion 

selectivity of the channel is contained in the ion pore region (S5-S6) (Montell et al., 

2002, Voets and Nilius, 2003 and Voets et al., 2007). Voltage sensitivity is contained 

in the first four helices (S1-S4) (Zhang and barritt, 2006 and Voets et al., 2007). The 

N-terminus comprises more than 50% of the TRPM8 sequence (Phelps et al., 2007). 

Within The N-terminus, there are 4 regions that are homologous amongst all TRPM 

subfamilies. The C terminus is formed from 120 amino acids and forms a coiled 

structure, responsible for the assembly of the tetramer (Fleig and Penner, 2004, 

Tsuruda et al., 2006). The C terminus also consists of a conserved TRP unit, which is 

important for channel activation (Rohacs et al., 2005). Additionally, it also consists of 

http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0230
http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0275
http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0265
http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0265
http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0005
http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0320
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a binding site for Phosphatidylinositol 4,5-bisphosphate (PIP2), which is important for 

regulating channel opening.  

 

 

 

(Bharate et al., 2012) 

Figure 3.1 TRPM8 channel  
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1.9.3 Activation mechanism 

 

TRPM8 can be activated by temperature (28-16 °C), as well as membrane 

depolarization and various ligands. However, the channel is mostly recognized for its 

sensitivity to cold. Mckemy et al (2002) showed that TRPM8 causes a significant 

inward current at temperatures below 25°C. Temperature activation by cold also shifts 

the voltage dependent activation curve. The voltage dependency of TRPM8 is weak. 

There are various models describing TRPM8 activation. Voets et al (2007), suggested 

a two-state model, based on its cold sensing. This model shows the additive nature of 

thermal and chemical stimuli. Conversely, single channel recording show rapid bursts 

of activity, suggesting a multi-state model. In an allosteric model of TRPM8, there is 

accordance between the open and closed state of the channel and the on/off transition 

of the temperature and voltage sensors. This model suggests that the temperature 

sensitivity is voltage independent. Similarly, it has been shown that the C-terminus 

affects the temperature sensitivity of the channel without modulating the voltage 

dependence. Additionally, voltage only partially activates TRPM8, but it’s neither 

important nor sufficient for its gating. 

The mechanism of TRPM8 activation is still unclear; however recent studies have 

characterized the importance of S4 in its activation. These include the role of Arg842 

and Cys856 in the S4 helix and S4-S5 linker in voltage gating and menthol sensitivity 

(Voets et al., 2007). Moreover, further investigations have shown that depolarization 

results in a submaximal stimulus, whereas ligand binding results in a voltage 

independent activation (Matta et al., 2007). The S4 helix undergoes a conformational 

change during TRPM8 activation. The standard α helix changes in a more elongated 
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3-10 helix (Villalba-Galea et al., 2008), this is in line with the finding that channel 

opening does not involve conformational change in the S5 or S6 region, but is 

dependent on a rigid movement of the entire module (Nilius et al., 2011). 

 

1.9.4 TRPM8 ligands 

Due to a growing interest in the function of TRPM8, many chemical activators of this 

receptor have been identified (Table 1.1). These include the cyclic terpene alcohol, 

menthol. Menthol, which is derived from mentha leaves is used in many commercial 

products and cooling agents. At low concentrations menthol induces a pleasant cooling 

sensation. However, higher concentrations have shown to cause a painful burning 

sensation (Green et al., 1992). It has been shown that the latter response is due to the 

activation and/or sensitization of C-fibers (Wasner et al., 2004). Although, menthol is 

an activator of TRPM8, its specificity is questionable. Various studies have shown that 

menthol activates TRPA1 at low concentrations and inhibits the receptor at higher 

concentrations (Karashima et al., 2007 and Xiao et al., 2008). Moreover, Macpherson 

et al (2005) showed that menthol also activates TRPV3, although only at very high 

concentrations. Other than TRP channels, menthol also interacts with GABA receptors 

found in cultured hippocampal neurons and is known to be a calcium channel blocker 

(Zhang et al., 2008) . Some of these interactions require very high concentrations, 

hence out of the range of TRPM8 activation threshold. 

Due to the minty and volatile side effects of menthol, Wilkinson and Sword developed 

another class of cooling agents known as methane carboxamides (WS compounds). 

These carboxamides are derived from L-menthol, and have been shown to activate 
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TRPM8. In a Xenopus oocyte expression system, Sherkheli et al, (2010) showed that 

WS-12 activates TRPM8 at low molecular concentrations (EC50 12µM), Hence being 

more potent and efficient than menthol (EC50 196uM). Additionally, in HEK cells the 

EC50 of WS-12 is in the nanomolar range (EC50 193nM) (Bodding et al., 2007). CPS-

128, which is an ethyl analogue of WS-12, has an EC50 of 0.5uM for TRPM8 

activation (Weil et al., 2005). Various other carboxylic acid ester and carboxamides 

have also been identified, using TRPM8 expressing cell lines. However, WS-12 and 

CPS-112 are probably the most potent in activating TRPM8. They are considered to 

be selective, as other TRP channels are not activated at low concentrations. Moreover, 

its efficiency has been shown to be similar to icilin (Bodding et al., 2007). 

Icilin, is considered as a super cooling agent, due to its higher potency and efficiency 

than menthol (Voets et al., 2004). However, icilin activates TRPM8 in manner that is 

different to cold and even menthol. Interestingly, icilin has been shown to activate 

TRPA1 currents, although with reduced potency compared to TRPM8 (McKemy et 

al., 2002).  

The specificity of any activator is debatable and very concentration dependent.  Along 

with various activators of TRPM8, many inhibitors have also been identified (shown 

in table 1.2). Intracellular pH has been shown to regulate TRPM8 activity. At pH 

below 7 it has been shown to completely block TRPM8 currents induced by cold or 

icilin, but not menthol (Andersson et al., 2004). Conversely, Behrendt et al (2004), has 

shown the inhibition of both menthol and icilin response at low pH (Behrendt et al., 

2004). These differences may be due to variation between different cell types and their 

activation threshold.  Other compounds such as capsazepine, BCTC, thio-BCTC and 
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SB-452533 have also been shown as strong TRPM8 antagonists. However, many of 

these antagonists are also able to block TRPV1 currents. Thus, further studies are 

needed to establish selective TRPM8 antagonists.  

 

 

Table  1.1. List of some TRPM8 activators 

 

 

 

Table 1.2. List of some TRPM8 antagonists 

 

 

 

Chemical Inhibitor EC50 References 

(2R)-4-(3-chloro-2-

pyridinyl)-2-methyl-N-

[4- 

(trifluoromethyl)phenyl]-

1-piperazinecarboxamide 

(CTPC) 

 131nM 

 Weil et al., 2005 

Clotrimazole 200nM  Karashima et al., 2009 and Malkia et al., 2009 

SB-452533  571nm  Weil et al., 2005 

N-(3-aminopropyl)-2-

{[(3-methylphenyl) 

methyl]oxy}-N-(2-

thienylmethyl)benzamide 

hydrochloride 

salt (AMTB) 

7uM 

 Lashinger et al., 2008 

N-(4-tert.butyl-phenyl)-

4-(3-chloropyridin-2-yl) 

tetrahydropyrazine-

1(2H)-carboxamide 

(BCTC) 

0.5-0.8 uM 

 Behrendt, Germann et al. 2004; Malkia et al., 2007 

 

SKF96365 1uM  Malkia, Madrid et al,. 2007 

anandimide 
 0.13uM-

3.7uM  Weil et al., 2005 

Thio-BCTC 3.5uM  Behrendt et al., 2004 

capsazepine 18uM  Behrendt et al., 2004 

1,10-phenanthroline 
 100-

200uM  Malkia et al., 2007 
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Chemical 

Activator  
Chemical class EC50 References 

(-)-Menthol  p-methane-3-ol 

196uM, 

66.7uM , 

4.1uM 

McKemy et al., 2002, Peier et al., 2002 

and Sherkheli et al., 2008) 

(+)-Menthol p-methane-3-ol 
600uM, 

14.4uM 

 Sherkheli et al., 2010 and Behrendt et al., 

2004 

Icilin 
tetrahydropyramidine-2-

one 

7uM, 0.2-

0.36 uM 

McKemy et al., 2002, Neuhausser et al. 

2002; Behrendt et al., 2004  

WS-12 p-methane-3 carboxamide 

30uM, 

12uM, 

193nM 

Sherkheli et al., 2010, Bodding et al., 

2002, Behrendt et al., 2004  

WS-3 p-methane-3 carboxamide 
216uM, 

3.7uM 

Behrendt et al., 2004, Sherkheli et al., 

2010 

WS-148 phosphine oxide 4.1uM Bodding et al., 2007 

WS-30 p-methane-3 carboxamide 5.6uM Bodding et al., 2007 

WS-23 Acyclic carboxamide 

1.5mM, 

44uM, 

5.6uM Behrendt et al., 2004  

WS-5 p-methane-3 carboxamide 26uM  Sherkheli et al., 2010 

CPS-113 p-methane-3 carboxamide 1.2uM Bodding et al., 2007  

CPS-369 p-methane-3 carboxamide 
84uM, 

3.6uM 

Bodding et al., 2007 and Sherkheli et al., 

2010  

FrescolatML p-methane-3-ol ester 
163uM, 

3.3uM Behrendt et al., 2004  

FrescolatMGA p-methane-3-ol ether 
184uM, 

4.8uM Behrendt et al., 2004 

MPD, Cooling 

agent 10 
p-methane-3-ol ether 6.0uM 

Behrendt et al., 2004  

PMD 38 p-methane-3-ol 31uM Behrendt et al., 2004 

(-)-Isopulegol 

(Coolact P) 
p-methane-3-ol 

498uM, 

66uM 

Behrendt et al., 2004  and Sherkheli et al., 

2010  

Eucalyptol  p-methane-3-ol ether 3.4-7.7mM 
McKemy, Neuhausser et al. 

2002;Behrendt et al., 2004  

Geraniol Acyclic alcohol 5.9mM Behrendt et al., 2004 

Linalool  Acyclic alcohol 6.7mM Behrendt et al., 2004  

Hydroxy-

citronellal 
Acyclic alcohol 19.6mM 

Behrendt et al., 2004 

1,8-Cineole p-methane 
3.4mM, 

7.6mM,  

 Behrendt et al., 2004 and McKemy et al., 

2002 

Cold 

temperature 
    

 Mc~Kemy et al., 2002 and Peier et al., 

2002 

Voltage      Voets et al., 2004 

Pip2     
Rohacs et al., 2005 

 

http://www.sciencedirect.com/science/article/pii/S030372071100637X#b0310
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1.9.5 TRPM8 –behavioral studies 

A number of studies have reported no phenotypic difference in physical appearance 

between wild type and TRPM8 knockout mice (Chung et al., 2007, Colburn et al., 

2007 and Daniels and McKemy., 2007). However, these knockout mice have been 

reported to have significant reduction in sensation to cold and menthol in the DRG and 

TG neurons (Chung et al., 2007).  This suggests a role of TRPM8 in detecting cold. 

However, KO mice are not completely insensitive to cold, especially noxious cold 

(0°C) (Colburn et al., 2007, McKemy et al., 2005 and Story et al., 2006), indicating 

the involvement of TRPM8 independent mechanisms in noxious cold temperatures. 

TRPM8 KO studies in mice models of neuropathic pain also suggest a possible role of 

this receptor in cold allodynia (Colburn et al., 2007 and Caspani et al., 2009). WT 

mice developed increased cold sensitivity, whereas TRPM8 KO mice showed no 

significant increase in sensitivity to cold (Colburn et al., 2007). Furthermore, TRPM8 

antagonists have been shown to be effective in reversing pain sensation in visceral pain 

models (Lashinger et al., 2008). 

The involvement of TRPM8 in cold and menthol induced analgesia has been studied 

by Dhaka et al (2007). Injection of formalin in mice paw, followed by mild cooling 

(17°C), reduced the nociceptive response in WT mice, while KO mice showed 

analgesia only for the second inflammatory phase (Dhaka et al., 2007). Similar 

findings were reported using rodent models of inflammatory and neuropatic pain 

(Proudfoot et al., 2006). These studies suggest a major role of TRPM8 in noxious and 

innocuous cold perception, cold-induced analgesia and cold hypersensitivity in 

pathophysiological conditions. 

http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0090
http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0090
http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0205
http://www.sciencedirect.com.eresources.shef.ac.uk/science/article/pii/S030372071100637X#b0285
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1.9.6 TRPM8-cancer 

As previously mentioned, TRPM8 was first identified as a prostate specific TRP 

channel upregulated in prostate cancer tissue. However, TRPM8 protein and mRNA 

expression are also upregulated in many other cancers. These include, breast, lung and 

colon, whereas, TRPM8 expression was minimal in the corresponding non-malignant 

tissue (Bidaux et al., 2005 and Bidaux et al 2007). Yee et al (2010) also found strong 

immunoreactivity for TRPM8 in cell lines of human pancreatic adenocarcinoma, 

compared to minimal levels of TRPM8 in normal tissue. Interestingly, TRPM8 

knockdown studies, have led to cellular proliferation arrest, and also a significant 

increase in cell death, both non-apoptotic and apoptotic (Yee et al., 2010 and Zhang 

and Barritt 2004). TRPM8 expression and its possible function in cell survival has also 

been observed in the cell line of human melanoma G361 (Yamamura et al., 2008). 

Despite the various studies and observations of TRPM8 expression in malignant tissue 

and cell lines, the exact role of this receptor is still unknown. However, a role of 

androgen hormones in TRPM8 upregulation within prostate and pancreatic carcinoma 

has been suggested (Zhang and Barritt, 2004, Bidaux et al., 2005 and Konduri et al., 

2007). Oestrogen receptors have also been implicated in TRPM8 upregulation in breast 

cancer cell line MCF-7 (Chodon et al, 2010). These observations suggest an important 

role of TRPM8 in the pathophysiology of epithelial cells. 

1.9.7 TRPM8 and the bladder 

The ability of the bladder to detect cold was first suggested by Bors and Blinn in 1957, 

when the bladder-cooling reflex (BCR) was reported. The BCR is an immediate 
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detrusor contraction in response to intravesical infusion of ice water into the bladder 

(Geirsson et al., 1999). This response has been found in patients with supraspinal 

neuronal lesions or idiopathic detrusor overactivity (IDO), however is absent in normal 

subjects (Fall and Geirsson., 1996). Because of this observation, the ice water test 

(IWT) has been used as a tool to investigate the correlation between urological disease 

symptoms and neurogenic disease. Intravesical infusion of capsaicin or 

resiniferatoxin, have been shown to improve overactive bladder symptoms in patients 

with a positive IWT (Das et al., 1996). Both these agents act on C fibers afferents, 

resulting in desensitization of TRPV1, it has been suggested that the BCR might be 

mediated by these afferents (Das et al., 1996) Various studies have suggested that 

TRPM8 may be involved in regulating the BCR. For example, treatment with menthol 

shifts the temperature threshold for the BCR upward (Geirsson ., 1993). Additionally, 

TRPM8 mRNA and protein have been found in the human and rat bladder (Mukerji et 

al., 2006 and Stein et al., 2004). In humans the localization of TRPM8 immuno-

staining has been retained to the urothelium and suburothelial nerve fibers (both C 

and Aδ fiber).  A significant increase in TRPM8 expression has also been found in 

patients with overactive and painful bladder syndrome. Interestingly, a correlation 

between the relative density and the severity of disease symptom has also been 

reported, indicating a possible pathophysiological role of TRPM8 in these disorders 

(Mukerji et al., 2006). In anaesthetized rats, AMTB (N-(3- aminopropyl)-2-{[(3-

methylphenyl) methyl] oxy}-N-(2-thienylmethyl)benzamide hydrochloride salt), a 

TRPM8 channel blocker reduced the number of volume-induced bladder contractions 

and nociceptive reflex responses to noxious bladder distension (Lashinger et al., 2008). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Geirsson%20G%5BAuthor%5D&cauthor=true&cauthor_uid=8326569
http://www.sciencedirect.com/science/article/pii/S1566070209004056#bib57
http://www.sciencedirect.com/science/article/pii/S1566070209004056#bib57
http://www.sciencedirect.com/science/article/pii/S1566070209004056#bib70
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These observations suggest that TRPM8 contributes to bladder afferent sensitivity and 

may also play a role in the symptomatology and pathophysiology of overactive and 

painful bladder disorders. However, identifying the endogenous activators of TRPM8 

channel in normal and diseased bladder await further studies. 
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1.10 Interactions between TRP channels 

The thermo-sensitive ion channels TRPM8, TRPA1 and TRPV1 have been shown to 

play an essential role in pain sensation. Tissue injury and inflammation produce an 

array of pro-inflammatory mediators that can activate or sensitize the heat gated 

TRPV1, causing a reduction of activation threshold and resulting in hypersensitivity 

at the site of injury (Cesare et al., 1996, Numazaki et al., 2002, Bhave et al., 2003, 

Zhang et al., 2005, Zhang et al., 2008). On the other hand, TRPM8 has been reported 

to play a role in many aspects of pain sensation; these include cold analgesia, as well 

as cold hypersensitivity (Proudfoot et al., 2006, Dhaka et al., 2007, Colburn et al., 

2007 and Chung et al., 2007). The relatively low expression of these TRP channels 

has resulted in inconsistencies in findings with regards to morphological, 

pharmacological and physiological details. However, most of the researchers share a 

common agreement in the role of thermally gated transient receptor potential channels 

in pain signalling. In particular a role TRPM8, TRPA1 and TRPV1 has been suggested 

in pain signalling, since their expression levels as well as their biophysical properties 

are changed in chronic induced pain states. It has been suggested that these thermo-

sensitive ion channels may be able to modulate the activation of each other (Harrington 

et al., 2011) However, there is a lot of discrepancy between the expression, co-

expression and hence interaction of these receptor. Many other studies have reported 

interaction between TRPV1 and TRPA1 (Salas et al., 2009, Mayur et al., 2010, 

Ruparel et al., 2011). However, studies for interaction with TRPM8 are lacking. 

Investigating the interaction between these receptors and elucidating the molecular 

mechanism involved in the interaction could open up new avenues for therapeutic 
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manipulation. 

1.10.1 TRPV1 

TRPV1 (Transient receptor potential 1), previously known as vanilloid receptor type 

1 or the capsaicin receptor TRPV1 was cloned in 1997 (Caterina et al., 1997). Long 

before the initial cloning of TRPV1, capsaicin was shown to effect bladder sensory 

function, resulting in increased bladder capacity and urinary retention. Maggi et al, 

reported increased bladder contraction followed by desensitization with the 

administration of capsaicin (Maggi et al., 1985). It is now evident that capsaicin acts 

through TRPV1 (Liu et al., 2003). Other than capsaicin, TRPV1 is also activated by 

heat, acid and various endogenous agonists (such as, anandamide, 12-

hydroxyeicosatetranoic acid) (Nagi et al., 2004, Hwang et al., 2000, Caterina et al., 

1997; Tominaga et al., 2001 and Gunthorpe et al., 2002).  Since the cloning of TRPV1, 

a lot of research has focused on its role within the bladder. Szallasi et al., first detected 

TRPV1 expression in the bladder of rats (Szallasi et al., 1993). TRPV1 is also 

expressed in afferent nerve fibres (Szallasi et al., 1993, Avelino et al., 2002 

and Lazzeri et., 2004) and smooth muscle (Ost et al.,  2002 and Lazzeri et al., 2004) 

of the lower urinary tract. Like other TRP channel, there is a lot of discrepancy for the 

expression of TRPV1 in the urothelium. Birder et al., found TRPV1 expression in the 

urothelium of rodents (Birder et al., 2001), however, work conducted by Everaerts et 

al. (2009), has contradicted these findings. Functionally, TRPV1 has been shown to 

play a role in bladder inflammation and pain (Dinis et al., 2004). Early functional 

studies revealed that capsaicin-sensitive C type bladder fibres play a role in micturition 

(Lecci et al., 2001 and Maggi et al., 1989). Absence of TRPV1 has shown to affect 

http://molpharm.aspetjournals.org/content/68/2/518.long#ref-10
http://molpharm.aspetjournals.org/content/68/2/518.long#ref-10
http://molpharm.aspetjournals.org/content/68/2/518.long#ref-10
http://molpharm.aspetjournals.org/content/68/2/518.long#ref-36
http://molpharm.aspetjournals.org/content/68/2/518.long#ref-14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277033/#b33
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277033/#b33
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277033/#b2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277033/#b22
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277033/#b27
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277033/#b22
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277033/#b6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277033/#b13
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bladder sensory firing, in particular reduced bladder reflex contraction and increased 

bladder capacity (Birder et al., 2002). Several studies indicate an essential role of 

TRPV1 in bladder hypersensitivity (Apostolidis., 2005 and Brady et al., 2004). For 

example, TRPV1 -/- mice do not develop bladder over-activity during acute bladder 

inflammation (Silva et al., 2004 and Szallasi et al., 2006). Moreover, significant 

increases in TRPV1 expression have been shown in patients suffering from neurogenic 

detrusor over-activity (Apostolidis et al., 2005 and Brady et al., 2004). Data showing 

correlation between expression/sensitivity of TRPV1 and disease symptoms indicate 

a possible role of TRPV1 in bladder hypersensitivity.  

1.10.2 TRPA1 

As opposed to noxious heat receptor TRPV1, the role of TRPA1 within the bladder is 

poorly understood. Previously known as ANKTM1, TRPA1 was cloned by Jaquemar 

et al., in 1999 (Jaquemar et al., 1999). This receptor was first characterized as a 

thermo-receptor, which is activated by noxious cold. We know now, that a range of 

exogenous and endogenous ligands such as allylisothiocyanate, cinnamaldehyde and 

acrolein also activate TRPA1. Many parallels exist between the functions of TRPV1 

and TRPA1. Both ion channels play a role in nociception, and have chemical activators 

that induce pain sensation. Emerging evidence suggests the functional expression of 

TRPA1 within the bladder.  TRPA1 expression has been found in sensory nerves 

innervating the bladder (Nagata et al., 2005 and Streng et al., 2008), Moreover, the rat 

and human urothelium have also been shown to express TRPA1 (Du et al., 2007a and 

Du et al., 2007b). Up-regulation of TRPA1 has been found in bladder mucosa of 

patients with BOO (Du et al., 2007a). Administration of AITC and CA results in 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277033/#b7
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bladder contraction mediated by TRPA1 (Andrade et al., 2006). Intravesical 

administration of TRPA1 agonists also results in bladder hyper-reflexia via C fiber-

mediated pathway (Du et al., 2007a and Streng et al., 2008).  The above-mentioned 

studies indicate that TRPA1 may play an essential role in bladder sensory processes. 

 

1.10.3 Physiological expression of TRPM8, TRPV1 and TRPA1 

In order for interaction to occur between TRPM8, TRPA1 and TRPV1, it could be said 

that the receptors should be expressed on the same cell, particularly if there is a direct 

interaction. TRPM8 expression has been shown to be restricted in a subset of small 

diameter neurons in the TG and DRG (Peier et al., 2002 and Thut et al., 2003). 

Similarly, TRPV1 and TRPA1 have also been shown to be expressed in small to 

medium diameter cells. Neurons that convey temperature sensitivity have been shown 

to have both αδ and C fibres (Patapoutian et al., 2003). Abe et al., has shown the 

expression of TRPM8 in both NF-200 positive and negative cells. NF-200 is a marker 

for αδ fibre neurons; hence they concluded that TRPM8 is expressed in both αδ and c 

fibre neurons (Abe et al., 2005).  TRPV1 and TRPA1 on the other hand have only been 

found on C fibres within the bladder.  

McKemy et al, first showed co-expresssion of TRPM8 and TRPV1 in cultured sensory 

neurons from rats (McKemy et al., 2002). Moreover, there have been reports of 

capsaicin responses in menthol and cold sensitive neurons, indicating co-

expression (McKemy et al., 2002, Xing et al., 2006, Park et al., 2006, Babes et al., 

2004 and Reid et al. 2002). TRPV1 expression has been found in approximately 50% 

of the TRPM8 expressing rat DRG neurons in culture (McKemy et al., 2002). 

http://onlinelibrary.wiley.com/doi/10.1002/cne.20794/full#bib5
http://www.sciencedirect.com/science/article/pii/S0092867403001582#BIB25
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Okazawa et al, also confirmed co-expression of TRPM8 and TRPV1 in DRG sections 

from rats. The study was carried out using, immunohistochemical staining of TRPV1 

and in situ hybridization of TRPM8 mRNA (Okazawa et al., 2004). In the TG, very 

few neurons co-express TRPM8 and TRPV1 (Abe et al., 2005), However, in 

lumbosacral DRG neurons innervating the bladder, approximately 36% of TRPM8 

neurons have been reported to co-express TRPV1 (Hayashi et al., 2009).  

Contrary to the above-mentioned studies, mice studies have refuted the co-expression 

of TRPM8 and TRPV1 (Peier et al., 2002, Story et al., 2003).  With regards to TRPA1, 

most researchers found no co-expression between TRPM8 and TRPA1, either in rats 

or mice (Story et al., 2003). However, there are a lot of reports suggesting co-

expression between TRPV1 and TRPA1 (Yu et al., 2010). Kobayashi et al, have also 

reported that TRPM8 mRNA was not expressed in the TRPV1-expressing neurons 

(Kobayashi et al., 2005). Conversely, in neuropathic pain models an increase in the 

co-expression of TRPM8 and TRPV1 in sensory neurons has been shown (Dhaka et 

al., 2008). Blackshaw et al., found TRPM8/TRPV1-immunoreactivity in 

approximately 27% of colonic afferent neurons in mice. Discrepancies in co-

expression data may be due to an increase in TRPV1 and TRPM8 co-localisation 

induced by cell culture (Chuang et al., 2001). Alternatively, histological studies may 

not have been sensitive enough to detect co-localisation. Hence, it is controversial if 

TRPM8 and TRPV1 co-exist in situ.  

Because of the controversy over expression pattern between the TRP channels, we 

decided to look at functional interaction. The aim of this study was to assess, any 
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interaction between TRPV1 and TRPA1 with TRPM8 on bladder afferents and the 

urothelium. 
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 Many forms of lower urinary tract disorders exist without a clear demonstrable 

pathology. While these conditions can affect men and children, most of those affected 

are women. The available treatment options are limited, but various factors including 

autoimmune disorder, epithelial dysfunction and neurogenic inflammation have been 

reported.  Regardless of the origin, most patients suffer from urothelial destruction. 

These functional pain disorders are commonly thought to result in an increased 

hypersensitivity of nociceptive pathways, such as central neurons and sensory 

receptors. Because interstitial cystitis is mostly seen in women with symptoms 

increasing postmenopausally, a role of oestrogen receptors (ER) has been implicated 

in the generation of such hypersensitivity, although the exact mechanism is still 

unclear (Sanoja et al., 2008).  

 

1.11   Oestrogen receptor 

Three types of oestrogen are present in the circulation these are estradiol, estrone and 

estriol. Estradiol is the most potent activator of ER. Estradiol is the most abundantly 

found oestrogen type in the circulatory system and it is secreted by the ovaries. 

Oestrogen hormones, such as 17β-estradiol (E2), are known to regulate cell growth in 

various tissues. Two sybtypes of ER exist ERα and ERβ (Beato et al., 1995). These 

are proteins found intracellularly and are members of the nuclear hormone family 

of intracellular receptors.  The first ER was cloned in uterine cytosol in 1986 (Green 

et al., 1986). In 1996, the second ER (ER-β) was identified in rat prostate (Kuiper et 

al., 1996). The structure of ERα and ERβ is similar to all other members of the nuclear 

family (see figure 5.1). However, moderate homology is shared between the two 

http://en.wikipedia.org/wiki/Nuclear_receptor
http://en.wikipedia.org/wiki/Intracellular
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receptors in their protein sequences (58% in human and 55% in rat) (Mosselman et al., 

1996).  Interestingly, they share almost the same DNA-binding domains, which can 

interact with specific DNA elements (such as, estrogen-response element) and activate 

ER subtype-specific genes (Hyder et al., 1999 and). Similar to the ERα, both the 

receptors are activated by estradiol-17β (E2).  

Oestrogen receptor is a ligand activated transcription factors. AF-2 is the hormone-

binding site as well as a transcription-activating region. Upon activation, oestrogen 

translocates into the nucleus, resulting in the activation of transcription (DNA-binding 

transcription factor). AF-1, another activation site is constitutively active but weaker 

than AF-2. It has been reported that AF2 induces the activation of transcription even 

in the presence of tamoxifen, which is an oestrogen receptor antagonist. Binding of a 

ligand induced a conformational change within the receptor. This change may 

consequently result in high-affinity binding to certain Oestrogen response elements or 

modulate transcription at promoter elements through protein–protein interactions 

(Kushner et al., 2000). The exact role of the two oestrogen subtypes remains unclear. 

However ERα has been reported to play a prominent role in the regulation of 

reproduction, while ERβ seems to play a minor role (Warner et al., 1999)  

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513362/#R16
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(Roman-Blas et al., 2009) 

Figure 5.1: Schematic diagram of the structure of ERα and ERβ. Separate genes 

encode both receptors. ESR1 encodes ERα, while ESR2 encodes ERβ. AF1 and AF2 

are the two binding sites, activation of which results in transcriptional activation. Both 

receptors consist of 5 domains and share significant homology.  
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          1.11.1 Oestrogen in the bladder 

 

Oestrogen receptors are expressed in various tissues, including: prostate, intestine, 

lung and the bladder. In these tissues ER has been shown to be involved in terminal 

differentiation of the epithelium (Forster et al., 2002, Morani et al., 2006 and Imamov 

et al., 2004). Within the bladder, ERβ is thought to be the most predominant isoform 

expressed with very little ERα expression (Saunders et al., 1997). ERs are present in 

the trigone, but are absent in the dome of the bladder.  Both ER subtypes have also 

been found in the urothelium.   

It has been reported that in interstitial cystitis (IC), disruption of the urothelial barrier 

may initiate a cascade of events in the bladder, leading to symptoms and disease. 

Specifically, epithelial dysfunction leads to the migration of urinary solutes, in 

particular, potassium, that depolarizes nerves and muscles and cause tissue injury. It 

has also been suggested that ER may be involved in mediating proliferation of 

urothelial cells (Teng et al., 2008). Impairment of the mucosal barrier function and 

changes in prostaglandin levels has been reported in oestrogen deficient mice (Hass et 

al., 2009). Thus, changes in ER signaling may induce changes in the urothelial 

structure, resulting in impairment of the barrier function. An extensive study was 

carried out by Imamov et al (2007), investigating the role of ERs in modulating 

urothelial cell structure and function. Female ERβ−/− mice were found to have 

urothelial atrophy, ulceration and shredding of the bladder urothelium and increased 

bladder permeability in comparison to their wild type littermates. As a result of 

urothelial impairment, invasion of immune cells were observed in the stroma and the 

epithelium. γδ T cells were found to be more concentrated in areas of atrophy and 
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urothelial shredding in ERβ−/− mice. High infiltration with γδ T cells and macrophages 

were shown in the bladder of ERβ−/− female mice (Imamov et al, 2007). These 

morphological changes seen in female ERβ−/− mouse bladders resembles those seen in 

IC. However, there is no evidence if these changes lead to changes in bladder afferent 

signaling, and hence modulate pain sensation, which is a characteristic of IC.   

 

Interestingly, Schroder et al., conducted studies with oestrogen receptor knockout 

mice and found no changes in the voiding behavior of these mice (Schroder et al., 

2003). No changes were also reported in contraction of isolated muscle strips obtained 

from these mice compared to their wild type littermates (Schroder et al., 2003). 

However, an interesting observation during this study was the absence of any 

overactive cystometry pattern induced by the intravesical administration of capsaicin 

in ERα KO mice (Schroder et al., 2003). Capsaicin is a well-known TRPV1 agonist, 

whose receptors play a role in pain sensation (Wang et al., 2008). The absence of this 

response in ERα mice, suggests an interaction between oestrogen and TRPV1. This 

indicates a possible role of oestrogen in the alteration of bladder afferent signaling. 

This may possibly explain the increase occurrence of IC in postmenopausal women. 

However, the overactive cystometric pattern was present in the ERβ mice. These 

results are contradictory to Imamov et al data, where the role of ERβ was reported to 

be predominant in the pathogenesis of IC. However, these results do provide a possible 

role of oestrogen in bladder afferent signaling.  

Bennet et al., reported expression of both ER subtypes in adult female rat lumbosacral 

DRGs (Bennett et al., 2003). Similarly, mRNA of ERs have been identified within 
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small and medium sized lumbosacral dorsal root ganglion DRGs (Papka et al., 2003 

and Papka et al., 2001). Moreover, coexpression between both ERs and TRPV1 has 

been reported in more than 30% of these neurons, suggesting direct interaction by 

which steroid modulation could affect TRPV1 activation, hence influence pain 

modulation.   

In addition, ERs have been found on mast cells in women with interstitial cystitis (Pang 

et al., 1995). It has been suggested that estrogen can directly influence (non-genomic) 

the function of the detrusor muscle through the modulation of muscarinic receptors 

(Batra et al., 1989) and by inhibition of calcium influx into muscle cells (Wang et al., 

2008). Subsequently, it has been reported that estradiol attenuates both the amplitude 

frequency of spontaneous contractions of the detrusor muscle (Acar et al., 2006) 

increased bladder sensation in some women has also been reported (Fantl et al., 1988). 

Additionally, a reduction in the ERβ expression has been shown in bladders of rats 

with chemically induced cystitis (Acar et al., 2006)  

 

The above mentioned studies indicate that oestrogen receptor β may play a role in the 

pathogenesis of IC; hence ERβ KO mice may present a useful animal model for this 

condition. However, there is some discrepancy in the voiding pattern reported 

previously and there is no direct evidence for the functional role of ERβ in bladder 

sensation.  

ERβ null female mice offer an opportunity to investigate the mechanisms of sensory 

hypersensitivity that might results due to changes in the expression of estrogen 
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receptor in females. This study with the use of ERβ null mice investigates the role of 

this receptor in bladder afferent signaling.   
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CHAPTER 2 

 
 

MATERIALS AND METHODS 
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2.1 Recording of intra-vesical pressure and afferent nerve firing 

 
Animals 

All experiments were performed using adult male mice with a C57 black background 

(25-30g). TRPM8+/+ and TRPM8-/- mice with a genetic background of C57/BL6 were 

generated by Pfizer. There were no overt differences in feeding behaviour, litter size, 

growth rate and body weight between WT and KO groups. Studies with knockout 

strains were compared to wild type littermates of similar age and weight.  

All animals were allowed free access to food and water and were humanly killed by 

cervical dislocation in accordance with UK Home Office regulations covering 

schedule one procedure. 

 

Afferent nerve preparation 

The animal was sacrificed by cervical dislocation. The abdomen was opened and the 

pelvic region was removed.  The spinal cord was severed at the level of L1-L2 and all 

proximal tissue discarded leaving the whole pelvic region (containing ureters, kidneys, 

bladder, vas deferens, seminal vesicles, testes and urethra) intact. The pelvic region 

was placed in a recording chamber that was continually perfused with oxygenated 

(95% O2 and 5% CO2) Krebs-bicarbonate solution (composition, mM: NaCl 118.4, 

NaHCO3 24.9, CaCl2 1.9, MgSO4 1.2, KH2PO4 1.2, glucose 11.7) at 35 °C (pH: 7.4).   

The bladder was visualized using a dissection microscope (Nikon, SMZ645) to enable 

the introduction of luminal catheters and identification of the nerve bundles from 

which afferent recordings were to be made. The ureters were tied with silk suture 

(US7/0) to prevent back flow. The pubic symphysis was cut centrally to expose the 
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underlying urethra. A polythene catheter (0.28mm) connected to a syringe pump 

(Genie, Kent,multi-phaserTM model NE-1000) was inserted into the bladder via the 

urethra. An incision was made at the dome of the bladder using a syringe needle (BD 

microlanceTM, 19G 2”). A double lumen catheter was inserted into the incision point 

and tied with sutures. One port was connected to a pressure transducer (DTXTM plus 

DT-XX, Becton Dickinson, Singapore) to allow recording of intravesical pressure both 

at rest and during distension while the second port was connected to a two-way tap. 

Opening and closing the tap allowed emptying and filling of the bladder. Bladder nerve 

bundles, containing a mix population of hypogastric and pelvic afferent nerves are 

located at the base of the bladder. These nerve bundles were carefully dissected into 

individual branches. One nerve branch was inserted into a recording electrode (tip 

diameter 50-100µm) attached to neurology headstage (NL100, Digitimer Ltd, UK), 

AC amplifier (NL104) and filter (NL125, band pass 300–4000 Hz) and captured by a 

computer via a Power 1401 interface and Spike2 software (version 5.14, Cambridge 

Electronic Design, UK).  



 

 

Outflow: opening and closing the tap 

allows bladder filling and emptying 

Pressure transducer:  allows the 

recording of intravesical bladder 

Infusion pump: perfuses saline through the 

lumen of the bladder  

Recording electrode 

Catheterisation through the 

bladder dome 

Afferent nerve 

Catheterisation 

through urethra 

Figure 2.1. Schematic diagram representing an In vitro model for recording of intravesical 

pressure and record afferent nerve firing. The urethral catheter was attached to pump allowing 

infusion of saline/drugs through the lumen of the bladder. The catheter inserted into the bladder 

dome was attached to a pressure transducer to allow monitoring of intravesical pressure). Mix 

population of bladder afferents were identified, dissected and inserted in a recording electrode. 

Action potential generated were recorded using computer software. 

 

 



 

2.2 Experimental protocol 

Multiunit nerve recording were performed both at baseline and during bladder 

distension. The preparation was allowed to stabilize for 30 minutes, before starting the 

protocol. Bladder distension was performed using isotonic saline (NaCl 0.9%) at a rate 

of 100µl min-1 to a maximum intravesical pressure of 40mmHg or 50mmHg after 

which the bladder was emptied by opening the outflow tap of the two-way catheter 

attached to the bladder dome. This was repeated every 10 minutes until a stable 

pressure and afferent responses to bladder distensions were obtained.  

 

Extra-luminal application of pharmacological agents  

Following stabilisation of afferent nerve recording, drugs were applied to the extra-

luminal Krebs solution. The Krebs solution containing the drug was perfused for 30 

minutes (unless otherwise stated). During this extra-luminal application distensions 

were carried out every 10 minutes. After 30 minutes the extra-luminal Krebs solution 

containing the drug was replaced with fresh Krebs solution (washout).  Afferent and 

intravesical responses to drug application were compared to a 30-minute control and 

washout period.  Afferent responses were investigated at baseline and during 

distension.   

 

Intra-luminal application of pharmacological agents 

Drugs were applied into the lumen of the bladder through the urethral catheter. Drugs 

were diluted in isotonic saline to the appropriate concentration. The drugs were 
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continuously perfused into the bladder using a perfusion pump, with the out-flow tap 

open to avoid distending the bladder afferent and intravesical responses to drug 

application were compared to a 30 minute control and washout period.  Afferent 

responses were investigated at baseline and during distension.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2.2: Schematic diagram representing the protocol used to record the intravesical pressure and afferent nerve 

firing. The first three reproducible afferent responses were used as the control (at 10 min interval). The nerves were then 

stimulated with the chosen drug and three distensions were performed. Finally, the drug was replaced with  Krebs (washout) 

and three distensions were performed. This order was used to investigate the change afferent nerve firing induced by the 

application of various pharmacological agents (unless otherwise stated) 



2.3 Data analysis 

Distension 

Multi-unit nerve activity was quantified using a spike processor, which counted the 

number of spikes that cross a pre-set threshold; with the threshold level for spike 

counting set at the peak of the smallest identifiable spike. This was further quantified 

in a sequential rate histogram, which was used to define the stimulus-response 

function.  Baseline afferent activity was obtained by averaging the discharge in the 

100s period prior to the distension. The afferent response during distension was 

calculated by measuring the afferent discharge per second during various intravesical 

pressures (0, 5, 10, 15, 20, 25, 30, 35, 40 mmHg). The baseline firing was then 

subtracted from the given value to give a measure of change in afferent response during 

distension. The baseline firing was calculated as 100 seconds before the start of the 

distension.  

 

Investigating the effect of drug on baseline firing 

The effect of a drug on baseline firing was calculated by measuring the mean peak 

response after drug application. The baseline firing was then subtracted from the mean 

peak response. The time of the response was calculated by measuring the time it took 

from the application of the drug to the mean peak response (unless otherwise stated). 
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Bladder compliance 

The bladder compliance was calculated from the increase in bladder volume as a 

function of intravesical pressure  

 

Volume (µl) = Rate (µl min-1) x Time(s)  

     

The pressure and volume relationship was calculated at various intravesical pressures 

(0, 5, 10, 15, 20, 25, 30, 35, 40mmHg) during bladder filling and determined from the 

rate of infusion (100µl/min) and the time (s) from the start of the infusion. This 

calculation was used to construct a pressure-volume xy plot, representing the 

compliance. 

 

Single unit analysis 

To identify and sort individual single units from the multi-unit nerve activity in an 

experiment, off-line analysis (single unit analysis) using Spike 2 software version 5.14 

was performed. Spike templates were formed using a 2.5 m sec-1 sampling period, with 

the cursors set to encompass both the positive and negative ends of the spike. 

Individual spikes were assigned to a specific waveform template generated from the 

raw nerve trace. The classification of individual spikes was based on approximately 

10% or less differences in amplitude and above 60% of data points within the template 

boundary.  

Afferent nerve discharge is expressed as impulses per second (imp s−1). Data are 

expressed as means ± S.E.M. Statistical analysis was carried out using a either a 2-way 
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ANOVA followed by a Bonferroni post-test where necessary or one–way 

ANOVA/paired Student's t test, followed by Bonferroni post-test and significance was 

set at P< 0.05. (All graphical and statistical analysis used in this thesis was performed 

using Graph Pad Prism (Version 5.00 for Windows, Graph Pad Software, San Diego 

California USA, www.graphpad.com). 

http://www.graphpad.com/
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Figure 2.3 Example of single unit analysis. A; example of templates generated from 

scanning the raw nerve trace using Spike 2 software. B; example of an afferent response 

to bladder distension and the wavemark generated by spike.  
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Principal component analysis 

Principal component analysis (PCA) was used to differentiate between the waveforms 

that make up the different spikes. This method was used to analyse whether the single 

units identified are different enough to be characterised as separate nerve fibres. 

Principal component analysis extracts the features that contribute towards the 

differences observed between the waveforms that produce the spike. These include 

amplitude, latency, area and slope. These data are normalised and scaled as x, y, and 

z, producing a 3-dimensional display of clusters (Figure 2.4, the clusters are shown in 

a 2 dimensional display). The different coloured clusters represent different templates. 

Overlapping clusters were classified as the same nerve fibres. Clusters that could be 

confidently differentiated as separate groups were defined as distinct nerve fibres. 

However, since the clusters are evaluated by eye and classification is mainly dependent 

on individual opinion, these data may be influenced by personal bias.   

 

Low and high threshold nerve fibres 

After individual single units were sorted, they were further classified into low and high 

threshold, depending on their activation threshold. The wavemark was separated based 

on the distinct nerve fibres and converted into a rate histogram where the firing/sec 

was plotted at each pressure to a maximal pressure of 40mmHg. Single units firing 

below a pressure of 15mmHg were defined as low threshold; whereas above 15mmHg 

were defined as high threshold.  
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A 

B 

Figure 2.4 example of a two-dimensional figure showing distinct single units. A, 

Parameters used by Spike 2 to analyse the difference between the templates generated. 

B, Outcome of the principle component analysis, showing the distinct clusters of fibres. 
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2.4 Investigating voiding parameters of male and female ERβ+/+ and ERβ-/- mice 
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Figure 2.5: Classification of low and high threshold nerve fibres. After the initial single 

unit analysis, a wavemark was generated. The wavemark allows differentiation between 

the distinct nerve fibres and can be represented as a histogram (as shown above). The low 

and high threshold units were calculated by measuring the frequency of the single units 

responding below an intravesical pressure of 15mmHg and high threshold after 15mmHg.   
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2.4 Investigating voiding parameters of male and female ERβ-/- and ERβ+/+ mice 

ERβ+/+ and ERβ-/- mice were provided by Pfizer, UK. Maintenance and killing of the 

animals followed principles of good laboratory practice in compliance with UK 

national laws and regulations. The mice were killed humanely by CO2 inhalation 

followed by cervical dislocation.  

Male and female ERβ+/+ and ERβ-/- mice were singly housed and maintained under 

standard laboratory conditions under 12:12 hour reversed dark: light cycle (07:00 

lights off) with food and water offered ad libitum. There were no overt differences in 

feeding behaviour and body weight between ERβ+/+ and ERβ-/- mice groups.  Mice 

were tail marked and weighed before randomisation. In each experiment two animals 

were selected from each of group (male ERβ+/+, male ERβ-/-, female ERβ+/+, and 

female ERβ-/-).  

The voiding pattern was assessed by measuring the voiding frequency and volume. 

For this purpose, animals were placed in metabolic cages for 3hrs to acclimatise for 

three consecutive days. The total amount of urine voided was measured for 6 hours on 

the fourth day. Recording was also performed on the 5th day; the mice were water-

loaded, by intraperitoneal injection (20/ml per kg) of distilled water.  Two mice from 

each group were randomly placed in metabolic cages with free access to distilled 

water. The urine was collected on a sponge placed on a balance (Mettler PM 100 or 

AJ 100, Mettler-Toledo AG, Greifensee, Switzerland) connected to a PC running 

Notocord data acquisition software. Voiding frequencies and volumes were recorded 

for 6 hrs.  
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     2.5 Isolation and culturing of primary urothelial cells 

After cervical dislocation, the whole bladder was removed and placed in Phosphate buffered 

saline solution (PBS). The bladder was cut from the urethra upwards and pinned flat in a Sylgard 

coated dish, with the urothelium facing upwards. The bladder was incubated with Minimum 

Essential Media (MEM) (Invitrogen) containing 2.5 mg/ml of dispase II enzyme (Sigma) for 3 

hours at room temperature. The urothelial cells were then gently scraped from the underlying 

muscle layer and treated with trypsin-EDTA (Invitrogen) for 5-10 minutes and resuspended in 

Keratinocyte media (Invitrogen). Urothelial cells were cultured as previously described 

(Everaerts et al. 2009). The cell suspension was counted and plated on collagen (IV) coated 

coverslips and incubated overnight at 37°C in an atmosphere of 5% CO2- 95% O2. 

2.6 Isolation and culturing of DRGs 

Following cervical dislocation the DRGs were removed from the T11-L2 and L6-S2 region of 

the spinal cord. The isolated DRGs were placed in Hank’s Balanced Salt Solution HBSS 

(pH7.4) (Invitrogen) and treated with 0.7mg/ml L-Cystein (Sigma- Aldrich (Poole,UK) and 

4mg/ml papain (Sigma- Aldrich (Poole,UK) for 20 minutes at 37oC and then 4mg/ml 

collagenase (Sigma- Aldrich (Poole,UK) and 4.7mg/ml dispase  (Sigma- Aldrich (Poole,UK) 

for 20 min at 37oC.  Following treatment, the DRGs were washed with Dulbecco's Modified 

Eagle Medium: Nutrient Mixture F-12 (DMEM/F12) (Invitrogen) culture media, containing 1 

in 10ml fetal calf serum (FCS) (Invitrogen). The enzymatically treated DRG were gently 

triturated using a Pasteur pipette and then distributed onto Matrigel coated glass coverslips 

(6x16mm). Cells were then incubated in a 5% CO2-95% O2 incubator at 37°C for 2 hours. 
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Following incubation, the cells were flooded with PenStrepto media (Invitrogen) and incubated 

overnight at 37C in a 5% CO2-95% O2 incubator. 

    2.7 Calcium imaging 

The measurement of intracellular calcium concentrations was performed by loading the cells 

with 2 μM fura-2 acetoxymethyl ester (fura-2AM) (Sigma- Aldrich (Poole,UK) 0 for 30 min at 

37°C in the dark. The ratiometric fluorescent dye diffuses into the cell and binds to free 

intracellular calcium. After 30 min the cells were transferred into a perfusion chamber and 

mounted onto an fluorescence microscope and perfused with HEPES buffer (150mM NaCl, 

6mM CsCl, 1mM MgCl2, 5mM CaCl2, 10mM glucose, and 10mM HEPES, buffered to pH 7.4 

with NaOH) for 30 minutes. Intracellular Ca2+ concentration ([Ca2+]i) was measured as the ratio 

between the fluorescence signal measured at 350 nm and at 380 nm normalized to baseline. 

Regions of interest were chosen, based on the number and type of cells present. After 30 

minutes of perfusion with HEPES buffer, cells were stimulated for 2 minutes with HEPES 

containing the drug to be investigated. The drug was then washed out by switching the perfusion 

back to HEPES buffer, finally the cells were stimulated with the calcium ionophore ionomycin 

(5μM) (Sigma- Aldrich (Poole,UK). Ionomycin was applied as positive control and only the 

responding cells were included in the analysis. Results are expressed as relative fluorescence 

(RF).  All the drugs were prepared in HEPES buffer. 

 

             

 

 

 

http://en.wikipedia.org/wiki/Calcium
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Figure 2.6. Schematic diagram of the Ca2+ imaging perfusion system 

Standard imaging solution in a 1 litre bottle continually superfused cells on a coverslip in the 

recording chamber. Syringes on a perfusion rack were used to apply additional solutions to cells; 

the outflow tube was connected to a peristaltic pump. 
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 2.8 Drugs and Solubility 

All the drugs used in this thesis are listed in table 2.1. The data from the drug manufacturer was 

used to determine the solubility of a drug. All the drugs were dissolved in either ethanol (Sigma- 

Aldrich (Poole,UK) or DMSO (Sigma- Aldrich (Poole,UK) to make a stock solution. The stock 

was then finally diluted in either saline (for intra-luminal application) or Krebs (extra-luminal 

application) to the appropriate final concentration. In each case a vehicle control was performed 

to account for any effect of the solvent. The purchase information of the drugs are listed in table 

2.1 
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Table 2.1 Summary of the drugs used in this study

  Compound Main action concentration solubility  Purchased from 

17β-estradiol Oestrogen receptor agonist 1µM, 30µM, 100µM DMSO Sigma-Aldrich (Poole,UK) 

Allylisothiocyanate (AITC)  TRPA1 agonist 1µM, 3µM, 30µM, 100µM Ethanol Sigma-Aldrich (Poole,UK) 

Capsaicin TRPV1 agonist 1µM, 30µM, 100µM Ethanol Sigma-Aldrich (Poole,UK) 

Capsazepine TRPV1 antagonist 10µM Ethanol Sigma-Aldrich (Poole,UK) 

Cinnamaldehyde TRPA1 agonist 10µM, 100µM DMSO Sigma-Aldrich (Poole,UK) 

Forskolin Protein kinase A activator 10µM DMSO Sigma-Aldrich (Poole,UK) 

GÖ- 6983 Protein kinase C inhibitor 1µM Ethanol 

Tocris Cookson (Bristol, 

UK) 

H-89 dihydrochloride Protein kinase A inhibitor 1µM DMSO Sigma-Aldrich (Poole,UK) 

Hydrogen sulphide TRPA1 agonist 100µM 

Distilled 

water Sigma-Aldrich (Poole,UK) 

Menthol TRPM8 agonist 

1µM, 3µM, 10µM, 30µM, 

100µM, 150µM, 2mM Ethanol Sigma-Aldrich (Poole,UK) 

PF-05105679 TRPM8 antagonist 10µM DMSO Pfizer, UK 

Phorbol 12-myristate 13-

acetate (PMA) Protein kinase C activator 10µM DMSO Sigma-Aldrich (Poole,UK) 

U-73122 Phospholipase C inhibitor 10µM Ethanol Sigma-Aldrich (Poole,UK) 

WS-12 TRPM8 agonist 10µM, 30µM 100µM DMSO Sigma-Aldrich (Poole,UK) 

α,β-Methyleneadenosine 

5’triphosphate (αβMethATP) P2X agonist 

3µM, 10µM, 30µM, 

100µM DMSO Sigma-Aldrich (Poole,UK) 
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CHAPTER 3 

 
 

THE EFFECT OF TRPM8 ACTIVATION ON 

BLADDER AFFERENT FIRING 
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3.1. Aim of the study 

 

Fundamental questions regarding the role of TRPM8 in sensory signalling from the normal bladder 

and any changes that might occur in disease. The current study combines a transgenic approach 

utilizing the TRPM8 knockout mouse and TRPM8 selective compounds to investigate the role of 

TRPM8 in normal bladder afferent signalling. 
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3.2 Experimental protocol and analysis of data 

 

The afferent nerve recording technique was performed as described in chapter 2 

 

Measurement of afferent nerve activity 

Bladder afferent responses were investigated both at rest and during distension. The mechanical 

afferent response to distension was assessed, by filling the bladder to a maximum pressure of 

40mmHg. Bladders were filled using isotonic saline at a rate of 100µl min-1. Several distensions 

(typically 3 or 4) were carried out every 10 minutes, until stable responses were achieved. The 

various protocols described below were undertaken only once a stable response to distension had 

been obtained.  The afferent response to distension was analysed as the afferent activity per unit 

of pressure and is expressed as impulses per second (imp sec-1). Baseline afferent nerve firing was 

assessed as the mean afferent discharge in a period of 100s before bladder distension.   

 

Afferent response to Menthol and WS-12 

To investigate the role of TRPM8 in bladder afferent firing, a cumulative dose response with the 

TRPM8 agonists Menthol (1μM, 3μM, 10μM, 30μ M, 100μM, 150μM, 300μM, 1mM and 2mm) 

and WS-12 (1μM, 3μM, 10μM and 30µM) were performed. These compounds were administered 

intraluminally into the bladder of TRPM8 knockout mice and their wild type littermates to 

compare effects on baseline firing and responses to distension. After each drug application a 

washout period of 30 minutes was carried out using intraluminal infusion of isotonic saline (NaCl, 

0.9%).  

 

The effect of cold (12°C) on the afferent response to distension 

To investigate the contribution of TRPM8 in sensing cold within the bladder, cold saline at a 

temperature of 12°C was administered into the bladder. In preliminary experiments the response 

to cold was seen to desensitize with repeat application. To avoid this alternating application of 

both cold and warm saline (12°C and 38°C) were used, followed by a recovery period of 30 

minutes using intraluminal infusion of isotonic saline (NaCl, 0.9%, 36˚C).  
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The effect of PF-05105679 on the afferent response to distension 

The effect of the TRPM8 antagonist PF-05105679 on the afferent response to bladder distension, 

baseline firing and compliance was assessed. PF-05105679 was applied intraluminally at a 

maximum concentration of 10µM. In separate experiments PF was applied either alone or in 

combination with WS-12. 

 

 

The single unit response to distension 

Spike 2 software was used to analyse the multiunit afferent nerve recordings in order to quantify 

activity in individual single units at baseline and in response to distension. Fibres responding at 

intraluminal pressure below 15mmHg were characterized as low threshold units, whereas fibres 

responding above 15mmHg were characterized as high threshold units. Principle component 

analysis for each experiment was carried out to verify the accuracy of single unit discrimination.  

 

 

Statistical significance 

Where appropriate data is always displayed as means ± S.E.M. Statistical analysis was carried 

out using a either a 2-way ANOVA with a Bonferroni post-test or one-way ANOVA.  

Significance was assumed at P<0.05.  
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3.3 Results 

3.3.1 Comparison of sensory nerve response between TRPM8 WT and KO mice 

We saw no obvious bladder phenotype between the TRPM8 knockout animals and their wild type 

littermates. This was confirmed by the lack of any difference in either bladder compliance or 

afferent response at baseline and during distension. These data are summarized in Figure 3.1, 

which shows the afferent response to distension, baseline firing and bladder compliance. No 

differences were also found when the afferent responses were further analysed with single unit 

analysis (Figure 3.2 and 3.3). 
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Figure 3.1: comparison of afferent response between TRPM8
+/+

 and TRPM8
-

/-
 

A) The afferent response to an increase in intravesical pressure during ramp 

distension with isotonic saline (0.9%) to a maximal intravesical pressure of 

40mmHg. B) No significant difference in the spontaneous firing between WT and 

KO mice. C) There was no change (P>0.05) in bladder compliance. Results are 

shown as mean ± SEM (n = WT: 24, KO: 22).  
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Figure 3.2: The response to bladder distension in KO mice. 

A) Fibre averaging analysis reveals no change in the response between TRPM8
-/- 

mice and TRPM8
+/+ 

mice in response to a control ramp distension B) Three 

reproducible control distensions in KO mice.  
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Figure 3.3: Single unit analysis of a distension response in KO mice.  Single 

unit analysis, producing two distinct wavemarks. Principle component analysis 

showing district clusters of fibres.  
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3.3.2 The effect of menthol on bladder afferent firing 

To investigate the effect of activating TRPM8 directly on bladder afferents, menthol was used. A 

cumulative concentration curve of menthol was produced, showing both excitatory and inhibitory 

effects (Figure 3.4).  1μM, 3μM, 10μM, 30μM, 100μM, 150μM, 300μM and 1mM menthol was 

intraluminal applied into the bladder. 150μM menthol was also applied on its own, resulting in a 

significant increase in firing both at distension and baseline in the WT (Figure 3.5). The excitatory 

response was absent in the KO mice (Figure 3.6). This suggests a TRPM8 dependent effect of 

menthol at this concentration. At a concentration of 2mM menthol resulted in significant inhibition, 

both in the WT and KO mice (Figure 3.7-3.9). 
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Figure 3.4: effect of menthol on the afferent response to bladder distension in wild 

type mice.  
A; Nerve histogram showing response to the infusion of 1μM, 3μM, 10μM, 30μM, 

100μM, 150μM, 300μM and 1mM menthol. B; Menthol caused a significant (P<0.01 

one way ANOVA) increase of spontaneous activity. Results are shown as mean ± SEM 

(n = 6).  
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Figure 3.5: The effect of 150μM menthol on the afferent response to bladder distension 

in wild type mice.  
A; Menthol caused an increase (P < 0.05 two way ANOVA) of the afferent response to bladder 

distension, followed by a 30 minute washout B; Menthol caused a significant (P<0.01 one 

way ANOVA) increase of spontaneous activity, followed by a complete washout. C; there 

was no change (P > 0.05) of bladder compliance. Results are shown as mean ± SEM (n = 6). 

***P < 0.001 compared to control. 
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Figure 3.6: The effect of 150μM menthol on the afferent response to bladder distension in 

TRPM8
-/-

.  
A; Menthol did not change (P > 0.05 two way ANOVA) the afferent response to bladder 

distension B; No alteration (P > 0.05 one way ANOVA) of spontaneous activity was observed. 

C; There was no change (P>0.05) in bladder compliance. Results are shown as mean ± SEM (n 

= 6).  
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Figure 3.7: The effect of 2mM menthol on the afferent response to bladder distension in 

wild type mice.  
A; Raw nerve trace and the corresponding histogram in response to a control distension in 

WT mouse. B; Response to distension after application of 2mM menthol. C; response to 

distension during first washout. D; 2
nd

 washout E; third washout.  
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Figure 3.8: The effect of 2mM menthol on the afferent response to bladder distension in 

wild type mice.  
A; Menthol caused a profound attenuation (**P < 0.01 ***P < 0.001 two way ANOVA) of 

the afferent response to bladder distension, followed by a washout. B; Menthol caused a 

significant (**P<0.01 one way ANOVA) decrease of baseline firing. C; There was no 

significant difference (P>0.05) in the bladder compliance. Results are shown as mean ± SEM 

(n = 6). 
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Figure 3.9: The effect of 2mM menthol on the afferent response to bladder distension in 

TRPM8
-/- 

mice.  
A; Menthol caused a profound attenuation (*P < 0.05 **P < 0.01***P < 0.001 two way 

ANOVA) of the afferent response to bladder distension, followed by a complete washout. B; 

Menthol caused a significant (**P<0.01 one way ANOVA) decrease of baseline firing. C; 

There was no significant difference (P>0.05) in the bladder compliance. Results are shown as 

mean ± SEM (n = 6).  
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3.3.3 The effect of WS-12 on bladder afferent firing 

Because menthol appeared to have non-specific effect on bladder sensory afferent, we used a more 

specific agonist WS-12. The intraluminal and extraluminal application of 10μM WS-12 caused a 

significant increase of the afferent response to distension, although there was no recovery after 30 

minutes of washout. No changes were observed at baseline firing. The compliance was also 

unchanged in the WT mice (Figure 3.10 and 3.11). In the KO mice WS-12 did not induce any  

changes in the response to distension, baseline firing and compliance, suggesting that the increase 

in afferent response observed during distension is TRPM8 specific (Figure 3.13). 
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Figure 3.10: The effect of extra-luminal application of 10μM WS-12 on the afferent 

response to bladder distension in wild type mice.  
A; WS-12 caused a profound increase (**P < 0.01 ***P < 0.001 two way ANOVA) of the 

afferent response to bladder distension. B; There was no significant alteration (P>0.05) of 

spontaneous activity. C; There was no significant difference (P>0.05) in bladder compliance. 

Results are shown as mean ± SEM (n = 6)  
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Figure 3.11: The effect of intraluminal infusion of 10μM WS-12 on the afferent 

response to bladder distension in wild type mice.  
A; WS-12 caused a profound increase (**P < 0.01 ***P < 0.001 two way ANOVA) of 

the afferent response to bladder distension. B; There was no significant alteration 

(P>0.05) of spontaneous activity. C; There was no significant difference (P>0.05) in 

bladder compliance. Results are shown as mean ± SEM (n = 6)  
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Figure 3.12: The effect of 10μM WS-12 on the afferent response to bladder distension in wild 

type mice.  
Raw     Raw nerve trace and histogram showing response to extra-luminal infusion of WS-12. 
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Figure 3.13: The effect of 10μM WS-12 on the afferent response to bladder 

distension in TRPM8
-/-

mice.  
A; WS-12 did not alter the afferent response to mechanical stimulation. B; There was 

no change (P>0.05) of spontaneous activity. C; There was no significant difference 

(P>0.05) in bladder compliance. Results are shown as mean ± SEM (n = 6)  
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3.3.4 Effect of cold saline on bladder afferents 

We tried to investigate the contribution of TRPM8 on the ice water test by infusing cold saline 

into the bladder of WT and TRPM8 KO mice. The infusion of cold saline (12°C) caused a 

significant increase in the afferent response to distension in the WT mice. This increase was only 

seen in the first distension. No changes were observed at baseline firing. The infusion of cold saline 

had no effect on either the afferent response to distension or baseline firing in the KO mice (Figure 

3.14).  In an attempt to avoid the desensitisation, seen in the subsequent distension in the WT mice, 

we used alternating infusion of cold (12°C) and warm (38°C) saline. This caused a significant 

increase in all the distension responses in the WT. No changes were observed in at baseline firing. 

Neither the distension response nor baseline firing was affected by this protocol (Figure 3.15). 
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Figure 3.14: The effect of cold saline (12 °C) on the afferent response to bladder 

distension in TRPM8
+/+ 

and TRPM8
-/- 

mice.  
A; infusion of cold saline significantly increased (*P < 0.05 one way ANOVA) the 

afferent response to mechanical stimulation in WT mice. B; There was no change 

(P>0.05) of spontaneous activity in WT mice. C; infusion of cold saline did not alter the 

afferent response to mechanical stimulation in KO mice. D; There was no significant 

difference (P>0.05) in spontaneous activity in KO mice. Results are shown as mean ± 

SEM (n = 6)  
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Figure 3.15: The effect of alternating infusion of cold (CS) (12 °C) and warm saline 

(WS) (38°C) on the afferent response to bladder distension in TRPM8
+/+ 

and 

TRPM8
-/- 

mice.  
A; infusion of cold saline significantly increased (*P < 0.05 one way ANOVA) the 

afferent response to mechanical stimulation in WT mice. No change was observed with 

warm saline B; There was no change (P>0.05) in the spontaneous activity in WT mice. 

C; infusion of cold and warm saline did not alter the afferent response to mechanical 

stimulation in KO mice. D; There was no significant difference (P>0.05) in spontaneous 

activity in KO mice. Results are shown as mean ± SEM (n = 6)  
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3.3.5 The effect of PF-05105679 on bladder sensory nerves. 

We also investigated the effect of PF-05105679 on bladder afferents. PF-05105679 is a TRPM8 

antagonist. The application of PF-05105679 on its own had no effect on distension, baseline firing 

or compliance. The combined application of 10μM WS-12 with PF-05105679, blocked the 

augmentation observed with the application of WS-12 on its own in the WT mice, confirming 

specificity to TRPM8 (Figure 3.16).  
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Figure 3.16: The effect of PF-05105679 on the afferent response to bladder 

distension in wild type mice.  
A; PF-05105679 did not alter the afferent response to bladder distension. B; PF-

05105679 had no significant effect on spontaneous activity C; There was no change (P 

> 0.05) of bladder compliance. Results are shown as mean ± SEM (n = 6).  
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3.3.6 Summary 

 

 This chapter provides an extensive study investigating the role of TRPM8 in mouse bladder 

afferents. It also provides further insight into the effect of menthol, WS-12, cold and PF-

05105679 on these afferents.  

 No changes were observed in the afferent response and compliance between the WT and 

TRPM8 KO mice. 

 At low concentrations, menthol caused a TRPM8 dependent excitation of the afferent 

response to distension. 

 At high concentration menthol caused a TRPM8 independent inhibition of afferent firing 

both during distension and at baseline. 

 Administration of WS-12 resulted in a TRPM8 dependent excitation of the afferent 

response to distension. The specificity of the drug was confirmed with the use of a KO and 

TRPM8 channel blocker (PF-05105679) 

 In an attempt to replicate the ice water test, cold saline was infused into the bladder lumen 

causing an increase in afferent response to distension. This increase was absent in the KO, 

confirming a TRPM8 dependent pathway. 

 TRPM8 may not have a physiological role in normal bladder function; however, knowing 

that TRPM8 is present on bladder afferents and understanding the effect of modulating this 

receptor through specific activators and inhibitors may provide new potential for therapy 

during diseases conditions.  
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CHAPTER 4 

 
 

THE INTERACTION OF TRPM8 WITH 

OTHER THERMOSENSITIVE CHANNELS 
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4.1 Aim of study  

The aim of this study was to assess, any interaction between TRPM8 and the heat activated 

TRPV1. The study also looked at interaction with TRPA1, a TRP channel thought to be involved 

in inflammatory pain and noxious cold perception.  To assess whether the interaction of TRPM8 

extends beyond the TRP channel family, we further investigated if there is any interaction between 

purinergic signaling and TRPM8 activation.   
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4.2 Experimental protocol 

In vitro nerve recording and single unit analysis were carried out as previously described in section 

2.5 and 3.2.4 

Afferent nerve responses to capsaicin, AITC, CA, H2S, methylene ATP, U-73122 (PLC 

inhibitor), H-89 (PKA inhibitor), GÖ-6983 (PKC inhibitor), forskolin (indirectly activated 

PKA) and phorbol 12-myristate 13-acetate (PMA) (activates PKC) 

 

All the above-mentioned drugs were applied into the lumen of the bladder with the outflow tap 

open to avoid desensitisation. After the initial application of capsaicin a one hour washout period 

was required to see a response to the second application of capsaicin, hence the same washout 

period was used for all the drug combinations. (See figure 4.1).  

The combined applications of the drugs were alternated from first to second application. 10mM 

stock of capsaicin was dissolved in saline to a final concentration of 1μM, 10μM, 30μM and 

100μM (0.01% ethanol). 10mM stock of WS-12 was dissolved in saline to a final concentration of 

10μM (0.1%DMSO). AITC (300µM), CA (10µM) and αβmethylene ATP (10μm 30μm and 

100μm) were dissolved in (0.01%) ethanol to the appropriate concentration. 

 

Bladder innervating DRGs were isolated, cultured and imaged as discussed in section 2.9 

10mM stock of WS-12 (0.1% DMSO) was dissolved in HEPES to a concentration of 1µM. A stock 

of 10mM capsaicin (0.1% ethanol) was dissolved in HEPES to a final concentration of 1µM and 

100µM for and capsaicin. 
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Capsaicin 

(3min) 

Capsaicin 

(3min) 

Washout 

Control Washout 

Figure 4.1: schematic diagram representing the protocol used to investigate the effect of 

capsaicin on bladder afferent firing.  The intraluminal infusion of isotonic saline (0.9%), 

followed by 3min application of capsaicin. After 3 min capsaicin was changed for the 

continuous perfusion of isotonic saline for 1 hour (representing the washout). 2nd application of 

capsaicin was applied followed by 30min washout. Time matched control experiments were 

also carried out to see if the vehicles had any effect on the nerve recording. 

1 hour 30min 30min 
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4.3 Results 

4.3.1. Functional interaction between TRPM8 and TRPV1 

To investigate the interaction between TRPM8 and TRPV1, the effect of activating TRPV1 on its 

own and in combination with WS-12 was investigated on bladder. The response of capsaicin on 

bladder afferents was previously investigated (Daly et al., 2006). Using a similar protocol, the 

effect of intraluminally applying 1µM, 10µM, 30µM and 100μM capsaicin was assessed. The 

responses are shown in figure 4.2. We observed no significant effect (P>0.05) with the intraluminal 

application 1, 3, and 30µM capsaicin on baseline firing. A 100µM capsaicin concentration resulted 

in significant excitation of bladder afferents followed by desensitization. To investigate the 

interaction between TRPM8 and TRPV1, both WS-12 (10µM) and capsaicin (100µM) were 

combined intraluminally into the bladder. In contrast to 1µM capsaicin alone, which was a 

powerful stimulus for afferent firing, it had no significant effect when applied in combination with 

WS-12. In other words WS-12 inhibited the response to 100µM capsaicin. In contrast, when WS-

12 (10µM) was applied in combination with lower concentrations of capsaicin (1, 3, and 10µM), 

it caused augmentation in both the magnitude and duration of the afferent response. The extent of 

this augmentation in afferent discharge was increased with reducing concentration of capsaicin. 

Examples of these afferent responses are shown in figure 4.1, 2 and.  
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Figure 4.1: Functional interaction between capsaicin and WS-12 on bladder afferent 

discharge.  A; Cummulative log concentration response curve of capsaicin on bladder sensory 

firing. 100µM capsaicin induced a significant response on baseline firing (n=6, 

****P<0.0001one way ANOVA, followed by Bonferroni test). B; Cummulative concentration 

response curve, showing afferent response to dual application of WS-12 and capsaicin. (n=6, 

****P=0.0001 one way ANOVA, followed by Bonferroni test) C; Comparison of duration 

between the baseline response induced by a 1µM capsaicin and 1µM capsaicin +WS-12 (n=6).  
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100µM capsaicin

1µM capsaicin

TRPV1+/+ 

TRPV1-

/-

response

Intraluminal infusion of capsaicin

50s

5
0

 
S/

S

100µM capsaicin

1µM capsaicin

100µM capsaicin

50s
5

0
 

S/
S

response

Intraluminal infusion of capsaicin in the presence of 10µM WS-12

100µM capsaicin

 

 

Figure 4.2: examples of histogram traces representing nerve responses to application of 

capsaicin (1µM and 100µM) and capsaicin with WS-12 Control experiments were performed 

with the intraluminal infusion of isotonic saline (0.9%), followed by 3min application of 

capsaicin.  The intraluminal application of 100µM capsaicin induced a significant increase in 

bladder sensory firing. 100µM capsaicin with WS-12 did not alter sensory nerve firing. The 

infusion of 1µM capsaicin on its own did not alter baseline firing. The combined application of 

1µM capsaicin with WS-12 significantly increased duration and frequency of spikes firing at 

baseline.  
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 Raw nerve 

trace 

(150μV) 

Histogram (50 

spikes/s) 

Raw nerve 

trace  

(150μV) 

Histogram 

(150 spikes/s) 

10 sec 

50 sec 

100µM 

capsaicin 

1µM capsaicin 

+ WS-12 

Figure 4.3: afferent response induced by the application of a 100µM capsaicin and 1μM 

capsaicin with WS-12. 100µM capsaicin induced a robust increase the frequency of spikes 

firing at baseline. Desensitization was followed straight after.  There was no change in the 

intraluminal pressure. 1µM capsaicin and WS-12 induced a robust increase in the frequency of 

spikes firing at baseline. Unlike, the response to 100µM capsaicin on its own, 1µM capsaicin 

response was not followed by desensitization. 
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4.3.2 Specificity of interaction between TRPV1 and TRPM8 

 

In order to determine the contribution of TRPV1 in the augmentation observed with the combined 

application of capsaicin and WS-12, the protocol was repeated in TRPV1-/- mice. The excitation 

followed by desensitization previously observed with the application 100µM capsaicin was absent 

in TRPV1-/- (Figure 4.4A). Similarly, afferent responses to combined application of 1μM capsaicin 

and 10μM WS-12 were also absent in TRPV1-/- (Figure 4.4B). The same protocol was also repeated 

in the presence of the TRPV1 antagonist capsazepine (10µM). Surprisingly, capsazepine, was 

unable to inhibit the response to 1μM capsaicin with WS-12 in TRPV1+/+ (Figure 4.4C).  

In the previous chapter, using both TRPM8 null mice and PF-05105679 we have determined the 

specificity of 10µM WS-12 to TRPM8. In order to confirm the contribution of TRPM8 in the 

augmentation observed, we applied both WS-12 and 1µM capsaicin in the presence of PF-

05105679 (TRPM8 antagonist).  Significant inhibition was observed in the augmented afferent 

discharge (Figure 4.5). It should be noted that the PF-05105679 did not completely block the 

augmentation.  
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Figure 4.4: The afferent response to capsaicin and WS-12 IN TRPV1-/- mice and in the 

presence of capsazepine. No change in afferent response was observed with either the 

application of A; 100µM capsaicin or B; a combined application of 1µM capsaicin with WS-

12 in the TRPV1-/-(P>0.05, student t test, n=6). C; Capsazepine (TRPV1 antagonist), did not 

significantly, inhibit the response to 1µM capsaicin and WS-12 in TRPV1+/+ mice (P>0.05, 

student t test, n=6). 
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Figure 4.5: The afferent response to capsaicin and WS-12 in the presence of PF-05105679. 

Combined application of 1µM capsaicin with WS-12 in the presence of PF-05105679, A; 

significantly reduced sensory afferent firing (****P<0.0001 student t test followed by 

bonferroni correction, n=6) and B; duration of response (****P<0.0001 student t test, n=6).  
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4.3.3. Intracellular mechanism involved in the interaction between TRPM8 and TRPV1 

 

PLC, PKA and PKA pathways are intracellular signalling pathways that have been postulated to 

play a role in TRPV1 sensitization. To investigate the potential involvement of a PLC, PKA and 

PKC dependent pathway, various inhibitors were applied together with WS-12 (10µM) and 

capsaicin (1µM). U-73122 (PLC inhibitor) did not result in inhibition of the augmented response 

seen with WS-12 and capsaicin. However, 1µM H-89 (PKA inhibitor) significantly reduced 

(****P<0.0001, n=6) inhibition, 1µM GÖ- 6983 (PKC inhibitor) almost completely abolished 

(****P<0.0001, n=6) the response to WS-12 and capsaicin (Figure 4.8B). This suggests that the 

excitatory response seen with the combined application of low dose capsaicin and WS-12 may 

involve both PKA and PKC pathways. 

To investigate the primary contributor responsible for the augmentation, both WS-12 and capsaicin 

were either separately applied with 10µM forskolin (PKA activator) and 10µM PMA (PKC 

activator) or with a combination of both forskolin and PMA. Forskolin is an indirect activator of 

PKA. Forskolin raises the levels of cyclic AMP (cAMP). The increase in levels of cAMP activates 

cAMP sensitive pathways, including PKA. Surprisingly, no significant potentiating of the WS-12 

and capsaicin activated sensory responses was observed with the infusion of PMA and forskolin 

(P>0.05. n=6) (Figure 4.6C).  

  



   

125 

 

 

C
h

a
n

g
e

 in
 a

ff
e

re
n

t 
d

is
ch

a
rg

e

im
p

/s

1 
M

 C
a p  +

W
S

-1
2

U
-7

3 1 2 2  +
c a p + w

s -1
2

H
-8

9 + c a p + w
s -1

2

G
o 6 9 8 3 + c a p + w

s -1
2

G
O

6 9 8 3 + H
-8

9 + c a p + w
s -1

2

0

5 0

1 0 0

1 5 0

*

**

***

C
h

a
n

g
e

 in
 a

ff
e

re
n

t 
d

is
ch

a
rg

e

im
p

/s

c o n tr
o l

F o rs  +
1 

M
c a p

F o rs + W
S

-1
2

P
M

A
 +

1 
M

c a p

P
M

A
+ W

S
-1

2

F o rs + P
M

A
+ 1 

M
 C

a p

F o rs + P
M

A
+ W

S
-1

2

0

5

1 0

1 5

2 0

A

B U
-7

3 1 2 2
H

-8
9

G
o 6 9 8 3

0

2

4

6

8

1 0

C
h

a
n

g
e

 in
 a

ff
e

re
n

t 
d

is
ch

a
rg

e

im
p

/s

C

 
 

 

  

Figure 4.6: Intracellular signalling pathways involved in the interaction between TRPM8 

and TRPV1. A; U-73122 did not alter the response to combined application of WS-12 and 

1µM capsaicin. Significant reduction was observed in the presence of H-89 and G6983. The 

augmentation was almost completely abolished in the presence of both H-89 and GÖ6983 

(****P=0.0001, n=6). B; No change in afferent firing was observed with forskolin or PMA 

(P>0.05 one way ANOVA followed by Bonferroni test, n=6) 
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4.3.4. Functional interaction between TRPA1 and TRPM8 

 

Functional interaction between TRPA1 and TRPM8 were also investigated. Previous studies have 

reported excitatory effects of TRPA1 agonists on bladder sensation. In the current study, the effect 

of AITC, CA and H2S were investigated on bladder afferents. Contrary to previous results (Figure 

4.1), the intraluminal application of 10µM AITC did not alter bladder sensory firing.  However 

30μM, 100µM and 300µM AITC significantly inhibited baseline firing (*P<0.05, ****P<0.0001, 

n=6). No significant effect was observed on mechano-sensitive responses to AITC.  Similarly, 10 

and 30µM CA did alter either baseline or distension responses, whereas 100µM CA significantly 

attenuated (****P<0.0001, n=6) baseline firing, although no effect was observed on distension 

response (Figure 4.7B). Interestingly, Hydrogen sulphide significantly increased baseline firing at 

a concentration of 100µM and 300µM (*P<0.05, ****P<0.0001, n=6) (Figure 4.7C). 

It has been previously reported that AITC is the most specific agonist of TRPA1; hence AITC was 

further utilized to investigate interaction between TRPA1 and TRPM8. Combined application of 

300µM AITC and WS-12 induced excitation of sensory response (****P<0.0001, n=6). 10µM 

AITC with WS-12 did not alter bladder afferent firing (Figure 4.9A).  This is contrary to the 

responses observed with capsaicin, since highest dose of AITC investigated yielded the most 

significant augmentation, when combined with WS-12. The increase observed with 300µM AITC 

and WS-12 was inhibited in the presence of 1µM GÖ-6983 and 1µM H-89 (**P<0.01, n=6) 

(Figure 4.9B).   
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Figure 4.7: sensory afferent response to the intraluminal application of TRPA1 agonist. 

A; Bar graph, showing afferent response to the application of 10, 30, 100 and 300µM AITC. 

100 and 300µM AITC significantly inhibited baseline firing (*P<0.05, ****P<0.0001, n=9). B; 

Application of 100µM CA significantly inhibited sensory function (****P<0.0001, n=6), 

whereas 10M and 30µM CA did not alter afferent nerve firing. C; 30µM and 100µM H2S 

significantly increased baseline firing (*P<0.05, ****P<0.0001, n=6). No changes were 

observed with 1 and 10µM H2S. All analyses were performed with One-way ANOVA, 

followed by Bonferroni test for multiple comparisons. 
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Figure 4.8: The afferent response to AITC and AITC in the presence of WS-12. A; Sensory 

response to the intraluminal infusion of 300μM AITC. B; augmented sensory response with the 

combined application of AITC (300μM) and WS-12.  
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Figure 4.9: functional interaction between TRPA1 and TRPM8. A; The afferent response 

to 10µM AITC and WS-12 was comparable to the afferent response induced by application of 

10µM AITC on its own. 300µM AITC with WS-12 significantly increased afferent response at 

baseline firing (****P=0.0001, n=6). B; In the presence of H-89 and GÖ6983 the augmented 

response was inhibited (**P=0.01, n=6 Student t test). 
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4.3.5. Interaction between TRPM8 activation and ATP signalling 

 

To investigate whether, WS-12 induced sensitization is limited to or extends beyond TRP 

channels; the same interaction was investigated with purinergic signalling. Previous studies have 

characterized the effect of ATP stimulation on bladder afferents. To investigate, the effect of 

activating P2X receptors in the current set-up, a series of experiments were performed. Figure 4.13 

shows a typical response to intraluminal application of 3, 10, 30, and 100µM methylene ATP. 

Purinergic stimulation resulted in robust excitation of sensory afferents followed by a period of 

desensitization. The magnitude of sensory activation increased with increasing concentration of 

methylene ATP. This resulted in significant increases in afferent activity with the application of 

30 and 100µM αβmethylene ATP. The augmented afferent discharge was presumably due to the 

activation of P2X (P2X1 and P2X3) receptors, which are present on bladder afferents. Similar to 

previously described preparation a period of 1hr washout was applied, resulting in reproducible 

responses to αβmethylene ATP (n=6) (Figure 4.10A). 

To investigate the interaction between P2X receptor signalling and the activation of TRPM8, both 

10µM WS12 and 10µM αβmethylene ATP were applied intraluminally for 3 min into the bladder. 

Figure 4.11 show representative traces of the response. Following application of both the 

compounds together a significant increase was seen in the sensory afferents response at baseline 

firing compared to the application of αβmethylene ATP on its own.  

The combined response of WS-12 and αβmethylene ATP was significantly inhibited by the 

application of 1µM H-89 and 1µM GÖ6983 (Figure 4.12).  
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Figure 4.10: Functional interaction between αβmethyleneATP and WS-12 on bladder 

afferent discharge.  A; Cummulative log concentration response curve of αβmethyATP on 

bladder sensory firing. In the presence of WS-12, both B; the frequency of afferent response 

and C; Time to peak response after administration of αβmethyleneATP. 
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Figure 4.11: examples of raw nerve trace to the application of αβmethylene ATP (10µM) 

and αβmethylene ATP (10µM) with WS-12. A; The intraluminal application of 

αβmethyleneATP induced excitation of bladder sensory firing, followed by rapid 

desensitisation. B; 10µM αβmethylene ATP with WS-12 significantly increased duration and 

frequency of spikes firing at baseline.  
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Figure 4.12: Intracellular signalling pathways involved in the interaction between purinergic 

signalling and TRPM8 activation. The augmentation observed with the combined application of 

αβmethylene ATP and WS-12 was significantly reduced in the presence of both H-89 and GÖ6983 

(***P=0.001, n=6 Student t test).  
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4.3.6 Effect of WS-12 and Capsaicin on bladder innervating DRGs. 

To investigate whether the responses observed in the in vitro bladder preparation are a 

direct effect on the nerve or an indirect effect through the urothelium or a combination of 

both, DRG’s innervating the bladder were cultured and calcium imaging experiments were 

performed with WS-12 and Capsaicin. Separately the urothelial cells obtained from mouse 

bladder tissue were cultured and the same experiments were performed to determine if 

there is any effect on the urothelial cells of these compounds. 100nM capsaicin and 1µM 

WS-12 induced a significant change in intracellular calcium concentration in DRGs (Figure 

4.13). To investigate the interaction between TRPM8 and TRPV1, 1µM WS-12 was 

administered with 100nM capsaicin. This combination induced no significant changes in 

the intracellular calcium concentration as expected from the afferent nerve recording data. 

We also looked at a lower concentration of 1nM capsaicin with WS-12, this combination 

induced a bigger change (p=0.001) in the intracellular calcium concentration (Figure 4.13). 

1µM Ws-12, 100nM capsaicin and 10µM AITC had no effect on isolated urothelial cells 

(Figure 4.14B), hence the combined administration of these drugs were not studied in these 

cells. 
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Figure 4.13 Calcium imaging on isolated DRG’s.  A; increased responses to 

combined application of WS-12 and low concentration of capsaicin (1nM). B; 

Increased mean response to combined application of WS-12 and 1nM capsaicin 

(***P<0.001, N=6). C, D; No change in intracellular calcium level with the 

combined application of 100nM capsaicin and WS-12 (N=6). Values are means ± 

SEM. All results are analysed with One-Way ANOVA followed by bonferroni test 

for comparison. 
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Figure 4.14.  A; Percentage of cells responding to the various pharmacological 

treatments. B; No significant changes in intracellular calcium were observed after 

application of ws-12, AITC and capsaicin on isolated urothelial cells, (N=6). Values 

are means ± SEM. All results are analysed with two-Way ANOVA followed by 

bonferroni test for comparison.   
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4.3.7 Summary  

 This chapter gives an initial insight into the interaction between different receptors, 

especially TRPM8 and TRPV1.  

 The intraluminal infusion of 1, 10 and 30µM capsaicin had no effect on baseline firing, 

whereas 100µM capsaicin significantly increased baseline afferent response. 

 The combined application of 10µM Ws-12 and 1µM capsaicin resulted in a significant 

increase in baseline firing, whereas the co-administration of 10µM WS-12 and 100µM 

capsaicin had no effect on baseline firing. 

 The afferent responses observed with the co-application of WS-12 and capsaicin were 

absent in TRPV1 KO mice and were also inhibited in the presence of 10µM PF-05105679 

(TRPM8 channel blocker). This suggests a TRPM8 and TRPV1 dependent pathway. 

 Similarly, the effect of AITC and α, β-methylene ATP were also significantly greater in 

the presence of WS-12. 

 The exaggerated afferent responses were inhibited in the presence of H-89 and G0-6983 

(PKA and PKC inhibitors). 

 Studying these questions could provide useful information for the mechanism underlying 

bladder hypersensitivity.  
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CHAPTER 5 

 
 

ROLE OF OESTROGEN RECEPTOR BETA 

ON BLADDER AFFERENT FIRING 
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5.2 Experimental protocol 

 

Voiding behaviour assessment 

Oestrogen receptor beta male and female knockout mice and their wild type littermates were 

provided by Pfizer. The mice were singly housed and maintained under standard laboratory 

conditions. This study was conducted with 34 mice housed under 12:12 hour reversed dark: light 

cycle with food and water offered ad libitum. A total of 8 wild type females and males and 10 KO 

females and 8 KO males were used in this study. There were no overt differences in feeding 

behaviour and body weight between WT and KO groups. In each experiment 2 animals were 

selected from each of these groups and randomised for testing. These mice were assessed for 

voiding behaviour as described in chapter 2. 

 

Afferent nerve recording were conducted on the mice as described in detail in chapter 2 

Effect of 17β estradiol was assessed by cumulative application of 300nM, 1µM, 3µM, 10µM, 

30µM, 100µM, 300µM, and 1mM. The parameter analysed were sensory responses during 

distension and at baseline as well as changes in bladder compliance. 
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5.3 Results 
 

5.3.1 Comparing of voiding behaviour between ERβ-/- and ERβ+/+ mice 

Male and female knockout and wildtype mice were assessed for the total volume voided, average 

volume per void and frequency of voiding. No significant difference was observed between in any 

of these parameters (P>0.05). No significant difference (P>0.05) was also observed after water 

loading (20ml/kg) the mice. The voiding parameters between the mice were obtained after the 

mice were acclimatized for 3 days (3hrs per day).  
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Figure 5.1 voiding behaviour of the ERβ-/- male and female mice and their wild 

type littermates. No changes were observed in the A + B; the number of voids C+D; 

average urinary output per void and E+F; the total volume voided over a 6 hour 

period. Data are expressed as means ± S.E.M. Statistical analysis was carried out 

using a either a one-way ANOVA followed by a Bonferroni post-test (Significance 

was set at P< 0.05). 
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5.3.2 Afferent nerve firing between ERβ-/- and ERβ+/+ mice 

After measuring the voiding behaviour of the mice, the mice were sacrificed to analyse the sensory 

function between the knockout mice and their wildtype littermates. There was no significant 

difference in the baseline firing and the sensory response to distension between ERβ wt and ERβ 

ko in both the males and female mice. There was a significant difference in the bladder compliance 

between the male ERβ wt (n=6) and ERβ ko (n=7) (P<0.05). There was no significant difference 

in compliance between the female ERβ wt (n=6) and ERβ ko (n=6) mice (P<0.05). 
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Figure 5.2 Comparison of afferent firing between ERβ-/- female mice and 

their wild type littermates. No changes were observed in the A; sensory firing 

in response to distension B; Bladder compliance and C; baseline firing. Data are 

expressed as means ± S.E.M. Statistical analysis was carried out using either 

two way ANOVA and one-way ANOVA followed by a Bonferroni post-test 

(Significance was set at P< 0.05). 
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Figure 5.3: Comparison of afferent firing between ERβ-/- male mice and 

their wild type littermates. No changes were observed in the A; sensory 

firing in response to distension and B; Baseline firing. The bladder 

compliance C: was significantly reduced in the KO mice (P<0.05 two way 

ANOVA followed by a Bonferroni post-test) Data are expressed as means ± 

S.E.M. was set at P< 0.05). 
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5.3.3 The effect of 17β estradiol on bladder sensory firing and compliance. 

To investigate the effect of oestrogen directly on bladder sensation and compliance, 17β estradiol 

was applied cumulatively at various concentrations (300nM, 1µM, 3µM, 10µM, 30µM, 100µM, 

300µM, and 1mM). 17β estradiol had no effect on the afferent firing to distension at any of the 

above-mentioned concentrations (Figure 5.5A and 5.5B). However, the baseline firing was 

significantly increased at a concentration of 300µM in all ERβ-/- mice and their wild type 

littermates (Figure 5.6). In the female mice estradiol had a significant effect even at lower 

concentrations (30µM and 100µM ERβ+/+ and 10µM and 100µM ERβ-/-) (Figure 5.6A +B).  

Significant increases were observed in the bladder compliance at a concentration of 300µM in all 

the mice (Figure 5.7). 
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Figure 5.4 effect of 17estradiol on afferent response to distension 

between ERβ-/- ERβ+/+ mice. No changes were observed in the afferent 

firing with 17estradiol in A; female ERβ+/+ B, female ERβ-/- C, male ERβ+/+ 

and D, male ERβ-/- . (P>0.05 one way ANOVA followed by a Bonferroni 

post-test) Data are expressed as means ± S.E.M.  
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Figure 5.5 effect of 17β estradiol on the baseline firing between ERβ-/- ERβ+/+ 

mice. 17β estradiol significantly increased baseline firing in A; female ERβ+/+ 

(**P<0.01) B, female ERβ-/- (*P<0.05, ***P<0.001) C, male ERβ+/+ (**P<0.01) 

and D, male ERβ-/- (*P0.05) one way ANOVA followed by a Bonferroni post-

test) Data are expressed as means ± S.E.M.  
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Figure 5.6 effect of 17β estradiol on bladder compliance between ERβ-/- ERβ+/+ mice. 

17β estradiol significantly increased compliance at a concentration of 300M in A; female 

ERβ+/+, B: female ERβ-/- , C: male ERβ+/+ and D: male ERβ-/- (****P<0.0001) one way 

ANOVA followed by a Bonferroni post-test) Data are expressed as means ± S.E.M.  
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Table 5.1 General information regarding the mice used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Animal 

identification 
Body 

weight (g) 
Strain sex Age Delivery date 

1 34.2 KO F N/A 28/04/2010 

2 42.5 KO F N/A 28/04/2010 

3 46 KO F N/A 28/04/2010 

4 39.9 KO F N/A 28/04/2010 

5 41.3 KO F N/A 28/04/2010 

6 40.8 KO F N/A 28/04/2010 

7 33.2 KO F N/A 28/04/2010 

8 49 KO F N/A 28/04/2010 

9 41.9 KO F N/A 28/04/2010 

10 38.3 KO F N/A 28/04/2010 

11 35.5 WT F N/A 28/04/2010 

12 44.4 WT F N/A 28/04/2010 

13 40.8 WT F N/A 28/04/2010 

14 43.1 WT F N/A 28/04/2010 

15 33.7 WT F N/A 28/04/2010 

16 45.7 WT F N/A 28/04/2010 

17 49.3 WT F N/A 28/04/2010 

18 53.3 WT F N/A 28/04/2010 

19 52.5 WT M N/A 28/04/2010 

20 39.4 WT M N/A 28/04/2010 

21 31.7 WT M N/A 28/04/2010 

22 40.1 WT M N/A 28/04/2010 
23 44.8 WT M N/A 28/04/2010 

24 42.9 WT M N/A 28/04/2010 

25 49.4 WT M N/A 28/04/2010 

26 51.6 WT M N/A 28/04/2010 

27 51.9 KO M N/A 28/04/2010 

28 51.6 KO M N/A 28/04/2010 

29 42.8 KO M N/A 28/04/2010 

30 48.2 KO M N/A 28/04/2010 

31 48.7 KO M N/A 28/04/2010 

32 41.1 KO M N/A 28/04/2010 

33 46.8 KO M N/A 28/04/2010 

34 43.6 KO M N/A 28/04/2010 
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5.4 Summary 

 This Study investigated the role of oestrogen receptor β in bladder afferent signalling. The 

study used in vivo metabolic cage experiments and in vitro afferent nerve recording to 

measure the voiding parameter between male and female ER-β ko and WT mice as well as 

look at the changes in afferent nerve activity between the different groups.  

 No significant difference were observed in the voiding parameters between the male erβ+/+ 

and erβ-/- mice and the female erβ+/+ and erβ-/- mice. 

 No changes were also observed in the afferent response between the male erβ+/+ and erβ-/- 

mice and the female erβ+/+ and erβ-/- mice. 

 However, the bladder compliance was significantly reduced in the male KO mice compared 

to the WT mice. 

 No changes were observed in the bladder compliance between the female WT and KO 

mice. 

 300µM estradiol significantly increased the bladder compliance and the baseline afferent 

response in the male and female WT and KO mice. 

 This study indicates a potential role of oestrogen in bladder sensation; in particular there 

are significant changes in bladder compliance. However, further studies are required to 

classify oestrogen receptor beta knockout mice as a model of interstitial cystitis. 
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CHAPTER 6 

DISCUSSION 
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Historically, the main focus in the field of bladder research was given to the mechanism underlying 

efferent function and detrusor contraction. In the last decade the importance of afferent signalling 

in bladder function has been realised. Mechanosensitivity is the ability of the nerve to detect 

mechanical changes. This is vital for the on-off circuit of micturition. The afferent nerve 

innervating the bladder send information to the CNS, which allows voiding reflexes to be 

generated via the efferent input to the bladder (Birder., 2013). Although the exact mechanisms 

involved in the control of micturition reflex are still unclear, a lot of focus has been given to the 

urothelium in relying information to the underlying afferent nerves. However, to regulate the 

mechanosensitivity there must be a system that coordinates the excitability of the bladder afferents.  

 

As previously discussed, TRP channels may govern the mechanosensitivity of these afferents.  

Over-expression of these channels has been observed in various pathological states in the bladder 

(Lashinger et al., 2008, Tsukimi et al., 2005 and Mukerji et al., 2006). Therefore, investigating the 

functional significance of TRP channels in normal bladder physiology may help to understand the 

molecular mechanism associated with bladder dysfunction. However, the study of TRP channels 

has proven to be challenging, because many compounds seem to interact with multiple TP channels 

(Zheng et al., 2013).  

 

This thesis focuses on investigating these channels in bladder mechano-sensitivity; In particular 

the role of TRPM8, TRPV1 and TRPA1 has been studies. A lot of importance has been given to 

the interaction between these receptors, since these channels may act in a cascade, and changes in 

one receptor may influence changes in another receptor, hence changing the excitability of afferent 

and then finally leading to increased/decreased sensation. 
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TRPM8 channel and bladder function 

Studies conducted by Stein et al and Mukerji et al, initiated an interest in the function of TRPM8 

in the bladder, especially in the pathophysiology of the bladder-cooling reflex and as potential 

target for future drug treatments for DO/OAB. Stein et al, reported the activation of TRPM8 by 

menthol and cool temperatures (8C to 28C) and proposed TRPM8 as a contributor to the diagnostic 

ice water test (Stein et al., 2004). Mukerji et al, reported a correlation between the expression of 

TRPM8 in nerve fibres and severity of OAB (i.e. there is an increase with increasing severity). 

Additionally, they suggested the involvement of TRPM8 in the symptomatology and 

pathophysiology of these disorders. The most interesting finding was provided in 2006, where 

exaggerated pain score were reported in PBS patients with the intravesical instillation of ice water 

but not by other patients (Mukerji et al., 2006a and Mukerji et al., 2006b).  Similarly, 

Lashinger et al (Lashinger et al., 2008) with the aid of AMTB (TRPM8 antagonist), has reported 

the contribution of TRPM8 in the micturition reflex and nociceptive signalling in rats, further 

suggesting a need for the investigation of TRPM8 in bladder sensory signalling.  

However, despite the large body of work, the functional significance of TRPM8 in normal bladder 

function remains unidentified. There is also no conclusive evidence to date for the receptor 

mechanism involved in the bladder-cooling reflex and hence, the ice water test. The main focus of 

this thesis was to investigate the role of TRPM8 in bladder afferent signalling.  

 

Comparison in bladder sensory firing between WT and TRPM8 KO mice 

This is the first study to compare bladder afferent response between TRPM8+/+ and TRPM8-/- mice. 

The current study compares the afferent response during bladder distension and at rest. By 
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monitoring effects on bladder compliance enables any effects secondary changes in muscle tone 

to be determined. However, no differences between TRPM8+/+ and TRPM8-/- mice were found in 

any of the above-mentioned parameter. This may not be too surprising since the thermo-sensitive 

properties of TRPM8 would be functionally silent in the bladder under normal physiological 

condition. They might only become recruited or sensitised under pathological conditions. This 

would be consistent with the negative cold saline test except in patients with painful bladder 

syndrome. Conversely, there could be compensatory mechanisms, such as the up-regulation of 

other TRP channels, which may account for the lack of differences observed between WT and KO 

mice. However, no molecular or protein analysis studies were conducted to confirm this.  

 

Effect of menthol on bladder afferent firing 

Studying the short-term effects of agonist/antagonist application provides a way of determining 

the functional role of TRPM8 in modulating bladder afferent sensitivity, avoiding long-term 

compensatory mechanism that may occur in knockout animals. In this respect menthol has been 

used extensively to gain understanding. In the present study, administration of menthol had both 

inhibitory and excitatory effects on bladder afferent sensitivity. The excitatory effects, observed at 

low concentrations, appear to be TRPM8 dependent since they are absent in the TRPM8 KO. 

However, the inhibitory effect would appear to be independent of TRPM8 since this persisted in 

the KO animals.  Thus, specificity of menthol to TRPM8 is concentration dependent; 150μM 

menthol results in an increase in afferent firing in the WT, but is absent in the KO mice, suggesting 

a TRPM8 dependent pathway. However, at higher concentrations (2mM) an inhibitory response is 

observed, that is TRPM8 independent. This study therefore provides insight into the direct effect 

of menthol on bladder afferents, as well as the non-specific nature of the compound. The effect of 
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menthol on sensory afferents has not been studied before; however, the effect of menthol on 

detrusor muscle contraction and micturition reflex has been studied in several studies. Nomoto et 

al used cystometry to study the effect of infusing 1-3mM menthol into the bladder of conscious 

female rat and observed an enhanced micturition reflex. In contrast, menthol was also shown to 

inhibit carbachol-induced contraction of detrusor smooth muscle (Nomoto et al., 2008). However, 

in the study conducted by Nomoto et al, they provided no evidence that inhibition was mediated 

via a TRPM8 dependent pathway.  In a separate study, 100µM menthol has been shown to reduce 

basal tone and amplitude of spontaneous bladder contractions.  In detrusor muscle carbachol 

induced contractions were inhibited by menthol. These studies show that menthol can influence 

detrusor muscle contraction. The influence on detrusor muscle may consequently affect nerve 

activity. However, this effect of menthol is possibly due to the blocking of calcium channels (as 

acknowledged by the authors), rather than through TRPM8 pathway (Paduraru et al., 2011). Since 

the responses to menthol have been investigated in the absence of a knockout or an antagonist, the 

evidence to conclude that the effect is TRPM8 dependent is lacking.  

According to our study, responses to menthol may be also due to pathways independent of TRPM8, 

as shown by the knockout studies in this thesis. Although, it needs to be acknowledged that there 

are species difference between the studies. Moreover we didn’t study detrusor muscle contraction 

directly. However, in our experimental setup no changes were observed on the bladder compliance 

in our current study. 

Effect of WS-12 on bladder afferent firing 

The lack of specificity of menthol necessitated use of more selective compounds. In this study the 

effect of WS-12 on bladder afferent firing was found to be TRPM8-specific over a range of 

concentrations since responses were absent in the TRPM8 KO. Low concentrations of WS-12 
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(10μM) had a profound effect on sensory firing in comparison to menthol. Both intra- and 

extraluminal infusion of 10μM WS-12 resulted in an increase in sensory firing to distension, which 

was TRPM8 dependent. We found Ws-12 to be acting through the activation of TRPM8. Similarly, 

Beck et al, investigated the effect of WS compounds on TRPM8 channels and WS-12 was found 

to have an EC50 of 30nM, which is 2000 times more potent than that of menthol and 20 than that 

of icilin. The authors concluded that WS-12 is probably the highest-affinity TRPM8 agonist 

available (Beck et al., 2007). Bodding et al, also concluded that WS-12 is most potent than menthol 

for TRPM8 activation. They also examined a range of other TRP channels which were not 

activated by WS-12 at μM concentrations. WS-12’s efficacy was also shown to be similar to icilin 

(Bodding et al., 2007 and Sherkheli et al., 2010). Other TRP receptors, including TRPV1, TRPV2, 

TRPV3, TRPV4 and TRPA1 have been shown not to be activated at concentration up to 1mM (Ma 

et al., 2008).  

The excitatory effect of WS-12 on bladder afferent signalling was observed only during distension 

and had no effect on baseline firing. In contrast, menthol had a dramatic effect on baseline firing 

that was absent in the TRPM8 KO. This suggests that the activation of TRPM8 through WS-12 

requires an additional mechanical force. 

 

 

 

Afferent response to the intraluminal infusion of cold saline into the bladder 

A role of TRPM8 in the bladder-cooling reflex has been postulated in various studies. Mukerji et 

al, observed exaggerated pain sensation in PBS patients to the infusion of ice water in comparison 

filling with saline at room temperature (Mukerji et al., 2006). Additionally, they showed an 
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increase in TRPM8 expression in the bladder of PBS patients, consistent with a role for TRPM8 

in its pathogenesis. However, the receptor mechanism underlying this exaggerated pain perception 

of cold in PBS patients is unclear.  Experiments to identify the effect of cold on bladder afferent 

signaling were therefore conducted to better understand the basis of symptom generation in the ice 

water test. 

Intraluminal infusion of cold saline into the bladder of TRPM8 +/+ results in an increase in the 

afferent response to distension. This augmentation of the distension response was absent in the 

KO. Interestingly, this increase in afferent response was only observed during bladder distension 

and absent at rest. Similar to WS-12, cold saline may not be sufficient to activate TRPM8 under 

baseline conditions, and requires the additional mechanical stress for activation. In this respect 

distension with ice cold water is necessary to evoke pain in PBS patients. However, unlike menthol 

and WS-12 the effect of cold saline was only observed during the first distension and was not 

reproducible in the consequent distensions. Only with alternating infusion of cold and warm saline 

could repeatable responses to cold be evoked while warm saline (38°C) alone had no effect on 

bladder afferent firing in either the WT or TRPM8 KO mice.  A possible reason for this observation 

could be that the duration between two distensions wasn’t sufficient to bring the local tissue 

temperature back to 36°C and so the TRPM8 receptor remained desensitized. 

 

Another reason could be, with the infusion of cold, TRPM8 under goes a significant 

conformational change, changing the opening probability of the channel. Upon opening, the influx 

of calcium consequently activates PLC, and results in PIP2 depletion, hence inactivating or 

desensitising the channel. The resensitisation of the channel requires PKC dependent pathway. 

The continued exposure of cold may cause the channel to desensitize, as well as slowing down the 
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activity of the PKC dependent restoration of channel activity. Hence infusion of warm (allows the 

stimulus to be removed) saline is required to restore this process, before the second application of 

cold saline.   

 Nevertheless, the current study suggests that TRPM8 is involved in cold perception within the 

bladder and may possibly account for the painful response observed during the ice water test.  

 

Effect of PF-05105679 on the bladder afferent firing 

Several TRPM8 antagonists have been developed (Table 3.2). However, the lack of specificity 

with activity at other TRP receptors has always presented difficulties when studying the functional 

role of TRPM8. PF-05105679 is a compound manufactured by Pfizer. The current study aimed to 

investigate the effect of this drug on bladder afferent signalling. Infusion of 10µM PF-05105679 

had no effect on sensory firing or bladder compliance. This observation supports the previous 

conclusion, that TRPM8 may not have a significant role in normal bladder filling, as seen by the 

TRPM8-/- study. However, pre-incubation of PF-05105679 reversed the potentiating induced by 

1µm WS-12, hence appears to be an antagonist for the TRPM8 receptor in the model studied. 

However, this observation doesn’t confirm that this antagonist wouldn’t be acting on other 

channels as well. 

 

Effect of WS-12, cold and menthol on DRGs 

To study whether WS-12 is acting directly on afferent nerves terminals on the urothelium or both 

we repeated the same experiments in cultured mouse DRG’s. The effect of WS-12 was also studied 

on isolated mouse DRGs. The DRGs were obtained from section T-13 to L-2 and L6-S2 since 

these regions have previously been shown by retrograde labelling to innervate the bladder 
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(Yoshimura et al., 1999). This increases the probability of bladder specific response being 

obtained. However, even so, only a small percentage of DRG neurons project to the bladder and 

the responses obtained from these experiments may be a general feature of sensory neurons rather 

than specific to the bladder innervation. Sensitivity to WS-12 was only reliably observed when the 

experiment was carried out at 35°C (close to body temperature). When experiments were 

conducted at room temperature, which is normal in cell culture studies, responses presented 

considerable variation in magnitude and time course of response. The variation might be due to 

the fact that TRPM8 might already be activated at the varying temperature of the room. The 

increase in calcium influx, due to the opening of the channel is already observed in the baseline 

response. Hence an additional activator (WS-12) will not have an additional effect. The percentage 

of cells responding to WS-12 were small, which is again consistent with previous studies (Peier et 

al.,2002 and Story et al., 2003). The low percentage of cells may not have a significant impact on 

nerve sensation, but as reported by mukerji et al., there is an increase in TRPM8 expression with 

increasing severity of disease in PBS. This change may have a significant input in sensation and 

contribute the pain felt during the ice water test in PBS patients (Mukerji et al., 2006). 

 

 

Interaction of TRPM8 and TRPV1 

This is the first study to show sensitization of TRPV1 to capasicin through TRPM8 in bladder 

afferents. The mechanism underlying sensitization of TRPV1 has gained a lot of interest in recent 

years, since this phenomenon has been shown to play an important role in the development of 

hyperalgesia. Reduced thermal hyperalgesia has been reported inTRPV1-/- mice during 

inflammation (Caterina et al., 2000 and Davis et al., 2000). Moreover, reduced mechanical 

http://onlinelibrary.wiley.com/doi/10.1002/cne.20794/full#bib38
http://onlinelibrary.wiley.com/doi/10.1002/cne.20794/full#bib49
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hyperalgesia has been observed in studies using TRPV1 antagonists (Lee et al., 2005, Pomonis et 

al., 2003 and Walker et al., 2003). Hence, the involvement of TRPM8 in sensitization of TRPV1 

makes it a potential target for novel analgesic. 

Daly et al, have also observed similar response to 100 µM capsaicin (Daly et al., 2007). 

Interestingly, within the jejunum 1μM capsaicin has been shown to induce a period of intense 

discharge (Rong et al., 2004). The difference in concentration might be attributed to the 

urothelium, presenting an impermeable barrier. Alternatively, there might be a different activation 

threshold of TRPV1 through capsaicin between the bladder and gut. The response to 100μM 

capsaicin was comparable to previous studies (Daly et al., 2007 and Rong et al., 2004). A transient 

response, brief excitation followed by desensitisation of the afferents. Desensitisation is 

characterised by a significant reduction in baseline firing and reduced afferent response to 

distension. Reproducible responses to capsaicin were also observed, but after 1 hour of washout. 

TRPV1-/- mice exhibited neither excitatory nor desensitisation effects to 100μM capsaicin, 

confirming specificity to TRPV1.  

Administration of WS-12 together with capsaicin resulted in a significantly augmented response 

to 1µM, 3µM, 10µM and 30µM capsaicin. The magnitude of response together with the duration 

of response was significantly increased. Hence the activation of TRPM8 resulted in sensitization 

of TRPV1 to capsaicin. Moreover, a loss of desensitization was also observed. Paradoxically, the 

response to 100µM capsaicin was completely inhibited in the presence of WS-12 (there was no 

alteration of baseline firing). Phosphorylation of TRPV1 might shift of the concentration response 

curve towards left, so an increased sensitisation is seen with 1µM.   

The increase with the co-application of WS12 and 1µM capsaicin and the decrease with WS-12 
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and 100µM capsaicin may be acting through two different mechanisms. As previously mentioned, 

the urothelium is a strong barrier, which is why we need 100µM capsaicin on its own to see an 

effect, as only a small amount of that  might reach the nerve terminal to initiate a response. If that 

is the case than the inhibitory effect with 100µM capsaicin and WS-12 is primarily occurring at 

the nerve terminal. Whereas, the increase seen with 1µM capsaicin and WS-12 might be primarily 

due to the urothelium instead, since this concentration is too low to cross the barrier and have an 

effect on nerve terminal (1µM capsaicin on its own did not change afferent nerve firing). Hence 

both of the opposing effects seen with the different concentration of capsaicin might be mediated 

through two different mechanisms. 

TRPV1-/- mice exhibited neither excitatory nor desensitisation effects to the infusion of 1μM 

capsaicin in the presence WS-12, confirming specificity to TRPV1. The augmented response was 

also reduced in the presence of PF-05105679, suggesting involvement of TRPM8; although its 

needs to be noted that the response was not completely inhibited.  

Various intracellular signalling pathways have been reported to regulate the sensitisation of 

TRPV1; hence these signalling pathways may also be involved in the interaction between TRPM8 

and TRPV1. In particular, the phosphorylation of TRPV1 by protein kinases has been reported to 

influence TRPV1 sensitisation. For example, PKC has been reported to phosphorylate various 

residues on rat TRPV1 (Bhave et al., 2003 and Numazaki et al., 2002). On the other hand, PKA 

has also been shown to phosphorylate TRPV1 (Bhave et al., 2002 and Mohapatra et al., 2003). 

These protein kinases may increase the opening probability of TRPV1, resulting in channel 

sensitization (Vellani et al., 2001). Moreover, endogenous also modulates activation of TRPV1 

(Chuang et al., 2001 and Prescott et al., 2003). Removal of PIP2 by PLC application increases the 

current initiated by capsaicin, heat and protons on membrane patches (Chuang et al., 2001).  
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Therefore, we examined whether, PLC, PKC and PKA are involved in the intracellular 

mechanisms involved in the interaction between TRPM8 and TRPV1. LPC (U-73122) inhibitor 

did not affect the interaction between WS-12 and Capsaicin. However, PKA (H-89, 1µM) and 

PKC (GÖ6983, 1µM) inhibitor both reduced the augmentation significant, especially when 

combined together. Suggesting that the augmentation observed involves both PKC and PKA. This 

observation, suggests that the sensitisation seen by TRPM8 and TRPV1 might be due to 

phosphorylation of these channels. The concentration of H-89 used is higher than its IC50 value 

(135nm). The reason to use this concentration was based on similar studies that have used 

concentrations ranging from1µM-10µM (Armstrong et al., 1995, Frazier et al., 2005 and Hristov 

et al., 2008). Nevertheless, it should be noted that H-89 can be non-specific and interact with other 

protein kinases at that concentration.  

 

The current study is restricted by the unavailability of specific phospho-antibodies for TRPM8 and 

TRPV1 that might be able to detect phosphorylation. One of the obstacles faced by researchers in 

the field of TRP channel is the non-specificity of TRP antibodies. Moreover, the majority of drugs 

seem to interact with more than one TRP channel. One of the options we considered to study this 

mechanism further was to use mass spectrometry. Mass spectrometry is based on 

measuring the mass-to-charge ratio of charged molecules. In the case of the current study, 

phosphorylation of TRPM8 and TRPV1 would be investigated by measuring the change in the 

mass of peptide sequences of the ion channels in isolated bladder DRGs. In this case alteration of 

the original mass by the addition of phosphate groups to the daughter ions of TRPM8 or TRPV1 

would be expected. Unfortunately, due to time constraints this part of the study was not completed, 

but would be an exciting area for further research.   

http://simple.wikipedia.org/w/index.php?title=Mass-to-charge_ratio&action=edit&redlink=1
http://simple.wikipedia.org/wiki/Ion
http://simple.wikipedia.org/wiki/Particle
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Throughout the study there is an assumption that the activation leads to the sensitisation of TRPV1. 

There is high probability that the augmentation observed is through the sensitisation of TRPM8 or 

both TRPM8 and TRPV1. Forskolin and PMA were used to see whether the same augmentation 

could be reproduced by intraluminally administering either WS-12 or capsaicin with these 

compounds. This might allow us to assess whether the augmentation observed is through he 

sensitisation of TRPM8 or TRPV1 or both.  

Foskolin is used to increase the levels of cyclic AMP, which activates cAMP dependent pathways, 

such as PKA. On the other hand PMA, which is structurally analogues to diacylglycerol, directly 

activated PKC (Hurley et al., 1997 and McEwan et al., 2007). Strangely, the application of these 

compounds with WS-12 or capsaicin did not result in any significant changes. The reason behind 

the lack of response seen with the combination of the drugs (forskolin and PMA) and WS-12 could 

be because PKA and PKC activation has been shown to inhibit TRPM8 (Premkumar et al., 2005 

and Abe et al., 2006). However, the reasoning behind the lack of response seen with TRPV1 is 

unclear, because the phosphorylation of TRPV1 through PKA and PKC is well recognized (Huang 

et al., 2006 and Palazzo et al., 2012). There is a possibility that the isoform of PKC involved in 

TRPV1 phosphorylation is different to the one that PMA is activating. However, studies have 

suggested that the isoform involved in TRPV1 phosphorylation are α and ε, and PMA seems to 

activate these isoforms. Alternatively, the EC-50 of PMA is in the range of 10-100ng/ml), however 

the concentration of PMA used in the nerve recording experiments is 10µM. this concentration 

might be too high and instead may result in the down-regulation of the PKC pathway, hence 

leading to the inhibition of TRPV1. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295897/#R56
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295897/#R2
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The idea that TPM8 can influence the gating of TRPV1, suggests a vital role of TRPM8 in bladder 

dysfunction. Previously, Harrington et al (2011), reported that a subpopulation of splanchnic 

afferents responding to icilin (TRPM8 agonist), also responded directly to capsaicin (3 μmol/L), 

and icilin reduced the direct chemosensory response to capsaicin. Within the gut, 3μM capsaicin 

is sufficient to significantly increase afferent firing (Rong et al., 2004). Similarly, our data shows 

that WS-12 can inhibit the afferent response to a 100μM capsaicin (significantly increases afferent 

firing in the bladder). Surprisingly, our study also reports the significant augmentation of afferent 

signalling with the administration of WS-12 with lower concentration of capsaicin. This dual effect 

on afferent signalling via the interaction of TRPM8 and TRPV1 is a novel finding, which requires 

further exploration in order to elucidate the exact mechanism underlying this interaction.  

If the interaction between TRPM8 and TRPV1 result in phosphorylation of the channel, 

what are the pathways that might be involved? 

There could be direct interaction between TRPM8 and TRPV1. Previously, mice studies have 

refuted the co-expression of TRPM8 and TRPV1 (Peier et al., 2002 and Story et al., 2003).  

Conversely, the upregulation of both the receptor have been reported in pathological states, this 

upregulation may increase/ induce the co-expression of TRPM8 and TRPV1, hence causing a 

direct interaction between the channels.  

On the other hand indirect interaction between TRPM8 and TRPV1 through, for example Gq-

coupled GPCR is also suggested (Figure 6.1) (Zhang et al., 2012). TRPM8 and TRPV1 have been 

suggested to modulate each other responses through the activation of Gq-coupled GPCR. The 

activation of GPCR might result in inhibition of TRPM8 through a protein complex formed by Gq 

and TRPM8 (Zhang et al., 2012). Activated Gq directly inhibits TRPM8 channel. However, 



   

165 

 

TRPV1 sensitization through Gq-coupled GPCR might involve phosphorylation-dependent 

mechanism through PKA and PKC. The activation of TRPV1 inturn inhibits TRPM8 as both of 

the channels seem to act in the opposite direction. Similarly inflammatory mediators such as 

bradykinin and histamine have been shown to inhibit TRPM8 in sensory nerves through G-protein 

subunit Gq. whereas; the same mediators have resulted in the sensitisation of TRPV1 through 

phosphorylation. Interestingly, a recent study has also reported an interaction between TRPM8 

and Gq (Klasen et al., 2012), however in this study the activation of TRPM8 leads to the 

downstream activation of the Gq pathway. These reports suggest that both Gq and the gating of 

TRPM8 can modulate each other activity. The second scenario may be involved in the current 

study, where the activation of TRPM8 could activate Gq, which would then inhibit TRPM8. 

Additionally, the activated Gq, could also lead to the sensitization of TRPV1.  

 

 

(Zhang et al., 2012) 

Figure 6.1: indirect interaction between TRPM8 and TRPV1 
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An important step in the study was to investigate whether there is interaction between  

Effect of capsaicin and WS-12 isolated mouse DRGs (T13-L2 and L6-S2)  

To investigate the interaction between WS-12 and capsaicin on DRG’s, we established 

reproducible responses to 1μM WS-12 and 100nM capsaicin. The individual application of these 

drugs significantly increased calcium influx into the cells. 1nM capsaicin was also administered, 

but didn’t have a significant effect on the calcium levels. The application of 1μM WS-12 with 1nM 

capsaicin significantly altered the calcium level when compared to individual application of these 

drugs. These results are comparable to the afferent nerve recording data observed in the in vitro 

preparation, suggesting a similar conclusion. However, because these cells didn’t show an 

inhibitory response to 100nM capsaicin and WS-12, the idea that the inhibitory effect seen in the 

nerve preparation is happening at the nerve terminals seems unlikely.  

Studying the interaction further in normal bladder function and also assessing the changes that 

occur in dysfunction may provide more information on the functional significance of these 

receptors in maintaining normal bladder sensation. It may also lead to the identification of new 

targets for therapy for patients with bladder hypersensitivity.  

 

Effect of AITC, CA and hydrogen sulphide on bladder afferent 

TRPA1 is a TRP channel activated by noxious cold. TRPA1 has been located in sensory nerves 

innervating the rodent bladder (Nagata et al., 2005 and Streng et al., 2008) and in the urothelium 

of both human and rat (Du et al., 2007 and Streng et al., 2008). Upregulation of this channel has 

been shown in the mucosa of patients with bladder outlet obstruction (Du et al., 2008). It has been 
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previously shown that the activation of TRPA1 trough AITC may result in contraction of the rat 

bladder (Andrade et al., 2006)  

 

Administration of AITC and CA did not alter afferent nerve firing or bladder compliance. This 

observation contradicts previous findings by Minagawa et al. they reported significant increases 

in bladder afferent firing and detrusor over-activity (Minagawa et al., 2013). Contrary to the above-

mentioned study, all the TRPA1 agonists in our study were applied in the absence of protamine 

sulphate. Minagawa et al., used protamine sulphate in their study to disrupt the urothelial barrier, 

however protamine sulphate may have other nonspecific effect that may contribute the results 

observed, any results obtained after the administration of this compound may be secondary to 

tissue injury observed with administration the of protamine sulphate and hence, difficult to 

interpret. The urothelium might present a strong barrier, or it could be that the activation of TRPA1 

requires tissue injury.  

It was also suggested that, TRPM8 might couple to TRPV1 and TRPA1 to inhibit their downstream 

chemosensory and mechanosensory responses (Harrington et al., 2011). In our study, we didn’t 

observe any excitatory response; instead we observed inhibition of baseline firing in response to 

the administration of AITC on its own. However, with the combined administration of AITC with 

WS-12, this inhibition was prevented and augmentation of sensory signalling was seen. Whether, 

this effect is direct on the signalling of TRPA1 or indirect remains to be identified. One possibility 

could be that the augmentation observed might act through or require the activation of TRPV1. 

Co-expression of both TRPV1 and TRPA1 (Story et al., 2003) has been reported in a subset of 

sensory neurons innervating the bladder, whereas the co-expression of TRPM8 and TRPA1 has 

not been shown within bladder afferents. Similar to the interaction between TRPM8 and TRPV1, 



   

168 

 

we found the involvement of protein kinases, however as previously mentioned further 

investigation needs to be carried out to confirm the molecular mechanism involved in the 

interaction.  

Conversely, hydrogen sulphide resulted in a significant increase in baseline firing; however, the 

specificity of hydrogen sulphide to TRPA1 needs to be confirmed. As previously observed with 

low concentration of capsaicin, the administration of WS-12 together with AITC resulted in a 

significant increase in baseline firing. Interestingly, the intraluminal application of WS-12 and 

AITC alone did not have an effect of baseline firing. As observed with capsaicin, both the 

magnitude of effect and duration of response were significantly increased, and this augmentation 

of response was inhibited by the administration of PKA and PKC inhibitors. 

 

 

The next step in this study was to investigate whether the interaction between TRPM8 is limited 

to TRP channel or extends to other ion channel as well. This would indicate whether the 

augmentation observed is specific or results from an overall increase in excitability, such that 

the response to all receptor stimulation is increased.  

 

TRPM8 and purinergic signaling (Effect of α, β methylene ATP on bladder afferent) 

The purinergic receptors expressed on sensory nerves are divided into the ionotropic P2X receptors 

and metabotropic P2Y receptors (Ralevic et al., 1998). α,β-Methylene ATP has been shown to act 

on P2X receptors. Alteration of purineric signaling has been shown in overactive and painful 

bladder diseases. Increase in the ATP released from the urothelium has also been reported in 

patients with interstitial cystitis as well as animal models of cystitis and neurogenic bladder (Smith 

http://www.sciencedirect.com/science/article/pii/S1566070209004056#bib69
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et al., 2008, Salas et al., 2007, Sun and Chai, 2006 and Birder et al., 2003). P2X antagonists 

inhibited mechanosensitive bladder afferent discharge in isolated bladders from 

cyclophosphamide-treated rats (Yu and de Groat, 2008). These and various other data, show the 

importance of purinergic signaling in bladder function. The influence of TRPM8 activation on this 

signaling pathway (direct or indirect) indicates the importance of this interaction as a potential 

target for therapy.  

The combined application of αβMethylene ATP and WS-12 also significantly increased the 

magnitude and duration of response. The protein kinase inhibitors (PKA and PKC) also inhibited 

this response. Similar to our current observation, the potentiating effects of extracellular ATP have 

been reported to be reduced by PKC inhibitors (Tominaga et al., 2001 and Tominaga et al., 2004). 

However, whether the same mechanism is involved in the interaction between TRPM8 and 

TRPV1/TRPA1/P2x receptors remains to be confirmed. There is lack of evidence for the 

phosphorylation of P2X receptors; however the activation of P2X could in turn phosphorylate 

TRPM8, through PKA and PKC dependent pathways.  

From the data it is clear that there is an interaction between TRPM8, TRPV1, TRPA1 and P2X 

signaling. However, whether the interaction between the studied channels involves the same 

mechanism is unclear. It could be that the activating of TRPM8 changes the overall gating of the 

cell membrane, hence affecting the gating properties of the channels expressed on the surface 

membrane. However, the exact mechanisms involved in this process are still unclear.  

 

 

 

http://www.sciencedirect.com/science/article/pii/S1566070209004056#bib69
http://www.sciencedirect.com/science/article/pii/S1566070209004056#bib64
http://www.sciencedirect.com/science/article/pii/S1566070209004056#bib73
http://www.sciencedirect.com/science/article/pii/S1566070209004056#bib10
http://www.sciencedirect.com/science/article/pii/S1566070209004056#bib86
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The role of oestrogen receptor-β in bladder afferent signaling 

One investigation that was briefly carried out in the course of this study was to assess whether 

oestrogen receptor beta deficient mice can be used as a model for interstitial cystitis. Interstitial 

cystitis (IC) also known as painful bladder syndrome is a chronic pelvic syndrome with no 

generally accepted treatment (Dell et al., 2009). This clinical condition is manifested by sensory 

hypersensitivity of the urinary bladder, leading to exaggerated pain sensation and/or pressure in 

response to small volume of urine. IC is characterized by the symptoms of pain, frequency, 

urgency, and nocturia in the absence of bacterial infection or any other identifiable pathology 

(Butrick, 2003) and diagnosed mainly in women. It has been reported that IC affects more than 

one million people in the US alone (Clemens et al., 2007). 

So far, more than 20 animal models of IC have been reported. Unlike the oestrogen receptor beta-

knockout mice, many models reported involve inducing bladder inflammation through chemical 

compounds. Some models have infiltration of immune cells in the bladder through the systemic 

instillation of self/foreign antigens, systemic viral infection has also been employed to induce 

bladder epithelial damage (Bon et al., 2003, Bjorling et al., 2007, Birder et al., 2005, Chen et al., 

2006, Fraser et al., 2001, Chuang et al., 2003, Guerios et al., 2006, Hauser et al., 2009, Kirimoto 

et al., 2007, Lavelle et al., 2002, Lin et al., 2008, Randich et al., 2009 and Soler et al., 2008) 

To date there has been no animal model described, with alteration of afferent signalling, that may 

contribute to pain perception observed in IC patients, and hence the research for drug targets is 

limited.  

 

Epidemiological studies have long linked oestrogen deficiency with the increased occurrence of 

lower urinary tract dysfunction, with age, especially in women (Losif and Batra., 1984). 
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Consequently, various experimental and clinical studies have focused on the role of oestrogen in 

bladder dysfunction. In the current study, we evaluated the voiding parameters between ERβ and 

their wild-type littermates in both males and females. The voiding parameters measured in this 

study were total voided volume, voiding frequency and average urinary output per void. No 

changes were observed in any of the parameters stated above. Similarly, Schroder et al performed 

control cystometry in conscious ERα-/- and ERβ-/- mice and mice that are lack both the receptor 

subtypes and also found no significant difference in the voiding pattern compared to their wild 

type litter mates, suggesting, that the knockout of the oestrogen does not affect normal voiding.  

This is the first study to compare the sensory responses between ERβ+/+ and ERβ-/- mice. However, 

similar to the voiding pattern, no changes were also observed in the afferent firing between the 

wild type and the KO mice (both male and female). The lack of differences observed in our study 

may be attributed to the age of the mice, since mice were above 8 month old, at which they reach 

reproductive insufficiency, which is equivalent to postmenopausal in women. However, there are 

various reports that indicate a role of oestrogen in regulation of nociception and pelvic pain 

(Vasudevan et al., 2008 and Lonze et al., 2002), for example the identification of oestrogen 

receptor in the primary afferent neurons in the bladder. Moreover, expression of oestrogen 

receptors has also been found in the majority of lumbro-sacral bladder sensory neurons. Hence, 

we investigated the direct application of 17estradiol on sensory nerves. A significant increase was 

observed in baseline firing, suggesting that ERs are functionally expressed in the terminals of 

bladder afferents and can influence sensation. Whether, this phenomenon is the case in ERβ 

knockout models remains unclear.  
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Conversely, there was a significant reduction of bladder compliance in the male KO mice 

compared to their wild type litter mates. Surprisingly, this finding was absent in the female mice. 

This result suggests that oestrogen can influence detrusor muscle.  

The concentration response relationship of 17β- estradiol was also investigated on bladder sensory 

function as well as bladder compliance in these mice. 17β- estradiol is the most potent oestrogen 

in the circulatory system that acts both on ERα and ERβ. The present results show that 17β- 

estradiol induced a concentration dependent increase in compliance and baseline firing. It is 

possible that the increase in sensory function observed may be secondary to the bladder 

compliance. In line with this finding, a reduction in bladder compliance in ovariectomised rats has 

also been reported (Aizawa et al., 2011). Oestrogen is produced by ovaries, hence removing 

ovaries have shown to reduce the level of oestrogen in the circulatory system, leading to a 

reduction in bladder compliance.  

The exact mechanism of how oestrogen effects bladder compliance is unknown. The expression 

of both ERs have been found on the detrusor muscle. It has been suggested that oestrogen can 

direct influence (non-genomic) the function of the detrusor muscle through the modulation of 

muscarinic receptors (Batra et al., 1989) and by inhibition intracellular calcium influx into muscle 

cells (Elliott et al., 1992). Similarly, it has been reported that estradiol attenuates both the 

amplitude frequency of spontaneous contractions of the detrusor muscle (Shenfield et al., 1998) 

One major aspect that might have limited the investigation is the age of mice studied. The mice 

used in these experiments were above 12 months old; Mice and rats are sexually mature by 3 to 6 

months of age and at 9 months of age they are equivalent of human perimenopause by 9 months 

of age (Flurkey et al., 2007 and Mobbs et al., 1984). Mice become reproductive senescence 

between 9-12 months (Mobbs et al., 1984). So the aged any changes that could have been present 
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between wild type adult (premenopausal) mice (when oestrogen plays a primary role) and ERβ 

KO mice were not investigated.  

Another factor that makes the study difficult to interpret is the concentration of estradiol used. It 

has been shown that the concentration of estradiol in female mouse serum is <4pg/ml (Daniel et 

al., 2011). This is far lower than the concentration used in the current experiment. The high 

concentration is probably having numerous non-specific effects.  

This study indicates a potential role of oestrogen in bladder sensation; in particular there are 

significant changes in bladder compliance. However, further studies are required to classify 

oestrogen receptor beta knockout mice as a model of interstitial cystitis. 

This study does point out the need for an appropriate model for IC, especially in term of changes 

in afferent signalling, that may account for the pain seen in IC. Such a model would then also be 

useful for the investigation of ion channel activation that leads to altered sensory signalling. This 

is an interesting idea, however, identifying and characterizing such a model has many challenges. 

 

This thesis has many interesting observations that look into the role of TRPM8 in bladder 

afferent signalling. This investigation further extends to the interaction of TRPM8 with 

TRPV1, TRPA1 and purinergic signalling.  However, the study needs to be taken further in 

order to understand the role of these interactions in the whole afferent limb of the micturition 

reflex pathway. 
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