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Abstract 

This thesis is concerned with the synthesis, characterisation and evaluation of novel 

metal complexes for their application as anti-cancer agents. It contains the in vitro 

cell results, along with a range of other techniques to determine their biological 

relevance and their potential as anti-cancer agents. 

Chapter 1 contains an introduction to the project including a literature search, previously 

synthesised complexes and project aims 

Chapter 2 presents the synthesis and characterisation of novel -diketonate and -

ketoiminate ligands. X-ray crystallographic data are analysed for some of the ligands. 

Chapter 3 discusses the synthesis and characterisation of novel -ketoiminate ruthenium 

chloride complexes. X-ray crystallographic data are analysed for all of the complexes. 

Chapter 4 introduces the MTT technique for assessing cytotoxicity, and presents in vitro 

activities for the library of complexes synthesised in Chapter 3.  

Chapter 5 looks at modifications of the previous ruthenium (II) complexes, introducing 

new ligands and iridum metal centres. X-ray crystallographic data for all of these 

complexes has been discussed, along with in vitro activity against a range of cell lines. 

Chapter 6 introduces hypoxia and states the cytotoxicities of a range of complexes under 

1.0% and 0.1% oxygen concentrations. 

Chapter 7 discusses mechanistic studies on the complexes, including hydrolysis, 

hydrophobicity, Comet assay, apoptosis and thioredoxin reductase inhibition. 

Chapter 8 introduces the previous group IV work within the group and an extension of 

the library by synthesis of -ketoiminate titanium complexes. X-ray crystallographic 

analysis is discussed where applicable. 

Chapter 9 contains experimental details and characterisation data for all compounds 

described in Chapters 2, 3, 5 and 8. Also protocols for all the biological studies. 

Appendix presents a summary of X-ray crystallographic structure analysis for any 

crystals obtained within this work 
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1 Introduction 

This thesis describes the synthesis and evaluation of novel ruthenium complexes as 

potential anticancer agents, with some further work on titanium complexes. The 

complexes feature substituted -ketoiminate ligands with differing electronic and 

steric properties and adaptations of these complexes. This chapter will present a 

review of previous research in the area of metal based anticancer agents, with 

particular emphasis on ruthenium, titanium and iridium based complexes. 

 

1.1 Cancer 

Since the mid 1970s, incidence rates for cancer in Great Britain in the UK have 

increased by 22% in men and 42% in women. However, over the last ten years, 

these incidence rates have increased by just 2% in men and 6% in women. Cancer 

occurs predominantly in older people, with the chance of developing cancer 

increasing rapidly from 50 years of age. More than three in five cancers (63%) 

were diagnosed in people aged 65 and over, and more than a third (36%) were 

diagnosed in the elderly (aged 75 and over). The most common cancer found in 

men is prostate cancer, which accounts for a quarter (25%) of all male cancer 

cases. In females, the most common is breast cancer and accounts for nearly a third 

(31%) of all cancers in women. In both males and females the second and third 

most common cancers are lung cancer and bowel cancer respectively.
1
 The 

majority of deaths occur in older generations, with the rates increasing at the age of 

60. More than three quarters (77%) of deaths occur in patients 65 and over, whilst 

over half of these (52%) occur in patients over 75 years of age.
1
 Recent statistics 

show that in 2010, 324,579 people in the UK were diagnosed with cancer
2
 costing 

£9.4 billion across the NHS, private and voluntary sectors.
3
 In 2011, 159,178 

people died from cancer in the UK.
4
 

Cancer is the term given to a group of diseases resulting from mutations in our cells 

which can cause them to undergo uncontrollable cell division.
5
 The cells divide 

through a process known as mitosis, which is controlled by two ‘cancer genes’ 

know as oncogenes and tumour gene suppressor genes. However, if one or more of 

these genes has a mutation the cell uncontrollably divides causing a lump of tissue 

known as a tumour. Normal cells frequently undergo a process known as 

programmed cell death. However, these activated oncogenes can cause a cell that 
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ought to die to survive and enter cell proliferation.
6
 This can cause one of two types 

of tumour, known as benign or malignant. A benign tumour does not invade other 

tissues, is usually not life-threatening and is easily treated. Whereas malignant 

tumours can undergo metastasis, in which the initial tumour can migrate to a 

secondary site producing a secondary tumour. These are usually hard to treat and 

can be life threatening.
7
 The risk of developing cancer can be increased by 

exposure to carcinogens, a high fat diet or genetic susceptibility.
8
 Cancers are 

different depending on what cells are affected and therefore different types of 

cancer treatment are used to maximise treatability, these include surgery, 

radiotherapy, immunotherapy, chemotherapy and gene therapy.
9
 Often several 

types of treatment are used simultaneously to give maximum effects.
10

 

 

1.2 Metal-Based Drugs 

Transition metal complexes are well known in biological processes and play a vital 

role in the human anatomy. The use of metal-based complexes has been understood 

since as early as 1910, when Salvarsan (Arsphenamine), an arsenic containing 

therapeutic agent, was used in the treatment of syphilis, and was the first known 

chemotherapeutic agent.
11

 The structure of this complex was thought to contain an 

As=As double bond. However, in 2005 work by Nicholson et al. provided evidence 

that Salvarsan in fact exists as cyclic trimers and pentamers (Figure 1.1).
12

 

 

Figure 1.1 Cyclic Salvarsan structures 

 

Since the discovery of Salvarsan, therapeutic agents have been established across 

the periodic table, including a gold containing complex Auranofin (Ridura) which 

is used to treat rheumatoid arthritis, by reducing tender joints and morning stiffness 

commonly caused by arthritis (Figure 1.2).
13

 

http://en.wikipedia.org/wiki/Rheumatoid_arthritis
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Figure 1.2 Auranofin (Ridura) 

 

Another modern example is Tetrofosmin (Figure 1.3), a 99m
Tc based cardiac 

imaging agent better known as Myoview™, which is used to enable the diagnosis 

and localisation of regions of reversible myocardial ischemia.
14

 

 

Figure 1.3 Tetrofosmin 

 

1.3 Cisplatin 

Cisplatin [cis-dichlorodiammine platinum(II)] was first discovered by Peyrone in 

1845 and was known as Peyrone’s salt.
15

 Its structure (Figure 1.4) was later 

elucidated in 1893 by Werner, when he proposed the theory of coordination 

chemistry, showing that ammonia can in fact bind to the Pt(II) by donating its lone 

pair in a dative or coordination bond.
16, 17

 However, the anti-cancer properties of 

cisplatin were not discovered until over a century after its initial discovery, by 

Rosenberg et al. in 1965.
18

 The discovery was made whilst researching electric 

field effects on cell growth in E. coli using an aqueous solution of NH4Cl and 

platinum electrodes. Since then it entered clinical phase trials in 1971 and was 

approved for pharmaceutical use in 1978.
19

 It has since become the world’s leading 
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anti-cancer drug in treating neck, bladder, ovarian and testicular cancers.
20

 

 

Figure 1.4 Structure of cisplatin 

 

Once cisplatin enters the body and reaches the desired organs, it diffuses through 

the cell membrane by passive transport. This is due to a chloride ion concentration 

deficiency in the cytoplasm of the cells, which enables the labile chloride ligands 

of cisplatin to dissociate and be replaced by water molecules (Scheme 1.1).
21

 

 

Scheme 1.1 Hydrolysis of Cisplatin 

 

The water ligand is easily displaced by the basic nitrogen atoms on DNA, 

specifically the N7 position on guanine residues. Once it is bound to the DNA, the 

second chloride ligand is replaced by another nitrogen atom from either the same 

DNA strand (intrastrand) or an adjacent DNA strand (interstrand) (Figure 1.5). 

Incorporation of this platinum centre causes irreversible dehydration and induces 

structural changes to the DNA strand preventing replication. The cross-linking 

prevents cell division and stops tumour growth. This DNA damage in tumour cells 

causes the strands to ‘kink’; this is not recognised and results in programmed cell 

death (apoptosis). It is crucial that the cis isomer is used as it has the correct 

geometry for cross-linking; whereas transplatin is thought to be deactivated before 

it reaches the DNA.
16

 However, this is a non-specific process and affects healthy 
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cells as well as cancerous cells, causing severe physiological side effects such as 

nausea, and nephrotoxicity. Current research has now led to second-generation 

derivatives of cisplatin, in the hope to achieve higher activity with reduced 

toxicity.
22

  

 

Figure 1.5 Representation of a. intrastrand and b. interstrand cross-linking 

 

1.4 Second Generation of Platinum Complexes 

The most successful cisplatin analogue is cis-diammine (1,1-

cyclobutanedicarboxylato)platinum(II) (carboplatin) (Figure 1.6). It has shown 

similar activity to cisplatin against lung and ovarian tumours but with lower 

cytotoxic behaviour.
21

 

 

Figure 1.6 Carboplatin 

 

Its activity is due to the cyclobutanedicarboxylate ligand being more stable than the 

chloride ligands of cisplatin, causing slower in vivo hydrolysis and allowing more 

time for the complex to reach target cells before the ligand is displaced.
23

 A 

significant advantage is that carboplatin has much lower toxic side effects, 

allowing the drug to be administrated in much higher dosages when compared to 

cisplatin. However, the main disadvantage of this drug is that it induces greater 

bone marrow toxicity.
24

 Other platinum complexes have been synthesised with 

either platinum(II) or platinum(IV) centres (Figure 1.7), many of which have 

entered into clinical trials. 
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Figure 1.7 Molecular structures of a nedaplatin, b oxaliplatin, c ZN0473, d JM216 

and e Lobaplatin. 

 

Nedaplatin (a) was found to have the highest anti-cancer activity of this second 

generation, possessing lower nephrotoxicity in comparison to cisplatin, and has 

been approved for clinical use in Japan.
25

 Oxaliplatin (b) was found to be effective 

in cisplatin-resistant cells for a range of different cancers and has since been 

approved for clinical use in France.
26-28

 ZN0473 (c) is sterically hindered and 

hydrolyses around 4 times slower than cisplatin and this is thought to be a factor 

contributing to its high activity against cisplatin-resistant cell lines.
29

 JM216 (d) 

was the first orally administrated platinum complex and was found to form at least 

six metabolites, with no parent compound being detected after 20 minutes of 

administration.
30

 Finally, Lobaplatin (e) was introduced in 1992 and is currently in 

phase II clinical trials for cisplatin-resistant ovarian cancer, head and neck cancers 

and small-cell lung cancer.
31-33

 

 

Research groups are still investigating the group 10 metals for their use in anti-

cancer treatment. However, in more recent years researchers have begun to 

investigate a larger range of transition metals. Therefore this chapter discusses 

some key complexes currently being investigated, with a closer look into current 

titanium, ruthenium and iridium complexes. 
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1.5 Titanocene Dichloride 

The anti-cancer properties of dichlorobis(5
-cyclopentadienyl)titanium(IV) 

(titanocene dichloride) were discovered in 1979 by Köpf and Köpf-Maier (Figure 

1.8).
34

 Its cytotoxic potential was investigated due to the similarities in structure 

between titanocene dichloride and cisplatin; both contain cis-dichloro ligands in the 

neutral complex. Titanocene dichloride was tested on a group of CF1 mice 

implanted with Ehrlich ascites tumour cells, and was found to give a cure rate of 

over 80%. It was both the first metallocene and the first titanium-based compound 

to exhibit cytotoxic properties. 

 

Figure 1.8 Structure of Titanocene Dichloride 

 

Titanocene dichloride has been shown to be effective against several carcinomas 

and does not exhibit the same toxological profile as cisplatin, but it does exhibit 

liver damage (hepatotoxicity).
35

 It entered phase I clinical trials in 1991 but was 

rejected during phase II clinical trials as it produced responses too small to justify 

its use in single-agent therapy against both renal and breast cancer.
36, 37

 The in vivo 

aqueous chemistry is thought to be similar to that of cisplatin involving hydrolysis 

of the chloride ligands (Scheme 1.2), with mechanistic findings by Marks et al. 

showing the substitution of the chloride ligands occurred faster than in the case of 

cisplatin.
38

 Titanocene dichloride can also be taken up by transferrin at blood 

plasma pH (7.35-7.45) and proton-induced loss of the Cp rings occurs. This is 

thought to be a key step in the mechanism, with the rate at which the Cp is lost 

controlling the activity of the complexes.
39

 Once inside the cell, the complex is 

transported to the nucleus via interaction with ATP, where it is then free to interact 

with the DNA.
40-42
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Scheme 1.2 Hydrolysis of Titanocene Dichloride 

 

1.5.1 Variations of the Chloride Ligands 

Köpf-Maier et al. investigated modifications of titanocene dichloride, including 

substituting the chloride ligands for different halides and pseudo halides i.e. X = F, 

Br, I, NCS and N3. These complexes showed similar activities to both titanocene 

dichloride and cisplatin, with the pseudo halide being displaced during hydrolysis 

in all cases.
43

 The introduction of the hydrophilic trichloroacetate or 

pentafluorophenoxy (Figure 1.9a and b respectively) saw a significant decrease in 

toxicity (LD50 = 440 mg/kg and 480 mg/kg respectively) compared to titanocene 

dichloride (LD50 = 100 mg/kg). 

 

Figure 1.9 Variations of titanocene dichloride containing; a trichloroacetate and b 

pentafluorophenoxy 
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Other modifications have included neutral and charged moieties in addition to both 

monodentate and bidentate ligands. These included a range of ionic, salt like 

derivatives (Figure 1.10), which have showed good water solubility. This has led 

to further research aimed towards increasing both the solubility and hydrophilic 

character, as both have proven to be beneficial in the design of active titanium anti-

cancer drugs.
44, 45

 

 

Figure 1.10 Ionic derivatives of titanocene dichloride 

 

1.5.2 Cyclopentadienyl Derivatives of Titanocene Dichloride 

As well as alterations to the chloride ligands, research has since moved onto 

modification of the Cp ligand by addition of either a small group or larger pendant 

arms. Köpf and Köpf-Maier proved that addition of electron donating groups to the 

Cp ring did not lead to an increase in cytotoxic properties.
46

 Baird et al. conversely 

added electron withdrawing groups to the Cp ring in an attempt to increase 

cytoxicity.
47

 It was hoped that a more stable Ti-Cp bond would form, which under 

physiological pH would give an electrophilic titanium centre. This would increase 

the Lewis acidity of the titanium centre and effectively increase the binding to 

DNA, which is a Lewis base. When pendant arms were added on to the Cp ring, 

lower IC50 values were observed in comparison to titanocene dichloride. These 

were extensively researched by Tacke et al. with bis-[(4-

methoxybenzyl)cyclopentadienyl]titanium dichloride (Titanocene Y) (Figure 1.11) 

showing an IC50 value of 21 M when tested on LLC-PK, in comparison to an IC50 

value of 2 mM for titanocene dichloride.
48
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Figure 1.11 Structure of Titanocene Y 

 

Tacke et al. have also synthesised a range of Titanocene Y analogues with the 

corresponding difluoride derivatives, some showing higher activity than the 

dichloride complexes.
5
 Substituting the chloride ligands for a bidentate oxalate 

ligand (Oxali-Titanocene Y) showed around a 13-fold increase in activity against 

LLC-PK, giving an IC50 value of 1.6M (Figure 1.12).
49

 Due to the success of 

these complexes, it was necessary to conduct research into a library of carboxylate 

anion-substituted derivatives of Titanocene Y. Some improvements were seen in 

cytotoxicity when compared to titanocene dichloride, but Titanocene Y still 

remains the leading drug candidate of this library.
48

  

 

Figure 1.12 Oxali-Titanocene Y 

 

McGowan et al. have studied the addition of amino functionalised pendant arms, 

and have synthesised the following classes of substituted titanocenes (Figure 1.13). 

In the case of the monocationic complexes (Figure 1.13a), additional methyl and 

silyl groups have been added to the non-pendant cyclopentadienyl ring to improve 

lipophilicity and hence the ability to cross the cell membrane. In vitro testing on 

cell lines MCF7, LoVo, LS 174T, A2780 and A2780cis showed the mono- and 

dicationic species to be potent cytotoxic agents, with the most active complexes 

outperforming titanocene dichloride by 10-fold. Upon addition of one silyl group 

onto the non-pendant cyclopentadienyl ligand showed little effect on the IC50, 
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whereas the addition of two silyl groups led to a marked decrease in IC50. It was 

seen that these complexes were sensitive to cisplatin-resistance cell lines, 

supporting the theories of these complexes acting via a different mechanism to 

cisplatin, although in the case of these ionic complexes there is evidence of 

significant DNA cross-linking.
50-54

 

 

Figure 1.13 a. Mono- b and c bifunctionalised pendant-arm titanocene dichlorides 

 

The lead complex of this type is [C5H4(CH2)2N(CH2)5]2TiCl2.2HCl, which was 

shown to have increased activity in comparison to Cp2TiCl2 (Figure 1.14). 
50, 51, 54

 

 

Figure 1.14 Ionic piperidine functionalised titanocene dichloride 
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1.6 Budotitane 

Along with titanocene dichloride, another library of complexes known as the bis 

(-diketonate) titanium complexes has undergone extensive research as potential 

anti-cancer drugs. The first to enter phase trials was Ti(bzac)2(OEt)2 (Budotitane) 

(Figure 1.15). The complex and its anti-cancer potential have been studied by 

Keppler et al. and has been shown to be effective against sarcoma 180 ascitic 

tumours, Walker 256 carcinosarcoma ascitic tumours, and induced colorectal 

tumours in mice.
55-59

 

 

Figure 1.15 Budotitane 

 

Budotitane entered phase I clinical trials stating a maximum tolerated dosage of 

230 mg/m
2
 with the dose-limiting toxicity being cardiac arrhythmia, and a 

biweekly dose of 180 mg/m
2
 was recommended for further treatment.

60
 However, 

phase II and III clinical trials were postponed due to problems with formulation.
61, 

62
 The issues associated with this complex included poor solubility and stability in 

water, which is a significant limiting factor. Attempts were made to encapsulate the 

active species within a micelle containing glycerine polyethylene-

glycolericinoleate and 1,2-propylene glycol in water-free ethanol; this protective 

micelle is formed when dissolved in water.
63

 However, this formulation provided 

hydrolytic stability for only a few hours, and has proved problematic to 

characterise.
64

 It has been proposed that budotitane loses the ethoxide ligands 

initially, followed by the acac ligands, to form titanium dioxide (Scheme 1.3). 

However, to date the mechanism is poorly understood.
57, 60, 65
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Scheme 1.3 Proposed pathway for the hydrolysis of budotitane 

 

A major issue with budotitane is that it can exist as five different isomers (Figure 

1.16) and this makes it difficult to determine which isomer is key for the observed 

activity. Dubler et al. showed crystallographically evidence that budotitane adopted 

a cis-cis-trans (b) geometry in the solid state, in comparison to the titanium 

chloride derivative which adopted a cis-trans-cis (a) configuration.
66
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Figure 1.16 Five possible isomers of budotitane 

 

Solution studies have shown broad 
1
H NMR signals for the presence of multiple 

isomers, which were thought to be the cis geometries, with the cis-cis-cis (c) being 

the most abundant at 60%, the cis-trans-cis (a) at 21% and then the cis-cis-trans 

(b) at 19%. A further issue is that (a) and (b) are found as enantiomeric pairs, 

further complicating the purification and separation. The presence of the phenyl 

rings is thought to be the key to the activity of these complexes, as replacement 

with methyl groups destroyed the activity, but this has not yet been proven and 

recent studies have shown no DNA damage during both in vivo or in vitro 

studies.
67

 

Aside from titanium, research has continued in the group IV metals, where Keppler 

et al. were amongst the first to show their potential as anti-cancer complexes. 

Analogues of budotitane were made, incorporating either zirconium or hafnium 

with -diketonate ligands, showing that the titanium gave the most promising 

results in vivo.
68

 These libraries have been extended within the McGowan et al. 

showing the in vitro testing of these metal complexes actually have a reversed 

activity where compared to in vivo studies by Keppler. Whereby we show that the 

hafnium analogues are the most active complexes (discussed in Chapter 8).
69
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1.7 Ruthenium 

The use of ruthenium as potential anti-cancer complexes has emerged due to the 

following three properties; 

1. Ligand Exchange 

When considering both ruthenium(II) and (III) complexes, it has been shown that 

the ligand exchange in aqueous conditions is relatively slow and is similar to that 

seen for the platinium(II) complexes.
70

 It is thought that ligand exchange is a key 

process in the drug’s activity and that most complexes in fact alter their structure 

before interaction with the biological targets.
71, 72

 

2. Oxidation State 

Ruthenium has variable oxidation states that are easily accessible under 

physiological conditions, meaning that it can be easily reduced by one electon 

transfer proteins and thus have potential under hypoxic or anoxic conditions. Due 

to the increased metabolic rates of cancer cells there is an increase in lactic acid 

being produced, which decreases the pH within the cancer cells and lowers the 

concentration of O2 at the cell, leading to a preference of ruthenium(II) species 

over ruthenium (III).
72, 73

 

According to the “activation by reduction” hypothesis, ruthenium (II) complexes 

are more available for binding to cellular components than ruthenium (III).
63

 The 

relatively inert and non-toxic ruthenium(III) complexes, which have no effect on 

healthy cells, may be administered, and are then biologically activated by reduction 

to the more active ruthenium(II) complexes. As a result, the ruthenium complexes 

are more selective for cancer cells and decrease the toxicity.
70, 72 

3. Iron Mimicking 

Another advantage is ruthenium’s capacity to mimic iron in binding in vivo to 

different biomolecules, including protein albumin and transferrin. It is known that 

cancer cells have more transferrin receptors on the surface of the cell membrane 

and therefore more ruthenium complexes are able to enter the cell. Radio-labelling 

studies have shown this increase ranges from 2-12 fold, depending on the cell type, 

therefore reducing the toxicity.
63, 72, 74
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1.7.1 Ruthenium Red 

One of the most common forms of ruthenium complex is “ruthenium red” 

[(NH3)5Ru(III)ORu(IV)(NH3)4ORu(III)(NH3)5]
6+

 (Figure 1.17), a polycationic red 

dye used to selectively stain mitochondria by binding to the calcium channels and 

inhibiting calcium ion uptake.
73

 The use of ruthenium red as an anti-cancer agent is 

also known, although its high toxicity has prevented further research.
75, 76

 

 

Figure 1.17 Ruthenium Red 

 

In 1976, Durig et al. discovered that fac-[Cl3(NH3)3Ru] worked in a similar way to 

cisplatin and in fact inhibited E. coli growth, however its low water solubility 

prevented clinical use.
77, 78

 In order to increase solubility, the use of labile ligands 

were suggested and the complex [cis-RuCl2(DMSO)4] was synthesised and was the 

earliest ruthenium complex to exhibit anti-cancer properties.
79

 Not only was it 

active against several metastatic tumours, it also forms covalent bonds to the N7 

position on the guanine residue.
80, 81

 

 

1.7.2 NAMI-A 

Imidazolium [trans-imidazoledimethylsulfoxidetetrachlororuthenate(III)] (NAMI-

A) was discovered by Sava et al. and is the most successful ruthenium anti-cancer 

drug to date and the first to enter phase I clinical trials (Figure 1.18).
82

 

 

Figure 1.18 NAMI-A 
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The complex NAMI contains a sodium counterion and replacement of this with an 

imidazolium cation gives NAMI-A. NAMI-A is easier to reproduce synthetically 

then NAMI and is air stable. Both of these complexes have shown activity against 

reducing lung metastasis formation on mice and the anti-metastatic activity of both 

complexes has been shown to have no relation to their cytotoxicity against 

cancerous cells.
82

 It has been suggested they have a different mode of activity in 

comparison to cisplatin and other ruthenium complexes, where their action 

involves extracellular activity which is unique to both agents.
82-84

 It was shown that 

they are able to treat metastatic tumours at doses which are not toxic for the liver, 

lung or kidney,
82, 85

 and have the advantage of being administrated orally. The 

reduction of NAMI-A by ascorbic acid prior to administration led to NAMI-AR. It 

was found that this complex improves the efficiency against the metastasis growth, 

according to the “activation by reduction” hypothesis.
85

 

 

1.7.3 KP418 and KP1019 

Imidazolium [trans-tetrachlorobis(imidazole)-ruthenate(III)] (KP418) (Figure 

1.19), has shown to be much less toxic than its indazole analogue, however it still 

shows high activity against colorectal carcinoma models in mice.
87

 

 

Figure 1.19 Imidazolium [trans-tetrachlorobis(imidazole)-ruthenate(III)] (KP418) 

 

Indazolium [trans-tetrachlorobis(indazole)-ruthenate(III)] (KP1019) (Figure 1.20) 

was discovered by Keppler et al. and has shown high activity against a range of 

cell lines. Unlike NAMI-A, which exhibited activity against metastasis processes, 

KP1019 is active against colon carcinomas and primary human tumours.
 
Inhibiting 

approximately one third of tumours, the only side-effect of KP1019 is the increased 

production of red blood cells (erythropoiesis), with clinical reports suggesting no 

severe side effects.
89
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Figure 1.20 Indazolium [trans-tetrachlorobis(indazole)-ruthenate(III)] (KP1019) 

 

Although KP1019 has poor water solubility, the substitution of the indazolium 

cation with sodium increases its water solubility, improving its potential for clinical 

use.
88

 The active species of both these complexes have been shown to be the 

hydrolysed species of the chloride precursor, with KP418 hydrolysing at a rate 

comparable to cisplatin. However, KP1019 hydrolyses more slowly and via a 

different pathway and is dependent upon both temperature and pH. Following 

hydrolysis both complexes interact with the nucleophilic sites on DNA. They are 

also active against cisplatin-resistant cell lines and therefore it is thought that 

binding of ruthenium complexes will have different cytotoxic effects in comparison 

to cisplatin.
75,89, 90

 

 

It has been shown that colorectal tumour uptake for KP418 was 10-fold lower than 

KP1019, leading to lower anti-cancer activity. KP1019 has been shown to be active 

against cisplatin-resistant tumours and this could be due to a different mechanism 

of action. It is thought that ruthenium complexes target the N7 position of guanine 

or adenine and shows that KP1019 has less interstrand cross-linking in comparison 

to cisplatin.
89

 

 

1.7.4 Organometallic Ruthenium Arenes 

Organometallic complexes were once restricted to ruthenocene, until Sheldrick et 

al. reported the biological use of organometallic 6
–arene ruthenium complexes. 

This organometallic work was based on his previous coordination work and the 

reported activity of cis-[RuCl2(DMSO)4].
91

 Sheldrick made a range of 6
-

ruthenium organometallic complexes, with the most promising ones taking the 

form [(6
-arene)Ru(II)(en)X]

+
 (X = halide, en = ethylenediamine) (Figure 1.21). It 

was shown that differing the arene substituents lead to differences in activity both 

in vitro and in vivo against a range of cancer cell lines, including cisplatin-resistant 

cell lines.
92-94
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Figure 1.21 Examples of [(6
-arene)Ru(II)(en)X]

+
 complexes 

 

These types of complex have also been studied by Sadler et al. (Figure 1.22) and 

the 2-phenoxy derivatives showed the highest cytotoxicity amongst the polar 

substituents, but further results showed the non polar substituents had higher 

activity than polar groups.
94

 They also showed that polycyclic arenes on average 

had higher activity than monocyclic arenes. It is thought that increasing the number 

of arenes increases hydrophobicity, allowing easier passive transport into the 

cell.
92-94

 To achieve better DNA binding the neutral ethylenediamine ligand was 

replaced with an anionic -diketonate ligand, which exhibited high activity due to 

rapid hydrolysis in water and a change in binding specificity. They show selective 

binding to adenosine, with very little binding to other residues.
95

 

 

Figure 1.22 [(6
-arene)Ru(II)(en)X].PF6 complexes 

 

It is thought that these types of ruthenium complexes hydrolyse at a faster rate than 

cisplatin, resulting in [(η
6
–arene)Ru(en)(H2O)]

2+
 which reacts rapidly with 

guanosine monophosphate (5′-GMP).
96

 The interaction of these complexes with 
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guanine derivatives in vitro were studied by Sadler et al.
97

 A crystal structure was 

determined and shows π-π arene-nucleobase stacking of [(η
6
–dha)Ru(en)9EtG-

N7]
2+ 

and [(η
6
–tha)Ru(en)9EtG-N7]

2+
 (9EtG-N7 = N7 bound 9-ethyl guanine). It 

was also shown that there is intermolecular π-π stacking between the pendant 

phenyl ring and the guanine base, and a hydrogen bond interaction between the 

ligand NH and guanine O6.
97
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Figure 1.23 Interactions between [6
-dhaRu(en)]

2+
 and 9EtG 

 

McGowan et al. have carried out extensive work on arene ruthenium complexes to 

try and produce higher activity against cancerous cells and cisplatin-resistant cell 

lines. These include a range of picolinamide and quinaldamide complexes (Figure 

1.24), that have been synthesised by reactions with the p-cymene ruthenium(II) 

chloride dimer.
98
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Figure 1.24 Ruthenium picolinamides and quinaldamides 

 

The lead drug within this type of complex is the charged ruthenium (II) chloride 

2,5-dichloropicolinamide complex, which is made by filtering the uncharged 

complex onto NH4PF6 (Figure 1.25). These types of (N,N) chelating ligands are of 

high interest due to previous results discussed within the work of Sheldrick et al. 

and they also have the advantage of coordinating as (N,O) chelating ligands, giving 

them potential to target different organelles within the cancerous cells. 
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Figure 1.25 McGowan et al. lead compound 

 

NMR studies have shown that equilibrium between the (N,O) and (N,N) 

coordination can be altered by changes in temperature and pH.
99

 The ruthenium 

complexes with 3-nitro, 4-nitro and 4-fluoro picolinamide have shown IC50 values 

against a range of tumour cells in the same order of magnitude as cisplatin and 

carboplatin, with the added advantage of being active against a cisplatin resistant 

cell line. It was shown that the binding mode of these complexes is essential to its 

cytotoxic behaviour. Studies showed that the more cytotoxic (N,N) complexes have 

rapid hydrolysis and bind preferentially to guanine, whereas switching the binding 

mode to (N,O) slows the rate of hydrolysis and switches off the activity.
99-101

 

Work has since continued on ruthenium and iridium arene complexes incorporating 

either a picolinamide (N,N), ketoiminate (N,O) or a napthoquinone (O,O) ligand, 

where the IC50 values against both HT-29 and MCF-7 show the difference in 

binding mode is key for the cytotoxic values seen.
102

 The most significant result 

was seen for the ketoiminate (N,O) complexes for both ruthenium and iridium and 

activity followed the general trend (N,O) > (O,O) > (N,N). Part of the work in this 

thesis helps to explore further structural activity relationships. 

Since the start of this project, Dyson et al. have also started working on ruthenium 

-ketoiminate complexes (Figure 1.26). They show that altering the Ru-arene 

substituent can tune the activity of the complexes, whereby the p-cymene ligand 

gave the highest activities. Upon minor alterations of the -ketominate ligand, large 

differences were noted in the cytotoxicities observed. It was also noted that all 

ruthenium -ketominate complexes were less active than cisplatin against A2780, 

but they were more active than cisplatin against A2780cis, suggesting these 

complexes are activated via a different mechanism to cisplatin.
103
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Figure 1.26 Ruthenium -ketoiminate complexes reported by Dyson et al.
103

 

 

1.8 Research Aims 

The aims of the project were to synthesise a range of -ketominate ruthenium 

chloride complexes, altering both the electronics and sterics of the -ketominate 

ligand in order to gain structural activity relationships and assess their potential as 

anti-cancer compounds. 

 Firstly, the -diketonate ligands
104

 and -keiminate ligands
105

 will be 

synthesised according to Scheme 1.4 and Scheme 1.5 respectively. 

 

Scheme 1.4 Synthetic route for -diketonate ligands
104

 

 

Scheme 1.5 Synthetic route for -ketoiminate ligands
105

 

 The complexes will be synthesised according to Scheme 1.6. 
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Scheme 1.6 Synthetic route of -ketominate ruthenium chloride complexes 

 

Complexes synthesised will include the following components which have been 

shown to be important: 

 

Figure 1.27 Target ruthenium complexes 

I. The p-cymene moiety may stabilise the ruthenium centre towards 

hydrolysis and increase the hydrophobic character of the complex, allowing 

the complex to remain intact in vivo and facilitating passive transport across 

cell membranes. 

II. Varying the substituents R and R1 may increase the water solubility of the 

complex as well as increasing the anti-cancer activity of the complex. 

III. Planar aromatic groups may provide a potential site for -stacking with 

nucleobases within the DNA chain (intercalation). 

IV. The presence of a labile halide ligand could allow rapid hydrolysis of the 

complex at the low intracellular chloride levels, forming the more reactive 

species which can then form covalent bonds with nucleophilic sites on the 

DNA chain. 

The complexes will be assessed for their anti-cancer potential by determining their 

cytotoxicities using several biological assays and gaining structure activity 

relationships (SARs). 
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Synthesis and Characterisation of -Diketonate and -

Ketoiminate Ligands 
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2 Preparation of (O,O) and (N,O) Ligands 

2.1 Preparation of -Diketonate (O,O) Ligands 

This section extends the previous library of 4-hydroxy-4-phenyl-3-buten-2-one (-

diketonate) ligands which have previously been reported within the research 

group.
1, 2

 The library was first extended by the synthesis of novel mono-aryl -

diketonate ligands (L1-L4) and also novel bi-aryl -diketonate ligands (L5-L10) 

(Figure 2.1). All compounds have been synthesised and fully characterised by the 

author using 
1
H NMR, 

1
H-

1
H COSY, 

13
C{

1
H} NMR, 

1
H-

13
C{

1
H} HMQC 

spectroscopy, mass spectrometry and micro-analysis. 

R

OH O

R1

 

R = Me, R1 = 4’-
t
butyl L1 R = Py, R1 = H L5 

 2’-OEt, 4’-F L2  4’-Br L6 

 2’, 5’-diF L3  4’-OMe L7 

 4’-imidazole L4  4’-Me L8 

    3’-naphthyl L9 

    2’,3’,4’-triCl L10 

Figure 2.1 Novel -diketonate ligands synthesised within this chapter 

 

2.2 Synthesis of Mono-Aryl -Diketonate Ligands 

There are several different synthetic routes for the preparation of these mono-aryl 

ligands. In this work, a Claisen condensation reaction was carried out by reacting a 

substituted acetophenone with ethyl acetate in the presence of sodium ethoxide 

(Scheme 2.1).
3
 

OH O

R1

O

R1

i) NaOEt
   EtOAc
   reflux

ii) H2SO4  

Scheme 2.1 Synthetic route for mono-aryl -diketonate ligands 
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2.2.1 Characterisation of Mono-Aryl -Diketonate Ligands 

The
 1

H NMR spectra of these mono-aryl ligands (Figure 2.2) are all very similar 

with the aromatic hydrogens (f-h) having the highest chemical shifts (an example 

for L4 is seen in Figure 2.3), all appearing in the region 6.6-8.1 ppm. The methine 

hydrogen (c) is the most characteristic peak and appears as a one proton singlet in 

the region 6.1-6.5 ppm. The methyl hydrogens (a) appear as a three proton singlet 

in the region 2.1-2.3 ppm. In some ligands a peak for the OH can be seen at 

approximately 16 ppm. 

e

f
g

h

d
c

b
a

OH O

R1

 

Figure 2.2 General structure of mono-aryl -diketonate 

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5

Chemical Shift (ppm)

8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2

Chemical Shift (ppm)

c, 1H

a, 3H

f, 2H

imidazole, 1H

imidazole, 1H

imidazole, 1H

g, 2H

 

Figure 2.3 
1
H NMR spectrum for ligand L4 (CDCl3, 500 MHz, 300K) 

 

The
 13

C{
1
H} NMR spectra show the highest chemical shifts for the quaternary 

carbonyl/enol carbons (b and d), these appear in the range 175-195 ppm. All 

aromatic quaternary carbons are in the region 130-160 ppm and aromatic CH seen 

between 100-130 ppm and these values differ depending on the substituent R. The 
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methine carbon (c) is in the region 95-105 ppm and finally the methyl carbon (a) is 

usually seen between 25-27 ppm. 

 

2.3 Synthesis of Biaryl -Diketonate Ligands 

The biaryl -diketonate ligands were also prepared via a Claisen condensation 

reaction of a substituted aromatic ketone with a substituted pyridine ester in the 

presence of sodium ethoxide, acetic acid and water (Scheme 2.2). This is a 

modification of a previously published literature route by Levine et al. and goes via 

a similar mechanistic pathway to the mono-aryl ligands.
4
 

OH O

R

O

R

i) NaOEt
    Et2O

ii) acetic acid
H2O

NN
OEt

O

Scheme 2.2 Synthetic route for biaryl -diketonate ligands 

 

2.3.1 Characterisation of Biaryl -Diketonate Ligands 

The 
1
H NMR spectra for these biaryl ligands (Figure 2.4) are very similar, but 

show significant differences when compared to the mono-aryl ligands. The protons 

a-d appear slightly higher in at a chemical region of 7.4-8.8 ppm. The aromatic 

protons j-l are within the region 6-8 ppm. The methine hydrogen (g) is seen at a 

much higher chemical shift when compared to the mono-aryl ligands and appears 

as a one hydrogen singlet between 7.2-7.7 ppm (example for L5 seen in Figure 

2.5) 

i

j
k

l

h
g

f
e

OH O

N
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b
c

d
R1

 

Figure 2.4 General structure of a biaryl -diketonate 
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Figure 2.5 
1
H NMR spectra example of the biaryl ligand L5 (CDCl3, 500 MHz, 

300K) 

 

The 
13

C{
1
H} NMR spectra are similar to the mono-aryl -diketonate ligands, with 

the highest shifts seen between 180-190 ppm for the quaternary carbons f and h. 

All the pyridine and aromatic CH signals appear between 120-150 ppm and were 

assigned using a 2D 
1
H-

13
C{

1
H} COSY spectra. The quaternary pyridine carbon e 

is typically seen between 150-160 ppm and the aromatic quaternary carbon i 

between 127-135 ppm. Finally, the methane carbon g has the lowest chemical shift 

and can be found between 90-95 ppm. 

 

2.4 Preparation of -Ketoiminate (N,O) Ligands 

This section expands on previously synthesised phenyl-3(phenylamino)-2-buten-1-

one (-ketoiminate) ligands.
5
 The novel ligands shown in Figure 2.6 have been 

synthesised and characterised by the author using 
1
H NMR, 

1
H-

1
H COSY, 

13
C{

1
H} 

NMR, 
1
H-

13
C{

1
H} COSY spectroscopy, mass spectrometry, microanalysis. In 

addition single X-ray crystallography data has been obtained for ligands L11, L12, 

L14-16, L19, L21, L22, L24 and L25. 
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NH O

R

R1

 

R = H, R1 = 4’-Me L11 R = H, R1 = 4’-OMe L20 

 3’-F L12  3’,4’-diOMe L21 

 4’-F L13  2’-OEt, 4’-F L22 

 2’,5’-diCl L14  4’-OEt L23 

 3’,4’-diCl L15  3’,4’-methylene L24 

 2’,3’,4’-triCl L16  4’-imidazole L25 

 3’-Br L17  3’-naphthyl L26 

 4’-I L18 R = 2’,5’-diF, R1 = 4’-F L27 

 4’-Et L19 R1 = 2’-F, R1 = 4’-F L28 

Figure 2.6 Novel -ketoiminate ligands synthesised within this chapter 

 

2.5 Synthesis of -Ketoiminate Ligands 

The -ketoiminate ligands were synthesised using an adaptation of a previously 

established method by Tang et al.
6
 The corresponding functionalised -diketonate 

ligand was reacted with the relevant aniline in the presence of toluene and HCl 

(Scheme 2.3). 

OH O

R1

Toluene
HCl

NH2

R

NH O

R

R1

 

Scheme 2.3 General synthetic route for the -ketoiminate ligands 

 

2.5.1 NMR Characterisations for -Ketoiminate Ligands 

The
 1

H NMR spectra for the -ketoiminate ligands (Figure 2.7) show a 

characteristic broad singlet between 12.7-13.2 ppm corresponding to the NH. In 

general, the aniline aromatic protons are usually within the range 7.1-7.5 ppm, with 

the meta hydrogens (c) usually appearing as a broad triplet and the para hydrogens 
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(d) as a multiplet. These are at higher ppm values and generally more deshielded 

than the ortho hydrogens (b) which often appear as broad doublets. The methyl 

hydrogens (e) appear as a three proton singlet between 2.1-2.2 ppm and the 

methine hydrogen (g) is a one proton singlet in the region of 5.4-6.1 ppm and is 

shifted upfield approximately 0.5 ppm from the corresponding -diketonate ligand. 

The protons from the aromatic ring (j-l) all differ depending on the substituent 

R1and can be seen within the region 6-8 ppm (example for L11 seen in Figure 2.8). 

i

j
k

l

h
g
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NH O
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d

c
b

R1

R

 

Figure 2.7 General structure of the -ketoiminate ligand 
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NH, 1H

j, 2H

e, 3H

g, 1H

b, 2H

c, d, j, k, 7H

R group, Methyl, 3H

 

Figure 2.8 
1
H NMR spectra example for ligand L11 (CDCl3, 300 MHz, 300K) 

 

The 
13

C{
1
H} spectrum for ligands are all similar, with the highest peaks for the 

quaternary carbonyl carbon (h) and quaternary carbon ipso to NH (f), these are 

usually seen in the region of 160-188 ppm. All aromatic carbons are in the range 

100-135 ppm and the order differs depending on the substituent R. The methine 

carbon (g) appears in the region 93-100 ppm and the methyl carbon (e) is seen in 
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the region 19-21 ppm. 

 

2.5.2 X-ray Crystallography for -Ketoiminate  

Single crystals suitable for X-ray crystallography were obtained by slow 

evaporation from hot ethanol. Structural solutions were performed in a monoclinic 

(L11, L12, L14, L16, L19, L24 and L25), orthorhombic (L15) or triclinic (L21 

and L22) space group. All angles around the central atoms are between 118-125°, 

showing this section of the ligand is planar, with the atoms held together by an 

intramolecular hydrogen bonding interaction between N-H…O, this interaction is 

seen in all crystal structures. Most of the ligands have intermolecular interactions 

holding pairs of molecules together and have a distinctive herringbone arrangement 

when viewed along an axis.  

 

2.6 Characterisation of Novel -Ketoiminate Compounds 

2.6.1 X-ray Characterisation of C17H17NO (L11) 

L11 has been previously synthesised,
5
 however, colourless crystals suitable for X-

ray crystallographic analysis were obtained by slow evaporation in hot ethanol over 

a period of 3 days. The molecular structure is given in Figure 2.9, and selected 

bond lengths and angles are stated in Table 2.1. Ligand L11 was solved in a 

monoclinic cell and structural solution was performed in the space group P21/n, 

with two molecules in the asymmetric unit. 

 

Figure 2.9 Molecular structure of L11, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 
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Table 2.1 Selected bond lengths and angles for both molecules of L11 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.4104(13) C(1)-N(1)-C(8) 133.39(9) 

N(1)-C(8) 1.3543(13) N(1)-C(8)-C(9) 119.60(9) 

C(7)-C(8) 1.4996(14) C(8)-C(9)-C(10) 124.15(10) 

C(8)-C(9) 1.3805(15) O(1)-C(10)-C(9) 122.67(10) 

C(9)-C(10) 1.4298(14) O(1)-C(10)-C(11) 117.81(9) 

O(1)-C(10) 1.2552(12)   

C(10)-C(11) 1.4988(14)   

C(14)-C(17) 1.5092(15)   

Bond Distance (Å) Bond Angle (˚) 

C(1’)-N(1’) 1.4147(13) C(1’)-N(1’)-C(8’) 130.88(8) 

N(1’)-C(8’) 1.3499(13) N(1’)-C(8’)-C(9’) 119.79(9) 

C(7’)-C(8’) 1.5018(14) C(8’)-C(9’)-C(10’) 123.66(9) 

C(8’)-C(9’) 1.3797(14) O(1’)-C(10’)-C(9’) 122.56(10) 

C(9’)-C(10’) 1.4265(14) O(1’)-C(10’)-C(11’) 117.67(9) 

O(1’)-C(10’) 1.2610(12)   

C(10’)-C(11’) 1.4967(14)   

C(14’)-C(17’) 1.5114(15)   

 

The packing diagram for L11 shows the molecules pack in pairs of alternating 

molecules with a head-tail-tail-head arrangement when viewed along the c axis 

there is a slight herringbone structure. Intramolecular hydrogen bonding can be 

seen between N-H...O of both molecules and an intermolecular hydrogen bond 

between C(3)-H(3)...O(1’) which is contributing to the packing of this molecule. 

The packing diagram and intermolecular interactions are presented in Figure 2.10, 

with D…A distances and torsion angles are stated in Table 2.2. 
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Packing along the c axis C(3)-H(3)…O(1’) 

Figure 2.10 Packing diagrams and intermolecular interaction of L11, and hydrogen 

atoms are omitted for clarity. 

Table 2.2 Bond lengths and torsion angles of ligand L11 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1)...O(1) 2.6286(12) Å 

 N(1’)-H(1’)...O(1’) 2.6107(12) Å 

Intermolecular C(3)-H(3)...O(1’) 3.3190(14) Å 

Torsion Cg(1)-Centre 15.49° 

 Centre-Cg(2) 15.00° 

 

2.6.2 X-ray Characterisation of C16H14FNO (L12) 

Yellow plates of L12 suitable for X-ray crystallographic analysis were obtained by 

slow evaporation in hot ethanol over a period of several days. The molecular 

structure is given in Figure 2.11, and selected bond lengths and angles are stated in 

Table 2.2. Ligand L12 was solved in a monoclinic cell and structural solution was 

performed in the space group P21/c, with one molecule in the asymmetric unit. 
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Figure 2.11 Molecular structure of L12, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 2.3 Selected bond lengths and angles of L12 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.4235(14) C(1)-N(1)-C(8) 130.54(9) 

N(1)-C(8) 1.3457(14) N(1)-C(8)-C(9) 120.17(9) 

C(7)-C(8) 1.5049(14) C(8)-C(9)-C(10) 123.34(10) 

C(8)-C(9) 1.3963(15) O(1)-C(10)-C(9) 123.39(10) 

C(9)-C(10) 1.4286(15) O(1)-C(10)-C(11) 118.88(9) 

O(1)-C(10) 1.2583(13)   

C(10)-C(11) 1.5105(14)   

C(13)-F(1) 1.3622(13)   

 

The packing diagrams for L12 show that when viewed along the a axis there is a 

herringbone arrangement with intermolecular interactions holding rows of 

molecules together. Intramolecular hydrogen bonding can be seen between N(1)-

H(1N)...O(1) and an intermolecular T-stacking interaction is seen between C(16)-

H(16)…Cg(1). The interactions and packing diagrams are presented in Figure 

2.12, with D…A distances and torsion angles stated in Table 2.4. 
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C(16)-H(16)...Cg(1) Packing showing intermolecular interaction 

 
 

C(7)-H(7B)…O(1) along the c axis Packing along the a axis 

Figure 2.12 Intermolecular interactions and packing diagram of L12  

Table 2.4 Bond lengths and torsion angles of L12 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1N)...O(1) 2.6434(14) Å 

Intermolecular C(16)-H(16)...Cg(1) 3.5834 Å 

 N(1)-H(1N)…O(1) 3.1450(13) Å 

 C(7)-H(7B)…O(1) 3.3968(14) Å 

Torsion Cg(1)-Centre 34.83° 

 Centre-Cg(2) 24.74° 

 

2.6.3 X-ray Characterisation of C16H13Cl2NO (L14) 

Yellow plates of L14 suitable for X-ray crystallographic analysis were obtained by 

slow evaporation in hot ethanol over a period of several days. The molecular 

structure is given in Figure 2.13, and selected bond lengths and angles are stated in 

Table 2.5. Ligand L15 was solved in a monoclinic cell and structural solution was 

performed in the space group P21/n, with one molecule in the asymmetric unit. 
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Figure 2.13 Molecular structure of L14, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 2.5 Selected bond lengths and angles of L14 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.4232(15) C(1)-N(1)-C(8) 128.29(11) 

N(1)-C(8) 1.3460(16) N(1)-C(8)-C(9) 119.87(11) 

C(7)-C(8) 1.4987(17) C(8)-C(9)-C(10) 123.80(11) 

C(8)-C(9) 1.3883(16) O(1)-C(10)-C(9) 125.41(11) 

C(9)-C(10) 1.4158(18) O(1)-C(10)-C(11) 118.14(11) 

O(1)-C(10) 1.2480(16)   

C(10)-C(11) 1.5146(16)   

C(12)-Cl(1) 1.7412(12)   

C(15)-Cl(2) 1.7380(12)   

 

The packing diagrams show the molecules pack in a head-tail arrangement and 

when viewed along both the a and c axes there is a herringbone structure, with 

intermolecular T-stacking interactions holding rows of molecules together. 

Intramolecular hydrogen bonding can be seen between N(1)-H(1N)...O(1), and two 

intermolecular T-stacking interactions are seen between C(3)-H(3)…Cg(2) and 

C(13)-H(13)…Cg(2). The packing diagrams and T-stacking interactions and are 

presented in Figure 2.14, with D…A distances and torsion angles stated in Table 

2.6. 
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Packing along the a axis Packing along the c axis 

 

T-stacking between C(3)-H(3)…Cg(2)…H(13)-C(13) 

Figure 2.14 Packing diagrams and T-stacking interactions of L14  

Table 2.6 Bond lengths and torsion angles of L14 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1N)...O(1) 2.6788(14) Å 

Intermolecular C(3)-H(3)...Cg(2) 3.5000 Å 

 C(13)-H(13)…Cg(2) 3.5220 Å 

Torsion Cg(1)-Centre 45.61° 

 Centre-Cg(2) 81.99° 

 

2.6.4 X-ray Characterisation of C16H13Cl2NO (L15) 

Yellow fragments of L15 suitable for X-ray crystallographic analysis were 

obtained by slow evaporation in hot ethanol over a period of several days. The 

molecular structure is given in Figure 2.15, and selected bond lengths and angles 

are stated in Table 2.7. Ligand L15 was solved in an orthorhombic cell and 
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structural solution was performed in the space group Pbca, with one molecule in 

the asymmetric unit. 

 

Figure 2.15 Molecular structure of L15, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 2.7 Selected bond lengths and angles of L15 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.4107(3) C(1)-N(1)-C(8) 129.75(22) 

N(1)-C(8) 1.3528(3) N(1)-C(8)-C(9) 120.22(23) 

C(7)-C(8) 1.4997(4) C(8)-C(9)-C(10) 123.29(24) 

C(8)-C(9) 1.3759(4) O(1)-C(10)-C(9) 122.67(23) 

C(9)-C(10) 1.4236(4) O(1)-C(10)-C(11) 117.26(22) 

O(1)-C(10) 1.2564(3)   

C(10)-C(11) 1.5003(3)   

C(13)-Cl(1) 1.7391(3)   

C(14)-Cl(2) 1.7353(3)   

 

The packing diagrams for L15 show the molecules pack in a head-tail-tail-head 

herringbone arrangement when viewed along the a axis, with intermolecular T-

stacking interactions holding rows of molecules together. Intramolecular hydrogen 

bonding interactions can be seen between N(1)-H(1N)...O(1) and C(12)-

H(12)…O(1). There are intermolecular T-stacking interaction between C(13)-

Cl(1)…Cg(2) and C(10)-O(1)…Cg(2). These interactions and the packing diagram 

are presented in Figure 2.16, with D…A distances and torsion angles stated in 

Table 2.8. 
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Intramolecular interactions 
Intermolecular interactions along the 

a axis 

Figure 2.16 Intra-/Intermolecular interactions and packing diagram of L15  

Table 2.8 Bond lengths and torsion angles of L15 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1N)...O(1) 2.607(3) Å 

 C(12)-H(12)…O(1) 2.733(3) 

Intermolecular C(13)-C(1)...Cg(2) 3.911 Å 

 C(10)-O(1)…Cg(2) 3.478 Å 

 C(15)-H(15)…O(1) 3.175(3) Å 

Torsion Cg(1)-Centre 45.61° 

 Centre-Cg(2) 81.99° 

 

2.6.5 X-ray Characterisation of C16H12Cl3NO (L16) 

Brown fragments of L17 suitable for X-ray crystallographic analysis were obtained 

by slow evaporation in hot ethanol over a period of several days. The molecular 

structure is given in Figure 2.17, and selected bond lengths and angles are stated in 

Table 2.9. Ligand L17 was solved in a monoclinic cell and structural solution was 

performed in the space group P21/c, with one molecule in the asymmetric unit. 
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Figure 2.17 Molecular structure of L16, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 2.9 Selected bond lengths and angles for L16 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.411(3) C(1)-N(1)-C(8) 128.72(15) 

N(1)-C(8) 1.346(2) N(1)-C(8)-C(9) 120.35(16) 

C(7)-C(8) 1.494(2) C(8)-C(9)-C(10) 123.85(16) 

C(8)-C(9) 1.380(2) O(1)-C(10)-C(9) 125.19(15) 

C(9)-C(10) 1.418(2) O(1)-C(10)-C(11) 118.99(15) 

O(1)-C(10) 1.245(2)   

C(10)-C(11) 1.510(2)   

C(12)-Cl(1) 1.7326(17)   

C(13)-Cl(2) 1.7153(17)   

C(14)-Cl(3) 1.7304(17)   

 

The packing diagrams for L16 show that when viewed along the c axis they have a 

slight herringbone arrangement. An intramolecular hydrogen bonding interaction 

can be seen between N(1)-H(1N)...O(1) and an intermolecular interaction between 

C(13)-Cl(1)…Cg(2) and C(5)-H(5)…O(1). These interactions and the packing 

diagram are presented in Figure 2.18, with D…A distances and torsion angles 

stated in Table 2.10. 
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Packing along the b axis Packing along the c axis 

Figure 2.18 Intra-/Intermolecular interactions and packing diagram for L16 

Table 2.10 Bond lengths and torions angles for L16 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1N)...O(1) 2.6792(19) Å 

Intermolecular C(13)-Cl(2)...Cg(2) 4.8661 Å 

 C(5)-H(5)...O(1) 3.473(2) Å 

Torsion Cg(1)-Centre 45.42° 

 Centre-Cg(2) 59.40° 

 

2.6.6 X-ray Characterisation of C18H18NO (L19) 

Brown crystals of L19 suitable for X-ray crystallographic analysis were obtained 

by slow evaporation from hot ethanol over a period of 2-3 weeks. The molecular 

structure is given in Figure 2.19, and selected bond lengths and angles are stated in 

Table 2.11. Ligand L19 was solved in a monoclinic cell and structural solution 

was performed in the space group P21/n, with a two molecules in the asymmetric 

unit. 
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Figure 2.19 Molecular structure of L19, displacement ellipsoids are at the 50% 

probability level, hydrogen atoms and the second molecule are omitted for clarity. 

Table 2.11 Selected bond lengths and angles for both molecules of L19 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.4148(2) C(1)-N(1)-C(8) 129.79(16) 

N(1)-C(8) 1.3461(2) N(1)-C(8)-C(9) 119.78(18) 

C(7)-C(8) 1.4958(3) C(8)-C(9)-C(10) 123.71(17) 

C(8)-C(9) 1.3809(3) O(1)-C(10)-C(9) 122.80(17) 

C(9)-C(10) 1.4220(3) O(1)-C(10)-C(11) 117.6(17) 

O(1)-C(10) 1.2581(2)   

C(10)-C(11) 1.4970(3)   

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.4104(2) C(1)-N(1)-C(8) 131.97(16) 

N(1)-C(8) 1.3505(2) N(1)-C(8)-C(9) 119.83(17) 

C(7)-C(8) 1.4941(3) C(8)-C(9)-C(10) 124.36(17) 

C(8)-C(9) 1.3729(3) O(1)-C(10)-C(9) 122.58(16) 

C(9)-C(10) 1.4288(3) O(1)-C(10)-C(11) 118.11(17) 

O(1)-C(10) 1.2503(2)   

C(10)-C(11) 1.4970(3)   
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The packing diagram when viewed along both the b axis shows the molecules 

packing in a head-tail-tail-head arrangement within each plane of molecules. When 

viewed along the c axis the molecules pack in pairs and give a herringbone 

arrangement. Intramolecular interactions are seen between the N-H…O of both 

molecules, along with several intermolecular T-stacking interactions. The packing 

diagrams are presented in Figure 2.20, with D…A distances and torsion angles 

stated in Table 2.12. 

 

 

Packing along the b axis Packing along the c axis 

Figure 2.20 Packing diagrams of L19 when viewed along the b and c axis 

Table 2.12 Bond lengths and torsion angles for L19 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1N)...O(1) 2.614(2) Å 

 N(1’)-H(1’N)...O(1’) 2.6346(19) Å 

Intermolecular C(2')-H(2')...Cg(2) 3.6518 Å 

 C(6)-H(6)...Cg(2) 3.7445 Å 

 C(12)-H(12)...Cg(1) 3.6236 Å 

 C(12')-H(12')...Cg(1) 3.6315 Å 

 C(15)-H(15)...Cg3 3.6671 Å 

 C(17')-H(17C)...Cg(3) 3.5166 Å 

 C(18')-H(18A)...O(1) 3.386(2) Å 

Torsion Cg(1)-Centre 35.75° 

 Centre-Cg(2) 23.36° 

 Cg(3)-Centre’ 25.37° 

 Centre’-Cg(4) 24.43° 
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2.6.7 X-ray characterisation for C18H18NO3 (L21) 

Yellow fragments of L21 suitable for X-ray crystallographic analysis were 

obtained by slow evaporation in hot ethanol over a period of several days. The 

molecular structure is given in Figure 2.21, and selected bond lengths and angles 

are stated in Table 2.13. Ligand L21 was solved in a triclinic cell and structural 

solution was performed in the space group P1, with two molecules in the 

asymmetric unit. 

 

Figure 2.21 Molecular structure of L21, displacement ellipsoids are at the 50% 

probability level, the hydrogen atoms and second molecule are omitted for clarity. 
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Table 2.13 Selected bond lengths and angles for both molecules of L21 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.431(3) N(1)-C(8)-C(9) 120.1(2) 

N(1)-C(8) 1.362(3) C(8)-C(9)-C(10) 123.3(2) 

C(7)-C(8) 1.511(4) O(1)-C(10)-C(9) 122.7(2) 

C(8)-C(9) 1.403(3) O(1)-C(10)-C(11) 117.8(2) 

C(9)-C(10) 1.439(4)   

O(1)-C(10) 1.271(3)   

C(10)-C(11) 1.515(3)   

Bond Distance (Å) Bond Angle (˚) 

C(1’)-N(1’) 1.430(3) N(1’)-C(8’)-C(9’) 120.8(2) 

N(1’)-C(8’) 1.361(3) C(8’)-C(9’)-C(10’) 123.0(2) 

C(7’)-C(8’) 1.526(4) O(1’)-C(10’)-C(9’) 122.2(3) 

C(8’)-C(9’) 1.270(3) O(1’)-C(10’)-C(11’) 118.4(2) 

C(9’)-C(10’) 1.449(4)   

O(1’)-C(10’) 1.390(4)   

C(10’)-C(11’) 1.503(4)   

 

The packing diagrams when viewed along the both the a and b axis show there is a 

herringbone arrangement. Intramolecular hydrogen bonding interactions can be 

seen between N(1)-H(1)...O(1), the packing also has a large number of 

intermolecular interactions, all contributing to the packing of these molecules. The 

packing diagrams are presented in Figure 2.22, with D…A distances and torsion 

angles stated in Table 2.14. 
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Packing diagram along the a axis Packing along the b axis 

Figure 2.22 Packing diagrams of L21 when viewed along the a and b axes 

Table 2.14 Bond lengths and torsion angles for both molecules of L21 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1N)…O(1) 2.642(3) Å 

 N(1’)-H(1N’)…O(1’) 2.633(3) Å 

Intermolecular C(2)-H(2)…Cg(2) 3.639 Å 

 C(2’)-H(2’)…Cg(4) 3.635 Å 

 C(12)-H(12)…Cg(1) 3.605 Å 

 C(12’)-H(12’)…Cg(3) 3.614 Å 

 C(17)-H(17A)…Cg(3) 3.585 Å 

 C(17)-H(17D)…Cg(1) 3.573 Å 

 C(7)-H(7B)...O(1) 3.310(4) Å 

 C(7’)-H(7’B)...O(1’) 3.300(4) Å 

 C(6)-H(6)...O(2’) 3.324(4) Å 

 C(6’)-H(6’)...O(2) 3.319(4) Å 

 C(6)-H(6)...O(3’) 3.407(4) Å 

 C(6’)-H(6’)...O(3) 3.411(4) Å 

 C(17)-H(17C)...O(1) 3.332(4) Å 

 C(17’)-H(17’C)...O(1’) 3.346(4) Å 

Torsion Cg(1)-Centre 48.92° 

 Centre-Cg(2) 27.30° 

 Cg(3) Centre’ 49.14° 

 Centre’-Cg(4) 27.23° 
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2.6.8 X-ray Characterisation of C18H18FNO2 (L22) 

Yellow crystals of compound L22 suitable for X-ray crystallographic analysis were 

obtained by slow evaporation in hot ethanol over a period of 2-3 weeks.  The 

molecular structure is given in Figure 2.23, and selected bond lengths and angles 

are stated in Table 2.15. Ligand L22 was solved in a triclinic cell and structural 

solution was performed in the space group P1, with two molecules in the 

asymmetric unit. 

 

Figure 2.23 Molecular structure of L22, displacement ellipsoids are at the 50% 

probability level. Hydrogen atoms omitted for clarity. 
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Table 2.15 Selected bond lengths and angles for both molecules of L22 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.431(3) N(1)-C(8)-C(9) 121.1(2) 

N(1)-C(8) 1.346(4) C(8)-C(9)-C(10) 123.5(3) 

C(7)-C(8) 1.501(4) O(1)-C(10)-C(9) 123.4(2) 

C(8)-C(9) 1.394(4) O(1)-C(10)-C(11) 117.1(2) 

C(9)-C(10) 1.427(4)   

O(1)-C(10) 1.258(3)   

C(10)-C(11) 1.509(4)   

Bond Distance (Å) Bond Angle (˚) 

C(1’)-N(1’) 1.430(4) N(1’)-C(8’)-C(9’) 120.9(3) 

N(1’)-C(8’) 1.350(4) C(8’)-C(9’)-C(10’) 123.2(3) 

C(7’)-C(8’) 1.514(5) O(1’)-C(10’)-C(9’) 122.8(3) 

C(8’)-C(9’) 1.388(4) O(1’)-C(10’)-C(11’) 116.4(3) 

C(9’)-C(10’) 1.425(5)   

O(1’)-C(10’) 1.264(4)   

C(10’)-C(11’) 1.513(4)   

 

When viewed along the a axis the molecules pack in pairs with a tail-head-head-tail 

arrangement and alternate in each row. Intramolecular hydrogen bonding is seen 

between N(1)-H(1N)...O(1) and C(9)-H(9)…O(2) of both molecules. There are 

observable intermolecular T-stacking interactions between C(2’)-H(2’)...Cg(2), 

C(17)-H(17B)...Cg(2) and C(14’)-F(1’)...Cg(1). The interactions and packing 

diagrams are presented in Figure 2.24, with D…A distance and torsion angles 

stated in Table 2.16. 
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Intramolecular interactions N(1)-H(1N)…O(2) and C(9)-H(9)…O(2) 

 

 

Intermolecular interactions along the c 

axis 

Intermolecular interactions along the c 

axis 

Figure 2.24 Intra-/Intermolecular packing along the a and c axes for L22 

Table 2.16 Bond lengths and torsion angles for L22 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1N)…O(1) 2.667(3) Å 

 N(1’)-H(1N’)…O(1’) 2.632(5) Å 

 C(9)-H(9)...O(2) 2.852(3) Å 

 C(9’)-H(9’)...O(2’) 2.867(4) Å 

Intermolecular C(2’)-H(2’)...Cg(2) 3.758 Å 

 C(17)-H(17B)...Cg(2) 3.618 Å 

 C(14’)-F(1’)...Cg(1) 4.423 Å 

Torsion Cg(1)-Centre 54.31° 

 Centre-Cg(2) 28.91° 
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2.6.9 X-ray Characterisation for C17H15NO3 (L24) 

Green crystals of L24 suitable for X-ray crystallographic analysis were obtained by 

slow evaporation from hot ethanol over a period of 2 weeks and further washing 

with diethyl ether. The molecular structure is given in Figure 2.25, selected bond 

lengths and angles are stated in Table 2.17. Ligand L24 was solved in a 

monoclinic cell and structural solution was performed in the space group P21, with 

a single molecule in the asymmetric unit. 

 

Figure 2.25 Molecular structure of L24, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms omitted for clarity. 

Table 2.17 Selected bond lengths and angles of L24 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.433(2) C(6)-C(1)-N(1) 118.17(17) 

N(1)-C(8) 1.361(3) C(2)-C(1)-N(1) 121.7(2) 

C(7)-C(8) 1.515(3) N(1)-C(8)-C(9) 121.60(18) 

C(8)-C(9) 1.389(3) C(8)-C(9)-C(10) 124.02(19) 

C(9)-C(10) 1.452(3) O(1)-C(10)-C(9) 122.34(19) 

O(1)-C(10) 1.259(2) O(1)-C(10)-C(11) 119.02(17) 

C(10)-C(11) 1.509(3) C(10)-C(11)-C(12) 118.34(17) 

  C(10)-C(11)-C(17) 122.14(17) 
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The packing diagram shows that when viewed along both the a and c axes the 

molecules pack in a herringbone arrangement. Intramolecular hydrogen bonding 

can be seen between N(1)-H(1N)...O(1) and C(16)-H(16)...O(1). Intermolecular 

hydrogen bonding interaction are seen between the molecules within the same 

plane and also between different planes of molecules. The interactions and packing 

diagrams are presented in Figure 2.26, with a D…A distances and torsion angles 

stated in Table 2.18. 

 

 

Packing diagram along the c axis Packing diagram along the a axis 

 

Intramolecular interactions 

Figure 2.26 Interactions and packing diagrams of L24 

Table 2.18 Bond lengths and torsion angles of L24 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1N)…O(1) 2.693(2) Å 

 C(16)-H(16)…O(1) 2.798(3) Å 

Intermolecular C(2)-H(2)...O(2) 3.486(3) Å 

 C(6)-H(6)...O(3) 3.491(3) Å 

Torsion Cg(1)-Centre 44.39° 

 Centre-Cg(2) 10.00° 

 



-Diketonate and -Ketoiminate Ligands  Chapter 2 

59 

2.6.10 X-ray Characterisation of C19H17N3O (L25) 

Green crystals of ligand L25 suitable for X-ray crystallographic analysis were 

obtained by slow evaporation from hot ethanol over a period of 2-3 weeks and 

further washing with diethyl ether. Molecular structure is given in Figure 2.27, 

selected bond lengths and angles are stated in Table 2.19. Ligand L25 was solved 

in a monoclinic cell and structural solution was performed in the space group P21, 

with a single molecule in the asymmetric unit. 

 

Figure 2.27 Molecular structure of L25, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms omitted for clarity. 

Table 2.19 Selected bond lengths and angles of L25 

Bond Distance (Å) Bond Angle (˚) 

C(1)-N(1) 1.4420(13) N(1)-C(8)-C(9) 121.36(10) 

N(1)-C(8) 1.3567(14) C(8)-C(9)-C(10) 124.18(10) 

C(7)-C(8) 1.5179(16) O(1)-C(10)-C(9) 123.27(10) 

C(8)-C(9) 1.4048(15) O(1)-C(10)-C(11) 118.39(9) 

C(9)-C(10) 1.4401(15)   

O(1)-C(10) 1.2772(13)   

C(10)-C(11) 1.5178(14)   
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The packing diagrams show the molecules pack in pairs with intermolecule 

interactions between each plane of molecules. Also when viewed along the c axis 

the molecules pack in a herringbone arrangement. An intramolecular hydrogen 

bonding interaction is observed between N(1)-H(1N)...O(1) and an intermolecular 

hydrogen bonding interaction between C(17)-H(17)...O(1). The packing diagrams 

are present in Figure 2.28, with D…A distances and torsion angles are stated in 

Table 2.20. 

 

 

 

Packing along the a axis Packing along the c axis 

Figure 2.28 Interactions and packing diagram of L25 

Table 2.20 Bond lengths and torsion angles of L25 

Interaction Atoms Bond Lengths and Angles 

Intramolecular N(1)-H(1N)…O(1) 2.7179(11) Å 

Intermolecular C(17)-H(17)...O(1) 3.2994(14) Å 

Torsion Cg(1)-Centre 44.95° 

 Centre-Cg(2) 23.24° 
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2.7 Conclusions 

A range of novel mono-aryl and biaryl -diketonate and -ketoiminate ligands 

have been synthesised and fully characterised, including X-ray crystallography data 

for several of the -ketoiminate ligands. All ligands show similar 
1
H and 

13
C{

1
H} 

NMR spectra with a distinctive methine proton that is characteristic of ligand 

formation. The ligands were obtained as single crystals, with structural solutions 

performed in a monoclinic (L11, L12, L14, L16, L19, L24 and L25), 

orthorhombic (L15) or triclinic (L21 and L22) space groups. All ligands show an 

intramolecular hydrogen bonding interaction between N-H…O which holds the 

centre of the molecule in a planar orientation. The tables of torsion angles show 

that both the aniline and aromatic rings are bent out of this plane, with the size of 

the torsion angle depending on the nature and electronics of the aromatic 

substituents. A range of compounds were synthesised to include different electronic 

and steric properties in order to gain structure activity relationships upon 

complexations; these complexes are presented in Chapters 3, 5 and 8. 
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Chapter 3 

Synthesis and Characterisation of Functionalised -

Ketoiminate Ruthenium (II) Chloride Complexes 
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3 Ruthenium Arene Complexes 

The work within this chapter builds on the libraries of ruthenium compounds with 

(N,N), (N,O) and (O,O) chelating ligands. This area has been extensively studied by 

the Sadler, Keppler and Dyson research groups. Sadler et al. first reported the 

cationic ruthenium arene complexes (Figure 3.1) incorporating neutral 

ethylenediamine (N,N) chelating ligands, along with a range of derivatives 

containing different Ru-halides and different arene substituents (A-C).
1
 Cytotoxic 

values were all comparable to cisplatin against A2780 (human ovarian 

carcinomas), with the most hydrophobic arene substituent (C) giving the most 

promising results. It was observed that rates of hydrolysis were independent of 

ionic strength but proportional to the size of the arene substituent.
1
 Sadler has also 

investigated the interactions with DNA models and found that these ruthenium 

ethylenediamine compounds preferentially bind to the N7 position of guanine; this 

has been studied by solid state X-ray crystallography and in solution by 2D NMR, 

with all studies confirming this preferential binding.
2
 A range of ruthenium (N,O) 

and (O,O) chelating compounds (D-F), all showing moderate cytotoxicity and 

again preferential binding to the N7 position of guanine (Figure 3.1).
3
 

 

Figure 3.1 Compounds previously synthesised by Sadler et al. 

 

Dyson et al. have carried out extensive work in this area, with particular interest in 

multinuclear ruthenium arene clusters and their ability to form host-guest type 

structures. The water-soluble metallaprism cages were shown to deliver the 
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hydrophobic dendrimer guest to the cells, with noticeably increased cytotoxicity for 

the host-guest molecules against A2780 (human ovarian carcinomas) and A2780cis 

(cisplatin resistant human ovarian carcinomas), when compared to the empty host 

molecule.
4, 5

 They have also carried out studies using hexaosmium cages (Figure 

3.2) and their delivery systems compare favourably with the ruthenium arene 

analogues.
6
 

 

Figure 3.2 Ruthenium and osmium host-guest molecules synthesised by Dyson et 

al. 

 

Keppler et al. have coupled known enzyme inhibitors (G),
7, 8

 pain relief molecules 

(H)
9
 and antibacterial agents (I)

10, 11
 (Figure 3.3) to ruthenium/osmium arenes and 

carried out extensive research into their antiproliferative activities, apoptosis, cell 

cycling kinetics and measured DNA shrinkage using AFM measurements. 
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Figure 3.3 Ruthenium and osmium compounds synthesised by Keppler et al. 

 

The McGowan research group has since carried out work on ruthenium arenes 

incorporating picolinamide and quinaldamide ligands (Figure 3.4), which show 

high cytotoxicity and significant binding to 9-EtG. Results showed a reversible 

inter-conversion in the binding of these ligands, either (N,N) or (N,O); the 

differences in cytotoxicity showed potential in tuning the ligands for biological 

application
12, 13

  

RuCl

N
N

O R

RuCl

N
N

O
R

 

Figure 3.4 Picolinamide and quinaldamide compounds by McGowan et al. 

 

Since these results, the group started work into incorporating -ketoiminate (N,O) 

ligands and has since produced a library of compounds stated within this chapter. 

Cell line testing against a range of human carcinomas has been completed and 

biological evaluations into the modes of action will be discussed in chapters 4-6. In 

addition work was published on an iridium(III) Cp* analogue incorporating a -

ketoiminate ligand that has also been synthesised, along with a small library of 
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(N,N), (N,O) and (O,O) iridium compounds, with cell line data being compared to 

that of complex 1 (see synthesis within this Chapter). These showed a trend in 

binding mode, whereby the activity followed the trend N,O > O,O > N,N (Figure 

3.5).
14,15

 

M
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N
O
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O

O
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Cl

N

N

O

R

M = Ir, arene = Cp*
M = Ru, arene = p-cym

R = 2,4-diF or 2,5-diF

 

Figure 3.5 List of complexes previously synthesised by McGowan et al. 

 

3.1 Ruthenium (II) Chloride Complexes  

All -ketoiminate ruthenium complexes were prepared according to Scheme 3.1, 

by reacting two equivalents of a functionalised -ketoiminate ligand, two 

equivalents of triethylamine and [p-cymRuCl2]2 in dichloromethane overnight at 

room temperature, followed by recrystallisation by slow evaporation from a 

methanolic solution. 

Ru

Cl

Ru

ClCl

Cl

NH O

R1

2

Ru
Cl

N

O

R1

Et3N 

(2 equiv.)

DCM

RT

R

R

 

Scheme 3.1 General synthetic pathway for ruthenium(II) arene compounds 
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Figure 3.6 List of complexes synthesised within this Chapter 

 

Complexes 1-13 (Figure 3.6) were synthesised and characterised by the author, 

with full experimental data described in Chapter 9. All of the compounds were 

obtained as analytically pure solids and have been characterised by 
1
H NMR, 

1
H-

1
H COSY, 

13
C{

1
H}NMR, 

1
H-

13
C{

1
H} HMQC spectroscopy, mass spectrometry 

and micro-analysis. In addition X-ray crystallographic data has been obtained for 

all complexes. 

 

3.2 NMR Data for Ruthenium(II) Chloride Complexes 

The 
1
H NMR spectra for [p-cymRuCl2]2 shows the aromatic p-cymene protons (c, 

d, f and g, Figure 3.7) as two doublets at 5.35 and 5.48 ppm for two protons each. 

Upon complexation to a -ketoiminate ligand they separate into four broad 

doublets ranging from 3.68-5.35 ppm, each peak one proton each (shown for 

compound 7 in Figure 3.8). The chemical shifts for l-n and t-v remain within the 

same range as the starting ligand but are frequently seen in a different order, their 

chemical shift ranges depending on the substituent R. The characteristic shift for 

complexation is seen when monitoring proton q, which is shifted upfield upon 

complexation. In the case of compound C7, proton q is a singlet at 5.84 ppm in the 

free ligand and it shifts upfield to 5.36 ppm upon complexation. Also the p-cymene 

proton h, which appears as a broad septet, usually shows a significant upfield 

chemical shift from 2.93 ppm to 2.67 ppm upon complexation. The broad singlet at 

around 13 ppm seen for the NH in the free ligand disappears indicating the reaction 

has gone to completion. 
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Figure 3.7 General ruthenium(II) -ketoiminate structure 
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Figure 3.8 
1
H NMR for [p-cymRuCl2]2 (black), free ligand (blue) and complex 7 

(red) (CDCl3, 300 MHz, 300K) 

 

When analysing the 
13

C{
1
H} NMR spectra for the -ketoiminate complexes, they 

have similar trends with the highest shifts seen for the quaternary carbons p and r 

which are typically in the range 170-190 ppm. All CH peaks for the -ketoiminate 

ligand are in the range 100-150 ppm. The aromatic p-cymene quaternary carbons 

(b and e) have higher chemical shifts of 96-102 ppm, whilst the CH carbons (c, d, f 

and g) are between 78-90 ppm. The methine CH (q) from the -ketoiminate ligand 

is also within this range and typically seen at 93-95 ppm. The remaining carbon 

atoms have low chemical shifts between 18-31 ppm. 
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3.3 X-ray Crystallography for Ruthenium (II) Chloride Complexes 

X-ray crystallographic data was analysed for complexes 1-13 and all crystals were 

obtained using slow evaporation from a methanolic solution, appearing as orange/ 

red single crystals. Solutions were performed in either a monoclinic Cc (4 and 7) or 

triclinic P1 (1-3, 5, 6 and 8-13) space groups. All of the angles around the metal 

centre show the geometry expected for pseudo octahedral compounds which is 

common for half-sandwich “piano-stool” structures. The angles between the N-Ru-

O, N-Ru-Cl and O-Ru-Cl are expected to be 90° and complexes here show angles 

ranging between 83-90°. The smaller angles can be explained due to the 

restrictions caused by the bidentate ligand. The remaining three coordination sites 

are occupied by the bulky p-cymene ligand and when considering the restriction 

from the -ketoiminate ligand the angles observed for Cg-Ru-Cl, Cg-Ru-N and Cg-

Ru-O are within the range 124-133°. 

When comparing the ruthenium -ketoiminate complexes, intramolecular 

interactions are typically seen between a p-cymene C-H and either the centroid of 

the aniline ring or the Ru-Cl bond. This is thought to correspond to the upfield shift 

seen for one of the p-cymene C-H protons upon analysis of the 
1
H NMR spectra. 

The intramolecular T-stacking interactions can be seen in compounds 1, 2, 4-7, 10, 

12 and 13, with D...A distances ranging between 3.4-3.6 Å. However, complexes 3, 

8 and 11 have the p-cymene ligand rotated away from the aniline ring and D...A 

distances are too large to be considered as a T-stacking interaction. This is due to 

an additional intramolecular hydrogen interaction between the methyl group of the 

p-cymene and the chloride of the Ru-Cl bond, causing restricted rotation of the p-

cymene ligand.  

 

3.3.1 X-ray Characterisation for C26H27ClFNORu (1) 

Red fragments of 1 suitable for X-ray crystallographic analysis were obtained using 

slow evaporation from a methanolic solution over a period of several days. The 

molecular structure is shown in Figure 3.9 and selected bond lengths and angles 

are stated in Table 3.1. Complex 1 crystallised in a triclinic cell and structural 

solution was performed in the space group P1, with a single molecule in the 

asymmetric unit. 
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Figure 3.9 Molecular structure of 1, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 3.1 Selected bond lengths and angles for 1 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.0870(17) N(1)-Ru(1)-O(1) 88.40(6) 

Ru(1)-O(1) 2.0683(13) N(1)-Ru(1)-Cl(1) 83.65(5) 

Ru(1)-Cl(1) 2.4384(6) O(1)-Ru(1)-Cl(1) 87.14(4) 

Ru(1)-Cg(3) 1.6673(8) Cg(1)-Ru(1)-O(1) 124.22(5) 

C(23)-F(1) 1.340(3) Cg(1)-Ru(1)-N(1) 131.97(5) 

  Cg(1)-Ru(1)-Cl(1) 127.07(3) 

 

The packing diagram for complex 1 shows the molecules pack in pairs about a 

centre of inversion, in alternating rows, with evidence of intermolecular hydrogen 

bonding between these pairs of molcules. There is also a suggested intramolecular 

T-stacking interaction between the p-cymene H(3) and aniline centroid Cg(3). 

These interactions and packing diagram are presented in Figure 3.10, with D...A 

distance and torsion angles stated in Table 3.2. 
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Intramolecular 

C(3)-H(3)...Cg(1) 

Intermolecular 

C(6)-H(6)...Cl(1) 

 

Packing diagram when viewed along the a axis 

Figure 3.10 Interactions and packing diagram for 1 

Table 3.2 Bond lengths and torsion angles for 1 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(3)-H(3)...Cg(2) 3.458 Å 

Intermolecular C(6)-H(6)...Cl(1) 3.622(2) Å 

Torsion Cg(2)-Centre 77.28° 

 Centre-Cg(3) 29.31° 
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3.3.2 X-ray Characterisation for C26H27ClFNORu (2) 

Red fragments of 2 suitable for X-ray crystallographic analysis were obtained using 

slow evaporation from a methanolic solution over a period of several days. The 

molecular structure is shown in Figure 3.11 and selected bond lengths and angles 

are stated in Table 3.3. Complex 2 crystallised in a triclinic cell and structural 

solution was performed in the space group P1, with a single molecule in the 

asymmetric unit. 

 

Figure 3.11 Molecular strucutre of 2, displacement displacement ellipsoids are at 

the 50% probability level and hydrogen atoms are omitted for clarity. 

Table 3.3 Selected bond lengths and angles for 2 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.088(3) N(1)-Ru(1)-O(1) 89.08(12) 

Ru(1)-O(1) 2.059(3) N(1)-Ru(1)-Cl(1) 83.86(11) 

Ru(1)-Cl(1) 2.4362(13) O(1)-Ru(1)-Cl(1) 85.01(9) 

Ru(1)-Cg(1) 1.6680(19) Cg(1)-Ru(1)-O(1) 124.71(11) 

C(24)-F(1)  Cg(1)-Ru(1)-N(1) 130.90(12) 

  Cg(1)-Ru(1)-Cl(1) 128.44(8) 

 

The packing diagram for complex 2 shows the molecules pack in pairs about a 

centre of inversion, in alternating rows, with evidence of intermolecular hydrogen 

bonding between these pairs of molcules. There is also a suggested intramolecular 

T-stacking interaction between the p-cymene H(3) and aniline centroid Cg(2) and 

also between H(1A) and Cl(1). These interactions and packing diagram are 
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presented in Figure 3.12, with D...A distance and torsion angles stated in Table 

3.4. 

 
 

C(3)-H(3)…Cg(2) 

C(1)-H(1A)…Cl(1) 

Packing along the b axis – showing 

intermolecular interaction, C(17)-

H(17A)…Cg(3) 

Figure 3.12 Interactions and packing diagram for 2  

Table 3.4 Bond lengths and torsion angles for 2 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(3)-H(3)...Cg(2) 3.571 Å 

 C(1)-H(1A)…Cl(1) 3.437(5) Å 

Intermolecular C(17)-H(17A)...Cg(3) 3.590 Å 

 Ru(1)-Cl(1)…Cg(1) 3.711 Å 

 C(4)-H(4)…Cl(1) 3.505(5) Å 

 C(8)-H(8)…F(1) 3.229(5) Å 

Torsion Cg(1)-centre 78.34° 

 centre-Cg(2) 17.11° 

 

3.3.3 X-ray Characterisation for C26H27Cl2NORu (3) 

Red fragments of 3 suitable for X-ray crystallographic analysis were obtained using 

slow evaporation from a methanolic solution over a period of three days. The 

molecular structure is shown in Figure 3.13, selected bond lengths and angles are 

stated in Table 3.5. Complex 3 crystallised in a triclinic cell and structural solution 

was performed in the space group P1, with a single molecule in the asymmetric 

unit. 



Synthesis of Ruthenium(II) Chlorides  Chapter 3 

74 

 

Figure 3.13 Molecular structure of 3, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 3.5 Selected bond lengths and bond angles for 3 

Bond Distance (Å) Bond Angle (˚) 

Ru(1)-N(1) 2.099(4) N(1)-Ru(1)-O(1) 89.45(15) 

Ru(1)-O(1) 2.068(3) N(1)-Ru(1)-Cl(1) 84.03(12) 

Ru(1)-Cl(1) 2.4513(13) O(1)-Ru(1)-Cl(1) 84.90(11) 

Ru(1)-Cg(1) 1.677(2) Cg(1)-Ru(1)-O(1) 124.02(13) 

C(24)-Cl(2) 1.755(4) Cg(1)-Ru(1)-N(1) 130.73(14) 

  Cg(1)-Ru(1)-Cl(1) 129.02(9) 

 

The packing diagram for complex 3 shows the molecules pack in alternating rows, 

with no evidence of intermolecular interactions suggesting the packing of 

molecules is due to crystal packing interactions only. There is an intramolecular 

hydrogen bond between H(1B) and Cl(1), however, no T-stacking interaction is 

observed between the p-cymene and aniline ring. The intramolecular interaction 

and packing are presented in Figure 3.14, with the D...A distance and torsion 

angles stated in Table 3.6. 
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Intramolecular C(1)-H(1B)...Cl(1) Packing along the b axis 

Figure 3.14 Intramolecular interaction and packing diagram for 3 

Table 3.6 Bond lengths and torsion angles for 3 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(1)-H(1B)...Cl(1) 3.393(7) Å 

Torsion Cg(2)-Centre 76.49° 

 Centre-Cg(3) 24.36° 

 

3.3.4 X-ray Characterisation for C26H26Cl3NORu (4) 

Red fragments of 4 suitable for X-ray crystallographic analysis were obtained by 

slow evaporation in methanol over a period of several days. The molecular 

structure is shown in Figure 3.15 with selected bond lengths and angles stated in 

Table 3.7. Complex 4 crystallised in a monoclinic cell and structural solution was 

performed in the space group Cc, with a single molecule in the asymmetric unit. 

  



Synthesis of Ruthenium(II) Chlorides  Chapter 3 

76 

 

Figure 3.15 Molecular strcuture of 4, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 3.7 Selected bond lengths and bond angles for 4 

Bond Distance (Å) Bond Angle (˚) 

Ru(1)-N(1) 2.095(5) N(1)-Ru(1)-O(1) 89.61(15) 

Ru(1)-O(1) 2.077(3) N(1)-Ru(1)-Cl(1) 85.74(12) 

Ru(1)-Cl(1) 2.4314(12) O(1)-Ru(1)-Cl(1) 82.74(9) 

Ru(1)-Cg(1) 1.670(2) Cg(1)-Ru(1)-O(1) 125.63(12) 

C(22)-Cl(2) 1.745(5) Cg(1)-Ru(1)-N(1) 129.19(14) 

C(24)-Cl(3) 1.736(5) Cg(1)-Ru(1)-Cl(1) 129.07(8) 

 

The packing diagram for complex 4 shows the molecules pack in head-to-tail pairs, 

with intermolecular interactions between each pair and also holding together 

alternate rows of molecules. There are intramolecular hydrogen bonds between 

H(8)-Cl(2), and also an intramolecular T-stacking interaction is observed between 

the p-cymene H(3) and the aniline ring Cg(2). The intramolecular interactions and 

packing diagram are presented in Figure 3.16, with the D...A distance and torsion 

angles stated in Table 3.8. 
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Intramolecular interactions Intermolecular interactions 

Figure 3.16 Intramolecular interactions and packing diagram for 4  

Table 3.8 Bond lengths and torsion angles for 4 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(3)-H(3)...Cg(2) 3.445 Å 

 C(8)-H(8)…Cl(2) 3.695(6) Å 

Intermolecular Ru(1)-Cl(1)…Cg(1) 1.670 Å 

 C(10)-H(10C)…Cl(3) 3.672(6) Å 

 C(17)-H(17B)…Cl(3) 3.539(6) Å 

 C(17)-H(17C)…Cl(1) 3.649(6) Å 

 C(25)-H(25)…Cl(2) 3.670(5) Å 

Torsion Cg(2)-Centre 78.85° 

 Centre-Cg(3) 41.28° 

 

3.3.5 X-ray Characterisation for C26H26Cl3NORu (5) 

Red fragments of 5 suitable for X-ray crystallographic analysis were obtained using 

slow evaporation from a methanolic solution over a period of several days. The 

molecular structure is shown in Figure 3.17 with selected bond lengths and angles 

stated in Table 3.9. Complex 5 crystallised in a triclinic cell and structural solution 

was performed in the space group P1, with two molecules in the asymmetric unit. 
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Figure 3.17 Molecular structure of 5, displacement ellipsoids are at the 50% 

probability level. Hydrogen atoms and the second molecule are omitted for clarity 

Table 3.9 Selected bond lengths and angles for both molecules of 5 

Bond Distance (Å) Bond Angle (˚) 

Ru(1)-N(1) 2.1223(15) N(1)-Ru(1)-O(1) 88.06(5) 

Ru(1)-O(1) 2.0762(12) N(1)-Ru(1)-Cl(1) 84.56(4) 

Ru(1)-Cl(1) 2.4587(5) O(1)-Ru(1)-Cl(1) 85.35(4) 

Ru(1)-Cg(1) 1.6836(8) Cg(1)-Ru(1)-O(1) 124.74(4) 

C(22)-Cl(2) 1.7580(19) Cg(1)-Ru(1)-N(1) 132.30(5) 

C(25)-Cl(3) 1.756(2) Cg(1)-Ru(1)-Cl(1) 126.88(3) 

Bond Distance (Å) Bond Angle (˚) 

Ru(1’)-N(1’) 2.1198(14) N(1’)-Ru(1’)-O(1’) 88.25(5) 

Ru(1’)-O(1’) 2.0874(12) N(1’)-Ru(1’)-Cl(1’) 88.09(4) 

Ru(1’)-Cl(1’) 2.4477(5) O(1’)-Ru(1’)-Cl(1’) 84.91(4) 

Ru(1’)-Cg(4) 1.6790(7) Cg(4)-Ru(1’)-O(1’) 125.49(4) 

C(22’)-Cl(2’) 1.754(2) Cg(4)-Ru(1’)-N(1’) 130.12(5) 

C(25’)-Cl(3’) 1.759(2) Cg(4)-Ru(1’)-Cl(1’) 126.02(3) 

 

The packing diagram for complex 5 shows the molecules pack in a head-tail-tail-

head arrangment, within alternating rows. There are several intermolecular 

interactions contributing to the packing of the molecules. There is evidence of a T-

stacking interaction between the p-cymene H(3) and the centroid of the aniline ring 

Cg(1). Interactions and the packing diagram are present in Figure 3.18, with D…A 
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distances and torsion angles stated in Table 3.10. 

 

 

Packing along the b axis 
Intermolecular C(27)-H(27)...Cl(1) 

C(27’)-H(27-)...Cl(1) 

 

Intramolecular C(3)-H(3)...Cg(1) 

Figure 3.18 Interactions and packing diagram for 5 

Table 3.10 Bond lengths and torsion angles for both molecules of 5 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(3)-H(3)...Cg(2) 3.620 Å 

Intermolecular C(25)-Cl(3)...Cg(1) 4.180 Å 

 C(25’)-Cl(3’)...Cg(4) 4.148 Å 

 C(17’)-H(17’B)...Cl(1’) 3.570(2) Å 

 C(7)-H(7)...O(1) 3.312(2) Å 

 C(7’)-H(7’)...O(1’) 3.198(2) Å 

Torsion Cg(2)-Centre 87.58° 

 Centre-Cg(3) 75.01° 

 Cg(5)-Centre 75.88° 

 Centre-Cg(6) 59.41° 
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3.3.6 X-ray Characterisation for C26H25Cl4NORu (6) 

Red fragments of 6 suitable for X-ray crystallographic analysis were obtained by 

slow evaporation in methanol over a period of three days. The molecular structure 

is shown in Figure 3.19, selected bond lengths and angles are stated in Table 3.11. 

Complex 6 crystallised in a triclinic cell and structural solution was performed in 

the space group P1, with two complex molecules and two molecules of methanol 

in the asymmetric unit. 

 

Figure 3.19 Molecular structure of 6, displacement ellipsoids are at the 50% 

probability level. Hydrogen atoms, disorder, the second molecule and solvent 

molecules are omitted for clarity. 
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Table 3.11 Selected bond lengths and angles for both molecules of 6 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.128(3) N(1)-Ru(1)-O(1) 88.66(10) 

Ru(1)-O(1) 2.086(3) N(1)-Ru(1)-Cl(1) 84.23(8) 

Ru(1)-Cl(1) 2.4622(10) O(1)-Ru(1)-Cl(1) 84.54(7) 

Ru(1)-Cg(1) 1.6839(16) Cg(1)-Ru(1)-O(1) 124.50(9) 

  Cg(1)-Ru(1)-N(1) 131.23(10) 

  Cg(1)-Ru(1)-Cl(1) 128.64(6) 

Bond Distance (Å) Bond Angle (°) 

Ru(1’)-N(1’) 2.125(3) N(1’)-Ru(1’)-O(1’) 88.48(11) 

Ru(1’)-O(1’) 2.102(3) N(1’)-Ru(1’)-Cl(1’) 84.56(9) 

Ru(1’)-Cl(1’) 2.4700(11) O(1’)-Ru(1’)-Cl(1’) 85.59(9) 

Ru(1’)-Cg(4) 1.6914(15) Cg(4)-Ru(1’)-O(1’) 124.54(11) 

  Cg(4)-Ru(1’)-N(1’) 131.55(9) 

  Cg(4)-Ru(1’)-Cl(1’) 127.45(9) 

 

The packing diagram for complex 6 shows the molecules pack in a head-tail-tail-

head pairs, alternating in each row. There are several intermolecular interactions 

contributing to the packing of the molecules. There is also evidence of a T-stacking 

interaction between the p-cymene and the centroid of the aniline ring. In one of the 

molecules, the substituted phenyl ring is disordered and the molecule was solved 

with each atom set at half the occupancy. These interactions and packing diagram 

are presented in Figure 3.20, with D…A distances and torsion angles are stated in 

Table 3.12. 
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Intramolecular C(3)-H(3)...Cg(2) 
Intermolecular C(6’)-H(6’)...Cl(1’) 

C(7’)-H(7’)...O(1’) 

 
 

Packing diagram along the a axis Disorder around Cg(3) 

Figure 3.20 Interactions and packing diagram for 6  

Table 3.12 Bond lengths and torsion angles for both molecules of 6 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(3)-H(3)...Cg(2) 3.552(5) Ǻ 

Intermolecular C(3)-H(3)...Cl(4) 3.370(5) Ǻ 

 C(14’)-H(14’)...Cg(2) 3.809 Ǻ 

 C(6)-H(6)...O(1) 3.269(2) Ǻ 

 C(6’)-H(6’)...Cl(1’) 3.632(5) Ǻ 

 C(7’)-H(7’)...O(1’) 3.257(5) Ǻ 

Torsion Cg(2)-Centre 83.11° 

 Centre-Cg(3) 76.29° 
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3.3.7 X-ray Characterisation for C26H27BrClNORu (7) 

Red fragments of 7 suitable for X-ray crystallographic analysis were obtained using 

slow evaporation from a methanolic solution over a period of several days. The 

molecular structure is shown in Figure 3.21, selected bond lengths and angles are 

stated in Table 3.13. Complex 7 crystallised in a monoclinic cell and structural 

solution was performed in the space group Cc, with one molecule in the 

asymmetric unit. 

 

Figure 3.21 Molecular structure of 7, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity 

Table 3.13 Selected bond lengths and angles for 7 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.101(2) N(1)-Ru(1)-O(1) 89.10(8) 

Ru(1)-O(1) 2.0516(19) N(1)-Ru(1)-Cl(1) 85.01(7) 

Ru(1)-Cl(1) 2.4281(7) O(1)-Ru(1)-Cl(1) 83.27(6) 

Ru(1)-Cg(1) 1.6661(12) Cg(1)-Ru(1)-O(1) 125.24(7) 

C(23)-Br(1) 1.902(3) Cg(1)-Ru(1)-N(1) 129.73(8) 

  Cg(1)-Ru(1)-Cl(1) 129.44(4) 
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The packing diagram for complex 7 shows the molecules pack in head-to-tail 

arrangement with the molecules alternating in each row. There are several 

intermolecular interactions contributing to the packing of the molecules. There is 

also evidence of a T-stacking interaction between the p-cymene H(3) and the 

centroid of the aniline ring Cg(2). These interactions and packing diagrams are 

presented in Figure 3.22, with D…A distances and torsion angles are stated in 

Table 3.16. 

  

Intermolecular interactions along the c 

axis 

Intermolecular interactions along the a 

axis 

 

Intramolecular C(3)-H(3)…Cg(2) 

Figure 3.22 Intra/intermolecular interactions and packing diagrams for 7 
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Table 3.14 Bond lengths and torsion angles for 7 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(3)-H(3)...Cg(2) 3.471(3) Ǻ 

Intermolecular C(3)-H(3)...Cg(3) 3.484 Ǻ 

 C(23)-Br(1)...Cg(1) 3.932 Ǻ 

 Ru(1)-Cl(1)...Cg(1) 1.6661 Ǻ 

 C(17)-H(17B)...Cl(1) 3.588(3) Ǻ 

Torsion Cg(2)-Centre 74.99° 

 Centre-Cg(3) 31.76° 

 

3.3.8 X-ray Characterisation for C26H27BrClNORu (8) 

Red fragments of 8 suitable for X-ray crystallographic analysis were obtained using 

slow evaporation from a methanolic solution over a period of several days. The 

molecular structure is shown in Figure 3.23, selected bond lengths and angles are 

stated in Table 3.15. Complex 8 crystallised in a triclinic cell and structural 

solution was performed in the space group P1, with one molecule in the 

asymmetric unit. 

 

Figure 3.23 Molecular structure of 8, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity 
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Table 3.15 Selected bond lengths and angles for 8 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.086(2) N(1)-Ru(1)-O(1) 89.42(8) 

Ru(1)-O(1) 2.0518(17) N(1)-Ru(1)-Cl(1) 83.68(7) 

Ru(1)-Cl(1) 2.4377(8) O(1)-Ru(1)-Cl(1) 84.85(5) 

Ru(1)-Cg(1) 1.6661(11) Cg(1)-Ru(1)-O(1) 124.54(7) 

C(24)-Br(1) 1.906(3) Cg(1)-Ru(1)-N(1) 130.71(8) 

  Cg(1)-Ru(1)-Cl(1) 128.82(5) 

 

The packing diagram for complex 8 shows the molecules pack in head-to-tail 

arrangement with the molecules alternating in each rows around a centre of 

inversion. There is evidence of a intramolecular interaction between the p-cymene 

H(1C)-Cl(1). The interactions and packing diagram are presented in Figure 3.22, 

with D…A distances and torsion angles are stated in Table 3.14. 

  

Intramolecular C(1)-H(1C)…Cl(1) Packing along the b axis 

Figure 3.24 Intra/intermolecular interactions and packing diagrams for 8 

Table 3.16 Bond lengths and torsion angles for 8 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(1)-H(1C)…Cl(1) 3.374(3) Å 

Torsion Cg(2)-centre 46.49° 

 Centre-Cg(3) 63.43° 
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3.3.9 X-ray Characterisation for C26H27ClINORu (9) 

Orange needles of 9 suitable for X-ray crystallographic analysis were obtained 

using slow evaporation from a methanolic solution over a period of several days. 

The molecular structure is shown in Figure 3.25, selected bond lengths and angles 

are stated in Table 3.17. Complex 9 crystallised in a triclinic cell and structural 

solution was performed in the space group P1, with one molecule in the 

asymmetric unit. 

 

Figure 3.25 Molecular structure of 9, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity 

Table 3.17 Selected bond lengths and angles for 9 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.088(3) N(1)-Ru(1)-O(1) 89.44(13) 

Ru(1)-O(1) 2.063(3) N(1)-Ru(1)-Cl(1) 84.07(11) 

Ru(1)-Cl(1) 2.4422(13) O(1)-Ru(1)-Cl(1) 84.75(10) 

Ru(1)-Cg(1) 1.6663(19) Cg(1)-Ru(1)-O(1) 124.54(11) 

C(24)-I(1) 2.109(4) Cg(1)-Ru(1)-N(1) 130.49(13) 

  Cg(1)-Ru(1)-Cl(1) 128.81(8) 

 

The packing diagram for complex 9 shows the molecules pack in rows, with each 

pair of molecules around a centre of inversion. Packing along the a axis shows the 

pairs of moleucles around the centre of inversion, whilst the packing along the b 

axis shows they pack in a herringbone arrangement. There is no evidence of either 

intramolecular or intermolecular interactions contributing to the packing of the 

molecules and therefore they pack by crystal packing interactions only. The 
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packing diagram are presented in Figure 3.26, and torsion angles are stated in 

Table 3.18. 

 
 

Packing along the a axis Packing along the b axis 

Figure 3.26 Packing diagrams for complex 9 when viewed along both the a and b 

axis 

Table 3.18 Torsion angles for 9 

Interaction Atoms Bond Lengths and Angles 

Torsion Cg(2)-centre 76.87° 

 Centre-Cg(3) 23.63° 

 

3.3.10 X-ray Characterisation for C28H32ClNO2Ru (10) 

Orange needles of 10 suitable for X-ray crystallographic analysis were obtained 

using slow evaporation from a methanolic solution over a period of several days. 

The molecular structure is shown in Figure 3.27, selected bond lengths and angles 

are stated in Table 3.19. Complex 10 crystallised in a triclinic cell and structural 

solution was performed in the space group P1, with one molecule in the 

asymmetric unit. 
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Figure 3.27 Molecular structure of 10, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity 

Table 3.19 Selected bond lengths and angles for 10 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.0891(19) N(1)-Ru(1)-O(1) 88.30(6) 

Ru(1)-O(1) 2.0676(14) N(1)-Ru(1)-Cl(1) 83.62(5) 

Ru(1)-Cl(1) 2.4268(6) O(1)-Ru(1)-Cl(1) 86.95(5) 

Ru(1)-Cg(1) 1.6654(9) Cg(1)-Ru(1)-O(1) 124.64(5) 

C(24)-O(2) 1.370(2) Cg(1)-Ru(1)-N(1) 132.54(5) 

  Cg(1)-Ru(1)-Cl(1) 126.20(3) 

 

The packing diagram for complex 10 shows the molecules pack in rows, with each 

pair of molecules around a centre of inversion. There is evidence an intramolecular 

T-stacking interaction between H(3) and the centroid of the aniline ring Cg(2). 

There are also several intermolecular interactions contributing to the packing of 

these molecules. The packing diagram are presented in Figure 3.28, and torsion 

angles are stated in Table 3.20. 
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Packing along the b axis All intermolecular interactions 

 

Intramolecular C(3)-H(3)…Cg(2) 

Figure 3.28 Intra-/Intermolecular interactions and packing diagrams for 10 

Table 3.20 Bond lengths and torsion angles for 10 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(3)-H(3)…Cg(2) 3.498 Å 

Intermolecular C(17)-H(17B)…Cl(1) 3.620(2) Å 

 C(6)-H(6)…Cl(1) 3.481(2) Å 

 C(9)-H(9B)…Cl(1) 3.681(3) Å 

Torsion Cg(2)-centre 78.18° 

 Centre-Cg(3) 31.57 

 

3.3.11 X-ray Characterisation for C27H30ClNORu (11) 

Red fragments of 11 suitable for X-ray crystallographic analysis were obtained by 

slow evaporation in methanol over a period of one day. The molecular structure is 

shown in Figure 3.29, selected bond lengths and angles are stated in Table 3.21. 

Complex 11 crystallised in a triclinic cell and structural solution was performed in 

the space group P1, with a single molecule in the asymmetric unit. 
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Figure 3.29 Molecular strucutre of 11. Displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity 

Table 3.21 Selected bond lengths and angles for 11 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.1064(14) N(1)-Ru(1)-O(1) 89.41(5) 

Ru(1)-O(1) 2.0711(13) N(1)-Ru(1)-Cl(1) 83.90(4) 

Ru(1)-Cl(1) 2.4623(5) O(1)-Ru(1)-Cl(1) 84.84(4) 

Ru(1)-Cg(1) 1.6830(7) Cg(1)-Ru(1)-O(1) 124.31(5) 

C(24)-C(27) 1.528(3) Cg(1)-Ru(1)-N(1) 130.72(5) 

  Cg(1)-Ru(1)-Cl(1) 128.90(3) 

 

The packing diagram for complex 11 shows the molecules pack in head-tail-tail-

head pairs, alternating in each row, with evidence of an intramolecular interaction 

between C(1)-H(1B)...Cl(1). The intramolecular interaction and packing diagram 

are presented in Figure 3.30, with D...A distances and torsion angles stated in 

Table 3.22. 
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Intramolecular C(1)-H(1B)...Cl(1) Packing diagram along the b axis 

Figure 3.30 Intramolecular interaction and packing along the b axis for 11 

Table 3.22 Bond lengths and torsion angles for 11 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(1)-H(1B)...Cl(1) 3.399(2) Ǻ 

Torsion Cg(2)-Centre 75.05° 

 Centre-Cg(3) 23.41° 

 

3.3.12 X-ray Characterisation for C30H30ClNORu (12) 

Red fragments of 12 suitable for X-ray crystallographic analysis were obtained 

using slow evaporation from a methanolic solution over a period of one day. The 

molecular structure is shown in Figure 3.31, selected bond lengths and angles are 

stated in Table 3.23. Complex 12 crystallised in a triclinic cell and structural 

solution was performed in the space group P1, with two molecules in the 

asymmetric unit. 
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Figure 3.31 Molecular strucutre of 12. Displacement ellipsoids are at the 50% 

probability level and hydrogen atoms and the second molecule are omitted for 

clarity. 

Table 3.23 Selected bond lengths and angles for both molecules of 12 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.094(6) N(1)-Ru(1)-O(1) 88.4(2) 

Ru(1)-O(1) 2.069(4) N(1)-Ru(1)-Cl(1) 85.71(16) 

Ru(1)-Cl(1) 2.4340(18) O(1)-Ru(1)-Cl(1) 83.33(12) 

Ru(1)-Cg(1) 1.675(3) Cg(1)-Ru(1)-O(1) 126.30(16) 

  Cg(1)-Ru(1)-N(1) 129.91(19) 

  Cg(1)-Ru(1)-Cl(1) 128.09(13) 

Bond Distance (Å) Bond Angle (°) 

Ru(1’)-N(1’) 2.101(5) N(1’)-Ru(1’)-O(1’) 88.8(2) 

Ru(1’)-O(1’) 2.070(5) N(1’)-Ru(1’)-Cl(1’) 85.79(16) 

Ru(1’)-Cl(1’) 2.4365(19) O(1’)-Ru(1’)-Cl(1’) 84.25(13) 

Ru(1’)-Cg(5) 1.674(3) Cg(5)-Ru(1’)-O(1’) 125.07(15) 

  Cg(5)-Ru(1’)-N(1’) 129.78(17) 

  Cg(5)-Ru(1’)-Cl(1’) 128.57(13) 

 

The packing diagram for complex 12 shows the molecules pack in pairs about a 

centre of inversion. There is evidence of intramolecular interactions in both 

molecules of 12 and evidence of several intermolecular interactions between these 

molecules. The p-cymene is rotated and a T-stacking interactions is now seen 
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between the p-cymene H(7) and aniline ring Cg(2). The interaction and packing 

diagram are presented in Figure 3.32, with D...A distances and torsion angles 

stated in Table 3.24. 

  

Intramolecular interactions 

 

Packing diagrama along the b axis 

Figure 3.32 Intramolecular interaction and packing along the b axis for 12 
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Table 3.24 Bond lengths and torsion angles for 12 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(9B)-H(9BC)…O(1) 3.336(13) Å 

 C(29)-H(29)…O(1) 3.041(8) Å 

 C(29’)-H(29’)…O(1’) 3.077(8) Å 

 C(7)-H(7)…Cg(2) 3.547(9) Å 

Intermolcular C(24)-H(24)…Cg(7) 3.526(8) Å 

 Ru(1’)-Cl(1’)…Cg(5) 1.674(3) Å 

 C(3)-H(3)…O(1) 3.256(10) Å 

 C(7’)-H(7’)…O(1’) 3.144(9) Å 

Torsion Cg(2)-Centre 83.88(22)° 

 Centre-Cg(3) 56.95(19)° 

 Cg(6)-Centre 80.49(19)° 

 Centre-Cg(7) 64.07(2)° 

 

3.3.13 X-ray Characterisation for C26H25ClF3NORu (13) 

Red fragments of 13 suitable for X-ray crystallographic analysis were obtained 

using slow evaporation from a methanolic solution over a period of two days. The 

molecular structure is shown in Figure 3.33, selected bond lengths and angles are 

stated in Table 3.25. Complex 13 crystallised in a monoclinic cell and structural 

solution was performed in the space group Cc, with a single molecule in the 

asymmetric unit. 
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Figure 3.33 Molecular structure of 13, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 3.25 Selected bond lengths and bond angles for 13 

Bond Distance (Å) Bond Angle (˚) 

Ru(1)-N(1) 2.131(2) N(1)-Ru(1)-O(1) 89.32(8) 

Ru(1)-O(1) 2.0930(18) N(1)-Ru(1)-Cl(1) 86.24(6) 

Ru(1)-Cl(1) 2.4661(7) O(1)-Ru(1)-Cl(1) 83.86(5) 

Ru(1)-Cg(1) 1.6861(10) Cg(1)-Ru(1)-O(1) 124.53(6) 

C(12)-F(1) 1.370(3) Cg(1)-Ru(1)-N(1) 129.46(7) 

C(15)-F(2) 1.370(3) Cg(1)-Ru(1)-Cl(1) 128.98(4) 

C(24)-F(3) 1.381(3)   

 

The packing diagram for compound 13 shows the molecules pack in alternating 

rows with T-stacking between one row and a hydrogen bond linking the two rows 

together. There is evidence of several intermolecular interactions contributing to 

the packing of the molecule and a possible intramolecular T-stacking interaction 

seen between the p-cymene hydrogen H(3) and the centroid of the aniline ring 

Cg(2). These interactions are presented in Figure 3.34, with D...A distances and 

torsion angles stated in Table 3.26. 



Synthesis of Ruthenium(II) Chlorides  Chapter 3 

97 

 

 

Packing diagram along the a axis 
Intermolecular C(12)-F(1)...Cg(3) 

C(10)-H(10C)...F(3) 

 

Intramolecular C(3)-H(3)...Cg(2) 

Figure 3.34 Interactions and packing diagram for 13 

Table 3.26 Bond lengths and torsion angles for 13 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(3)-H(3)...Cg(2) 3.576 Å 

Intermolecular Ru(1)-Cl(1)...Cg(1) 1.6861 Å 

 C(12)-F(1)...Cg(3) 4.021 Å 

 C(10)-H(10C)...F(3) 3.405(4) Å 

Torsion Cg(1)-Cg(2) 76.38° 

 Cg(2)-Cg(3) 33.47° 
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3.4 Conclusions 

A range of novel functionalised -ketoiminate ruthenium(II) chloride pseudo 

octahedral “piano-stool” complexes has been synthesised and fully characterised, 

with X-ray crystallographic analysis obtained for all complexes. All of these 

complexes crystallised as orange/red single crystals and structural solutions were 

performed in either a monoclinic Cc (4 and 7) or a triclinic P1 (1-3, 5, 6 and 8-13) 

space groups. The complexes all show similar 
1
H and 

13
C{

1
H} NMR spectra, with 

a distinctive upfield shift for one of the p-cymene hydrogens seen when analysing 

the 
1
H NMR spectra. Apart from 9, which shows no intramolecular interactions, X-

ray crystallographic analysis shows all compounds have an intramolecular 

interaction with the p-cymene ring. Complexes 1, 2, 4-7, 10, 12 and 13 all show an 

intramolecular T-stacking interaction between a p-cymene C-H and the centroid of 

the aniline ring. Complexes 3, 8 and 11 all have the p-cymene twisted and instead 

have an intramolecular interaction between the p-cymene C-H and the Ru-Cl. Both 

of these types of interaction are thought to be the cause of the upfield shift seen in 

the 
1
H NMR spectra. The -ketoiminate ligands were functionalised to include 

electron withdrawing groups, electron donating groups and increased steric bulk, 

these were to allow conclusive structure activity relationships to be determined and 

to allow relationships in IC50 to be determined (see Chapter 4). 
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Chapter 4 

Evaluation of In Vitro Cytotoxicity of -Ketoiminate 

Ruthenium (II) Chloride Complexes 



Evaluation of in vitro Cytotoxicity  Chapter 4 

98 

4 Cytotoxicity Evaluation 

Biological assays require a technique to measure the amount of cell survival or 

proliferation of mammalian cells. This can be carried out by either counting cells 

using a dye, measuring the release of 
51

Cr-labelled proteins after cell lysis or 

incorporation of radioactive nucleotides during profileration.
1
 Tetrazolium salts are 

good candidates as they are used to measure the activity of various dehydrogenase 

enzymes.
2
 Current research requires assays which are quantitative and rapid and 

which are able to handle large amounts of data on a daily basis.  

 

4.1 MTT Assay 

The MTT assay was developed by Mosmann in 1983 and is a method of measuring 

the survival of mammalian cells, in which the yellow 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyl tetrazolium bromide (MTT) is reduced to the purple formazan in 

living cells (Scheme 4.1)
3, 4

 

 

Scheme 4.1 Reduction of MTT to Formazan 

 

The cancer cells are incubated with the potential drug for a period of 3-5 days at 

37°C. A solution of MTT in distilled water (5 mg/ mL) is added and the cells 

incubated for a further 3-4 hours to allow for the reduction to the purple formazan. 

The reduction occurs due to the transfer of electrons to the MTT (E0’ = -0.11 V) 

from oxidising substrates such as NADH and NADPH (E0’ = -0.317 V).
5
 The 

primary source for the reduction is thought to start within the mitochondria, 

however there is no evidence indicating it is confined here.
6, 7

 The purple formazan 

crystals can be separated by removing the MTT/medium via pipette and dissolving 

the crystals in DMSO. The absorbance is then measured at a wavelength of 540 nm 

using a multi-well scanning spectrophotometer. 
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4.2 XTT Assay 

A variation of the MTT assay known as XTT was developed by Paull et al. in 

1988. The sodium 3’-[1-[(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-

6-nitro)benzene-sulfonic acid hydrate (XTT) undergoes a bioreduction in the 

presence of ascorbic acid, in which the charged sulfonic acid groups are key for its 

water solubility (Scheme 4.2).
8
 The XTT in pre-warmed medium (1 mg/ mL), 

without serum, is mixed with PMS in phosphate buffered saline (PBS) (1.53 mg/ 

mL). Once added to the plate and incubated for a period of time, a mechanical 

shaker is used to mix the solutions and the readings taken at 450 nm. The assay 

time is reduced due to the elimination of the solubilising step, shortening the 

culture assay procedure. 
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Scheme 4.2 Reduction of XTT to a water-soluble formazan 

 

In the late 1980’s the US National Cancer Institue (NCI) noted problems with both 

MTT and XTT assays which made them unsuitable for use on large scale drug 

screening.
9
 MTT reduction varied depending on both the specific cell line and the 

age of the cell culture. Vistica et al. noticed a correlation with the amount of D-

glucose within the cell medium and that cells with increased metabolic rates for 

sugar demonstrated lower reduction of MTT.
6
 XTT also had problems with either 

the absence/ inhibition of reduction without the presence of an electron-coupling 

agent such as phenazine methosulfate.
9
 This was thought to be due to the presence 

of a disulfonate which has shown to have difficulty permeating the cell 

membrane.
10, 11
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4.3 SRB Assay 

This assay was developed by Skehan et al. in 1990 after investigating the 

suitability of a series of different dyes for providing cell density measurements.
12

 It 

utilises an aminoxanthene dye, Sulforhodamide B (SRB) (Figure 4.1), which under 

mildly acidic conditions binds electrostatically to amino acids through the charged 

sulfonic acid group. Cultures fixed with trichloroacetic acid are stained and 

incubated for 30 minutes with SRB (0.4%, w/v) and dissolved in acetic acid (1%). 

The unbound dye is removed by four washes with acetic acid (1%) and the bound 

dye extracted with an unbuffered base (10 mM). The absorbance is measured at a 

wavelength between 490-530 nm using a microtiter plate reader. The SRB assay 

has shorter incubation times than the previous assays and gives more consistent 

results over a greater number of cell lines. At present this is the only assay used for 

large scale measurements, where several million culture wells are run per year. 

 

Figure 4.1 Sulforhodamide B (SRB) Dye 

 

4.4 5-Day MTT Assay 

The complexes to be tested are firstly dissolved in DMSO, control assays have 

previously been carried out using only DMSO to investigate the effect on 

cytotoxicity with differing concentrations.
13

 Using HT-29 cells, the rate of cell 

survival remained high for all concentrations of DMSO, falling to only 73% at a 

concentration of 2.0% DMSO. For the MCF-7 cell line, the cytotoxic effect of 

DMSO was more significant, with a 52% cell survival at the same concentration of 

DMSO. The A2780 cell line exhibited the highest sensitivity to DMSO, with 

significant cell death observed with 63% cell survival at 2.0% DMSO and 76% cell 

survival at 1.0% DMSO.
13

 The complexes stated within this chapter had IC50 

values under the thresholds stated and it was decided that the DMSO-related 

toxicity would not interfere significantly with the assay. 
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4.4.1 Conducting MTT Under Normoxic Conditions (21% O2) 

A series of complexes were incubated with the cancer cells at ten different 

concentrations, each one a double dilution of the previous one. To obtain these 

concentrations the drugs were diluted in DMSO to give an initial concentration of 

25 mM, followed by dilutions in cell media to give a range of concentrations 

between 250-0.48 M. Firstly, the cell plates are incubated for 24-hours, followed 

by addition of the drug dilutions on day two and then a 5-day incubation period. 

After the 5-day incubation, MTT solution (5 mg/ mL) was added to the plates, 

incubated for a further 3 hours and then absorbance measured at 540 nm, using a 

Thermo Scientific Multiskan EX microplate photometer. All IC50 values were 

taken from an average of three different assays with good repeatability; any 

measurements not correlating were repeated until they were within a 10% error. 

The full protocol for this procedure is stated within Chapter 9. 

 

4.5 Results and Discussion 

4.5.1 -Ketoiminate Ruthenium(II) Complexes 

The series of novel ruthenium(II) -ketominate chloride complexes previously 

reported in Chapter 3 (Figure 4.2) and cisplatin as a control, were tested against a 

range of cell lines including; HT-29 (human colon adenocarinoma), MCF-7 

(human breast carcinoma), A2780 (human ovarian adenocarcinoma) and A2780cis 

(cisplatin resistant human ovarian adenocarcinoma). Assays were carried out using 

a 5-day drug exposure and during this period were incubated at 37 °C with a 5.0% 

CO2 concentration. 
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Figure 4.2 Ruthenium (II) chloride complexes tested in vitro using the MTT assay 

 

Once the incubated cells had been treated with the MTT solution (5mg/ mL), the 

amount of living cells could be determine due to the change in MTT colour. The 

living cells are able to reduce the MTT to the purple formazan and so the amount 

of purple coloration seen is proportional to cell survival. To calculate the IC50 

values of the complexes, graphs were plotted of % cell survival versus drug 

concentration (M) and the concentration found at 50% cell survival. The graph in 

Figure 4.3 shows the % cell survival versus drug concentration (M) for cisplatin, 

1 and 12 against HT-29 cell line. The values were calculated by plotting two 

points, one above and one below the 50% cell survival value, then plotting a line of 

best fit and rearrangement of the equation to find the concentration (M). 

 

Figure 4.3 % Cell survival versus concentration (M) for cisplatin, 1 and 12 
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The values are stated in Table 4.1 and have also been summarised as a bar-chart in 

Figure 4.4. It can be seen that all the complexes tested have moderate to high 

activities against all cell lines. Complexes 1, 3 and 4 have the most consistent IC50 

values over all four cell lines, with significantly higher cytotoxic values against the 

cisplatin resistant ovarian cell line A2780cis then the other cell lines. Against HT-

29 and A2780cis there are differences in IC50 when comparing the different 

electronic properties of the complex, where increasing the withdrawing nature 

decreased the cytotoxicity of the complex. Whereas, against MCF-7 and A2780 

cell lines all of the complexes have high cytotoxicity and no clear trend can be seen 

between electronic or steric properties versus cytotoxic behaviour.  
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Table 4.1 Summary of IC50 values for cisplatin and ruthenium complexes using a 5-day exposure 

Complex 

HT-29 MCF 7 A2780 A2780cis 

IC50 (M) ± SD (M) IC50 (M) ± SD (M) IC50 (M) ± SD (M) IC50 (M) ± SD (M) 

Cisplatin 2.4 0.1 1.07 0.10 0.94 0.04 10.5 0.2 

[p-cymRuCl2]2 197.09 4.5 183.6 2.9 195.4 4.5 216.6 9.2 

1 3.5 0.3 1.9 0.1 2.60 0.08 3.13 0.09 

2 10.5 0.4 5.07 0.09 2.8 0.1 3.37 0.07 

3 5.40 0.09 3.0 0.2 1.6 0.1 3.8 0.1 

4 4.3 0.5 3.22 0.09 2.35 0.04 5.59 0.05 

5 11.4 0.6 3.5 0.2 2.5 0.1 6.4 0.1 

6 12.6 0.2 3.27 0.08 2.84 0.04 11.5 0.3 

7 6.1 0.3 3.55 0.09 2.5 0.2 3.69 0.09 

8 10.3 0.6 6.2 0.2 2.3 0.2 7.00 0.04 

9 11.8 0.8 - - -  - - 

10 12.8 0.5 - - -  - - 

11 10.21 0.09 2.9 0.1 2.87 0.05 9.1 0.1 

12 22 2 13.0 0.2 -  - - 

13 6.3 0.3 7.2 0.2 1.9 0.1 3.80 0.09 

 



Evaluation of in vitro Cytotoxicity  Chapter 4 

105 

 

Figure 4.4 Barchart of IC50 values for cisplatin and complexes 1-13 

 

Previously within the McGowan group it was found that para substituted -

diketonate titanium complexes gave the greatest cytotoxic behaviour, with the 4-

fluoro--diketonate titanium complex giving the highest cytotoxicity values.
13, 14

 

Therefore the following bar-chart (Figure 4.5) shows the difference in cytotoxic 

behaviour of the para -ketoiminate ruthenium chloride complexes (C2=4F, 

C3=4Cl, C8=4Br and C9=4I).  

 

Figure 4.5 Bar-chart showing comparisons with the para ruthenium complexes 
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There is no overall trend seen with most cell lines but it appears the para chloro--

ketoiminate complex (3) has the most potential against all four cell lines. When 

considering the cytotoxicities against the cisplatin resistant ovarian A2780cis it can 

be seen there is a slight trend, with the most electron withdrawing fluoro complex 

(2) having the highest activity and this activity decreases down the periodic table, 

with all complexes showing higher activity than cisplatin The para methyl 

complex (11) was synthesised and tested to see if substituting an electron donating 

group had any effects on the cytotoxicity. In most cases this complex had similar 

activity to the electron withdrawing substituents, except against MCF-7, where 

complex 11 gave the highest cytotoxicity. A larger library of compounds must be 

synthesised to gain more conclusive structure activity relationships, but so far this 

data suggests there is a limited relationship between the electronics of the complex 

and its cytotoxic behaviour. 

 

4.6 Conclusion 

The library of ruthenium chloride complexes characterised in Chapter 3 has been 

tested under normoxic (21% O2) conditions using the well know MTT assay. This 

enables measurements of cytotoxic behaviour and gives an indication of the 

complexes potential as an anti-cancer compound. The assays, data manipulation 

and evaluation of results have been completed by the author at the Institute of 

Cancer Therapeutics, Bradford. The library tested shows that these (N,O) -

ketoiminate ruthenium (II) chloride complexes have moderate to high cytotoxicity 

behaviour, with some of the complexes showing great potential for future 

biological studies, which will be discussed in Chapters 6 and 7. These easily 

tuneable complexes allow for a wider library to be synthesised and future work 

would require a larger library to be tested in order to gain more extensive structure 

activity relationships and to optimise the potential of these complexes. 

  



Evaluation of in vitro Cytotoxicity  Chapter 4 

107 

4.7 References 

1. T. Mosmann, J. Immunol. Meth,, 1983, 65, 55-63. 

2. T. F. Slater, B. Sawyer and U. D. Strauli, Biochim. Biophys. Acta, 1963, 77, 

383-393. 

3. T. Mosmann, J. Immunol. Meth., 1983, 65, 55. 

4. R. D. Lillie, H. J. Conn's Biological Stains, Willians and Wilkins, 

Baltimore, 1977. 

5. D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman and M. R. 

Boyd, Cancer Res., 1991, 51, 2515-2520. 

6. D. T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman and M. R. 

Boyd, Cancer Res., 1991, 51, 2515. 

7. A. G. E. Pearse, Histochemistry, Theoretical and Applied, Churchill 

Livingstone, Edinburgh, 1972. 

8. K. D. Paull, R. H. Shoemaker, M. R. Boyd, J. L. Parsons, P. A. Risbood, 

W. A. Barbera, M. N. Sharma, D. C. Baker, E. Hand, D. A. Scudiero, A. 

Monks, M. C. Alley and M. Grote, J. Heterocycl. Chem., 1988, 25, 911-

914. 

9. D. A. Scudiero, R. H. Shoemaker, K. D. Paull, A. Monks, S. Tierney, T. H. 

Nofziger, M. J. Currens, D. Seniff and M. R. Boyd, Cancer Res., 1988, 48, 

4827-4833. 

10. P. A. Knauf and A. Rothstein, J. Gen. Physiol., 1971, 58, 211. 

11. P. A. Knauf and A. Rothstein, J. Gen. Physiol., 1971, 58, 190. 

12. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. 

T. Warren, H. Bokesch, S. Kenney and M. R. Boyd, J. Natl. Cancer Inst., 

1990, 82, 1107-1112. 

13. B. D. Crossley, Ph. D Thesis, University of Leeds, 2011. 

14. J. J. Mannion, Ph. D Thesis, University of Leeds, 2008. 

 

 

 

 



 

108 

Chapter 5 

Synthesis, Characterisation and Cytotoxic Evaluation of 

Modified Ruthenium Complexes 
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5 Modified Complexes 

Previously in Chapters 3 and 4, a range of -ketoiminate ruthenium(II) chloride 

complexes were synthesised and showed very promising cytotoxic behaviour, with 

many values comparable or higher than cisplatin against A2780cis. Due to the 

success of these complexes, an effort has been made to tune the structure of the 

complexes by either; 

 

i) eliminating part of the ligand 

ii) altering the sterics of the arene ring 

iii) changing the metal centre, or  

iv) changing the binding mode of the ligand.  

This chapter discusses the synthesis, characterisation and cytotoxic behaviour of 

these complexes, with comparisons made to the previous complexes, discussed in 

Chapter 4. 

 

5.1 Synthesis of Aniline Ruthenium (II) Dichloride (14) 

It was postulated that the T-stacking interactions commonly seen with the aniline 

ring may be key for the compounds activity. Complex 14 was synthesised to 

eliminate the -ketoiminate ligand. The synthesis of this complex was reported in 

2006 by Govindaswamy et al. but for the purpose of cytotoxic comparisons has been 

resynthesised by the author.
1
 This complex was synthesised according to Scheme 

5.1, where [p-cymRuCl2]2 was added to aniline and Et3N in dichloromethane. 

 

Scheme 5.1 Synthetic route to complex 14 
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5.1.1 X-ray Characterisation of C16H21Cl2NRu (14) 

Red fragments of 14 suitable for X-ray crystallographic analysis were obtained 

using slow evaporation from a methanolic solution over a period of several days. 

The molecular structure is shown in Figure 5.1 and selected bond lengths and angles 

are stated in Table 5.1. Complex 14 crystallised in a triclinic cell and structural 

solution was performed in the space group P1, with a single molecule in the 

asymmetric unit. 

 

Figure 5.1 Molecular structure of 14, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 5.1 Selected bond lengths and angles for 14 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.1932(13) Cl(1)-Ru(1)-Cl(2) 87.70(1) 

Ru(1)-Cl(1) 2.4407(5) N(1)-Ru(1)-Cl(1) 80.23(4) 

Ru(1)-Cl(2) 2.4250(5) N(1)-Ru(1)-Cl(2) 83.80(4) 

Ru(1)-Cg(1) 1.6684(7) Cg(1)-Ru(1)-N(1) 132.29(4) 

  Cg(1)-Ru(1)-Cl(1) 128.55(2) 

  Cg(1)-Ru(1)-Cl(2) 127.62(3) 

 

The packing diagram along the a axis shows the molecules pack head-tail and 

alternate in each plane, with intermolecular N-H…Cl holding the two pairs in the 

head-tail-tail-head arrangement and the C-H…Cg interactions between each plane. 

When viewed along the c axis two hydrogen’s of the NH2 form N-H…Cl interaction 

with adjacent molecules giving a head-tail-tail-head arrangement. There is one 

intramolecular interaction seen between the p-cymene CH3 and the centroid of the 
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aniline ring. The intermolecular interactions and packing diagrams are presented in 

Figure 5.2, with D…A distances stated in Table 5.2. 

 

 

Intramolecular C(8)-H(8)…Cg(2) Intermolecular N(1)-H(2N)…Cl(2) 

 

 

Intermolecular interactions along the c 

axis 

Intermolecular interactions along the a 

axis 

Figure 5.2 Interactions and packing diagrams along the c and a axes for 14 

Table 5.2 Bond lengths for complex 14 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(8)-H(8)...Cg(2) 3.7156 Å 

Intermolecular C(1)-H(1C)...Cg(2) 3.8084 Å 

 Ru(1)-Cl(1)…Cg(1) 1.6684 Å 

 N(1)-H(1N)…Cl(1) 3.2954(17) Å 

 N(1)-H(2N)…Cl(2) 3.3424(16) Å 

 C(7)-H(7)…Cl(1) 3.7261(16) Å 

 C(12)-H(12)…Cl(1) 3.5939(17) Å 
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5.2 Synthesis of Diphenyl -Ketoiminate Ruthenium(II) Chloride (15) 

This complex was designed to move the position of the phenyl ring of the aniline 

group and so comprises of an -ketoiminate ligand with the ligand binding via a 

NH. Complex 15 was synthesised according to Scheme 5.2, where [p-cymRuCl2]2 

was added to the diphenyl -ketoiminate ligand and Et3N in dichloromethane. 

Ru

Cl

Ru

ClCl

Cl NH2 O2
Ru

Cl
N

O

Et3N 
(2 equiv.)

DCM
H

 

Scheme 5.2 Synthetic route to complex 15 

 

5.2.1 X-ray Characterisation of C25H26ClNORu (15) 

Red fragments of 15 suitable for X-ray crystallographic analysis were obtained 

using slow evaporation from a methanolic solution over a period of several days. 

The molecular structure is shown in Figure 5.3 and selected bond lengths and angles 

are stated in Table 5.3. Complex 15 crystallised in a monoclinic cell and structural 

solution was performed in the space group P21/c, with a single molecule in the 

asymmetric unit. 

 

Figure 5.3 Molecular structure of 15, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 
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Table 5.3 Selected bond lengths and angles for 15 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-N(1) 2.052(3) N(1)-Ru(1)-O(1) 87.52(11) 

Ru(1)-O(1) 2.058(3) N(1)-Ru(1)-Cl(1) 86.25(8) 

Ru(1)-Cl(1) 2.4413(10) O(1)-Ru(1)-Cl(1) 85.80(8) 

Ru(1)-Cg(1) 1.6481(17) Cg(1)-Ru(1)-O(1) 126.41(10) 

  Cg(1)-Ru(1)-N(1) 129.40(10) 

  Cg(1)-Ru(1)-Cl(1) 127.19(6) 

 

The packing diagrams show the molecules pack in head-tail-tail-head pairs on all 

axes, with intermolecular C-H…Cl interactions holding the molecules together. 

When viewed along the c axis intermolecular T-stacking interactions can be seen 

between the p-cymene and the centroid of the aromatic ring C(10)-H(10B)…Cg(2), 

these interactions hold two planes of molecules together. The intermolecular 

interactions and packing diagrams are presented in Figure 5.4, with D…A distances 

and torsion angles stated in Table 5.4. 

 
 

Packing along the b axis Packing along the c axis 

 

Intermolecular interactions along the b axis  

Figure 5.4 Packing diagrams showing intermolcular interactions along the b and c 

axes for 15 
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Table 5.4 Bond lengths and torsion angles for 15 

Interaction Atoms Bond Lengths and Angles 

Intermolecular C(3)-H(3)...Cg(2) 3.633 Å 

 C(6)-H(6)...Cg(2) 3.553 Å 

 C(10)-H(10C)…Cg(3) 3.628 Å 

 C(1)-H(1B)…Cl(1) 3.629(4) Å 

Torsion Cg(2)-Centre 77.28° 

 Centre-Cg(3) 29.31° 

 

5.3 Synthesis of -Diketonate Ruthenium(II) Chloride (16) 

It was seen during synthesis that the -ketoiminate ligands can sometimes dissociate 

back to the starting -diketonate ligand. Complex 16 was synthesised to incorporate 

the starting ligand. As the previous chapters shows that the meta fluoro -

ketoiminate ruthenium complex (1) was active against all four cell lines, the meta 

fluoro -diketonate ruthenium (II) chloride complex was synthesised. Complex 16 

was synthesised according to Scheme 5.3, where [p-cymRuCl2]2 was added to the 

meta fluoro -diketonate ligand and Et3N in dichloromethane. 

Ru

Cl

Ru

ClCl

Cl OH O2
Ru

Cl
O

O

Et3N 
(2 equiv.)

DCM

F

F

 

Scheme 5.3 Synthetic route to complex 16 

 

5.3.1 X-ray Characterisation of C20H26ClO2Ru (16) 

Orange plates of 16 suitable for X-ray crystallographic analysis were obtained using 

slow evaporation from a methanolic solution over a period of several days. The 

molecular structure is shown in Figure 5.5 and selected bond lengths and angles are 

stated in Table 5.5. Complex 16 crystallised in a monoclinic cell and structural 

solution was performed in the space group P21/c, with a single molecule in the 

asymmetric unit. 
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Figure 5.5 Molecular structure of 16, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 5.5 Selected bond lengths and angles for 16 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-O(1) 2.069(2) O(1)-Ru(1)-O(2) 85.21(9) 

Ru(1)-O(2) 2.217(2) O(1)-Ru(1)-Cl(1) 87.76(7) 

Ru(1)-Cl(1) 2.5340(8) O(2)-Ru(1)-Cl(1) 65.31(7) 

Ru(1)-Cg(1) 1.8681(15) Cg(1)-Ru(1)-O(1) 123.30(8) 

C(16)-F(1A) 1.395(6) Cg(1)-Ru(1)-O(2) 139.34(8) 

  Cg(1)-Ru(1)-Cl(1) 135.39(5) 

 

The packing diagram show the molecules pack in pairs with intermolecular 

interactions holding the molecules together and when viewed along the c axis this 

gives a herringbone arrangement. There are also intermolecular interactions between 

C-H…Cl which holds the molecules between each plane. The intramolecular 

interaction and packing diagrams are presented in Figure 5.6, with D…A distances 

and torsion angles stated in Table 5.6. 
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Intramolecular C(16)-H(16)…O(2) Packing along the c axis 

Figure 5.6 Intramolecular interactations and packing diagrams for 16 

Table 5.6 Bond lengths and torsion angles for 16 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(16)-H(16)...O(2) 2.917(5) Ǻ 

Intermolecular C(18)-H(18)...O(1) 2.951(5) Ǻ 

 C(3)-H(3)...Cl(1) 3.323(3) Ǻ 

 C(10)-H(10A)...O(2) 3.449(7) Ǻ 

 C(7)-H(7)...Cg(1) 3.585 Å 

Torsion Centre-Cg(2) 1.30° 

 

5.4 Synthesis of -Ketoiminate Ruthenium Arene Chloride (17) 

Complex 17 was synthesised to incorporate the meta fluoro -diketonate and the p-

cymene ligand is substituted for an phenyl ring. Complex 17 was synthesised 

according to Scheme 5.3, where [areneRuCl2]2 was added to the meta fluoro -

diketonate ligand and Et3N in dichloromethane. 

Ru

Cl

Ru

ClCl

Cl OH O2
Ru

Cl
O

O

Et3N 

(2 equiv.)

DCM

F

F

 

Scheme 5.4 Synthetic route to complex 17 
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5.4.1 X-ray Characterisation of C16H14ClFO2Ru (17) 

Orange plates of 17 suitable for X-ray crystallographic analysis were obtained using 

slow evaporation from a methanolic solution over a period of several days. The 

molecular structure is shown in Figure 5.7 and selected bond lengths and angles are 

stated in Table 5.7. Complex 17 crystallised in a monoclinic cell and structural 

solution was performed in the space group P21/c, with a single molecule in the 

asymmetric unit. 

 

Figure 5.7 Molecular structure of 17 displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 5.7 Selected bond lengths and angles for 17 

Bond Distance (Å) Bond Angle (°) 

Ru(1)-O(1) 2.0689(18) O(1)-Ru(1)-O(2) 88.62(7) 

Ru(1)-O(2) 2.0622(19) O(1)-Ru(1)-Cl(1) 84.82(5) 

Ru(1)-Cl(1) 2.4148(7) O(2)-Ru(1)-Cl(1) 86.10(5) 

Ru(1)-Cg(1) 1.6403(12) Cg(1)-Ru(1)-O(1) 128.34(7) 

C(17)-F(1A) 1.358(3) Cg(1)-Ru(1)-O(2) 126.51(7) 

  Cg(1)-Ru(1)-Cl(1) 128.22(5) 

 

The packing diagram shows the molecules pack in a head-tail-tail-head arrangement 

along the a axis, with intermolecular C-H…Cl interactions between each plane of 

atoms. The intramolecular interaction and packing diagrams are presented in Figure 

5.8, with D…A distances and torsion angles stated in Table 5.8. 
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Packing along the c axis Packing along the a axis 

 

Intermolecular interactions 

Figure 5.8 Intramolecular interactations and packing diagrams for 17 

Table 5.8 Bond lengths and torsion angles for 17 

Interaction Atoms Bond Lengths and Angles 

Intermolecular C(11)-H(11A)...Cg(2) 3.607 Ǻ 

 C(19)-H(19)...Cl(1) 3.582(3) Ǻ 

 C(20)-H(20)...Cl(1) 3.444(3) Å 

Torsion Centre-Cg(2) 9.81(7)° 

 

5.5 Synthesis of -Ketoiminate Iridium Cp* Chloride (C18) 

Complex 18 was first synthesised within the research group for its catalytic 

potential,
2
 as it is analogous to complex 1 it was tested for its cytotoxic potential. It 

was synthesised according to Scheme 5.5, initial cytotoxic results have since been 

published
3
 and it is stated within this chapter as future cytotoxic and biological 

studies have been assessed using this complex. 
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Ir

Cl

Ir

ClCl

Cl
NH O

2

Ir
Cl

N

O

Et3N 

(2 equiv.)

DCM

F

F

C18

Scheme 5.5 Synthetic route to 18
3
 

 

5.6 Synthesis of -Diketonate Iridium Cp* Chloride (19) 

Complex 19 was synthesised as it is analogues to complex C16 and allows 

comparisons to be made between binding modes of the ligands and changing the 

metal source. Complex 19 was synthesised according to Scheme 5.6, where 

[Cp*IrCl2]2 is added to the 3-fluoro -diketonate ligand and Et3N in 

dichloromethane. 

Ir

Cl

Ir

ClCl

Cl OH O2
Ir

Cl
O

O

Et3N 

(2 equiv.)

DCM

F

F

 

Scheme 5.6 Synthetic route to complex 19 

 

5.6.1 X-ray Characterisation of C20H26ClNORu (19) 

Yellow fragments of 19 suitable for X-ray crystallographic analysis were obtained 

using slow evaporation from a methanolic solution over a period of several days. 

The molecular structure is shown in Figure 5.9 and selected bond lengths and angles 

are stated in Table 5.9. Compound 19 crystallised in an orthorhombic cell and 

structural solution was performed in the space group P212121, with a single molecule 

in the asymmetric unit. 
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Figure 5.9 Molecular structure of 19, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 5.9 Selected bond lengths and angles for 19 

Bond Distance (Å) Bond Angle (°) 

Ir(1)-O(1) 2.1177(16) O(1)-Ir(1)-O(2) 85.94(5) 

Ir(1)-O(2) 2.1270(12) O(1)-Ir(1)-Cl(1) 86.10(4) 

Ir(1)-Cl(1) 2.4412(6) O(2)-Ir(1)-Cl(1) 87.34(4) 

Ir(1)-Cg(1) 1.7711(10) Cg(1)-Ir(1)-O(1) 125.31(5) 

  Cg(1)-Ir(1)-O(2) 129.07(5) 

  Cg(1)-Ir (1)-Cl(1) 128.69(3) 

 

The packing diagram show the molecules pack in pairs with intermolecular 

interactions holding the molecules together and when viewed along both the a and c 

axes the molecules have a herringbone arrangement, with intermolecular C-H…Cl 

interactions holding pairs of molecules together. The intramolecular interaction and 

packing diagrams are presented in Figure 5.10, with D…A distances and torsion 

angles stated in  Table 5.10. 
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Intramolecular C(20)-H(20)…O(2) 

 

 

Packing along the a axis Packing along the c axis 

Figure 5.10 Intramolecular interactations and packing diagrams for 19 

 Table 5.10 Bond angles and torsion angles for 19 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(20)-H(20)...O(2) 2.729(2) Ǻ 

Intermolecular Ir(1)-Cl(1)…Cg(1) 1.7711 Ǻ 

 C(18)-H(18)...Cl(1) 3.707(2) Ǻ 

Torsion Centre-Cg(2) 4.49° 
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5.7 Cytotoxic Evaluation 

After the success of the complexes stated in Chapter 4, this small library of 

complexes has been synthesised and their cytotoxic potential evaluated. The 

complexes were assessed using the MTT assay used previously and were again 

incubated using the same 5-day incubation period at 37°C under a 5.0% CO2 

concentration (see protocol in Chapter 9). The IC50 values are stated in Table 5.11 

and have also been summarised as a bar-chart in Figure 5.11. When considering 

complex 14 it is appears to be essential to have the -ketoiminate ligand bound, as 

this aniline bound complex is completely inactive. The cytotoxic values were 

obtained against HT-29 and A2780 and due to having IC50 values > 100 M, this 

complex was not tested against the other cell lines. Also when considering 15, this 

has a -ketoiminate ligand bound to the ruthenium but the aniline ring has been 

eliminated and instead bound by the N-H. It can be seen from Table 5.11 this 

complex has a two-fold increase in activity when compared to complex 14, however 

it still remains relatively inactive and is not within the same magnitude as the 

previous complexes seen in Chapter 4. 

When changing the ruthenium p-cymene (complex 1) for an iridium Cp* (18), the 

activity of the complex remains high against all four cell lines and like its ruthenium 

analogue, complex 18 shows the highest cytotoxic values against MCF-7. 

Complexes 16 and 19 were synthesised to allow comparisions to made using a 

different mode of binding, and these complexes incorporate a -diketonate (O,O) 

ligands. The ruthenium complex 17 is only moderately active against all four cell 

lines, where the iridium complex 19 is completely inactive. When comparing the 

same metals using the -ketoiminate (N,O) ligands, complex 1 (N,O) is more active 

than complex 16 (O,O), with up to a 9-fold increase in IC50 value against MCF-7 

and 18 (N,O) is more active than complex 19 (O,O), with up to a 18-fold increase in 

IC50 value against HT-29. In addition, complex 17 was synthesised to assess the 

importance of the p-cymene ligand, this complex is analogous to complex 16 but 

contains a phenyl arene ligand instead of the p-cymene. This complex was tested 

against both HT-29 and MCF-7 and it can be seen that the activity decreases further, 

with complex 17 being completely inactive against both lines. 
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Table 5.11 IC50 values for cisplatin and the complexes synthesised within this chapter, against HT-29, MCF-7, A2780 and A2780cis cell lines 

Complex 
HT-29 MCF-7 A2780 A2780cis 

IC50 (M) ± SD IC50 (M) ± SD IC50 (M) ± SD IC50 (M) ± SD 

Cisplatin 2.4 0.1 1.09 0.08 0.94 0.04 10.5 0.2 

14 128 4 - - 147 8 - - 

15 53 1 - - 56 2 - - 

1 3.5 0.3 1.9 0.1 2.60 0.08 3.13 0.09 

16 18 2 18.4 0.8 19.4 0.8 24.3 0.5 

17 68 3 - - 71 2 - - 

18 5.1 0.3 3.4 0.2 5.7 0.1 5.8 0.5 

19 93 7 51 4 35 1 51 1 
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Figure 5.11 Bar-chart of IC50 values against HT-29, MCF-7, A2780 and A2780cis 

 

5.8 Conclusion 

A small library of complexes have been synthesised in an attempted to understand 

the key features of the complex which are needed for high in vitro activity. The 

results show that not only is a -ketoiminate (N,O) ligand essential for high in vitro 

activity, but the ligand must be bound to an aniline substituent. On elimination of 

this ring or changing the binding mode of the ligand the activity of the complex 

decreases. The most noticeable results are seen for the iridium complexes where 

the (N,O) complex 18 has up to a 18-fold increase in activity when compared to the 

(O,O) complex 19. These initial results show the -ketoiminate complexes 1 and 

18 are again the most active against all four cell lines tested, showing that high in 

vitro results can be seen with different metals, therefore suggesting the ligand is 

essential for activity. This library must be extended further to gain more extensive 

and conclusive structure activity relationships and to understand the key features 

required to tune the complexes activity. 
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Chapter 6 

Cytotoxicity Studies under Hypoxic Conditions 
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6 Cytotoxicity under Hypoxic Conditions 

6.1 Hypoxia 

Molecular O2 is essential for aerobic metabolism and to maintain intracellular 

processes. Hypoxia is defined as an environment of reduced O2 concentration and 

occurs in pathological conditions such as strokes, inflammation and growth of solid 

tumours. The ambient air is 21% O2, with most mammalian tissues existing 

between 2-9% O2. However, hypoxia is defined as ≤ 2% O2, where severe hypoxia 

(anoxia) is at ≤ 0.02% O2.
1, 2

 Early demonstrations of tumour hypoxia were 

observed in 1955 by Thomlinson and Gray, in which they studied the histology of 

sections of human tumours and observed that cells grow in cords, having a necrotic 

core surrounded by a region of viable cells, and proposed the necrosis was due to 

an insufficient supply of O2 and nutrients.
3
 The effects and direct measurements of 

O2 in tissues is still poorly understood, due to the lack of methods which are non-

invasive, precise and quantitative.
4
 However, many researchers have attempted to 

study hypoxia by; (i) studying the oxyhaemoglobin of tumours by polarographic 

electrodes, gaining insight into the regional oxygen environment of the tumour,
5
 

(ii) 
31

P NMR spectroscopy studies to monitor metabolism of misonidazole, which 

selectively binds hypoxic cells
6-9

 and (iii) using a DNA-binding stain to label cells 

based on their proximity to the blood supply.
10

 The latter was able to differentiate 

between diffusion-limited (chronic) hypoxia and acute hypoxia, and that cells 

adjacent to the blood supply may become hypoxic during treatment, concluding 

that the two types of hypoxia may have different effects on treatment response. 

 

6.2 Effects of Hypoxia on Cancer 

The decrease in O2 concentration has been confirmed to inhibit tumour growth, and 

even as early as 1909 it was noted that normal cells irradiated under 

hypoxic/anoxic conditions were less sensitive then those irradiated in the presence 

of O2.
11

 The first studies showing a correlation were using vegetable seeds,
12

 but in 

the 1950s this was quantified in mice studies, both in vitro and in vivo. Using 

human embryo liver cells, in vitro studies under anoxic conditions exhibited ~2.5 

fold greater colony growth after irradiation, when compared to those cultured in 

air.
13

 More recently it has been proposed that hypoxic cells can be directly targeted 

using hypoxia-specific cytotoxins. Alongside radiation, this combination has the 
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potential of destroying the entire tumour population.
14

 It was known that exposing 

cancer cells to hypoxic conditions causes a reduced response to radiotherapy 

treatment, however it was shown that exposure to oxygen immediately after 

radiation has no effect on this response.
15

 The mechanism of radio-sensitivity is 

known to be a competition between the oxidation and reduction of the DNA 

following radiation.
16

 A DNA radical is formed, and under normal conditions the 

DNA is oxidised making the damage permanent. Under hypoxic conditions the 

DNA is repaired through reduction by a thiol containing protein, as shown in 

Scheme 6.1. 

 

Scheme 6.1 Mechanism of hypoxia-induced resistance of a tumour cell to radiation 

 

Tumours typically contain irregular networks of leaky micro-vessels with 

heterogeneous blood flow and large inter-vessel distances.
17

 Along with the lack of 

lymphatic drainage and high interstitial pressure, diffusion of nutrients and drugs 

dominates.
18

 The cancer cells are a greater distance from the capillary blood 

supply, meaning poor tissue penetration of drugs is a large limiting factor in cancer 

therapy. It has also been found that cell proliferation decreases further from the 

blood supply, meaning the reduction in division will lead to a decrease in drug 

activity.
19, 20

 

 

6.3 Hypoxia-Inducible Factor (HIF) 

The hypoxia-inducible factor (HIF) is a transcription factor that responds to 

changes in available O2 in cellular environments, in particular decreases in O2 

concentration. HIF-1 is heterodimeric and consists of two subunits; an oxygen-

sensitive HIF-1 and the oxygen-insensitive HIF-1. The  subunit is subject to 

enzymatic modifications by a hydroxylase enzyme and is a target for degradation 
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in the presence of oxygen. Hypoxia inhibits this activity of the enzyme and leads to 

accumulation of the  subunit and formation of the active HIF-1.
21

 The HIF-

1subunit contains two proline residues, which are hydoxylated under normoxic 

conditions by a family of 4-prolyl hydroxylases. The hydroxylated HIF-1 can be 

recognised by the von Hippel-Lindau (VHL) tumour suppressor gene, which 

further alters the subunit marking it for degradation by the proteasome.
22-26

 Under 

hypoxic conditions the hydroxylation of HIF-1 is inhibited; the subunit is not 

degraded and instead stabilised by dimerisation with the HIF-1 This dimer binds 

to genes and activates the transcription of products which are involved in tumour 

survival and proliferation.
27-30

 An overview of HIF-1 regulation is shown in 

Scheme 6.2. 

 

Scheme 6.2 Mechanism of HIF-1 regulation within the cell
31

 

 

6.4 Hypoxia Targeting Drugs 

There has been much interest in the design of tumour-activated prodrugs (TAPs), 

which are administrated as prodrugs and converted to their active form under 

hypoxic conditions (Scheme 6.3). These hypoxia-selective cytotoxins are required 

to undergo a one-electron reduction from a relatively non-toxic prodrug to a radical 

which becomes a substrate for re-oxidation by O2 and reforms the original 

compound. These compounds are classified as bioreducible and the ability to 



Cytotoxicity under Hypoxic Conditions  Chapter 6 

129 

bioreduce is an essential feature for a successful hypoxic-selective drugs.
32

 Some 

compounds known as hypoxia-activated prodrugs of diffusible cytotoxins (HPDC) 

have been designed to target the hypoxia region of a tumour and also have the 

ability to diffuse into surrounding normoxic cells, thereby increasing the overall 

efficacy of the compounds.
33

 

 

Scheme 6.3 Mechanism of pro-drug activation by hypoxia
34

 

 

6.4.1 Organic Hypoxia-activated Drugs 

 Quinones 

The bioreductive agent mitomycin C (MMC) (Figure 6.1) was in clinical use but 

only in the 1980s it was recognised that the hypoxic environment could facilitate 

the bioreduction and activate MMC. In vitro results were compared to normoxic 

values and generally a five-fold increase in activity was seen.
35-38

 The one electron 

reduction produces a semi-quinone radical anion that covalently cross-links with 

DNA, then in the presence of oxygen is oxidised back to the quinine.
35, 39, 40

  

Further investigation into these molecules has led to a methylated analogue known 

as porfiromycin
41, 42

 and a series of indolequinones,
43, 44

 which have all shown to be 

superior and when combined with radiotherapy gave promising pre-clinical data in 

tumour models.
45

 

N

O

O

O

O

H2N
O
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H2N

 
Figure 6.1 Structure of mitomycin C (MMC) 

 

 Nitroaromatics 

This work initially focused on a hypoxic cell radio-sensitiser misonidazole (Figure 
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6.2) after results showed promising selectivity towards hypoxic cells. These 

nitroaromatics are bioreduced via stepwise addition of up to six electrons. 

Misonidazole was found to have a similar or higher hypoxic cytotoxic ratio (HCR) 

than MMC
46

 and could enhance radiotherapeutic outcome.
47

 A range of compounds 

including, 2-nitroimidazole,
48, 49

 bis-bioreductive agents (two reducible centre)
50

 

and dinitrobenzamide mustards
51

 have shown promising results, however, the lead 

compound PR-104 (Proacta) has been identified and commenced phase I clinical 

trials in solid tumours.
52
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Figure 6.2 Structure of misonidazole 

 

 Aliphatic N-oxides 

The lead compound in this series is a bis N-oxide banoxantrone (AQ4N) (Figure 

6.3) and is reduced under hypoxic conditions to the cytotoxic AQ4. This compound 

has high binding affinity for DNA and acts as a topoisomerase II inhibitor and 

causes cell death.
53

 Hypoxic selectivity was observed when cultured cells were 

incubated with NADPH-supplemented microsomes.
54

 When tested in vivo, AQ4 

had limited effects on tumour growth, however when combined with methods to 

increase hypoxia, a substantial growth delay was observed.
55, 56

 The data were 

supported by human tumour xenograph studies with radio- or chemotherapy, 

showing that the addition of AQ4 gave more persistent damage than with just 

radiation alone.
57

 Along with other promising results, AQ4 has since entered 

clinical trials, where phase I combinational studies with cisplatin and phase II 

studies with radiotherapy are still ongoing in Europe.
58
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Figure 6.3 Structure of AQ4N 

 Heteroaromatic N-oxides 

The current lead compound of the heteroaromatics, is tirapazamine (TPZ), which 

was first understood as a hypoxia-selective cytotoxin in the 1980s.
59

 This 

compound first entered clinical trial in 1994,
60

 and since then there has been nine 

phase I trials and 15 phase II/III trials. TPZ has shown to be an excellent substrate 

for one-electron reductases, cytochrome P450 and P450R
61-65

 and NOS.
66, 67

 In the 

absence of oxygen the nitroxide radical undergoes a rearrangement by the loss of 

water to form an oxidising radical which causes DNA damage through abstraction 

of a hydrogen atom.
68

 TPZ has been shown to become increasingly cytotoxic as 

oxygen levels decrease,
69

 meaning that it can target cells at intermediate oxygen 

tension but is not sufficiently hypoxic for targeting with other bioreductive drugs.
70

 

The most widely used range for TPZ is 260-330 mg/m
2
, with neutropenia reported 

but in a tolerated range. The most frequent non-haematological toxicities reported 

are nausea, vomiting, diarrhoea and skin rashes, with the highest dosages showing 

grade 3-4 toxicities.
60, 71-74
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Scheme 6.4 Mechanism of hypoxia-activation for tirapazamine 

 

6.4.2 Transition Metal Complexes for Hypoxia 

The first TAP compounds based around transition metals utilised DNA-alkylating 

nitrogen mustard ligands attached to Co(III) centres. These were hoped to stabilise 

the Co(III) centre and enable reduction to a labile Co(II) under hypoxic conditions, 

allowing the cytotoxic ligand to dissociate and target the tumour cells (Figure 

6.4).
75-77

 

 

Figure 6.4 Cobalt(III) complex containing bidentate nitrogen mustard ligand 

 

Tetradentate Cu(II) complexes have been synthesised by Parker et al. (Figure 6.5) 

which exhibited much greater selectivity than the previous Co(III) complexes This 

drug is activated by reduction from Cu(II) to Cu(I). In the presence of oxygen, this 

process is reversed, the tetradentate ligand stabilises the complexes to avoid 

dissociation before oxidation back to Cu(II). Under hypoxic conditions the Cu(I) 

complex is hydrolysed to [Cu(H2O)n]
+
 and the free mustard ligand.

78
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Figure 6.5 Copper(II) complex containing tetradentate nitrogen mustard ligand 

 

Cobalt complexes containing a tetraazamacrocycle and 8-hydroxyquinoline have 

been studied by Ahn et al. (Figure 6.6)
79

 and are activated through reduction by 

ionising radiation. This has advantages over enzyme activation, one being the 

ability to control precisely where the pro-drug is activated by specific radiation 

targeting.
80

 Addition of a 8-hydroxyquinoline to the Co(III) reduced the 

compounds activity by >1000-fold. The cytotoxic ligand is released selectively 

under hypoxic conditions, when treated with ionising radiation, demonstrating the 

feasibility of the radiation-activated approach to hypoxia-selective drug design.
81
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Figure 6.6 Cobalt(III) complex containing 8-hydroxyquinoline 

 

6.5 Conducting the MTT Assay Under Hypoxic Conditions (≤ 1% O2) 

This assay was carried out as previously discussed in Chapter 4, with incubation 

periods carried out in a Don Whitley Scientific H35 Hypoxystation. This was kept 

at 37°C with an O2 concentration of either 1.0% or 0.1%. The compounds were 

made up to an initial concentration of 25 mM using DMSO. Ten different dilutions 

were made using cell medium, ranging from 250-0.49 M. The assays uses a 24-

hour incubation of the cells within the well plate, followed by addition of the drug 

dilutions on day two and then a 5-day incubation period. After the 5-day 

incubation, MTT solution (5 mg/ mL) was added to the plates, incubated for a 

further 3 hours and then absorbance measured at 540 nm, using a Thermo 

Scientific Multiskan EX microplate photometer. All IC50 values were taken from 
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an average of three different assays with good repeatability, any measurements not 

correlating we repeated until they were within an approximate 10% error. The 

protocols for this procedure are stated within Chapter 9. 

 

6.6 Results and Discussion 

The ruthenium and iridium complexes 1, 16, 18 and 19 (Figure 6.7) were tested for 

their cytotoxic potential under hypoxic conditions, at either 1.0% or 0.1% O2 

concentration. These were selected as they showed the largest differences in 

activity (Chapter 5). These complexes were tested under both O2 concentrations, as 

they showed the largest differences in their normoxic values. 

 

Figure 6.7 List of meta-fluoro complexes tested under hypoxic conditions 

 

In addition to these, complexes 2, 3, 8, 9 and 11 were chosen as they have a 

functional group in the para position and the modified complexes 14 and 15 were 

also tested (Figure 6.8). As previously discussed, tirapazamine is a well know 

hypoxic sensitive compound and was tested under under hypoxic conditions to act 

as a positive control and cisplatin was also tested for completion. 
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Figure 6.8 List of complexes tested under hypoxic conditions 

 

The results in Table 6.1 (Figure 6.9) show the cytotoxic results for the ruthenium 

complexes incorporating a -ketoiminate ligand (1) and the -diketonate ligand 

(16). The table also shows the results for the iridium analogues 18 and 19. The 

hypoxic sensitive positive control tirapazamine was tested and as expected its 

activity increases on a decrease in O2 concentration. A surprising result was seen 

for the ruthenium (N,O) complex 1, which remains highly active even under very 

low O2 concentrations. Comparing this to the (O,O) complex 16, there is a 5-fold 

decrease in activity on decreasing the O2 concentration from 21% to 0.1%. The 

iridium (N,O) complex 18 still remains moderately active even under very low O2 

concentration, but again the (O,O) complex 19 decreases under low O2 

concentrations and becomes completely inactive.  

The results in Table 6.2 (Figure 6.10) show the activity of the para substituted -

ketoiminate ruthenium complexes synthesised in Chapter 3; their activities all 

increase on a decrease in O2 concentration, with up to a 1.8-fold increase in activity 

seen for complex 2. This is a very promising result as it shows these complexes are 

hypoxic sensitive, which is a key feature that researchers strive to achieve with 

anti-cancer compounds, as the hypoxic environment gives a more realistic idea of 

the cytotoxic potential. The modified complexes 14 and 15 show only minor 

differences in IC50 on changing the O2 concentration and these complexes are still 
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inactive under hypoxic conditions. The results presentated both here and in Chapter 

4 show that the library of ruthenium -ketoiminate complexes synthesised in 

Chapter 3 are not only cytotoxic but activities are further increased under low O2 

concentrations, showing these complexes have the potential for future in vivo 

studies.  
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  Table 6.1 IC50 values for TPZ, cisplatin and complexes 1, 16, 18 and 19 in 21%, 1.0% and 0.1% O2 concentrations 

Complexes 
21.0% O2 1.0% O2 0.1% O2 

IC50 (M) ± SD IC50 (M) ± SD IC50 (M) ± SD 

TPZ 31 3 3.2 0.5 2.4 0.4 

Cisplatin 2.4 0.1 3.5 0.2 2.8 0.4 

1 3.5 0.3 6.4 0.2 5.7 0.2 

16 18 2 62.9 0.3 95 4 

18 5.1 0.3 10.6 0.2 20 2 

19 93 7 109 2 121 3 

Table 6.2 IC50 values for TPZ, cisplatin and complexes 2, 3, 8, 9, 11, 14 and 15 in 21% and 0.1% O2 concentrations 

Complexes 
21% O2 0.1% O2 

IC50 (M) ± SD IC50 (M) ± SD 

TPZ 31 3 2.4 0.4 

Cisplatin 2.4 0.1 2.8 0.4 

2 10.5 0.4 5.7 0.2 

3 5.40 0.09 4.6 0.3 

8 10.3 0.6 5.76 0.09 

9 11.8 0.8 7.0 0.1 

11 10.21 0.09 6.3 0.3 

14 128 4 109 3 

15 53 1 57.3 0.7 
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Figure 6.9 Bar-chart of IC50 at differing O2 concentrations for TPZ, cisplatin, 1, 

16, 18 and 19 

 

Figure 6.10 Bar-chart of IC50 at differing O2 concentrations for TPZ, cisplatin, 2, 

3, 8, 9, 11, 14 and 15 
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6.7 Conclusions 

This chapter presents in vitro cytoxic values under hypoxic conditions for a small 

library of complexes synthesised in Chapters 3 and 5. The results for the 

comparisons between -ketoiminate and -diketonate ruthenium complexes (1 and 

16 respectively), shows that 1 remains active even under very low O2 

concentrations, whereas 16 decreases in activity under lower O2 concentrations. 

Similar results were seen for the iridium -ketoiminate and -diketonate analogues, 

18 and 19 respectively. Complex 18 only decreases slightly in activity and is still 

considered active, whereas 19 becomes completely inactive at 0.1% O2. These 

results confirm that the complexes containing a -ketoiminate ligand are promising 

candidates for further cell investigations. 

Due to the success of 1 and to confirm the results stated above, a second small 

library of ruthenium -ketoiminate complexes were tested under a 0.1% O2 

concentration. These consisted of a para-substituted ligand to allow comparisons to 

be made. It could be seen that all of the complexes increased in activity on 

decreasing the O2 concentration, with the para-fluoro (2) giving the most 

promising result, with up to a 1.8-fold increase in activity. These were tested to 

prove the need for a -ketoiminate ligand and show that the library synthesised 

within Chapter 3 all have the potential for future in vivo work, as they are all 

hypoxia-sensitive, a key feature required for the design of novel anti-cancer drugs.  
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7 Biological Relevance 

7.1 Introduction 

This chapter discuss further biological testing to distinguish the potential of the 

ruthenium and iridium complexes discussed in Chapters 3 and 5 for future in vivo 

testing. Initial results have been obtained for the hydrolysis and hydrophobicity of 

the complexes, as a means to assess the complexes potential to enter a cell 

membrane. These types of organometallic ruthenium(II) arene complexes (Chapter 

1) have shown to interact with DNA
1
 and so using this as a possible target, studies 

have included Comet assays to measure the degree of DNA damage and melting 

curve analysis to determine the specific base interactions with these complexes. 

Apoptosis studies have been measured to assess if the activities seen in Chapters 4 

and 5 are due to cell death or cell inhibition, and as we have previously shown 

these types of complexes cause thioredoxin reductase inhibition, this has been 

analysed for several complexes.
2
 

 

7.2 Hydrolysis 

As stated in Chapter 1, for cisplatin and titanocene dichloride hydrolysis is the 

proposed mechanism of action. Therefore, experiments have been carried out using 

either one equivalent of water or an excess of water. 
1
H NMR spectra were 

recorded over a 5 day period as to mimic the 5-day MTT assay. To date, results 

have been inconclusive and no changes have been observed in the NMR spectra 

after a period of 5-days, suggesting that these complexes do not undergo hydrolysis 

or hydrolysis is too fast to measure. Attempts have been made to increase the 

concentration of water added to the samples, however this causes them to 

precipitate and neither NMR nor UV-vis spectrometry could be conducted. 

 

7.3 Hydrophobicity (Log P) 

This is a test of lipophilicity and can help determine if a drug is capable of entry 

into a cell membrane. One of Lipinski’s rule of five (RO5) states that the octanol-

water partition coefficient (Log P) must not exceed 5 if the drug is to be 

administrated orally.3-5
. In an attempted to improve the predictions of drug likeness, 

the rules were extended to the Log P range -0.4 - +5.6
6
 and then later extended to 

the rule of three (RO3), which takes into consideration the molecular weight of the 
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compound. The compound should have a molecular weight of less than 300 dalton 

and a Log P of less than 3.
7
 

 

7.3.1 Conducting Hydrophobicity 

Complexes from Chapters 3 and 5 where tested to determine their effect partition 

coefficient (Log P) on changing the electronics features of the complex. Firstly, 

equal volumes of octanol and water (NaCl saturated) were stirred overnight at 

room temperature and then separated to give octanol-saturated water and water-

saturated octanol. Most experiments use the octanol-saturated water layer to carry 

out the measurements due to cost efficiency; however, all compounds were 

insoluble in octanol-saturated water. Therefore, accurate amounts of the compound 

were dissolved in water-saturated octanol (25 mL), a volume of this was layered 

with an equal volume of octanol-saturated water and placed in a vibrax machine for 

4 hours at 1000 gmin
-1

, a minimum of six repeats were analysed. The layers were 

separated and the water-saturated octanol layer retained for analysis by UV-vis 

spectroscopy. Using the maximum absorbance of each compound, the average of 

the six runs was calculated and rearrangement of individual calibration graph gave 

the [C]org final. Equation 7.1 and Equation 7.2 were used to determine the 

partition coefficient and hence determine if the compound is predominantly 

hydrophilic or hydrophobic.
5, 8-10

 

       
      

     
      Equation 7.1 

       
            

                               
 Equation 7.2 

 

7.3.2 Results and Discussion 

Complexes 1-13 (Figure 7.1) were tested using the previously discussed 

experimental, in order to assess their lipophilicity. The results are summarised in 

Table 7.1 and it can be seen that complexes range from slightly hydrophilic to 

slightly hydrophobic, -0.87-1.5, both cisplatin and [p-cymRuCl2]2 were tested as 

comparisons. 
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Ru
Cl

N
O

R1
R

R = H
R = H
R = H
R = H
R = H

R1 = 3'-F
R1 = 4'-F
R1 = 4'-Cl
R1 = 2',4'-diCl
R1 = 2',5'-diCl

1

2

3

4

5

R1 = 2',3',4'-triCl
R1 = 3'-Br
R1 = 4'-Br
R1 = 4'-Me
R1 = 2'-naphthyl
R1 = 4'-F

R = H
R = H
R = H
R = H
R = H
R = 2',4'-diF

6

7

8

11

12

13 

Figure 7.1 List of complexes tested for lipophilicity 

Table 7.1 Log P values for cisplatin, [p-cymRuCl2]2 and complexes 1-8, 11-13 

Complex Log p  ± SD 

Cisplatin -2.36 0.01 

[p-cymRuCl2]2 -0.67 0.03 

1 -0.87 0.04 

2 -0.17 0.02 

3 0.12 0.04 

4 1.1 0.2 

5 0.07 0.04 

6 0.27 0.03 

7 0.11 0.05 

8 0.41 0.03 

11 0.53 0.05 

12 1.5 0.2 

13 0.46 0.06 

 

The results show that complexes 1 and 2 are both hydrophilic possibily due to the 

electronegative fluorine atoms within the molecules, which make strong hydrogen 

bonds with the H2O. As cisplatin is also hydrophilic, it was thought that the 

hydrophilic nature is key for the complexes activity; however this contradicts 

Lipinski’s rules. Cisplatin is highly activity and has a Log P value (-2.4) lower than 

the stated threshold for a drug candidate, this can also be seen for 1 which is highly 

active against most cell lines and again is outside the considered threshold. It can 

be seen that [p-cymRuCl2]2 is also hydrophilic and is completely inactive against 
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all cell lines. This shows that the Log P values calculated have no correlation with 

the activities seen. The remaining complexes are all hydrophobic and fall with the 

required range for a likely drug candidate. These results are summarised as a bar-

chart in Figure 7.2. 

 

Figure 7.2 Bar-chart to show the Log P values for cisplatin, [p-cymRuCl2]2, 

complexes 1-8 and 11-13 

 

It was seen in Chapter 5 that on changing the ligands from a -ketoiminate to a -

diketonate produced a large difference in activity (Figure 7.3). Whereby, both of 

the ruthenium -ketoiminate 1 and the iridium -ketoiminate 18 gave IC50 values 

much higher than their -diketonate analogues. Therefore, their Log P values were 

analysed to evaluate if there was a correlation between hydrophobicity and activity. 

The results are shown in Table 7.2 and summarised as a bar-chart in Figure 7.4. It 

can be seen that the more activity complexes are in fact opposite in their lipophilic 

nature, the ruthenium (1) is hydrophilic and the iridium (18) is hydrophobic. When 

assessing the -diketonate analogues the opposite trend is seen and the ruthenium 

(16) is now hydrophobic and the iridium (19) is hydrophilic. These results confirm 

those previously, showing there is no correlation seen between IC50 values obtained 

and lipophilic nature of the complex. This means that passive diffusion into the cell 

is unlikely and these complexes probably enter the cell through a cell-mediated 

response. 
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Figure 7.3 List of complexes from Chapter 5 tested for their Log P 

Table 7.2 Log P values for complexes 1, 16, 18 and 19 

Complex Log p  ± SD 

1 -0.87 0.04 

16 0.11 0.06 

18 0.63 0.06 

19 -0.28 0.09 

 

 

Figure 7.4 Bar-chart to show Log P values for 1, 16, 18 and 19 
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As hydrolysis and hydrophobicity studies are inconclusive to the mode of entry of 

these complexes, it is essential that these are tested for protein and enzyme 

interactions as a means of determining cell uptake. Once inside the cell, a common 

target for these types of half-sandwich “piano-stool” complexes is DNA. 

Researchers have shown that these types of complexes bind selectively to either 

adenosine or guanine residues.
1
 Therefore the next sections discuss DNA as a 

potential target for the activity of these complexes. 

 

7.4 Comet Assay 

Comet assay is a microelectrophoresis study first developed by Ostling and 

Johanson in 1984
11

 and was later modified by Singh et al. in 1988.
12

 It is a method 

used to analyse DNA breakage in single eukaryotic cells by gel electrophoresis. 

The cells are embedded into a layer of low melting point agarose, a lysis buffer 

solution is added to remove the membrane, proteins and histones, which diffuse 

into the agarose. Due to the high molecular weight of DNA, it uncoils and remains 

in the cell cavity within the agarose. Electrophoresis is then carried out at neutral, 

mildly alkaline or strongly alkaline conditions. The DNA is negatively charged and 

therefore when an electric field is applied the relaxed DNA is pulled towards the 

anode. DNA which remains coiled within the nucleoid forms the ‘head’ of the 

comet, whilst the relaxed loops of damaged DNA which are pulled towards the 

anode will form the ‘tail’. These comets can be seen when a SYBR™ Gold 

solution is added to the slides and they are studied using a microscope. DNA 

damaged is scored and the comet tail lengths recorded for 50 different comets. The 

% DNA in the tail is proportional to the amount of DNA damage and therefore the 

comets with the longest tails have the largest amount of DNA damage. This 

technique is a quantitative measurement of DNA damage. 

 

7.4.1 Conducting the Comet Assay 

HT-29 cells were used as they show the largest range of IC50 values (Chapter 4 and 

5), other cell lines showed no significant correlation and gave similar IC50 values 

for most compounds. The HT-29 cells were incubated with the compounds at an 

initial concentration of 20 M and four further concentrations were made each 

ranging from 20-1.25 M. After incubation with the drugs, the cell suspensions 

were diluted in low melting point agarose and added to the previously prepared 
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slides containing an agarose layer. A neutral or alkaline lysis buffer was added to 

the slides and then placed into an electrophoresis tank where an electric field was 

applied for 25 minutes, after washing the slides were left to dry overnight. The 

SYBR™ Gold staining solution was added and the cells scored under a microscope 

and using the Comet assay III software. 

 

Double Strand Breakage (DSB) 

This assay uses a neutral lysis buffer containing 2% sarkosyl, 0.5 M Na2EDTA, 0.5 

mg/ mL proteinase K and adjusted to pH 8.0. The slides are incubated in the lysis 

buffer for one hour at 37°C, then submerged in the electrophoresis buffer for a 

period of thirty minutes and repeated three times. Finally, the slides are submerged 

in the electrophoresis tank with the buffer and a 24 V electric field applied. Once 

washed and dried overnight, the fluorescence dye is applied and comets scored. At 

neutral pH the double helices remain intact and any comet tails seen are 

representative of double strand damage. 

Single Strand Breakage (SSB) 

This assay uses an alkaline lysis buffer containing 2.5 M NaCl, 100 mM EDTA 

and 10 mM Trizma base. The slides are incubated at 4˚C for 1 hour prior to the 

electrophoresis. The electrophoresis tank is then filled with alkaline buffer (pH < 

13) and a 24V electric field applied for 25 minutes. The slides are then washed 

with a neutralisation buffer, and then repeatedly washed with deionised water and 

finally 100% ice cold ethanol. Once the slides are left to dry overnight, the Comet 

assay scoring can be continued when convenient. 

 

7.4.2 Results and Discussion 

Complexes 1, 16, 18, 19 (Figure 7.3) and cisplatin were tested for both DSB and 

SSB, the compounds were incubated with HT-29 cells before harvesting and 

conducting the electrophoresis. It can be seen in Chapter 5 that complex 1 has a 

large difference in cytotoxicity when compared to complex 16 and the same trend 

is seen for the iridium Cp* complexes (18 and 19). The comet assays were 

conducted to distinguish if the IC50 values seen correlated to the extent of DNA 

damaged measured. However, this assay required a positive control and a 

compound such as Camptothecin CAMP (Figure 7.5) which inhibits the DNA 

enzyme topoisomerase I (topo I) inducing apoptosis.
13, 14

 

http://en.wikipedia.org/wiki/Enzyme_inhibitor
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Topoisomerase_I


Biological Relevance  Chapter 7 

152 

N

N

O

OOH

O

 

Figure 7.5 Camptothecin (CAMP) 

 

The results are shown as bar-charts in Figure 7.6 and show both DSB and SSB for 

cisplatin and complexes 1, 16, 18 and 19. Results show that like cisplatin, both 

ruthenium complexes show no significant double strand breakage and have tail 

moments comparable to that of cisplatin. When considering the SSB assay, 

cisplatin shows moderate single strand damage and at a concentration of 20 M has 

a tail moment of approximately 20. Complex 1 shows a larger degree of single 

strand damage when compared to cisplatin and at the same concentration it shows a 

tail moment of approximately 65, whereas complex 16 does not show any single 

strand breakage. 

The same assays were conducted for the iridium analogues 18 and 19 and the 

results are shown as bar-charts in Figure 7.7. They do not show the same degree of 

damage as their ruthenium analogues, but still have the same general trend, with 

the complex 18 having preferential single strand breakage and complex 19 showing 

neither double or single strand damage. This preferential single strand breakage for 

the -ketoiminate complexes could be the reason for their increase in IC50 values, 

as a direct trend is seen between cytotoxicity of the complex and the degree of 

DNA damage measured. This assay is quantitative, but only shows that the DNA is 

disrupted but does not quantify any cross-linking that may be present. 
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Cisplatin DSB Complex 1 DSB Complex 16 DSB 

   

Cisplatin SSB Complex 16 SSB Complex 16 SSB 

Figure 7.6 DSB and SSB Comet assay results for cisplatin, 1 and 16 
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Cisplatin DSB Compound 18 DSB Compound 19 DSB 

   

Cisplatin SSB Compound 18 SSB Compound 19 SSB 

Figure 7.7 DSB and SSB Comet assay results for cisplatin, 18 and 19 
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Cross-Linking Comet Assay 

The previous section discusses the results from the double and single strand Comet 

assays, but as stated it does not provide any information for the possibility of cross-

linking within the complexes mode of action. This assay follows the same 

experimental as the single strand breakage assay, but requires 20 minutes exposed 

with hydrogen peroxide after the incubation with the complexes. This is added to 

disrupt the DNA and produce the Comets usually seen; a measurement is then taken 

of percentage tail decrease. If the complexes are forming cross-links there should be 

a decrease in tail moment. 

 

7.4.3 Results and Discussion 

Complexes 1, 16, 18 and 19 (Figure 7.3) were tested using this cross-linking assay 

to distinguish if the preferential single strand breakage seen for complexes 1 and 18 

is due to a cross-linking interaction. Cisplatin was tested as a positive control for this 

assay as it is a well know cross-linking complex.
15, 16

 The results are shown as bar-

charts in Figure 7.8 and show that cisplatin does cross-link with a % tail moment 

decrease of 17% when comparing the control and 20 M. As expected, complexes 

16 and 19, which showed no double or single strand breakage, also show no cross-

linking. When assessing complexes 1 and 18, which do show single strand breakage, 

it can be seen that neither show a significant tail moment decrease. However, these 

values were taken from an average score of 50 comets, and in fact under the 

microscope a large proportion of the comets had significant tail decrease and this 

can account for the large standard deviations seen. This shows that at 20 M there is 

some cross-linking present, however a higher concentration would have to be 

analysed in the hope to maximise the degree of cross-linking. 
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Cross-linking for Cisplatin Cross-linking for 1 Cross-linking for 16 

  

Cross-linking for 18 Cross-linking for 19 

Figure 7.8 Cross-linking Comet assay results for cisplatin and complexes 1, 16, 18 and 19 
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7.5 Apoptosis 

In the early stages of apoptosis, changes can occur at the cell membrane
17-19

 and one 

of these alterations is the translocation of the phosphatidylserine (PS). It is a 

phospholipid component that is usually found on the inner-leaflet of the membrane. 

In apoptotic cells, this can move from the inner to the outer part of the membrane, in 

which the PS then becomes exposed on the surface of the cell.
20

 Fadok et al. showed 

that macrophages specifically recognise the exposed PS during the development of 

apoptosis.
18

 This recognition and phagocytosis of apoptotic cells protects the cellular 

compounds leading to inflammation and usually accompanies necrosis. The analysis 

of PS on apoptotic cell membranes is performed using Annexin-V-Fluorescein, and 

also Propidium Iodide (PI) for the differentiation from necrotic cells. 

Annexin V is a Ca
2+

 dependent phospholipid-binding protein with a high affinity for 

PS.
20

 Therefore this protein can be used as a sensitive probe for PS exposure on the 

outer-leaflet of the membrane and is able to detect apoptotic cells.
20-23

 The necrotic 

cells also expose PS due to the loss of membrane integrity, and so to distinguish 

these from apoptotic cells a DNA stain (PI) is used as a necrotic cell would uptake 

both stains and give a positive result for both. 

 

7.5.1 Conducting the Annexin-V assay 

The complexes shown in Figure 7.3 were incubated with either HT-29 or A2780 for 

a period of 48 hours. These were then harvested according to the protocol in Chapter 

9 and flow cytometry was used to analyse a minimum of 10,000 cells. The flow 

cytometer uses a 488 nm excitation and a 515 nm band-pass filter for fluorescein 

detection (Annexin-V) and a filter > 600 nm for PI detection. Electronic 

compensation of the instrument is required to exclude overlapping of the two 

emission spectra. Figure 7.9 shows a general graph seen for the dual parameter FL1 

= Annexin-V-FLUOS versus FL2 = Propidium Iodide.  
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Figure 7.9 General graph seen for the quadrants seen using dual parameters 

R1 = living cells – membranes are intact and therefore are not stained by either of 

the two dyes. 

R2 = apoptotic cells – in which the Annexin-V binds to the negatively charged 

phospholipid surfaces but not the PI dye (excitation = 488 nm, emission = 518 nm) 

R3 = necrotic cells – again this has the PS exposed and binds to the Annexin-V, but 

necrotic cells are ‘leaky’ and the PI stains the exposed DNA (excitation = 518 nm, 

emission = 617 nm) 

 

7.5.2 Results and Discussion 

The results for this assay are stated in Table 7.3 and when considering incubation 

with the HT-29 cells (Figure 7.10), it can be seen that at a drug concentration of 20 

M, the active -ketominate ruthenium complex (1) induces late apoptosis or 

necrosis of up to 72.25%, confirming that the IC50 values obtained are due to cell 

death. Also the active -ketoiminate iridium complex (18) shows induced apoptosis, 

with 31.67% early apoptotic cells and 49.94% late apoptotic or necrotic cells. When 

considering the -diketonate analogues, 17 and 19 respectively, it can be seen that 

even at the highest drug concentration of 20 M, there are still over 84% of the cells 

living. Showing a clear correlation with the IC50 results seen for these complexes, in 

which the more active the complex the higher degree of cell death is induced. 

When considering the incubations with A2780 cells (Figure 7.11), the same trend is 

seen, where at a drug concentration of 20 M, both 1 and 18 have over 60% of the 

cells in the late apoptotic or necrotic stages. However, there is a difference seen in 

the early apoptotic stages in which 1 has a higher degree of living cells, showing it 
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induces later apoptosis only. Again, at the same drug concentration, the inactive 17 

and 19 show over 82% of living cells. These results show that even against two 

different cells lines; these types of -ketoiminate complexes are able to induce a 

high degree of late apoptosis or necrosis in cells. It also suggests that the 

cytotoxicities of these complexes seen in Chapters 4 and 5 are due to cell death and 

not to cell inhibition, therefore it was not necessary to undertake any cell cycling 

experiments. 

 

Figure 7.10 Bar-chart showing late apoptotic/necrotic, early apoptotic and living 

percentage for complexes 1, 16, 18 and 19, against HT-29 
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Figure 7.11 Bar-chart showing late apoptotic/necrotic, early apoptotic and living 

percentage for complexes 1, 16, 18 and 19, against A2780 
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Table 7.3 Apoptosis results for complexes 1, 16, 18 and 19, showing % of living, early apoptotic and late apoptotic/necrotic cells 

  HT-29 A2780 

Complexes 
Concentration 

(M) 
Live (%) 

Early 

Apoptotic (%) 

Late Apoptotic/ 

Necrotic (%) 
Live (%) 

Early 

Apoptotic (%) 

Late 

Apoptotic/ 

Necrotic (%) 

1 0 88.67 5.70 4.07 91.37 2.91 4.95 

 10 9.03 47.19 43.45 49.31 5.76 43.28 

 20 7.86 18.95 72.25 31.52 6.63 60.13 

16 0 90.43 5.94 3.57 92.25 3.45 2.99 

 10 90.54 5.21 2.88 90.54 3.48 5.21 

 20 84.96 10.07 4.62 82.29 5.99 11.38 

18 0 93.68 2.52 2.40 88.52 7.39 1.81 

 10 67.18 27.49 5.01 45.55 10.92 41.83 

 20 18.03 31.67 49.94 3.34 34.57 61.09 

19 0 92.42 3.04 2.65 87.60 6.91 2.01 

 10 88.49 4.73 3.74 86.25 7.60 3.75 

 20 86.26 5.73 5.98 84.52 7.63 5.41 
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7.6 Thioredoxin Reductase 

The thioredoxin (Trx) system is a thiol redox system that plays a key role in the 

cells survival and proliferation.
24, 25

 The thioredoxin reductase (TrxR) has two main 

forms; a cytosolic (TrxR1)
26

 and a mitochondrial one (TrxR2),
27

 it is the only 

known enzyme to catalyse the NADPH-dependent reduction of the active disulfide 

(Csy32 and Cys35) of oxidised Trx.
28

 The electrons which are taken from NADPH 

via TrxR are transferred to the active site of Trx.
29

 The Trx system performs in 

many biological functions,
 
such as;

 23, 24, 29, 30
 

1. Protection of cellular proteins against oxidation by reducing protein 

disulfides. 

2. An antioxidant acting as an electron donor to peroxide scavengers. 

3. Redox control of transcription factors, including the hypoxia-inducible 

factor HIF-1 

4. An electron donor for enzyme ribonucleotide reductase (RNR) which is 

involved in DNA synthesis. 

In cancer, the biological effects of the Trx system have been shown to contribute to 

tumour growth and progression.
30

 However, over-expression of the Trx has been 

reported in several tumour cancers and therefore targeting the inhibition of this has 

been key in current drug research.
31-33

 The increase of Trx expression has since 

been associated with the resistance to docetaxel in primary breast cancer
34

 and 

decreased survival in colorectal cancer patients.
35

 Therefore the TrxR in 

tumorigenesis has been studied in mouse models, in which tumour growth and 

metastasis were largely reduced.
36

 The active site of the Trx is a selenoate group, 

which after reduction allows the site to react with “soft” metal ions, making the 

TrxR a likely target for metallodrugs and is potentially the reasons that gold(I) and 

platinum(II) compounds have been previously reported for their inhibition of 

mammalian TrxR.
37-40

 It was thought that ruthenium compounds, due to their “soft” 

nature, would have the potential of inhibiting TrxR. The first results were published 

on this in 2007 by Mura et al. in which they show that ruthenium(III) compounds in 

fact have selectivity towards the cytosolic TrxR1 and is reminiscent to that seen for 

calcium ions. In which the TrxR1 is also extremely sensitive to Ca
2+

 inhibition and 

exerts only a weak inhibitory action on the mitochondrial TrxR2.
41
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7.6.1 Conducting the Thioredoxin Reductase Assay 

This assay is based on a modified assay by Chew et al.,
42

 in which the substrate 

DTNB also known as Ellman's reagent (5,5'-dithiobis-(2-nitrobenzoic acid)) is used 

to quantify the concentration of thiol groups in a sample, as thiols react with this 

compound and cleave the disulfide bond giving TNB (Scheme 7.1).
43

 

Scheme 7.1 Cleaving of a disulfide bond by DTNB to give TNB 

 

The inhibition of TrxR is measured by addition of DTNB, NADPH and TrxR, and 

then differing concentrations of drug samples to gain the concentration needed to 

inhibit 50% (IC50). The production of TNB is then measured at 412 nm and the IC50 

calculated by plotting graphs of % absorption versus inhibition concentration [I]. 

This assay was carried out using complexes stated in Figure 7.3 at varying 

concentrations, up to a maximum of 10 M. The TrxR in buffer solutions were 

allowed to react with the drug samples for 30 seconds and then UV-vis 

spectroscopy was measured for 1 minute at 412 nm. An initial spectrum was 

recorded for the TrxR only and any decrease in absorbance seen indicated 

inhibition (Scheme 7.2). 

DTNB NADPH H
TrxR

2TNB NADP  

Scheme 7.2 The reaction of DTNB with NADPH with TrxR 

 

7.6.2 Results and Discussion 

The results for this assay are stated in Figure 7.12 and show graphs of % 

absorption versus [I], straight line graphs were plotted for 50% region and from the 

line of best fit, IC50 values were calculated. It can be seen that the active -

ketominate ruthenium complex 1 is also good inhibitors of TrxR with a [I] of 285 

nM and the inactive -diketonate ruthenium complex 16 has a [I] of only 1.42 M. 

A similar trend is seen for the iridium complexes, whereby the inactive -

diketonate iridum 19 only inhibits in the micromolar range and the iridium -

ketoiminate complex 18 has a [I] of 68.5 nM. These results show there is some 
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selectivity towards the complexes, with a trend seen in the IC50 inhibition and the 

cytotoxicity values. These results are similar to those obtained within the 

McGowan group, in which the iridium picolinamide complexes were the more 

active than their ruthenium analogues, with IC50 values in the nanomolar range. The 

results show that the ruthenium complexes were completely inactive and here the 

ruthenium complexes are as high as the nanomolar range, this could mean the -

ketoiminate ligands may play a role in the activity of these complexes.
2
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Complex 1– IC50 = 285 nM Complex 16 – IC50 = 1.42 M 

  

Complex 18 – IC50 = 68.5 nM Complex 19– IC50 = 1.48 M 

Figure 7.12 Graphs showing the % Absorption versus [I] and IC50 values for complexes 1, 16, 18 and 19
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7.7 Conclusion 

This chapter presents a range of biological experiments and assays on complexes 1, 

16, 18 and 19; to determine the activities of these complexes and to assess their 

potential for further in vivo testing. The initial hydrolysis and hydrophobicity 

studies were inconclusive as to the mode of action into the cell and future work 

needs to be carried out on the possible entry into a cell. 

As previous research had stated such compounds to interact with DNA, single cell 

gel electrophoresis was conducted to assess interactions with complexes on double 

strand (DSB), single strand (SSB) and cross-linking samples. It was found that the 

active -ketoiminate complexes 1 and 18 show preferential single strand damage 

but no double strand or cross-linking, whereas the inactive -diketonate complexes 

show no interactions with DNA. 

Assays were carried out to assess the nature of the cytotoxicity values measure in 

Chapters 4 and 5, to determine if these IC50 values were due to cell death or cell 

inhibition. Firstly, apoptosis studies were carried out and showed the same trends 

seen in other assays, in which the -ketoiminate complexes are able to induce cell 

death in both HT-29 and A2780 cells. Therefore, no cell cycling studies were 

required and the cytotoxicity values obtained were considered to be due to cell 

death and not inhibition. 

As thioredoxin reductase is known to be over expressed in cancers, studies were 

carried out to assess the potential of these complexes to inhibit this enzyme. 

Results show that indeed the active -ketoiminate complexes inhibit this enzyme 

well, with IC50 values in the nanomolar range, and the most promising activity seen 

for the iridium complex 18. As thought, the inactive -diketonate complexes do not 

inhibit the TrxR enzyme to the same extent and are only active in the micromolar 

range. 
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8 Synthesis and Characterisation of -Diketonate and -

Ketoiminate Group IV Chloride Complexes  

After the success of budotitane described in Chapter 1, modified analogues have 

been synthesised within the McGowan group.
1-3

 Attempts have been made to 

synthesise novel group IV chloride complexes with incorporation of both the novel 

-diketonate and -ketoiminate ligands described in Chapter 2. 
1
H and 

13
C{

1
H} 

NMR spectroscopy, mass spectrometry and X-ray crystallographic analysis have 

been described where possible. Due to the air sensitive nature of these complexes 

bulk purification has not been possible to date. 

 

8.1 Mechanistic and Cytotoxicity Evaluation for -Diketonate Group 

IV Chloride Complexes 

A range of complexes have previously been reported within the McGowan group, 

where a small range was selected and tested for their cytotoxic potential. The 

titanium, zirconium and hafnium complexes were synthesised according to Scheme 

8.1 (1a). The para-fluoro and para-methyl -diketonate complexes were selected 

for each metal, allowing comparisons to be made between the electronic effects and 

the cytotoxic behaviour down the group. Two symmetrical complexes (e and h), 

were also synthesised in order to limit the possible isomers. In addition a 

symmetrical tris -diketonate hafnium complex (i) was synthesised according to 

Scheme 8.1 (1b), in order to assess the need for the cis-chlorides and to increase 

the sterics of the complex.
4
 



Group IV Complexes  Chapter 8 

171 

 

Scheme 8.1 Synthetic pathway for Ti, Zr and Hf (IV) -diketonate complexes 

 

Budotitane contains two asymmetric -diketonate ligands and it has been 

postulated that different isomers of budotitane may exhibit different in vitro 

activities.
5, 6

 It has been shown within the McGowan research group that complexes 

which contain asymmetric functionalised -diketonates, show 
1
H NMR spectra 

comprised of a series of broad peaks at room temperature (Figure 8.1). 
1
H NMR 

spectra were recorded by Dr. James Mannion and upon cooling the samples from 

333 K to 233 K, the broad signals separate into multiple peaks which were assigned 

as the three cis isomers.
1
 This phenomenon is similar to that observed for the 

budotitane series of complexes in which they see the same three cis isomers.
7
 

 



Group IV Complexes  Chapter 8 

172 

 

 

Figure 8.1 Possible cis isomers for the structure L2TiX2 (L = -diketonate, X = 

halide) and the 
1
H NMR spectra from 333 K-233 K (CDCl3, 300 MHz) 

 

In order to restrict the number of isomers, the symmetrical titanium -diketonate 

complexes A and B were synthesised to evaluate the nature of the 

exchange/fluxional process. These were both synthesised and the 
1
H NMR spectra 

recorded by Dr. Andrew Hebden. Approximately equal molar amounts of A and B 

were dissolved in deuterated chloroform and an initial proton spectrum was 

recorded at 300K. This showed two distinct sharp signals at 6.16 ppm and 6.01 

ppm respectively, corresponding to the -diketonate methine protons of both 

species. Another 
1
H NMR spectrum at 300K was recorded after eight hours and 

showed four separate signals in the same region. Two signals can be identified as 
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the original molecules A and B and the additional peaks for the ligand exchange 

product C (Scheme 8.2). The same experiment was carried out with complex B and 

free heptane-3,5-dione ligand, when followed using 
1
H NMR the same exchange 

species was observed. It has been previously reported that zirconium compounds 

with higher coordination numbers of -diketonate ligand also show an exchange 

process.
8 

The hexa coordinate -diketonate complexes have shown fluxionality but 

we report that these group IV complexes show an exchange process.
2
 

 

Scheme 8.2 Ligand exchange for symmetrical -diketonate titanium (IV) 

compounds 

 

The complexes a-i shown in Scheme 8.1 and cisplatin were tested using the MTT 

assay stated in Chapter 4, using a 5-day incubation period at 37°C in a 5.0% CO2 at 

atmosphere. The IC50 (M) ± SD values are shown in Table 8.1 and also 

summarised as a bar-chart in Figure 8.2, complexes were tested against both HT-

29 (human colon adenocarcinoma) and MCF-7 (human breast adenocarcinoma). 

Against HT-29 there is general trend seen in the cytotoxcity of the asymmetric 

complexes, with Hf > Zr > Ti. However, against MCF-7 asymmetric complexes of 

Ti and Zr do not show a particular trend, with the asymmetric Hf compounds all 

showing an increase in cytotoxicity when compared to both Ti and Zr. Symmetrical 

complexes e, h and i are comparable with cisplatin against both cell lines showing 

these symmetrical complexes to have superior cytotoxicity when compared to the 

asymmetric. An interesting result was seen for the symmetrical zirconium complex 
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e which has up to a 35-fold increase in its cytotoxicity when compared to c, against 

MCF-7. The tris diphenyl -diketonate hafnium complex i is the most promising 

drug candidate of this library with high cytotoxicity values against both cell lines, 

with an IC50 value of 4.9 ± 0.9 M (cisplatin, 2.4 ± 0.1 M) against the HT-29 cell 

line and 3.2 ± 0.3 M (cisplatin 1.1± 0.08 M) against MCF-7. These results are in 

contrast to the in vivo results reported for the seven coordinate Hf complexes 

measured previously, which are only active in higher doses compared to the six 

coordinate counterparts.
9 

Our work also shows it is not essential to have two labile 

chloride ancillary ligands to gain high in vitro activity, suggesting these complexes 

may act via a different in vitro pathway to that of cisplatin. 

 

Table 8.1 IC50 values for cisplatin and complexes a-i against HT-29 and MCF-7 

Complexes 
HT-29 MCF-7 

IC50 (M) ±SD IC50 (M) ±SD 

Cisplatin 2.4 0.1 1.09 0.08 

a 58 2 47 3 

b 47 3 35 2 

c 74 4 109 2 

d 84 4 57 2 

e 12.2 0.1 3.1 0.2 

f 30.2 0.8 28.9 0.4 

g 12 2 27 1 

h 7.4 0.5 3.3 0.1 

i 4.9 0.9 3.2 0.3 
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Figure 8.2 IC50 values for cisplatin and complexes a-i against HT-29 and MCF-7 

 

8.2 Attempted Synthesis of -Diketonate Titanium (IV) Halide 

Complexes 

Complexes were attempted to extend the library of complexes synthesised 

previously within the group. Synthesis was carried out according to Scheme 8.3, 

where two equivalents of the substituted -diketonate ligand was added to one 

equivalent of titanium tetrahalide and stirred at room temperature in a relevant 

solvent. 

 

Scheme 8.3 Synthetic Pathway of -Diketonate Titanium(IV) Complexes 
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Complexations have been attempted with the ligands L1-L10, however only crude 

1
H NMR data has been obtained. Several of the NMR spectra show a shift in peaks 

for the methine CH, which suggests complexation. However, further analysis and 

bulk purification has proven unsuccessful for this library and further attempts to 

synthesise would include the use of a base in the hope to drive the reaction to 

completion. 

 

8.3 -Diketonate Titanium(IV) Isopropoxide Complexes 

The synthesis of these complexes were attempted according to Scheme 8.4, where 

two equivalents of the substituted -diketonate was added to one equivalent of 

titanium isoproxide and stirred at room temperature in tetrahydrofuran. 

 

Scheme 8.4 Synthetic pathway for titanium (IV) isopropoxide -diketonate 

complexes 

 

Complexations were attempting using ligands L1-L10, however only one product 

was obtained from this reaction, this complex was quickly oxidised and X-ray data 

shows a solvent bridged dimer. Re-synthesis of this complex and similar 

modifications has since proven unsuccessful. 

 

8.3.1 1
H NMR Data for Ti2(C28H20N2O4)(OCH3)6 (20) 

The crude
 1

H NMR data were obtained for complex 20 (Figure 8.3), shows the 

complex with free ligand L5 and clear shifts can be seen in ppm values and notable 

new peaks seen for the bridging methanol groups at approximately 1.0 ppm 

(Figure 8.4). However, the crystals disintegrated upon analyses before bulk 

purification was obtained. 
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Figure 8.3 Structure of complex 20 

9 8 7 6 5 4 3 2 1

Chemical Shift (ppm)

Complex C20

Ligand L5

 

Figure 8.4 
1
H NMR data for complex 20 and unreacted ligand L5 (CDCl3, 300 

MHz, 300K) 
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8.3.2 X-ray Crystallography of Ti2(C28H20N2O4)(OCH3)6 (20) 

Yellow crystals of 20 suitable for X-ray crystallographic analysis were obtained 

from methanol at -20°C, over a period of 2 weeks. The molecular structure is given 

in Figure 8.5, selected bond lengths and angles are stated in Table 8.2. This 

compound crystallised in a monoclinic cell and structural solution was performed 

in the space group P21/c, with half a molecule in the asymmetric unit. 

 

Figure 8.5 Molecular structure of 20. Displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 8.2 Selected bond lengths and angles for 20 

Bond Distance (Å) Bond Angle (˚) 

Ti(1)-O(1) 2.0389(11) O(1)-Ti(1)-O(2) 82.12(5) 

Ti(1)-O(2) 2.0695(12) O(1)-Ti(1)-O(3) 167.65(5) 

Ti(1)-O(3) 1.8077(13) O(1)-Ti(1)-O(4) 87.08(6) 

Ti(1)-O(4) 1.8114(13) O(1)-Ti(1)-O(5) 88.18(5) 

Ti(1)-O(5) 1.9906(11) O(2)-Ti(1)-O(3) 86.01(5) 

O(1)-(C6) 1.2726(19) O(2)-Ti(1)-O(4) 99.42(6) 

C(6)-C(7) 1.411(2) O(2)-Ti(1)-O(5) 90.11(5) 

C(7)-C(8) 1.392(2) O(3)-Ti(1)-O(4) 98.28(6) 

C(8)-O(2) 1.2887(19) O(3)-Ti(1)-O(5) 102.33(5) 

  O(4)-Ti(1)-O(5) 95.13(5) 

  Ti(1)-O(5)-Ti(1)
(a)

 106.31(5) 

  O(5)-Ti(1)-O(5)
(a)

 73.69(5) 

Symmetry related atoms (a) 1-x, -y, 1-z 
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The packing diagrams of 20 when viewed along the c axis shows the molecules 

pack in pairs of molecules with C-H…Cg interactions between each plane. 

Intramolecular interactions and seen between C(7)-H(7)....N(1), C(15)-

C(15B)....O(1) and C(16)-C(16A)....O(2), and two intermolecular interactions 

between C(11)-H(11)....O(4) and C(16)-H(16C)...Cg(2). The packing diagrams are 

shown in Figure 8.6, with D...A distances and torsion angles stated in Table 8.3. A 

similar complex was obtained within the McGowan research group when reacting 

Ti(iOPr)4 with two equivalents of a picolinamide ligand.
10

 These structures are 

similar to those by Johnson et al., which were used for heterogeneous titanium-

centred epoxidation catalysts.
11

 

  

Intramolecular interactions 
Intermolecular interactions along the c 

axis 

Figure 8.6 Packing diagram of 20 when viewed along the c axis 

Table 8.3 Bond lengths and torsion angles for 20 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(7)-H(7)...N(1) 2.871(3) Å 

 C(15)-C(15B)...O(1) 3.155(3) Å 

 C(16)-H(16A)...O(2) 3.104(3) Å 

Intermolecular Cg(2)...Cg(4) 2.9723 Å 

 C(11)-H(11)...O(4) 3.348(3) Å 

 C(16)-H(16C)...Cg(3) 3.683 Å 

Torsion Cg(1)...Cg(2) 10.03˚ 

 Cg(2)...Cg(3) 5.81˚ 
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8.4 -Ketoiminate Titanium(IV) Chloride Complexes 

The-ketoiminate titanium (IV) chloride complexes were synthesised according to 

Scheme 8.5, where two equivalents of the substituted -ketoiminate ligand and two 

equivalents of base were added to one equivalent of titanium tetrachloride and 

stirred at room temperature in a relevant solvent. 

 

Scheme 8.5 Synthetic Route for -Ketoiminate Titanium(IV) Chloride Complexes 

 

Figure 8.7 List of -ketoiminate titanium (IV) complexes synthesised in this 

chapter 

 

Complexes 21-26 (Figure 8.7) were synthesised and characterised by the author, 

with full experimental data is described in Chapter 9. Limited analysis has been 

obtained for these complexes due to their extreme air sensitivity, however where 

possible complexes have been characterised by 
1
H NMR, 

1
H-

1
H COSY, 

13
C{

1
H}NMR, 

1
H-

13
C{

1
H} HMQC spectroscopy and mass spectrometry. In 

addition X-ray crystallographic data have been obtained for complexes 21-25. 
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8.5 NMR Data for Titanium(IV) Chloride Complexes 

The
 1

H NMR has been obtained for complexes 22 and 24-27 using either 

deuterated chloroform or acetonitrile. A general structure is shown in Figure 8.8 

and an example for complex 25 shown in Figure 8.9. All spectra show a shift in 

proton peak for the methine CH g at approximately 6.0 ppm. The aromatic protons 

b-d and j-l all appear in the same region between 6.5-8.0 ppm and the methyl 

protons e between 1.5-2.0 ppm. The NH from the free -ketoiminate is usually 

seen at approximately 12-13 ppm disappears upon complexation. 

 

Figure 8.8 General structure of a -ketoiminate titanium chloride complex 

12 11 10 9 8 7 6 5 4 3 2 1

Chemical Shift (ppm)

Complex C25

Ligand L21

 

Figure 8.9 
1
H NMR spectra for complex 25 and free ligand L21 (CDCl3, 300 

MHz, 300K) 
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When analysing the 
13

C{
1
H} NMR spectra for the -ketoiminate titanium 

complexes, they have similar trends with the highest shifts seen for the quaternary 

carbons f and h which are typically in the range 170-190 ppm. All of the CH peaks 

for the -ketoiminate ligand are in the range 100-150 ppm. The methine CH g from 

the -ketoiminate ligand is typically seen at 93-95 ppm and the lowest chemical 

shifts between 18-31 ppm for the methyl carbon e. 

 

8.6 X-ray Crystallography for Titanium(IV) Chloride Complexes 

Crystals were obtained from either acetonitrile or dichloromethane solutions stored 

at -20°C, appearing as yellow-red single crystals. X-ray crystallographic data was 

analysed for complexes 21-25. Solutions were performed in either a monoclinic 

(21, 22, 24 and 25) or a trigonal (23) space groups. All of the angles around the 

metal centre show the geometry expected for an octahedral compound which is 

common for these bis chelating ligand structures. The angles between the N-Ti-O, 

N-Ti-Cl and O-Ti-Cl are expected to be 90° and complexes here show angles 

ranging between 85-97°. The smaller angles can be explained due to the 

restrictions caused by the bidentate ligand. The other coordination sites are 

occupied by the chloride ligands and have a Cl-Ti-Cl angle of 94-97° and it appears 

that these complexes prefer a cis-trans-cis geometry, with the chlorides in a cis 

arrangement. 

 

8.6.1 X-Ray Characterisation for Ti(C32H26F2N2O2)Cl2 (21) 

Yellow crystals of 21 suitable for X-ray crystallographic analysis were obtained 

from DCM at room temperature, over a period of 3 days. The molecular structure is 

given in Figure 8.10 with selected bond lengths and angles are stated in Table 8.4. 

Complex 20 crystallised in a monoclinic cell and structural solution was performed 

in the space group C2/c, with half a molecule in the asymmetric unit and has a cis-

trans-cis geometry. 
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Figure 8.10 Molecular structure of 21, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity. 

Table 8.4 Selected bond lengths and bond angles for 21 

Bond Distance (Å) Bond Angle (˚) 

Ti(1)-Cl(1) 2.3385(4) Cl(1)-Ti(1)-N(1) 88.67(3) 

Ti(1)-N(1) 2.2090(10) Cl(1)-Ti(1)-O(1) 95.84(3) 

Ti(1)-O(1) 1.8824(8) N(1)-Ti(1)-O(1) 81.54(4) 

C(1)-N(1) 1.4561(14) Cl(1)-Ti(1)-Cl(1)
(a)

 96.01(2) 

N(1)-C(8) 1.3330(15) Ti(1)-N(1)-C(1) 115.55(7) 

C(7)-C(8) 1.5303(18) Ti(1)-N(1)-C(8) 127.47(8) 

C(8)-C(9) 1.4502(16) C(1)-N(1)-C(8) 116.93(10) 

C(9)-C(10) 1.3772(17) N(1)-C(8)-C(9) 122.88(11) 

O(1)-C(10) 1.3259(13) C(8)-C(9)-C(10) 124.37(11) 

C(10)-C(11) 1.4987(15) C(9)-C(10)-O(1) 120.46(10) 

  Ti(1)-O(1)-C(10) 142.06(8) 

  O(1)-C(10)-C(11)  114.10(10) 

Symmetry related atoms (a) -x, +y, 1/2-z 

 

The packing diagrams show that when viewed in the b-c and a-b planes shows the 

molecules packing in pairs with a slight herringbone arrangement. There is an 

intramolecular hydrogen bonding interactions between C(16)-H(16)....O(1), and a 

suggested π-π stacking interaction between Cg(3)-Cg(3) of 3.5412(9) Å. The 
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interactions and packing diagrams are presented in Figure 8.11, with D…A 

distances and torsion angles stated in Table 8.5. 

 
 

π-π stacking between Cg(3)…Cg(3) Packing along the c axis 

 
 

Packing along the b-c plane Packing along the a-b plane 

Figure 8.11 Interactions and packing diagrams for 21 

Table 8.5 Bond lengths and torsion angles for 21 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(16)-H(16)...O(1) 2.7011(16) Å 

Intermolecular Cg(3)...Cg(3) 3.5412 Å 

Torsion Cg(1)...Cg(2) 71.81˚ 

 Cg(2)...Cg(3) 1.83˚ 
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8.6.2 X-Ray Characterisation for Ti(C32H26Cl2N2O2)Cl2 (22) 

Yellow crystals of 22 suitable for X-ray crystallographic analysis were obtained 

from DCM at room temperature, over a period of several days. The molecular 

structure is given in Figure 8.10, selected bond lengths and angles are stated in 

Table 8.4. Complex 22 crystallised in a monoclinic cell and structural solution was 

performed in the space group P21/n, with one molecule in the asymmetric unit and 

two molecules of acetonitrile, and a cis-trans-cis geometry. 

 

Figure 8.12 Molecular structure of 22, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms and solvent molecules are omitted for clarity 

  



Group IV Complexes  Chapter 8 

186 

Table 8.6 Selected bond lengths and angles for 22 

Bond Distance (Å) Bond Angle (˚) 

Ti(1)-Cl(1) 2.3364(8) Cl(1)-Ti(1)-Cl(2) 95.93(3) 

Ti(1)-Cl(2) 2.3161(8) Cl(1)-Ti(1)-N(1) 87.13(6) 

Ti(1)-N(1) 2.153(2) Cl(1)-Ti(1)-O(1) 93.55(6) 

Ti(1)-N(2) 2.149(2) Cl(1)-Ti(1)-N(2) 172.01(6) 

Ti(1)-O(1) 1.8881(17) Cl(1)-Ti(1)-O(2) 92.18(6) 

Ti(1)-O(2) 1.8698(17) Cl(2)-Ti(1)-N(1) 174.39(6) 

N(1)-C(8) 1.317(3) Cl(2)-Ti(1)-O(1) 92.63(6) 

C(8)-C(9) 1.423(4) Cl(2)-Ti(1)-N(2) 90.63(6) 

C(9)-C(10) 1.363(4) Cl(2)-Ti(1)-O(2) 94.54(6) 

C(10)-O(1) 1.316(3) O(1)-Ti(1)-O(2) 170.31(8) 

N(2)-C(28) 1.324(3) O(1)-Ti(1)-N(1) 82.47(8) 

C(28)-C(29) 1.424(4) O(1)-Ti(1)-N(2) 90.68(8) 

C(29)-C(30) 1.362(4) O(2)-Ti(1)-N(1) 90.03(8) 

C(30)-O(2) 1.320(3) O(2)-Ti(1)-O(1) 82.74(8) 

C(14)-Cl(3) 1.732(3) N(1)-Ti(1)-N(2) 86.72(8) 

C(34)-Cl(4) 1.739(3)   

 

When viewed along the c axis the molecules pack in a head-tail...tail-head 

arrangement with a slight herringbone structure. There is one intramolecular 

hydrogen bonding interaction between C(36)-H(36)...O(2) and several 

intermolecular interactions contributing to the packing of these molecules. The 

interactions and packing diagrams are presented in Figure 8.13, with D…A 

distances and torsion angles stated in Table 8.7. 
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Packing along the b axis Packing along the c axis 

Figure 8.13 Packing diagram for 22 

Table 8.7 Bond lengths and torsion angles for 22 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(36)-H(36)...O(2) 3.471(3) Å 

Intermolecular Cg(1)...Cg(5) 3.6996 Å 

 C(7)-H(7A)...Cg(3) 3.463 Å 

 C(27)-H(27C)...Cg(3) 3.573 Å 

 C(14)-Cl(3)...Cg(6) 5.174 Å 

 C(4)-H(4)...Cl(3) 3.471(3) Å 

 C(39)-H(39B)...Cl(1) 3.554(3) Å 

Torsion Cg(1)...Cg(2) 82.97˚ 

 Cg(2)...Cg(3) 27.61˚ 

 Cg(4)...Cg(5) 70.41˚ 

 Cg(5)...Cg(6) 7.15˚ 

 

8.6.3 X-ray Crystallography for Ti(C32H26F2N2O2)Cl2 (23) 

Orange crystals of 23 suitable for X-ray crystallographic analysis were obtained 

from DCM at -20˚C, over a period of several weeks. The molecular structure is 

given in Figure 8.14, selected bond lengths and angles are stated in Table 8.8. This 

compound crystallised in a trigonal cell and structural solution was performed in 

the space group R-3, with a third molecule in the asymmetric unit. This complex 

oxidised on exposure to air and is an oxygen bridged trimer (Figure 8.15), instead 

of the expected cis-chloride monomer. 
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Figure 8.14 Asymmetric unit of 23, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms and other molecules are omitted for clarity 

 

Figure 8.15 Molecular structure of the oxygen bridged trimer, ellipsoids and 

hydrogens omitted for clarity. 
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Table 8.8 Selected bond lengths and angles for 23 

Bond Distance (Å) Bond Angle (˚) 

Ti(1)-O(3) 1.833(2) O(3)-Ti(1)-O(1) 96.18(9) 

Ti(1)-O(3)
(a)

 1.854(3) O(3)-Ti(1)-O(2) 96.70(9) 

Ti(1)-N(1) 2.310(3) O(3)-Ti(1)-N(1) 175.60(10) 

Ti(1)-O(1) 1.949(2) O(3)-Ti(1)-N(2) 89.60(10) 

Ti(1)-N(2) 2.308(3) O(3)-Ti(1)-O(3)
(a)

 96.87(11) 

Ti(1)-O(2) 1.938(2) O(1)-Ti(1)-O(2) 160.34(12) 

N(1)-C(8) 1.322(5) O(1)-Ti(1)-N(1) 80.71(9) 

C(8)-C(9) 1.444(5) O(1)-Ti(1)-N(2) 84.25(10) 

C(9)-C(10) 1.380(6) O(1)-Ti(1)-O(3)
(a)

 96.30(9) 

C(10)-O(1) 1.316(5) O(2)-Ti(1)-N(1) 85.54(9) 

N(2)-C(28) 1.469(4) O(2)-Ti(1)-N(2) 81.04(10) 

C(28)-C(29) 1.443(5) O(2)-Ti(1)-O(3)
(a)

 96.84(9) 

C(29)-C(30) 1.388(6) N(1)-Ti(1)-N(2) 87.00(10) 

C(30)-O(2) 1.315(5) N(1)-Ti(1)-O(3)
(a)

 86.60(11) 

C(14)-F(1) 1.391(4) N(2)-Ti(1)-O(3)
(a)

 173.40(11) 

C(34)-F(2) 1.382(4)   

Symmetry related atoms (a) 1-y, x-y, z 

 

The packing diagram when viewed along the c axis shows the molecules pack in a 

circular arrangement with the symmetry generated oxygen atom forming a cavity in 

the centre. A space filling diagram is shown along this axis and shows that this 

space is not large enough to be a void. Intramolecular interactions are seen between 

C-H…O of both -ketoiminate ligands and several intermolecular π-π and X…Cg 

interactions which contribute to the packing of these molecules. The interactions 

and packing diagrams are presented in Figure 8.16, with D…A distances and 

torsion angles stated in Table 8.9. These types of oxygen bridged complexes have 

been shown within the McGowan group when reacting TiCl4 with two equivalents 

of a picolinamide ligand.
10
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Intramolecular interactions 

  

Packing along the c axis Space filling diagram 

Figure 8.16 Intramolecular interactions and packing diagrams of 23 

Table 8.9 Bond lengths and torsion angles for 23 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(16)-H(16)...O(1) 2.741(4) Ǻ 

 C(36)-H(36)...O(2) 2.728(4) Ǻ 

Intermolecular Cg(2)...Cg(5) 3.3429 Ǻ 

 Cg(3)...Cg(4) 3.936 Ǻ 

 C(15)-H(15)-Cg(3) 3.583 Ǻ 

Torsion Cg(1)...Cg(2) 76.01° 

 Cg(2)...Cg(3) 16.40° 

 Cg(4)...Cg(5) 70.82° 

 Cg(5)...Cg(6) 7.52° 
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8.6.4 X-ray Crystallography for Ti(C34H32N2O2)Cl2 (24) 

Orange crystals of 24 suitable for X-ray crystallographic analysis were obtained 

from acetonitrile at -20˚C, over a period of several weeks. The molecular structure 

is given in Figure 8.17, selected bond lengths and angles are stated in Table 8.10. 

This compound crystallised in a monoclinic cell and structural solution was 

performed in the space group P21/n, with a one molecule and two molecules of 

acetonitrile in the asymmetric unit, and a cis-trans-cis geometry. 

 

Figure 8.17 Molecular structure of 24, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms and other molecules are omitted for clarity. 
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Table 8.10 Selected bond lengths and angles for 24 

Bond Distance (Å) Bond Angle (˚) 

Ti(1)-Cl(1) 2.3447(7) Cl(1)-Ti(1)-Cl(2) 95.28(3) 

Ti(1)-Cl(2) 2.3251(8) Cl(1)-Ti(1)-N(1) 87.20(5) 

Ti(1)-N(1) 2.1450(18) Cl(1)-Ti(1)-O(1) 93.39(5) 

Ti(1)-N(2) 2.1543(18) Cl(1)-Ti(1)-N(2) 172.62(5) 

Ti(1)-O(1) 1.8904(13) Cl(1)-Ti(1)-O(2) 92.52(5) 

Ti(1)-O(2) 1.8695(13) Cl(2)-Ti(1)-N(1) 175.09(5) 

N(1)-C(8) 1.327(3) Cl(2)-Ti(1)-O(1) 92.88(5) 

C(8)-C(9) 1.423(3) Cl(2)-Ti(1)-N(2) 90.72(5) 

C(9)-C(10) 1.355(3) Cl(2)-Ti(1)-O(2) 94.35(5) 

C(10)-O(1) 1.325(3) O(1)-Ti(1)-O(2) 170.20(7) 

N(2)-C(28) 1.325(2) O(1)-Ti(1)-N(1) 82.73(6) 

C(28)-C(29) 1.425(3) O(1)-Ti(1)-N(2) 90.59(6) 

C(29)-C(30) 1.366(3) O(2)-Ti(1)-N(1) 89.76(6) 

C(30)-O(2) 1.323(2) O(2)-Ti(1)-O(1) 82.72(6) 

C(14)-C(17) 1.503(3) N(1)-Ti(1)-N(2) 87.14(7) 

C(34)-Cl(37) 1.505(3)   

 

When viewed along the c axis, the molecules pack in pairs with C-H…Cg 

interactions between each pair. There are also X…C-H interactions seen with the 

acetonitrile solvent molecules. Unlike complex 23, this molecule shows a C-H…O 

hydrogen bonding in just one -ketoiminate ligands as the other ligand has a larger 

torsion angle between the planar centre and the aromatic ring. There are several 

intermolecular interactions contributing to the packing of these molecules. The 

interactions and packing diagrams are presented in Figure 8.18, with D…A 

distances and torsion angles stated in Table 8.11. 
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Intramolecular interactions 
Intermolecular interactions along the 

c axis 

Figure 8.18 Intramolecular interaction and packing diagram for 24 

Table 8.11 Bond lengths and torsion angles for 24 

Interaction Atoms Bond Lengths and Angles 

Intramolecular C(36)-H(36)-O(2) 2.749(2) Ǻ 

Intermolecular Cg(1)...Cg(5) 3.7132 Ǻ 

 C(7)-H(7C)-Cg(3) 3.429 Ǻ 

 C(27)-H(27A)-Cg(3) 3.547 Ǻ 

 C(41)-H(41B)-Cl(1) 3.588(3) Ǻ 

Torsion Cg(1)...Cg(2) 84.58˚ 

 Cg(2)...Cg(3) 28.39˚ 

 Cg(4)...Cg(5) 69.26˚ 

 Cg(5)...Cg(6) 7.67˚ 

 

8.6.5 X-ray Crystallography for Ti(C36H36N2O2)Cl2 (25) 

Orange crystals of 25 suitable for X-ray crystallographic analysis were obtained 

from acetonitrile at -20˚C, over a period of several weeks. The molecular structure 

is given in Figure 8.19, selected bond lengths and angles are stated in Table 8.12. 

This compound crystallised in a monoclinic cell and structural solution was 

performed in the space group C2/c, with a half a molecule in the asymmetric unit, 

and a cis-trans-cis geometry. 
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Figure 8.19 Molecular structure of 25, displacement ellipsoids are at the 50% 

probability level and hydrogen atoms are omitted for clarity 

Table 8.12 Selected bond lengths and angles for 25 

Bond Distance (Å) Bond Angle (˚) 

Ti(1)-Cl(1) 2.3238(7) Cl(1)-Ti(1)-Cl(1)
(a)

 96.42(4) 

Ti(1)-N(1) 2.1710(15) Cl(1)-Ti(1)-N(1) 170.63(6) 

Ti(1)-O(1) 1.8673(18) Cl(1)-Ti(1)-O(1) 91.15(5) 

N(1)-C(8) 1.319(3) Cl(1)-Ti(1)-N(1)
(a)

 90.23(5) 

C(8)-C(9) 1.437(3) Cl(1)-Ti(1)-O(1)
(a)

 95.58(5) 

C(9)-C(10) 1.362(2) Cl(1)
(a)

-Ti(1)-N(1) 90.23(5) 

C(10)-O(1) 1.319(3) Cl(1)
(a)

-Ti(1)-O(1)
 

95.58(5) 

C(14)-C(17) 1.512(3) Cl(1)
(a)

-Ti(1)-N(1)
(a)

 170.63(6) 

  Cl(1)
(a)

-Ti(1)-O(1)
(a)

 91.15(5) 

  O(1)-Ti(1)-O(1)
(a)

 169.91(6) 

  O(1)-Ti(1)-N(1) 81.61(7) 

  O(1)-Ti(1)-N(1)
(a)

 90.87(7) 

  O(1)
(a)

-Ti(1)-N(1) 90.87(7) 

  O(1)
(a)

-Ti(1)-N(1)
(a)

 81.61(7) 

  N(1)-Ti(1)-N(1)
(a)

 83.97(6) 

Symmetry related atoms (a) 1-x, y, ½-z 
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When viewed along the a axis the molecules pack head-tail and then alternate in 

the next row, giving a herringbone arrangement. When viewed along the c axis the 

molecules pack in pairs, with the two cis-chloride ligands pointing away from the 

metal centre, allowing the aromatic groups to pack in close proximity. However, 

distances between these aromatics are too large to be considered as π-π stacking 

interactions. The packing diagrams are shown in Figure 8.20, with D…A distances 

and torsion angles stated in Table 8.13. 

 
 

Packing diagram along the a axis Packing diagram along the c axis 

Figure 8.20 Packing diagrams along the a and c axes for 25 

Table 8.13 Bond lengths and torsion angles for 25 

Interaction Atoms 
Bond Lengths and 

Angles 

Intermolecular Cg(1)-Cg(3) 3.6228 Ǻ 

Torsion Cg(3)-Cg(1) 81.83° 

 Cg(1)-Cg(4) 19.87° 
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8.7 Conclusions and Future Work 

This chapter presents the mechanistic and cytotoxicity results for a library of group 

IV complexes. These results have been obtained as part of the McGowan research 

group, in which the author obtained the cytotoxicity results.
4
 Secondly, this chapter 

presents the initial synthesis of both -diketonate and -ketoiminate titanium 

complexes, where X-ray crystallographic data have been obtained for complexes 

21-25. Bond angles for these complexes show an octahedral geometry, with a 

preference for the cis-trans-cis geometry. Initial results have been obtained, 

however full analysis has not been possible due to issues with air sensitivity and 

the samples were easily oxidised. 

Future work for this chapter would be work on bulk purification and attempts to 

optimise the reaction by trying a wider range of solvents and bases. These 

complexes would also be tested for their mechanistic and cytotoxic potential in 

order to compare with the previously synthesised -diketonate complexes. It was 

hoped that like the ruthenium complexes stated in Chapter 3, these complexes 

incorporating a -ketoiminate ligand could help to increase the cytotoxic potential 

of the group IV metals. However, these complexes have shown to be extremely air 

sensitive and change oxidation state and structure on contact with air, restricting 

the cytotoxic studies that can be achieved. However, these types of redox active d
0
 

complexes have been used extensively in the literature for olefin polymerisation, 

giving these complexes a potential application for future work. 
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9 Experimental 

9.1 General Experimental Procedures 

All novel titanium complexes were synthesised using standard Schlenk line 

techniques, under an atmosphere of dry dinitrogen with a dual vacuum/dinitrogen 

line to perform the synthesis. All ruthenium complexes were synthesised under 

aerobic conditions. 

 

All chemicals were supplied by Sigma-Aldrich Chemical Co., Acros Organics, 

Strem Chemical Co. and BOC gases. Functionalised -diketonate and -

ketoiminate ligands were prepared by adaptations of literature methods.
1, 2

 

Deuterated NMR solvents were supplied by Sigma-Aldrich Chemical Co. or Acros 

Organics. 

 

9.2 Instrumentation 

All NMR spectra were recorded by either the author or Mr Simon Barrett on a 

Bruker DPX 300 or a Bruker DPX 500 spectrometer. Microanalyses were recorded 

by Mr. Ian Blakeley or Ms Tanya Marinko-Covell at the University of Leeds 

Microanalytical Service. Mass Spectra were recorded by Ms. Tanya Marinko-

Covell or Dr. Stuart Warriner on a Micromass ZMD spectrometer with electrospray 

ionisation and photoiodide array analyser at the University of Leeds Mass 

Spectrometry Service. 

 

9.3 X-Ray Crystallography 

X-ray diffraction data were collected by either the author, Dr. Stephanie Lucas, Dr. 

Andrea Rodríguez Bárzano, Mr. Felix Janeway, Dr. Andrew Hebden or Dr. Helena 

Shephard (University of Leeds, X-ray service). A suitable single crystal was 

selected and immersed in an inert oil. The crystal was then mounted on a glass 

capillary and attached to a goniometer head on a Bruker X8 Apex or an Agilent 

Supernova diffractometer using graphite monochromated Mo-K radiation ( = 

0.71073 Å) using 1.0° -rotation frames. The crystal was cooled to 100 K by an 

Oxford Cryostream low temperature device.
3
 The full data set was recorded and the 

images processed using DENZO and SCALEPACK programs.
4
 The structures 

were solved by either the author or Dr. Helena Shephard. 
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Structure solution by direct methods was achieved through the use of SHELXS86,
5
 

SIR92
6
 or SIR97

7
 programs, and the structural model refined by full matrix least 

squares on F
2
 using SHELX97.

5
 Molecular graphics were plotted using POV-Ray

8
 

via the XSeed program. Editing of CIFs and construction of tables of bond lengths 

and angles were achieved using WC
9
 and PLATON.

10
 Unless otherwise stated, 

hydrogen atoms were placed using idealised geometric positions (with free rotation 

for methyl groups), allowed to move in a “riding model” along with the atoms to 

which they were attached, and refined isotropically. 

 

9.4 Syntheses of Functionalised -Diketonate Ligands 

Ligands L1-L4 have been synthesised according to a literature method
11

 and 

ligands L5-L10 were synthesised using a modified version of the synthetic route 

published by Levine et al.
1
 

9.4.1 Preparation of C14H18O2 (L1) 

Sodium ethoxide (0.60 g, 8.79 mmol) was added to ethyl acetate (40 mL) and 4-tert 

butylacetophenone (1.55 g, 8.79 mmol). The mixture was stirred and heated under 

reflux for 4 hours, then allowed to cool to room temperature. The solvent was 

removed under reduced pressure and washed with petrol (60-80˚C) (3 x 10 mL). 

The suspension was dissolved in ice cold water (40 mL) and ice cold sulfuric acid 

was added until just acidic to litmus. The crude product was extracted into diethyl 

ether (3 x 10 mL) and dried over Na2SO4. The solvent was removed under reduced 

pressure, yielding L1 as a pure yellow oil (0.94 g, 4.31 mmol, 49%). 

1
H NMR (CDCl3, 300.13 MHz, 293.6K) 16.23 (br. 

s, 1H, C-OH), 7.83 (dd, 2H, H6 and H10, 
3
J (

1
H-

1
H) = 

8.7 Hz and 
4
J (

1
H-

1
H) = 4.1 Hz), 7.47 (dd, 2H, H7 

and H9, 
3
J (

1
H-

1
H) = 8.7 Hz and

 4
J (

1
H-

1
H) = 4.0 Hz), 

6.17 (s, 1H, H3), 2.20 (s, 3H, H1), 1.35 (s, 9H, H12-14) 

13
C{

1
H} NMR (CDCl3, 75.5 MHz, 295.4 K) 193.3 (quaternary C-O, C2 or C4), 

183.5 (quaternary C-O, C2 or C4), 156.0 (aromatic quaternary C, C5), 132.0 

(aromatic quaternary C, C8), 126.9 (aromatic CH, C6 and C10), 125.6 (aromatic CH, 

C7 and C9), 96.4 (acac CH, C3), 35.1 (quaternary tert-butyl C, C11), 31.1 (t-butyl 

C(CH3)3, C12-14), 25.8 (aliphatic CH3, C1) Analysis Calculated: C 77.03, H 8.31% 

Analysis Found: C 77.05, H 8.35% ES MS (+): m/z 219.14 [MH
+
] 

OH O

1
2

3
4

5
6

7

8
9

10
11

12
13

14
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9.4.2 Preparation of C12H13FO3 (L2) 

Sodium ethoxide (4.34 g, 64.0 mmol) was added to ethyl acetate (60 mL) and 2,4-

difluoroacetophenone (5.04 g, 25.5 mmol). The mixture was stirred and heated 

under reflux for 3 hours and allowed to cool to room temperature. The suspension 

was dissolved in ice cold water (30 mL) and ice cold sulfuric acid was added until 

just acidic to litmus. The crude product was extracted into diethyl ether (3 x 10 

mL) and dried over MgSO4. The solvent was removed under reduced and 

recrystallised from hot ethanol (20 mL), filtered through glass wool and stored at -

20°C, yielding pale yellow crystals of L2 (4.01g, 17.9 mmol, 56%). The expected 

2,4-difluoro--diketonate ligand was not obtained and instead the ethoxide 

substitutes the para-fluoro substituent. 

1
H NMR (CDCl3, 300.13 MHz, 300.0K) 16.23 (br. s, 

1H, C-OH), 7.94 (dd, 1H, H10, 
3
J (

1
H-

1
H) = 8.7 and 

4
J (

1
H-

19
F) = 7.0 Hz), 6.73 (ddd, 1H, H9, 

3
J (

1
H-

1
H) = 8.9 Hz, 

 3
J 

(
1
H-

19
F) = 7.7 Hz and 

4
J (

1
H-

1
H) = 2.5 Hz), 6.65 (dd, 1H, 

H7, 
3
J (

1
H-

19
F) = 11.0 Hz and 

4
J (

1
H-

1
H) = 2.3 Hz), 6.52 

(br. s, 1H, H3), 4.12 (q, 2H, H11, 
3
J (

1
H-

1
H) = 7.0 Hz), 2.18 (s, 3H, H1), 1.52 (t, 3H, 

H12, 
3
J (

1
H-

1
H) = 7.0 Hz) 

13
C{

1
H} NMR (CDCl3, 125.9 MHz, 300.0 K) 194.2 

(quaternary C-O, C2 or C4), 180.3 (quaternary C-O, C2 or C4), 166.6 (d, aromatic 

quaternary C-F, C8, 
1
J (

13
C-

19
F) = 250.5 Hz), 159.5 (d, aromatic quaternary C, C6, 

3
J (

13
C-

19
F) = 10.3 Hz), 132.1 (d, aromatic CH, C10, 

3
J (

13
C-

19
F) = 11.3 Hz), 120.3 

(d, aromatic quaternary C, C5, 
5
J (

13
C-

19
F) = 3.1 Hz), 107.6 (d, aromatic CH, C9,

 

2
J(

13
C-

19
F) = 21.7 Hz), 101.5 (acac CH, C3), 100.3 (d, aromatic CH, C7, 

2
J(

13
C-

19
F) 

= 103.1 Hz), 64.7 (CH2, C11), 26.0 (CH3, C1), 14.5 (CH3, C12) Analysis 

Calculated: C 64.28, H 5.84% Analysis Found: C 64.30, H 5.90% ES MS (+): 

m/z 247.10 [MNa
+
] 

 

9.4.3 Preparation of C10H8F2O2 (L3) 

Sodium ethoxide (1.09 g, 16.0 mmol) was added to ethyl acetate (40 mL) and 2,5-

difluoroacetophenone (2.02 mL, 16.0 mmol). These were stirred and heated under 

reflux for 3 hours, then allowed to cool to room temperature. The solvent was 

removed under reduced pressure and washed with petrol (60-80˚C) (3 x 10 mL). 

The suspension was dissolved in ice cold water (40 mL) and ice cold sulfuric acid 

was added until just acidic to litmus. The crude product was extracted into diethyl 
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ether (3 x 10 mL) and dried over MgSO4. Solvent was removed under reduced 

pressure and the residue recrystallised from hot EtOH (10 mL), yielding L3 as pure 

pale yellow crystals (1.90 g, 0.96 mmol, 60%). 

1
H NMR (CDCl3, 500.23 MHz, 299.9 K) 7.64 (ddd, 1H, 

H7 or H8, 
3
J (

1
H-

1
H) = 8.9 Hz 

3
J (

1
H-

19
F) = 5.7 Hz and 

4
J 

(
1
H-

19
F) = 3.2 Hz), 7.18-7.13 (m, 1H, H7 or H8), 7.13-7.08 

(m, 1H, H10), 6.30 (vd, 1H, H3, 
5
J (

1
H-

19
F) = 1.4 Hz), 2.23 

(br. s, 3H, H1 CH3) 
13

C{
1
H} NMR (CDCl3, 125.9 MHz, 

300.0 K) 195.5 (quaternary C-O, C2 or C4), 177.0 (d, quaternary C-O, C5, 
3
J (

13
C-

19
F) = 4.1 Hz), 158.8 (dd, aromatic quaternary C-F, C6 or C9, 

1
J (

13
C-

19
F) = 202.1 

Hz and 
4
J (

13
C-

19
F) = 2.1 Hz), 156.9 (dd, aromatic quaternary C-F, C6 or C9, 

1
J 

(
13

C-
19

F) = 210.3 Hz and 
4
J (

13
C-

19
F) = 2.1 Hz), 124.4 (dd, aromatic quaternary C, 

C5, 
2
J (

13
C-

19
F) = 12.4 Hz and 

3
J (

13
C-

19
F) = 7.2 Hz), 119.9 (dd, aromatic CH, C7 or 

C8, 
2
J (

13
C-

19
F) = 24.7 Hz and 

3
J (

13
C-

19
F) = 9.3 Hz), 117.8 (dd, aromatic CH C7 or 

C8, 
2
J (

13
C-

19
F) = 26.8 Hz and 

3
J (

13
C-

19
F) = 8.3 Hz), 116.2 (dd, aromatic CH, C10,

 

2
J (

13
C-

19
F) = 25.8 Hz and 

3
J (

13
C-

19
F) = 3.1 Hz), 101.5 (d, acac CH, C3, 

4
J (

13
C-

19
F) = 13.4 Hz), 26.1 (CH3, C1) Analysis Calculated: C 60.61, H 4.07% Analysis 

Found: C 60.55, H 4.00% ES MS (+): m/z 221.09 [MNa
+
] 

 

9.4.4 Preparation of C9H9NO2 (L4) 

Sodium ethoxide (1.74 g, 25.5 mmol) was added to ethyl acetate (40 mL) and 4’-

(imidazol-1-yl) acetophenone (5.04 g, 25.5 mmol). These were stirred and heated 

under reflux for 3 hours, then allowed to cool to room temperature. The suspension 

was dissolved in ice cold water (30 mL) and the aqueous layer collected then 

washed with diethyl ether (3 x 20 mL). Ice cold sulfuric acid was added until 

neutral to litmus. The crude product was extracted into diethyl ether (10 mL) and 

solid precipitated out on the first wash. This was filtered under reduced pressure 

and recrystallised by vapour diffusion in dichloromethane/pentane, yielding L4 as 

yellow crystals (3.77 g, 16.5 mmol, 62%). 

1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 8.02 

(dt, 2H, H7 and H9, 
3
J (

1
H-

1
H) = 8.7 Hz and 

4
J (

1
H-

1
H) = 2.4 Hz), 7.98 (br. s, 1H, H11), 7.50 (dt, 2H, 

H6 and H10, 
3
J (

1
H-

1
H) = 8.7 Hz and 

4
J (

1
H-

1
H) = 

2.4 Hz), 7.36 (br. s, 1H, H12 or H13, 
3
J (

1
H-

1
H) = 

OH O
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1.6 Hz), 7.26 (br. s, 1H, H12 or H13), 6.20 (s, 1H, H3), 2.24 (s, 3H, H1) 
13

C{
1
H} 

NMR (CDCl3, 125.8 MHz, 300.0 K) (quaternary C-O, C2 or C4), 181.9 

(quaternary C-O, C2 or C4), 140.2 (quaternary aromatic C, C8), 135.4 (imidazole 

CH, C11), 133.9 (quaternary aromatic C, C5), 131.10 (imidazole CH, C12 or C13), 

128.9 (aromatic CH, C6 and C10), 120.9 (aromatic CH, C7 and C9), 117.8 

(imidazole CH, C12 or C13), 96.8 (acac CH, C3), 25.9 (aliphatic CH3, C1) Analysis 

Calculated: C 68.41, H 5.30, N 12.27% Analysis Found: C 68.20, H 5.25, N 

12.15% ES MS (+): m/z 229.10 [MH
+
] 

 

9.4.5 Preparation of C14H11NO2 (L5) 

Sodium ethoxide (1.42 g, 20.8 mmol) was added to diethyl ether (40 mL), ethyl 2-

picolinate (2.81 mL, 20.8 mmol) and acetophenone (4.86 mL, 41.6 mmol). These 

were stirred and heated to reflux for 48 hours, then allowed to cool to room 

temperature. The suspension was stirred whilst adding acetic acid (1.19 mL, 20.8 

mmol) and water (20 mL). The crude product was extracted into diethyl ether (3 x 

20 mL) and dried over Na2SO4. The solvent was removed under reduced pressure 

and the residue recrystallised from hot methanol (20 mL), yielding L5 as colourless 

crystals (2.54 g, 11.3 mmol, 54%) 

1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 8.66-

8.62 (m, 1H, H1), 8.10 (br. d, 1H, H4, 
3
J (

1
H-

1
H) = 

7.9 Hz), 8.02-7.98 (br. dd, 2H, H10 and H14, 
3
J (

1
H-

1
H) = 7.2 Hz and 

4
J (

1
H-

1
H) = 1.2 Hz), 7.80 (td, 1H, 

H3, 
3
J (

1
H-

1
H) = 7.6 Hz and 

4
J (

1
H-

1
H) = 1.6 Hz), 7.52 (s, 1H, H7), 7.50-7.46 (br. tt, 

1H, H2,
 3

J (
1
H-

1
H) = 7.2 Hz and 

4
J (

1
H-

1
H) = 1.2 Hz), 7.44-7.40 (br. dd, 2H, H11 

and H13, 
3
J (

1
H-

1
H) = 7.6 Hz and 

4
J (

1
H-

1
H) = 1.5 Hz), 7.37 (ddd, 1H, H12, 

3
J (

1
H-

1
H) = 7.6 Hz and 

4
J (

1
H-

1
H) = 4.8 Hz) 

13
C{

1
H} NMR (CDCl3, 125.8 MHz, 300.0 

K) (quaternary C-O, C6 or C8), 183.7 (quaternary C-O, C6 or C8), 152.6 

(pyridine quaternary C, C5), 149.3 (pyridine CH, C1), 137.1 (pyridine CH, C3), 

135.3 (aromatic quaternary C, C9), 132.7 (pyridine CH, C2), 128.7 (aromatic CH, 

C10 and C14), 127.5 (aromatic CH, C11 and C13), 126.4 (pyridine CH, C4), 122.2 

(aromatic CH, C12), 93.6 (acac CH, C7) Analysis Calculated: C 74.65, H 4.92, N 

6.22% Analysis Found: C 74.80, H 4.85, N 6.05% ES MS (+): m/z 226.10 [MH
+
] 
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9.4.6 Preparation of C14H10BrNO2 (L6) 

Sodium ethoxide (1.08 g, 15.9 mmol) was added to diethyl ether (40 mL), ethyl 2-

picolinate (2.15 mL, 15.9 mmol) and 4-bromoacetophenone (6.31 g, 31.8 mmol). 

These were stirred and heated to reflux for 48 hours, then allowed to cool to room 

temperature. The suspension was stirred whilst adding acetic acid (0.91 mL, 15.9 

mmol) and water (40 mL). The crude product was extracted into diethyl ether (10 

mL) and product obtained from the aqueous layer. This was filtered under reduced 

pressure and washed with hexane, yielding L6 as a pure white precipitate (1.97 g, 

7.59 mmol, 48%). 

1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 8.73-

8.70 (m, 1H, H1), 8.17 (d, 1H, H4, 
3
J (

1
H-

1
H) = 8.0 

Hz), 7.94 (br. d, 2H, H10 and H14, 
3
J (

1
H-

1
H) = 8.8 

Hz), 7.88 (td, 1H, H3, 
3
J (

1
H-

1
H) = 8.0 Hz and 

4
J 

(
1
H-

1
H) = 2.0 Hz), 7.65-7.61 (br. dt, 2H, H11 and H13,

 3
J (

1
H-

1
H) = 8.3 Hz and 

4
J 

(
1
H-

1
H) = 2.4 Hz), 7.55 (s, 1H, H7 [enolate tautomer]), 7.46 (br. dd, 1H, H2, 

3
J (

1
H-

1
H) = 7.6 Hz and 

4
J (

1
H-

1
H) = 1.5 Hz), 4.79 (s, acac CH2, H7 [diketonate tautomer]) 

13
C{

1
H} NMR (CDCl3, 125.8 MHz, 300.2 K) (quaternary C=O [diketonate 

tautomer], C6 or C8), 184.9 (quaternary C-O [enolate tautomer], C6 or C8), 184.0 

(quaternary C-O [enolate tautomer], C6 or C8), 152.4 (pyridine quaternary C [both 

tautomers] C5), 149.3 (pyridine CH [both tautomers], C1), 137.1 (pyridine CH 

[both tautomers], C3), 134.2 (aromatic quaternary C [both tautomers], C9), 132.0 

(aromatic CH [both tautomers], C10 and C14), 129.0 (aromatic CH, [both 

tautomers], C11 and C13), 127.6 (aromatic quaternary C [both tautomers], C12), 

126.5 (pyridine CH [both tautomers], C4), 93.5 (acac CH [enolate tautomer], C7), 

30.9 (acac CH2 [diketonate tautomer], C7) Analysis Calculated: C 55.29, H 3.31, 

N 4.61% Analysis Found: C 55.50, H 3.15, N 4.35% ES MS (+): m/z 304.0 

[MH
+
] 

 

9.4.7 Preparation of C15H13NO3 (L7) 

Sodium ethoxide (1.01 g, 14.8 mmol) was added to diethyl ether (40 mL), ethyl 2-

picolinate (2.0 mL, 14.8 mmol) and 4-methoxy acetophenone (4.45 g, 29.6 mmol). 

These were stirred and heated to reflux for 48 hours, then allowed to cool to room 

temperature. The suspension was stirred whilst adding acetic acid (0.85 mL, 14.8 

mmol) and water (40 mL). The product did not dissolve and was filtered under 
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reduced pressure and washed with methanol (10 mL), yielding L7 as a pure yellow 

precipitate (2.34 g, 9.17 mmol, 62%). 

1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 

8.72-8.69 (m, 1H, H1), 8.15 (d, 1H, H4, 
3
J 

(
1
H-

1
H) = 7.4 Hz), 8.09-8.05 (br. dt, 2H, H10 

and H14, 
3
J (

1
H-

1
H) = 8.7 Hz and 

4
J (

1
H-

1
H) = 

2.7 Hz), 7.86 (td, 1H, H3, 
3
J (

1
H-

1
H) = 7.8 Hz and 

4
J (

1
H-

1
H) = 2.0 Hz), 7.51 (s, 

1H, [enolate tautomer], H7), 7.45-7.41 (m, 1H, H2), 7.00-6.96 (br. dt, 2H, H11 and 

H13, 
3
J (

1
H-

1
H) = 9.1 Hz and 

4
J (

1
H-

1
H) = 2.7 Hz), 4.81 (s, acac CH2 [diketonate 

tautomer], H7), 3.89 (s, 3H, H15) 
13

C{
1
H} NMR (CDCl3, 125.8 MHz, 300.0 K) 

(quaternary C=O [diketonate tautomer], C6 or C8), 187.0 (quaternary C-O 

[enolate tautomer], C6 or C8), 181.6 (quaternary C-O [enolate tautomer], C6 or C8), 

163.5 (pyridine quaternary C [both tautomers], C5), 152.7 (aromatic quaternary C 

[both tautomers], C9), 149.3 (pyridine CH [both tautomers], C1), 137.0 (pyridine 

CH [both tautomers], C3), 129.7 (aromatic CH [both tautomers], C10 and C14), 

128.1 (aromatic quaternary C [both tautomers], C12), 126.1 (pyridine CH [both 

tautomers], C2), 122.0 (pyridine CH [both tautomers], C4), 114.0 (aromatic CH 

[both tautomers], C11 and C13), 92.9 (acac CH [enolate tautomer], C7), 55.5 (acac 

CH2 [diketonate tautomer], C7), 30.9 (methoxy OCH3 [both tautomers], C15) 

Analysis Calculated: C 70.58, H 5.13, N 5.49% Analysis Found: C 70.15, H 

5.10, N 5.35 ES MS (+): m/z 256.10 [MH
+
] 

 

9.4.8 Preparation of C15H13NO2 (L8) 

Sodium ethoxide (0.76 g, 11.2 mmol) was added to diethyl ether (40 mL), ethyl 2-

picolinate (1.51 mL, 11.2 mmol) and 4-methylacetophenone (2.99 mL, 22.4 mmol). 

These were stirred and heated to reflux for 48 hours, then allowed to cool to room 

temperature. The suspension was stirred whilst adding acetic acid (0.64 mL, 11.2 

mmol) and water (40 mL). The product was extracted into diethyl ether (10 mL) 

and product was obtained from the aqueous layer. This was filtered under reduced 

pressure and recrystallised from methanol (10 mL), yielding L8 as a pale yellow 

precipitate (1.72 g, 7.19 mmol, 61%). 

1
H NMR (CDCl3, 500.23 MHz, 300.3 K) 8.71 

(dd, 1H, H1, 
3
J (

1
H-

1
H) = 4.8 Hz and 

4
J (

1
H-

1
H) = 

0.8 Hz), 8.16 (d, 1H, H4, 
3
J (

1
H-

1
H) = 7.5 Hz), 
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7.98 (br. d, 2H, H10 and H14, 
3
J (

1
H-

1
H) = 8.3 Hz), 7.89-7.83 (m, 1H, H\), 7.56 (s, 

1H, H7), 7.46-7.41 (m, 1H, H2), 7.29 (d, 2H, H11 and H13, 
3
J (

1
H-

1
H) = 8.3 Hz), 

2.43 (s, 3H, methyl CH3) 
13

C{
1
H} NMR (CDCl3, 125.8 MHz, 297.4 K) 186.8 

(quaternary C-O, C6 or C8), 183.0 (quaternary C-O, C6 or C8), 152.6 (quaternary 

pyridine C, C5), 149.3 (pyridine CH, C1), 143.6 (quaternary aromatic C, C9), 137.1 

(pyridine CH, C3), 132.7 (quaternary aromatic C, C12), 129.4 (aromatic CH, C11 

and C13), 127.6 (aromatic CH, C10 and C14), 126.4 (pyridine CH, C2), 122.1 

(pyridine CH, C4), 93.3 (acac CH, C7). 21.7 (methyl CH3, C15) Analysis 

Calculated: C 75.30, H 5.48, N 5.85% Analysis Found: C 75.65, H 5.40, N 

5.70% ES MS (+): m/z 240.10 [MH
+
] 

 

9.4.9 Preparation of C18H13NO2 (L9) 

Sodium ethoxide (0.40 g, 5.88 mmol) was added to diethyl ether (40 mL), ethyl 2-

picolinate (0.79 mL, 5.88 mmol) and 2-acetonaphthone (2.01 g, 11.8 mmol). These 

were stirred and heated to reflux for 48 hours, then allowed to cool to room 

temperature. The suspension was stirred whilst adding acetic acid (0.34 mL, 5.88 

mmol) and water (40 mL). The crude product was separated with ether (3 x 20 mL) 

and dried over Na2SO4. The crude product was recrystallised from methanol (10 

mL) and stored at -20°C. This was filtered under reduced pressure and washed with 

diethyl ether, yielding L9 as a yellow precipitate (0.98 g, 3.56 mmol, 61%) 

1
H NMR (CDCl3, 500.23 MHz, 300.3 K) 

8.78-8.75 (m, 1H, H1), 8.65 (s, 1H, H10), 

8.21 (d,1H, H4, 
3
J (

1
H-

1
H) = 7.9 Hz), 8.12 (dd, 

1H, naphthyl CH, 
3
J (

1
H-

1
H) = 8.5 Hz and 

4
J 

(
1
H-

1
H) = 1.8Hz), 8.01 (d, 1H, naphthyl CH, 

3
J (

1
H-

1
H) = 7.9 Hz), 7.94 (d, 1H, H3, 

3
J (

1
H-

1
H) = 8.7 Hz), 7.92-7.88 (m, 2H, naphthyl CH), 7.74 (s, 1H, H7), 7.63-7.55 

(m, 2H, naphthyl CH), 7.47 (ddd, 1H, H2, 
3
J (

1
H-

1
H) = 7.6 Hz, 

3
J (

1
H-

1
H) = 4.8 Hz 

and 
4
J (

1
H-

1
H) = 1.2 Hz) 

13
C{

1
H} NMR (CDCl3, 75.5 MHz, 300.1 K) 186.2 

(quaternary C-O, C6 or C8), 183.55 (quaternary C-O, C6 or C8), 152.6 (quaternary 

pyridine C, C5), 149.3 (pyridine CH, C1), 137.1 (pyridine CH, C3), 135.5 

(quaternary naphthyl C, C9), 132.6 (quaternary naphthyl C, C11 and C16), 129.5 

(naphthyl CH), 128.8 (naphthyl CH), 128.4 (pyridine CH, C2), 128.2 (naphthyl 

CH), 127.8 (naphthyl CH), 126.8 (naphthyl CH), 126.4 (naphthyl CH), 123.47 

(naphthyl CH), 122.2 (pyridine CH, C4), 93.9 (acac CH, C7) Analysis Calculated: 

N
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C 78.53, H 4.76, N 5.09% Analysis Found: C 78.35, H 4.70, N 4.90% ES MS (+): 

m/z 276.10 [MH
+
] 

 

9.4.10 Preparation of C14H8Cl3NO2 (L10)  

Sodium ethoxide (0.47 g, 6.85 mmol) was added to diethyl ether (40 mL), ethyl 2-

picolinate (0.92 mL, 6.85 mmol) and 2,3,4-trichloro acetophenone (3.06 g, 13.7 

mmol). These were stirred and heated to reflux for 48 hours, then allowed to cool 

to room temperature. The suspension was stirred whilst adding acetic acid (0.39 

mL, 6.85 mmol) and water (40 mL). The crude product was extracted with ether (3 

x 20 mL) and dried over Na2SO4. The solvent was removed under reduced pressure 

and washed with diethyl ether (10 mL), yielding L10 as a cream precipitate (1.06 g, 

3.23 mmol, 47%). 

1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 8.66 

(d, 1H, H1, 
3
J (

1
H-

1
H) = 4.0 Hz), 8.13 (d, 1H, H4, 

3
J (

1
H-

1
H) = 7.9 Hz), 7.85 (td, 1H, H3, 

3
J (

1
H-

1
H) 

= 7.7 Hz and 
4
J (

1
H-

1
H) = 1.6 Hz), 7.46 (d, 2H, 

H13 and H14, 
3
J (

1
H-

1
H) = 1.6 Hz), 7.45-7.41 (m, 1H, H2), 7.24 (s, 1H, H7) 

13
C{

1
H} 

NMR (CDCl3, 125.8 MHz, 300.2 K) 186.98 (quaternary C-O, C6 or C8), 182.46 

(quaternary C-O, C6 or C8), 151.66 (quaternary pyridine C, C5), 149.54 (pyridine 

CH, C1), 137.13 (pyridine CH, C3), 136.80 (quaternary aromatic C, C9), 136.48 

(aromatic C-Cl, C10-12), 133.23 (aromatic C-Cl, C10-12), 132.13 (aromatic C-Cl, C10-

12), 128.48 (pyridine CH, C2), 127.82 (aromatic CH, C13), 126.70 (aromatic CH, 

C14), 122.40 (pyridine CH, C4), 98.74 (acac CH, C7) Analysis Calculated: C 

51.18, H 2.45, Cl 32.37 N 4.26% Analysis Found: C 51.25, H 2.30, Cl 32.50 N 

4.00% ES MS (+): m/z 327.97 [M
+
] 

 

9.5 Syntheses of Functionalised -Ketoiminate Ligands 

Ligands L11-28 were synthesised using a modified synthetic route based on work 

by Tang et al.
2
 

9.5.1 Preparation of C17H17NO (L11) 

4’-Methyl--diketonate (0.50 g, 2.84 mmol) was dissolved in toluene (10 mL), 

aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the precipitate was 

filtered and the solvent was removed under reduced pressure. The crude product 
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was recrystallised from hot ethanol (20 mL), yielding L11 as a yellow crystals 

(0.42 g, 1.67 mmol, 59%). This ligand has previously been prepared,
12

 although the 

X-ray crystal structure has been reported in Chapter 2, 
1
H NMR has been reported 

here to prove synthesis. 

1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 13.08 

(br. d, 1H, NH), 7.86-7.86 (m, 2H, aromatic CH, 

H13 and H15), 7.41-7.34 (m, 2H, anline CH, H3 

and H5), 7.26-7.22 (m, 3H, aniline CH, H2, H4 

and H6), 7.21-7.17 (m, 2H, aromatic CH, H13 and 

H15), 5.89 (s, 1H, acnac CH, H9), 2.41 (s, 3H, 

para methyl CH3, H17), 2.15 (s, 3H, aliphatic CH3, H7) 

 

9.5.2 Preparation of C16H14FNO (L12) 

3’-Fluoro--diketonate (0.52 g, 2.89 mmol) was dissolved in toluene (10 mL), 

aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the precipitate was 

filtered and the remove solvent was under reduced pressure. The crude product 

recrystallised was from hot ethanol (10 mL), yielding yellow crystals of L12 (0.61 

g, 2.39 mmol, 83%) 

 
1
H NMR (CDCl3, 300 MHz, 300 K) δ 13.09 (br. s, 

1H, NH), 7.70 (br. d, 1H, aromatic CH, H16, 
3
J(

1
H-

1
H) = 7.9 Hz), 7.65-7.59 (m, 1H, aromatic CH, 

H12), 7.44-7.36 (m, 3H, aniline CH, H3 and H5 and 

aromatic H15), 7.28-7.24 (m, 1H, aniline CH, H4), 

7.23-7.18 (m, 2H, aniline CH, H2 and H6), 7.18-

7.12 (m, 1H, aromatic CH, H14), 5.85 (s, 1H, acnac CH, H9), 2.16 (s, 3H, aliphatic 

CH3, H7) 
13

C{
1
H} NMR (CDCl3, 75 MHz, 300 K) δ 186.9 (quaternary C-O, C10), 

163.9 (quaternary C, C1 or C8), 157.5 (quaternary C, C1 or C8), 137.0 (d, quaternary 

C-F, C13, 
1
J (

13
C-

19
F) = 217.5 Hz), 129.8 (d, quaternary C meta to C-F, C11, 

3
J (

13
C-

19
F) = 7.5 Hz), 129.2 (aniline or aromatic CH, C3, C5 and C15), 126.1( aniline CH, 

C4), 124.9 (aniline CH, C2 and C6), 122.6 (d, aromatic CH, C16, 
4
J (

13
C-

19
F) = 3.0 

Hz), 117.6 (d, aromatic CH, C14, 
2
J (

13
C-

19
F) = 21 Hz), 114.0 (d, aromatic CH, C12, 

2
J (

13
C-

19
F) = 21 Hz), 94.1 (acnac CH, C9), 20.4 (aliphatic CH3, C7) Analysis 

Calculated: C 75.30 H 5.53, N 5.49% Analysis Found: C 74.90, H 5.20, N 5.16% 

ES MS (+): m/z 255.4 [M
+
] 
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9.5.3 Preparation of C16H14FNO (L13) 

4’-Fluoro-diketonate (0.51 g, 2.83 mmol) was dissolved in toluene (10 mL), 

aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the precipitate was 

filtered and the solvent was removed under reduced pressure. The crude product 

was recrystallised from hot ethanol (10 mL), yielding L13 as green crystals (0.63 g, 

2.47 mmol, 87%) 

1
H NMR (CDCl3, 300 MHz, 300 K) δ 13.05 (s, 1H, 

NH), 7.94 (v. dd, 2H, aromatic CH, H12 and H16, 

3
J(

1
H-

1
H) = 9.2 Hz and 

3
J(

1
H-

19
F) = 2.3 Hz), 7.39 

(br. t, 2H, aniline CH, H3 and H5, 
3
J(

1
H-

1
H) = 7.9 

Hz), 7.24 (br. t, 1H, aniline CH, H4, 
3
J(

1
H-

1
H) = 7.6 

Hz), 7.19 (br. d, 2H, aromatic CH, H2 and H6, 

3
J(

1
H-

1
H) = 7.2 Hz), 7.11 (v. t, 2H, aromatic CH, H12 and H16, , 

3
J(

1
H-

1
H) = 8.7 Hz 

and , 
4
J(

1
H-

19
F) = 1.9 Hz), 5.85 (s, 1H, acnac CH, H9), 2.15 (s, 1H, aliphatic CH3, 

H7) 
13

C{
1
H} NMR (CDCl3, 75MHz, 300K) δ 187.2 (quaternary C-O, C10), 164.5 

(d, quaternary C-F, C14, 
1
J(

13
C-

19
F) = 249.7 Hz), 162.4 (quaternary aromatic C, 

C11), 138.5 (quaternary aromatic C, C1 and C8), 129.3 (d, aromatic CH, C13 and 

C15, 
2
J(

13
C-

19
F) = 8.7 Hz), 129.2 (aniline CH, C3 and C5), 125.9 (aniline CH, C4), 

124.8 (aniline CH, C2 and C6), 115.2 (d, aromatic CH, C12 and C16, 
3
J(

13
C-

19
F) = 

21.0 Hz), 93.8 (acnac CH, C9), 20.38 (aliphatic CH3, C7) Analysis Calculated: C 

74.30 H 5.53, N 5.49% Analysis Found: C 74.35, H 5.40, N 5.25% ES MS (+): 

m/z 255.6 [M
+
] 

 

9.5.4 Preparation of C16H13Cl2NO (L14) 

2’,5’-Dichloro--diketonate (0.51 g, 2.21 mmol) was dissolved in toluene (10 mL), 

aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the precipitate 

filtered and solvent was removed under reduced pressure. The crude product was 

recrystallised from hot ethanol (10 mL), yielding L14 as colourless crystals (0.46 g, 

2.20 mmol, 68%) 
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1
H NMR (CDCl3, 300 MHz, 300 K) δ 12.71 (s, 

1H, NH), 7.43 (m, 1H, aniline CH, H4), 7.33 (br. t, 

2H, aniline CH, H3 and H5, 
3
J(

1
H-

1
H) =7.5 Hz), 

7.24 (br. s, 1H, aromatic CH, H16), 7.21-7.16 (m, 

2H, aromatic CH, H13 and H14), 7.13(d, 2H, aniline 

CH, H2 and H6, 
3
J(

1
H-

1
H) = 7.5 Hz), 5.43 (s, 1H, 

acnac CH, H9), 2.03 (s, 3H, aliphatic CH3, H7) 

13
C{

1
H} NMR (CDCl3, 75 MHz, 300 K) δ 187.8 (quaternary C-O, C10), 163.2 

(quaternary C, C11), 142.4 (quaternary C, C1), 138.1 (quaternary C, C8), 132.6 

(quaternary C-Cl, C12 and C15), 131.3 (aromatic CH, C13 or C14), 130.0 (aromatic 

CH, C13 or C14), 129.3 (aniline CH, C3 and C5), 126.4 (aniline CH, C4), 125.1 

(aniline CH, C2 and C6), 97.9 (acnac CH, C9), 20.2 (aliphatic CH3, C7) Analysis 

Calculated: C 62.67, H 4.29, N 4.58, Cl 23.15% Analysis Found: C 62.65, H 

4.20, N 4.45, Cl 23.30 ES MS (+): m/z 306.2 [M
+
] 

 

9.5.5 Preparation of C16H13Cl2NO (L15) 

3’,4’-Dichloro--diketonate (0.62 g, 2.60 mmol) was dissolved in toluene (10 mL), 

aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the precipitate 

filtered and the solvent was removed under reduced pressure. The crude product 

was recrystallised from hot ethanol (10 mL), yielding L15 as yellow crystals (0.54 

g, 1.77 mmol, 68%) 

1
H NMR (CDCl3, 300.13 MHz, 300.1 K) 13.07 

(br. s, 1H, NH), 8.01 (d, 1H, H12, 
4
J (

1
H-

1
H) = 1.9 

Hz), 7.55 (dd, 1H, H16, 
3
J (

1
H-

1
H) = 8.5 Hz, 

4
J 

(
1
H-

1
H) = 2.1 Hz), 7.51 (d, 1H, H15, 

3
J (

1
H-

1
H) = 

8.7 Hz), 7.40 (br. t, 2H, H3 and H5, 
3
J (

1
H-

1
H) = 

7.9 Hz), 7.26 (br. t, 1H,H4, 
3
J (

1
H-

1
H) = 7.6 Hz), 

7.19 (d, 2H, H2 and H6, 
3
J (

1
H-

1
H) = 7.6 Hz), 5.85 (s, 1H, H9), 2.16 (s, 3H, H7) 

13
C{

1
H} NMR (CDCl3, 75.0 MHz, 300.0 K)  185.5 (quaternary C-O, C10), 163.5 

(quaternary aromatic C, C11), 139.9 (quaternary aniline C, C1), 138.3 (quaternary 

C-NH, C8), 135.0 (quaternary aromatic C-Cl, C13 or C14), 132.7 (quaternary 

aromatic C-Cl, C13 or C14), 130.3 (aromatic CH, C15). 129.3 (aniline CH, C3 and 

C5), 129.2 (aromatic CH, C12), 126.3 (aniline/aromatic CH, C4 and C16), 124.9 

(aniline CH, C2 and C6), 93.7 (acnac CH, C9), 20.4 (aliphatic CH3, C7) Analysis 
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Calculated: C 62.76, H 4.28, N 4.57, Cl 23.16% Analysis Found: C 62.50, H 

4.30, N 5.00, Cl 23.20% ES MS (+): m/z 306.1 [M
+
] 

 

9.5.6 Preparation of C16H12Cl3NO (L16) 

2’,3’,4’-Trichloro--diketonate (0.14 g, 0.53 mmol) was dissolved in toluene (10 

mL), aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the 

precipitate was filtered and solvent was removed under reduced pressure. The 

crude product was recrystallised from hot ethanol (10 mL), yielding L16 as a gold 

crystalline solid (0.10 g, 0.29 mmol, 55%) 

1
H NMR (CDCl3, 500.23 MHz, 300.1 K) 12.75 

(br. s, 1H, NH), 7.43-7.39 (m, 3H, H3-H5), 7.33 (d, 

1H, H16, 
3
J (

1
H-

1
H) = 8.2 Hz), 7.29 (br. d, 1H, H15, 

3
J (

1
H-

1
H) = 7.3 Hz), 7.22 (br. d, 2H, H2 and H6, 

3
J 

(
1
H-

1
H) = 7.6 Hz), 5.45 (s, 1H, H9), 2.11 (s, 3H, 

H7) 
13

C NMR (CDCl3, 125.9 MHz, 300.0 K)  

187.9 (quaternary C-O, C10), 163.4 (quaternary aromatic C, C``), 141.6 (quaternary 

aniline C, C1), 138.0 (quaternary C-NH, C8), 134.5 (quaternary aromatic C-Cl, C12, 

C13 or C14), 132.4 (quaternary aromatic C-Cl, C12, C13 or C14), 131.0 (quaternary 

aromatic C-Cl, C12, C13 or C14). 129.3 (aniline CH, C3 and C5), 128.4 (aniline CH, 

C4), 126.9 (aromatic CH, C16), 126.4 (aromatic CH, C15), 125.1 (aniline CH, C2 and 

C6), 97.8 (acnac CH, C9), 20.2 (aliphatic CH3, C7) Analysis Calculated: C 56.42, 

H 3.55, Cl 31.22, N 4.11% Analysis Found: C 56.25, H 3.45, Cl 31.05, N 4.05% 

ES MS (+): m/z 340.0 [M
+
] 

 

9.5.7 Preparation of C16H14BrNO (L17) 

3’-Bromo--diketonate (0.52 g, 2.16 mmol) was dissolved in toluene (20 mL), 

aniline (2 mL) and HCl (1 mL). This was stirred for 16 hours, the product was 

filtered and solvent was removed under reduced pressure. The crude product was 

recrystallised from hot ethanol (10 mL), yielding L17 as pale orange crystals (0.42 

g, 1.33 mmol, 62%) 
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1
H NMR (CDCl3, 300 MHz, 300 K) δ 13.08 (s, 

1H, NH), 8.06 (t, 1H, aromatic CH, H12, 

4
J(

1
H-

1
H) = 1.7 Hz), 7.84 (br. dt, 1H, aromatic 

CH, H14, 
3
J(

1
H-

1
H) = 8.0 Hz and 

3
J(

1
H-

1
H) = 1.5 

Hz), 7.59 (dq, 1H, aromatic CH, H16, 
3
J(

1
H-

1
H) = 

7.9 Hz and 
4
J(

1
H-

1
H) = 0.9(x3) Hz), 7.40 (br. t, 

2H, aniline CH, H3 and H5, 
3
J(

1
H-

1
H) = 8.1 Hz) 7.31 (t, 1H, aromatic CH, H15, 

3
J(

1
H-

1
H) = 7.9 Hz), 7.25 (br. t, 1H, aniline CH, H4, 

3
J(

1
H-

1
H) =  7.2 Hz), 7.20 (br. 

d, 2H, aniline CH, H2 and H6, 
3
J(

1
H-

1
H) = 7.5 Hz), 5.83 (s, 1H, acnac CH, H9), 

2.16 (s, 3H, aliphatic CH3, H7) 
13

C{
1
H} NMR (CDCl3, 75 MHz, 300 K) δ 

186.7(quaternary C-O, C10), 163.0 (quaternary aromatic C, C11), 142.0 (quaternary 

C-NH, C8 and quaternary aniline C, C1), 138.4 (quaternary aromatic C-Br, C13), 

133.6 (aromatic CH, C16), 130.2 (aromatic CH, C15), 129.8 (aromatic CH, C12), 

129.2 (aniline CH, C3 and C5), 126.1 (aniline CH, C4), 125.6 (aromatic CH, C14), 

124.9 (aromatic CH, C2 and C6), 94.0 (acnac CH, C9), 20.4 (aliphatic CH3, C7) 

Analysis Calculated: C 60.76, H 4.47, N 4.43% Analysis Found: C 60.80, H 

4.45, N 4.43% ES MS (+): m/z 316.3 [M
+
] 

 

9.5.8 Preparation of C16H14INO (L18) 

4’-Iodo--diketonate (0.79 g, 2.74 mmol) was dissolved in toluene (20 mL), aniline 

(2 mL) and HCl (1 mL). This was stirred for 16 hours, the precipitate filtered and 

the solvent was removed under reduced pressure. The crude product was 

recrystallised from hot ethanol (10 mL), yielding L18 as a gold crystalline solid 

(0.76 g, 2.09 mmol, 76%) 

1
H NMR (CDCl3, 500.23 MHz, 300.1 K) 13.09 

(br. s, 1H, NH), 7.79 (d, 2H, H12 and H16, 
3
J (

1
H-

1
H) = 8.3 Hz), 7.65 (d, 2H, H13 and H15, 

3
J (

1
H-

1
H) 

= 8.3 Hz), 7.39 (br. t, 2H, H3 and H5, 
3
J (

1
H-

1
H) = 

7.8 Hz), 7.25 (br. t, 1H, H4, 
3
J (

1
H-

1
H) = 7.3 Hz), 

7.19 (br. d, 2H, H2 and H6, 
3
J (

1
H-

1
H) = 7.3 Hz), 

5.84 (s, 1H, H9), 2.15 (s, 3H, H7) 
13

C{
1
H} NMR (CDCl3, 75 MHz, 300 K) δ 187.4 

(quaternary C-O, C10), 162.8 (quaternary aromatic C, C11), 139.4 (quaternary C-

NH, C8 and quaternary aniline C, C1), 138.4 (quaternary C-I, C14), 137.5 (aromatic 

CH, C12 and C16), 129.2 (aniline CH, C3 and C5), 128.7 (aromatic CH, C13 and C15), 
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126.0 (aniline CH, C4), 124.9 (aniline CH, C2 and C6), 93.8 (acnac CH, C9), 20.4 

(aliphatic CH3, C7) Analysis Calculated: C 52.91, H 3.89, I 34.94, N 3.86% 

Analysis Found: C 52.95, H 4.10, I 34.65, N 3.75% ES MS (+): m/z 364.0 [MH
+
] 

 

9.5.9 Preparation of C18H19NO (L19) 

4’-Ethyl--diketonate (1.03 g, 0.53 mmol) was dissolved in toluene (20 mL), 

aniline (2 mL) and HCl (1 mL). This was stirred for 16 hours, the precipitate 

filtered and the solvent removed under reduced pressure. The crude product was 

recrystallised from hot ethanol (20 mL), yielding L19 as oily brown crystals (1.05 

g, 3.96 mmol, 73%) 

1
H NMR (CDCl3, 300.13 MHz, 300.0 K) 

13.09 (br. s, 1H, NH), 7.87 (d, 2H, H12 and 

H16, 
3
J (

1
H-

1
H) = 7.9 Hz), 7.38 (br. t, 2H, H3 

and H5, 
3
J (

1
H-

1
H) = 7.9 Hz), 7.29-7.26 (m, 

2H, H2 and H6), 7.25-7.22 (m, 1H, H4), 7.19 

(br. d, 2H, H13 and H15,
 3

J (
1
H-

1
H) = 7.2 Hz ), 

5.90 (s, 1H, H9), 2.71 (q, 2H, H17, 
3
J (

1
H-

1
H) = 8.0 Hz), 2.16 (s, 3H, H7), 1.28 (t, 

3H, H18, 
3
J (

1
H-

1
H) = 7.6 Hz) 

13
C NMR (CDCl3, 75.5 MHz, 300.0 K)  188.6 

(quaternary C-O, C10), 161.8(quaternary aromatic C, C11), 147.5 (quaternary aniline 

C, C1), 138.0 (quaternary C-NH, C8), 137.6(quaternary aromatic C-C, C14), 129.1 

(aniline CH, C3 and C5), 127.8 (aniline CH, C2 and H6), 127.2 (aromatic CH, C12 

and C16), 125.6 (aniline CH, C4), 124.7 (aromatic CH, C13 and C15), 94.2 (acnac 

CH, C9), 28.8 (aliphatic CH2, C17), 20.5 (aliphatic CH3, C7), 15.3 (aliphatic CH3, 

C18) Analysis Calculated: C 80.86, H 7.92, N 5.24% Analysis Found: C 80.85, H 

7.15, N 5.05% ES MS (+): m/z 266.16 [MH
+
] 

 

9.5.10 Preparation of C17H17NO2 (L20) 

4’-Methoxy--diketonate (1.01 g, 5.25 mmol) was dissolved in toluene (20 mL), 

aniline (2 mL) and HCl (1 mL). This was stirred for 16 hours, the precipitate 

filtered and the solvent was removed under reduced pressure. The crude product 

washed with petrol (60-80˚C) (10 mL) and recrystallised from hot ethanol (20 mL), 

yielding L20 as a pale yellow crystalline precipitate (0.76 g, 2.84 mmol, 54%). 
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1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 

13.04 (br. s, 1H, NH), 7.92 (d, 2H, H12 and 

H16, 
3
J (

1
H-

1
H) = 8.9 Hz), 7.37 (br. t, 2H, H3 

and H5, 
3
J (

1
H-

1
H) = 7.9 Hz), 7.24-7.20 (m, 1H, 

H4), 7.18 (br. d, 2H, H2 and H6, 
3
J (

1
H-

1
H) = 7.3 

Hz), 6.94 (br. d, 2H, H13 and H15, 
3
J (

1
H-

1
H) = 

8.5 Hz), 5.87 (br. s, 1H, H9), 3.87 (s, 3H, H17), 2.15 (s, 3H, H7) 
13

C{
1
H} NMR 

(CDCl3, 125.9 MHz, 300.0 K) 187.9 (quaternary C-O, C10), 162.0 (quaternary 

aromatic C, C11), 161.4 (quaternary aniline C, C1), 138.9 (quaternary C-NH, C8), 

132.7 (quaternary aromatic C, C14), 129.1 (aniline CH, C3 and C5), 129.0 (aromatic 

CH, C12 and C16), 125.5 (aniline CH, C4), 124.7 (anline CH, C2 and C6), 113.5 

(aromatic CH, C13 and C15), 93.8 (acnac CH, C9), 55.3 (methoxy OCH3 C17), 20.5 

(aliphatic CH3, C7) Analysis Calculated: C 76.38, H 6.41, N 5.24% Analysis 

Found: C 75.75, H 6.40, N 5.20% ES MS (+): m/z 268.13 [MH
+
] 

 

9.5.11 Preparation of C18H19NO3 (L21) 

3’,4’-Dimethoxy--diketonate (0.76 g, 3.42 mmol) was dissolved in toluene (15 

mL), aniline (1.5 mL) and HCl (1.2 mL). This was stirred for 16 hours, the 

precipitate filtered and the solvent was removed under reduced pressure. The crude 

product was recrystallised from hot ethanol (20 mL), yielding L21 as a yellow 

crystalline precipitate (0.67 g, 2.26 mmol, 66%). 

1
H NMR (CDCl3, 300.13 MHz, 295.7 K) 

13.05 (br. s, 1H, NH), 7.57 (br. d, 1H, H12, 
4
J 

(
1
H-

1
H) = 1.7 Hz), 7.53 (br. dd, 1H, H15, 

3
J 

(
1
H-

1
H) = 8.3 Hz and 

4
J (

1
H-

1
H) = 2.3 Hz), 

7.41-7.35 (m, 2H, H3 and H5), 7.25-7.22 (m, 

1H, H4), 7.21-7.16 (m, 2H, H2 and H6), 6.90 

(d, 1H16, 
3
J (

1
H-

1
H) = 8.3 Hz), 5.88 (br. s, 1H, H9), 3.98 (s, 3H, H17), 3.95 (s, 3H, 

H18), 2.17 (s, 3H, H7) 
13

C{
1
H} NMR (CDCl3, 75.5 MHz, 296.3 K) 187.7 

(quaternary C-O, C10), 161.5 (quaternary aromatic C, C11), 151.5 (quaternary C, C1 

and C8), 132.9 (quaternary aromatic C, C14 and C15), 129.1 (aniline CH, C3 and C5), 

125.6 (aniline CH, C4), 124.6 (anline CH, C2 and C6), 120.5 (aromatic CH, C15), 

110.1 (aromatic CH, C12), 109.9 (aromatic CH, C16), 93.7 (acnac CH, C9), 56.0 

(2C, methoxy OCH3, C17 and C18), 20.5 (aliphatic CH3, C7) Analysis Calculated: 
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C 72.71, H 6.44, N 4.71% Analysis Found: C 72.75, H 6.50, N 4.65% ES MS (+): 

m/z 320.13 [MNa
+
] 

 

9.5.12 Preparation of C18H18FNO2 (L22) 

2’-Ethyl-4-fluoro--diketonate (0.41g, 1.83 mmol) was dissolved in toluene (10 

mL), aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the 

precipitate filtered and the solvent was removed under reduced pressure. The crude 

product was washed with petrol (60-80˚C) (10 mL) and recrystallised from hot 

ethanol (20 mL), yielding L22 as pale yellow crystals (0.25 g, 0.84 mmol, 46%). 

1
H NMR (CDCl3, 500.23 MHz, 294.7 K) 12.98 

(br. s, 1H, NH), 7.78 (dd, 1H, H16, 
3
J (

1
H-

1
H) = 8.5 

Hz and 
4
J (

1
H-

19
F) = 7.3 Hz), 7.40-7.35 (m, 2H, H3 

and H5), 7.23 (br. d, 1H, H4, 
3
J (

1
H-

1
H) = 7.3 Hz), 

7.21-7.18 (m, 2H, H2 and H6), 6.71 (td, 1H, H15, 
3
J 

(
1
H-

1
H) = 8.2 Hz and 

3
J (

1
H-

19
F) = 2.4 Hz), 6.64 

(dd, 1H, H13, 
3
J (

1
H-

19
F) = 11.1 Hz and 

4
J (

1
H-

1
H) 

= 2.3 Hz), 6.02 (br. s, 1H, H9), 4.12 (br. q, 2H, H17 , 
3
J (

1
H-

1
H) = 7.0 Hz), 2.12 (s, 

3H, H7), 1.50 (br. t, 3H, H18, 
3
J (

1
H-

1
H) = 7.0 Hz) 

13
C NMR (CDCl3, 125.9 MHz, 

300.0 K)  187.6 (quaternary C-O, C10), 164.7 (quaternary aromatic C-F, C14, 
1
J 

(
13

C-
19

F) = 248.4 Hz), 163.7 (quaternary aromatic C, C11), 161.1 (quaternary C, C1 

or C8), 158.2 (d, quaternary aromatic C, C12, 
3
J (

13
C-

19
F) = 10.3 Hz), 138.9 

(quaternary C, C1 or C8), 131.9 (d, aromatic CH, C16, 
3
J (

13
C-

19
F) = 10.3 Hz). 129.1 

(aniline CH, C3 and C5), 125.6 (aniline CH, C4), 124.8 (aniline CH, C2 and C6), 

107.2 (aromatic CH, C15, 
2
J (

13
C-

19
F) = 20.6 Hz), 100.3 (aromatic CH, C13, 

2
J (

13
C-

19
F) = 24.7 Hz), 99.2 (acnac CH, C9), 64.5 (ethoxy CH2,  C17), 20.2 (aliphatic CH3, 

C7), 14.6 (ethoxy CH3, C18) Analysis Calculated: C 72.22, H 6.06, N 4.68% 

Analysis Found: C 71.65, H 6.05, N 4.75% ES MS (+): m/z 300.14 [MH
+
] 

 

9.5.13 Preparation of C18H19NO2 (L23) 

4’-Ethoxy--diketonate (0.77 g, 3.73 mmol) was dissolved in toluene (10 mL), 

aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the precipitate 

filtered and the solvent was removed under reduced pressure. The crude product 

was recrystallised from hot ethanol (20 mL), yielding L23 as yellow needle-like 

crystals (0.40 g, 1.42 mmol, 38%). 
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1
H NMR (CDCl3, 500.13 MHz, 319.2 K) 

13.01 (br. s, 1H, NH), 7.91 (br. d, 2H, H12 

and H16, 
3
J (

1
H-

1
H) = 8.8 Hz), 7.39-7.34 (br. 

t, 2H, H3 and H5, 
3
J (

1
H-

1
H) = 7.3 Hz) 7.23-

7.20 (m, 1H, H4), 7.18 (br. d, 2H, H2 and H6, 

3
J (

1
H-

1
H) = 8.8 Hz), 5.86 (s, 1H, H9), 4.11 

(q, 2H, H17, 
3
J (

1
H-

1
H) = 6.7 Hz ), 2.14 (s, 3H, H7), 1.45 (t, 3H, H18, 

3
J (

1
H-

1
H) = 

6.7 Hz) 
13

C{
1
H} NMR (CDCl3, 75.5 MHz, 300.0 K) 187.9 (quaternary C-O, 

C10), 161.4 (quaternary aromatic C, C11), 138.9 (quaternary aniline C, C1 and C8), 

132.5 (quaternary aromatic C14), 129.1 (aniline CH, C3 and C5), 129.0 (aromatic 

CH, C12 and C16), 125.5 (aniline CH, C4), 124.7 (aniline CH, C2 and C6), 114.0 

(aromatic CH, C13 and C15), 93.8 (acnac CH, C9), 63.6 (ethoxy CH2, C17), 20.5 

(aliphatic CH3, C7), 14.8 (ethoxy CH3, C18) Analysis Calculated: C75.23, H 5.65, 

N 13.85 Analysis Found: C 74.75, H 5.70, N 13.80 ES MS (+): m/z 282.15 [MH
+
] 

 

9.5.14 Preparation of C17H15NO3 (L24) 

3’,4’-Methylene--diketonate (0.51 g, 2.47 mmol) was dissolved in toluene (10 

mL), aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the 

precipitate filtered and the solvent was removed under reduced pressure. The crude 

product was recrystallised from hot ethanol (20 mL), yielding L24 as green crystals 

(0.33 g, 1.17 mmol, 47%). 

1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 

12.99 (br. s, 1H, NH), 7.51 (dd, 1H, H16, 
3
J 

(
1
H-

1
H) = 8.1Hz and 

4
J (

1
H-

1
H) = 1.4 Hz), 7.44 

(d, 1H, H12, 
4
J (

1
H-

1
H) = 1.5 Hz) 7.42-7.37 (m, 

2H, H2 and H6), 7.27-7.23 (m, 1H, H4), 7.20-

7.17 (m, 2H, H3 and H5), 6.85 (d, 1H, H15, 
3
J 

(
1
H-

1
H) = 8.2 Hz), 6.03 (s, 2H, H17), 5.81 (s, 1H, H9), 2.14 (s, 3H, H7) 

13
C{

1
H} 

NMR (CDCl3, 125.8 MHz, 300.0 K) 161.7 (quaternary C-O, C10), 150.0 

(quaternary aromatic C, C13 or C14), 147.9 (quaternary aromatic C, C13 or C14), 

138.7 (quaternary aromatic C, C11), 130.7 (quaternary C, C1 or C8), 129.2 (aniline 

CH, C2 and C6), 129.2 (aniline CH, C3 and C5), 125.7 (aromatic CH, C12), 124.8 

(quaternary C, C1 or C8), 122.2 (aniline CH, C4), 107.8 (aromatic CH, C16), 107.5 

(aromatic CH, C15), 101.5 (methylene CH2, C17), 98.2 (acnac CH, C9), 20.5 

NH O12
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(aliphatic CH3, C7) Analysis Calculated: C 72.58, H 5.37, N 4.98% Analysis 

Found: C 72.25, H 5.35, N 4.95% ES MS (+): m/z 282.10 [M
+
] 

 

9.5.15 Preparation of C17H15NO3 (L25) 

4’-Imidazole--diketonate (L4) (0.12 g, 0.644 mmol) was dissolved in toluene (10 

mL), aniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the 

precipitate filtered and the solvent was removed under reduced pressure. The crude 

product was recrystallised from hot ethanol (20 mL) and stored at -20°C, yielding 

L25 as green crystals (0.34 g, 1.12 mmol, 49%).  

1
H NMR (CDCl3, 300.13 MHz, 300.0 K) 

13.13 (br. s, 1H, NH), 8.05 (d, 2H, H12 

and H16, 
3
J (

1
H-

1
H) = 8.5 Hz), 7.47 (d, 2H, 

H13 and H15, 
3
J (

1
H-

1
H) = 8.5 Hz), 7.45-

7.36 (m, 3H, H2, H4 and H6), 7.29-7.26 (m, 

2H, H3 or H5), 7.25-7.17 (m, 3H, H17-19), 

5.90 (s, 1H, H9), 2.18 (s, 3H, H7) 
13

C{
1
H} 

NMR (CDCl3, 75.5 MHz, 299.9 K) 186.7 (quaternary C-O, C10), 162.9 

(quaternary aromatic C, C11), 139.0 (quaternary aromatic C, C14), 138.4 (quaternary 

C, C1 or C8), 137.4 (quaternary C, C1 or C8), 129.2 (aniline CH, C3 and C5), 128.9 

(aromatic CH, C12 and C16), 126.1 (aniline CH, C2, C4 and C6), 124.9 (aromatic 

CH, C13 and C15), 120.8 (imidazole CH, C17-19), 93.9 (acnac CH, C9), 20.4 (aliphatic 

CH3, C7) Analysis Calculated: C75.23, H 5.65, N 13.85% Analysis Found: C 

74.75, H 5.70, N 13.80% ES MS (+): m/z 304.14 [MH
+
] 

 

9.5.16 Preparation of C20H17NO (L26)  

3’-Napthyl--diketonate (0.59 g, 2.78 mmol) was dissolved in toluene (10 mL), 

aniline (1 mL) and HCl (0.5 mL). The suspension was stirred for 16 hours, the 

precipitate filtered and the solvent was removed under reduced pressure. The crude 

product was recrystallised from hot ethanol (20 mL), yielding L26 as pale yellow 

crystals (0.65 g, 2.26 mmol, 81%) 
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1
H NMR (CDCl3, 500 MHz, 300.0 K) 13.13 

(br. s, 1H, NH), 8.51 (d, 2H, aniline CH, H2 

and H6, 
3
J (

1
H-

1
H) = 8.3 Hz), 7.89 (br. t, 2H, 

aniline CH, H3 and C5, 
3
J (

1
H-

1
H) = 8.3 Hz), 

7.70 (br. d, 1H, aromatic CH, H12, 
4
J(

1
H-

1
H) = 

6.9 Hz), 7.57-7.53 (m, 1H, aniline CH, H4), 

7.53-7.48 (m, 2H, aromatic CH, H19 and H20), 7.42 (br, t, 2H, aromatic CH, H14-17, 

3
J(

1
H-

1
H) = 8.3 Hz), 7.28-7.25 (m, 2H, aromatic CH, H14-17), 5.70 (s, 1H, acnac 

CH, H9), 2.16 (s, 3H, aliphatic CH3, H7) 
13

C{
1
H} NMR (CDCl3, 125 MHz, 300 K) 

193.0 (quaternary C-O, C10), 162.0 (quaternary aromatic C, C11), 143.2 

(quaternary C, C13 or C18), 140.1 (quaternary C, C13 or C18), 138.6 (quaternary 

aromatic C, C1 and C8), 130.3 (aniline CH, C3 or C5), 129.9 (aniline CH, C3 or C5), 

129.2 (naphthyl CH), 128.4 (naphthyl CH), 126.6 (naphthyl CH), 126.1 (naphthyl 

CH), 125.4 (naphthyl CH), 124.9 (naphthyl CH), 124.9 (naphthyl CH), 99.0 (acnac 

CH, C9), 20.3 (aliphatic CH3, C7) Analysis Calculated: C 83.59, H 5.96, N 4.87% 

Analysis Found: C 83.70, H 6.00, N 4.80% ES MS (+): m/z 288.14 [MH
+
] 

 

9.5.17 Preparation of C16H11F3NO (27) 

4’-Fluoro--diketonate (0.54 g, 3.00 mmol) was dissolved in toluene (10 mL), 2,5-

difluoroaniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the 

precipitate filtered and the solvent was removed under reduced pressure. The crude 

product was recrystallised from hot ethanol (20 mL), yielding L27 as a pale brown 

crystalline precipitate (0.56 g, 1.92 mmol, 64%) 

1
H NMR (CDCl3, 300.13 MHz, 300.0 K) 12.90 

(br. s, 1H, NH), 7.97-7.92 (m, 2H, H12 and H16), 

7.16-7.09 (m, 3H, H3, H4 and H6), 6.99 (ddd, 1H, 

H13 or H15, 
3
J (

1
H-

1
H) = 9.0 Hz and 

3
J (

1
H-

19
F) = 

3.1 and 2.0 Hz), 6.93–6.87 (m, 1H, H13 or H15), 

5.95 (s, 1H, H9), 2.17 (s, 3H, H7) 
13

C{
1
H} NMR 

(CDCl3, 125.9 MHz, 300.0 K)  188.1 (quaternary C-O, C10), 164.8 (d, quaternary 

C-F, C14, 
1
J(

13
C-

19
F) = 250.5 Hz), 161.5 (quaternary aromatic C, C11), 158.3 (dd, 

quaternary aniline C-F, C2 or C5, 
1
J(

13
C-

19
F) = 242.3 Hz and 

4
J(

13
C-

19
F) = 3.1 Hz), 

152.7 (dd, quaternary aniline C-F, C2 or C5, 
1
J(

13
C-

19
F) = 242.3Hz and 

4
J(

13
C-

19
F) 

= 3.1 Hz), 135.7 (d, quaternary aromatic C, C8, 
4
J(

13
C-

19
F) = 3.1 Hz), 129.6 (d, 2C, 

NH O1
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aromatic CH, C12 and C16, 
3
J(

13
C-

19
F) = 8.3 Hz). 127.9 (dd, quaternary aniline C, 

C1, 
2
J(

13
C-

19
F) = 24.7 Hz and 

3
J(

13
C-

19
F) = 4.1 Hz), 115.3 (d, 3C, C3, C4 and C6, 

3
J(

13
C-

19
F) = 21.7 Hz), 113.1 (d, aromatic CH, C12 and C16, 

3
J(

13
C-

19
F) = 23.7 Hz), 

113.0 (d, aromatic CH, C13 and C15, 
2
J(

13
C-

19
F) = 25.8Hz), 95.3 (acnac CH, C9), 

20.3 (aliphatic CH3, C7) Analysis Calculated: C 65.98, H 4.15, N 4.81% Analysis 

Found: C 65.35, H 4.35, N 4.70% ES MS (+): m/z 292.09 [MH
+
]  

 

9.5.18 Preparation of C16H13F2NO (L28) 

4’-Fluoro--diketonate (0.63g, 2.84 mmol) was dissolved in toluene (10 mL), 2-

fluoroaniline (1 mL) and HCl (0.5 mL). This was stirred for 16 hours, the 

precipitate filtered and the solvent was removed under reduced pressure. The crude 

product was recrystallised from hot ethanol (20 mL), yielding L28 as a yellow 

crystalline precipitate (0.41 g, 1.50 mmol, 53%) 

1
H NMR (CDCl3, 300.13 MHz, 300.1 K) 12.82 

(br. s, 1H, NH), 7.95 (ddd, 2H, H12 and H16,
3
J (

1
H-

1
H) = 9.1 Hz, 

4
J (

1
H-

1
H) = 4.9 Hz, 

4
J (

1
H-

19
F) = 2.3 

Hz), 7.28-7.22 (m, 2H, H3-H6), 7.21-7.15 (m, 2H, 

H3-H6), 7.11 (ddd, 2H, H13 and H15, 
3
J (

1
H-

1
H) = 

9.1 Hz, 
4
J (

1
H-

1
H) = 4.9 Hz, 

3
J (

1
H-

19
F) = 2.6 Hz), 

5.92 (s, 1H, H9), 2.11 (s, 3H, H7) 
13

C{
1
H}  NMR (CDCl3, 75.5 MHz, 300.0 K)  

187.7 (quaternary C-O, C10), 164.6 (d, quaternary C-F, C2 or C14,
1
J(

13
C-

19
F) = 

249.7 Hz), 162.7 (quaternary aromatic C, C11), 156.7 (d, quaternary C-F, C2 or C14, 

1
J(

13
C-

19
F) = 247.2 Hz), 136.0 (d, quaternary aniline C, C8 

4
J(

13
C-

19
F) = 2.5 Hz), 

129.4 (d, aromatic CH, C12 and C16, 
3
J(

13
C-

19
F) = 8.7 Hz), 127.5 (d, aniline CH,

 
C4, 

3
J(

13
C-

19
F) = 7.4 Hz), 127.1 (aniline CH, C6), 126.7 (d, quaternary aromatic C, C1, 

2
J(

13
C-

19
F) = 12.4 Hz). 124.4 (d, aniline CH, C5, 

4
J(

13
C-

19
F) = 3.7 Hz,), 116.4 (d, 

aniline CH, C3, 
2
J(

13
C-

19
F) = 19.8 Hz), 115.2 (d, aromatic CH, C13 and C15, 

2
J(

13
C-

19
F) = 21.0 Hz,), 94.3 (acnac CH, C9), 20.1 (d, aliphatic CH3, C7, 

5
J(

13
C-

19
F) = 2.5 

Hz) Analysis Calculated: C 70.32, H 4.79, N 5.13% Analysis Found: C 69.60, H 

4.80, N 4.90% ES MS (+): m/z 274.1 [M
+
] 
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9.6 Synthesis of Ruthenium Chloride Complexes 

9.6.1 Preparation of C26H27ClFNORu (1) 

3-Fluoro--ketoiminate (L12) (0.10 g, 0.392 mmol) was dissolved in 

dichloromethane (30 mL) and whilst stirring triethylamine (0.05 mL, 0.39 mmol) 

and [p-cymRuCl2]2 (0.12 g, 0.200 mmol) were added. The mixture was stirred at 

room temperature for 16 hours and then the solvent was removed under reduced 

pressure. The crude product was recrystallised from methanol (10 mL) and stored 

at 4°C for 2 days, yielding red crystals of 1 (0.12 g, 0.227 mmol, 58%). 

1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 

br. d, 1H, H22, 
3
J (

1
H-

1
H) = 8.5 Hz), 

7.61-7.56 (m, 2H, H25 and H26), 7.43 (br. tt, 2H, 

H13 and H15, 
3
J (

1
H-

1
H) = 6.9 Hz and 

3
J (

1
H-

1
H) 

= 1.6 Hz), 7.31-7.28 (m, 1H, H14), 7.26-7.22 (m, 

1H, H12 or H16), 7.10-7.07 (m, 1H, H12 or H16), 

7.07-7.03 (m, 1H, H24), 5.41 (s, 1H, H19), 5.35 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.0 

Hz), 5.17 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.4 Hz), 5.07 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.6 Hz), 3.69 (br. d, H3,4,6,7, 

3
J (

1
H-

1
H) = 6.0 Hz), 2.72-2.66 (br. sept, 1H, H8, 

CH(CH3)2), 2.03 (s, 3H, H1), 1.79 (s, 3H, H17), 1.21 (br. d, 3H, H9 or H10, 
3
J (

1
H-

1
H) = 6.8 Hz), 1.20 (br. d, 3H, H9 or H10, 

3
J (

1
H-

1
H) = 7.3 Hz) 

13
C{

1
H}  NMR 

(CDCl3, 75.5 MHz, 300.0 K) dquaternary C-O, C20, 
4
J (

13
C-

19
F) = 2.1 

Hz), 165.1 (quaternary C, C11 or C18), 162.7 (d, quaternary C-F, C23, 
1
J (

13
C-

19
F) = 

243.3 Hz), 157.2 (quaternary C, C11 or C18), 142.0 (d, quaternary C, C21 ipso, 
3
J 

(
13

C-
19

F) = 6.2 Hz), 129.7 (aniline CH, C13 or C15), 129.2 (d, aromatic CH, C25, 
3
J 

(
13

C-
19

F) = 7.2 Hz), 127.8 (aniline CH, C13 or C15), 126.0 (aniline CH, C14), 125.5 

(aniline CH, C12 or C16), 123.3 (aniline CH, C12 or C16), 122.4 (d, aromatic CH, 

C26, 
4
J (

13
C-

19
F) = 2.1 Hz), 116.1 (d, aromatic CH, C24, 

2
J (

13
C-

19
F) = 20.6 Hz), 

114.0 (d, aromatic CH, C22, 
2
J (

13
C-

19
F) = 22.7 Hz), 101.0 (quaternary C, C2 or C5), 

96.3 (quaternary C, C2 or C5), 94.8 (acnac CH, C19), 87.1 (p-cymene CH, C3,4,6,7), 

84.6 (p-cymene CH, C3,4,6,7), 84.5 (p-cymene CH, C3,4,6,7), 79.6 (p-cymene CH, 

C3,4,6,7), 30.5 (p-cymene CH, C8), 24.7 (aliphatic CH3, C17), 23.4 (p-cymene CH3, 

C9 or C10), 20.9 (p-cymene CH3, C9 or C10), 18.4 (p-cymene CH3, C1) Analysis 

Calculated: C 59.48, H 5.18, N 2.67% Analysis Found: C 59.40, H 5.20, N 

2.60% ES MS (+): m/z 490.11 [M
+
]-Cl 
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9.6.2 Preparation of C26H27ClFNORu (2) 

4-Fluoro--ketoiminate (L13) (0.13 g, 0.490 mmol) was dissolved in 

dichloromethane (30 mL), whilst stirring triethylamine (0.07 mL, 0.490 mmol) and 

[p-cymRuCl2]2 (0.15 g, 0.245 mmol) were added. The mixture was stirred for 16 

hours at room temperature and then the solvent was removed under reduced 

pressure. The crude product was recrystallised from methanol (10 mL), the residue 

was filtered and the solution stored at 4°C for 5 days, yielding red crystals of 2 

which were washed with THF (3 x 10 mL) (0.07 g, 0.133 mmol, 54%). 

1
H NMR (CDCl3, 500.57 MHz, 300.0 K) 

7.84 dd, 2H, H22 and H26, 
3
J (

1
H-

1
H)= 9.0 Hz 

and 
4
J (

1
H-

1
H)= 2.2 Hz), 7.75 (br. d, 1H, H14, 

3
J (

1
H-

1
H)= 9.0 Hz), 7.43 (br. t, 2H, H13 and 

H15, 
3
J (

1
H-

1
H)= 7.7 Hz), 7.26-7.22 (br. dd, 1H, 

H12 or H16, 
3
J (

1
H-

1
H)= 6.2 Hz and 

4
J (

1
H-

1
H) = 

2.1 Hz), 7.09 (br. d, 1H, H12 or H16, 
3
J (

1
H-

1
H)= 6.9 Hz), 7.03-6.99 (a. t (v. dd), 2H, 

H23 and H25, 
3
J (

1
H-

1
H) = 8.6 Hz and 

4
J (

1
H-

1
H) = 3.9 Hz), 5.37 (s, 1H, H19), 5.35 

(br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.0 Hz), 5.16 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 6.0 

Hz), 5.06 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.6 Hz), 3.68 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.6 Hz), 2.67 (br. sept, 1H, H8, 

3
J (

1
H-

1
H) = 6.9 Hz), 2.03 (s, 3H, H1), 1.79 (s, 

3H, H17), 1.20 (a. t (v.dd), 6H, H9 and H10, 
3
J (

1
H-

1
H) = 7.5 Hz) 

13
C{

1
H} NMR 

(CDCl3, 125.9 MHz, 300.0 K) quaternary C-O, C20), 164.8 (quaternary C-

N, C21), 163.6 (quaternary C-F, C24, 
1
J (

13
C-

19
F) = 247.4 Hz), 157.2 (quaternary C, 

C11 or C18), 137.5 (quaternary C, C11 or C18), 129.6 (aniline CH, C12 and C16), 

128.2 (aromatic CH, C22 and C26, 
3
J (

13
C-

19
F) = 7.3 Hz), 126.1 (aniline CH, C14), 

125.4 (aniline CH, C13 or C15), 123.9 (aniline CH, C13 or C15), 114.6 (aromatic CH, 

C23 and C25, 
2
J (

13
C-

19
F) = 21.7 Hz), 100.8 (quaternary C, C2 or C5), 96.2 

(quaternary C, C2 or C5), 94.2 (acnac CH, C19), 87.0 (p-cymene CH, C3,4,6,7), 84.6 

(p-cymene CH, C3,4,6,7), 84.5 (p-cymene CH, C3,4,6,7), 79.4 (p-cymene CH, C3,4,6,7), 

30.5 (p-cymene CH, C8), 24.7 (acnac CH3, C17), 23.6 (p-cymene CH3, C9 or C10), 

20.9 (p-cymene CH3, C9 or C10), 18.3 (p-cymene CH3, C1) Analysis Calculated: C 

59.48, H 5.18, N 2.67% Analysis Found: C 59.25, H 5.20, N 2.75% ES MS (+): 

m/z 490.11 [M
+
]-Cl 
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9.6.3 Preparation of C26H27Cl2NORu (3) 

4’-Chloro--ketoiminate (0.05 g, 0.184 mmol) was dissolved in dichloromethane 

(30 mL) and whilst stirring triethylamine (0.03 mL, 0.184 mmol) and [p-

cymRuCl2]2 (0.06 g, 0.092 mmol) were added. The mixture was stirred overnight at 

room temperature, and then the solvent removed under reduced pressure. The crude 

product was recrystallised from methanol (10 mL), and the residue filtered. The 

dark red solution was stored at 4°C for 2 days, yielding 3 as a red crystalline solid 

(0.06 g.0.114 mmol, 62%). 

1
H NMR (CDCl3, 500.23 MHz, 299.9 K) 

br. dt, 2H, H23 and H25, 
3
J (

1
H-

1
H)= 8.7 Hz and 

4
J (

1
H-

1
H)= 1.8 Hz ), 7.74 

(br. d, 1H, H13 or H15, 
3
J (

1
H-

1
H)= 7.5 Hz), 

7.43 (br. t, 2H, H12 and H16, 
3
J (

1
H-

1
H)= 8.3 

Hz), 7.30 (br. dt, 2H, H22 and H26, 
3
J (

1
H-

1
H)= 

8.7 Hz and 
4
J (

1
H-

1
H)= 2.0 Hz), 7.26-7.22 (br. t, 1H, H13 or H15, 

3
J (

1
H-

1
H)= 7.5 

Hz), 7.09 (br. d, 1H, H14, 
3
J (

1
H-

1
H) = 6.8 Hz), 5.39 (s, 1H, H19), 5.35 (br. d, 

H3,4,6,7, 
3
J (

1
H-

1
H) = 6.0 Hz), 5.16 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 6.0 Hz), 5.06 (br. 

d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.6 Hz), 3.68 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.6 Hz), 

2.67 (br. sept, 1H, H8, 
3
J (

1
H-

1
H) = 7.0 Hz), 2.03 (s, 3H, H1), 1.79 (s, 3H, H17), 1.21 

(d, 3H, CH3, H9 or H10, 
3
J (

1
H-

1
H) = 9.9 Hz), 1. 91 (d, 3H, CH3, H9 or H10, 

3
J (

1
H-

1
H) = 9.9 Hz) 

13
C{

1
H} NMR (CDCl3, 75.5 MHz, 300.1 K) quaternary C-

O, C20), 164.9 (quaternary C, C21), 157.2 (quaternary C-Cl, C24), 138.0 (quaternary 

C, C11 or C18), 135.2 (quaternary C, C11 or C18), 129.6 (aniline CH, C12 and C16), 

128.2 (aromatic CH, C23 or C25), 128.0 (aromatic CH, C23 or C25), 127.8 (aromatic 

CH, C22 and C26), 126.0 (aniline CH, C13 or C15), 125.5 (aniline CH, C13 or C15), 

123.3 (aniline CH, C14), 104.4 (quaternary C, C2 or C5), 96.3 (quaternary C, C2 or 

C5), 94.5 (acnac CH, C19), 87.1 (p-cymene CH, C3,4,6,7), 84.7 (p-cymene CH, 

C3,4,6,7), 84.6 (p-cymene CH, C3,4,6,7), 79.5 (p-cymene CH, C3,4,6,7), 30.5 (p-cymene 

CH, C8), 24.7 (acnac CH3, C17), 23.6 (p-cymene CH3, C9 or C10), 20.9 (p-cymene 

CH3, C9 or C10), 18.4 (p-cymene CH3, C1) Analysis Calculated: C 57.67, H 5.03, N 

2.59, Cl 13.09% Analysis Found: C 57.40, H 5.00, N 2.40, Cl 13.05% ES MS (+): 

m/z 506.08 [M
+
]-Cl 
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9.6.4 Preparation of C26H26Cl3NORu (4) 

2’,4’-Dichloro--ketoiminate (0.16 g, 0.523 mmol) was dissolved in 

dichloromethane (30 mL) and whilst stirring triethylamine (0.07 mL, 0.523 mmol) 

and [p-cymRuCl2]2 (0.16 g, 0.261 mmol) were added. The mixture was stirred for 

16 hours at room temperature, and then the solvent removed under reduced 

pressure. The crude product was recrystallised from methanol (10 mL) and after a 

period of 2 days yielded red crystals of 4, which were further washed with petrol 

(40-60°) (3 x 5 mL) (0.19 g. 0.330 mmol, 63%). 

1
H NMR (CDCl3, 500.13 MHz, 240.2 K) 

br. d, 1H, H14, 
3
J (

1
H-

1
H) = 7.8 Hz ), 

7.45 (br. d, 2H, H13 and H15, 
3
J (

1
H-

1
H)= 6.2 

Hz), 7.35 (br. d, 1H, H25, 
3
J (

1
H-

1
H)= 5.9 Hz), 

7.32 (br. d, 1H, H26, 
3
J (

1
H-

1
H) = 8.2 Hz), 

7.26-7.23 (m, 1H, H12 or H16), 7.20 (br. dd, 

1H, H23, 
3
J (

1
H-

1
H)= 8.2 Hz and 

4
J (

1
H-

1
H)= 1.9 Hz), 5.30 (br. d, 1H, H3,4,6,7), 5.22 

(br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.0 Hz), 5.01 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.2 

Hz), 4.93 (s, 1H, H19), 3.44 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.1 Hz), 2.74 (br. sept, 

1H, H8, 
3
J (

1
H-

1
H) = 6.6 Hz), 2.05 (s, 3H, H1), 1.74 (s, 3H, H17), 1.27 (br. d, 3H, H9 

or H10, 
3
J (

1
H-

1
H) = 6.7 Hz), 1. 22 (br. d, 3H, H9 or H10, 

3
J (

1
H-

1
H) = 6.7 Hz) 

13
C{

1
H} NMR (CDCl3, 125.8 MHz, 240.2 K) quaternary C-O, C20), 164.3 

(quaternary C, C21), 156.7 (quaternary C, C18), 138.5 (quaternary C, C11), 133.9 

(quaternary C-Cl, C22 or C24), 131.4 (quaternary C-Cl, C22 or C24), 130.9 (aromatic 

CH, C25 or C26), 129.6 (aniline CH, C13 or C15), 129.1 (aromatic CH, C23), 127.8 

(aniline CH, C13 or C15), 126.7 (aromatic CH, C25 or C26), 125.2 (aniline CH, C14), 

99.6 (quaternary C, C2 or C5), 98.1 (acnac CH, C19), 97.2 (quaternary C, C2 or C5), 

87.8 (p-cymene CH, C3,4,6,7), 83.4 (p-cymene CH, C3,4,6,7), 83.2 (p-cymene CH, 

C3,4,6,7), 79.9 (p-cymene CH, C3,4,6,7), 30.1 (p-cymene CH, C8), 24.6 (acnac CH3, 

C17), 23.8 (p-cymene CH3, C9 or C10), 21.1 (p-cymene CH3, C9 or C10), 18.8 (p-

cymene CH3, C1) Analysis Calculated: C 54.22, H 4.55, N 2.43, Cl 18.47% 

Analysis Found: C 54.05, H 4.65, N 2.35, Cl 18.45% ES MS (+): m/z 540.04 

[M
+
]-Cl 
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9.6.5 Preparation of C26H26Cl3NORu (5) 

2’,5’-Dichloro--ketoiminate (L14) (0.28 g, 0.912 mmol) was dissolved in 

dichloromethane (30 mL) and whilst stirring triethylamine (0.13 mL, 0.912 mmol) 

and [p-cymRuCl2]2 (0.28 g, 0.457 mmol) were added. The mixture was stirred for 

16 hours at room temperature, and then the solvent removed under reduced 

pressure. The crude product was recrystallised from methanol (10 mL) and after a 

period of 2 days yielded red crystalline precipitate of 5 which was further washed 

with THF (3 x 5 mL) (0.32 g. 0.558 mmol, 61%) 

1
H NMR (CDCl3, 300.13 MHz, 295.5 K) 

m, 1H, H14), 7.47-7.43 (br. d, 2H, 

H13 and H15), 7.42 (m, 1H, H23 or H24), 7.25 (d, 

2H, H12 and H16, 
3
J (

1
H-

1
H)= 7.0 Hz), 7.21-7.16 

(m, 1H, H26), 7.13-7.08 (m, 1H, H23 or H24), 

5.28 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.2 Hz), 

5.14 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.2 Hz), 5.02 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 

5.5 Hz), 4.94 (s, 1H, H19), 3.64 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.7 Hz), 2.76 (br. 

sept, 1H, H8, 
3
J (

1
H-

1
H) = 7.0 Hz), 2.07 (s, 3H, H1), 1.74 (s, 3H, H17), 1.28 (br. d, 

3H, CH3, H9 or H10, 
3
J (

1
H-

1
H) = 6.8 Hz), 1. 22 (br. d, 3H, CH3, H9 or H10, 

3
J (

1
H-

1
H) = 7.0 Hz) 

13
C{

1
H} NMR (CDCl3, 75.5 MHz, 295.6 K) quaternary C-

O, C20), 164.9 (quaternary C, C21), 156.9 (quaternary C-Cl, C22 and C25), 141.7 

(aromatic quaternary C, C11 or C18), 132.3 (quaternary C, C11 or C18), 130.6 (aniline 

CH, C13 or C15), 130.2 (aromatic CH, C23 or C24), 129.0 (aromatic CH, C26), 127.0 

(aniline CH, C13 or C15), 125.8 (aniline CH, C16 and C16), 125.6 (aniline CH, C14), 

123.2 (aromatic CH, C23 or C24), 100.7 (quaternary C, C2 or C5), 98.5 (acnac CH, 

C19), 97.2 (quaternary C, C2 or C5), 87.0 (p-cymene CH,C3,4,6,7), 83.7 (p-cymene 

CH, C3,4,6,7), 83.5 (p-cymene CH, C3,4,6,7), 80.4 (p-cymene CH, C3,4,6,7), 30.3 (p-

cymene CH, C8), 24.3 (acnac CH3, C17), 23.5 (p-cymene CH3, C9 or C10), 21.4 (p-

cymene CH3, C9 or C10), 18.6 (p-cymene CH3, C1) Analysis Calculated: C 54.22, 

H 4.55, N 2.43, Cl 18.47% Analysis Found: C 53.95, H 4.50, N 2.35, Cl 18.70% 

ES MS (+): m/z 540.05 [M
+
]-Cl 
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9.6.6 Preparation of C26H25Cl4NORu (6) 

2’,3’,4’-Trichloro--ketoiminate (L16) (0.11 g, 0.327 mmol) was dissolved in 

dichloromethane (30 mL) and whilst stirring triethylamine (0.05 mL, 0.327 mmol) 

and [p-cymRuCl2]2 (0.10 g, 0.163 mmol) were added. The mixture was stirred for 

16 hours at room temperature, and then the solvent removed under reduced 

pressure. The crude product was recrystallised from methanol (10 mL) and stored 

at 4°C for 1 day, yielding red crystals of 6 (0.06 g. 0.098 mmol, 60%). 

 
1
H NMR (CDCl3, 300.13 MHz, 300.0 K) 

dd, 1H, H26, 
3
J (

1
H-

1
H)= 7.3 Hz, 

4
J (

1
H-

1
H)= 1.6 Hz), 7.45 (br. t, 2H, H13 and H15, 

3
J 

(
1
H-

1
H)= 8.5 Hz), 7.34 (d, 1H, H25, 

3
J (

1
H-

1
H)= 

8.3 Hz), 7.27-7.22 (m, 2H, H12 and H16), 7.14-

7.09 (m, 1H,  H14), 5.27 (br. d, 1H, H3,4,6,7, 
3
J 

(
1
H-

1
H) = 6.2 Hz), 5.12 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 6.2 Hz), 5.03 (br. d, 1H, 

H3,4,6,7, 
3
J (

1
H-

1
H) = 5.7 Hz), 4.88 (s, 1H, H19), 3.63 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 

5.7 Hz), 2.76 (br. sept, 1H, H8, 
3
J (

1
H-

1
H) = 7.0 Hz), 2.07 (s, 3H, H1), 1.74 (s, 3H, 

H17), 1.30 (d, 3H, CH3, H9 or H10, 
3
J (

1
H-

1
H) = 6.8 Hz), 1. 23 (d, 3H, CH3, H9 or 

H10, 
3
J (

1
H-

1
H) = 7.0 Hz) 

13
C{

1
H} NMR (CDCl3, 75.5 MHz, 295.6 K) 

quaternary C-O, C20), 165.0 (quaternary C, C21), 156.9 (quaternary C, 

C18), 141.0 (quaternary C, C11), 133.4 (quaternary C-Cl, C22-24), 131.5 (quaternary 

C-Cl, C22-24), 130.9 (quaternary C-Cl, C22-24), 129.7 (aniline CH, C13 and C15), 

128.5 (aniline CH, C12 or C16), 128.1 (aniline CH, C12 or C16), 127.8 (aromatic CH, 

C25), 125.6 (aromatic CH, C25), 123.2 (aniline CH, C14), 100.8 (quaternary C, C2 or 

C5), 98.5 (acnac CH, C19), 97.2 (quaternary C, C2 or C5), 87.0 (p-cymene 

CH,C3,4,6,7), 83.8 (p-cymene CH, C3,4,6,7), 83.7 (p-cymene CH, C3,4,6,7), 80.4 (p-

cymene CH, C3,4,6,7), 30.3 (p-cymene CH, C8), 24.3 (acnac CH3, C17), 23.6 (p-

cymene CH3, C9 or C10), 21.4 (p-cymene CH3, C9 or C10), 18.6 (p-cymene CH3, C1) 

Analysis Calculated: C 51.16, H 4.13, N 2.29, Cl 23.23 % Analysis Found: C 

51.00, H 4.15, N 2.20, Cl 23.20% ES MS (+): m/z 574.00 [M
+
]-Cl 
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9.6.7 Preparation of C26H27BrClNORu (7) 

3’-Bromo--ketoiminate (L19) (0.24 g, 0.759 mmol) was dissolved in 

dichloromethane (30 mL) and whilst stirring triethylamine (0.11 mL, 0.759 mmol) 

and [p-cymRuCl2]2 (0.23 g, 0.380 mmol) were added. The mixture was stirred for 

16 hours at room temperature, and then the solvent removed under reduced 

pressure. The crude product was recrystallised from methanol (10 mL) and stored 

at 4°C for 2 days, yielding a red crystalline solid of 7, which was further washed 

with THF (3 x 5mL) (0.31 g, 0.539 mmol, 71%). 

1
H NMR (CDCl3, 500.23 MHz, 300.0 K) 

br. t, 1H, H22, 
4
J (

1
H-

1
H) = 1.6 Hz), 7.76-

7.73 (br. d, 2H, H12 and H16, 
3
J (

1
H-

1
H) = 8.0 

Hz), 7.48 (br. d, 1H, H24, 
3
J (

1
H-

1
H)= 7.6 Hz), 

7.43 (br. t, 2H, H13 and H15, 
3
J (

1
H-

1
H)= 7.5 Hz), 

7.24 (br. t, 1H,  
3
J (

1
H-

1
H)= 7.6 Hz), 7.20 (t, 1H, 

3
J (

1
H-

1
H) = 7.9 Hz), 7.09 (d, 1H, H25, 

3
J (

1
H-

1
H) = 6.4 Hz), 5.38 (s, 1H, H19), 5.35 

(br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.4 Hz), 5.17 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 6.0 

Hz), 5.07 (br. d, 1H, p-cymene CH, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.6 Hz), 3.69 (br. d, 1H, 

H3,4,6,7, 
3
J (

1
H-

1
H) = 5.6 Hz), 2.67 (br. sept, 1H, H8), 2.03 (s, 3H, H1), 1.79 (s, 3H, 

H17), 1.22 (d, 3H, H9 or H10, 
3
J (

1
H-

1
H) = 7.1 Hz), 1.20 (d, 3H, CH3, H9 or H10, 

3
J 

(
1
H-

1
H) = 7.1 Hz) 

13
C{

1
H} NMR (CDCl3, 125.9 MHz, 301.2 K) 

quaternary C-O, C20), 165.1 (quaternary C, C21), 157.1 (quaternary C-Br, 

C23), 141.7 (quaternary  C, C11 or C18), 132.1 (aromatic CH, C24), 130.0 (aromatic 

CH, C22 and C26), 129.7 (aniline CH, C13 or C15), 129.3 (aniline CH, C14), 127.8 

(aniline CH, C13 or C15), 125.4 (aniline CH, C12 or C16), 125.4 (aniline CH, C12 or 

C16), 123.3 (aromatic CH, C25), 122.2 (quaternary C, C2 or C5), 101.0 (quaternary 

C, C2 or C5), 94.8 (acnac CH, C19), 87.1 (p-cymene CH, C3,4,6,7), 84.6 (p-cymene 

CH, C3,4,6,7), 84.4 (p-cymene CH, C3,4,6,7), 79.4 (p-cymene CH, C3,4,6,7), 30.5 (p-

cymene CH, C8), 24.7 (acnac CH3, C17), 23.3 (p-cymene CH3, C9 or C10), 21.0 (p-

cymene CH3, C9 or C10), 18.4 (p-cymene CH3, C1) Analysis Calculated: C 53.30, 

H 4.64, N 2.39% Analysis Found: C 52.90, H 4.60, N 2.35% ES MS (+): m/z 

522.03 [M
+
]-Cl (

79
Br) 
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9.6.8 Preparation of C26H27BrClNORu (8) 

4’-Bromo--ketoiminate (0.15 g, 0.490 mmol) was dissolved in dichloromethane 

(30 mL) and whilst stirring triethylamine (0.07 mL, 0.490 mmol) and [p-

cymRuCl2]2 (0.15 g, 0.245 mmol) were added. The mixture was stirred for 16 

hours at room temperature, and then the solvent removed under reduced pressure. 

The crude product was recrystallised from methanol (10 mL) and stored at 4°C. for 

2 days, yielding a red crystalline solid of 8, which was further washed with THF (3 

x 10 mL) (0.19 g, 0.324 mmol, 66%). 

1
H NMR (CDCl3, 300 MHz, 300 K) 7.76-

7.70m, 3H, H22, H26 and H13 or 15), 7.49-7.44 

(m, 3H, H23, H25 and H13 or 15), 7.42 (br. d, 1H, 

H12 or H16, 
3
J (

1
H-

1
H)= 7.6 Hz), 7.23 (a. br. t, 

1H, H12 or H16, 
3
J (

1
H-

1
H)= 7.4 Hz), 7.09 (br. 

d, 1H, H14, 
3
J (

1
H-

1
H)= 6.4 Hz), 5.39 (s, 1H, 

H19), 5.35 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.2 Hz), 5.16 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 6.2 Hz), 5.07 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.3 Hz), 3.68 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.7 Hz), 2.66 (br. sept, 1H, H8, 

3
J (

1
H-

1
H) = 6.9 Hz), 2.02 (s, 3H, H1), 

1.79 (s, 3H, H17), 1.20 (a. t, 6H, H9 and H10, 
3
J (

1
H-

1
H) = 6.3 Hz) 

13
C{

1
H} NMR 

(CDCl3, 75 MHz, 300 K) quaternary C-O, C20), 157.2 (quaternary C, C21), 

138.7(quaternary C-Br, C24), 135.2 (quaternary C, C11 or C18), 130.9 (aromatic CH, 

C23 and C25), 129.6 (aniline CH, C13 or C15), 128.5 (aromatic CH, C22 and C26), 

127.8 (aniline CH, C12 or C16), 126.0 (aniline CH, C13 or C15), 125.5 (aniline CH, 

C12 or C16), 123.3 (aniline CH, C14), 100.9 (quaternary C, C2 or C5), 96.2 

(quaternary C, C2 or C5), 94.4 (acnac CH, C19), 87.1 (p-cymene CH, C3,4,6,7), 84.6 

(p-cymene CH, C3,4,6,7), 84.5 (p-cymene CH, C3,4,6,7), 79.4 (p-cymene CH, C3,4,6,7), 

30.5 (p-cymene CH, C8), 24.7 (acnac CH3, C17), 23.3 (p-cymene CH3, C9 or C10), 

20.9 (p-cymene CH3, C9 or C10), 18.4 (p-cymene CH3, C1) Analysis Calculated: C 

53.30, H 4.64, N 2.39% Analysis Found: C 53.20, H 4.65, N 2.30% ES MS (+): 

m/z 552.03 [M
+
]-Cl (

79
Br) 

 

9.6.9 Preparation of C26H27ClINORu (9) 

4’-Iodo--ketoiminate (L20) (0.13 g, 0.405 mmol) was dissolved in 

dichloromethane (30 mL) and whilst stirring triethylamine (0.06 mL, 0.405 mmol) 

and [p-cymRuCl2]2 (0.13 g, 0.205 mmol) were added. The mixture was stirred for 
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16 hours at room temperature, and then the solvent removed under reduced 

pressure. The crude product was washed recrystallised from methanol (10 mL) and 

stored at 4°C for 2 days, yielding red crystals of 9 (0.16 g, 0.2534 mmol, 62%) 

1
H NMR (CDCl3, 300 MHz, 300 K) 7.74 d, 

2H, H26 and H1, 
3
J (

1
H-

1
H)= 8.3 Hz ), 7.49-7.44 

(m, 3H, H23, H25 and H13 or 15), 7.42 (br. d, 1H, 

H12 or H16, 
3
J (

1
H-

1
H)= 7.6 Hz), 7.23 (a. br. t, 

1H, H12 or H16, 
3
J (

1
H-

1
H)= 7.4 Hz), 7.09 (br. d, 

1H, H14, 
3
J (

1
H-

1
H)= 6.4 Hz), 5.39 (s, 1H, H19), 

5.35 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.2 Hz), 5.16 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 

6.2 Hz), 5.07 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.3 Hz), 3.68 (br. d, 1H, H3,4,6,7, 

3
J 

(
1
H-

1
H) = 5.7 Hz), 2.66 (br. sept, 1H, H8, 

3
J (

1
H-

1
H) = 6.9 Hz), 2.02 (s, 3H, H1), 

1.79 (s, 3H, H17), 1.20 (a. t, 6H, H9 and H10, 
3
J (

1
H-

1
H) = 6.3 Hz) 

13
C{

1
H} NMR 

(CDCl3, 75 MHz, 300 K) quaternary C-O, C20), 157.2 (quaternary C, C21), 

137.0 (quaternary C-I, C24), 135.2 (quaternary C, C11 or C18), 130.9 (aromatic CH, 

C23 and C25), 129.7 (aniline CH, C13 or C15), 128.7 (aromatic CH, C22 and C26), 

127.8 (aniline CH, C12 or C16), 126.0 (aniline CH, C13 or C15), 125.5 (aniline CH, 

C12 or C16), 123.3 (aniline CH, C14), 100.9 (quaternary C, C2 or C5), 95.7 

(quaternary C, C2 or C5), 94.5 (acnac CH, C19), 87.1 (p-cymene CH, C3,4,6,7), 84.7 

(p-cymene CH, C3,4,6,7), 84.5 (p-cymene CH, C3,4,6,7), 79.5 (p-cymene CH, C3,4,6,7), 

30.5 (p-cymene CH, C8), 24.7 (acnac CH3, C17), 23.4 (p-cymene CH3, C9 or C10), 

21.0 (p-cymene CH3, C9 or C10), 18.4 (p-cymene CH3, C1) Analysis Calculated: C 

49.34, H 4.30, N 2.21% Analysis Found: C 48.80, H 4.30, N 2.20% ES MS (+): 

m/z 632.85 [M
+
] 

 

9.6.10 Preparation of C28H32ClNO2Ru (10) 

4-Ethoxy--ketoiminate (L25) (0.14 g, 0.490 mmol) was dissolved in 

dichloromethane (30 mL) and whilst stirring triethylamine (0.07 mL, 0.490 mmol) 

and [p-cymRuCl2]2 (0.15 g, 0.245 mmol) were added. The mixture was stirred for 

16 hours at room temperature, and then the solvent removed under reduced 

pressure. The crude product was washed with petrol (40-60°) (3 x 5 mL) and 

recrystallised from methanol (10 mL) and stored at 4°C for 2 days, yielding red 

crystals of 9, which were further washed with petrol (40-60°) (3 x 5 mL) (0.16 g, 

0.294 mmol, 60%). 
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1
H NMR (CDCl3, 500.57 MHz, 300.7 K) 

br. d, 2H, H22 and H26, 
3
J (

1
H-

1
H)= 8.7 Hz), 7.76 (br. d, 1H, H14, 

3
J (

1
H-

1
H)= 8.2 Hz), 7.42 (br. t, 2H, H13 and 

H15, 
3
J (

1
H-

1
H)= 7.6 Hz), 7.25-7.20 (m, 

1H, H12 or H16), 7.10 (br. d, 1H, H12 or 

H16, 
3
J (

1
H-

1
H)= 7.4 Hz), 6.84 (br. d, 2H, H23 and H25, 

3
J (

1
H-

1
H)= 8.7 Hz), 5.39 (s, 

1H, H19), 5.34 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.0 Hz), 5.16 (br. d, 1H, H3,4,6,7, 

3
J 

(
1
H-

1
H) = 6.0 Hz), 5.05 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.0 Hz), 4.07 (q, 2H, H27, 

3
J (

1
H-

1
H) = 6.9 Hz), 3.69 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.0 Hz), 2.68 (br. sept, 

1H, H8, 
3
J (

1
H-

1
H)= 7.4 Hz), 2.03 (s, 3H, H1), 1.78 (s, 3H, H17), 1.43 (t, 3H, H28, 

3
J 

(
1
H-

1
H) = 6.9 Hz), 1.24-1.16 (br. t, 6H, H9 and H10, 

3
J (

1
H-

1
H) = 6.9 Hz) 

13
C{

1
H} 

NMR (CDCl3, 125.5 MHz, 300.7 K) quaternary C-O, C20), 164.3 

(quaternary C, C21), 160.2 (quaternary C-O, C24), 157.4 (quaternary C, C11 or C18), 

131.(quaternary C, C11 or C18), 128.5 (aromatic CH, C22 and C26), 127.7 (aniline 

CH, C13 and C15), 126.3 (aniline CH, C14), 125.3 (aniline CH, C12 or C16), 123.7 

(aniline CH, C12 or C16), 113.6 (aromatic CH, C23 and C25), 100.7 (quaternary C, C2 

or C5), 96.1 (quaternary C, C2 or C5), 93.5 (acnac CH, C19), 87.1 (p-cymene CH, 

C3,4,6,7), 84.6 (p-cymene CH, C3,4,6,7), 84.4 (p-cymene CH, C3,4,6,7), 79.4 (p-cymene 

CH, C3,4,6,7), 63.4 (ethoxy CH2, C27), 30.5 (p-cymene CH, C8), 24.7 (acnac CH3, 

C17), 23.4 (p-cymene CH3, C9 or C10), 21.0 (p-cymene CH3, C9 or C10), 18.4 (p-

cymene CH3, C1), 14.8 (ethoxy CH3, C28) Analysis Calculated: C 61.03, H 5.85, N 

2.54, Cl 6.43% Analysis Found: C 59.65, H 5.85, N 2.55, Cl I/m% ES MS (+): 

m/z 516.15 [M
+
]-Cl 

 

2.1.1 Preparation of C27H30ClNORu (11)  

4’-Methyl--ketoiminate (L11) (0.05 g, 0.187 mmol) was dissolved in 

dichloromethane (30 mL) and whilst stirring triethylamine (0.03 mL, 0.187 mmol) 

and [p-cymRuCl2]2 (0.06 g, 0.094 mmol) were added. The mixture was stirred for 

16 hours at room temperature, and then the solvent removed under reduced 

pressure. The crude product was recrystallised from methanol (10 mL) and stored 

at 4°C for 2 days, yielding red crystals of 11 (0.06 g, 0.115 mmol, 62%) 
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1
H NMR (CDCl3, 300 MHz, 300 K) 

br. d, 2H, H22 and H26, 
3
J (

1
H-

1
H)= 8.3 

Hz), 7.42 (br. t, 2H, H13 and H15, 
3
J (

1
H-

1
H)= 

7.7 Hz), 7.25-7.20 (m, 2H, H12 or H16), 7.14 

(br. d, 2H, H23 or H25, 
3
J (

1
H-

1
H)= 7.9 Hz), 

7.09 (br. d, 1H, H24, 
3
J (

1
H-

1
H)= 7.2 Hz), 5.42 

(s, 1H, H19), 5.35 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.0 Hz), 5.17 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 6.0 Hz), 5.06 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.7 Hz), 3.69 (br. d, 1H, 

H3,4,6,7, 
3
J (

1
H-

1
H) = 5.7 Hz), 2.68 (br. sept, 1H, H8, 

3
J (

1
H-

1
H)= 6.9 Hz), 2.37 (s, 

3H, methyl H27), 2.03 (s, 3H, H1), 1.79 (s, 3H, H17), 1.24-1.16 (m, 6H, H9 and H10) 

13
C{

1
H} NMR (CDCl3, 75 MHz, 300 K) quaternary C-O, C20), 164.5 

(quaternary C, C21), 157.4 (quaternary C, C18), 139.4 (quaternary C, C11), 

136.8.(quaternary C, C24), 128.5 (aromatic CH, C23 and C25), 127.6 (aniline CH, 

C13 and C15), 126.9 (aromatic CH, C22 and C26), 125.3 (aniline CH, C12 or C16), 

123.5 (aniline CH, C14), 100.7 (quaternary C, C2 or C5), 96.2 (quaternary C, C2 or 

C5), 94.0 (acnac CH, C19), 87.2 (p-cymene CH, C3,4,6,7), 84.6 (p-cymene CH, 

C3,4,6,7), 84.4 (p-cymene CH, C3,4,6,7), 79.4 (p-cymene CH, C3,4,6,7), 30.4 (p-cymene 

CH, C8), 24.7 (acnac CH3, C17), 23.4 (p-cymene CH3, C9 or C10), 21.4 (methyl CH3, 

C27), 20.9 (p-cymene CH3, C9 or C10), 18.4 (p-cymene CH3, C1) Analysis 

Calculated: C 62.24, H 5.80, N 2.69, Cl 6.80% Analysis Found: C 62.10, H 5.85, 

N 2.65, Cl 6.85% ES MS (+): m/z 486.14 [M
+
]-Cl 

 

9.6.11 Preparation of C30H30ClNORu (12) 

3’-Nathyl--ketoiminate (L28) (0.08 g, 0.281 mmol) was dissolved in 

dichloromethane (30 mL) and whilst stirring triethylamine (0.04 mL, 0.281 mmol) 

and [p-cymRuCl2]2 (0.09 g, 0.141 mmol) were added. The mixture was stirred for 

16 hours at room temperature, and then the solvent removed under reduced 

pressure. The crude product was recrystallised from methanol (10 mL) and stored 

at 4°C for 2 days, yielding red crystals of 12 (0.10 g, 0.172 mmol, 61%) 
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1
H NMR (CDCl3, 300 MHz, 300 K) 

m, 3H, aromatic CH), 7.53-7.36 

(m, 9H, aromatic CH), 5.60 (s, 1H, H19), 5.56 

(br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.2 Hz), 5.49 

(br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.5 Hz), 5.27 

(br. d, 2H, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.7 Hz), 3.00-

2.90 (m, 1H, H8), 2.13 (s, 3H, H1), 1.57 (s, 3H, H17), 1.35 (dd, 6H, H9 and H10, 
3
J 

(
1
H-

1
H) = 6.9 Hz and 

3
J (

1
H-

1
H) = 3.9Hz) 

13
C{

1
H} NMR (CDCl3, 75 MHz, 300 K) 

quaternary C-O, C20), 154.3 (quaternary C, C21), 148.3 (quaternary C, C11 

or C18), 133.7.(quaternary C, C11 or C18), 126.7 (quaternary C, C22 or C27), 125.4 

(quaternary C, C22 or C27), 129.8 (aromatic CH), 127.8 (aromatic CH), 126.4 

(aromatic CH), 126.0 (aromatic CH), 125.0 (aromatic CH), 124.6 (aromatic CH), 

100.8 (quaternary C, C2 or C5), 99.8 (acnac CH, C19), 97.5 (quaternary C, C2 or 

C5), 84.3 (p-cymene CH, C3,4,6,7), 82.5 (p-cymene CH, C3,4,6,7), 79.1 (p-cymene CH, 

C3,4,6,7), 79.0 (p-cymene CH, C3,4,6,7), 30.7 (p-cymene CH, C8), 27.9 (acnac CH3, 

C17), 22.4 (p-cymene CH3, C9 or C10), 22.3 (p-cymene CH3, C9 or C10), 17.9 (p-

cymene CH3, C1) Analysis Calculated: C 64.68, H 5.43, N 2.51, Cl 6.36% 

Analysis Found: C 61.70, H 5.35, N 1.55, Cl 7.30% ES MS (+): m/z 522.1 [M
+
]-

Cl  

 

9.6.12 Preparation of C30H30ClNORu (13) 

4’-Fluoro-2,4-difluoroaniline--ketoiminate (L29) (0.14 g, 0.512 mmol) was 

dissolved in dichloromethane (30 mL) and whilst stirring triethylamine (0.07 mL, 

0.512 mmol) and [p-cymRuCl2]2 (0.16 g, 0.256 mmol) were added. The mixture 

was stirred for 16 hours at room temperature, and then the solvent removed under 

reduced pressure. The crude product was recrystallised from methanol (10 mL) and 

stored at 4°C for 2 days, yielding red crystals of 13, which were further washed 

with petrol (40-60°) (3 x 5 mL) (0.18 g, 0.317 mmol, 62%). 

1
H NMR (CDCl3, 300.13 MHz, 300.0 K) 

7.88-7.81 m, 2H, H22 and H26), 7.65 (ddd, 

1H, H16, 
3
J (

1
H-

19
F)= 9.3 Hz, 

4
J (

1
H-

19
F)= 6.2 

Hz and 
4
J (

1
H-

1
H)= 3.2 Hz), 7.18 (td, 1H, H13, 

3
J (

1
H-

19
F)= 9.1 Hz and 

3
J (

1
H-

1
H)= 4.8 Hz), 

7.06-6.97 (m, 2H, H23 and H25), 6.93 (ddt, 1H, 
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H14, 
3
J (

1
H-

19
F) = 9.1 Hz, 

3
J (

1
H-

1
H)= 7.2 Hz and 

4
J (

1
H-

19
F)= 3.5 Hz), 5.43 (s, 1H, 

H19), 5.41 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 5.7 Hz), 5.24 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.7 Hz), 5.18 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 6.2 Hz), 3.86 (br. d, 1H, H3,4,6,7, 

3
J (

1
H-

1
H) = 5.5 Hz), 2.65 (br. sept, 1H, H8, 

3
J (

1
H-

1
H)= 7.0 Hz), 2.05 (s, 3H, H1), 

1.82 (br. d, 3H, H17, 
5
J (

1
H-

19
F) = 0.8 Hz), 1.18 (dd (vt), 6H, H9 and H10, 

3
J (

1
H-

1
H) 

= 7.3 Hz) 
13

C{
1
H} NMR (CDCl3, 75.5 MHz, 300.1 K) 166.1 quaternary C-O, 

C20), 163.8 (d, quaternary aromatic C-F, C24, 
1
J (

13
C-

19
F) = 247.2 Hz), 161.4 

(quaternary C, C21), 155.0 (d, quaternary aniline C-F, C12 or C15, 
1
J (

13
C-

19
F) = 

213.9 Hz), 152.6 (d, quaternary aniline C-F, C12 or C15, 
1
J (

13
C-

19
F) = 225.0 Hz), 

135.4 (quaternary C, C18), 131.3 (d, quaternary aromatic C, C11, 
2
J (

13
C-

19
F) = 

119.9 Hz) 128.9 (aromatic CH, C22 and C26, 
3
J (

13
C-

19
F) = 8.7 Hz), 115.8 (d, 

aniline CH, C13, C14 or C16, 
2
J (

13
C-

19
F) = 23.5 Hz), 115.6 (d, aniline CH, C13, C14 

or C16, 
2
J (

13
C-

19
F) = 23.5 Hz), 114.7 (aromatic CH, C23 and C25, 

2
J (

13
C-

19
F) = 

22.3 Hz), 113.3 (d, aniline CH, C13, C14 or C16, 
2
J (

13
C-

19
F) = 16.1 Hz), 101.1 

(quaternary C, C2 or C5), 96.1 (quaternary C, C2 or C5), 94.2 (acnac CH, C19), 86.9 

(p-cymene CH, C3,4,6,7), 84.9 (p-cymene CH, C3,4,6,7), 84.3 (p-cymene CH, C3,4,6,7), 

78.5 (p-cymene CH, C3,4,6,7), 30.6 (p-cymene CH, C8), 23.9 (p-cymene CH3, C9 or 

C10), 23.2 (p-cymene CH3, C9 or C10), 20.7 (acnac CH3, C17), 18.3 (p-cymene CH3, 

C1) Analysis Calculated: C 55.66, H 4.49, N 2.50% Analysis Found: C 55.45, H 

4.50, N 2.45% ES MS (+): m/z 526.09 [M
+
]-Cl 

 

9.7 Ruthenium and Iridium Adaptations 

9.7.1 Preparation of RuC16H21Cl2NO (14) 

Aniline (0.03 mL, 0.355 mmol) was added to dichloromethane (30 mL) and whilst 

stirring Et3N (0.05 mL, 0.356 mmol) and [p-cymRuCl2]2 (0.11g, 0.180 mmol) were 

added. The mixture was stirred for 16 hours and then the solvent removed under 

reduced pressure. The crude product was recrystallised from methanol (10 mL) and 

stored at 4°C for 3 days, yielding red crystals of 14. These were filtered and excess 

precipitate washed with benzene (10 mL) (0.08 g, 0.210 mmol, 59%). This 

complex has previously been prepared,
11

 although the X-ray crystal structure has 

been reported in Chapter 5, 
1
H NMR and microanalyis have been reported here to 

prove synthesis. 
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1
H NMR (CDCl3, 500 MHz, 300.0 K) 7.41 br. t, 2H, 

H13 and H15, 
3
J (

1
H-

1
H)= 7.3 Hz), 7.31 (br. d, 2H, H12 

and H16, 
3
J (

1
H-

1
H)= 7.6 Hz), 7.26-7.23 (m, 1H, H4), 

5.03 (br. d, 2H, H3 and H7, 
3
J (

1
H-

1
H) = 5.8 Hz), 4.89 

(br. d, 2H, H4 and H6, 
3
J (

1
H-

1
H) = 6.1 Hz), 4.75 (br. s, 

2H, NH2), 2.90 (br. sept, 1H, H8, 
3
J (

1
H-

1
H)= 6.7 Hz), 

2.16 (s, 3H, H1), 1.26 (br. d, 6H, H9 and H10, 
3
J (

1
H-

1
H) = 7.0 Hz) Analysis 

Calculated: C 55.35, H 5.70, N 2.93, Cl 14.37% Analysis Found: C 54.85, H 

5.50, N 3.10, Cl 13.00%  

 

9.7.2 Preparation of RuC25H25ClNO (15) 

Diphenyl--ketoiminate (0.08 g, 0.360 mmol) was added to dichloromethane (30 

mL), and whilst stirring Et3N (0.05 mL, 0.360 mmol) and [p-cymRuCl2]2 (0.11g, 

0.180 mmol) were added. The mixture was stirred for 16 hours and then the solvent 

removed until reduced pressure. The crude product was recrystallised from 

methanol (10 mL) and stored at 4°C and after a period of several days yielded red 

crystals of 15 (0.08g, 0.211 mmol). 

1
H NMR (CDCl3, 300 MHz, 300.0 K) 7.90-7.85 

m, 2H, H12-16 or H21-25), 7.61-7.56 (m, 2H, H12-16 or 

H21-25), 7.45-7.30 (m, 2H, H12-16 or H21-25), 5.72 (d, 

1H, NH, 
4
J (

1
H-

1
H) = 2.3 Hz), 5.45 (br. s, 2H, 

H3,4,6,7), 5.21 (m, 2H, H3,4,6,7), 2.85 (br. sept, 1H, H8, 

3
J (

1
H-

1
H)= 7.0 Hz), 2.30 (s, 3H, H1), 1.32 (br. d, 

6H, H9 and H10, 
3
J (

1
H-

1
H) = 6.8 Hz) 

13
C{

1
H} NMR 

(CDCl3, 75 MHz, 300.0 K) quaternary C-O, C19), 206.4 (quaternary C-O, 

C20), 174.5 (quaternary C, C17), 159.3 (quaternary C, C11), 129.7 (aromatic CH, 

C12-16 or C21-25), 128.7 (aromatic CH, C12-16 or C21-25), 127.8 (aromatic CH, C12-16 or 

C21-25), 126.9 (aromatic CH, C12-16 or C21-25), 126.2 (aromatic CH, C12-16 or C21-25), 

100.9 (quaternary p-cymene C, C2 or C5), 99.8 (quaternary p-cymene C, C2 or C5), 

99.3 (acnac CH, C18), 91.8 (p-cymene CH, C3,4,6,7), 84.9 (p-cymene CH, C3,4,6,7), 

30.7 (p-cymene CH, C8), 25.2 (p-cymene CH3, C9 or C10), 18.3 (p-cymene CH3, C1) 

Analysis Calculated: C 60.91, H 5.32, N 2.84, Cl 7.19% Analysis Found: C 

60.90, H 5.30, N 3.10, Cl 7.40% ES MS (+): m/z 456.33 [M
+
]-Cl 
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9.7.3 Preparation of RuC20H22ClFO2 (16) 

3’-Fluoro--diketonate (0.09 g, 0.49 mmol) dissolved in dichloromethane (30 mL) 

and whilst stirring triethylamine (0.07 mL, 0.49 mmol) and [p-cymRuCl2]2 (0.15 g, 

0.245 mmol) were added. The mixture was stirred at room temperature for 16 

hours, and then the solvent removed under reduced pressure. The crude product 

was recrystallised from methanol at 4°C for 2 days, yielded red crystals of 16 (0.18 

g, 0.401 mmol, 82%). 

1
H NMR (CDCl3, 500.13 MHz, 299.2 K) br. 

d, 1H, H20, 
3
J (

1
H-

1
H) = 7.8 Hz), 7.54 (br. dt, 1H, 

H16, 
3
J (

1
H-

19
F) = 9.3 Hz and 

4
J (

1
H-

1
H) = 2.6 Hz), 

7.30 (dt, 1H, H19, 
3
J (

1
H-

1
H) = 7.8 Hz and 

3
J (

1
H-

1
H) = 5.7 Hz), 7.11 (td, 1H, H18, 

3
J (

1
H-

1
H) = 8.3 

Hz, 
3
J (

1
H-

19
F) = 2.6 Hz and 

4
J (

1
H-

1
H) = 1.0 Hz), 

5.75 (s, 1H, H13), 5.55 (br. d, 1H, H3,4,6,7, 
3
J (

1
H-

1
H) = 6.4 Hz), 5.52 (br. d, 1H, 

H3,4,6,7, 
3
J (

1
H-

1
H) = 6.2 Hz), 5.26 (m, 2H, H3,4,6,7), 2.97 (m, 1H, H8), 2.30 (br. s, 

3H, H1), 2.14 (br. s, 3H, H11), 1.37 (br. d, 6H, H9 and H10, 
3
J (

1
H-

1
H) = 6.7 Hz) 

13
C{

1
H} NMR (CDCl3, 125.8 MHz, 299.2 K) quaternary C-O, C12 or C14), 

177.9 (quaternary C-O, C12 or C14), 162.6 (d, quaternary C-F, C17, 
1
J (

13
C-

19
F) = 

246.1 Hz), 140.8 (quaternary C, C15), 129.5 (d, aromatic CH, C19, 
4
J (

13
C-

19
F) = 8.6 

Hz), 122.4 (d, aromatic CH, C20, 
5
J (

13
C-

19
F) = 3.2 Hz), 117.6 (d, aromatic CH, C18, 

3
J (

13
C-

19
F) = 21.5 Hz), 114.3 (d, aromatic CH, C16, 

3
J (

13
C-

19
F) = 23.6 Hz), 99.8 

(quaternary p-cymene C, C2 or C5), 97.5 (quaternary p-cymene C, C2 or C5), 96.1 

(acac CH, C13), 83.0 (p-cymene CH, C3,4,6,7), 82.6 (p-cymene CH, C3,4,6,7), 79.2 (p-

cymene CH, C3,4,6,7), 30.8 (p-cymene CH, C8), 28.2 (acac CH3, C11), 22.4 (p-

cymene CH3, C9 or C10), 22.31 (p-cymene CH3, C9 or C10), 18.03 (p-cymene CH3, 

C1) Analysis Calculated: C 53.39, H 4.93% Analysis Found: C 53.40, H, 4.90% 

ES MS (+): m/z 415.07 [M
+
]-Cl 

 

9.7.4 Preparation of C16H14ClFO2Ru (17) 

3’-Fluoro--diketonate (0.07 g, 0.383 mmol) dissolved in dichloromethane (30 

mL) and whilst stirring triethylamine (0.05 mL, 0.383 mmol) and [benzeneRuCl2]2 

(0.10 g, 0.191 mmol) were added. The mixture was stirred at room temperature for 

16 hours, and then the solvent removed under reduced pressure. The crude product 
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was recrystallised from methanol (10 mL) and strored at 4°C for 2 days, yielding 

red crystals of 17 (0.12 g, 0.288 mmol, 67%). 

1
H NMR (CDCl3, 500 MHz, 300.0 K) br. d, 

1H, H16, 
3
J (

1
H-

1
H) = 7.9 Hz), 7.56 (m, 1H, H12), 7.30 

(br. d, 1H, H15, 
3
J (

1
H-

1
H) = 7.8), 7.11 (m, 1H, H14), 

5.81 (s, 6H, C6H6), 5.77 (s, 1H, H9), 2.15 (br. s, 3H, H7) 

13
C{

1
H} NMR (CDCl3, 75 MHz, 299.2 K) 

quaternary C-O, C8 or C10), 180.1 (quaternary 

C-O, C8 or C10), 163.0 (d, quaternary C-F, C13, 
1
J (

13
C-

19
F) = 245.1 Hz), 142.2 

(quaternary C, C11), 129.6 (aromatic CH, C15), 122.5 (d, aromatic CH, C16), 117.8 

(d, aromatic CH, C14, 
3
J (

13
C-

19
F) = 21.0 Hz), 114.5 (d, aromatic CH, C12, 

3
J(

13
C-

19
F) = 23.9 Hz), 98.5 (aromatic CH, C6H6), 96.5 (acac CH, C9), 28.3 (acac CH3, C7) 

micro-analysis pending, MS (+): m/z 359.0 [M
+
]-Cl 

 

9.7.5 Preparation of C20H23ClFO2Ir (19) 

3’-Fluoro--diketonate (0.04 g, 0.222 mmol) dissolved in dichloromethane (30 mL 

and whilst stirring triethylamine (0.03 mL, 0.200 mmol) and [Cp*IrCl2]2 (0.08 g, 

0.100 mmol) were added. The mixture was stirred at room temperature for 16 

hours, and then the solvent removed under reduced pressure. The crude product 

was recrystallised from methanol (10 mL) and strored at 4°C for several days 

yielded yellow crystals of 19 (0.07 g, 0.129 mmol, 58%). 

1
H NMR (CDCl3, 300 MHz, 299.2 K) 

m, 1H, H19), 7.61-7.54 (m, 1H, H20), 

7.35-7.28 (m, 1H, H18), 7.19-7.10 (m, 1H, H16), 5.85 

(s, 1H, H13), 2.08 (s, 3H, H11), 1.66 (br. s, 15H, H6-10) 

13
C{

1
H} NMR (CDCl3, 75 MHz, 300 K) 

quaternary C-O, C12 or C14), 175.5 

(quaternary C-O, C12 or C14), 162.7 (d, quaternary C-F, C17, 
1
J (

13
C-

19
F) = 243.5 

Hz), 141.1 (quaternary C, C15), 129.6 (d, aromatic CH, C19, 
3
J (

13
C-

19
F) = 8.7 Hz), 

122.6 (d, aromatic CH, C20, 
4
J (

13
C-

19
F) = 2.5 Hz), 117.5 (d, aromatic CH, C18, 

2
J 

(
13

C-
19

F) = 21.0 Hz), 113.9 (d, aromatic CH, C16, 
2
J (

13
C-

19
F) = 23.5 Hz), 97.3 

(acac CH, C13), 83.7 (quaternary C, Cp* CCH3, C1-5), 28.2 (acac CH3, C11), 8.7 

(Cp* CCH3, C6-10) Analysis Calculated: C 44.31, H 4.28, Cl 6.54% Analysis 

Found: C 44.55, H, 4.20, Cl I/m (re-send)% ES MS (+): m/z 507.0 [MH
+
]-Cl 
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9.8 Syntheses of Titanium(IV) -Diketonate Complexes 

The following complexes were synthesised following a modification of previously 

established synthetic route from within the McGowan group.
12

 

9.8.1 Preparation of Ti2(C28H20N2O4)(OCH3)6 (20) 

L5 (0.30 g, 1.33 mmol) dissolved with stirring in dry THF (20 mL) and added to a 

stirred solution of Ti(O
i
Pr)4 (0.20 mL, 0.67 mmol) in dry THF (20 mL). The yellow 

solution was stirred for 4 hours and then the solvent removed in vacuo. The crude 

yellow product was washed with dry MeOH (20 mL) and filtered; the solution was 

stored at -20°C and yielded yellow crystals of 20 after a period of several days. 

X-ray crystallographic analysis was obtained for complex 20, but the crystals 

disintegrated after exposure to air and no further analytical data was obtained. 

Further synthesis has proven unsuccessful to date. 

 

9.8.2 Preparation of Ti(C32H26F2N2O2)Cl2 (21) 

3’-Fluoro--ketoiminate (L12) (0.66 g, 2.59 mmol) and KH (0.11 g, 2.74  mmol) 

were dissolved with stirring in dry dichloromethane (20 mL) and added to a stirred 

solution of TiCl4 (0.14 mL, 1.29 mmol) in dry dichloromethane (20 mL). The dark 

red solution was stirred for approximately 16 hours and then the solvent filtered in 

vacuo. The solution was stored at -20°C, yielding yellow crystals of 21 after a 

period of several days. 

X-ray crystallographic analysis was obtained for complex 21, but the crystals 

disintegrated after exposure to air and no further analytical data was obtained. 

Further synthesis has proven unsuccessful to date. 

 

9.8.3 Preparation of Ti(C32H26Cl2N2O2)Cl2 (22) 

4’-Chloro--ketoiminate (0.13 g, 0.478 mmol) and KH (0.025 g, 0.623 mmol) were 

dissolved with stirring in dry dichloromethane (20 mL) and added to a stirred 

solution of TiCl4 (0.03 mL, 0.239 mmol) in dry dichloromethane (20 mL). The 

dark red solution was stirred for approximately 16 hours and then the solvent 

removed in vacuo. The suspension was filtered and the solution was stored at -

20°C, yielding yellow crystals of 22 after a period of several days. 
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X-ray crystallographic analysis was obtained for complex 22, but the crystals 

disintegrated after exposure to air and no further analytical data was obtained. 

Further synthesis has proven unsuccessful to date. 

 

9.8.4 Preparation of Ti(C32H26F2N2O2)Cl2 (23) 

4-Fluoro--ketoiminate (L13) (0.39 g, 1.61 mmol) and KH (0.06 g, 1.61 mmol) 

were dissolved with stirring in dry dichloromethane (20 mL) and added to a stirred 

solution of TiCl4 (0.03 mL, 0.239 mmol) in dry dichloromethane (20 mL). The 

dark red solution was stirred for approximately 16 hours the solution, turning green 

overnight. The solution was stored at 
-
20°C and had returned to the dark red colour 

first seen. After a period of several weeks orange crystals of 23 were obtained. 

X-ray crystallographic analysis was obtained for complex 23, but the crystals 

disintegrated after exposure to air and no further analytical data was obtained. 

Further synthesis has since proven to be unsuccessful to date. 

 

9.8.5 Preparation of Ti(C34H32N2O2)Cl2 (24) 

4-Methyl--ketoiminate (L11) (0.50 g, 1.99 mmol) in dry diethyl ether (20 mL) 

was stirred and cooled to 
-
78°C, 

n
BuLi 1.6M in hexane (1.24 mL, 1.99 mmol) was 

added and the suspension allowed to warm to room temperature. This was then 

filtered onto a stirred solution of TiCl4 (0.11 mL, 0.995 mmol) in dry diethyl ether 

(20 mL) at -78°C. Once added the dark red solution was allowed to warm to room 

temperature and stirred for approximately 16 hours. The solvent was filtered in 

vacuo and the crude product recrystallised from acetonitrile (20 mL) and stored at -

20°C, yielding yellow crystals of 24 after a period of several days. 

X-ray crystallographic analysis was obtained for complex 24, but the crystals 

disintegrated after exposure to air and no further analytical data was obtained. 

Further synthesis has proven unsuccessful to date 

 

9.8.6 Preparation of Ti(C36H36N2O2)Cl2 (25) 

4-Methyl--ketoiminate (L19) (0.54 g, 2.04 mmol) in dry diethyl ether (20 mL) 

was stirred and cooled to -78°C, 
n
BuLi 1.6M in hexane (1.27 mL, 2.04 mmol) was 

added and the suspension allowed to warm to room temperature. This was then 

filtered onto a stirred solution of TiCl4 (0.11 mL, 1.02 mmol) in dry diethyl ether 

(20 mL) at 
-
78°C. Once added the dark red solution was allowed to warm to room 
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temperature and stirred for approximately 16 hours. The solvent was filtered in 

vacuo and the crude product recrystallised from acetonitrile (20 mL) and stored at 
-

20°C, yielding yellow crystals of 25 after a period of several days (0.71 g, 1.10 

mmol, 54%). 

1
H NMR (CDCl3, 500 MHz, 300 K) d, 

4H, H12 and H16, 
3
J (

1
H-

1
H) = 8.3 Hz), 7.37-

7.34 (m, 2H, H2 or H6), 7.09 (d, 4H, H13 and 

H15, 
3
J (

1
H-

1
H) = 8.3 Hz), 7.05 (dtd, 4H, H3 

and H5, 
3
J (

1
H-

1
H) = 7.7 Hz, 

4
J (

1
H-

1
H) = 3.95 

(x 2) Hz and 
4
J (

1
H-

1
H) = 2.3 Hz), 6.78 (br. t, 

2H, H4, 
3
J (

1
H-

1
H) = 7.6 Hz), 6.69-6.66 (m, 

2H, H2 or H6), 6.08 (s, 2H, H9), 2.66 (q, 4H, H17, 
3
J (

1
H-

1
H) = 7.5 Hz), 1.83 (br. s, 

6H, H7), 1.24 (t, 6H, H18, 
3
J (

1
H-

1
H) = 7.6 Hz) 

13
C NMR (CDCl3, 75 MHz, 300 K) 

quaternary C-O, C10), 169.9 (quaternary aromatic C, C11), 151.1 

(quaternary aniline C, C1), 148.1 (quaternary C-N, C8), 130.9 (quaternary aromatic 

C, C14), 128.9 (aromatic CH, C3 or C5), 128.0 (aromatic CH, C3 or C5), 127.5 

(aromatic CH, C12,13,15 and 16), 125.6 (aromatic or aniline CH, C2,4 or 6), 125.4 

(aromatic or aniline CH, C2,4 or 6), 121.8 (aniline CH, C2 or 6), 105.6 (acnac CH, C9), 

28.9 (ethyl CH2CH3, C17), 25.1 (aliphatic CH3, C7), 15.3 (ethyl CH2CH3, C18)  

 

9.8.7 Preparation of Ti(C32H24Cl4N2O2)Cl2 (26) 

2’,5’-Dichloro--ketoiminate (L14) (0.30 g, 0.979 mmol) in dry diethyl ether (20 

mL) was stirred and cooled to 
-
78°C, 

n
BuLi (0.61 mL, 0.979 mmol) was added and 

the suspension allowed to warm to room temperature. This was then filtered onto a 

stirred solution of TiCl4 (0.05 mL, 0.490 mmol) in dry diethyl ether (20 mL) at -

78°C. Once added the red solution was allowed to warm to room temperature and 

stirred for approximately 16 hours. The solvent was filtered in vacuo and the crude 

product recrystallised from acetonitrile (20 mL) and stored at -20°C, yielding an 

orange precipitate of 26 (0.40g, 0.548 mmol, 56%). 

1
H NMR (CDCl3, 500 MHz, 300 K) d, 2H, 

H16, 
4
J (

1
H-

1
H) = 1.8 Hz), 7.32 (d, 2H, H H2 or H6, 

3
J 

(
1
H-

1
H) = 8.3 Hz), 7.28-7.26 (m, 2H, H4), 7.25-7.22 

(m, 2H, H13), 7.18 (dd, 2H, H14, 
3
J (

1
H-

1
H) = 8.3 Hz 

and 
4
J (

1
H-

1
H) = 1.8 Hz), 7.09 (td, 2H, H3 or H5, 

3
J 
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(
1
H-

1
H) = 7.7 Hz and 

4
J (

1
H-

1
H) = 1.2 Hz), 7.00 (br. t, 2H, H3 or H5, 

3
J (

1
H-

1
H) = 

7.8 Hz), 6.70 (d, 2H, H2 or H6, 
4
J (

1
H-

1
H) = 7.8 Hz), 6.38 (s, 2H, H9), 1.86 (s, 6H, 

H7) 
13

C NMR (CDCl3, 75 MHz, 300K) quaternary C-O, C10), 165.4 

(quaternary aromatic C, C11), 150.7 (quaternary aniline C, C1), 136.5 (quaternary 

C-N, C8), 132.6 (aniline CH, C2 or C6), 132.6 (quaternary C-Cl, C12 or C15), 131.3 

(quaternary C-Cl, C12 or C15), 130.3 (aromatic CH, C16), 129.0 (aniline CH, C3 or 

C5), 128.5 (aromatic CH, C13), 127.0 (aromatic CH, C14), 125.9 (aniline CH, C3 or 

C5), 125.4 (aniline CH, C4), 121.6 (aniline CH, C2 or C6), 111.4 (acnac CH, C9), 

25.4 (aliphatic CH3, C7) 
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9.9 Normoxic Cytotoxic Evaluation 

9.9.1  General 

Sterile techniques were used throughout this work. Chemicals were purchased from 

Sigma Aldrich and used as supplied. MCF-7 cells (human breast adenocarcinoma), 

HT-29 cells (human colon adenocarcinoma), A2780 cells (human ovarian 

carcinoma) and A2780cis cells (cisplatin resistant human ovarian carcinoma) were 

obtained from Dr. Roger Phillips (Reader in Cancer Pharmacology, University of 

Bradford UK). The stock cultures were grown in either T-25 or T-75 flasks 

containing RPMI-1640 complete medium (20 mL) and incubated at 37°C with 

5.0% CO2. The complete medium was prepared from RPMI-1640 incomplete 

medium (500 mL), sodium pyruvate (5 mL, 0.5 mmol), L-glutamine (5 mL, 1.0 

mmol) and foetal bovine serum (50 mL). HANKS Balanced Salt Solution (HBSS) 

was used to wash cells before use, and 0.25% trypsin-EDTA solution was used to 

detach the cells from the flask. MTT stock solutions (5 mg/ mL) were prepared by 

dissolving MTT (250 g) in distilled water (50 mL), then passing through a 0.2 m 

sterile filter. RPMI-1640 incomplete medium, RPMI-1640 complete medium, 

sodium pyruvate, MTT and MTT stock solutions were all stored at 4°C. L-

glutamine, foetal bovine serum and 0.25% trypsin-EDTA solution were all stored 

at -20°C. All chemicals except the MTT stock solution were incubated at 37°C 

prior to use. 

 

9.9.2  Passaging Cells 

Cell monolayer was washed with HANKS Balanced Salt Solution (3 x 10 mL), and 

then all HBSS was carefully removed. 0.25% trypsin-EDTA solution (5 mL) was 

added to the flasks and incubated at 37°C for 5 minutes. When the cells became 

detached from the flask wall, cell medium (10 mL) was added. Cells were split into 

new flasks and diluted with cell medium; the lids were loosened and placed into the 

incubator for future use. 

 

9.9.3  Cell Counting 

The cells were passaged to the point of suspension, as previously described. 10 L 

of the cell suspension was transferred to each side of the glass haemocytometer and 

cells were counted under the microscope and an average was taken, with units of 

10
4
 cells/ mL. 
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9.9.4 Conducting the 5-Day MTT Assay 

After counting the cells, the cell suspension was diluted with RPMI-1640 complete 

medium to give a concentration of 2 x 10
4
 cells/ mL. 96-well plates were used and 

100 L of cell medium was added to lane one, to serve as a blank. 100 L of the 

diluted cell suspension was then added to lanes two to twelve, and the plates 

incubated overnight at 37°C with 5.0% CO2. 

The drugs to be tested were dissolved in DMSO to give concentrations of 25 mM. 

40 L of this solution was added to 1960 L of RPMI-1640 complete media to 

give a total of 2 mL. This was mixed well and 1 mL taken and added to another 1 

mL of RPMI-1640 complete media, further dilutions were carried out to give 10 

different concentrations of the drug. 100 L of RPMI-1640 cell media was added 

to lanes 1 and 2 to serve a control and 100% cell respectively. 100 L of the least 

concentrated drug solution was added to lane 3, and subsequent concentrations 

were added until 100 L of the most concentrated drug solution was added to lane 

12. The plates were incubated for 5 days at 37°C with 5.0% CO2. 

After 5 days incubation, MTT stock solution was prepared (5 mg/ mL) and 20 L 

added to each 96-well plate and incubated at 37°C in 5.0% CO2 for a further 3 

hours. The medium/MTT was removed via pipette and 150 L of DMSO added to 

each well. Solutions were mixed well and the absorbance measured at 540 nm, 

using a Thermo Scientific Multiskan EX microplate photometer. 

 

9.9.5  Data Analysis 

Averages were taken from the eight cells in each lane, and the % cell survival for 

each concentration was calculated using the following formula: 

  
     

     
     

Where C is the % cell survival for lane n and Ln is the mean absorbance at 540 nm 

for lane n. IC50 values and standard deviations were calculated from a minimum of 

three repeats for each drug used. 
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9.10 Hypoxic Cytotoxic Evaluation 

This assay was conducted according to the protocol stated previously for normoxic 

conditions. However, all the incubations periods, the addition of the drug dilutions 

and the addition of the MTT solution were carried out inside a Don Whitley 

Scientific H35 Hypoxystation which was set at 1.0 or 0.1% O2. 

 

9.11 Hydrophobicity 

Firstly, equal volumes of octanol and NaCl saturated water were stirred overnight 

at room temperature then separated to give octanol-saturated water and water-

saturated octanol. Accurate amounts of the complexes were dissolved in water-

saturated octanol (25 mL). 2 mL of octanol-saturated water was placed in a 

centrifuge tube and 2 mL of water-saturated octanol complex samples layered on 

top. The samples were shaken for 4 hours using a vibrax machine at 1000 gmin
-1

; a 

minimum of six repeats were analysed. The layers were separated and the water-

saturated octanol layer retained for analysis by UV/vis spectroscopy. Using the 

maximum absorbance of each complex, the average of the six runs was calculated 

and rearrangement of individual calibration graphs gave the [C]org final. The 

following equations were used to determine the partition coefficient and hence 

determining if the compound is predominantly hydrophilic or hydrophobic.  

       
      

     
      

       
            

                              
 

 

9.12 DSB Comet Assay 

9.12.1 Preparation of Comet assay slides: 

1% normal melting point agarose (500 mg) in PBS (50 mL) was prepared and 

placed in the microwave for approximately 20 seconds until it had fully dissolved. 

This was poured into a 50 mL centrifuge tube and the glass slides were dipped into 

the agrarose. The underside of the slide was wiped clean and these were left on the 

bench overnight to dry. 
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9.12.2 Reagents 

 Neutral Lysing Solution (2% sarkosyl, 0.5 M Na2EDTA, 0.5 mg/ mL 

proteinase K (pH 8.0)) 

Sarkosyl (2 g) and Na2EDTA (18.61 g) were added to distilled water (80 mL) and 

the pH adjusted to 8.0 with 10M NaOH. Proteinase K (50 mg) was then added and 

made up to a final volume of 100 mL. 

 Electrophoresis Buffer (90 mM Tris buffer, 90 mM boric acid, 2 mM 

Na2EDTA (pH 8.0)) 

Tris base (32.707 g), boric acid (16.694 g) and Na2EDTA (2.233 g) were added to 

distilled water (2.5 L). The pH was adjusted to 8.0 and the volume made up to 3 L 

with distilled water. 

 

 Staining Solution: 

SYBR™Gold solution (molecular probes inc, S-11494) (1 L) was added to PBS 

1(10 mL); this was made on the day of imaging. 

 Imaging and Analysis 

Staining solution (150 mL) was added to each slide and a cover slip placed on top. 

Excess solution was blotted away and the comets analysed using Comet assay III 

software. A minimum of 50 different comets were scored and the computer outputs 

an average on head and tail intensities and tail moments. Images were taken of the 

comets and the tail moments plotted against concentration of drug sample used. 

 

9.12.3 Sample Preparation: 

The cells were washed with PBS, trypsinised and counted (see previous, same as 

cytotoxicity assay). The cells were diluted with complete medium to a 

concentration of 1 x 10
6
 cells/ mL, 2 mL of the cell suspension was placed in each 

well of a 6-well plate. The cells were incubated for 24 hours at 37˚C in a 5.0% CO2 

atmosphere. Drug samples were prepared in the range 20-1.25 M, the medium 

was removed from the wells, and 2 mL of drug sample added to each well. The 

plate was then incubated again for 24 hours in the drug solutions, at 37˚C in a 5.0% 

CO2 atmosphere. The drug samples were removed and added to centrifuge tubes, 

the wells each washed with PBS (1 mL), which was also placed into the centrifuge 

tube. The wells were then trypsinised (1 mL) for 5 minutes and then neutralised 
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with complete medium (1 mL), these were all added to the centrifuge tube and 

centrifuged at 1500 rpm for 3 minutes. The supernatant was removed and the pellet 

re-suspended in complete medium containing 10% DMSO. The tubes were 

wrapped in several sheets of tissue and stored at -80˚C until required for the assay. 

 

9.12.4 Conducting the Assay: 

 Preparation of sample slides (conducted under low light conditions): 

0.5% low melting agarose (LMPA) was prepared (250 mg/ 50 mL PBS) and placed 

in the microwave for approximately 20 seconds, until fully dissolved. This was 

placed into a water bath set at 37°C and the temperature allowed to equilibrate. The 

sample eppendorfs from Section 9.12.3 were defrosted and centrifuged at 16.1 rcf 

for 20 seconds. The supernatant was removed and the pellet re-suspended in LMPA 

(150-1000 L, depending on pellet size). The cell suspension (150 L) was added 

to a previously coated glass slide and a cover slip placed over, these were placed on 

a cool tray and allowed to set (3-5 minutes). Once set the slip was removed and 

LMPA (150 L) added to the slide and another slip placed on top. These were 

again transferred to a cool tray to set. The slip was again removed and all slides 

placed into a tray where freshly prepared neutral lysing solution was added and the 

slides incubate for 1 hour at 37˚C in dark conditions. 

 Electrophoresis Conditions 

The lysing solution was gently poured off and the slides submerged in 

electrophoresis buffer for 30 minutes. The buffer was gently poured off and this 

step repeated two more times. The slides were then placed close together in a 

electrophoresis chamber and reservoirs were carefully filled with freshly prepared 

buffer (pH 8.0) and filled until the buffer just covered the slides. The chamber was 

adjusted to 24 V and the electrophoresis was run for 25 minutes. The slides were 

transferred to a clean tray and rinsed three times with distilled water and finally 

with 100% ice cold ethanol. They were then transferred to a slide rack and left to 

dry overnight before imaging could commence. 

 Imaging and Analysis 

Staining solution (150 mL) was added to each slide and a cover slip placed on top, 

excess solution was blotted away and the comets analysed using Comet assay III 

software. A minimum of 50 different comets were scored and the computer outputs 
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an average on head and tail intensities and tail moments. Images were taken of the 

comets and the tail moments plotted against concentration of drug sample used. 

 

9.13 SSB and Cross-Linking Comet Assay 

9.13.1 Preparation of Comet assay slides: 

1% normal melting point agarose (500 mg) in PBS (50 mL) was prepared and 

placed in the microwave for approximately 20 seconds until it had fully dissolved. 

This was poured into a 50 mL centrifuge tube and the glass slides were dipped into 

the agrarose. The underside of the slide was wiped clean and these were left on the 

bench overnight to dry. 

 

9.13.2 Reagents 

 Alkaline Lysing Solution: 

2.5 M NaCl (146.1 g), 100 mM EDTA (37.2 g) and 10 mM Trizma base (1.2 g) 

were added to distilled water (700 mL). NaOH (8 g) was added and stirred until 

fully dissolved, once dissolved the pH was adjusted to pH 10.0 and made up to a 

final volume of 890 mL and stored at 4°C. 

 Final Lysing Solution:  

The previously made lysing solution (178 mL) was added to Triton-X-100 (2 mL) 

and DMSO (20 ml) 

 

 Electrophoresis Buffer (300 mM NaOH/ 1mM EDTA) 

10 M NaOH - 200 g/ 500 mL distilled water 

200 mM EDTA - 14.89 g/ 200 mL distilled water at pH 10.0 

10 M NaOH (90 mL) was added to 200 mM EDTA (15 mL) and made up to a total 

volume of 3 L using distilled water and adjusted to a pH > 13.0 

 Neutralisation Buffer: 

Tris base (48.5 g) was dissolved in distilled water (800 mL) and adjusted to pH 7.5 

using concentrated HCl. This was then made up to 1 L using distilled water and 

stored at room temperature. 

 Staining Solution: 

The staining was carried out according to that stated previously in Section 9.12.1 
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9.13.3 Sample Preparation: 

The samples were prepared following the same steps as the DBS assay, with 

elimination of the 10% DMSO in the final step. 

 

9.13.4 Conducting the Assay: 

 Preparation of sample slides (conducted under low light conditions): 

0.5% low melting agarose (LMPA) was prepared (250 mg/ 50 mL PBS) and placed 

in the microwave for approximately 20 seconds, until fully dissolved. This was 

placed into a water bath set at 37°C and the temperature allowed to equilibrate. The 

sample eppendorfs were defrosted and centrifuged at 16.1 rcf for 20 seconds. The 

supernatant was removed and the pellet re-suspended in LMPA (150-1000 L, 

depending on pellet size). The cell suspension (150 L) was added to a previously 

coated glass slide and a cover slip placed over, these were placed on a cool tray and 

allowed to set (3-5 minutes). Once set the slip was removed and LMPA (150 L) 

added to the slide and another slip placed on top. These were again transferred to a 

cool tray to set. The slip was again removed and all slides placed into a tray where 

freshly prepared ice cold lysing solution was added, these were left to incubate for 

1 hour at 4°C. 

 Electrophoresis Conditions 

After the 1 hour incubation, the lysing solution was gently poured off and the slides 

placed close together in an electrophoresis chamber. The reservoirs were carefully 

filled with freshly prepared buffer (pH > 13.0) and filled until the buffer just 

covered the slides. The slides were incubated for 30 minutes and then the chamber 

adjusted to 24 V, the electrophoresis was run for 25 minutes and then the slides 

were removed. The slides were transferred to a clean tray and drop-wise 

neutralisation with the neutralisation buffer. The buffer was added to coat the slides 

and then these were incubated for 5 minutes. The buffer was removed and this step 

repeated twice more. Then slides were then rinsed three times with distilled water 

and finally with 100% ice cold ethanol. They were then transferred to a slide rack 

and left to dry overnight before imaging could commence. 

 Imaging and Analysis 

The imaging for the SSB and cross-linking assay was carried out according to that 

stated in the DSB assay. 
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9.14 Apoptosis 

9.14.1 Cell counting 

This assay was conducting using both HT-29 and A2780 cells, where the cells were 

counted using a haemocytometer and an average taken from the 10 quadrants. The 

cells were diluted with complete media to give concentrations of 2.5 x 10
4
 

cells/flask (0.5 x 10
4 

cells/ mL). The flasks were incubated for 24 hours at 37°C 

and an atmosphere of 5.0% CO2. Initial stock solutions of the drugs were made at 1 

mM, these were further diluted with complete media to give dilutions of 20 M 

and 10 M. The flasks were incubated in 5 mL of these drug solutions or media 

only (control), for a period of 48 hours at 37°C and an atmosphere of 5.0% CO2. 

 

9.14.2 Harvesting 

The media/drug solution was removed from the flasks and placed into a 25 mL 

centrifuge tube, the flask is then washed with PBS (5 mL), which was also added to 

the centrifuge tube. Trypsin (1 mL/flask) was added and then incubated for 5 

minutes are until a single cell suspension was obtained. The trypsin was then 

neutralised with media (5 mL) and the whole contents of the flask is transferred to 

the same centrifuge tube. The tube was spun at 1000 rcf for 3-5 minutes, the 

supernatant was removed and the pellet re-suspended in PBS (1 mL). The 1 mL 

was transferred to an eppendorf and spun again at 1500 rpm for 5 minutes, the 

supernatant is removed and the pellet re-suspended in 16 L PI, 16 L AmV and 

800 L buffer solution (100 L). The eppendorfs were incubated at room 

temperature for 10 minutes and kept in suspension; and then transferred to FACS 

tubes for analysis. 

 

9.15 Data Analysis 

Samples were run using flow cytometry and parameters adjusted depending on the 

sample tested. A cell count of 10,000 was necessary to conduct this experiment and 

gave results of PI versus AnV, each quadrant was analysed manually and a 

percentage taken from each quadrant of the plot. 
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9.16 Thioredoxin Reductase 

Thioredoxin reductase was obtained from Sigma Aldrich and is sourced from rat 

liver. It is a buffered aqueous glycerol solution, ≥ 100 units/ mg protein. Solution in 

50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 1 mM EDTA, and 10% glycerol. 

Stock solutions: 

1 M K2HPO4 - 17.42 g in 100 mL distilled water 

1 M KH2PO4 – 13.6 g in 100 mL distilled water 

100 mM EDTA – 3.72 g in 100 mL distilled water at pH 7.0 

 

9.16.1 Reaction Reagents: 

 Potassium phosphate buffer (0.1 M at pH 7.0)  

K2HPO4 (61.5 mL), KH2PO4 (38.5 mL), EDTA (10 mL) all made up to 1 L using 

distilled water and the pH was adjusted to 7.0. 

 Reaction Buffer A 

Potassium phosphate buffer (50 mL), NADPH (8.3 mg) and BSA (5.0 mg) 

 Reaction Buffer B 

Phosphate buffer (50 mL), NADPH (8.3 mg), BSA (5.0 mg) and DTNB (1.98 mg) 

 

9.16.2 Conducting the assay 

Buffer A (0.5 mL) was added to a 1 mL cuvette and to this TrxR (2 L) was added. 

The test compound or DMSO control (1 L) was added and the reaction left for 

approximately 30 seconds. Buffer B (0.5 mL) was added to the cuvette and using a 

pipette mixed well. The UV-vis absorbance was measure at 412 nm and the 

experiment was carried out using just the enzyme to get the initial absorbance; 

different dilutions of the test compound were tested using a maximum of 10 M. 

 

9.16.3 Analysis of Results 

The UV-vis was obtained for just the enzyme, hence giving the maximum 

absorbance. Using the maximum absorbance obtained from each run, a value was 

obtained for A and once plotted against [I], giving the % inhibition. The IC50 value 

is obtained at 50% enzyme inhibition. 
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Crystal data and structure refinement for ligand L11 

 

Formula C17H17NO 

Formula weight 251.32 

Size 0.27 x 0.24 x 0.21 mm 

Crystal morphology Colourless Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/n 

Unit cell dimensions a = 7.3817(3) Å  = 90° 

 b = 12.0369(4) Å  = 90.0110(10)° 

 c = 29.9551(11) Å  = 90° 

Volume 2661.59(17) Å
3
 

Z 8 

Density (calculated) 1.254 Mg/m
3
 

Absorption coefficient 0.078 mm
-1

 

F(000) 1072 

Data collection range 2.17  33.92° 

Index ranges -9  h 11,  -14  k  18,  -42  l  46 

Reflections collected 40768 

Independent reflections 10589 [R(int) = 0.0513] 

Observed reflections 6833 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.9841 and 0.9797 

Refinement method Full 

Data / restraints / parameters 10589 / 0 / 349 

Goodness of fit 1.016 

Final R indices  [I >2(I)] R1 = 0.0517, wR2 = 0.1322 

R indices (all data) R1 = 0.0889, wR2 = 0.1532 

Largest diff. peak and hole 0.419 and -0.257e.Å
-3 
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Crystal data and structure refinement for ligand L12 

 

Formula C16H14FNO 

Formula weight 255.28 

Size 0.54 x 0.28 x 0.11 mm 

Crystal morphology Yellow Plate 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions a = 14.6120(14) Å  = 90° 

 b = 7.0373(6) Å  = 106.929(3)° 

 c = 12.8634(10) Å  = 90° 

Volume 1265.41(19) Å
3
 

Z 4 

Density (calculated) 1.34 Mg/m
3
 

Absorption coefficient 0.094 mm
-1

 

F(000) 536 

Data collection range 2.91  27.41° 

Index ranges -18  h 18,  -9  k  8,  -16  l  16 

Reflections collected 9617 

Independent reflections 2860 [R(int) = 0.0488] 

Observed reflections 2598 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.9898 and 0.9512 

Refinement method Full 

Data / restraints / parameters 2860 / 0 / 174 

Goodness of fit 1.055 

Final R indices  [I >2(I)] R1 = 0.0426, wR2 = 0.1139 

R indices (all data) R1 = 0.046, wR2 = 0.1175 

Largest diff. peak and hole 0.37 and -0.266e.Å
-3 
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Crystal data and structure refinement for ligand L14 

 

Formula C16H13Cl2NO 

Formula weight 306.17 

Size 0.22 x 0.18 x 0.05 mm 

Crystal morphology Yellow plate 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/n 

Unit cell dimensions a = 12.3180(4) Å  = 90° 

 b = 7.4714(2) Å  = 108.3020(10)° 

 c = 16.4245(5) Å  = 90° 

Volume 1435.13(7) Å
3
 

Z 4 

Density (calculated) 1.417 Mg/m
3
 

Absorption coefficient 0.446 mm
-1

 

F(000) 632 

Data collection range 2.48  27.49° 

Index ranges -16  h 14,  -6  k  9,  -21  l  21 

Reflections collected 12165 

Independent reflections 3264 [R(int) = 0.0572] 

Observed reflections 2944 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.978 and 0.9083 

Refinement method Full 

Data / restraints / parameters 3264 / 0 / 183 

Goodness of fit 1.025 

Final R indices  [I >2(I)] R1 = 0.0344, wR2 = 0.0938 

R indices (all data) R1 = 0.0381, wR2 = 0.0986 

Largest diff. peak and hole 0.337 and -0.415e.Å
-3 
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Crystal data and structure refinement for ligand L15 

 

Formula C16H13Cl2NO 

Formula weight 306.17 

Size 0.3655 x 0.1575 x 0.0861 mm 

Crystal morphology Yellow Plate 

Temperature 100.00(10) K 

Wavelength 0.7107 Å  [Mo -K] 

Crystal system  

Space group  

Unit cell dimensions a = 12.6921(14) Å  = 90° 

 b = 8.4056(6) Å  = 90° 

 c = 26.694(2) Å  = 90° 

Volume 2847.9(4) Å
3
 

Z 8 

Density (calculated) 1.428 Mg/m
3
 

Absorption coefficient 0.45 mm
-1

 

F(000) 1264 

Data collection range 2.21  29.9° 

Index ranges -10  h 15,  -8  k  10,  -37  l  23 

Reflections collected 8100 

Independent reflections 3301 [R(int) = 0.0533] 

Observed reflections 2423 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.82463 

Refinement method Full 

Data / restraints / parameters 3301 / 0 / 182 

Goodness of fit 1.078 

Final R indices  [I >2(I)] R1 = 0.0575, wR2 = 0.1011 

R indices (all data) R1 = 0.0872, wR2 = 0.1132 

Largest diff. peak and hole 0.339 and -0.331e.Å
-3 
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Crystal data and structure refinement for ligand L16 

 

Formula C16H12Cl3NO 

Formula weight 340.62 

Size 0.29 x 0.25 x 0.21 mm 

Crystal morphology Yellow Fragment 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions a = 11.4886(4) Å  = 90° 

 b = 9.5459(3) Å  = 98.829(3)° 

 c = 13.6456(4) Å  = 90° 

Volume 1478.77(8) Å
3
 

Z 4 

Density (calculated) 1.53 Mg/m
3
 

Absorption coefficient 0.616 mm
-1

 

F(000) 696 

Data collection range 1.79  29.72° 

Index ranges -15  h 15,  -12  k  13,  -18  l  11 

Reflections collected 6404 

Independent reflections 3469 [R(int) = 0.0285] 

Observed reflections 2956 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.8524 

Refinement method Full 

Data / restraints / parameters 3469 / 0 / 191 

Goodness of fit 1.054 

Final R indices  [I >2(I)] R1 = 0.0358, wR2 = 0.0765 

R indices (all data) R1 = 0.0446, wR2 = 0.0831 

Largest diff. peak and hole 0.372 and -0.334e.Å
-3
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Crystal data and structure refinement for ligand L19 

 

Formula C36H38N2O2 

Formula weight 530.68 

Size 0.4296 x 0.3789 x 0.1417 mm 

Crystal morphology Brown Fragment 

Temperature 293(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/n 

Unit cell dimensions a = 7.7796(5) Å  = 90° 

 b = 11.6210(7) Å  = 91.400(5)° 

 c = 31.457(2) Å  = 90° 

Volume 2843.1(3) Å
3
 

Z 4 

Density (calculated) 1.24 Mg/m
3
 

Absorption coefficient 0.076 mm
-1

 

F(000) 1136 

Data collection range 2.59  29.8° 

Index ranges -9  h 10,  -15  k  15,  -26  l  43 

Reflections collected 12204 

Independent reflections 6563 [R(int) = 0.0343] 

Observed reflections 4869 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.65501 

Refinement method Full 

Data / restraints / parameters 6563 / 0 / 365 

Goodness of fit 1.087 

Final R indices  [I >2(I)] R1 = 0.0623, wR2 = 0.1231 

R indices (all data) R1 = 0.0888, wR2 = 0.1371 

Largest diff. peak and hole 0.277 and -0.262e.Å
-3
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Crystal data and structure refinement for ligand L21 

 

Formula C18H19NO3 

Formula weight 297.34 

Size 0.35 x 0.35 x 0.21 mm 

Crystal morphology Yellow Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 6.6562(7) Å  = 89.870(5)° 

 b = 8.6335(9) Å  = 89.960(5)° 

 c = 14.6783(14) Å  = 72.170(5)° 

Volume 802.99(14) Å
3
 

Z 2 

Density (calculated) 1.23 Mg/m
3
 

Absorption coefficient 0.084 mm
-1

 

F(000) 316 

Data collection range 1.39  33.75° 

Index ranges -10  h 9,  -12  k  11,  -22  l  19 

Reflections collected 9291 

Independent reflections 7369 [R(int) = 0.0524] 

Observed reflections 6256 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.9829 and 0.971 

Refinement method Full 

Data / restraints / parameters 7369 / 3 / 403 

Goodness of fit 1.031 

Final R indices  [I >2(I)] R1 = 0.0747, wR2 = 0.2011 

R indices (all data) R1 = 0.0834, wR2 = 0.214 

Largest diff. peak and hole 0.671 and -0.646e.Å
-3

 

Absolute structure parameter -0.5(11) 
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Crystal data and structure refinement for ligand L22 

 

Formula C18H17FNO2 

Formula weight 298.33 

Size 0.41 x 0.23 x 0.12 mm 

Crystal morphology Yellow Plate 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 10.5457(16) Å  = 66.443(5)° 

 b = 12.754(2) Å  = 74.668(6)° 

 c = 13.716(2) Å  = 70.382(5)° 

Volume 1574.6(4) Å
3
 

Z 4 

Density (calculated) 1.258 Mg/m
3
 

Absorption coefficient 0.09 mm
-1

 

F(000) 628 

Data collection range 1.64  30.33° 

Index ranges -13  h 14,  -17  k  18,  -19  l  16 

Reflections collected 22286 

Independent reflections 8869 [R(int) = 0.0865] 

Observed reflections 5069 [I >2(I)] 

Absorption correction none 

Max. and min. transmission 0.9893 and 0.9641 

Refinement method Full 

Data / restraints / parameters 8869 / 0 / 401 

Goodness of fit 1.126 

Final R indices  [I >2(I)] R1 = 0.1147, wR2 = 0.3088 

R indices (all data) R1 = 0.1664, wR2 = 0.3501 

Largest diff. peak and hole 0.71 and -0.861e.Å
-3 
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Crystal data and structure refinement for ligand L24 

 

Formula C17H15NO3 

Formula weight 281.3 

Size 0.9 x 0.71 x 0.4 mm 

Crystal morphology Green Plate 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21 

Unit cell dimensions a = 3.9619(6) Å  = 90° 

 b = 18.622(3) Å  = 91.075(7)° 

 c = 9.1110(15) Å  = 90° 

Volume 672.07(19) Å
3
 

Z 2 

Density (calculated) 1.39 Mg/m
3
 

Absorption coefficient 0.096 mm
-1

 

F(000) 296 

Data collection range 2.19  33.72° 

Index ranges -4  h 4,  -29  k  29,  -14  l  14 

Reflections collected 15456 

Independent reflections 4004 [R(int) = 0.0853] 

Observed reflections 3065 [I >2(I)] 

Absorption correction none 

Max. and min. transmission 0.9627 and 0.9187 

Refinement method Full 

Data / restraints / parameters 4004 / 1 / 192 

Goodness of fit 0.992 

Final R indices  [I >2(I)] R1 = 0.0581, wR2 = 0.1391 

R indices (all data) R1 = 0.0814, wR2 = 0.1553 

Largest diff. peak and hole 0.392 and -0.407e.Å
-3

 

Absolute structure parameter -0.8(12)  
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Crystal data and structure refinement for ligand L25 

 

Formula C19H17N3O 

Formula weight 303.36 

Size 0.43 x 0.32 x 0.19 mm 

Crystal morphology Green Plate 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Orthorhombic 

Space group Pbca 

Unit cell dimensions a = 7.7635(8) Å  = 90° 

 b = 11.0134(11) Å  = 90° 

 c = 36.431(4) Å  = 90° 

Volume 3114.9(6) Å
3
 

Z 8 

Density (calculated) 1.294 Mg/m
3
 

Absorption coefficient 0.082 mm
-1

 

F(000) 1280 

Data collection range 2.24  30.17° 

Index ranges -10  h 9,  -15  k  15,  -50  l  51 

Reflections collected 64849 

Independent reflections 4572 [R(int) = 0.0759] 

Observed reflections 3782 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.9845 and 0.9655 

Refinement method Full 

Data / restraints / parameters 4572 / 0 / 209 

Goodness of fit 1.036 

Final R indices  [I >2(I)] R1 = 0.0478, wR2 = 0.1265 

R indices (all data) R1 = 0.0588, wR2 = 0.1371 

Largest diff. peak and hole 0.408 and -0.249e.Å
-3 

  



Appendix 

255 

Crystal data and structure refinement for complex 1 

 

Formula C26H27ClFNORu 

Formula weight 525.01 

Size 0.18 x 0.15 x 0.12 mm 

Crystal morphology Red Fragment 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 9.8410(5) Å  = 100.643(2)° 

 b = 10.4805(6) Å  = 102.502(2)° 

 c = 12.3289(7) Å  = 104.424(2)° 

Volume 1163.39(11) Å
3
 

Z 2 

Density (calculated) 1.499 Mg/m
3
 

Absorption coefficient 0.814 mm
-1

 

F(000) 536 

Data collection range 3.14  30.55° 

Index ranges -14  h 12,  -14  k  13,  -17  l  17 

Reflections collected 19946 

Independent reflections 6817 [R(int) = 0.0326] 

Observed reflections 6190 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.91 and 0.8693 

Refinement method Full 

Data / restraints / parameters 6817 / 0 / 284 

Goodness of fit 1.036 

Final R indices  [I >2(I)] R1 = 0.0286, wR2 = 0.0793 

R indices (all data) R1 = 0.0326, wR2 = 0.0819 

Largest diff. peak and hole 2.243 and -0.636e.Å
-3 
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Crystal data and structure refinement for complex 2 

 

Formula C26H27ClFNORu 

Formula weight 525.01 

Size 0.2678 x 0.161 x 0.0985 mm 

Crystal morphology Red Fragment 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 7.5924(8) Å  = 101.176(8)° 

 b = 10.2922(11) Å  = 94.516(8)° 

 c = 15.9991(15) Å  = 106.506(9)° 

Volume 1164.0(2) Å
3
 

Z 2 

Density (calculated) 1.498 Mg/m
3
 

Absorption coefficient 0.814 mm
-1

 

F(000) 536 

Data collection range 2.62  29.76° 

Index ranges -9  h 9,  -12  k  10,  -15  l  21 

Reflections collected 8512 

Independent reflections 5315 [R(int) = 0.0583] 

Observed reflections 4083 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.2399 

Refinement method Full 

Data / restraints / parameters 5315 / 0 / 284 

Goodness of fit 1.037 

Final R indices  [I >2(I)] R1 = 0.0555, wR2 = 0.1024 

R indices (all data) R1 = 0.0767, wR2 = 0.1208 

Largest diff. peak and hole 1.222 and -1.296e.Å
-3
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Crystal data and structure refinement for complex 3 

 

Formula C26H27Cl2NORu 

Formula weight 541.46 

Size 0.49 x 0.26 x 0.11 mm 

Crystal morphology Red Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 7.7826(7) Å  = 68.270(3)° 

 b = 11.3982(10) Å  = 83.106(4)° 

 c = 15.2492(14) Å  = 70.938(4)° 

Volume 1187.69(18) Å
3
 

Z 2 

Density (calculated) 1.514 Mg/m
3
 

Absorption coefficient 0.903 mm
-1

 

F(000) 552 

Data collection range 1.44  30.38° 

Index ranges -11  h 11,  -16  k  16,  -21  l  18 

Reflections collected 9731 

Independent reflections 4330 [R(int) = 0.0475] 

Observed reflections 4113 [I >2(I)] 

Absorption correction none 

Max. and min. transmission 0.9072 and 0.6659 

Refinement method Full 

Data / restraints / parameters 4330 / 0 / 284 

Goodness of fit 1.231 

Final R indices  [I >2(I)] R1 = 0.0575, wR2 = 0.178 

R indices (all data) R1 = 0.0593, wR2 = 0.1821 

Largest diff. peak and hole 1.515 and -1.469e.Å
-3
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Crystal data and structure refinement for complex 4 

 

Formula C17.33H17.33Cl2N0.67O0.67Ru0.67 

Formula weight 383.94 

Size 0.47 x 0.33 x 0.24 mm 

Crystal morphology Red Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 11.3992(12) Å  = 88.692(4)° 

 b = 11.6491(11) Å  = 87.058(4)° 

 c = 19.5678(19) Å  = 80.287(4)° 

Volume 2557.5(4) Å
3
 

Z 6 

Density (calculated) 1.496 Mg/m
3
 

Absorption coefficient 0.945 mm
-1

 

F(000) 1168 

Data collection range 2.96  28.17° 

Index ranges -15  h 15,  -15  k  15,  -25  l  25 

Reflections collected 47038 

Independent reflections 12361 [R(int) = 0.0504] 

Observed reflections 11047 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.8078 and 0.6651 

Refinement method Full 

Data / restraints / parameters 12361 / 0 / 585 

Goodness of fit 1.043 

Final R indices  [I >2(I)] R1 = 0.0254, wR2 = 0.0658 

R indices (all data) R1 = 0.0298, wR2 = 0.069 

Largest diff. peak and hole 0.799 and -0.605e.Å
-3 
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Crystal data and structure refinement for complex 5 

 

Formula C26H26Cl3NORu 

Formula weight 575.9 

Size 0.1363 x 0.1102 x 0.0754 mm 

Crystal morphology Red Plate 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group Cc 

Unit cell dimensions a = 14.2172(6) Å  = 90° 

 b = 14.3632(6) Å  = 90.373(4)° 

 c = 11.7497(4) Å  = 90° 

Volume 2399.29(16) Å
3
 

Z 4 

Density (calculated) 1.594 Mg/m
3
 

Absorption coefficient 1.007 mm
-1

 

F(000) 1168 

Data collection range 2.02  29.66° 

Index ranges -19  h 18,  -18  k  19,  -16  l  12 

Reflections collected 6519 

Independent reflections 4231 [R(int) = 0.0417] 

Observed reflections 3907 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.8823 

Refinement method Full 

Data / restraints / parameters 4231 / 2 / 293 

Goodness of fit 1.05 

Final R indices  [I >2(I)] R1 = 0.0411, wR2 = 0.0726 

R indices (all data) R1 = 0.0462, wR2 = 0.0764 

Largest diff. peak and hole 0.784 and -0.609e.Å
-3

 

Absolute structure parameter -0.06(4) 
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Crystal data and structure refinement for complex 6 

 

Formula C4.16H4Cl0.64N0.16O0.16Ru0.16 

Formula weight 97.65 

Size 0.47 x 0.41 x 0.41 mm 

Crystal morphology Red Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 11.4864(13) Å  = 76.377(6)° 

 b = 13.9138(16) Å  = 86.339(6)° 

 c = 18.324(2) Å  = 75.571(6)° 

Volume 2756.4(5) Å
3
 

Z 25 

Density (calculated) 1.471 Mg/m
3
 

Absorption coefficient 0.975 mm
-1

 

F(000) 1232 

Data collection range 2.15  30.13° 

Index ranges -16  h 16,  -19  k  19,  -25  l  25 

Reflections collected 135555 

Independent reflections 16199 [R(int) = 0.0753] 

Observed reflections 12965 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.6889 and 0.6561 

Refinement method Full 

Data / restraints / parameters 16199 / 0 / 598 

Goodness of fit 1.045 

Final R indices  [I >2(I)] R1 = 0.0534, wR2 = 0.1572 

R indices (all data) R1 = 0.068, wR2 = 0.1746 

Largest diff. peak and hole 3.802 and -1.463e.Å
-3
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Crystal data and structure refinement for complex 7 

 

Formula C26H27BrClNORu 

Formula weight 585.92 

Size 0.22 x 0.17 x 0.13 mm 

Crystal morphology Red Fragment 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group Cc 

Unit cell dimensions a = 14.8418(5) Å  = 90° 

 b = 13.6395(5) Å  = 90.581(3)° 

 c = 11.7988(4) Å  = 90° 

Volume 2388.36(14) Å
3
 

Z 4 

Density (calculated) 1.629 Mg/m
3
 

Absorption coefficient 2.46 mm
-1

 

F(000) 1176 

Data collection range 2.03  29.83° 

Index ranges -20  h 19,  -18  k  19,  -16  l  16 

Reflections collected 17435 

Independent reflections 5760 [R(int) = 0.0451] 

Observed reflections 5536 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.7324 and 0.6088 

Refinement method Full 

Data / restraints / parameters 5760 / 2 / 284 

Goodness of fit 1.034 

Final R indices  [I >2(I)] R1 = 0.0281, wR2 = 0.0524 

R indices (all data) R1 = 0.0303, wR2 = 0.0537 

Largest diff. peak and hole 0.351 and -0.643e.Å
-3

 

Absolute structure parameter 0.004(5) 
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Crystal data and structure refinement for complex 8 

 

Formula C26H27BrClNORu 

Formula weight 585.92 

Size 0.1486 x 0.1419 x 0.113 mm 

Crystal morphology Red Plate 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 7.7084(3) Å  = 68.311(4)° 

 b = 11.3524(5) Å  = 82.804(4)° 

 c = 15.1513(7) Å  = 70.580(4)° 

Volume 1161.91(9) Å
3
 

Z 2 

Density (calculated) 1.675 Mg/m
3
 

Absorption coefficient 2.528 mm
-1

 

F(000) 588 

Data collection range 2.03  29.76° 

Index ranges -9  h 8,  -15  k  12,  -18  l  17 

Reflections collected 11871 

Independent reflections 5475 [R(int) = 0.041] 

Observed reflections 4847 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.90679 

Refinement method Full 

Data / restraints / parameters 5475 / 0 / 284 

Goodness of fit 1.053 

Final R indices  [I >2(I)] R1 = 0.0328, wR2 = 0.0628 

R indices (all data) R1 = 0.0392, wR2 = 0.0674 

Largest diff. peak and hole 0.537 and -0.597e.Å
-3
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Crystal data and structure refinement for complex 9 

 

Formula C26H27ClINORu 

Formula weight 632.91 

Size 0.2195 x 0.1161 x 0.0959 mm 

Crystal morphology Orange Fragment 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 7.7700(7) Å  = 106.660(9)° 

 b = 11.5552(10) Å  = 97.552(8)° 

 c = 15.2078(15) Å  = 109.544(8)° 

Volume 1193.01(19) Å
3
 

Z 2 

Density (calculated) 1.762 Mg/m
3
 

Absorption coefficient 2.081 mm
-1

 

F(000) 624 

Data collection range 2  29.82° 

Index ranges -10  h 9,  -11  k  15,  -19  l  17 

Reflections collected 10248 

Independent reflections 5583 [R(int) = 0.038] 

Observed reflections 4481 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.72236 

Refinement method Full 

Data / restraints / parameters 5583 / 0 / 284 

Goodness of fit 1.02 

Final R indices  [I >2(I)] R1 = 0.0429, wR2 = 0.0841 

R indices (all data) R1 = 0.057, wR2 = 0.0929 

Largest diff. peak and hole 1.48 and -1.045e.Å
-3
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Crystal data and structure refinement for complex 10 

 

Formula C28H32ClNO2Ru 

Formula weight 551.07 

Size 0.21 x 0.1511 x 0.1103 mm 

Crystal morphology Red Fragment 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 9.5863(5) Å  = 106.161(4)° 

 b = 11.5806(5) Å  = 102.739(4)° 

 c = 13.3596(6) Å  = 110.123(4)° 

Volume 1252.61(10) Å
3
 

Z 2 

Density (calculated) 1.461 Mg/m
3
 

Absorption coefficient 0.758 mm
-1

 

F(000) 568 

Data collection range 1.69  29.77° 

Index ranges -13  h 13,  -16  k  15,  -16  l  18 

Reflections collected 23922 

Independent reflections 6323 [R(int) = 0.0443] 

Observed reflections 5807 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.85957 

Refinement method Full 

Data / restraints / parameters 6323 / 0 / 303 

Goodness of fit 1.067 

Final R indices  [I >2(I)] R1 = 0.03, wR2 = 0.0654 

R indices (all data) R1 = 0.0344, wR2 = 0.0678 

Largest diff. peak and hole 0.65 and -0.615e.Å
-3 

  



Appendix 

265 

Crystal data and structure refinement for complex 11 

 

Formula C27H30ClNORu 

Formula weight 521.04 

Size 0.35 x 0.29 x 0.24 mm 

Crystal morphology Red Fragment 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 7.7691(10) Å  = 68.399(6)° 

 b = 11.4508(14) Å  = 83.185(6)° 

 c = 15.4307(18) Å  = 71.461(6)° 

Volume 1210.1(3) Å
3
 

Z 2 

Density (calculated) 1.43 Mg/m
3
 

Absorption coefficient 0.777 mm
-1

 

F(000) 536 

Data collection range 2.01  32.23° 

Index ranges -11  h 11,  -17  k  17,  -22  l  22 

Reflections collected 76647 

Independent reflections 8293 [R(int) = 0.0556] 

Observed reflections 7744 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.8379 and 0.7706 

Refinement method Full 

Data / restraints / parameters 8293 / 0 / 285 

Goodness of fit 1.079 

Final R indices  [I >2(I)] R1 = 0.0322, wR2 = 0.0848 

R indices (all data) R1 = 0.0344, wR2 = 0.0862 

Largest diff. peak and hole 1.191 and -1.848e.Å
-3
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Crystal data and structure refinement for complex 12 

 

Formula C59.72H58.85Cl2N2O2Ru2 

Formula weight 1109.56 

Size 0.258 x 0.2103 x 0.1547 mm 

Crystal morphology Red Fragment 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 13.7807(7) Å  = 90.868(4)° 

 b = 14.3381(6) Å  = 114.234(5)° 

 c = 14.7586(6) Å  = 104.725(4)° 

Volume 2548.1(2) Å
3
 

Z 2 

Density (calculated) 1.446 Mg/m
3
 

Absorption coefficient 0.743 mm
-1

 

F(000) 1138 

Data collection range 1.69  25.03° 

Index ranges -14  h 16,  -17  k  15,  -17  l  16 

Reflections collected 19216 

Independent reflections 9023 [R(int) = 0.0589] 

Observed reflections 7512 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.8536 and 0.819 

Refinement method Full 

Data / restraints / parameters 9023 / 0 / 632 

Goodness of fit 1.154 

Final R indices  [I >2(I)] R1 = 0.0702, wR2 = 0.1566 

R indices (all data) R1 = 0.0847, wR2 = 0.1648 

Largest diff. peak and hole 2.006 and -0.813e.Å
-3
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Crystal data and structure refinement for complex 13 

 

Formula C26H25ClF3NORu 

Formula weight 560.99 

Size 0.59 x 0.29 x 0.21 mm 

Crystal morphology Red Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group Cc 

Unit cell dimensions a = 14.0726(14) Å  = 90° 

 b = 14.2648(14) Å  = 90.643(5)° 

 c = 12.2405(14) Å  = 90° 

Volume 2457.0(4) Å
3
 

Z 4 

Density (calculated) 1.517 Mg/m
3
 

Absorption coefficient 0.788 mm
-1

 

F(000) 1136 

Data collection range 2.03  30.55° 

Index ranges -19  h 19,  -20  k  20,  -17  l  17 

Reflections collected 39809 

Independent reflections 7151 [R(int) = 0.0606] 

Observed reflections 6998 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.8539 and 0.6536 

Refinement method Full 

Data / restraints / parameters 7151 / 2 / 302 

Goodness of fit 1.085 

Final R indices  [I >2(I)] R1 = 0.0272, wR2 = 0.0826 

R indices (all data) R1 = 0.0285, wR2 = 0.084 

Largest diff. peak and hole 0.96 and -1.525e.Å
-3

 

Absolute structure parameter -0.01(2) 
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Crystal data and structure refinement for complex 14 

 

Formula C16H21Cl2NRu 

Formula weight 399.31 

Size 0.26 x 0.22 x 0.19 mm 

Crystal morphology Red Fragment 

Temperature 296(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 7.9068(7) Å  = 87.914(3)° 

 b = 9.0739(7) Å  = 85.084(3)° 

 c = 12.5987(10) Å  = 69.616(3)° 

Volume 844.16(12) Å
3
 

Z 2 

Density (calculated) 1.571 Mg/m
3
 

Absorption coefficient 1.235 mm
-1

 

F(000) 404 

Data collection range 2.76  26.29° 

Index ranges -9  h 9,  -11  k  11,  -14  l  15 

Reflections collected 10049 

Independent reflections 3358 [R(int) = 0.0174] 

Observed reflections 3267 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.745 and 0.65 

Refinement method Full 

Data / restraints / parameters 3358 / 0 / 192 

Goodness of fit 1.121 

Final R indices  [I >2(I)] R1 = 0.0163, wR2 = 0.0405 

R indices (all data) R1 = 0.017, wR2 = 0.0408 

Largest diff. peak and hole 0.271 and -0.539e.Å
-3
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Crystal data and structure refinement for complex 15 

 

Formula C25H26ClNORu 

Formula weight 492.99 

Size 0.2645 x 0.2443 x 0.1851 mm 

Crystal morphology Red Plate 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions a = 9.4634(9) Å  = 90° 

 b = 25.1678(17) Å  = 113.405(10)° 

 c = 9.9602(9) Å  = 90° 

Volume 2177.1(3) Å
3
 

Z 4 

Density (calculated) 1.504 Mg/m
3
 

Absorption coefficient 0.859 mm
-1

 

F(000) 1008 

Data collection range 2.35  29.74° 

Index ranges -13  h 9,  -34  k  33,  -11  l  13 

Reflections collected 11633 

Independent reflections 5210 [R(int) = 0.0692] 

Observed reflections 4097 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.78519 

Refinement method Full 

Data / restraints / parameters 5210 / 0 / 265 

Goodness of fit 1.036 

Final R indices  [I >2(I)] R1 = 0.0536, wR2 = 0.1058 

R indices (all data) R1 = 0.0722, wR2 = 0.1157 

Largest diff. peak and hole 1.869 and -1.321e.Å
-3
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Crystal data and structure refinement for complex 16 

 

Formula C20H22ClFO2Ru 

Formula weight 449.9 

Size 0.77 x 0.71 x 0.68 mm 

Crystal morphology Red Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions a = 8.0542(10) Å  = 90° 

 b = 12.4910(16) Å  = 100.154(6)° 

 c = 20.288(2) Å  = 90° 

Volume 2009.1(4) Å
3
 

Z 4 

Density (calculated) 1.487 Mg/m
3
 

Absorption coefficient 0.931 mm
-1

 

F(000) 912 

Data collection range 2.57  36.8° 

Index ranges -11  h 11,  -17  k  17,  -27  l  28 

Reflections collected 67057 

Independent reflections 6061 [R(int) = 0.0638] 

Observed reflections 5671 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.57 and 0.5341 

Refinement method Full 

Data / restraints / parameters 6061 / 0 / 230 

Goodness of fit 1.186 

Final R indices  [I >2(I)] R1 = 0.0449, wR2 = 0.1204 

R indices (all data) R1 = 0.0482, wR2 = 0.1233 

Largest diff. peak and hole 2.532 and -1.139e.Å
-3
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Crystal data and structure refinement for complex 17 

 

Formula C64H56Cl4F4O8Ru4 

Formula weight 1575.17 

Size 0.2384 x 0.1015 x 0.0463 mm 

Crystal morphology Fragment Red 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions a = 9.7211(3) Å  = 90° 

 b = 15.3371(5) Å  = 104.656(3)° 

 c = 10.0487(4) Å  = 90° 

Volume 1449.45(9) Å
3
 

Z 1 

Density (calculated) 1.805 Mg/m
3
 

Absorption coefficient 1.277 mm
-1

 

F(000) 784 

Data collection range 2.66  29.8° 

Index ranges -13  h 10,  -13  k  20,  -10  l  12 

Reflections collected 8123 

Independent reflections 3467 [R(int) = 0.0364] 

Observed reflections 3019 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.46536 

Refinement method Full 

Data / restraints / parameters 3467 / 0 / 191 

Goodness of fit 1.049 

Final R indices  [I >2(I)] R1 = 0.0322, wR2 = 0.0722 

R indices (all data) R1 = 0.0396, wR2 = 0.076 

Largest diff. peak and hole 0.753 and -0.73e.Å
-3
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Crystal data and structure refinement for complex 19 

 

Formula C20H23ClFIrO2 

Formula weight 542.03 

Size 0.21 x 0.18 x 0.12 mm 

Crystal morphology Yellow Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Orthorhombic 

Space group P212121 

Unit cell dimensions a = 8.3447(9) Å  = 90° 

 b = 15.2720(18) Å  = 90° 

 c = 15.4729(18) Å  = 90° 

Volume 1971.9(4) Å
3
 

Z 4 

Density (calculated) 1.826 Mg/m
3
 

Absorption coefficient 6.925 mm
-1

 

F(000) 1048 

Data collection range 2.63  31.9° 

Index ranges -10  h 12,  -22  k  22,  -22  l  22 

Reflections collected 109495 

Independent reflections 6682 [R(int) = 0.0492] 

Observed reflections 6515 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.4954 and 0.3282 

Refinement method Full 

Data / restraints / parameters 6682 / 0 / 232 

Goodness of fit 1.038 

Final R indices  [I >2(I)] R1 = 0.0144, wR2 = 0.0323 

R indices (all data) R1 = 0.0154, wR2 = 0.0327 

Largest diff. peak and hole 0.84 and -1e.Å
-3

 

Absolute structure parameter 0.010(4) 

  



Appendix 

273 

Crystal data and structure refinement for complex 20 

 

Formula C3.09H3.45N0.18O0.91Ti0.18 

Formula weight 66.4 

Size 0.33 x 0.29 x 0.28 mm 

Crystal morphology Yellow Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions a = 8.6093(17) Å  = 90° 

 b = 16.186(3) Å  = 102.517(9)° 

 c = 12.669(2) Å  = 90° 

Volume 1723.5(6) Å
3
 

Z 22 

Density (calculated) 1.408 Mg/m
3
 

Absorption coefficient 0.522 mm
-1

 

F(000) 760 

Data collection range 2.07  33.11° 

Index ranges -13  h 8,  -24  k  24,  -16  l  19 

Reflections collected 56323 

Independent reflections 6532 [R(int) = 0.0599] 

Observed reflections 5062 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.8663 and 0.8487 

Refinement method Full 

Data / restraints / parameters 6532 / 0 / 220 

Goodness of fit 1.047 

Final R indices  [I >2(I)] R1 = 0.0504, wR2 = 0.1367 

R indices (all data) R1 = 0.0671, wR2 = 0.1506 

Largest diff. peak and hole 0.814 and -0.317e.Å
-3
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Crystal data and structure refinement for complex 21 

 

Formula C16H13ClFNOTi0.50 

Formula weight 313.67 

Size 0.29 x 0.17 x 0.11 mm 

Crystal morphology Yellow Fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group C2/c 

Unit cell dimensions a = 25.614(3) Å  = 90° 

 b = 8.3638(9) Å  = 126.138(4)° 

 c = 16.6382(19) Å  = 90° 

Volume 2878.6(6) Å
3
 

Z 8 

Density (calculated) 1.448 Mg/m
3
 

Absorption coefficient 0.529 mm
-1

 

F(000) 1288 

Data collection range 1.97  34.46° 

Index ranges -39  h 40,  -12  k  12,  -25  l  26 

Reflections collected 39322 

Independent reflections 5866 [R(int) = 0.0528] 

Observed reflections 4505 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.9431 and 0.8595 

Refinement method Full 

Data / restraints / parameters 5866 / 0 / 187 

Goodness of fit 1.03 

Final R indices  [I >2(I)] R1 = 0.0378, wR2 = 0.0943 

R indices (all data) R1 = 0.0568, wR2 = 0.1042 

Largest diff. peak and hole 0.58 and -0.263e.Å
-3
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Crystal data and structure refinement for complex 22 

 

Formula C36H32Cl4N4O2Ti 

Formula weight 742.36 

Size 0.47 x 0.18 x 0.09 mm 

Crystal morphology Yellow Fragment 

Temperature 293(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/n 

Unit cell dimensions a = 15.1938(5) Å  = 90° 

 b = 15.4956(5) Å  = 113.222(2)° 

 c = 16.0930(7) Å  = 90° 

Volume 3481.9(2) Å
3
 

Z 4 

Density (calculated) 1.416 Mg/m
3
 

Absorption coefficient 0.592 mm
-1

 

F(000) 1528 

Data collection range 2.63  26.4° 

Index ranges -18  h 18,  -16  k  19,  -20  l  17 

Reflections collected 18609 

Independent reflections 6914 [R(int) = 0.0405] 

Observed reflections 5178 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.7454 and 0.6607 

Refinement method Full 

Data / restraints / parameters 6914 / 0 / 428 

Goodness of fit 1.029 

Final R indices  [I >2(I)] R1 = 0.0414, wR2 = 0.0863 

R indices (all data) R1 = 0.065, wR2 = 0.0959 

Largest diff. peak and hole 0.502 and -0.488e.Å
-3
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Crystal data and structure refinement for complex 23 

 

Formula C32H26F2N2O4Ti 

Formula weight 588.45 

Size 0.31 x 0.27 x 0.17 mm 

Crystal morphology Orange prism 

Temperature 120(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system  

Space group  

Unit cell dimensions a = 13.9627(13) Å  = 90° 

 b = 13.9627(13) Å  = 90° 

 c = 77.719(7) Å  = 120° 

Volume 13122(2) Å
3
 

Z 18 

Density (calculated) 1.34 Mg/m
3
 

Absorption coefficient 0.345 mm
-1

 

F(000) 5472 

Data collection range 2.13  25.02° 

Index ranges -16  h 16,  -16  k  16,  -92  l  91 

Reflections collected 33971 

Independent reflections 5166 [R(int) = 0.0487] 

Observed reflections 4423 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.7457 and 0.7016 

Refinement method Full 

Data / restraints / parameters 5166 / 0 / 372 

Goodness of fit 1.144 

Final R indices  [I >2(I)] R1 = 0.057, wR2 = 0.1229 

R indices (all data) R1 = 0.0676, wR2 = 0.1267 

Largest diff. peak and hole 0.332 and -0.464e.Å
-3
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Crystal data and structure refinement for complex 24 

 

Formula C38H38Cl2N4O2Ti 

Formula weight 701.52 

Size 0.31 x 0.27 x 0.09 mm 

Crystal morphology Orange Fragment 

Temperature 293(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/n 

Unit cell dimensions a = 15.3737(12) Å  = 90° 

 b = 15.4790(14) Å  = 113.003(2)° 

 c = 16.1154(12) Å  = 90° 

Volume 3530.0(5) Å
3
 

Z 4 

Density (calculated) 1.32 Mg/m
3
 

Absorption coefficient 0.433 mm
-1

 

F(000) 1464 

Data collection range 2.63  29.24° 

Index ranges -18  h 21,  -21  k  21,  -21  l  22 

Reflections collected 36183 

Independent reflections 9529 [R(int) = 0.0837] 

Observed reflections 5244 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.7459 and 0.6847 

Refinement method Full 

Data / restraints / parameters 9529 / 0 / 430 

Goodness of fit 0.851 

Final R indices  [I >2(I)] R1 = 0.0436, wR2 = 0.0702 

R indices (all data) R1 = 0.101, wR2 = 0.0818 

Largest diff. peak and hole 0.286 and -0.528e.Å
-3
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Crystal data and structure refinement for complex 25 

 

Formula C36H36Cl2N2O2Ti 

Formula weight 647.47 

Size 0.33 x 0.29 x 0.11 mm 

Crystal morphology Orange Fragment 

Temperature 173(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group C2/c 

Unit cell dimensions a = 30.836(5) Å  = 90° 

 b = 8.2511(6) Å  = 126.83(3)° 

 c = 15.442(2) Å  = 90° 

Volume 3145.0(7) Å
3
 

Z 4 

Density (calculated) 1.367 Mg/m
3
 

Absorption coefficient 0.478 mm
-1

 

F(000) 1352 

Data collection range 3.17  29.78° 

Index ranges -41  h 42,  -10  k  9,  -20  l  15 

Reflections collected 12084 

Independent reflections 3817 [R(int) = 0.0322] 

Observed reflections 3080 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 1 and 0.86393 

Refinement method Full 

Data / restraints / parameters 3817 / 0 / 197 

Goodness of fit 1.039 

Final R indices  [I >2(I)] R1 = 0.0388, wR2 = 0.0804 

R indices (all data) R1 = 0.0555, wR2 = 0.0872 

Largest diff. peak and hole 0.406 and -0.367e.Å
-3

 

 


