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Abstract 

There are different studies on the impact of tribbles (TRIBs) on immunity, metabolic, and 

cardiovascular diseases. Interestingly, the current study identified TRIB3 as a gene that may be 

involved in the development of hyperlipidemia, inflammatory diseases and insulin sensitivity. 

Hence our interest in the mechanisms by which TRIB3 may regulate specific aspects of lipid 

homeostasis, blood glucose level and neutrophil function. It was found that neutrophil 

chemotaxis towards KC and fMLP, was dependent upon on p38 MAPK and PI3K, which could 

be controlled by TRIB3. TRIB3 regulates cytokine production, as absence of TRIB3 increased 

murine interleukin-13 (IL-13) level in thioglycollate-induced peritonitis significantly. Genetic 

deletion of TRIB3 prevented the increase in circulating leukocyte levels considerably, 

increased neutrophil migration towards the peritoneum; elevated neutrophil levels persisted in 

thioglycollate-induced peritonitis. These data supported the theory that TRIB3 deficiency and 

high fat diet (HFD) have an effect on leukocyte count in peritoneum and blood. However, their 

effect is varied and appeared to depend on a range of factors. Furthermore, in combination they 

increased murine weight gain. The project also proved that the effect of TRIB3 knockout on 

weight was gender specific, as TRIB3-/- males on chow, weighed significantly more than 

C57B6 mice but this effect was not observed in females. TRIB3 may also increase cell mitosis 

of murine adipose tissue on HFD. In addition to this, the results confirmed what has previously 

been published with regards to TRIB3 maintaining normal blood glucose level. TRIB3 was 

also able to control lipid homeostasis and this is a novel discovery, as knocking out TRIB3 

reduced cholesterol and HDL levels significantly in murine blood on HFD. A critical question 

raised by these results is whether TRIB3 can be used as a treatment for insulin resistance, 

inflammatory and metabolic diseases. Further studies on TRIB3 need to be conducted to 

evaluate its multiple-functions, for instance molecular mechanisms of its action on signaling 

pathways, leukocyte chemotaxis, lipid homeostasis and insulin sensitivity. 
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Chapter 1: Introduction 

 

1.1 Infection, inflammation and signal transduction 

Infectious disease is the pathological state resulting from the harmful colonisation of host cells 

by a pathogenic microorganism. Infection can lead to subsequent tissue injury, which at times 

may be fatal. Inflammation, however, is the response of the host to infection, injury or irritants, 

symptoms of which can be swelling, fever, and erythema. It is a protective attempt via a 

complex biological response of the organism and initiates tissue healing processes. 

Acute inflammation represents the initial response to detrimental stimuli by serving to deliver 

mediators of leukocytes and proteins to the injured site. The inflammatory response is 

propagated and matured by a cascade of biochemical events involving the local vascular and 

immune system, as well as different cells within the injured tissue. As the detrimental stimuli 

are removed, the host returns to a normal state. If the detrimental stimuli cannot be quickly 

removed, the consequence may be chronic inflammation. Chronic inflammation is recognised 

by prolonged low-grade damage to cells by the inflammatory process propagated through 

signal transduction. 

Signal transduction is a rapid process involving the binding of ligands and extracellular 

signalling molecules to plasma membrane receptors on the surface of the cell in order to 

stimulate intracellular processes. It requires multiple enzymes to carry out a sequential order of 

biochemical reactions inside the cell. The enzymes are activated by second messengers, which 

then activate a signalling system. Signal transduction leads to various effects including cellular 

proliferation and apoptosis [1], alterations in metabolic processes [2], the switching on and off 

of genes [3] and activation of transcription factors. Newly produced proteins or mRNAs will, 
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in turn, induce the expression of other genes, leading to a complex cellular response. Thus, a 

stimulus can lead to new groups of genes being expressed, promoting for example the 

recruitment of neutrophils, which will be discussed in depth further in the thesis, to sites of 

infection stimulated by the products of bacteria. A transcriptional program is often defined as 

the set and order of changes in gene expression that are stimulated in response to specific 

stimuli [4]. 

 

1.2 Development of atherosclerosis is driven by multiple factors, 
including inflammation, hyperlipidaemia and metabolic 
syndromes. 

Atherosclerosis is thickening of the arteries, which occurs when fatty substances such as 

cholesterol accumulate in the artery walls and build up plaques (hard structures). Later, plaques 

may obstruct the arteries and lead to further complications. Artery wall thickening frequently 

occurs with aging, as with age plaque increases, hence, narrowing arteries and causing further 

thickening.	
  Plaque formation requires smooth muscle cells, leukocytes, diverse inflammation 

and immunity response, for example cytokines [5]. Lesion starts as a fatty streak then may 

become a plaque, which have a lipid core and a fibrous cap. 

Study by Cook et al in 2006 found that nitric oxide (NO) may have an essential role in the 

atherosclerotic pathogenesis [6]. Acute coronary syndromes and ischaemic stroke 

atherosclerotic are a consequence of rupturing a plaque leading to thrombosis with arterial 

obstruction. 

These 'vulnerable plaques' may be widespread and yet may not produce stenosis or ischaemia, 

therefore are an underlying threat. This type of plaque causes acute clinical presentations such 
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as acute coronary syndrome and cerebrovascular events, whereas a more stable and stenotic 

plaque will produce a more chronic clinical picture such as stable angina. These concepts of 

widespread and vulnerable plaques have implications for management, reinforcing the 

importance to treat cardiovascular disease (CVD).  

 

1.2.1 Lipid metabolism, inflammation and atherogenesis 

Lipogenesis involves conversion of acetyl CoA to fat, which is then stored in the body. Fat is 

then broken down to produce energy either when the glycogen store is depleted or during 

starvation when there is no readily available glucose. Excess fat in the body leads to 

hyperlipidemia.  

Hyperlipidemia and inflammation are considered as risk factors for atherosclerosis 

development [7]. This section will show interactions between dyslipidemia and inflammatory 

processes leading to atherosclerosis development. Atherogenesis commences with 

inflammatory cell recruitment to the tunica intima [8]. Activation of endothelial cells leads to 

expression of leukocyte adhesion molecules, which cause monocytes to adhere to the intima. 

This results in the expression of scavenger receptors, allowing the uptake of modified low-

density lipoprotein (LDL). Cholesterol deposits result in collections of lipid-laden macrophages 

that form atheromatous plaques. These macrophages produce reactive oxygen species, pro-

inflammatory mediators, and tissue factor pro-coagulants that augment local inflammation and 

encourage thrombotic complications [9]. 

Various studies indicate that neutrophils (the first white blood cell (WBC) that migrates to the 

location of inflammation) may have an essential role in human atherosclerosis. Diverse lines of 

evidence have demonstrated a relationship between increased circulating leukocytes and high 



	
  
4	
  

cardiovascular risk [10], [11]. In this situation, neutrophils predominate [12]. Moreover, 

circulating neutrophils have been shown to be activated in a number of conditions associated 

with increased risk of atherosclerosis, for example type II diabetes [13], hyperlipidemia [14], 

obesity [15], HBP (high blood pressure) [16], smoking-dependent vascular inflammation [17]. 

Naruko et al reported that in acute coronary syndromes the predominance is for neutrophils in 

human lesions [18] and Zernecke et al in 2008 have published supporting evidence on the 

importance of neutrophils in developing atherosclerotic lesions in mice [19]. Baetta et al in 

2010 showed neutrophils could cause atherogenesis and atheroprogression [20]. Therefore, 

increased circulating neutrophils are a familiar marker for predicting cardiovascular events, 

regardless of disease status. 

  

1.2.2 Interactions between inflammation and lipid metabolism 

High circulating levels of modified lipoproteins (chylomicrons, very-low-density lipoprotein 

(VLDL) and LDL) trigger a hepatic inflammatory response through increased uptake by 

Kupffer cells [21], [22], promoting atherosclerosis. This is probably due to increased 

circulating proinflammatory mediators. Oxidized phospholipids promote endothelial cell 

dysfunction. Lysophosphatidylcholine (their derivative compound) may be involved in this step 

as they up-regulate metalloproteinase. Also oxidized phospholipids may be involved in 

atherosclerotic lesion progression, particularly those becoming vulnerable and unstable. 

Possibly, oxysterols and 4-hydroxy-2-nonenal have a main function in the inflammation-driven 

formation of atheroma. They are both critically implicated in foam cell formation via CD36 

scavenger receptor net overexpression and in up-regulating macrophage–smooth muscle cell 

cross talk, essentially via an overexpression of the transforming growth factor-β (TGF-β) 

profibrogenic cytokine. Interestingly, cholesteryl linoleate oxidation product 9-oxononanoyl 
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cholesterol seems able to increase TGF-β and TGF-β receptors steady-state levels in 

macrophage lineage cells. Oxysterols, and potentially other free aldehydic products for instance 

4-hydroxy-2-nonenal have a fundamental function in the process resulting in atherosclerotic 

plaque instability and rupture due to their ability to up-regulate macrophage metalloproteinase-

9 expression and activity, as well as their noticeable proapoptotic influence. In comparison, 

constitutive levels of tissue inhibitor of metalloproteinase 1 (TIMP-1) and TIMP-2 (its 

particular inhibitors) are not changed. Furthermore, arachidonic acid oxidation derivatives have 

major functions in vascular tone modulation and vascular remodeling, essentially by 

controlling cell proliferation, platelet function, and matrix deposition [22]. Activation of 

nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) in hepatocytes enhances 

atherosclerotic lesion development considerably [23]. Also increased levels of plasma serum 

amyloid A (SAA) post feeding of cholesterol is accompanied with atherosclerosis [24]. 

Vascular inflammation as mentioned in 1.2.1. can also be induced by these lipoproteins [25].  

In mice, hypercholesterolemia decreases binding and survival of regulatory T-cells in vessel 

wall, which disturbs the balance between T-cell subsets, resulting in a proinflammatory 

atmosphere locally [26]. A decrease in plasma cholesterol level restores the imbalance [26]. 

The content of macrophages found within plaque is also modified and the activity of hepatic 

and aortic NFκB and plasma SAA levels are reduced [27]. Furthermore, high-density 

lipoprotein (HDL) may be involved in decreasing vascular inflammation (as it has an anti-

inflammatory function) and decreases the expression of vascular cell adhesion molecule 1 

(VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) in aortic wall of rabbits [28].  
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1.3 Cellular and molecular aspects of vascular inflammation 

	
  

1.3.1 Neutrophils 

Neutrophil granulocytes are an essential part of the immune system [29]. Representing 40-75% 

of leukocytes, they are the most abundant circulating WBC in humans with a standard normal 

range of 2.5–7.5 x 109/l, around 1:1000 of the erythrocyte concentration. They are small cells, 

approximately 9-10 µm in diameter with a nucleus composed of 2-5 lobes. They contain lots of 

storage granules in the cytoplasm and very few mitochondria. They use glycogen from which 

they derive almost all of their energy. These types of cells are terminally differentiated with a 

lifetime of 5.4 and 0.75 days in human and mice circulation respectively [30]. Neutrophil 

derives its name from the ‘neutral’ pink stain obtained on H&E (hematoxylin and eosin) 

staining.  

 

1.3.2 Phagocytosis 

Neutrophils internalise foreign substances or microorganisms, as they are phagocytic, forming 

a phagosome into which hydrolytic enzymes and reactive oxygen species are released. 

“Respiratory burst” has been used as a term for the consumption of oxygen during the 

production of these reactive oxygen species, although this term is not directly related to energy 

production or respiration per se. However, whilst phagocytosis of pathogens by neutrophils is a 

fundamental step in host defence, it contributes to tissue damage when overwhelmed.  
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1.3.3 Leukocyte adhesion cascade 

Leukocyte margination (extravasation) from the blood vessels into inflamed tissue requires 

multi-adhesive stages. The process comprises: capture, rolling, slow rolling, firm adhesion and 

transmigration [31]. The principle mode of action of this cascade is displayed in figure 1.1.  

Capture or tethering and rolling are the initial contact between a leukocyte and the activated 

endothelial cells. It occurs after extravasation during the inflammatory response when the 

endothelium is activated [32].  Selectins and their ligands are largely mediating the capture step 

[32]. 

While E- and P-selectins are expressed by activated endothelium, the L-selectin is expressed on 

most leukocytes. Further to the interaction that occurs between L-selectin and endothelial 

selectins, the P-selectin glycoprotein ligand-1 (PSGL-1) expressed on leukocytes is an essential 

ligand of the 3 selectins. The binding of PSGL-1 with P- and E-selectins contributes to the 

leukocytes-endothelium interaction, whereas the binding of PSGL-1 with L-selectin assists in 

leukocyte-leukocyte interaction [33]. Furthermore, there are other glycoproteins for example 

CD44 or E-selectin-ligand-1 (ESL1) that can bind to selectins, in the case of E-selectin. For 

initial leukocyte capture PSGL-1 is required, while ESL1 is required for the conversion to 

slower and more stable rolling [34]. Eventually, CD44 regulates the rolling speed and 

intervenes in the PSGL-1 and L-selectin polarization [34]. 

Selectins stimulate different signalling cascades such as MAPK (Mitogen-activated protein 

kinase) or Ras pathway [35]. In addition, PSGL-1 stimulates various signalling cascades, 

leading to an increase in the expression of diverse molecules which may have a role in the next 

stage of the margination [36]. 
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Rolling slows down the flowing leukocytes [37]. Binding between the E-, P- or L-selectin and 

their ligands for instance PSGL-1 mediates the temporary rolling interactions between 

leukocytes and activated endothelium [37]. In addition to the capture and rolling, slow rolling 

requires P-selectin-PSGL-1 and E-selectin-PSGL-1 interactions [38], [39]. 

In slow rolling, integrins in particular β2-integrin lymphocyte function antigen-1 (LFA-1) 

promote firm adhesion from rolling [40], [41]. Signals from chemokines convert the low 

affinity selectin-dependent interaction to high affinity integrin-mediated firm arrest of 

leukocytes to the activated endothelium [42] for example cluster of differentiation molecule 

11B (CD11b) also known as macrophage-1 antigen (MAC-1), leukocyte integrin, interacts with 

the immunoglobulin superfamily ICAM-1, its corresponding endothelial receptor [43], [44]. 

Following firm arrest, leukocytes crawl on the endothelium utilising MAC-1 and LFA-1 

integrins [45] until they find a suitable place for transendothelial migration. This occurs either 

in a transcellular (via the endothelial cell body) or a paracellular (at the intercellular 

connections) fashion [46], [47]. The reason for the use of one pathway over the other remains 

unclear. The preference could be related to the level of the endothelium proinflammatory 

stimulation [48].  
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Figure 1. 1: Neutrophil adhesion cascade for chemotaxis 

Neutrophil response to chemoattractants released by microbes or other cells of the immune system are required to 

pass through the stages of the adhesion cascade (capturing from flowing blood, rolling, slow rolling and then 

adhere firmly to the endothelial cells before transmigrating through blood-vessel walls) to migrate to the site of 

infection or damaged tissues. These stages occur by expressing particular adhesion molecules on the surface of 

neutrophil and endothelial cells. 
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1.3.4 Chemotaxis 

Chemotaxis is a directional movement of inflammatory cells, such as neutrophils, in response 

to a chemical stimulation.  

Neutrophils, through their cell membrane receptors, are capable of recognizing chemical 

gradients of materials such as C5a and IL-8 (CXCL8), which act as attractants. These cells 

rapidly aggregate at infected and injured sites, due to being highly mobile, attracted by 

chemokines that are expressed by mast cells, macrophages, epithelium and endothelium when 

activated. It has been shown that neutrophils react during the first hour after damage to the 

body. These are the classic characteristics of acute inflammation. Neutrophil cells are attracted 

to bacterial and endogenous chemoattractant signals. First of all, upon cell damage and/or 

infection, neutrophils stick to endothelial cells in response to the presence of chemokines at the 

endothelial interface. Next, they move out of the vessels attracted by other chemokines, which 

are secreted by nearby macrophages and other serosal cells [49], [50]. Then neutrophils follow 

end target chemoattractants, complement molecules and bacterial fragments, once in the 

vicinity of the infectious place. It has been noted that neutrophils face lots of chemoattractants 

on the way and the existence of a hierarchy of chemokines seems logical. Certainly, it is true 

that in the presence of many different chemoattractants, these cells give priority to end target 

chemoattractants like N-formylmethionine leucyl-phenylalanine (fMLP) and C5a which 

emerge from infected sites, rather than to intermediary chemoattractants such as leukotriene B4 

(LTB4) and IL-8 which occur on the path to sites of infection even at high levels of 

intermediary chemoattractants [49], [51], [52], [53], [54].  

Under agarose assays have shown that end target chemoattractants work essentially by 

activating the p38 MAPK pathway. However, the PI3K (Phosphatidylinositide 3-kinase)/Akt 

(also known as Protein Kinase B, PKB) cascade works alongside intermediary 
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chemoattractants [49]. In the presence of competing end target and intermediary 

chemoattractants, neutrophils show considerable reduction of Akt activation. Since activation 

of the p38 MAPK cascade inhibits the PI3K/Akt cascade in neutrophils, these processes 

confirm the hierarchical dominance of end target chemoattractants over intermediary ones. The 

preferential trafficking of these cells towards end target chemoattractants occurs even at 

1/1000th of intermediary signals [49]. End target molecules do not need chemotactic 

characteristics, because LPS (lipopolysaccharide, p38 MAPK activator) inhibits Akt and 

consequently prevents movement to intermediary chemoattractants. On the other hand, p38 

MAPK inhibitors have been observed to make cells have a preference for migration towards 

intermediary chemoattractants rather than towards end target ones (because inhibition of p38 

MAPK leads to a notable increase in the activity of PI3K/Akt). Consequently, this leads to the 

drawing out of neutrophils from a location of end target chemoattractant surroundings to 

intermediary ones [49]. The receptors for chemoattractants are the seven-transmembrane helix 

receptor family [55], [56], although these chemoattractants have various structures. It has been 

shown that these receptors, once activated, broadcast signals to G proteins that lead to fast 

cytoskeletal rearrangements and chemotaxis via activation of downstream processes [57].  

Activation of the PI3K cascade is one of the most important processes of neutrophil 

chemotaxis [58]. Chemotactic receptors use the p110γ isoform (despite isoforms of PI3K being 

multiple) for downstream actions, which include formation of phosphatidylinositol 3,4,5-

triphosphate (PIP3) from membrane phospholipid phosphatidylinositol 4,5-biphosphate (PIP2). 

This leads to the activation of Akt, by phosphorylation. This is demonstrated by the defects in 

chemotaxis, which occur in p110γ deficient mice, induced by chemotactic receptor activation, 

showing neither phosphorylation nor activation of Akt [49]. Certainly, in humans and mice the 

p38 MAPK has a very necessary function in the chemotaxis of neutrophil cells [59], [60]. This 

process remains activated in p110 deficient mice, which may explain the accumulation of 
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neutrophil cells at the site of inflammation [61]. However, various aspects related to these 

pathways are still vague, such as if the p38 MAPK and PI3K/Akt cascades are overlapping, 

opposing or complementary to each other [49]. 

 

1.3.5 Neutrophil apoptosis 

A balance of intracellular death and survival cascades controls neutrophil apoptosis and 

determines neutrophil fate. Neutrophils undergo apoptosis even in the absence of extracellular 

stimuli. This is named spontaneous/constitutive programed cell death. Under most conditions, 

pro-survival and pro-apoptosis cues are received by neutrophils. The balance of these signals 

seems to detect the net influence [62]. 

Neutrophils are fast recruited to infectious/injured sites. They have a role in initiation and 

progression of the inflammatory response. In addition to their several defence mechanisms that 

destroy pathogens, they are also able to make damage to the surrounding tissue [29]. 

Neutrophils are supposed to go through constitutive apoptosis, once the pathogens are removed 

[63]. Apoptosis makes neutrophils not respond to extracellular stimuli, resulting in expression 

of “eat-me” signals. Therefore, they can be recognized and removed by macrophages in the 

spleen, bone marrow and Kupffer cells in the liver [64], [65], [63], [66], hence restricting their 

potentially detrimental effects. 

 

1.3.6 Neutrophils and vascular disease  

It has been observed that after ischemic injury, neutrophils play a role after myocardial 

infarction [67] and cerebral ischemia [68]. There is evidence of a pathogenic function for 
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neutrophils. Within a day of symptom onset, they accumulate at sites of ischemia in the brain 

[68]. However, in myocardial infarction they also promote healing and scar formation as they 

play an essential role in myocardial ischemia–reperfusion. Initiation of the inflammatory-like 

response occurs through interactions between adhesion molecules on neutrophils and coronary 

vascular endothelium. Organic NO-donor agents that interdict neutrophil responses may be 

cardioprotective [69]. It is also noted, that there is a strong correlation between the risk of acute 

myocardial infarction and peripheral-blood neutrophil count [70]. Sleep restriction predisposes 

to cardiovascular disease as it increases WBC counts, mainly neutrophils [71]. 

In the various intermediate and advanced stages of atherosclerosis, the existence of neutrophils 

has been noted. In atherosclerotic lesions, neutrophils adhere to the lesional cap and in the 

adventitial layer [72]. Activation of neutrophils might lead to platelet activation and 

subsequently cause thrombosis in coronary arteries with atherosclerosis [67]. In addition, a 

study published by Tuttle et al suggested that platelets and neutrophils have a greater chance of 

being activated in diabetic women than diabetic men. They may play a role in 

thrombosis/inflammation and the severity of coronary heart disease [73]. It has also been 

observed that platelets [74] and neutrophils [75] are activated during cardiopulmonary bypass 

(CPB). It has been proposed that hyperinsulinaemia might accelerate atherosclerosis by directly 

stimulating neutrophil migration through MAPK activation [76].  

The involvement of neutrophils in vascular diseases has been outlined above. Possible 

contribution of neutrophils in atherogenesis has been highlighted.  However, as neutrophils 

also promote healing in myocardial infarction, it may be possible to utilise this function for 

treatment purposes. 
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1.4 Signalling pathways 

	
  

1.4.1 Signal transduction mediated by mitogen-activated protein 
kinase (MAPK) cascade 

The MAPK cascade represents one of the major signal transduction pathways that respond to 

extracellular stimuli such as mitogens (chemical substances that trigger mitosis causing cell 

division), and then controls diverse activities of cells, for example cellular proliferation [77], 

gene expression, growth, mitosis, differentiation, inflammatory responses, chemical and 

physical stress and cell survival/apoptosis [78]. On the other hand, the MAPK cascade is dys-

regulated in various diseases, such as cancer, inflammatory, and immunological disorders. 

Therefore, it is an important target for therapy [77]. 

It has been recognized that mammalian cells have at least 14 genes encoding for mitogen-

activated protein kinase kinase kinases (MAPKKKs), seven mitogen-activated protein kinase 

kinases (MAPKKs), and 12 MAPKs [77]. ‘MAPK cascade’ refers to any three kinase cascades 

activated by sequentially phosphorylating each other in response to various stimuli. For 

example, stress on a cell, growth factors, adherence of a cell, neurotransmitters, and cytokines 

can all lead to a diverse range of physiological responses. 

Generally, the scheme of the MAPK cascade is composed of three kinase/phosphatase cycles, 

constructed into a three-tiered pathway. This pathway consists of a MAPK activated through 

phosphorylation by a MAPKK/MKK, which is phosphorylated by a MAPKKK/MKKK [79]. 

However, MAPKs are inactivated by a phosphatase family called MAPK phosphatases (MKPs) 

[80], [79], which plays an important role in regulation of MAPK through a phosphorylation 

cascade [81].  
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It has been documented that most MAPK cascade stimulators begin signalling by stimulating 

cell surface receptors that congregate into a receptor signalling complex. Then they activate a 

MAPKKK through a small GTPase [79]. The signalling process within the MAPK-cascade 

module seems to be fairly specific, which is common with a linear structure. However, there is 

a large body of literature demonstrating cross talk between the different MAPK pathways. For 

instance, it has been proposed that during apoptosis extracellular signal-regulated kinase (ERK) 

pathway activity is suppressed by c-Jun N-terminal kinase (JNK)/p38 kinases [82]. The number 

of MAPK effectors is vast and varied, including protein kinases, cytoskeletal proteins, and 

transcription factors. As a result of activation, MAPK can translocate into the nucleus and 

regulate gene transcription via its effect on the structure of chromatin and modifying of 

transcription factor activity [83], [79]. 

MAPKs have been uncovered as the essential regulators of pro-inflammatory cytokines, 

controlling, for example, the production of IL-1, IL-12, and tumor necrosis factor (TNF). In 

addition, MAPKs play very important roles in signal transduction pathways through the T-cell 

receptor/cluster of differentiation 28 (TCR/CD28) and toll-like receptor (TLR), B cell antigen 

receptor (BCR), and IL-1, IL-17, and TNF-α receptors [84], [85], [86] and chemoattractants 

(eg. fMLP) [49]. 

MAPK cascades have been studied widely, from yeast to humans. It has been discovered that 

there are three MAPK families in mammalian cells [77], [87]: 

• Classical MAPK, known as ERK.  

•  JNK/SAPK (stress-activated protein kinase). 

• P38 MAPK. 
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Cross talk between MAPK pathways are illustrated in the following figure, which demonstrates 

the essential components of these processes. 
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Figure 1. 2: Cross talk between different MAPK pathways 

Activation of MAPKKKs leads to the phosphorylation of MAPKKs and ultimately to the activation of three 

MAPK families; extracellular signal-regulated kinase (ERK), C-Jun N-terminal kinase/stress-activated protein 

kinase (JNK/SAPK), and P38 MAPK. The MAPK cascades regulate diverse cellular, physiological and 

developmental processes, including apoptosis and differentiation. Red arrows are to show the crosstalk. 
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1.4.1.1 ERK cascade 

The Raf-MEK-ERK cascade is one of the most well-documented MAPK signalling pathways. 

It has been reported that the activation of receptor tyrosine kinases (RTKs) and tyrosine kinase 

receptors enhances the stimulation of these MAPKs [77]. For instance, signalling proteins 

linking epidermal growth factor receptors to MAPK activation contain guanine nucleotide 

exchange protein (an adaptor protein Grb2), a small GTP binding protein, Sos, p21ras, a 

sequence of protein kinase cascades, involving MAPKKK, c-RAF-1, and MAPKK (for 

example MEK1 and MEK2). MEKs phosphorylate ERK1 and ERK2 (p44 MAPK and          

p42 MAPK, respectively), therefore increasing their activity [88], [77]. The activated ERKs 

enter the nucleus and fulfil various functions such as activation of transcription factors, altering 

gene expression to stimulate mitosis, differentiation or growth [77]. It has been observed that 

whilst the ERK pathway has a minor function in the microbicidal activity of neutrophils, it is 

essential in regulating the migration of neutrophils in response to fMLP [89]. A further study 

by Katsube et al in 2008 found that activation of the ERK cascade in human neutrophils upon 

exposure to calpain inhibitors is followed by active migration of neutrophils (chemotaxis) [90]. 

 

1.4.1.2 JNK cascade 

JNK α, β, and γ are encoded by three genes with 12 conceivable isoforms [91], [77]. Many 

MAPKKKs stimulate the JNK family, including the ASK group, MLKs, the MEKK group, 

TAKI, and Tpl2 [92], [77]. JNK can interact with c-Jun through its NH2-terminal activation 

domain and phosphorylate it on Ser-63 and Ser-73. c-Jun/c-fos combination forms activating 

protein-1 (AP-1) transcription factor [93], [94]. Therefore, it starts a positive feedback loop. 

There are different substrates for JNK, for instance NFAT4, DPC4, Elk-1, c-Jun, Sap-1a, p53, 

and activating transcription factor 2 (ATF-2) [95], [77]. As a result of activation of these 
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factors, there is an increased expression of c-Fos protein and a further increase in the level of 

AP-1. In addition, JNK phosphorylates JunB, JunD, and the Ets-related transcription factor 

PEA3 as well [96], [97], [77]. JNK stimulation is associated with proliferation, differentiation 

and apoptosis [77]. A study by Katsube et al reported that activation of the JNK cascade in 

human neutrophils upon exposure to calpain inhibitors is followed by active migration of 

neutrophils [90]. A further study by Kato suggested that JNK isoforms are involved in tumour 

necrosis factor α (TNFα)-induced neutrophil apoptosis and granulocyte-macrophage colony-

stimulating factor (GMCSF)-mediated anti-apoptotic effect on human neutrophils, as well as in 

TNFα-induced and GMCSF-induced superoxide release [98]. 

 

1.4.1.3 p38  

Stress on cells (including UV irradiation, high osmotic stress, heat shock, protein synthesis 

inhibitors), lipopolysaccharide, proinflammatory cytokines (for example TNF-α and IL-1) and 

specific mitogens activate the mammalian p38 MAPK families. At least four isoforms of p38 

have been discovered (p38α, β, γ, and δ). MAPKK SKK3 (MKK6) can phosphorylate all of 

these isoforms. However, some p38 isoforms can be phosphorylated by other MAPKKs. p38α, 

γ, and δ can be activated by MKK3, whereas only p38α can be activated by MKK4 [77]. p38δ 

is essential for Interferon (IFN) signalling, in which it directs both the phosphorylation and the 

activation of cytosolic phospholipase A2. It has been observed that IFNα or γ stimulation of 

p38 MAPK also leads to the phosphorylation of Ser 727 of the transcription factor Stat1 [99]. 

The transcription factors Growth Arrest and DNA Damage transcription factor 153 

(GADD153), Sap-1a, and ATF-2 can also be phosphorylated by p38 [100]. Moreover, NF-κB-

dependent transcription can be regulated by p38 after its entrance into the nucleus. 

Interestingly, specific p38 isoforms stimulate non-transcription factor targets like the 
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MAPKAPKs (mitogen-activated protein kinase-activated protein kinases), -2, -3 and -5 and 

MNK1 (MAPK-interacting kinase 1), a related protein. P38 MAPK has a number of roles in 

inflammation, proliferation, differentiation, development, survival, apoptosis, as well as stress 

responses [77]. Katsube et al reported that activation of the p38 cascade in human neutrophils 

upon exposure to calpain inhibitors is followed by active migration of neutrophils [90]. In 

addition, previous findings demonstrated that in human neutrophils Myeloid-Related Protein-

14 (MRP-14) is a potential mediator of p38-dependent functional responses [101]. 

Furthermore, a study by Browning et al examined the effects of NO on human neutrophils in 

the stimulation of p38 by LPS found that NO is sufficient to cause an increase in 

phosphorylation of p38 [102]. 

 

1.4.2 Signal transduction mediated by phosphoinositide 3-kinase 
(PI3K) cascade 

The lipid kinase, PI3K, is a family of enzymes organized into 3 classes [103]; class I (catalytic 

p110 subunits and p85 adaptors) [104], class II (>200 kDa, characterized by a C-terminal 

containing a C2 domain) [104] and class III (homologous to the archetypal Vps34p 

characterized in Saccharomyces cerevisiae [104]. 

PI3K is activated by: 

• Diverse forms of cellular stress, for example swelling of the cell or oxidative stress. 

• Diverse hormones like insulin, platelet-derived growth factor (PDGF), epidermal 

growth factor  (EGF), hepatocyte growth factor (HGF), insulin-like growth factor  

(IGF) and nerve growth factor (NGF). 

• Ras activation.  
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• Signals coming from binding of receptors with the extracellular matrix molecules. 

• Chemokines; neutrophils prefer to migrate towards the intermediary chemoattractants 

via PI3K/Akt (as discussed earlier). 

This lipid kinase phosphorylates plasma membrane phosphatidylinositols, the 3rd OH group of 

the inositol [105], for instance generating PIP3 from PIP2. This PIP3 recruits protein kinases at 

the plasma membrane. These kinases like phosphoinositide-dependent kinase 1 (PDK1) and 

Akt bind with their pleckstrin homology-(PH)-domain to PIP3. Akt needs full activation 

through its phosphorylation at Thr-308 by PDK1 and at Ser-473 by PDK2 [106]. PDK1 further 

activates atypical protein kinase C (aPKC) and Serine/threonine-protein kinase (SGK), which 

alongside with Akt, phosphorylates a broad range of cellular signalling molecules that have a 

function in:  

• Cell growth regulation [107], cellular proliferation [107], cell cycle, including 

serine/threonine kinase (p70S6K), forkhead box protein O1 (FKHR), mammalian target 

of rapamycin (mTOR) and glycogen synthase kinase 3 beta (GSK3β). 

• Apoptosis, including mouse double minute 2 homolog (Mdm2), IκB, caspase 9 and 

FKHR. 

• Transport, including diverse channels and transports. 

• Chemotaxis (as described above). 

In addition, Akt further activates mTOR [108] which stimulates the uptake of nutrients 

including iron, amino acids, glucose and cholesterol. Phosphorylation of p70S6K is regulated 

by mTOR. PDK1 may similarly stimulate p70S6K. mTOR, in turn, further activates eIF4E-

binding protein-1 and is therefore involved in protein translation. 
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mTOR, DNA-dependent protein kinase, integrin-linked kinase or Akt itself via 

autophosphorylation have been proposed to act as PDK2 [109], [110]. mTOR is part of two 

diverse complexes, mTOR complex 1 (mTORC1) and mTORC2, which controls different 

proteins [111]. mTORC2 works upstream and is proposed to phosphorylate Akt, while 

mTORC1 works downstream of Akt [111]. There are studies proposed that variety in Akt 

signalling may in part be due to different roles of the three Akt isoforms Akt1/PKBα, 

Akt2/PKBβ and Akt3/PKBγ [112]. It has been indicated that Akt1 has a critical function in cell 

survival [113], [114], whereas another studies proposed Akt2 has a central role in the 

maintenance of glucose homeostasis [114], [115] and Akt3 function has been suggested in 

brain development [116]. Liu et al demonstrated that Akt1 is the dominant isoform expressed 

in neutrophils. Additionally, bacterial infection and neutrophil activation lead to downregulate 

this isoform [117], whereas Chen et al found Akt2 has the predominant role in modulating 

neutrophil functions and showed for the first time that Akt1 and Akt2 act differently in 

controlling main neutrophil functions [118]. Fischer-Posovszky et al found proliferation and 

adipogenic differentiation of human adipocytes is Akt2-dependent in preadipocytes, while 

Akt1 and Akt2 are equally important for regulating insulin-stimulated metabolic cascades 

[119].  

It has been found that inhibition of PI3K (by Wortmannin and LY294002) stimulated 

lipopolysaccharide (LPS)-induced coagulation, as well as inflammation which causes 

decreased survival of endotoxemic mice. Therefore, in endotoxemic mice, the PI3K-Akt 

cascade may suppress inflammation and coagulation [120]. It is also known that PI3Ks control 

phagocytosis. PI3Ks class 1 and 3 work consecutively in the production and maturation of 

phagosomes. Their products, PIP3 and PIP (phosphatidylinositol 3-phosphate), are assembled 

temporarily at various stages [121]. 
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The activation of PI3K occurs in response to the dissociation of Gα subunit from Gβγ subunits 

upon the binding of chemoattractants with G protein-coupled receptor (GPCR). PI3K then 

converts PIP2 to PIP3. PDK1 and Akt by their PH domain are recruited to the plasma 

membrane through binding to PIP3. PDK1 activates Akt by phosphorylation resulting in the 

activation of several other proteins responsible for a range of cellular functions (Figure 1.3). 

Published data indicated that PI3Kγ controls T cell activation, neutrophil migration, thymocyte 

development and the oxidative burst [61]. In addition, preceding findings proposed that platelet 

activating factor (PAF) causes intracellular alkalinisation through PI3K-MAPK activation. This 

influence in bovine neutrophils is upstream controlled by PAF receptor, pertussis toxin (PTX)-

sensitive G protein, tyrosine kinase, PI3K and MEK1/2 [122]. Furthermore, it has been 

published that PI3Ks and mTOR in the innate immune system integral players in coordinating 

defence mechanisms. Accordingly, in neutrophils and mast cells PI3K and mTOR positively 

regulate immune cell activation [123], as already alluded to in 1. 3. 4. 
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Figure 1. 3: Neutrophil migration by the PI3K/Akt signalling cascade 

In response to binding of chemoattractants with G protein-coupled receptor (GPCR) the Gα subunit dissociates 

from Gβγ subunits causing activation of PI3K. This results in the plasma membrane phosphatidylinositol-3,4,5-

trisphosphate (PIP3) being converted from phosphatidylinositol-4,5-bisphosphate (PIP2). Phosphoinositide-

dependent kinase 1 (PDK1) and protein serine-threonine kinase (Akt) recruit to the plasma membrane as their 

plackstrin-homology (PH) domains bind PIP3. PDK1 activates Akt by phosphorylation. The Activated Akt then 

phosphorylates other proteins to promote neutrophil migration. 
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1.4.3 Other inflammatory signal transduction pathways 

In addition to the signaling pathways introduced above, further signalling systems also play an 

important role in regulating inflammatory activation of cells. These pathways transduce a large 

variety of external signals, resulting in a wide range of cellular responses such as 

differentiation, growth, inflammation and apoptosis. The following pathways are just examples 

of many other pathways involved, although are not central to the background of this project.  

NFκB is a transcription factor possessing essential functions in several signalling cascades 

[124]. This transcription factor exists in an inactive form in the cytoplasm of the cell [125]. 

However, in response to various stresses like heat shock, inflammation, and infection [124], 

NFκB can be activated. Upon activation, this transcription factor translocates to the nucleus 

and promotes the expression of a number of genes [125], including proinflammatory cytokines 

and chemokines. NFκB has been associated with tissue repair as well as apoptosis [126]. It has 

been suggested that modulation of signalling actions which mediate activation of this 

transcription factor, may have an enormous potential in treating many disorders and also 

repairing tissue [127]. Furthermore, in case of neutrophil-mediated inflammatory disorders, 

Miskolci et al in 2007 demonstrated that NFκB is continuously activated in stimulated human 

neutrophils [128]. 

IFNs are cytokines produced by cells in response to pathogens like viruses, bacteria, parasites 

and tumors. IFNs are responsible for activating signal transducer and activator of transcription 

(STAT) complexes, which are transcription factors that control particular immune system 

genes expression by binding to their receptors. Jones et al in 2006 found during E. coli 

pneumonia, IL-6 has key roles in activating STAT1 and STAT3, enhancing recruitment of 

neutrophils and reducing bacterial burden [129]. 
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1.5 Tribbles (TRIBs)  

Recently, a family of signalling regular proteins, known as TRIBs have been identified as 

regulators of intracellular signalling pathways and a number of physiological processes 

including development [130]. In addition, TRIBs are thought to be involved in cancer and 

diabetes mellitus [130]. Through their unique action, TRIBs can co-ordinate activation and 

suppression of different interacting intracellular signalling processes. Therefore, these proteins 

seem to be essential in determining cell fate while responding to the challenges of the 

environment [131]. Eder et al in 2008 detected TRIB2 as a novel controller of inflammatory 

activation of monocytes [132], while Wei et al in 2012 demonstrated TRIB2 as a novel 

controller of TLR5 signaling cascade. Changed expression TRIB2 may have a role in 

inflammatory bowel disease (IBD) [133]. 

It has been recorded that there are different mechanisms for regulation of cell function. These 

include enzymes and regulator proteins that may not have a catalytic role; rather they join other 

proteins and then alter their function. Kinases, lipases and phosphatases are examples of 

catalytic signal transducers. The TRIB protein family seems to have an undetermined location 

in this classification. It is still unclear whether a signal kinase-like domain, which TRIB 

proteins have, has catalytic activity or not. A review by Dobens and Bouyain 2012 discussed 

TRIBs and found that they may function in some situations as active kinases and in others as 

passive adaptor proteins [134]. Furthermore, this protein family does not have the protein-

protein interaction domains, such as PDZ, SH2, and SH3 which represent a typical 

characteristic of adaptor/scaffold proteins, as well as several other kinases. Technically, lack of 

interaction domains and enzyme activity is very unusual, and very interesting, because there 

are a considerable number of interactions, positive and negative, between TRIB proteins and 

various signalling cascades in diverse cellular systems [130]. 
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With regards to the role of TRIBs in adipose tissue, a study by Ostertag et al in 2012 showed 

adipose tissue inflammation was regulated via TRIB1 [135], whereas Sung et al in 2012 

observed enhanced expression of TRIB1 in macrophage of experimental atherosclerotic mice 

[136]. 

Takahashi et al (2008) showed TRIB3 down-regulates PPAR-γ (peroxisome proliferator-

activated receptor-γ), a master controller of adipocyte differentiation, and regulates 

adipogenesis [137].  

Literature relating to the heart includes that of Ti et al (2011) who showed in the diabetic rat 

model TRIB3 gene silencing alleviates diabetic cardiomyopathy [138]. In addition to this 

Prudente et al in 2012 detected that TRIB3 has a role in mechanisms of metabolic and 

cardiovascular abnormalities in humans [139]. 

A review in 2012 by Angyal and Kiss-Toth summarised evidence showing that allelic variants 

of TRIBs were found associated with the regulation of fatty acid synthesis, insulin resistance, 

plasma triglyceride (TG) level and HDL cholesterol level. In addition, they discussed the 

importance of TRIBs in human disease [140]. 

 

1.5.1 Identification of TRIBs   

TRIBs proteins have been identified by three different methods: 

• The first method depended on the genetic features. These genes in diverse physiological 

circumstances were differentially expressed. It has been shown that in mitogen 

stimulated thyroids, canine TRIB2 is a differentially expressed gene [141]. In granulosa 

cells of chorionic gonadotropin, downregulation of bovine TRIB2 stimulated dominant 
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follicles [142]. During the death of a neuronal cell, rat TRIB3 was induced [143]. In a 

fatty liver dystrophy mouse, there was an altered expression of mouse TRIB3 [144]. 

• The second approach necessitated functional screens. This strategy identified human 

TRIB1 as a modulator of MAPK signalling cascades [145], [146], and Drosophila 

TRIB as an essential regulator of morphogenesis [147], [148].  

• The last strategy depended on interaction screens. Interactions between TRIBs and a 

wide range of signalling protein molecules, including Akt have been demonstrated 

[130]. 

 

1.5.2 TRIBs function in vivo 

The interactions between TRIBs and other protein molecules have been focused on in several 

studies. However, there is also emphasis on the roles of TRIBs in vivo. During morphogenesis 

in Drosophila, TRIBs regulate string [147], [149]. During oogenesis, this regulatory function 

was recognized in a diverse developmental setting as well. A set of highly specialized cell 

divisions is involved in this process; a number of which are regulated by expression levels of 

TRIB proteins [149]. Naiki et al (2007) found TRIB2 inhibits differentiation of adipocyte by 

suppressing Akt and CCAAT/enhancer-binding protein β (C/EBPβ) in mice [150]. TRIBs 

interaction with other proteins has also been demonstrated by Saka et al in 2004. They found 

that mitotic progression and nervous system development required a TRIBs orthologue in 

Xenopus [151]. Obviously, there are diverse experiments demonstrating an essential regulatory 

function for TRIBs in cellular regulation and development, although TRIBs’ role and 

molecular mechanism of action in signalling pathways are unclear as of yet [130]. 
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1.5.3 TRIBs interacting proteins 

Overexpressed TRIBs activated slbo ubiquitination. It has been observed that, for proper 

cellular behavior during morphogenesis, accurate regulation of slbo levels is needed. There is a 

suggestion that a key regulator of this pathway may be TRIB [152]. The interaction between 

TRIB1 and MAPKKs [145] have been recognized in the literature. There is a molecular 

association between MAPKKs and TRIB3, when overexpression in Hela cells takes place 

[145], likewise to TRIB1. However, TRIB3 is linked to MEK1 and MKK7 instead of MKK4. 

Nevertheless there is a suggestion of some functional specificity for these two members of the 

TRIBs family. The biological relevance of these results is still poorly understood and requires 

further studies [145]. It has been identified that TRIB2 proteins interact with overexpressed 

Akt [153]. The PI3K cascade activates a serine/threonine kinase, Akt, which plays an essential 

function in the cell, such as in the activation of the cell, cell division and apoptosis. Proteins 

that interact with an Akt1 mutant (which lacks the N-terminal PH domain) demonstrated in 

yeast two-hybrid system (Y2H) that TRIB3 is a binding partner [153]. In 239T cells, in a 

mammalian 2-hybrid assay, the interaction was verified showing that in Akt1, 240-315 aa are 

necessary for this interaction. In addition, it has been shown that in vitro translated TRIB3 

interacts with baculovirus expressed Akt1. Co-precipitation assay confirms interaction between 

endogenous TRIB3 and Akt, using HepG2 cell extracts (Hepatocellular carcinoma, human) 

[153]. There may also be an interaction between TRIB2 and ras homolog gene family, member 

B (RhoB) [154]. Koo et al in 2004 found TRB3 is a target for PPAR-α in liver as the induction 

of TRB3 promotes insulin resistance via peroxisome proliferator-activated (PPAR)-γ 

coactivator-1 (PGC-1) [155]. 
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1.5.4 TRIBs cellular localization 

There are many investigations showing different TRIBs intracellular localizations [130]. 

Interpretation requires caution as these are based on overexpression. Whilst these 

overexpressed proteins often imitate the localisation of endogenous genes, sometimes 

overexpression leads to experimental artefacts. Whilst the majority of signalling proteins work 

as part of multiprotein compounds, exorbitant amounts of individual parts may lead to 

abnormal intracellular localization. 

 

1.6 TRIBs, MAPK, and PI3K pathways 

Control of MAPK pathways is essential for regulating various cellular responses. Human 

TRIBs homologues (HTRIBs) organize MAPK activity. MAPK binds with TRIBs and controls 

the levels of their steady state. Moreover, this protein family, TRIBs, coordinates p38 MAPK, 

JNKs, and ERKs activation with diverse relative activity levels for the three MAPK categories 

according to TRIB expression level [145].  

It has been shown that a canine TRIB-2-like protein was reported as a very labile cytoplasmic 

phosphoprotein, mitogen stimulated and transiently expressed. However, its biological role is 

not fully understood [156], [141]. During apoptosis of nerve cells, rat TRIB is rapidly 

upregulated [143]. In the liver, TRIB3 controls Akt activation by insulin [153], as well as 

regulating the activity of activating transcription factor 4 (ATF4) [157], [158]. TRIBs bind to 

MAPKK and control the activation of MAPK. It has been recorded that TRIBs seem to play an 

important role in the MAPK cascade, but at high concentrations they inhibit this cascade. To 

explain these results, many mechanisms are hypothesised; for example, TRIBs could act as 

scaffolds [145]. MAPKKs conjugate TRIBs and stabilize them. TRIBs and TRIB mRNA are 
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rapidly stimulated by mitogen and have short half-lives [156], [141]. Therefore, these findings 

suggest that TRIB/MAPK interactions are dynamic and are under the control of extracellular 

signals. Furthermore, MAPK pathways are proposed to have a nonlinear behaviour due to 

incorporation of a positive feedback loop [159]. TRIBs might behave either as activators of 

MAPK activity or as inhibitors, according to the TRIB to MAPKK ratio in the cell. Similarly, 

TRIB mediated regulation of NFκB [160], [161], and the control systems of the cell cycle have 

been found [162]. 

TRIB3 has been implicated in the regulation of metabolic processes, the stress response and 

cell viability. It also has a role in a number of medical conditions such as cardiovascular 

disease, diabetes and insulin resistance [163]. It has been identified that Akt activation is 

negatively regulated by TRIB3 and that insulin stimulates expression of TRIB3. Depending on 

cell type, TRIB3 expression is stimulated by insulin, for example in the liver and adipocytes, 

but not in muscle and beta cells. Expression of TRIB3 by the insulin hormone inhibits Akt in 

Fao hepatoma cells [164]. Furthermore, expression of this type of TRIBs by insulin needs PI3K 

[164]. On the other hand, inhibition of Akt induces expression of TRIB3, while inactivation of 

the expression of protein kinase C, zeta (PKCτ) restrains expression of TRIB3 enhanced by 

insulin. Therefore, as a result, PI3K stimulates signals both positively and negatively to 

regulate the expression of TRIB3. It has been proposed that TRIB3 expression enhanced by 

insulin acts as an indicator for how the many signalling processes stimulated by insulin are 

balanced [164]. In addition, a study by Takahashi demonstrated that TRIB3 containing a kinase 

domain without enzymatic activity negatively regulates PPARγ transcriptional activities by 

protein-protein interaction [137].  

Further recent studies looked at the role of TRIB3 in metabolism. A study by Avery et al in 

2010 found that TRIB3 induction is an essential part of the endoplasmic reticulum stress 
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response in cardiac myocytes, in addition to TRIB3 antagonizes cardiac myocyte survival and 

cardiac glucose metabolism [165]. Reinforcing importance of TRIB3, Liu et al in 2012 points 

the finger at TRIB3 as a potent physiological controller of insulin sensitivity and nutrient 

metabolism under conditions lack and excess nutrient [166]. 

 

1.7 The role of TRIB3 in vascular inflammation, insulin signalling 
and lipid homeostasis 

Du et al proposed in 2003 that TRIB3 regulates insulin signalling through Akt in liver [153]. 

Contradictory results in rat hepatocytes demonstrate that TRIB3 overexpression has no effect 

on insulin signaling [167]. Qi et al in 2006 proposed the function of TRIB3 in lipid metabolism 

in the adipocyte, which is the interaction of TRIB3 with acetyl coenzyme A carboxylase (ACC) 

and with caspase recruitment domain-containing protein 16 (COP1) which results in ACC 

degradation [168]. A publication in 2008 by Takahashi et al reported that TRIB3 inhibits 

differentiation of adipocyte and accumulation of intracellular TG through suppressing 

PPARγ transcriptional activity [137]. Okamoto et al in 2007 recorded no changes occurring in 

TRIB3-/- mice compared to wild type (WT) littermates in glucose and lipid homeostasis, and 

insulin dependent signalling responses [169]. However, Weismann et al (2011) observed 

knockdown rats gained considerable weight, improved insulin sensitivity and increased PPARγ 

expression. Unexpectedly, Akt activation was not altered remarkably, which suggests TRIB3 

may regulate lipid synthesis through PPARγ mediated mechanism [170]. It is possible that 

TRIB3 controls signalling mechanisms modulating lipid metabolism, and TRIB3 dysfunction 

can lead to developing disease such as type II diabetes and metabolic syndromes. 

Literature looking at vascular inflammation include that of Wang et al in 2012 whom recorded 

that TRIB3 silence in diabetic apolipoprotein E (ApoE)-/-/LDL receptor-/- mice suppresses 
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atherosclerosis and stabilises plaques [171]. Furthermore, Andreozzi et al in 2008 found 

TRIB3 R84 variant is a more effective Akt inhibitor, thus in vitro impairs insulin signaling of 

human endothelial cells. This finding proposing TRIB3 R84 variant may contribute to genetic 

susceptibility to endothelial dysfunction and coronary artery disease [172]. 

A study by Prudente (2005) showed Q84R a human TRIB3 polymorphism reduced insulin-

induced Ser473-Akt phosphorylation in human HepG2 hepatoma cell lines. Results suggest 

that the TRIB3 gene has a function in human insulin resistance and related cardiovascular risk 

[173]. This proposes a possible link between TRIB3 and a chronic inflammatory disease. 

Given the above, it seems plausible despite the discrepancies in the literature to suggest TRIB3 

as an essential regulator of signalling mechanisms, controlling leukocyte function, glucose 

metabolism and lipid hemostasis. Furthermore, it has grown gradually based on laboratory data 

the dysregulation of TRIB3 function could be involved in human disease such as 

hyperlipidemia, type 2 diabetes, inflammatory and cardiovascular diseases. However, the 

mechanism by which TRIB3 contributes to such syndromes remains elusive. 

 

1.8 Hypothesis 

I hypothesize that neutrophilic inflammation may play a role in metabolic regulation via 

TRIB3. TRIB3 plays a key role in signalling pathways such as p38 MAPK and PI3K, which in 

turn may control neutrophil chemotaxis towards keratinocyte-derived cytokine, the murine 

homolog of GRO-α (KC) and fMLP. It is also possible TRIB3 may regulate the level of 

circulating glucose and lipid. 
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1.9 Aims of the project 

I. Determine the role of TRIB3 in neutrophil signalling cascade regulation in response to 

chemoattractants.  

II. Determine the effect of absence of TRIB3 on neutrophil function and chemotaxis. 

III. Determine the role of TRIB3 on neutrophilic inflammation. 

IV. Determine the role of TRIB3 in development of metabolic disease.  
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Chapter 2: Materials and methods 

	
  

2.1 Materials  

The study involved the use of different materials including chemicals and other laboratory 

substances (appendix 1), equipment (appendix 2) and software (appendix 3). 

 

2.2 Methods 

	
  

2.2.1 Animals 

Mostly male C57B6 mice were used in wild-type animal experiments. Mouse supplier: Harlan 

UK (Bicester), work area: Biological Services Unit, University of Sheffield. TRIB+/- mice 

[B6;129S5-TRIB3Gt(OST324148)Lex/Ieg obtained from European Mouse Mutant Archive, 

EMMA; ID: EM-02346, LEXKO-1947] were back crossed with C57B6 for ten generations and 

were then inter-crossed to generate TRIB3 embryos. This line was developed using the 

OST324148 OmniBank® ES cell line from a sequence tagged gene trap library [174]. Briefly, 

the gene trap vector included a two expression cassettes. The first cassette encoded for a splice 

acceptor site, followed by a fusion protein of beta-galactosidase and neomycin, thereby 

disrupting transcription of the targeted mRNA. The second cassette encoded for a “diagnostic 

marker”, followed by a splice donor site and was used to determine the site of insertion for the 

targeting vector by 3’ RACE. Using this gene trap vector, the TRIB3 allele was targeted in the 

first intron. Exons 2-4 encode for the TRIB3 Open Reading Frame; insertion of the gene trap 

vector prevented the expression of the TRIB3 protein. TRIB3-/- mice were obtained from 

internal animal facilities. The TRIB3-/- mice are bred within the Barrier area at the Western 
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Bank site, all staff shower and change clothing to enter the Barrier area. All cages, bedding and 

diet is either autoclaved or irradiated into the unit and the mice are housed in M3 and RB3 

cages and bred in monogamous pairs. Both groups (C57B6 and TRIB3-/- mice) aged 6-18 

weeks but HFD experiment aged 18 week upon commencement. 

The University of Sheffield Ethics Committee and the Home Office Animals (Scientific 

Procedures) Act 1986 of the United Kingdom approved the experimental procedures listed 

below.  

 

2.2.2 Calculation of total leukocytes and neutrophils 

To calculate total number of blood leukocytes a 10 µl sample of blood was diluted (1:10) with 

3% acetic acid to lyse erythrocytes. In every four corner squares of a haemocytometer, cells 

were counted using x 10 objective (Labovert FS, Leitz). Therefore, the total numbers of cells 

was calculated as follows: 

Total cells = average cells in every quadrants x total volume x dilution factor x 104 

The total number of isolated neutrophils was calculated in the same way except that samples 

were not diluted in acetic acid. 

 

2.2.3 Isolation of murine neutrophils  

Mice were anaesthetized, with pentobarbital sodium 20% solution [JM Loveridge plc 

(Southampton)], 200 mg/ml, 100 µl/mouse, by an i.p. injection. The blood was collected by 
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cardiac puncture, using 1 ml insulin syringes (25 g x ½); syringes were heparinised before use 

to prevent clotting. 

Anti-coagulated blood was mixed with dextran solution (1.25 % dextran in saline solution) and 

erythrocytes were sedimented at room temperature for 30 minutes. The leukocyte-rich upper 

layer (composed of approximately 70% lymphocytes, 4% monocytes and 26% neutrophils) was 

retained and washed in cold washing buffer [phosphate buffer saline (PBS) mixed with 0.1% 

bovine serum albumin (BSA), pH 7.4] by centrifugation (300 x g, for 6 minutes) at 4 ˚C. Then 

the leukocytes were resuspended in 2 ml buffer, and a total number of leukocytes were counted 

as mentioned in 2.2.2.  

Leukocytes were then incubated for 30 minutes at 4 ˚C with a mixture of primary antibodies; 

anti-CD2 (1.5 µg/106 lymphocytes), anti-CD5 (2 µg/106 lymphocytes), anti-CD45R (10 µg/106 

lymphocytes), anti-F4/80 (2 µg/106 monocytes), and anti-CD115 (7.5 µg/106 monocytes), 

which bound surface markers of unwanted cells (lymphocytes, immature and mature 

monocytes). The concentrations of these antibodies were calculated according to the number of 

unwanted cells.  

Cold buffer was then added and excess antibodies washed out by spinning, 300 x g for             

6 minutes at 4 ˚C (this step happened twice). The different types of leukocytes were 

resuspended in 80 µl PBS and goat anti-rat IgG microbeads, 20 µl/107 cells, and then incubated 

for 15 minutes at 4 ˚C, mixing every 5 minutes. While leukocytes are incubated, the separation 

column was prepared by running cold buffer through column, as illustrated in figure 2.1. 

Unwanted cells were then eliminated by passing of the cell/bead suspension through a cold 

column exposed to a Midi MACS magnet (Miltenyi Biotec). Lymphocytes and monocytes 

marked with the magnetic microbeads were captured in the metallic matrix of the column and 

neutrophils were collected as eluate, spun (300 x g, for 6 minutes) at 4 ˚C and the supernatant 
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discarded. Residual erythrocytes were lysed by resuspension in 0.2% NaCl and inverted x 10 

(hypotonic lysis), then in 1.6% NaCl mixed with 0.1% glucose and inverted once (hypertonic 

rescue). Neutrophils were centrifuged (300 x g for 6 minutes) at 4 ˚C, washed and 

recentrifuged as before. Finally, neutrophils were resuspended in 1 ml buffer and counted.  
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Figure 2. 1: Magnetic separation of murine neutrophils 

Neutrophils and unwanted cells (lymphocytes and monocytes) were incubated for 30 minutes at 4˚C with primary 

antibodies, which bound the cell surface markers of unwanted cells. Secondary antibody coated magnetic 

microbeads attracted to the primary antibodies were added and the mixture incubated for 15 minutes at 4 ˚C. The 

unwanted cells were then dislodged by channeling of the cell suspension/bead mixture through a cold metallic 

matrix into a column attached to a MACS magnet. Lymphocytes and monocytes marked with primary and 

secondary antibodies coated magnetic microbeads were held in the matrix and neutrophils were collected in the 

eluate. 
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2.2.4 Activation of neutrophils by KC, fMLP and LPS  

Isolated murine neutrophils were stimulated by diverse stimuli. They were divided into four 

aliquots for stimulating at different times. Each aliquot was centrifuged and the pellet was 

resuspended in RPMI (medium). Neutrophils were incubated with a stimulus (10-6 M KC,     

10-6 M fMLP or 1ng/ml LPS) for 0, 15, 30 and 60 minutes at 37 ˚C. Following incubation, the 

samples were pelleted (300 x g) for 6 minutes and the supernatant discarded.  

 

2.2.5 Lysis of neutrophils  

Lysis buffer (1% Triton X-100, 50 Mm 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES), 100 mM sodium fluoride (NaF), 10mM ethylenediaminetetraacetic acid (EDTA),   

10 mM Napyrophosphate, 10% glycerol, 0.2 mM phenylmethylsulfonyl fluoride (PMSF),     

7% protease inhibitor and 2 mM sodium orthovanadate (Na3VO4)) was added to the pellets 

from the previous procedure. The cells were incubated with lysis buffer on ice for 20 minutes, 

mixing periodically. The samples were sonicated for 2 minutes then pelleted (at approximately 

20,000 x g, for 15 minutes) and the lysates (supernatants) saved for further analysis.  

 

2.2.6 Protein measurement 

The protein concentration of the lysates were measured using the Bio-Rad DC protein assay   

(a colorimetric assay), which is based on protein reaction with copper in an alkaline medium, 

followed by reduction of folin reagent by the copper-treated protein to produce blue-colored 

compound with absorbance 405-750 nm2. 
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Serial dilutions (2.0 mg/ml, 1.5 mg/ml, 1.0 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, 

0.0625 mg/ml, 0.0315 mg/ml) were prepared from a BSA stock (2.0 mg/ml) using the lysis 

buffer. Standards (5 µl) were pipetted in triplicate into microwells, while samples only once. 

Then a cocktail of reagents [reagent A (an alkaline copper tartrate solution), reagent B (a dilute 

folin reagent), reagent C] was added. The microplate was incubated for 5-10 minutes at room 

temperature to develop the blue color. The mean values of the triplicate protein standards were 

calculated and a standard curve was drawn by Revelation Quickline software version 4.25 

(Chantilly, VA, USA). 

 

2.2.7 Western blot analysis of p38 MAPK & Akt isolated from 
murine neutrophils 

Active (phosphorylated) forms of p38 MAPK and Akt were evaluated by western blotting. 

Both protein samples (lysates) and a rainbow molecular weight (MW) marker were prepared by 

boiling for 5 minutes after adding 5x reducing agent. After preparation they were run in 30% 

SDS polyacrylamide gel electrophoresis (approximately 1 hour at 170 V), followed by 

transferring to a nitrocellulose membrane using Towbin transfer buffer (composed of 39 mM 

glycine, 48 mM Tris, 0.037% SDS and 20% methanol) by semi-dry electro blotting at 5 V for 

90 minutes. Subsequently, non-specific binding sites of the membrane were blocked with 

blocking buffer containing 5% milk/Tris-buffered saline (TBS) 0.1% Tween buffer (washing 

buffer) by incubating either for 1 hour at room temperature or overnight at 4 ˚C, and washed in 

the washing buffer several times. The protein was incubated for 2 hours at room temperature or 

overnight at 4 ˚C with primary antibodies, phospho p38 MAPK antibody and phospho Akt 

antibody, diluted 1:1000 or 3:1000 with washing buffer. Excess antibody was eliminated by 

washing the membrane 3 times for 15 minutes by washing buffer on a rotating platform for      
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5 minutes each. Then the membrane was incubated with a horseradish peroxidase (HRP) bound 

goat anti-rabbit secondary antibody for 1 hour at room temperature (diluted 1:2000 in blocking 

buffer). Again excess antibody was removed with washing buffer and the plate was placed on a 

rotating platform for 5 minutes. This was repeated five to six times to ensure all excess 

antibody was removed. Conjugated protein was then developed by chemiluminescent detection 

methods based on substrate luminesce when exposed to the enzyme on the secondary antibody. 

The light was detected by Amersham HyperfilmTM ECL (Fisher, Loughborough, UK) or 

alternatively by CCD cameras (GeneSnap from SynGene software, version 7.04) that take a 

digital image. Densitometry was performed using GeneTools software (SynGene, version 3.02) 

that quantifies the relative amount of protein and expresses it as absorbance. Antibodies were 

stripped for reusing the membrane to detect total p38 MAPK and total Akt, following the same 

steps except primary antibodies (p38 MAPK antibody and Akt antibody) were diluted 1:1000 

in BSA/washing buffer instead of the washing buffer alone. 

 

2.2.8 Neutrophil chemotaxis 

Upon completion of isolation, neutrophil chemotaxis was performed (within the least time 

possible) in a 96-well chemotaxis plate (Neuroprobe ChemoTx system). The plate is composed 

of small-sized wells, polycarbonate filter membrane with 3 µm pores and lid. These pores are 

enclosed by hydrophobic rings to hold the cell suspension on the filter (Figure 2.2). Relevant 

wells were filled with a total volume of 30 µl of buffer (RPMI supplemented with BSA) or 

chemoattractant at different concentrations (diluted to the required concentration in the buffer), 

being careful not to let air bubbles form. The membrane was placed over the bottom wells and 

secured in position with the corner pins. 30 µl of neutrophils at a concentration of 2 x 106/ml 

suspended in buffer were located onto the filters. Chemokinesis controls, to correct for random 
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movement of neutrophils, were performed by placing 30 µl of neutrophils resuspended in one 

of chemoattractant concentrations on the filters corresponding to wells containing the same 

chemoattractant concentration. Therefore, no concentration gradient could occur. The lid was 

replaced and the chemotaxis plate was incubated at 37 ˚C, 5% CO2 for 1 or 3 hours. After 

incubation the lid was removed and the remaining non-migrated neutrophils and buffer on the 

filter was carefully absorbed using cotton buds and the top surface of the filter was washed 

several times by 30 µl of buffer each time. The chemotaxis chamber was centrifuged for        

10 minutes at 300 x g to remove any adherent neutrophils on the underside of the filter 

membrane into the wells. The membrane was removed and cells were resuspended in the buffer 

or chemoattractant already present in the well. The number of migrated neutrophils was 

counted using a haemocytometer and the percentage of neutrophil migration was calculated. 

Chemokinesis controls were subtracted from each value. 
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Figure 2. 2: Chemotaxis plate (modified boyden chamber) to investigate neutrophil migration 

96 small-sized wells filled with buffer or stimuli with different concentrations. Polycarbonate filter membrane 

with 3 µm pores is needed for neutrophils. This membrane is positioned over the bottom wells and secured in 

place with pins in each corner. Neutrophils were placed onto the filter and a lid was covered. The incubation 

period was at 37 ˚C, 5% CO2 for 1 or 3 hours (human or murine, respectively). The chemotaxis chamber was then 

centrifuged for 10 minutes at 300 x g to spin any adherent neutrophils to the underside of the membrane into the 

wells. Finally, the number of neutrophils migrated towards different stimuli concentrations was counted. 
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2.2.9 The effect of inhibitors on murine neutrophil migration 

The effect of inhibitors on murine neutrophil migration was investigated using the procedure of 

neutrophil chemotaxis. In addition to this, murine neutrophils were incubated with 10 µM of 

each of p38 and PI3K inhibitors for 30 minutes at 37 ˚C in 5% CO2 before being loaded on the 

filter. The above inhibitors were prepared in dimethyl sulfoxide (DMSO), therefore, DMSO 

was added to both the control and to the neutrophils (final concentration 0.5%) which were 

prepared to check chemokinesis. 

 

2.2.10 FACSCalibur flow cytometry procedure 

One half of C57B6 and TRIB3-/- murine whole blood were pre-incubated with 10-7 M phorbol 

12-myristate 13-acetate (PMA) and the other half from each group were left unstimulated (PBS 

was added instead) for 15 minutes at 37 °C before adding the antibodies. Samples were 

aliquoted into 100 µl each, keeping a sample of unlabelled cells for reference on ice. Other 

samples were incubated with either fluorescently conjugated antibodies or their fluorescently 

conjugated isotypes, non-specific fluorescently conjugated antibodies, in order to check the 

specificity of each individual antibody. The following antibodies and their isotypes were used: 

PE anti-mouse PSGL-1 and PE rat IgG1, κ isotype control, PE anti-mouse L-selectin and PE 

rat IgG2a, κ isotype control and PE anti-mouse CD11b and PE rat IgG2b, κ isotype control. 

FITC anti-mouse Ly-6G for labelling neutrophils was added to all samples except the sample 

of unlabelled cells (where neither FITC anti-mouse Ly-6G nor antibodies were used). After 

mixing well, the samples were incubated for 30 minutes on ice. 2 ml of PGB (PBS containing 

20 mM glucose plus 1% BSA) washing buffer was added to the samples and centrifuged at  

300 x g for 5 minutes to wash off excess antibodies. Supernatants were discarded and samples, 

including unlabelled cell samples, were incubated with 2 ml of 1x Erythrolyse for 10 minutes 
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at room temperature then centrifuged at 300 x g for 5 minutes. Supernatants were discarded 

and the pellets were washed with a further 2 ml of washing buffer by centrifuging at 300 x g 

for 5 minutes. Again supernatants were discarded and then the cells resuspended in 200 µl of 

buffer. The samples were put on ice in the dark to reduce the loss of fluorescent signal, until 

they were analyzed by flow cytometry. 

Results were acquired using a FACSCalibur flow cytometer (BD Bioscience) equipped with 

CellQuest Pro software BD version 3.01 (Erembodegem, Belgium, Europe). 488 nm argon blue 

Laser excited the fluorochromes PE (phycoerythrin; emission FL2 BP 575/26 nm) and FITC 

(fluorescein isothiocyanate; emission FL1 BP 530/30 nm). The variety in granularity, size and 

fluorescence intensity led to various parameters being applied with murine neutrophils. Size 

was shown by forward scatter (FSC) and granularity shown by side scatter (SSC). In addition, a 

gate enclosing the population of study was used to eliminate other cells and any debris. Events 

captured were 5,000-10,000. Histograms were drawn to illustrate the fluorescence profile 

depending on the number of cells that displayed particular fluorescence intensity at a specific 

wavelength. The geometric mean of the cells of interest was measured.  

 

2.2.11 Procedure for the detection of p38 MAPK in RAW 264.7 
mouse macrophage cells 

The RAW 264.7 cultured cells were provided and plated at a density of 2.0 x 105 cells/well by 

a colleague. The medium, Dulbecco’s Modified Eagle Medium 1x (4.5 g/L Glucose and         

L-glutamine), was removed from each well. Cells were stimulated with either 10-6 M of fMLP 

or 50 ng/ml of LPS, diluted in fresh media, at specific timepoints: 0, 10, 20 and 30 minutes at 

37 ˚C in 5% CO2. Following stimulation the plate was put on ice, medium removed and cells 

washed using ice cold PBS before adding 150 µl ice-cold 1x lysis buffer plus 3mM PMSF. 
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Then the cells were scraped off the well and transferred to an eppendorf tube, incubated for    

20 minutes on ice before sonicating in an ice-cold water bath one time for 2 minutes. The 

samples were centrifuged (at approximately 20,000 x g, for 10 minutes at 4 ˚C) and the 

supernatants (cell lysates) collected for western blotting, which can also be stored at -80 ˚C. 

 

2.2.12  p38 kinase assay 

	
  

2.2.12.1 Preparing cell lysates 

Cell lysates (RAW 264.7 cell and murine neutrophil lysates) were prepared as detailed in 

section 2.2.5 and 2.2.11. 

Selective immunoprecipitation (IP) using immobilized phospho p38 MAPK (Thr180/Tyr182) 

monoclonal antibody (mAb) 

20 µl immobilized mAb bead slurry was added to each 200 µl cell lysates and incubated 

overnight at 4 ˚C with gentle rocking. 

 

2.2.12.2 Kinase assay 

Cell lysates-immobilized Ab were centrifuged at 4 °C (for 30 seconds at 14,000 x g). Then 

pellets were washed twice with 500 µL 1X cell lysis buffer then twice more with kinase buffer 

while on ice before suspending in 50 µl 1X kinase buffer, 1 µl 10 mM ATP and 1µl ATF-2 

fusion protein (kinase substrate). 10µM p38 inhibitor or vehicle control (DMSO) was added to 

the samples which will be incubated for different periods of times (0, 30 and 60 minutes) at   

30 °C. Reaction was terminated by 25 µl 3x SDS sample buffer, vortexed and then centrifuged. 



	
  
48	
  

2.2.12.3 Western immunoblotting 

Active (phosphorylated) forms of p38 MAPK were evaluated via detecting phospho ATF-2 

with western blotting. Protein samples (lysates) and a rainbow MW marker to verify 

electrotransfer were prepared by boiling for 5 minutes after adding 5x reducing agent to the 

marker. After preparation they were run with biotinylated protein marker to detect MWs in 

30% SDS polyacrylamide gel electrophoresis (approximately 1 hour at 170 V), followed by 

transferring to a nitrocellulose membrane using Towbin transfer buffer by semi-dry electro 

blotting at 5 V for 90 minutes. Subsequently, non-specific binding sites of the membrane were 

blocked with blocking buffer containing 5% milk/TBS 0.1% Tween buffer (washing buffer) by 

incubating for 1 hour at room temperature, and washed in the washing buffer three times for    

5 minutes each. The protein was incubated with gentle agitation overnight at 4 ˚C with primary 

antibody, phospho ATF-2 (Thr76) antibody, diluted 1:1000 with washing buffer. Excess 

antibody was eliminated by washing the membrane 3 times with washing buffer on a rotating 

platform for 5 minutes each. Then the membrane was incubated with a secondary anti-rabbit 

IgG, HRP-conjugated antibody and anti-biotin, HRP-conjugated antibody for the detection of 

the biotinylated protein ladder (diluted 1:2000 and 1:1000 respectively in blocking buffer) for  

1 hour at room temperature. Again excess antibody was washed 3 times for 5 minutes each on 

a rotating platform with washing buffer. Conjugated protein was then developed by 

chemiluminescent detection methods based on substrate luminescence when exposed to the 

enzyme on the secondary antibody. The light was detected by Amersham HyperfilmTM ECL 

(Fisher, Loughborough, UK). 
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2.2.13 Role of TRIB3 on murine neutrophil recruitment in 
thioglycollate-induced peritonitis 

C57B6 wild type (control) and TRIB3-/- mice received an intraperitoneal injection of 1ml of 

4% thioglycollate broth (4% thioglycollate powder in 0.9% w/v NaCl; autoclaved and aged for 

> 7 days, used for induction of localised inflammatory response). Five time points were taken 

for sample collection: at 0 hour triplicate (three samples each group) and at 2, 6, 24 and 48 

hours tetra (four samples each group) have been obtained. Blood was collected by cardiac 

puncture using 1 ml heparinised insulin syringes after anaesthetising mice with isofluorane. In 

addition, 5 ml of lavaging buffer (PBS, 0.1% BSA, 20 mM D-glucose (required to keep cells 

intact during cytospin) and 10 U/ml heparin (clumping was avoided) was injected i.p. into mice 

(using 5ml syringe and 21G needle) after cervical dislocation. Peritoneal lavage fluid was 

recovered and transferred to 15 ml tubes, using either same syringe or Pasteur pipette and kept 

on ice once collected. 

A capillary tube containing 10µl of blood was transferred to a microfuge tube containing 90 µl 

of 3% acetic acid (needed for lysis red blood cells). Total leukocytes were counted from both, 

blood sample in acetic acid and peritoneal lavage fluid, using disposable haemocytometers. 

Cytospins of lavage samples were performed in duplicate for each sample at 900 rpm for 6 

minutes (100 µl lavage fluid/cytospin, maximum 1 x 106 cells/ml lavaging buffer), fixed in 

methanol for 5 seconds (5 dips), air dried, stained using Diff-Quick and flushed with generous 

amounts of slow running tap water. Differential cell counts from cytospin of lavage 

microscopy slides were performed. The remaining blood was collected in EDTA blood 

collection tubes and centrifuged for 20 minutes at 250 x G, supernatant (plasma) then collected 

for lipid profile (required at least 100 µl). After counting the cell and cytospin preparation, 

peritoneal lavage fluid was centrifuged at 350 x g for 6 minutes and the supernatant stored      

at -80 °C for cytokine experiment. 
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Calculation of neutrophil content in lavage: 

Total number of cells in lavage = leukocytes number/ml x total volume lavage x 104 

(leukocyte numbers have been counted by a haemocytometer). 

Total number of neutrophils = total number of cells in lavage x neutrophil percentage. 

 

2.2.14 Blood plasma lipid profile method 

Blood plasma lipid profiles (cholesterol, TG and HDL) of both wild-type and TRIB3-/- mice 

were measured via enzymatic colorimetric test by the department of Clinical Chemistry at the 

Royal Hallamshire hospital Sheffield, using Cobas 8000 system from Roche. 

 

2.2.14.1 Cholesterol test principle 

	
  

 

 

 

                                                                (Roche Assay methodology, cobas c systems, 2010-12, V 3 English) 

 

 

 

2 H2O2  +  4-AAP	
   +  Phenol                                           Quinone-imine dye [Red]  +  4 H2O 

Peroxidase 

Cholesterol esters  +  H2O                                           Cholesterol  + 	
  RCOOH 

Cholesterol Esterase  

Cholesterol  +  O2                                          Cholest-4-en-3-one   + 	
  	
  H2O2 

Cholesterol Oxidase 
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2.2.14.2 TG test principle 

	
  

 

 

 

 

                                                                          (Roche Assay methodology, cobas c systems, 2009-06, V 1 English) 

2.2.14.3 HDL test principle 

Water-soluble complexes with LDL, VLDL and chylomicrons are selectively produced by 

dextran sulfate in the presence of Mg2+. These complexes are resistant to polyethylene glycol 

(PEG)-modified enzymes. 

 

 

 

 

                                                               (Roche Assay methodology, cobas c systems, 2009-07, V 1 English) 

2 H2O2  +  4-amino-antipyrine  + HSDA*  +  H
+
  +  H2O                   

                                                                   
                                                                                                            Purple-blue dye  +  5 H2O 

Peroxidase     

H2O2  +  4-aminophenazone  +  4-chlorophenol                    
                                                                  
                                                       4-(p-benzoquinone-monoimino)-phenazone [Red]  +  2 H2O  +  HCl 

Peroxidase  

Triglycerides 	
  +  3 H2O                                          Glycerol  +  3 RCOOH 

	
  Lipoprotein Lipase 

Glycerol  +  ATP                                           Glycerol-3-P  + 	
  ADP 

Glycerokinase 

Mg
2+

 

Glycerol-3-P  +  O2                                           Dihydroxyacetone-P  +  H2O2 

Glycerol-P Oxidase 

HDL-cholesterol esters  +  H2O                                                     HDL-cholesterol  +  RCOOH 

PEG-Cholesterol Esterase 

HDL-cholesterol  +  O2                                                      Δ4-cholestenone  +  H2O2 

PEG-Cholesterol Oxidase   

*HSDA = Sodium N-(2-Hydroxy-3-Sulfopropyl)-3,5-DimethoxyAniline  
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Colour intensities of the specific dyes formed in the tests are directly proportional to the 

cholesterol, TG or HDL-cholesterol concentrations and are measured photometrically.1  

 

2.2.15 Murine TRIB3 genotyping 

	
  

2.2.15.1 Ear clip lysis 

150 µl lysis buffer (EDTA, Tris-HCl and Tween-20) containing proteinase K (300µg 

proteinase K/ml lysis buffer) was added to mouse ear clipping samples and then incubated 

overnight at 55 oC. Samples were then vortexed briefly and incubated for 12 minutes at 100 oC 

to inactivate proteinase K. 600 µl of water was then added to each sample, vortexed briefly and 

stored at +4 oC. 

 

2.2.15.2 PCR and sample analysis 

The following PCR reaction mix was prepared in 0.5 ml eppendorf tube: 

DNA template    3 µl 

H2O      9 µl 

LTR-2      0.5 µl 

LEXKO-1947-3’    0.5 µl 

LEXKO-1947-5’    0.5 µl 

Biomix     2.5 µl 

Total                            26µl 
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The following PCR program was run: 

Step 1: 95 oC for 5 minutes 

Step 2: 95 oC for 30 seconds 

Step 3: 65 oC for 30 seconds                       40 cycles 

Step 4: 72 oC for 30 seconds 

Step 5: 72 oC for 5 minutes 

Step 6: 10 oC hold 

A 1% agarose gel was prepared in 1x TAE buffer (Tris, acetic acid and EDTA) containing final 

ethidium bromide (EtBr) concentration of 1µg/ml. Electrophoresis was then carried out at 90V 

for approximately 40 minutes. Visualisation of PCR bands was then carried out under UV 

illumination (Chemi Genius2 Bio Imaging System using GeneSnap version 7.04) (Syngene).  

 

2.2.16 Effect of TRIB3-/- on embryo viability 

TRIB3+/- mice were backcrossed onto a C57B6 background for 10 generations. The genotype 

of the 10th generation (80 mice; 40 from each gender) from heterozygote mating was checked 

by PCR and produced a ratio of 17:39:24; C57B6, TRIB3+/- and TRIB3-/- mice respectively. 

This means TRIB3-/- mice represent 30% of the population, which approximately follows 

Mendel’s Law. According to this ratio knocking out TRIB3 from cells has no effect on 

breeding in this strain of mice. 
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2.2.17 Cytokine level measurement  

The BD cytometric bead array (CBA), a flow cytometric based application was used to 

measure diverse cytokines (GMCSF, IL-4, IL-13, IL-17A, KC, monocyte chemotactic   

protein-1 (MCP-1), MIP-1α, MIP-1β and TNF) simultaneously in peritoneal lavage fluid. The 

set of cytokine specific antibody-coated beads of the kit was applied to capture surface for 

cytokines of lavage supernatants. Each bead in the array has distinct fluorescence intensity for 

each cytokine. Therefore, beads were mixed and run together in one tube. The detection 

reagent delivers a fluorescent signal in proportion to the quantity of bound cytokine. Sandwich 

complexes (capture bead + standards/unknown samples + detection reagent) were measured, 

using flow cytometry to detect particles with fluorescence characteristics of the bead and 

detector. The bead population was resolved in two fluorescence channels of a flow cytometer. 

This work was carried out by the university Flow Cytometry Core Facility. 

 

2.2.18 Feeding of TRIB3-/- and control mice a high fat diet (HFD) 
 

Diet Name: RM AFE 60%FAT 20%CP 20%CHO (M) 25kGy 

Diet             824054 - '60% AFE Fat' 

Ingredient                               g% (w/w) 

Casein 29.944 

Choline Bitartrate 0.334 

L-Cystine 0.450 

Lard 29.248 

Rice Starch 10.079 
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Cellulose 6.964 

Soya Oil 4.875 

Sucrose 11.838 

Minuteeral Mix 4.875 

Vitaminute Mix 1.393 

Special Diet Services (SDS, Witham, UK). 

 

2.2.18.1 Diet 

C57B6 and TRIB3-/- mice were fed 60% HFD (see above table for diet name, ingredients, 

amounts and company details) 5 g/mouse daily for 11 weeks. Also a further two groups 

(C57B6 and TRIB3-/- mice) were on chow (Teklad Global 18% Protein Rodent Diet, Harlan, 

UK). 

 

2.2.19 Weight gain 

C57B6 and TRIB3-/- mice were males and aged 18 weeks upon commencement of feeding. 

The weight was measured once weekly for 11 weeks, initiating with a baseline weight before 

feeding. 

 

2.2.20 Whole blood differential count (week 5) 

The blood was collected from the tail of C57B6 and TRIB3-/- mice at week 5. A cell counting 

machine (Sysmex KX-21N; Sysmex Corporation) was used to calculate differential blood cell 

types of both groups. 
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2.2.21 Glucose tolerance test (GTT) 

C57B6 and TRIB3-/- mice were starved overnight at week 9. Next day each mouse was 

weighed as glucose dose depends on its body weight (BW). Blood was then collected from the 

tail to determine a baseline glucose reading using glucose meter and strips. The mouse was 

then injected intraperitoneally with sterile glucose at 10ul/g BW (20% D-glucose in 0.9% 

sterile saline; a solution that was prepared fresh on the day of use). Readings were taken at 

different time points (30, 60, 90 and 120 minutes) after injection. Groups on chow (C57B6 and 

TRIB3-/- mice) were treated the same. 

 

2.2.22 Insulin tolerance test (ITT) 

C57B6 and TRIB3-/- mice at week 11 were fasted for 2-3 hours on the morning of the 

experiment. They were weighed as insulin dose depends on its BW. Blood was then collected 

from tail to determine a baseline glucose reading, using glucose meter and strips, before 

injecting the mouse intraperitoneally with sterile insulin at 0.75 U/kg BW (0.25 U/ml in 0.9% 

sterile saline was freshly made up on the day, which was 3X BW in µl). Readings were taken at 

different time points (20, 40 and 60 minutes) after injection. Groups on chow (C57B6 and 

TRIB3-/- mice) were treated the same. In case the mice become hypoglycaemic, 20%             

D-glucose in 0.9% sterile saline was prepared to be quickly injected. 

 

2.2.23 Whole blood differential count (week 11) 

Blood was collected in the final week of the experiment (week 11) from C57B6 and TRIB3-/- 

mice through cardiac puncture using 1ml heparinised insulin syringes after anaesthetising mice 
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with isofluorane. A cell counting machine (Sysmex KX-21N; Sysmex Corporation) was used 

to calculate differential blood cell types for both groups. 

 

2.2.24 Blood plasma lipid profile 

Blood was centrifuged for 20 minutes at 250 x G, supernatant (plasma) then collected for lipid 

profile. Blood plasma lipid profiles (cholesterol, TG and HDL) of both C57B6 and TRIB3-/- 

mice were measured via enzymatic colorimetric test. Details and the process of measuring were 

previously described in 2.2.14. 

 

2.2.25 In vitro peritoneal cells 

Following the collection of blood and after cervical dislocation, 5ml of lavaging buffer was 

injected interperitoneal into C57B6 and TRIB3-/- mice. Peritoneal lavage fluid was recovered. 

The cells were cytospinned after counting. Differential cell types were counted from the 

cytospin of lavage microscopy slides. Neutrophil content in lavage then was calculated as per 

the formula described previously 2.2.13. 

 

2.2.26 Harvesting the organs 

Following the recovery of the peritoneal lavage fluid, organs were removed for further 

analysis, as required: adipose tissue, liver, heart and aorta:  
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2.2.26.1 Adipose tissue and liver 

A midline incision was made from the abdomen up to the chest using scissors. The long ribs 

and costodiaphragmatic recess was cut and removed. Adipose tissue was also removed and 

fixed in FBS (10% Formalin) at 4 °C. Adipose tissue was transferred to PBS after 24 hours in   

10% FBS. Liver was also excised and saved in liquid nitrogen.  

 

2.2.26.2 Heart and aorta 

1 ml PBS was injected directly into the heart, for flushing, followed by 1 ml FBS for fixation. 

Then aorta and heart were removed. Fat, vena cava, connective tissue and small branching 

vessels were detached from aorta. Once the aorta was cleaned it was opened exposing the 

internal surface. The heart was cut along the line of the atria. Next, all tissues were stored at     

4 °C until processing. They were transferred to PBS post 24 hours in 10% FBS. 

 

2.2.27 Preparing Oil Red O stain 

1 ml H2O was added to 99 ml isopropanol (propan-2-ol). Oil Red O powder was added to the 

solution until saturated, then filtered using Whatman filter paper. The final stain was diluted to 

60% v/v by H2O. 

 

2.2.28 En Face Oil Red O staining of aorta 

The aorta was stored in 10% FBS at 4 °C. The following day this was changed to PBS. The 

aorta was then stained using En Face Oil Red O staining as follow: aorta was rinsed in ddH2O 
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then in 60% isopropanol (2 minutes) followed by dipping in Oil Red O (10-15 minutes). Next, 

aorta was rinsed again in 60% isopropanol (2 minutes) then ddH2O before pinning out and 

photographing. 

 

2.2.29 Pinning out, capturing and analysis 

Melted wax was poured into a Petri dish. Once wax was firm, but warm, the aorta was placed 

on top and labelled (8 aortas per dish should fit). Insect pins were pinned through the aorta 

(pinning was done quickly as inserting pins are difficult when wax becomes cold). Aorta was 

dipped in PBS or H2O during pinning process and then the entire dish was covered with PBS to 

get clear picture. Photographs at 1.5x magnification were taken for image analysis. Percentage 

lesion coverage was measured, using NIS-Elements software. 

 

                                            object numbers  X  mean lesion area 

% Lesion coverage  =  _____________________________________          X  100   

                                                                total aorta area 

 

2.2.30 Dehydration and embedding heart, liver and adipose tissues 

Heart, liver or adipose tissue was placed into a plastic cassette with a sheet of Whatman Grade 

1 filter paper (heart did not require paper) after labelling samples with pencil. The cassettes 

were then covered with increasing concentrations of alcohol. 
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  Dehydration sequence: 

50% Ethanol 1hour 

70% Ethanol 1hour 

90% Ethanol 1hour 

100% Ethanol 1hour 

100% Ethanol 1hour (Ethanol was changed) 

50:50 Ethanol/Xylene 1hour 

100% Xylene 1hour 

100% Xylene 1hour (Xylene was changed) 

The cassettes were immersed into pots containing melted wax in 60 °C oven over night. After 

dehydration the tissues were embedded into wax before sectioning them. 

 

2.2.31 Sectioning paraffin embedded murine heart, liver and 
adipose tissue 

Embedded heart, liver and adipose tissues from C57B6 and TRIB3-/- mice on 60% HFD and 

on chow (no heart samples on chow) were cut to sequential 5 µm thick sections (10 

slides/mouse) using a LEICA RM2135 Microtome. Sections were then floated out on a 37 ˚C 

water bath to smooth out wrinkles. Following this, each section was transferred to labelled 

microscopic slides before placing in a 37 ˚C incubator overnight to dry. 
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2.2.32 Re-hydrating in addition to staining heart, liver and adipose 
tissue slides 

For removing wax and re-hydrating tissues, heart, liver and adipose tissue slides were 

immersed in the following sequentially: 

• 100% Xylene                                         10 minutes 

• 100% Ethanol                                         2 minutes 

• 90% Ethanol                                           2 minutes 

• 70% Ethanol                                           2 minutes 

• Water                                                      2 minutes (to rinse alcohol off) 

Tissue slides were then stained with haematoxylin for 2 minutes to stain the nucleus of the 

cells. The slides were rinsed with distilled water (DW) to remove excess haematoxylin; stained 

with eosin for 30 seconds to stain eosinophilic structures of the cells and then rinsed with DW 

to remove excess eosin. A drop from DPX mounting medium was added to the slide’s centre to 

mount the glass coverslip gently on the slide. The slides were left overnight before visualising 

cells under the microscope. 

 

2.2.33 F4/80 immunohistochemistry for macrophages 

All test and control slides were de-waxed and re-hydrated via graded alcohols to water at room 

temperature (RT) as follows: 

100% Xylene               10 minutes 

100% Ethanol               2 minutes 

100% Ethanol               2 minutes 
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90% Ethanol                 2 minutes 

70% Ethanol                 2 minutes 

50% Ethanol                 2 minutes 

Water                            2 minutes 

Endogenous peroxidases were blocked by incubation in fresh 3% hydrogen peroxide (H2O2) 

(1:10 ratio of 30% stock solution and PBS) 10 minutes at RT. They were rinsed in tap water at 

RT. Antigen was retrieved by incubation in hot 10 mM sodium citrate buffer (pH 6) in a 95 ˚C 

water bath 20 minutes. Then container of citrate buffer with slides inside was removed, left to 

cool at RT 20 minutes and permeabilised by incubation in 0.5% Triton X-100 (1 ml Triton X-

100 in 200 ml PBS) at RT 10 minutes. Non-specific binding of secondary antibody was 

blocked with 1% milk buffer   (2 g milk in 200 ml PBS) at RT 30 minutes, following this, milk 

buffer was tipped off, but not washed, and the excess blotted. 100µl fresh primary antibody 

(1:100 ratio of anti-mouse F4/80 antigen and PBS) was added to each slide, covered with a 

plastic coverslip and incubated at 4 ˚C overnight before washing in 3 changes of PBS at RT     

5 minutes each. Then 100 µl fresh secondary antibody (1:200 ratio of biotinylated anti-rat IgG 

and PBS) was added to each slide, covered with a plastic coverslip and incubated at RT          

30 minutes before washing in 3 changes of PBS at RT 5 minutes each. Fresh Vectastain ABC-

HRP reagent (actin/biotin complex-HRP; 1 drop reagent A and 1 drop reagent B were added 

per 2.5 ml PBS, mixed and made up 30 minutes prior to use) was added to each slide, covered 

with a plastic coverslip, incubated at RT 30 minutes and washed in 3 changes of PBS 5 minutes 

each at RT. Following this, fresh DAB (1 drop buffer pH 7.5, 2 drops DAB and 1 drop H2O2 

were added per 2.5 ml ddH2O) was added to each slide, covered with a plastic coverslip, 

incubated at RT 10 minutes (in case colour development becomes too strong stop reaction 

early) and rinsed in tap water at RT. Slides were then counterstained using haematoxylin at RT 

1 minute, washed in water at RT, dehydrated via graded alcohols to xylene and mounted using 
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DPX mountant at RT. The primary and secondary antibodies, ABC and DAB incubations were 

carried out in a Humidifier. 

 

2.2.34 Statistical analysis 

Results are displayed as mean ± SEM. Statistical analysis was performed using GraphPad 

PRISM software version 5.00 (La Jolla, CA, USA). Statistical significance was tested using 

paired and unpaired student’s t tests (parametric tests) to compare two groups, whereas       

one-way ANOVA (analysis of variance), followed by Dunnett or Bonferroni post tests and 

two-way ANOVA were used for multiple comparisons. P values less than 0.05 were considered 

statistically significant. 
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Chapter 3: The role of p38 and Akt activation in murine 

neutrophil function in vitro 

 

3.1 Introduction 

p38 MAPK has a number of roles in inflammation, proliferation, differentiation, development, 

survival, apoptosis, in addition to stress responses [77]. Interestingly, published data indicated 

that PI3Kγ controls T cell activation, neutrophil migration, thymocyte development and the 

oxidative burst [61]. The interactions between TRIBs and other protein molecules have been 

the focus of many studies. Clearly, there are diverse experiments demonstrating an essential 

regulatory function for TRIBs in cellular regulation and development, although TRIBs’ role 

and molecular mechanism of action in signalling pathways are unclear as of yet [130]. All the 

above were discussed earlier in the thesis. 

As previously mentioned in the introduction, the control of MAPK cascades is essential for 

regulating various cellular responses. [145]. TRIBs bind to MAPKK and control the activation 

of MAPK. It has been documented that TRIBs may play an important role in the MAPK 

cascade, but at high concentrations they inhibit this cascade [145]. To explain these results, 

many mechanisms are hypothesised; for example, TRIBs could act as scaffolds [145]. TRIBs 

may behave either as activators of MAPK activity or as inhibitors, according to the TRIB to 

MAPKK ratio in the cell. Similarly, TRIB mediated regulation of NFκB [160], [161], and the 

control systems of the cell cycle have been found [162]. 

This chapter will build an understanding of TRIB3 action in the context of the effect of fMLP 

and KC on p38 MAPK and PI3K/Akt activation in murine neutrophils. It will discuss whether 
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knocking out TRIB3 alters specific signalling pathways, which in turn modulate murine 

neutrophil function, compared to C57B6 control. 
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3.2 RESULTS 

	
  

A) Evidencing existence of TRIB3 in neutrophils 

Unpublished data by my group have demonstrated that murine neutrophils express TRIB3 

(Table 1). This provides a rational for studying the function of TRIB3 in neutrophils. 

	
  

 TRIB1 TRIB2 TRIB3 

Human 
neutrophils 

+ - + 

HL60 cells + - (+) 

Mouse 
neutrophils 

+ - + 

32Dcl3 cells + (+) + 

 

Table 3.1: Proving presence of TRIB3 in murine neutrophils 

It has been found by using conventional RT-PCR that TRIB3 mRNA is expressed in human and mouse 

neutrophils and cell lines. + High expression, (+) low level of expression and - no expression. 
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B) Effect of chemoattractants (KC and fMLP) and LPS on p38 and 
Akt activation in mouse neutrophils 

This section is to confirm what was shown in previous studies, regarding activation of p38 and 

Akt in murine neutrophils by KC, fMLP and LPS [175], [176]. The activation of isolated 

murine neutrophils through p38 or Akt was studied between 0-60 minutes, using diverse 

physiologically relevant stimuli (10-6 M KC, 10-6 M fMLP and 1ng/ml LPS). Activated cells 

were lysed and activation of p38 and Akt was detected by western blotting (Figure 3.1). The 

results show that exposure of isolated murine neutrophils to KC, fMLP and LPS activated the 

p38 MAPK signalling pathway at 15 and 30 minutes but this decreased at 60 minutes. It also 

shows insignificant inhibition on Akt signalling pathway by these stimuli. However, whilst 

there was an apparent trend to a transient activation of p38 and an inhibition trend on Akt in 

response to stimulation, statistical analysis (one-way ANOVA, Dunnett post test) did not show 

any significant difference. 
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Figure 3. 1:  Activation of p38 and Akt signalling by KC, fMLP and LPS in neutrophils 

Isolated murine neutrophils were stimulated for different periods of times (0, 15, 30 and 60 minutes) using various 

stimuli (10-6 M KC, 10-6 M fMLP or 1ng/ml LPS). The cells were then lysed with lysis buffer for 20 minutes on 

ice. Protein from neutrophil lysates was measured by the Bio-Red DC protein assay. Subsequently, protein was 

electrophoresed on a 30% SDS acrylamide gel, transferred to nitrocellulose membrane and identified with 

phospho p38 MAPK antibody and phospho Akt (ser 473) antibody, or p38 MAPK antibody and Akt antibody as 

primary antibodies. A secondary anti-rabbit IgG, HRP-conjugated antibody was added, and detected by enhanced 

chemiluminescence. Results are displayed as western blot images, using 0 minute as a control. KC and fMLP 

pictures are representative of 3 experiments, while 5 for LPS. 
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Figure 3. 2:  Quantification activation of p38 and Akt signalling by KC, fMLP and LPS in neutrophils 

Isolated murine neutrophils were stimulated for different periods of times (0, 15, 30 and 60 minutes) using various 

stimuli (10-6 M KC, 10-6 M fMLP or 1ng/ml LPS). Results are displayed as a ratio of the phospho p38 MAPK/p38 

MAPK (A) and phospho Akt/Akt (B) by densitometry. Data shows mean ± SEM, n = 4 for KC and fMLP and      

n = 5 for LPS. Statistical analysis (one-way ANOVA, Dunnett post test) was carried out using 0 minute as a 

control. No significant differences are observed. 
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C) Effect of chemoattractants (KC and fMLP) on p38 activation in 
murine neutrophils of C57B6 versus TRIB3-/- 

It has been found that p38 is activated by KC and fMLP in neutrophils [177]. This study is to 

clarify the importance of TRIB3 on this signalling pathway. Activation of isolated murine 

neutrophils through p38 MAPK was studied between 0-60 minutes, using diverse 

physiologically relevant stimuli (10-6 M KC, 10-6 M fMLP). Activated cells were lysed and 

activation of p38 MAPK was detected by western blotting (Figure 3.3). The results display that 

exposure of isolated murine neutrophils to KC and fMLP activated p38 MAPK signalling 

pathway at 15 and 30 minutes time points, with the signal then decreasing by 60 minutes in 

C57B6 and TRIB3-/-. Thus, no difference was observed between both groups for either 

chemoattractants. 
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Figure 3. 3:  Activation of p38 MAPK signalling by KC and fMLP in murine neutrophils of C57B6 versus 
TRIB3-/- 

Isolated murine neutrophils were stimulated for different periods of times (0, 15, 30 and 60 minutes) using various 

stimuli (10-6 M KC or 10-6 M fMLP). The cells were then lysed with lysis buffer for 20 minutes on ice. 

Subsequently, protein from neutrophil lysates were electrophoresed on a 30% SDS acrylamide gel, transferred to 

nitrocellulose membrane and identified with phospho p38 MAPK antibody or p38 MAPK antibody as primary 

antibodies. A secondary anti-rabbit IgG, HRP-conjugated antibody was added, and detected by enhanced 

chemiluminescence. Results are displayed as western blot images. Each picture is representative of 3 experiments. 

 

 

 



	
  
72	
  

D) Effect of fMLP and LPS on p38 MAPK activation in RAW 264.7 
cells 

p38 inhibitor (SB 203580) has previously been used in neutrophil migration assay successfully 

[49], [178], [179]. In this study human neutrophils were used to validate the function of p38 

inhibitor to investigate later whether migration of murine neutrophils in response to fMLP and 

KC occurred through the p38 MAPK pathway or other signaling pathways. The cells were pre-

incubated with 10 µM of p38 inhibitor for 30 minutes at 37˚C. Following this the cells were 

stimulated using 10-7 M fMLP between 0-30 minutes and compared to control cells without the 

p38 inhibitor pre-incubation. Whole cell lysates were made and phosphorylation of p38 was 

detected by western blotting. The results demonstrate that the neutrophils were already 

activated at 0 minute which made it difficult to differentiate the effect of 10-7 M fMLP as a 

stimulator for different periods of times (0, 10, 20 and 30 minutes) thus verifying the impact of 

p38 inhibitor. Therefore, activation of p38 MAPK in RAW 264.7 cells was studied between   

0-30 minutes using physiologically relevant stimuli (10-6 M fMLP or 50 ng/ml LPS). Activated 

cells were lysed and phosphorylation of p38 was detected by western blotting (Figure 3.4). 

The results show fMLP and LPS individually activated p38 MAPK signalling pathway in 

RAW 264.7 cells at 10-6 M and 50 ng/ml respectively compared to the untreated control. The 

effect of fMLP was more transient in comparison to LPS (i.e. there was an increase in p38 

phosphorylation at 10 minutes). This was not sustained for a long period of time as shown by 

the gradual decrease in the signal at 20 and 30 minutes. By contrast, LPS activation was longer 

lasting with a gradual increase in the signal for phosphorylated p38 with a greater activation at 

20 and 30 minutes when compared to fMLP.	
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Figure 3. 4:  Activation of p38 MAPK signalling by fMLP and LPS in RAW 264.7 cells 

p38 MAPK in RAW 264.7 cells were stimulated for different periods of times (0, 10, 20 and 30 minutes) using 

various stimuli (10-6 M fMLP or 50 ng/ml LPS). The cells were then lysed with lysis buffer for 20 minutes on ice. 

Subsequently, protein (p38 MAPK) from RAW 264.7 cells lysates was electrophoresed on a 30% SDS acrylamide 

gel, transferred to nitrocellulose membrane and identified with phospho p38 MAPK antibody or p38 MAPK 

antibody as primary antibodies. A secondary anti-rabbit IgG, HRP-conjugated antibody was added, and detected 

by enhanced chemiluminescence. Results are displayed as western blot images, using 0 minute as a control. n = 1. 
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E) Verifying the impact of p38 inhibitor on kinase activity in RAW 
264.7 cells 

As it was impossible to determine whether the p38 inhibitor was functioning in the human 

neutrophils, the inhibitor was next tested on RAW 264.7 cells in order to validate the activity 

of p38 inhibitor and eventually study its effect on murine neutrophil migration towards fMLP 

and KC. The impact of p38 inhibitor on p38 MAPK signalling activity in RAW 264.7 cells 

post incubation for different periods of times (0, 30 and 60 minutes) at 30˚C was studied and 

compared to the control, using physiologically relevant stimulus 50 ng/ml LPS for 10 minutes. 

Treated cells were lysed and phosphorylation of p38 was detected through phospho ATF-2 by 

western blotting (Figure 3.5). 

The results show LPS activated at 10 minutes p38 MAPK signalling pathway, detected through 

phosphorylation ATF-2, in RAW 264.7 cells compared to the untreated control. The effect of 

phospho p38 on phosphorylation ATF-2 was longer lasting with a gradual increase in the signal 

for phosphorylated ATF-2 with a much greater activation at 30 and 60 minutes when compared 

to control. By contrast, adding 10 µM p38 inhibitor suppressed ATF-2 phosphorylation shown 

by the marked reduction in the signal in control cells and after LPS at 30 and 60 minutes. 
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Figure 3. 5:  Verifying the impact of p38 inhibitor on p38 MAPK activity in RAW 264.7 cells 

p38 MAPK in RAW 264.7 cells was stimulated for 10 minutes using 50 ng/ml LPS. The cells were then lysed 

with lysis buffer for 20 minutes on ice. Phospho p38 MAPK from RAW 264.7 cells lysates was immobilised by 

adding mAb bead slurry and incubated overnight at 4˚C. Cell lysates-immobilised Ab was centrifuged. The pellets 

were then suspended in kinase buffer, ATP and ATF-2 fusion protein (kinase substrate) before 10µM p38 inhibitor 

or vehicle control (DMSO) being added and incubated for different periods of times (0, 30 and 60 minutes) at 

30°C. Reaction was terminated by SDS sample buffer. Subsequently, phospho p38 MAPK was evaluated through 

detecting phospho ATF-2 by western blotting; protein samples (lysates) was electrophoresed on a 30% SDS 

acrylamide gel, transferred to nitrocellulose membrane and identified with primary antibody, phospho ATF-2 

antibody. A secondary anti-rabbit IgG, HRP-conjugated antibody was added, and detected by enhanced 

chemiluminescence. Unstimulated cells were used as a control. n = 1. 
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F) Verifying the impact of p38 inhibitor on kinase activity in murine 
neutrophils 

The impact of p38 inhibitor on p38 MAPK signalling activity in murine neutrophils after 

incubation for 60 minutes at 30˚C was tested and compared to the control to verify its effect 

and study it later on neutrophil migration towards KC and fMLP, using physiologically 

relevant stimulus 10-6 M fMLP for 30 minutes. Treated cells were lysed and phosphorylation of 

p38 was detected through phospho ATF-2 by western blotting (Figure 3.6). 

The results show fMLP activated at 30 minutes p38 MAPK signalling pathway, detected 

through phosphorylation ATF-2, in murine neutrophils at 10-6 M compared to the untreated 

control. The effect of phospho p38 on phosphorylation ATF-2 was greater, lasting 60 minutes 

when compared to control. By contrast, adding 10 µM p38 inhibitor inhibited ATF-2 

phosphorylation shown by a decrease in the signal at 60 minutes. This validated the function of 

p38 inhibitor. There is no similar commercially available kinase assay exists for PI3K inhibitor 

(LY 294002). Therefore, the activity of this inhibitor was not tested in my work. However, this 

molecule has previously been used in neutrophil migration assay [49]. 
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Figure 3. 6:  Verifying the impact of p38 inhibitor on p38 MAPK activity in murine neutrophils 

Murine neutrophils wild-type isolated from C57B6 were stimulated for 30 minutes using 10-6 M fMLP. The cells 

were then lysed with lysis buffer for 20 minutes on ice. Phospho p38 MAPK from lysates was immobilised by 

adding mAb bead slurry and incubated overnight at 4 °C. Cell lysates-immobilised Ab was centrifuged. The  

pellets were then suspended in kinase buffer, ATP and ATF-2 fusion protein (kinase substrate) before 10µM p38 

inhibitor or vehicle control (DMSO) being added and incubated for 60 minutes at 30°C. Reaction was terminated 

by SDS sample buffer. Subsequently, phospho p38 MAPK was evaluated through detecting phospho ATF-2 by 

western blotting; protein samples (lysates) was electrophoresed on a 30% SDS acrylamide gel, transferred to 

nitrocellulose membrane and identified with primary antibody, phospho ATF-2 antibody. A secondary anti-rabbit 

IgG, HRP-conjugated antibody was added, and detected by enhanced chemiluminescence. Unstimulated cells 

were used as a control. n = 1. 
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G) Effect of p38 MAPK and PI3K inhibitors on wild-type murine 
neutrophil migration in response to KC and fMLP 

Many studies showed opposing effects of p38 MAPK and PI3K inhibitors on mouse neutrophil 

chemotaxis towards KC and fMLP [49], [180], [179]. Therefore, this section will try to 

reconcile these results and firmly establish the impact of these inhibitors on chemotactic 

migration of purified murine neutrophils. Migration of murine neutrophils with and without 10 

µM of each p38 and PI3K inhibitors towards 10-5 M fMLP and 10-7 M KC were investigated 

by pre-incubating these cells with either p38 or PI3K inhibitors or their relevant vehicle control 

for 30 minutes at   37 °C. They were then incubated for 1 hour at 37 °C on filter membrane and 

the chemoattractant in the lower chamber of chemotaxis plate (Figures 3.7 and 3.8). 

Figures 3.7B and 3.8A show p38 and PI3K inhibitors significantly increased murine neutrophil 

chemotaxis towards 10-7 M KC and 10-5 M fMLP respectively compared to their controls 

(neutrophils without p38 or PI3K inhibitors). The p38 inhibitor decreased murine neutrophil 

migration towards fMLP at 10-5 M, whereas PI3K inhibitor increased cell migration to KC at 

10-7 M compared to their controls, although the results for both were not statistically significant 

(Figures 3.7A and 3.8B). 
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Figure 3. 7:  Verifying the impact of p38 inhibitor on migration of murine neutrophils towards fMLP and 

KC 

Neutrophils of wild type mice were re-suspended in a buffer (RPMI supplemented with BSA), and pre-incubated 

with p38 inhibitor (SB 239063) or vehicle control for 30 minutes at 37 °C. They were then incubated for 1 hour at 

37 °C, 5% CO2. The number of migrated neutrophils with and without 10 µM of p38 inhibitor responding to                 

10-5 M fMLP or 10-7 M KC was counted. Findings were corrected for chemokinesis (random migration) of 

neutrophils by subtracting the chemokinesis control. Data shows mean ± SEM, n = 3-5. Statistical analysis  

(paired t test) was carried out using neutrophils without inhibitor as a control. (* p < 0.05). The figure displays the 

migration as a percentage of the total number of neutrophils added to the filter (6 x 104). 
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Figure 3. 8:  Verifying the impact of PI3K inhibitor on migration of murine neutrophils towards fMLP and 

KC 

Neutrophils of wild type mice were re-suspended in a buffer (RPMI supplemented with BSA), and pre-incubated 

with PI3K inhibitor (LY 294002) or vehicle control for 30 minutes at 37 °C. They were then incubated for 1 hour 

at 37 °C, 5% CO2. The number of migrated neutrophils with and without 10 µM of PI3K inhibitor responding to    

10-5 M fMLP or 10-7 M KC was counted. Findings were corrected for chemokinesis (random migration) of 

neutrophils by subtracting the chemokinesis control. Data shows mean ± SEM, n = 3. Statistical analysis      

(paired t test) was carried out using neutrophils without inhibitor as a control. (* p < 0.05). The figure displays the 

migration as a percentage of the total number of neutrophils added to the filter (6 x 104). 
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3.3 Discussion 

Neutrophils play an essential role in the inflammatory response. They represent the first line of 

defence against infection. Neutrophils respond to infection and/or tissue damage following 

chemoattractants (endogenous and bacterial signals) out of the blood vessels, via the 

interstitium to the place of infection [49]. Studies have confirmed that exposure of human 

neutrophils to fMLP [177] and LPS [181] activates p38 MAPK. The results of this experiment 

suggest that p38 MAPK signalling in neutrophils isolated from mice is stimulated by KC, 

fMLP and LPS for 15–30 minutes as seen in the western blot images (Figure 3.1). Although on 

initial inspection, the lack of statistical significance is evident; it is actually due to the different 

development timings of western blot processing that led to the varied results seen on 

densitometry (Figure 3.2A).  At later time points, a reduction in the stimulation was recorded; 

this may be due to phosphatase action which dephopshorylates active p38. In contrast, the data 

in figures 3.1 and 3.2B show that KC, fMLP and LPS had no significant inhibitory effect on 

Akt signalling in neutrophils. 

It has been published by Nick et al in 2000 that there is greater dependence on p38 pathway in 

the neutrophil compared to other WBC [182].  Separate data by Zu et al show in human 

neutrophils, activation of p38 MAPK is essential for the TNF-α- or fMLP-mediated cellular 

functions. This study proposed p38 MAPK may have a different function in response to 

distinct stimulation [177]. 

A further investigation on p38 phosphorlation has been conducted however, this time on two 

different groups (C57B6 and TRIB3-/- mice). Again neutrophils isolated from mice are 

stimulated by KC and fMLP for 15–30 minutes, through phosphorlation p38 MAPK, as 

illustrated in the western blot images (Figure 3.3), and then at a later time point (60 minutes) 

decreased. Surprisingly, this result shows no difference between C57B6, as a control, and 
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TRIB3 -/- mice. Therefore, our observations strongly suggest that TRIB3 does not control 

activation of neutrophils via p38 MAPK, as its deficiency does not alter p38 phosphorlation 

compared to C57B6, or it may be that its effect is minute to the extent it is undetectable by 

western blotting technique. 

Based on published observations in human neutrophils, neutrophils migrate towards the end 

target (fMLP) through activating p38 MAPK while they migrate towards intermediary 

chemoattractants such as IL-8 via PI3K/Akt [49]. Although the molecular mechanisms of 

neutrophil navigation remain unclear, it is known that leukocytes migrate in a step-by-step 

pathway via multiple different chemoattractants, responding to one agonist source after another 

[53]. A study by Heit et al suggested that PI3K is dispensable for neutrophil migration towards 

fMLP, though PI3K may enhance early responses to the fMLP. In contrast, p38 MAPK-

inhibited cells could not polarize in response to fMLP [180].  

Activation of murine neutrophils with chemoattractants such as fMLP and KC leads to various 

functional responses for example neutrophil migration, which we are interested in. This study 

assessed whether fMLP or KC stimulates murine neutrophil chemotaxis through p38 MAPK or 

PI3K in C57B6. Therefore, in the current study the impact of p38 inhibitor on kinase activity in 

RAW 264.7 cells was verified to assess the function of p38 inhibitor. This was successful 

(Figure 3.5), post testing the effect of fMLP and LPS on p38 MAPK activation in RAW 264.7 

cells and the results show fMLP and LPS individually activated p38 MAPK signalling pathway 

in RAW 264.7 cells compared to the untreated control (Figure 3.4). Finally, the impact of p38 

inhibitor on kinase activity in murine neutrophils was confirmed (Figure 3.6). Hence, the effect 

of p38 inhibitor on wild-type murine neutrophil migration in response to KC and fMLP was 

studied. 
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A study by Nick et al in 1997 demonstrated that fMLP activated MKK3 (the activator of p38 

MAPK). The p38 inhibitor decreased human neutrophil adhesion and chemotaxis in response 

to fMLP [59]. Cara et al in 2001 proposed that p38 has no effect on rolling or adhesion; 

however it is involved in neutrophil migration via tissue in response to KC in vivo. This study 

suggested KC stimulates p38 MAPK, which in turn phosphorylates downstream proteins such 

as LSP-1, to allow neutrophil chemotaxis [60]. A study by Knall et al demonstrated that 

neutrophil migration to IL8 is PI3K-dependent [183], [184]. In vivo PI3Kγ and PI3Kδ appear 

to have an indispensable function for the early and later phases of leukocyte recruitment 

respectively, in response to macrophage inflammatory proteins 2 (MIP-2) and KC significantly 

[185]. Research by Heit et al in 2008 showed PI3Kγ had a similar function in mediating 

neutrophil recruitment in response to fMLP [180]. 

The mechanisms that regulate neutrophil migration through various signalling pathways     

(p38 MAPK and PI3K) in response to different chemoattractants, fMLP or KC, is illustrated in 

figures 3.7 and 3.8. These show p38 inhibitor significantly increased murine neutrophil 

chemotaxis towards 10-7 M KC compared to its control, neutrophils without p38 MAPK 

inhibitor, (Figure 3.7B), whereas p38 MAPK inhibitor appeared to reduce murine neutrophil 

migration towards fMLP at 10-5 M, although the result was not statistically significant (Figure 

3.7A). On the other hand, PI3K inhibitor significantly increased murine neutrophil chemotaxis 

towards 10-5 M fMLP compared to its control, neutrophils without PI3K inhibitor (Figure 

3.8A). PI3K inhibitor also increased cell migration to KC at 10-7 M compared to its control, but 

again the result was not statistically significant (Figure 3.8B). This data clearly indicates that 

different signalling pathways for various stimuli control neutrophil migration, i.e. selective 

stimulation of signalling pathways may cause various neutrophil responses. An example of that 

is the varying effects of fMLP and KC stimuli on migration of neutrophils through p38 or PI3K 

pathways as demonstrated above. 
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In summary, my results suggest that TRIB3 may not control activation of neutrophils through 

p38 MAPK. Furthermore, evident data propose that neutrophil migration towards some 

chemoattractants, KC and fMLP, is dependent upon on various signalling pathways such as 

p38 MAPK and PI3K, which could be regulated by TRIB3 (see chapter 4). Given that there are 

discrepancies in the literature, in addition to observations in this project, further in vitro studies 

on the impact of TRIB3 on neutrophil function through various intracellular signalling 

pathways in response to various chemoattractants would be recommended. 
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Chapter 4: The role of TRIB3 in neutrophil function in 

vitro 

 

4.1 Introduction 

Neutrophil function relies on expression of adhesion molecules. They enable neutrophils to 

interact with endothelium. For example tethering and rolling of neutrophil on endothelial cells 

occurs via L-selectin, while firm adhesion and arresting happens through CD11b [186]. In 1995 

Phillips et al found that L-selectin is indispensable for circulating neutrophils [187]. In 

response to inflammation, stimulated neutrophils adhere to endothelium and aggregate with 

one another. Research by Guyer et al (1996) proposed that L-selectin and PSGL-1 support a 

collisional cell-cell interaction, which represents the initial stage of neutrophil aggregation 

[188]. 

It has been published by Cavanagh in 1998, increasing expression CD11b is a neutrophil 

activation marker. This adhesion complex permits neutrophil migration from the blood stream 

to the target [189]. Chen et al (2003) suggested neutrophil CD11b expression and reactive 

oxygen species (ROS) production could help to predict the stage of murine AIDS [190].  

Neutrophils migrate to sites of inflammation by a process known as chemotaxis [191]. 

Neutrophils are exposed to many different chemoattractants and evidence indicates a 

hierarchical status of these. End target chemoattractants (from infected sites) are prioritised by 

activating the p38 MAPK pathway. In comparison, the intermediate chemoattractants (which 

occur along the path) even at high level activate the PI3K/Akt cascade [49], [51], [52], [53], 

[54].  
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The PI3K cascade is one of the most important signalling pathways of neutrophil chemotaxis 

[58]. On the other hand, in humans and mice the p38 MAPK has an essential function in 

neutrophil chemotaxis [59], [60]. However, various aspects related to these pathways are still 

vague, such as the p38 MAPK and PI3K/Akt cascades are overlapping, opposing or 

complementary to each other [49].  

This chapter will verify whether TRIB3 controls the expression of adhesion molecules   

(PSGL-1, L-selectin and CD11b) on murine neutrophils with and without PMA stimulation by 

FACSCalibur flow cytometry. It will also discuss the impact of TRIB3 on neutrophil migration 

in response to KC and fMLP.  
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4.2 Results 

	
  

A) Effect of TRIB3 on PSGL-1, L-selectin and CD11b expression on 
PMA stimulated and un-stimulated murine neutrophils  

Expression of adhesion molecules (PSGL-1, L-selectin and CD11b) on murine neutrophils by 

various stimuli including PMA was already demonstrated in various studies, giving diverse 

findings [192], [193], [194]. This section will see the effect of PMA on expression of above 

adhesion molecules on neutrophils, in addition to testing the impact of TRIB3 on them. 

Expression of PSGL-1, L-selectin and CD11b on C57B6 and TRIB3-/- murine neutrophils was 

investigated by pre-incubating murine whole blood with or without 10-7 M PMA at 37 °C 

before adding the fluorescently conjugated antibodies. Absence of TRIB3 from murine 

neutrophils had no significant effect on expression of the above studied adhesion molecules on 

the cells. Stimulating both C57B6 and TRIB3-/- murine neutrophils with PMA significantly up 

regulated CD11b (Figure 4.3), but neither stimulating C57B6 nor TRIB3-/- murine neutrophils 

showed significant differences on expression of PSGL-1 compared to the un-stimulated cells 

(Figure 4.1). However, stimulating TRIB3-/- murine neutrophils with 10-7 M PMA 

demonstrated statistically significant shedding of L-selectin. In contrast, no significant 

shedding of L-selectin was observed in the wild type cells after stimulation (Figure 4.2). 
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Figure 4. 1: FACS determines adhesion molecule, PSGL-1, expressed on C57B6 and TRIB3-/- PMA 

stimulated and un-stimulated murine neutrophils  

C57B6 and TRIB3-/- murine whole blood samples were pre-incubated with/without 10-7 M PMA for 15 minutes 

at 37 °C, 5% CO2. Samples were incubated with fluorescently conjugated antibody (PE anti-mouse PSGL-1) and 

FITC anti-mouse Ly-6G (for labeling neutrophils). They were then incubated for 30 minutes on ice. Further 

incubation with 1% erythrolyse for 10 minutes at RT occurred prior to washing. Surface expression was 

determined by FACS. Data showed mean ± SEM, n = 3-4. Statistical analysis (one-way ANOVA, Bonferroni) was 

carried out.  
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Figure 4. 2: FACS determines adhesion molecule, L-selectin, expressed on C57B6 and TRIB3-/- PMA 

stimulated and un-stimulated murine neutrophils 

C57B6 and TRIB3-/- murine whole blood samples were pre-incubated with/without 10-7 M PMA for 15 minutes 

at 37 °C, 5% CO2. Samples were incubated with fluorescently conjugated antibody (PE anti-mouse L-selectin) and 

FITC anti-mouse Ly-6G (for labeling neutrophils). They were then incubated for 30 minutes on ice. Further 

incubation with 1% erythrolyse for 10 minutes at RT occurred prior to washing. Surface expression was 

determined by FACS. Data showed mean ± SEM, n = 6-8. Statistical analysis (one-way ANOVA, Bonferroni) was 

carried out. (** p < 0.01). 
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Figure 4. 3: FACS determines adhesion molecule, CD11b, expressed on C57B6 and TRIB3-/- PMA 

stimulated and un-stimulated murine neutrophils  

C57B6 and TRIB3-/- murine whole blood samples were pre-incubated with/without 10-7 M PMA for 15 minutes 

at 37 °C, 5% CO2. Samples were incubated with fluorescently conjugated antibody (PE Rat anti-mouse CD11b 

and FITC anti-mouse Ly-6G (for labeling neutrophils). They were then incubated for 30 minutes on ice. Further 

incubation with 1% erythrolyse for 10 minutes at RT occurred prior to washing. Surface expression was 

determined by FACS. Data showed mean ± SEM, n = 4-5. Statistical analysis (one-way ANOVA, Bonferroni) was 

carried out. (**** p < 0.0001). 
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B) Optimisation of chemoattractant concentrations on neutrophil 
migration  

KC, fMLP and LPS optimal concentrations on neutrophil migration were optimised in previous 

studies [195]. This section is to confirm these data and in the next section to apply it on TRIB3-

/- and study the impact of TRIB3 on neutrophil migration in response to different 

chemoattractants. Migration of isolated murine neutrophils to various stimuli (KC, fMLP and 

LPS) was demonstrated by incubating these cells for 3 hours at 37 ˚C on filter membrane and 

the chemoattractant in the lower chamber of chemotaxis plate (Boyden chamber). In addition, 

increasing concentrations of these chemoattractants was used to check their optimal 

concentration for neutrophil migration. The following figures show the migration of murine 

neutrophils towards KC, fMLP and LPS. 

KC significantly enhanced murine neutrophil chemotaxis compared to the control (buffer) at 

10-5–10-7 M (Figure 4.4). The maximum response was at 10-7 M. It can be seen from the figure 

that a lower concentration (10-8 M) reduced the functional response to the chemotactic factor in 

a dose-dependent manner, whilst at this level it still remained above the control level. On the 

other hand, fMLP enhanced murine neutrophil chemotaxis compared to the control at 10-5 M 

and 10-6 M (Figure 4.5). There was a significant increase in migration at 10-5 M, whilst there 

was a trend to an increased response at 10-6 M. It can be seen from the figure that the lower 

concentrations (10-6–10-8 M) reduced the functional response to the chemotactic factor. In 

contrast, LPS had no significant effect on murine neutrophil chemotaxis compared to the 

control at any of the concentrations used (Figure 4.6). Moreover, it can be seen from the graph 

that there were no trends observed. 

 

 



	
  
92	
  

 

 

 

Figure 4. 4: Migration of murine neutrophils towards KC 

Murine neutrophils isolated from C57B6 were re-suspended in buffer (RPMI supplemented with BSA) and 

incubated for 3 hours at 37 ˚C, 5% CO2 on filter membrane and the buffer or KC (10-5–10-8 M) in the lower 

chamber of chemotaxis plate. The number of migrated neutrophils responding to the buffer or KC was counted. 

Findings were corrected for chemokinesis (random migration) of neutrophils by subtracting the chemokinesis 

control from every value including the cells migrated to the buffer. Data shows mean ± SEM, n = 4. Statistical 

analysis (one-way ANOVA, Dunnett post test) was carried out using buffer as a control. (** p < 0.01 and          

*** p < 0.001). Figure displays the migration as a percentage of the total number of neutrophils added to the filter   

(6 x 104). 
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Figure 4. 5: Migration of murine neutrophils towards fMLP 

Murine neutrophils isolated from C57B6 were re-suspended in a buffer (RPMI supplemented with BSA) and 

incubated for 3 hours at 37 ˚C, 5% CO2 on filter membrane and the buffer or fMLP (10-5–10-8 M) in the lower 

chamber of chemotaxis plate. The number of migrated neutrophils responding to the buffer or fMLP was counted. 

Findings were corrected for chemokinesis (random migration) of neutrophils by subtracting the chemokinesis 

control from every value including the cells migrated to the buffer. Data shows mean ± SEM, n = 4. Statistical 

analysis (one-way ANOVA, Dunnett post- test) was carried out using buffer as a control. (*** p < 0.001). Figure 

displays the migration as a percentage of the total number of neutrophils added to the filter (6 x 104). 
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Figure 4. 6: Migration of murine neutrophils towards LPS 

Murine neutrophils isolated from C57B6 were re-suspended in a buffer (RPMI supplemented with BSA) and 

incubated for 3 hours at 37 ˚C, 5% CO2 on filter membrane and the buffer or LPS (10-8–100 ng/ml) in the lower 

chamber of chemotaxis plate. The number of migrated neutrophils responding to the buffer or LPS was counted. 

Findings were corrected for chemokinesis (random migration) of neutrophils by subtracting the chemokinesis 

control from every value including the cells migrated to the buffer. Data shows mean ± SEM, n = 5. Statistical 

analysis (one-way ANOVA, Dunnett post-test) was carried out using buffer as a control. There were no significant 

differences. Figure displays the migration as a percentage of the total number of neutrophils added to the filter     

(6 x 104). 
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C) Effect of TRIB3 on murine neutrophil chemotaxis in response to 
KC and fMLP 

Neutrophil migration towards KC and fMLP was already detected in different studies [49], 

[179]. However, the effect of TRIB3 on regulating that migration needs to be investigated. 

Therefore, the role of TRIB3 on murine neutrophil migration in response to KC and fMLP was 

studied by incubating C57B6 and TRIB3-/- neutrophil groups for 1 hour at 37 ˚C on filter 

membrane and the chemoattractant in the lower chamber of chemotaxis plate at increasing 

concentrations. The figures 4.7 and 4.8 below show the migration of murine neutrophils 

towards KC and fMLP. 

It can be seen from the graphs that absence of TRIB3 had no significant effect on neutrophil 

migration whether cells enhanced by KC or fMLP.  
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Figure 4. 7: Role of TRIB3 on murine neutrophil migration in response to KC 

Neutrophils isolated from C57B6 and TRIB3-/- mice were re-suspended in buffer (RPMI supplemented with 

BSA) and incubated for 1 hour at 37 ˚C, 5% CO2 on filter membrane and the buffer or KC (10-8–10-5 M) in the 

lower chamber of chemotaxis plate. The number of migrated neutrophils responding to the buffer or KC was 

counted. Findings were corrected for chemokinesis (random migration) of neutrophils by subtracting the 

chemokinesis control from each value including the cells migrated to the buffer. Data shows mean ± SEM, n = 4. 

Statistical analysis (one-way ANOVA, Bonferroni post-test) was carried out. There was no significant difference. 

Figure displays the migration as a percentage of the total number of neutrophils added to the filter (6 x 104). 
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Figure 4. 8: Role of TRIB3 on murine neutrophil migration in response to fMLP 

 Neutrophils isolated from C57B6 and TRIB3-/- mice were re-suspended in buffer (RPMI supplemented with 

BSA) and incubated for 1 hour at 37 ˚C, 5% CO2 on filter membrane and the buffer or fMLP (10-8–10-5 M) in the 

lower chamber of chemotaxis plate. The number of migrated neutrophils responding to the buffer or fMLP was 

counted. Findings were corrected for chemokinesis (random migration) of neutrophils by subtracting the 

chemokinesis control from each value including the cells migrated to the buffer. Data shows mean ± SEM, n = 4. 

Statistical analysis (one-way ANOVA, Bonferroni post-test) was carried out. There was no significant difference. 

Figure displays the migration as a percentage of the total number of neutrophils added to the filter (6 x 104). 
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4.3 Discussion 

Neutrophil migration is essential to physiological and pathological processes. Preceding 

investigations have recorded a relationship between fMLP [49], [180], [53] and IL-8, an 

intermediary chemoattractant that is equivalent to KC in mice and migration of neutrophils 

[49], [53]. It has been observed that chemokines in a concentration gradient can bind with 

leukocytes through GPCRs which result in leukocyte directional migration [53]. Furthermore, 

each class of leukocyte is able to respond to a variety of chemokines [53], and since this study 

is about neutrophils, attention has been focused on this class. 

Given the above, positive results were recorded in these experiments, the murine neutrophils 

migrated to KC and fMLP (intermediary and end target [49] chemoattractants respectively) as 

displayed in figures 4.4 and 4.5. However, there was no migration to LPS (Figure 4.6), 

although p38 MAPK signalling in neutrophils is stimulated by LPS, suggesting LPS is capable 

of activating neutrophils but does not act as a chemoattractant. Furthermore, a study by 

Aomatsu et al found that human neutrophils displayed increased random motility but not 

directed migration after stimulation with LPS within 10 minutes which lasted for more than 90 

minutes, leading to activation of ERK and p38 MAPK [181]. This observation is also seen in 

the data shown in figure 4.6. 

In this project, I have investigated the response of freshly isolated neutrophils to intermediate 

(KC) and end target (fMLP) chemokines from wild type mouse and found that the optimal 

concentration for KC was 10-7 M whereas, 10-5 M for fMLP. 

It also assesses whether knockout TRIB3 affects neutrophil chemotaxis differently. The results 

(Figures 4.7 and 4.8) clearly highlight no profound differences between TRIB3-/- mice and the 

control in neutrophil migration towards KC or fMLP. The concentrations of KC used were 
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similar to that used for the control. In the controls this proved optimal in maximizing 

neutrophil migration. There were hardly any differences between C57B6 and TRIB3-/- mice. 

These findings may indicate that TRIB3 has no effect on neutrophil migration towards KC. The 

other explanation for this could be that optimum KC concentration for the wild type is too high 

for TRIB3-/- mice, which may have resulted in excess KC binding with other receptors. This in 

turn inhibits neutrophil migration. Hence, if lower concentrations were used, differences may 

have been observed. However, a limitation on the number of mice available prevented further 

experiments. 

Interestingly, there was a trend to an increased response to KC at 10-5 M in TRIB3-/- mice 

compared to C57B6. There was also a trend to an increased response to fMLP at 10-7 M and  

10-6 M. This possibly increased the sensitivity of neutrophil migration towards chemoattractant 

due to the knockout of TRIB3. This was confirmed by the data in chapter 5 whilst studying the 

effect of TRIB3 on neutrophil recruitment in thioglycollate-induced peritonitis. The neutrophil 

influx of TRIB3-/- mice towards the peritoneum was greater than the neurophil influx of 

C57B6 at 2 hours, but it was not found to be significant. Therefore, TRIB3 may control 

neutrophil chemotaxis in response to different chemoattractants (KC and fMLP). However, to 

find a significant effect the number of experiments conducted should be increased. 

A study by Davenpeck et al (2000) verified that exposure of neutrophils to PAF or PMA 

results in activated cells, which in turn reduced surface expression of PSGL-1 within minutes 

[192]. Neeley et al published with his group the expression of L-selectin on purified human 

neutrophils caused by varied activators. The results show PAF and fMLP reduced L-selectin 

expression in neutrophils, but IL-5 had no effect on the expression of L-selectin in the cells 

[193]. Siddiqi et al in 2001 found CD11b expression is clearly increased in PMA-stimulated 

neutrophils [194].  
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Figures 4.1–4.3 compared murine neutrophils from both wild type and TRIB3-/- mice. This 

illustrated that no significant difference was seen in the expression of adhesion molecules 

(PSGL-1, L-selectin and CD11b) on neutrophils for both types, whether the cells were 

stimulated with 10-7 M PMA or not. This excludes the effect of TRIB3 on the expression of 

these adhesion molecules on murine neutrophils, although there was a trend towards higher    

L-selectin expression in TRIB3-/- mice before stimulation. However, stimulation of neutrophils 

with PMA showed significant differences in the expression of adhesion molecules in both 

groups (C57B6 and TRIB3-/- mice). Some shedding of L-selectin in PMA post-stimulated 

C57B6 neutrophils was noted but this was not as significant as quoted in other studies in the 

literature. In contrast, TRIB3-/- post-stimulated neutrophils demonstrated shedding of             

L-selectin, giving statistically significant result (Figure 4.2). On the other hand, stimulating 

both C57B6 and TRIB3-/- murine neutrophils with PMA significantly up regulated CD11b 

(Figure 4.3), but neither stimulating C57B6 nor TRIB3-/- neutrophils showed significant 

differences on expression of PSGL-1 compared to the un-stimulated cells (Figure 4.1). Thus, 

this result would suggest that removing TRIB3 and stimulating the neutraphils has a significant 

effect on the shedding of L-selectin from the cell surface. It is thought that the key in 

increasing CD11b expression is the stimulation of the cells not TRIB3 effect, as in both PMA 

post-stimulated neutrophil groups CD11b was up regulated significantly, while with PSGL-1 

neither removing TRIB3 nor stimulation the cells has an impact on PSGL-1 expression. The 

discrepancies in the literature and the in vitro observations of this project may be a 

consequence of certain variables such as the possibility of infection in mice and technical 

differences (selection of samples, substances, concentration and the process of eliminating the 

erythrocytes). 

In summary, this study clearly excludes the significant effect of TRIB3 on the expression of 

adhesion molecules on murine neutrophils. However, it does show stimulation of the cells with 
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PMA may regulate expression significantly, some up and others down-regulation in C57B6 and 

TRIB3-/- mice. Furthermore, clear data propose that neutrophil migration towards some 

chemoattractants, KC and fMLP, is dependent upon on various signalling pathways such as 

p38 MAPK and PI3K (seen in chapter 3), which could be regulated by TRIB3. Again, due to 

inconsistencies in research and observations in this study, additional in vitro studies on the 

impact of TRIB3 on neutrophil migration and adhesion molecules would be suggested. 
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Chapter 5: The role of TRIB3 on neutrophilic 

inflammation in vivo 

 

5.1 Introduction 

Cytokines act as chemical messengers binding to specific receptors, regulating the behaviour of 

other cells. They affect differentiation, development, growth, blood clotting and repair of the 

target cells. Furthermore, cytokines have an essential role in defending the immune system 

against disease. 

This chapter will review whether TRIB3 regulates cytokine levels in lavage fluid derived from 

mice with thioglycollate-induced peritonitis using BD CBA. We also studied whether 

neutrophil migration across the microvasculature and invasion are influenced by the TRIB3 

altered cytokine level. In addition, the effect of knocking out TRIB3 on WBC recruitment in 

blood and on the type of WBC recruited in murine peritoneal lavage fluid was investigated in 

both groups. These were collected at different time points after injecting 4% thioglycollate 

intraperitoneally.  
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5.2 Results 

	
  

A) Function of TRIB3 on murine cytokine levels in thioglycollate-
induced peritonitis 

Diverse studies have revealed that cytokines are required for neutrophil recruitment [196], 

[197]. However, the impact of TRIB3 on controlling their levels has not previously been 

investigated. Therefore, the effect of knocking out TRIB3 on different murine cytokine levels 

in thioglycollate-induced peritonitis of lavage fluid was demonstrated by injecting wild type 

and TRIB3-/- mice intraperitoneally with 4% thioglycollate prior to collecting peritoneal 

lavage fluid from each group at different time points. Levels of cytokines in lavage fluid were 

quantified using CBA. TRIB3 deficiency increased murine IL-13 level in thioglycollate-

induced peritonitis significantly compared to the control (Figure 5.1). Table 5.1 below 

illustrates the levels of each cytokine (GMCSF, IL-4, IL-13, IL-17A, KC, MCP-1, MIP-1α, 

MIP-1β and TNF) individually for lavage fluid.  
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 0 h 2 h 6 h 

 C57B6  TRIB3-/- C57B6  TRIB3-/- C57B6  TRIB3-/- 

GMCSF ND ND ND 42.99 ± 3.93 398.25 ± 21.80 347.67 ± 30.82 

IL4 ND ND ND ND 329.00 ± 8.44 363.67 ± 38.65 

IL13 ND ND ND ND 235.25 ± 8.23  273.67 ± 12.88** 

IL17A ND ND 24.73 ± 4.90 221.02 ± 43.20 6331.00 ± 1438.11 7730.33 ± 4129.74 

KC ND ND 28.26 ± 17.07 42.42 ± 12.36 59637.00 ± 1816.09 55618.33 ± 27426.97 

MCP-1 23.33 ± 3.80 22.57 ± 3.90 851.34 ± 116.44 2979.14 ± 904.74 78182.00 ± 1923.31 63830.67 ± 31022.49 

MIP-1 alpha ND ND 558.56 ± 99.72 833.22 ± 52.80 47103.75 ± 1522.35 40400.33 ± 20007.93 

MIP-1 beta ND ND 130.34 ± 42.04 225.79 ± 41.37 3382.25 ± 101.60 2799.67 ± 927.13 

TNF ND ND 451.26 ± 51.74 629.41 ± 37.74 3258.25 ± 425.52 2659.33 ± 1218.54 

 

 

 

Table 5.1: Effect of TRIB3 on murine cytokine levels in thioglycollate-induced peritonitis of lavage fluid 

The table shows levels of cytokines in thioglycollate-induced peritonitis of lavage fluid of wild type versus 

TRIB3-/- mice, using BD CBA. Cytokine levels were measured in lavage fluid, taken at different time points      

(0, 2, 6 and 24 hours) after injecting 4% thioglycollate intraperitoneally. Data show mean ± SEM in pg/ml. Each 

group is represented by 3-4 mice at each time point (n). Statistical significance was tested using one-way 

ANOVA, followed by Bonferroni post test (** p < 0.01). C57B6 served as a control. ND: below the detection 

limit of the kit  (<10 pg/ml). 
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Figure 5. 1: Effect of TRIB3 on murine IL-13 level in thioglycollate-induced peritonitis of lavage fluid 

The graph illustrates IL-13 concentrations in thioglycollate-induced peritonitis of lavage fluid of wild type versus 

TRIB3-/- mice, using BD CBA. IL-13 level was measured in lavage fluid, taken at different time points              

(0, 2, 6 and 24 hours) after injecting 4% thioglycollate intraperitoneally. Data show mean ± SEM in pg/ml. Each 

group is represented by 3-4 mice at each time point (n). Statistical significance was tested using one-way 

ANOVA, followed by Bonferroni post test (** p < 0.01). C57B6 served as a control. Values below the detection 

limit (10 pg/ml) of the kit are undetectable by this experiment. 
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B) Function of TRIB3 on WBC recruitment in thioglycollate-
induced peritonitis 

Leukocyte chemotaxis in response to various chemoattractants was studied extensively [198]. 

The current study will see the role of TRIB3 on their migration. The effect of absence of 

TRIB3 on murine leukocyte recruitment in thioglycollate-induced peritonitis were investigated 

by injecting C57B6 and TRIB3-/- mice intraperitoneally with 4% thioglycollate before 

collecting blood and peritoneal lavage fluid from each group at different time points. The level 

of circulating leukocytes was significantly less in TRIB3 deficient animals compared to the 

control (Figure 5.2). Figures 5.3A–C demonstrate the total leukocyte cell count versus 

neutrophils (including the percentage) between 2 to 48 hours in peritoneal lavage specimens. 

The graphs highlight that at 2 hours mononuclear cells predominated, but at 6 hours this was 

reversed, demonstrating a predominance of neutrophils in both groups. In addition, there was a 

trend towards an increased neutrophil migration in the peritoneum at 2 hours and persisted at 

24 hours in the TRIB3-/- mice compared to the control.  
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Figure 5. 2: Effect of TRIB3 on blood leukocyte recruitment in thioglycollate-induced peritonitis 

The number of migrated leukocytes in blood of thioglycollate-induced peritonitis in C57B6 versus TRIB3-/- mice 

were counted. Samples were collected at different time points (0, 2, 6 and 24 hours) after injecting                       

4% thioglycollate intraperitoneally. Data show mean ± SEM. Each group is represented by 3-6 mice at each time 

point. Statistical significance was tested using one-way ANOVA, followed by Bonferroni post test                       

(* p < 0.05, ** p < 0.01 and **** p < 0.0001). C57B6 served as a control.  
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Figure 5. 3: Effect of TRIB3 on peritoneal lavage fluid leukocyte recruitment in thioglycollate-induced 

peritonitis 

The number of migrated leukocytes in peritoneal lavage fluid of thioglycollate-induced peritonitis in C57B6 versus TRIB3-/- mice were 

counted (A). Samples were collected at different time points (0, 2, 6, 24 and 48 hours) after injecting 4% thioglycollate intraperitoneally. 

Following counting the cells in peritoneal lavage fluid, the cells were cytospined to obtain the percentage of neutrophils (B) and then the total 

number of neutrophils was calculated (C). D-H show pictures of neutrophils recruited in lavage fluid in thioglycollate-induced peritonitis of 

C57B6 after 0, 2, 6, 24 and 48 hours respectively, whereas I-M belong to TRIB3-/- mice. Data show mean ± SEM. Each group is represented 

by 3-6 mice at each time point. Statistical significance was tested using one-way ANOVA, followed by Bonferroni post test (* p < 0.05). 

C57B6 served as a control. Neutrophil (N). 
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5.3 Discussion 

It is well known that upon infection leukocytes would migrate to the site of infection as a 

protective attempt to eliminate the injurious stimuli. The previous view held that the greatest 

number of neutrophils from murine peritoneal cavities was harvested when mice were 

sacrificed 5 hours post intraperitoneal injection of thioglycolate medium [199]. 

We investigated the effect of thioglycollate-induced peritonitis at different time points post 

injecting thioglycollate intraperitoneally, and then studied whether knocking out TRIB3 

modulates leukocyte migration to the blood and peritoneum. Graphs 5.2 and 5.3 demonstrate 

leukocyte numbers in blood and that migrated to the peritoneum respectively in response to 

thioglycollate. Interestingly, Graph 5.2 demonstrates that blood leukocyte level in the TRIB3-/- 

mice is less than that of the control and this is noted to be significant at 2 and 6 hours. 

However, a marked fall in the leukocyte count is recorded in the control at 24 hours, probably 

resulting in they are went through apoptosis. It appears that knocking out TRIB3 prevents the 

increase in circulating leukocyte levels seen in the wild type after thioglycollate injection. With 

regards to leukocyte migration to peritoneum there is no recorded difference in either category 

(Figure 5.3A). Therefore, neutrophils that have migrated to the peritoneum were tested. As a 

result, it is very clear from figure 5.3C compared to figure 5.3A that the number of neutraphils 

at 6 hours, for both groups (C57B6 and TRIB3-/- mice), predominated. Figure 5.3C also 

illustrates knockout of TRIB3 may increase sensitivity of neutrophil migration. A trend of 

increase neutrophil migration of TRIB3-/- mice towards peritoneum at 2 hours compared to 

C57B6. This result was confirmed by the data in chapter 4 when studying the effect of TRIB3 

on murine neutrophil migration in response to KC and fMLP; as neutrophil influx of TRIB3-/- 

mice towards KC at 10-5 M and fMLP at 10-7 M and 10-6 M was greater than C57B6, but was 

not found to be significant. Figure 5.3C also shows neutrophil numbers in lavage fluid increase 

with time for both thioglycollate-induced peritonitis groups up to 6 and 24 hours respectively. 
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At later time points, a reduction in the neutrophil numbers was recorded, as they are thought to 

undergo apoptosis. It is clear that knocking out TRIB3 from murine cells had no significant 

effect on neutrophil migration. Furthermore, neutrophil migration in TRIB3-/- mice persisted 

and continued to increase at 24 hours compared to the control which decreased after 6 hours 

until a minimal number migrated at 24 hours (again there was no significance), which possibly 

due to TRIB3 deficiency leading to delay in neutrophil apoptosis. The percentage of migrated 

neutrophils in thioglycollate-induced peritonitis mice was measured and it showed no 

significant difference between both groups at any time point (Figure 5.3B). Taking into account 

the results of the effect of TRIB3-/- on murine multi-cytokine levels in thioglycollate-induced 

peritonitis of lavage fluid, it is clear that cytokine levels increase with time for both 

thioglycollate-induced peritonitis groups (Table 5.1 and Figure 5.1). This indicates that the 

initial process occurring after introducing thioglycollate is increasing levels of neutrophil-

attracting chemokines at the site of infection. This could explain the increase in recruiting 

neutrophils at the peritoneum as an inflammatory response by either a direct or indirect 

mechanism as a chemoattractant. Considerable volume of research has looked at direct 

mechanism as a chemoattractant. An article published in the Journal of Leukocyte Biology in 

2011 demonstrated that GMCSF is a chemoattractant for murine neutrophil as verified in vivo 

[196]. Further studies have revealed that IL-17A and IFN-γ are produced by neutrophils, which 

in turn may up-regulate neutrophil transmigration in mouse kidney ischemia-reperfusion injury 

[200]. 	
  

An in vivo study in 2008 demonstrated that murine tissue macrophage TLR signaling directly 

induces neutrophil-attracting chemokines (KC and MIP-2) synthesis. These chemokines 

constitute the key for neutrophil migration, which represents the earliest immune cells to 

recruit into infected tissue [197]. Furthermore, a study published in 2004 concluded that 

neutrophils migrating into inflammatory tissues from intravascular space are induced by the 
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basement membrane to secrete the chemokine MIP-1 β, this in turn caused dendritic cells to 

migrate in the same way [201]. 

When looking at literature for indirect mechanisms Ratthé et al 2009 found that IL-4 

significantly increased the number of leukocytes (neutrophils and monocytes) in vivo murine 

air pouch model by an indirect mechanism. This mechanism involved the up regulation of the 

chemoattractant MCP-1 [202]. Further research has showed that IL-13 activates human 

neutrophils to modulate the synthesis of many neutrophil proteins (e.g. IL-8, IL-1R antagonist 

and IL-1 decoy receptor), which involve increases in tyrosine phosphorylation by tyrosine 

kinases [203]. A study in 2005 revealed that neutrophil accumulation occurred in an 

experimental model of allergen-induced immune inflammation in the murine peritoneum is 

mediated by macrophage-inflammatory protein (MIP)-1α that induces sequential release of 

TNF-α and LTB4 through C-C chemokine receptor type 1 (CCR1) [204]. 

In contrast with the increase in cytokine levels with time for both thioglycollate-induced 

peritonitis groups, knocking out TRIB3 from murine cells had an effect on several cytokines 

and it is time dependent, GMCSF, IL-17A and MCP-1 at 2 hours and IL-13 at 6 hours 

compared to the control, although the findings were not statistically significant except for     

IL-13 (Table 5.1 and Figure 5.1). As a result of this, it may be that TRIB3 down regulates these 

cytokines at a certain point in time, although this regulation has no considerable effect on 

neutrophil migration (Figures 4.7 and 4.8 illustrated in chapter 4). Nevertheless, there has been 

a general agreement on the chemoattractants involved in neutrophil recruitment, the 

mechanisms by which neutrophils recruit between endothelia and migrate into the 

inflammatory site remains unclear.  

Overall these observations suggest that some cytokines are involved in increasing neutrophil 

migration across the microvasculature and invasion of the affected tissue by different 



	
  
113	
  

mechanisms. In addition to this, TRIB3 controls cytokine levels. TRIB3 deficiency was also 

found to inhibit the increase in circulating leukocyte number significantly; may increase 

neutrophil migration towards peritoneum (inflammation site) and may extend their existence 

when compared to the control in thioglycollate-induced peritonitis, due to possible effect of 

TRIB3 deficiency on neutrophil appoptosis. The control was found to be transient as their 

neutrophils migrated and left the peritoneum rapidly. Interpretation of the in vivo cytokine and 

TRIB3 results is hindered by the fact that the mechanisms are still to be discovered, as 

cytokines are a prerequisite for neutrophil emigration with TRIB3 regulating several of these. 
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Chapter 6: The role of TRIB3 in insulin resistance, control 

of lipid homeostasis and in the development of 

atherosclerosis 

 

6.1 Introduction 

TRIBs coordinate the activation and suppression of various cascades. They have an essential 

function in determining cell fate during response to environmental challenges [131]. 

Specifically, TRIB3 has been published by most [153], [155] but not all [167] studies to 

dysregulate insulin action via interacting with Akt in murine models of diabetes. Increasing 

levels of TRIB3 may lead to insulin resistance in mice [153], [155]. Data by Weismann et al 

observed TRIB3 knockdown rats gained considerable weight, improved insulin sensitivity and 

increased expression of PPAR-γ. Interestingly, there was no remarkable variation in Akt 

activation, which suggest TRIB3 may regulate lipid synthesis through a PI3K-independent but 

PPAR-γ-mediated mechanism [170]. 

Publication by Koo et al suggested TRIB3 an important regulator of glucose and lipid 

metabolism, as its expression was induced by fasting through induction of PPARα [155]. 

Despite the discrepancies in the literature, it seems logical to propose that TRIB3 may be a 

critical modulator of signalling mechanisms regulating lipid homeostasis. Impairment in 

TRIB3 function may lead to the development of serious disease such as type 2 diabetes. Given 

the prevalence of cardiovascular disease, studying genes, for instance TRIB3, contributing to 

the impaired lipid homeostasis and insulin resistance was taken the priority of this study. 
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This chapter attempts to synthesise knowledge obtained on TRIB3 action in the context of lipid 

homeostasis, insulin resistance as well as discussing the importance of TRIB3 in developing 

atherosclerosis. It will study whether knocking out TRIB3 modulates growth rate of mice on 

chow and 60% HFD compared to C57B6 control mice and review its effect on the quantity and 

type of WBC in mouse blood and peritoneal lavage fluid of both groups. Furthermore, it will 

show the effect of TRIB3 on insulin resistance in glucose- or insulin-injected mice again on 

normal and HFD, taking the glucose readings at different time points, in addition to the 

baseline glucose reading before intraperitoneal injection. In addition to this we will look at the 

role of TRIB3 in lipid homeostasis and development of atherosclerosis. Aortas were stained by 

Oil Red O to distinguish the plaque regions post feeding the mice 60% HFD for 11 weeks. 
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6.2 Results 

	
  

A) Role of TRIB3 on weight gain of mice on 60% HFD and gender 
effect on TRIB3-/- mice weight fed chow 

Murine weight gain has been recorded formerly, but the impact of TRIB3 deficiency and 

feeding the mice HFD on it requires investigation. The role of TRIB3 on male murine weight 

gain was studied on C57B6 and TRIB3-/- groups fed 60% HFD for 11 weeks. Both groups 

were weighed every week and matched with their ages (Figure 6.1A). The percentage weight 

gain was then measured (Figure 6.1B). Data demonstrates that TRIB3 deficiency and HFD in 

combination alter murine weight gain. The data also shows that the effect of TRIB3 deficiency 

on weight was gender specific, as TRIB3-/- males weighed more than the C57B6 males 

significantly but not females (Figures 6.2A and 6.2B). 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



	
  
117	
  

	
  

	
  

Figure 6. 1: Effect of TRIB3 on weight gain of male mice on 60% HFD 

(A) C57B6 versus TRIB3-/- mice were fed 60% HFD for 11 weeks. Weight was taken every week for both 

groups. They were males and aged 18 week upon commencement of fat feeding. The readings were taken for      

11 weeks, initiating with a baseline weight before fat feeding begins. (B) Represents the percentage of weight 

gain. Data show mean ± SEM. Every group is represented by 7 mice at each condition. Statistical significance was 

tested using two-way ANOVA. C57B6 served as a control (*** p < 0.001). 
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Figure 6. 2: Gender specific effect of TRIB3 on weight for chow fed mice 

18 week aged males (A) and 14 week aged females (B) C57B6 versus TRIB3-/- mice respectively were fed chow. 

Data show mean ± SEM. The male groups consist of 7 of each C57B6 and TRIB3-/- mice. The female groups 

consist of 5 C57B6 and 3 TRIB3 mice. Statistical significance was tested using unpaired t test. C57B6 served as a 

control (* p < 0.05). 
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B) Role of TRIB3 on WBC quantity in the peritoneal lavage fluid in 
mice fed 60% HFD 

Leukocyte numbers in peritoneum during an inflammatory response have previously been 

reported [205]. This study will highlight the possible influence of TRIB3 on peritoneal 

leukocyte quantity.	
  The function of TRIB3 on WBC quantity in the peritoneal lavage fluid was 

investigated after feeding C57B6 and TRIB3-/- groups 60% HFD for 11 weeks. Knocking out 

TRIB3 significantly increased leukocyte numbers in peritoneum compared to C57B6 (Figure 

6.3A) but this was not observed specifically to neutrophils in either group (Figures 6.3B and C).	
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Figure 6. 3: Effect of TRIB3 on WBC quantity in the peritoneal lavage fluid in mice fed 60% HFD 

The number of leukocytes from peritoneal lavage fluid of C57B6 versus TRIB3-/- mice was counted (A). Samples 

were collected after feeding mice for 11 weeks 60% HFD. Following counting the cells, a cytospin was performed 

on peritoneal lavage fluid of C57B6 (B) and TRIB3-/- (C) mice. Data show mean ± SEM. Each group is 

represented by 7 mice. Statistical significance was tested using unpaired t test (*** p < 0.001). C57B6 served as a 

control.	
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C) Role of TRIB3 on WBC types in mouse blood fed chow and 60% 
HFD 

Circulating leukocyte subsets that are involved in inflammation have been studied widely [205]. 

Yet, the importance of TRIB3 on the quantity of these cells needs to be investigated. The role 

of TRIB3 on leukocyte types circulating in mouse blood was studied after feeding mice normal 

and 60% HFD for 5 and 11 weeks. Graph 6.4A illustrates no significant difference in the 

number of leukocytes in TRIB3-/- blood compared to the control regardless of whether the 

mice were on normal or HFD. However, post long period of time (11 weeks) feeding both 

groups 60% HFD resulted in significantly lower leukocyte numbers than feeding them for 5 

weeks. Considering the leukocyte types, lymphocytes were shown to predominate in both 

groups whether on chow or HFD, except C57B6 mice on a normal diet as the majority was 

shared between lymphocytes and neutrophils. Furthermore, knocking out TRIB3 down-

regulated only neutrophils significantly in mice fed normal food. On the other hand, feeding 

the mice 60% HFD reduced neutrophil and monocyte numbers significantly in both blood 

groups, while the significant reduction in lymphocytes was just restricted to C57B6 group on 

diet for 11 weeks compared to 5 weeks feeding of the same group (Graphs 6.4B–D). 

 

 

 

 

 

 

 

 

 

 



	
  
122	
  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  

	
  

	
  

	
  

	
  

 

Figure 6. 4: Role of TRIB3 on WBC types in mouse blood fed chow and 60% HFD 

The number of leukocyte in blood of C57B6 versus TRIB3-/- mice was counted (A). Samples were collected at 

different time points; 0, 5 and 11 weeks after feeding the two groups 60% HFD. B-D represent the number of 

lymphocytes, monocytes and neutrophils in blood/l respectively, while E-G are the percentage of these cells (same 

order). Data show mean ± SEM. Each group is represented by 4-7 mice at each time point. Statistical significance 

was tested using one-way ANOVA, followed by Bonferroni post test (* p < 0.05, ** p < 0.01 and *** p < 0.001). 
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D) Role of TRIB3 in insulin sensitivity in mouse blood fed chow and 
60% HFD 

Whilst there are wide range studies in terms of impact of TRIB3 on insulin sensitivity [170], its 

molecular mechanism remains incomplete and its physiological function controversial. This 

study will confirm/contradict what have already been published. The effect of TRIB3 

deficiency on glucose concentration at different time points was investigated in mice injected 

with glucose or insulin that were fed with normal and 60% HFD food. Figure 6.5 demonstrated 

that no matter if the mice in both groups were fed with chow or HFD, their glucose 

concentration have increased trend after 30 minutes from injecting of glucose. The trend of 

glucose level remained elevated significantly in TRIB3-/- mice on HFD, while it returned to 

the base line after 2 hours from injection in other groups (both C57B6 groups on chow and 

HFD, and TRIB3-/- group on chow). In contrast, figure 6.6 showed a significantly decreased 

blood glucose concentration in C57B6 mice fed HFD compared to their control on chow after 

60 minutes from insulin injection, whereas TRIB3-/- mice on chow and both groups on HFD 

had a significantly lower blood glucose concentration at 60 minutes post insulin injection 

compared to the start time point.  
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Figure 6. 5: Effect of TRIB3 on blood glucose in glucose-injected mice fed chow and 60% HFD (GTT) 

C57B6 and TRIB3-/- mice were fed chow or 60% HFD for 8 weeks and then starved overnight. Blood was 

collected from tail to take a baseline glucose reading before intraperitoneal injection of the mouse with sterile 

glucose at 10 ul/g BW (20% D-glucose). Readings were taken at different time points (0, 30, 60, 90 and 120 

minutes). Data show mean ± SEM in mmol/l. Each group is represented by 5 or 7 mice at each time point. 

Statistical significance was tested using one-way ANOVA, followed by Bonferroni Post Test (** p < 0.01 and                 

**** p < 0.0001). 
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Figure 6. 6: Effect of TRIB3 on blood glucose in insulin-injected mice fed chow and 60% HFD (ITT) 

C57B6 and TRIB3-/- mice were fed chow or 60% HFD for 11 weeks and then fasted for 2-3 h. Blood was 

collected from tail to take a baseline glucose reading before intraperitoneal injection of the mouse with sterile 

insulin at 0.75 U/kg BW (0.25 U/ml). Readings were taken at different time points (0, 20, 40 and 60 minutes). 

Data show mean ± SEM in mmol/l. Each group is represented by 5 or 7 mice at each time point. Statistical 

significance was tested using one-way ANOVA, followed by Bonferroni post test (** p < 0.01 and                  

**** p < 0.0001). C57B6 served as a control. 
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E) Role of TRIB3 in control lipid homeostasis in mouse blood fed 
chow and 60% HFD 

TRB3 has been linked to insulin resistance [153] and metabolic syndrome [206]. Part of these 

disease processes is dysregulated plasma lipid levels. Therefore, I investigated the 

consequences of TRIB3 deficiency on plasma lipid profile.	
  The function of TRIB3 on lipid 

homeostasis was investigated in mouse blood after feeding mice normal and 60% HFD for 11 

weeks. The following graphs show knocking out TRIB3 decreased cholesterol and HDL 

concentrations in the blood significantly compared to the control in mice fed 60% HFD, but not 

in mice on normal diet. In contrast, the diet itself had an effect as feeding mice 11 weeks HFD 

increased cholesterol and HDL concentrations significantly of both groups (Figures 6.7A and 

6.7B).	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  
127	
  

                                                        

                                        

                                             

 

Figure 6. 7: Effect of TRIB3 on lipid homeostasis in mouse blood fed chow and 60% HFD 

Blood plasma was collected from C57B6 versus TRIB3-/- mice post chow and 60% HFD feeding for 11 weeks. 

A-C represent cholesterol, HDL and TG levels respectively for both groups, which were measured via enzymatic 

colorimetric test by the department of Clinical Chemistry, using Cobas 8000 system. Data shows mean ± SEM in 

mmol/l. Each group is represented by 5 or 7 mice at each condition. Statistical significance was tested using one-

way ANOVA, followed by Bonferroni post test(* p < 0.05, ** p < 0.01 and *** p < 0.001). 
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F) Role of TRIB3 in the development of atherosclerosis in mouse fed 
60% HFD 

It has been demonstrated that TRIB3 is involved in atherosclerosis disease [171]. The present 

study aims to investigate further whether TRIB3 is implicated in this disease. The function of 

TRIB3 in metabolic processes which contribute to atherosclerosis development was 

investigated in mice fed 60% HFD for 11 weeks. Aortas were stained by Oil Red O, while each 

heart sinus by H&E. As a result, graphs show that neither diet nor knocking out TRIB3 had an 

effect on developing lesions on aorta or heart sinus. This is illustrated in figures 6.8A-D. 
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Figure 6. 8: Effect of TRIB3 on developing plaque in mice fed 60% HFD 

Histological analysis of aortas and heart sinuses of C57B6 and TRIB3-/- mice on 60% HFD for 11 weeks. Seven 

aortas were obtained from each group stained with Oil Red O. Images A and B are representatives of each group. 

Two to three heart sections were obtained from each group stained with H&E, images C and D are representatives 

of each microscopic heart sinus of C57B6 and TRIB3-/-. Valve leaflet (A), lumen (B), aortic sinus (C) and 

surrounding heart muscle (D). 
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G) Role of TRIB3 in heart sinus cells architecture in mouse fed 60% 
HFD 

The current study also aims to investigate whether TRIB3 has an effect on heart sinus cells 

architecture. The function of TRIB3 in these cells was investigated in mice fed 60% HFD for 

11 weeks. Heart sinuses were stained by H&E. As shown in the graphs 6.9A and 6.9B TRIB3 

deficiency had no effect on heart sinus cells architecture, given no differences found between 

C57B6 and TRIB3-/- groups. 
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Figure 6. 9: Effect of TRIB3 on heart sinus cells architecture in mouse fed 60% HFD 

Histological analysis of heart sinus of C57B6 and TRIB3-/- mice on 60% HFD for 11 weeks. Two to three heart 

sinus sections were obtained from each group stained with H&E. Images A and B are representatives of each 

microscopic heart sinus cells architecture of C57B6 and TRIB3-/-. 
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H) Liver and adipose tissue histology of C57B6 and TRIB3-/- mice 
fed chow and 60% HFD 

Previous studies have shown that TRB3 is expressed in liver and adipose tissue [169]. This 

experiment aims to investigate whether TRB3 modulates the phenotype of these tissues. 

Histological analysis of tissues was investigated in C57B6 and TRIB3-/- mice on chow and 

60% HFD for 11 weeks. Sections were stained with H&E. Figures 6.10A-D show no difference 

in liver cells of all 4 group. Figures 6.11A-D illustrate no difference in adipose cells between 

C57B6 and TRIB3-/- mice on chow, while an increase in cell size of both groups fed HFD and 

even TRIB3-/- was larger when compared to C57B6 on the same diet.   
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Figure 6. 10: Liver histology of C57B6 and TRIB3-/- mice fed chow and 60% HFD 

Histological analysis of liver of C57B6 and TRIB3-/- mice on chow or 60% HFD for 11 weeks. Sections were 

obtained from 3 mice from each group chow and HFD fed stained with H&E. Images A and B are representatives 

of microscopic liver cells of C57B6 and TRIB3-/- mice on chow, while images C and D on HFD. 
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Figure 6. 11: Adipose tissue histology of C57B6 and TRIB3-/- mice fed chow and 60% HFD 

Histological analysis of adipose tissue of C57B6 and TRIB3-/- mice on chow or 60% HFD for 11 weeks. Sections 

were obtained from 3-5 mice from each group chow and HFD fed stained with H&E. Images A and B are 

representatives of microscopic adipose cells of C57B6 and TRIB3-/- mice on chow, while images C and D on 

HFD. 
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I) The effect of TRIB3 deficiency in determining macrophage 
numbers in heart, liver and adipose tissue 

Infiltration of macrophages in the development of atherosclerosis and metabolic syndrome has 

been demonstrated. These cells are believed to be important local drivers of tissue 

inflammation [9], [207]. The importance of TRIB3 in determining macrophage numbers in 

heart, liver and adipose tissue was studied in mice fed 60% HFD for 11 weeks. This was also 

shown in adipose tissue for chow fed mice. Heart sinus, liver and adipose tissue were incubated 

with F4/80 antibody (the marker of macrophages; primary antibody), biotinylated anti-rat IgG 

(secondary antibody), Vectastain ABC-HRP reagent and DAB before counterstaining by 

haematoxylin. Macrophages in these tissues were then counted. As a result, graphs 6.12A-D 

and 6.13A-F show neither heart nor liver had macrophages in C57B6 and TRIB3 mice fed 

HFD. With respect to adipose tissue of mice on chow graphs 6.14A-F illustrate no 

macrophages in either group. However, feeding mice HFD led to an insignificant increase 

macrophage number in adipose tissue, whereas TRIB3 deficiency had no effect on 

macrophages, as no differences were found between C57B6 and TRIB3-/- mice graphs   

6.14G-L. 
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Figure 6. 12: The importance of TRIB3 in determining macrophage number in heart of mouse fed 60% 

HFD 

Histological analysis of heart sinus of C57B6 and TRIB3-/- mice on 60% HFD for 11 weeks. Two to three heart 

sinus sections were obtained from each group incubated with F4/80 antibody (the marker of macrophages; primary 

antibody), biotinylated anti-rat IgG (secondary antibody), Vectastain ABC-HRP reagent and DAB before staining 

by haematoxylin. Images A and B are representatives of microscopic heart sinus of C57B6, while C and D are 

representatives of TRIB3-/-. Macrophage (M). 
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Figure 6. 13: The importance of TRIB3 in determining macrophage number in liver of mouse fed 60% 

HFD 

Histological analysis of liver of C57B6 and TRIB3-/- mice on 60% HFD for 11 weeks. Three liver sections were 

obtained from each group incubated with F4/80 antibody (the marker of macrophages; primary antibody), 

biotinylated anti-rat IgG (secondary antibody), Vectastain ABC-HRP reagent and DAB before staining by 

haematoxylin. Images A-C are representatives of microscopic liver of C57B6, while D-F are representatives of 

TRIB3-/-. Macrophage (M). 
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Figure 6. 14: The importance of TRIB3 in determining macrophage number in adipose tissue of mouse fed 
chow and 60% HFD 

Histological analysis of adipose tissue of C57B6 and TRIB3-/- mice on chow and 60% HFD for 11 weeks. Three 

adipose tissue sections were obtained from each group incubated with F4/80 antibody (the marker of 

macrophages; primary antibody), biotinylated anti-rat IgG (secondary antibody), Vectastain ABC-HRP reagent 

and DAB before staining by haematoxylin. Images A-C are representatives of microscopic adipose of C57B6, 

while D-F are representatives of TRIB3-/- both on chow.  Images G-I are representatives of microscopic adipose 

of C57B6, while J-L are representatives of TRIB3-/- both on HFD. Macrophage (M). 
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6.3 Discussion  

The literature has described the essential regulatory role for TRIB3 in lipid homeostasis and 

insulin resistance. A study by Ord et al in 2007 demonstrated that TRIB3 has a role in 

protecting cells against the growth inhibitory and ATF4 cytotoxic effect [208]. 

Further research has looked into the role of TRIB3 in insulin resistance and its effects on 

diabetes. Du et al demonstrated that TRIB3 may act as a down-regulator of Akt activation by 

insulin in murine liver, by linking and interfering with Akt activation. Therefore, TRIB3 

contributes to insulin resistance in individuals liable to type II diabetes [153]. 

This study investigated the impact of TRIB3 in various experiments in C57B6 and TRIB3-/- 

groups fed chow and 60% HFD for 11 weeks. When looking at its impact on weight gain, the 

graphs indicated that TRIB3-/- and HFD have a role in increasing murine weight gain 

significantly. Both groups were weighed weekly and matched with their ages (Figure 6.1A), 

and as the weight of TRIB3-/- mice at start point was greater than the control and remained 

elevated with increasing age, percentage weight gain was assessed and results plotted on a 

graph (Figure 6.1B). This is to ensure that the increase in mouse weight gain was due to 

knocking out TRIB3 in addition to feeding the mice HFD, not due to TRIB3-/- mice weighing 

more than the control at the start of the experiment. This project proved that the effect of 

TRIB3 knockout on weight was gender specific, as TRIB3-/- males on chow weighed 

significantly more than C57B6 mice, however, no difference was found in females (Figures 

6.2A and 6.2B). 

The role of TRIB3 in insulin resistance in murine blood fed chow and 60% HFD was 

investigated. Figure 6.5 showed that knocking out TRIB3 as well as HFD have an effect on 

blood glucose level as the level of glucose remained elevated significantly in TRIB3 -/- mice 
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on HFD, while it returned to the base line after 2 hours from injection in other groups (both 

C57B6 groups on chow and HFD, and TRIB3-/- group on chow). In addition to this, from     

30-120 minutes and from 60-120 minutes TRIB3-/- mice on HFD showed a significantly 

higher glucose level compared to the TRIB3-/- mice on chow and C57B6 on HFD respectively. 

Therefore, TRIB3 may be required to control murine blood glucose level through regulating 

glucose metabolism, and TRIB3 impairment may lead to develop insulin resistance. Figure 6.6 

confirmed the results of figure 6.5 by illustrating groups fed HFD (C57B6 and TRIB3-/- mice) 

as well as TRIB3-/- mice on chow, which showed a significant decrease in glucose level at    

60 minutes after insulin injection compared to 0 minute time point. However the glucose level 

of C57B6 on chow returned to the normal level at starting point. In other words, TRIB3 could 

have a key role in maintaining normal blood glucose level, and its deficiency decreases 

releasing glucose from tissues to the blood. 

A study by Koo et al in 2004 proposed that inhibition of TRIB3 may treat type II diabetes as in 

liver, PGC-1 promotes insulin resistance via PPAR-α-dependent induction of TRIB3 [155]. 

Furthermore, Okamoto et al (2007) documented that TRIB3 deficiency displays normal hepatic 

insulin signalling and glucose homeostasis in mice [169]. Also looking at insulin resistance, 

Weismann et al in 2011 proposed that in vivo TRIB3 inhibition improves insulin sensitivity via 

PPAR-γ activation and without any alteration in RAC-beta serine/threonine-protein kinase 

(Akt2) activity in a rat model of insulin resistance [170]. 

Unger et al in 2003 suggested that insulin resistance results secondary to lipid accumulation, 

which occurs due to full responsiveness to insulin-stimulated lipogenic activity [209]. 

Takahashi et al (2008) demonstrated TRIB3 down-regulates PPAR-γ, a master controller of 

adipocyte differentiation, and regulates adipogenesis [137]. Furthermore, Wang et al in 2012 

recorded that TRIB3 silence in diabetic ApoE-/-/LDL receptor-/- mice suppresses 
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atherosclerosis and stabilises plaques [171]. Oberkofler et al in 2010 showed in insulin-

resistant obese human’s atypical hepatic TRIB3 gene expression [210]. The previous literature 

demonstrates the important regulatory function of TRIB3 in lipid homeostasis and insulin 

sensitivity.  

In addition to the effect of TRIB3 on insulin resistance, its role on lipid homeostasis was 

studied in murine blood fed chow and 60% HFD. Graphs 6.7A and 6.7B demonstrated that diet 

has an influence on modulating lipid homeostasis as feeding HFD to mice for 11 weeks 

significantly increased cholesterol and HDL concentrations in both groups. Further to this, 

TRIB3-/- altered the proportion of the increase as there was a rise in cholesterol and HDL 

levels post feeding HFD by 2 and 2.3 fold respectively in C57B6 group, whereas by 1.3 and 1.5 

fold respectively in TRIB3-/- group. TRIB3 deficiency itself did not show any significant 

effect on lipid homeostasis in mouse blood except if the mice were fed a HFD. Here, it 

decreased cholesterol and HDL concentrations significantly in murine blood on 60% HFD for 

11 weeks compared to their controls fed the same diet, but not in mice on a normal diet.  

The above results indicate that on a HFD TRIB3 may be involved in lipid release from tissues, 

such as adipose tissue, to the blood to maintain lipid homeostasis. TRIB3 deficiency may 

therefore lead to an increased tissue lipid storage, which results in decreased blood lipid. By 

contrast, figure 6.7C illustrated neither diet nor knocking out TRIB3 have an effect on TG 

concentration. Given the above TRIB3 may regulate lipid homeostasis in mouse blood when 

fed a 60% HFD, however, molecular mechanism of TRIB3 action remains unclear. 

Histological analysis of liver and adipose tissue were investigated in C57B6 and TRIB3-/- mice 

fed chow and 60% HFD for 11 weeks. The results showed no difference between liver cells of 

both groups whether mice were on chow or HFD (Figures 6.10A-D). Also no difference was 

found in adipose cells of both groups on chow. However, feeding mice HFD increased adipose 
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cell size of C57B6 and TRIB3-/-. In addition to this, knocking out TRIB3 resulted in a further 

increase in cell size when compared to C57B6 on the same diet (Figures 6.11A-D). In other 

words, TRIB3 may have a role on lipid release from adipose cells to the blood and knocking it 

out may increase lipid storage in these cells, which in turn increase cell size. This supports the 

above findings. It could also be that TRIB3 deficiency leads to a decrease in cell mitosis, 

therefore, reducing cell numbers and increasing cell size compared to its control on the same 

diet, or it may be due to a combination of both. 

Furthermore, the role of TRIB3 on WBC numbers in the peritoneal lavage fluid in mice fed 

60% HFD was studied. It was evident that knockout TRIB3 significantly increased leukocyte 

numbers in peritoneum compared to C57B6 (Figure 6.3A). However, neutrophils were not 

observed in both groups (Figures 6.3B and C). This suggests that TRIB3 is not necessary to 

control the number of all WBC types in peritoneum as it has no effect on neutrophil number. 

The role of TRIB3 on WBC circulating in mouse blood fed chow and 60% HFD can be seen in 

graph 6.4A which illustrates no significant difference in the number of leukocytes in TRIB3-/- 

blood compared to the control regardless of whether mice were on normal food or HFD. 

However, post prolonged time (11 weeks) feeding both groups 60% HFD resulted in a 

significantly lower leukocyte numbers than feeding them for 5 weeks. With regards to the 

numbers of leukocyte types that are in murine blood, lymphocytes were shown to predominate 

in both groups whether mice are chow or HFD fed, with the exception of C57B6 group that 

were fed chow as the majority were lymphocytes and neutrophils (graphs 6.4B–D). 

Interestingly, figures 6.4B–D also display among leukocyte types, knocking out TRIB3 

decreased only neutrophil number significantly in mice fed normal food. It is possible that the 

decrease in neutrophils is compensated by other type of leukocytes as in figure 6.4A there were 

no difference in leukocyte numbers between C57B6 and TRIB3-/- mice fed chow. However, 
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the impact of feeding the mice 60% HFD is seen clearly on decreasing neutrophil and 

monocyte numbers in both blood groups (Figures 6.4C–D), while the significant decrease in 

lymphocyte number was restricted to C57B6 group on diet for 11 weeks compared to 5 weeks 

feeding of the same group (Figure 6.4B). Furthermore, the percentage of cells in blood was 

measured, figures 6.4E–G displayed knocking out TRIB3 increased the percentage of 

lymphocytes significantly, whereas the percentage of neutrophils was apparently decreased, but 

no effect was seen on the percentage of monocytes in mice fed chow. In contrast, feeding 

TRIB3-/- mice 60% HFD for short term (5 weeks) resulted in a significant decrease in the 

percentage of lymphocytes compared to C57B6 group on the same diet. In addition to this, 

measuring the percentage demonstrates the significant impact of diet, as monocytes in addition 

to neutrophils were decreased, whereas lymphocytes increased considerably in both C57B6 and 

TRIB3-/- groups. 

This study also investigated the function of TRIB3 in developing lesions on aorta and heart 

sinus in mice fed 60% HFD for 11 weeks and clearly found both TRIB3 and feeding the mice 

HFD have no influence on atherosclerosis development in both areas (Figures 6.8A–D). 

Furthermore, TRIB3 has no effect on the heart sinus architecture as illustrated in figures 6.9A 

and 6.9B. 

When looking at the heart, Ti et al (2011) showed in a type 2 diabetic rat model TRIB3 gene 

silencing alleviates diabetic cardiomyopathy [138]. Gong et al in 2009 found people with 

TRIB3 functional Q84R polymorphism are at risk of metabolic syndrome and carotid 

atherosclerosis [206]. 

Data shows there were almost no macrophages present in the heart sinus and liver in C57B6 or 

TRIB3-/- mice on HFD, in addition to adipose tissue of both groups fed chow. This indicates 

that TRIB3 has no role in determining macrophage numbers in these tissues (Figures 6.12A–D 
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and 6.13A–F). On the other hand, this diet may have an effect on adipose tissue, as adipose in 

both groups fed HFD have reduced macrophage numbers compared to their controls on chow. 

Again, knockout TRIB3 did not have a role in determining macrophage number in adipose, as 

the macrophage numbers in adipose of C57B6 and    TRIB3-/- mice on HFD was similar 

(Figures 6.14A–L).  

All of the above data suggest TRIB3 deficiency and HFD in combination modulate murine 

weight gain significantly. It also supports the theory that TRIB3 and HFD have an impact on 

WBC numbers in peritoneum and blood. However, their effect varies and depends on several 

factors as follows: leukocyte type, the mice diet and period of HFD. In addition, gender 

appears to play a key role on the weight of TRIB3-/- mice, which were fed chow compared to 

C57B6. 

TRIB3 may be required to control murine blood glucose levels through regulation of glucose 

metabolism and glucose release from the tissues. TRIB3 deficiency may have a role in insulin 

resistance. Nevertheless, TRIB3 may be involved in controlling lipid homeostasis in mouse 

blood fed 60% HFD; neither diet nor knocking out TRIB3 has an effect on atherosclerosis 

development in mice. TRIB3 could also play a part in cell mitosis, specifically adipose but 

showed no effect on heart sinus architecture and macrophage number in all of murine heart 

sinus, liver and adipose in mice fed 60% HFD as seen in this study.  

Further investigations on TRIB3 need to be conducted in addition to critical questions to be 

addressed, assessing its function. These include the molecular mechanism of TRIB3 action on 

lipid homeostasis, its impact on WBC numbers as well as identification of its exact role on 

insulin sensitivity. 
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Chapter 7: General Discussion 

	
  

The discussion that follows below is an analysis of the experiments conducted in view of the 

hypothetical propositions put forward and the aims outlined in the thesis. 

It has been published by Nick et al in 2000 that there is greater dependence on p38 MAPK 

pathway in the neutrophil compared to other WBC [182]. A study by Knall et al demonstrated 

that neutrophil chemotaxis towards IL8 is PI3K-dependent [183], [184]. Our observations 

strongly suggest that TRIB3 does not control activation of neutrophils via p38 MAPK. Its 

deficiency does not alter p38 phosphorylation compared to C57B6, or it may be that its effect is 

minute to the extent it is undetectable by western blotting technique. Data clearly highlights no 

profound differences between TRIB3-/- mice and the control in neutrophil chemotaxis to KC or 

fMLP. However, there was a trend to an increased response to KC at 10-5 M in TRIB3-/- mice 

compared to C57B6. There was also a trend to an increased response to fMLP at 10-6 M and  

10-7 M. This suggests that knockout TRIB3 increased sensitivity of neutrophil chemotaxis 

towards chemoattractant. Hence, TRIB3 may regulate neutrophil migration in response to 

different chemoattractants (KC and fMLP). To see a significant effect, the number of 

experiments conducted should be increased. This study also clearly indicates that different 

signaling cascades for various stimuli regulate neutrophil chemotaxis. For more conclusive 

results, it would be beneficial if further in vitro studies on the effect of TRIB3 on neutrophil 

function via different intracellular signalling cascades in response to varying chemoattractants 

are conducted.  
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Siddiqi et al in 2001 demonstrated CD11b expression is clearly increased in PMA-stimulated 

neutrophils [194]. This study would suggest that once TRIB3 is knocked out and the cells are 

stimulated, the effect of shedding of L-selectin from the cell surface is significant. It is clear the 

key in increasing CD11b expression is the stimulation of cells rather than TRIB3-/- effect, 

while with PSGL-1, neither removing TRIB3 nor stimulating the cells has an effect on PSGL-1 

expression. These observations clearly exclude the considerable effect of TRIB3 on adhesion 

molecules expression on murine neutrophils. The varying results in the literature and also with 

the in vitro observations of this project may have been due to various reasons, such as possible 

infection of mice and technical differences.  Literature studies have shown discrepancies in this 

area and observations in this study support these findings. Given the variations in research and 

the findings of this experiment, further in vitro studies on the effect of TRIB3 on adhesion 

molecules would be recommended. 

 

Interestingly, the effect of TRIB3 deficiency was observed in the blood of mice with 

thioglycollate-induced peritonitis. Knocking out TRIB3 inhibits the increase in leukocyte 

number in the samples significantly, while there was no effect on leukocyte chemotaxis 

towards the peritoneum compared to the control. Also knockout TRIB3 in mice with 

thioglycollate-induced peritonitis may increase sensitivity of neutrophil migration. There was a 

trend of increase neutrophil chemotaxis to peritoneum at 2 hours in TRIB3-/- mice compared to 

C57B6. This result was confirmed by the data found when studying the effect of TRIB3 on 

murine neutrophil chemotaxis in response to KC and fMLP. Neutrophil influx of TRIB3-/- 

mice towards KC at 10-5 M and fMLP at 10-7 M and 10-6 M was greater than C57B6, but this 

was not significant. It is also clear that removing TRIB3 from mice with thioglycollate-induced 

peritonitis had no significant effect on neutrophil chemotaxis. Furthermore, neutrophil 
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chemotaxis in TRIB3-/- mice persisted and continued to increase at 24 hours compared to the 

control which reduced after 6 hours until a minute number migrated at 24 hours (again there 

was no significance); a potential explanation for this could be that TRIB3 deficiency delays 

neutrophil apoptosis. 

It was found that the initial process occurring after introducing thioglycollate, is the increasing 

levels of neutrophil-attracting chemokines at the site of infection. Research has showed that  

IL-13 activates human neutrophils to modulate the synthesis of many neutrophil proteins [203]. 

There was an increase in cytokine concentrations with time for both thioglycollate-induced 

peritonitis groups. When TRIB3 was removed from murine cells, the effect on cytokines was 

more selective and time dependent i.e. GMCSF, IL-17A and MCP-1 were affected at 2 hours 

and IL-13 at 6 hours compared to the control. However, the findings were not statistically 

significant except for IL-13. It could be that TRIB3 down regulates these cytokines at a certain 

point in time, although this regulation has no significant effect on neutrophil chemotaxis. The 

mechanism by which neutrophils recruit between endothelia and migrate into the inflammatory 

site warrants further investigation. Clarification of the link between TRIB3 and cytokines in 

vivo is hindered by the fact that the mechanism remains unclear, although cytokines are a 

prerequisite for neutrophil chemotaxis and TRIB3 appears to regulate these. 

Literature has looked into the role of TRIB3 in lipid homeostasis and insulin resistance.         

Du et al observed that TRIB3 may act as a down-regulator of Akt activation by insulin in 

murine liver. Hence, TRIB3 contributes to insulin resistance in individuals susceptible to type 

II diabetes [153]. The results of this study reveal that TRIB3 is possibly required for control of 

murine blood glucose level through regulation of glucose metabolism. It also shows that 

TRIB3 impairment may lead to insulin resistance. Essentially, TRIB3 could have a key role in 

maintaining normal levels of blood glucose. Its deficiency reduces the release of glucose from 
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tissues to the blood. However, a study by Koo et al in 2004 proposed that inhibition of TRIB3 

may help in the treatment of type II diabetes [155]. A further study by Wang et al in 2012 

supporting Koo, documented that silencing TRIB3 in diabetic ApoE-/-/LDL receptor-/- mice 

suppresses atherosclerosis and stabilises plaques [171]. Additionally, TRIB3 deficiency and 

HFD in combination increase murine weight gain. Gender also play a key role on the weight of 

TRIB3-/- mice fed chow compared C57B6. Furthermore, this study demonstrates that HFD has 

an effect on modulating lipid homeostasis. It significantly elevated cholesterol and HDL levels 

in both groups. Likewise, TRIB3 deficiency altered the proportion of the increase as the rise in 

cholesterol and HDL levels were approximately double in C57B6 compared to the TRIB3-/- 

group. Knocking out TRIB3 also reduced cholesterol and HDL levels significantly in murine 

blood on HFD. This may indicate that on a HFD TRIB3 may be involved in lipid release from 

tissues to the blood in maintaining lipid homeostasis. In other words, the knocking out may 

therefore elevate tissue lipid storage, which reduced blood lipid. Again the molecular 

mechanism of TRIB3 action to regulate lipid homeostasis in mouse blood when fed a HFD 

remains uncertain. 

Feeding mice HFD led to an increase in adipose cell size in both groups; however, TRIB3 

deficiency resulted in a further increase in cell size. This again suggests that TRIB3 may have a 

role on lipid release from adipose cells to the blood. It may be possible that removing TRIB3 

leads to reduce cell mitosis, hence, decreasing cell numbers and increasing cell size compared 

to its control on the same diet, or it could be due to a combination of both. 

Moreover, it was evident that TRIB3 deficiency significantly elevated leukocyte numbers in 

peritoneum of mice on 60% HFD. However, TRIB3 is not necessary to regulate numbers of all 

WBC types in peritoneum as it has no effect on neutrophil number. Noticeable results in this 

study suggest that HFD decreased blood leukocyte numbers in both groups. Interestingly, 
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amongst leukocyte types, removing TRIB3 only reduced neutrophil number significantly in 

mice fed normal food. However, the effect of feeding the mice HFD is seen clearly on reducing 

neutrophil and monocyte numbers in both blood groups, whereas the significant decrease in 

lymphocytes was restricted to C57B6 group. 

This study also demonstrates clearly that both TRIB3 and feeding the mice HFD have no effect 

on developing lesions in aorta and heart sinus, although Gong et al in 2009 found people with 

TRIB3 functional Q84R polymorphism are at risk of metabolic syndrome and carotid 

atherosclerosis [206]. TRIB3 equally has no effect on the heart sinus architecture as seen in this 

research. In addition, there were almost no macrophages present in the heart sinus and liver of 

either the C57B6 or TRIB3-/- mice on HFD. In contrast, both groups showed few macrophage 

numbers in adipose tissue compared to their controls on chow, suggesting HFD may increase 

macrophage number in this tissue. However, TRIB3 deficiency did not have an effect on 

macrophage number in adipose. 

This thesis concludes that neutrophil chemotaxis towards KC and fMLP, is dependent upon 

p38 MAPK and PI3K. These could be controlled by TRIB3, which regulates cytokine 

concentrations. Removing TRIB3 prevents the increase in circulating leukocyte count 

considerably, may increase neutrophil chemotaxis towards peritoneum (inflammation site) and 

may extend their existence in thioglycollate-induced peritonitis. This is possibly due to TRIB3 

deficiency interfering with neutrophil apoptosis. Moreover, TRIB3 and HFD affect murine 

weight gain. Gender also has a major effect on the weight of TRIB3 deficient mice fed chow 

compared to C57B6.  

TRIB3 and HFD have an effect on WBC numbers in peritoneum and blood. However, their 

effect is varied and depends on a range of factors. Furthermore, TRIB3 may regulate mitosis, 

blood glucose levels and lipid homeostasis. This study shows a link between TRIB3 deficiency 
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and susceptibility to insulin resistance. However there is no effect on atherosclerosis 

development and heart sinus architecture in mice nor macrophage number in murine heart 

sinus, liver and adipose tissue of mice fed 60% HFD. 

Contribution of TRIB3 in regulating lipid homeostasis is a novel finding. The role of TRIB3 in 

maintaining normal blood glucose level has been established previously and this has been 

further confirmed in this study. There is a relationship between this protein and neutrophilic 

inflammation. All the above provide new evidence for the close and complex link between 

TRIB3, insulin resistance, hyperlipidemia and inflammation. Therefore, this thesis raises the 

possibility of TRIB3 in the treatment of insulin resistance, inflammatory and metabolic 

diseases. Thus, focusing on TRIB3 may provide alternative strategies in the prevention and 

treatment of cardiovascular diseases. More studies on TRIB3 need to be conducted to further 

explore its various functions, for instance molecular mechanisms of its action on signalling 

pathways, WBC chemotaxis, lipid homeostasis and insulin sensitivity. 
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Appendix 1: Chemicals and other Laboratory substances 

  Item                                                                                 Supplier, Town, Country 

100bp DNA ladder Norgen, Thorold, Canada 
4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid, HEPES Sigma-Aldrich, Dorset, UK 
96-Well EASIA plates Sarstedt, Leicester, UK 
Accu-Chek Aviva test strips Roche, Burgess Hill, UK 
Acetic acid VWR, Lutterworth, UK 
Acrylamide stock solution (30%) Geneflow, Fradley, UK 
Agarose Bioline, London, UK 
Akt Ab New England Biolabs, Hitchin, UK 
Albumin solution (7.5%) Sigma-Aldrich, Dorset, UK 
Amersham HyperfilmTM ECL  Fisher, Loughborough, UK 
Ammonium persulphate, APS Sigma-Aldrich, Dorset, UK 
Anti-mouse CD115 AbD Serotec, Kidlington, UK 
Anti-mouse CD2 BD, Oxford, UK 
Anti-mouse CD45R eBioscience, Hatfield, UK 
Anti-mouse CD5 BD, Oxford, UK 
Anti-mouse F4/80 eBioscience, Hatfield, UK 
BD cytometric bead array, CBA, kit BD Biosciences, Oxford, UK 
Bio-Rad DC protein assay kit Bio-Rad, Hemel Hempstead, UK 
Biomix Bioline, London, UK 
Biotinylated anti-rat IgG Vector Laboratories, CA, USA 
Bovine serum albumin, BSA Sigma-Aldrich, Dorset, UK 
CellFIX BD, Erembodegem, Belgium 
Chemotaxis plates Receptor Technologies, Leamington Spa 
Cotton swabs Fisher Scientific, Loughborough, UK 
ddH20 (MilliQ H2O) Merck-Millipore, Watford, UK 
Dextran Sigma-Aldrich, Dorset, UK 
Di-sodium hydrogen orthophosphate, Na2HPO4 Sigma-Aldrich, Dorset, UK 
Diff-Quick BDH Merck Ltd, Poole, UK 
Dimethyl sulphoxide, DMSO Sigma-Aldrich, Dorset, UK 
Disposable haemocytometers Labtech International, Ringmer, UK 
DPX mounting medium Sigma-Aldrich, Dorset, UK 
Eosin solution Sigma-Aldrich, Dorset, UK 
Erythrolyse red blood cell lysing buffer AbD Serotec, Kidlington, UK 
Ethanol Fisher Scientific, Loughborough, UK 
Ethidium bromide, EtBr Sigma-Aldrich, Dorset, UK 
Ethylenediaminetetra-acetic acid, EDTA Sigma-Aldrich, Dorset, UK 
FITC rat anti-mouse Ly-6G (1A8)  BD, Oxford, UK 
Formaldehyde Sigma-Aldrich, Dorset, UK 
Formyl-methionyl-leucyl-phenylalanine, fMLP Sigma-Aldrich, Dorset, UK 
Glucose VWR, Lutterworth, UK 
Glycerol VWR, Lutterworth, UK 
Glycine VWR, Lutterworth, UK 
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Goat anti-rabbit-HRP Dako, Ely, UK 
Goat anti-rat mircobeads Miltenyi Biotech, Bisley, UK 
Haematoxylin solution Sigma-Aldrich, Dorset, UK 
Heparin sodium 5,000 IU/ml Leo Laboratories Ltd., Bucks, UK 
Hydrochloric acid VWR, Lutterworth, UK 
Hydrogen peroxide (H2O2) Sigma-Aldrich, Dorset, UK 
Ilford universal developer Jessop's, Leicester, UK 
Ilford, hypam fixer Jessop's, Leicester, UK 
Isofluorane Burtons, Marden, UK 
Isopropanol (propan-2-ol) Sigma-Aldrich, Dorset, UK 
Lipopolysaccharide, LPS Sigma-Aldrich, Dorset, UK 
MACS speration columns Miltenyi Biotech, Bisley, UK 
Methanol Fisher, Loughborough, UK 
Milk powder  
Murine KC Peprotech EC Ltd, London, UK 
N,N,N',N'-tetramethylethylenediamine, TEMED Sigma-Aldrich, Dorset, UK 
Nitrocellulose protran membrane Geneflow, Fradley, UK 
Oil Red O Sigma-Aldrich, Dorset, UK 
p38 inhibitor (SB 203580) Cell Signaling Technology, Danvers, MA, USA 
p38 MAP kinase assay kit  (nonradioactive)  New England Biolabs, Hitchin, UK 
p38 MAPK Ab New England Biolabs, Hitchin, UK 
Paraformaldehyde Sigma-Aldrich, Dorset, UK 
PE anti-mouse CD162 (PSGL-1) (2PH1) BD, Oxford, UK 
PE rat anti-mouse CD11b (M1/70) BD, Oxford, UK 
PE rat anti-mouse CD62L (L-selectin) (MEL-14) BD, Oxford, UK 
PE rat IgG1, κ isotype control BD, Oxford, UK 
PE rat IgG2a, κ isotype control BD, Oxford, UK 
PE rat IgG2b,  κ isotype control BD, Oxford, UK 
Pentobarbital sodium (20%) solution  Pharmacol Ltd., Andover, UK 
Peroxidase substrate kit (DAB) Vector Laboratories, CA, USA 
Phenylmethanesulphonylfluoride, PMSF Sigma-Aldrich, Dorset, UK 
Phorbol 12-myristate 13-acetate, PMA Sigma-Aldrich, Dorset, UK 
Phosphate buffered saline, PBS Oxoid, Basingstoke, UK 
Phospho Akt (ser473) New England Biolabs, Hitchin, UK 
Phospho p38 MAPK New England Biolabs, Hitchin, UK 
PI3K inhibitor (LY 294002) Cell Signaling Technology, Danvers, MA, USA 
Pierce supersignal west dura kit Fisher, Loughborough, UK 
Ponceau S solution Sigma-Aldrich, Dorset, UK 
Primers (LTR-2, LEXKO-1947-3’ and LEXKO-1947-5’) Sigma-Aldrich, Dorset, UK 
Protease inhibitor cocktail tablets Roche, Burgess Hill, UK 
Proteinase K Sigma-Aldrich, Dorset, UK 
Rainbow molecular weight  markers Fisher, Loughborough, UK 
Reblot plus mild stripping solution Millipore, Watford, UK 
Reducing agent (5x) Invitrogen, Paisley, UK 
RM AFE 60%FAT 20%CP 20%CHO (M) 25kGy Special Diets Services (SDS), Witham, UK  
RPMI media Lonza, Wokingham, UK 
Sodium chloride VWR, Lutterworth, UK 
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Sodium chloride (0.9%) Baxter, Thetford, UK 
Sodium dodecyl sulphate, SDS VWR, Lutterworth, UK 
Sodium fluoride, NaF VWR, Lutterworth, UK 
Sodium orthovanadate, Na3VO4 Sigma-Aldrich, Dorset, UK 
Sodium phosphate, NaH2PO4 Sigma-Aldrich, Dorset, UK 
Sodium pyrophosphate Sigma-Aldrich, Dorset, UK 
Thioglycollate Sigma-Aldrich, Dorset, UK 
Tri-sodium citrate Abcam, Cambridge, UK 
Tris (hydroxymethyl) methylamine, Tris VWR, Lutterworth, UK 
Tris-HCl Sigma-Aldrich, Dorset, UK 
Triton Sigma-Aldrich, Dorset, UK 
TRIzol reagent Life Technologies, Paisely, UK 
Tween-20 Sigma-Aldrich, Dorset, UK 
Vectastain ABC-HRP reagent Vector Laboratories, CA, USA 
Whatman filter paper, grade 3 Fisher, Loughborough, UK 
Xylene Sigma-Aldrich, Dorset, UK 
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Appendix 2: Equipment 

Avantic Centrifuge J-26 XP (Beckman, Germany) 
BD Vacutainer (K2EDTA)(BD, USA) 
C-Chip Disposable Hemocytometer (Digital Bio, Korea) 
Chemi Genius2 Bio Imaging System (Syngene, UK) 
Cytospin 2 (SHANDON, UK) 
FACSCalibur (BD Bioscience, USA) 
Fine insect pins (Fine Science Tools, Germany) 
G-STORM (Gene Technologies, UK) 
Laborlus Microscope (Leitz, Germany) 
LEICA RM2135 Microtome (Leica, Germany) 
Microfuge R Centrifuge (Beckman, Germany) 

NanoDrop N1000 (Thermo Fisher Scientific, USA) 
Nikon ECLIPSE E600 (Nikon Instruments Europe B.V., Amstelveen, The Netherlands) 
Nikon SMZ1000 (Nikon Instruments Europe B.V., Amstelveen, The Netherlands) 
Novex NuPAGE 4-12% Bis-Tris Gel (Life Technologies, USA) 
NuPAGE Minutei-Cell Electrophoresis (Life Technologies, USA) 
Plate Reader (Opsys MR, Dynex Technologies, USA) 
Refrigerated Centrifuge PK 120 R (ALC, Italy) 
Sysmex KX-21N Haematology analyser (Sysmex Corporation, Japan) 
UW Sonicator (Ultrawave Ltd, UK) 
Xcell IITM Blot Module (Life Technologies, USA) 
Xcell SureLockTM Minutei-Cell (Life Technologies, USA) 
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Appendix 3: Software 

CellQuest Pro version 3.01 (BD, USA) 
GeneSnap version 7.04 (SynGene, UK) 
GeneTools version 3.02 (SynGene, UK) 
GraphPad PRISM software version 5.00 (GraphPad Software Inc, USA) 
ND-1000 (Thermo Fisher Scientific, USA) 

Nis-Elements (Nikon Instruments Europe B.V., Amstelveen, The Netherlands) 
Revelation version 4.25 (Thermo Fisher Scientific, USA) 

	
  


