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Abstract 
 

Most governments in the world provide some publicly funded healthcare 

to their citizens, but given the scarcity of resources relative to potential demand, 

some form of rationing or priority setting is required, and some patients must be 

denied effective treatment.  The thesis took the position that an explicit approach 

based on maximising the value that society derives from healthcare is the 

preferred way to address this rationing problem.   

Conventional health economic practice proposes that value should be 

equated with quality-adjusted life years (QALYs), leading to a policy of QALY 

maximisation, but, it is argued, not necessarily value maximisation.  A more 

inclusive approach to defining value, based on societal preferences, may 

maximise overall well-being and be associated with greater trust and legitimacy 

in the priority setting process. 

The thesis identified patient and program characteristics that appeared to 

have empirical evidence of public support as well as a defensible ethical 

justification in determining the strength of a patient’s claim to societal healthcare 

resources.  The relative strength of preferences for these characteristics, or the 

equity-efficiency trade-off, was estimated using stated preference methods.  Two 

different methods, discrete choice experiments and constant-sum paired 

comparisons, were used and the response behaviours of the two elicitations were 

compared to identify a preferred method for eliciting societal preferences in the 

context of healthcare. 

Both methods found a statistically significant equity-efficiency trade-off in 

an age and sex representative sample of the Canadian public as well as a 

convenience sample of decision-making agents.  This suggested that society 

would be willing to sacrifice some degree of efficiency in maximising individual 

life year gains in order to prioritise other characteristics consistent with the 

promotion of equity or distributive justice in the allocation of healthcare 

resources.  However, differences between the results of the two elicitation 

methods suggested some systematic procedural variance.   
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Chapter 1:  
Introduction, objectives  

and thesis outline 

Health is a primary foundation of what Culyer (2001b) has termed “a 

flourishing life,” the ultimate human condition.  Any reduction in health, 

through disease or injury, reduces a person’s potential to enjoy such a life.  

Others have been more specific, defining health as part of a set of capabilities 

that provide an individual a normal range of opportunity (Sen 1985; Daniels 

2001).  This fundamental importance imbues health with a special moral 

significance to society (Sen 2002; Anand 2002), and in turn gives healthcare a 

particular significance, as it is an important – although not the only – factor in 

achieving and maintaining an optimal level of health (Culyer 2001b).   

Modern healthcare is able to offer some health benefit to almost any 

condition, but this very effectiveness suggests that the demand for healthcare is 

likely to outstrip supply (Appleby & Harrison 2006; New 2000).  In a market 

system, demand would be would be constrained by the price mechanism and an 

individual’s willingness and ability to pay.  However, there are a number of 

specific and well recognised failures in the market for healthcare.  These include 

uncertainty around the timing and quantity of an individual’s demand for 

healthcare, the ‘public good’ nature of many healthcare services, positive 

externalities associated with healthcare, asymmetry of information between 

patients and providers, and the absence or distortion of price signals (Arrow 

1963).  While these market failures are not necessarily unique to the health 

sector, most believe that healthcare is so fundamentally different than other 

goods and services that a market mechanism would fail to deliver an efficient or 
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equitable level of health (Daniels 2001; Culyer 2001a; Maynard & Bloor 1998; 

Hauck et al. 2004).   

In light of these market failures, most governments in the world have 

undertaken to provide, to a greater or lesser degree, publicly funded healthcare to 

their citizens.  However, even government resources are finite, so there must still 

be a mechanism for coping with excess demand.  If societal healthcare resources 

are not to be allocated on the basis of the price mechanism, a process of rationing 

or priority setting1 is required, which can be understood as “the deliberate and 

systematic withholding of beneficial goods or services on the grounds that 

society cannot afford to extend them.” (Fleck 1992)  Through this process, 

effective healthcare must be denied to someone that could potentially benefit, 

and thus the fundamental problem facing the healthcare decision maker is how 

to decide who will be allowed to benefit from societal healthcare resources and 

who will not (New 1996).  This thesis describes a normative economics approach 

to addressing this decision problem. 

1.1 Thesis objectives 

The thesis takes the position that an explicit approach to healthcare 

priority setting, based on clearly defined objectives and criteria that reflect the 

preferences of society, can improve the value that society derives from 

healthcare.2  Value in this context should be understood as a broader concept 

than health, as the total value that society derives from healthcare may be greater 

or less than the sum of the value that individual patients derive from their own 

health gains.  The degree to which these concepts differ reflects the societal 

desire for equity or distributive justice in the allocation of health gains, as for 

                                                 
1 Although these terms are effectively equivalent and each may appear throughout the thesis, 

‘priority setting’ will be preferred as it is more consistent with Broome’s (1989) view, adopted 

here, that fairness requires that resources should be allocated according to the strength of one 
person’s claim relative to another’s.  In this view, it is not a question of which patient is treated 

and which is not, but of which patient gets priority. 

2 The terms healthcare and health gain will be used more or less synonymously when referring to 

the source of societal value, on the presumption that the primary output, and object of value, of 

healthcare is health gain.  This is not true in the presence of caring externalities, where healthcare 

may also be valued for non-health outcomes such as dignity, compassion or maintenance of 

hope.  These externalities are assumed away for now, but will be discussed later in the thesis. 



3 

equity reasons society may value health gains to some patients more (or less) 

highly than gains to others.  This implies that society may be willing to sacrifice 

some degree of efficiency in maximising aggregate health gains in exchange for a 

distribution that is perceived to be more fair; this is known as the ‘equity-

efficiency trade-off’ (Wagstaff 1991; Sassi et al. 2001).  The more strongly society 

prefers a particular conception of equity, the greater the sacrifice in terms of 

potential health gains it should be willing to make to achieve that distribution.   

The key challenge in this approach to maximising the value of healthcare 

is defining the criteria by which value should be judged.  Within healthcare, 

value has conventionally been defined by decision makers in terms of quality-

adjusted life years (QALYs), which weight years of life by a quality adjustment 

representing the ‘healthiness’ of those years (Culyer 1989; Brouwer et al. 2008; 

Coast 2009).  Under a QALY maximising objective and a presumption of 

distributive neutrality, where the societal value of an additional QALY is held to 

be the same regardless of who receives it (Nord et al. 1995; Dolan et al. 2005), 

priority has been given to patients with conditions whose treatment will generate 

the greatest QALY gains.   

Although this QALY maximising decision rule may be entirely consistent 

with societal preferences, it will be argued that this relatively narrow definition of 

value appears to neglect a number of patient and program3 characteristics that 

empirical studies of societal preferences have suggested may be relevant.  

Explicit consideration of these factors, though a broader conception of value, 

could align the allocation of resources more closely with societal preferences.  

This, in turn, would lead greater efficiency in translating healthcare resources 

into societal value, as well as a more equitable distribution of societal resources.  

It may also lead to greater trust and legitimacy in the priority setting process.  To 

this end, the primary objective of the thesis was to identify the factors relevant 

to the societal value of healthcare, and to estimate the strength of the equity-

efficiency trade-off over these factors.  Secondary objectives were to compare 

different methods for eliciting these societal preferences, and to test the 

                                                 
3 As the Canadian usage of ‘program’ rather than the British ‘programme’ was presented to 

survey respondents, this form will be used throughout the thesis. 
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homogeneity of preferences between the public and the decision-making agents 

responsible for making priority setting decisions on their behalf. 

1.2 Thesis outline 

The thesis is divided into two parts.  Part one provides a background on 

priority setting in healthcare, including an introduction to priority setting 

approaches within normative economics, a review of patient and program 

characteristics that may be relevant to priority setting, and a comparative review 

of the different stated preference methods that can be used to elicit the strength of 

societal preferences for different characteristics, particularly in the context of 

healthcare.  Part two presents empirical work.  This includes a pilot survey, 

which compared two different preference elicitation with the intention of 

identifying a preferred method, and a primary survey, which elicited the strength 

of societal preferences for the factors identified in part one from an age and 

gender representative sample of the Canadian public as well as a convenience 

sample of self-identified decision-making agents.  The results of the pilot survey 

did not indicate a clearly preferred elicitation method, so the same two stated 

preference methods tested in the pilot survey were used in the primary survey.  

Part two therefore also includes a comparison of the response behaviours of two 

methods based on the larger sample of the primary survey, and a detailed 

discussion of the relative preferences derived from each method.  The thesis 

concludes with a discussion of the results and their implications for healthcare 

policy, as well as the limitations of this work and suggestions for future research.  

A more detailed outline of the chapters in each section is presented below.  

It is important to highlight that whereas respondents to pilot survey were 

told that the health states in the survey were entirely hypothetical, respondents to 

the primary survey were told that the different patient groups all had some form 

of cancer.  A cancer context was used for pragmatic reasons, as funding for the 

primary survey was provided by the Canadian Centre for Applied Research in 

Cancer Control, but a specific context may also provide respondents with a more 

concrete and more comparable understanding of the different health states 

presented in the survey.  Indeed, the impact of cancer and cancer treatments on 
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morbidity and mortality will be reasonably familiar and understandable to most 

respondents.  However, to ensure a focus on the attributes and levels of each 

program and not the disease labels, the alternatives in each choice task were 

unlabelled and presented generically as Program A and Program B.  In the 

absence of specific labels, there is little reason to suspect that the results from the 

primary elicitations should not be generalizable to other disease contexts. 

1.2.1 Part one 

Chapter 2 offers an introduction to normative economics, and contrasts 

welfarist and extra-welfarist approaches to normative economic decision making.  

The welfarist approach emphasises individual well-being, and as such, it is 

argued that it offers an impractical guide to the allocation of societal resources.  

The extra-welfarist approach, in theory, goes beyond individual well-being and 

allows for a broader understanding of societal well-being.  However, this requires 

an implicit or explicit definition of the factors that may contribute to societal 

well-being, as well as an understanding of who should contribute to that 

definition.  The chapter will outline the arguments for and against an explicit 

definition of these factors, and discuss the merits of narrow impartiality and 

objectivity versus broader and more subjective perspectives in societal priority 

setting.  The chapter will also discuss the use of the equity-weighted QALY as 

one approach to explicitly incorporating societal preferences into healthcare 

priority setting.    

Chapter 3 reviews the potential factors that may contribute to the societal 

value of healthcare.  The most straightforward approach to identifying these 

factors is to ask people which factors they consider important.  However, many 

argue that simple majority support for particular attributes or characteristics is 

not sufficient grounds for distributing something as important as healthcare.  

Therefore, the review took an empirical ethics approach, “involving both an 

empirical study of population values and ethical analysis of the results,” 

(Richardson & McKie 2005) to identify factors that can be considered both 

relevant and fair.  To this end, attributes had to have empirical evidence of public 

support, and be consistent with a dominant theory of distributive justice. 
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Chapter 4 reviews different stated preference methods for eliciting the 

strength of societal preferences.  The empirical ethics review of Chapter 3 was 

not sufficient to justify priority for particular factors, as most empirical studies 

gave little or no consideration to the trade-offs between factors or outcomes.  

Rather, estimating the relative strength of preferences requires a process that 

forces trade-offs between these factors.  This chapter compares different stated 

preference methods, and concludes that two methods – discrete choice 

experiments (DCEs) and constant-sum paired comparisons (CSPCs) – appear to 

have advantages in eliciting societal preferences in this context.   

1.2.2 Part two 

Chapter 5 details a pilot survey used to compare the DCE and CSPC 

elicitation methods to identify a preferred stated preference method for the 

primary elicitation.  The survey was also used to refine the wording and 

presentation of the choice tasks.  The chapter outlines the methods used in 

developing the survey, included the assignment of levels to the attributes 

identified in Chapter 3, the development of the experimental design, and the data 

collection and analysis.  The two stated preference methods were compared on a 

number of dimensions, and the results of these comparisons, particularly with 

respect to their bearing on identifying a preferred elicitation method for the 

primary survey, are also detailed. 

Chapter 6 describes the methods used for the primary survey.  The pilot 

survey identified advantages with both elicitation methods, and it was decided 

that it would be of interest to compare them in more detail based on the larger 

sample of the primary survey.  As a result, both the DCE and the CSPC 

elicitation formats were used in the primary survey.  This chapter emphasises the 

methodological differences from the pilot survey, including the survey sample, 

the experimental design, and the presentation and context of the choice tasks.  

As the following chapters present the results of the two elicitation formats 

separately, Chapter 6 also takes the opportunity to present a summary of the 

overall survey sample, including their representativeness of the larger Canadian 

population and their attitudes towards rationing and their support for public 

involvement in priority setting.  The chapter concludes with a discussion of the 
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implications of their attitudes for more participatory approaches to priority 

setting. 

Chapter 7 presents a comparison of the two stated preference methods, 

based on the lager, representative sample of the primary survey.  The 

implications of these comparisons for a preferred method for eliciting societal 

preferences are also discussed. 

Chapters 8 and 9 present the methods used in the statistical modelling of 

the DCE and CSPC choice responses and estimating the welfare effects 

associated with changes in the attributes included in the elicitations.  The results, 

in terms of marginal welfare effects and holistic scenario rankings are presented, 

along with a comparison of the preferences of the general public and decision 

making agents. 

Finally, Chapter 10 discusses the implications of these results for the 

allocation of societal healthcare resources, and for the use of QALY 

maximisation as a societal decision rule.  It also compares these results with 

previous elicitations, discusses the strengths and limitations of the methods and 

results, and outlines how future research may be able to build upon the strength 

and address the limitations. 
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Chapter 2:  
Normative economics and  

healthcare priority setting 

Normative economics addresses the question of how resources ought to be 

distributed, weighing the maximisation of outcomes against the ‘fairness’ of the 

distribution, based largely on ethical and philosophical visions of distributive 

justice (Culyer 2001a; Johansson-Stenman 1998).  Unlike positive economics, 

which is in principle a value-free description of what is, normative economics, by 

definition, starts with an implicit or explicit value judgement about what is 

‘good’ or ‘desirable’ to describe what ought to be (Feldman & Serrano 2006; 

Johansson-Stenman 1998).   

This chapter describes the two dominant approaches to normative 

economics: the welfarist approach, described in section 2.1, and the extra-

welfarist approach, described in section 2.2.  The welfarist approach emphasises 

individual well-being, while the extra-welfarist take a broader view and 

emphasises societal well-being.  However, this requires some definition of the 

factors beyond individual well-being that contribute to societal well-being, as 

well as an understanding of who should contribute to that definition.  Section 2.3 

outlines the arguments for and against an explicit definition of these factors, 

while section 2.4 describes more and less inclusive approaches to defining which 

potential factors may be relevant to the societal value of healthcare, and 

discusses the role of objectivity in societal priority setting.  Finally, section 2.5 

describes the equity-weighted QALY as one approach to explicitly incorporating 

societal preferences in healthcare priority setting.    
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2.1 The welfarist approach 

 Hurley (1998) and Brouwer et al. (2008) describe four value judgements 

that make up the neo-classical welfarist approach to normative economics: utility 

maximisation, individual sovereignty, consequentialism and welfarism.  The 

principle of utility maximisation implies that individuals maximise their welfare 

by comparing different alternatives and choosing the one with the greatest 

‘utility,’ which should be understood as an ordinal measure of the degree to 

which a particular alternative satisfies an individual's preferences.  A more 

preferred alternative is said to have greater utility, and consistently choosing 

alternatives with the highest utility is assumed to maximise an individual’s 

overall welfare.  Individual sovereignty holds that welfare (or utility) is unique to 

an individual, and that the individual can be the only judge of their own welfare.  

This principle rejects paternalism, or that a third party may know better than the 

individual what is best for them.  Consequentialism holds that any action or 

decision must be judged solely by its outcome, not the processes or intentions 

that led to that outcome.  Finally, welfarism holds that the ‘goodness’ of any 

situation should be judged solely by the utility attained by individuals in that 

situation. The primacy of individual preferences in neo-classical economic 

theory is based on the assumption that individuals are rational, self-interested 

and perfectly informed; thus, individuals will prefer X to Y if, and only if, X is in 

fact better for them.  This leads to a formal theory of welfare that holds that the 

welfare of an individual can be equated with how well their preferences are 

satisfied (Feldman & Serrano 2006; Hausman & McPherson 2009). 

The welfarist approach shares the principles of utility maximisation, 

consequentialism and welfarism with utilitarianism.  But whereas utilitarianism 

takes the view that “justice is ultimately a matter of maximising the sum total of 

human happiness”(Mill 1871; Williams & Cookson 2000), and that alternatives 

should be evaluated on the basis of aggregate individual utility, the welfarist 

approach is adamant that utility is ordinal, and cannot be compared or 

aggregated across individuals (Brouwer et al. 2008).  Individual sovereignty and 

welfarism effectively rule out interpersonal comparisons – individuals are to be 

the sole judges of their welfare and the welfare of each individual is equally 

important.  Within the welfarist framework, therefore, the societal desirability of 
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a reallocation is judged by the Pareto Improvement Criterion, which states that a 

potential reallocation is a desirable improvement if, and only if, the welfare of at 

least one member of society is improved without making anyone worse off 

(Sugden & Williams 1978; Feldman & Serrano 2006).  The current allocation of 

resources is taken as a given, and if resources cannot be reallocated in a way that 

satisfies this criterion, the current allocation is said to be ‘Pareto optimal.’  As 

this may rule out reallocations that could improve aggregate societal welfare, the 

welfarist approach has been described as applying a weak version of 

utilitarianism, in that it is willing to accept as optimal an allocation that does not 

maximise aggregate welfare (Culyer 2001a).  The strict reallocation conditions of 

the Pareto Improvement Criterion also mean that the welfarist approach cannot 

accommodate equity concerns – the well-being of the worst-off in society can be 

no more (or less) important than the well-being of the best-off.  This has the 

implication that flagrantly unequal or inequitable allocations can be considered 

Pareto optimal if the existing distribution of resources cannot be reallocated 

without creating a ‘loser’ (Hurley 1998; Konow 2003; Feldman & Serrano 2006). 

2.2 The extra-welfarist approach  

Although the Pareto criterion is in itself a relatively weak and 

uncontroversial value judgement, the supremacy of the individual means that it 

is a restricted and somewhat impractical guide to allocating societal resources, 

which generally involves reallocating resources from the better-off to the worse-

off (Hauck et al. 2004; Feldman & Serrano 2006; Tsuchiya & Williams 2001; 

Coast et al. 2008b).  As a result, many of the principles of the welfarist 

framework have been modified to provide more practical normative guidance to 

societal decision making.  This has led to ‘extra-welfarist’ or ‘non-welfarist’ 

approaches (Brouwer et al. 2008; Hurley 1998; Culyer 1989; Coast et al. 2008b).4   

                                                 
4 The distinction between the terms extra-welfarist and non-welfarist is not always clear, and the 

two are often used more or less synonymously, but Coast (2009) offers a useful perspective in 

suggesting that extra-welfarism  can be seen as a specific theoretical framework within the larger 

set of often atheoretical non-welfarist approaches. 
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There are four key principles that distinguish the extra-welfarist approach 

from the welfarist approach (Brouwer et al. 2008; Hurley 1998; Culyer 1989).  

First, it allows for the consideration of non-utility factors as well as individual 

utility.  Second, it incorporates valuations from sources other than the affected 

individual.  This allows for external value judgements that may override the 

principle of individual sovereignty.  Third, it allows for the explicit incorporation 

of equity weights that are not necessarily preference based.  Fourth, it assumes 

that utility is cardinal, and allows for inter-personal comparisons of well-being.  

The extra-welfarist approach moves toward a concept of societal well-being that 

Culyer (1989) argues “transcends traditional welfare” by supplementing 

information on individual welfare with information on other aspects of 

individuals, including the distribution of well-being between them.  Hurley 

(1998) goes further, and suggests that non-utility factors may even be more 

important than individual utility.  These principles – and particularly the inter-

personal comparison of cardinal utilities – allow for a relaxed version of the 

Pareto improvement criterion, known as the potential Pareto improvement, or 

Kaldor-Hicks criterion.  If, in principle, the gainers from a particular reallocation 

are able to fully compensate the losers and remain at least as well off as before 

the reallocation, the new state is considered a potential Pareto improvement over 

the original state (Feldman & Serrano 2006; Tsuchiya & Williams 2001).   

The potential for a redistribution that would leave everyone at least as 

well off is used as a justification within both the welfarist and extra-welfarist 

approaches for emphasising the maximisation of outputs and disregarding the 

distribution of those outputs as a political matter (Sugden & Williams 1978; 

Coast 2009).  However, Sassi et al. (2001) argue that in neglecting equity 

concerns, economics loses much of its normative power and restricts itself to the 

relatively narrow domain of technical efficiency.  Furthermore, within a 

healthcare context, it is not possible to separate the production of health from its 

distribution; production and allocation happen simultaneously (Coast 2009).  As 

Menzel (1999) points out, “…it is often not possible to redistribute health, or to 

compensate for healthcare allocations through the distribution of other goods.  It 

is difficult to compensate someone who has died because one program received 

priority over another.”  For these reasons, healthcare priority setting can be seen 
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as a matter of allocative as well as technical efficiency, and as such requires 

explicit consideration of equity and distributive justice (Williams 1988; Menzel 

et al. 1999; Coast 2009).     

In this context, Hurley (1998) describes the ‘analytic imperative’ of the 

extra-welfarist approach as follows: from the characteristics of people, define a 

set of normatively relevant characteristics; measure the relative level deprivation 

within those characteristics and the corresponding need5 for commodities (e.g. 

healthcare) to address these deprivations; and compare alternative allocations of 

commodities with respect to their ability to alleviate deprivations.  This 

description of defining normatively relevant characteristics and comparing 

alternative allocations highlights (at least) two questions that must be resolved 

before proceeding with an extra-welfarist evaluation: on what terms should 

alternative allocations be compared, and who should define those terms?  The 

first question concerns the explicitness of the decision rule for choosing between 

allocations, and the second question concerns the inclusiveness and perspective 

of the priority setting process.  These two issues will be considered in turn below. 

2.3 Explicitness in priority setting 

Approaches to healthcare priority setting can be understood as implicit or 

explicit.  Coast (1997) defines an implicit approach as the rationing or 

prioritisation of healthcare where neither the decisions about what programs to 

fund nor the bases of these decisions are clearly expressed.  Under an implicit 

approach, equity-efficiency trade-offs are implicitly recognised but not explicitly 

quantified, and prioritisation decisions are based largely on the judgement of 

individual decision makers.  Under more explicit approaches, the responsibility 

of decision makers is to define a consistent and transparent set of factors and 

weights that define acceptable equity-efficiency trade-offs, and prioritisation 

decisions are made on the basis of these weights and a pre-defined decision rule 

rather than individual judgement.   

                                                 
5 Hurley (1998) noted that deprivation does not automatically imply a corresponding need for 

healthcare, as need also requires an effective treatment.  In the absence of an effective treatment, 

a person cannot be said to have need. 
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2.3.1 Implicit priority setting 

Proponents of a more implicit approach see priority setting as an 

“inescapably political process” (Ham & Coulter 2001), requiring discussion and 

compromise rather than inflexible decision rules (Hunter 2001; Robinson 1999).  

A key benefit of an implicit approach is the avoidance of conflict:  

Principles that incorporate semiautomatic formula for implementing them 
(like maximising health benefits) tend to be highly contentious, while 
uncontentious principles owe their acceptability to the fact there is 
ambiguity about their implementation (Klein 1997). 

 
Many argue that this ambiguity, in terms of what is funded and why, offers the 

flexibility necessary to address the inherent complexity of healthcare decision 

making, including the practical difficulties of defining and weighting explicit 

criteria, and enforcing the resulting decisions across all settings (Hunter 2001; 

Klein 1997; Mechanic 1995).  A lack of transparency is also argued to be 

necessary to overcome consumer and provider resistance and lobbies (Klein 

1992).  In this view, a lack of transparency allows decision makers to make the 

‘correct’ choice rather than the ‘popular’ choice.  This is similar to Wirtz et al.’s 

(2003) suggestion of a “hidden curriculum” within healthcare decision making 

that tacitly emphasises process concerns over technical factors such as efficiency, 

effectiveness and affordability.  In their view, process factors such as the 

maintenance of good relations with major stakeholders (what they refer to as 

‘picking your battles’), the management of organizational burden (managing 

trust and morale, in addition to purely financial issues) and public defensibility 

(emphasising perceived fairness over technical measures) justify taking a more 

implicit approach to priority setting.  Such an approach is consistent with a cost-

consequence decision framework, where the costs and benefits are measured and 

presented in a disaggregated format, but each decision maker assigns his or her 

own weights across the different factors in deciding whether the benefits of a 

particular program are worth the costs (Mauskopf et al. 1998).  

At the individual level, some proponents of an implicit approach also 

noted that it could be painful for patients to be told that effective care is being 

denied, and for decision makers to take responsibility for such decisions.  From a 

utilitarian perspective, an implicit approach may maximise societal well-being by 
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minimising such ‘deprivation disutility’ and ‘denial disutility,’ respectively 

(Coast 1997; Mooney & Lange 1993).  They suggested that the patient and the 

clinical decision maker can only be made worse-off by the explicit 

communication that effective and beneficial healthcare was denied on the basis 

of criteria other than clinical effectiveness.  Therefore it is better for both parties, 

and for society in general, to leave the patient with the impression that the 

decision was based on clinical factors beyond anyone’s control (Coast 1997).  

Qualitative research, though, has found that even though patients acknowledged 

some distress from the knowledge, they consistently expressed a desire to be told 

if their care was being rationed (Coast 2001b; Owen-Smith et al. 2010).  The 

primary motivation appeared to be a simple desire to be as informed as possible 

about their care, and to have “a good explanation as to why the decision was 

made.” (Coast 2001b)  Patients as well as providers also felt that the knowledge 

an effective treatment was available but had been rationed would allow patients 

to seek the treatment by other means, such as political lobbying, or private or 

self-funding (Coast 2001b; Owen-Smith et al. 2010).  From the perspective of the 

providers, although most expressed support for a principle of full and explicit 

disclosure, many acknowledged being less explicit about rationing decisions 

when they felt that a patient may not have had alternative means to access 

treatment (Coast 2001b; Owen-Smith et al. 2010).   

2.3.2 Explicit priority setting 

Proponents of a more explicit approach argue that from an ethical and 

moral perspective, clearly defined objectives and criteria, and transparency in the 

decision making process, are the bases of citizens’ democratic rights to informed 

consent and political autonomy.  It is also the basis of citizens’ ability to hold 

decision makers responsible for their decisions (Doyal 1997; Lauridsen et al. 

2007; Rumbold et al. 2012).  As Doyal (1997) notes, transparency and 

accountability may undoubtedly lead citizens to give decision makers a difficult 

time, but that is their right in a democracy, particularly over issues with the 

fundamental importance of healthcare.  Furthermore, as denial disutility is at 

least in part a consequence of decisions around levels of taxation and funding, it 

makes little sense to hide the necessity of priority setting from citizens, as they 
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can only make informed choices about funding levels if they can see the 

consequences of their decisions (Buxton & Chambers 2011).  As an aside, it is 

interesting to note that one result of the Oregon experiment in explicit priority 

setting of the early 1990s was an increase in the overall level of healthcare 

funding (Ham 1998).   

From a technical perspective, proponents of more explicit approaches 

argue that bringing as much relevant information as possible together within an 

explicit framework supports rigorous evaluation and continuous improvement to 

a much greater degree than implicit approaches (Dowie 1998; Doyal 1997; 

Mitton 2002).  Doyal (1997) argues that to not make an attempt be explicit in 

decision criteria is to give up the ability to evaluate the efficiency or justice of a 

particular distribution of resources, and to accept the possibility that a 

redistribution could do as much harm as good.  Finally, making the criteria for 

decisions more transparent decreases the potential influence of special interest 

groups and may increase trust in the decision-making process (Coast 2001b; 

Devlin et al. 2003; Doyal 1997).  Fleck (1992) suggests that implicit priority 

setting can create an invisible class of ‘others,’ who may be victims of injustice 

without knowing it.  Similarly, Broqvist and Garpenby (2014) suggest that 

priority setting is based on a social contract by which citizens accept the need to 

forego some effective healthcare in order that those with a greater need may 

receive priority; in return they expect that others will stand aside when they have 

the greater need.  A poor understanding of why particular patients were 

prioritised erodes trust in this contract, and makes citizens less willing to stand 

aside for others.   

A more explicit approach to priority setting appears to be associated with 

a more informed citizenry, more accountable decision makers, greater 

opportunities for evaluation and improvement, and greater trust in the priority 

setting process.  To the extent that these outcomes are in themselves desirable, a 

more explicit approach to healthcare priority setting appears justified.  However, 

it is still necessary to define what factors will be considered in an explicit 

decision-making approach, and perhaps even more importantly, who will define 

these factors. 



17 

2.4 Inclusiveness and objectivity within the extra-welfarist framework 

Coast et al. (2008b) explain that because an individual's preferences are 

not paramount within the extra-welfarist approach, it is necessary to decide what 

other factors are normatively relevant and what weight each should carry in the 

decision making process.  This is what Broome (1989) describes as distinguishing 

an individual’s normative claims to some good or resource from the reasons they 

should have it.  He argues that claims, and not reasons, are the object of fairness: 

“if there are reasons why a person should have a good, but she does not get it, no 

unfairness is done her unless she has a claim to it.”  Critically, it is also necessary 

to decide who should define what characteristics are relevant; that is, which 

reasons rise to the level of claims and which do not (Broome 1989).  There is a 

range of perspectives that can be applied, but this range is arguably anchored at 

one end by the strictly impartial decision-maker perspective, and at the other by 

a more inclusive and subjective democratic or Communitarian perspective.  

2.4.1 The decision-maker perspective and QALY maximisation 

  The extra-welfarist approach has most commonly adopted what Sugden 

and Williams (1978) call a ‘decision maker’ perspective, whereby the relevance 

of different characteristics is defined by those individual responsible for making 

(or analysing) policy decisions on behalf of society (Sugden & Williams 1978; 

Coast 2004).  A perceived advantage of the decision maker perspective is that 

societal decision makers, on the basis of their knowledge, expertise and 

professionalism, are uniquely “impersonal, impartial, unbiased and neutral” 

(Buchanan et al. 1998), or in other words, objective.  Indeed, when Coast et al. 

(2001a) asked members of the general public and a group of healthcare decision-

makers, including government bureaucrats, physicians, hospital administrators, 

who should participate in healthcare rationing, they found that decision makers 

as well as the public felt that citizens lacked sufficient objectivity.  Both groups 

viewed objectivity as the ability to make decisions based solely on facts while 

setting aside any emotion or empathy.   

Relying on impartial decision makers to make societal decisions is an 

example of ‘procedural objectivity,’ or the idea that objective decision makers 

will tend to reach an objective truth.  In this context, Fine (1998) defines an 
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objective truth as one that can be accepted by all concerned with no further 

persuasion or explanation.  This is in contrast to a subjective truth, which may be 

true from the perspective of a particular individual, but not necessarily true for 

all individuals.  An example of an objective truth is that 10 is a larger number 

than 9; an example of a subjective truth is that blue is a better colour than red.  

Like blue versus red, the optimal allocation of healthcare resources is not an 

objective truth, and the value of a particular allocation ultimately rests upon 

subjective tastes, perspective and persuasion (Fleck 1992; Klein & Williams 

2000; Daniels 2001).  Relying on small groups of professional decision makers is 

viewed as a way to resolve this dilemma, and to arrive at an allocation that is 

objectively ‘best.’  Although this approach concentrates decision making 

authority in the hands of a relatively small group of decision makers, Sugden and 

Williams (1978) suggest that such an approach is fair and representative of 

broader society to the extent that these decision makers occupy their position as 

a result of a socially accepted process, and to the extent that they can be held 

accountable for their decisions through the same process.  Brouwer, Culyer, van 

Exel and Rutten (2008) go even further, and suggest that the responsibility of 

societal decision makers is not to reflect how citizens would act, but rather how 

they ought to act, avoiding what Robinson (1999) refers to as a “dictatorship of 

the uninformed.”  This is consistent with the view that less transparency allows 

decision-makers to the correct choice rather than the popular choice.   

Within this decision maker perspective, aggregate health rather than 

individual utility has tended to be paramount.  Coast et al. (2008b) argue that 

this perspective has been strongly influenced by Sen’s Capability theory, which 

holds that an individual’s well-being should be judged not by their own 

subjective utility, but by their objective capability to do things that he or she has 

reason to value (Sen 2011).  Sen (1992) argues that the welfarist conception of 

utility suffers in particular from problems of physical condition neglect and 

valuation neglect.  Physical condition neglect suggests that a disabled person 

may adjust their expectations downward to accommodate their circumstances – 

what Sen describes as learning to take pleasure in small mercies.  Although such 

an individual may have a high subjective utility relative to their lowered 

expectations, what should matter in evaluating societal utility is the individual’s 



19 

objectively limited range of capabilities (Mooney 2005; Richardson & McKie 

2005).  Similarly, valuation neglect implies that “the strength of desire is 

influenced by considerations of realism in one’s circumstances,” and therefore 

welfarism has an over-reliance on “what people ‘manage to desire’” and is 

“particularly neglectful of the claims of those who are too subdued or broken to 

have the courage to desire much.” (Sen 1992; Mooney 2005)  So while utility in 

the welfarist approach is defined by an individual’s subjective reaction to their 

choices and desires, Sen’s conception of well-being is defined by the objective 

range of choices and desires available to an individual, avoiding a reliance on the 

‘metric of desire.’ (Cookson 2005; Brouwer et al. 2008)  By insisting that we 

must not value only happiness, Sen justifies a definition of well-being largely 

external to the preferences and desires of the individual (Sen 1992; Cookson 

2005; Coast et al. 2008b).  Indeed, Sugden (1993) suggests that Sen wants to say 

that some functionings are intrinsically valuable, whether they are desired or not. 

Sen (1992; 2011) has resisted an explicit definition of what capabilities 

should be valued, saying that the relevant capability set will depend on the 

nature of the question being addressed, but Nussbaum (2011) has suggested that 

life and health are fundamental, and Culyer (1989) makes specific reference to 

Capability theory in discussing the development of the extra-welfarist approach 

to health economic evaluation.  Culyer notes a broad range of potentially 

relevant characteristics, including a person's genetic endowment of health, 

relative deprivation, moral ‘worth’, pain, stigmatisation and relationships, but 

acknowledges that “the extra-welfarist approach has taken ‘health’ as the 

proximate maximand,” where health is most often measured in terms of the 

QALY.  This approach has become known as QALY maximisation. 

By equating well-being with health, and health with the QALY, it follows 

that the QALY is a merit good, with an intrinsic value outside of its contribution 

to an individual’s utility (Culyer 2001b; Dolan 2001; Gold 1996).  By focusing 

on QALYs rather than individual utility, and – critically – by presuming that an 

additional QALY is of equal value to everyone (Nord et al. 1995; Dolan et al. 

2005; Weinstein et al. 2009), QALY maximisation avoids the welfarist 

implication that resources should be directed away from those who may place a 

lower value on their health (Wagstaff 1991).  QALY maximisation also 
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presumes ‘distributive neutrality,’ or that the value society derives from each 

additional QALY is the same regardless of the characteristics of who receives it 

or the number of QALYs they may have already gained (Nord et al. 1995; Dolan 

et al. 2005).  However, this conflation of QALYs and well-being, along with the 

Potential Pareto Improvement Criterion’s emphasis on the maximisation over 

the distribution of gains, imposes a narrow perspective where more QALYs is 

always necessarily better than fewer, and rules out trading health for other goals 

such as gains in individual utility or distributive justice, even if such a trade 

would increase overall well-being (Gold 1996; Dolan 2001; Coast 2009). 

Despite the consistency between QALY maximisation and procedural 

objectivity, in the sense that the QALY was defined by impartial analysts as an 

objective measure of (health-related) well-being, this has not lead to its 

widespread acceptance as a societal decision rule (Drummond et al. 2003; 

Hoffmann et al. 2002; Innvaer et al. 2002; Ross 1995).  This perhaps relates to 

Fine’s (1998) characterisation of procedural objectivity as “the view from 

nowhere, and of no-one in particular.”  By carefully excluding personal 

perspectives from societal allocation decisions, he argues that procedural 

objectivity makes it impossible to understand the very nature of subjective truths: 

that truth depends on tastes, perspective, and persuasion.  In his view, a 

societally preferred allocation of resources cannot be reached by means of 

procedural objectivity alone, and personal perspectives – particularly concerning 

visions of distributive justice – must be acknowledged.   

He goes on to argue that the fundamental point of objectivity in societal 

decision-making is not truth, but trust.  Citizens do not value objectivity because 

they believe it arrives at an objective truth; they value it because they believe it 

arrives at a decision they can trust.  In this view, objectivity represents anything 

that improves trust in a decision.  In some circumstances, trust may be enhanced 

by the impartiality of societal decision makers, but in others, trust may be 

enhanced by a broader process, with more personal perspectives.  Similarly, Sen 

(2011) wonders if it is possible to have a “…satisfactory understanding of ethics 

in general and justice in particular that confines its attention to some people and 

not to others, presuming – if only implicitly – that some people are relevant 

while others simply are not?”  In his view, ‘universality of inclusion’ is an 
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integral part of objectivity.  Heldke and Kellert (1995) make a similar argument, 

and suggest that ‘pure’ objectivity – which they define as knowledge that is 

independent from the perspectives of particular persons – is impossible, and to a 

large extent, undesirable.  They argue that “knowledge is actually strengthened 

by systematically increasing the number of concrete, identifiable perspectives 

represented.”  Together, these views are consistent with a more directly 

democratic (Fleck 1992) or Communitarian (Callahan 2003a; Mooney 2005) 

approach to defining the normative relevance of different characteristics. 

2.4.2 A democratic or Communitarian perspective 

Fleck (1992) argues that in order to justify its rationing decisions, a 

democratic government must ultimately appeal to some vision of distributive 

justice.  However, as a single view of justice is unlikely to be endorsed by all 

citizens – particularly those who may lose out as the result of a rationing 

decision – it is essential that the government be able to demonstrate the moral 

legitimacy of its particular vision.  Prima facie moral legitimacy could be 

achieved, he suggests, by creating “social processes through which rationing 

decisions become something that we collectively impose upon ourselves.”  To 

this end, he argues that it should be the responsibility of all citizens in a 

democracy to contribute to determining the fair allocation of scarce healthcare 

resources.  Fleck acknowledges the difficult and uncomfortable choices that this 

process may require of citizens, but emphasises the responsibilities, as well as the 

rights, of citizens in a democracy.  

The democratic approach outlined by Fleck is similar to the 

Communitarian approach, advocated by Mooney (1998b; 2005) and Callahan 

(2003a; 2003b).  Callahan (2003a) rejects the individualistic principles of 

welfarism on the grounds that they preclude a societal understanding of well-

being.  Such principles, he argues, only make sense if one believes in an ‘invisible 

hand’ that can shape individual well-being into societal well-being.  In their place 

Mooney (2005) argues that societal resources should be allocated on the basis of 

community preferences for “what sort of society citizens want, including what 

sort of social institutions they want and what sort of rules or principles they want 

to govern these social institutions.”  These preferences would determine the 
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objectives of the healthcare system, and would inform efficiency in terms of what 

it was the health system was trying to achieve (Mooney 1998b).  The better the 

health system met these objectives – that is, the better societal preferences were 

satisfied – the greater value society would derive from the healthcare system.   

Although citizens may indeed be ill-informed about which specific 

healthcare interventions should be provided, Mooney (1998b) argues that they 

can and should contribute to the principles by which healthcare resources are 

allocated.  As noted above, these principles are inherently subjective and do not 

necessarily require technical expertise.  Once these principles are defined, the re-

allocation of resources necessary to achieve these equity and efficiency objectives 

would be left to professional decision makers and clinicians at the meso and 

micro levels (Mooney 1998b; Nord et al. 1999).  The different roles of the public 

and the decision makers reflects the role of objective knowledge and expertise at 

different stages of the priority setting process (Buchanan et al. 1998).  At the 

macro level, there is no objectively best allocation of resources; it is a subjective 

judgement that ultimately rests upon tastes, perspective and persuasion.  Once 

the objectives of the healthcare system have been defined, however, the 

allocation of resources at the meso/micro level to best meet these objectives is a 

technical matter that relies on professional knowledge and expertise. 

2.5 Societal preferences in priority setting: the equity-weighted QALY 

Recent reviews have suggested that society is concerned about factors 

other than QALY gains, and may be willing to sacrifice aggregate QALY gains 

to prioritise patients on the basis of characteristics such as age, social role or 

disease severity (Sassi et al. 2001; Schwappach 2002a; Dolan et al. 2005; 

Stafinski et al. 2011).  Consistent with these suggestions of societal support for 

equity as well as efficiency in the allocation of health and healthcare resources, 

operational applications of QALY maximisation have tended to ease the strict 

QALY maximising decision rule and allow for consideration of equity alongside 

efficiency in priority setting decisions.  For example, health economic evaluation 

guidelines from the Canadian Agency For Drugs and Technologies in Health 

(CADTH) note that age, sex, ethnicity, geographic location (usually understood 
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as remoteness), socioeconomic group or health status may be relevant to some 

evaluations (Canadian Agency For Drugs and Technologies in Health 2006).  

Similarly, the National Institute for Health and Care Excellence (NICE) citizens 

council, which is intended to represent UK public opinion on overarching moral 

and ethical issues (National Institute for Health and Care Excellence 2013), has 

noted that factors such as the age of the patient, disease severity, or life-saving 

treatment may justify greater priority (National Institute for Health and Care 

Excellence 2008).  However, the inclusion of factors other than length and 

quality of life has tended to be ad hoc.  There is little specific guidance on when it 

is or is not necessary to consider these factors, or how they should be weighted 

relative to each other or to the objective of maximising QALYs.  This lack of 

consistency may jeopardise the public trust in the priority setting process.    

One way to explicitly incorporate the distributional preferences of society 

into priority setting decisions is through what is referred to as the ‘equity-

weighted’ QALY.  This measure would weight QALY gains to reflect the 

strength of the equity-efficiency trade-off, and its key feature is that the sum of 

equity-weighted QALYs accruing to any particular individual can be greater or 

less than the sum of their unweighted QALYs.  Note that at the aggregate level, 

however, the sum of equity weighted QALYs must equal the sum of unweighted 

QALYs, and for each patient that receives a greater weight another must 

necessarily receive lower weight (Ham & Coulter 2001; Wailoo et al. 2009).  

Culyer (1989) suggests that such a measure, by explicitly integrating equity and 

efficiency, addresses allocative as well as technical efficiency.   

The use of the equity-weighted QALY as a measure of value in healthcare 

leads to what Nord (1995b) describes as ‘cost-value analysis,’ where the objective 

is to maximise the total value of QALYs gained, rather than the sum of 

individual QALY gains (Mooney 1998b; Nord et al. 1999).  There is nothing in 

the equity-weighted QALY that requires a democratic or Communitarian 

approach to defining the relevant equity considerations, but for the reasons 

discussed above these approaches appear to have advantages for defining equity 

weights.  Such a measure is also consistent with Williams’ (1996) view that 

“QALYs will also have a role in more complex rules, and more complex rules 
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will almost certainly be needed if collective priority-setting is to reflect the views 

of the general public.”  

An advantage of the equity-weighted QALY is that it offers an escape 

from the theoretical ‘QALY trap’ of conventional QALY maximisation, where 

“the health-related quality-of-life of any health condition determines not only the 

benefit of curing the condition but also the benefit of saving the life of someone 

with that condition.” (Ubel et al. 2000)  This implies that saving the life of a 

person with a permanent disability (e.g. paraplegia) is less valuable than saving 

the life of someone who is otherwise in perfect health, since the person with 

paraplegia will generate fewer lifetime QALYs.6  Conversely, if saving the life of 

a person with paraplegia is to be considered equally valuable, it is necessary to 

regard a cure for paraplegia as having no value (Menzel 1999).  With an equity-

weighted QALY, societal value is not constrained by the individual utility 

gained, and it is possible to value the two lives equally.  Therefore, “the strength 

of a claim is not a function of an individual's ability to manage to feel harmed.  

Harms, and the strength of harms, are for the society to judge.” (Mooney 1998b)   

 The equity-weighted QALY is based on the assumption that efficiency 

and equity are commensurate concepts, and that efficiency in maximising health 

gains can be traded off against concerns for equity.  As Sassi et al. (2001) note, 

this implies that a more equitable intervention can be less efficient and still be 

ranked favourably relative to a more efficient but less equitable intervention.  

There is a limit to this equity-efficiency trade-off, though, and at some point an 

equitable but inefficient intervention will ranked less favourably than a more 

efficient intervention with a less equitable distribution of benefits.  The objective 

over the remainder of the thesis is to estimate the strength of the equity-efficiency 

trade-off for different aspects of equity, and the next chapter will review factors 

that may be relevant to this trade-off. 

                                                 
6 Few economic evaluations incorporate utilities at the individual level, so the QALY trap is 

more of a theoretical than a practical matter, but the implication holds nonetheless. 
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Chapter 3:  
Empirical ethics review  

A fundamental challenge in the extra-welfarist approach is defining the 

set of non-utility characteristics relevant to priority setting.  Strict theoretical 

QALY maximisation, based on a view of well-being as health, defines this set 

solely in terms of length and quality of life, and the number of patients 

benefitting.  More pragmatic applications of this framework have allowed for the 

expansion of set of relevant factors to include implicit consideration of 

characteristics such as age or disease severity.  However, as noted in the previous 

chapter, the inclusion of factors other than length and quality of life has tended 

to be ad hoc, with little guidance for when these factors should be considered, or 

what their weight should be relative to efficiency.  In addition, although many of 

the factors mentioned in the CADTH and NICE guidelines are consistent with 

recent evidence on societal preferences, the factors included in a particular 

evaluation, and their relative weights, ultimately reflect decision maker rather 

than societal preferences.  As an alternative, a democratic or Communitarian 

approach would allow for the set of relevant characteristics, and their relative 

weights, to be defined by the community (Mooney 1998b; Menzel 1999; 

Callahan 2003a).   

The most straightforward approach to identifying these factors would be 

simply to ask representative members of a community which attributes or 

characteristics they consider important.  Indeed, such preference surveys have 

been relatively common in health economics (Nord et al. 1995; Bowling 1996; 

Mossialos & King 1999).  As Mooney (1998b) acknowledges, however, the 

preferences elicited by such surveys will only be ‘good’ to the extent that the 

society from which they derive is also ‘good.’  That is, society may hold 
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preferences that are irrational or perverse by, in Mooney’s terms, “some 

universalist principle.”  Likewise, Ubel et al. (1999) noted that although it is 

important to consider public preferences in healthcare priority setting, these 

preferences may not always be fair.  Although irrational or perverse preferences 

may reflect a societal consensus, it is difficult to accept that incorporating 

community preferences for denying men or particular ethnic minorities 

healthcare, for example, would improve the moral legitimacy of the resulting 

priorities.  Daniels (1998) goes further, and argues that majority support in a 

preference survey is not sufficient grounds for distributing something as 

fundamentally important as healthcare.  Such surveys, he suggests, reveal tastes 

rather than reasons and therefore lack legitimacy: “settling moral disputes simply 

by aggregating preferences seems to ignore fundamental differences between the 

nature of values and commitments to them and tastes or preferences.”  He argues 

that a deliberative process is required to assure the minority that allocation 

preferences are based on reasons that they can accept as relevant.   

Richardson and McKie (2005) agree that ethically important decisions 

cannot be resolved by empirical methods alone, but they suggest that 

deliberation by itself is also insufficient : 

The superiority of one theory over another – ethical or otherwise – cannot 

be determined by logic alone, and yet there must be some agreement about 
what constitutes a better theory.  Neither the discipline of economics nor 
ethics provides a satisfactory answer to this question.  

 

They propose that “defensible principles for allocating healthcare should be 

derived in an iterative way, involving both an empirical study of population 

values and ethical analysis of the results.”  Richardson (2002) described this 

process of identifying factors that are relevant but also, in some sense, fair, as 

‘empirical ethics.’  This process is consistent with Broome’s (1989) view of 

distinguishing claims, which carry some ethical obligation, from the other 

reasons that an individual may be entitled to some share of a limited societal 

resource.   

Richardson (2002) used the term ‘empirical ethics’ to describe a process 

whereby guiding ethical principles are inferred from empirical investigations of 

societal preferences.  That is, evidence of public support should be taken to imply 
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some normative quality.  However, Hausman (2002) has suggested that this 

represents a form of ‘moral relativism,’ whereby what is morally right or wrong 

is reduced to social consensus or even a simple majority.  He feels such a 

position is untenable.  Slavery, he notes, was once held to be acceptable by a 

majority of citizens in many countries, but this support did not make it right or 

ethical.  Like Mooney (1998b) and Ubel et al. (1999), however, Richardson 

recognised that societal preferences should themselves be subject to ethical 

scrutiny, and that at times it may be necessary for decision-makers to over-ride or 

‘launder’ (Goodin 1986) some preferences.  The challenge is to identify which 

preferences should be excluded.  In this regard, Ubel et al. (1999) proposed that 

principles for priority setting should reflect “quantitatively significant” societal 

preferences, and be “consistent with some coherent and defensible ethical theory 

of justice.”  In their view, preferences with a ‘trivial’ impact or minimal support 

should be excluded, as should preferences that cannot be justified by some 

coherent theory of justice.  This approach, of subjecting potentially relevant 

attributes to an empirical and an ethical filter, was adopted here to identify a set 

of attributes that may be considered fair as well as relevant.   

To develop this ethical filter, section 3.1 discusses prominent theories of 

distributive justice that might guide an empirical ethics approach.  As the overall 

objective was to provide specific guidance to the allocation of societal resources, 

the emphasis was on theories that suggest a specific maximand over those that 

advocate a particular process.  Section 3.2 applies empirical and ethical filters in 

reviewing the empirical evidence around public support for different attributes or 

characteristics, and the ethical justifications (or lack thereof) for each attribute 

based on the theories of justice discussed.  Section 3.3 contrasts the attributes 

identified here with the processes and attributes used by other elicitation studies 

in this area.  Finally, section 3.4 discusses the specific attributes that were judged 

fair and relevant by this process, as well as some of the limitations of an 

empirical ethics approach. 
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3.1 Theories of justice in the allocation of healthcare 

As Richardson and McKie (2005) state, “the assertion that one state of 

the world is better than another is always and unavoidably based upon an ethical 

theory or belief.” In order to provide an ethical basis for the attributes included 

among the set of relevant characteristics, this section will briefly review 

prominent theories of distributive justice in healthcare, and draws heavily on 

reviews by Williams and Cookson (2000) and Konow (2003).  It is important to 

note that there are often strong criticisms of all the theories identified here, and it 

is not the intent of the review to argue for an ideal or universal theory of justice.  

Instead, the different theories will be discussed with respect to their respective 

visions of how to allocate inevitably scarce healthcare resources.   

In this regard, Williams and Cookson (2000) distinguish between theories 

of distributive justice that specify a specific objective, or ‘maximand’, and those 

that do not.  Theories without a maximand include ‘pure procedural’ theories 

such as Libertarianism, Contractarianism, Participatory Democracy, and 

Accountability for Reasonableness, which emphasise the process by which a fair 

outcome is reached, rather than the outcome.  Similarly, principles such as the 

absence of envy, equality of access and rule-of-rescue set ‘side conditions’ to 

determine whether an outcome is fair, but again do not specify an overall 

objective.  Principlism and the Pareto principle may also arguably be included 

amongst these side condition principles.  Finally, theories with a specific 

maximand include need, maximisation, egalitarianism, and Rawls’ difference 

principle. 

3.1.1 Pure procedural theories 

Among pure procedural theories, Libertarianism rejects any role for the 

government, and in the context of healthcare holds that publicly-provided 

healthcare should be replaced by private insurance.  Any distribution that results 

from such a free-market arrangement is inherently just (Williams & Cookson 

2000; Nozick 1974).  Libertarianism does not accept that there is ever a 

justification for prioritising one patient’s rights over another’s, arguing that such 

prioritisation would amount to “a utilitarianism of rights.” (Nozick 1974)  

Contractarianism holds that the free and collective agreement of individuals to a 
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particular arrangement shows that it has some normative property (e.g. 

legitimate, just, obligating, etc.) (D’Agostino & Gaus 2008).  A ‘constructivist’ 

interpretation of a social contract views an agreement as normative by virtue of 

the collective agreement itself, while a weaker ‘indicative’ interpretation views a 

collective agreement as evidence of a normative quality, but not a normative 

justification in itself (D’Agostino & Gaus 2008).  Recognise, though, that a 

social contract is only meaningful under conditions of ‘reasonable pluralism’; if 

all individuals had precisely the same set of preferences, there would be no value 

in demonstrating that they could agree on something.  This pluralism implies 

that it is extremely unlikely that all individuals will ever agree on something, and 

therefore a social contract is not defined by what people do agree to, but rather by 

what they would agree to, if they were all hypothetical ‘reasonable individuals,’ 

without biases or false beliefs (D’Agostino & Gaus 2008).  In this sense 

Contractarianism and the social contract are based on the hypothetical 

agreement of hypothetical individuals – what Dworkin (1989) objected to as a 

doubly hypothetical agreement.  Similar to Contractarianism, Participatory 

Democracy as a theory of distributive justice holds that any distribution arrived at 

through a fair democratic process is just.  Both Contractarianism and 

Participatory Democracy are similar to Communitarianism, in that all three 

reflect community preferences.  But whereas Contractarianism and Participatory 

Democracy are based on the idea that community agreement implies a 

normative property, Communitarianism, as understood in the context of this 

thesis, simply holds that allocating resources according to community 

preferences will maximise community welfare; it makes no normative claim 

about the inherent fairness of such a distribution.  Finally, Daniels and Sabin’s 

(2002) ‘Accountability for Reasonableness’ (A4R) defines four process conditions 

to a fair outcome: the publicity of decisions and rationales; the rationale for 

decisions should be relevant and be acceptable to ‘fair-minded people’; there 

must be an appeals mechanism for challenging and potentially reversing 

decisions; and the process must be publicly regulated to ensure the first three 

conditions are met.  More generally, Dolan et al. (2007) identify six broad 

characteristics of procedural justice: a means by which affected or potentially 

affected parties can have the opportunity to contribute to the decision making 
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process; neutrality in decision making, or the ability of decision makers to 

separate themselves from preconceptions and self-interest; consistency in the 

roles accorded to similar people in the decision process; a mechanism for 

assessing the accuracy of information to be used in the decision making process; 

an appeals and reversal process; and transparency in the decision making 

process.   

3.1.2 ‘Side condition’ principles 

Among principles that define the characteristics of a fair outcome without 

specifying a maximand, the absence of envy principle defines a fair situation as one 

where no one envies anyone else, taking into account all aspects of a person's 

circumstances (Williams & Cookson 2000).  Creating such a fair situation 

requires a compensation principle to adjust for inherent differences between 

individuals, although this compensation is generally not defined within the 

theory itself.  Within the healthcare context, the absence of envy principle has 

often led to the idea of equality in initial resources, or resource egalitarianism, 

which will be discussed in more detail below.  Equality of access defines fairness 

as equal access to healthcare, consistent with the concepts of horizontal and 

vertical equity.  Horizontal equity requires similar individuals be treated 

similarly, while vertical equity requires dissimilar individuals be treated 

dissimilarly (Culyer 2001b).  Williams and Cookson (2000), though, suggest at 

least four possible interpretations of ‘access’ in healthcare – the quantity of 

healthcare utilization (e.g. physician visits); the cost of healthcare utilization; the 

maximum attainable healthcare; and the opportunity cost of healthcare – and 

criticise this principle on the grounds that it focuses too narrowly on healthcare 

as an end in itself, and does not consider an overall objective in terms of health 

or well-being.  The rule-of-rescue holds that society has an ethical duty to do 

everything possible to rescue identifiable individuals from imminent death and is 

the basis of much of clinical ethics, but does not specify any distribution of 

resources outside of the single individual (McKie & Richardson 2003).  A 

number of authors, though, argue that it is irrational as well as unfair to devote 

resources to people who happen to be in immediate distress at the expense of 

others who may have a greater objective claim to healthcare resources.  Thus, it 
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is difficult to consider the rule-of-rescue a true theory of distributive justice 

(Williams & Cookson 2000; McKie & Richardson 2003; Hauck et al. 2004).  

Rather than defining one condition to a fair outcome, Principlism defines a set of 

principles that form the basis of much of modern medical ethics: respect for 

autonomy, or the right to make one’s own decisions; non-malfeasance, or the 

requirement to do no harm; beneficence, or the prevention of harm and the 

provision of benefit; and justice in the fair distribution of resources (Callahan 

2003b; Beauchamp & DeGrazia 2004).  While there is no mechanism for 

resolving conflicts between the principles, Callahan (2003a) suggests that all the 

other principles can be interpreted as protecting or promoting the autonomy of 

the individual – any conflict between the principles should be resolved in favour 

of the outcome that is most consistent with autonomy.  Beyond the primacy of 

individual autonomy in decision making, though, Principlism offers no guidance 

in how decisions should be made for the benefit of society (Callahan 2003b).  

Principlism is consistent with many of the principles of neo-classical welfarist 

economics with its emphasis on individual sovereignty and welfarism, and in 

this sense, it is largely inconsistent with a Communitarian perspective.  Finally, 

the Pareto principle holds that an outcome is fair (‘Pareto optimal’) if resources 

cannot be reallocated in such a way that the welfare of at least one member of 

society is improved without making anyone else worse off (Sugden & Williams 

1978).  Konow (2003) argues that the Pareto principle has been widely embraced 

by economics on the grounds that it requires “an ostensibly innocuous value 

judgement,” even though its strict reallocation condition means that the Pareto 

principle will accept flagrantly unequal distributions as fair if resources cannot be 

reallocated without creating a ‘loser.’ 

3.1.3 Theories with a specific maximand  

The principles discussed above are largely deontological, in that the 

fairness of an action is judged by its adherence to a particular set of rules or 

principles.  An alternative class of theories of justice are those with a specific 

maximand.  Such theories are consequential in that the fairness of an action is 

judged solely by the outcomes it generates (Konow 2003; Alexander & Moore 
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2008).  This class of theories includes need principles, maximising principles, 

and egalitarian principles, including Rawls’ Difference principle.  

Need principles advocate the distribution of healthcare in proportion to 

need, consistent with concepts of horizontal and vertical equity, which require 

that equally ‘needy’ individuals to receive equal preference over equally ‘less 

needy’ individuals, regardless of any other characteristics of those individuals 

(Hauck et al. 2004).  Konow (2003) notes that the need principle requires that a 

just allocation of resources provide for basic needs equally across individuals, 

and suggests that this principle tends to dominate when basic needs are 

endangered.  This is consistent with Walzer’s (1983) argument that healthcare is 

a special good which requires a special kind of distributive principle; specifically, 

that whereas consumer goods can be fairly distributed according to market 

principles, healthcare should be distributed according to need.  

The key requirement to operationalising this principle, though, is an 

appropriate definition of need.  Cookson and Dolan (2000) reject a definition 

based on ‘clinical need’, as they suggest such a criterion leads to a procedural 

principle whereby “any allocation is correct so long as a clinician has taken it.”  

Instead, they identify five potential conceptions of need, each with slightly 

different implications for healthcare allocation: 

 Need as the degree of immediate threat to life implies that saving (or 

prolonging) a life should always take priority over enhancing life. 

 Need as the degree of immediate ill-health includes immediate threat to life, 

but also encompasses immediate pain and suffering and implies those in 

more severe states should take priority. 

 Need as the degree of lifetime ill-health takes a broader perspective and 

considers an individual's lifetime health experience.  Individuals who 

have had a relatively long, healthy life would have less priority. 

 Need as the degree of immediate capacity-to-benefit interprets need as the 

ability to gain from effective treatment.  By this definition, if an individual 

cannot gain from treatment, they have no need for healthcare.  Similarly, 

Culyer and Wagstaff (1993) argue that the provision of ineffective 

healthcare should not attract any equity concerns, except insofar as it 
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would be inequitable to use resources that could be used to promote 

equitable outcomes elsewhere.  This principle emphasises health gains 

without considering duration. 

 Need as the degree of lifetime capacity-to-benefit expands capacity-to-benefit to 

include consideration of duration in terms of life expectancy remaining. 

 

Advocates of maximising principles take the view that justice is ultimately 

a matter of maximising the sum total of human happiness.  In a health context 

this implies allocating healthcare so as to bring about the best possible 

consequences, in terms of aggregate population health, most commonly defined 

in terms of quality-adjusted life years (QALYs), or something broader, such as 

well-being or ‘flourishing’ (Cookson & Dolan 2000).  Although maximising 

principles in healthcare are broadly utilitarian, they do not conform to a welfarist 

definition since well-being is not defined by subjective individual utility but by a 

more limited conception of health-related utility.  Indeed, within healthcare, 

even broader measures of well-being or flourishing are most often understood in 

objective terms such as capabilities rather than subjective utility (Culyer 1989; 

Cookson & Dolan 2000).  Maximising principles are the basis of the QALY 

maximisation approach and correspond closely with an interpretation of need as 

the lifetime capacity-to-benefit (Culyer 1989; Coast 2009).  The key distinction 

between the maximisation and need principles is that whereas maximising 

principles would concentrate gains amongst those most able to benefit, possibly 

to the exclusion of those who could gain less, need principles allocate resources 

proportionate to need, implying at least some resources to those with lesser need 

(Cookson & Dolan 2000).  

Egalitarian principles advocate allocating healthcare so as to reduce 

inequalities in health.  As described by Daniels (1990), egalitarianism is willing 

“to forego delivering a greater benefit to someone who is already better off in 

order to deliver a lesser benefit to someone who is worse off.”  However, Konow 

(2003) notes that this relatively simple rule is complicated by different 

conceptions of equality, and Daniels (1990) identifies at least three potential 

targets for egalitarian concerns in a healthcare context: equality of welfare, 

equality of resources to pursue welfare, and equality of objective capabilities.  
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Equality of welfare can be thought of as an operationalisation of the 

absence of envy principle, and requires that all individuals be equally happy with 

their situation in life.  However, as each individual’s welfare is a function their 

preferences, an unequal distribution of resources may be required in order to 

achieve an equal distribution of welfare.  As Sen (1985) suggests, individuals 

differ with respect to their ability to convert resources into well-being, and 

therefore individuals with ‘expensive tastes,’ for example, may require a greater 

share of resources to achieve a given level of welfare.  In such cases, Daniels 

(1990) argues that egalitarian concerns have been hijacked.  An alternative 

interpretation of equality of welfare is offered by Williams (1997), who suggests 

that every individual is entitled to a certain quantity of lifetime health (i.e. their 

‘fair innings’) and that individuals who have gained a greater share of their 

entitlement should have a weaker claim to societal healthcare resources.  An 

absolutist interpretation of this argument would hold that there is no value to be 

gained by treating patients who have achieved their full share of life years or 

healthy life years and would deny treatment to elderly patients, while a relativist 

interpretation would give relatively greater priority to younger patients (Tsuchiya 

2000).  In general, the further an individual is from achieving their fair allotment 

of healthy life years, the stronger their claim relative to those who have already 

achieved their fair innings.  

Equality of resources, or resource egalitarianism, holds that justice 

requires each individual to have the same initial resources in order to pursue 

their welfare but does not prescribe a particular outcome; outcomes are 

determined by each individual’s free choices.  In this perspective, poor health is 

just if an individual had an opportunity for full health but failed to achieve it 

through their own choices (Cookson & Dolan 2000).  However, resource 

egalitarians also generally hold that circumstances over which individuals have 

no control should not adversely affect their life prospects.  An unequal 

distribution of resources may therefore be justified in order to compensate 

individuals disadvantaged by ‘brute luck’ beyond their control (Daniels 1990; 

Anderson 1999).  Because of this compensation condition,  resource 

egalitarianism is also called ‘luck egalitarianism.’ (Anderson 1999; Arneson 

2000; Feiring 2008)  Anderson (1999), though, does not accept that egalitarian 
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principles can be used to justify fundamental inequalities, no matter what their 

cause.  She rejects luck egalitarianism on the grounds that it fails the most basic 

test of any egalitarian theory: “that its principles express equal respect and 

concern for all citizens.”  Luck egalitarianism, she argues, effectively dictates 

what people can do with their freedoms, and abandons individuals judged to 

have made poor use of that freedom. 

Finally, equality of capabilities holds that the objective of healthcare 

should be to maintain an individual’s “normal opportunity range.” (Daniels 

1990)  This view sees health as instrumental to an individual’s overall well-being, 

and that fair equality of opportunity requires that an individual have 

opportunities equivalent to others with the same talents and skills.  Like resource 

egalitarianism, free choices that affect an individual’s range opportunities are not 

unjust, so equality of capabilities would prioritise healthcare for individuals 

disadvantaged by brute luck while at the same time limiting healthcare to those 

with a normal range of opportunity.  Daniels (1990) recognises that a particular 

disease may have a different impact on the normal range of opportunity at 

different stages of life, and suggests that resources should be allocated so as to 

protect a contextual range of opportunity, thereby contributing to a fair 

distribution of resources between age groups.   

The imperative of maintaining an equal range of opportunity is 

conceptually similar to Capability theory, which holds that the objective of 

policy should be to promote and maintain the capabilities necessary to achieve a 

range of ‘functionings.’  In this context, capabilities are what a person can do, 

even if they choose not to translate these capabilities into a specific functioning 

(Cookson 2005; Hausman & McPherson 2006).  To illustrate, literacy would be 

a capability, while reading for pleasure would a functioning (Sen 2011).  But 

although the Capability approach has generally been interpreted as advocating 

an equal distribution of capabilities (Coast et al. 2008a), Sen (2011) argues that 

the Capability approach does not prescribe a specific maximand, but rather offers 

an ‘informational focus’ that society should consider in assessing justice and 

injustice.  In this sense, the Capability approach can be viewed more as the 

‘currency’ of distributive justice, similar to the QALY, rather than as a specific 

theory of distributive justice. 
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Rawls (1999; 2001) proposed a theory of justice based on two principles: 

first, ‘primary goods’, including rights, liberties and opportunities, should be 

distributed equally and at the maximum level that is compatible with everyone 

receiving the same allocation.  This principle is very close to resource 

egalitarianism.  Second, where there are inequalities, these should be arranged in 

order to benefit the least advantaged groups.  This second principle has become 

known as Rawls’ Difference Principle.  Although Rawls’ theory is based on an 

equal respect for all persons, his primary concern is for the absolute position of 

the least advantaged group.  If it is possible to improve the absolute position of 

the least advantaged by having some inequalities, Rawls’ Difference principle 

prescribes inequality up to the point that the absolute position of the least 

advantaged can no longer be improved (Lamont & Favor 2008).  In this sense 

Rawls argues for a lexicographic welfare function where the absolute position of 

the least advantaged determines overall societal welfare (Mueller 2003).  In 

justifying his theory, Rawls (1999) imagines an initial position in which people 

are behind a ‘veil of ignorance’ and would not know their position in society.  In 

this ‘original position’, he argues that free and rational individuals would 

understand that it was equally probable that they could be well-off or badly-off, 

and would accept a social contract based on equality in order to minimise their 

risk by ensuring that the worst off are as well-off as possible.  

Although Williams and Cookson (2000) have interpreted Rawls’ 

Difference principle in the context of healthcare as prioritising those in the most 

severe health states, they note that Rawls explicitly excluded health from his list 

of ‘primary goods.’  First, Rawls felt that health was distributed by nature as 

much as society.  Second, he felt health is an end in itself, not just a means to 

pursue other ends.  Third, a strict application of the Difference principle could 

result in excessive share of healthcare resources going to those in the most severe 

health states.  However they also note that Rawls has suggested that the 

Difference principle may not apply once all members of society have been 

brought up to a minimum level of health, similar to Daniels’ (1990) 

interpretation of equality of opportunity.  

Similar to Rawls’ difference principle, as well as to aspects of the rule-of-

rescue, Prioritarianism holds that the worst-off should have priority over those 
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that are better-off (Parfit 1997; Arneson 2000).  Prioritarianism is distinguished 

from different forms of egalitarianism by its concern for absolute, rather than 

relative well-being.  To illustrate, a ‘fair-innings’ egalitarian would assign priority 

to a moderately ill child and a very ill senior on the basis of their relative 

accumulation of lifetime health.  The child has gained relatively less of her fair-

innings and so deserves relatively greater priority than the senior.  A Prioritarian, 

in contrast, would assign priority on the basis of absolute well-being: the senior is 

more severely ill, and so deserves greater priority.  Hausman and McPherson 

(2006), though, suggest that an emphasis on the worst-off will tend to have the 

effect of lessening inequalities, making the distinction between Prioritarianism 

and egalitarian theories relatively insignificant. 

Few advocates of egalitarian principles would pursue equity as the sole 

objective, and instead combine equality with other principles of justice such as 

need or maximisation (Cookson & Dolan 2000; Culyer 2001b; Hausman & 

McPherson 2006).  In theory, a strictly egalitarian focus on health differences 

could achieve equality by reducing rather than improving overall health, so to 

avoid this result, egalitarianism might be combined with maximising principles; 

what Parfit (1997) refers to as ‘pluralist egalitarianism.’ 

3.1.4 Defensible theories of justice 

In considering theories of distributive justice, particularly as applied 

within healthcare, Williams and Cookson (2000) adopted an economic decision-

making perspective and rejected deontological theories and principles on the 

grounds that they lack a maximand and therefore offer no specific distributional 

guidance to decision makers.  This is particularly true where there is no optimal 

solution and some trade-off must be made between ‘unjust’ alternatives 

(Williams & Cookson 2000; Hausman & McPherson 2006).  This pragmatic 

justification for a decision-making perspective was adopted here, and 

deontological theories and principles were not accepted as a primary ethical 

justification for particular preferences or attributes, although they could be 

acknowledged as secondary considerations.   

Instead, need principles, maximising principles, and egalitarian principles, 

including Rawls’ Difference principle and Prioritarianism, were the primary 
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theories of distributive justice used to support the inclusion of different attributes.  

The decision to exclude deontological theories and principles should not be 

interpreted as a reflection of their coherence or defensibility, but simply of their 

practicality for the specific purposes of this empirical ethics review.  It is also 

important to recognise that this decision introduces an element of subjectivity 

into the review.  Including deontological theories such as Contractarianism or 

Participatory Democracy would likely have identified a different set of fair and 

relevant attributes.  Indeed, as mentioned in section 3.1.1, those two theories in 

particular suggest that any distribution based on collective or majority agreement 

is, by definition, fair.  This effectively reduces ‘ethically defensible’ to ‘majority 

support.’  Although this may be consistent with the idea of inferring ethical 

principles from population preferences, this relativism is rejected here in favour 

of Williams and Cookson’s (2000) decision-making perspective.  

3.2 Attribute Review 

Attributes potentially relevant to a Communitarian approach to priority 

setting were identified through a review of the health economics, medical, and 

ethics literature.  The review took a ‘citation pearl growing’ strategy, beginning 

with reviews by Schwappach (2002a) and Dolan et al. (2005).  The 

bibliographies of these reviews were searched and the ‘related articles’ feature of 

PubMed and Web of Science was used to identify other potentially relevant 

studies.  Keywords from the Schwappach and Dolan reviews were also searched 

in PubMed, EconLit and Google Scholar.  A pearl-growing strategy is suggested 

to be particularly useful for interdisciplinary topics where relevant studies may 

use different keywords and be found across different citation databases 

(Schlosser et al. 2006). 

From these results, four reviews, by Sassi et al. (2001), Schwappach 

(2002b), Dolan et al. (2005), and Stafinski (2011), were deemed comprehensive 

in that they discussed a broad range of attributes that may be relevant to 

preferences for health and healthcare.  Additionally, a review by Olsen et al. 

(2003) considered the relevance of three broad categories of personal 

characteristics: a person’s relations to others, a person’s relations to the cause of 
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illness and the person’s ‘self’.  While they also noted age and aspects directly 

related to efficiency and distributive justice, such as health gains and severity, 

they specifically excluded these factors from the discussion as their emphasis was 

on personal characteristics.  Between them, these five reviews identified and 

discussed 14 unique concepts or factors (see Table 3.1).  These factors were taken 

to represent the set of attributes potentially relevant to a societal perspective on 

healthcare priority setting.  

Table 3.1: Potentially relevant attributes  

 Attribute 
Sassi et al. 

(2001) 

Schwappach 

(2002a) 

Olsen et al. 

(2003) 

Dolan et al. 

(2005) 

Stafinski et al. 

(2011) 

Age   ND   

Social role/productivity      

Lifestyle/responsibility      

Prior healthcare      

Social inequality      

Desert/merit      

‘Self’      

Initial severity   I/ND   

Endpoint       

Treatment effect   I/ND   

Duration of benefit      

Direction of benefit      

Distribution of gains      

Rarity     I/ND 

I/ND = Identified, but not discussed 

 

Each potentially relevant attribute is discussed in detail below, with an 

emphasis on the concept the attribute embodies, empirical evidence of public 

support and the ethical justifications for the concept.  Attributes identified in the 

review that did not have a defensible ethical justification were excluded (or in the 

term of Goodin (1986), ‘laundered’) from the final set of relevant attributes, and 

likewise, factors that had a strong ethical justification but limited public support 

were also excluded as Communitarianism is firmly based on the idea that 

societal value should reflect rather than impose preferences.   
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3.2.1 Age  

Preferences for age, or ageism7, can be based on a number of ethical 

principles.  Utilitarian ageism is based on a principle of maximising health gains: 

as younger patients are expected to live longer than older patients, ceteris paribus, 

there is a greater expected value to saving a younger patient (Tsuchiya 1999; 

Nord et al. 1996).  Productivity ageism holds that the very young and the very 

old have less societal value than individuals at ages in between by virtue of their 

relative contributions to society.  As the very young and the very old tend to 

require support from the rest of society, while those ages in between tend to be 

net contributors to society, it may be appropriate to value their health unequally.  

Indeed, this is the basis of disability-adjusted life years (DALYs) developed by 

the World Health Organization, which are based on maximising the value of 

societal productivity (Tsuchiya 2000; Murray & Acharya 1997).  A third 

conception of ageism stems from a perceived moral obligation to save a young 

life over an older life because they have had fewer life years.  This desire to 

equalise the age at death is known as egalitarian ageism (Tsuchiya 1999; Nord et 

al. 1996).  Williams (1997) takes the egalitarian ageism argument one step 

further and suggests that it is not age at death that should be equalised, but 

lifetime health outcomes in the form of QALYs – the so-called ‘fair innings’ 

argument.  Harris (1987; 2005), though, rejects maximising and egalitarian 

arguments for age-related preferences and argues that healthcare should be 

allocated so as to maximise lives, based on a position that each life is equally 

valuable, regardless of its expected length or quality.  Such a position denies that 

there is any justification for considering the age of a patient in determining social 

value, either explicitly in terms of age in itself, or implicitly, in terms of the 

expected duration of benefit. 

Tsuchiya (1999) reviewed nine empirical studies of age-related 

preferences and in general the results indicated a consistent preference for 

younger patients, independent of the age of the respondent.  Age-related 

preference weights consistently declined after middle age and although there was 

                                                 
7 ‘Ageism’ in this context is used in the same neutral manner as Tsuchiya et al. (2003), where it 

simply describes a differential societal value by age rather than implying an unfair discrimination 

on the basis of age.  
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some disagreement over whether weights peaked at middle age or childhood, 

there was no support for equal weightings across all age groups.  These 

preferences were based on a mix of productivity, utilitarian and egalitarian 

rationale, but when Nord et al. (1996) elicited preferences for pure utilitarian 

ageism by specifying all patients were the same age and concentrating on 

duration of benefit, they found evidence of positive but diminishing utilitarian 

ageism.  Respondents favoured younger patients with a greater capacity to 

benefit, but the strength of these preferences was not proportional to duration of 

benefit, offering support for a weak version of pure utilitarian ageism.   

Studies of hybrid utilitarian ageism combine aspects of utilitarianism and 

egalitarianism by studying life-saving treatments in patients of different ages.  

Here as well the preference was to favour younger patients, although again 

preferences were not proportional to the duration of benefit (Tsuchiya 1999).  

Support for productivity ageism was mixed.  The ‘humped-shaped’ age-weight 

profile demonstrated in most of the studies was consistent with productivity 

ageism, or the view that a year of healthy life is valued differently at different 

ages (Sassi et al. 2001; Schwappach 2002a; Tsuchiya 1999).  However, 

Busschbach (1993) found that the age-weight profile peaked at the earliest ages 

(ages 5 and 10), supporting utilitarian and/or egalitarian ageism over 

productivity ageism.  The NICE Social QALY team found a similar result, 

where a year of full health experienced by a child (aged 0-18) was valued more 

highly than a year of full health experienced by an adult (Dolan et al. 2008).   

Nord et al. (1996) tested the support for ‘weak’ egalitarian ageism by 

comparing preferences for younger and older patients with the same capacity to 

benefit.  Weak egalitarian ageism favours the younger patient when both a 

younger and an older patient can benefit equally, while strong egalitarian ageism 

favours the younger patient even when the older patient can benefit more.  They 

found that younger patients were consistently preferred when capacity to benefit 

was equal.  Similarly, Baker et al. (2010) found that 64 percent of respondents 

gave priority to 40-60 year olds over 60-80 year olds, although only 36 percent 

gave priority to 0-20 years olds over 20-40 year olds, consistent with the humped 

age profile observed by Tsuchiya (1999) as well as with a productivity ageism 
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view of priority.  They also noted that elderly respondents appeared more likely 

to prioritise the older age group in both sets of comparisons.  

Among the comprehensive reviews, Sassi et al. (2001) concluded that the 

empirical results demonstrated a preference for prioritising younger patients over 

older patients, consistent with a view of equity as a concern for equality in 

lifetime health, although these preferences also appeared to be humped-shaped, 

suggesting that they may reverse at very young ages.  They also suggested that at 

least some people hold preferences for setting priorities on the basis of the 

individual value of health and productivity at different ages.  Schwappach 

(2002a) found little support for absolute age cut-offs, but strong preferences for 

prioritising younger patients over older patients.  These preferences exceeded the 

magnitude that would be expected based on duration of benefit alone, again 

suggesting a mix of utilitarian and egalitarian preferences.  He also highlighted 

that while there was strong support for prioritising the young, there was much 

less support for discrimination against the elderly.  This suggested significant 

framing effects in the elicitations – it mattered how the questions were asked.  

This was also supported by Nord et al. (1996), who found that respondents were 

reluctant to discriminate between individuals on the basis of age but were 

comfortable with prioritising budgets for programs that favoured younger 

patients.  Finally, Dolan et al. (2005) found that in most studies respondents 

gave less weight to older patients, although again it was not clear whether this 

was for utilitarian or egalitarian reasons.  

Green and Gerard (2009) argued that age preferences are confounded by 

the inability of empirical studies to explicitly separate the effects of age from 

duration of benefit.  In this case, age is primarily a proxy for capacity to benefit 

and therefore does not represent a true preference for or against specific age 

groups.  Tsuchiya et al. (2003), however, found that although there was some 

evidence that respondents confused utilitarian and egalitarian motives, there was 

clearly a humped-shaped age-weight profile, peaking around age 35, once the 

elicitations explicitly control for the duration of benefit.  This finding was 

supported by Petrou et al. (2013), who elicited the relative value of a fixed health 

gain across 19 different age groups, from newborn to age 90, and found that 

value peaked around age 30. 



43 

Persad et al. (2009) and Olsen et al. (2003) argued that age is a marker of 

different stages in every person’s lifetime, not a distinct, permanent characteristic 

that distinguishes one individual from another, and therefore that differentiation 

by age is not in itself discriminatory.  This, along with justifiable maximisation 

and egalitarian arguments, makes it difficult to conclude that preferences based 

on age are unfairly discriminatory.  Despite Harris' (1987) argument that all lives 

are equally valuable, regardless of their length, the empirical evidence appeared 

to demonstrate public support for prioritising younger patients, consistent with 

utilitarian as well as egalitarian principles.    

3.2.2 Social Role & Productivity 

Social role refers to the societal duties or responsibilities of an individual.  

For example, patients with dependents such a young child or an elderly parent, 

might be considered to play a more valuable societal role than patients without 

dependents.  Similarly, patients with particularly productive skills might be 

valued more highly than patients with less productive skills.  As Schwappach 

(2002a) pointed out, the hump-shaped age-weight profile discussed above 

corresponds with values for social roles and productivity.  This is not surprising, 

given the close correlation between social roles, productivity and life stage.  

However, whereas productivity ageism would discriminate between patients of 

equal productivity on the basis of age, explicit preferences for social role or 

productivity would discriminate between patients of equal age on the basis of 

productivity or prioritise a productive older patient over a less productive 

younger patient.  In this way, preferences based purely on social role or 

productivity can lead to different allocations than preferences based on 

productivity ageism, although clearly there is a significant overlap between these 

concepts. 

In their review of the moral relevance of personal characteristics, Olsen et 

al. (2003) found only limited support for factors related to social role or 

productivity.  Preferences were strongest for patients caring for children or the 

elderly, although support peaked at 47 percent of respondents to one survey 

(Olsen et al. 1998).  Other surveys reported support for carers ranging between 

15 and 33 percent (Olsen et al. 2003), while support for priority based on 
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productivity was even lower, peaking at 27 percent support for prioritising 

employed people (coincidentally in the same survey that reported the strongest 

support for carers).  Other surveys of preferences for productivity found little or 

no support for prioritising breadwinners, employed over unemployed, skilled 

over unskilled, or teachers over lorry drivers (Olsen et al. 2003).  

Preferences based on social roles and productivity can be justified by the 

maximising principle of the greatest happiness for the greatest number, 

particularly if the change in utility of all affected parties is considered (Olsen et 

al. 2003; Mill 1871).  In the context of social roles and productivity, one 

individual's health may have external benefits that increase the welfare of other 

members of society.  An additional QALY to a uniquely productive individual, 

such as a skilled surgeon for example, may have an aggregate benefit of more 

than one QALY for society.  Olsen et al. (2003) refer to the welfare generated 

“through caring and personal interaction” as non-pecuniary utility and the 

welfare generated through what an individual is able to produce as pecuniary 

utility, and suggest that the aggregate welfare generated through pecuniary and 

non-pecuniary sources could be substantial.  Saving the life of a parent, they 

noted, generates utility for the patient but also increases the non-pecuniary utility 

of the child, who benefits from growing up with that parent.  Despite an ethical 

justification based on maximising non-pecuniary and pecuniary externalities, 

though, there appears to be only limited support for prioritising on the basis of 

social role or productivity.   

3.2.3 Lifestyle and responsibility 

A number of the comprehensive reviews noted that society does not 

appear to be indifferent to a patient's health-related lifestyle and its relationship 

to the cause of their disease (Schwappach 2002a; Olsen et al. 2003; Dolan et al. 

2005).  This suggests that society feels more obligated to prioritise patients with 

‘exogenous’ causes of disease over those they feel may have contributed to their 

disease through unhealthy choices (Olsen et al. 2003).  Such preferences are 

consistent with a luck egalitarian view of the objective of healthcare as offsetting 

the impact of bad luck that falls on individuals through no fault of their own 
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(Feiring 2008).  Health inequalities that are a result of an individual’s own 

choices are not unjust and thus do not justify priority. 

This view appears to be reflected in surveys which have found strong 

support for prioritising non-smokers over smokers and light drinkers over heavy 

drinkers (Schwappach 2002a; Olsen et al. 2003).  Nord et al. (1995), for example, 

found that 60 percent of respondents to an Australian survey favoured 

prioritising non-smokers over smokers, while in the context of liver 

transplantation, Ratcliffe (2000) found that 71 percent of respondents to a UK 

survey “agreed or strongly agreed” that preference should be given to patients 

with naturally occurring liver disease over those with personal responsibility (i.e. 

heavy alcohol consumption).  Dolan et al. (2008) found that respondents showed 

a statistically significant preference for treating health conditions caused by 

health service negligence (e.g. MRSA infections) than to conditions where 

patient lifestyle was a contributing cause.  Anand and Wailoo (2000), though, 

found mixed preferences.  Sixty percent of respondents to their UK survey 

supported prioritising healthcare for individuals infected with HIV through blood 

transfusions over those infected through illegal intravenous drug use, but only 40 

percent favoured prioritising individuals with ‘cautious’ lifestyles in more general 

circumstances.  A UK choice experiment by Edlin et al. (2012) suggested an 

even more complex interaction of preferences: although individual responsibility 

for poorer health prospects tended to be associated with lower priority, the very 

existence of a health inequality tended to lead to higher priority.  The net effect 

was to give greater priority to patients with poorer health prospects, regardless of 

the cause of the inequality.  Opposition to prioritisation based on individual 

responsibility was suggested by qualitative discussions conducted as part of the 

Social Value of a QALY (SVQ) Project (Baker et al. 2010).  These discussions 

drew out the difficulties of assigning blame to individual patients and where the 

line between culpable and not culpable should be drawn.  Sports injuries were 

mentioned as an example of this difficulty.  Finally, in a US survey of public 

preferences for organ transplantation, Ubel et al. (1999) reported that among 

respondents who preferred an unequal distribution of scarce organs, only 27 

percent preferred lower priority for patients responsible for their disease.  It is 

also worth noting in the context of these findings that respondents who did not 
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accept prioritising on the basis of a healthy lifestyle were often strongly opposed 

(Schwappach 2002a).   

A preference for giving lower priority to patients with an unhealthy 

lifestyle can be justified by a luck egalitarianism, which holds that unequal health 

outcomes that are the result of an individual’s free choices are just provided that 

all individuals had the same initial opportunity for lifetime health.  The 

preferences expressed in the surveys noted above, though – particularly those 

observed by Anand and Wailoo (2000) – appear to be based more on a moralistic 

attitude against those with an endogenous cause of illness (Schwappach 2002a; 

Olsen et al. 2003).  Nord et al. (1995) and Olsen et al. (2003) refer to this attitude 

as ‘healthism,’ or a belief that individuals have a moral obligation to society to 

live a healthy life.  Callahan (2003b) suggests that such an attitude is paternalistic 

and violates the autonomy component of Principlism, which holds that 

individuals should live their own lives and make free choices without external 

coercion or manipulation.  Anderson (1999) also finds it difficult to accept that 

egalitarian principles could be used to justify fundamental inequalities, no matter 

what their cause.   

Olsen et al. (2003) and Feiring (2008) argued that the socioeconomic 

gradient explains much health-related activity, particularly around smoking and 

drinking behaviours.  The health-related lifestyle of some patients may therefore 

not have been the result of truly free choices, and they may not have had an 

equal opportunity for lifetime health.  As LeGrand (1987) argued, an individual 

can only be held blameworthy for those factors substantively within their 

control.  Similarly, Olsen et al. (2003) note that ill health is rarely attributable to 

one cause and specifically to a person’s actions: “one cannot take 

epidemiological determinants and hold individuals responsible.” Together, these 

arguments suggest that it is difficult to hold an individual solely responsible for 

their health outcomes.  

Although there appears to be at least some support for prioritising patients 

with a healthy lifestyle, the ethical arguments for supporting such preferences are 

limited.  There may be a maximising justification for prioritising patients with a 

healthy lifestyle if it is associated with an expectation of better health outcomes, 

but in general, preferences over lifestyle appear to be motivated by a paternalistic 
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– or even punitive – application of healthism.  Justifications based on luck 

egalitarianism seem to disregard patient autonomy and basic egalitarian 

principles of equal respect for all persons.   

3.2.4 Prior consumption of healthcare 

Schwappach (2002a) was the only author from amongst the five 

comprehensive reviews to identify the prior consumption of healthcare as a 

potentially relevant factor.  He hypothesised that society may believe that every 

person is entitled to life saving treatment once in their lifetime, regardless of the 

cost, but that once a patient has received such a treatment they should ‘step 

aside’ to allow another patient to benefit.  He also hypothesised an alternative 

position: those patients who require a second life-saving treatment may be 

viewed as having been ‘betrayed’ by life (analogous to Williams’ fair innings 

argument) and may therefore deserve greater healthcare priority.  

The limited empirical evidence offers some support for the former 

hypothesis.  When asked to reconsider their preferences for saving one of two 

groups of patients with fatal illnesses after receiving new information on each 

group’s previous healthcare consumption, 6 percent of respondents to an 

Australian survey changed their responses to favour the group that had not 

received prior life-saving treatment (Olsen et al. 1998).  Similarly, participants in 

a UK qualitative study of public preferences for liver transplantation suggested 

that it seemed unfair to re-transplant one individual while another continues to 

wait for their first transplant (Wilmot & Ratcliffe 2002).   

Ubel et al. (1993), in discussing the ethics of re-transplantation, suggested 

that preferences for limiting healthcare to those with substantial prior 

consumption reflect a common sense view of justice where all needy individuals 

deserve an equal opportunity to benefit from scarce healthcare resources.  In this 

view, individuals should not receive a “second piece of the pie” before some 

have received their first.  However, they argued that such a view is based on a 

narrow or short-term definition of healthcare and ignores other aspects of health 

and social spending such as education or primary care.  It is not clear that an 

individual with an episode of substantial healthcare consumption (e.g. a previous 
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organ transplant) has necessarily consumed an unfair share of overall societal 

resources when a broader definition is applied.   

There may be a maximising justification for considering prior healthcare, 

but this would only apply to the extent that the quantity of prior healthcare 

affected future outcomes.  A strict application of egalitarian principles might also 

justify consideration of prior healthcare consumption, although this would 

require an extreme interpretation that viewed equality in terms of limiting a 

patient’s cumulative access to healthcare.  Anderson (1999), in arguing that 

egalitarianism should be based on principles of inclusion rather than exclusion, 

appears to reject such an interpretation.  In general, lower priority based on a 

patient’s prior consumption of healthcare appears to have only limited evidence 

of public support, and requires an exclusionary interpretation of egalitarian 

principles. 

3.2.5 Time waited 

There may be a preference for those patients who have spent a relatively 

greater length time waiting for healthcare, reflecting a principle of ‘first come, 

first served.’  Such a preference represents a simple, and perhaps simplistic, 

prioritisation criterion that disregards other factors that may be relevant, 

particularly an assessment of need. 

Many of the relevant empirical studies have been conducted in the 

context of organ transplantation.  A qualitative study of 23 participants in the US  

found support for consideration of the length of time a patient had been on the 

wait list when prioritising patients waiting for kidney transplant, although 

participants tended to mention factors such as the benefit that could be gained 

from transplant and the consequences of not receiving a transplant before 

mentioning time on the wait list (Dolan & Shaw 2004).  Two conjoint analyses, 

conducted in the UK (Ratcliffe 2000) and Hong Kong (Chan et al. 2006), 

reported that time on the wait list was a statistically significant factor in 

determining the allocation of scarce livers.  In the context of appropriate wait 

times for elective procedures, a survey of 1,101 individuals in Wales, including 

general practitioners, consultants, health authority commissioners and members 

of the general public, by Edwards et al. (2003), reported that a majority of 
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respondents considered factors related to pain and disability as the most relevant 

attributes, while age, responsibility, ability-to-pay and cost were irrelevant to 

determining priority.  Respondents were mixed regarding time already on the 

wait list – it was neither clearly relevant nor clearly irrelevant.  A substantial 

proportion of GPs and consultants and commissioners (38-44 percent) felt that 

priority should be determined by need before time waited, while 32 percent of 

the general public felt that maximum wait times should be guaranteed, implying 

that time waited should supersede need after some specific duration.  

A strict preference for a ‘first come, first served’ model of prioritisation 

can be justified by a theory of egalitarianism where all individuals are presumed 

to be equally deserving in terms of their priority for healthcare, regardless of 

other characteristics (including need).  Indeed, Persad et al. (2009) noted that 

‘first come, first served’ is often viewed as an inherently egalitarian form of a 

natural lottery.  However, although such a preference may be superficially 

consistent with a principle of equality of access, disregarding need in order to 

prioritise based on time waited would seem to violate the underlying 

requirement of vertical equity that requires dissimilar individuals (in terms of 

need) be treated dissimilarly (Culyer 2001b).  Persad et al. (2009) also argued 

that all wait times are not necessarily equal, and that they can be manipulated by 

individuals with the power, influence or information to get themselves added to 

a queue sooner.  Certainly, where all other relevant factors are equal, principles 

of egalitarianism and equality of access seem to support the idea that individuals 

with longer wait times should have some priority.  This does not necessarily 

imply, though, that wait time is itself a relevant factor in prioritisation.  Indeed, 

as Wilmot and Ratcliffe (2002) suggested, a preference based on wait time may 

simply be a mechanistic criterion that helps avoid, rather than inform, 

prioritisation decisions.  

Although the empirical evidence does not appear to rank wait time above 

attributes such as need, benefit, or even age, it is clear that there is at least some 

support for the consideration of wait time in prioritisation.  Similarly, while a 

‘first come, first served’ approach to prioritisation would appear to offer only 

simplistic guidance while violating fundamental principles of vertical equity, 

basic conceptions of fairness would also suggest that longer wait times among 
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patients of equal need should lead to some priority.  Together, this appears to 

support the consideration of wait time as a factor in healthcare prioritisation.  

However, such consideration is complicated by the fact that wait times only 

apply in certain contexts – particularly, as the empirical evidence reflects, 

elective services and the treatment of chronic conditions.  Wait time is not a 

relevant factor in the context acute services, where need and capacity to benefit 

are the primary considerations.  In view of this restricted applicability, its 

equivocal empirical evidence and its limited ethical justification, it is difficult to 

view wait time as a fundamentally relevant attribute in the allocation of 

healthcare resources. 

3.2.6 Societal inequality 

In circumstances of societal inequality, there may be a desire to use of 

healthcare as a tool of social policy.  Specifically, a preferential allocation of 

healthcare resources may be used to compensate individuals disadvantaged in 

other, non-health aspects of society, most commonly in terms of socio-economic 

status (SES) (Sassi et al. 2001; Olsen et al. 2003).  To the extent that low SES is 

associated with low productivity, this is the opposite of the desire embodied by 

greater priority for productivity (e.g. productivity ageism, pecuniary 

utilitarianism) and reflects a desire to compensate rather than penalise low 

productivity groups.  There is also an interpretation that suggests giving lower 

priority to high SES groups may be justified on the grounds that they are more 

able to provide for themselves and have less need for societal resources (Baker et 

al. 2010).  

A review by Olsen et al. (2003) found some support for discriminating 

based on SES, but none of the included studies demonstrated majority support.  

Mooney et al. (1995) found that 41 percent of respondents to an Australian 

survey favoured prioritising low SES groups.  A survey of Swedish politicians 

found a willingness to sacrifice efficiency in order to equalise outcomes between 

‘blue collar’ and ‘white collar’ workers (Lindholm et al. 1998), although Sassi et 

al. (2001) argued that this study may represent a preference for equality between 

groups rather than a preference for lower SES groups per se.  Finally, Dolan et al. 

(1999) found that 23 percent of participants favoured lower priority for rich 
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groups, 10 percent favoured higher priority for poor groups, 8 percent favoured 

higher priority for low education groups and 3 percent favoured higher priority 

for the unemployed.  Thirty-three percent also favoured lower priority for 

individuals with private health insurance, suggesting that respondents may have 

given lower priority to individuals they felt could ‘pay their own way’ in the 

health system.   

Olsen et al. (2003) suggested that preferences based on societal inequality 

may be justified on egalitarian grounds.  They distinguished between general 

egalitarianism, which favours an equal distribution of ‘well-being’, and specific 

egalitarianism, which focuses on one aspect of well-being – in this case, health.  

Preferences for favouring low SES groups may be justified by specific 

egalitarianism to the extent that low SES groups are also disadvantaged in terms 

of health.  In this circumstance, greater priority for low SES in the allocation of 

healthcare may reduce such health inequalities.  Such preferences may also be 

justified by general egalitarianism if the overall well-being of low SES groups can 

be improved through preferential healthcare allocations.  As discussed above, 

prioritising low SES groups is consistent with an egalitarian desire to equalise the 

opportunity for lifetime health, particularly if low SES groups suffer from a 

systemic lack of opportunity.  General egalitarianism may also justify lower 

priority for high SES groups if it narrows the gap in overall well-being, although 

this would require an extreme interpretation of egalitarianism that was 

indifferent to an increase or decrease in overall well-being and focused only on a 

goal of equality.  Finally, an alternative motivation for giving lower priority to 

high SES groups may be based on a desire to, in effect, expand the healthcare 

budget by requiring those groups that are able to pay for their own healthcare to 

do so, although this would require ignoring their contributions to the public 

healthcare system through taxes. 

The prioritisation of low SES groups may be justified by both general and 

specific egalitarian arguments, but there is no evidence of strong public support 

for such a preference.  Although there is also some support for giving lower 

priority to high SES groups, this appears to be a minority opinion with no clear 

ethical justification.   
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3.2.7 Desert and merit 

Preferences based on desert or merit reflect the idea that an individual’s 

meritorious or honourable past actions make them more deserving of healthcare, 

while criminal or dishonourable actions make them less deserving (Olsen et al. 

2003).  Such preferences are based entirely on retrospective, non-health concerns 

and do not take into account past, current or future health needs. 

Olsen et al. (2003) found little public support for preferences based on 

desert or merit, with two studies reporting support of less than 5 percent for 

prioritising patients who have ‘contributed a lot to the community.’  Ubel et al. 

(1999) reported that 15 percent of respondents preferred to give intravenous drug 

users lower priority for organ transplantation, and qualitative interviews 

suggested that these preferences were based on the perceived merit of drug users 

and made no reference to the cause of their disease or their relative prognosis.  

There also appeared to be a convergence of preferences around desert and for a 

healthy lifestyle.  As mentioned earlier, Anand and Wailoo (2000) found that 

only 40 percent of respondents supported prioritising patients with a healthy 

lifestyle over those with a more risky lifestyle, but when presented with a more 

specific choice between patients who developed HIV through a blood transfusion 

or through illegal drug use, the proportion jumped to 60 percent.  This suggested 

that some categories of risky behaviour were felt to be more acceptable than 

others.  In these last two cases, respondents appeared to be punishing illegal 

behaviour by giving patients lower priority for healthcare. 

There is some precedent for prioritisation on the basis of desert – Olsen et 

al. (2003) noted the example of separate healthcare facilities for war veterans.  

They suggested that priority on the basis of meritorious actions may be justified 

where health needs are a direct consequence of trying to improve the overall 

well-being of society, and where such actions were voluntary, on the 

presumption that voluntary sacrifices are more meritorious than paid ones.  On 

the whole, though, they found it difficult to justify priority on the basis of desert, 

as such an arrangement implies that the healthcare system should function as an 

“omnipotent Supreme Court” in imposing rewards or punishments.  With 

respect to lower priority for those with past criminal actions, they argued that 

once atonement has been made through the legal system, a criminal becomes a 
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free citizen, with all the entitlements to public services of other citizens.  In 

general, there appeared to be little empirical or ethical support for priority on the 

basis of desert or merit. 

3.2.8 ‘Self’ 

According to the definition provided by Olsen et al. (2003), ‘self’ refers to 

characteristics that are embodied within a person: physical, intellectual or 

attitudinal.  In their review of personal characteristics in setting health priorities, 

‘self’ included sex/gender, race and sexual orientation. 

The only evidence in support of priority setting on the basis of such 

characteristics came from Dolan et al. (1999), who found that 3 percent of 

respondents favoured higher priority for men, 3 percent favoured higher priority 

for women and 10 percent favoured lower priority for homosexuals.  This 

suggested a lack of support for these arguably prejudicial preferences, although it 

must be noted that even 10 percent support highlights the potential pitfalls of 

directly incorporating public preferences into healthcare priority setting. 

Olsen et al. (2003) were unable to identify any ethical arguments to justify 

higher or lower priority on the basis of any of these characteristics.  Rather, they 

concluded that such characteristics are most likely to be associated with different 

types of prejudice or bias such as sexism, racism or homophobia.  This, along 

with an absence of empirical support, appears to justify laundering such 

preferences.  

3.2.9 Initial severity 

It is broadly accepted that healthcare should be allocated according to 

some definition of need.  QALY maximisation has conventionally defined need 

in terms of an individual's capacity-to-benefit from healthcare, but need in terms 

of severity of illness or disability has increasingly come to be regarded as a 

legitimate equity concern (Sassi et al. 2001).  These two definitions of need, 

though, are often at odds with one another.  The most severely ill patients – 

particularly when initial severity is defined by proximity to death – will often 

have the least capacity-to-benefit, while the less severely ill may tend to have a 
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relatively greater capacity-to-benefit in terms of life expectancy and expected 

QALY gains (Culyer 2001b; Hauck et al. 2004; Oliver et al. 2004).8   

The Norwegian National Health Service has concluded that severity 

should be of primary importance in prioritising patients, and several other 

countries, including Finland, France, Germany, Spain, Sweden, and the 

Netherlands, explicitly consider severity in reimbursement decisions (Shah 

2009).  A review of 19 empirical studies by Shah (2009) found broad evidence 

that respondents preferred a health gain to patients starting at a lower point on a 

quality scale over an equal gain to patients starting a higher point.  Indeed, in 

many of these studies, including Damschroder et al. (2005) and Green (2009), 

respondents preferred a smaller gain to more severe patients over a larger gain to 

less severe patients.  Similarly, Dolan et al. (2008) found that there was a 

premium on health gains in the lower half of the quality scale.  Using an 

alternative interpretation of severity, Ubel and Lowenstein (1996) found 

evidence that respondents were unwilling to prioritise against patients with a 

poorer prognosis, although the strength of this preference declined as the 

prognostic differences became larger.  Dolan and Tsuchiya (2005), in comparing 

the relative strength of concerns for the young versus the severely ill, reported a 

contradictory result.  They found that age was a dominant preference, in that 

respondents preferred to prioritise the young over the old, regardless of the 

relative differences in life expectancy remaining.  Shah (2009) argued that this 

result highlighted the limited perspective of many studies included in his review, 

as most focused exclusively on the trade-offs between health maximization and 

concern for severity, and thus may have failed to capture respondent concerns 

for other factors. 

Life-saving interventions may represent a special case within severity.  A 

number of authors suggested that there is a particular preference for life saving 

interventions, beyond what would be expected on the basis of preferences for 

severity (Nord 1996; Wiseman et al. 2003), and a UK review concluded there 

                                                 
8 Interpreting severity in terms of proximity to death reduces this example to something of a 

tautology, as severity implies a relative lack of capacity-to-benefit, but the example holds 

nonetheless.  Patients initially near death may reasonably be expected to have a shorter 

remaining life expectancy, even with treatment, relative to patients in less severe initial health 

states. 
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was a strong willingness to pay for costly life-saving interventions over more 

cost-effective quality-improving interventions (Shickle 1997).  This preference 

was particularly strong in the case of life-saving interventions for children.  There 

may also be a particular concern for patients at the end of life, defined by NICE 

as patients with a life expectancy of less than 24 months (National Institute for 

Health and Clinical Excellence 2009).  In this context, severity can be 

understood as proximity to death.  A NICE consultation found that 63 percent of 

participants supported giving greater priority to patients with a terminal illness 

and a short (<24 months) life expectancy, although this support was much 

stronger among the public, patients and carers than among healthcare 

professionals (National Institute for Health and Clinical Excellence 2009).  In 

contrast, a discrete choice experiment by Shah et al. (2012) concluded that life 

expectancy was not a driving factor in respondent choices.   

Schwappach (2002a) suggested that the desire to prioritise the most 

severely ill can be interpreted as a variant of the rule-of-rescue, or the imperative 

that people feel to rescue identifiable individuals from death.  McKie and 

Richardson (2003), though, disagreed.  They argued that an emphasis on 

‘identifiable individuals’ distinguishes the rule of rescue from a more general 

preference to help the worst off.  Instead, a desire to prioritise those in more 

severe conditions appears to be more consistent with Prioritarianism, and the 

principle of need as the degree of immediate threat to life or ill health.  It may 

also reflect a desire to minimise the differences in well-being between the best 

and worst off, consistent with Rawls’  Difference principle (Rawls 1999) as well 

as Daniels’ equality of opportunity principle (Daniels 1990; Daniels 2001).  

According to Daniels (2001), the purpose of healthcare is to maintain an 

individual's normal functioning, thereby protecting their “equality of 

opportunity.”  In this view, severity represents the relative impairment of an 

individual's normal functioning, and the more restricted an individual's range of 

functioning, the greater their need for healthcare.  This was echoed by Doyal 

(1995), who argued that “the greater the disability caused by illness, the greater 

the moral entitlement to effective treatment.” It is important to recognise, 

however, that in the absence of an effective treatment, need cannot be said to 

exist (Hurley 1998), and on this basis, Culyer and Wagstaff (1993) suggested that 
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severity in itself is not sufficient to justify specific equity concerns.  Any 

conception of priority on the basis of severity must therefore also consider the 

availability of effective treatment, as NICE (2009) did in limiting consideration 

of end-of-life priority to those situations where there was also a treatment that 

could extend life for at least 3 months. 

3.2.10 Final health state 

QALY maximisation is concerned with absolute health gain, implying 

that an improvement in health-related utility from 0.1 to 0.3 is equally as 

valuable as an improvement from 0.6 to 0.8.  But while there is evidence that 

society may be willing to prioritise patients in the most severe health states out of 

a concern for the worst off, there is also evidence that society may be unwilling 

to allocate resources to treatments that leave patients in relatively poor health 

states.  This highlights the tension between the interpretation of need as initial 

severity and need as capacity-to-benefit.   

Roberts et al. (1999) found that respondents were reluctant to allocate 

resources for patients that would remain in a severe health state following 

treatment, even when such an allocation maximised expected QALYs.  In 

addition, contradictory to evidence showing a preference to treat the more 

severely ill, Dolan and Green (1998) found that respondents preferred to give 

treatment to patients in a less severe initial health state and surmised that 

respondents were concerned about the value of the post-treatment health state.  

Qualitative work by Dolan and Cookson (2000) may reconcile this apparent 

inconsistency in finding that respondents tended to evaluate health gains in 

terms of the final health state rather than the relative or absolute improvement.  

It appeared that treatment must result in some minimum, or threshold, level of 

quality in the post-treatment health state in order to justify treatment, regardless 

of initial severity or relative health gain.  Results from other authors appeared to 

support this interpretation.  The SVQ Research Team (Baker et al. 2010) found 

that although 58 percent of respondents preferred to give priority to patients who 

could move from 60 to 80 percent of full health over those that could move from 

80 to 100 percent, only 38 percent of respondents preferred the more severe 

group when the choice was between a move from 0 to 20 percent or 20 to 40 
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percent.  Abellan-Perpiñan and Pinto-Prades (1999), using constant-sum paired 

comparison methods, found that although a better final health state was not 

necessarily a decisive factor in the allocation of resources, respondents were not 

indifferent to final health state.  This suggests that although final health state 

becomes less important once some minimum quality threshold is reached, the 

public is willing to discriminate if a patient is not likely to achieve this threshold.   

Priority to those likely to finish treatment in a better final health state 

would likely be opposed by egalitarians and prioritarians on the grounds that this 

may exacerbate health inequalities and effectively abandon the worst-off.  

However, a preference for some minimum final health state might be justified by 

a maximisation interpretation of Daniels’ view of ‘equality of opportunity’, 

which holds that the purpose of healthcare is to maintain an individual's normal 

functioning (Daniels 2001).  If, after effective treatment, an individual would still 

be unable to achieve minimum normal functioning, it may be preferable from a 

maximising perspective to concentrate scarce resources on those individuals that 

could achieve normal function.  The capability approach might be interpreted in 

a similar maximising context, particularly as Sen (2011) denies that the approach 

prescribes equality of capabilities.  There appears to be empirical evidence and at 

least some ethical justification for the relevance of final health state in priority 

setting. 

3.2.11 Size of health effect 

QALY maximisation implies that when faced with a choice between two 

patients, priority should go to the patient that can generate the greatest aggregate 

health gains (as measured by the QALY).  However, Ubel et al. (2000) suggested 

that this principle also implies that if two similar patients with the same 

condition can be cured, but one patient can be returned to full health while the 

other will be returned to less than full health as a result of some pre-existing 

chronic condition, priority should go to the patient with the greatest potential 

health gain, regardless of their similarity in all other respects.  The emphasis on 

maximising QALYs means that it is less valuable (or even a liability) to cure the 
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patient with a disability, as they will generate relatively fewer lifetime QALYs.9  

Harris (1987) suggested that this represents a form of ‘double jeopardy,’ as 

because of the pre-existing chronic condition, the second patient receives lower 

priority for their current, unrelated illness.  He argues that each life should be 

regarded as equally valuable, regardless of its relative length or quality.  

The comprehensive reviews by Schwappach (2002a) and Dolan et al. 

(2005) found substantial evidence that the public does not favour prioritisation 

on the basis of potential health gains, but prefers to give equal priority to 

individual regardless of their capacity to benefit.  A survey by Nord et al. (1995) 

found that respondents had no preference for prioritising those that could be 

helped the most over equal priority for all patients.  Analogous to the example 

above, Ubel et al. (1999) elicited preferences for life-saving treatments over two 

groups: one group had pre-existing paraplegia and could not be returned to full 

health, while the second group was otherwise healthy and could be returned to 

full health.  Respondents viewed life-saving treatment to be equally important in 

both groups.  A similar result was found by Damschroder et al. (2005).  As 

mentioned in the discussion of severity, a substantial proportion of respondents 

to a number of surveys even preferred to give priority to patients with the poorer 

prospects, over those that could gain more (Damschroder et al. 2005; Green 

2009).  Linley and Hughes (2012), though, found evidence of a statistically 

significant preference for patients that would gain a considerable improvement in 

health over those that would gain relatively little.  The SVQ Research Team 

(Baker et al. 2010) addressed a different aspect of this issue by estimating the 

relative value of equal improvements in health-related quality from different 

points on a quality scale.  They found that an improvement from 20 percent to 

40 percent of full health was associated with greater value than the same sized 

improvement from 0, 40, 60 or 80 percent of full health.  This highlights the 

                                                 
9 This example assumes a multiplicative utility function, as is common in many health economic 

evaluations.  If initially patient 1 is at 100% of full health but patient 2 is at 90% as the result of a 

chronic condition, and both develop an illness that would reduce their health by 50% for 10 

years, curing patient 1 generates 5.0 QALYs [(1.0-(1.0×0.5))×10] and curing patient 2 generates 

4.5 QALYs [(0.9-(0.9×0.5))×10].  If utility is additive, however, and the illness would reduce 

both patients’ utility by an absolute 0.5 for 10 years, then the benefit of a cure would be 5.0 

QALYs for both patients (0.5×10). 
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importance of the context of health improvements, in terms of initial and final 

quality, over the absolute size of the gain.   

Prioritising absolute health gains clearly reflects maximising and 

utilitarian principles.  Indeed, to the extent that heath is viewed as intrinsically 

good or fundamental to well-being, utilitarianism views the maximisation of 

health as a moral obligation (Hausman & McPherson 2006).  However, as Anand 

and Wailoo (2000) noted, the evidence suggests a general belief that it is 

individuals, rather than the health gains they can produce, that should be treated 

equally.  This belief appears consistent with Harris’ (1987) argument of the equal 

worth of all lives, regardless of their absolute health potential.  Finally, Menzel et 

al. (1999) referred to the ‘maintenance of hope,’ or the idea that all patients 

deserve at least the hope of a health gain, not just those that can benefit the most.  

This, together with empirical evidence showing little support for prioritisation on 

the basis of absolute improvement, suggested that that absolute health effect was 

not a primary concern in allocating societal healthcare resources. 

3.2.12 Duration of benefit 

QALY maximisation assumes that the societal value of health gains is a 

linear function of the absolute health gain and the duration of benefit: as 

duration of benefit increases, societal value increases at a proportional rate 

(Bryan et al. 2002; Dolan et al. 2005).  Furthermore, it assumes that quality and 

duration are ‘mutually utility independent.’  This means that the preference for a 

particular health state does not depend on the duration of that state, and that 

there is a constant proportional trade-off in the proportion of life years that an 

individual is willing to give up in return for an improvement in quality, 

regardless of the absolute number of life years involved (Bleichrodt & Pinto 

2006).  Schwappach (2002a), though, argued that the societal value associated 

with a particular duration of health benefit is a complex mixture of life 

expectancy and preferences for age, severity and time, and that it is difficult to 

disentangle preferences for duration alone. 

The empirical evidence appeared to support Schwappach’s argument.  A 

qualitative study by the SVQ research team (Baker et al. 2010) suggested an 

interaction between duration and quality, in that respondents would not want to 
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live longer in a poor health stage.  Another qualitative study of public 

perceptions of distributive justice in the context of liver transplantation found 

that respondents were relatively uninterested in differences in survival gains 

between patients, on that grounds that even a minimal survival gain was 

important (Wilmot & Ratcliffe 2002).  Nord et al. (1996) found support for 

utilitarian ageism based on a preference for a greater duration of health benefit, 

but that these preferences were not proportional to duration of benefit: doubling 

the duration of health benefit did not double the societal value.  A study by 

Dolan and Cookson (2000) also suggested that respondents were more willing to 

trade-off health gains for other objectives once the number of life years gained 

exceeded a certain threshold.  Together these studies suggested declining 

marginal value in the duration of health benefit.   

Nord et al. (1996) dismissed the idea that discounting in economic 

evaluations adjusts for declining marginal value in duration in arguing that 

although discounting reduces the present value of future benefits, it does so to 

reflect a time preference for benefits occurring now compared to benefits 

occurring in the future.  This is not the same as accounting for a diminishing 

marginal value of duration.  Gafni (1995) used the following example: 

A ‘first year benefit’ occurring 10 years ahead is discounted at the same 

rate as the last year of a health effect starting in the present and lasting for 
10 years.  In contrast, a decreasing marginal value based on diminishing 
returns in respect of quantity would result in a higher value attached to the 
first year benefit occurring in 10 years than to the last of a 10 year benefit 

scenario.  

 

It is clear from this example that the marginal societal value of additional life 

year is not the same, nor even the same concept, as the discounted value of a life 

year occurring in the future. 

A preference for a longer duration of health gain over a shorter duration 

can be justified by maximisation principles: more years of life are preferred to 

fewer years of life.  However, Harris (1985) argued that an individual with a 

short life expectancy can place the same value on their remaining time as an 

individual with a much longer life expectancy, “precisely because it is all the 

time left.”  A preference for patients with a longer duration of benefit may also 
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tend to exacerbate outcome inequalities, contrary to egalitarian principles.  

These contradictory results seem to support Schwappach’s argument regarding 

the complexity identifying a preference for duration alone, but also suggest that it 

may be relevant to societal preferences, particularly in its interaction with 

attributes such as quality. 

3.2.13 Direction of benefit 

Schwappach (2002a) suggested that the direction of benefit may be 

relevant to society in terms of a preference for acute or preventive care.  Acute 

care would improve health (i.e. an upward movement on the quality scale or an 

increase in the duration of health), while preventive care would prevent health 

declines.  Expected utility theory suggests that a gain of 0.5 QALYs should be 

valued equally to preventing a loss of 0.5 QALYs; thus society should be 

indifferent between acute or preventative care (Feldman & Serrano 2006).  With 

Prospect theory, however, Tversky and Kahneman (1986) propose that 

individuals are more sensitive to losses than they are to gains, and that the 

disutility associated with a loss may be greater than the utility associated with an 

equal gain.  If Prospect theory holds in the context of health, society may indeed 

prefer preventive over acute care interventions. 

The evidence for preferences around the direction of health benefit 

appeared inconclusive.  Three studies showed at least some preference for 

preventive services.  A survey of the public by the British Medical Association 

and the King’s Fund ranked childhood immunisation and screening for breast 

cancer as the top two priorities from a list of 10 services, ahead of heart 

transplants, hip replacements and cancer treatment for smokers, suggesting a 

preference for preventive services (Shickle 1997).  Johannesson and Johansson 

(1997) conducted a person trade-off exercise comparing preferences for lives 

saved through preventative care and lives saved through acute care, and found 

that a life saved through preventive care was valued slightly more highly, equal 

to 1.2 to 1.4 lives saved through acute care.  Finally, Ubel et al. (1998) asked 

respondents to choose between an intervention that would improve function and 

an intervention that would prevent further decline, where both interventions had 

the same absolute magnitude of benefit.  They found broader support for 



62 

prevention, although the preferences for prevention versus cure were not 

significantly different when strength of preference was taken into account.  Other 

studies, though, have been more equivocal.  A prioritisation ranking exercise for 

the UK Office of Population Censuses and Surveys (OPCS) found that 

‘preventative screening and immunisations’ was ranked third behind life-saving 

treatment for children and special care and pain relief for the dying, but ahead of 

items such as hip replacement surgery (rank 4) and organ transplants and other 

life-saving surgeries (rank 7) (Bowling 1996).  A similar ranking exercise 

conducted by the City and Hackney Health Authority found similar results, but 

although preventive services were still ranked behind life-saving treatment for 

children and special care and pain relief for the dying, it was also ranked below 

organ transplants and other life-saving surgeries (Shickle 1997).  Finally, a 

German survey found that respondents strongly favoured improvements in 

health over the prevention of declines (Schwappach 2002b).  Schwappach 

(2002b) suggested that part of the reluctance to prioritise preventive care may lie 

in the uncertainty around its effect: it is impossible to know for certain which 

patients will decline in the absence of preventive care, while it is relatively 

straightforward to identify which patients can benefit from acute care.  

A preference for preventive care would generally favour interventions 

directed toward the healthy rather than the ill, and would seem contrary to 

Daniel’s (2001) and Doyal’s (1995) arguments that an individual’s relative need 

for healthcare should reflect the severity of their health state.  To the extent that 

preventive care implicitly or explicitly favours those who have more health to 

lose, a preference for preventative care would seem to discriminate against more 

severely ill patients, although this is consistent with strictly consequential 

maximisation principles.  It is important to note that a preference for preventive 

care on the basis of perceived cost efficiency is not the same as a preference for a 

particular direction of benefit. 

The distinction between acute and preventive care, though, may be 

largely arbitrary.  For example, do life-saving treatments improve health or 

prevent death?  The direction of benefit may simply lie in the timing – a hip 

replacement in a patient with full mobility prevents a deterioration in health-

related quality; a hip replacement in a patient with limited mobility improves 
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health-related quality.  Given the difficulty of defining precisely what 

distinguishes preventive care from acute care, it is difficult to interpret the studies 

presented above.  If anything, they appear to demonstrate support for 

interventions in children more so than a preference for any particular direction of 

benefit. 

3.2.14 Distribution of health gains 

QALY maximisation, based on a foundation of consequential 

maximisation and the potential Pareto criterion, is indifferent to the distribution 

of health gains: provided that the aggregate gains are the same, large gains to the 

few are equally valuable as small gains to the many.  Society, though, may have 

a preference for one distribution or the other, independent of the characteristics 

of the patients or the interventions (Schwappach 2002a; Dolan et al. 2005).   

Choudhry et al. (1997) found that 56 percent of health ministry officials in 

Ontario, Canada preferred a large increase in life expectancy for the few over 

small gains for the many.  Olsen (2000) found a contradictory result, as a clear 

majority of respondents to a Norwegian survey of the general public preferred a 

more equal distribution of health gains to maximising health gains.  Olsen also 

suggested that there may be a threshold level for health gains, below which 

respondents prefer to concentrate gains and above which respondents prefer to 

distribute gains widely.  Rodriguez-Migueza and Pinto-Prades (2002) found a 

similar result in their survey of Spanish undergraduate students, where 

respondents preferred to distribute smaller gains to a larger number, provided 

gains were sufficiently large.  The threshold for distributing gains appeared to be 

around nine additional life years; below nine years, respondents concentrated 

gains and preferred to give eight additional years to one patient rather than one 

additional year to eight patients.  This threshold effect, as well as differences in 

preferences between health officials and the general public, may explain the 

contradictory findings between Choudhry and the other two surveys.  Finally, 

Ubel et al. (1996) asked respondents to choose between two hypothetical 

screening tests.  The first test could screen the entire population and save 1,000 

lives.  The second, more effective test could only screen 50 percent of the 

population but could save 1,100 lives.  Fifty-six percent of respondents from the 
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general public preferred to make the less effective test available to everyone.  In 

general, there appeared to be consistent public support for egalitarianism in the 

distribution of health gains, while the study by Ubel et al. (1996) also 

demonstrated a clear preference for equality of access over efficiency in saving 

lives.  It could also be argued that this study supports outcome egalitarianism in 

preferring that everyone has the same, albeit less effective, opportunity to have 

their life saved, rather than concentrating a more effective opportunity within 

half of the population, as well as an aversion to an extreme distribution of 

resources, where half the population receives nothing. 

As noted, QALY maximisation is indifferent to the distribution of gains, 

so long as aggregate gains are maximised.  Different egalitarian principles, 

though, would justify different distributions of a fixed gain.  Tsuchiya and Dolan 

(2009) distinguish between gain egalitarianism and outcome egalitarianism.  

Gain egalitarianism prefers equality in health gains, suggesting a preference for 

smaller benefits to the many regardless of their current level of health, while 

outcome egalitarianism prefers equality in overall health, suggesting a  

preference for larger gains concentrated among those that are most deprived.  A 

third egalitarian interpretation, based on equality of access, rejects prioritisation 

on the basis of gains or outcomes, and prefers equal priority to all (Persad et al. 

2009).  With the exception of the study by Choudhry, the empirical evidence 

appeared to indicate a preference for more equal distributions of healthcare 

resources and health gains. 

3.2.15 Disease rarity 

Related to the issue of the distribution of benefits to the many or the few 

is the issue of rarity, or the prevalence of a specific disease in the population.  

Diseases with very low prevalence, usually in the range of 2.5 to 7 cases per 

10,000, are defined as ‘orphan’ diseases (Hughes et al. 2005).  Because of the 

small patient populations, the costs of drug development for such disease can be 

very high, and the cost-effectiveness of such drugs is often much higher than 

would generally be accepted (Desser et al. 2010).  It is argued that this makes it 

more difficult for patients with rare diseases to access potentially beneficial 

drugs, leaving them at a disadvantage relative to patients with more common 
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diseases (Hughes et al. 2005).  The issue in terms of societal preferences is 

whether the relative rarity of a condition should lead to special consideration in 

terms of priority and acceptable cost-effectiveness. 

Empirical evidence of societal preferences around orphan diseases is 

limited.  A NICE Citizen’s Council reported that 16 of 27 members felt that the 

NHS should, under certain conditions, consider paying ‘premium prices’ for 

drugs to treat rare diseases (National Institute for Health and Clinical Excellence 

2004).  A further 4 members felt that the NHS should pay premium prices for 

drugs to treat rare diseases under any conditions.  The remaining seven members 

felt that funding decisions for orphan drug should be conducted within the same 

cost-effectiveness framework as any other drug.  In contrast, a conjoint analysis 

of 1,547 respondents in Norway found no societal preference for rarity (Desser et 

al. 2010).  Given a choice between treating an equal number of patients with a 

rare disease or a common disease, assuming both diseases were equally costly, 

70 percent of respondents were indifferent, 20 percent favoured the common 

disease and only 10 percent favoured the rare disease.  This was consistent with 

the hypothesis that there was no explicit preference for rarity, per se.  When, in a 

second scenario, the cost of the rare disease was assumed to be four times more 

expensive than the common disease, the proportion of respondents favouring the 

rare disease declined and many of the previously indifferent respondents shifted 

to favouring the common disease: 47 percent were indifferent, 45 percent 

favoured the common disease and only 7 percent favoured the rare disease.  The 

authors argued that the relatively high proportion of indifferent respondents in 

this high-cost scenario reflects a confounding effect of a general concern for 

fairness and equality in the allocation of healthcare resources rather than true 

indifference between higher cost rare diseases and lower cost common diseases.  

Similarly, a conjoint analysis of 213 respondents in Ontario, Canada also found 

no willingness to pay more for drugs to treat rare disease, or to pay more for each 

life year gained by a patient with a rare disease (Mentzakis et al. 2011).  Instead, 

respondents gave the greatest weight to severity and treatment effectiveness.  

Finally, a qualitative Israeli study of 130 individuals appeared to take a middle 

position: only a minority of respondents favoured prioritising very costly 

medications for small numbers of patients with rare diseases, while the majority 
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favoured prioritising medium cost drugs that may be beyond the reach of most 

patients but that could also benefit a relatively large number (Guttman et al. 

2008). 

Ethical arguments in support of special consideration for orphan diseases 

tend to revolve around rights-based arguments that hold “that patients suffering 

from a rare condition should be entitled to the same quality of treatment as other 

patients” (Hughes et al. 2005), and a principle of non-abandonment in the 

allocation of scarce healthcare resources, even where orphan drugs do not meet 

conventional cost-effectiveness thresholds (Gericke et al. 2005).  These 

arguments are largely compatible with Daniels’ (2001) principle of equality of 

opportunity, where all individuals are entitled to healthcare necessary in order to 

maintain a minimum level of normal functioning.  However, as Hughes et al. 

(2005) note, an emphasis on equality-based arguments neglects the fact that 

decisions that favour higher-cost orphan diseases imply that patients with more 

common diseases, and who could benefit equally, are less worthy of treatment.  

As McCabe et al. (2006) argue, priority “for no other reason than rarity of the 

condition seems unsustainable and incompatible with other equity principles and 

theories of justice.”  

3.3 Attributes in other stated preference elicitations 

A summary of the attributes included in other preference elicitations over 

equity and efficiency in health, and the processes used to identify these 

attributes, is shown in Table 3.2: 

Table 3.2: Attributes in recent stated preference elicitations 

Study Attribute selection process 

Ubel & Loewenstein 

(1996) 

Attribute was specific to objective -- how do people choose to distribute scarce 

organs by prognosis?  Recipients were specified to be children to avoid 

considerations of social worth, ability to pay and personal responsibility for 

illness. 

Attributes: Probability of survival 

Abellan-Perpinan &  

Pinto-Prades (1999) 

Attributes were specific to objective -- how does priority change with potential 

for health? 

Attributes: Relative cost, final health state 

Ratcliffe (2000) Attributes selected by investigator to “reflect key decision criteria which 
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respondents may choose to apply in discriminating between potential 

recipients for donor organs.” 

Attributes: Age, alcoholic liver disease (responsibility), expected survival, time 

spent waiting, re-transplant status 

Bryan et al. (2002) Attributes selected by investigators “to allow investigation of the core 

components of the QALY-maximisation model.” 

Attributes: Number of people, chance of success, survival and quality with 

treatment 

Schwappach (2003) Attributes were chosen by investigator to test preferences for the allocation of 

healthcare resources.  Identification process not specified. 

Attributes: Healthy lifestyle, Socio-economic status, age, life year gain, final 

health state, prior life-saving treatment 

Baltussen et al. (2006) Attributes selected on “basis of a review of priority-setting criteria…, plus 

discussion with a range of stakeholders and policy makers.” 

Attributes: Cost-effectiveness, poverty reduction, age, severity, health benefit, 

budget impact 

Chan (2006) Replicated Ratcliffe (2000) in eliciting preferences for priority in liver 

transplant. 

Attributes: Age, alcoholic liver disease (responsibility), expected survival, time 

spent waiting, re-transplant status 

Dolan et al. (2008) Attributes identified via focus groups with 57 public and 172 NHS employees.  

Attributes: Age, severity, responsibility for illness; added rarity at request of 

NICE 

Green & Gerard (2009) Attributes identified through empirical literature review and discussions with 

experts and decision makers. 

Attributes: Severity, health improvement, value for money, other treatments 

Baker et al. (2010) Attributes identified through qualitative focus groups and ‘Q-methodology.’ 

Attributes: Age, quality-of-life, length-of-life 

Desser et al. (2010) Attributes were specific to objective – is there a preference for prioritising 

drugs for rare diseases? 

Attributes: Disease prevalence, relative cost 

Koopmanschap et al. 

(2010) 

Attributes identified through discussion with “experienced HTA researchers.” 

Attributes: Budget impact, productivity gains, disease severity, cost-

effectiveness, QALY gain per patient, composition of QALY gains (quality vs. 

survival), uncertainty in ICER 

Diederich et al. (2012) Attributes were chosen by investigators to test “whether specific patient groups 

should receive preferential access to medical services.”  Identification process 

not specified. 

Attributes: Health status, quality-of-life, healthy lifestyle (responsibility), patient 

age, carer status, occupational status (SES) 

Linley & Hughes 

(2012) 

Investigators “reviewed relevant documents and policies to identify nine 

specific prioritisation criteria (besides clinical-effectiveness and cost-

effectiveness)”. 

Attributes: Severity, unmet need, innovation, societal benefit, disadvantaged 

population, age, end-of-life, cancer, rare disease 

Shah et al. (2012) Attributes were specific to testing “whether the policy of giving higher priority to 
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life-extending end of life treatments … is consistent with the preferences of 

members of the general public.” 

Attributes: Life expectancy without treatment, quality without treatment, gain in 

life expectancy with treatment, gain in quality with treatment 

Norman et al. (2013) Attributes selected via literature review, particularly Olsen et al. (2003). 

Attributes: gender, smoking status, socio-economic status, healthy lifestyle, 

carer status, gain in life expectancy. 

 

Most of the elicitations in this table identified their attributes via literature 

review or expert opinion, but in a few cases, such as Ubel and Loewenstein’s 

(1996) elicitation of allocative preferences by prognosis,  the attributes were 

dictated by the specific objective of the study.  Dolan et al. (2008) and Baker et 

al. (2010) used focus groups to identify attributes for their elicitations.  Focus 

groups have the notable advantage of allowing for deliberation and reflection 

among participants about each attribute.  Because priority-setting is a social 

exercise, it is argued that the reasons underpinning this process should be elicited 

in a social setting (Hasman 2003).  However, as with any elicitation of public 

preferences, there is nothing to ensure that the opinions that emerge from a focus 

group will be ‘fair.’  Indeed, given relatively small numbers of often 

unrepresentative participants, and the potential for ‘bandwagon effects’, focus 

groups may in fact be more likely to produce an aberrant result than less 

deliberative but more broadly-based approaches (Dolan et al. 2008).  Price (2000) 

also asserts that it is common for members of focus groups to engage in power 

struggles and strategic behaviours that have little empirical or moral relevance.   

None of the studies in Table 3.2 applied an ethical filter as described in 

this chapter.  Therefore, some of the studies included attributes – most notably 

patient gender, but also personal responsibility and disease rarity – that the 

empirical ethics review here found to be ethically unjustified.  Other studies 

included attributes such as occupational status or social role, for which the 

review found little evidence of public support.  Given the importance of context 

in a stated preference elicitation, it is likely that eliciting preferences over 

different sets of attributes will generate different marginal weights for those 

attributes.  For example, to the extent that an older patient may also be viewed 

as more responsible for their illness than a younger patient, including or 

excluding personal responsibility may affect preferences over age.  Including 
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attributes for which there is no prior evidence of public support also means that 

other attributes that are in fact more relevant might be excluded, given the finite 

number of factors that can be included in any elicitation, and particularly stated 

preference elicitations (Froberg & Kane 1989).  

3.4 Fair and relevant attributes 

The empirical evidence and ethical justifications for each of the attributes 

discussed in section 3.2 is summarised in Table 3.3: 

Table 3.3: Summary of the empirical ethics review 

 Attribute Empirical evidence Ethical justification(s) 

Age 

 Consistent preferences for younger 

patients, but not necessarily linear 

 No support for absolute age cut-offs 

 Maximisation of life expectancy 

 Maximisation of productivity 

 ‘Fair innings’ egalitarianism 

Social role/productivity 

 Only limited support for prioritising 

parents/carers 

 Very little support for discrimination 

by productivity 

 Maximising principle of greatest 

happiness for greatest number 

Lifestyle/responsibility 

 Broad preference for prioritising 

patients with healthy lifestyle 

 Minority often strongly opposed to 

prioritising by lifestyle 

 How to allow for epidemiological 

determinants? 

 ‘Healthism’ – paternalistic attitude 

that individuals have moral obligation to 

society to live healthily 

Prior healthcare 

 Mixed evidence of preferences for 

and against patients against patients 

who had received previous life-saving 

care 

 Egalitarianism – no “second piece of 

the pie” 

 Very exclusionary interpretation of 

egalitarianism 

 Implies a narrow definition of 

healthcare 

Social inequality 

 Only limited support for prioritising 

low SES 

 Preferences appear to be for overall 

for equality rather than low SES per se 

 Specific egalitarianism, to extent low 

SES are disadvantaged in health 

 General egalitarianism, if health 

improves overall well-being of low SES 

Desert/merit 

 Little support for prioritisation based  

on past meritorious actions 

 Some evidence of preferences for 

‘punishing’ illegal behaviour (e.g. drug 

use) 

 No clear principle of justice in support 

of priority based on merit or desert 

 Some justification where health 

needs are result of voluntary efforts to 

improve societal well-being? 

 Appropriateness of using healthcare 

system as “omnipotent Supreme Court” 

dispensing reward/punishment (Olsen 

et al. 2003)? 

‘Self’ 

 Very low levels of support for 

prioritising on basis of gender, race or 

sexual orientation 

 No ethical arguments to justify 

prioritisation based on identity 

 Preferences likely associated with 

prejudice or bias 
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Initial severity 

 Preferences for health gains to most 

severe, even when gains were smaller 

 Strong preferences for life-saving 

treatments 

 Need principles 

 Rawls’ Difference principle 

 Equality of opportunity 

Final health state 

 Preferences for final health state 

rather than absolute gain 

 Preferences against patients who 

remain in severe health state 

 Maximising interpretation of ‘equality 

of opportunity’ 

 Capabilities theory? 

 Egalitarianism – exacerbates 

inequalities 

 Prioritarianism – abandons worst off 

Treatment effect 

(absolute benefit) 

 Preferences for equal opportunity 

regardless of absolute gain 

 Maximisation principles 

 “QALY Trap” – emphasis on absolute 

gain may discriminate against disabled 

 Preferences for maximum benefit 

may exacerbate health inequalities  

Duration of benefit 

 Declining marginal value over 

duration 

? Duration a complex function of life 

expectancy, age, severity and time 

preferences 

 Maximisation principles 

 Preferences for longer duration may 

exacerbate inequalities in life 

expectancy  

Direction of benefit 

? Inconclusive evidence of preferences 

for preventative vs. acute care 

? Difficulty in interpreting direction of 

benefit – is prevention just issue of 

timing? 

 Could be consistent with Maximising 

principles if prevention maximises 

outcomes Implies preference for 

healthy over ill, violating Rawls’ 

Difference principle and Prioritarianism 

 

Distribution of gains 

 Consistent preferences for smaller 

gains to many over larger gains to few 

 Aversion to ‘extreme distributions’ 

 Gain egalitarianism 

 Maintenance of hope 

 Contrary to outcome egalitarianism? 

Rarity 

 Limited evidence of support for 

prioritising on basis of relative rarity of a 

condition 

 Equality of opportunity 

 Egalitarianism – shows equal respect 

for all patients 

 Egalitarianism – shows less concern 

for patients with more common 

diseases? 

Attributes shown in bold were included in the pilot preference elicitations.   indicates empirical evidence or 

ethical justification supporting relevance of an attribute;  indicates empirical evidence or ethical 

justification opposing the relevance of an attribute; ? indicates ambiguous evidence. 

 

Among these attributes, four appeared to have clear evidence of public 

support and a defensible ethical justification: patient age, severity without/before 

treatment, final health state with/after treatment, and the distribution of health 

gains.  A fifth, duration of benefit, also appeared to be relevant, notwithstanding 

some ambiguity over its relative strength.  It is worth acknowledging, though, 

that some measure of duration would most likely have been included in the 

elicitation regardless of the empirical or ethical evidence in order to facilitate the 

calculation of QALYs.  Cost attributes such as budget impact and incremental 

cost-effectiveness were specifically excluded from this review as the overall aim 
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of was to consider how different patient and program characteristics contribute 

to the societal value of healthcare.  In turn, these societal values could be used to 

weight an outcome measure – for example, an ‘equity-weighted QALY’ – in an 

economic evaluation.  It would be inappropriate to include cost as a factor in the 

outcome measure as this would double-count costs in the economic evaluation.  

This exclusion is consistent with other recent elicitations of societal preferences 

over efficiency and equity in health (Dolan et al. 2008; Baker et al. 2010; Lancsar 

et al. 2011; Norman et al. 2013).   

It is important to acknowledge the subjectivity of this review, both in 

interpreting the different theories of justice and in judging the consistency of each 

attribute with these theories.  Luck egalitarianism, for example, was rejected as a 

defensible theory of justice largely on the strength of Anderson’s (1999) 

argument that as an egalitarian theory it fails to express equal respect and 

concern for all citizens.  However, as Arneson (2000) noted, this theory also has 

numerous supporters who see it as coherent and defensible.  Likewise, the degree 

to which each attribute was consistent or inconsistent with different theories 

justice was a matter of interpretation, and it was necessary to rely on subjective 

judgement in weighing the ethical arguments for or against each attribute.  This 

means that although empirical ethics may provide a useful framework for 

arriving at a fair and relevant set of attributes, it should not be viewed as a 

strictly objective means of accomplishing this task.  A different reviewer may have 

arrived at a different set of attributes.  Including more than one reviewer, though, 

and arriving at a consensus, might mitigate some of this subjectivity.  Indeed, it 

is useful to note here that best practice in empirical ethics suggests a 

multidisciplinary team that can evaluate the quality of the ethical arguments as 

well as the empirical data (Mertz et al. 2014), although this was not feasible here. 

Richardson (2002) acknowledged the subjectivity inherent in empirical 

ethics and conceded that it will never be able to provide answers to ethical 

questions which are unambiguously true or immune to criticism.  However, he 

stressed that “an integral part of empirical ethics should be an acceptance of the 

fact that argument and evidence are fallible and the conclusions are tenuous and 

more or less strongly supported in some contexts that others.”  In this light, any 

application of empirical ethics can be seen as a balance between a more objective 
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interpretation of the empirical evidence – which leaves the process open to 

Hausman’s (2002) charge of moral relativism – and more subjective 

interpretations of competing theories of justice.  The process described in this 

chapter favoured ethical subjectivity over empirical relativity.   

Some subjectivity is consistent with Walzer’s (1983) argument, 

mentioned earlier, that different principles of justice should govern different 

aspects of life.  A principle that may be appropriate for one aspect – or in this 

case, attribute – may be inappropriate for another.  In this review, for example, 

deontological theories were rejected as offering little practical guidance to 

decision makers, even though they may be eminently practical theories of justice 

for different aspects of life.  Similarly, Konow (2003) noted that the idea of 

‘fairness’ includes concerns for not only fundamental concepts of equity and 

justice, but also for some sense of ‘rightness’ in terms of efficiency and need.  

This suggests that even if it were possible to achieve philosophical agreement on 

a universal principle of justice, it would not perfectly predict societal preferences 

as people are motivated by factors outside the scope of such a principle.  A fair 

allocation of resources must reflect fundamental principles of distributive justice, 

but it must also feel ‘right’ to members of society, even if what feels right may 

vary between different communities or societies.  This vagueness, both in terms 

of the appropriate principles of justice, and what feels right to society, may limit 

reproducibility, but as noted above, it can be seen as an essential characteristic of 

the empirical ethics approach applied here.  Attempts to systematize the 

application of empirical ethics seems more likely to lead to a relativistic emphasis 

on empirical observation, or a fruitless search for a singular, universal principle 

of justice, each at the expense of a joint approach.  Future research, though, 

should seek to establish best practices for the application of empirical ethics.  An 

aspect of this could lie in developing methods of collective deliberation over 

ethical principles and empirical data that could lead to more consistent and 

stable results without resorting to aggregation and moral relativity. 

The empirical evidence for these different attributes was derived from 

surveys of geographically, culturally and demographically diverse populations, 

and therefore does not necessarily represent the preferences of any particular 

community.  This, though, can be viewed as a strength rather than a limitation of 
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the review, as this diversity will tend to support the identification of a broader 

range of potentially relevant attributes than a survey of just one population.  

Furthermore, although the direction of preference may vary between 

populations, the set of relevant attributes is likely to be consistent.  For example, 

some societies may give greater priority to the elderly, while others may give 

greater priority to the young, but the relevance of age to priority setting would be 

equally true in both societies.  As members of the community still have the 

opportunity to assign their own weights (including no weight at all) to each of 

these attributes in subsequent steps of a Communitarian approach, it is the 

community defines the importance of each attribute, regardless of the source of 

these attributes.  It is possible, though, that a particular community or society 

may hold a strong and universal preference for some obscure patient or program 

characteristic.  In such a circumstance, the broad perspective taken here would 

fail to recognise or incorporate this unique preference.  

The attributes identified by this empirical ethics review were largely 

consistent with the NICE guidance on social value (National Institute for Health 

and Clinical Excellence 2008).  This guidance specifically excludes ‘rule-of-

rescue’ and lifestyle or responsibility issues, and also states that it is not 

appropriate to consider gender, race or socio-economic status factors in the 

distribution of healthcare resources, although it is appropriate to consider these 

factors in the context of reducing health inequalities.  The key divergence with 

these guidelines is in the inclusion of age.  The NICE guidelines state that 

patients should not be denied or have restricted access to treatment on the basis 

of age alone and exclude any role for age-related preferences.  Rawlins (2005), 

writing on the role of citizen’s juries in prioritising health care resource 

allocation, also suggested that age should not be a factor in societal value 

considerations.  However, the empirical evidence consistently demonstrated 

public support for age as a factor in priority setting, and it is an important 

element of fair-innings egalitarianism as well as utilitarian theories of justice. 

This empirical ethics review supports the hypothesis that society may be 

concerned with more than simply maximising aggregate QALYs.  Although 

initial and final health states are related to absolute health gain, preferences for 

health gains do not appear to be independent of these start and end points.  
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Likewise, the apparent interaction between quality and duration casts doubt on 

the presumption of a strictly linear value function.  A preference for younger 

patients is consistent with QALY maximisation, to the extent that younger 

patients generally have a greater potential for QALY gains, but this preference 

persisted even when younger and older patients had the same capacity to benefit, 

suggesting that such a preference reflects more than maximising principles.  Most 

convincingly, there was a clear preference for egalitarianism over maximisation 

in the allocation of health gains.  Together these findings cast doubt on the 

underlying societal support for the principle of strict QALY maximisation, and 

particularly its presumption of distributive neutrality in the distribution of health 

gains.  This is not sufficient, however, to demonstrate support for a broader 

conception of well-being, as most of the empirical studies were based on simple 

yes/no or ranking questions, with little or no consideration for the strength of 

these preferences or for the trade-offs between different attributes.  For example, 

Ubel et al. (1998) found a preference for preventative care using a simple ranking 

exercise, but showed that when strength of preference information was 

incorporated, this preference was no longer statistically significant.  Likewise, 

Shah (2009) notes that many preference studies focus on a single trade-off and 

may fail to capture concerns for, or interactions with, other factors.  Estimating 

the relative strength of the equity-efficiency trade-off for the attributes identified 

here requires a process that forces respondents to make trade-offs between 

different elements of value.  A review of methods for eliciting such preference 

weights will be presented in the next chapter. 

  



75 

 

Chapter 4:  
Comparative review of stated  

preference elicitation methods 

The empirical ethics review of Chapter 3 suggested that the public’s 

preferences may not be consistent with the principles of strict QALY 

maximisation, particularly the presumption of distributive neutrality (Nord et al. 

1995; Schwappach 2002a; Dolan et al. 2005).  Instead, the public appeared 

willing to forego some potential health gains in order to prioritise younger 

patients, those in a more severe health state, and those that could be returned to 

some reasonable final health state.  They also appeared to have a preference for 

how health gains were distributed independent of patient characteristics, 

generally preferring smaller gains to more people over larger gains to fewer 

people.   

As noted in the previous chapter, these results in themselves are not 

sufficient to estimate the magnitude of any equity-efficiency trade-off.  

Estimating the relative strength of preferences, rather than just an ordinal 

ordering of priorities, requires a process that forces respondents to make trade-

offs between different factors while recognising the sacrifices or opportunity costs 

associated with those trade-offs (Shackley & Ryan 1995).  Menzel (1999) also 

argues that the shift in perspective associated with Communitarianism, from 

individual well-being to community well-being, has implications for how 

society’s preferences should be measured.  Whereas conventional elicitations of 

individual welfare ask respondents to judge how they would feel about being in a 

certain condition or health state, elicitations of societal welfare require 

respondents to consider interpersonal trade-offs and how they would feel about 

others in a particular condition.   
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This chapter reviews preference elicitation methods that can be used to 

elicit societal preferences.  These methods are based on Lancaster’s theory of 

value and the theory of compensatory decision making, both of which are 

described in Section 4.1.  Section 4.2 outlines a framework for comparing the 

characteristics and context of different elicitation methods, and the results of this   

methodological review are presented in section 4.3.  Based on these 

comparisons, section 4.4 discusses the rationale for preferring two particular 

stated preference methods: discrete choice experiments and constant sum paired 

comparisons.  Finally, section 4.5 reviews recent applications of these two 

methods in the context of healthcare, including the setting and format of the 

surveys and their approaches to statistical modelling. 

4.1 Measuring preferences and choices 

Preference elicitation methods seek to measure the relative impact or 

importance of different characteristics or attribute levels in a decision (Louviere 

et al. 2000a; Louviere & Islam 2008).  Economics has typically relied on a 

revealed preferences approach, which infers preferences from actual decisions 

made under realistic circumstances and binding constraints.  In contrast, the 

defining characteristic of a stated preference elicitation is the hypothetical nature 

of the task: respondents are asked to make a hypothetical choice between (often 

hypothetical) scenarios (Hensher et al. 2005; Louviere et al. 2000b).  Stated 

preference approaches fall into two broad categories: choice tasks and matching 

tasks.  Choice tasks ask respondents to choose one or more preferred options 

from a set of alternatives, while matching tasks ask respondents to provide a 

number that would make them indifferent in some sense between two or more 

alternatives (Carson & Louviere 2011).   

The primary advantage of the revealed preferences approach is that it 

avoids the possibility of a ‘hypothetical bias,’ which suggests that respondents to 

a stated preference elicitation may be more or less sensitive to aspects of a 

hypothetical choice than they would be when making an actual choice (Loomis 

2011).  However, the disadvantage of a revealed preferences approach is that it is 

often limited to observable markets and historical decisions.  The attributes in a 
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revealed preferences analysis also often move together, making it difficult to 

evaluate the impact of an independent change in a specific attribute.  In contrast, 

stated preference elicitations are based on experimental designs that can be 

systematically manipulated to test the impact of each attribute over scenarios, or 

even markets, that do not necessarily exist in the real world (Hensher et al. 2005; 

Louviere et al. 2000b).  Although it is possible that these hypothetical responses 

would not necessarily translate into actual choices, there is evidence to suggest 

that techniques such as ‘cheap talk’ and uncertainty coding can reduce the 

incidence of hypothetical bias in a stated preferences elicitation (List & Gallet 

2001; Murphy et al. 2005). 

4.1.1 The theory of value and compensatory decision making 

Stated preference methods stem primarily from psychometrics, which 

seeks to assign values to subjective psychological concepts such as attitude and 

preference, but also draw on economic theory, particularly the theory of value 

and the principle of compensatory decision making (Brazier et al. 1999).  

Lancaster’s theory of value holds “…that goods possess, or give rise to, multiple 

characteristics in fixed proportions and that it is these characteristics, not goods 

themselves, on which the consumer's preferences are exercised” (Lancaster 

1966).  That is, utility is derived from the characteristics goods possess, rather 

than from the goods per se.  Any class of good, therefore, can be defined by its 

particular combination of characteristics or attributes.  Different candy bars, for 

example, can be described by a set of characteristics that may include sweetness 

and chewiness.  Any one good may be associated with many characteristics, and 

many goods may produce the same set of characteristics (Louviere et al. 2000b).   

The theory of value is the basis of compensatory decision-making, which 

assumes that in choosing between alternatives, a less preferred level in one 

attribute can be compensated for by a more preferred level in another attribute 

(Hogarth & Karelaia 2005; Kjær 2005).  Formally, the utility (U) of alternative i 

to individual n is an additive function of the positive or negative value (vin) 

associated with the level of each attribute (ai) and the decision weight associated 

with that attribute (win): 



78 

 Uin = ∑ f(ai∙vin∙win) (4.1) 

Compensatory decision making is consistent with a rational comprehensive 

approach to decision making.  Decision makers adopting a rational 

comprehensive strategy are assumed to estimate the expected net utility 

associated with the attributes and levels of each alternative, and to choose the 

alternative that maximises expected value (Rosenhead 1980; Wright 1975).   

The precise willingness to trade a quantity of one attribute for another is 

defined by the marginal rate of substitution (MRS): 

 
        

=

  
   

⁄

  
   

⁄
 (4.2) 

 

Where MRS is the ratio of the marginal change in the value (v) of a good or 

alternative given marginal changes in attributes a1 and a2.  If the MRS of each 

attribute characterising a good is calculated relative to the same attribute, the 

relative importance of each attribute can be expressed in terms of the willingness 

to trade or sacrifice that common attribute, known as the numeraire.  When this 

numeraire is price or income, MRS can be interpreted as the marginal 

willingness-to-pay for a marginal change in the level of attribute a1 (Lancsar et al. 

2007; Lloyd 2003). 

4.1.2 Random utility theory  

The conception of utility in a stated preference elicitation is generally 

based on random utility theory (RUT), which holds that the study of any 

particular decision process is probabilistic and cannot be perfectly predicted 

(Kjær 2005; Louviere et al. 2000a).  Under RUT, the latent (unobserved) utility 

(Ui) associated with a particular good or alternative is derived from an observed, 

systematic component (vi) and an unobserved component (εi):  

 Ui = vi + εi (4.3) 

Although the respondent is assumed to be a rational, utility-maximising 

consumer consistent with classical microeconomic consumer theory, including 
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complete, stable and consistent preferences, the unobserved component of utility 

renders any decision stochastic from the perspective of an observer. 

Respondent preferences are incorporated into the choice model by 

specifying the systematic component of utility (vi) as a function of observed 

attributes: 

    = ∑       (4.4) 

where k is the number of observed attributes, βk is the impact or importance of 

attribute k on observed utility and xk is a vector of observed values for attribute k.  

It is these β’s, or ‘part-worth utilities,’ that stated preference methods seek to 

measure, either directly or indirectly (Louviere et al. 2000a).  Direct elicitation 

methods ask respondents to indicate the degree of importance they attach to each 

attribute, while indirect measures infer attribute importance by analysing 

repeated choices or matching estimates (Louviere & Islam 2008).  Direct 

approaches can often be associated with strategic behaviours, such as 

respondents offering ‘protest bids’ in order to manipulate the results of the 

elicitation, while indirect approaches are felt to limit the opportunity for such 

strategic behaviours, in part because respondents may be less likely to recognise 

the objective of the elicitation (Carson et al. 2001).  Perhaps for this reason, 

Louviere and Islam (2008) found little correlation between preferences elicited 

using direct and indirect methods.   

4.2 A framework for comparing stated preference methods 

Shackley and Ryan (1995) argue that any elicitation of stated preferences 

should measure preferences on a cardinal scale, allow consideration of 

opportunity cost, and incorporate an appropriate context.  First, a cardinal scale 

allows for the measurement of the distance between alternatives or attribute 

levels on some interpretable scale of importance (Ali & Ronaldson 2012).  An 

interval cardinal scale is fixed at an arbitrary point and allows measurement of 

the distance between points in common units (i.e. the distance between 4 and 5 

is equal to the distance between 9 and 10), but one cannot say that 10 is twice as 

much as 5.  A ratio cardinal scale, on the other hand, has a natural zero that 



80 

allows relative comparisons such as “twice as much” or “half as much.”  

Economic comparisons require a cardinal scale, but in general an interval scale is 

sufficient to measure the incremental difference between two alternatives 

(Brazier et al. 1999).  Second, opportunity cost is the explicit recognition of 

potential benefits that must be foregone as the result of choosing to allocate 

scarce resources in an alternative way.  It is the recognition of such costs that 

distinguishes preferences from choices.  A car buyer may prefer a luxury model, but 

financial constraints and/or consideration of the opportunity costs may result in 

the buyer choosing a more economical model (Louviere et al. 2000b).  Finally, 

context refers to the combination of elements such as the choice format, the 

detail provided, and the attributes and levels themselves, all of which interact to 

form the context of the decision task.  For example, a task that provides 

descriptive text or a photograph of a single alternative has a very different 

context than a task that describes two or more competing alternatives in 

quantitative terms.  There is no ‘correct’ context, but as a number of authors 

note, decision makers are used to making decisions within a particular context, 

and there is substantial evidence to suggest that changing that context to suit a 

particular elicitation method may adversely impact the face validity, accuracy 

and predictive ability of the task (Giacomini et al. 2012; Hensher & Collins 2011; 

Louviere et al. 2000b; Shackley & Ryan 1995).  For this reason, stated preference 

methods should generally be appropriate to the usual context of the decision that 

is being elicited: the method should adapt to the decision context, not the other 

way round (Mullen 1999).  This simple guidance is complicated here though, by 

the fact that this is not a ‘usual’ decision – most respondents will have never 

thought about the degree to which they prefer equity over efficiency in the 

allocation of healthcare resources, let alone have a usual context for this 

decision.  As such, the appropriate context is not clear.  Context is still relevant, 

though, as Huber (2009) outlines a number of contextual properties of stated 

preference elicitations that can influence responses in a systematic manner:    

 Comparative vs. individual-alternative orientation: Comparative tasks 

tend to put more emphasis on quantitative attributes whose differences are 

easy to discern or compare across alternatives, while individual-alternative 

tasks put more emphasis on qualitative attributes that can be interpreted in 
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the absence of an external reference.  Tasks with a comparative orientation 

tend to encourage respondents to ensure one alternative is ‘better’ than the 

other, while tasks with an individual-alternative orientation focus on the 

overall quality of the alternative.  In general, comparative tasks are more 

contextual and allow for greater consideration of opportunity costs than 

individual-alternative tasks. 

 Competitive beliefs: Competitive beliefs, or pre-existing expectations and 

associations, may be used as heuristics to simplify choice tasks.  For 

example, a consumer may associate high price with high quality, regardless 

of what is actually shown in the task.  Decontextualising a task, as in an 

indirect elicitation or single-alternative scenario, breaks down these 

conscious or unconscious associations and forces decision makers to assess 

the importance of each attribute independent of the others. 

 Reflective vs. immediate: Reflective tasks tend to emphasise longer-term 

trade-offs that may be less tangible, while immediate tasks are more 

competitive and tend to emphasise attributes with more direct and 

immediate impacts (e.g. price).  Matching tasks tend to be more reflective, as 

respondents must consider the absolute quality of both alternatives, while 

choice tasks tend to be more immediate, and emphasise finding the ‘best’ (or 

avoiding the ‘worst’) alternative.   

 Attentional shifts: Simply mentioning an attribute tends to increase its 

impact, and attributes that would normally have been ignored may now 

appear important.  Attentional shifts may be avoided by increasing the 

number of attributes in a task, so that unimportant attributes receive less 

attention, but this risks respondents over-simplifying the task and ignoring 

most of the attributes.  Direct elicitations tend to draw a respondent’s 

attention to less important attributes to a greater extent than indirect 

elicitations. 

 Simplification risk: Respondents can simplify a decision task across and/or 

within attributes.  In simplifying across attributes respondents may focus on 

a few important or ‘dominant’ attributes, while disregarding attributes 
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deemed less important (Cairns et al. 2002).  Within attributes, respondents 

may dismiss alternatives with low levels on important attributes (i.e. “loss 

avoidance”).  More complex, immediate or competitive tasks tend to 

increase the risk of simplification, while more reflective tasks may reduce the 

risk of simplification. 

Each of these properties is present to a greater or lesser degree in all stated 

preference methods, and as such, each method has different strengths and 

weaknesses.  Therefore, to identify preferred methods for the elicitation of 

societal preferences over efficiency, equity and distributive justice goals in the 

allocation of healthcare resources, a comparative review of stated preference 

methods was conducted in terms of the properties outlined above.  

4.3 Review of stated preference methods 

As noted above, stated preference tasks can be categorised as matching 

tasks or choice tasks.  Open-ended contingent valuation is a common indirect 

matching task, where respondents are asked to estimate a willingness-to-pay 

(WTP) that would make them indifferent between obtaining a particular good 

and keeping the money.  Most individuals, though, have difficulty estimating 

their WTP for a market good, and have even more difficulty estimating their 

WTP for a non-market good, often leading to missing or inaccurate responses.  

For this reason, as well as objections – often in the form of protest bids – to 

valuing health outcomes in terms of money, open-ended contingent valuation is 

not commonly used in healthcare (Klose 1999).  Although there are other forms 

of matching tasks used in healthcare such as standard gamble and time trade-off 

tasks, choice-based approaches are felt to present more familiar decision tasks to 

respondents, and partly for this reason, are more commonly used (Ali & 

Ronaldson 2012; Brazier et al. 1999; Carson et al. 2001; Smith 2000).   

Choice-based approaches measure ‘dominance,’ or whether one 

alternative is more, less, or equally preferred to another.  Strongly ordered 

measures of dominance allow a complete ranking of all alternatives with no 

possibility of two alternatives being equally ranked (‘tied’).  Weakly ordered 

measures can identify one or more preferred alternatives from a set of 
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alternatives, but assume that the remaining alternatives are equally preferred 

(Louviere et al. 2000a; Louviere et al. 2000b).  These measures are ordinal, in 

that they can establish the ordering of preferences but not the relative strength of 

preferences.  They can, however,  be transformed to a cardinal scale by analysing 

repeated responses to the same comparison, or responses to multiple 

comparisons by the same respondent (Ali & Ronaldson 2012; Brazier et al. 1999; 

Ryan et al. 2001). 

A review of common direct and indirect choice and matching methods is 

presented below, with an emphasis on their basis in theory and a discussion of 

their contextual properties as outlined above.  A sample of each task is also 

shown.  These methods include conventional and conjoint ranking tasks, direct 

and indirect constant sum scaling, full-profile rating, binary and multinomial 

choice tasks, and person trade-off tasks.  The review is summarised in Table 4.1 

at the end of this section. 

4.3.1 Ranking 

Ranking tasks can be indirect, where respondents order a set of 

alternatives described in terms of their attributes and levels, or direct, where they 

order specific attributes or levels.  These orderings, by ascending or descending 

importance or desirability, provide a strongly ordered set of preferences as each 

option can be identified as more preferred or less preferred to every other option, 

and can be recast as a series of implicit head-to-head choices in order to 

transform them to a cardinal scale (Ben-Akiva et al. 1991; Brazier et al. 1999).  

Miethe (1985) found that in terms of test-retest reliability, convergence between 

scales, and consistency with theoretical predictions, simple ranking tasks 

outperformed rating scales and magnitude estimation in measuring ordinal 

values.  Whereas the ranking tasks forced differentiation between values, many 

respondents to the rating and magnitude estimation tasks opted to say that values 

were equally important, and the resulting lack of variability and differentiation 

adversely affected the measurement properties of the tasks.  This is a common 

shortcoming of many simple preference surveys.  Overall, he concluded that rank 

ordering had desirable measurement properties in terms of establishing ordinal 

importance.   
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However, ranking tasks are cognitively demanding when there are more 

than a few options.  This is especially true of indirect ranking tasks, where 

respondents are asked to rank a set alternatives, each of which is itself composed 

of a set of attributes and levels (Flynn et al. 2007; Lee et al. 2007).  For this 

reason, indirect ranking tasks are rare.  The primary drawback of any ranking 

task, though, is that there is no explicit consideration of the opportunity cost of 

ranking one alternative more highly than another (Ryan et al. 2001).  Although 

rankings can be expanded into a series of head-to-head comparisons, it is not at 

all clear that this is how respondents interpret the task.  Ben-Akiva (1991) also 

questions how far these comparisons should be extended.  He suggests that 

respondents are likely find it easy to rank their more preferred options, but may 

be less likely to pay attention when ranking their less preferred alternatives, 

making these rankings unreliable.  Similarly, forced ranking tasks may lead to an 

arbitrary ranking of elements over which respondents hold no significant 

preferences, adversely affect the measurement properties of the task (Lee et al. 

2007). 

Box 4.1: Direct ranking task 

 
Please arrange the following list of attributes in order of importance, from the attribute you 

consider most important in deciding whether to fund this healthcare program, to which attribute 

you consider least important: 

 

Importance Attribute 

1 Average patient will gain 3.0 LYs 

2 Initial utility of patients is 0.2 

3 Utility after treatment is 0.5 

4 Utility after treatment is 80% of full potential 

5 1000 patients can be treated 

. 

 

The focus of a direct ranking task is on the relative importance of each 

attribute, which will tend to decontextualise the task and force respondents to 

consider each attribute in itself, breaking down simplifying associations between 

attributes.  However, as mentioned earlier, relative preferences are likely to 

depend on the marginal context of the task, which can only be meaningfully 

understood in the context of the opportunity cost associated with a particular 

choice.  The decontextualised nature of a direct elicitation ranking task will tend 
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to emphasise the absolute levels of qualitative attributes, which can more easily 

be interpreted in the absence of a specific comparator, and therefore may 

emphasise quality improvements over quantitative gains.  A ranking task may 

also increase the attention given to attributes that may not have been considered 

in an actual decision, while the reflective nature will tend to focus more attention 

on longer-term benefits and trade-offs, and relatively less on immediate gains.  

The complexity of a ranking task increases dramatically with more than a few 

elements, suggesting that simplification risk –  perhaps in the form of an arbitrary 

ranking of less important attributes – may be high. 

4.3.2 Conjoint ranking (best-worst scaling) 

 As in a conventional ranking task, best-worst scaling (BWS) conjoint 

ranking tasks present respondents with a set of options, but rather than asking 

them to rank all options, respondents identify only their most preferred and least 

preferred elements.  This is based on the assumptions that respondents can more 

easily identify the best and worst or most and least important elements in a 

choice set than rank all elements, and that the probability of choosing a 

particular best-worst pair is proportional to the distance between them on a 

latent utility scale (Flynn et al. 2007; Louviere & Islam 2008).  The more 

common ‘single profile’ BWS task, illustrated in Box 4.2, presents a single 

scenario or profile to respondents and asks them to identify their most and least 

preferred elements.  By using an experimental design to repeat the best-worst 

ranking task over different subsets of attributes and levels, BWS can establish the 

rank of each attribute level relative to a single, least-preferred attribute level on a 

cardinal scale of ‘relative importance’ (Auger et al. 2007; Flynn et al. 2007; 

Marley & Louviere 2005).  In contrast to choice tasks, this allows a cardinal 

measure of utility relative to a single attribute (i.e. ‘worst’) rather than to an 

entire alternative or scenario (Fraenkel 2013; Lancsar et al. 2007).  
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Box 4.2: Single-profile best-worst scaling task 

 

From the following list of attributes, please indicate which one attribute you consider most 

important and which one attribute you consider least important in deciding whether or not to 

fund this healthcare program: 

 

Most 

Important 
Attribute 

Least 

Important 

 Average patient will gain 3.0 LYs  

 Initial utility of patients is 0.2  

 Utility after treatment is 0.5  

 Utility after treatment is 80% of full potential  
 1000 patients can be treated  

. 

 

 

The less-common ‘multi-profile’ BWS task is similar to a discrete choice 

tasks in that respondents are asked to choose between entire scenarios, but unlike 

discrete choice tasks, respondents must identify their least preferred alternative in 

addition to their most preferred alternative (Flynn 2010).  Although this 

additional step means that more information on the dominance relationships is 

collected from a multi-profile BWS than a discrete choice task if there are more 

than two scenarios in the choice set, it also makes the task more difficult for 

respondents.  The appropriate statistical model is also a matter of some debate 

(Flynn 2010).  For these reasons, multi-profile BWS tasks are not common in 

health economics and the remainder of this section will consider the more 

established single-profile BWS. 

Like conventional rank ordering, single-profile BWS forces differentiation 

between attributes and has an unambiguous interpretation, as there should be 

only one way for a respondent to interpret “most important” or “least 

important” (Lee et al. 2007).  However, it has the advantage of doing so in a 

much less cognitively demanding manner, as because respondents are only 

presented with a subset of the overall ranking task at any one time, they are 

typically able to identify the extremes of a choice set more easily than they can 

rank those attributes somewhere in the middle (Lee et al. 2007; Marley & 

Louviere 2005).  Lee et al. (2007) found that single-profile BWS results were 

closely correlated with rank ordering, but required much less cognitive effort on 

the part of respondents.  BWS is also more statistically efficient than ‘pick-one’ 

discrete choice approaches.  A 3-item best-worst choice set generates a complete 
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set of preference orderings, while a 4-item set can identify 9 of the 11 possible 

dominance relationships (Marley & Louviere 2005).  As in a conventional 

ranking task though, there is no explicit consideration of opportunity cost.  BWS 

results are less strongly ordered than a traditional ranking task, as a BWS task 

generates an incomplete ranking for choice sets of more than 3 items (Louviere 

et al. 2000a).  

The contextual characteristics of a single-profile BWS are similar to a 

conventional ranking task.  The focus of the task is on the relative importance of 

each decontextualised attribute, breaking down simplifying associations between 

attributes and tending to emphasise qualitative over quantitative attributes.  The 

direct nature of the elicitation will tend to increase the attention given to less 

important attributes, and the reflective nature of the task will tend to focus 

relatively more attention on less immediate outcomes.  Unlike conventional 

ranking tasks, it imposes relatively few cognitive demands on respondents and 

may therefore be relatively less likely to encourage simplification or heuristics in 

identifying best-worst pairs. 

4.3.3 Direct constant sum scaling 

Direct constant sum scaling (CSS), also known as ‘budget pie’ or 

‘allocation of points,’ asks respondents to allocate a fixed number of points or 

shares between different attributes to indicate their relative degree of importance.  

CSS is considered a matching task, although as Carson and Louviere (2011) 

note, it may be seen more intuitively as utility maximisation subject to a budget 

constraint as it is not necessarily clear what quantity is being matched in the task.  

There is no specific theoretical basis for CSS, but it has been argued that because 

the technique forces respondents to consider trade-offs in their allocation of 

shares within constrained budget, the technique is consistent with economic 

theory and possesses cardinal, ratio measurement properties, and in this sense, 

may be theoretically related to contingent valuation approaches (Ryan et al. 

2001).  Like a BWS task, a direct CSS attempts to identify the relative 

importance of attributes and levels within an alternative.  Attribute importance 

weights are calculated by dividing the points allocated to each attribute by the 

total points allocated.  Unlike a BWS task, though, a direct CSS task allows 
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attributes to be valued as equally important.  While this may allow for genuine 

indifference, it also allows respondents to opt-out of difficult trade-offs between 

attributes (Louviere & Islam 2008).  It is also not clear what attribute weights 

represent: the relative importance of the attribute, the desirability of the attribute 

level, or some combination of the two (Louviere & Islam 2008).     

Box 4.3: Direct constant sum scaling task 

 
Please allocate 100 points across the attributes listed below in terms of their relative importance 

to you in deciding whether or not to fund this healthcare program: 

 

Attribute Points 

Average patient will gain 3.0 LYs 25 

Initial utility of patients is 0.2 40 

Utility after treatment is 0.5 25 

Utility after treatment is 80% of full potential 5 

1000 patients can be treated 5 

Total 100 

. 

 

The decontextualised nature of a direct CSS task will tend to emphasise 

the relative importance of attributes and levels within an alternative, and not 

allow respondents to consider the opportunity costs associated with the 

alternative as a whole.  The instruction to allocate points across all attributes is 

also likely to draw attention to attributes that may have otherwise been 

unimportant, and this effect may increase with the size of the initial allocation of 

points.  Unlike BWS, direct CSS does not necessarily force respondents to trade-

off between attributes, and is not likely to break down a respondent’s pre-existing 

associations between attributes, as respondents can allocate equal shares to every 

alternative.  In terms of the earlier example, respondents who associate high 

price and high quality do not need to distinguish which attribute is more 

important in itself, and as such, direct CSS may actually reinforce pre-existing 

(but unobserved) associations and confound the measurement of the importance 

of individual attributes (Huber 2009).  Like BWS, the individual-alternative 

orientation and lack of context in a direct CSS task is likely to emphasise 

qualitative attributes that can be judged in isolation.  This would be reinforced by 

the reflective nature of the task.  Simplification risk seems moderate to high, as 

the task is more demanding than a conventional ranking task in that it effectively 
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asks respondents to estimate the cardinal importance of each attribute in addition 

to the its ordinal rank.  These cognitive demands risk respondents essentially 

opting out of the task by assigning the same number of points to each attribute or 

alternative.  

4.3.4 Indirect constant sum paired comparison 

In contrast to direct constant sum scaling, which asks respondents to 

allocate some fixed quantity between attributes and levels within an alternative, 

indirect constant sum paired comparison (CSPC) asks respondents to allocate a 

quantity between alternatives.  This allocation is assumed to reflect the relative 

importance or priority the respondents attach to each alternative (Mullen 1999).  

The initial allocation of this quantity, though, is a critical element in the design 

of the task.  Respondents may have difficulty coping with realistic monetary 

sums outside of their normal experience, but hypothetical points or unrealistic 

budgets are likely to result in unrealistic responses.  As such, it is more common 

that respondents are asked to allocate budget shares than actual monetary sums 

(Mullen 1999).   

As with the CSS, CSPC is considered a matching task, although it is not 

necessarily clear what quantity is being matched (Carson & Louviere 2011).  

Louviere et al. (2000a) suggest that allocation tasks such as CSPC are consistent 

with RUT if it can assumed that differences in the allocations reflect differences 

in latent utility between the alternatives.  They also show that responses to CSPC 

tasks can be transformed to dominance rankings on the basis of which alternative 

was allocated the majority of the budget.  These ranking are more weakly 

ordered than a conventional ranking task owing to the possibility of equal 

allocations between alternatives, but may be more strongly ordered than discrete 

choice tasks given the intensity of preference information that can be inferred 

from the relative allocations.   

In the context of healthcare, Schwappach (2003) suggested that the CSPC 

task is unique in explicitly connecting budget constraints, opportunity costs, 

health outcomes and patient characteristics.  Schwappach and Strasmann (2006) 

also suggested that it is particularly suited to setting priorities in healthcare given 

the ability of respondents to avoid extreme distributions by allocating shares to 
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less preferred groups, consistent with a view of the importance of the 

‘maintenance of hope’ in the allocation of healthcare resources (Menzel et al. 

1999).  Finally, McIntosh (2003), citing Swallow et al. (2001), suggested that for 

choices that are highly emotive – such as the allocation of healthcare resources – 

dichotomous choice tasks may leave respondents dissatisfied with the limited 

information they are allowed to provide.  Indeed, Swallow et al. (2001) found 

that respondents were anxious to provide information on their strength of 

preference, and suggested that restricting this ability may discourage respondents 

from participating fully, possibly introducing a sampling bias into discrete choice 

tasks.   

Box 4.4: Indirect constant-sum scaling task 

 
Please allocate 100 points across the drug programs listed below in terms of the relative share of 

societal resources you would prefer to see allocated to each drug: 

 

Program X 

Average patient will gain 3.0 LYs 

Initial utility of patients is 0.2 

Utility after treatment is 0.5 

Utility after treatment is 80% of full potential  

1000 patients can be treated 

Points for 

Program X 

 

40 

 
 

 

Program Y 

Average patient will gain 5.0 LYs 

Initial utility of patients is 0.6 

Utility after treatment is 0.9 

Utility after treatment is 90% of full potential  

500 patients can be treated 

Points for 

Program Y 

 

60 

 
 

. 

 

The indirect, comparative orientation of CSPC provides much more 

context than the direct CSS approach, as the allocation of points between 

alternatives forces consideration of the absolute value of both alternatives as well 

as the opportunity costs associated with funding one alternative over the other.  

Although there is a competitive aspect to the task that may encourage 

simplification and emphasise a few quantitative attributes, the need to consider 

the relative quality of both alternatives in allocating points suggests that the task 

may be somewhat more reflective than binary or discrete choice tasks 

(Schwappach & Strasmann 2006).  This relatively greater reflection may also 

encourage consideration of longer-term and qualitative aspects of the 
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alternatives.  The cognitive demands of CSPC are relatively high as respondents 

are asked to simultaneously judge the direction and the relative magnitude of 

their preferences, although a review of preference elicitation methods by Ryan et 

al. (2001) report favourable completion rates in CSPC tasks.  Cognitive demands 

are likely to be lower than in a CSS task, though, as respondents only have to 

evaluate two alternatives, rather than a potentially much larger set of attributes 

and levels.  These cognitive demands, as well as ethical objections to any priority 

setting exercise, may lead respondents to allocate points equally between each 

alternative to simplify the task.  A strategy of loss avoidance may also encourage 

respondents to moderate their allocations out of a desire to avoid committing too 

heavily to what may turn out to be the ‘wrong’ alternative (Baron et al. 2001).  

Also, similar to biases encountered with rating scales, there is potential for 

extreme response or end-point bias in the allocation of points between 

alternatives, where respondents may systematically prefer or avoid the extremes 

of the constrained budget allocations for reasons unrelated to attribute levels or 

ethical beliefs (Kaplan et al. 1993; Lee et al. 2007).   Overall, the context of a 

CSPC task seems very high, given its simultaneous consideration budget 

constraints, trade-offs and opportunity costs. 

4.3.5 Magnitude Estimation 

 Magnitude estimation (ME) is an indirect matching task deriving from 

psychometrics that asks respondents to provide an estimate of how much better 

one alternative is than another on a ratio scale.  These ratios estimates are 

aggregated across respondents as a geometric mean and the resulting measure is 

argued to have cardinal, ratio properties (Brazier et al. 1999; Kaplan et al. 1993).  

However, ME has no clear basis in economic theory and, as Richardson (1994) 

notes, the interpretation of the ME question, “how many times is x better (or 

worse) than y is ‘deeply obscure.’”  In a comparison of ranking, rating and ME 

approaches, Miethe found that magnitude estimates demonstrated the lowest 

degree of convergence with the other results (Miethe 1985).  The results of an 

ME elicitation are more weakly ordered than a ranking task given to the 

possibility of ties in the preference ordering, but more strongly ordered than a 
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discrete choice approach owing to the additional strength of preference data 

collected through the ratio estimation task. 

Box 4.5: Magnitude estimation task 

 
Please indicate the value of Program Y by giving it a score relative to the score of Program X.  For example, 

if you believe Program Y is twice as good as Program X, you should give it a score of 20.  If you believe it is 

half as good, you should give it a score of 5. 

 

Program X 

Average patient will gain 3.0 LYs 

Initial utility of patients is 0.2 

Utility after treatment is 0.5 

Relative gain is 75% of potential health 

1000 patients can be treated 

 Program Y 

Average patient will gain 5.0 LYs 

Initial utility of patients is 0.6 

Utility after treatment is 0.9 

Relative gain is 90% of potential health 

500 patients can be treated 

 

Program X = 10 
 

 

Program Y = 

 

15 

 
 

. 

 

 The pair-wise format of a ME task provides respondents a high degree of 

context and may tend to focus attention on the differences in attribute levels 

between the two alternatives, as well as reduce the importance of external 

reference points.  However, the requirement to express the overall quality of one 

alternative relative to the other in the ME task should also force respondents to 

reflect on the overall quality of each alternative.  Despite these relative and 

absolute comparisons, there is no explicit consideration of opportunity cost in a 

ME task.  The ratio scaling task does not require any explicit trade-offs or 

choices, and in this respect it is strictly a comparative rating task.  The pair-wise 

comparison format of an ME task makes it easy for respondents to identify 

differences between attribute levels and will tend to emphasise quantitative 

attributes, but it also allows the easy comparison of attributes that would 

otherwise have been unimportant.  This may lead to an overemphasis of less 

important attributes in the scaling task.  The ME task appears to be cognitively 

demanding, requiring consideration of both relative differences and absolute 

levels, suggesting that respondents may choose to opt-out of difficult ME tasks 

by choosing a magnitude estimate that set the sets the ratio at or close to one.  As 

in the CSPC, a simplifying strategy of loss avoidance may also encourage 

respondents to moderate their responses (Baron et al. 2001). 
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4.3.6 Person trade-off 

Person trade-off (PTO) is an indirect matching task that asks respondents 

how many outcomes of type Y they would consider equivalent in terms of 

(social) value to X outcomes of another kind.  The ratio of Y/X represents the 

social value of outcome Y relative to X, and is consistent with a random utility 

interpretation.  By repeating the task for different alternatives relative to a 

common comparator (X), the relative value of each alternative can be plotted on 

a cardinal scale (Green 2001; Nord 1995a).  Many authors argue that PTO is 

particularly suited to considering the trade-offs inherent in allocating societal 

healthcare resources as PTO judgements go beyond issues of individual utility to 

include concepts of fairness and equity (Menzel 1999; Nord 1995a; Pinto Prades 

1997; Ubel et al. 2000). 

PTO has an intuitive appeal and is argued to have cardinal measurement 

properties.  Baron suggests that “PTO is like [standard gamble (SG) and time 

trade-off (TTO)] because it asks subjects for a number that makes two options 

equally preferred in hypothetical decision” (Baron et al. 2001).  It also has a 

number of recognised limitations, however, including start point bias, where the 

equivalence ratio tends to be correlated with the number of patients in the initial 

state, and ‘ratio inconsistency’ or ‘multiplicative intransitivity,’ where the 

equivalence ratios of A:B and B:C are not consistent with the equivalence ratio 

of A:C (Baron et al. 2001; Schwarzinger et al. 2004; Ubel, Loewenstein, et al. 

1996).  Finally, and perhaps most importantly, respondents often find the task 

complex, difficult, and even offensive (Green 2001; Nord 1995a).  Damschroder 

et al. (2007) reported that 91 percent of respondents to one PTO elicitation 

refused to make a trade-off between groups despite clear differences in severity 

and health gains.  Even when respondents understand and are willing to 

complete the task, Nord (1995a) reported a high degree of random variation in 

equivalence estimates, suggesting that PTO may be statistically inefficient 

relative to tasks with less random variation, and that a large and carefully 

instructed sample may be required to derive reliable preference estimates.   
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Box 4.6: Person trade-off task 

 

How many persons would have to be treated under Program Y in order for you to be indifferent to funding 

Program X or Program Y? 

 

Program X 

Average patient will gain 3.0 LYs 

Initial utility of patients is 0.2 

Utility after treatment is 0.5 

Relative gain is 75% of potential health 

 Program Y 

Average patient will gain 5.0 LYs 

Initial utility of patients is 0.6 

Utility after treatment is 0.9 

Relative gain is 90% of potential health 

 

Program X = 100 
 

 

Program Y = 

 

150 

 
 

. 

 

PTO tasks are highly contextualised, as similar to CSPC and ME tasks, 

respondents must consider the overall quality of both alternatives in formulating 

a person equivalence value.  This will tend to make the task less competitive and 

more reflective than choice tasks, although the comparative nature may tend to 

emphasise a few quantitative attributes where differences are easier to discern.  

The opportunity cost of prioritising one group over the other is implicit in the 

person equivalence value; indeed, the equivalence value defines the opportunity 

cost of prioritising one group over the other.  Although reflective tasks generally 

have a lower simplification risk than more immediate choice tasks, the 

simplification risk with PTO seems higher in light of evidence that many 

respondents appeared to avoid the trade-offs intrinsic to the PTO by offering 

protest bids of infinity or equal equivalence values (Green 2001).  In order to 

overcome the difficulty of choosing a specific person equivalence values in a 

PTO task, many investigators use a ‘ping pong’ format to present a series of 

successively narrower high and low equivalence values to respondents until they 

converge at an indifference point (Nord 1995a; Rodriguez-Miguez & Pinto-

Prades 2002; Damschroder et al. 2005; Baker et al. 2010).  This iterative choice 

format, though, changes the nature of the PTO from a matching task to a series 

of linked discrete choice tasks. 

4.3.7 Full-profile ratings 

 Full-profile ratings tasks ask respondents to assign a value or rating to an 

individual alternative defined in terms of its attributes and levels.  This rating can 
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be measured on a numeric scale such as 0 to 10, or a more qualitative scale such 

as ‘relative importance’ or ‘likelihood of choice.’  Full-profile ratings are popular 

due in large part to the relative ease of the task: they are not cognitively 

demanding, they can be performed in relatively little time, and they can typically 

accommodate more attributes than a ranking task (Lee et al. 2007).  However, as 

Louviere et al. (2000a) note, the approach assumes that respondents are able to 

consistently and reliably estimate their preference for each alternative.  They 

argue that this is a strong assumption in light of common biases associated with 

ratings scales, including acquiescence bias, where respondents decline to trade-

off and value most or all attributes or alternatives as important; extreme response 

bias, where respondents systematically use only one segment of the rating scale 

(i.e. moderate responses concentrated around the scale mid-point or extreme 

responses concentrated at the upper or lower ends of the scale); and, in the 

opposite direction, a tendency for respondents to want to use each category in a 

rating scale equally often (Kaplan et al. 1993; Lee et al. 2007).  In addition, there 

is no theoretical basis for interpreting the difference between, for example, a 6 

and a 7 and it is therefore not clear that the distance between different points on 

a rating scale have interval properties (Kaplan et al. 1993; Louviere et al. 2000b).  

Although ratings data can be transformed into cardinal utility if it can be 

assumed that the rating scale accurately represents underlying latent utility, and 

that a particular rating implies a latent utility between two critical utility 

thresholds, it is also possible to transform ratings data into weakly ordered 

ordinal rankings data after allowing for ties.  Such a transformation requires 

much weaker assumptions about the nature of the rating scale and the abilities of 

the respondents than does treating the scale as representative of latent utility 

(Louviere et al. 2000b).  However, in a comparison of ratings versus rankings 

and discrete choice tasks,  Boyle et al. (2001) found that ordinally transformed 

ratings could not recover full rankings or ‘choose one’ discrete choices,  

primarily due to respondents opting-out of implicit ranking tasks by choosing 

ties. 
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Box 4.7: Full-profile rating task 

 

On the scale below, please indicate how likely you would be to recommend Program X for funding: 

 

Program X 

Average patient will gain 3.0 Life years 

Initial utility of patients is 0.2 

Utility after treatment is 0.5 

Utility after treatment is 80% of full potential  

1000 patients can be treated 

 

Not at 

all likely 
0 1 2 3 4 5 6 7 8 9 10 

Extremely 

likely 

. 

 

 Full-profile rating emphasises the absolute quality of an alternative as a 

whole, rather than the relative importance of attributes.  The tasks are 

intrinsically reflective, as they do not require trade-offs or direct differentiation 

between attributes or alternatives, although there is evidence that respondents 

can quickly recognise and adapt to the range of quality between the alternatives, 

suggesting at least some comparative element to the task (Huber 2009; Kaplan et 

al. 1993).  Kaplan (1993) argues that this property may allow ratings data to be 

meaningfully analysed using an analysis of variance approach.  Unexpectedly, 

full-profile ratings tasks have been found to focus respondents’ attention on a 

small number of attributes.  Huber (2009) notes, “there is no logical reason why 

ratings-based conjoint should limit attention to a small number of attributes, but 

that is what happens, study after study.”  There also tends to be a simplifying 

emphasis on loss avoidance as respondents penalise alternatives with low levels 

on key attributes (Huber 2009).  However, the individual-alternative orientation 

– even with the implicit comparative element between alternatives within a 

larger elicitation – and the abstract nature and weak theoretical basis of ratings 

scales means the task is extremely decontextualised and does not allow for any 

consideration of opportunity cost.   

4.3.8 Binary choice 

A binary choice task can be thought of as a special case of a full-profile 

ratings task where the rating scale is reduced to ‘yes’ and ‘no,’ or ‘acceptable’ 

and ‘unacceptable.’  Such an approach eliminates the scale biases associated with 

full-profile ratings tasks and provides an unambiguous interpretation of the 
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response.  Binary choice tasks are less cognitively demanding than full-profile 

ratings tasks as respondents need only answer yes or no as opposed to assigning 

a rating, and there is a suggestion that this may reduce the incidence of non-

compensatory decision making (Lim & Edlin 2009).  Binary choice tasks have 

the advantage of closely approximating the format of the decision task facing 

health care decision makers, where they most often must judge the acceptability 

of an individual alternative rather than assign a rating or make a choice between 

competing alternatives (Tappenden et al. 2007).   

Box 4.8: Binary response task 

 
Please indicate if you consider Program X to be acceptable for societal funding: 

 

Program X 

Average patient will gain 3.0 Life years 

Initial utility of patients is 0.2 

Utility after treatment is 0.5 

Utility after treatment is 80% of full potential  

1000 patients can be treated 

 

 Acceptable  Unacceptable 

. 

 

Preferences for a particular alternative are calculated relative to a defined 

or undefined status quo.  If the status quo is explicitly defined prior to the choice 

task, it allows some implicit consideration of the opportunity cost associated 

with rejecting the alternative, although there is no consideration of the 

opportunity cost of accepting the alternative.  If the status quo is not explicitly 

defined, it is possible, and even likely, that each respondent will have a different 

interpretation of the utility implications and opportunity cost associated with 

rejecting the alternative.  As such, it may be difficult to identify the specific 

attributes and levels associated with the rejection of the alternative (Kjær 2005; 

Ryan & Skatun 2004).  

The results of a binary choice task are more weakly ordered than full-

profile ratings transformed into ranks as there is likely to be a greater proportion 

of ties given the greatly reduced response scale (Louviere et al. 2000b).  At the 

extreme, all alternatives in a binary choice task could be tied as ‘acceptable’ or as 

‘not acceptable’.  In this case, there is no differentiation between alternatives and 
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no meaningful preference data is captured.  Otherwise, the context of the task is 

very similar to the full-profile rating task. 

4.3.9 Discrete choice experiments 

Discrete choice experiments (DCEs) are an indirect, choice-based 

approach that asks respondents to select their most preferred option from a set of 

two or more alternatives.  Such tasks are similar to decisions respondents face on 

a daily basis and appear relatively easy for respondents to grasp.  For this reason, 

discrete choice tasks are increasingly preferred over ranking and rating tasks for 

eliciting preferences in healthcare (de Bekker-Grob, Ryan, et al. 2010; Kjær 

2005; Ryan et al. 2001).  As a discrete choice task identifies only one preferred 

alternative per choice set, the results are very weakly ordered and it is necessary 

to repeat the choice task across a series of alternative pairs (or triplets) to 

generate a complete ordering of preferences (Louviere et al. 2000b).  Although 

responses to a DCE are strictly ordinal, cardinal preferences can be derived by 

assuming, based on probabilistic choice theory, that the probability of choosing 

one alternative over another is proportional to the difference in latent utility 

between alternatives (Ali & Ronaldson 2012; Kjær 2005).   

Box 4.9: Discrete choice task 

 
If you were able to fund only one of the two drug programs described below, would you prefer to fund 

Program X, Program Y or neither drug? 

 

Program X 

Average patient will gain 3.0 LYs 

Initial utility of patients is 0.2 

Utility after treatment is 0.5 

Utility after treatment is 80% of full potential 

1000 patients can be treated 

 Program Y 

Average patient will gain 5.0 LYs 

Initial utility of patients is 0.6 

Utility after treatment is 0.9 

Utility after treatment is 90% of full potential 

500 patients can be treated 

. 

 Prefer to fund Program X 

 Prefer to fund Program Y 

. 

 

 Discrete choice tasks are conceptually related to binary choice tasks, but 

the inclusion of two or more mutually exclusive alternatives, rather than an often 

implicit status quo, makes the task highly contextualised and highlights the 

opportunity costs associated with choosing one alternative over another.  Unlike 
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matching tasks such as CSPC and PTO, where respondents must judge the 

relative value of both alternatives, or even more reflective full-profile choice 

tasks, DCE tasks only require respondents to identify the ‘best’ alternative.  This 

is likely to shift attention away from the overall quality of an alternative and 

toward a competitive focus on ensuring that one alternative is better than 

another.  There is a high risk that this competitiveness may lead to simplification 

and a focus on differences in a few key attributes – particularly on quantitative 

attributes where differences are easy to discern.  This may also manifest itself as 

‘loss avoidance’, where alternatives with low levels on key attributes are quickly 

dismissed, even where those attributes may have otherwise been unimportant in 

the decision process (Huber 2009). 

Simplification can also lead to non-compensatory decision strategies such 

as lexicographic or dominant preferences, where respondents do not trade-off 

between alternatives but rather always choose the alternative with the preferred 

level of a specific attribute, regardless of the levels of the other attributes (Scott 

2002).  Such preferences are not irrational, but complicate the analysis of choice 

as such preferences cannot be expressed in terms of marginal rates of substitution 

or an additive utility function as no trading takes place, and thus are inconsistent 

with the theory underlying the stated preferences approach (Lancsar & Louviere 

2006; McIntosh & Ryan 2002; Scott 2002). 
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4.4 Choosing a preferred method 

As noted, each stated preference elicitation method has particular 

strengths and weaknesses and the most appropriate approach depends on the 

study objectives.  Referring back to Chapter 1, the objective here was to identify 

the relative strength of preferences for different patient and program 

characteristics, with particular attention to the trade-offs between efficiency and 

equity or distributive justice in the allocation of scarce healthcare resources.  It is 

also useful to recall the desirable properties of a stated preference elicitation 

outlined by Shackley and Ryan (1995): preferences should be measured on a 

cardinal scale, and incorporate the concept of opportunity cost and an 

appropriate context.   

On the basis of these criteria, highly decontextualised tasks such as 

ranking, conjoint ranking (best-worst scaling), constant sum scaling, full-profile 

rating and magnitude estimation are immediately excluded as they do not allow 

for a consideration of opportunity costs.  More specifically, they do not allow 

consideration of preferences at the margin: namely, what is one willing to 

sacrifice to get marginally more efficiency or marginally more equity?  In 

addition, Louviere and Islam (2008) note that responses to indirect tasks tend to 

give much richer insight into preferences than those to direct tasks, offering 

further justification for excluding the direct ranking, conjoint ranking and 

constant sum scaling tasks from consideration. 

Binary choice tasks eliminate the scale biases associated with full-profile 

ratings tasks and provide an unambiguous result that can be interpreted on a 

cardinal scale.  There is also some consideration of opportunity cost through an 

implicit or explicit consideration of the status quo state.  They also resemble the 

context of many decision tasks in healthcare, where decision makers more often 

must judge the acceptability of an individual alternative than make a choice 

between two competing alternatives (Tappenden et al. 2007).  Binary choice 

tasks have been successfully used in the context of healthcare to analyse the 

preferences of seniors over cataract surgery (Lim & Edlin 2009), and of NICE 

committee members in recommending healthcare technologies (Tappenden et al. 
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2007).  Notably, Tappenden and colleagues chose a binary task because, as here, 

it closely reflected the nature of the decision problem faced by respondents.  

However, the objective of the current study was not to predict funding decisions, 

but to measure the relative importance of efficiency and different aspects of 

equity, and the trade-offs between them.  As noted in the previous chapter, cost 

was not be included as an attribute in the elicitations as this would, in effect, 

double count costs in any subsequent economic evaluation.  In the absence of 

cost, a binary choice task would not present decision makers with enough 

information to make an informed choice, as there would be no opportunity cost 

associated with accepting a scenario and therefore little reason not to accept 

every scenario. 

With respect to PTO, Nord (1995a), Menzel (1999) and Ubel et al. (2000) 

argued that it is particularly suited to considering the trade-offs inherent in 

allocating societal healthcare resources, as PTO judgements extend beyond 

utility to include considerations of fairness and equity.  As noted earlier 

however, respondents often find the task complex, difficult, and even offensive, 

and many respondents refused to make trade-offs between groups despite clear 

differences in severity and health gains.  The results of a very small pre-pilot test 

of this method performed as part of this study are consistent with these findings, 

as most respondents reported a great deal of difficulty arriving at a specific 

person equivalence value.  Although some investigators have used a ping-pong 

format to make the task easier, this may negate the reflective nature that Nord 

(1995a) and others view as an advantage of the method.  A number of authors 

have noted in the context of contingent valuation that dichotomous iterative 

choice tasks can be associated with a start point bias, as well as a yea-saying bias, 

where respondents may feel increasing pressure to accept an alternative as the 

number of iterations grows (Swallow et al. 2001; Chien et al. 2005).  The need to 

fundamentally alter the response format from matching to iterative choice would 

seem to suggest that although the conceptual basis of PTO is sound, it may be 

too difficult – cognitively and ethically – for respondents to complete as 

originally envisioned.  This recalls Mullen’s (1999) observation that “theoretical 

validity does not always coincide with acceptability, people’s comprehension 

and even people’s value systems.”  Indeed, Pinto Prades (1997), in specific 
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reference to the difficulty respondents had in expressing their preferences with 

the PTO, quotes Fischhoff et al. (1993): “if subjects cannot use the response 

mode most convenient to investigators, then investigators must find a response 

mode that works for subjects.” 

Indirect constant sum paired comparison also seems well suited to the 

elicitation of preferences over the allocation of healthcare resources, given its 

simultaneous consideration of budget constraints, opportunity costs, health 

outcomes and patient characteristics (Schwappach 2003).  The CSPC allocation 

task makes it explicit that prioritising one patient group means that the other 

must necessarily receive lower priority.  The task can force a recognition of the 

same trade-offs as the PTO if the number of patients treated is included as one of 

the attributes, but it would seem to do so in a more intuitive, less direct, and 

arguably less discomforting manner.  Although Schwappach and Strasman 

(2006) reported that 10 percent of respondents to a CSPC elicitation refused to 

make differential budget allocations, this was well below the 91 percent of 

respondents who refused to make a trade-off in a PTO reported by Damschroder 

(2007), and the 32 percent reported by Nord (1995a).  These may reflect a refusal 

to trade-off over what Bartels and Medin (2007) referred to as ‘protected values,’ 

and Scott (2002) called ‘rights-based’ preferences.  Schwappach and Strasmann 

(2006) argued that the ability to allocate points or budget shares to less preferred 

groups may allow respondents to avoid compromises over such values and make 

the task more acceptable to respondents.  Indeed, this is consistent with a 

principle of fairness in the allocation of healthcare highlighted by Giacomini et 

al. (2012): namely, that everybody should get something and nobody should get 

nothing.  In this sense, although CSPC may not necessarily elicit a better answer 

than PTO, it may be better at eliciting an answer, if respondents are more likely 

to compromise over budget shares than persons.  Although the use of CSPC in 

health economics is not widespread, and its basis in choice theory is less clear 

than some of the other methods (Ryan et al. 2001), it has been used successfully 

in a number of elicitations of preferences and values in the allocation of 

healthcare resources, in addition to the studies noted above (see for example 

Chan et al. 2006; Linley & Hughes 2012; Ratcliffe 2000).   
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Finally, discrete choice experiments have the advantage of being 

relatively easy for respondents to grasp and having a solid basis in probabilistic 

choice theory (Kjær 2005; Ryan et al. 2001).  They also clearly highlight the 

trade-offs and opportunity costs associated with choosing one alternative over 

the other.  Indeed, the fact that some investigators have suggested reformatting 

the PTO matching task as a series of linked choices between alternatives suggests 

that many of the advantages of the PTO can be reproduced with a DCE.  They 

are increasingly being used in health economics for eliciting individual as well as 

societal preferences, and have been successfully used to elicit societal preferences 

over the allocation of healthcare resources (de Bekker-Grob, Ryan, et al. 2010).   

Relative to CSPC, a DCE task is likely to be more competitive and less 

reflective, as the emphasis is on picking the best (or avoiding the worst) rather 

than matching, in some sense, the value of two alternatives.  DCE also forces an 

extreme ‘all-or-nothing’ distribution that may not be consistent with respondent 

preferences for the allocation of healthcare resources, particularly when such 

distributions may involve trade-offs over rights that respondents may feel should 

not or cannot be compromised in pursuit of other goals.  CSPC may be more 

acceptable to respondents in this context, given its ability to avoid extreme 

distributions.  In allowing respondents to express preferences for specific 

resource distributions, including equality or maximisation, it may also be a 

richer source of preference data than the forced-choice task of the DCE.  

However, CSPC presents a much more challenging task to respondents 

compared to DCE, and this may lead respondents to choose equal allocations as 

a way to opt out of difficult allocation tasks, even if they are not truly indifferent 

to the two alternatives.  In light of the theoretical advantages and disadvantages 

of both methods, it was decided to proceed with both approaches in a pilot study 

to compare the response characteristics of DCE and CSPC.  From this 

comparison, discussed in the next chapter, a preferred method would be chosen 

for the primary elicitation.   
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4.5 Other studies using CSPC or DCE methods 

A methodological summary of other studies using CSPC or DCE stated 

preference elicitations in a societal healthcare context is presented in Table 4.2 

below.  It highlights the study sample, administration format, and analysis 

methods, including the regression model, if applicable, and other comparisons or 

descriptive statistics reported as part of the study. 

Table 4.2: Summary of recent DCE and CSPC methods 

Study 
Sample & 

administration 
Analysis methods 

CSPC 

Ubel & Loewenstein 

(1996) 

Prospective jurors 

(N=169) 

Self-administered 

paper survey 

Categorical: proportion of respondents by categorical 

distribution of livers and proportion of respondents by 

reason for allocation. 

Qualitative descriptions and quantitative summary of 

reasons for allocation. 

Abellan-Perpinan &  

Pinto-Prades (1999) 

Undergraduate 

students (N=149) 

Self-administered 

paper survey 

Categorical: proportion of respondents by categorical 

allocation of monetary budget. 

Ratcliffe (2000) University employees 

(N=303) 

Self-administered 

paper survey 

Additive random and fixed effects linear models and 

fixed-effects double-bounded tobit model.  

Respondent ranking of importance of individual 

attributes. 

Proportions by difficulty rating and with dominant or 

strictly egalitarian preferences. 

Schwappach (2003) Undergraduate 

students (N=154) 

Self-administered 

internet survey 

Additive double-bounded random effects tobit or 

random effects linear model. 

Proportions by difficulty rating and dominant or strictly 

egalitarian preferences. 

Chan (2006) Random households 

(N=281) 

Face-to-face 

interviews 

Additive random effects linear model.  

Respondent ranking of importance of individual 

attributes. 

Proportions with dominant or strictly egalitarian 

preferences. 

Desser et al. (2010) Random sample of 

online survey panel 

(N=1547) 

Self-administered 

internet survey 

Categorical: proportion of respondents favouring rare 

or common disease, or indifferent. 

Likert scale attitudinal questions 

Linley & Hughes (2012) Representative UK 

online survey panel 

(N=4118) 

Self-administered 

Categorical: proportion of respondents favouring one 

group or the other, by each attribute independently. 

Logistic regression to test association between 

respondent characteristics and preference across 
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internet survey each attribute independently. 

DCE 

Bryan et al. (2002) Random households 

(N=909) 

Face-to-face 

interviews 

Additive random effects binary probit. 

Proportions with dominant preferences or choosing 

non-dominant alternative in test of non-satiation. 

Baltussen et al. (2006) Convenience sample 

of decision makers 

(N=30) 

Group self-

administered paper 

survey 

Additive random effects logistic model. 

Dolan et al. (2008) Random households 

(N=559)  

Face-to-face 

interviews 

Social welfare function to estimate inequality aversion 

and marginal rates of substitution for different 

attribute combinations. 

Subgroup analysis of preferences by observed 

respondent characteristics. 

Green & Gerard (2009) Random-location 

quota sampling 

(N=259) 

Face-to-face 

interviews 

Additive fixed effects conditional logit model. 

Proportions choosing non-dominant alternative in test 

of non-satiation and rating task as difficult. 

Koopmanschap et al. 

(2010) 

Convenience sample 

of policy-makers, 

HTA practitioners 

and health 

economics students 

(N=66) 

Face-to-face 

interviews 

Pooled additive multinomial logit model. 

Subgroup analysis of preferences by interacting 

attributes and subgroup. 

Diederich et al. (2012) Representative 

German sample 

(N=2031) 

Computer-assisted 

personal interviews 

(CAPI) 

Pooled additive multinomial logit model. 

Attribute relative importance. 

 

Lancsar et al. (2011) Representative UK 

sample (N=587) 

Computer-assisted 

personal interviews 

(CAPI) 

Log-linear and ‘powered’ log-linear conditional logit 

model, allowing for clustering of standard errors. 

Distributional QALY weights based on compensating 

variations 

Norman et al. (2013) Representative 

Australian sample 

(N=616) 

Self-administered 

internet survey 

Additive random effects probit with interactions 

between categorical main effects and LE gain. 

Equity weights as ratio of expected utility relative to 

reference scenario. 

Subgroup analysis of preferences by observed 

respondent characteristics. 

Shah et al. (2012) Representative UK 

sample (N=4008) 

Self-administered 

Additive conditional logit model with interactions. 

Subgroup analysis of preferences by observed 
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internet survey respondent characteristics. 

Proportions choosing non-dominant alternative in test 

of non-satiation. 

 

Four of the seven CSPC elicitations took a categorical approach, 

describing the proportion of respondents that favoured one group or the other, or 

were indifferent between the two, in their allocations.  Desser et al. (2010), for 

example, described the proportions of respondents that favoured prioritising 

patients with a rare disease, patients with a common disease, or were indifferent 

between them (i.e. an equal allocation to both).  The limitation of a categorical 

approach, though, is that in simplifying the continuous allocations to discrete 

categories, it discards information that would provide a more nuanced 

understanding of the relationship between attribute levels and preferences, as 

well as improve statistical efficiency.  In addition, a categorical approach cannot 

interpret the effect of multiple attributes simultaneously.  The other three CSPC 

studies took a regression approach, relating differences in the budget allocations 

to differences between attribute levels.  Reflecting the bounded nature of the 

response variable, Ratcliffe (2000) and Schwappach (2003) both tested a double-

bounded tobit model but ultimately settled on a random effects linear model as 

they found only minimal evidence of censoring in responses.  Chan (2006) used 

a random effects linear model without testing the fit of a tobit model.  In the 

analysis of DCE responses, all the studies used non-linear logit or probit models 

and most adopted a random effects specification to account for the panel nature 

of the data as each individual contributed multiple choice responses. 

As outlined earlier in equations 4.3 and 4.4, random utility theory 

assumes that for individual i, the latent utility associated with task t is a 

combination of a systematic component based on the sum of k observed attribute 

levels (   ) and their part-worth utilities (  ), and a random component, εit: 

    = ∑         
(4.5) 

A random effects specification further assumes that the random component can 

be disaggregated into an individual-specific term (μi), and a stochastic term (εit) 

(Baltagi 2008; Croissant & Millo 2008): 



 

108 

    = ∑             
(4.6) 

The individual-specific term is fixed for all choices by individual i but varies 

between individuals.  This allows for correlation between choices by the same 

respondent and for heterogeneity between different respondents.  In a random 

effects specification, though, the variability in latent utility between individuals 

reflects the pre-specified distributions of the individual and stochastic error terms 

and is not directly linked to heterogeneity in tastes or preferences (Morey & 

Greer Rossmann 2003).   

To identify differences in preferences by observed respondent 

characteristics, Dolan et al. (2008), Koopmanschap et al. (2010), Shah et al. 

(2012), Linley & Hughes (2012), and Norman et al. (2013) compared preferences 

between subgroups of respondents stratified by characteristics such as gender, 

age, children, health status, employment status, or professional role.  The studies 

found some evidence of heterogeneity in preferences over observed respondent 

characteristics, but this approach has the disadvantage of being strictly 

deterministic – all respondents in a particular group (e.g. males, or non-smokers) 

are assumed to share the same preferences (Boxall & Adamowicz 2002; Morey 

& Greer Rossmann 2003).   

Lesson from these DCE and CSPC analyses will be used to inform the 

analysis of the pilot elicitation, to be discussed in the next chapter, and the 

subsequent primary elicitation.  In addition, the potential benefits of a latent 

class approach as an alternative to the random effects specification, as well as to 

an assumption of strictly deterministic preferences by respondent subgroup, will 

be discussed in Chapter 8. 
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Chapter 5:  
Pilot survey methods & results 

The review of stated preference elicitation methods identified the DCE 

and CSPC formats as having notable advantages over the others in eliciting 

societal preferences in a healthcare context.  As there was no clear theoretical 

basis for preferring one method over the other, however, it was decided to 

conduct an empirical comparison to identify a preferred method for the primary 

elicitation of societal preferences, as well as to refine the wording and 

presentation of the choice tasks.    

As noted in the previous chapter, DCE and CSPC methods are both 

consistent with random utility theory, and section 5.1 details this theoretical 

basis.  The remainder of the chapter describes the methods and results of the 

pilot survey.  The methods, outlined in section 5.2, are structured around a 

process described by Ryan (1999) that has become a standard in designing health 

economic stated preference surveys.  The empirical ethics review discussed in 

Chapter 3 represented the first stage, the identification of attributes.  The second 

stage was to assign levels to these attributes that were both realistic but that also 

allowed consideration of the full range of values that may be relevant to 

respondents.  The third stage was the experimental design – the systematic 

combination of attributes and levels that was presented to respondents in order 

to observe their choices.  This stage had to balance statistical efficiency with 

‘respondent efficiency’ (Severin 2001), in the sense that there is a limit to the 

cognitive capacity of any respondent to process the information presented by an 

experimental design (Amaya-Amaya et al. 2008).  This section also discusses the 

assumption of rationality that underlies all stated preference approaches, and the 

tests of rationality that are often incorporated into experimental design.  The 
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fourth stage was data collection, which was conducted with a convenience 

sample to compare the response behaviours of the two formats and to pilot test 

the wording and presentation of the choice tasks.  The fifth stage of the methods 

describes statistical methods used in analysing and interpreting the DCE and 

CSPC choice data.  The emphasis was on comparative measures such as 

response behaviour and ease of completion, but the importance weights derived 

from the choice data are also described.  Finally, the results are presented in 

section 5.3, and the implications of these results for the identification of a 

preferred format are discussed in section 5.4.   

5.1 DCE and CSPC in the context of random utility theory 

DCE tasks ask respondents to choose between two alternatives in 

straightforward manner, and clearly highlight the trade-offs and opportunity 

costs associated with choosing one alternative over the other (Kjær 2005; Ryan 

et al. 2001).  In a random utility model of discrete choice, the probability of 

choosing alternative i from choice set [i,j] is assumed to be proportional to the 

difference in latent utility (U) between the alternatives: 

     (       =      (         (5.1) 

This can be re-written to incorporate the systematic (v) and stochastic (ε) 

components of random utility for each alternative, consistent with random 

utility: 

 

    (      =     [(       (        

=     [(           (                  
(5.2) 

In this model, the probability of choosing alternative i from choice set [i,j] is 

proportional to the difference in systematic utility.  The greater vi relative to vj, 

the greater the probability of a decision maker choosing alternative i.  Relating 

differences in observed utility (vi - vj) to the observed probability of choice means 

that systematic utility can be measured on the same cardinal scale as probability 

(Kjær 2005; Green & Gerard 2009; Ali & Ronaldson 2012).   
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CSPC tasks present two or more alternatives in the same form as a DCE, 

but ask respondents to allocate points or shares between alternatives, where the 

relative allocation is assumed to reflect the relative importance or priority the 

respondents attach to each alternative (Mullen 1999).  Although this is a more 

cognitively demanding task than DCE, Schwappach (2003) argues that CSPC is 

unique among stated preference methods in explicitly linking budget constraints, 

opportunity costs, health outcomes and patient characteristics in the 

consideration of preferences.  The theoretical basis for CSPC is less clear than for 

DCE, but Carson and Louviere (2011) suggest that CSPC can be seen as utility 

maximisation subject to a budget constraint.  In the context of random utility 

theory, this implies that the goal of the respondent is to maximise utility (U) by 

allocating a fixed budget (B) between alternatives i and j: 

  =   (     ε     (     ε ) ∑   =  
 

   
 (5.3) 

Where v and ε are the systematic and stochastic components of latent utility as in 

5.2 above, and bi and bj are the shares of the budget allocated to alternative i and 

j, respectively, subject to the constraint that these shares must sum to the fixed 

budget.  Louviere et al. (2000a) suggest that the difference in the budget shares 

reflect the differences in latent utility between the alternatives: 

 (         [(      )   (ε   ε )  (5.4) 

Analogous to the probabilistic model of discrete choice shown in 5.2, a budget 

difference of zero (an equal 50%-50% allocation) implies that there is no 

difference in the latent utility of the two alternatives, while a positive (negative) 

budget differences implies that the latent utility associated with alternative i is 

greater (less) than alternative j.  As these differences provide cardinal strength of 

preference information, CSPC tasks, and ordered-response tasks more generally, 

tend to produce more strongly ordered preference data than DCE, giving them a 

potential advantage in terms of statistical efficiency (Louviere et al. 2000a; 

Swallow et al. 2001).  This statistical advantage may be offset, though, if a 

substantial proportion of respondents find the CSPC too cognitively demanding 

and adopt simplifying strategies in their responses. 
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5.2 Stated preference design 

This section describes the five stage process that was followed in design, 

administering and analysing the DCE and CSPC questionnaires: the 

identification of attributes, the assignment of levels, the development of the 

experimental design, data collection, and data analysis (Ryan 1999).  Each of 

these stages is described in turn below. 

5.2.1 Identification of attributes 

The number of unique scenarios possible for a set of attributes is given by 

LA, where L is the number of levels within an attribute and A is the number of 

attributes, and shows that the number of possible choice scenarios increases 

exponentially with the number of attributes (Hensher et al. 2005).  As the 

statistical power of any stated preference elicitation is a function of the number 

of respondents and the number of choice tasks completed by each respondent, 

this means that that for each additional attribute in an elicitation, a greater 

number of scenarios must be presented to respondents to achieve a given 

statistical power (Orme 2006b).  Given finite limits to the number of potential 

respondents, and the time they are willing to devote to completing an elicitation, 

this means that there is a practical limit to the number of attributes than can 

reasonably be included in any stated preference task.   

There may also be cognitive limits to the ability of respondents to process 

choice tasks, limiting the number of attributes that can be included in an 

elicitation.  Louviere et al. (2000b), though, argue against such a theoretical 

limit, and this appears to supported in part by empirical work from Weiss (1982).  

She tested the impact of increasing decision complexity in a choice task in terms 

of the quantity of information presented to decision makers and found that the 

marginal uptake as new information was added to a scenario was positive 

(decision makers used more information as more was presented).  However, she 

also found an increase in cognitive strain and a decline in the proportion of all 

available information used by respondents as complexity increased (decision 

makers ignored more information as complexity increased).  In a similar study, 

Wright (1975) tested for a tendency toward non-compensatory decision making 

as complexity increased, and found that decision makers “become increasingly 
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unidimensional under moderate information load.”  This suggests that decision 

makers stop considering compensatory trade-offs between attributes and focus on 

maximising fewer and fewer attributes as decision complexity increases.  Both of 

these results are consistent with Simon’s (1955) model of satisficing in response 

to decision complexity, where he proposed that decision makers make increasing 

use of simplifying decision rules as complexity increases, sacrificing utility 

maximisation to minimise cognitive effort.  

A psychological explanation for simplification in the face of decision 

complexity is provided by Miller (1956), who suggested that humans can only 

process “seven, plus or minus two” separate pieces of information any one time.  

This finding is the basis for Froberg and Kane (1989) recommending that no 

more than nine attributes, and preferable fewer, should be included in a stated 

preference choice task.  DeShazo and Fermo (2002) provide more empirical 

support in reporting that an increase in the number of attributes in a choice task 

from between four and seven to nine increased the variance in the random 

component of utility, and that this variance outweighed any potential increase in 

decision consistency as a result of a more complete description of the 

alternatives.  On these bases, seven attributes was taken as the maximum 

number that could be feasibly included in the pilot elicitations.  This limit is also 

consistent with several recent reviews of conjoint surveys in healthcare, which 

found that most elicitations included no more than 6 attributes (Green & Gerard 

2009; de Bekker-Grob, Ryan, et al. 2010; Marshall et al. 2010).   

Beyond how many attributes can be included in an elicitation is the 

critical question of which attributes should be included (Hall et al. 2004), but 

there is little consensus on the most appropriate methods or sources for 

identifying such attributes – theory, existing measures and scales, literature 

reviews, focus groups, clinical trials, key informant interviews and expert 

opinion all can and have been used (Kjær 2005; Coast & Horrocks 2007).  In this 

case, the empirical ethics literature review described in Chapter 3 found four 

attributes that had empirical evidence of support and a defensible ethical 

justification: patient age, initial severity, final health state, duration of benefit, 

and the distribution of health benefits.  To allow for conceptions of severity 

based on health state as well as proximity to death, this concept was decomposed 
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into two separate attributes: initial health state and life expectancy without 

treatment.  Life years gained with treatment was included to allow for an 

estimate of the duration of benefit, as well as to test societal support for the 

principles of strict QALY maximisation, despite ambiguous evidence for 

duration or absolute gain as relevant factors in the empirical ethics review.  To 

consider distributional preferences, the number of patients that could be treated 

under each alternative was included as an attribute.  Together, these attributes 

allowed for the calculation of the aggregate QALYs gained with each 

alternative.10  Aggregate QALYs gained was fixed in each DCE alternative, but 

varied with the number of patients treated in each CSPC alternative.  As noted 

previously, cost was not included as an attribute. 

5.2.2 Assigning levels 

There are no clear rules for assigning numeric or qualitative levels to 

attributes, but in general the levels should be plausible and realistic to 

respondents and constructed so that they are willing to make trade-offs between 

attributes (Ryan 1999).  The range between the highest and lowest levels of an 

attribute should also be large enough to include all relevant levels, but not so 

large as to be unrealistic.  However, as the ISPOR Conjoint Analysis Best 

Practices Task Force (Bridges et al. 2010) notes, “attribute levels should 

encompass the range that may be salient to subjects, even if those levels are 

hypothetical or not feasible given current technology.”  The importance of an 

appropriate range is highlighted by Kjær (2005), who emphasised that “an 

insignificant coefficient does not necessarily mean that the attribute is 

unimportant to respondents; the correct interpretation is that the attribute did not 

influence the choice for given levels.”  

 A change in the level of an attribute is associated with a change in the 

utility of that attribute.  Increasing the number of levels in an attribute provides 

more information on the form of the utility function – two levels allow the 

estimation of a strictly linear utility function, while more levels provide more 

                                                 
10 Aggregate QALYs gained = [(life expectancy + life years gained) × final utility – (life 

expectancy × initial utility)] × patients treated 
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information on the shape of the utility function (Hensher et al. 2005) – but 

increasing the number of levels within an attribute has also been shown to be 

associated with ‘level bias,’ where increasing the number of levels in an attribute 

tends to increase the significance of that attribute in respondents’ choices.  That 

is, an attribute with 5 levels will often be more significant than an attribute with 

3 levels, even if the end-points are the same (Kjær 2005).  In addition, as the 

number of levels in any attribute increase, so does the number of choice 

scenarios required to achieve a given level of statistical power.  To balance the 

issues of statistical efficiency and level bias with information on the shape of the 

utility function, each attribute was therefore assigned three levels.  As the 

objective of the stated preference elicitations was to elicit respondents’ 

preferences over a wide spectrum of hypothetical program alternatives, the levels 

of each attribute were evenly spaced and set as widely as possible across a 

plausible range.  The specific levels assigned to each attribute are shown in Table 

5.1: 

Table 5.1: Pilot survey attributes and levels 

Level Age Initial utility 
Initial life 

expectancy 
Final utility 

Gain in life 

expectancy 

Patients 

treated 

1 10 .1 1m .1 1y 500 

2 40 .5 5y .5 5y 2,000 

3 70 .9 10y .9 10y 5,000 

 
 The levels for age were intended to test preferences for the young, middle-

aged and elderly.  Similarly, levels for initial and final health states were 

intended to test preferences for poor, moderate and excellent health.  To simplify 

the presentation of health-related for respondents, each health state was 

described on a hypothetical 0 to 10 numerical scale, with 0 representing dead 

and 10 representing perfect health.  The characteristics of the levels presented in 

the tasks were described using health state profiles based on EQ-5D dimensions, 

similar to the approach used by Schwappach (2003).  A minimum life 

expectancy before treatment of 1 month was intended to represent imminent 

death while avoiding implausible combinations associated with zero life 

expectancy but positive utility.  The minimum gain in life expectancy after 

treatment was chosen to be a minimal yet meaningful gain, while the maximum 

gain in life expectancy after treatment was chosen to be plausible when 
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considered in combination with maximum age and initial life expectancy.  

Defining the appropriate levels for the number of patients treated was analogous 

to the challenge of defining the budget in the CSPC – respondents would likely 

have difficulty coping with counts that reflected national populations, while 

small patient counts risked respondents not recognising trade-offs between levels 

and effectively ignoring the attribute.  As such, an upper level of 5000 patients 

was chosen to represent a comprehensible number of patients, and the lower 

level was defined to allow for a meaningful distinction between the levels.  The 

middle level was simply the approximate midpoint.  See Appendix 5.1 for the 

attribute descriptions provided to respondents. 

5.2.3 Experimental design 

The systematic plan for the presentation of different attributes and 

attribute levels in order to observe respondent choices is known as the 

experimental design (Louviere et al. 2000b; Hensher et al. 2005).  The most 

comprehensive experimental design is a full factorial, in which every possible 

combination of attributes and levels is presented.  The key advantage of a full 

factorial design is that each attribute and level appears an equal number of times 

and each attribute-level combination appears with every other attribute-level 

combination at least once.  This allows the effect of each attribute-level 

combination, including two-way and higher order interactions, on choice to be 

estimated independently of each other, known as orthogonality.  However, given 

the 6 attributes noted above, each with 3 levels, the number of possible 

combinations in a full factorial design is 36 = 729.  This is clearly too many tasks 

to present to any respondent, and it highlights the key drawback of a full factorial 

design; namely, that it often results in an impractical and unmanageable 

experimental design (Louviere et al. 2000b). 

A more practical alternative to a full factorial is a fractional factorial 

design, which presents only a subset of possible combinations to any one 

respondent.  Orthogonal fractional designs focus on creating statistically 

independent designs with no correlations between attributes while largely 

disregarding statistical efficiency.  Optimal fractional factorial designs, on the 

other hand, focus primarily on maximising statistical efficiency – extracting the 
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maximum amount of information from respondents, subject to constraints such 

as the number of attributes in the design, the number of levels, and the number of 

tasks in the elicitation (Carlsson & Martinsson 2003).  Recall that a full factorial 

design includes all possible combinations of attributes and levels, and allows for 

every main effect, as well as all two-way and higher order interactions, to be 

estimated independently (Kuhfeld et al. 1994).  If not all of these effects are of 

interest, the size of an experimental design can be reduced without sacrificing 

precision in the relevant parameter estimates by allowing some correlation 

between irrelevant parameters.   

An efficient optimal fractional factorial design maximises the precision of 

the parameter estimates – or equivalently, minimise the variance of those 

estimates – for a given set of constraints.  The statistical efficiency of different 

designs can be compared in terms of A-efficiency, G-efficiency or D-efficiency.  

All three measures are highly correlated, but D-efficiency is used most often, 

mainly because it is less computationally burdensome than the other measures 

(Carlsson & Martinsson 2003; Kuhfeld et al. 1994).  A D-efficient design relates 

to the covariance matrix (Ω) of the model to be estimated (Hensher et al. 2005; 

Carlsson & Martinsson 2003): 

  Ω = ∑ ∑ ∑      
         

 
   

 
   

 
    (5.5) 

Where      is a vector of attribute levels presented to individual i in alternative j 

or task set t, and      is the probability of choosing that alternative, which 

McFadden (1974) showed is given by: 

 
  (       =

       

∑         
   

 
(5.6) 

Where    is the vector of utility weights associated with alternative     .  A D-

efficient design seeks to minimise D-error, calculated as the determinant of the 

geometric mean of the inverse of the covariance matrix, Ω: 

 D-error = [   (     
 

 ⁄  (5.7) 

Where k is the number of parameters to be estimated from the design.  

Minimising D-error has the effect of minimising the variance-covariance matrix 

of the model, known as the Fisher information matrix, and maximising the 
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statistical efficiency of the experimental design (Hensher et al. 2005; Carlsson & 

Martinsson 2003; Kuhfeld et al. 1994).  However, as shown in equations 5.5 and 

5.6, the D-error of a particular design depends on the choice probability of each 

alternative in that design.  This leads to the paradoxical result that an efficient 

experimental design requires prior knowledge about the very parameters that the 

stated preference elicitation is trying to estimate.   

The importance of knowing the choice probability of each alternative 

stems from the criteria for an optimally efficient non-linear choice design 

identified by Huber and Zwerina (1996): level balance, orthogonality, minimal 

overlap and utility balance.  The design is non-linear because the response 

variable, choice, is discrete rather than continuous.  Although the response 

variable in the CSPC tasks is continuous, the CSPC questionnaire was based on 

the same experimental design as the DCE as the design principles are similar for 

the two formats.  Level balance implies that each level appears with equal 

frequency in the overall design.  Orthogonality refers to the statistical 

independence of the attributes.  Minimal overlap means that the same attribute 

level should not appear in more than one alternative in a particular choice task.  

Finally, utility balance means that the probability of each alternative being 

chosen is roughly equal, and that there are no clearly dominated alternatives in 

the choice set.  Little preference information is generated if one alternative is 

dominated by the other; selection of the dominant alternative simply 

demonstrates that a respondent is rational by the axioms of choice theory 

(Johnson et al. 2007).  There is a limit to the desirability of utility balance, 

though, as at the extreme a perfectly balanced scenario would, in effect, be a 

random choice between two equally attractive alternatives and would not 

generate any useful choice information (Kanninen 2002).  Optimising utility 

balance requires information on the choice probability of each alternative, 

although Carlsson and Martinsson (2003) show that when no prior information 

is available, it can be assumed that the choice probabilities of all the alternatives 

are equal, even though this limits the potential efficiency of a design.  They argue 

that the utility balance requirement of an efficient design should be seen as an 

imperative for pilot work that can inform the design of the primary elicitation. 
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To ensure that correlations between the effects of interest are minimised, 

a model must be pre-specified at the design stage.  The degrees of freedom 

required to estimate this model determine the minimum number of choice sets 

that must be included the experimental design (Hensher et al. 2005).  For a main 

effects model with categorical parameters, the degrees of freedom are given by 

A(L-1), where A is the number of parameters to be estimated and L is the number 

of levels.  For continuous parameters, the degrees of freedom required are simply 

A.  To estimate two-way categorical interactions, the additional degrees of 

freedom required are given by (L-1)×(L-1), while continuous interactions require 

1 degree of freedom each.  One degree of freedom is also required to estimate the 

model.  For simplicity in the pilot phase, only the main effects for the six 3-level 

attributes noted in section 5.2.2 were estimated.  As this estimation required 12 

degrees of freedom, plus one degree for estimation, the pilot survey required a 

minimum of 13 choice sets.  However, as the SAS® design macros showed that a 

design of this size would not achieve level balance, an optimal design could not 

be generated for 13 choice sets.  Instead, the smallest feasible design with at least 

13 degrees of freedom was 18 choice sets.   

The design process started with a 36 full factorial candidate design with 

attributes for age, initial health state, initial life expectancy, final health state, life 

years gained and the number of patients.  As a product of the other attributes, 

aggregate QALYs were not included as a separate attribute in the experimental 

design.  Illogical attribute combinations where the net QALY gain with 

treatment was negative were excluded from the final design, but combinations 

where the aggregate QALYs gained was zero were included if an increase in 

quality was offset by a deterioration in life expectancy, or vice versa.  Scenarios 

where health state and life expectancy were unchanged before and after 

treatment were also excluded.  Although it could be argued that such a scenario 

might represent the maintenance of current health through preventative care, it 

leads to a confusing choice task.  This exclusion can also be justified on the 

grounds that preferences for the direction of health benefit were considered and 

rejected in the empirical ethics review.  Of the 729 scenarios in the full factorial 

design, 135 (19%) were excluded as illogical.  Note that such exclusions are 
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likely to introduce some correlations between the attributes in the remaining 

scenarios (Bridges et al. 2010). 

A D-efficient fractional factorial design was generated using Kuhfeld’s 

(2010) SAS® macros.  The D-error of different combinations of the 594 logical 

scenarios from the candidate design was evaluated using a modified Fedorov 

algorithm (Johnson et al. 2007; Kuhfeld 2010).  This algorithm generated a 

random design from the candidate design, subject to the specified number of 

choice sets and alternatives per choice set.  For each choice set in this initial 

design, the algorithm replaced one alternative with a random alternative from 

the eligible scenarios and evaluated the change in D-error.  If it was an 

improvement, the algorithm moved on to the next choice set.  This was repeated 

for all choice sets until D-error was minimised for that particular design.  This 

process was repeated 100 times and the design with the lowest D-error was 

selected.  As Kuhfeld et al. (1994) note, this process will find an efficient design, 

but there is no guarantee that it will find the most efficient design.   Also, as noted 

above, this algorithm is most effective when prior preference weights can be 

incorporated into the design algorithm (Carlsson & Martinsson 2003), but as 

these weights were not known in the pilot phase the algorithm assumed that all 

scenarios had equal choice probabilities.   

The final design had 18 choice sets, but as the literature suggested that 

this was likely an excessive number of choice sets to present to a single 

respondent (Bridges et al. 2010), it was evenly divided into two subsets, or 

blocks, of 9 choice tasks per respondent.  The design macros optimised the 

blocking strategy so as to avoid any interactions with the blocking variable itself.  

Block 1 of the design was used for the DCE questionnaire, and block 2 was used 

for the CSPC questionnaire.  Although this simplified questionnaire 

administration, it violated the principles of optimal experimental design and 

further limited the statistical efficiency of the elicitations (Carlsson & 

Martinsson 2003).  For this reason, the preference data derived from the pilot 

survey should be viewed as secondary to the comparison of the response 

behaviours with the two elicitation formats.   
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5.2.4 Stated preferences & rationality 

Stated preference elicitations assume that respondents are rational, or 

more specifically, that their preferences are complete and transitive (Lancsar & 

Louviere 2006).  Completeness holds that individuals are able to rank every 

alternative as more preferred, less preferred or indifferent relative to all other 

alternatives.  This allows for the possibility of utility functions and non-

intersecting indifference curves.  Transitivity holds that if an individual prefers x 

to y, and y to z, then they will also prefer x to z.  Transitivity rules out the 

possibility that preferences may ‘cycle.’  An individual holding some quantity of 

x, who prefers x to y, and y to z, but intransitively prefers z to x, would in theory 

be willing to pay some premium to trade x for z, z for y, and y for x.  After a cycle 

of irrational trading, the individual would be back where they started, holding x, 

but worse-off for having paid a premium at each trade.  In the context of 

revealed preferences – that is, preferences revealed by actual choices – it is 

assumed that the market will quickly exploit, and thereby correct, irrational 

preferences.  However, as McFadden (1999) notes, there is no market in the 

context of stated preferences, and therefore no endogenous mechanism to correct 

irrational preferences.  It has therefore been felt necessary to include tests of 

rationality in stated preference elicitations to prevent irrational preferences from 

biasing the results.  A test of transitivity involves a systematic series of tasks, 

included among those presented as part of the experimental design, over which 

respondents are asked to choose between x and y, y and z, and z and x.  

Respondents whose choices are not consistent with transitivity are flagged as 

irrational and generally excluded from further analysis. 

As recent stated preference research has highlighted, though, seemingly 

irrational preferences can be based on rational reasons, particularly when 

respondents may have inferred information that was not included, or intended, 

as part of the choice task (Miguel et al. 2005; Ryan 2009; Giacomini et al. 2012).  

This can be exacerbated by the fact that rationality is often judged according to 

the researcher’s expectation of the preferred alternative, which may itself reflect 

bias or omitted information through poor task design (Lancsar & Louviere 

2006).  McFadden (1999) argues that to accurately characterise responses as 

irrational, it is necessary to understand a respondent’s perceptions, beliefs, 
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attitudes, motives and preferences.  All of this calls into question the ability of 

simple tests to distinguish between rational and irrational preferences.  In 

general, Lancsar and Louviere (2006) argue that even though it is clear that not 

all preferences are rational, “it may not be the case that all preferences labelled as 

‘irrational’ are indeed so.”  They go on to argue that such irrational responses 

should not be excluded from interpretation without a very strong theory or 

empirical evidence to support doing so, and that to do otherwise is to risk 

imposing the researcher’s a priori expectations and preferences on the data.  As a 

practical matter, rationality tests can also add a considerable number of tasks to 

an experimental design, adding to the time it takes to complete a survey and 

potentially adversely affecting completion rates and the attentiveness of 

respondents (Miguel et al. 2005). 

Preferences are also generally assumed to be monotonic, stable, and 

continuous, although these axioms are not essential to rationality (Lancsar & 

Louviere 2006; Ryan 2009).  Monotonicity implies that preferred attributes are 

‘goods’ and that more of a good is always preferred to less.  Stable, or 

immutable, preferences imply that if x is preferred to y now, x will continue to be 

preferred to y in the future, or at least until there is a material change in the 

relative value of x and y.  Finally, continuous, or compensatory, preferences 

imply that a deterioration in one attribute can be compensated for by an 

improvement in another.  The assumption of compensatory decision making is 

fundamental to choice-based stated preference elicitations, even though 

compensatory decision making is cognitively demanding, as it requires decision 

makers to calculate – implicitly or explicitly – the positive or negative utility 

derived from the level each attribute, and aggregate utility over each alternative.   

Evidence from the psychology literature, though, suggests that decision 

makers are more likely to be ‘cognitive misers,’ who view decision making a 

trade-off between the desire to make an optimal decision (the decision benefit) 

and the desire to minimise the decision cost in terms of cognitive effort or time 

(Hogarth & Karelaia 2005; Payne et al. 1993; Wright 1975).  Compensatory 

strategies may also require trade-offs that respondents find difficult, or even 

offensive, particularly if they view the choices to be between rights that should 

not or cannot be compromised in pursuit of other goals (Bartels & Medin 2007; 
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Scott 2002).  This seems particularly likely in the context of healthcare, where a 

number of studies of have reported that respondents are often reluctant to choose 

between different patient, viewing such choices as ‘playing god’ (Cookson & 

Dolan 1999; Dolan & Cookson 2000; Litva et al. 2002).  

Non-compensatory strategies function as ‘heuristics’ or decision short-

cuts that allow decision makers to minimise decision effort and avoid explicit 

trade-offs between attributes (Gigerenzer & Gaissmaier 2011; Hogarth & 

Karelaia 2005; Wright 1975).  One of the most common heuristics, particularly 

in the context of a paired stated preference elicitation, is a dominant preference, 

where a respondent always chooses the alternative with the preferred level of a 

particular attribute, regardless of the levels of the other attributes (Brandstatter et 

al. 2006; Gigerenzer & Goldstein 1996; Scott 2002).  If the levels of the 

dominant attribute are equivalent, trade-offs can take place between the other 

attributes.  Lexicographic preferences are a more specific case of dominant 

preferences where no trade-offs between any attributes takes place.  All attributes 

are ranked by decreasing importance and the decision weight of each attribute is 

greater than the sum of all weights that come after it.  If the levels of the most 

important attribute are equivalent, then the levels of the second most important 

attribute are compared, and so on until a preferred alternative is identified 

(Hogarth & Karelaia 2005; Scott 2002).   

Dominant or lexicographic preferences are not irrational as they do not 

violate the axioms of completeness, transitivity or stability (Mathews et al. 2007; 

Lancsar & Louviere 2006).  Indeed, a dominant or lexicographic preference for 

aggregate QALY gains is the definition of rationality within the QALY 

maximising framework.  However, such preferences cannot be represented by an 

indifference curve, and as no trading takes place over some or all attributes, 

marginal rates of substitution have no meaning (Louviere et al. 2000b; Scott 

2002).  For this reason, non-compensatory preferences are generally excluded in 

the interpretation of stated preference data (Lancsar & Louviere 2006; McIntosh 

& Ryan 2002; Scott 2002).  As Lancsar and Louviere (2006) note, though, it may 

be the case that what appears to be a lexicographic preference may simply be a 

reluctance to trade over the range of attributes levels in the experimental design.  

It may also suggest that some or most of the attributes included in the 
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experimental design are unimportant to some respondents.  Therefore, excluding 

apparently non-compensatory preferences can have the effect of excluding the 

strongest preferences.  The very nature of a fractional factorial experimental 

design also complicates the interpretation of non-compensatory preferences; as 

such designs present only a subset of all possible attribute and level 

combinations, it is not possible to say with certainty that observed instances of 

non-compensatory decision-making would persist across all possible scenarios 

(Lancsar & Louviere 2006; Scott 2002). 

Despite these limitations in identifying non-compensatory preferences, it 

was necessary to be able to distinguish respondents with dominant preferences 

for aggregate QALYs from those willing to sacrifice some QALY gains for 

equity objectives.  Therefore, the identification of QALY maximisers and other 

non-traders followed an approach outlined by Scott (2002).  He acknowledged 

the difficulty of identifying lexicographic preferences within a fractional factorial 

design, so to support the characterisation of a respondent as a ‘non-trader’, he 

applied two criteria.  First, dominant preferences were identified as “individuals 

who always choose the scenario where    is greater than   
 , no matter what the 

level of the other attributes” (Scott 2002).  Second, individuals with dominant 

preferences were classified as non-traders if they also rated that attribute as the 

most important factor in their decisions in a follow-up rating exercise.  This 

process is described in more detail in the data analysis section. 

A test of preference stability was also included, despite the reservations 

outlined above, in order to compare the DCE and CSPC formats.  Miguel et al. 

(2005) found that increasing choice complexity can lead to an increased 

incidence of ‘irrational’ responses, which may include unstable or inconsistent 

preferences.  Although it is true that many of individuals flagged as inconsistent 

may not necessarily be so, a significant difference in the proportions of 

inconsistent respondents between the DCE and CSPC may be indicative of an 

overly complex elicitation format.    
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5.2.5 Data collection 

The first phase of the pilot data collection was conducted using informal 

interviews and focus groups to evaluate the comprehensibility and acceptability 

of the DCE and CSPC formats.  Focus groups were conducted in classes of 

undergraduate and graduate students in economics and epidemiology, as well as 

with individual decision makers, healthcare professionals and members of the 

general public.  Focus group participants were presented a short questionnaire 

with two DCE and two CSPC tasks and asked to offer their feedback on the 

relative ease or difficulty of understanding the choice task, and their ability to 

provide a meaningful response.  These comments were used to improve the 

wording and presentation of the tasks.  Choice responses collected in this phase 

were not included in the final dataset.  The second phase of the pilot data 

collection administered full DCE and CSPC questionnaires based on the blocked 

experimental design detailed above.  Responses were elicited from a convenience 

sample of respondents, including graduate and undergraduate students at 

Dalhousie University, Halifax, Nova Scotia, Canada, and The University of 

Sheffield, UK, staff at the Capital District Health Authority in Halifax, Nova 

Scotia, as well as the general public.   

The pilot questionnaires were administered via the internet.  Face-to-face 

administration of stated preference elicitations has significant benefits, including 

the ability to explain thoroughly the objectives of the survey and to provide 

timely feedback to respondents (Damschroder et al. 2004).  Damschroder et al. 

(2004) found that respondents to face-to-face surveys were also less likely to 

provide quick or irrational responses.  However, face-to-face administration is 

costly, time consuming and can often lead to small or selective samples.  

Relative to less personal elicitation formats, there is also evidence that face-to-

face interviews tend to increase ‘social desirability’ or ‘yea saying’ biases, where 

respondents offer the answer they perceive to be socially ‘correct’ or that will 

please the interviewer, rather than their true preference (Arrow et al. 1993; 

Leggett et al. 2003).  Although there are also limitations to a web-based 

approach, the validity of the approach is supported by Damschroder et al. 

(2004), who found no significant differences in PTO equivalence values elicited 

using face-to-face and computerised formats.  There is also evidence that web-
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based administration can minimise social desirability bias in accurately eliciting 

socially sensitive information (Kreuter et al. 2008).  Samples of the pilot DCE 

and CSPC choice tasks are shown in Appendix 5.1.   

Participants were randomised to either a DCE or CSPC questionnaire 

using a random number algorithm.  As each potential respondent followed an 

online link and was assigned a questionnaire, a record was written to a database 

indicating the assigned survey.  These counts were used as the denominator in 

calculating the completion rate for each survey.  The database counted each time 

an individual was assigned a questionnaire, but there was nothing to prevent an 

individual from being counted more than once.  For example, individuals who 

dropped out of an assigned survey but later returned and were re-randomised 

would have been counted more than once.  Additionally, there was no way to 

ensure that a returning participant was assigned to the same design that they 

originally started.  Therefore, to the extent that some individuals may have been 

double-counted, completion rates based on these counts were correspondingly 

underestimated.  No demographic information was collected at the time of 

randomisation, so it was not possible to calculate group-specific completion 

rates. 

Respondents were asked to imagine themselves as a societal decision 

maker responsible for allocating a fixed budget between two alternative 

healthcare programs.  They were told that both programs had the same cost, and 

that the budget was large enough to fully fund one program or the other, but not 

both.  The precise budget and the cost of the programs were not specified as 

realistic program costs are likely to be unfamiliar to respondents and may 

compromise their ability to make realistic allocations, while trivial sums risk 

respondents not taking the task seriously (Mullen 1999; Ryan et al. 2001).  The 

concept of cost-effectiveness was not mentioned, but the QALY maximising 

alternative under an assumption of equal costs will, by extension, also be the 

more cost-effective alternative, and some respondents may have recognised this 

fact.   

The DCE questionnaire asked respondents to allocate the entire budget to 

their preferred program, while the CSPC questionnaire asked respondents to 

allocate budget percentages between the two programs by moving a slider.  
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Respondents could allocate 100 percent of the budget to program A or program 

B, or to some combination of the two, including an equal 50-50 split.  The 

number of patients treated in each DCE task was fixed according to the levels in 

the experimental design, but the number of patients treated in the CSPC tasks 

was allowed to vary between zero and the maximum level defined by the 

experimental design in proportion to the budget allocated to each program (e.g. a 

25 percent budget allocation meant that 25 percent of the maximum potential 

number of patients could be treated).  It was felt that this would highlight the 

opportunity cost associated with different budget allocations.  The position of the 

CSPC slider was randomised between each task in order to minimise anchoring 

and framing effects (Boyle & Ozdemir 2009; Payne et al. 1993).   

The CSPC administered here was unique in dynamically linking attribute 

levels to the budget allocation.  Among the CSPC elicitations described in Table 

4.2, Schwappach (2003) and Desser et al. (2010) did not include any attributes 

that would vary with the relative budget allocation, while Linley and Hughes 

(2012) skipped the intermediate step of allocating a budget and directly asked 

respondents how many patients from each of two equally-sized groups they 

would prefer to treat.11  Linking the number of patients treated – and, indirectly, 

aggregate QALYs gained – to the relative budget share clearly highlighted the 

trade-off between the two alternatives.  This reality may be obscured in discrete 

choice tasks as respondents can choose one group without necessarily 

appreciating that the nature of the task implies that no patients from the other 

group will be treated.   

There is evidence that respondents may choose to avoid difficult choices 

by selecting an opt-out option, even when one alternative in the choice task may 

provide greater utility (Ryan & Gerard 2003; Kjær 2005).  For this reason, most 

DCEs in healthcare are based on a forced choice with no opt-out option.  

However, to minimise dropout from the pilot DCE questionnaire before ratings 

of difficulty and comprehension could be collected, it was decided to allow 

                                                 
11 This arguably moved the task conceptually closer to a PTO, which asks respondents how many 

outcomes of type X they would consider equivalent in terms of value to Y outcomes of another 

kind.  However, it is not clear that the final allocation of patients in a CSPC can be interpreted as 

an indifference point, or in terms of relative value, as it can in a PTO. 
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respondents to skip tasks without answering.  This option was labelled as ‘no 

answer’ and these responses were excluded from the analysis.  The nature of the 

CSPC tasks meant that respondents to that questionnaire could indicate equality 

or indifference between alternatives by selecting an equal 50-50 allocation of the 

budget.  This was taken to indicate sincere indifference, although it is possible 

that at least some CSPC respondents chose equality in resources as a way to 

avoid difficult decisions.  

Each respondent saw 10 choice tasks, including one repeated task to test 

preference stability.  In this repeated task the position of two alternatives 

presented in task 3 of each block were reversed and re-presented as task 8.  The 

original choice set was presented as the third task in order to allow respondents 

to become familiar enough with the tasks to avoid learning effects, and re-

presented as the eighth task to allow respondents some time to forget the original 

choice set, yet not so late as to risk significant fatigue effects.  If a respondent’s 

preferences were stable, and if they were paying attention, they should have 

preferred the same program the same in both choice tasks (Mathews et al. 2007).   

Following the choice tasks, respondents were asked to rate the 

importance of each attribute, including aggregate QALYs and distributional 

concerns, in their choices on a 0 to 10 scale, and to separately rate the difficulty 

of understanding and of answering the tasks on 7-point scales ranging from 

extremely easy to extremely difficult.  Respondents were also asked to indicate 

their gender and age group and to identify themselves as a governmental 

decision maker or academic expert, a physician, and/or a frequent healthcare 

user (12 or more healthcare contacts in the past 12 months).  These categories 

were not mutually exclusive, and each respondent could identify as one or more 

(or none) of these groups.   

The questionnaires and the subsequent data analyses were approved by 

The University of Sheffield Research Ethics Committee, Sheffield UK, and the 

Capital Health Research Ethics Board, Halifax, Nova Scotia, Canada. 
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5.2.6 Data analysis 

The emphasis in the pilot survey was on identifying a preferred format for 

the primary elicitation, rather than the estimation of respondent preferences per 

se.  Responses from the two surveys were compared on a number of dimensions 

to assess the difficulty and the acceptability of the two formats, and their ability 

to elicit valid preference data.  These included completion rates, the respondent-

rated ease of understanding and answering the questionnaires, preference 

stability, and the incidence of non-compensatory decision making.  A simple 

analysis of the choice responses was also conducted in order to compare the 

preference information derived from the two questionnaires.  P-values were 

adjusted for simultaneous comparisons using Hommel’s (1988) method,12 with 

the exception of p-values on the coefficients in the statistical models of DCE and 

CSPC choices, which were not adjusted in order to allow for the broadest 

possible inclusion of potentially explanatory parameters (Hosmer & Lemeshow 

2000). 

5.2.6.1 Completion rates and respondent-rated difficulty 

Differences in questionnaire completion rates and stakeholder and gender 

proportions were tested using a two-sample Z-test of proportions.  Age group 

proportions were tested using a    test of independence.  On the assumption that 

the randomisation algorithm assigned an equal proportion of each age, gender 

and stakeholder subgroup to each questionnaire, differences in these proportions 

among completed questionnaires were taken to indicate a differential drop-out 

rate among these groups.  The proportions of respondents who indicated that 

they found the questionnaire ‘somewhat difficult’ or ‘extremely difficult’ to 

understand or to answer were also compared using a two-sample Z-test of 

proportions.   

                                                 
12 The more common Bonferroni method for adjusting p-values for n multiple simultaneous 

comparisons typically sets the acceptable error rate in each comparison (    such that   = 
 

 
, 

where α is the overall acceptable error rate (e.g. α = 0.05).  This approach, though 

straightforward, is argued to be overly-conservative, often failing to reject the null hypothesis 

when in fact it is false (Shaffer 1995; Wright 1992).  Hommel’s method is more complicated but 

statistically more powerful.  Order the hypotheses to be tested by their unadjusted p-value, 

p(  )…p(  ).  Let j be the largest integer for which p(        
  

 
, for all  k=1,…,j.  If no such j 

exists, reject all the hypotheses; otherwise, reject the hypotheses for which p ≤ 
 

 
  (Shaffer 1995). 
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5.2.6.2 Preference stability 

Preference stability was measured by including a repeated task in each 

questionnaire, where the position of the two alternatives presented as task 3 in 

each design block were reversed and re-presented as task 8.  For the purposes of 

assessing stability, the CSPC budget allocations were transformed to discrete 

choices on the basis of the alternative to which the majority of resources were 

allocated.  Equal allocations were allowed, but the allocations had to be equal in 

both tasks in order to be considered consistent.  The proportion of consistent 

responses was compared using a two-sample Z-test of proportions.  The 

statistical significance of the individual differences between the initial and 

repeated budget allocations in the CSPC questionnaires was tested using a paired 

t-test. 

5.2.6.3 Dominant preferences 

As Scott (2002) noted, lexicographic preferences are rarely identifiable in 

the context of a stated preference elicitation, but it is generally possible to 

identify dominant preferences.  To test for such preferences, a set of flags was 

created for each alternative in each choice task.  These flags indicated whether or 

not an alternative presented the most preferred, or dominant, level of each 

attribute.  For example, based on evidence of public support and an ethical 

justification for prioritising more severely ill patients from the empirical ethics 

review, if one alternative presented patients in a more severe initial health state, 

that alternative was flagged as ‘best’ (from the perspective of the respondent) in 

the initial utility attribute; the corresponding attribute flag for the paired 

alternative was set to zero.  Similarly, if one alternative was associated with 

greater life year gains than the other, that alternative was flagged as best in that 

attribute.  There were a total of seven flags for each alternative: age, initial 

utility, initial life expectancy, final utility, life years gained, (potential) number of 

patients treated and (potential) number of QALYs.  CSPC responses were 

transformed to discrete choices on the basis of the program to which the 

respondent allocated the majority of the budget, and the flags were set based on 

the potential number of patients that could be treated and the potential number 

of QALYs gained if 100% of the budget were allocated to that alternative.  CSPC 
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alternatives that received a 50% budget allocation were flagged as ‘not chosen’ 

(i.e. both alternatives were assigned a choice flag of zero) as neither alternative 

was prioritised, but the impact of counting such allocations as prioritising both 

attributes was also tested.   

The absolute value of the correlation between choice and each attribute 

flag, measured by Kendall’s tau (Herve 2007), was taken to represent the degree 

of that attribute’s dominance in each respondent’s choices.  A respondent that 

always chose the alternative with, for example, the younger patients, would have 

a choice correlation coefficient of 1.0 with the age attribute.  Which end of each 

attribute scale the respondent considered ‘best’ was not critical, as in this 

example correlation would -1.0 if they always chose the alternative with the 

older patients.  It is important to note, though, that this approach to identifying 

dominant preferences only holds where preferences are monotonically increasing 

or decreasing over the attribute, as was assumed here.   

As respondents saw only a subset of possible scenarios, it was not possible 

to say that a perfect correlation between a respondent’s choices and the level of a 

particular attribute would necessarily hold across all possible scenarios (Scott 

2002).  Therefore, to support the identification of non-traders, each respondent’s 

self-rated attribute importance scores were converted to rankings, and 

individuals with a perfect choice-attribute correlation who also rated that 

attribute as most important were considered to have a dominant preference for 

that attribute.  The proportion of non-traders was compared across the two 

questionnaires using a two-sample Z-test.  A very high incidence of non-

compensatory preferences in a particular questionnaire may invalidate the 

interpretation of the responses, while a significant difference between 

questionnaires may reflect excessive task complexity and a corresponding degree 

of simplification in one of the formats.  Similarly, CSPC respondents who 

allocated every budget so as to equalise resources, the number of patients treated, 

or the aggregate QALYs gained in each group were characterised as strict (non-

trading) egalitarians if they also ranked the distribution of resources as the most 

important factor in their choices. 

With respect to preferences for aggregate QALYs, recognise that in the 

context of equal program costs, a dominant preference for greater aggregate 
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QALYs is also a preference for the more cost-effective alternative.  However, in 

holding costs constant it was not possible to distinguish between a preference for 

the more cost-effective alternative, and a dominant preference for aggregate 

QALYs that may have held regardless of relative cost.  A dominant preference 

for aggregate QALYs was therefore necessary but not sufficient to confirm 

support for the principles of QALY maximisation.  To test whether one format 

was associated with a greater preference for aggregate QALYs, even if these 

preferences were not necessarily dominant, the mean number of QALY 

maximising choices made by respondents to the two questionnaires was 

compared using a two-sample t-test.   

5.2.6.4 Choice analysis 

Given the limited degrees of freedom available in each block of the 

experimental design, the choice models assumed monotonic preferences and 

only estimated linear main effects.  The QALYs gained attribute, as a linear 

combination of initial and final utility, life years gained and number of patients 

treated, was excluded from the analyses in order to avoid collinearity.  

Responses to the repeated task were excluded to avoid double counting, as were 

‘no answer’ responses from the DCE questionnaire.  All respondents were 

included in the analysis, including those identified as non-traders.  The analyses 

were performed with R, version 2.15.2 (R Core Team 2013) using the mlogit 

(Croissant 2012), censReg (Henningsen 2012) and plm (Croissant & Millo 2008) 

packages.   

CSPC responses were analysed using a double-bounded tobit model to 

account for the censored dependent variable.  Although the previous chapter 

mentions the potential advantages of a latent class model, a random effects 

specification was adopted for simplicity and parsimony in the pilot analysis. 
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(5.8)  

 

The response variable (      
   ) was the budget allocated to Program B less the 

budget allocated to Program A by respondent i in task t.  If 100% of the budget 

was allocated to Program B,       
   =       if 100% was allocated to 
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Program A,       
   =       if the budget was allocated 50%-50%, 

      
   =  .  Similarly, the parameters were the differences in the continuous 

attribute levels between Program B and Program A.  The β’s represented the 

change in latent utility associated with a one-unit increase in the level of an 

attribute,    was an individual-specific error term, and   was a stochastic error 

term.  To be as consistent as possible with the CSPC analysis, DCE responses 

were modelled using a binary random effects probit, where the parameters were 

defined as in equation 5.8, but the response variable was a 0, 1 flag indicating 

whether or not alternative B was chosen.  As noted in section 4.5, there are 

limitations to a random effects specification, but it was felt to be sufficient for the 

pilot elicitation given its emphasis on the response characteristics of the two 

questionnaire formats rather than respondent preferences per se, and its limited 

degrees of freedom.  The DCE and CSPC models were compared in terms of the 

relative contribution of each attribute to overall utility, or the relative importance 

of each attribute (Orme 2006a), as well as the marginal rates of substitution 

between individual life years gained and the other parameters in each model. 

In the DCE, each attribute’s contribution to systematic utility was 

calculated based on the most preferred and least preferred level of attribute x:  

   (  = (       (       (5.9) 

Where (    
    was the utility associated with the most preferred level of 

attribute x, (    
    was the utility associated with the least preferred level of 

attribute x, and   (   was the net difference in utility.  This attribute-specific 

contribution was then divided by the difference in overall utility between the 

‘best’ scenario (vmax), based on the most preferred levels of all the statistically 

significant attributes in the model, and the ‘worst’ scenario (vmin), based on the 

least preferred levels of all the attributes: 

 Relative Importance of x = 
  (  

         
 (5.10) 

Where   (   is defined as in equation 5.9 above.  The calculation was 

essentially the same for the CSPC, except that the x’s represented the smallest 

and largest differences, rather than absolute levels, and   (   was the overall 

difference in latent utility.   
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As the levels of each attribute are measured on scales with different 

origins and different units, this means that the attribute coefficients within each 

model cannot be compared unless they are transformed to some common scale 

(Lancsar et al. 2007).  The coefficients were transformed on the basis of marginal 

rates of substitution (MRS), using individual life years gained as the numeraire: 

 MRS = 
  

    
 (5.11) 

Where βx is the coefficient on attribute x, and βLYg is the coefficient on the 

individual life years gained attribute.  MRS represents the number of individual 

life year gains that respondents would, in theory, be willing to sacrifice in return 

for a 1-unit change in the level of attribute x.  A statistically significant and 

negative MRS indicated a preference for a lower level of an attribute, while a 

statistically significant and positive MRS indicated a preference for a higher 

level.   

5.3 Results 

Data collection for the pilot survey ran from March to May 2011, and a 

total of 604 individuals began a questionnaire: 348 (58%) were randomised to the 

CSPC questionnaire and 256 (42%) were randomised to the DCE questionnaire.  

Participants were initially allocated between the two questionnaires on an equal 

basis, but to compensate for lower observed completion rates among participants 

allocated to the CSPC in the early stages of data collection this was adjusted to 

allocate an arbitrary 60 percent of participants to the CSPC questionnaire.  

Completion rates and respondent characteristics are shown in Table 5.2. 

Table 5.2: Respondent characteristics by questionnaire 

 DCE (%) CSPC (%) p-value Adjusted-p Sig 

Overall completion 

rate 
154/256 (60%) 150/348 (43%) <0.001 <0.001  

Self-identified stakeholders, N (%)  

   Decision maker 33 (21%) 18 (12%) 0.04 0.20  

   Doctor 35 (23%) 35 (23%) 1.00 1.00  

   Frequent user 14 (9%) 18 (12%) 0.52 1.00  

Demographics, N (%)  

   Female 113 (74%) 107 (71%) 0.77 1.00  
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   Mean age* 31.5 33.2 0.65 1.00  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

* Mean age was calculated using the mid-point of the different age groups; the p-value was based on a 

   test of independence 

 

A significantly greater proportion of individuals completed the DCE 

questionnaire compared with the CSPC questionnaire, suggesting that the CSPC 

may have been less acceptable to respondents in some respects.  There were no 

significant differences in the gender distribution or mean age, or in the 

proportion of respondents who identified themselves as doctors or frequent 

healthcare users.  However, a lower proportion of CSPC respondents identified 

themselves as a government decision maker or academic expert, suggesting a 

higher drop-out rate among this group in the CSPC relative to the DCE, 

although this difference was not statistically significant after adjusting for 

multiple comparisons.  Conversely, a slightly greater proportion of frequent 

healthcare users completed the CSPC questionnaire, although again this 

difference was not statistically significant.  As frequent users may be more likely 

to be chronically ill than the other respondent subgroups – and therefore also 

more likely to feel that they may be viewed as a less preferred group by the larger 

society – it is possible that these respondents may have preferred the CSPC, with 

its ability to reserve some resources for less preferred groups, to a greater degree 

than the other subgroups.  Note that these groups were not mutually exclusive as 

respondents could identify as belonging to more than one stakeholder group. 

The CSPC completion rate was similar to that reported by Ratcliffe (38%) 

in her application of CSPC (Ratcliffe 2000), but the DCE completion rate was 

lower than the 77 percent completion rate reported by Norman et al (2013) and 

the 75 percent reported by Shah et al. (2012). 

5.3.1 Respondent-rated difficulty 

As shown in Table 5.3, there was no significant difference between the 

two surveys in the proportion that rated the tasks ‘somewhat difficult’ or 

‘extremely difficult’ to understand among all respondents who submitted a 

questionnaire.   
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Table 5.3: Respondents rating the questionnaires ‘somewhat difficult’ or ‘extremely 

difficult’ to understand 

 DCE (%) CSPC (%) p-value Adjusted-p Sig 

All respondents 19/154 (12.3%) 19/150 (12.6%) 1.00 1.00  

Decision maker 5/33 (15.2%) 5/18 (27.8%) 0.47 1.00  

Doctor 6/35 (17.1%) 5/35 (17.1%) 1.00 1.00  

Frequent user 1/14 (7.1%) 2/18 (11.1%) 1.00 1.00  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

 

Among stakeholder subgroups, a greater proportion of decision makers 

found the CSPC tasks difficult to understand compared to the DCE, although 

this difference was not statistically significant, even before adjusting for multiple 

comparisons.  Likewise, Table 5.4 suggests that there were no statistically 

significant differences overall or by respondent subgroup in the perceived 

difficulty of answering the tasks, although a greater proportion of all decision 

makers (across both questionnaires) reported the tasks to be difficult to answer 

(76.5%) relative to all other respondents excluding decision makers (63.2%).  

This difference, though, was not statistically significant (p=0.10, adjusted-

p=0.49).   

Table 5.4: Respondents rating the questionnaires ‘somewhat difficult’ or ‘extremely 

difficult’ to answer 

 DCE (%) CSPC (%) p-value Adjusted-p Sig 

All respondents 100/154 (64.9%) 99/150 (66.0%) 1.00 1.00  

Decision maker 25/33 (75.8%) 14/18 (77.8%) 1.00 1.00  

Doctor 20/35 (57.1%) 21/35 (60.0%) 1.00 1.00  

Frequent user 7/14 (50.0%) 11/18 (61.1%) 1.00 1.00  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

As these difficulty ratings were limited to those respondents who 

submitted a completed questionnaire, they may be biased downwards as 

individuals who found the surveys exceedingly difficult are more likely to have 

dropped-out before completion.  However, the proportions reporting the 

questionnaires to be somewhat or extremely difficult to understand or to answer 

were similar to the proportions reported by other authors using DCE or CSPC 

methods to elicit societal preferences.  Green and Gerard (2009) reported that 
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40% of respondents found the DCE difficult to understand and 68% found it 

difficult to answer, while Ratcliffe (2000) reported that 41 percent of respondents 

found her CSPC moderately or very difficult to complete, and Schwappach 

(2003) reported that 52 percent of respondents found his CSPC quite or very 

difficult. 

5.3.2 Preference stability 

In the DCE survey, 148 out of 154 respondents (96%) preferred the same 

program (including 3 consistent ‘no answers’) in the original and the repeated 

task.  After transforming budget allocations to discrete choices on the basis of the 

program to which the majority of the budget was allocated, 119 out of 150 CSPC 

respondents (79%) allocated the majority of the budget to the same program or 

preferred an equal allocation of resources in both tasks.  The difference in the 

proportion of respondents that chose the same alternative in the repeated task 

was significantly greater in the DCE questionnaire than the CSPC (p < 0.001).  

While this suggests that not all respondents had stable preferences, or that not all 

respondents were not paying attention to their choices, some of the observed 

inconsistencies may be explained by respondents adopting an egalitarian 

perspective on their choices: if a respondent remembered prioritising a group 

with the same characteristics in the original task, they may have wanted to ‘even 

out’ the allocation of resources by prioritising the other group in the repeated 

task. 

When the individual differences between the specific budget allocations in 

the original and repeated CSPC task were considered, the mean budget 

allocation to program B in the original task was 27 percent compared to 19 

percent in the repeated task, for a net difference of -8 percent (p < 0.001, 

adjusted-p < 0.001).  It is worth noting, however, that the mode budget 

difference – accounting for 18 percent of the paired responses from the original 

and repeated task – was zero, indicating the same allocation in both tasks. 
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5.3.3 Dominant preferences and non-trading behaviour 

Excluding three individuals who always chose ‘no answer’ in the DCE, 9 

percent of DCE respondents (14/151) and 5 percent of CSPC respondents 

(7/150) always chose the alternative with the preferred level of a particular 

attribute.  This difference was not statistically significant (p=0.27).  The attribute 

most frequently perfectly correlated with choice in the DCE was final health 

state (9/14), and in the CSPC it was individual life years gained (6/7).  Among 

the respondents with at least one perfectly correlated attribute, 7 DCE (5%) and 

3 CSPC (2%) respondents also ranked that attribute as the most important factor 

in their choices, which was taken as confirmation of a dominant preference.  

Again, this difference was not statistically significant (p=0.34).  When equal 

CSPC budget allocations were counted as prioritising the dominant attribute, the 

proportion of respondents with perfect choice-attribute correlations increased to 

from 5 to 11 percent (16/150), and the proportion with a confirmed dominant 

preferences increased from 3 to 5 percent (8/150), but the differences between 

the CSPC and DCE were still not significant (p=0.83 and 0.99, respectively). 

Three additional DCE respondents had a perfect correlation between 

choice and total patients treated, but due to a coding error in the database 

attribute importance ratings were not recorded for the number of patients treated 

attribute, and it was not possible to confirm a dominant preference for these 

respondents.  If all 3 had ranked this attribute as the most important factor in 

their choices it is possible that up to 12 DCE respondents (8%) may have had a 

dominant preference, although this would not change the statistical 

insignificance of difference between the DCE and CSPC (p=0.49).   

With specific reference to aggregate QALY gains, only one respondent, 

from the DCE questionnaire, chose the QALY maximising alternative in every 

task.  This individual also ranked QALYs as the most important attribute, 

confirming a dominant preference for aggregate QALYs.  On average, DCE 

respondents chose the QALY maximising alternative in 6.3 out of 10 tasks, 

compared to 5.4 tasks out of 10 among CSPC respondents (p <0.001).  Both 

rates were slightly but significantly greater than the 5 choices out of 10 that 

would be expected by chance alone, given that one alternative in each choice 

pair maximised QALYs gained (adjusted-p <0.001 in both comparisons).  



 

139 

However, this relatively low rate of prioritising the QALY-maximising 

alternative in either formats appeared to offer little support for QALY 

maximisation as a societal decision rule. 

The proportion of respondents with a confirmed dominant preference in 

both of the questionnaires was less than the 45 percent reported by Scott (2002) 

and the 19 percent by Norman et al. (2013) using DCE methods, and the 5.7 

percent reported by Chan (2006) using a CSPC.  However, it was greater than 

the 2 percent reported by Schwappach (2003) and the 0.3 percent reported by 

Ratcliffe (2000), both of whom also used a CSPC. 

5.3.4 Choice analysis 

Although respondents to the DCE and CSPC did not see the same choice 

sets, there were only weak correlations between the block indicator and the 

specific attribute levels, ranging from -0.14 to 0.16, suggesting that there was no 

systematic bias in the attribute levels presented in the two questionnaires.   

Appendix 5.2 presents the model coefficients and p-values from the DCE 

and CSPC models, along with marginal rates of substitution (MRS) and relative 

attribute importance weights and rankings.  Initial life expectancy and the 

number of patients treated were not significant at a 0.10 threshold in the initial 

DCE probit model, and it was re-estimated excluding these attributes.  All six 

attributes were significant in the CSPC model.  The direction of preferences was 

consistent between the two models: negative coefficients on age and initial utility 

suggested that younger and more severe patients were preferred, while positive 

coefficients on individual life years gained and final utility suggests respondents 

preferred greater individual life year gains and better final health states.  CSPC 

respondents also preferred larger patients groups and patients with greater initial 

life expectancy, while these attributes were not significant in the DCE.  
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As illustrated in Figure 5.1 below, within the range of the attributes 

tested, final health state was the single most important attribute in both models, 

with relative importance weights of close to 50 percent in both questionnaires, 

but the rankings diverged for the other attributes.  The next most important 

attribute in the CSPC was initial health state, where respondents had a 

preference for patients in more severe initial health states, while DCE 

respondents gave more importance to individual life year gains.  CSPC 

respondents also had a preference for larger patient groups, while the number of 

patients was not statistically significant in the DCE.  This result is notable as it 

may be reflective of a ‘prominence effect,’ by which respondents may become 

more sensitive to a quantity when it is harder for them to ignore (Baron & 

Greene 1996; Fischer et al. 1999).  In this case, the number of patients treated 

changed as CSPC respondents moved the budget slider, potentially highlighting 

this attribute and leading CSPC respondents to give it more weight in their 

choices. 

 

5.3.5 CSPC budget allocations  

Figure 5.2 shows that the modal CSPC allocation (18% of all responses) 

maximised the budget allocation to program A (0 percent to program B) or 

program B (100 percent to program B), while 7 percent of responses equalised 

Figure 5.1: Attribute relative importance by format 
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the budget between the two alternatives.  At the respondent level, 2 percent of 

respondents (3/150) maximised the budget in every task, and 11 percent 

(16/150) maximised the budget in 5 or more of their 10 choices.  No respondents 

equalised budgets, patients or QALYs in more than 5 of their choices, and there 

were no significant differences in the proportion of decision makers who 

equalised or maximised relative to all other respondents in the survey. 

 

The absence of any respondents who equalised allocations in every task 

was in contrast to the results of CSPC elicitations reported by Ratcliffe (2000) 

and Chan et al. (2006), who both found that 2 percent of respondents equalised 

resources in every task, and to Schwappach (2003), who found that 11 percent of 

respondents equalised resources in every task.  Schwappach also reported than 

only 3 percent of all allocations maximised the budget allocation to one group or 

the other, sharply contrasting with the much higher proportion observed here.  In 

general, the low rates of equalising behaviour suggest that respondents were not 

using equal budget allocations as a way to avoid making difficult allocation 

choices. 

Figure 5.2: Pilot CSPC budget allocations 



 

142 

5.4 Identifying a preferred elicitation format 

In order to identify a preferred format for the primary preference 

elicitation, DCE and CSPC questionnaires were compared in terms of 

completion rates, difficulty ratings, preference stability, the incidence of non-

trading behaviours (including strict QALY maximisation), and attribute 

importance weights.  The results of these comparisons, though, did not seem to 

identify a clearly superior alternative.  The clearest advantage was in terms of 

completion rates, where a significantly greater proportion of assigned DCE 

participants completed a questionnaire compared to assigned CSPC participants.  

This suggested that participants found the DCE more acceptable than the CSPC 

in some respects, even though the difficulty ratings of the two questionnaires, in 

terms of understanding as well as answering, were virtually identical.  This 

appeared to undermine Schwappach and Strasmann’s (2006) suggestion that 

CSPC may be more acceptable to respondents in a healthcare context given its 

ability to avoid extreme distributions, although there may have been an element 

of this in the higher completion rate observed with the CSPC relative to the DCE 

among frequent healthcare users.  It also offered little support for Swallow et al.’s 

(2001) suggestion that dichotomous choice tasks may leave respondents 

dissatisfied with the limited information they are allowed to provide.  It was 

somewhat surprising to note that decision makers, who might be expected to be 

more familiar with abstract choice tasks, expressed the greatest difficulty in 

understanding the CSPC, and as a group, reported the greatest difficulty in 

answering the tasks in both questionnaires.  This group was also less likely to 

complete the CSPC questionnaire compared to the DCE questionnaire. 

Respondents to the DCE questionnaire were significantly more consistent 

in preferring the same alternative in the repeated task, suggesting greater 

preference stability – or at least greater attentiveness – among these respondents.  

However, the choice sets that were arbitrarily chosen for the repeated task may 

have contributed to the observed stability.  Ninety-five percent of respondents 

preferred the same alternative in the original DCE task, compared to only 77 

percent in the original CSPC task, and the near unanimity of choice in the DCE 

task suggests that one alternative was an ‘obvious’ choice and therefore an overly 

easy test of preference stability.  An ideal test would have presented two 
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alternatives with roughly equal choice probabilities, although it was not possible 

to predict these probabilities prior to the elicitation.   

Respondents to the CSPC appeared slightly – although not significantly – 

less likely to demonstrate non-trading behaviours in the form of a non-

compensatory dominant preference for a particular attribute than respondents to 

the DCE.  This is consistent with the notion that the more competitive nature of 

the ‘pick one’ DCE task may tend focus attention on a single attribute to a 

greater degree than a relatively more reflective task such as the CSPC (Huber 

2009).  It also suggests that respondents to the more cognitively demanding 

CSPC were no more likely to resort to a simplifying heuristic such as a dominant 

or lexicographic preference than respondents to the DCE.   

With specific reference to QALY maximising behaviour, only one 

respondent to either questionnaire had a dominant preference for aggregate 

QALYs gained, and there was a relatively low overall proportion of QALY 

maximising choices in either questionnaire.  This is particularly noteworthy in 

the CSPC, where aggregate QALYs gained changed along with total patients 

treated as respondents moved the budget slider.  The statistical significance of the 

number of patients treated attribute in the CSPC budget allocations, in contrast 

to its insignificance in the DCE choices, may suggest the possibility of a 

prominence effect associated with this dynamic link in the CSPC tasks.  In light 

of qualitative evidence that suggests respondents to stated preference elicitations 

often reduce abstract, macro-level allocation problems to more comprehensible 

two-person analogies (Giacomini et al. 2012; Ryan 2009), an effect that ‘nudges’ 

respondents to account for the macro- or societal-level implications of their 

choices might be an advantage in maintaining the intended perspective of a 

societal preference elicitation (Fischer et al. 1999; McQuillin & Sugden 2012).  

However, if there was indeed such an effect associated with the number of 

patients treated, it did not appear to carry over to aggregate QALYs gained.  

Furthermore, the evidence for a prominence effect in the CSPC must be 

interpreted cautiously, given the relatively small sample sizes and the fact that 

the respondents to the two questionnaires did not see the same experimental 

design.  It is not possible to say with certainty, therefore, that the observed 

differences in attribute importance weights were due to the elicitation formats 
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themselves, and not simply due to differences in the choice sets presented to 

respondents. 

Notwithstanding the low proportion of strict QALY maximisers in the 

CSPC, there was an unexpected willingness among CSPC respondents to 

maximise budget allocations that challenged previous studies that found a 

general aversion to extreme distributions (Ratcliffe 2000; Schwappach 2003).  

Although equal budget allocations were relatively common among the CSPC 

responses, the weak overall preference for an egalitarian distribution of resources 

seems noteworthy, as in the absence of any obvious rationale for a particular 

budget allocation respondents could have been expected to use an equalising 

allocation (of resources, patients or outcomes) as a heuristic for a ‘fair’ 

allocation.  Indeed, as Culyer (2001b) notes, equity and fairness are generally 

held to imply equality in something.  Instead, consistent with a random utility 

theory interpretation of the results, it appeared that respondents chose 

allocations were based on a view of the relative utility of the paired alternatives.  

It also suggested that CSPC respondents to this survey did not tend to use equal 

budget allocations as a way to avoid difficult decisions.   

Overall, the DCE questionnaire appeared to be better at eliciting 

responses, as more participants completed it compared to the CSPC 

questionnaire.  However, as judged by the statistical significance of the different 

attributes in the choice models, respondents to the CSPC appeared to 

incorporate more of the attributes presented in each alternative into their choices 

compared to DCE respondents.  Consistent with a narrower focus, DCE 

respondents also appeared more likely to have a dominant preference for a single 

attribute in their choices.  This suggests a possible tension between the quantity 

and the quality of responses elicited by the two stated preference methods, and 

that ultimately, potentially richer preference data with CSPC must be weighed 

against better completion rates and preference consistency (‘respondent 

efficiency’ (Severin 2001)) with DCE.  As neither format distinguished itself as 

clearly superior, it was decided to proceed with both formats for the primary 

elicitation.  This allowed for further exploration of their response behaviours and 

a fuller comparison of the preference weights using more sophisticated models 
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based on an optimal experimental design.  The methods and results of these 

elicitations are described over the next four chapters. 
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Appendix 5.1: Sample DCE and CSPC choice tasks 

 

Sample discrete choice experiment 

 

 
 

 

Sample constant sum paired comparison task 
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Respondent attribute rating task 

 
Please indicate how important each of the factors listed below were to you in deciding how to allocate 
public healthcare resources. 0 stars means a factor had no bearing on your decision and 10 stars 
means it was the most important attribute in your decision. Click on the blue text for a more complete 
definition of the attribute. 
 

 
 
 

 
Attribute descriptions 

 

 Quality-of-life refers to how well/sick a patient is before treatment and is 
measured on an imaginary 0 to 10 scale, where 0 means death and 10 is perfect 
health. At level 1, patients have severe problems with pain and mobility and 
they are unable to perform their usual activities. At level 5, patients have 
moderate problems with pain and mobility and they can only participate in 
some of their usual activities. At level 9, patients have very minor or no 
problems with pain and mobility and they are able to participate in all their 
usual activities. 

 

 Life expectancy refers to how long the average patient will live from today. 
 

 Treatment is a hypothetical drug or procedure that could improve a patient's 
quality of health, life expectancy or both. 

 

 Change in health with treatment refers to the improvement in quality-of-life a 
patient gets from treatment. It is measured on the same scale mentioned above, 
where 0 means death and 10 is perfect health. Because cancer treatment can 
involve harsh chemotherapy drugs and radiation, it is possible that treatment 
could reduce a patient's quality-of-life in order to extend the length of their life. 

 

 Change in life expectancy refers to how many additional years of life a patient 
will gain from treatment. A patient's total life expectancy with treatment would 
be their initial life expectancy without treatment plus their change in life 
expectancy. 

 

 Total life years gained measures the total number of additional number of years 
lived, adding across all patients in the program. For example, if 5 patients live an 
additional 5 years each, the total life years gained is 25. 
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 Quality-adjusted life years (QALYs) are a measure of the total benefit of a 
health program. It considers changes in the length of life, change in quality of 
life and the number of patients that can be treated. If a person spends 1 
additional year at health level 10 out of 10 (perfect health), they would count for 
1 QALY. If they spent 1 additional year at health level 5 out of 10 (i.e. half as 
good as level 10, or perfect health) they would count for 0.5 QALYs. Total 
QALY gains are calculated as the change in life expectancy × the change in 
quality × the number of patients treated. 
 

 The share of healthcare resources refers to the portion of the healthcare budget 
that one patient group receives compared to the other group.  Ensuring each 
group gets an equal share means you believe that each group should always 
receive an equal share of the budget regardless of their age, quality-of-life, life 

year gains, QALYs, or any other of the characteristics listed above. 
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Chapter 6:  
Primary data collection methods  

and sample characteristics 

The objective of the primary survey was to estimate preference weights 

for the attributes identified in the empirical ethics review of Chapter 3 from a 

representative sample of the Canadian public, and the intention was to use the 

elicitation method that performed best in the pilot elicitation.  However, the pilot 

survey did not identify a clearly preferred method, and in fact raised a number of 

interesting methodological issues that would benefit from further exploration.  

These included the possibility of a prominence effect around the number of 

patients treated, and questions around the relative stability of preferences with 

the two methods.  Therefore, it was decided to proceed with both methods for 

the primary survey of preferences.  Secondary objectives of this survey included a 

more detailed comparison of the properties of the two elicitation methods, taking 

advantage of the larger and more representative sample, and to compare the 

preferences of the general public with those of decision-making agents 

responsible for making prioritisation decisions on behalf of the public.   

As described by Coast (2001a), agents in this context are part of an 

implicit principal-agent relationship with the public, where the public may feel 

that they are ill-informed about their preferred allocation of healthcare resources 

and relies on agents to make allocation decisions on their behalf.  Culyer (1989), 

in the context of the traditional doctor-patient relationship, saw the ideal agency 

relationship as one where the agent makes the decision that the ‘client’ would 

have if they had the same knowledge and information.  As argued in Chapter 2, 

however, the goodness of any particular allocation of societal resources is a 

subjective truth, and as such, no special knowledge or unique objectivity is 
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required or even necessarily desirable, as such restrictions would be counter to 

Sen’s (2011) view of the importance of the ‘universality of inclusion’ in societal 

decision-making.  By this view, agent preferences should reflect those of the 

public.  Brouwer et al. (2008), though, suggest that the responsibility of a societal 

decision maker is not to reflect how citizens would act, but rather how they ought 

to act.   By this view, agent preferences should be expected to diverge from those 

of the general public, perhaps in terms of a greater emphasis on QALY 

maximisation. 

This chapter describes the methods for the primary preference elicitation 

surveys, which drew heavily on the methods used in the pilot survey, and 

summarises the characteristics of the survey respondents.  The development of 

the experimental design, the target sample populations, and the format of the 

DCE and CSPC choice and rating tasks are described in section 6.1.  Section 6.2 

describes the master experimental design administered to respondents, and 

reports on the correlations between each of the attributes in the design.  Some 

correlation is inevitable given the fractional factorial design, but ideally these 

correlations should be relatively small.  A descriptive summary of the survey, 

including the total number of respondents, their characteristics, and the total 

number of choices made by respondents is presented in section 6.3, along with 

their attitudes towards healthcare rationing.  These attitudinal questions included 

their agreement or disagreement with the need for rationing, their support for 

different stakeholder groups in rationing decisions, and their comfort with 

having their preferences used in priority setting decisions.  The implications of 

these attitudes for a democratic or Communitarian approach to priority setting 

are discussed in section 6.4. 

6.1 Survey methods 

The survey methods were based closely on the on the pilot methods, 

although there were some differences in the experimental design and data 

collection.  There were also some additional tests of validity and rationality 

included in each questionnaire, along with some attitudinal rating tasks.  The 

differences between the two methodologies are detailed below. 
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6.1.1 Experimental design 

The experimental design used the same attributes as the pilot survey.  

Each alternative was described in terms of the average age of patients, their 

health state (utility) and life expectancy without treatment, health state and life 

years gained with/after treatment, the number of patients that could be treated in 

each group, and aggregate QALYs gained, which was calculated as a product of 

the other attribute levels.   The only change from the pilot survey was in the 

number of patients treated attribute: the levels were changed from 500, 2000 and 

5000, to 100, 2500 and 5000 to have a slightly greater range and to be more 

symmetrical around the middle level.   

Table 6.1: Primary survey attributes and levels 

Level Age Initial utility 
Initial life 

expectancy 
Final utility 

Gain in life 

expectancy 
Patients 

1 10 .1 1 month .1 1 year 100 

2 40 .5 5 years .5 5 years 2,500 

3 70 .9 10 years .9 10 years 5,000 

 

Respondents were told that the patient groups all had some form of 

cancer, but specific diagnoses were not mentioned (i.e. the alternatives were 

unlabelled).  It was hoped that this additional context would allow all 

respondents to understand the choice tasks, and their attributes and levels, in a 

more comparable, consistent manner.  To ensure a focus on the attribute levels 

and not the disease labels, the alternatives were presented simply as Program A 

and Program B.  Although labelled alternatives have the advantage of making 

hypothetical choice tasks more realistic and concrete, respondents may also use 

such labels to infer information that was not presented – or intended – as part of 

the task (de Bekker-Grob, Hol, et al. 2010).  At the extreme, respondents may 

ignore trade-offs between labelled alternatives and make their choices based on 

their perceptions of the labels alone (Amaya-Amaya et al. 2008).   

The experimental design process began with the set of 594 logical 

scenarios from the pilot design, excluding combinations where the net QALY 

gain with treatment was negative as well as scenarios where health state and life 

expectancy were unchanged before and after treatment.  The Fedorov algorithm 
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used to derive the D-efficient design was able to take advantage of the preference 

weights derived from the pilot survey to estimate the expected choice probability 

for each possible scenario given the pre-specified value function.  This value 

function was defined as continuous main effects with a two-way interaction 

between life years gained and final health state.  The weights for these 

parameters were derived from a simple multinomial logit model using the 

combined DCE and CSPC responses, with CSPC responses transformed to 

discrete choices on the basis of the alternative to which the majority of the 

budget was allocated.  The results of this model are shown in Appendix 6.1.  The 

incorporation of these weights meant that the algorithm was able select scenario 

pairs that balanced scenario utility while also respecting the other design 

principles, leading to a more statistically efficient optimal fractional factorial 

design (Huber & Zwerina 1996; Carlsson & Martinsson 2003; Kuhfeld 2010).  

This was an intentionally simple model, but as Carlsson and Martinsson (2003) 

noted, D-efficient designs appear to be robust against biased priors, and biased 

D-efficient designs still lead to more precise parameter estimates than orthogonal 

designs. 

Given this specification, the smallest feasible design was 18 choice sets, 

and to minimise the burden on individual respondents, it was again divided into 

2 blocks of 9 tasks each.  Each block also included a test of dominance, or non-

satiation, and a repeated task to test preference stability.  In the dominance task, 

two alternatives with identical levels of age, initial health state and number of 

patients treated, all set to their middle level, were presented to respondents.  

Final health state and life years gained were also included at their middle levels 

in one alternative, while the other alternative included them at their highest 

level.  In this choice task, one alternative was unambiguously better in terms of 

health gain and was intended to test non-satiation in respondents (Miguel et al. 

2005; Ryan 2009).  This was presented as the first choice in all versions of the 

design, in hopes that it would be a relatively easy choice that would ease 

respondents into the elicitations (Carson et al. 1994).  In the repeated task, the 

two alternatives presented in task 5 of each block were reversed and re-presented 

as task 8.  It was felt that the greater incidence of inconsistent preferences in the 

pilot CSPC relative to the DCE may have been due in part to a longer learning 



 

155 

process with the more complex format.  Therefore, the initial choice set was 

presented as the fifth rather than the third task in order to allow respondents to 

become more familiar with their preferences in the context of the choice tasks.  

This task was re-presented as the eighth task to allow respondents some time to 

forget the original task, yet not so late as to risk significant fatigue effects.  As in 

the pilot survey, these tests of rationality were used only to compare response 

behaviours in the two questionnaires, and were not used to exclude ‘irrational’ 

respondents (Lancsar & Louviere 2006).   

Including the tests of non-satiation and stability, each block of the 

experimental design had a total of 11 choice tasks.  The test of dominance was 

always the first task, and the original and repeated tasks to test stability were 

always presented as the fifth and eighth tasks, respectively, but the order of the 

other tasks was systematically rotated, resulting in three versions of each design 

block.  To illustrate, choice set 1 in block 1 was the second task in version 1, the 

ninth task in version 2, and the fourth task in version 3.  Fixing the order of the 

tests of non-satiation and consistency ensured comparability across versions, 

while varying the order of the other tasks allowed each task to have a roughly 

equal chance of being seen at the beginning, middle or end of the elicitation, 

mitigating ordering effects as well as allowing for the identification of possible 

learning or fatigue effects.   

Responses to the repeated task were excluded from the analysis of 

preferences as they did not contribute new preference information, and although 

responses to the dominance task were included as a valid expression of 

preferences, the task was identical in both blocks and therefore contributed only 

a single degree of freedom.  Over the two blocks, counting only one degree of 

freedom for the common test of dominance, this provided 19 degrees of freedom 

as understood in the context of conjoint analysis (Hensher et al. 2005).   

6.1.2 Data collection 

The survey population was drawn from two groups: an age and gender 

representative sample of the Canadian general public, and a convenience sample 

of Canadian decision-making agents in oncology, including funding and 

formulary committee members and oncology professionals.  As with the cancer 
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context of the survey, limiting agents to oncology decision-makers and 

professional was intended to encourage a common understanding of the different 

attribute levels, but it was also for pragmatic reasons.  There are a relatively large 

number of oncology decision-making bodies in Canada, so agents in this area 

may be more familiar with their prioritisation preferences than agents in other 

disease areas.   

The general population sample was drawn from an online survey panel 

maintained by Research Nowtm, a market research firm.  There is no formal 

sample size calculation for choice-based stated preference elicitations, but Orme 

(2006b) offered the following rule-of-thumb:  

 
   

 
      (6.1) 

Where n is the number of respondents, t is the number of choice tasks each 

respondent is presented, a is the number of alternatives per task, and c is the 

largest number of levels in an attribute.  For models that include interactions, c is 

the product of the number of levels in the largest interaction.  Re-arranging 

equation 6.1 to solve for n, and using the design characteristics described in 

section 6.1.1, allowing for two-way interactions between attributes and not 

counting the test of dominance or the repeated task, yielded a minimum sample 

size of 250 respondents per design block: 
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(6.2) 

Given two design blocks in each of the two questionnaire formats, this implied a 

minimum sample of 1000 respondents.   

A quota was defined for each combination of sex and 10-year age group 

to in order to match the Canadian age-sex distribution.  Information on 

respondent income and education was provided by Research Nowtm, but these 

characteristics were not included among the quota criteria as this would have 

substantially complicated recruitment without clearly improving the 
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representativeness of the sample.  Respondents were allocated to the DCE or 

CSPC questionnaire using a form of sequential balancing, by which each 

respondent was assigned to the design with the lower number of competed 

questionnaires for their age-sex subgroup (Borm et al. 2005).  This approach 

ensured that the number and demographic characteristics of respondents would 

be balanced between the two elicitation formats. 

Potential decision-making agents were invited to participate via email and 

flyers distributed by the pan-Canadian Oncology Drug Review, the Canadian 

Association of Medical Oncologists, the Canadian Centre for Applied Research 

in Cancer Control, and provincial cancer authorities including Cancer Care 

Nova Scotia, Cancer Care Ontario, and Cancer Care British Columbia.  All 

respondents to these agent invitations were allowed to participate in the survey 

regardless of their age and gender, but they were asked to identify themselves as 

health system decision makers, including members of decision making 

committees, program or formulary managers, and health technology assessment 

practitioners, and/or as oncology professionals.  Individuals not self-identifying 

as one or more of these decision-making groups were categorised as general 

public.  Questionnaires were administered via the internet. 

6.1.3 Choice and ratings tasks 

As in the pilot elicitation, respondents were asked to imagine themselves 

as a societal decision maker responsible for allocating a fixed budget between 

two alternative healthcare programs.  They were told that both programs had the 

same cost, and that the budget was large enough fund one program or the other, 

but not both.  The DCE questionnaire asked respondents to allocate the entire 

budget to their preferred group, while the CSPC questionnaire asked respondents 

to allocate budget percentages between the two groups by moving a slider.  In 

each CSPC choice task, the number of patients treated and aggregate QALYs 

gained changed in proportion to the budget as a respondent moved the slider, 

and the position of the slider was randomised between each task in order to 

avoid anchoring effects.  Although very few respondents took advantage of the 

‘no answer’ option in the DCE questionnaire, this option was included again in 

order to encourage questionnaire completion.   
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The presentation of the choice tasks was changed slightly based on 

comments from the pilot survey.  The table of attributes and levels in each choice 

task was re-arranged, so that the levels in each alternative were closer together 

and could be compared more easily.  A line was added to the beginning of the 

instruction following the first task to inform respondents that it had not changed 

and was the same as in the previous task.  Respondents to the pilot survey had 

complained that they had had to read the full instruction each time to see if 

anything had changed.  A line was also added to note that resources could not be 

used for research that might improve a patient’s condition in the future, as some 

pilot respondents had asked about this possibility.  QALY graphs were included 

in each choice task to illustrate the magnitude of individual QALY gains with 

each of the two alternatives.  The graphs were similar to those used by Dolan et 

al. (2008) and Baker et al. (2010), and also illustrated age at disease onset and 

death, and the patient’s initial health state and health state with/after treatment.  

A limitation of the graphs was that they illustrated individual rather than 

aggregate QALY gains, but a note was added to each graph to highlight this fact 

and to encourage respondents to also consider the number of patients treated in 

their decisions.  See Appendix 6.3 for sample DCE and CSPC choice tasks and 

QALY graphs. 

As noted in Chapter 1, the primary survey was conducted in the context 

of cancer.  This was largely for pragmatic reasons, but it was hoped that a 

defined disease context would encourage respondents to take their choices more 

seriously, and to understand the levels of the different alternatives – particularly 

survival and quality gains – in a more comparable manner (Amaya-Amaya et al. 

2008; de Bekker-Grob, Hol, et al. 2010).  The characteristics of the different 

patient groups presented in the choice tasks, though, were purely hypothetical 

and specific diagnoses were not mentioned.  The introduction to the 

questionnaires is shown in Appendix 6.3. 

Respondents from the general population sample received rewards for 

submitting complete – though not necessarily well-considered – questionnaires, 

and this may have led some respondents to ‘click through’ the questionnaires 

without fully considering their answers.  Louviere et al. (2000b) argue that such 

responses appear as random ‘statistical noise’ rather than a systematic bias, but 
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to assess the impact of potentially unconsidered responses, individuals who 

completed the general population surveys in less than one half of the median 

completion time of each design were flagged as ‘fast completers’ and preference 

weights were re-estimated excluding these respondents.  Completion times were 

not available for respondents to the agent invitations, but as there was no reward 

for completing this version of the survey, there was little reason to expect these 

respondents would submit random or unconsidered responses.  In addition, 

CSPC respondents who did not move the slider from its initial random position 

in any of their responses and who were also fast responders were classified as 

non-informative ‘static responders’ and excluded from the analyses.  Although it 

is possible that the randomised initial positions exactly matched the static 

respondents’ preferences, the likelihood of such a series of random coincidences 

seems so small that these exclusions do not appear to be a case of imposing 

preferences. 

Following the choice tasks, respondents were asked to rate the 

importance of each attribute, including total QALYs gained and distributional 

concerns, in their choices on a 0 to 8 scale.  The 8-point scale reflected the 

number of factors that respondents were asked to rate, and it was hoped that this 

would encourage respondents to consider the ratings in terms of relative 

importance.  An actual ranking exercise was not used as it was thought that it 

would be too challenging for respondents, particularly after having already 

completed the choice tasks, and that it might discourage respondents from 

completing the task.  Respondents were also asked to rate the difficulty of 

understanding the tasks, and of answering them, on 5-point scales ranging from 

extremely easy to extremely difficult, and to indicate “How confident are you 

that your answers in this survey accurately reflect your preferences for how 

healthcare resources should be allocated?” on a similar 5-point scale, ranging 

from very confident to not at all confident.   

Attitudes toward healthcare rationing and public participation in 

healthcare decision making were also elicited.  First, respondents were asked to 

indicate their agreement with the statement "It is impossible for any government 

or healthcare system to pay for all new medical treatments or technologies, so 

difficult funding choices will always have to be made" on a 4-point scale ranging 
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from strongly agree to strongly disagree.  No neutral or undecided option was 

included on the scale in order to force respondents to express agreement or 

disagreement.  Second, they were asked “Who do you think should make the 

decisions about whether or not different programs should be funded?”  

Respondents were able to pick one or more of health system decision makers and 

other experts, doctors and nurses, patients, and citizens or the general public.  

There was also a text field to allow respondents to enter their own suggestions.  

Finally, respondents were asked “How comfortable would you be if your 

preferences were used in determining the allocation of healthcare resources to 

different programs?” on a 5-point scale ranging from extremely comfortable to 

extremely uncomfortable.  The wording and layout of these ratings tasks is 

shown in Appendix 6.4. 

The questionnaires and the subsequent data analyses were approved by 

The University of Sheffield Research Ethics Committee, Sheffield UK, and the 

Capital Health Research Ethics Board, Halifax, Nova Scotia, Canada. 

6.2 Primary experimental design 

The primary experimental design, with attribute-level combinations for 

each block and version, is shown in Appendix 6.1. Table 6.2 shows the Pearson 

correlation coefficients between the parameters included in the value function 

specified in the experimental design phase, including the life years gained-final 

health state interaction term, as well as the correlations between the attributes 

and the block and alternative assignments in the presentation of the choice tasks.  

Ideally, the attributes should not be correlated with each other or with the block 

and alternative in which they appear, but the non-orthogonal optimal fractional 

factorial design that was used here, as well as the exclusion of illogical scenarios, 

makes some correlation inevitable.  Absolute correlations equal to or greater 

than a moderate threshold of 0.30 (Cohen 1988) are shown in bold. 
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Table 6.2: Experimental design attribute correlations 

 LYg Age U0 LE0 U1 Pats LYg:U1 Block Alt 

LYg ---- 0.10 0.01 -0.04 -0.03 0.17 0.66 0.07 0.07 

Age  ---- -0.07 0.13 0.14 0.05 0.15 -0.07 0.50 

U0   ---- -0.08 0.37 0.09 0.19 -0.07 0.22 

LE0    ---- 0.08 -0.03 0.02 0.00 -0.14 

U1     ---- -0.08 0.61 0.04 0.24 

Pats      ---- 0.09 0.00 -0.27 

LYg:U1       ---- 0.19 0.21 

Block        ---- 0.00 

Alt         ---- 

LYg=individual life years gained; Age=Patient age; U0=initial utility; LE0=initial life expectancy; U1=final life 

expectancy; nPats=total patients treated; LYg:U1= LYg×U1 interaction term; Block=Design block; Alt=Choice 

alternative.  Correlations equal to or greater than a moderate threshold of 0.30 are shown in bold. 

Not surprisingly, there were strong positive correlations between the life 

years gained-final health state interaction term (LYg:U1) and its components, LYg 

(r=0.66) and U1 (r=0.61).  Correlations among the main effects were generally 

low, although there was a moderate positive correlation (r=0.37) between initial 

health state (U0) and final health state (U1).  This was most likely driven by the 

exclusion of scenarios with no QALY gains or negative QALY gains from the 

candidate design, forcing U1 to be at least equal to U0 in most scenarios.  With 

respect to the presentation of attribute levels in the choice tasks, there was a 

moderate correlation between age and alternative (r=0.50), suggesting that 

Alternative B (the right-hand side of the choice task) may have tended to present 

scenarios with older patients than Alternative A (the left-hand side of the choice 

task).  

6.3 Sample characteristics 

Data collection for the general population survey began on 31 January 

2012 and continued until the quota of 1,000 respondents was met on 7 February 

2012.  However, due to a misspecification of the sampling frame, the initial 

quotas generated a sample that was representative by age and sex independently, 

rather than jointly.  Respondents were representative of the Canadian population 

by age independent of sex, and representative by sex independent of age, but not 

representative over age and sex jointly, and younger females and older males 

were substantially over-represented in the sample.  To correct this, the survey 
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was re-opened on 1 August 2012 but was restricted to participants from the 

under-represented age-sex groups.  Data collection continued until enough 

respondents in the under-represented age-sex groups were added to allow for the 

possibility of an age-sex representative sub-sample of at least 1000 respondents.  

This second phase of the data collection was closed on 3 August 2012.  Data 

collection from the agent invitations began on 30 November 2011 and continued 

until 22 March 2012.  Respondents to the agent invitations were initially 

allocated between the CSPC and DCE on a 60-40 basis, as in the pilot survey, 

but this was adjusted to an even 50-50 split when it appeared that responses to 

the CSPC were outnumbering those to the DCE mid-way through the survey. 

The combined agent and general population surveys collected 1,318 

completed questionnaires: 656 from the DCE and 662 from the CSPC.  The 

distribution of survey respondents by sex and age group, relative to the Canadian 

age-sex distribution from the 2011 census (Government of Canada 2012), is 

shown in Table 6.3. 

Table 6.3: Canadian and survey age-sex distributions  

 2011 Cdn. Census Survey 

Age group Males Females Males Females No answer 

18-24 6% 6% 62 (5%) 79 (6%) 0 (0%) 

25-34 9% 9% 109 (8%) 125 (9%) 0 (0%) 

35-44 9% 8% 97 (7%) 213 (16%) 5 (0%) 

45-54 10% 10% 113 (9%) 117 (9%) 3 (0%) 

55-64 8% 8% 89 (7%) 100 (8%) 2 (0%) 

65-74 5% 5% 68 (5%) 31 (2%) 0 (0%) 

75+ 3% 5% 32 (2%) 71 (5%) 0 (0%) 

No answer - - 0 (0%) 0 (0%) 2 (0%) 

Subtotal 49% 51% 570 (43%) 736 (56%) 12 (1%) 

Total  1,318 

 

As there was little reason to expect that age and gender were the only factors that 

might influence preferences, it was decided to include the full sample of general 

population respondents in the analysis, rather than to select a random subset of 

respondents to generate a representative sample.  The full sample was broadly 

reflective of the Canadian population in terms of their distribution by age and 

gender, although women in the 35-44 year old age group were substantially over-
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represented, while women in the 65-74 year old age group were under-

represented.  A small number of respondents chose not to answer the 

demographics questions, but these missing values were not large enough to skew 

the overall age and gender distribution of the sample.   

Among the 1,318 respondents, a total of 101 self-identified as a healthcare 

decision maker and/or oncology professional.  These represented 7.6 percent of 

all respondents, and the proportion of agents was not significantly different by 

format: agents represented 6.7 percent of DCE respondents and 8.6 percent of 

CSPC respondents (p=0.23).  Among the agents, 39 (39%) identified themselves 

as health system decision makers, 42 (42%) as oncology professionals, and 20 

(20%) as both health system decision makers and oncology professionals. 

Overall, the survey respondents appeared to be broadly representative of 

the Canadian population in terms of the distribution of age, gender, higher 

education and income.  However, there is little reason to believe that such socio-

demographic factors are the only observable factors that might influence 

preferences.  Having children, for example, might affect a respondent’s 

preferences for younger age groups, but this characteristic – along with an 

infinity of other possible confounders – was not accounted for in the sampling 

frame.  In addition, the potential for unobserved heterogeneity or random taste 

variation among respondents –preferences unrelated to observable characteristics 

– means that the elicited preferences and attitudes may still be biased or 

unrepresentative despite the overall socio-demographic representativeness of the 

sample (Glasgow 2001). 

Overall, the survey respondents appeared to be broadly representative of 

the Canadian population in terms of the distribution of age, gender, higher 

education and income.  However, there is little reason to believe that such socio-

demographic factors are the only observable factors that might influence 

preferences.  Having children, for example, might affect a respondent’s 

preferences for younger age groups, but this characteristic – along with an 

infinity of other possible confounders – was not accounted for in the sampling 

frame.  In addition, the potential for unobserved heterogeneity or random taste 

variation among respondents –preferences unrelated to observable characteristics 

– means that the elicited preferences and attitudes may still be biased or 
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unrepresentative despite the overall socio-demographic representativeness of the 

sample (Glasgow 2001).   

Table 6.4Table 6.4 shows that respondents were well balanced between 

the two elicitation formats in terms of age and sex.  The proportion of general 

population respondents that had graduated college or university was 35 percent, 

and this was identical to the 2006 Canadian census population (p=0.98) 

(Statistics Canada 2009), but the median family income category in the sample 

($60,000-64,999) was lower than the 2010 Canadian median family income 

($76,950) (Statistics Canada 2010).  There was no significant difference in the 

proportion of DCE and CSPC general population respondents that graduated 

college or university (34% vs. 37%, respectively, p=0.22), although the median 

family income category among DCE respondents was slightly lower than among 

CSPC respondents ($60,000-65,999 vs. $65,000-69,999, respectively).  Income 

and education were not collected from respondents to the agent invitations, but it 

is likely that both would be somewhat higher than in the general population. 

Overall, the survey respondents appeared to be broadly representative of 

the Canadian population in terms of the distribution of age, gender, higher 

education and income.  However, there is little reason to believe that such socio-

demographic factors are the only observable factors that might influence 

preferences.  Having children, for example, might affect a respondent’s 

preferences for younger age groups, but this characteristic – along with an 

infinity of other possible confounders – was not accounted for in the sampling 

frame.  In addition, the potential for unobserved heterogeneity or random taste 

variation among respondents –preferences unrelated to observable characteristics 

– means that the elicited preferences and attitudes may still be biased or 

unrepresentative despite the overall socio-demographic representativeness of the 

sample (Glasgow 2001).   

Table 6.4: Age and sex distribution by questionnaire design  

 DCE CSPC 

Age group Male Female No answer Male Female No answer 

18-24 32 (5%) 39 (6%) 0 (0%) 30 (5%) 40 (6%) 0 (0%) 

25-34 61 (9%) 65 (10%) 0 (0%) 48 (7%) 60 (9%) 0 (0%) 

35-44 48 (7%) 108 (16%) 1 (0%) 49 (7%) 105 (16%) 4 (1%) 
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45-54 54 (8%) 56 (8%) 1 (0%) 59 (9%) 61 (9%) 2 (0%) 

55-64 45 (7%) 45 (7%) 1 (0%) 44 (7%) 55 (8%) 1 (0%) 

65-74 35 (5%) 14 (2%) 0 (0%) 33 (5%) 17 (3%) 0 (0%) 

75+ 13 (2%) 36 (5%) 0 (0%) 19 (3%) 35 (5%) 0 (0%) 

No answer 0 (%) 0 (%) 2 (0%) 0 (%) 0 (%) 0 (0%) 

Subtotal 288 (44%) 363 (55%) 5 (1%) 282 (43%) 373 (56%) 7 (1%) 

Total 656 (50%) 662 (50%) 

 

6.3.1 Responses by design block and version 

Table 6.5 shows that although slightly more respondents were 

randomised to version 3 of each block, the differences in the overall distribution 

of respondents between versions were not significant (p=0.67).   

Table 6.5: Unique respondents by design block and version 

Version 

Block 1 2 3 All 

1 192 (14.6%) 215 (16.3%) 231 (17.5%) 638 (48.4%) 

2 220 (16.7%) 224 (17%) 236 (17.9%) 680 (51.6%) 

All 412 (31.3%) 439 (33.3%) 467 (35.4%) 1,318 (100%) 

χ2=0.8, p=0.67 

 

These counts included respondents to both the DCE and the CSPC 

questionnaires, but there were more than 300 respondents to each block of each 

questionnaire format – well above the suggested minimum of 250 respondents 

per block.  Overall the number of respondents to each questionnaire were similar 

to the samples in a number of recent stated preferences elicitations in healthcare 

(Green & Gerard 2009; Lancsar et al. 2011; Norman et al. 2013).  However, the 

101 agents who responded were less than hoped for, and therefore the agent-

specific results must be interpreted judiciously. 

Table 6.6 shows the same relative distribution of total choices by block 

and version but accounts for the multiple choices by each individual.  With the 

larger numbers, however, the differences in the overall distribution of responses 

became statistically significant (p=0.01).  In general, though, the distribution of 

responses by version appeared even enough to ensure that each choice task, 
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excluding the tests of dominance and consistency, was seen at a different stage in 

the elicitation and had an equal chance of being affected by any learning or 

fatigue effects. 

Table 6.6: Unique choices by design block and version 

Version 

Block 1 2 3 All 

1 2,112 (14.6%) 2,365 (16.3%) 2,541 (17.5%) 7,018 (48.4%) 

2 2,420 (16.7%) 2,464 (17.0%) 2,596 (17.9%) 7,480 (51.6%) 

All 4,532 (31.3%) 4,829 (33.3%) 5,137 (35.4%) 14,498 (100%) 

χ2=0.8, p=0.01 

 

6.3.2 Completion times  

The distribution of completion times in the general population sample, 

excluding times greater than 60 minutes, is illustrated in Figure 6.1.  Completion 

times were not available for respondents to the agent invitations.  The median 

completion time was 9.5 minutes for the DCE and 11.7 minutes for the CSPC.  

Based on a Mann-Whitney U test, the median completion time among CSPC 

respondents was significantly greater than among DCE respondents (p<0.001).  

The boxes show the inter-quartile range (IQR) and contain 50% of the observations from each 

questionnaire.  The heavy vertical lines show the median completion times.  The solid horizontal lines 

(whiskers) extend up to 1.5 times the IQR.  Observations outside ±1.5×IQR are shown as dots (Massart et 

al., 2005).  Completion times greater than 60 minutes are not shown. 

Figure 6.1: DCE and CSPC completion times, general population respondents only 
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The minimum and maximum completion times were 1.2 minutes and 1,244 

minutes (20.7 hours), respectively, for the DCE questionnaire, and 1.2 minutes 

and 4,141 minutes (69.0 hours) for the CSPC questionnaire.  Although there 

were a few extremely high completion times, which were likely respondents who 

were interrupted and returned to complete the questionnaire at a later time, 98 

percent of all the submitted questionnaires were completed in 60 minutes or less. 

Among the general population sample, 60 respondents to the DCE (10%) 

and 75 respondents to the CSPC (13%) had completion times of less than one 

half the median time for their respective format and were flagged as ‘fast 

completers.’  These proportions were not significantly different (p=0.22).  Of the 

75 CSPC fast completers, 4 did not move the slider from the initial randomised 

positions in any choice task.  This was taken as overwhelming evidence of 

inattention in the tasks and their allocation choices were excluded from the 

choice analyses, although their responses to the attitude questions and the 

difficulty ratings were included.  All respondents to the agent invitations moved 

the slider in each of their choices. 

6.3.3 Respondent attitudes toward rationing 

The distribution of respondent attitudes toward the need for healthcare 

rationing is shown in Table 6.7.  The majority of respondents somewhat or 

strongly agreed with the statement “It is impossible for any government or 

healthcare system to pay for all new medical treatments or technologies, so 

difficult funding choices will always have to be made,” although agents were 

significantly more likely to agree than the general population sample (89% vs. 

75%, respectively, p < 0.01). 

Table 6.7: Rationing attitudes by sample 

Sample Strongly disagree Somewhat disagree Somewhat agree Strongly agree 

General population 9% 16% 46% 29% 

Agents 6% 5% 19% 71% 

Combined 9% 15% 44% 32% 

 24% 76% 
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The proportion of public and agent respondents supporting a decision-

making role in healthcare funding decisions for health system decision makers 

and other experts, doctors, patients and/or citizens is shown in Table 6.8.  These 

categories were not mutually exclusive and respondents could choose none, 

some, or all groups.   

Table 6.8: Proportion of public and agent respondents supporting stakeholder roles in 

healthcare funding decisions 

Stakeholder group Public Agents p Adjusted-p Sig 

Decision makers and experts 62% 85% <0.001 <0.001 *** 

Doctors and nurses 71% 68% 0.624 0.933  

Patients 46% 45% 0.933 0.933  

Public 50% 56% 0.251 0.754  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

 

Public respondents were most likely to indicate a role for doctors in 

funding decisions, and least likely to indicate a role for patients.  Agents were 

most likely to indicate a role for health system decision makers and other experts 

and, like the public respondents, least likely to indicate a role for patients.  The 

only statistically significant difference, though, was in the proportions indicating 

a role for health system decision makers and other experts, where the public was 

much less likely than agents to indicate support for their role in funding decisions 

(adjusted-p < 0.001).  Most respondents did not take the opportunity to indicate 

other groups that should be included in funding decisions, but among those that 

did, family members was the most frequently mentioned group.  This response 

was somewhat concerning, as it suggests that respondents may have 

misinterpreted the tasks as patient-level treatment decisions rather than system-

level allocation decisions.  Other groups mentioned, in no particular order, 

included scientists, health researchers, ethicists and philosophers, health 

economists, religious representatives and politicians, including ministers of 

health.  Politicians were also mentioned as a group that should be specifically 

excluded from participating in funding decisions.   

Interestingly, support for decision maker and expert involvement in 

healthcare funding decisions was not universal among self-identified decision-
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making agents.  One hypothesis for this somewhat counter-intuitive result was 

that it reflected the differing perspectives of the health system decision makers 

and physicians that were grouped together as agents.  In particular, physicians 

may have been less likely to support a role for health system decision makers and 

other experts, preferring to leave such decisions to themselves and other 

physicians at a more micro-level.  This hypothesis was not borne out by the data, 

though, as physicians were not significantly less likely than health system 

decision makers to indicate support for decision makers and experts (83% vs. 

86%, respectively; adjusted-p=0.88).  Instead, this lack of universality appears 

simply to reflect incomplete responses to this question, as agents who did not 

indicate support for decision makers also showed lower levels of support for all 

other stakeholder categories. 

Finally, the distribution of responses to the question “how comfortable 

would you be if your preferences were used in determining the allocation of 

healthcare resources to different programs?” is shown in Table 6.9.  Agents were 

significantly more likely than the public to indicate that they would be somewhat 

or extremely comfortable having their preferences used for priority setting 

(65.3% vs. 52.8%, p=0.02). 

Table 6.9: Proportions by comfort with having their preferences used in priority setting 

decisions 

Preference comfort Public Agents 

Extremely comfortable 10% 8% 

Somewhat comfortable 43% 58% 

Neither comfortable nor uncomfortable 28% 15% 

Somewhat uncomfortable 15% 16% 

Extremely uncomfortable 5% 3% 

Fisher's Exact Test, p = 0.018.  Proportions may not sum to 100% due to rounding. 

Although the proportion of general population sample who reported that 

they would be somewhat or extremely comfortable (53%) was very similar to the 

proportion who were comfortable with giving the public a role in priority setting 

decisions (50%), Table 6.10 suggests that there was only a slight and statistically 

insignificant association between a respondents own comfort and their support 

for a public role in priority setting.   
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Table 6.10: General public support for a public role in decision making  

by own preference comfort 

 Support public role?  

Own preference comfort Yes No 

Somewhat or extremely comfortable 52% 48% 

Neutral or uncomfortable 46% 54% 

Fisher's Exact Test, p = 0.57.  Proportions may not sum to 100% due to rounding. 

6.4 Implications for democratic or Communitarian priority setting 

The higher support among the general public for physician involvement 

in healthcare rationing decisions relative to their support for public or patient 

involvement appears consistent with an implicit principal-agent relationship in 

healthcare rationing decisions.  The public appeared to prefer physicians to act as 

their agents in these decisions over health system decision makers and other 

experts, and this is perhaps not surprising, given the well-established doctor-

patient agency relationship in healthcare (Ryan 1994), as well as evidence of a 

distrust of top-down rationing by experts (Leonard 2012) and of government in 

general (Edelman 2013).  Agents expressed slightly greater support for a public 

role in priority setting, which is consistent with suggestions that agents may 

support public involvement as a way of “sharing a bit of the pain” (Coast 2001a), 

or forcing the public to take ownership of the tough choices (Lomas 1997) 

involved in making difficult allocation decisions.  However, this support was still 

substantially lower than their support for health system decision-makers and 

physicians. 

The level of support among the general population sample for public 

involvement in priority setting, although relatively low, appears slightly stronger 

than results from other work in this area.  Lomas (1997) and Coast (2001a) both 

found that members of the public generally felt that they lacked sufficient 

knowledge and objectivity to contribute to rationing decisions, and that they 

would prefer to avoid the responsibility of rationing care.  Interestingly, Abelson 

et al. (1995) found that although only 17 percent of the public felt that other 

members of the public should have a decision-making role in healthcare priority 

setting, 61 percent were willing to take a personal decision-making role.  This 

suggested that the lack of public support for public participation may be less 
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about reservations over taking responsibility for rationing decisions and more 

about concerns over the suitability of others for this role.  Such a distinction 

between support for a personal role and a role for the general public at large was 

not observed in this survey. 

Litva et al. (2002) found that the public’s willingness to participate in 

healthcare decision making increased as the identifiability of the patient 

decreased.  Only 21 percent of their study participants were willing to be 

involved in patient-level allocation decisions, citing reservations about 

responsibility and denial disutility, but 68 percent were willing to participate in 

system-level decisions.  The level to which respondents to this survey felt they 

were contributing is not clear, but Litva et al.’s (2002) observation suggests that 

clearly explaining that preferences would be used to define system objectives and 

not to discriminate between individual patients may increase support for a public 

role and the willingness to have one’s preferences used in priority setting.  Litva 

et al. also found that participants were more willing to participate if they felt that 

they would have a real opportunity to influence decisions, rather than just a 

consultative role.  This suggests that although a democratic or Communitarian 

approach to priority setting may not be embraced by all citizens, a process where 

all citizens have an genuine opportunity to participate in setting system-level 

objectives may generate greater citizen support and participation than indirect 

processes where only a small number of ‘representative’ citizens express an 

opinion.   
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Appendix 6.1: Pilot preference weights used in developing the 

primary experimental design 

Parameter Estimate Std. Error t-value Pr(>|t|) Sig 

LYg 0.251 0.027 9.318 <0.001 *** 

Age -0.019 0.002 -12.598 <0.001 *** 

U0 -0.774 0.094 -8.226 <0.001 *** 

LE -0.026 0.007 -3.671 <0.001 *** 

U1 3.204 0.268 11.970 <0.001 *** 

nPats 0.000 0.000 5.566 <0.001 *** 

U1:LYg -0.173 0.045 -3.820 <0.001 *** 

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

LYg=Life years gained; U0=Initial utility; LE=Initial life expectancy; U1=Final utility; nPats=Number of 

patients treated 
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Appendix 6.3: Sample choice tasks 

 

 

Introduction 

 
 This survey will ask you to imagine you are responsible for deciding how a healthcare budget 
should be divided between different groups of cancer patients.    

  • The survey is designed to measure your personal preferences.  There are no right or wrong 
answers.  
  • The type of cancer in each group is not specified.  You should make your decision based on the 
information presented, not the type of cancer you think they might have.    
  • As you consider your answers, remember that it is possible that you or someone in your family could 
be part of one of these groups, now or in the future.    
  • The questions can be quite challenging, and even uncomfortable, but the results could help 
improve how money is spent on our healthcare in the future, so your opinions are very 
important.    

 
Thank you for your time and attention.  

 

 

Sample DCE task 

 

 

 

Sample CSPC task 
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Sample QALY graph 
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Chapter 7:  
Comparison of the  

DCE and CSPC formats 

The pilot survey, discussed in Chapter 5, suggested that the DCE had 

relatively better completion rates, lower difficulty ratings, and greater preference 

consistency, suggesting a greater ‘respondent efficiency.’  This had to be weighed 

against the ability of the CSPC to elicit specific preferences for the distribution of 

resources and/or outcomes between groups, and to avoid discomforting extreme 

distributions by allowing respondents to allocate some resources to the less 

preferred group.  However, the non-orthogonal application of the pilot 

experimental design meant that respondents to the DCE and CSPC 

questionnaires did not see the same choice sets.  As a result, it was not possible 

to say with certainty that the observed differences between the two pilot 

questionnaires were due to the elicitation methods themselves, and not simply 

due to differences in the choice sets presented to respondents.  Therefore, it was 

of interest to re-compare the two formats on the basis of the larger sample and 

more appropriate application of the experimental design of the primary 

elicitation. 

It was also useful to compare the response behaviours of the two formats 

before estimating respondent preferences for the different attributes included in 

the DCE and CSPC questionnaires.  If an excessive proportion of respondents to 

one questionnaire or the other reported difficulty understanding or answering the 

tasks, or adopted a non-compensatory decision making strategy, it may call into 

question the validity of the elicited preferences.  The inclusion of respondents 

with dominant or non-compensatory preferences generally presupposes that they 

represent a relatively small proportion of all respondents, but if a majority of 



 

180 

respondents adopted such a strategy, it would imply that most attribute levels 

had no impact on choices, and regression coefficients and rates of substitution 

would have no meaningful interpretation (Scott 2002).  Similarly, high rates of 

difficulty or simplifying non-compensatory decision-making may indicate an 

overly complex or confusing elicitation format that may compromise the 

collection of meaningful preference data (DeShazo & Fermo 2002). 

The different dimensions of the comparison of the DCE and CSPC 

response behaviours, including completion rates, difficulty ratings, tests of non-

satiation and preference stability, learning and fatigue effects, dominant 

preferences, and QALY maximising behaviours, are discussed in section 7.1, 

with the results of these comparisons presented in section 7.2.  Finally, the 

implications of this comparison for identifying a preferred format for the 

elicitation of societal preferences over the allocation of healthcare resources are 

discussed in section 7.3. 

7.1 DCE-CSPC comparisons 

The response behaviours of the DCE and CSPC respondents were 

compared on a number of dimensions.  These included completion rates, 

difficulty and confidence ratings, preference stability, and the incidence of 

dominant preferences, as in the pilot survey, but the primary survey added 

comparisons of completion times, learning and fatigue effects, and a test of non-

satiation or dominance.  It is important to note that for all these comparisons 

each respondent only saw a single questionnaire and never compares the two 

formats directly.  All statistical tests were conducted using R 2.15.3 (R Core 

Team 2013), and a significance threshold of 0.05 was adopted. 

7.1.1 Completion rates 

Completion rates for the two formats were compared using a two-sample 

Z-test of completed questionnaires as a proportion of questionnaires begun.  In 

the general population survey, the assigned questionnaire format, completion 

status, and (if applicable) completion time, were linked to each individual 

respondent.  Individuals who quit a questionnaire but returned at a later time 
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could pick up where they left off and submit a completed questionnaire.  This 

would be counted as one survey begun and submitted (a 100% completion rate).  

Owing to differences in the sample and the survey software, however, responses 

from the agent invitations were entirely anonymous, and it was not possible to 

track individuals who may have quit one questionnaire but returned later to 

complete another.  Such a case would be counted as two surveys begun, with 

one drop-out and one completion (a 50% completion rate).  To the extent that 

respondents to the agent invitations began more than one questionnaire, 

completion rates in this group will be correspondingly understated.   

For the purposes of this comparison, the agent sample included all 

respondents to the agent invitations, regardless of whether they self-identified as 

a decision-making agent.  As it was not possible to know the status of individuals 

who started but did not submit a questionnaire, it was not possible to calculate 

an agent-specific denominator or completion rate.  For all other analyses, which 

only included completed questionnaires, non-agent respondents to the agent 

invitations were included among the general public sample. 

The proportion of ‘no answers’ among DCE responses was also reported, 

including a comparison of the proportion of no answers between agents and the 

general public.  The trend in the proportion of no answers by task sequence was 

tested using linear regression.  The proportion of no answers in the repeated task 

was also compared to the proportion across all other tasks combined.  The 

choice set used as the repeated task in each design block was the set with closest 

utility balance, and there is evidence to suggest that greater utility balance tends 

to make discrete choice tasks more complex (DeShazo & Fermo 2002).  It was of 

interest, therefore, to test whether this relatively greater complexity may have led 

respondents to opt out of these tasks at a greater rate than the other tasks. 

7.1.2 Respondent-rated difficulty and confidence 

The difficulty of the two formats was compared in terms of the 

proportions of DCE and CSPC respondents who rated the questionnaires as 

‘somewhat difficult’ or ‘extremely difficult’ to understand or to answer in the 

follow-up rating tasks.  As the pilot survey suggested that decision makers were 

more likely to rate the tasks as difficult, this comparison was stratified by agent 
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status.  The questionnaires were also compared in terms of the proportion of 

respondents who were ‘somewhat confident’ or ‘extremely confident’ that their 

responses to the choice tasks accurately reflected their preferences.  Proportions 

were compared using a two-sample Z-test.   

7.1.3 Tests of non-satiation and stability 

Each block of the experimental design included a test of each 

respondent’s consistency with the axiom of non-satiation, as well as a repeated 

task to test preference stability.  Stated preference elicitations have generally held 

that ‘rational’ respondents should prefer the dominant alternative (Miguel et al., 

2005; Ryan, 2009).  CSPC allocations were transformed to discrete choices on 

the basis of which alternative was allocated the majority of the budget, and 50-50 

allocations were taken as not prioritising the dominant alternative.  The 

proportion of respondents in each questionnaire demonstrating non-satiation 

was compared using a two-sample Z-test.   

Learning from the pilot survey, where high stability in the repeated DCE 

task may have been aided by an extreme imbalance in utilities between the two 

alternatives, the repeated task used in each design block was the choice set with 

the closest expected utility balance.  Again, CSPC budget allocations were 

transformed to discrete choices on the basis of the alternative to which the 

majority of resources were allocated.  Equal 50-50 allocations were allowed, but 

the allocations had to be equal in both tasks in order to be classified as 

consistent.  As an equal budget allocation was treated as a distinct choice from 

Program A or B, a stricter definition of stability was effectively applied to 

individuals choosing this specific allocation relative to individuals who allocated 

a majority of the budget to one alternative or the other, as there was only one 

specific budget allocation that would be accepted as stable.   

The proportion of respondents with stable responses to the repeated task 

was compared using a two-sample Z-test.  To assess the impact of the stricter 

consistency criterion for individuals with an equal budget allocation, the 

statistical significance of the mean difference in the repeated budget allocations 

of individuals with at least one 50-50 allocation was tested using a one-sample t-

test.   
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7.1.4 Learning and fatigue effects 

Experimental evidence that suggests that there are simultaneous processes 

of learning and fatigue that may affect choices as respondents progress through a 

stated preference elicitation (Bech et al., 2011; Johnson and Desvousges, 1997; 

Maddala et al., 2003).  To allow for the identification of such effects, the 11 

choice sets in each block of the experimental design were divided into 3 

segments, which were systematically rotated to create 3 versions of each block 

(see Appendix 6.2 for the task sequence within each block and version).  The 

positions of test of non-satiation and the original and repeated tasks to test 

preference stability were fixed across all versions, but the position of the 

remaining tasks rotated by version.  The order of the tasks in each version is 

shown in Appendix 6.1. 

To test for learning or fatigue effects, a series of one-way analyses of 

variance (ANOVAs) were conducted for each choice set and design block to test 

for a statistically significant difference by task sequence in the proportion of DCE 

respondents that preferred alternative B, or in the mean CSPC budget allocation 

to alternative B.  If a particular choice set was associated with a significant 

difference, a post hoc test was used to identify which version was the outlier.  

Preferences that were significantly and systematically different in choice sets seen 

earlier relative to other versions would suggest a learning effect.  Conversely, a 

significant difference for sets seen later relative to other versions would suggest a 

fatigue effect.  The analyses of variance were performed using the car package in 

R 2.15.3 (Fox & Weisberg 2011).   

7.1.5 Dominant preferences 

What appears to be a dominant or non-compensatory preference for a 

particular attribute may simply be a reluctance to trade over the range of levels 

presented in the experimental design, or an indication that the attributes included 

in the experimental design are unimportant to some respondents (Lancsar & 

Louviere 2006).  A fractional factorial experimental design also complicates the 

interpretation of non-compensatory preferences, as it is not possible to say with 

certainty that observed instances of non-compensatory decision-making would 

persist across all possible scenarios (Lancsar & Louviere 2006; Scott 2002).  For 
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these reasons, respondents with a dominant preference are generally included in 

the analysis of stated preference elicitations.  However, this presupposes that 

such respondents represent a relatively small proportion of all respondents.  If all 

respondents adopted non-compensatory decision making strategies, it would 

imply that attribute levels had no impact on choices, and would invalidate the 

stated preference elicitation.  Therefore, the incidence of dominant preferences in 

the two elicitation formats – including a dominant preference for QALY 

maximisation – was assessed before proceeding with the choice analysis. 

As in the pilot survey, a respondent was considered to have a dominant 

preference for a particular attribute if they always chose or prioritised the 

alternative with the highest or lowest level of that attribute, regardless of the 

levels of the other attributes (Scott 2002).  To test for dominant preferences, a set 

of seven flags was created for each alternative in each choice task: age, initial 

utility, initial life expectancy, final utility, life years gained, (potential) number of 

patients treated and (potential) aggregate QALYs gained.  Each flag indicated 

whether or not the alternative presented the higher level of a particular attribute.  

For example, the alternative that included the older patients was flagged as 

‘highest’ in the age attribute, and the flag for the corresponding alternative was 

set to zero.   

The correlation between each individual's choice and attribute flags was 

taken as a measure of that attribute’s impact on their choices.  A respondent 

who, for example, invariably chose the alternative with the youngest patients 

would have a correlation coefficient of -1.0 between choice flag and the age flag 

(perfect choice-attribute correlation).  Correlation coefficients close to zero 

would indicate the attribute had relatively little direct impact on their choices.  

This was slightly different than the approach taken in the pilot survey, where the 

flags indicated whether the attribute presented the ‘more preferred’ level based 

on expectations from the empirical ethics review.  In this revised approach, no 

effort was made to anticipate the preferred level of the attribute, and the sign on 

the correlation coefficient indicated which end of the attribute scale was 

preferred (if either): a negative coefficient indicated a preference for the lower 

level, and a positive coefficient indicated a preference for the higher level.  Note, 

though, that this still only holds where individual preferences are monotonically 
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increasing or decreasing over the attribute, as was assumed here.  CSPC 

responses were transformed to discrete choices on the basis of which program 

was allocated the majority of the budget, and the attribute flags were set based on 

the potential number of patients treated and QALYs gained if 100% of the 

budget were allocated to that alternative.  For the purposes of this analysis, 

CSPC alternatives that received a 50% budget allocation were flagged as ‘not 

chosen’ (i.e. both alternatives in a given task were assigned a choice flag of zero) 

as neither alternative was prioritised.  Kendall’s tau (Herve 2007) was used as the 

measure of correlation, which was estimated using the ltm package (Rizopoulos 

2006). 

Responses to the test of non-satiation were excluded from the analysis, as 

the common levels of age, initial health state, initial life expectancy and patients 

treated in this task meant that both alternatives in the task would be flagged as 

non-dominant over these attributes.  Regardless of which alternative a 

respondent chose, they would be flagged as choosing the non-dominant 

alternative, and by definition could not hold a dominant preference for those 

attributes, even if all their other choices were based on the level of one of those 

attributes. 

To confirm the identification of a possible dominant preference, each 

respondent’s self-rated attribute importance scores were converted to rankings 

and compared to their choice-attribute correlation coefficients.  Individuals with 

a perfect choice-attribute correlation who also rated that attribute as most 

important were considered to have a confirmed dominant preference for that 

attribute.  As a respondent could give more than one attribute the same rating, 

more than one attribute could be ranked as most important, but dominant 

preferences were considered to be confirmed even in the case of ties with other 

attributes.  The proportion of dominant preferences was compared across the 

two formats using a two-sample Z-test.   

7.1.6 QALY maximisation 

The results from the pilot survey suggested that respondents did not, in 

general, adopt a strict QALY maximising decision rule.  Only one respondent 

prioritised the QALY maximising alternative with every choice, and on average, 
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DCE and CSPC respondents chose the QALY maximising well less than the 10 

times out of 10 that would seem to be required by a strict QALY maximising 

approach.  As noted, however, respondents to the two formats did not see the 

same choice sets, so it was of interest to test for differences in the number of 

QALY maximising choices by format when all respondents saw the same choice 

sets.  The mean number of QALY maximising alternatives chosen by each 

respondent was compared across the formats using a two-sample t-test.  CSPC 

respondents were considered to have prioritised the QALY maximising 

alternative if that program received the majority of the budget allocation.  An 

equal budget allocation between the two programs was counted as a non-

maximising choice.  To test whether agents, who may have been more familiar 

with QALYs and the principles of QALY maximisation than the general public, 

were significantly more likely to adopt a QALY maximising decision rule, the 

number of QALY maximising choices was also compared across respondent 

subgroups.  Finally, to test whether the QALY graphs (see Appendix 6.3), which 

illustrated QALY gains at the individual rather than the aggregate level, may 

have tended to encourage respondents to focus on individual over aggregate 

QALY gains, the number of choices that maximised QALYs at the individual 

level were compared with the number of choices maximising QALYs at the 

aggregate level.     

Note that in each choice task, one of the two alternatives was always the 

QALY maximising alternative.  Therefore, respondents had a 50 percent 

probability of prioritising the QALY maximising alternative by chance alone, 

disregarding for now equal CSPC budget allocations.  Monte Carlo simulation 

was used to test whether the observed proportion of QALY maximising choices 

was significantly different than what might be expected by chance alone, similar 

to an approach used by Diederich, Swait and Wirsik (2012).  Each respondent’s 

vector of observed choices was replaced by a vector of random choices, and the 

difference in the number of QALY maximising choices between the observed 

and random vectors calculated.  This process was repeated 1000 times and sorted 

by ascending difference.  The differences at the 2.5th and 97.5th percentiles, for 

agents and for the general population sample, were taken as estimates of the 95 

percent confidence intervals of the mean difference between the proportion of 
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observed QALY maximising choices and what would be expected by chance 

alone.  Statistically significant intervals greater than zero were taken to indicate 

support for the principles of QALY maximisation, while significantly negative 

intervals were taken to indicate opposition to this rule.  Intervals that crossed 

zero were taken to indicate no statistical preference for aggregate QALYs.   

Finally, empirical evidence (Payne et al. 1992; Ryan 2009; Slovic 1995), 

as well as anecdotal evidence from the pilot survey, suggested that respondent 

may construct preferences as they progress through a stated preference 

elicitation.  Therefore, it was also of interest to test whether a respondent’s 

tendency to choose the QALY maximising alternative changed over the task 

sequence in either format.  There were two competing hypotheses: one 

hypothesis was that respondents would become more likely to prioritise the 

QALY maximising alternative as they became more familiar with the concept of 

QALYs as a measure of aggregate health gain.  The other hypothesis was that 

respondents would use aggregate QALY gains as a simplifying heuristic in the 

early tasks, but become less likely to prioritise on the basis of QALY gains as they 

became more familiar with the trade-offs and levels in the choice tasks. 

A probit model was used to estimate the change in the probability of a 

respondent prioritising the QALY maximising alternative by task sequence and 

questionnaire format.  The specific attribute levels in each choice set were 

disregarded; only the position of the choice in the overall task sequence was 

considered.  The test of non-satiation, presented as task 1 in all questionnaire 

versions, was excluded from the model as it was felt that the fixed position of the 

task, as well as the dominance of one alternative, might make it an outlier in the 

overall trend.  Predicted choice probabilities were derived from the probit 

coefficients using the effects package (Fox 2003), and the standard errors were 

adjusted for clustering using the lmtest package (Zeileis & Hothorn 2002).   
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7.2 DCE and CSPC response behaviours 

7.2.1 Questionnaire completion rates 

The number of individuals who were randomised to a DCE or CSPC 

questionnaire and the number who submitted a completed questionnaire are 

shown in Table 7.1, stratified by respondent subgroup. 

Table 7.1: Completion rates by questionnaire format and respondent subgroup 

Survey sample DCE CSPC p-value Adjusted-p Sig 

All respondents 656/738 (89%) 662/792 (84%) 0.003 0.009 ** 

General public 595/640 (93%) 595/672 (89%) 0.007 0.014 ** 

Agent invitations 61/98 (62%) 67/120 (56%) 0.410 0.410  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

The agent invitations sample includes individuals not self-identifying as decision-making agents.  The 

adjusted p-values for the difference between the general public and agent invitation response rates were 

<0.001 in both the DCE and CSPC. 

The completion rate among the general population subset was slightly but 

significantly higher in the DCE than the CSPC, while the difference among 

respondents to the agent invitations was not significantly different.  Within each 

format, agents were significantly less likely than the general population sample 

to submit a completed questionnaire.  Overall, the DCE had a significantly 

higher completion rate, although the absolute difference was only 5.3 percent. 

As noted earlier, the invited sample of agents included individuals that 

were not necessarily decision-making agents, but 101 of the 128 total 

respondents to these invitations (79%) did self-identify as an agent, including 57 

respondents to the CSPC (56%) and 44 respondents to the DCE (44%).  

Although an agent-specific denominator was not available, the relatively even 

distribution of agents across the two surveys contradicts the substantially lower 

representation of agents in the pilot CSPC, suggesting that agents were no more 

likely to drop out of the primary CSPC than the DCE. 

The ‘no answer’ option was chosen in 5.8 percent of all DCE responses, 

and the rate was virtually identical among agents and the general public (5.1% 

vs. 5.8%, respectively, p=0.37).  Linear regression found no significant trend in 

the proportion of no answers by task sequence (p=0.98), and contrary to the 
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hypothesis of greater utility balance in the repeated tasks leading respondents to 

opt out at a greater rate, the proportion of no answers in the repeated tasks was 

slightly but significantly less than the proportion across the other tasks combined 

(5.1% vs. 6.0%, p=0.03).  If the greater utility balance in the repeated tasks did 

indeed result in a relatively more complex task, it does not appear that this 

complexity induced a greater proportion of no answers. 

7.2.2 Respondent-rated difficulty and confidence 

The proportions of respondents rating the tasks as somewhat or extremely 

difficult to understand are shown in Table 7.2, by format and respondent group.  

A greater proportion of respondents found the CSPC difficult to understand, 

particularly among agents, who were three times more likely to rate the CSPC as 

difficult compared to the DCE, although none of the differences were significant 

after adjusting for multiple comparisons.  Within each format, the proportions of 

agents rating the tasks as difficult to understand were not significantly different 

from those of the general public. 

Table 7.2: Respondents rating the tasks as somewhat or extremely difficult to 

understand, by format 

Group DCE CSPC p-value Adjusted-p Sig 

All respondents 112/656 (17%) 143/662 (22%) 0.04 0.08 + 

General public 108/612 (18%) 126/605 (21%) 0.18 0.18  

Agents 4/44 (9%) 17/57 (30%) 0.02 0.07 + 

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

The adjusted p-value for the difference in the proportions of the general public and agents rating the tasks 

as somewhat or extremely difficult was 0.85 in the DCE and 0.63 in the CSPC. 

 
The proportions of respondents rating the tasks as somewhat or extremely 

difficult to answer are shown in Table 7.3.  There were no significant differences 

in the proportions of agents or the general public who rated the tasks as difficult 

to answer, and no difference between agents and the general public in the 

proportion rating the DCE as difficult to answer, but a significantly greater 

proportion of agents rated the CSPC as difficult to answer compared to the 

public. 
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Table 7.3: Respondents rating the tasks as somewhat or extremely difficult to answer, 

by format 

Group DCE CSPC p-value Adjusted-p Sig 

All respondents 311/656 (47%) 328/662 (50%) 0.47 0.81  

General public 284/612 (46%) 286/605 (47%) 0.81 0.81  

Agents 27/44 (61%) 42/57 (74%) 0.27 0.71  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

The adjusted p-value for the difference in the proportions of the general public and agents rating the tasks 

as somewhat or extremely difficult was 0.31 in the DCE and 0.001 in the CSPC. 

Finally, the proportions of respondents who indicated that they were 

somewhat or extremely confident that their answers in the DCE or CSPC choice 

tasks accurately reflected their preferences are shown in Table 7.4.  A majority of 

all respondents were confident that their answers accurately represented their 

preferences, and there were no statistically significant differences between the 

two formats or between agents and the general public after adjusting for multiple 

comparisons.    

Table 7.4: Respondents who indicated they were somewhat or extremely confident that 

their answers accurately reflected their preferences, by format 

Group DCE CSPC p-value Adjusted-p Sig 

All respondents 461/656 (70%) 431/662 (65%) 0.05 0.21  

General public 429/612 (70%) 393/605 (65%) 0.06 0.26  

Agents 32/44 (73%) 38/57 (67%) 0.66 0.91  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

The adjusted p-value for the difference in the proportions of the general public and agents rating their 

confidence as very or somewhat confident was 0.91 for both the DCE and the CSPC. 

The relatively high confidence in both formats and in both respondent 

groups seemed to imply that respondents felt they were able to express their 

preferences accurately, regardless of any difficulties in understanding or 

answering the tasks.  Indeed, a substantial proportion of the respondents who 

rated the tasks as difficult to answer also indicated that they were confident their 

answers accurately reflected their preferences. 
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7.2.3 Non-satiation and preference stability 

Table 7.5 shows the proportion of respondents to the DCE and CSPC 

questionnaires who demonstrated a preference for the alternative with the 

dominant health outcomes in the test of non-satiation, by format and respondent 

subgroup.  The results suggested that general population respondents to the DCE 

were substantially and significantly more likely to choose the dominant 

alternative compared to CSPC respondents (adjusted-p < 0.001), as almost all of 

the DCE respondents chose the dominant alternative compared to just over two-

thirds of CSPC respondents.  Eleven percent of all CSPC respondents equalised 

the budget allocation in this task and were not counted as prioritising the 

dominant alternative, but this only explains 41 percent of the relative difference 

between DCE and CSPC respondents.  Agent respondents to the DCE survey 

also appeared substantially more likely to choose the dominant alternative 

compared to agents in the CSPC, although this difference was not as large as in 

the general population sample and was not statistically significant (adjusted-

p=0.33).  Agents were significantly less likely than general population 

respondents to choose the dominant alternative in the DCE (adjusted-p=0.003), 

but there was no significant difference between agents and the general public in 

the CSPC (adjusted-p=0.96). 

Table 7.5: Non-satiation by questionnaire format and stakeholder group 

Stakeholder group DCE CSPC p-value Adjusted-p Sig 

All respondents 625/656 (95%) 457/662 (69%) <0.001 <0.001 *** 

General public 588/612 (96%) 417/605 (69%) <0.001 <0.001 *** 

Agents 37/44 (84%) 40/57 (70%) 0.16 0.33  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

 

As noted earlier, stated preference elicitations generally assume that 

rational respondents should prefer the dominant alternative, but the normative 

quality of non-satiation in this context is not clear.  Non-satiation ensures well-

behaved, monotonically increasing indifference curves, but it is not a specific 

requirement of rationality in conventional choice theory (Lancsar & Louviere 

2006).  Indeed, a number of studies identified in the empirical ethics review 

found a preference for patients with the worst prospects, even if they would 
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benefit less from treatment than other groups.  Therefore, although the difference 

in non-satiation between the two formats is notable, and may suggest that the 

CSPC induces a different cognitive process than the DCE, it is not in itself a 

fundamental advantage or limitation of either format. 

Table 7.6 shows the proportion of respondents to the DCE and CSPC 

who were consistent in their preference for the same program in the original and 

the repeated task of each questionnaire.  It suggests that respondents to the DCE 

had significantly greater preference stability, with a 10 percent advantage over 

the CSPC in all groups, although this difference was not statistically significant 

among the agent sample.  The difference in the proportion of consistent 

responses between agents and the general public was not significant in the DCE 

(p=0.41) or the CSPC (p=0.37).   

Table 7.6: Preference stability by questionnaire format and respondent subgroup 

Stakeholder group DCE CSPC p-value Adjusted p Sig 

All respondents 475/656 (73%) 414/662 (63%) <0.001 <0.001 *** 

General public 446/612 (73%) 382/605 (63%) <0.001 <0.001 *** 

Agents 29/44 (66%) 32/57 (56%) 0.429 0.429  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

The adjusted-p for the difference between agents and the public in the proportion with stable preferences 

was 0.41 in the DCE and 0.37 in the CSPC. 

 

The distribution of individual budget differences between the original and 

repeated CSPC tasks is shown in Figure 7.1.  The mean budget allocation to 

program B was 41.9 percent in the initial task and 37.7 percent to the same 

program in the repeated task.  The individual differences were clustered around 

zero, confirming that most CSPC respondents allocated a roughly similar budget 

share in both tasks, and although the mean difference was significantly different 

from zero, it was still relatively small (mean absolute difference=-4.2%, 

p<0.001). 
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Ninety-six of the 662 CSPC respondents (15%) chose an equal 50-50 

budget allocation in at least one of the original or repeated task, and 27 of those 

respondents were consistent in choosing an equal allocation in both tasks.  As 

with the overall distribution, the budget differences for individuals with at least 

one 50-50 budget allocation were clustered around zero, and although the mean 

difference was statistically significant it was again relatively small (mean 

absolute difference=-4.8, p=0.02).   

7.2.4 Learning and fatigue effects 

The mean proportions of DCE respondents preferring alternative B in 

each choice set, and the mean CSPC budget allocations to alternative B in each 

choice set, stratified by format, block and questionnaire version, are shown in 

Figure 7.2.  Note that the choice sets differed between blocks, and that the order 

that the choice sets were presented within each block differed by version.  The 

numeric labels indicate the sequence in which the choice sets were presented in 

each version. 

Figure 7.1: Distribution of individual budget differences between the repeated CSPC tasks 
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The figures suggest that there was very little difference in the proportions 

or means over the choice sets by version, and this impression was largely 

confirmed by the results of the one-way ANOVAs by format, block and choice 

set shown in Table 7.7. 

Table 7.7: ANOVA adjusted p-values by choice set, format and block 

Choice set DCE, Block 1 DCE, Block 2 CSPC, Block 1 CSPC, Block 2 

1 0.393 0.008 0.812 0.386 

2 0.706 0.405 0.428 0.517 

3 0.614 0.113 0.273 0.269 

4 0.694 0.114 0.269 0.063 

5 0.705 0.200 0.441 0.781 

Figure 7.2: Choices and budget allocations by design, choice set and task sequence 

The order the choice sets were presented differed by version, and the numeric labels indicate the order 

each choice set appeared in the different versions.  Choice set 10 was the test of dominance and was 

always presented as the first task.  Choice sets 77 and 88 were the reversed versions of sets 7 and 8, 

respectively.  The original and repeated choice sets were always presented as tasks 5 and 8, respectively. 
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6 0.510 0.274 0.987 0.396 

7 0.325 0.273 0.132 0.058 

8 0.866 0.630 0.825 0.090 

9 0.626 0.365 0.284 0.921 

10 0.212 0.297 0.104 0.545 

77 0.801 N/P 0.228 N/P 

88 N/P 0.259 N/P 0.251 

P-values less than 0.10, highlighted in bold, indicate a significant difference in the proportions or means by 

questionnaire version.  The order of the choice sets varied by version, but choice set 10 was the test of 

dominance and was always presented as the first task.  Choice set 7 was repeated as set 77 in block 1 of 

both formats, and set 8 was repeated as set 88 in block 2 of both formats.  The original and repeated tasks 

were always presented as tasks 5 and 8, respectively.  N/P=Not presented in the design block. 

 

Choice set 1 of DCE block 2 was the only set with a statistically 

significant difference at a 0.05 threshold, but relaxing this threshold to 0.10 

added three other instances, all from block 2 of the CSPC: choice sets 4, 7 and 8.  

Post hoc tests of these four instances are shown in Appendix 7.1.  Set 1 of DCE 

block 2, version 1, which presented this set as the second task in the sequence, 

was associated with a significantly lower probability of choice relative to versions 

2 (task 9) and 3 (task 4), which presented the task later in the sequence.  In CSPC 

block 2, set 4 had a higher mean budget allocation as task 9 than as task 6, while 

set 7 had a significantly higher mean budget allocation as task 2 than task 6.  In 

both cases, earlier tasks had significantly greater budget allocations. There was 

also a statistically significant difference in set 8 of CSPC block 2, but recall that 

was the original task in the repeated test of preference consistency and was 

presented at the same point in the task sequence (task 5) in all three versions.  

This suggests that this observed difference was not specifically associated with 

learning or fatigue effects, although it is possible that there were more complex 

ordering effects in that block.   

These differences suggest the possibility of learning effects in both the 

DCE and the CSPC, as responses to the tasks presented earlier in the choice 

sequence were significantly different from responses when the same sets were 

presented later in the sequence.  However, only 4 out of the 44 possible choice 

sets were associated with any statistically significant differences, and in the case 

of the CSPC these differences were relatively small (absolute differences of 5-

8%).  It is difficult to conclude, therefore, that there were meaningful learning or 

fatigue effects over the sequence of choice tasks presented in either format.  This 
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seems particularly noteworthy for the more complex and cognitively demanding 

CSPC. 

7.2.5 Dominant preferences 

The distribution of individual choice-attribute correlations by format and 

attribute are illustrated in Appendix 7.3.  In these histograms, a perfect 

correlation between choice and the higher level of an attribute appears as a 

correlation coefficient of 1.0, and a perfect correlation between choice and the 

lower level of an attribute appears as -1.0.  The proportion of respondents with at 

least one perfect correlation between choice and a particular attribute flag is 

shown in Table 7.8, along with the proportions of respondents with perfect 

choice correlations by specific attributes.  By chance, it was possible for 

respondents to have perfect choice correlations with more than one attribute, so 

the sum of respondents across attributes is greater than the number of unique 

individuals with a perfect-choice attribute correlation.  As well, the alternative 

with the greatest number of patients treated was also always the alternative with 

the greatest aggregate QALYs gained.  As the two attribute flags were 

themselves perfectly correlated, it was not possible to disentangle the choice 

correlations for the two attributes, and the same individuals were counted in 

both attributes. 
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Table 7.8: Individuals with perfect choice-attribute correlation by attribute and format 

Attribute DCE CSPC p value Adjusted-p Sig 

Any perfect 

correlation 
61/656 (9.3%) 24/658 (3.6%) <0.001 <0.001 *** 

By attribute      

  Age 39/656 (5.9%) 16/658 (2.4%) 0.002 0.011 * 

  Life expectancy 3/656 (0.5%) 1/658 (0.2%) 0.610 1.000 
 

  Life years gained 0/656 (0.0%) 1/658 (0.2%) 1.000 1.000 
 

  Patients treated 19/656 (2.9%) 4/658 (0.6%) 0.003 0.015 * 

  Aggregate QALYs 19/656 (2.9%) 4/658 (0.6%) 0.003 0.015 * 

  Initial health state 0/656 (0.0%) 2/658 (0.3%) 0.483 1.000 
 

  Final health state 0/656 (0.0%) 0/658 (0.0%) n/d n/d 
 

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

n/d: p-value not defined where both formats have no events.  The CSPC results exclude 4 respondents who 

did not move the slider in any of their choices and finished the questionnaire in less than one-half the 

median completion time.   

The proportion of respondents with at least one perfect choice-attribute 

correlation in the DCE was significantly higher than the proportion in the CSPC 

(9.3% vs. 3.6%, adjusted-p <0.001).  Consistent with this overall difference, there 

were also significant differences between formats in the proportions with a 

perfect choice correlation with age, total patients treated and aggregate QALYs 

gained.  The majority of perfect choice-attribute correlations were associated 

with the age attribute, where 12 out of 16 CSPC respondents (67%) and 33 out of 

39 DCE respondents (85%) favoured the lower (younger) level.  All 19 DCE 

respondents who had a perfect choice correlation with total patients and 

aggregate QALYs favoured higher levels, but 2 of the 4 CSPC respondents who 

had a perfect correlation with these attributes always chose the lower levels. 

To distinguish dominant preferences from perfect choice-attribute 

correlations that may have happened by chance, each perfect correlation was 

compared to the respondent’s self-rated importance ratings.  Table 7.9 shows the 

proportion of respondents with at least one perfect choice-attribute correlation 

who also ranked that attribute as most important in the rating task that followed 

the DCE and CSPC choice tasks.  As it was possible for a respondent to have 

more than one perfect choice-attribute correlation, and to rate multiple attributes 

as equally important, it was possible for a respondent to have a confirmed 

dominant preference for more than one attribute.  This was particularly true for 
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the number of patients treated and aggregate QALYs gained, where as noted 

above, the flags for the two attributes were themselves perfectly correlated.   

Table 7.9: Individuals with confirmed dominant preferences by attribute and format 

Attribute DCE CSPC p-value Adjusted-p Sig 

Any dominant 

preference 
45/656 (6.9%) 18/658 (2.7%) <0.001 0.006 ** 

By attribute      

  Age 32/656 (4.9%) 14/658 (2.1%) 0.010 0.049 * 

  Life expectancy 0/656 (0.0%) 0/658 (0.0%) n/d n/d  

  Life years gained 0/656 (0.0%) 1/658 (0.2%) 1.000 1.000  

  Patients treated 13/656 (2.0%) 2/658 (0.4%) 0.009 0.045 * 

  Aggregate QALYs 15/656 (2.3%) 2/658 (0.4%) 0.003 0.022 * 

  Initial health state 0/656 (0.0%) 0/658 (0.0%) n/d n/d  

  Final health state 0/656 (0.0%) 0/658 (0.0%) n/d n/d  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

n/d: p-value not defined where both formats have no events.  The CSPC results exclude 4 respondents who 

did not move the slider in any of their choices and finished the questionnaire in less than one-half the 

median completion time. 

Again, the DCE was associated with a significantly higher proportion of 

respondents with a confirmed dominant preference (6.9% vs. 2.7%, adjusted-

p=0.006).  There were also significant differences between the formats in the 

proportion of respondents holding a dominant preference for age, total patients 

treated and aggregate QALYs gained, with the DCE higher across all three 

attributes.  The most common dominant preference in both formats was for age, 

where 10 out of the 14 CSPC respondents (71%) and 30 out of the 32 DCE 

respondents (94%) had a dominant preference for the younger patient group in 

each choice.  This was in contrast to the pilot survey, where the most frequent 

dominant preference in the DCE was for final health state, and in the CSPC was 

for individual life years gained. 

7.2.6 QALY maximisation 

The distribution of respondents by the count of their total QALY 

maximising choices out of the 11 choice tasks in each questionnaire is illustrated 

in Figure 7.3, and detailed in Table 7.10.   
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Contrary to the hypothesis of a possible prominence effect in the CSPC, 

which may have encouraged respondents to give more weight to aggregate 

QALY gains in their allocations, it was DCE respondents who were significantly 

more likely to choose the QALY maximising alternatives in their choice tasks.  

DCE respondents made on average almost two more QALY maximising choices 

than CSPC respondents (p <0.001).  Overall, there was little evidence of QALY 

maximising behaviour among respondents to either format, as only 2 percent of 

all respondents prioritised the alternative that maximised QALYs in every task.  

It is interesting to note that a majority of CSPC respondents (59%) consistently 

prioritised the QALY minimising alternative in making five or fewer QALY 

maximising choices, and this was significantly more than the proportion of DCE 

respondents (26%, p<0.001). 

Table 7.10: Respondents by number of QALY maximising choices and questionnaire 

format 

QALY maximising choices DCE CSPC Combined 

0 1 (0%) 18 (3%) 19 (1%) 

1 0 (0%) 13 (2%) 13 (1%) 

2 6 (1%) 40 (6%) 46 (3%) 

3 19 (3%) 82 (12%) 101 (8%) 

Figure 7.3: QALY maximising choices by questionnaire format 
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4 41 (6%) 103 (16%) 144 (11%) 

5 102 (16%) 133 (20%) 235 (18%) 

6 134 (20%) 120 (18%) 254 (19%) 

7 128 (20%) 69 (10%) 197 (15%) 

8 83 (13%) 47 (7%) 130 (10%) 

9 79 (12%) 24 (4%) 103 (8%) 

10 44 (7%) 7 (1%) 51 (4%) 

11 19 (3%) 2 (0%) 21 (2%) 

All respondents 656 (50%) 658 (50%) 1314 (100%) 

Mean QALY maximising 

choices per respondent 
6.81 5.02 5.91 

p-value <0.001  

The CSPC results exclude 4 respondents who did not move the slider in any of their choices and finished the 

questionnaire in less than one-half the median completion time. 

Table 7.11 shows the distribution of respondents by their QALY 

maximising choices, this time stratified by agent status.  The number of QALY 

maximising choices made by agents was not significantly different than the 

number made by respondents from the general population sample (5.83 vs. 5.92, 

p=0.70).   

Table 7.11: Respondents by number of QALY maximising choices and agent status 

QALY maximising choices Agents Public Combined 

0 0 (0%) 19 (2%) 19 (1%) 

1 2 (2%) 11 (1%) 13 (1%) 

2 6 (6%) 40 (3%) 46 (3%) 

3 8 (8%) 93 (8%) 101 (8%) 

4 11 (11%) 133 (11%) 144 (11%) 

5 13 (13%) 222 (18%) 235 (18%) 

6 26 (26%) 228 (19%) 254 (19%) 

7 11 (11%) 186 (15%) 197 (15%) 

8 11 (11%) 119 (10%) 130 (10%) 

9 10 (10%) 93 (8%) 103 (8%) 

10 2 (2%) 49 (4%) 51 (4%) 

11 1 (1%) 20 (2%) 21 (2%) 

All respondents 101 (8%) 1213 (92%) 1314 (100%) 

Mean QALY maximising 

choices per respondent 
5.83 5.92 5.91 

p-value 0.70  

The public results exclude 4 CSPC respondents who did not move the slider in any of their choices and 

finished the questionnaire in less than one-half the median completion time. 
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Finally, as the individual-level QALY graphs presented to respondents 

may have encouraged a focus on individual rather than aggregate QALY gains, 

Table 7.12 shows the distribution of respondents by the number of choices they 

made that maximised individual QALY gains and aggregate QALYs gains.  The 

table shows that respondents were slightly but significantly more likely to choose 

the alternative that maximised aggregate QALY gains over individual QALY 

gains (5.91 vs. 5.72, p=0.02).  This suggests that the individual-level QALY 

graphs did not focus respondent attention on individual gains to the exclusion of 

consideration of aggregate gains.  Similar to the result observed in Table 7.10, 

when  results shown in Table 7.12 were further stratified by questionnaire format 

(not shown), the majority of CSPC respondents (56%) were more likely to 

prioritise the individual QALY minimising alternative, compared to 36 percent of 

DCE respondents (p<0.001).  In considering these results, note that the 

individual QALY maximising and the aggregate QALY maximising alternatives 

were often one and the same.  The results shown in Table 7.12 should therefore 

be interpreted in terms of the relative trend rather than as an absolute trade-off 

between individual or aggregate QALY gains. 

Table 7.12: Respondents by number of individual and aggregate QALY maximising 

choices 

QALY maximising choices Individual QALYs Aggregate QALYs 

0 13 (1%) 19 (1%) 

1 11 (1%) 13 (1%) 

2 36 (3%) 46 (4%) 

3 108 (8%) 101 (8%) 

4 187 (14%) 144 (11%) 

5 251 (19%) 235 (18%) 

6 246 (19%) 254 (19%) 

7 220 (17%) 197 (15%) 

8 127 (10%) 130 (10%) 

9 80 (6%) 103 (8%) 

10 27 (2%) 51 (4%) 

11 8 (1%) 21 (2%) 

All respondents 1314 (100%) 1314 (100%) 

Mean QALY maximising  

choices per respondent 
5.72 5.91 

p-value 0.021 

Excludes 4 CSPC respondents who did not move the slider in any of their choices and finished the 

questionnaire in less than one-half the median completion time. 
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Overall, respondents chose the aggregate QALY maximising alternative 

in just over half of all tasks, and 58 percent of all respondents maximised QALYs 

in more than half of their choices.  However, the Monte Carlo simulated 

confidence intervals suggested that the difference between the number of QALY 

maximising choices made by agents was not significantly different than the 

number that might be expected by chance (mean difference=0.11; 95% CI: -0.21, 

0.44).  Simulated confidence intervals for the general population sample were 

positive and statistically significantly different than chance (mean 

difference=0.29; 95% CI: 0.20, 0.37), which suggested some support for QALY 

maximisation, although the size and meaningfulness of this difference was still 

quite small. 

A probit model tested the impact of task sequence, questionnaire format, 

and agent status, as well as interactions between sequence and format, and 

sequence and agent status on the likelihood of choosing the QALY maximising 

alternative in each task.  After adjusting for clustering in the standard errors, 

agent status and the two interaction terms were not statistically significant at a 

0.10 threshold, and the model was re-estimated with task sequence and 

questionnaire format only.  The results of this more parsimonious model, shown 

in Appendix 7.2, suggested a statistically significant negative trend in the 

likelihood of choosing the QALY maximising alternative as a respondent 

progressed through the task sequence.  As well, consistent with the significant 

difference in mean number of QALY maximising choices by format shown 

above, the CSPC format was associated with a significantly lower likelihood of 

choosing the QALY maximising alternative.  The predicted choice probabilities 

over the task sequence by questionnaire format are shown in Table 7.13. 

Table 7.13: Predicted QALY maximising probabilities by task sequence and format 

Task sequence DCE 95% CI CSPC 95% CI 

2 0.618 (0.600 - 0.635) 0.466 (0.448 - 0.484) 

3 0.611 (0.595 - 0.626) 0.459 (0.443 - 0.475) 

4 0.604 (0.590 - 0.617) 0.452 (0.438 - 0.466) 

5 0.597 (0.584 - 0.609) 0.444 (0.432 - 0.457) 

6 0.589 (0.577 - 0.601) 0.437 (0.425 - 0.449) 

7 0.582 (0.570 - 0.594) 0.430 (0.418 - 0.442) 

8 0.575 (0.562 - 0.588) 0.423 (0.410 - 0.436) 
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9 0.568 (0.554 - 0.582) 0.416 (0.402 - 0.430) 

10 0.561 (0.545 - 0.576) 0.408 (0.393 - 0.424) 

Task 1 was always the test of dominance, and was excluded from the model as a possible outlier in the 

overall trend.  95% CI = 95% confidence interval. 

These probabilities illustrated a slight but statistically significant 

downward trend in the likelihood of choosing the QALY maximising alternative 

over the sequence of tasks, independent of the attribute levels in the tasks 

themselves, which varied by questionnaire block and version.  There was no 

overlap in the confidence intervals between the formats, suggesting a 

significantly lower likelihood of CSPC respondents prioritising the QALY 

maximising alternative in any given task. 

These results appeared consistent with the hypothesis that respondents 

become less likely to prioritise on the basis of aggregate QALY gains as they 

became more familiar with the trade-offs and attribute levels in the choice tasks.  

They may also be consistent with a similar idea that the initial test of non-

satiation primed respondents to favour the QALY maximising alternative, but 

that this effect gradually wore off over the course of the choice tasks.  Overall, 

the relatively small effect over the range of tasks tested suggested that the net 

impact of this trend on preferences would be minimal.  

7.3 Discussion of the DCE-CSPC comparisons 

The results of the DCE-CSPC comparisons are summarised in Table 7.14, 

and in general they reinforce the findings of the pilot study.  The DCE appeared 

to be associated with greater respondent efficiency in terms of better completion 

rates and greater preference consistency, while the CSPC appeared to be a more 

cognitively demanding task, associated with longer completion times and more 

difficulty understanding the task, particularly among agents. 

Table 7.14: Summary of DCE-CSPC comparisons 

Comparison DCE CSPC Adjusted-p Sig 

Overall completion rate 89% 84% 0.009 ** 

Median completion time 9.5 minutes 11.7 minutes <0.001 *** 

Fast completers 9.1% 11.3% 0.22  

Somewhat or extremely difficult to understand 17% 22% 0.08 + 
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Somewhat or extremely difficult to answer 47% 50% 0.81  

Somewhat or extremely confident  

choices reflect preferences 
70% 65% 0.21  

Non-satiation  

(% preferring dominant alternative) 
95% 69% <0.001 *** 

Stable preferences in repeated task 73% 63% <0.001 *** 

Perfect choice-attribute correlations 9.3% 3.6% <0.001 *** 

Confirmed dominant preferences 6.9% 2.7% 0.006 ** 

Mean QALY-maximising choices (out of 11) 6.81 5.02 <0.001 *** 

     

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

 

Some agents commented that the CSPC task, which asked respondents to 

divide a fixed budget between two alternatives, was not a realistic reflection of 

their usual decision-making tasks.  This highlights the fact that respondents are 

used to making decisions within a particular context, and as noted in Chapter 4, 

changing the context of a decision to suit a particular elicitation method may 

adversely impact the face validity, accuracy and predictive ability of a task. 

The longer median completion time and the lower incidence of perfect 

choice-attribute correlations and dominant preferences among CSPC 

respondents, including for the QALY maximising alternative, are also consistent 

the characterisation of the CSPC as a more reflective task than the DCE.  The 

CSPC required respondents to consider the relative value of the two alternatives 

in each task, and this may encourage them to consider the overall quality of both 

alternatives to a greater degree than the ‘pick one’ nature of the DCE (Carson & 

Louviere 2011; Huber 2009).  Schwappach and Strasmann (2006) argue that the 

ability to reserve a portion of the budget for a less preferred group will also tend 

to make CSPC tasks more reflective, as respondents must consider how much of 

the budget, if any, to reserve.  This explicit consideration of the less preferred 

group may also explain the greater proportion of CSPC respondents (31%) who 

gave priority to the non-dominant group in the test of non-satiation compared to 

the DCE (5%).  Some of this difference is explained by the 11 percent of CSPC 

respondents who chose to equalise the budget allocations rather than prioritise 

one group or the other, but the remainder appeared to reflect a fundamentally 

different cognitive process in the CSPC compared to the DCE, perhaps leading 

to a relatively greater concern for patients with poorer prospects and/or potential 
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for gain.  Qualitative work to understand the specific rationale of CSPC and 

DCE respondents in this task would be of interest, particularly in confirming 

what might be termed a ‘compassion bias’ in the CSPC. 

There was little evidence of strict QALY maximising behaviour among 

respondents to either format, as only 2 percent of all respondents prioritised the 

alternative that maximised QALYs in every task.  Respondents to the CSPC 

were significantly less likely than respondents to the DCE to choose the QALY 

maximising alternative, consistent with the notion of a compassion bias in the 

CSPC.  Again, though, some of the lower rate of QALY maximising behaviour 

may be explained by the opportunity CSPC respondents had to equalise 

allocations between alternatives.  Agents were also no more likely than the 

general population to be strict QALY maximisers.  In fact, the number of QALY 

maximising choices made by agents was slightly but significantly less than the 

general population sample, and was not significantly different than what would 

be expected by chance.  Some of the higher rate of QALY maximising behaviour 

among the general population sample may have been the result of a simplifying 

QALY-maximising decision rule, while the lower rate observed among agents 

may have been driven by the relatively high proportion of clinicians among the 

agent sample: almost two-thirds of the agents in the sample were oncology 

professionals and they may have been less likely than non-clinicians to adopt a 

QALY maximising rule. 

Although the CSPC makes the trade-offs between patient groups more 

explicit, as respondents see the number of patients treated in one group decline 

as they allocate resources to the other, this did not appear to translate into a 

significant prominence effect around this attribute or aggregate QALYs gained 

that might encourage respondents to maintain a societal-level perspective.  

Furthermore, the higher completion rate and similar levels of preference 

confidence in the DCE relative to the CSPC do not appear to support Swallow et 

al.’s (2001) contention that respondents may be reluctant to complete 

dichotomous preference elicitations over highly emotive choices.  In the absence 

of these hypothesised advantages of CSPC, the greater completion rate and 

slightly more favourable difficulty rating of the DCE gives it a pragmatic 

advantage for the elicitation of societal preferences.  However, the CSPC was 
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associated with a significantly lower incidence of dominant preferences, and the 

cardinal nature of its response format suggests that it may have an advantage in 

terms of statistical efficiency, although this was not specifically tested here.  

Overall, both formats were associated with similar difficulty ratings and 

preference confidence, minimal learning or fatigue effects, and relatively few 

cases of dominant preferences.  This suggests that both formats are eliciting valid 

preference data, which will be presented over the next two chapters. 
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Appendix 7.1: Post hoc test of significant ANOVA results  

Table 7.15: Tukey’s test of honest significant difference 

Version (Task sequence) Difference L95CI U95CI Adjusted-p Sig 

DCE block 2, set 1 

v2(9) - v1(2) 0.172 0.018 0.325 0.024 * 

v3(4) - v1(2) 0.185 0.028 0.343 0.016 * 

v3(4) - v2(9) 0.014 -0.142 0.169 0.977 
 

      

CSPC block 2, set 4 

v2(2) - v1(6) 5.087 -3.270 13.443 0.325  

v3(9) - v1(6) 7.904 -0.030 15.837 0.051 + 

v3(9) - v2(2) 2.817 -5.200 10.832 0.686  

      

CSPC block 2, set 7 

v2(6) - v1(10) -6.140 -14.253 1.972 0.177  

v3(2) - v1(10) 1.481 -6.220 9.183 0.893  

v3(2) - v2(6) 7.622 -0.160 15.404 0.056 + 

      

CSPC block 2, set 8 

v2(5) - v1(5) -7.306 -15.126 0.514 0.073 + 

v3(5) - v1(5) -3.426 -10.850 3.998 0.523  

v3(5) - v2(5) 3.880 -3.621 11.381 0.444  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

Table shows the pairwise comparison of differences in the proportion of DCE respondents preferring 

alternative B in block 2, set 1 by questionnaire version.  L95CI=Lower 95% confidence interval; 

U95CI=Upper 95% confidence interval 

 

  



 

208 

Appendix 7.2: Probit analysis of QALY maximising choices by task 

sequence and questionnaire format 

 

Table 7.16: Probit model of likelihood of choosing the QALY maximising alternative 

Factor Estimate Std. Error* z value Pr(>|z|) Sig 

(Intercept) 0.336 0.029 11.460 <0.001 *** 

Sequence -0.018 0.004 -4.811 <0.001 *** 

Format: CSPC -0.384 0.022 -17.457 <0.001 *** 

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

* Standard errors were adjusted for clustering using the ‘sandwich estimator’.(Freedman 2006; Zeileis & 

Hothorn 2002) 

 
 

Figure 7.4: Predicted probabilities of choosing/prioritising the QALY maximising 

alternative by task and questionnaire format 
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Appendix 7.3: Distribution of choice-attribute correlations 

Age=patient age; LE=initial life expectancy; LYg=individual life years gained; nPats=number of patients 

treated; QALYs=aggregate QALYs gained; U0=initial utility; U1=final utility.  Correlations towards -1.0 

indicate a lower level in an attribute was consistently preferred, and correlations towards 1.0 indicate a 

higher level in an attribute was consistently preferred. 
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Chapter 8:  
Primary DCE results 

The primary objective of the analysis of the DCE responses was to 

estimate the strength of the equity-efficiency trade-off between individual life 

year gains and the equity factors identified in the empirical ethics review: age, 

initial health state, untreated life expectancy, and final health state, as well as the 

relative distribution of benefits.  To use Broome’s (1989) terminology, these 

factors were taken to constitute claims to scarce healthcare resources on the basis 

of empirical support and defensible ethical justifications, distinct from the wider 

set of reasons that a particular patient or group might deserve priority.  The 

relative strength of the trade-off over different attributes was taken as an estimate 

of the strength of societal preferences, or the welfare effect, associated with 

prioritising patients or groups with those particular characteristics.  From a 

Communitarian perspective, prioritising patient groups that best satisfy 

community preferences is argued to increase overall societal well-being.   

Section 8.1 describes the specification of the DCE choice model, 

including the rationale for choosing between additive versus multiplicative and 

linear versus effects-coded value functions.  Section 8.2 outlines the issue of 

individual heterogeneity in preferences and describes the two leading methods 

for dealing with this issue in the context of a DCE: latent class models and 

random parameters models.  The use of compensating variation as an estimate of 

the strength of the equity-efficiency trade-off is discussed in section 8.3, including 

its advantage over the marginal rate of substitution, which was used in the pilot 

survey.  The results of the DCE model, and the derived welfare effects, are 

described in section 8.4, along with a ranking of choice scenarios by predicted 
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utility and a comparison of agent and public preferences.  Finally, these results 

are interpreted and discussed in section 8.5.   

8.1 Specifying the DCE model 

The analysis of the DCE responses was based on the assumption that 

respondents derived different degrees of utility from allocating resources to 

patient groups with different characteristics or attributes.  An additive main 

effects value function was specified for the experimental design, but alternative 

value functions suggested by the literature were also considered, including main 

effects interacted with life year gains and a multiplicative log-linear specification.   

In its simplest form, an additive value function implies that the utility 

derived from each attribute is independent of the level of the other attributes.  

Any utility derived from allocating healthcare resources to a group of younger 

patients, for example, would be independent of other attributes such as life years 

gained with treatment or initial health state.  This functional form is common in 

the DCE literature, and is consistent with recent models of choice in a societal 

healthcare context (Bryan et al. 2002; Mortimer & Segal 2008; Green & Gerard 

2009; Ratcliffe et al. 2009).  The experimental design was based on an additive 

value function of the form v = β1LYg + β2Age + β3U0 +  β4LE + β5U1 + β6nPats + 

β7U1∙LYg, where LYg is the number life years gained per patient with treatment, 

Age is the average age of patients in the group, U0 is the quality of the initial 

health state, measured on a 0-1 utility scale, LE0 is life expectancy without 

treatment, U1 is the utility of the health state with/after treatment, nPats is the 

total number patients that could be treated, and U1∙LYg is the interaction of U1 

and LYg, intended to account for the quality of additional life years.  Aggregate 

QALYs gained, as a linear combination of the other attributes, was excluded to 

avoid collinearity.  In addition, the use of the QALY pre-supposes a specific 

trade-off between life years gained and health state that may not hold in this 

context.  The age and the number of patients treated parameters were divided by 

10 and 1000, respectively, to re-scale them to a magnitude comparable with the 

other parameters in order to improve the chances of model convergence (Long 

1997).  An interaction term capturing the absolute change in utility, as (1-U0)U1, 
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was also incorporated in more complex versions of the additive value function.  

The possible values of this interaction term are shown below: 

Table 8.1: Initial and final health state interaction values 

U0 

                            U1 

1-U0 

0.1 0.5 0.9 

0.1 0.9 0.09 0.45 0.81 

0.5 0.5 0.05 0.25 0.45 

0.9 0.1 0.01 0.05 0.09 

U0 = initial utility; U1 = final utility 

The value of this term was maximised in scenarios when patients move from the 

worst initial health state to the best final health state, and minimised when 

patients move from the best initial health state to the worst final health state. 

Norman et al. (2013) suggested that a strictly additive value function is 

inappropriate in the context of health programs, arguing that as the health gains 

derived from a hypothetical program tend to zero, so too should the utility 

associated with that program, regardless of the level of other attributes.  This is 

analogous to the ‘zero condition’ of the QALY model, which implies that 

different health states with a duration of zero life years will all have zero utility, 

regardless of their quality or other characteristics (Miyamoto et al. 1998).  As 

such, they used an additive value function but interacted each attribute with the 

gain in life expectancy in their analysis of relative preferences for efficiency and 

equity in the allocation of healthcare resources.  In this form, the utility 

associated with different patient attributes is dependent on gains in life 

expectancy, with the other attributes weighting, positively or negatively, the net 

value of that gain.  Lancsar et al. (2011) also made the argument that utility in 

the context of healthcare resource allocation should be dependent on health gain, 

but used a log-linear value function to model the utility as a multiplicative 

function of the logged attribute levels13 in order to estimate QALY distributional 

preferences.  In this form, utility can be non-linear but still monotonic over the 

range of an attribute.    

                                                 
13 Recall that log(a) + log(b) = log(ab) 
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However, the DCE elicitations in these two studies were structured 

differently than the elicitation presented here.  Norman et al. (2013) elicited 

preferences over changes in life expectancy to patients described in terms of 

gender, smoking status, income, healthy lifestyle, and dependents, but did not 

include a quality attribute.  Lancsar et al. (2011) elicited preferences for QALY 

gains to patients described in terms age at disease onset, age at death, and 

potential quality of life lost without treatment, but did not consider quality and 

survival as distinct elements, as both were captured by the QALY.  The structure 

of these elicitations is consistent with the zero condition: in the absence of any 

life year or QALY gains, the value of changes in the other levels is zero.  The 

attributes included in the current DCE and CSPC elicitations, however, 

theoretically allowed for improvements in quality over an unchanged life 

expectancy,14 and so changes in attribute levels still have value even in the 

absence of life year gains and the zero condition is not applicable.  For this 

reason, a strictly multiplicative value function was excluded.  Interactions with 

life year gains were included in potential value functions, though, on the grounds 

that some or even many respondents may view life extension as the primary 

objective of healthcare.  

Linear and design-coded parameters were also tested within the different 

value functions.  Whereas a linear parameter has a single coefficient, implying 

that the change in utility for a given change in attribute level is constant, design-

coded parameter can have multiple coefficients, allowing for non-linear effects 

over the range of the attribute (Hensher et al. 2005).  For example, the utility 

associated with a three level dummy coded parameter, with level 2 as the 

reference level, is given by: 

  =               (8.1) 

Where β1 and β2 represent the marginal utility associated with levels 1 and 3, 

respectively, relative to the omitted reference level, level 2, and β0 is the utility 

associated with the reference level.   

                                                 
14 In practice, however, the smallest individual life year gain in the experimental design was 1 

year.  
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 Dummy coded parameters are straightforward to code and interpret, but 

as is clear from the specification above, the utility of the reference level, β0, is 

perfectly confounded with the intercept, also known as the alternative-specific 

constant (ASC) (Hensher et al. 2005).  Confounding is a particular problem 

when a discrete choice task is defined relative to a fixed comparator or in terms 

of labelled alternatives, as it is impossible to distinguish the default utility 

associated with the fixed comparator or labelled alternative from the utility 

associated with the reference level of the dummy coded attributes.  In such cases, 

effects coding is strongly recommended (Bech & Gyrd-Hansen 2005; Hensher et 

al. 2005; Louviere et al. 2000b).  Like dummy coding, effects coding creates L-1 

design variables with an excluded reference level.  Effects coding for a three-level 

categorical attribute is shown below, again with level 2 as the reference level:  

 E1 E3 

L1 1 0 

L2 -1 -1 

L3 0 1 

 

In this example, the utility of the excluded reference level 2 is β0 + βE1(-1) + βE3(-

1), or β0 – (βE1 + βE3), and can be estimated independently of the ASC (Hensher et 

al. 2005).  However, the interpretation of effects coding is less straightforward 

than dummy coding as the coefficient on an effects coded parameter represents 

the deviation of the ‘level mean utility’ from ‘overall mean utility’, which not 

necessarily the same as the difference from the reference level, particularly in a 

non-orthogonal experimental design (Hosmer & Lemeshow 2000).  

Furthermore, confounding is much less of a problem in generic experimental 

designs, where there is no expectation of a default preference for one alternative 

or the other as in labelled designs.  Indeed, generic designs often assume a priori 

that the ASC is non-significant and exclude it from the choice model (Bech & 

Gyrd-Hansen 2005).  Given the generic design used here, and the challenge of 

interpreting effects coded parameters, dummy coded parameters were felt to be 

sufficient for allowing for non-linear effects. 
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 The alternative models and value function specifications were compared 

on the basis Akaike’s information criterion with a correction for finite sample 

sizes (AICc) and Schwarz’s Bayesian information criterion (BIC) (Burnham & 

Anderson 2004; Magidson & Vermunt 2004).  These criteria guide model 

selection by weighing the trade-off between model fit and parsimony; 

specifically, the potential for bias stemming from too few parameters, and the 

potential for imprecision or spurious results stemming from an over-specified 

model.  Both criteria penalise the log-likelihood function (LL) by a factor based 

on the sample size (n) and the number of parameters (k) in the model:  AICc is 

defined as -2LL + 2k + 2k(k+1)/(n-k-1), which converges to -2LL + 2k in large 

samples, and BIC is defined as -2LL + k∙log(n).  A smaller criterion value is 

preferred in both cases.  Both criteria are commonly used in selecting between 

discrete choice models, but because BIC applies a larger parameter penalty in 

reasonably large samples, it tends to tends to favour parsimonious models more 

strongly than AICc (Swait 2007).   

The DCE statistical models were estimated using LIMDEP 9.0/NLOGIT 

4.0.  Consistent with Hosmer and Lemeshow’s (2000) suggestion of relaxing the 

threshold of statistical significance in order to allow for the broadest possible 

inclusion of explanatory parameters, a significance threshold of 0.10 was 

adopted and p-values were not adjusted for multiple comparisons.  Dummy 

coded parameters were excluded from the parsimonious specifications only if all 

levels were insignificant (Hensher et al. 2005).  Robust clustered standard errors 

for coefficient estimates were calculated using the ‘sandwich estimator’ 

(Freedman 2006).  Estimates of compensating variation and their associated 

confidence intervals were calculated in LIMDEP 9.0/NLOGIT 4.0 using the 

delta method, based on coefficient means and covariances derived from the 

regression models (Oehlert 1992).  A significance threshold of 0.05 was adopted 

for all other analyses, and p-values were adjusted for multiple simultaneous 

comparisons using Hommel’s method (Shaffer 1995; Wright 1992). 

8.1.1 Agent vs. public preferences 

A secondary objective of the analysis was to test for heterogeneity 

between the preferences of self-identified agents and those of the general public.  



 

217 

To test for the effect of agent status on attribute preferences given the limited 

number of agents who participated in the survey, a classical approach was used, 

interacting each attribute with agent status (Morey & Greer Rossmann 2003).  

The baseline value function was based on simple main effects with agent 

interactions, but a more complex value function with life year gain interactions 

was also tested.  If the interactions between a specific attribute and agent status 

was found to be significant, the difference in compensating variation between the 

general population and agents would be calculated and taken as significant if the 

95 percent confidence interval around the difference in CV between agents and 

the general public did not cross zero (Schenker & Gentleman 2001). 

8.2 Modelling individual heterogeneity 

Each respondent to the survey contributed multiple responses over a 

series of choice tasks.  The simplest approach to analysing such panel data is the 

‘pooled model,’ which assumes that preferences are homogeneous across all 

individuals (Baltagi 2008).  However, if unobserved factors influence the choices 

made by an individual, particularly as a result of random taste variation or 

unobserved heterogeneity, these responses will tend to be correlated and treating 

them as independent observations will reduce the realism of the model and can 

lead to biased regression estimates (Hole 2008; Glasgow 2001).  Random taste 

variation arises when unobserved individual characteristics influence how the 

observed characteristics of an alternative affect choice.  That is, individuals with 

the same observed characteristics may place different weights on different aspects 

of a choice, leading to correlation in the utility of alternatives within a particular 

choice task.  Unobserved heterogeneity arises when an individual’s choices 

depend on unobserved characteristics, leading to correlation in the utility of 

alternatives between different choice tasks (Glasgow 2001).  For example, having 

children, or experience with a particular disease, may exert an unobserved 

influence on respondents’ choices over a series of choice tasks.  Other sources of 

individual heterogeneity in choice tasks could include response heterogeneity, 

where respondents utilise response scales differently, perceptual heterogeneity, 

where respondents differ in their perception of the attributes in a task, and form 
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heterogeneity, where respondents apply different decision rules in evaluating the 

alternatives in a task (Desarbo et al. 1997).   

Because an individual’s personal characteristics are constant across their 

responses, it is impossible to estimate the effect of these characteristics on the 

probability of choice.  The classical approach to incorporating heterogeneity into 

a choice model, therefore, has been to interact attributes with individual 

characteristics.  For example, a price attribute may be interacted with gender to 

determine if males are more sensitive to price than females.  As noted in section 

4.5, though, this approach has the drawback of assuming that heterogeneity is 

strictly deterministic, and that everyone with the same observed characteristics 

must share the same preferences (Boxall & Adamowicz 2002; Morey & Greer 

Rossmann 2003). 

As alternatives, latent class models and random effects or random 

parameters models allow for more realistic representations of individual 

heterogeneity in the context of discrete choice experiments.  In a conditional 

logit model of discrete choice (McFadden 1974), 

 
  (       =

       

∑         
   

  
(8.2) 

Where   (        is the probability of individual i choosing alternative j in task t 

given a vector of preference weight   , and a vector of attribute levels     , 

individual heterogeneity in preferences can be represented as: 

   =           (8.3) 

Where β is the mean population preference weight, Δzi is a vector of individual 

characteristics and associated coefficients, and ei is a stochastic individual effect 

(Hole 2008).  Broadly speaking, if the components of ei are assumed to be 

continuous and assigned a subjective distribution, this leads to a random effects 

model.  If the components of ei are assumed to be discrete, this leads to a latent 

class model (Greene & Hensher 2003; Hole 2008). 

Latent class models assume that there are two or more ‘classes’ or groups 

underlying the data, which share unobserved (latent) characteristics that affect 

choice.  Critically, preferences are assumed to differ between classes, but to be 
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homogeneous within classes (Greene & Hensher 2003).  As membership in a 

particular class (c) is a function of latent characteristics, it must be estimated 

probabilistically, most often using a conventional multinomial logit model: 

   ( =      =
     

∑       
   

 
(8.4) 

Where Pr(C=c|zi) is the probability of individual i being in class c given a vector 

of characteristics zi, ∑   (  =   
   , and      is a vector of observed individual 

characteristics and associated coefficients (Hernández Alava et al. 2012; 

Provencher et al. 2002).  If    is zero, membership in a particular class does not 

depend on observed characteristics and the likelihood of belonging to any 

particular class is constant across individuals (Hole 2008).   

As the probability of individual i choosing alternative j is conditional 

upon class membership, choice and class membership must be estimated 

simultaneously:  

   (    = [
         

∑          
 
   

] [
     

∑       
   

] 
(8.5) 

Such a model allows the characteristics of the alternatives and the characteristics 

of the individual to jointly explain choice behaviour, by weighting the probability 

of choice by the probability of membership in a discrete number of classes (Ben-

Akiva et al. 1997; Boxall & Adamowicz 2002).   

In contrast to the latent class model, a random parameters model 

integrates the probability of choice over all possible values of individual taste and 

requires subjective assumptions about the distribution of these tastes (Boxall & 

Adamowicz 2002).  In this approach, βi or ei is assumed to be a random variable 

with a subjectively specified distribution which can be interpreted as random 

variation in individual preferences (individual heterogeneity) or an error term 

that introduces correlation among the utility of different alternatives (random 

taste variation) (Amaya-Amaya et al. 2008; Morey & Greer Rossmann 2003).  

Wedel et al. (1999) noted that the subjective assignment of a distribution has the 

advantage of being able to force a random parameters model to conform to an 

underlying theory of behaviour (e.g. by constraining a particular parameter to a 

positive distribution), as well as facilitating the estimation of individual-level 
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parameters.  They also pointed out that a latent class model cannot fully account 

for heterogeneity if preferences are in fact continuous.  In such cases, latent 

classes are an artificial partition of continuous preferences and the assumption of 

homogeneity within those classes is unrealistic.  Finally, random parameter 

models hold the individual random effect, ei, constant, inducing correlation 

across an individual’s choices, whereas latent class models assume that each 

choice is an independent draw from a discrete distribution (Greene & Hensher 

2003; Shen 2009).  However, the subjectivity of the random parameter 

distributions is also a limitation, as there is little formal theory to guide the 

selection of which parameters should specified as random and which distribution 

to choose.  Results are likely to be sensitive to the choice of distribution, and mis-

specifying a distribution (e.g. constraining a distribution to  positive values when 

in fact there is density on both sides of zero) can lead to biased results (Amaya-

Amaya et al. 2008; Greene & Hensher 2003; Hole 2008; Wedel et al. 1999).  A 

continuous distribution of preferences can also be more difficult to interpret than 

a small number of distinct latent classes (Boxall & Adamowicz 2002; Wedel et 

al. 1999).  

Greene and Hensher (2003) suggested that a latent class model can be 

thought of as a non-parametric approximation of the continuous random 

parameters model that avoids the problem of specifying which parameters are in 

fact random and their distributions.  However, latent class models pose the 

analogous challenge of correctly specifying the number of classes.  Like the 

specification of random distributions in the mixed logit, there is little theory to 

guide this specification.  In practice, classes are generally added so long as the 

additional class is associated with a decrease in the BIC (Boxall & Adamowicz 

2002; Hernández Alava et al. 2012), but this arbitrary approach to specifying the 

number of latent class offsets to some degree the non-parametric advantage of a 

latent class model (Greene & Hensher 2003; Hole 2008).   

Boxall and Adamowicz (2002) regard the latent class model as a balance 

between the perfect homogeneity of a pooled model, where each individual is 

assumed to have identical preferences, and the perfect heterogeneity of a random 

parameters model, where each individual can be thought of as their own 

individual latent class.  In this light, they characterised the difference between a 
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random parameters and a latent class model as the difference between 

incorporating heterogeneity and explaining heterogeneity.  With a random 

parameters model, individual preferences differ only because each individual is 

an independent draw from a specified random distribution (Morey & Greer 

Rossmann 2003), while in a latent class model, individual preferences can be 

explicitly related to latent or observed characteristics as well as observed choices.  

Furthermore, in contrast to the classical interaction approach to incorporating 

heterogeneity, which deterministically divides individuals into groups based 

solely on observed characteristics, a latent class model assigns individuals to 

classes probabilistically, allowing for different preferences among individuals 

with the same observed characteristics.  This ability to explain individual 

heterogeneity as a function of observed and unobserved individual characteristics 

is the key advantage of the latent class model relative to the classical interaction 

or random parameters approaches.  Although it is almost certainly a 

simplification to assume homogeneous preferences within latent classes, such 

simplification greatly enhances the interpretability and salience of the estimates.  

Latent class models do not appear to have been used previously to analyse stated 

preferences in a healthcare context, although they have been used in marketing 

and transportation applications (Ramaswamy & Cohen 2007; Greene & Hensher 

2003).  Given its potential advantages, a latent class multinomial logit model was 

tested alongside the simple pooled multinomial logit in identifying a preferred 

modelling approach.   

Within a latent class approach, the ability of the preferred specification to 

distinguish between the latent classes was assessed in terms of relative entropy 

(E), or relative classification certainty, defined as: 

 
 =   

 ∑ ∑   (    ∙     (  (     
 
   

 
   

 ∙    (  
 

(8.6) 

Where N is the number of individuals in the data, C is the total number of classes 

in the model, and   (     is the probability of individual i being a member of 

class c (Dias & Vermunt 2006).  Relative entropy is measured on a [0, 1] scale, 

with values toward 1 suggesting highly stable classifications with clear 

distinction between classes, and values toward 0 suggesting highly unstable 

classifications with no clear distinctions.  
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8.2.1 Relating individual characteristics to latent class membership 

The significance of individual characteristics in predicting latent class 

membership was assessed with a linear logit model, transforming the predicted 

probability of each individual’s membership in class c to the logit scale, and 

estimating a linear model with dummy-coded parameters for agent status, 

university or college graduate, gender, and ‘fast completer,’ along with 

categorical age group.  Although education was not collected as part of the agent 

questionnaires, it was assumed that all agents had graduated college or 

university.  Given the perfect collinearity between agent status and the 

graduation flag induced by this assumption, the model was also specified 

without agent status to exclude its potentially confounding effect.  The relative 

effect of each factor (f) on the overall probability membership in class c [Pr(c)] 

was calculated as   (    (   ∙    (   (Gujarati 1988). 

As Clark and Muthén (2009) note in discussing approaches to relating 

individual covariates to latent class membership, the probability regression 

approach is superior to deterministically assigning class membership on the basis 

of the highest probability as it allows for differences in probability between 

individuals.  Specifically, a deterministic approach does not account for the fact 

that one individual may have a 51 percent probability of class membership while 

another may have a 99 percent probability of membership; both individuals 

would be assigned a deterministic weight of 1.0.  However, they also note that in 

treating the probability of class membership as an observation rather than a 

probabilistic estimate, the probability regression approach may under-estimate 

the error and potentially over-estimate statistical significance.  One way to 

compensate for this over-estimation of significance is to adopt a more rigorous 

threshold for statistical significance.  However, the magnitude of such under-

estimation is negatively related to entropy: as entropy approaches 1.0 (perfect 

classification certainty), the error associated with treating class membership as an 

observation approaches zero.  In a model with reasonably entropy, the error in 

significance is not overly problematic.  As such, the same 0.10 significance 

threshold used elsewhere in the analysis was used to assess the statistical 

significance of the p-values the on the individual covariates after adjusting for 

multiple simultaneous comparisons. 
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8.3 Estimating welfare effects using compensating variation 

The coefficients from the DCE statistical model represented the change in 

systematic utility given a 1-unit change in an attribute.  However, the 

interpretation of these coefficients is complicated by the fact that many were 

measured on different scales.  Age, for example, was measure in years, while 

severity was measured on a 0 to 1 quality scale, and the number of patients 

treated was measured in terms of persons.  To transform these marginal utility 

estimates to a common scale, the analysis of the pilot survey used marginal rates 

of substitution (MRS), calculated as the ratio of the coefficients on a particular 

attribute to the coefficient on individual life years gained.  This represents the 

rate at which respondents would be willing to trade-off individual life year gains 

for a 1-unit change in another attribute.  However, this interpretation of MRS 

only holds when the value function is strictly additive, and for a marginal change 

in single attribute (Lancsar et al. 2007).   

Compensating variation (CV) is conceptually similar to MRS, and indeed 

if the only change in the ‘state of the world’ is a 1-level increase or decrease in a 

single attribute, CV and MRS are identical (Ryan 2004; Silva 2004).  However, 

the advantage of CV is that it can also accommodate discrete changes in multiple 

attributes, as well as multiplicative interaction terms (Small & Rosen 1981; 

Lancsar & Savage 2004).  This means that CV can value changes in entire 

scenarios, rather than just a change in a single attribute.  CV is measured in 

terms of the amount of some valued good that an individual would theoretically 

be willing to sacrifice in order to secure that change.  Specifically, it measures 

how much of that good – the numeraire – could be taken away from an 

individual following a change so as to leave them at the same level of well-being 

as before the change (Feldman & Serrano 2006).  This is illustrated in Figure 8.1 

below.  

In this figure, an individual has an initial allocation of goods X and Y 

shown by point 1 on the budget constraint shown by the dashed line AA, and 

tangential to the indifference curve U1.  If, as the result of a policy change, good 

X becomes relatively less costly and shifts the budget constraint outward to AA1, 

the individual will move to point 2, tangential to the more preferred indifference 

curve U2.  This move from point 1 to point 2 is a combination of a ‘substitution 
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effect’ and an ‘income effect’.  The substitution effect, allowing for a change in 

prices but holding income constant, moves the utility maximising allocation 

from point 1 to point 3 on the original indifference curve U1.  The income effect, 

allowing for a change in income but holding prices constant, moves the utility 

maximising point from point 3 to point 4, on the new budget constraint AA1 and 

tangential to the more preferred indifference curve U2.  Together, the two effects 

combine to move the utility maximising point to point 2.  The welfare effect of 

this policy change, taking Y as the numeraire, can be estimated by the vertical 

distance between the new budget line, AA1, and a hypothetical budget line, BB, 

parallel to budget line AA1 and tangential to the original indifference curve at 

point 3.  This distance, CV1→2, is the amount of the numeraire that could be 

taken away from the individual, given the new implicit prices of X and Y, so as 

Figure 8.1: Illustrating compensating variation 

CV1→2 

CV2→1 
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to leave him exactly as well off as before the change.  This can be interpreted as 

an individual’s maximum willingness-to-sacrifice in order to secure a change 

from point 1 to point 4 (Feldman & Serrano 2006; Zerbe & Dively 1994).   

Conversely, if the individual was initially at point 2 and a policy change 

increases the relative price of X, shifting the budget constraint from AA1 to AA, 

the individual would move to point 1, tangent to the less preferred indifference 

curve U1.  The welfare effect associated with this move can be estimated, as 

above, by the vertical distance between the new budget constraint, AA, and a 

hypothetical, parallel budget constraint, CC, tangential to the original 

indifference curve at point 4.  In the case of a move to a less preferred point, this 

distance, CV2→1, represents the minimum amount of the numeraire that the 

individual would be willing-to-accept in order to agree to the change.  However, 

as illustrated in Figure 8.1 the individual’s minimum willingness-to-accept in 

compensation for a move from point 2 to point 1 (CV2→1) is much larger than his 

maximum willingness-to-pay to secure a move from point 1 to point 2 (CV1→2), 

despite the fact that he is moving between the same two points (Feldman & 

Serrano 2006). 

This apparent inconsistency in the welfare effect of a move between 

points 1 and 2 is driven by the interaction between the income and substitution 

effects, as the preferred level of X depends on the current level of the numeraire, 

Y.  This can be resolved, though, by assuming that individual utilities are 

‘quasilinear’.  Under this assumption, Y is considered to be a special good that 

enters every individual’s utility function additively.  The numeraire can be any 

good, but is most intuitively understood as wealth or income.  A quasilinear 

utility function can be written as: 

   =   (    μ   (8.7) 

Where individual utility (Ui) is some function of X, plus the amount of the 

numeraire, Y, weighted by µ, the constant marginal utility of Y.  In this form 

each individual’s indifference curves are parallel, with a shape given by   (    

and a vertical shift given by Δ  , with the implication that the preferred level of X 

does not depend on Y (Feldman & Serrano 2006).  The estimation of 
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compensating variation under an assumption of quasilinear utility functions is 

illustrated in Figure 8.2. 

 In this figure, as in Figure 8.1 earlier, an individual is initially at point 1 

and moves to point 2 as the result of a decrease in the price of X, shifting the 

budget constraint from AA to AA1.  Again, this move is a combination of 

substitution and income effects as a result of the change in price and the implicit 

change in income, respectively.  The substitution effect, holding income 

constant, results in a shift from point 1 to point 3 on the initial indifference curve 

(U1) and an increase in the preferred level of X from X1 to X2.  The income 

effect, holding prices constant, results in a shift from point 3 on the initial 

indifference curve to point 2 on the more preferred indifference curve (U2).  

Figure 8.2: Compensating variation with quasilinear utility 

CV1→2 

EV2→1 

CV2→1 

EV1→2 
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However, under an assumption of quasilinear utility, the income effect shown in 

Figure 8.2 does not induce an additional change in X. 

As earlier, the CV associated with a move from point 1 to point 2, based 

on the prices at point 2, is given by the vertical distance between AA1 and BB, 

and the CV associated with moving from point 2 back to point 1, based on the 

prices at point 1, is given by the vertical distance between AA and CC.  

However, unlike in Figure 8.1, the CV associated with the two moves is 

equivalent.  By removing income effects from the quasilinear utility function, CV 

is not dependent upon the initial starting point, and the welfare effect, in terms of 

Y, is consistent regardless of the direction of change.  This consistency equates 

compensating variation with the related concept of equivalent variation (EV).  

Whereas CV is a measure of the welfare effect based on the new prices, EV is a 

measure of welfare effect based on the original prices (Feldman & Serrano 2006).  

For a move from point 1 to the more preferred point 2, EV is a measure of how 

much of the numeraire an individual would be willing-to-accept in order to 

forego the move, while for a move from point 2 to the less preferred point 1, EV 

is a measure of how much of the numeraire an individual would be willing-to-

pay in order to prevent the change.  As shown in Figure 8.2, under an 

assumption of quasilinear preferences the willingness-to-pay to secure a move 

from point 1 to point 2 (CV1→2) is equivalent to the willingness-to-pay to avoid a 

move from point 2 to point 1 (EV2→1).  This symmetry between CV and EV 

means that the initial position is arbitrary, and that it is possible to consistently, 

and arguably more intuitively, interpret welfare effects in terms of the 

willingness-to-pay to secure a move to a more preferred level, or to avoid a move 

to a less preferred level. 

In the context of the elicitations here, quasilinear utility implies that the 

preferred level of a particular attribute does not depend on the number of 

individual life years gained, similar to the utility independence condition 

commonly assumed to underlie the QALY model.  This condition holds that 

preferences for a particular health state are independent of its duration (Pliskin et 

al. 1980; Miyamoto & Eraker 1988).  This is undoubtedly a simplification, as 

there are reasons other than income effects for a divergence between CV and EV.  

These include endowment effects, or the idea that individuals value losses more 
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highly than gains (Kahneman & Tversky 1979), and moral property rights or 

intrinsic values, which may make more reluctant to accept compensation for a 

loss than to sacrifice for a gain (Boyce et al. 1992; Shogren et al. 1994).  

Likewise, Tsuchiya and Dolan (2005) showed that the utility independence 

assumption may not always hold, and that individuals’ preferences for a health 

state may indeed depend upon its duration.  However, the estimation of 

compensating variation under an assumption of quasilinear utility is consistent 

with conventional stated preference methods (Jedidi & Zhang 2002; Lancsar & 

Savage 2004; Lancsar et al. 2007) and has been applied in a recent societal 

preference elicitation of distributive preferences in healthcare (Baker et al. 2010; 

Lancsar et al. 2011).  Note that this assumption does not imply that respondents 

would not be willing to sacrifice life year gains in order to secure a more 

preferred level of an attribute, or that respondents would not be willing to 

sacrifice other attributes in order to secure greater individual life years gains.   

Based on these assumptions, compensating variation, or the change in 

welfare associated with a change in attribute levels was calculated in the context 

of a ‘state of the world model’ (Small & Rosen 1981; Ryan 2004; Silva 2004) as: 

    :   =
 

    

[       
(8.8) 

Where βLYg is the coefficient on the numeraire, life years gained, or the constant 

marginal utility of one additional life year gained, and v0 and v1 are the scenario 

utilities before and after a change in one or more attribute levels, respectively.  In 

the case of a move to a more preferred scenario, CV will be negative (life year 

gains must be taken away to return utility to the pre-change level), while in the 

case of a move to a less preferred scenario, CV will be positive (life years must be 

added to return utility to the pre-change level).  The magnitude of the CV 

estimates for different scenarios where the only change was a 1-level move away 

from the baseline level was taken to represent the relative strength of preferences 

for the new levels relative to the baseline level.  Note that these potential life year 

gains were assumed to accrue to other individuals in society, not to the 

respondent. 
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The estimate of compensating variation associated with each attribute 

was used to test the null hypothesis that changes in attribute levels other than 

individual life years gained would have no impact on welfare, and that 

respondents would not be willing to sacrifice individual life year gains for equity 

or distributive justice goals.  The use of aggregate, rather than individual, life 

year gains as the numeraire was considered, but ruled out on the grounds that 

this would imply a default preference for aggregate life year gains that may not 

hold.  Statistically significant welfare effects were taken as a rejection of the null 

hypothesis for that attribute. 

8.3.1 Scenario rankings 

The compensating variation results, which considered marginal 

preferences holding all other attributes constant, were supplemented by ranking 

each scenario in the experimental design by its predicted utility, allowing for all 

attributes to vary simultaneously.  DCE scenario utilities were calculated by 

weighting the attribute levels in each scenario by the attribute coefficients derived 

from the statistical model.  Spearman’s rho was calculated to provide a sense of 

the strength and direction of association between each attribute level and a 

scenario’s relative ranking.  As the scenarios were ranked by descending utility, a 

negative correlation coefficient implies that the relative rank of a scenario 

improved as an attribute level increased, while a positive correlation coefficient 

implies that relative rank worsened as an attribute level increased.   

The probability of choice for each DCE scenario was calculated relative 

to a reference scenario with all attributes at their middle (baseline) level, 

although this scenario was not actually shown to respondents in the choice tasks.  

The probability of choosing each scenario over the reference scenario was 

calculated in the context of a conventional multinomial logit model (McFadden 

1974): 

   (        =
     

                
 (8.9) 

Where i was a specific scenario, ref was the reference scenario, and β and x were 

vectors of attribute coefficients and levels, respectively. 
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8.4 DCE results 

A number of alternative models and functional forms were tested, 

including pooled and latent class multinomial logit (MNL) models, and strictly 

additive main effects or main effects with life year gains interactions value 

functions.  The different model and value specifications are shown in Appendix 

8.1, ranked by improving log likelihood, AICc and BIC.  Only specifications that 

were associated with an improvement over the previous in terms of at least one 

of these criteria are shown. 

The additive main effects MNL pre-specified at the experimental design 

stage had the worst fit relative to the other specifications tested.  The interaction 

between final health state and life years gained included in the pre-specified 

value function was not significant in the additive main effects MNL, but 

replacing it with an interaction between initial and final health state improved 

the fit by all information criteria, as did the inclusion of life year interactions 

with each of the main effects.  The main effects remained significant after the 

introduction of life year interactions, suggesting that respondents may have 

derived value from allocating resources on the basis of these attributes, 

independent of the number of life years gained.  A parsimonious version of this 

additive interaction model was associated with an insignificant decrease in log-

likelihood and improvements in AICc and BIC.  Dummy coded main effects 

also improved model fit, suggesting non-linearity in preferences across these 

terms.  Despite the penalties associated with the substantial increase in the 

number of parameters, the latent class model was preferred to the pooled logit on 

the basis of AICc and BIC, indicative of significant unobserved heterogeneity in 

preferences.  Overall, a parsimonious version of the 3-class latent class logit with 

continuous main effects and life year gains interactions was preferred by BIC, 

while a 2-class, dummy coded main effects specification with continuous life 

year gains main effects and interactions was preferred on the basis of log 

likelihood and AICc.  Although a 3-class dummy coded specification was 

associated with further improvement in fit by the information criteria, it had very 

high standard errors in one class.  Hole (2008), in discussing the trade-off 

between model fit and the precision of the parameters, suggested that fewer 

classes with more precise parameters are generally preferred.  A parsimonious 
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version of the 2-class dummy coded specification, excluding the non-significant 

interaction between life year gains and final health state, did not converge.   

8.4.1 Overall DCE results 

Although the more parsimonious 3-class continuous specification was 

preferred by BIC, the 2-class dummy coded specification had the advantage of 

allowing for non-linear preferences over the levels presented in the survey, and 

was preferred in terms of log-likelihood and AICc.  The results of this model, 

weighting the class-specific coefficients by the individual probability of class 

membership, are shown in Appendix 8.2.  The intercept, or alternative specific 

constant (ASC) was not significant in the overall results, as expected in a generic 

design.  Most of the other coefficients were significant at the 0.10 threshold and 

moved in the directions anticipated by the empirical ethics review.  The 

insignificant coefficients in these overall results, specifically the dummy on the 

lower level of total patients treated, and the interactions between life years 

gained and final health state and total patients treated, were significant in one of 

the two latent classes and were therefore retained in the overall result.  The use 

of life years gained as the numeraire in estimating compensating variation 

appeared justified, as the model showed that the marginal utility of an additional 

life year gained was positive and highly significant (βLYg=0.28, p < 0.001), 

suggesting that individual life year gains were indeed valued by respondents.   

The use of non-linear dummy coded parameters in modelling the overall 

results appeared to have only limited justification based on the results of Wald 

tests, shown below in Table 8.2.  If preferences were linear over an attribute, the 

negative slope coefficient at one end of the range would offset the positive slope 

coefficient at the other end of the range, and the sum of the two coefficients 

would not be significantly different than zero.  The Wald tests showed that the 

sum of the slope coefficients on the high and low dummy-coded parameters were 

not significantly different than zero for age and initial health state, while final 

health state was only significant at a 0.10 threshold.   
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Table 8.2: Wald tests of non-linearity in dummy-coded parameters 

Attribute levels Difference Std. Error Diff/Std. err Adj. p-value Sig 

Age(10) + Age(70) 0.41 0.34 1.21 0.45  

U0(0.1) + U0(0.9) -0.24 0.37 -0.63 0.53  

LE(1m) + LE(10yrs) -0.79 0.19 -4.08 <0.001 *** 

U1(0.1) + U1(0.9) -1.02 0.44 -2.30 0.06 + 

nPats(100) + nPats(5000) 1.37 0.55 2.48 0.04 * 

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

U0=initial health state; LE=life expectancy; U1=final health state; nPats=number of patients treated 

 

The compensating variation (CV) associated with an upward or 

downward change in the level of each attribute, relative to a baseline state with 

all attributes at their middle level, are also shown graphically in Figure 8.3, and 

detailed in Table 8.3.  To clearly illustrate which attribute levels were more 

preferred and less preferred relative to the reference level, the y-axis was reversed 

to show more preferred scenarios (negative CV) above zero, and less preferred 

scenarios (positive CV) below zero. 

Table 8.3: DCE compensating variations by change in attribute levels 

Attributes Attribute levels 
CV (95% CI),  

Baseline → Low 

CV (95% CI),  

Baseline → High 

Patient age 10y/o - 40y/o - 70y/o -4.36  (-7.45, -1.26) 2.91  (0.91, 4.91) 

Initial health state 0.1 - 0.5 - 0.9 -0.57  (-1.63, 0.48) 1.41  (-0.55, 3.36) 

Life expectancy 1m - 5yrs - 10yrs 3.57  (1.82, 5.32) -0.77  (-1.30, -0.25) 

Final health state 0.1 - 0.5 - 0.9 2.88  (1.34, 4.43) 0.71  (-1.27, 2.69) 

Total patients treated 100 - 2500 - 5000 -0.60  (-2.03, 0.83) -4.20  (-6.55, -1.86) 

CV=compensating variation; 95% CI = 95% confidence interval.  CVs are for a change away from the 

baseline (middle) level, holding all other attributes at their baseline level.  Statistically significant CVs are 

shown in bold. 

Confidence intervals that did not cross zero were taken to be statistically 

significant.  Negative CVs indicated a positive welfare effect (i.e. a quantity of 

the numeraire could be taken away following a change in attribute levels and 

leave respondents at least as well-off as before the change), and positive CVs 

indicated a negative welfare effect (i.e. a quantity of the numeraire would have to 

be added following a change in attribute levels to leave respondents at least as 

well-off as before the change).   
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Figure 8.3: DCE compensating variations by attribute 
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The statistically significant CVs associated with the upper and lower 

levels of patient age suggested that there were positive welfare effects associated 

with prioritising 10-year-old patients, and negative welfare effects associated 

prioritising 70 year-old patients, although this effect was weaker than in the 

younger age group.  Contrary to the expectation of a preference for prioritising 

more severe patients suggested by the empirical ethics review, there were no 

significant effects over initial health state and negative welfare effects associated 

with prioritising patients with the shortest untreated life expectancy.  There was 

a small but statistically significant welfare gain associated with prioritising 

patients with the longest initial life expectancy.  There was also a significant 

welfare loss associated with prioritising patients that would finish in the worst 

final health state after treatment, but no significant effect associated with patients 

that ended up in the best final health state.  Finally, there was a significant 

welfare gain associated with treating 5000 over 2500 patients, but no significant 

welfare loss associated with treating 100 rather than 2500 patients.   

Overall, the greatest welfare gains were associated with prioritising 10-

year-old patients over 40-year-old patients, and treating an additional 2500 

patients over the baseline scenario.  Conversely, the greatest welfare losses were 

associated with giving priority to patients with the shortest life expectancy, the 

oldest age or the worst final health state.  The greatest absolute difference in CV 

between the high and low levels of an attribute, taken as an indicator of relative 

importance, was over patient age (ΔCV=7.27, 95% CI: 2.53, 12.01), followed by 

individual life years gained (ΔCV=5.43, 95% CI: 2.32, 8.54). 

8.4.2 DCE scenario rankings 

The utility associated with each DCE scenario was calculated by 

weighting the attribute levels in each choice alternative by the overall finite 

mixture model coefficients shown in Appendix 8.2.  The 11 choice tasks in each 

of the two design blocks presented 22 different choice sets, for a total of 44 

scenarios.  The two choice sets (4 scenarios) that were re-presented in repeated 

task of each block were excluded, as was one of the choice sets (2 scenarios) 

from the test of dominance in the second design block, as this set was identical in 

both blocks, leaving a total of 38 scenarios to be ranked.  A reference scenario, 
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with all attributes at their middle (baseline) level, was included as a comparator, 

although this scenario was not actually shown to respondents.   

These scenarios, ranked from most to least preferred in terms of their 

predicted utility and probability of choice relative to the reference scenario, are 

presented in Table 8.4, along with Spearman correlation coefficients showing the 

association between attribute levels and scenario rank.  As a reminder, the 

scenarios were ranked by descending utility, so a negative correlation coefficient 

implies that the relative rank of a scenario improved as an attribute level 

increased, while a positive correlation coefficient implies that rank worsened as an 

attribute level increased.  

Table 8.4: DCE scenario rankings by predicted utility and probability of choice 

Rank Age U0 LE U1 LYg nPats 
Ind. 

QALYs 

Agg. 

QALYs 
Utility 

Prob. of 

choice  

1 10 0.5 5 0.5 10 5000 5.00 25000 5.19 90.5% 

2 40 0.1 0.083 0.9 10 2500 9.07 22666 5.01 88.9% 

2 40 0.1 0.083 0.9 10 2500 9.07 22666 5.01 88.9% 

4 10 0.1 10 0.5 5 100 6.50 650 4.81 86.8% 

5 10 0.1 0.083 0.5 10 100 5.03 503 4.81 86.7% 

6 10 0.5 10 0.5 1 2500 0.50 1250 4.54 83.3% 

7 10 0.5 5 0.9 10 100 11.00 1100 4.47 82.3% 

8 70 0.5 5 0.9 10 5000 11.00 55000 4.37 80.8% 

9 40 0.5 10 0.5 5 5000 2.50 12500 4.36 80.7% 

10 40 0.5 10 0.5 10 2500 5.00 12500 3.84 71.2% 

11 10 0.5 0.083 0.1 10 5000 0.97 4834 3.62 66.5% 

12 70 0.1 0.083 0.9 5 5000 4.57 22832 3.56 65.2% 

13 40 0.1 10 0.1 10 5000 1.00 5000 3.50 63.8% 

14 10 0.5 0.083 0.1 1 5000 0.07 334 3.26 58.1% 

15 40 0.5 10 0.9 5 100 8.50 850 3.23 57.4% 

16 40 0.1 5 0.5 1 5000 2.50 12500 3.15 55.4% 

17 70 0.1 5 0.1 10 100 1.00 100 2.95 50.4% 

Ref. 40 0.5 5 0.5 5 2500 2.50 6250 2.93 50.0% 

18 10 0.9 0.083 0.9 1 5000 0.90 4500 2.81 46.9% 

19 40 0.9 0.083 0.5 10 5000 4.97 24834 2.74 45.2% 

20 10 0.5 0.083 0.1 10 2500 0.97 2417 2.72 44.7% 

21 70 0.9 10 0.5 10 2500 1.00 2500 2.63 42.4% 

22 10 0.1 10 0.1 5 2500 0.50 1250 2.38 36.6% 

23 10 0.9 5 0.9 5 100 4.50 450 2.38 36.6% 

23 70 0.1 5 0.5 5 2500 4.50 11250 2.27 34.1% 

25 10 0.9 5 0.9 5 2500 4.50 11250 2.17 31.9% 
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26 40 0.5 5 0.9 1 2500 2.90 7250 2.11 30.4% 

27 40 0.9 0.083 0.1 5 2500 0.43 1084 2.04 29.0% 

28 40 0.1 0.083 0.5 5 2500 2.53 6333 2.02 28.6% 

29 70 0.9 10 0.9 10 5000 9.00 45000 1.86 25.4% 

30 10 0.1 10 0.1 1 2500 0.10 250 1.83 24.9% 

31 70 0.1 10 0.1 5 5000 0.50 2500 1.48 19.0% 

32 40 0.9 10 0.9 1 100 0.90 90 1.40 17.7% 

33 40 0.5 0.083 0.1 5 100 0.47 47 1.25 15.7% 

34 70 0.5 0.083 0.5 5 100 2.50 250 1.25 15.7% 

35 70 0.5 10 0.9 1 100 4.90 490 1.18 14.8% 

36 40 0.9 0.083 0.5 1 2500 0.47 1167 1.15 14.4% 

37 40 0.1 0.083 0.5 1 100 0.53 53 0.55 8.4% 

38 40 0.1 5 0.1 1 100 0.10 10 -0.47 3.2% 

           

Rank 

corr. 
0.34 0.21 0.06 -0.21 -0.53 -0.22 -0.55 -0.44   

Age=patient age; U0=initial health state; LE=initial life expectancy; U1=final health state; nPats=patients 

treated; LYg=individual life years gained; Ind. QALYs=QALYs gained per patient; Agg. QALYs=Aggregate 

QALYs (individual QALYs weighted by total patients treated); Utility=Predicted utility from DCE choice model; 

Prob. of choice=Probability of choosing a particular scenario compared to the reference scenario.  The 

reference scenario is shown in bold. 

 

The correlation coefficients suggested that respondents valued individual 

health gains, with larger individual QALY gains and individual life year gains 

having moderate to strong associations with better scenario rankings.  Larger 

aggregate QALY gains and better final health states were also associated with 

better scenario rankings, while increasing patient age and initial health state were 

associated with poorer rankings.  Each of the top five scenarios had individual 

QALY gains in the top 20 percent across all scenarios, and three of the top five 

scenarios had aggregate QALY gains in the top 10% across all scenarios.  

Likewise, seven of the bottom ten scenarios had aggregate QALY gains in the 

bottom 20 percent across all scenarios.  However, four scenarios among the top 

ten, all presenting 10 year old patients, had aggregate QALY gains well below 

the median, and the two scenarios with the largest and the second largest 

aggregate QALY gains, in both cases accruing to 70 year old patients, were 

ranked 8th and 29th out of the 38 scenarios.  Although QALY gains appeared to 

be strongly associated with higher rankings, scenarios with relatively small 

aggregate QALY gains were often ranked favourably when these gains accrued 
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to the youngest patients, while relatively large QALY gains to older patients 

were less favourably ranked. 

The predicted probability of choice of the most preferred scenario suggests 

that 91 percent of respondents would be expected choose that scenario over the 

reference, while only 3 percent of respondents would be expected to choose the 

least preferred alternative over the reference.  By definition, the reference 

scenario had a 50 percent probability of choice relative to itself, which can be 

interpreted as indifference, or an equal probability of choice between two 

identical alternatives.   

In order to control for the strong effect of age and more clearly illustrate 

how the other attributes interacted to drive choice, the scenarios are re-presented 

in Table 8.5 ordered by utility and choice probability within each age level as a 

form of two-way sensitivity analysis.  Note that because the experimental design 

was not perfectly orthogonal, the number of scenarios in each age stratum is not 

equal. 

Table 8.5: Age-stratified DCE scenario rankings by predicted utility and probability of 

choice 

Overall 

rank 

Rank 

within 

age 

U0 LE U1 LYg nPats 
Ind. 

QALYs 

Agg. 

QALYs 
Utility Pr(Choice) 

Age 10 

1 1 0.5 5 0.5 10 5000 5.00 25,000 5.19 90.5% 

4 2 0.1 10 0.5 5 100 6.50 650 4.81 86.8% 

5 3 0.1 0.083 0.5 10 100 5.03 503 4.81 86.7% 

6 4 0.5 10 0.5 1 2500 0.50 1,250 4.54 83.3% 

7 5 0.5 5 0.9 10 100 11.00 1,100 4.47 82.3% 

11 6 0.5 0.083 0.1 10 5000 0.97 4,834 3.62 66.5% 

14 7 0.5 0.083 0.1 1 5000 0.07 334 3.26 58.1% 

18 8 0.9 0.083 0.9 1 5000 0.90 4,500 2.81 46.9% 

20 9 0.5 0.083 0.1 10 2500 0.97 2,417 2.72 44.7% 

22 10 0.1 10 0.1 5 2500 0.50 1,250 2.38 36.6% 

23 11 0.9 5 0.9 5 100 4.50 450 2.38 36.6% 

25 12 0.9 5 0.9 5 2500 4.50 11,250 2.17 31.9% 

30 13 0.1 10 0.1 1 2500 0.10 250 1.83 24.9% 

Age 40 

2 1 0.1 0.083 0.9 10 2500 9.07 22,666 5.01 88.9% 

9 2 0.5 10 0.5 5 5000 2.50 12,500 4.36 80.7% 
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10 3 0.5 10 0.5 10 2500 5.00 12,500 3.84 71.2% 

13 4 0.1 10 0.1 10 5000 1.00 5,000 3.50 63.8% 

15 5 0.5 10 0.9 5 100 8.50 850 3.23 57.4% 

16 6 0.1 5 0.5 1 5000 2.50 12,500 3.15 55.4% 

Ref. Ref. 0.5 5 0.5 5 2500 2.50 6,250 2.93 50.0% 

19 7 0.9 0.083 0.5 10 5000 4.97 24,834 2.74 45.2% 

26 8 0.5 5 0.9 1 2500 2.90 7,250 2.11 30.4% 

27 9 0.9 0.083 0.1 5 2500 0.43 1,084 2.04 29.0% 

28 10 0.1 0.083 0.5 5 2500 2.53 6,333 2.02 28.6% 

32 11 0.9 10 0.9 1 100 0.90 90 1.40 17.7% 

33 12 0.5 0.083 0.1 5 100 0.47 47 1.25 15.7% 

36 13 0.9 0.083 0.5 1 2500 0.47 1,167 1.15 14.4% 

37 14 0.1 0.083 0.5 1 100 0.53 53 0.55 8.4% 

38 15 0.1 5 0.1 1 100 0.10 10 -0.47 3.2% 

Age 70 

8 1 0.5 5 0.9 10 5000 11.00 55,000 4.37 80.8% 

12 2 0.1 0.083 0.9 5 5000 4.57 22,832 3.56 65.2% 

17 3 0.1 5 0.1 10 100 1.00 100 2.95 50.4% 

21 4 0.9 10 0.5 10 2500 1.00 2,500 2.63 42.4% 

23 5 0.1 5 0.5 5 2500 4.50 11,250 2.27 34.1% 

29 6 0.9 10 0.9 10 5000 9.00 45,000 1.86 25.4% 

31 7 0.1 10 0.1 5 5000 0.50 2,500 1.48 19.0% 

34 8 0.5 0.083 0.5 5 100 2.50 250 1.25 15.7% 

35 9 0.5 10 0.9 1 100 4.90 490 1.18 14.8% 

Age=patient age; U0=initial health state; LE=initial life expectancy; U1=final health state; nPats=patients 

treated; LYg=individual life years gained; Ind. QALYs=QALYs gained per patient; Agg. QALYs=Aggregate 

QALYs (individual QALYs weighted by total patients treated); Utility=Predicted utility from DCE choice model; 

Pr(Choice)=Probability of choosing a particular scenario compared to the reference scenario.  The reference 

scenario is shown in bold. 

Consistent with the overall results, the age-stratified results appeared to 

emphasise the importance of survival gains and aggregate QALYs, as the most 

highly ranked scenario within each age strata had the highest level of individual 

life year gains as well as substantial aggregate QALY gains.  However, there also 

appeared to be an offsetting preference against individuals in the best initial 

health state, as scenarios associated with some of the greatest aggregate QALY 

gains were ranked relatively poorly when they accrued to patients in the best 

initial health state.  The absolute gain in health-related utility appeared less 

important than survival gains, as a number of the highly ranked scenarios within 

each age strata were associated with no change between the initial and final 

health states. 
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The scenarios were also stratified by initial life expectancy (not shown) to 

explore its relationship with individual life year gains.  The empirical ethics 

review suggested that respondents might be indifferent over the number of life 

years gained in scenarios where patients faced imminent death on the grounds 

that any gain would be valuable, because as Harris (1985) argues, it is all the 

time they have left.  Contrary to this hypothesis, however, scenarios with larger 

individual life year gains were consistently ranked more favourably than 

scenarios with smaller life year gains when patients had a life expectancy of only 

1 month.  A similar pattern was found in scenarios where life expectancy was 5 

years, but there was no clear preference over life year gains when initial life 

expectancy was 10 years. 

8.4.3 DCE results by latent class 

Overall, the probability of being in a particular latent class was 

approximately equal, as there was a 48 percent probability of belonging to class 1 

and a 52 percent probability of belonging to class 2.  As shown in Figure 8.4, 

however, the individual probability of membership had a bimodal distribution, 

with peaks at very high and very low probabilities of membership, suggesting a 

clear distinction between classes at the individual level.  This was supported by 

the estimate of the relative entropy, which measured the model’s ability to 

distinguish between 

latent classes.  The 

relative entropy of the 

two-class model was 

0.67 on a 0-1 scale, 

suggesting a moderate 

ability to distinguish 

between the latent 

classes. 

  

Figure 8.4: Latent class 1 membership probability density 



 

240 

The logit-transformed probability regression model found that university 

or college graduation, gender and age group were not statistically significant 

predictors of the probability of latent class membership, but agent and ‘fast 

completer’ status were significant at a 0.10 threshold.  After excluding the 

insignificant parameters and re-estimating the model, agent status was associated 

with a statistically significant 33 percent relative reduction in the probability of 

membership in class 1 (adjusted-p=0.04).  From an overall probability of 

belonging to latent class 1 of 48 percent, the probability of an agent belonging to 

class 1 was 32 percent, with a corresponding 68 percent probability of belonging 

to class 2, suggesting that agents were twice as likely to belong to class 2 as class 

1.  Fast completion was associated with a 25 percent reduction in the probability 

of membership in class 1, but this reduction failed to meet a 0.10 significance 

threshold (adjusted-p=0.12).  A model excluding agent status, specified to avoid 

possible confounding with education, found that none of the remaining factors 

were significant at a 0.10 threshold.    

The latent class coefficients shown in Appendix 8.3 indicated that the 

majority of coefficients were significant at a 0.10 threshold in both classes, 

although the standard errors were notably larger in class 1 than in class 2.  The 

alternative specific constant in class 1 was not significant, although the constant 

in class 2 was significant and positive, suggesting some a priori preference for 

Alternative B (the right-hand side alternative) among these respondents.  Several 

other coefficients were notable for the difference in sign and magnitude between 

the two classes.  For example, the signs on the coefficients on the lowest and 

highest levels of patient age, as well as the age-life years gained interaction term, 

were reversed between class 1 and class 2.  In addition, the size of the 

coefficients on the dummy-coded age parameters was substantially different.  

However, as the coefficients on the dummy-coded main effects and the age-life 

year interaction term moved in opposite directions in the two classes, it was 

difficult to anticipate the net effect of a change in age on expected utility and 

compensating variation.  The coefficients also showed that use of life years 

gained as the numeraire in the compensating variation calculations was justified 

by its positive and significant coefficient in both classes.  The difference in the 
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marginal utility of an additional life year gained between classes was not 

significant (difference=0.01, p=0.92). 

Wald tests on the sum of the slope coefficients on the high and low levels 

of the dummy-coded parameters, shown in Table 8.6, were much more 

suggestive of non-linearity in the main effects by latent class than in the overall 

results.  Interestingly, although the magnitude of the non-linearities was 

generally smaller in class 2 than class 1, they were also more strongly significant. 

Table 8.6: Wald tests of non-linearity in dummy-coded parameters, by latent class 

Attribute Difference Std. Error β/Std. err Adj. p-value Sig 

Age(10) + Age(70), Class 1 0.37 0.70 0.54 0.59  

U0(0.1) + U0(0.9), Class 1 -2.65 0.72 -3.68 <0.001 *** 

LE(1m) + LE(10yrs), Class 1 -0.91 0.36 -2.56 0.03 * 

U1(0.1) + U1(0.9), Class 1 -2.41 0.86 -2.81 0.02 * 

nPats(100) + nPats(5000), Class 1 3.22 1.05 3.07 0.01 * 

      

Age(10) + Age(70), Class 2 0.44 0.07 6.33 <0.001 *** 

U0(0.1) + U0(0.9), Class 2 1.99 0.10 20.01 <0.001 *** 

LE(1m) + LE(10yrs), Class 2 -0.67 0.07 -9.15 <0.001 *** 

U1(0.1) + U1(0.9), Class 2 0.27 0.13 2.11 0.07 + 

nPats(100)+ nPats(5000), Class 2 -0.35 0.09 -4.06 <0.001 *** 

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

U0=initial health state; LE=life expectancy; U1=final health state; nPats=number of patients treated 

 

The compensating variations by attribute within each class, and the net 

differences between classes, are shown in Table 8.7.  They suggest that the 

strength and direction of preferences were generally consistent in the two classes, 

although there were significant differences in the direction of preference for 

initial health states, and the best final health state.  There were also significant 

differences in the strength of preference for the number of patients treated.   
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Table 8.7: Compensating variations and differences between latent classes by attribute 

change 

Attribute change 
CV (95% CI) 

Class 1 

CV (95% CI) 

Class 2 

Difference (95% CI) 

Class 1 - Class 2 

Patient age, 40 → 10 
-7.41 

(-13.80, -1.02) 

-1.67 

(-2.38, -0.97) 

-5.74 

(-12.18, 0.71) 

Patient age, 40 → 70 
6.06 

(0.15, 11.97) 

0.14 

(-0.39, 0.68) 

5.91 

(-0.09, 11.92) 

Initial health state, 0.5 → 0.1 
2.58 

(0.24, 4.91) 

-3.35 

(-4.17, -2.52) 

5.92 

(3.54, 8.30) 

Initial health state, 0.5 → 0.9 
7.02 

(0.68, 13.37) 

-3.54 

(-4.21, -2.86) 

10.56 

(4.24, 16.88) 

Life expectancy, 5yrs → 1mon 
4.72 

(1.54, 7.91) 

2.55 

(1.93, 3.17) 

2.18 

(-1.12, 5.47) 

Life expectancy, 5yrs → 10yrs 
-1.38 

(-2.34, -0.43) 

-0.23 

(-0.50, 0.03) 

-1.15 

(-2.18, -0.12) 

Final health state, 0.5 → 0.1 
3.66 

(0.64, 6.69) 

2.20 

(1.53, 2.86) 

1.47 

(-1.70, 4.63) 

Final health state, 0.5 → 0.9 
5.06 

(1.72, 8.40) 

-3.11 

(-4.42, -1.80) 

8.17 

(4.67, 11.68) 

Total patients treated, 2500 → 

100 

-3.09 

(-6.37, 0.19) 

1.59 

(1.26, 1.93) 

-4.69 

(-7.99, -1.39) 

Total patients treated, 2500 → 

5000 

-8.51 

(-13.97, -3.04) 

-0.41 

(-0.73, -0.09) 

-8.10 

(-13.57, -2.63) 

Statistically significant differences are shown in bold. 

 

Figure 8.5, on the next page, shows that there was a significant and 

positive welfare effect (negative CV) associated with prioritising patients in the 

worst initial health state in latent class 2, but a significant and negative welfare 

effect (positive CV) in latent class 1.  A similar opposing pattern was observed 

for patient groups in the best initial and final health states.  There was a negative 

welfare effect in class 1 associated with patients groups in the best initial health 

state, but a positive effect in class 2.  There was also a negative welfare effect in 

class 1 associated with patient groups that would end up in the best final health 

state, and a positive effect in class 2. 
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Figure 8.5: DCE compensating variation by attribute and latent class 

 
 
Latent class 1  
48% probability of membership 

 
 
 
 
Latent class 2  
52% probability of membership 

 



 

244 

8.4.4 Public vs. agent preferences 

The reference model for the DCE choice model with agent interactions 

was a pooled multinomial logit (MNL) with dummy coded main effects, 

continuous life year gain interactions and agent interactions (see Appendix 8.4 

for a comparison of the alternative value functions, ranked by log-likelihood, 

AICc and BIC).  It was felt that there were not enough agent respondents to 

justify stratifying them further with a latent class approach.  A parsimonious 

version of the MNL model was preferred by AICc and BIC, and was not 

significantly worse than the full model by the likelihood ratio test.  As in the 

previous models, a significance threshold of 0.10 was adopted, and dummy 

coded parameters were only excluded if the entire system of coefficients were 

insignificant.  The results of this model are shown in Appendix 8.5. 

Agents appeared to hold more moderate preferences than the general 

population sample over the high and low levels of initial health state (U0), as the 

coefficients on the initial health state-agent interactions tended to offset the main 

effects coefficients.  Agents also appeared to hold divergent preferences for the 

worst final health state (U1).  Although the general population coefficient was 

positive, the coefficient on the agent interaction term was negative and much 

larger, suggesting a contradictory preference.  The compensating variations 

associated with changes in the initial and final health states are shown below in 

Table 8.8.  These results show that although a move from the baseline to worst 

(lowest) final health state was associated with negative welfare effects (positive 

CV) in both groups, the effect was significantly stronger among agents.  The 

mean difference in the effect associated with a move from the baseline to best 

(highest) initial health state was just significant at a 0.05 threshold.  The 

difference in the welfare effect between the two groups over a move to the best 

(highest) level of initial health attribute reflects the fact that agents had no 

statistically significant preference over either state, while the general public had a 

significant preference for patient groups in the better initial health state.  
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Table 8.8: Compensating variations and differences for agents and the general 

population 

Attribute change 
Compensating 

variation 
Lower 95% CI Upper 95% CI 

CV, U0 baseline → low, Public -1.78 -2.42 -1.13 

CV, U0 baseline → low, Agents -3.54 -5.56 -1.51 

Difference, U0 baseline → low, Agents- Public -1.76 -3.79 0.27 

    

CV, U0 baseline → high, Public -1.53 -2.52 -0.54 

CV, U0 baseline → high, Agents 0.99 -1.53 3.51 

Difference, U0 baseline → high, Agents- 

Public 
2.52 0.00 5.04 

    

CV, U1 baseline → low, Public 2.97 1.93 4.02 

CV, U1 baseline → low, Agents 6.61 3.61 9.60 

Difference, U1 0.5 → 0.1, Agents- Public 3.63 0.70 6.57 

    

CV, U1 baseline → high, Public 1.71 -0.12 3.53 

CV, U1 baseline → high, Agents 3.93 0.68 7.18 

Difference, U1 baseline → high, Agents- 

Public 
2.22 -0.56 4.99 

CV=compensating variation; ΔCV=difference in compensating variation (CVagents-CVPublic).  U0=Initial utility; 

U1=Final utility.  Statistically significant differences are shown in bold. 

 

The compensating variations for moves between the levels of initial and 

final health states, by group, are shown graphically in Figure 8.6.  They suggest 

that even for attributes with statistically significant differences in compensating 

variation, the overall direction of preferences was reasonably consistent in both 

groups, with the exception of the effect associated with a move from baseline to 

the best initial health state, where the direction of effect, rather than just the 

relative strength, was significantly different. 
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8.5 Discussion of DCE results 

Consistent with the empirical ethics review, the overall results from the 

DCE suggested that respondents had statistically significant preferences for 

younger patient groups, larger patient groups, and greater individual life year 

gains.  Despite the significant preferences for larger patient groups and greater 

individual life year gains, the interaction between these two terms was not 

significant, suggesting that preferences for these factors were not related to 

preferences for aggregate life year gains.  Indeed, this interaction was negative and 

statistically significant in latent class 1, strongly suggesting diminishing returns to 

aggregate life years gained, while it was statistically insignificant in class 2.  

Instead, the preference for larger patient groups appeared to reflect a desire to 

distribute healthcare benefits as widely as possible.  Also, although the 

interaction between initial and final health state was significant and positive, 

suggesting a preference for absolute quality gain, the interaction between quality 

gain and individual life years gained, or, in effect, individual quality-adjusted life 

years gained, was not significant in either latent class.  These overall 

compensating variation results appeared consistent with the scenario rankings, 

which also suggested that individual gains were more important to respondents 

than aggregate gains, and that smaller benefits accruing to preferred patient 

groups were often preferred over larger gains to less preferred groups. 

Figure 8.6: Compensating variations for changes in initial and final health state, by group 
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In contrast to the empirical ethics review of Chapter 3, which found a 

preference for health gains to individuals in more severe health states, DCE 

respondents had a preference for patients with longer untreated life expectancies, 

even after controlling for potential health gains, and no significant preference for 

patient groups in the most severe initial health state relative to those in better 

initial states.  This non-significant effect appeared to be driven by differences 

between the latent classes over this attribute: whereas class 2 had a significant 

preference for prioritising patients in the worst initial health state relative to 

those in the moderate state, class 1 had a significant aversion to prioritising such 

patients.  This result was mirrored by similarly unexpected preferences for 

patients in the best initial health state: whereas class 2 had a significant 

preference for prioritising patients in the best initial health state over those in the 

moderate state, class 1 had a significant aversion to prioritising such patients.  

These offsetting preferences led to a statistically insignificant overall result 

despite statistically significant preferences over initial health state in both classes.  

This highlights the value of latent class modelling, which allows such 

heterogeneity to be incorporated, and just as importantly, interpreted. 

Respondents had a significant aversion to patient groups that would be in 

the worst final health state following treatment, but no significant preference for 

patients in the best final health state relative to patients in a moderate final health 

state.  Again, this result was driven by offsetting differences between classes: 

although class 2 had a significant preference for patients in the best final health 

state, class 1 had an even stronger aversion to such patients.  This result, though, 

is not inconsistent with the empirical ethics review, as although there was 

evidence of a reluctance to allocate resources to patients that would remain in a 

poor health state following treatment, this did not appear to translate into a 

preference for patients in the best final health state.  It has been suggested that 

such a pattern may imply a preference for achieving some minimum level of 

quality in the post-treatment health state rather than maximising the quality of 

that health state (Schwappach 2002b; Dolan, Cookson 2000). 

As described above, latent class 2 had significantly stronger preferences 

for patients in the worst initial health state and the best final health state, 

compared to patients in moderate initial and final health states.  This appeared to 
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reflect a greater concern for absolute quality gain relative to class 1.  However, 

confidence intervals around the estimates of compensating variation for latent 

class 2 were substantially smaller than the corresponding intervals for latent class 

1, suggesting that the defining latent characteristic may not be the relative 

strength of preferences, but rather the relative homogeneity of preferences.  

Individuals in class 2 appeared to share a well-formed set of preferences, while 

preferences in class 1 were consistently more heterogeneous, ranging from very 

strong to barely significant.  Indeed, the latent classes may even reflect the 

difference between respondents with axiomatically rational preferences 

(complete, stable and transitive), and those with axiomatically irrational or 

poorly-formed preferences.  It is worth noting in this context that despite the 

roughly equal overall probabilities of membership in the two classes, agents were 

statistically much more likely to belong to latent class 2.  In light of evidence that 

respondents may construct their preferences as they progress through a stated 

preference elicitation (Payne et al. 1992; Ryan 2009; Slovic 1995), and to the 

extent that agents may be expected to be somewhat more familiar with their 

preferences over the attributes tested here than the general public, this may lend 

support the notion that the latent classes reflect differences in the consistency and 

‘quality’ of these preferences.   

Reinterpreting the DCE latent class results in this light lends support to 

the notion of a distinction between well-defined versus vaguely-defined 

preferences.  In particular, the very large compensating variations associated 

with age, initial health state and total patients treated in latent class 1 may reflect 

non-compensatory decision-making heuristics that favoured younger patients 

and larger patient groups, and discriminated against those in better final health 

states, without regard for other attribute levels.  In such cases, compensating 

variation would essentially be infinite, as respondents would theoretically be 

willing to sacrifice any number of individual life years in order to prioritise their 

preferred group.  If the distinction between the latent classes indeed reflects the 

quality and consistency of the underlying preferences, it has implications for the 

role of naive public respondents in societal priority setting, and whose 

preferences should be accepted as representative.  At the extreme, one approach 

might be to use latent class modelling to identify and exclude individual 
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respondents with poorly-formed preferences, although efforts to improve 

respondent’s understanding and preference construction would seem to be more 

in keeping with a democratic or Communitarian approach. 

Overall, the DCE results suggest a broadly utilitarian preference, with 

larger QALY gains tending to be associated with greater expected utility, 

although respondents were clearly willing to deviate from this rule to prioritise 

younger or larger patient groups.  The corresponding CSPC methods and results 

will be presented in the next chapter. 
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Appendix 8.1: Alternative DCE models and value functions,  

by improving information criteria 

Model and value function k 
LL 

[Pr(χ2)] 
AICc BIC 

 

1.0) MNL; continuous main effects + U1:LYg 

interaction  (pre-specified at experimental design 

stage) 

v = LYg + Age + U0 + LE + U1 + nPats + U1:LYg 

 

8 -4031.4 8078.8 8133.1 

 

2.0) MNL; continuous main effects + U0:U1 interaction 

v = LYg + Age + U0 + LE + U1 + nPats + (1-U0):U1 

 

8 -3872.1 7760.1 7814.4 

 

3.0) MNL; continuous main effects + LYg interactions 

+ U0:U1 interaction 

v = LYg + Age + U0 + LE + U1 + nPats + LYg:Age + 

LYg:U0 + LYg:LE + LYg:U1 + LYg:nPats + (1-U0):U1 

 

13 -3855.6 7737.3 7825.4 

 

3.1) Parsimonious MNL; continuous main effects + LYg 

interactions + U0:U1 interaction 

v = LYg + Age + U0 + LE + U1 + nPats + LYg:U0 + 

LYg:LE + LYg:U1 + (1-U0):U1 

 

11 
-3860.6 

[0.007] 
7739.2 7800.3 

 

4.0) MNL; continuous LYg + dummy-coded main 

effects + U0:U1 interaction 

v = LYg + D_AgeL1 + D_AgeL3 + D_U0L1 + D_U0L3 + 

D_LEL1 + D_LEL3 + D_U1L1 + D_U1L3 + D_nPatsL1 + 

D_ nPatsL3 + LYg:Age + LYg:U0 + LYg:LE + LYg:U1 + 

LYg:nPats + (1-U0):U1 

 

18 -3846.1 7718.3 7806.5 

 

5.0) MNL; continuous LYg + dummy-coded main 

effects + continuous LYg and U0:U1 interactions 

v = LYg + D_AgeL1 + D_AgeL3 + D_U0L1 + D_U0L3 + 

D_LEL1 + D_LEL3 + D_U1L1 + D_U1L3 + D_nPatsL1 + 

D_ nPatsL3 + LYg:Age + LYg:U0 + LYg:LE + LYg:U1 + 

LYg:nPats + (1-U0):U1 

 

18 -3815.1 7666.2 7788.2 

 

5.1) Parsimonious MNL; continuous LYg + dummy-

coded main effects + continuous LYg and U0:U1 

interactions 

v = LYg + D_AgeL1 + D_AgeL3 + D_U0L1 + D_U0L3 + 

D_LEL1 + D_LEL3 + D_U1L1 + D_U1L3 + D_nPatsL1 + 

D_ nPatsL3 + LYg:U0 + LYg:LE + LYg:U1 + (1-U0):U1 

 

16 
-3818.0 

[0.055] 
7666.0 7767.7 

 

6.0) 2-class LC-MNL; continuous main effects + LYg 

interactions + U0:U1 interaction 

v = LYg + Age + U0 + LE + U1 + nPats + LYg:Age + 

LYg:U0 + LYg:LE + LYg:U1 + LYg:nPats + (1-U0):U1 

 

26 -3763.5 7583.2 7773.0 

 

6.1) 3-class LC-MNL; continuous main effects + LYg 

interactions + U0:U1 interaction 

v = LYg + Age + U0 + LE + U1 + nPats + LYg:Age + 

39 -3685.1 7454.7 7739.1 
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LYg:U0 + LYg:LE + LYg:U1 + LYg:nPats + (1-U0):U1 

 

 

6.2) Parsimonious 3-class LC-MNL; continuous main 

effects + LYg interactions + U0:U1 interaction 

v = LYg + Age + U0 + LE + U1 + nPats + LYg:U0 + 

LYg:LE + LYg:U1 + (1-U0):U1 

 

33 
-3679.5 

[0.082] 
7431.5 7675.3 

 

7.0) 2-class LC-MNL; continuous LYg + dummy-coded 

main effects + continuous LYg and U0:U1 interactions 

v = LYg + D_AgeL1 + D_AgeL3 + D_U0L1 + D_U0L3 + 

D_LEL1 + D_LEL3 + D_U1L1 + D_U1L3 + D_nPatsL1 + 

D_ nPatsL3 + LYg:Age + LYg:U0 + LYg:LE + LYg:U1 + 

LYg:nPats + (1-U0):U1 

 

37 -3674.4 7425.2 7682.6 

k =parameters, including alternative specific constant; LL=Log-likelihood; AICc= Akaike information criterion, 

with correction for finite sample size; BIC=Bayesian information criterion. MNL=multinomial logit; LC-

MNL=latent class multinomial logit. Only models and value functions associated with an improvement in LL, 

AICc or BIC over the previous specification are shown. The overall minimum log-likelihood, AICc and BIC are 

shown in bold.  The p-value of the likelihood ratio [Pr(χ2)] is shown for nested models. 
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Appendix 8.2: Combined latent class model coefficients 

Attribute Coefficient Std. Error Coef of var β/Std. err Pr(>|z|) Sig 

Intercept -0.13 0.18 1.385 -0.72 0.4709  

LYg 0.28 0.06 0.214 4.64 0.0000 *** 

Age 10 1.98 0.86 0.434 2.30 0.0213 * 

Age 70 -1.57 0.59 0.376 -2.67 0.0076 ** 

U0 0.1 -2.33 0.76 0.326 -3.07 0.0022 ** 

U0 0.9 2.09 0.47 0.225 4.44 0.0000 *** 

LE 1m -1.32 0.36 0.273 -3.71 0.0002 *** 

LE 10yrs 0.53 0.22 0.415 2.38 0.0174 ** 

U1 0.1 0.85 0.26 0.306 3.28 0.0010 ** 

U1 0.9 -1.86 0.64 0.344 -2.90 0.0037 ** 

100 patients -0.03 0.15 5.000 -0.21 0.8338  

5000 patients 1.40 0.49 0.350 2.85 0.0044 ** 

(1-U0):U1 8.75 2.08 0.238 4.21 0.0000 *** 

LYg:Age 0.05 0.03 0.600 1.73 0.0829 + 

LYg:U0 -0.37 0.14 0.378 -2.66 0.0078 ** 

LYg:LE -0.01 0.01 1.000 -2.12 0.0338 * 

LYg:U1 -0.04 0.06 1.500 -0.78 0.4378  

LYg:nPats -0.02 0.01 0.500 -1.43 0.1543  

       

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

Coefficients are based on the latent class coefficients weighted by the individual probabilities of class 

membership.  LYg=individual life year gains; U0=initial utility; LE=initial life expectancy; U1=final utility; 

nPats=number of patients treated. 
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Appendix 8.3: Latent class model coefficients, by class 

Attribute Coefficient Robust SE β/Std. err Pr(>|z|) Sig 

Probability, Class 1 0.48 0.04 13.12 0.000 *** 

Constant -0.67 0.39 -1.74 0.081 + 

LYg 0.28 0.13 2.57 0.027 * 

Age 10 4.81 1.64 4.09 0.003 ** 

Age 70 -4.43 1.08 -5.06 0.000 *** 

U0 0.1 -4.13 1.47 -4.29 0.005 ** 

U0 0.9 1.48 0.95 2.16 0.118  

LE 1m -2.01 0.68 -4.49 0.003 ** 

LE 10yrs 1.10 0.46 3.27 0.017 ** 

U1 0.1 0.60 0.52 1.40 0.253  

U1 0.9 -3.01 1.26 -3.34 0.017 ** 

100 patients 0.33 0.28 0.97 0.244  

5000 patients 2.89 0.97 4.78 0.003 ** 

(1-U0):U1 8.10 4.10 3.03 0.048 * 

LYg:Age 0.18 0.05 4.39 0.001 *** 

LYg:U0 -0.90 0.26 -4.46 0.001 *** 

LYg:LE -0.03 0.01 -3.04 0.016 * 

LYg:U1 -0.01 0.12 -0.04 0.962  

LYg:Pats -0.04 0.03 -2.42 0.083 + 

Probability, Class 2 0.52 0.03 15.29 0.000 *** 

Constant 0.37 0.06 6.61 0.000 *** 

LYg 0.29 0.04 2.57 0.000 *** 

Age 10 -0.63 0.14 4.09 0.000 ** 

Age 70 1.07 0.16 -5.06 0.000 *** 

U0 0.1 -0.67 0.12 -4.29 0.000 *** 

U0 0.9 2.66 0.17 2.16 0.000 *** 

LE 1m -0.68 0.08 -4.49 0.000 *** 

LE 10yrs 0.01 0.07 3.27 0.896  

U1 0.1 1.07 0.11 1.40 0.000 *** 

U1 0.9 -0.81 0.17 -3.34 0.000 *** 

100 patients -0.36 0.11 0.97 0.001 ** 

5000 patients 0.01 0.11 4.78 0.895  

(1-U0):U1 9.35 0.35 3.03 0.000 *** 

LYg:Age -0.07 0.01 4.39 0.000 *** 

LYg:U0 0.12 0.05 -4.46 0.011 * 

LYg:LE 0.00 0.00 -3.04 0.217  

LYg:U1 -0.08 0.03 -0.04 0.010 * 

LYg:Pats 0.01 0.01 -2.42 0.122  

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

LYg=life year gains; U0=initial utility; LE=initial life expectancy; U1=final utility; nPats=patients treated. 
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Appendix 8.4: Alternative DCE public-agent interaction value 

functions, by improving information criteria 

Attributes p-values, specification 1 p-values, specification 2 
p-values, specification 

3 

Constant 0.150 0.199  

LYg                        0.001 0.000 0.000 

D1_Age                     0.027 0.004 0.000 

D3_Age                     0.884 0.444 0.000 

D1_U0                      0.000 0.000 0.000 

D3_U0                      0.000 0.000 0.000 

D1_LE0                     0.000 0.000 0.000 

D3_LE0                     0.008 0.001 0.001 

D1_U1                      0.050 0.045 0.021 

D3_U1                      0.000 0.000 0.000 

D1_nPats                    0.810 0.544 0.879 

D3_nPats                    0.000 0.000 0.000 

(1-U0):U1                      0.000 0.000 0.000 

LYg:(Age/10)              0.209 0.273  

LYg:U0                     0.589   

LYg:LE0                    0.019 0.005 0.006 

LYg:U1                     0.000 0.000 0.000 

LYg:(Pats/1000)           0.952   

LYg:(1-U0:U1)                  0.000 0.000 0.000 

LYg:Agent              0.527   

D1_Age:Agent           0.894   

D3_Age:Agent           0.373   

D1_U0:Agent            0.067 0.051 0.085 

D3_U0:Agent            0.033 0.038 0.047 

D1_LE0:Agent           0.127 0.552  

D3_LE0:Agent           0.177 0.182  

D1_U1:Agent            0.162 0.011 0.013 

D3_U1:Agent            0.347 0.138 0.114 

D1_Pats:Agent          0.687   

D3_Pats:Agent          0.831   

(1-U0:U1):Agent            0.575   

LYg:(Age/10):Agent    0.575   

LYg:U0:Agent           0.555   

LYg:LE0:Agent          0.540   

LYg:U1:Agent           0.718   

LYg:(Pats/1000):Agent 0.760   

LYg:(1-U0:U1):Agent        0.310   
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Parameters 37 23 19 

LL -3777.8 -3785.7 -3788.4 

Pr(χ2) -- 0.33 0.27 

AICc 7634.2 7617.5 7615.0 

BIC 7795.5 7773.4 7743.8 

Specifications are based on a pooled multinomial logit.  LL=Log-likelihood; AICc= Akaike information 

criterion, with correction for finite sample size; BIC=Bayesian information criterion.  Only value functions 

associated with an improvement in LL, AICc or BIC over the previous specification are shown.  The overall 

minimum log-likelihood, AICc and BIC are shown in bold.  The p-value of the likelihood ratio Pr(χ2) is shown 

relative to the full specification. LYg=individual life year gains; U0=initial utility; LE=initial life expectancy; 

U1=final utility; nPats=number of patients treated; D1=level 1 dummy; D3=level 3 dummy. 
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Appendix 8.5: Dummy-coded MNL with agent interactions 

coefficients 

Attribute Estimate Std. Error t-value Pr(>|t|) Sig 

LYg 0.15 0.01 11.22 0.000 *** 

Age 10 0.66 0.06 10.98 0.000 *** 

Age 70 -0.34 0.08 -4.45 0.000 *** 

U0 0.1 -1.11 0.11 -10.27 0.000 *** 

U0 0.9 1.60 0.16 10.28 0.000 *** 

LE 1m -1.16 0.10 -12.14 0.000 *** 

LE 10yrs 0.23 0.07 3.25 0.001 ** 

U1 0.1 0.35 0.15 2.30 0.021 * 

U1 0.9 -1.04 0.13 -8.23 0.000 *** 

100 patients 0.01 0.06 0.15 0.879  

5000 patients 0.86 0.06 13.89 0.000 *** 

(1-U0):U1 3.66 0.60 6.06 0.000 *** 

LE:LYg -0.01 0.00 -2.75 0.006 ** 

U1:LYg -0.29 0.03 -9.57 0.000 *** 

(1-U0):U1:LYg 0.64 0.08 8.37 0.000 *** 

U0 0.1:Agent 0.26 0.15 1.73 0.085 + 

U0 0.9:Agent -0.37 0.19 -1.98 0.047 * 

U1 0.1:Agent -0.53 0.22 -2.48 0.013 * 

U1 0.9:Agent -0.33 0.21 -1.58 0.114  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

LYg=individual life year gains; U0=initial utility; LE=initial life expectancy; U1=final utility; nPats=number of 

patients treated 
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Chapter 9:  
Primary CSPC results 

As in the previous chapter, the primary objective of the analysis of the 

CSPC responses was to estimate the relative strength of preferences for the 

patient and program characteristics identified in the empirical ethics review.  The 

approach used to estimate the strength of these preferences was similar to that 

taken in the previous chapter: the marginal utility associated with changes in 

each of the attributes was modelled, and the welfare effects associated with these 

changes are reported in terms of compensating variations.  But whereas the DCE 

asked respondents to choose one group to prioritise, the CSPC asked 

respondents to allocate a fixed budget between the two groups.  This difference 

in the response format had implications for how the responses should be 

modelled, and for how compensating variation should be estimated and 

interpreted.   

This chapter outlines the methods used in modelling and estimating 

welfare effects, and discuss the results.  Section 9.1 describes the specification of 

a linear CSPC model, allowing for the continuous CSPC response format and 

the panel nature of the responses.  The estimation and interpretation of 

compensating variation as a measure of welfare effects in light of this response 

format, including a comparison of public and agent preferences, is discussed in 

section 9.2.  Section 9.3 describes the methods used to rank the CSPC scenarios 

by relative utility, as the DCE scenarios were in the previous chapter, in order to 

consider respondent preferences in a more holistic context.  As noted, the CSPC 

has an arguable advantage over DCE in allowing respondents to express a 

preference for a maximising or equalising distribution of resources or outcomes, 

independent of the characteristics of the particular choice scenarios.  Section 9.4 
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describes the methods used to identify these specific distributive preferences.  

Finally, to compare the results of the CSPC in a more direct way to those of the 

DCE, section 9.5 describes the methods for transforming the CSPC allocations 

to discrete choices and the non-linear model used to analyse the results.  The 

results of these analyses, including the model coefficients, estimates of welfare 

effects, scenario rankings, distributive preferences, and a direct comparison of 

DCE and CSPC discrete choices, are described in section 9.6.  Section 9.7 

discusses the results. 

9.1 Specifying the CSPC model 

As with the DCE multinomial logit model, the simplest approach to 

analysing panel data is the linear ‘pooled model’, which implies that preferences 

are the same across all individuals (i) and all tasks (t): 

    =           (9.1) 

Where yit is a continuous response variable, α and β are assumed to be the 

homogeneous for all individuals and all responses, and uit is a stochastic 

individual error term with a mean of zero (Croissant & Millo 2008).  If there is 

heterogeneity in the parameters, however, an ‘unobserved effects model’ may be 

more appropriate:  

    =                  (9.2) 

Where α and β are assumed to be heterogeneous across respondents (‘individual 

effect’), across responses (‘time effect’), or both (‘two-way effect’).  The 

unobserved effects model separates the random error term of the pooled model, 

uit, into two components: an individual-specific component (μi), and a stochastic 

error term (εit) (Baltagi 2008; Croissant & Millo 2008): 

    =        (9.3) 

Although in practice the individual and the stochastic error terms are not 

separately identifiable, assumptions about their behaviour lead to fixed or 

random specifications of the unobserved effects model (Croissant & Millo 2008).   
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Louviere, Hensher and Swait (2000a) suggest that CSPC is consistent 

with random utility theory (RUT) and can yield cardinal utility measures if it can 

assumed that the differences in the budget allocation reflect differences in latent 

utility between the two alternatives.  Under this interpretation the difference in 

latent value is theoretically unbounded, even though the observed budget 

difference (ΔBudget = BudgetB – BudgetA) is bounded by -100 (the entire budget to 

program A) and +100 (the entire budget to program B).  As this implies that the 

observed budget differences are censored representations of the difference in 

latent utility, a censored regression, or tobit model, may be more appropriate 

than a continuous linear model.   

In a tobit model, the observed dependent variable, y, is equal to the latent 

variable, y*, when y* is within the upper (τu) and lower (τl) censoring limits, and 

is otherwise censored at the when the latent difference is at or outside of those 

limits (Long 1997): 

 

 = {   =

                        

                

                  
     

 
(9.4) 

Where βx is a vector of attribute coefficients and levels.  The regression 

coefficient, β, represents the marginal change in the latent outcome y* given a 1-

unit change in the level of x.   

These assumptions were tested in a series of econometric specification 

tests (Baltagi 2008; Croissant & Millo 2008).  The poolability of the data was 

tested using Chow’s F-test, and the presence of unobserved effects was tested 

using Wooldridge’s test of unobserved effects.  A fixed or random effects 

specification was defined on the basis of Hausman’s test, while the presence of 

specific individual, time or two-way effects was tested with Honda’s Lagrange 

multiplier test.  Finally, as the tobit model is based on assumptions of normally 

distributed and homoscedastic errors (Long 1997), the behaviour of the error 

term was tested using the Breusch-Pagan test of homoskedasticity and the 

Anderson-Darling test of normality.  

Linear models are also amenable to a latent class modelling approach, 

where their interpretation as a non-parametric representation of unobserved 
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heterogeneity is the same as in the DCE analysis.  For example, a linear pooled 

or unobserved effects latent class model can be defined as: 

      = [             ∙   (    (9.5) 

Where       is the expected value for individual i at time t, conditional on 

membership in class c, [              is a linear model, and   (    is the 

probability of class membership as given previously in equation 8.4 (Magidson & 

Vermunt 2004).  A latent class approach can also be extended to a single-

bounded tobit model (Brown et al. 2010), but it is currently incompatible with a 

the double-bounded tobit model. 

The dependent variable in each of the different models was the difference 

in the budget allocation between program A and B, and the parameters were 

based on the relative differences in attribute levels.  The simplest value function 

was an additive linear main effects differences specification of the form  =

                                                       , 

where   was the alternative-specific constant associated with alternative B, ΔLYg 

was the difference in individual life years gained with treatment between the two 

alternatives presented to individual i in task t, ΔAge was the difference in age, 

ΔU0 was the difference in initial utility, ΔLE0 was the difference in life 

expectancy without treatment, ΔU1 was the difference in utility with/after 

treatment, and ΔnPats was the difference in total number patients that could be 

treated if 100 percent of the budget was allocated to that alternative.  All 

differences were calculated as the level in alternative B less the level in 

alternative A, and the age and number of patients treated parameters were 

divided by 10 and 1000, respectively, to re-scale them to a magnitude more 

comparable with the other parameters in order to improve the chances of model 

convergence (Long 1997).   

An interaction term, interacting the differences in initial and final utility 

between the two alternative patient groups, was defined as (1+ΔU0)(1-ΔU1) and 

was included in more complex versions of the value function to account for 

relative differences in quality gain.  As the relationship between these terms is 

not immediately intuitive, the range of possible parameter values for this 

interaction term is shown Table 9.1.  
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Table 9.1: Initial and final health state differences interaction values 

 ΔU1B-A -0.8 -0.4 0 0.4 0.8 

ΔU0B-A 

                1-ΔU1B-

A 

1+ΔU0B-A 

0.2 0.6 1.0 1.4 1.8 

-0.8 1.8 0.36 1.08 1.80 2.52 3.24 

-0.4 1.4 0.28 0.84 1.40 1.96 2.52 

0 1.0 0.20 0.60 1.00 1.40 1.80 

0.4 0.6 0.12 0.36 0.60 0.84 1.08 

0.8 0.2 0.04 0.12 0.20 0.28 0.36 

 

The value of the interaction term is maximised when moving from an 

initial health state where there is a large negative difference for patient group B 

relative to group A (e.g. U0A=0.9, U0B=0.1; ΔU0B-A=-0.8), to a final health state 

where there is a large positive difference between the two patient groups (e.g. 

U1A=0.1, U1B=0.9; ΔU1B-A=0.8).  In other words, situations where patient group 

B moves from a much worse initial health state to a much better final health state 

relative to patient group A, and thus gains relatively more quality.  The 

multiplicative interaction avoids collinearity with the main effects, while the 

(1+ΔU0) and (1-ΔU1) terms ensure that relatively more weight is given to the 

worst and best initial and final health states, respectively.  An alternative value 

function interacted main effects differences with differences in life year gains, 

weighting the utility associated with differences in specific attributes by the 

difference in life year gains, consistent with the approach taken by Norman et al. 

(2013). 

The analysis adopted a broadly inclusive significance threshold of 0.10 

and parameter p-values were not adjusted for multiple comparisons.  Robust 

standard errors for coefficient estimates were calculated using the ‘sandwich 

estimator’ (Freedman 2006).  The econometric specification tests were 

conducted with R 2.15.3 using the plm, lmtest and nortest packages, and the 

models were estimated using LIMDEP 9.0/NLOGIT 4.0. 
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9.2 Estimating welfare effects 

As in the DCE analysis, welfare effects were estimated in terms of 

compensating variation in the context of a ‘state of the world’ model (Small & 

Rosen 1981; Ryan 2004; Silva 2004): 

    :    =
 

     

[         
(9.6) 

The numeraire,      , was the marginal utility of an additional individual life 

year gained relative to a comparator, and Δv0 and Δv1 represented the net 

difference in utility before and after a change in one or more attribute levels, 

respectively.  Consistent with the interpretation of the CSPC attributes and 

budget allocations as relative to some comparator, the net utilities are also 

calculated relative to an implicit comparator.  This implicit comparator, though, 

can be assumed to be identical to the initial state of the scenario under 

consideration – that is, before any changes in attribute levels – without affecting 

the interpretation.  In this case, the difference in utility between the initial 

scenario and its implicit comparator (Δv0) can be assumed to be zero, and Δv1 

represents the net change in utility relative to that original state.  A negative CV 

implies a move to a more preferred level (a positive welfare effect), and a positive 

CV implies a move to a less preferred level (a negative welfare effect). 

9.2.1 Public vs. agent preferences 

A secondary objective of the analysis was to test for heterogeneity 

between the preferences of self-identified agents and those of the general public.  

Differences between general public and agent preferences were estimated based 

on the same model used in the overall analysis, but the value function included 

an interaction between each parameter and a flag indicating whether or not the 

respondent self-identified as an agent.  If the interactions between specific 

attributes and agent status were found to be significant, the difference in 

compensating variation between the general population and agents would be 

calculated and taken as significant if the 95 percent confidence interval around 

the difference in CV between agents and the general public did not cross zero. 
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9.3 Scenario rankings 

The CSPC scenarios were ranked by their expected net utility to provide a 

more holistic sense of the relative attractiveness of each scenario, allowing 

different attribute levels to vary simultaneously.  The predicted net utility of each 

choice scenario was calculated by weighting the differences in attribute levels 

between a particular scenario and a reference scenario with all attributes at their 

middle level, by the coefficients from the identified regression model.  Note that 

this reference scenario was the same one that was used to calculate relative 

choice probabilities in the DCE scenario rankings, and that it was not actually 

presented to respondents.  Positive relative utility would indicate a scenario was 

more preferred than the reference scenario, while negative relative utility would 

indicate a scenario was less preferred than the reference scenario.  Unlike the 

DCE analysis, choice probabilities were not calculated as linear models are not 

consistent with the estimation of choice probabilities. 

Spearman’s rho was also calculated to provide a sense of the strength and 

direction of association between each choice scenario’s attribute differences and 

its relative ranking.  The scenarios were ranked by descending utility, so a 

negative correlation coefficient implies that the relative rank of a scenario 

improved as an attribute level or difference increased, while a positive 

correlation coefficient implies that relative rank worsened as an attribute level or 

difference increased.  The CSPC rank and the DCE rank for the same scenario 

were also compared on the basis of Spearman’s rho. 

9.4 Distributional preferences 

Given the attributes included in each CSPC task, respondents could 

express a preference for maximising or equalising resources (budget allocations), 

access (number of patients treated) or outcomes (aggregate QALYs gained).  

Respondents were classified as strict maximisers if they allocated 100 percent of 

the budget to one program or the other in each of their choice tasks, and strict 

equalisers if they chose a 50-50 budget allocation in each of their choice tasks.  

Respondents could also be classified as equalisers if they chose to equalise the 

number of patients treated or aggregated QALYs gained in each choice task.  As 
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respondents could only allocate the budget by iterations of 1 percent it was 

usually not possible to equalise precisely patients or QALYs, so these attributes 

were taken as equalised if the budget was within 2 percent of the allocation that 

would precisely equalise patients treated or QALYs gained.15  

In order to distinguish between respondents who saw no difference in the 

latent utility and were indifferent between alternatives from those who had a 

strong preference for equality, respondents were only classified as strict 

equalisers if they also rated distributional concerns as the most important factor 

in their decisions.  The mean number of tasks equalised or maximised by agents 

and the general public were also compared using t-tests, as were the mean 

number of responses that equalised the number of patients treated or the number 

of QALYs gained.  The t-tests were conducted using R 2.15.3 (R Core Team 

2013). 

9.5 Comparison of DCE and CSPC welfare estimates 

The CSPC allocations were modelled using a linear model, but the DCE 

choices were modelled using a non-linear multinomial logit.  As such, any 

observed differences in welfare effects from the two models may reflect, in part, 

differences in the underlying models assumptions.  To test more directly the 

effect of questionnaire format on the derived estimates of marginal utility and 

welfare, the CSPC responses were transformed to discrete choices on the basis of 

which alternative was allocated the majority of the budget and modelled using a 

multinomial logit comparable to the primary DCE model, including a latent 

class approach if appropriate.  Equal CSPC budget allocations were excluded 

from the analysis as they did not prioritise either alternative, but this meant that 

some valid choice data was discarded.  Please refer to section 8.2 for more details 

on the modelling approach used in the DCE analysis.   

The equivalence of the attribute coefficients and CV estimates derived 

from the DCE and CSPC formats for each attribute were tested using a t-test, 

                                                 
15 The precise patient- and QALY-equalising budget allocations were calculated as the attribute 

level in alternative A divided by the sum of the attribute levels in alternative A and B: 
nPatsA/( nPatsA+ nPatsB) and QALYsA/( QALYsA+ QALYsB), respectively. 
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dividing the difference in the estimates from the two choice models by the 

difference in their standard errors, as per Potoglou (2011).  Statistically 

insignificant results would support the notion of procedural invariance between 

the two formats, while a significant result may suggest that the elicitation format 

had a systematic influence on preferences (Carson et al. 1994; Oliver 2013). 

9.6 CSPC Results 

Chow’s F-test of the poolability of the CSPC data rejected the null 

hypothesis of stable parameters (p<0.001), suggesting an unobserved effects 

model.  This was supported by Wooldridge's test, which rejected the null 

hypothesis of no unobserved effects (p<0.001).  The Hausman test did not reject 

a random effects specification (p=0.99), while Honda’s Lagrange multiplier tests 

for individual, time and two-way effects rejected the null hypotheses of no 

significant effects (p<0.001 in all three tests), supporting a two-way random 

effects specification.  Finally, a histogram of the CSPC budget allocations, 

Figure 9.1: Primary CSPC budget allocations 
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shown in Figure 9.1, appeared to confirm censoring in the dependent variable, 

given distinct clusters at the upper (100% of the budget to Program B) and lower 

(0% of the budget to Program B) bounds of the budget allocations.  In light of 

this possible clustering, as well as the interpretation of the budget differences as a 

bounded representation of the differences in latent utility, a tobit was felt to be a 

theoretically appropriate statistical model for the CSPC responses. 

The Breusch-Pagan test did not reject the null hypothesis of 

homoscedasticity in the tobit error terms (p=0.18), but the Anderson-Darling test 

did reject the assumption of normally distributed errors (p<0.001).  On this basis, 

as well as the 

specification tests 

suggesting significant 

individual and time 

effects, one and two-

way random effects 

linear models were 

specified.  However, as 

shown in Figure 9.2, 

the tobit residuals 

appeared very close to 

normally distributed, 

so a tobit specification 

was also tested.  

Comparisons of the 

goodness of fit of these different models and value function specifications are 

presented in Appendix 9.1, ordered by improving information criteria. 

The initial model was a one-way random effects linear model with 

continuous main effects differences, analogous to the value function specified for 

the experimental design.  Despite significant two-way effects in the econometric 

specification tests, a two-way random effects linear model did not find a positive 

time effect and did not converge, and was excluded from further comparisons.  

Interacting the difference in individual life years gained with the other main 

effects improved the fit of the linear model by AICc and BIC, while a 

Figure 9.2: Pooled tobit residuals 

Figure shows a histogram of the pooled tobit residuals with an overlaid 

normal distribution.  
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parsimonious version of this model, excluding parameters that were insignificant 

at a 0.10 threshold, further improved fit by BIC.  A latent class linear model 

based on full and parsimonious versions of this value function did not converge, 

nor did a random effects double-bounded tobit.  A pooled double-bounded tobit 

with main effects and life year gain interactions improved model fit over the 

parsimonious linear model, and a parsimonious version of this value function 

offered the best fit by log-likelihood, AICc and BIC.  The coefficients from this 

parsimonious double-bounded tobit model are shown in Appendix 9.2. 

The alternative specific constant in the model was statistically significant, 

implying a preference for alternative B (the right-hand side of the choice task) 

independent of attribute levels.  The relatively large size of this constant may 

reflect confounding with the initial and final health state interaction term, as 

when these differences are zero, the coefficient on the interaction term will be 

perfectly confounded with the constant (i.e. β0 + β1[1-ΔU0]×[1+ΔU1] = β0 + 

β1[1]×[1] = β0 + β1).    

The other attribute coefficients represented the marginal change in the 

utility of alternative B relative to alternative A, given a marginal change in the 

continuous attribute level.  A positive coefficient indicated that the utility of 

alternative B increased relative to alternative A as the difference in the level of 

attribute x in alternative B increased relative to its level in alternative A (i.e. 

respondents preferred a higher level of x).  A negative coefficient indicated that 

relative utility decreased as the relative difference in x increased (i.e. respondents 

preferred a lower level of x).  Note that the very large coefficients on the 

difference in initial and final health states reflect in part the 0-1 scale of those 

parameters and represent the marginal utility associated with, in effect, the 

difference in moving from a state equivalent to dead (0.0) to perfect health (1.0).  

The large and negative coefficient on the initial and final health states interaction 

term, the value of which increases with a relative gain in quality, would also tend 

to offset the marginal impact of final health state.  The coefficient on the number 

of patients treated was not significant, but the continuous interaction between 

life years gained and the number of patients treated was significant and negative, 

suggesting diminishing returns to aggregate life years gained. 
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9.6.1 Compensating variations 

Attributes with statistically significant compensating variations are 

detailed in Table 9.2 and illustrated in Figure 9.3.  As in the DCE analysis, a 

negative CV indicated a positive welfare effect, and a positive CV indicated a 

negative welfare effect.  CVs were estimated for an upward change in attribute 

level relative to a fixed comparator, holding all other differences at zero, but 

given the linear specification of the value function, CV is necessarily the same for 

an upward or a downward change; the sign simply reverses for a downward 

change.  This is in contrast to the non-linear, dummy-coded DCE parameters 

where CV was potentially different for an upward or downward change from the 

baseline attribute levels.   

Table 9.2: CSPC compensating variations by attribute differences 

Attribute difference CV Lower 95% CI Upper 95% CI Adj. p-value Sig 

CV, patient age +30 4.49 3.77 5.20 <0.001 *** 

CV, initial health state 

+0.4 
1.65 1.17 2.13 <0.001 *** 

CV, final health state +0.4 -5.43 -6.19 -4.67 <0.001 *** 

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

CV=compensating variation; 95% CI = 95% confidence interval.  CVs are shown for an increase in the 

difference between attributes, setting all other attributes differences to zero.   

 

The results suggested that there were positive welfare effects associated 

with prioritising patient groups that would finish treatment in better final health 

states, and negative welfare effects associated with prioritising older patient 

groups or those in better initial health states.  There was no statistically 

significant effect associated with initial life expectancy or, notably, the potential 

number of patients treated.  This was in contrast to the pilot survey where CSPC 

respondents gave substantial weight to the number of patients treated. 
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9.6.2 Marginal effects 

As mentioned above, the tobit coefficients were assumed to represent the 

marginal change in latent utility given a 1-unit change in the difference between 

attribute levels, consistent with a random utility theory of choice.  However, as 

Long (1997) notes, some researchers are uncomfortable with regarding observed 

data as a manifestation of a latent process.  To directly relate the effect of a 

change in x to the observed difference in the budget allocation y – not the latent 

outcome y* – it is necessary to weight the marginal utility, βx, by the probability 

of y being censored for a given level x (Long 1997).  The marginal effects shown 

Figure 9.3: CSPC compensating variations by attribute 
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in Table 9.3 represent the expected change in the observed budget difference given 

a 1-unit change in the in the difference in attribute levels, calculated at the mean 

attribute differences.   

Table 9.3: CSPC double-bounded tobit marginal effects 

Attribute 
Marginal 

effect 
Std err ME/Std err p-value Sig Mean(Δx) 

Constant 22.65 5.27 4.30 <0.001 ***  

Δ Life years gained 2.92 0.19 15.76 <0.001 *** 0.48 

Δ Patient age / 10 -4.37 0.32 -13.45 <0.001 *** 2.10 

Δ Initial health state -37.14 6.88 -5.40 <0.001 *** 0.12 

Δ Final health state 64.74 7.45 8.69 <0.001 *** 0.14 

ΔAge:ΔLYg -0.33 0.04 -7.61 <0.001 *** 4.13 

ΔU1:ΔLYg 2.99 0.51 5.90 <0.001 *** -0.21 

ΔnPats:ΔLYg -0.35 0.04 -8.51 <0.001 *** -0.49 

(1-ΔU0):(1+ΔU1) -25.10 5.61 -4.47 <0.001 *** 0.95 

       

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 

 

These marginal effects are very similar to the coefficients reported in 

Appendix 9.2, but as the interpretation of marginal effects is limited to relating 

the change in the observed budget allocation given a change in attribute 

differences, they are largely inconsistent with an understanding of compensating 

variation as an equalising change in utility.  As such, compensating variations 

based on these marginal effects were not calculated. 

9.6.3 Public vs. agent preferences 

Differences between general public and agent preferences were estimated 

using a pooled double-bounded tobit model with clustering, as in the combined 

analysis.  Alternative value function specifications, ranked by information 

criteria, are shown in Appendix 9.3.  The results of the specification with the best 

fit by AICc and BIC are shown in Appendix 9.4.   

All of the attribute-agent interactions were insignificant, even at a 0.10 

threshold, suggesting no substantial difference between agent and public 

preferences.  The interaction between the difference in age and agent status was 

significant at a 0.10 threshold in less parsimonious versions of the value function, 
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but this interaction was not significant in the final value function.  However, 

given its significance in less parsimonious versions of the value function, the 

compensating variation and 95 percent confidence intervals associated with a 

change in age were estimated for agents and the general public.  Both groups had 

positive and statistically significant CVs (negative welfare effects) associated with 

a 30-year increase in the difference in age: CV was 4.58 (95% CI: 3.85, 5.32) for 

the general public and 5.71 (95% CI: 4.04, 7.39) for agents.  This was suggestive 

of a slightly stronger preference among agents than the general public for treating 

younger patients, but the difference was not significant at a 0.05 threshold 

(ΔCV= 1.13; 95% CI: -0.22, 2.48). 

9.6.4 Scenario rankings 

The utility of each choice scenario, relative to a hypothetical scenario 

with all attributes at their middle level, is shown in Table 9.4.  This table presents 

the same 38 choice scenarios that were presented in the DCE ranking of 

scenarios in Table 8.4, but rather than absolute attribute levels as in the DCE 

analysis, each scenario here is presented in terms of attribute differences relative 

to the reference scenario.  A negative difference indicates that the attribute level 

in a particular scenario was lower than in the reference scenario, while a positive 

difference indicates that the attribute level was higher than in the reference 

scenario.   

The correlation between each attribute and the overall rank of the 

scenario is also shown.  The scenarios were ranked by descending relative utility, 

so a negative correlation coefficient indicates that the relative rank of a scenario 

improved if the difference in an attribute was positive, while a positive 

correlation coefficient indicates that relative rank worsened if the difference was 

positive.  For comparison purposes, the DCE rank for the same scenario is also 

shown, along with the correlation between CSPC and DCE rank. 
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Table 9.4: CSPC scenario rankings by predicted difference in utility 

CSPC 

Rank 

DCE 

Rank 
ΔAge ΔU0 ΔLE ΔU1 ΔLYg ΔnPats 

ΔInd 

QALYs 

ΔAgg 

QALYs 
ΔUtility 

1 7 -30 0 0 0.4 5 -2400 8.50 -5,150 60.73 

2 5 -30 -0.4 -4.917 0 5 -2400 2.53 -5,747 42.36 

3 2 0 -0.4 -4.917 0.4 5 0 6.57 16,416 37.54 

3 2 0 -0.4 -4.917 0.4 5 0 6.57 16,416 37.54 

5 1 -30 0 0 0 5 2500 2.50 18,750 27.91 

6 23 -30 0.4 0 0.4 0 -2400 2.00 -5,800 27.74 

6 25 -30 0.4 0 0.4 0 0 2.00 5,000 27.74 

8 4 -30 -0.4 5 0 0 -2400 4.00 -5,600 16.69 

9 15 0 0 5 0.4 0 -2400 6.00 -5,400 14.47 

10 10 0 0 5 0 5 0 2.50 6,250 13.12 

11 8 30 0 0 0.4 5 2500 8.50 48,750 12.44 

12 29 30 0.4 5 0.4 5 2500 6.50 38,750 11.58 

13 18 -30 0.4 -4.917 0.4 -4 2500 -1.60 -1,750 9.44 

14 20 -30 0 -4.917 -0.4 5 0 -1.53 -3,833 9.07 

15 11 -30 0 -4.917 -0.4 5 2500 -1.53 -1,416 4.35 

16 22 -30 -0.4 5 -0.4 0 0 -2.00 -5,000 3.92 

17 19 0 0.4 -4.917 0 5 2500 2.47 18,584 3.20 

18 28 0 -0.4 -4.917 0 0 0 0.03 83 2.56 

19 12 30 -0.4 -4.917 0.4 0 2500 2.07 16,582 1.19 

Ref Ref 0 0 0 0 0 0 0 0 -2.64 

20 9 0 0 5 0 0 2500 0.00 6,250 -2.64 

21 26 0 0 0 0.4 -4 0 0.40 1,000 -3.31 

22 6 -30 0 5 0 -4 0 -2.00 -5,000 -5.41 

23 13 0 -0.4 5 -0.4 5 2500 -1.50 -1,250 -5.64 

24 16 0 -0.4 0 0 -4 2500 0.00 6,250 -6.27 

25 32 0 0.4 5 0.4 -4 -2400 -1.60 -6,160 -7.80 

26 30 -30 -0.4 5 -0.4 -4 0 -2.40 -6,000 -7.83 

27 23 30 -0.4 0 0 0 0 2.00 5,000 -11.58 

28 21 30 0.4 5 0 5 0 -1.50 -3,750 -11.60 

29 14 -30 0 -4.917 -0.4 -4 2500 -2.43 -5,916 -13.58 

30 37 0 -0.4 -4.917 0 -4 -2400 -1.97 -6,197 -13.68 

31 17 30 -0.4 0 -0.4 5 -2400 -1.50 -6,150 -15.90 

32 35 30 0 5 0.4 -4 -2400 2.40 -5,760 -16.76 

33 34 30 0 -4.917 0 0 -2400 0.00 -6,000 -16.78 

34 33 0 0 -4.917 -0.4 0 -2400 -2.03 -6,203 -19.75 

35 36 0 0.4 -4.917 0 -4 0 -2.03 -5,083 -20.44 

36 38 0 -0.4 0 -0.4 -4 -2400 -2.40 -6,240 -21.29 

37 31 30 -0.4 5 -0.4 0 2500 -2.00 -3,750 -24.36 

38 27 0 0.4 -4.917 -0.4 0 0 -2.07 -5,166 -29.28 

           

Corr. 0.71 0.46 -0.02 0.01 -0.53 -0.52 -0.07 -0.75 -0.48  

Difference in predicted utility between each choice scenario and a hypothetical reference scenario with all 

attributes set to their middle level.  DCE rank=rank of same scenario in DCE scenario ranking; 

ΔAge=difference in patient age; ΔU0=difference in initial health state; ΔLE=difference in initial life 

expectancy; ΔU1=difference in final health state; ΔnPats=difference in potential patients treated; 

ΔLYg=difference in individual life years gained; ΔInd QALYs=difference in QALYs gained per patient; ΔAgg 

QALYs=Difference in aggregate QALYs by group.  Corr=Correlation between CSPC rank and attribute 

difference.  The reference scenario is shown in bold.  The negative relative utility of the reference scenario 

reflects the significant alternative-specific constant. 
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The single strongest rank-attribute correlation was with individual QALY 

gains (ρ=-0.75), where the strong negative correlation indicated that as 

individual QALYs gained increased relative to the reference scenario, so did the 

rank of that scenario.  Each of the top 10 scenarios had positive and relatively 

large individual QALY gains, while 9 of the bottom 10 scenarios had zero or 

negative individual QALY gains.  Interestingly though, 5 of the top 10 scenarios 

had negative aggregate QALY differences, as larger individual QALY gains 

accrued to fewer patients than in the reference scenario, and the two scenarios 

with the largest relative aggregate QALY gains were ranked outside of the top 

10.  Final health state was the attribute next most strongly correlated with rank, 

followed by individual life year gains.  The number of patients treated attribute 

had only a very weak association with relative rank.  Together these correlations 

suggested that CSPC respondents emphasised individual over aggregate gains.  

As in the DCE rankings, age also had a relatively strong association with rank.  

None of the top 10 scenarios prioritised patients older than the reference 

scenario, while the patients in 4 of the bottom 10 scenarios – and 6 of the bottom 

12 – were older than those in the reference scenario.  Severity, either in terms of 

initial health state or initial life expectancy, had no meaningful impact on the 

rankings.   

Overall, the relative rankings were closely correlated with those from the 

DCE (ρ=0.71), although there were a few notable disagreements.  Most 

apparently, the two scenarios tied at CSPC rank 6 were ranked much less 

favourably in the DCE.  These scenarios involved patients in a relatively good 

initial health state, and the discordance appeared to stem from an indifference to 

initial health state in the CSPC and a relatively strong aversion to patients in the 

best initial health state in the DCE.  Similarly, the CSPC had much stronger 

associations between relative rank and final health state and individual QALY 

gains than the DCE. 

Given the strong association between age and the relative rankings, the 

scenarios are re-presented in Table 9.5 controlling for the relative difference in 

age.  These results show even more clearly the association between rank and 

individual QALY gains.  The largest net individual QALY gains were 

consistently ranked at the top of each age category, and relative rank declined in 
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lockstep with individual QALY gains.  They also reinforce the importance of age 

in the relative rankings.  Six of the top 10 scenarios were associated with 

relatively younger patient groups, while none of the scenarios with relatively 

older patients were among the top 10, including the scenario with the largest net 

individual and aggregate QALY gains (#11 overall), and the scenario with the 

second largest aggregate QALY gains (#12 overall). 

Table 9.5: CSPC scenario rankings controlling for relative age 

Rank 

within 

ΔAge 

Overall 

rank 
ΔAge ΔU0 ΔLE ΔU1 ΔLYg ΔnPats 

ΔInd 

QALYs 

ΔAgg 

QALYs 
ΔUtility 

ΔAge = -30 

1 1 -30 0 0 0.4 5 -2400 8.50 -5,150 60.73 

2 2 -30 -0.4 -4.917 0 5 -2400 2.53 -5,747 42.36 

3 5 -30 0 0 0 5 2500 2.50 18,750 27.91 

4 6 -30 0.4 0 0.4 0 -2400 2.00 -5,800 27.74 

5 6 -30 0.4 0 0.4 0 0 2.00 5,000 27.74 

6 8 -30 -0.4 5 0 0 -2400 4.00 -5,600 16.69 

7 13 -30 0.4 -4.917 0.4 -4 2500 -1.60 -1,750 9.44 

8 14 -30 0 -4.917 -0.4 5 0 -1.53 -3,833 9.07 

9 15 -30 0 -4.917 -0.4 5 2500 -1.53 -1,416 4.35 

10 16 -30 -0.4 5 -0.4 0 0 -2.00 -5,000 3.92 

11 23 -30 0 5 0 -4 0 -2.00 -5,000 -5.41 

12 27 -30 -0.4 5 -0.4 -4 0 -2.40 -6,000 -7.83 

13 30 -30 0 -4.917 -0.4 -4 2500 -2.43 -5,916 -13.58 

ΔAge = 0 

1 3 0 -0.4 -4.917 0.4 5 0 6.57 16,416 37.54 

2 3 0 -0.4 -4.917 0.4 5 0 6.57 16,416 37.54 

3 9 0 0 5 0.4 0 -2400 6.00 -5,400 14.47 

4 10 0 0 5 0 5 0 2.50 6,250 13.12 

5 17 0 0.4 -4.917 0 5 2500 2.47 18,584 3.20 

6 18 0 -0.4 -4.917 0 0 0 0.03 83 2.56 

Ref Ref 0 0 0 0 0 0 0.00 0 -2.64 

7 20 0 0 5 0 0 2500 0.00 6,250 -2.64 

8 22 0 0 0 0.4 -4 0 0.40 1,000 -3.31 

9 24 0 -0.4 5 -0.4 5 2500 -1.50 -1,250 -5.64 

10 25 0 -0.4 0 0 -4 2500 0.00 6,250 -6.27 

11 26 0 0.4 5 0.4 -4 -2400 -1.60 -6,160 -7.80 

12 31 0 -0.4 -4.917 0 -4 -2400 -1.97 -6,197 -13.68 

13 35 0 0 -4.917 -0.4 0 -2400 -2.03 -6,203 -19.75 

14 36 0 0.4 -4.917 0 -4 0 -2.03 -5,083 -20.44 

15 37 0 -0.4 0 -0.4 -4 -2400 -2.40 -6,240 -21.29 

16 39 0 0.4 -4.917 -0.4 0 0 -2.07 -5,166 -29.28 

ΔAge = +30 
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1 11 30 0 0 0.4 5 2500 8.50 48,750 12.44 

2 12 30 0.4 5 0.4 5 2500 6.50 38,750 11.58 

3 19 30 -0.4 -4.917 0.4 0 2500 2.07 16,582 1.19 

4 28 30 -0.4 0 0 0 0 2.00 5,000 -11.58 

5 29 30 0.4 5 0 5 0 -1.50 -3,750 -11.60 

6 32 30 -0.4 0 -0.4 5 -2400 -1.50 -6,150 -15.90 

7 33 30 0 5 0.4 -4 -2400 2.40 -5,760 -16.76 

8 34 30 0 -4.917 0 0 -2400 0.00 -6,000 -16.78 

9 38 30 -0.4 5 -0.4 0 2500 -2.00 -3,750 -24.36 

Difference in predicted utility between each choice scenario and a hypothetical reference scenario with all 

attributes set to their middle level, grouped by relative difference in age.  DCE rank=rank of same scenario 

in DCE analysis; ΔAge=difference in patient age; ΔU0=difference in initial health state; ΔLE=difference in 

initial life expectancy; ΔU1=difference in final health state; ΔnPats=difference in potential patients treated; 

ΔLYg=difference in individual life years gained; ΔInd QALYs=difference in QALYs gained per patient; ΔAgg 

QALYs=Difference in aggregate QALYs by group.  The reference scenario is shown in bold. 

The rankings were also stratified by initial life expectancy to explore the 

relationship with life years gained (not shown).  As was observed in the DCE 

rankings, scenarios with relatively greater individual life year gains were 

consistently ranked more favourably in scenarios with relatively shorter life 

expectancies, while there was no clear pattern in scenarios with relatively greater 

life expectancy.  This appeared contrary to Harris’ (1985) argument that the 

duration of benefit should be immaterial to prioritising decisions on the grounds 

that an individual with a short life expectancy may place the same value on their 

remaining time as an individual with a much longer life expectancy.  If Harris’ 

argument held, one would expect the observed pattern to be reversed, with 

respondents indifferent to the duration of benefit in patients with the shortest 

initial life expectancy.  This somewhat counter-intuitive result, though, may 

reflect diminishing returns to life year gains in patients with relatively longer 

initial life expectancies.   

9.6.5 Distributional preferences 

Although the modal CSPC response (12% of all CSPC tasks) was an 

equal budget allocation to each program (zero budget difference), only 8 of 658 

CSPC respondents (1.2%, excluding the 4 respondents deemed non-informative), 

all from the general population sample, equalised budgets between the two 

alternatives in every choice task.  Likewise, even though the second most 

frequent response (9% of all CSPC tasks) was a maximum budget allocation to 

one program or the other (+100 or -100 budget difference), no CSPC respondents 
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maximised budgets in every task.  The distribution of respondents by the number 

of tasks equalised or maximised (excluding the repeated task) is shown in Table 

9.6. 

Table 9.6: Respondents by the number of tasks equalising or maximising the budget 

allocation 

 Respondents equalising budgets Respondents maximising budgets 

Tasks Agents Public Combined Agents Public Combined 

0 30 (52.6%) 
288 

(47.9%) 
318 (48.3%) 49 (86.0%) 

475 

(79.0%) 
524 (79.6%) 

1 14 (24.6%) 
153 

(25.5%) 
167 (25.4%) 4 (7.0%) 80 (13.3%) 84 (12.8%) 

2 9 (15.8%) 78 (13.0%) 87 (13.2%) 2 (3.5%) 28 (4.7%) 30 (4.6%) 

3 1 (1.8%) 31 (5.2%) 32 (4.9%) 1 (1.8%) 8 (1.3%) 9 (1.4%) 

4 3 (5.3%) 20 (3.3%) 23 (3.5%) 1 (1.8%) 3 (0.5%) 4 (0.6%) 

5 0 (0.0%) 9 (1.5%) 9 (1.4%) 0 (0.0%) 5 (0.8%) 5 (0.8%) 

6 0 (0.0%) 4 (0.7%) 4 (0.6%) 0 (0.0%) 2 (0.3%) 2 (0.3%) 

7 0 (0.0%) 3 (0.5%) 3 (0.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

8 0 (0.0%) 3 (0.5%) 3 (0.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

9 0 (0.0%) 4 (0.7%) 4 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

10 0 (0.0%) 8 (1.3%) 8 (1.2%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Total 57 (8.7%) 
601 

(91.3%) 
658 (100.0%) 57 (8.7%) 

601 

(91.3%) 
658 (100.0%) 

Mean 

tasks 

equal. 

or max. 

0.82 1.18 1.15 0.26 0.35 0.34 

p-value 0.03  0.43  

Excludes 4 general public respondents who did not move the slider in any of their choices and finished the 

questionnaire in less than one-half the median completion time.  

 

The table shows that neither maximising nor equalising strategies were 

particularly common among respondents: 48 percent of respondents did not 

equalise budgets in any tasks, and 80 percent of respondents did not maximise 

budgets in any tasks.  Overall, the average respondent equalised 1.15 tasks and 

maximised 0.34 tasks.  Agents had a significantly lower mean number of tasks 

equalised than the general population sample, but there was no significant 

difference in the number of tasks maximised.  Respondents who somewhat or 

strongly disagreed with an inevitable need for rationing in healthcare appeared to 

equalise slightly but significantly more tasks than respondents who somewhat or 

strongly agreed (1.48 vs. 1.07, p=0.04), but there was no significant difference in 
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the number of tasks maximised (p=0.58).  Only 2 of the 8 strict equalising 

respondents also rated distributional concerns as the most important factor in 

their decisions, but 4 of the 8 equalisers had a completion time less than half of 

the median CSPC completion time.  It is not clear, though, whether an 

egalitarian preference may have simplified the CSPC tasks and led to faster 

completion times, or whether equalisation may have been adopted as a 

simplifying heuristic to complete the tasks more quickly.   

The equalising and maximising behaviours observed here were 

substantially different than observed by Schwappach (2003) in a similar CSPC in 

a German setting.  He reported that 11 percent of all respondents equalised 

budget allocations in every task, compared to 1 percent here, and only 3 percent 

of all allocations maximised the budget to one program or the other, compared 

to 9 percent here.  As in the pilot survey, these low rates suggest that respondents 

were not using equal budget allocations to avoid making difficult allocation 

choices. 

In addition to equalising budgets, CSPC respondents could also allocate 

the budget in each task so as to equalise the number of patients treated or the 

aggregate QALYs gained between the two alternatives.  The distribution of 

respondents by the number of tasks where patients or QALYs were equalised 

(excluding the repeated task) is shown in Table 9.7. 

Table 9.7: Respondents by the number of tasks equalising patients treated or QALYs 

gained 

 Respondents equalising patients treated Respondents equalising QALYs gained 

Tasks Agents Public Combined Agents Public Combined 

0 41 (71.9%) 350 (58.2%) 391 (59.4%) 41 (71.9%) 440 (73.2%) 481 (73.1%) 

1 12 (21.1%) 185 (30.8%) 197 (29.9%) 11 (19.3%) 130 (21.6%) 141 (21.4%) 

2 3 (5.3%) 48 (8.0%) 51 (7.8%) 4 (7.0%) 27 (4.5%) 31 (4.7%) 

3 1 (1.8%) 15 (2.5%) 16 (2.4%) 0 (0.0%) 2 (0.3%) 2 (0.3%) 

4 0 (0.0%) 2 (0.3%) 2 (0.3%) 0 (0.0%) 1 (0.2%) 1 (0.2%) 

5 0 (0.0%) 1 (0.2%) 1 (0.2%) 1 (1.8%) 0 (0.0%) 1 (0.2%) 

6 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

7 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

8 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

9 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.2%) 1 (0.2%) 

10 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
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Total 57 (8.7%) 601 (91.3%) 658 (100%) 57 (8.7%) 601 (91.3%) 658 (100%) 

Mean tasks 

with equal 

patients or 

QALYs 

0.37 0.56 0.55 0.42 0.34 0.34 

Adj.  

p-value 
0.14  0.39  

Tasks were classified as equalised if the budget allocation was within 2 percent of the precise equalising 

allocation.  Excludes 4 general public respondents who did not move the slider in any of their choices and 

finished the questionnaire in less than one-half the median completion time.   

Agents appeared slightly less likely than the general population sample to 

equalise patients in their budget allocations, but slightly more likely equalise 

QALYs.  However, neither difference was statistically significant (adjusted 

p=0.14 and 0.39, respectively), and the majority of respondents did not equalise 

patients treated or aggregate QALYs gained in any of their choices.  As noted, a 

task was classified as equalised if the budget was within 2 percent of the precise 

equalising allocation for either attribute.  This margin of error meant that the 

distribution shown in Table 9.7 may, if anything, slightly overstate the true 

proportion of equalised tasks. 

9.6.6 Comparison of preferences from the DCE and CSPC 

The transformed CSPC discrete choices, based on the alternative that was 

allocated the majority of the budget, were modelled using a latent class 

multinomial logit model.  Twelve percent of all CSPC responses assigned an 

equal 50-50 budget allocation and were excluded from this analysis as they did 

not prioritise either alternative.16  The initial value function was the same as used 

in the DCE analysis, and included continuous life years gained, dummy-coded 

main effects, a continuous interaction between initial and final health state, and 

continuous interactions between attribute main effects and individual life years 

gained.  A 2-class model with the full value function did not converge, but a 

more parsimonious specification, excluding less plausible interactions between 

life years gained and initial health state and initial life expectancy did converge.  

A third specification, excluding insignificant interactions between life years 

                                                 
16 It would also have been possible to randomly choose one of the two alternatives for each equal 

budget allocation, but it was felt that this may have misrepresented the preferences of 

respondents who explicitly preferred equality in resources, or who consciously ‘chose not to 

choose.’ 
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gained and age and patients treated further improved model fit by BIC.  All the 

remaining parameters in this specification were significant at a 0.10 threshold in 

at least one of the two latent classes.  A 3-class finite mixture model with the 

same parsimonious value function specification also converged, but had very 

large standard errors in one class and was rejected.  The results of the 

parsimonious 2-class model are shown in Appendix 9.5, along with the results 

from the 2-class DCE latent class model from the primary analysis, previously 

described in Chapter 8.   

T-tests comparing the DCE and CSPC latent class coefficients suggested 

that the differences between most of the coefficients in the two models were 

statistically significant at a 0.05 threshold, even after adjusting for multiple 

comparisons.  The most notable exception was the insignificant difference in the 

coefficients on both dummy-coded age parameters.  However, given interaction 

effects included in both models, it was difficult to predict differences in welfare 

effects based on differences in the coefficients alone.   

The differences in the compensating variations between the two 

questionnaire formats are illustrated in Figure 9.4, arranged by increasing 

absolute difference. 

 

Figure 9.4: CV differences by attribute change, DCE vs. CSPC 
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The figure suggested that there was considerable variation between the two 

formats, ranging from relatively small and statistically insignificant differences 

associated with a downward change in life expectancy or an upward change in 

initial health state, to much larger and statistically significant differences 

associated with upward changes in the number of patients treated and final 

health state.  The format-specific compensating variations and 95 percent 

confidence intervals, as well as the marginal utility of an additional individual 

life year, are shown in Table 9.8. 

Table 9.8: Compensating variations and differences by attribute and questionnaire 

format 

Change 
DCE CV  

(95% CI) 

CSPC CV 

(95% CI) 

Difference  

(95% CI) 

Patient age, 40 → 10 
-4.36 

(-7.45, -1.26) 

-3.87 

(-5.08, -2.67) 

-0.48 

(-2.38, 1.41) 

Patient age, 40 → 70 
2.91 

(0.91, 4.91) 

4.29 

(2.87, 5.72) 

-1.38 

(-1.96, -0.81) 

Initial health state, 0.5 → 0.1 
-0.57 

(-1.63, 0.48) 

-1.67 

(-2.43, -0.91) 

1.10 

(0.81, 1.39) 

Initial health state, 0.5 → 0.9 
1.41 

(-0.55, 3.36) 

1.65 

(0.58, 2.72) 

-0.24 

(-1.13, 0.65) 

Life expectancy, 5yrs → 1mon 
3.57 

(1.82, 5.32) 

3.79 

(2.49, 5.08) 

-0.22 

(-0.68, 0.24) 

Life expectancy, 5yrs → 10yrs 
-0.77 

(-1.3, -0.25) 

-0.30 

(-0.95, 0.36) 

-0.48 

(-0.34, -0.61) 

Final health state, 0.5 → 0.1 
2.88 

(1.34, 4.43) 

3.29 

(2.04, 4.54) 

-0.41 

(-0.7, -0.11) 

Final health state, 0.5 → 0.9 
0.71 

(-1.27, 2.69) 

-3.86 

(-4.99, -2.74) 

4.58 

(3.72, 5.43) 

Total patients treated, 2500 → 100 
-0.60 

(-2.03, 0.83) 

-0.01 

(-0.85, 0.84) 

-0.59 

(-1.18, -0.01) 

Total patients treated, 2500 → 5000 
-4.2 

(-6.55, -1.86) 

-2.25 

(-3.16, -1.34) 

-1.95 

(-3.39, -0.52) 

    

Marginal utility of 1 LY gained 
0.28 

(0.16, 0.40) 

0.12 

(0.08, 0.15) 

0.17 

(0.08, 0.25) 

95% CI=95% confidence interval.  Differences calculated as CSPC CV less DCE CV.  A negative CV indicates 

a positive welfare effect. 

Perhaps the single most notable difference was over final health state, 

where there was no significant welfare effect associated with prioritising patients 

that would finish treatment in the best final health state over those who would 

finish in a moderate final health state in the DCE, but a relatively strong and 

statistically significant positive effect in the CSPC.  Likewise, there was no 
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significant effect in the DCE associated with prioritising patients in the worst 

initial health state over those in a moderate state, but a significant positive effect 

in the CSPC.  Together these suggest a greater emphasis on quality improvement 

in the CSPC compared to the DCE.  In contrast, there was a significantly 

stronger welfare effect in the DCE associated with prioritising the largest patient 

group.  This was somewhat counter to expectations, as evidence from the pilot 

survey suggested the CSPC may have been more likely to emphasise the total 

number of patients treated as this attribute changed with the budget allocation.  

Based on the significant difference in the marginal utility of life year gains, 

respondents to the DCE also appeared to value an additional life year more 

highly than respondents to the CSPC.   

Interestingly, there were negative welfare effects associated with 

prioritising patients with the shortest initial life expectancy in both 

questionnaires.  This contradicts expectations from the empirical ethics review, 

and highlights a difference between the tobit and multinomial logit model 

results.  Initial life expectancy was insignificant in the linear tobit analysis, but 

the non-linear analysis of the transformed CSPC responses appeared to reveal a 

statistically significant effect.  It is important to recognise, however, that the 

transformed CSPC responses excluded equal budget allocations, so it not clear 

whether this was a true effect revealed by the non-linear analysis or simply an 

artefact of the subset of responses included in the analysis. 

9.7 Discussion of CSPC results 

The results of the primary tobit analysis of CSPC responses suggested that 

prioritising younger patients, those in worse initial health states, and those that 

would finish in better final health states, as well as those that would gain more 

individual life years, were associated with positive welfare effects.  There was no 

statistically significant effect over the range of life expectancy tested or, 

unexpectedly, over the potential number of patients treated.  This was in contrast 

to the pilot survey, where CSPC respondents gave substantial weight to the 

number of patients treated.  Based on this pilot result, it was hypothesised that 

CSPC respondents may have taken the fact that the number of patients treated 
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changed as they moved the budget slider as a cue to focus on this attribute, 

leading to a prominence effect.  The insignificance of the number of patients 

treated attribute, and the lack of any association between this attribute and the 

relative ranking of each CSPC scenario, appeared to discount this notion.  

Larger aggregate QALY gains were associated with more favourable rankings, 

but this association was not as strong as the association between rank and 

individual QALY gains, or between rank and individual life year gains.   

The proportional relationship between the relative budget and the number 

of patients treated in any alternative highlighted the fact that giving greater 

priority to one group meant that the other group must necessarily receive lower 

priority.  However, it may also have complicated the interpretation of this 

attribute by transforming it from an input parameter to an implicit response 

variable – relatively more patients were treated in alternatives that respondents 

preferred.  In this sense, allowing the number of patients treated attribute to 

change may have shifted the CSPC towards a form of a person trade-off (PTO) 

task.  It is not clear how the significance of the number of patients treated 

attribute might have changed if it had been held fixed.  In light of this possible 

shift in the interpretation of the CSPC, however, it may be informative to 

contrast the results here with the PTO approach reviewed in Chapter 3.  Both the 

CSPC and the PTO clearly highlight the inter-personal trade-offs inherent in 

healthcare priority setting, but it was argued that the CSPC may have an 

advantage in eliciting preferences over these trade-offs in a more intuitive, less 

discomforting manner.  This appeared to be supported by the results.  In contrast 

to the 91 percent of PTO respondents reported by Damschroder  (2007), and the 

32 percent reported by Nord (1995a), who refused to make any trade-offs 

between patient groups and set the person-equivalents equal, only 12 percent of 

all CSPC tasks equalised the budget allocations between alternatives, and only 1 

percent of all respondents equalised the budget allocation in every one of their 

choices.   

When the CSPC responses were transformed from linear differences to 

discrete choices, a negative and statistically significant welfare effect associated 

with prioritising patients with the shortest untreated life expectancy emerged, as 

did a positive and statistically significant effect associated with prioritising the 
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largest patient groups.  However, the strength of the effect around prioritising the 

largest patient group in the CSPC was still significantly less than the 

corresponding effect in the DCE.  Overall, CSPC respondents appeared to put 

significantly more weight on initial and final quality of life, while DCE 

respondents put significantly more weight on maximising the number of patients 

treated and individual life year gains, controlling for the level of the other 

attributes.  This result appears consistent with the characterisation of the DCE as 

a more competitive task, as these two attributes were easy to compare between 

alternatives in order to identify a ‘winning’ alternative.  Interestingly, this 

appears not only to contradict the idea of a prominence effect in the, but suggests 

that CSPC respondents were in fact less likely than DCE respondents to consider 

aggregate outcomes in their choices.   

The CSPC allowed respondents to express specific distributional 

preferences, including preferences for maximising resources and/or outcomes, or 

for the equality of resources (budget), opportunity (patients treated) or outcomes 

(QALYs gained).  As it was, however, only a handful of CSPC respondents 

expressed preferences for strict resource equality.  As was also noted in the 

discussion of the pilot elicitation in Chapter 5, the low incidence of egalitarian 

behaviour was surprising, as it was expected that respondents would view in 

equality in at least one of these aspects as a heuristic for a fair allocation.  

Furthermore, given the relatively high proportion of fast responders among these 

respondents, and the relatively low proportion of these respondents who also 

ranked distributional concerns as the most important factor in their choices, it is 

likely that at least some of the egalitarian responses were the result of a 

simplifying heuristic rather than a considered preference for equality.  It is not 

clear, though, whether an equalising decision rule may have led to fast 

completion times, or whether a desire to complete the questionnaire as quickly 

as possible may have led to an equalising decision rule.   

Agents were slightly but significantly less likely than the general 

population sample to equalise budget allocations, while respondents who 

disagreed within an inevitable need for healthcare rationing were significantly 

more likely to equalise budget allocations.  This likely reflects the underlying 

attitudes of the two groups: agents were more likely to agree with a need for 
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rationing, and therefore may have been somewhat more willing to prioritise 

specific patient groups, while those who disagreed were less willing to see one 

group advantaged relative to another in terms of resources allocated.  No 

respondents maximised the budget allocations to one group or the other in all 10 

choice tasks, perhaps reflecting a general aversion to extreme distributions in the 

allocation of societal resources suggested by Schwappach and Strasmann (2006), 

and consistent with the fairness principle of ‘everybody gets something and 

nobody gets nothing’ noted by Giacomini et al. (2012).   

The insignificance of the number of patients treated, combined with the 

relatively low rate of resource-equalising allocations, appeared to imply that 

CSPC respondents were not necessarily concerned with maximising aggregate 

gains or equalising resources between groups.  Rather, based on the results from 

the scenario rankings, they appeared more concerned with maximising 

individual QALY gains, particularly to those patients that would finish treatment 

in better health states.  Although there is nothing irrational or invalid about this 

preference, it may suggest that respondents may have been reducing the abstract, 

macro-level allocation problems to more comprehensible two-person analogies 

(Giacomini et al. 2012; Ryan 2009).  This may have been exacerbated by the use 

of QALY graphs in the elicitation tasks that illustrated the gains at the individual 

rather than the program level (see Appendix 6.3 for a sample graph).  In this 

light, it is not clear whether the insignificance of the number of patients treated 

reflected a genuine indifference to aggregate outcomes, or a simplifying approach 

to the tasks.  The implications of these preferences results for healthcare priority 

setting, as well as for choosing between the CSPC and DCE as a preferred 

format for eliciting preferences, will be discussed in the next chapter. 
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Appendix 9.1: Alternative CSPC models and utility functions,  

by improving information criteria 

Model and utility function k LL AICc BIC 

 

1.0) 1-way linear random effects; continuous main 

effects differences  

Δv = ΔLYg + ΔAge + ΔU0 + ΔLE + ΔU1 + ΔnPats  

 

7 -34815 71105 75459 

 

2.0) 1-way linear random effects; continuous main 

effects differences + LYg interactions + (1-ΔU0):ΔU1 

interaction 

Δv = ΔLYg + ΔAge + ΔU0 + ΔLE + ΔU1 + ΔnPats + 

ΔAge:ΔLYg + ΔU0:ΔLYg + ΔLE:ΔLYg + ΔU1:ΔLYg + 

ΔnPats:ΔLYg + (1-ΔU0):(1+ΔU1) 

 

13 -34742 70974 75366 

 

2.1) Parsimonious 1-way linear random effects; 

continuous main effects differences + interactions 

Δv = ΔLYg + ΔAge + ΔU0 + ΔU1 + ΔAge:ΔLYg + 

ΔU1:ΔLYg + ΔnPats:ΔLYg + (1-ΔU0):(1+ΔU1) 

 

9 -34747 70976 75342 

 

3.0) Pooled double-bounded tobit; log-linear main 

effects differences 

Δv = Δlog(LYg) + Δlog(Age) + Δlog(U0) + Δlog(LE) + 

Δlog(U1) + Δlog(nPats) 

 

7 -33499 67014 67068 

 

3.1) Pooled double-bounded tobit; parsimonious log-

linear main effects differences 

Δv = Δlog(LYg) + Δlog(Age) + Δlog(U0) + Δlog(LE) + 

Δlog(U1) 

 

6 -33499 67012 67059 

 

4.0) Pooled double-bounded tobit; main effects 

differences 

Δv = ΔLYg + ΔAge + ΔU0 + ΔLE + ΔU1 + ΔnPats 

 

7 -33418 66851 66906 

 

5.0) Pooled double-bounded tobit; main effects 

differences + LYg interactions + (1-ΔU0):ΔU1 

interaction 

Δv = ΔLYg + ΔAge + ΔU0 + ΔLE + ΔU1 + ΔnPats + 

ΔAge:ΔLYg + ΔU0:ΔLYg + ΔLE:ΔLYg + ΔU1:ΔLYg + 

ΔnPats:ΔLYg + (1-ΔU0):(1+ΔU1) 

 

13 -33357 66743 66837 

 

5.1) Pooled double-bounded tobit; parsimonious main 

effects differences + interactions 

Δv = ΔLYg + ΔAge + ΔU0 + ΔU1 + ΔAge:ΔLYg + 

ΔU0:ΔLYg + ΔU1:ΔLYg + ΔnPats:ΔLYg + (1-

ΔU0):(1+ΔU1) 

 

9 -33361 66741 66809 

k=parameters, including alternative specific constant; LL=Log-likelihood; AICc= Akaike information criterion, 

with correction for finite sample size; BIC=Bayesian information criterion. Only models and value functions 

associated with an improvement in LL, AICc or BIC over the previous specification are shown. The minimum 

overall log-likelihood, AICc and BIC are shown in bold.   
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Appendix 9.2: CSPC double-bounded tobit coefficients 

Attribute Coefficient Std err Coef of var β/Std err p-value Sig 

Constant 24.44 5.69 0.233 4.29 <0.001 *** 

Δ Life years 

gained 
3.15 0.20 0.063 15.55 

<0.001 
*** 

Δ Patient age / 10 -4.71 0.35 -0.074 -13.33 <0.001 *** 

Δ Initial health 

state 
-40.07 7.44 -0.186 -5.39 

<0.001 
*** 

Δ Final health 

state 
69.85 8.10 0.116 8.62 

<0.001 
*** 

ΔAge:ΔLYg -0.36 0.05 -0.139 -7.57 <0.001 *** 

ΔU1:ΔLYg 3.23 0.55 0.170 5.87 <0.001 *** 

ΔnPats:ΔLYg -0.38 0.04 -0.105 -8.46 <0.001 *** 

(1-ΔU0):(1+ΔU1) -27.08 6.07 -0.224 -4.46 <0.001 *** 

Sigma 55.42 0.87 0.016 63.48 <0.001 *** 

       

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 
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Appendix 9.3: Alternative CSPC public-agent interaction value 

functions, by improving information criteria 

Attribute 
p-value, 

model 1 

p-value, 

model 2 

p-value, 

model 3 

p-value, 

model 4 

p-value, 

model 5 

Δ Life years gained 0.140 0.000 0.000 0.000 0.000 

Δ Patient age / 10 0.000 0.000 0.000 0.000 0.000 

Δ Initial health state 0.000 0.000 0.000 0.000 0.000 

Δ Life expectancy 0.254     

Δ Final health state 0.000 0.000 0.000 0.000 0.000 

Δ Patients treated 0.711     

(1-ΔU0):(1+ΔU1) 0.003 0.000 0.000 0.000 0.000 

ΔAge:ΔLYg 0.000 0.000 0.000 0.000 0.000 

ΔU0:ΔLYg 0.789     

ΔLE:ΔLYg 0.831     

ΔU1:ΔLYg 0.066     

ΔnPats:ΔLYg 0.000 0.000 0.000 0.000 0.000 

(1-ΔU0):(1+ΔU1):ΔLYg 0.861     

ΔLYg:Agent 0.047 0.213    

ΔAge:Agent 0.102 0.005 0.036 0.055 0.101 

ΔU0:Agent 0.701     

ΔLE:Agent 0.2313     

ΔU1:Agent 0.2496 0.2398    

ΔnPats:Agent 0.9892     

(1-ΔU0):(1+ΔU1):Agent 0.8302 0.2733    

ΔAge:ΔLYg:Agent 0.9168     

ΔU0:ΔLYg:Agent 0.0356 0.0332 0.088 0.1079  

ΔLE:ΔLYg:Agent 0.1404     

ΔU1:ΔLYg:Agent 0.1649     

ΔnPats:ΔLYg:Agent 0.5456     

(1-ΔU0):(1+ΔU1):ΔLYg:Agent 0.0304 0.0736 0.2039   

Constant 0.0071 0.000 0.000 0.000 0.000 

      

LL -33346 -33354 -33356 -33357 -33359 

AICc 66747 66737 66737 66737 66738 

BIC 66930 66839 66818 66812 66806 

Specifications are based on a double-bounded tobit.  LL=Log-likelihood; AICc= Akaike information criterion 

with correction for finite sample size; BIC=Bayesian information criterion. Only value functions associated 

with an improvement in LL, AICc or BIC over the previous specification are shown. The overall minimum log-

likelihood, AICc and BIC are shown in bold.  The p-value of the likelihood ratio Pr(χ2) is shown for relative to 

the full specification. 
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Appendix 9.4: CSPC double-bounded tobit with agent interactions 

Attribute Coefficient Std err β/Std err p-value Sig 

Constant 24.41 5.70 4.29 <0.001 *** 

Δ Life years gained (ΔLYg) 3.15 0.20 15.55 <0.001 *** 

Δ Patient age / 10 -4.82 0.36 -13.26 <0.001 *** 

Δ Initial health state -40.04 7.44 -5.38 <0.001 *** 

Δ Final health state 69.79 8.11 8.61 <0.001 *** 

(1-ΔU0):(1+ΔU1) -27.05 6.07 -4.46 <0.001 *** 

ΔAge:ΔLYg -0.36 0.05 -7.56 <0.001 *** 

ΔFinal health state:ΔLYg 3.23 0.55 5.87 <0.001 *** 

ΔPatients treated:ΔLYg -0.38 0.04 -8.45 <0.001 *** 

ΔAge:Agent 1.19 0.72 1.64 0.101  

      

Significance codes:     <0.001= ‘***’     <0.01= ‘**’     <0.05= ‘*’     <0.10=’+’ 
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Chapter 10:  
Discussion and concluding remarks 

The thesis started from the position that greater explicitness in the criteria 

by which competing claims to limited healthcare resources are prioritised is, on 

the whole, desirable.  Explicitness, in the sense that prioritising decisions are 

made on the basis of clearly defined objectives and criteria, is argued to promote 

a more informed citizenry, more accountable decision makers, greater 

opportunities for evaluation and improvement, greater trust in the priority setting 

process, and – ultimately – better decisions.   

The theoretical QALY maximisation framework has the advantage of an 

explicit definition of value as the sum of individual health-related utilities, but it 

has faced criticism over the narrowness of its definition of well-being and its 

presumption of distributive neutrality.  As a result, most jurisdictions that use 

some form of QALY maximisation, including the UK, Canada and Australia, 

implicitly consider equity alongside efficiency in priority setting decisions (see 

for example National Institute for Health and Clinical Excellence 2008; 

Canadian Agency For Drugs and Technologies in Health 2013; pan-Canadian 

Oncology Drug Review 2011; Australian Government Department of Health 

and Ageing 2008).  Such operational frameworks, though, have tended to avoid 

explicitly defining a set of relevant equity concerns and their relative weights. 

Advocates for greater explicitness in priority setting argue that the 

solution is not to accept efficiency and equity as inherently separate and 

incompatible issues, but rather to incorporate more of the elements that 

contribute to societal value and well-being within an explicit framework.  

Indeed, the original motivation for the QALY within the extra-welfarist 

approach was to move beyond individual utility in priority setting decisions, and 
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Culyer (1989) suggested that combining health outcomes and distributional 

concerns into a single outcome measure – such as the equity-weighted QALY – 

could achieve an explicit integration of equity and efficiency in healthcare 

priority setting.  A key issue in developing such a comprehensive outcome 

measure, though, is the identification and relative weighting of relevant equity 

concerns. 

At one extreme, Brouwer et al. (2008) suggested that decision makers 

should define well-being in terms of the preferences they believe society ought to 

hold.  This approach has the advantage of professional judgement and perceived 

objectivity.  As a number of authors have noted, however, there is no objective 

basis for preferring one (Pareto optimal) allocation of healthcare resources over 

another; it is an inherently subjective value judgement.  In their view, the 

importance of different perspectives in arriving at an optimal and legitimate 

allocation should be acknowledged, not avoided, leading to democratic or 

Communitarian approaches which allow for the community to define its own 

equity weights, and measure societal value on the basis of how well a program 

satisfies community preferences.   

Within this context, the thesis made a number of specific contributions 

that may inform healthcare priority setting: 

 It reviewed patient and program characteristics that were potentially 

relevant to the allocation of healthcare resources, and through an 

application of empirical ethics narrowed these potential characteristics to 

those that had evidence of public support and a defensible ethical 

justification; that is, were relevant and fair. 

 It reviewed different stated preference methods and identified two 

methods that appeared particularly suited for eliciting preferences in a 

healthcare context: discrete choice experiments (DCEs) and constant-sum 

paired comparisons (CSPCs), and compared their response characteristics 

to identify a preferred method for the elicitation of societal preferences in 

healthcare. 

 It elicited preferences over the allocation of societal healthcare resources 

in order to estimate the equity-efficiency trade-off associated with the 
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attributes identified in the empirical ethics review, and compared 

preferences between the public and a sample of decision-making agents.   

 

There were several unique elements among these contributions that 

warrant highlighting.  First, this study was the first to the author’s knowledge to 

use an empirical ethics approach in identifying the attributes to be included in a 

stated preference elicitation.  Most elicitations in this area have used focus 

groups or literature review to identify potentially relevant attributes, but have not 

included any process to ensure that the preferences being elicited were, in some 

sense, fair.  The process used here began with a literature review to identify 

attributes that had empirical evidence of public support, but also required those 

attributes to be consistent with some coherent theory of distributive justice.  In 

addition to ensuring that preferences are elicited over attributes that are fair as 

well as relevant, an empirical ethics approach may contribute to standardising 

the set of attributes over which preferences for the allocation of healthcare 

resources are elicited.  Given the importance of context in stated preference 

elicitations, standardising the identification of attributes would help make the 

results of elicitations in this area more comparable.  However, it is important to 

acknowledge the subjectivity inherent in this approach, both in identifying 

appropriate principles of justice and in interpreting the empirical evidence with 

respect to these principles.  This subjectivity may limit reproducibility, but it can 

be seen as an essential characteristic of the empirical ethics approach that was 

applied here, as more systematic approaches may lead to a greater emphasis on 

empirical observation at the expense of ethical judgement. 

Second was the use of CSPC to elicit societal preferences, and to the 

author’s knowledge, the first head-to-head comparison of CSPC and DCE for 

eliciting societal preferences.  A CSPC allocation task makes it clear that giving 

more resources to one group means that the other must necessarily receive less.  

This trade-off can be obscured in a discrete choice task, where it may not be clear 

that choosing one group implies that the other will receive no resources.  The 

incidence of non-compensatory decision making among DCE and CSPC 

respondents, tested as part of the head-to-head comparison, appeared to support 

the characterisation of the CSPC as a more reflective task.  The comparison also 



 

294 

suggested that relative to the DCE, the CSPC was associated with greater 

concern for the less well-off group and less consistency with the principles of 

QALY maximisation.  The implications of this finding are discussed in more 

detail in section 10.3 below.  Despite its theoretical advantages, Table 4.2 

suggested that CSPC has not been used as often as DCE for eliciting societal 

preferences.  Among the studies that have used CSPC, a slight majority have 

taken a categorical approach to analysing the responses, simplifying the 

continuous allocations into discrete categories.  This neglects the cardinal 

preference data that is a statistical advantage of the CSPC method, and makes it 

difficult to consider the impact of multiple attributes simultaneously.  The CSPC 

administered here also appeared to be unique in dynamically linking some 

attribute levels to the relative budget allocation, further highlighting the trade-

offs associated with prioritising one group over the other.  This dynamic linkage 

allowed the elicitation to test for preferences for equality in access (number of 

patients treated) or outcomes (aggregate QALYs gained) in addition to the more 

straightforward equality in resources.  No other CSPC elicitation has included 

attributes that varied with the relative budget share, although Linley and Hughes 

(2012) took a direct approach and asked respondents how many patients from 

each of two equally-sized groups they would prefer to treat, skipping the 

intermediate step of allocating a budget.  Treating more patients from one group 

meant that fewer patients from the other group could be treated, emphasising the 

trade-off, but the relative allocation of patients was not linked to an aggregate 

outcome as it was here.  Finally, it is worth noting that only one other CSPC 

elicitation (Linley & Hughes 2012) took a representative sample, as was used 

here. 

Third was the use of a latent class approach to model the DCE responses.  

As shown in Table 4.2, statistical models of DCE and CSPC panel data have 

most often used a random effects specification.  With this specification, however, 

individual preferences differ only because each individual is an independent 

draw from a pre-specified random distribution (Morey & Greer Rossmann 2003).  

In contrast, a latent class approach derives preferences from individual choice 

behaviours and observed or unobserved respondent characteristics.  It also 

allows respondents to be assigned to latent classes on the basis of their choice 
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behaviours rather than a deterministic characteristic.  For example, the latent 

class analysis of DCE responses suggested that agents were substantially more 

likely to belong to one particular class, but it allowed for some agents to have a 

different set of preferences and not to be defined by their status as an agent.  The 

need to pre-define an arbitrary number of latent classes, and the assumption that 

preferences are homogeneous within each class, are limitations of the approach, 

but relative to a continuous distribution of preferences from a random 

parameters model, this simplification improves the interpretability and salience 

of the estimates.  In particular, it allows the interpretation of the different latent 

classes in terms of the characteristics of their members, in a way that would not 

be possible with a random effects specification.  It was suggested in section 8.5, 

for example, that the defining latent characteristic among the DCE respondents 

might have been related to the axiomatic quality of their preference formation.  

This may have implications for how societal preferences are elicited and 

interpreted, and is discussed in more detail below.   

The implications of these contributions are discussed below.  Section 10.1 

discusses the evidence from the DCE and CSPC elicitations for an equity-

efficiency trade-off in societal preferences, and section 10.2 discusses this 

evidence in the context of other recent societal elicitations in healthcare.  Section 

10.3 summarises the response behaviours of the DCE and CSPC methods with 

respect to identifying a preferred method for future elicitations in this area.  

Section 10.4 discusses the implications of the overall results for healthcare 

priority setting, while section 10.5 outlines some of the caveats and challenges to 

incorporating societal preferences into this process.  Finally, section 10.6 offers 

some concluding remarks. 

10.1 An equity-efficiency trade-off? 

The results showed little support for the principles of strict QALY 

maximisation as a societal decision rule, as fewer than 5 percent of all 

respondents always prioritised the alternative that maximised aggregate QALYs 

gained, and decision making agents were no more likely that the general public 

to make such choices.  It was difficult, however, to define a threshold at which 
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one would be confident in accepting or rejecting the relevance of this decision 

rule.  The imperfect and probabilistic nature of preference elicitation under the 

assumptions of random utility theory means that even if there was universal 

support for strict QALY maximisation, it is unlikely that every respondent would 

be observed prioritising the QALY maximising alternative with every choice.  As 

such, a threshold of perfect and unerring consistency is unrealistic.  Bryan et al. 

(2002) suggested that a majority of respondents maximising QALYs gained over 

a majority of their choices may be sufficient to indicate support for QALY 

maximisation.  By this standard support for QALY maximisation was stronger, 

as 75 percent of all DCE respondents chose the QALY maximising alternative in 

at least half of their choices, although only 41 percent of CSPC respondents 

allocated the majority of the budget to the QALY maximising alternative in at 

least half of their choices.  As in any stated preference survey, though, it is not 

possible to say with certainty why a particular alternative was chosen, so it is 

important to recognise that QALY maximising alternatives may have been 

chosen for reasons unrelated to aggregate QALY gains. 

Despite the lack of strict QALY maximising behaviour, the rankings of 

the DCE and CSPC scenarios showed that larger aggregate QALY gains tended 

to be ranked more favourably than those with smaller gains.  However, the 

rankings also suggested an equity-efficiency trade-off, as respondents appeared 

willing to prioritise relatively small aggregate QALY gains to preferred patient 

groups over larger QALY gains to less preferred groups.  In particular, younger 

patient groups were consistently preferred to older patient groups, even when the 

older patients had the potential to gain a greater number of QALYs.   

The idea of an equity-efficiency trade-off was further supported by the 

marginal analyses, which found a statistically significant willingness to sacrifice 

life year gains in order to prioritise younger patients, and those who would finish 

treatment in better final health states.  The CSPC also found a preference for 

patients with the worst initial quality-of-life, while the DCE found a preference 

for patients with longer initial life expectancies – even after controlling for 

potential health gain – and for larger patient groups.  The willingness to forego 

individual life year gains in order to prioritise larger patient groups suggested a 
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preference for smaller individual gains distributed over more beneficiaries to 

larger individual gains concentrated amongst a smaller number of beneficiaries.   

Attribute main effects were significant in both the DCE and CSPC 

models, even after interactions with life year gains were included in the value 

functions.  Some recent elicitations of societal preferences over the allocation of 

healthcare, including Norman et al. (2013) and Lancsar et al. (2011), did not 

include independent main effects in their value functions, consistent with a 

consequentialist view that healthcare is not valued for its own sake but rather for 

the health outcomes it delivers (Mooney 1998a).  However, the significant main 

effects observed here suggested the possibility of welfare gains associated with 

treating particular patient groups, even in the absence of health gains.  For 

example, the positive and significant welfare effects associated with treating 

younger patients, independent of their potential life year gains, suggested that 

society may derive value from seeing young patients receive care, even if that 

care does not lead to improved outcomes.  Such welfare effects would be 

consistent with arguments that society may desire a healthcare system that 

provides for aspects such as compassion, respect for dignity, and maintenance of 

hope, in addition to health gains (Donaldson & Shackley 1997; Wiseman 1997; 

Mooney 1998a; Salkeld 1998).  This possibility was not specifically tested here, 

but future research would be useful in identifying specific non-health factors that 

might be associated with societal welfare gains.  

10.2 Comparison with other societal preference elicitations 

There were some similarities between the methods and results reported 

here and other recent societal elicitations of preferences over societal healthcare 

resources, but the overall body of societal preference research in healthcare is 

characterised by its heterogeneity rather than its consistency.  As noted, other 

elicitations of societal preferences in healthcare have identified different sets of 

relevant attributes, using different methods and different inclusion or exclusion 

criteria.  Green and Gerard (2009), for example, acknowledged that empirical 

evidence appears to suggest that the public supports prioritising younger patients, 

but excluded this factor from their societal DCE primarily on the grounds that 
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NICE does not support age as an independent factor in priority setting.17  

Conversely, Norman et al. (2013) included social role, for which the empirical 

ethics review found a utilitarian justification but little evidence of public support, 

personal responsibility, for which there was evidence of strong public support but 

limited ethical justification, and patient gender, for which there appeared to be 

neither public support nor a clear ethical justification. 

There is nothing within democratic or Communitarian approaches that 

require community preferences to meet any ethical standard.  But if one of the 

objectives of societal participation in priority-setting is to improve the moral 

legitimacy of the allocation of resources, it is difficult to accept that this objective 

would be furthered by incorporating ethically questionable preferences.  Given 

the importance of context in stated preference elicitations, the inclusion or 

exclusion of different attributes may also lead to different trade-offs.  It is 

important to recognise, therefore, that the process of identifying a set of relevant 

attributes may be as important as the elicitation methods themselves in arriving 

at a meaningful set of preference estimates, and a more standardised approach 

may be necessary before elicited preferences can be used for policy in the form of 

equity weights.  Relative to using literature review or focus groups as a basis for 

identifying attributes relevant to the allocation of societal resources, an empirical 

ethics approach may help standardise the attributes included in future elicitations 

and ensure that these attributes are fair as well as relevant.  However, the 

subjectivity in interpreting the ethical justifications for different attributes, as well 

as in identifying ‘defensible’ theories of justice, must be acknowledged and may 

limit the degree to which an empirical ethics approach can in itself contribute to 

this more standardised approach.  There is no universal theory of justice, so it is 

necessary to judge the applicability and appropriateness of different theories of 

justice in the context of allocating healthcare.  Likewise, the degree to which 

different patient or program characteristics are consistent with these theories is 

                                                 
17 NICE guidelines state that “patients should not be denied, or have restricted access to, NHS 

treatment simply because of their age.” (National Institute for Health and Clinical Excellence 

2008)  Age is relevant, though, when it is a predictor of treatment outcomes or closely associated 

with some aspect of a patient’s health status or likelihood of adverse events.  The UK Equality 

Act also prohibits discrimination on the basis of age in the provision of public services, including 

healthcare (Carruthers & Ormondroyd 2009). 
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also a matter of subjective interpretation.  However, as Richardson (2002) 

stresses, “an integral part of empirical ethics should be an acceptance of the fact 

that argument and evidence are fallible and the conclusions are tenuous and 

more or less strongly supported in some contexts that others.”   

A summary of recent preference elicitations in healthcare is shown in 

Appendix 10.1, along with a summary of the results from the DCE and CSPC 

administered as part of the thesis.  The attributes are ordered by the frequency 

with which they were included in the different studies.  Life years or QALYs 

gained was the most commonly included attribute, followed by patient age, life 

expectancy, and initial and final quality of life.  The remaining attributes were 

included in only two or three studies each.  Greater life year or QALY gains 

were preferred in all studies that included them, and Bryan et al. (2002), Green 

and Gerard (2009), Koopmanschap et al. (2010), and Lancsar et al. (2011) 

concluded that their results were consistent with a QALY maximising decision 

rule.  Similar studies by Schwappach (2003), Dolan et al. (2008), Linley and 

Hughes (2012), and Norman et al. (2013), though, found a willingness to forego 

potential health gains to prioritise specific patient characteristics and concluded 

that respondent preferences were not consistent with QALY maximisation.   

Among the other elicitations, younger patients were consistently preferred 

to older patients.  It is worth highlighting that this preference was observed 

across a number of different countries, including the UK (Ratcliffe 2000; Dolan 

& Tsuchiya 2005; Dolan et al. 2008; Baker et al. 2010; Petrou et al. 2013), 

Germany (Schwappach 2003), Hong Kong (Chan et al. 2006), and in this study, 

Canada.  However, two other UK studies found no significant preferences over 

age (Lancsar et al. 2011; Linley & Hughes 2012), and a German study found a 

non-linear preference that peaked at middle age and declined over older and 

younger patients (Diederich et al. 2012).  There was also broad agreement across 

the studies in favour of prioritising patients who would finish treatment in better 

final health states and those with lower levels of personal responsibility for their 

illness, although Schwappach (2003) found unexpected support for prioritising 

patients with greater responsibility for their disease.  Support for prioritising 

patients in the worst initial health states was mixed.  Most studies, including the 

current CSPC, found support for prioritising patients in poorer initial health 
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states, but Shah et al. (2012) found the reverse, and Dolan and Tsuchiya (2005), 

Lancsar et al. (2011), and the current DCE found no significant preference.  

Overall, with the exception of a consistent preference for greater life year or 

QALY gains, there was some degree of heterogeneity, either in a conflicting 

direction of preference, or no statistically significant preference, in each of the 

other commonly included attributes.   

As noted earlier, the primary DCE and CSPC elicitations in the thesis 

were conducted in a cancer context.  This did not appear to have affected the 

interpretability of the results relative to the other studies included in Appendix 

10.1, a handful of which were also conducted in specific disease contexts, 

including liver transplant, orphan diseases, and cancer. 

10.3 Choosing between the DCE and CSPC 

The DCE and CSPC elicitations revealed the tremendous potential of 

stated preference methods, as respondents were able to make remarkably 

coherent choices over very complex sets of attributes and trade-offs – even in the 

less intuitive CSPC – with very minimal instruction.  Based on questionnaire 

completion rates, completion times, and difficulty ratings, the DCE appeared to 

be the more straightforward task, although the more competitive nature of the 

DCE also appeared to be associated with a greater incidence of non-

compensatory decision making, as respondents were significantly more likely to 

hold a dominant preference for a single attribute.  The superior completion rates 

and high preference confidence ratings in the DCE appeared to reject Swallow et 

al.’s (2001) contention that respondents may be reluctant to complete 

dichotomous preference elicitations over highly emotive issues.  The results of 

the elicitations also appeared to discount the hypothesis of a prominence effect 

around the number of patients treated attribute in the CSPC, as DCE 

respondents gave more weight to this attribute in their decisions, consistent with 

the more competitive and quantitative tendencies of the task.  The emphasis in 

the CSPC on individual over aggregate QALY gains was also consistent with 

suggestions that respondents to complex societal stated preference elicitations 

may tend to reduce the abstract, macro-level allocation problems to more 
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comprehensible two-person analogies.  This may have been exacerbated by the 

individual-level presentation of the QALY graphs, although it is notable that a 

corresponding emphasis was not observed in the DCE, where respondents saw 

the same graphs but put relatively more weight on aggregate QALY gains.  

Finally, one cannot discount the possibility that the range of the patients treated 

attribute was simply too narrow to distinguish preferences for different levels 

(Kjær 2005).  In the absence of the theorised advantages of CSPC, the greater 

completion rate and slightly more favourable difficulty rating of the DCE 

appeared to give it an advantage in eliciting societal preferences.   

However, a notable difference between the DCE and CSPC was in the 

greater willingness of CSPC respondents to prioritise the group with the poorer 

health prospects in the test of non-satiation.  CSPC respondents also consistently 

prioritised alternatives associated with fewer individual and aggregate QALY 

gains.  It was hypothesised that this may reflect a compassion bias in the CSPC, 

inherent to the nature of the task, which required respondents to consider how 

much of the budget, if any, to reserve for the less preferred group in each task.  

CSPC respondents could see that as they allocated more of the budget to one 

group, fewer patients in the other group could be treated.  DCE respondents 

faced this same trade-off, as choosing one group meant that none of the patients 

in the less preferred alternative would be treated, but the trade-off was not made 

as clear as in the CSPC, and they may not have had to confront fully the 

consequences of their choices.   

The possibility of such a tendency in the CSPC, which appeared to 

encourage a relatively higher proportion of prioritisation choices that might be 

deemed irrational by economic theory, may be linked to the issue of hypothetical 

bias in stated preference elicitations.  DCE respondents were more consistent 

with economic theory in more often choosing QALY maximising alternatives 

and the dominant alternative in the test of non-satiation, but this consistency 

may be in part an artefact of the competitive focus of the task and might not be 

observed in real-life choices.  The arguably less rational CSPC choices might be 

more reflective of how respondents would choose in a real-life situation.  Indeed, 

the results of the CSPC, which suggested preferences for patients in poorer initial 

health states, and those that could be returned to better final health states, 
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appeared more consistent with expectations from the empirical ethics review 

than the results from the DCE, which found no significant preference over those 

attributes.  Note, though, that the results of the empirical ethics review did not 

generally account for opportunity costs or the relative strength of preferences, 

and so should not be interpreted as a gold-standard or assigned any normative 

qualities.  Overall, the differences between the DCE and CSPC were suggestive 

of a violation of the conventional assumption of procedural variance between 

stated preference methods – the observed preferences appeared to be 

systematically influenced by how they were elicited.  To the extent that 

responses to the DCE may have reflected a greater degree of hypothetical bias, 

the CSPC may be a more appropriate stated preference method for eliciting 

societal preferences over emotive issues such as the allocation of societal 

healthcare resources.  More research will be required to verify the existence of a 

relative tendency towards compassion in the CSPC, and to establish which 

format produces a result that is more consistent with a reflective equilibrium.  

10.4 Implications for healthcare policy 

The results of the DCE and CSPC elicitations conducted as part of the 

thesis, as well as the other recent elicitations, suggested that that there were 

statistically significant welfare effects associated with attributes that are not 

generally considered within the theoretical QALY maximising framework.  In 

light of these effects, the aggregate value that society derives from healthcare 

might be improved by giving explicit weight to attributes such as the age of the 

patient and their expected final health state in priority setting decisions in an 

equity-weighted QALY.  Note, however, that even if it had been found that 

societal preferences were entirely consistent with strict QALY maximisation, it 

can be argued that there was additional value in an inclusive approach.  As 

argued in Chapter 2, societal participation can enhance the moral legitimacy of 

the resulting decision rule, and similarly improve public trust in the priority 

setting process. 

In this context, though, it is important to recognise that that equity 

weighting simply redistributes healthcare resources.  The sum of equity weighted 
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QALYs must equal the sum of unweighted QALYs, and for each patient that 

receives higher priority with equity weighting another must necessarily receive 

lower priority (Ham & Coulter 2001; Wailoo et al. 2009).  Implicit equity 

weights may obscure this reality and make it easier for decision makers to 

implement priority setting decisions, but they raise the spectre of Fleck’s (1992) 

invisible class of ‘others,’ as less preferred patients may not realise that they have 

been given lower priority relative to others.  Under implicit weighting, different 

decision makers may also assign different weights to different patient 

characteristics, leading to inconsistent decisions that may jeopardise public trust 

in the priority setting process. 

Interestingly, the DCE analysis found a significant welfare effect 

associated with initial life expectancy, but contrary to a NICE supplementary 

advice that advised giving greater weight to health benefits to patients with less 

than 24 months life expectancy (National Institute for Health and Clinical 

Excellence 2009), the DCE result suggested that prioritising patients with the 

shortest life expectancy was associated with a welfare loss, even after controlling 

for potential health gain.  A similar preference for patients with greater untreated 

life expectancy was found by Schwappach (2003), Lancsar et al. (2011) and Shah 

et al. (2012).  This inconsistency may be explained by NICE’s acknowledgement 

that there was no consideration of the opportunity cost of giving greater weight 

to patients at the end of life.  Indeed, the advice appeared to be based largely on 

the fact that 63 percent of stakeholder respondents supported the proposition.  

This highlights the importance of giving explicit consideration to the relative 

strength of preferences in priority setting decisions, as it appears that accounting 

for the trade-offs with other factors might have led to a different advice regarding 

priority for patients at the end of life. 

Together, these results suggest that giving greater priority to the 

healthcare claims of younger patients and those that would finish treatment in 

better health states may enhance overall societal welfare.  Additional weight to 

such patients in an equity-weighted QALY would prioritise health gains 

accruing to particular patients in priority setting decisions, but given the 

suggestion above of societal value associated with non-health outcomes, priority 

may need to extend to the patients themselves, and not just their health gains.  
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Future research is required to understand to what extent society would be willing 

to trade-off health gains for non-health outcomes, and how to incorporate these 

preferences into priority setting criteria.  This issue is similar to the challenge of 

measuring value in palliative care, where health economists have struggled to 

measure the value of care that is more often associated with non-health 

outcomes such as dignity and respect than conventional QALY gains (Normand 

2009).   

Before implementing a policy of greater priority for specific patient 

groups, it is important to recognise that there are legislative prohibitions on 

discriminating between citizens on the basis of personal characteristics.  Despite 

clear preferences for greater priority for younger patients and for those that 

would finish treatment in better final health states, statutes such as the Canadian 

Human Rights Act (Anon 1985) and the UK Equality Act (Anon 2010) prohibit 

discrimination on the basis of age and disability.  Similar to the role of the 

theories of justice discussed in Chapter 3, such legislation ensures that the basis 

of societal resource allocations are just and do not reflect irrational or perverse 

preferences.  There may still be some scope within such legislation, though, for 

prioritising on the basis of such attributes.  For example, a prohibition on 

discriminating on the basis of disability does not preclude prioritising the more 

severely ill in a triage setting.  The balance between protecting the rights of the 

minority while reflecting the preferences of society is a complex issue, but 

societal preference elicitations such as these can help inform such deliberations.  

 There are also a number of methodological challenges to using the 

equity-weighted QALY in priority setting, including how to accommodate 

changing patient characteristics over time and technical challenges to 

incorporating these weights in economic models (Wailoo et al. 2009; Baker et al. 

2010). The next section discusses a number of other methodological issues that 

must be resolved before societal preferences can be used to inform healthcare 

priority setting. 
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10.5 Methodological challenges to incorporating societal preferences into  

  healthcare priority setting and suggestions for future research 

There are a number of substantial methodological challenges to 

incorporating societal preferences into an explicit priority setting framework such 

as the equity-weighted QALY.  This includes the appropriate method for 

calculating equity weights themselves.  For example, Dolan et al. (2008) and 

Lancsar et al. (2011) estimated societal equity weights for specific patient 

characteristics, but they used different methods to calculate these weights and 

they reached different conclusions.  Dolan et al. calculated that health gains to 

children had a statistically significant equity weight of 1.8 relative to adults, 

while Lancsar et al. calculated that equity weights for younger patients relative to 

a 40 year-old ranged from 0.98 to 1.02 and were not statistically significant.  

These differences may reflect differences in the respective methodologies of the 

two studies, but the more general issue of how to reconcile discordant societal 

preferences is discussed below, along with the question of how to elicit 

representative preferences, and the limited public desire to participate in the 

priority setting process. 

10.5.1 Aggregating heterogeneous societal preferences   

Within the DCE, the two latent classes identified held statistically 

significant but offsetting preferences over initial and final health states and the 

number of patients treated.  These results highlighted the value of latent class 

modelling, but also highlighted a fundamental challenge to incorporating societal 

preferences into societal decision-making: respondents in the two latent classes 

held statistically significant but opposing preferences for specific patient 

characteristics that effectively cancelled each other out, resulting in an 

insignificant overall preference.  It is not clear how such opposing preferences 

can or should be reconciled.  The combined, statistically insignificant results did 

not represent the significant preferences of either class, but basing decisions on 

the preferences of just one of the classes effectively imposes their preferences on 

the other class.  In this case, the problem was compounded by the fact that the 

probability of being in either of the two classes was roughly equal, meaning there 

was no scope for an appeal to the ‘will of the majority.’ 
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This dilemma recalls Arrow’s (1963) impossibility theorem, which 

showed that there is no process by which individual preferences can be 

aggregated in a way that satisfies a relatively weak set of axioms.  These axioms 

included an unrestricted domain of alternatives, unanimity or weak Pareto (if all 

individuals prefer x to y, than society must prefer x to y), non-dictatorship (no 

individual can impose their preferences on society), transitivity (if x ≻ y and y ≻ 

z, then x ≻ z), and independence from irrelevant alternatives (the relative 

ordering of x and y should not depend on the inclusion or exclusion of z) (Mullen 

& Spurgeon 1999; Mueller 2003). Society can only escape this quandary by 

relaxing one of these axioms.   

Perhaps the most obvious solution may be to relax the non-dictatorship 

axiom and allow some expert or impartial party to reconcile the opposing 

preferences.  As Mueller (2003) noted, there is nothing unusual or irrational 

about allowing small groups to make decisions on behalf of a community or 

organization.  Indeed, this logic is the basis of the decision maker perspective, 

and by extension, QALY maximisation.  However, it effectively allows decision 

makers to decide which societal preferences count, again defeating the spirit and 

objective of a democratic or Communitarian approach. 

Mullen and Spurgeon (1999) suggested that a less dictatorial approach 

may be to give different members of society different weights in the aggregation 

of preferences, presumably estimated through a process similar to the estimation 

of allocative preferences described herein.  However, this would seem merely to 

shift the problem from reconciling opposing preferences over the weight to give 

to different patient characteristics to reconciling opposing preferences over the 

weight to give different citizens.  In addition, there is nothing in a ‘citizen-

weighted’ solution that would guarantee that the resulting weighted preferences 

for different patient characteristics would not still be similarly offsetting.  

In light of these shortcomings, Mueller (2003) suggested that a more 

pragmatic solution was not to relax the non-dictatorship axiom, but rather the 

transitivity axiom.  Transitivity is fundamental to many aspects of economic 

theory and is critical in avoiding the problems of cyclical preferences (i.e. if x ≻ y 

and y ≻ z, but z ≻ x, individuals can get caught in a cycle of voluntary trades that 

leave them worse off than their original state (Feldman & Serrano 2006)).  
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However, Mueller noted that the enduring popularity of arbitrary processes such 

as coin flips or drawing straws to resolve conflict suggested that the perceived 

impartiality and fairness of such a solution may be more a fundamental 

requirement of societal decision making than establishing a transitive ranking of 

all alternatives.  A good example is a coin flip to settle an election where two 

candidates received an equal number of votes: a transitive ranking of candidates 

may not have been established, but all sides can accept the result as fair. 

In the context of the offsetting preferences observed here, relaxing the 

transitivity axiom would mean accepting equal weights over the conflicted levels 

of an attribute as an arbitrary resolution of the conflict.  Significant preferences 

for particular levels of an attribute would have no bearing on prioritising 

decisions, but as each group’s preferred level would have an equal opportunity of 

being prioritised this may be acceptable as a fair solution to an otherwise difficult 

quandary.  Note that this is not the same as a priori omitting an attribute from 

consideration – such laundering perverse preferences in the empirical ethics 

review – as relaxing transitivity still allows each individual to express a 

preference, even if aggregation may ultimately render that preference 

insignificant in the distribution of resources.   

The dilemma of how to aggregate preferences persists, though, if some 

citizens will not accept arbitrarily equal weights as a fair solution.  Some 

individuals or groups may adamantly resist equal weights over different levels of 

an attribute that they feel embodies a fundamental or protected value.  For 

example, supporters of an absolute age cut-off on health expenditures may 

strongly resist equal priority over age.  It is irreconcilable dilemmas of this sort 

that advocates of a more implicit approach point to as justification for a more 

deliberative, political process (Klein 1997; Hunter 2001).  This leads back to 

Arrow’s quandary and suggests, somewhat perversely, that the greatest 

challenging to incorporating the strength of individual preferences into societal 

decision-making may be the very strength of some preferences.  Indeed, the 

nature of individual preferences likely means that complete and transitive 

rankings of preferences may only be achievable in very limited circumstances 

(Sen 1992; Mooney 1998b).    
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10.5.2 Eliciting reliable preferences 

Similar to the question of which stated preference format is ‘best’ for 

eliciting preferences is the question of whether preferences should be elicited 

from citizens ‘off the top of their heads,’ or following some deliberative process 

(Dolan et al. 2008).  The results presented in this thesis were based on ‘top of the 

head’ elicitations, with little opportunity for respondents to reflect on their 

preferences.  There was, though, anecdotal evidence of respondents changing 

their earlier answers as they progressed through the questionnaires and their 

understanding of the issues and trade-offs evolved.18  Although preferences 

elicited in this manner are generally held to be representative, it is not clear that 

representativeness in this sense should trump the possibility that more considered 

and reliable preferences may emerge from a deliberative exercise.  Gregory, 

Lichtenstein and Slovic (1993) argued that stated preference elicitation should be 

seen as a process of preference construction rather than a neutral process of 

preference discovery, and suggested that a more deliberate process may improve 

the result.  As Hausman and McPherson (2006) argued, well-being can only be 

equated with the satisfaction of preferences if those preferences are well-informed 

and well-considered.  There is evidence that a deliberative process can change an 

individual’s stated preferences (Abelson, Eyles, et al. 2003), and Dolan et al. 

(2008) acknowledged that if these changes stem from better knowledge about 

one’s own preferences and those of others in the community, then a more 

deliberative process is probably superior.  However, they also noted that if these 

changes stem from a social desirability bias or ‘bandwagon effect,’ then ‘top of 

the head’ preferences may be preferred.  In addition, Abelson et al. (2003) note 

that although deliberation has come to be understood as requiring some 

interaction amongst a group, as a process of weighing evidence and reasons there 

is no reason that it cannot be seen as an individual activity.  That is, well-

considered preferences do not necessarily have to derive from a group activity.  

A better understanding of how, and more importantly, why, preferences change 

following a deliberative exercise, and how this might be different in an individual 

                                                 
18 A number of respondents interviewed after completing the pilot survey reported that they 

initially prioritised the younger age group in each choice, but changed these answers as they 

began to better recognise the trade-offs with the other attributes. 
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and a group context, will be essential to ensuring that the allocation of healthcare 

resources is based on well-informed preferences, and this represents a critical 

area of future research. 

Similarly, there are concerns over the ability of respondents to complex 

stated preference elicitations, particularly in the context of healthcare, to 

understand and process the information they are given (Ryan et al. 2001; Dolan 

et al. 2008; Baker et al. 2010).  These concerns are shared here, as it was difficult 

to be confident that the respondents to the DCE and CSPC fully understood the 

nuances of the attributes they were ask to consider, such as a patient’s experience 

at different levels of utility, or the concept of the QALY.  These are complex 

concepts to explain, particularly with only a brief online description.  A face-to-

face elicitation format may have been more effective at helping respondents 

develop a full understanding of these concepts.  However, as decision-making 

agents were presumably more familiar with many of these concepts, the lack of 

significant differences between the preferences of agents and the general public 

was somewhat reassuring in this regard.  It suggested that the public had at least 

a comparable understanding of these attributes relative to that of the likely 

somewhat more sophisticated agents. 

10.5.3 Public involvement in priority setting 

The non-significant differences between the preferences of agents and the 

general public also call into question the necessity of societal participation in 

healthcare priority setting: if agents generally hold the same preferences as 

society at large, why devote the time and expense required to involve the public?  

Part of the answer lies in the fact that one can only establish the 

representativeness of agent preferences by also asking the public about their 

preferences.  However, the thesis has also offered a number of theoretical 

advantages associated with more inclusive and participatory approaches to 

priority setting, including the promotion of legitimacy and trust in the process, 

and the ethical importance of ‘universality of inclusion.’  It is also possible that 

there may be ‘procedural utility’ associated with more inclusive or participatory 

approaches to priority setting.  Procedural utility suggests that society may derive 

value from the process by which a decision is made, independent of the 
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outcomes associated with that decision (Frey & Stutzer 2005; Dolan et al. 2007).  

An instrumentalist interpretation of procedural utility suggests that people may 

value a particular process because they believe it will arrive at an outcome with 

which they will be more satisfied, which is little different than a consequentialist 

view.  Non-consequentialist interpretations of procedural utility, though, hold 

that people may value a particular process for its own sake, independent of its 

outcomes, because such a process may be more consistent with valued 

principles.  This interpretation was supported by Dolan et al. (2007), who found 

that among other factors, the public appeared to value what they referred to as 

‘voice,’ or the opportunity for affected parties to participate in decision processes. 

However, the attitudinal results presented in Chapter 6 suggested that 

only about half of the general public respondents would prefer to see the public 

have a role in priority setting decisions, and a similar proportion indicated that 

they would be uncomfortable having their preferences used to set priorities.  This 

result was consistent with Lomas’ (1997) characterisation of citizens as 

“reluctant rationers,” as well as with other similar findings.  This general 

reluctance to participate in societal priority setting leads to questions about the 

representativeness of those members of the public who are willing to participate, 

as to some extent their very willingness to participate makes them 

unrepresentative of the larger community (Mullen & Spurgeon 1999).  Those 

who are willing to participate may be more likely, or at least perceived to be 

more likely, to have a specific motive or agenda, weakening the moral legitimacy 

derived from public participation.   

As discussed in Chapter 2, Fleck’s (1992) resolution to this issue was to 

emphasise the obligations, in addition to the rights, of citizens in a democracy, 

and he more or less endorsed coercing citizens into participation, presumably 

similar to compulsory voting laws in many jurisdictions.  However, involuntary 

participation clearly has its own drawbacks, most particularly around the effort 

such participants might be likely to devote to the task.  Studies of compulsory 

voting have found higher rates of invalid ballots and voters simply choosing the 

name at the top of the ballot (Jackman 2001).  As the time and cognitive effort 

required to participate in a stated preference elicitation would seem to exceed 

that of voting, it is likely that there would be a substantial proportion of invalid 



 

311 

responses associated with compulsory participation in a priority setting process, 

which may undermine the result and the overall objective.  Coercion would also 

seem to negate any procedural utility gains that might be associated with more 

inclusive processes, and many participants may in fact experience negative 

procedural utility as a result of this coercion.  This reluctance appears to 

represent the greatest barrier to incorporating societal preferences into healthcare 

priority setting.  Litva et al. (2002) noted that a process where all citizens have an 

genuine opportunity to participate in setting system-level priorities may generate 

greater support and participation than indirect consultations, but the benefits of 

more inclusive priority setting approaches may remain theoretical unless a broad 

segment of society chooses to participate. 

10.6 Concluding remarks 

The stated preference elicitations administered here appeared to reject 

strict QALY maximisation as a societal decision rule for allocating healthcare 

resources, and instead suggested a clear equity-efficiency trade-off in societal 

preferences.  Strict QALY maximisation is, admittedly, something of a straw 

man, as few, if any, jurisdictions actually adhere to this rule in societal priority 

setting decisions, and most include some implicit consideration of equity factors.  

However, implicit consideration of equity was argued to be insufficient, as it fails 

to account for the relative strength of the equity-efficiency trade-off for different 

characteristics, and has the potential to lead to inconsistent and unfair 

allocations that may jeopardise the perceived legitimacy of the priority setting 

process.  It was also argued that democratic or Communitarian approaches to 

estimating explicit equity weights may enhance societal well-being by aligning 

healthcare outcomes more closely with societal preferences. 

The societal preferences estimated here were particularly strong over 

patient age and the quality of a patient’s final health state, suggesting that 

societal well-being may be enhanced by giving priority to younger patients and 

those more likely to finish treatment in a good health state.  This priority may be 

in the form of greater weight to these characteristics in an equity-weighted 

QALY, although such priority must also be consistent with ethical and legal 
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frameworks that ensure that the allocation of healthcare over these 

characteristics is just.  It is also important to recognise that there were some 

substantial discrepancies between the two elicitation methods used here in the 

strength and significance of the equity-efficiency trade-off over different 

attributes.  This inconsistency was mirrored by the heterogeneity in the results of 

the larger body of societal preferences research, and this made it difficult to 

identify a societally preferred weighting scheme.  This consistent inconsistency, 

although perhaps reflective of some procedural variance in the estimation of 

preferences, may also suggest that a single set of societal weights may not exist, 

and in this light efforts at explicit equity-weighting on the basis of current 

research may represent a second-best solution that could worsen rather than 

improve the allocation of healthcare resources.   

Some encouragement, though, may be drawn from Sen (1992), who 

noted that “an approach that can rank the well-being of every person against 

every other in a straightforward way… may well be at odds with the nature of 

these ideas.”  In this sense, evidence of heterogeneity may not be so much a fatal 

flaw of explicit or participatory approaches to priority setting, but rather an 

inherent property of any method that seeks to incorporate individual preferences.  

The goal of research in this area, therefore, should be to contribute to what Ham 

and Coulter (2001) described as “the challenge of improving both technical and 

decision-making processes to enable the judgements that lie behind rationing to 

be as soundly based as possible.”  
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