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ABSTRACT 

An integrated framework for process monitoring is developed in this study %ý-hich 

consists of three components: (1) feature extraction from dynamic transient signals 

using multiscale wavelet transform; (2) operational state identification using 

unsupervised and recursive learning methods; and (3) automatic extraction of 
knowledge rules from process operational data and embedding of the extracted 
knowledge in the structure and weights of fuzzy-neural networks. The methodologies 

and the prototype system which have been developed are illustrated and evaluated using 
data collected from a dynamic simulator of a refinery catalytic cracking process. 

Methods for pre-processing dynamic transient signals for feature extraction,, 

dimension reduction and noise removal are investigated and a new method is developed 

which makes use of wavelet transform to determine the singularities and irregularities of 

a dynamic transient signal by identifying the extrema from wavelet multiresolution 

analysis. The method is able to reduce the dimensionality of the data and removes noise 

components in a single step as well as capturing the most significant components of the 

dynamic response. 

A modified version of the unsupervised neural network ART2, designated 

ARTNET, has been developed which uses wavelet feature extraction to provide a 

substitution of the data pre-processing part of ART2. ARTNET is shown to be more 

effective in avoiding the adverse effects of noise, less sensitive to user defined 

parameters and faster in computation, as well as still retaining the advantages of 

unsupervised and recursive learning. 
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Based on this, a fuzzy neural network is developed , N-hich is able to automatically 

extract knowledge rules from process data. The knowledge rules which are generated 

are transparent and explicit to operators. The method is therefore able to bridge the gap 
between numerical data and qualitative knowledge and takes advantage of the features 

of neural networks for capturing concepts and so provides an effective and robust 

method for learning knowledge from process data. 

Various methods for integrating different facets of a problem, and making use of 

this informatin in parallel to mutually compensate for drawbacks of any single approach 

are also exploited. 

Data obtained from a dynamic simulator of a refinery fluid catalytic cracking 

process (FCC) has been used to illustrate the methodologies and to evaluate a prototype 

system for using these new approaches. FCC provides a very useful case study because 

of the highly non-linear dynamics arising from the strong interactions between the 

reactor and fluidised bed regenerator derived from the mass and momentum balance. 

The use of simulation data makes it possible to look at the results in detail so that the 

methods can be fully tested. The case studies illustrate the potential of the methods 

developed. 
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Chapter I 

INTRODUCTION 

1.1 Research Motivation 

In modem process plants controlled by computers, the role of operators has changed 
from being primarily concerned with control to a broader supervisory responsibility: 

analyzing operational data, identifying unusual conditions as they develop, and 

responding rapidly and effectively by taking corrective actions. This is a challenging 

task because of the overwhelming volume of data operators have to deal with: present 

day control rooms involve monitoring as many as thousands of process signals and 

hundreds of alarms. During the course of normal and steady state operations, simple 

observation of a smaller number of displays is sufficient to characterise process status. 

However, during a process transient or when a crisis occurs, the dynamic evolution of 

displayed data can overwhelm the operator because: 

process outputs change at different rates, 

there are transportation lags and inverse responses; 

control loops interact; 

there may be conflicting information from sensors; 

there is incomplete information due to 'lost' sensor readings. 

These make it difficult for operators to carry out routine tasks such as: 

distinguishing normal from abnonnal operating conditions; 

assessing current process trends and anticipating future operational 

states; 
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9 identifying the cause of a process trend such as external load 

disturbances, process faults, operator-induced mishandling. degradation 
II 

of performance due to changes in operational parameters-, 

* planning and scheduling operational sequences leads to the need for new 

procedures, e. g. recovery of process operation from a safety fallback 

position or to return to a desired feasible state after a process fault. 

1 

Clearly, to meet these requirements, it is necessary to improve the operational safetý'. 

reliability and productivity of process plants while reducing the load and stress on 

operators. This can be done by developing a process operational decision support 

system to assist the operators. 

1.2 Process Operational Support Systems 

The role of an operational support system (OPS) within the management structure is 

indicated in Figure 1-1. On-line signals are collected from computer control systems, 

which are used by the OPS for assessment and analysis and provide support to the 

operators by indicating the source of faults. An OPS needs to have the following 

capabilities: process monitoring and analysis, fault identification and diagnosis, 

operational planning and scheduling, intelligent control, optimisation, and advise on 

operational strategies, as indicated in Figure 1-2. The OPS should generally be capable 

of 

guaranteeing the response time 

handling efficiently large amounts of complex knowledge and data 

requiring real-time reasoning which may involve conflict 

0 learning so that the system can continuously improve in performance as 

well as enabling updating to be done after modifications or changes in 

operating conditions 

9 ensuring reliability of perfonnance. 
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Plant 
Management 

Products 
Control 

. tor 

Chemical 
Process 

Figure I-I Role of an operational support system 

Recently, Lindheim. and Lien (1997) emphasised that the design and simplicity of an 

operator support system (OSS) and implementation, as well as the interface between the 

OSS and the user are all important. Flexibility is seen as an important factor that 

contributes to continuous learning and development (evolution). They emphasised that 

flexibility will be a major competitive factor in the future. 

A variety of different techniques have been devised including development of 

qualitative (deep) models (e. g., Vinson and Ungar, 1995), knowledge-based expert 

systems (KBES) (e. g., Fathi et al., 1993, Saelid et al 1991), artificial neural networks, 

especially feedforward neural network (FFNN) (e. g., Kovio, 1994). fuzzy theory (e. g., 

Wang et al., 1996,1997), graph theory (e. g., Chang and Yu, 1990) and fuzzy signed 
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digraphs (e. g., Wang et al, 1996,1997, Shih and Lee 1995). Of these. KBES and FFN-N 
have attracted considerable industrial interest. 

previous CS 
off-line operation data data 

chemical 

__process 
Figure 1-2 Content of operational support system 

Expert systems make use of logic rules to carry out heuristic reasoning. Knowledge used 

to reach a conclusion is transparent and displayed through HOW and WHY explanation 

facilities. However,, there are two critical issues in developing such knowledge based 

decision support systems for process plant operations. One is the bottleneck arising from 

knowledge acquisition, especially for complex processes where variables are highIN 

interactive. The other relates to the fact that hazard and operability problems are often 

associated with the detailed plant topology, system properties and detailed design, 

which requires the systems to have the ability to model the structure and describe the 

behaviour of processes based on the propagation of disturbances. 
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Artificial neural networks (ANN) generally are able to learn the complex non-linear 
relationships involving multiple inputs and outputs (Morris et al.. 1994). Hoývcýer. a 

major disadvantage with such an approach is that the knowledge embedded in the ANN' 
is usually opaque. The black-box image of ANN tends to affect the confidence of the 

user and does not help to improve the inherent understanding of the problem domain. 

For the above two techniques, moreover, confidence in the reasoning procedure must be 

considered if they are to be used in an OPS because of incomplete training data sets or 
incomplete knowledge. Clearly, it is dangerous to use the results when the sý-stem is 

reasoning outside the knowledge boundary. 

1.3 Objectives of This Work 

The aims of this work are to: 

(1) Develop a method for feature extraction from dynamic transient signals using 

wavelet multi-scale analysis. This approach is able to exploit the extrema of 

wavelet multi-scale analysis to capture the singularities and irregularities of a 

dynamic transient signal which can be used as the features to characterise the 

problem. The approach requires the proper selection of a filter bank for the 

wavelet functions. It is also necessary to take account of noise and to reduce the 

dimensionality of data sets 

(2) As noted, the adaptive resonance theory (ART2) is not ideally suited for use 

with the problems described here, so there is a need to develop procedures for 

unsupervised recognition of operational patterns, which can combine wavelet 

techniques for feature extraction from dynamic transient signals with the basic 

algorithm of ART2. The goal is to provide a more effective way of dealing with 

noise contained in the transient signals while retaining an unsupervised and 

recursive clustering approach to identify the structure characteristics of a problem. 

(3) This requires a means of generating fuzzy rules from process data which can 

take advantage of fuzzy concepts together with feed-forward neural networks so 
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as to be able to extract knowledge from numerical data. If the resultin(. y knoNA-led e 19 is explicit and transparent it can provide more useful support for operators. 

(4) Integrate various tools such as wavelets for feature extraction, identification of 
operational states using unsupervised neural network and knowledge disco'very 

using fuzzy neural networks, to eliminate conflicts in the knowledge base and so 
avoid errors from extrapolation. 

(5) The resulting methods will be used to develop a prototype system which can 
be tested by looking at a case study based on refinery fluid catalytic cracking in 

order to test whether it is able to deal with a representative range of operational 

problems effectively. 

1.4 Thesis Organisation 

The thesis is organised as follows: 

6 

Chapter 2 provides a comprehensive literature review on topics related to this study, 
including pre-processing of on-line dynamic signals for feature extraction via noise 

removal and dimension reduction, extrapolation issues of back-propagation neural 

networks, as well as knowledge discovery from data. 

Chapter 3 introduces the feature extraction method using wavelet multi-scale analysis. 
The method identifies the extrema of a dynamic trend signal through wavelet multi- 

scale or multi-resolution analysis, which reduces the dimensionality and removes noise 

components simultaneously. The features extracted provide the inputs for identification 

of operational states and knowledge discovery. 

Chapter 4 describes an integrated framework ARTNET which combines wavelet feature 

extraction and an unsupervised learning algorithm ART2, the former being used as the 

substitute for the data pre-processing part of ART2. ARTNET has shown advantages 

over ART2 in dealing with noise contained in dynamic transient signals and in 

improved computational performance. 
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Chapter 5 is devoted to the development of a fuzzy neural network method for 

generating production rules from numerical data. The abilitý- to deal with conflicting 
data using a fuzzy-FFNN is illustrated based on the cause-effect simulation of a heater 

exchanger. 

Chapter 6 concentrates on the application of the methods developed in previous chapters 

to a refinery fluid catalytic cracking (FCC) process. A customised prototype for feature 

extraction and knowledge discovery and knowledge base organisation is developed and 

applied to the FCC process. The ability of avoiding extrapolation is evaluated when the 

prototype is tested. 

Chapter 7 presents the major conclusions and suggestions for future works. 

N-M 
. xppendix A gives the related wavelet definitions and theorems used in Chapter 3, these 

are edited based on the works by Mallat and Hwang (1992) and Mallat and Zhong 

(1992) 

Appendix B describes the ART2 architecture and its algorithm as used in Chapter 4 
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Literature Review 

2.1 Introduction 

This Chapter provides a literature review on pre-processing of on-line measurements for 

noise removal and dimension reduction, extrapolation issues related to the use of neural 

networks for operational state identification, as well as knowledge discovery from 

numerical data. It concentrates on technologies that are relatively new and relevant to 

this study. 

2.2 Signal Pre-processing and Data Interpretation 

In many practical applications of neural networks, data pre-processing Is one of the most 

significant factors in determining the overall system performance. One of the major issues 

to be resolved is that of reducing dimensionality with minimum loss of information. In 

this section, various methods for pre-processing on-line dynamic transient signals are 

considered. These include compression algorithms, transient representation using episode 

description, and feature extraction using principal component analysis (PCA). 

2.2.1 Data compression 
The data compression problem can be defined as determining the approximate 

representation F of a signal F so as to minimise the approximation error expressed as: 

A 

JIF 
- 

P11 = 
[f IF(x) 

- F(x)I'Fdxl"P (2- 1) 

O<P < 00 
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The simplest and most widely used data compression approaches in chemical 

manufacturing are piece-wise linear approximations. One of the earliest is the Box Car 

algorithm (Hale and Sellars, 1981) which records a value only when the current value 
differs from the last record by an amount greater than or equal to the recording Iiinit 

(specified by the user) for the variable. The procedure for implementation is simple aiid is 

quite effective for processes with long spells of stable operation. However, it is not verN, 

effective when there is a drift or during a transition between steady states. Thus, in the 

case of rapidly increasing or decreasing trends, the algorithm does not result in good data 

compression. On the other hand, if the rate of change is slow, it does compress the data 

but at the expense of loss of information. Efforts to overcome this shortcoming have led 

to the development of the Backward Slope algorithm (Hale and Sellars, 198 1) where the 

current value of a variable is predicted based on a linear extrapolation of the last two 

recorded values. If the actual value differs from the predicted value by an amount greater 

than the pre-specified recording limit, then the current value is recorded. This algorithm 

retains the merit of simplicity. For processes involving ramp and step changes, it achieves 

high compression for noiseless data but in practice the algorithm does not always 

improve performance, especially when there is noise present which results in poor 

predictions. Thus, when the process state is steady, noise can result in a non-zero slope 

which results in incorrect estimates of the state. In such cases, the Box Car algorithm 

tends to perform much better. 

To try to capture the advantages of both techniques, Bader and Tucker (1987) combined 

them into a single algorithm that dynamically selects the technique to be applied when 

processing the next data point. The combined algorithm records a value when an 

exceptional value is indicated by both the box car and the backward slope algorithms. As 

long as the trend continues, only one criterion needs be checked. However, as soon as 

this criterion fails to be satisfied, the second criterion is tested. If that criterion also fails, 

a new value is recorded. This works better than either of the other two ah-, orithms 

individually, but obviously requires more computation. It has been widely used in the 

process industry, even though its performance is far from satisfactory. 
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Swinging Door Trending (SDT) by Bristol (1990) is a heuristic straight-line trending and 

compression technique. It strives to give the longest straight 1.121VC11 -fine trend possible. -' 
the data and the maximum allowed error. It also attempts to minimise computation. In 

essence, the algorithm replaces a sequence of consecutive data points by a straight line, 

defined by initial and final points. The algorithm specifies how long a sequence or tune 
interval should be and where the final point of that interval and the initial point of' the 

next interval is located. The first data point is taken as the initial data point ol' the 
interval. Thereafter, the procedure is apphed sequentially to each subsequent time 

interval. The SDT algorithm is fast in computation but is weak when dealing with noisy 
data and process variations which have outliers. 

The PLOT algorithm based on piece-wise linear on-line trending developed by Mah et a] 

(1995) is designed to compress noisy signals. Given a time series of process 

measurements, it determines all major trends or, equivalently, obtains maximum possible 

data compression by the use of piece-wise linear smoothing. The goals of the algorithm 

are: 

to estimate the straight line as precisely as possible for any trend interval and detect 

any change in the trend. This determines the break point, marking the beginning of a 

new trend interval at the earliest opportunity; 

2. detect outliers in the data and not let the trends be affected by them. For this purpose 

a least squares straight line is fitted to the sampled data collected during the current 

trend interval. The estimated straight line is updated sequentially as each new data 

point becomes available. The least squares (LS) method also provides an estimate of 

the process variance, 62. Since it is assumed that the variance, (52 , is constant, it can 

be estimated over successive time periods. 

In general, piece-wise linear algorithms approximate a process signal by representing it 

by a set of basis functions when N coefficients are used to represent the approximated 

signal: 

(2- 2) F(x) =1 ci yi (x) 
i=l 



Chapter 2 Literature Review 

where 

yj (x) = mix+ di 

x C- [xi, 
Xi+i I 

and 

F(xi-,, ) - F(xi) 

Xi+l - Xi 
di F(x, ) - mx, 

Generally, linear extrapolation-based data compression techniques work on the 
assumption that the local error between the actual and compressed signals *is within given Z-1 
bounds. They are fast, but are unable to achieve good compression when the sensor data 

changes slowly. Moreover, they are not robust in dealing with process noise, so are only 
generally suitable for steady state analysis. To overcome these disadvantages and achieve 
better compression, especially when capturing dynamic trends, multi-scale techniques 
that use localised basis functions have been developed (Bakshi and Stephanopoulos 

1996). The approach used in their work is based on decomposing the signal into wavelet 
basis functions, which are localised in the time-frequency domain. Criteria such as 

acceptable loss of information and identification of relevant features are used to select 

the best bases and coefficients from the wavelet packet used to represent the compressed 

signal. Time varying wavelet packet decomposition algorithms are applied when used on- 
line. These store the data in terms of contributions in the time-frequency domain and so 

capture the dynamic features as well as achieving greater compression than other 

methods. However, a disadvantage of the multi-scale techniques is that the data has to be 

reconstructed from the coefficients each time it is retrieved, which is computationally 

inefficient. Also the efficiency of compression depends on the basis functiýons. The 

selected bases have also to be classified as to whether they are concerned with storing 

compression information or feature extraction. Still noise influence is not taken into 

account in the technique. 

Recently Vedam and Venkatasubramanian. (1998) have developed an approach based on 

multi-level dyadic B-splines. The data is stored along with a time stamp. The approach, 

in contrast to other multi-level methods, retrieves the compressed data without requiring 
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time consuming computation because the output of the compression algorithm is the 

reconstructed data not the coefficients. Thus, the compression data obtained can be used 

for a variety of applications. Unfortunately, while the approach avoids Miefficient 

computational reconstruction, it is necessary to use a time-consuming compressioii 

algorithm. 

2.2.2 Episode methods 

The episode method originated from B. William (1986) and is often employed, with 

some modification, for qualitative interpretation of transient process signals. It is based 

on being able to express any function totafly by defining the nine primitives shown in 

Figure 2-1. Each primitive consists of the sign of the function value and the first and 

second derivatives. Each primitive therefore carries information about whether the 

function is positive or negative, increasing, decreasing, or not changing, together with 

the concavity. Combinations of episode form the trend over an interval described by a 

primitive and the associated time. A trend is a series of episodes that completely describe 

the qualitative behaviour of the system. 

r 

Z 

B (-F, -, +) 

L E (+�ý�+) 

L H (+�-�O) 

C (+, 0, -) 

Figure 2-I The primitives for the episode approach 
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Using this approach, Janusz and Venkatasubramanian (199 1) developed a framC%ý ork for 

automatic generation of qualitative process trend descriptions from on-line sensor data as 

shown in Figure 2-2. The framework is a classification tree to characterise a trend by 

representing it in terms of episodes. The approach is simple but is inefficient when 
dealing with multi-sensor signals simultaneously. Speed is mainly dependent on the 

classification algorithm that follows a trend point by point and then piece by piece. 
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ontinuou 

Class 3 Class 3 
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Figure 2-2 Trend classification tree base on episode method 
in Janusz and Venkatasubramani an's work 

Cheung and Stephanopoulos (1990) employed a technique using seven triangle 

components, by dropping the C and D episodes in Figure 2-1. They then extended it to a 

triangular-episode representation of the process trends. The triangular-episode bascd 

description of a trend permits declarative modelling of all the important fcaturcs 

contained in a trend and provides the basis for unambiguous inferences during various 

engineering activities. The speed is comparable with that quoted by Janusz and 

Class I 

class 3? 
Increase/ 
Decrease 
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Venkatasubrarnanian (1991). The process trend is the sequence of maximal ý, caling 

episodes over a time interval, where each point is strictly ordered in urne (Bakshi and 
Stephanopoulos 1994). The points defining the maximal scaling episodes turn out to ho 

inflexion points and are given by the scale-space image of a record of data. Wavelet 

decomposition is used because multi-resolution analysis by wavelets provides a scale- 

space image and zero-crossing of the second derivative wavelet function corresponds to 

the point of inflexion of the signal. Thus, signals are analysed at different resolutions by 

wavelet decomposition, and the points of inflexion are found by zero-crossing of the 

wavelet transform on the different scales. Trends are then identified by deductIVc 

learning algorithms such as decision trees. 

The main idea of dynamic trend interpretation in Janusz's and Cheung's work is to 

classify a trend into increasing or decreasing pieces. Such an is sometimes 

not enough and may prove inadequate for process analysis. Furthermore, there is no 

noise filtering in any of the episode-based approaches, which significantly limits the 

identification and trend representation capability. 

2.2.3 Principal component analysis 

The idea of principal component analysis (PCA) was developed about 100 years ago 

(Sylvester, 1889), but has now re-emerged as an important technique. It employs linear 

mapping of multidimensional data into lower dimension spaces, with minimal loss of 

information. For an m dimension data set, if X= [x 1. x 2ý '** xn], the first principal 

component is a linear combination of the columns of X which describes the greatest 

variation by t, = Xp,. The objective is to map the m-dimension vector X in a L- 

dimension space of L principal components, where L << M. In the M-dimension space, 

p, defines the direction of the greatest variation, and t, represents the projection of each 

observation vector onto pi. The second principal component accounts for the greatest Cý 

variation of the residual data E, by t2 = E, P2 . 
This procedure is repeated for the L 

principal components. if the variables in X are correlated, most of the variation In the 

data set X will usually have been explained by these L principal components. Hence X 

can be written as X= TP+E where P are eigenvectors of the covariance matrix of X. 
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Principal component analysis has been widely applied in many areas (Dong and McAvo% 
1996), but it does have some difficulties in applications. Most significantly. it is a linear 

method, and most practical problems are non-linear. Applying PCA to non-Imear 
problems is not always satisfactory (Palus and Dvrak 1992). Indeed if PCA is used l'or 

non-linear problems, the minor components not only reflect noise and minor variances. 
but contain important information (Xu et al 1992). If minor components are discarded, 
important information might therefore be lost. On the other hand, if the minor 

components are kept, too many components are retained for it to be useful. 

Because multi-layer neural networks are auto- associative perceptrons, they can be used 
to perform non-linear dimensionality reduction, so they are useful in extending linear 

PCA to non-linear problems. Rumelhart et al (1986) considered a d-input, d-output node 

with M-hidden node (with M< d) in a three layer auto-associate neural network I-or non- 
linear principal component analysis. The targets used to train the network are the input 

vectors onto it. Because of the small number of units in the first layer, a perfect 

reconstruction of all input vectors is not generally possible. Such a network is trained by 

minimising a sum-of-squares error. This network can be regarded as unsupervised 

training, since no independent target data are provided. If the hidden units have linear 

activation functions, then it can be shown that the error function has a unique global 

minimum. At this minimum the network is a projection onto the M-dimensional sub- 

space spanned by the first M principal components of data. 

While it might be thought that the limitation of a linear dimensionality reduction could be 

overcome by using a non-linear activation function for the hidden units in the network, it 

was shown by Bourlard and Kamp (1988) that such non-linearities make no difference 

and that the minimum error solution is again given by the projection onto the principal 

component sub-space. This means there is no advantage in using one hidden layer neural 

networks to perform dimensionality reduction for non-linear principal component 

analysis. 
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On the other hand, the situation is different when more hidden-layers are included in an 

auto -associative network. Kramer (1992) presented a non-linear principal component 

analysis based on a neural network. The architecture of the neural network is d-input and 

output linear node with a M-hidden linear node to the second hidden layers while the first 

and third hidden node are non-linear, as shown in Figure 2-3. This approach potentlaný' 

can perform a non-linear principal component analysis because the mapping layer (thc 

first hidden layer) and inverse mapping layer (the third hidden layer) are non-linear. The 

minimisation of the error function is now a non-linear optimisation problem because the 

error function is no longer a quadratic function of the network parameters. 

Computationally intensive non-linear optimisation techniques must be used and there is 

the risk of finding a sub-optimal local minimum of the error function. Also the 

dimensionality of the sub-space must be specified in advance of training the network. In 

fact, the hidden layers are difficult to determine and the theoretical meaning of the 

outputs of the bottleneck layer and the second hidden layer are not clear. 

0 non-linear nodes 0 linear nodes 

Figure 2-3 Auto-associative neural network in Kramer's work 
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Another approach to embedding non-linearities into PCA is generalised PCA 
(Gnanadesikian 1989). The basic idea of this approach is to extend an N1-d1mcn, 1; ion 
variable X to include non-linear functions in the elements. The other approach is non- 
linear factor analysis by Etezadi-Amoh and McDonald (1993). In this approach. L- 

dimension polynomials are used to approximate M-dimension data. A linear least square 

method is used to find the coefficients of the polynomials. The difficulty in using these 

approaches is that it is necessary to know what kind of non-linear functions exist 
between variables. For high-dimensional data, these approaches become tedious because 

of the complicated non-linear functions. 

Dong and McAvoy (1996) reported a non-linear PCA method that combines the 

principal curve method and a feed-forward neural network. A principal curve method is 
developed by Hastie and Stuetzle (1989) and is a generalisation of the first linear 

principal component. However, the algorithm does not offer a non-linear mapping. In 

Dong and McAvoy's work, a three-layer neural network with one non-linear hidden 

layer is used to generate a non-linear loading function. Although it proves to be a 

generalisation of the principal component, the method still suffers from a need to know 

how to determine the neural network structure although the percentage of explained 

variance is used to choose the number of non-linear principal components. 

2.3 Extrapolation and Reliability Evaluation 

Reliability of an operational support system is obviously the most important issue in 

system evaluation. This depends very strongly on the knowledge boundary of the system, 

i. e. whether the reasoning is within the knowledge base or not. Most of the 

methodologies used to build an operational support system, such as rule base expert 

systems, feed-forward neural networks and fuzzy logic are unable to automatically flag 

when they are extrapolating beyond the knowledge boundary. This issue Is hardly 

discussed in rule-base expert systems because it is difficult to determine the knowledgc 

boundary, especially when the rules are generated by interviewing experts and operators. 

Little effort has been devoted to determine the confidence bounds for supervised learninL, 

neural networks. Here, attention is focused on defining confidence bounds for superNiSed 
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learning neural networks as well as unsupervised learning clustering. because the work 

on supervised neural networks is also based on the distance metric for unsupervised 

learning, 

2.3.1 Conridence bounds for supervised learning 

Confidence bounds for supervised learning have been addressed by many researchers 

(Zhang et al 1997). The reliability of a neural network or any other empirical model is 

determined by two factors: extrapolation and local goodness of fit. The former implies 

that the model is being applied in a domain of independent variables where training data 

are available. The latter relies on the distribution of training data, i. e. the density ot, the 

data. Leonard et al (1992) introduce a novel neural network architecture known as 

validity index network (VI-net), which is an extension of radial basis function networks 

(RBFN) to estimate the reliability and the confidence of the output and indicate local 

regions of poor fit and extrapolation. Figure 2-4 illustrates the structure of such a VI-net 

with a reliability measure confidence limit (CL), local data density (p) and membership 

function for hidden units (max-act). The RBFN is indicated by a dashed line. 
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Figure 2-4 The VI-net (Leonard et al 1992) 
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After choosing a structure for the RBFN, the train-test method, known as the S-fold 

cross validation procedure, is used to train the VI-net. For the S-fold, the training data 

are randomly partitioned into S equally sized subsets. Typically S ranges from 10 to the 

total number of training examples. Therefore, the S-fold cross validation procedure 

makes maximum use of the available data while still giving an unbiased error estimatc. 

The authors recommend that the S-fold should be repeated several times to determine 

the mean and variation of the unbiased error estimates for each architecture. The 

structure with minimum error during the train-test procedure is considered to be optffnal 

for the VI-net. Confidence limits and local data density are automatically generated by 

the calculation. 

The additional weights of the VI-net are based on statistics produced during the training 

and cross validation procedures of the basic RBFN model. VI-net involves minimal extra 

work because no additional training is required and all parameters in the underlying 

RBFN remain the same. Unfortunately, VI-net is not appropriate for the feed-forward 

neural network or error back propagation network, and there is no guarantee of finding 

the optimal net because the train-test procedure is used in the optimisation. Furthermore, 

the train-test is a very time-consuming procedure although no additional training is 

required for the RBFN. 

Chryssolouis (1996) has derived a method of quantifying the confidence intervals for the 

prediction of neural network models using a linearised variant. The confidence intervals 

can be calculated for a desired level by extending standard statistical approaches which 

describe how well the neural network fits the training data. However, it does not 

account for the effect of the statistical distribution of the training data. 

Shao et al (1997) have developed an approach to computing confidence bounds for 

predictions from a error back propagation feed-forward neural network with defined 

structure. The confidence intervals for parameters estimated by non-linear least squares 

are extended to the neural network models. A linearisation method is used which is 

reported to be computationally less expensive, numerically more stable and has 

acceptable accuracy. In this work, a constant, 0, is introduced to include the Muencc of 
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distribution of the training data on the confidence interval, so the confidence bound for 

the error back propagation feed forward neural network model can be regarded as ltý 
defining confidence intervals for compression of the data and is given by 

Yo (2- 3) 

where yo is the output of the network models, ci is the confidence interval and ý is a 

coefficient which is inversely proportional to the density of the training data. They found 

that the confidence bounds are ah-nost twice as wide as the standard confidence intervals 

when training data are not available in a given region. 

The effect of extrapolation and training data distribution on the confidence bounds of the 

neural network models are also considered in this approach. The confidence bounds on 

the computation are based on the Jacobian matrix of the first order derivatives which 

involves a time-consuming calculation and makes this approach difficult to use for on- 

line applications. The density function for the training data set, p, is selected empirically 

and has no theoretical foundation. 

2.3.2 Clustering Using Unsupervised Learning 

The basic idea of the reliability and confidence bound approach to supervised learning is 

based on a distance metric which is also found in unsupervised clustering techniques. 

This allows unsupervised clustering to be used to avoid extrapolation of supervised 

learning neural network models. There are several unsupervised algorithms, among them 

k-means clustering, Kohonen's top olo gy- preserving maps and ART (adaptive resonance 

theory), all of which have been widely used and are relevant to this work. 

k-means clustering is widely used and has been adapted to address a range of 

applications. The algorithm chooses the centroid vector of a set of N training examples, 

according to the definition 

centroid vector =II 
sk 4) 

N 

for the training sample set ISk 1. 
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Clustering operates by moving a case to the cluster from a centroid closest to it then 

updating the centroids for the remaining clusters. The algorithm can be summarised as: 
1. Begin with any initial partition that groups the data intok clusters: 
2. Take each case, S, in sequence and compute the distance from the centroid 

of each of the k clusters. If S is not currently in the cluster with the closest 

centroid, move S to the cluster and update the centroids of the cluster 

gaining S and the cluster losing it; 
3. Repeat step 2 until a pass through the training examples causes no new 

assignments. 

The k-means clustering algorithm is fast and efficient. However, it requires setting the 

number of clusters,, k, in advance, which involves experimentation and is time- 

consuming. Another way of determining the number of clusters is to leave it to the 

algorithm by defining user-specified parameters. Works along these lines have been 

reported by MacQueen (1967), Wishart (1969) and Anderberg (1973). It IS difficult to 

compare the variety of different clustering algorithms in the literature because 

comparisons are dependent on the criteria used to evaluate the final clusters. However, it 

seems evident that the k-means approach is good if the criterion is to minimise the sums 

of squares of distances between training cases and the corresponding cluster centroids. It 

also has the convenient property that every case is in a cluster having a centroid closest 

to that case (Gallant 1993). 

In the k-means clustering algorithm, a case is assigned to the cluster having a 

representative nearest to it. This is precisely what happens in Kohonen's self-organising 

maps (Kohonen 1982,1995), where the training algorithm attempts to assign some 

structure to the representatives. A large number of clusters are chosen, and arranged on 

a regular grid in one or two dimensions in the algorithm. The idea is that the 

representatives, called weights by Kohonen, are spatially correlated, so that 

representatives at nearby points on the grid are closer than those which are widelý,, 

separated. This ensures that the self-organising maps are clustered according to the 

structure and feature similarity. Some results have been reported for one- and two- 

dimensional mappings that were topologically correct. However, even in the dimensional 
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case, Kohonen showed by simulation that an array of units starts to become sensitive to 
different frequencies in ascending or descending order, and there is no adaptivitv (Gaflant 

1993). 

These issues are successfully addressed by the adaptive resonance theory (ART) due to 
Grossberg (1976). It has evolved through three stages to ART3 dealing with 

autonomous learning models and is a type of competitive methodology equivalent to a 

winner-take-all algorithm. It is suitable for both category (pattern) formation and recall 
(recognition). ARTI (Carpenter and Grossberg, 1987a) depended on clustering ot'binary 

vectors, while ART2 (Carpenter and Grossberg, 1987b) extended this to continuous- 

valued inputs. There is no set number of clusters: these are created as needed to solve 

the adaptivity, especially the stability- plasticity dilemma defined by letting a system adapt 

and yet preventing current inputs from destroying past training. 

ARTI is not suitable for process engineering application because it can only accept 

binary input values. Some applications of ART2 for process plant have been reported 

(Whiteley et al 1994, Wang and Chen 1998). The ART2 pattern clustering algorithm is a 

winner-take-all competition learning algorithm where recognition of an input pattern 

vector has to examine all existing pattern representatives i. e. weights. Clearly recognition 

time increases rapidly with the number of long term memory neurons used. Storing a 

large number of items in long term memory is a serious problem (Wang, 1993). The 

number of long term memory neurons is dependent on the input vector dimension and 

number of patterns stored in memory. Therefore, dimensionality reduction is always 

recommended for the input vectors. The input pattern data pre-processing in ART2 is a 

time-consuming procedure. The computational effort spent on this procedure 'is also 

dependent on the dimension of the input vector. 

The major disadvantage of ART is the sensitivity to noise. The update rule can only 

reduce the co-ordinates of prototypes, so if a large number of examples are presented, 

each having added noise, the prototypes will shrink towards the zero vector. Prototypes 

that are close to the zero vectors will fail the vigflance test. Thus for enough training scts 
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true clusters will be divided repeatedly into groups which depend on the ordcr of 
presentation of the example. 

2.4 Knowledge Extraction from Numerical Data 
There are several forms of learning, ranging from direct instruction to discovery. Direct 
instruction may require intelligent communication, including a learner's model of the 
teacher. At the other extreme, in learning by discovery, the learner autonomously 
discovers new concepts from unstructured observations or by planning and performinc, C, 
experiments in the environment. Between these two extremes, learning can be by 

example. Knowledge extraction from numerical data falls into this category. 

For most processes, information can be classified into two kinds: numerical information 

obtained from sensor measurement, and linguistic information obtained from human 

experts. This section deals with reported methods for knowledge extraction from 

numerical data. There is a thorough review of machine learning by Michalski et '11 
(1998). However, few examples of knowledge extraction from numerical data in 

chemical manufacturing have been reported so related cases are discussed. These 

approaches can be categorised as: inductive learning based on decision tree and rough 

sets theory, fuzzy sets operation, and neural networks. 

2.4.1 Inductive learning 

There are three most popular families of inductive learning: top-down-induction-of 

decision trees (TDIDT) (Quinlan 1986), attributes qualitative (AQ) (Michalski 1983), 

and learning from example based on rough sets (LERS) (Chan 1991, Quafafou and 

Chan1995). 

The TDIDT approach is well suited to learning from uncertain data containing errors, 

usually called noisy data. This is an important aspect from the practical point Of view. 

Examples of learning are described in terms of attributes. An attribute can be either 

symbolic or numerical. A symbolic attribute has an unordered set of values. Such a set is 
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typically small. A numerical attribute has an ordered set of values. Usually in TDIDT. 

several classes are learned simultaneously 

TDIDT programs produce decision trees that agree with the learning set of examples. In 

the case of noisy data, however, the learning procedure is allowed to generate a decision 

tree that only partially agrees with the learning data. That is, it does not necessarily 

reclassify the learning data into the classes specified in the examples. The po t of this in 

partial agreement of the synthesised tree is to eliminate noise that appears in the data. 

This is similar to statistical smoothing of data that reduces the effects of noise. 

There are programs in the TDIDT family that can cope with several types of deficiency 

in the learning data. In addition to errors in the learning data, it may also be incomplete. 
In the case of incompleteness, the learning example can only be partially specified. A 

learning set can be incomplete also in the sense that it poorly represents the universe of 

all objects because the set may be very small compared with the complete attribute space. 

Noise and incompleteness make the learning task more difficult which is typical of many 

application areas. 

In the basic TDIDT learning algorithm, a top-down decision tree is constructed by 

iteratively selecting the most informative attribute at the current node in the tree. The 

learning set is then partitioned into subsets according to the values of the selected 

attribute. The process of tree expansion is stopped at a given node when all the examples 

falling into that node belong to the same class or when at least one of the classes in the 

current set has a sufficient majority. 

The technical issue in TDIDT is the problem of estimating probabilities from the learning 

data. This becomes critical when the learning sets are small. They typically become very 

small in the lower levels of a decision tree. 

The best known family of programs that learn concepts represented by if-then rules Is 

AQ which has many members. It is similar to TDIDT in that it uses the attribute-basod 

r. _ i here replaced by the framework. However, the decision tree representation of concepts IS 
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more flexible if-then rule representation. Any decision tree can be easily converted into 
if-then rules whereas the reverse transformation is more complicated. 

As in the TDIDT family, some AQ algorithms are well equipped with special mechanisms 
to cope with noise in the data. If-then rules are more flexible than decision trees and 

therefore a decision tree representation sometimes appears awkward compared with an 

equivalent if-then rule representation. On the other hand, TDIDT techniques are 

somewhat easier to implement and the corresponding programs are typically more 

efficient than the AQ set which suffers to some extent from combinatorial complexity. 

The other inductive learning family is LERS that is based on rough set theory. Pawlak 

(1982,1984, and 1985) first introduced the concept of rough set. Making use of the 

rough set theory for rule extraction for a dynamic system has been reported by several 

researchers (Chan, 1991; Srinivasan et al., 1993; Chmielewski et al., 1993-, Quafafou and 

Chan, 1995). The basis of using rough set theory for learning from examples in LERS is 

illustrated in Fig 2-5 where the examples can be in the fon-n of a decision table. 

Lower 
approximation 

Set of Rought Set 
examples analysis 

Upper 
approximation 

Certain rules 
(inference based on 
classical logic) 

Possible rules 
(inference based on 
classical logic or a 
theory to deal with 
uncertainty) 

Figure 2-5 Principle of using rough set theory for learning from examples 
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The system LERS finds a minimal description of a concept, described by posItIVO 

examples and excluding the remaining negative examples. Thus rules identified by LERS 

may be described as a minimal discriminating description of the concept. The advantage 

of the LERS is that it can quantise the numeric value of attributes and handle two kinds 

of uncertainty: missing values of attributes and inconsistent examples i. e. examples 

characterised by the same values of attributes, although the corresponding values of a 
decision are different. LERS handles inconsistencies using rough set theory that does not 

need any preliminary or additional information about the data. 

A firnitation has been pointed out by Quafafou and Chan (1995) because rough set 

methodology is based on fuzzy rule-based model learning. The process of building a 
fuzzy model starts by replacing the original values by linguistic variables that can be 

obtained, for instance, from elements. Any inconsistency generated by these methods is 

not evident and because the membership functions are considered at the beginning in the 

process of learning rules, the fuzzy model learned is strongly influenced by the quantising 

process. 

2.4.2 Rule generation by fuzzy set operation 

Wang and Mendel (1992) were one of the first to use fuzzy set for knowledge extraction 

from numerical data. In their approach, there are five steps needed to convert numerical 

data into fuzzy rules: (1) divide the input and output spaces of given numerical data into 

fuzzy regions; (2) generate fuzzy rules from the given data; (3) assign a degree of each 

for the generated rules; (4) create a combined fuzzy rule base; (5) determine a mapping 

from the input to the output space based on the combined fuzzy rule base, using a 

defuzzifying procedure. There are some advantages to this approach: (1) it provides a 

general method of combining measured numerical and human linguistic information into 

a common framework; (2) it is a simple and straight forward one-pass build-up 

procedure, so there is no time-consuming iteration; (3) there is a lot of freedom in 

choosing the membership function, which gives flexibility in the design of an intelligent 

system which will match different requirements. 



Chapter 2 Literature Review 27 

One of the disadvantages in this approach is that input variable regions have to be FL\ed 

in advance. Abe and Lan (1995a) developed an approach to extract fuzzy rules dirmly 

from numerical data for pattern classification. Fuzzy rules with variable fuzzy regions 

were defmed by activation hyperboxes which show the existence region for class data 

and inhibition hyperboxes which inhibit the existence of the data for that class. The rules 

were extracted from numerical data by recursively solving overlaps between the two 

classes. Then, according to the number of rules extracted, an approach is developed for 

the selection of optimal input variables. This was extended (Abe and Lan 1995b) to a 
function approximation which relates to deleting redundant input variables. 

The other disadvantage of Wang and Mendel's approach is that the rule-base generated 

f le by fuzzy operators may be incomplete. A fuzzy learning algorithm provides an ef 1C nt 

single pass method for producing approximating functions from training data. Fuzzy 

algorithms are local: the decomposition of the input domains into a fuzzy partition 

produces a set of overlapping regions. This approximation over a region is determined 

solely by the example of a local connection that focuses information contained *in it. 

Localisation introduces the possibility that regions within the domain may not cover the 

scope of the training data. Sudkamp and Hammell (1994) used this to establish rules and 

to interpolate and extend the training information to the entire rule base. 

On the whole, using fuzzy sets to extract rules from numerical data is a simple and 

straightforward approach. However, it does have some disadvantages. First, one data 

pair should theoretically correspond to one rule, so the rules generated by this approach 

could be repeated and the set of rules can be large because the number of sensor 

measurements in process plant can be very large. Furthermore, the rules generated by the 

fuzzy set approach can be in conflict when data are from different sources. 

2.4.3 Rule generation from neural networks 

Feed forward connection neural networks with error back propagation algorithms, which 

extract rules from numerical data, were introduced by Gallant (1988). Gallant's method 

is able to find a single rule to explain the conclusion reached by the neural network for a 

given case. It involves the ordering of available attributes based on strength of inference, 
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i. e. the absolute magnitude of the weights. To form a rule, the remaining attribute with 

the greatest strength is picked. The process continues until the conjunction of these 

attributes is sufficiently strong to conclude the concept concerned. It generates clauses 
for an IF-THEN rule until the sum of absolute weights in a clause is greater than the sum 

of absolute weights of remaining attributes. At this point, that clause forms a rule 

premise. The rule must still be valid for the worst case, where all remaining positive 

attributes have negative activation and all remaining negative attributes are positive. In 

this approach, if the activation level is minus, the absolute weight for process evaluation 
is used. Notice that an attribute with a positive weight can contribute positively if the 

activation is positive, or negatively if the activation is negative. The same applies for an 

attribute with a negative weight. The search space for rules is much smaller in Gallant's 

approach since it focuses only on attributes that contribute positively to a single case. 

Saito and Nakano's method (1988) finds multiple rules from a trained neural network. 

Their method searches through the rule space spanned by attributes selected according to 

given instances. The approach is empirical, and relies on observing the input-output 

behaviour of the trained network directly. 

Hayashi (1990) describes a simple search technique for extraction of fuzzy rules from a 

neural network. The input units are organised as a set of groups. For each rule formation 

cycle, it selects one output cell and one input cell group but does not consider the 

interactions between different cell groups. The weights between the input and hidden 

layers are fixed during the learning process. Rule search is conducted directly in the 

space of primary attributes, without involving pattern formation and combination in the 

hidden layer, The overall search width is much more limited. 

The rule generation method from neural networks by Fu (1994) is illustrated by reference 

to Figure 2-6 which is based on KT -- 'Knowledgetron' method. The word 

'Knowledgetron' is defined by the author and refers to a neural network with 

knowledge. A rule generated has the form of 

IF the premise, THEN the action (conclusion). 

Specifically for the case in Figure 2-6. 
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IF A'l, --- Al-, --- ---, AT, .. - --,, 4-j 9 ..., THEN C (or 

where At, is a positive antecedent (an attribute in the positive form), -Aj is a negative 

antecedent (an attribute in the negative form), C the concept (conclusion), and --, reads 
ý. 4 not". Each node in the hidden or output layer is designated by a symbol that represents 

a concept to be confirmed or not confirmed. Confirmation or non-confirmation of a node 

concept is measured by the activation of the node. 

B 

Figure 2-6 Network for rule generation by Fu (1994) 

It is necessary to train the neural network first and then, based on the above concepts, a 

detailed procedure is developed for extracting rules. It overcomes the limitations of other 

methods (Gallant, 1988; Hayashi, 1990; Saito and Nakano, 1988) of extracting rules 

using trained neural networks. 

2.4.4 Concluding remarks 

Extracting rules from numerical data can be classified into two categories: incremental 

and non-incremental learning (Chan 1991). The former works on one example at a time 

and the latter is based on using all training examples at once. Both the fuzzy and rough 

set methods are incremental. Although a training neural network itself is by its nature 

non-incremental, the rules generated by training a neural network are still Incremental. 

The problem with this approach is that some information contained in the numerical data 

AAAAAA 
I12211 -' 
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is lost during the results filtering which is a necessary step in the method. This IS unlike a 
neural network that has to take into account all data used for training in order to obtain 
the weights. However, incremental learning has the advantage that it is recursive. This 

means that if new data is made available, it does not need to go back to train using the 

old data but simply updates existing knowledge. This is particularly useful for on-line 

applications since new data is often continuously gathered. 

The method of rule generation using fuzzy set operation generates a rule for each data. 

It does not make use of information contained in the data because the procedures are 
independent. This becomes worse when the data pair become large. 

The rough set method was originally not able to generate fuzzy rules. Quafafou and Chan 

(1995) improved the method so as to be able to generate fuzzy rules but there are still 

certain limitations, as noted by Quafafou and Chan (1995): 

1. some elements can result in inconsistencies in the process of building a fuzzy model 

which starts by replacing the original values by linguistic variables, 

2. the membership functions are considered early when exploring learning rules and the 

resulting fuzzy model is strongly influenced by the quantising process. In order to 

cope with this problem, the original values must be integrated into fuzzy rules related 

to the learning process. The membership function is used as late as possible. 

The neural network method proposed by Fu (1994) depends on training a structured 

neural network properly. The nodes represent concepts and branches describe cause- 

effect relations. But the size of rules increases dramatically with the increase in the size 

of the problem. 

2.5 General Observations 

In the light of the above analysis, the following observations can be made. 

Firstly, the episode-based approaches for qualitative interpretation of dynamic 

transients are easily adversely influenced by noise. Other approaches reviewed are 

not able to address the dynamic and time as well as local features of a transient 
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signal. Both the frequency and time of an event on a dynamic transient signal may 
carry important information. There is clearly a need to develop methods that are 
able to simultaneously remove noise components and reduce dimensionality. At the 

same time the extracted feature retains a high degree of fidelity with respect to the 

original signals. 

It is clear that unsupervised neural networks are potentially powerful because they 
do not need training data and provide a means of avoiding extrapolation. These 

approaches should also be recursive so that they can continuously update their 

performance during application. Unfortunately most of the approaches are not 
developed specifically for data from process on-line measurements. Work needs to 
be done on these approaches, typically on issues of how to deal with signal noise. 

Compared with the progress in knowledge discovery through automatic machine 
learning, little effort has been made in the process industries to generate 

knowledge directly from data. The major difficulty has been that existing 

approaches are mainly for dealing with variables that are symbolic or discrete, such 

as a colour being green or red. There is the need to develop methods that are able 

to bridge the numerical data with symbolic descriptions for the purpose of 

knowledge discovery. 

The remaining chapters are devoted to exploring concepts using the above and to 

developing of a framework for integrating them. Application of the methods to 

processes that are at an industrial scale is also important for validation purposes. 



Chapter 3 

WAVELET BASED SIGNAL 

PRE-PROCESSING FOR 

NEURAL NETWORKS 

3.1 Introduction 

In process monitoring, dynamic trend signals may represent more important information 

than the instant values of variables. In fact operators spend more time on monitoring 
trends than the instant values. Dynamic trends are characterised by noise and high 

dimensionality. Firstly, with a high noise to signal ratio, it is difficult to distinguish the 

real change of a signal from that due to noise. Secondly, a segment of a dynamic trend 

may consist of tens of sampling values and a process may have several hundreds of such 

trends being continuously monitored. Therefore it is necessary to reduce the 

dimensionality by representing trend using a minimum number of features before using it 

with tools for process operational state identification and diagnosis. 

The wavelet based signal pre-processing technique described in this work generates 
features for both operational state identification and knowledge extraction. The goal of 
feature extraction is to map the original measurements into a feature space. The 

approach involves: 

1. extraction of features to reduce dimensionality of the original signal and retain as 

much of the relevant information as possible; 

2. filtering out noisy components. 
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For wavelet applications in chemical processes, two approaches have been proposed for 
interpreting dynamic trends. Bakshi and Stephanopoulos (1994) used wa-,, 'clet 
decomposition of functions to find the points of inflexion in trends. Trends are then split 
into episode descriptions according to the identified inflexions. Therefore, this approach 
can be regarded as episode-based and wavelet decomposition is only used to find the 
inflexion points. Based on the wavelet packet transform, Dai et al (1995) developed a 
framework using time-frequency phase planes to represent and analyse dynamic trends. 
The trends are converted into the form of visual graphics that was helpful for human 

experts in decision making but not suitable for computer based decision support systems. 
The influence of noise is not considered in above work. 

The wavelet based signal pre-processing approach in this work is different from previous 

work. The approach picks out the wavelet transform corresponding to the turning points 

of trends and uses this as a feature to define the trends. Such features capture the 
information about process changes such as sudden disturbances, as well as increases or 
decreases of variable values. The approach also takes the influence of noise into account. 

The rest of this Chapter starts by introducing the relevant wavelet theory. Then the 

feature extraction approach and its implementation are described, followed by noise 

component removal and piece-wise processing as a basis for dimension reduction. 

Finally, feature extraction using wavelet and Fourier transforms are compared and some 

general observations are made. 

3.2 Wavelet Theory 

The following is only a brief introduction to wavelet theory: detailed treatments can be 

found in Daubechies (1992), Hernandez and Weiss (1996), and Chui (1992). 

A wavelet is a function V(t)ELý (R) such that: 

yf(t)dt =0 (3- 1) 

A family of functions (Ta, b(t) I is generated by the basis function 
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Va, 
b jai 

t- b 

a 

a, b(=-R and a#O 

where a is a dilation parameter, and ba translation parameter. The forward wavelet 

transform involves computation of the inner products 
(f (t), qf,,, b(t)) fo r all 

a, b c- R and a#0. The inner products are called the wavelet coefficients and arc 

defined as: 

(t))= lal -1/2 ff (t)V* (t 
b 

)dt (3- 3) 
a 

where the asterisk denotes the complex conjugate, and the notation (e) is used for the 

standard inner products evaluated according to 

(f 
, g) 

ff (t)g * (t)dt (3- 4) 

The functionflt) can then be reconstructed from the wavelet coefficients: 

ým 

C-1 
ff (f dadb 

(3- 5) Ta2 

To make the wavelets useful analytic functions, the basic wavelet must possess certain 

desirable properties. From the inversion formula given in Equation 3-5, the condition for 

a function Nf(t) having a Fourier transform 0 (o)) to be a wavelet is 

-I ý/(O))I, do)< oo (3- 6) 

This condition is called the admissibility condition (Grossmann et al, 1985). If the 

wavelet W(t) is an absolutely integrable function, as is usually the case, then the Fourier 

transforin (w) is continuous. If (Co) is continuous, c, can be infinite only if 

V(O) =0f V(t)dt =0 (3- 7) 

A wavelet must therefore be an oscillatory function with zero means. Equation 3-6 also 

I 

Wi . 
Therefore, the wavelet Nf(t) decays at least (o 

0i suggests that IVv^ ))I' decays at least as 
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I 
according toý 

1 
for some c>0. In practice, much stricter decay conditiolls are tr 

imposed on Nf(t). 

.0 
Associated with each wavelet there are time and frequency localisation defined. 

respectively, by: 

07t2 
f 

(t 
-t )21YV(t)l 2 dt (3 - 8a) 

-010 

t702 
f 

(0) 21 ^ (0»1 
2 

V/ d o) (3 - 8b) 

Wavelets can broadly be classified as continuous and discrete. Given a basic wavelet 

function xV(t), the continuous wavelet transform (CWT) coefficients of a function. f(t) are 
defined by: 

CWTf (a, b) lal-"2 ff (t)v* tabt (3- 9) 

a, bER and a#O 

For signal processing, a discrete wavelet transform is often used. Where the scale-time 

parameters a and b are restricted to the following forrns: 

a=a' , b=nb a' 000 

Vfm, 
n 

(t)= 2 -m12 yf (2-' t- 

The discrete wavelet transform (DWT) then has the form 

DWTf (m, n) 
(f ao 

m/2 ff (t) VI(a -' t- nb, ) dt 

m, neZ 

10) 

11) 

12) 

where ra, n are integers. Typically, ao =2 and bo =I is used, although ao and bo need 

not be restricted to these values. Figure 3-1 shows a typical non-orthogonal but 

symmetric wavelet (Mexican hat) which is essentiaHy the second derivative of a Gaussian 

function. This figure shows how the dilation parameter, m, and translation parameter, n, 

affect the wavelet function shape. For smaH values of the dilation parameter m. the 
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wavelet is narrow and tends to localise in a small window defined by a short-time Fourier 

transform. 

Mother Wavelet 
m=O, n=0 
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I 

0 

I 

0 

-20 -15 -10 -5 05 10 is 20 

Dilation 
m=2, n=O 

-20 -15 -10 -5 05 10 is 20 
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m=-2, n=O 
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2 

Translation 
m=O, n=8 

I 

C 
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Figure 3-I Mexican hat wavelet at different dilation and translation 

3.3 General Description and Implementation for Data Pre-processing 

The pre-processing approach, as shown in Figure 3-2, includes multi-scale wavelet 

decomposition of process residuals which are generated by comparing the on-line signals 

with a steady process trajectory. The residual generation procedure is not considered in 

detail. It is assumed that residuals have been appropriately generated in what follows. 

The decomposition divides the residual into two parts: a detailed signal and an 

approximate. Here, feature for pattern identification is extracted from the detailed signal 

while the approximate signal is used for knowledge extraction and representation by a 

fuzzy neural network. 
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Wavelet 
decomposition 

Approximation Feature 
E xtr xtraction 

IF if 
Knowledge Pattern 
extraction Recognition 

Figure 3-2 Wavelet based signal pre-processing 

The residual generation process is essential not only for process behaviour evaluation but 

is also needed for wavelet transformation of signals. In chemical plant, the signal 

measurements have a physical meaning, e. g. reaction temperature of 4509C. However, 

this cannot be directly used in a wavelet transform for two reasons: 
1. the trajectory of process variables may not be constant, for example, during periodic 

operation; 

2. the results of wavelet transform can be distorted when the process steady trajectory 

is included, even if it is constant. This has serious implications for the approximate 

part of the signal. 

The second reason is best explained by an example. The temperature trend of an 

industrial FCC reactor is plotted in Figure 3-3(a) where the process steady trajectory is 

expected to be 498'C. The approximation of a four-scale multi-resolution analysis is 

shown in Figure 3-3(b). Obviously, the approximation cannot represent the main trend of 

the original signal which fluctuates between 497 and 499'C, while the approximation of 

the wavelet transform varies from about 200 to 550'C. There is no literature discussing 

this aspect of wavelet transforms. The effect is probably caused by 'end effects' because 

sudden changes occurred at the beginning and end of the approximation. However, the 
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approximation in Figure 3-3(b) still changes between 470 and 550'C even if the 

beginning and end of the approximation are ignored. 
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Figure 3-3A process signal (a) and its low pass approximation (b) 
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Figure 3-5 Detail signal of wavelet decomposition for measurement (a) 

and detail signal after filtering constant trajectory (b) 
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Figure 3-6 Multi-scale decomposition of a signal 
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Filtering the process steady trajectory, i. e. after subtracting the set point value 498'C 

from the measurement, gives an approximation of the wavelet transform which is much 

more reasonable than that derived using the raw measurement. The residual and its 

approximation obtained from the wavelet transfon-n are plotted in Figure 3-4. 

On the other hand, the detailed signal of wavelet decomposition is not influenced by a 

constant process steady trajectory. This is illustrated in Figure 3-5 where (a) the detailed 

signal of wavelet decomposition is obtained directly from process measurement with 

constant process steady trajectory and (b) the detailed signal of the wavelct 

decomposition is obtained by filtering out the trajectory. They are very close. 

Residual 
, 

Wavelet 
of trend decomposition 

W'Iý 
Extrema Noise extrema, 
extraction remove 

Dimension 
output 

reduction 

Figure 3-7 Details of feature extraction procedure 

The residual is then decomposed into multi-scale components using wavelet multi- 

resolution analysis for pre-processing. Wavelet decomposition of the residual consists of 

two parts: detailed signals and approximations that are also called scale signals as shown 

in Figure 3-6. The features of the signal are obtained from the detailed signals, which LS 

described in the next section. The high level (Scale 4 in Figure 3-6) approximation is the 

smoothed signal of the original measurement. The approximations are used as input to 

fuzzy neural networks for knowledge extraction and representation. 
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Feature extraction for pre-processing is illustrated in Figure 3-7, which consists of multi- 

scale wavelet decomposition, extrema extraction from the detail of the decomposition, 

noise extrema removal, and dimension reduction. These procedures are described belwo,,. 

3.4 Feature Extraction 

In this section, the approach using multi-scale wavelet decomposition for feature 

extraction to achieve reduction in dimensionality and noise filtering is described. 

However, the identification of process trend and features are discussed first. 

3.4.1 Feature extraction and process trends 

Feature extraction is basically a transformation of the measurement into data patterns. 

such that the space of the data pattern has a lower dimensionality than that of the 

measurements. An N-vector of measurements is transformed into an M-vector, M<N, 

of the features in pattern space. An important property of such a transformation is that it 

is information preserving. Thus, it removes redundant components while preserving, in 

some optimal sense, information that is crucial for pattern discrimination. 

In general, if the transformation is restricted to a linear combination of measurements, 

then it is possible to find the optimal transformation in a least mean-squared error sense 

using a technique of feature selection based on an orthogonal expansion. 

Let a signalf(t) be represented as a point in a vector space, where the co-ordinate axes 

are a set of mutually orthogonal basis functions. The signal is therefore defined by Its 

position in this space, and is represented by a set of coefficients, one for each basis 

function. The orthogonal expansion of a signal is to normalise the signal vector, defined 

by the following Equation 

Y ci 0i 
i=l 

13) 

where the ci are random uncorrelated coefficients, and the 0i (t) are the orthogonal basis 

functions, normalised such that 
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E[oi (t)oj (t)] =1 
i=j 

where E[e] denotes the expected value. 

Thus, the signal flt) is represented as a point in a finite space of n-dimensions and 

sampled by measuring the signal over some interval, and becomes a signal vector 
F= (f,, f,, --- f') 

t. The orthogonal basis functions 0i (t) are similarly sampled, so that 

the ith co-ordinate axis is a base vector (D - ... Oi, and these vector are i ý- 
(Oil 

ý 
Oi2 

ý 

arranged as the columns of an orthogonal matrix (D = ((DI, (D21, - (D, ), normalised 

such that (D'd) = I, where I is the identified matrix. With the coefficients represented by 

C= 
(Cl 

ý C2 
ý"*c. 

)t, Equation 3-13 can be rewritten as the finite sum 

F= (Dc 14) 

Then, the expansion is characterised by the coefficient c, and it is possible to calculate 

these coefficients from Equation 3-14 by rearranging it to give 

VF 15) 

A Fourier series is a special case of the expansion that uses sinusoidal basis functions. 

Wavelet functions can be orthogonal, so are able to be used as basis functions for the 

expansion of signal and to extract features from the measurements. The wavelet 

transform allows the signal to be analysed in both time and frequency domains 

simultaneously. Wavelet transform analysis therefore is able to retain the transient parts 

of the signal in the transform values at the same relative position in time. In addition, 

selection of the wavelet used by the wavelet transform allows the user to tailor the 

analysis to specific features of the signal. 

However, wavelet expansion is a regular sampling process that is computationany 

expensive when a direct wavelet transform is applied. Furthermore, using a regular 

sampling wavelet transform, the coefficients used as features of the signal do not 

significantly reduce the dimensionality. Here, a non-subsampled multi-scale wavelet 

transform is applied to avoid such limitations. 
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The process trend undoubtedly has an intuitive meaning relative to the change of process 
behaviour over time. A process trend is not just a smooth representation of a noisc 

signal. Based on an explicit definition of state and trend in both continuous and discrete. 

qualitative state and trend are given as (Cheung and Stephanopoulos 1990) 

Qualitative State (QS). Let x: [a, b]--ýR be a reasonable function. QS(. v, t). the 

qualitative state of x at t (=- [a, b], is defined as the triplet of qualitative values as follows: 

undefined 
QS (X, t) = ([X(t)], lax(t)], laaxwl) 

where 

rx(t] 

[dx(t] 

[ddx(t] 

if x is discontinuous at t 

otherwise 

if X(t) >0 
if X(t) =0 
if X(t) <0 

if X'(t) >0 
if X'(t) =0 
if X'(t) <0 

if X" >0 
if X" =0 
if X" <0 

Qualitative Trend. The qualitative trend of a reasonable variable, x: [a, b] ---) R, is the 

continuous sequence of qualitative states over [a, b]. 

A function x(t) is a reasonable variable when it satisfies the following conditions: 

it is continuous over time interval [a, b] but is allowed to have a finite 

number of discontinuities in the function value and/or first derivative. 

2. x(t) and x" (t) are continuous in (a, b), and their one-sided limits exist 

at a and b. 

3. x(t) has a finite number of extrema and inflexion points i4a, b]. 
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An episode is represented by a qualitative state and its time 'interval. Thus. the 

representation of a trend is used to find the combination of episodes of a trClId. 
GeneraUy, nine primitives, as shown in Figure 3-8, are used in the episode approach 
(Janusz and Venkatasubramanian 1991). Note that C and D are not primitives because 

they can be regarded as the combination of A, F and B, E. Therefore, this reduces the 

primitives to seven, as shown in Figure 3-9. The seven primitives can be used to describe 

any trend in the work described here. 

A combination of episodes forms a trend over an interval and is described by a prilnitive 

and the associated time. Primitives are different for first and/or second order derivatives, 

so the distinguished points which are between episode segments are extrema together 

with inflexions which satisfy 

dx d2x 
7- =0 vi =0 -2 

ot ot 

Figure 3-10 gives three trends as an example. In this figure, trend I consists of the 

primitives c-d-b-a-c-d-b. The connection points of the primitives c-d, b-a, are maximum 

values and minimum respectively, and inflexion points are between d and b, a and c, and 

d and b. Trend 2 in Figure 3-10 is a similar case. 

The task of identifying the episodes in a continuous signal is simply one of identifying the 

inflexions and/or extrema, i. e. irregularities in the signal, since these correspond to 

distinct points of the episode segments. For a discontinuous signal, such as obtained 

during batch or semi-batch operations, singularities must be included to represent the 

change between batches, e. g. from batch to semi-batch operation. This means that the 

irregularities and singularities of a signal contain the most important information about 

the trend. Using irregularities and singularities as representations of the feature therefore 

completely defines the characteristics of a signal. However, irregularities and singulantics 

are strongly influenced by noise, as in the case of trend 3 in Figure 3-10, where a noise 

pulse is registered in primitives e and f, together with three singularities. Noise 

components must be identified and filtered from the feature representations of the trend, 

otherwise the representations will result in a misleading pattern classification. The issue 
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of feature extraction then becomes the task of finding the irregularities and singularities. 
and distinguishing the trend from singularities due to noise 

ZZ 

(+, +, 0) (+, -, 0) 

C (+, 0, -) 

Figure 3-8 Primitives used in episode approach 
(Janusz and Venkatasubramanian 1991) 
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Figure 3-9 Seven primitives episode representation 
(Cheung and Stephanopoulos 1990) 
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(2) 

'\, 

ýb 

connection points 
of episodes 

Figure 3- 10 Singularities as connection points of episode segments 

3.4.2 Wavelet for irregularity and singularity detection 

Mathematically, the local irregularity and singularity of a function is often measured with 

Lipschitz exponents, defined as 

For 0 <a <1, Lipschitz space is the set of all fE L- (R) such that 

SUP If (t + h) -f (t)j! ý (Ihl 
xER 

where a is the Lipschitz exponent. 

In practice, the relationship between the Lipschitz exponent and the irregularity and 

singularity does not provide a simple and direct way of detecting and characterising the 

irregularities and singularities of a signal, The wavelet transform extrema representation 

is an efficient approach for studying irregular and singular structures of signals. Several 

studies have been reported on this topic (Mallat 1991, Mallat and Hwang 1992, Mallat 

and Zhong 1992, Berman and Baras 1993, Cvetkovic and Vetterli 1995). 

The wavelet transform of a process signal represents the detailed signal at the 

appropriate scale, and corresponds to the Merence between two scale signals. Selecting 

a special wavelet or filter bank, the extrema of a wavelet transform indicate the location 

of changes, such as turning points from increasing to decreasing and operation from one 

batch to another batch. The extrema in the wavelet analysis correspond to the location 

and character of the irregularity and singularity points of the smoothed signal. The 
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extrema from wavelet analysis are used as features to represent the trends and capture 

the most important information about them. 

Mallat and Hwang (1992) and Mallat and Zhong (1992) suggest using a wavelet that 's 
the first derivative of a scale function O(t) 

Ap(t) 
W(t) dt 16) 

For this, a Block spline (B-spline) wavelet and scaling function are recommended. They 

construct a class of one dimensional wavelets for detection of the extrema 

0)12 + G(cv)K(co) =1 (3- 17) 

Although these representations stem from the underlying continuous-time theory, 

implementation takes place in the discrete-time domain. Berman and Baras (1993) 

represent it for purely discrete-time, showing that the extrema of a wavelet transform 

provide a stable representation of finite length discrete-time signals. Cvetkovic and 

Vetterli (1995), using filter bank tools, develop a discrete-time framework Ior the 

extrema representation of a wavelet transform. They design a non-subsampled multi- 

resolution analysis filter bank to implement the wavelet transform for a representation. 

The non-subsampled multi-resolution analysis is used here to detect irregularities and 

singularities of signal. An octave band non-subsampled filter bank with analysis filters 

HO (z) and H, (z) is shown in Figure 3-11. In this method, the wavelet transform refers 

W to the bounded linear operators j: 
12 (Z) 

_4 
12 (Z) j=1,2, 

.. 
J+ 1. The Wj are the 

convolution operators with the impulse responses of the filters: 

V, (z) = H, (z) 

V2(z) = HOH, (Z2) 

0000900* 

Vj (z) = Ho (z) ... Ho (Z2 
J-2 

)H, (z iI) 

Vj 0 (z) = Ho (z) ... Ho (Z2j-2 )HO (Z2j-l 
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A finite impulse response (FIR) wavelet filter is recommended for use with the ahovc 

operation to represent extrema. Such a filter has a sequence 
jak 

: kEZI with only K 

non-zero terms. A typical example of an FIR filter is the Haar wavelet, which has only 

two non-zero coefficients. Daubechies's wavelets (Daubechies 1992) are FIR filters and 

smoother than the Haar wavelet. Daubechies' wavelets having more coefficients result iii 

a greater level of smoothness with the higher moments vanishing. They are also 

computationally less expensive because of being constructed by convolution of the filter. 

I 
x 

D2 x 

D3 x 

D4 x 

A4 x 

approximation signal of input f(t) on the k scale 

H0, H, -- analysis Of low-pass and high-pass filters 

Figure 3- 11 An octave band non-subsampled filter bank 

The Daubechies' scale and wavelet function are expressed as 

O(t) =I h(k)0(2t - k) 
k 

18) 

I: g(k)0(2t - k) (3- 19) 
k 

where jh(k)j is the low-pass filter coefficient and ýg(k)j the band-pass filter 

coefficient. 

y 

detail signals of input f(t) on the ith scale 
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A wavelet has L vanishing moments if tI V(t)dt =0 for I=0,1, 
... 

A Daubechies 

wavelets have maximum numbers of vanishing moments. Using wavelet with a larger 

number of vanishing moments has the advantage of being able to measure the Lipschitz 

regularity up to a higher order, which is of benefit in filtering out noisy components. 
However, the number of maxima for a given scale often increases linearly with the 

number of moments of the wavelet, which makes computation more expensive and 
increases the difficulty of reducing the dimensionality. In order to minimise 

computational effort, it is necessary to have the minimum number of maxima to detect 

interesting irregular and singular behaviour features of the signal. This means choosing a 

wavelet with as few vanishing moments as possible, but with sufficient to detect the 

Lipschitz exponents for the highest order of interest. 

In this work, the eight-coefficient "Least- Asymmetric" Daubechies wavelet IS used as a 

filter. The scale and wavelet function of the eight-co efficient "Least- Asymmetric" filter is 

illustrated in Figure 3-12. 

Scaling Function 

1 

0 

T'irne 

Wavelet Function J 

1 

0 

-1 

-3 -2 -1 1Zi 
-rime 

Figure 3- 12 The "Least-Asymmetric" scale function and wavelet function 

A signal such as f(t)=sin(t) has extrema identified by wavelet analysis using a non- 

subsampled filter bank with Daubechies eight coefficient least asymmetry wavelet as 

illustrated in Figure 3-13. This shows that extrema correspond to the irregularities of 

signal. The shape of the corresponding extrema of wavelet analysis can be a maximum or 

minimum for the same irregularity of the signal, depending on the wavelet used. In 
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Figure 3-13(b), a Daubechies eight coefficient wavelet is used as the filter, and the first 

irregularity of the signal in Figure 3-13(a) corresponds to a minimum in the wavelet 

analysis, while in Figure 3-14 it becomes a maximum because a different wavelet is 

employed. The former approach is used in this work. 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

02468 10 12 14 

(a) 

3 

n 
0 10 zu 4v Z)u vý 

(b) 

Figure 3- 13 Signal (a) and its extrema (b) of wavelet analysis with 
Daubechies eight-coefficient wavelet 
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Figure 3- 14 Extrema of signal in Figure 3-13 (a) obtained by wavelet analysis 
with Daubechies ten-coefficient wavelet 

3.4.3 Noise extrema removal and data compression 

The irregularities and singularities of a signal are strongly influenced by noise. It is 

necessary to filter out noise extrema from the wavelet transform before using them as 

input in pattern identification. 

The classical technique for removing noise from a signal is to filter it. Part of the noise is 

removed but it may also smooth the signal irregularities and singularities at the same 

time. Mallat and Hwang (1992), and Mallat and Zhong (1992), have developed a noise 

extrema evaluation technique based on the relationship between the Lipschitz exponent 

and characteristics of singularities. The technique is applied here to remove the noise 

extrema of wavelet analysis. White and high frequency noise are considered. 

Let n(t) be a white noise random process and Wn(s, t) the wavelet transform. Grossmann 

(1986) has showed that the decay of the expected value of the wavelet transform 

E(lWn(s, t)l 2) is proportional to 
I 

i. e. 
S 

lWn(s, t)l' =f 
fn(u)n(v)V, (t-u)V, (t-v)dudv 

Since n(t) is white noise, E(n(u)n(v)) =6 (u - V), so 
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E(jWn(s, t)12) =ff i5(u - v) V, (t - u) V, (t - v) dudv 

and so 

E(iWn(sg t)12 )= 

11 

s 

12 

For a given scale s, the wavelet transform Wn(s, t) is a random process in t. If white 

noise n(t) is a Gaussian white noise then Wn(s, t) is also a Gaussian process. Using this 

property, the density of local extrema of the wavelet transform is 

ds =A 

JIVf 11 

SýJyf 
(1) 11 

where V/ (n) (t) is the nth derivative of wavelet ip (t) and Xa constant between 0.5 and I- 

The density of local extrema is inversely proportional to the scale s. The realisation of a 

white noise is a distribution which is almost everywhere singular. This results in a 

Lipschitz cc = -0.5 + F-, for any F, > 0. However, evaluating the Lipschitz exponent of a 

function along scales is computationally expensive. According to the relationship 

between the extrema of wavelet analysis, the noise component can be identified based on 

the relationship between the Lipschitz exponent and the character of a function. 

What follow is a summary of the relationship between an irregularity or singularity and 

the Lipschitz exponent: 

1. Lipschitz (x =1, flt) is differentiable at b 

2. Lipschitz a>0, flt) is continuous at to 

3. Lipschitz a=0, flt) is discontinuous at to 

4. Lipschitz a=-1, flt) is Dirac function at to 

5. Lipschitz a= -0.5 + P- for any F- > 0, flt) is white noise 
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Figure 3- 15 Noise signals, their wavelet transform 
and extrema of the wavelet transform 
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Figure 3- 16 Using a sine wave with noise and the result of multi -resolution 
analysis to illustrate how many scales are needed for decomposition 
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Based on the definition of the Lipschitz exponent and the extrema involved in wavclet 

analysis, the following relationship is satisfied 

JWT, (s, t)jsý As' 

which is equivalent to 

(3- 20) 

logjWT, (s, t)j!! ý log(A) +a log(s) (3- 21) 

In Equation 3-20, jVvTf (s, t)l cc s' since A is constant. For a real trend, 
ýWT, (s, t)l is 

increased as scale s increases because the Lipschitz exponent a>0. While IWTf (s, 01 of 

noise decreases as the scale increases since a<0. Hence, noise extrema die out as the 

scale is increased. 

This makes it possible to identify extrema, and distinguish them from those produced by 

real trend based on the fact that the noise extrema: 
1. have amplitudes which decrease on average when the scale increases; 

2. do not propagate to large scales. 

Figure 3-15 illustrates the use of such criteria. In Figure 3-15, three different pulses are 

generated. The wavelet multi-resolution analyses are given on the left hand side, and 

extrema of wavelet analysis are on the right. Clearly, the extrema decrease and then 

disappear as the scale increases. 

Based on such criteria, noise extrema can be removed using the following steps: 

Step 1: find extrema positions and their signs, then store and flag them with 

largest scale detail results, assumed to be 4; 

Step 2: select an extremurn on the 4h scale according to the position, find the 

corresponding extrema with the same sign in the 3 rd scale within a 

range. For example, if an extremum position in the, 4h scale is i, the 

possible corresponding extremum must be searched within the region 

of [i-2, i+2] on the 3 rd scale; 
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Step 3: if the same sign extremurn is not found in the 3 rd scale, then delete 

the corresponding extremum in the 4h scale and return to Step I 
Step 4: if a same sign extremurn is found on the 3 rd scale (if more than one 

then the largest is selected), then their absolute values are compared. 
If the extremum value on the 4h scale is less than that in the 3 rd scale. 
delete the corresponding extremum in the 4t" scale and return to Step 
2, otherwise move to Step 5; 

Step 5: keep the extremurn from the 3"' scale, and look for the extremum in 

te nd in a similar way as described in Step 2 to Step 4. After that, 

move to the extremum on the first scale; 
Step 6: move to the next extremum in the Xh scale, and repeat Steps 2 to 5. 

In the above noise removal algorithm, the largest scale for the decomposition has to be 

decided in advance. Theoretically, it should be determined according to the noise 

characteristics. The problem is that the characteristics of the noise are generally unknown 
for process measurements. One way of determining the largest scale of decomposition is 

to compare extrema representations for two neighbourhood scales. If they have the same 

non-zero item, it means no more further decomposition is needed. Figure 3-16 illustrates 

this method by using a signal consisting of a sine wave and white noise, and its multi- 

resolution wavelet analysis. Noise components are reduced and then disappear as the 

scale increases. Scales 4 and 5 have the same non-zero items for the extrema 

representations, so four scales are required for decomposition. 

In fact, noise components can be filtered out based on the above criteria even if there is 

no similar non-zero item for two neighbouring scales because the noise components have 

no corresponding responses along scales. This can be seen in Figures 3-17 and 3-18. In 

Figure 3-17, a process trend is decomposed into four scales and Figure 3-18 shows the 

result obtained using the above noise components removal algorithm. It can be seen that 

noise components in scale 4 are identified, and not contain in feature representation as 

shown Figure 3-18. Generally, four or more scale decomposition is recommended for 

process measurements. 



Chapter3 Wavelet Based Signal Pre-processing for Neural Networks 

4 

0 

-4 

-8 

-12 

-16 
0 20 40 60 80 100 

Multi-resolution decomposition 

0 

-5 

5 

0 

-5 

20 

10 

0 

-10 

-20 

20 

10 

0A 

-10 

-20 
0 20 40 60 80 100 

Process 
signal 

Scale I 

Scale 2 

Scale 3 

Scale 4 
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Figure 3- 18 Features after noise components removal for 
the process signal in Figure 3-17 

Two observations are appropriate based on these results: 

wavelet analysis extrema of real trends remain steady whatever scales of 
decomposition are used, so the representation is steady; 

2. the locations of extrema are shifted with time as the scale increases. In Figure 3-16, 

the extrema representation in scale 4 is (X5. X239 X37, X53), while in scale 5, it becomes 
(XT) X22ý X387 X54). whereX7 stands for a non-zero datum in pos1tion 7. That IS, the 

position of extremum of the wavelet transform is shifted along the scales. This should 

be considered in the noise removal algorithm and in the final results as an input of 

pattern classification because it will affect the clustering results. 

Pattern classification is strongly dependent on the structure of input, for example, (2,0, 

... 
0,3) and (2,0, ... 

3,0) should be classified as two patterns. On the other hand, the 

structure of extrema representation is changed at different scales because of the shift. 

Thus, the above two representations may come from the same pattern but from different 

scales, for example, one from scale 4 and the other from scale 5, as illustrated in Figure 

3-16. This situation has to be considered especially when different sources of signals are 

used and processed. Following the piece-wise procedure deals with the influence of the 

shift as well as reducing dimensionality. 



Chapter 3 Wavelet Based Signal Pre-processl . n-Q for Neural Networks 60 

Normally, representations of extrema become a highly sparse vector after removing the 
noise components. This is true especially for trends of continuous chemical process. 
which are often changed at low frequency. So the linear piece-wise technique can be 

applied to reduce dimensionality. 

A piece-wise is a function that is linear discrimination over sub-regions of the f'eature 

space. The discriminant functions are given by 

dk(x) = max [d' (x)] (3- 22) k 
k 

k=i., M 

The piece-wise procedure is to find the maximum d'(X-) along the prototype for sub- k 

region k. 

It is easy to pick out the non-zero items of features represented by extrema of the 

wavelet transform. This achieves a high dimensionality reduction since it is a highly 

sparse vector. However, this will destroy the time location of the extrema, for example 

the features of signal in Figure 3-16 are (xi, X2 ý X3 9 X4) - 
If this is used for pattern 

identification, the clustering results only discriminate according to the magnitudes of the 

feature while there is a loss of information with respect to time. 

In this work, the length of piece-wise sub-region is fixed in order to keep the time 

location information and obtain a uniform representation, as it is required for pattern 

classification. If a sub-region consists of four data levels, then the extrema representation 

of scale 4 and 5 in Figure 3-16 is a vector with 16 items and becomes a uniform 

representation(O,, X2,, 0,0,0, X6, ) 
0,0,0, X10,0,0, X13,0,09 0)- 

3.5 Comparison with Fourier Analysis 

Wavelet transformation is similar to window Fourier transformation. Both the wavelet 

and window Fourier transforms are localised in time and frequency and may be used for 

approximating signals in scale-space. 
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The Fourier transform of a function is defined by: 

(0» = F(o» =f e-'mf (x)dx (3- 23) 

The inverse Fourier transform of f is defined by 

=1- im ̂  
21r 

fef (o»do) (3- 24) 

with coefficients given 

21r 

Ck ff (x)e-kdx (3- 25) 
21r 

0 

The Fourier transform can be regarded as the decomposition of a functionf(t) into a sum 

of frequency components, the coefficients of which are given by the inner product offlt) 

and e-"'. This transform uses sines and cosines as the basis functions to map a time 

domain function into the frequency domain. Therefore the spectrum f (w) shows the 

overaU strength with which any frequency (o is contained in the function f(t). However, 

the standard Fourier transform only gives a representation of the frequency content of 

flt), information concerning time-localisation is not easy to obtain fromf (w) 

Time-localisation can be achieved by windowing the signal so as to cut off a localised 

slice of signal and then taking its Fourier transform - short-time Fourier transform 

(STFT) or windowed Fourier transform. The original idea comes from the work done by 

Gabor (1946), so sometimes it is called the Gabor transform. The general definition of 

the Short-time Fourier transform is, 

F(t, co) 
ff(, r)g (i, - t)e-j'dr (3- 26) 
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Thus, STFT maps a time domain function f (t) into a time-frequency domain function 

Rt, W) and is a linear mapping from the Fourier transform definition. ActuaUy. at time t, 

the STFT is the Fourier transform of the function, f (t) , multiplied by a window g(T-O. 

Since the window suppresses all function features outside the local neighbourhood 

around time t, the STFT is simply a "local spectrum"' 

However, using wavelets to represent irregularities and singularities, or sudden changes 

in the signal, is much more efficient than the windowed Fourier transform. The time and 

frequency resolution of a windowed Fourier transform is constant, as illustrated in Figure 

3-19(a). If o, is the standard derivation of the window function, then the information 

provided by this decomposition is not localised within intervals of size less than 0,. If 

the signal has a discontinuity, then it is difficult to locate the discontinuity with a 

precision better than o, If the signal has important features for the different sizes, an 

optimum resolution cannot be defined to analyse the signal. 

On the other hand, a wavelet can zoom in on such irregularities and singularities of 

varying size because the o, ls for wavelets may be varied by changing the scale 

parameters, which is represented by Equations 3-8a and b. Figure 3-19(b) shows the 

resolution of wavelet transform. 

Figure 3-20 illustrates the Fourier analysis with different window widths, and Figure 3 

21 shows wavelet transform with increases in scale. Using windowed Fourier analysis, 

typical frequency peaks are able to represent features of the signal. Generally, process 

signals have a wide frequency distribution, and the feature representation based on 

windowed Fourier transform becomes less efficient and more difficult. More theoretical 

analysis and explicit explanation about the superior performance of wavelet to windowed 

Fourier transform is described by Daubechies (1992). 

3.6 Concluding Remarks 

A signal pre-processing approach using wavelet rnulti- scale analysis has been 

introduced in this Chapter. The approach is developed based on the fact that 
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irregularities and singularities contain the most important information about trend 

signals. Since the extrema of wavelet transform of signals are able to capture all the 

irregularities and singularities of a signal when a filter bank and wavelet function are 

properly selected, they are regarded as the features of the trend. The advantage of 

being able to capture both the frequency and time features of a transient signal makes 

the wavelet feature extraction approach suitable not only for continuous but also 

batch operations. 

In addition, a wavelet-based noise component removal procedure is included in the 

approach, which extracts features and filters out noise in a single wavelet transform. 

Furthermore, a uniform sub-region piece-wise technique can be applied to obtain steady 

feature representation as well as reducing dimensionality for pattern identification. 



Chapter-4 

MEASUREMENT INTERPRETATION 

USING UNSUPERVISED 

LEARNING 

4.1 Introduction 

A method for feature extraction by processing dynamic transient signals using wavelet 

analysis was introduced in Chapter 3. In this Chapter, an integrated framework, 

ARTNET, is described which combines the feature extraction method with an 

unsupervised neural network, known as adaptive resonance theory ART2. The intention 

is to demonstrate that ARTNET is more effective than ART2 in dealing with noise 

contained in the transient signals while retaining an unsupervised and recursive clustering 

approach. 

The remainder of this chapter is organised as follows. Section two describes the 

distinctive characteristics of measurement interpretation with an emphasis on the 

attributes that motivate application of ART type competitive learning as a possible 

solution. Then an unsupervised learning algorithm, ARTNET, for pattern interpretation 

is introduced. The algorithm adopts the basic architecture of ART2, but modifications 

have been made so that it is suitable for process applications by associating the wavelet- 

base feature extraction approach. ARTNET is compared with ART2 to demonstrate 

improvements when applied to chemical manufacturing problems from which some 

overall observations are made. 



Irement Interpretation Using Unsul2ervised Leaming 68 

4.2 Issues in Interpretation of Measurements 
The purpose of this section is to define the measurement interpretation problem and to 
demonstrate the motivation of using ART type unsupervised pattern recognition 

algorithm as a problem solving technique. The most common application - qualitative 

state identification is first considered to determine when the states of a process are 

normal, abnormal or uncertain. These concepts are then extended to multiply defined 

states i. e. multiple types of fault, since they are of particular interested in this work. 

No 

Trc 
lea 
nei 

Figure 4-I Pattern distribution in representa on space 

n 

A process measurement can be regarded as an approximation of the vector of the process 

fingerprint, commonly referred to as a feature. Different vectors can be used, depending 

on the choice of representation for the pattern. Time and frequency or time-frequency 

domain representation is used in this work. Using such a representation, the set of all 

possible pattern slices extracted from archived plant operating data are distributed in the 

Leading to abnormal 
Uncertain vifi iinoortýiin .- Abnormai 
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manner shown in Figure 4- 1. The tra 
, 
jectory formed by successive fingerprint vectors in 

the pattern representation space captures the evolving behaviour of the process. 

When performing as intended, the control system constrains the process trajectory within 
the normal region. However, disturbances can cause the trajectory to leave normal 
operating conditions and may lead to uncertain or an abnormal state, or a state never 
seen before, as illustrated in Figure 4- 1. The existence of an uncertain region reflects a 
typical process having dynamics measured in minutes or longer. With the exception of 

catastrophic events, instantaneous transitions between normal and abnormal states do not 
occur but involve a transition period, where it is uncertain whether the control system 

will be able to return the process to the original state. Generally it passes through an 

uncertain condition to either a nornml or abnormal state, depending on the nature of the 
disturbance and process. 

The goal of interpretation of measurements is to identify the boundaries associated with 

the different process states in the pattern representation space of Figure 4-1. The 

resulting map can then be used to classify the state of the process at any future point in 

time based on the location of the fmgerprint on the map. The pattern data necessary to 

create the map can be obtained from historical plant records if future plant behaviour is 

similar to the past. This is a mild assumption satisfied by many chemical plants. 

There are two problems needed to meet the measurement interpretation when a 

computer aided operational support system is used for process monitoring and fault 

diagnosis. Firstly, the knowledge used to form the support system is always incomplete. 

The second is a realisation that the data patterns will change with time due to 

unavoidable phenomena such as instrument degradation or catalyst deactivation. 

If historical records are used as training data for a fault monitoring and diagnosis 

operational support system, the distribution of abnormal data is incomplete and limited to 

the faults that have occurred. Consequently, training data will be unavailable for many 

situations that should be identified as abnormal. At best, the new pattern, including 
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uncertain ones should be identified as unknown or new. Some nearest neighbour 

algorithms such as k-means unsupervised learning, and linear discriminant classifiers 

cannot be used in such situations, especially when a new disturbance generates a 

sequence of patterns not previously seen. The supervised non-linear classifier, such as a 

feed-forward neural network with error back propagation algorithm is prone to error in 

such cases. The resulting extrapolation errors occur due to the inability to define 

boundaries to regions lacking counter-exemplars. Likewise, it is fundamentally incorrect 

to conclude that previously unseen patterns are normal, based on a simple nearest 

neighbour analysis. The new trajectory shown in Figure 4-1 is most likely to be abnormal 

and should therefore never be classified as normal. 

It is imperative that decision surfaces faithfully reconstruct the boundaries defMed by 

training data so as to avoid potentially catastrophic extrapolation errors. Two types of 

class boundaries are evident in Figure 4-1. The first exists at the intersection between 

different pattern classes. This boundary type represents discrimination knowledge. The 

second type exists wherever the data distribution is bounded by an empty new state 

representation space. These boundaries represent limits on knowledge which can be 

extracted from the training data. 

Shifting data distributions associated with natural phenomena, such as catalyst 

deactivation, implies the need to routinely modify class boundaries. For example, 

patterns that indicate conditions are too severe or abnormal for a reactor with fresh 

catalyst may be normal for the reactor with aged catalyst. Generally, the shift in the two 

distributions occurs gradually over time rather than as a discrete event. An adaptive 

mapping capability must be incorporated to deal with this situation. However, if the time 

scale associated with the shift is large enough, real-time adaptation should not be 

required. Discrete updates for each period should be adequate, depending on the nature 

of the process. 

These can be extended to multi-states by dividing any abnormal region into several types 

of faults so that uncertain states can differentiate between various abnormal states as well 
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as between normal and abnormal. The problem then becomes one of multiple boundary 
identification or multiple state chssIfication. 

To illustrate this, consider a process having a set of measurements (x, 
, X21 *'* X'v ), 

which reflect the value of outputs, manipulated inputs, measured external disturbances, 

violation of output constraints, and set points at a given tune-point or over a time- 
interval. A pattern p is designated as the N-dimensional vector of these features 

X= (XIII X2 ý ... XN) , rather than as an obýject in p. Any pattern corresponds to a 

particular class of operating situations, e. g. sensor or actuator failure, process equipment 
failure, process parameter changes, effect of disturbances, etc. Assuming K distinct 

classes of operating situations such as (Cl, C2, ---, Ck ), a pattern classification is the 

task which operates on a feature space S with a process to cluster the sample feature 

vector in S into K classes. These learned classes are then used to operate future input 

feature vectors to enable decisions to be taken in respect of the classes. This mapping 
from S to the K-dimensional vector of distinct operating situations implies the need for 

determining those discriminant functions that define the boundaries of the regions. 

For the multi-state case, the complexity increases because more variables have to be 

involved to separate the states, although the types of boundaries can remain the same 
during the extension. This implies that an efficient algorithm is essential for state 
identification in real-time, which is usually required in fault monitoring and diagnosis of 

process plant. Above all, a successful approach to interpretation of measurements should 

be able to 

1. distinguish different kinds of boundary to avoid extrapolation, i. e. issue an alert for a 

new pattern of a state which has never been seen before and denote it as don't know 

for a uncertain state; 
2. update boundaries when there is a change in operating conditions; 

3. be a computationally efficient algorithm so as to satisfy real-time requirements. 

In addition to the efficiency required to meet the real-time requirements, the key to 

ensuring satisfactory behaviour is to use a clustering technique with closed classification 
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boundaries, uniform clusters, and adaptive capability. The goal of ARTNET is to provide 
this capability and is based on a new unsupervised competitive learning algorithm. 

described in detail below. 

4.3 Measurement Interpretation Using ARTNET 

In this section, an unsupervised competitive learning algorithm ARTNET is introduced. 

It adopts the basic architecture of ART2, but modifications have been made to enable it 

to be used for process applications. This section covers the architecture of ARTNET, 

similarity measures, information processing including generation of an algorithm for 

ARTNET, and distance threshold selection to make it possible to determine the size of 

the cluster. 

4.3.1 Architecture of ARTNET 

The ART network was developed for categorising patterns using a competitive learning 

paradigm. Ripley (1996) comments that ART is closely related to an adaptive version of 

k-means, but is expressed in a pseudo -bio logical language that clouds its simplicity. On 

the other hand, Pao (1988) believes the top-down verification step proposed is very 

important. In addition it introduces a gain control and a reset to make certain that 

learned categories are retained even while new categories are being identified. The most 

important contribution and the reason why ART2 is widely used is that it successfully 

addresses the stability- plasticity dilemma, i. e. letting a system adapt without allowing 

current inputs to destroy past training. This philosophy is the underlying motivation 

adopted for the basic architecture in this work. Two aspects in particular are of 

importance. Firstly, the pseudo -bio logical language in ART is not essential and so need 

not be used. This makes the algorithm simpler and more efficient. Secondly, top-down 

verification and the stability-plasticity capability must be retained. 

As noted in section 2.3.2, the efficiency of ART2 is very strongly dependent on the size 

of the input vector, so a reduction in the dimension of the input vector is needed. This 

issue is dealt with by using the wavelet- base feature extraction approach discussed in 
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Chapter 3. To use the extracted features, modifications need to be made to the ART-2 

algorithm. 

There are several adjustable parameters required in the step I of the ART2 algorithm as 

shown in Appendix B. These parameters are related to the input patterns pre-processing 

and are known as the internal representation. This is one of the main features of the 

ART2 network. The input patterns to the network are normalised with respect to unit 

length and correspond to the projection of the patterns on the surface of the unit hyper- 

sphere. The difficulty is in determining these parameters because they depend on the 

input data structure. The internal representation also leads to a time-consuming 

procedure which is not the best option for application to a process having real-tiline 

requirements. To avoid this, the pre-processmg procedure in ART2 is not used in 

ARTNET. 

Normally, the noise component filtering scheme used in ART2 discards values less than a 

certain threshold. Such noise suppression is not appropriate for process measurements 

because it can be of high frequency and significant magnitude, moreover, a small change 

does not always indicate noise. So the second modification is to take out noise 

suppression from the original ART2 algorithm and replace it with a wavelet-base feature 

extraction approach. By removing the biological net in ART, the metric needed to 

measure similarity can be substituted by a more appropriate term. Instead of counting the 

number of matching features, the distance between input pattern and the exemplars is 

used to determine the winning node during competitive learning. 

The modifications can be summarised as follows. The kernel of ART, including the 

bottom-up scheme and, most importantly, the stability-plasticity capability is retained. 

Input pre-processing and noise suppression is deleted, while a defined distance replaces 

counting the number of matching features as the criterion for similarity. The resulting 

architecture of ARTNET is shown in Figure 4-2. In the ARTNET architecture, the 

pattern feature vector (XI I X2 * 'ýXN) is firstly fed to the input layer and weighted by bij, 

bottom-up weights. The weighted input vector is then compared with the exemplar (N- 



irement lnteýQretatjon Using Unsupervised Leaming 74 

dimension) of each existing class in the top layer by calculating the distance between 

input and existing exemplars. ARTNET activates the node with the smaRest distance and 

suppresses others. The output is an active node if the smallest distance is less than a pre- 

set threshold, the active node is the winner and the exemplar is modified by taking the 

new input into account. If it is greater than the threshold a new node is created which 

signifies a no winner competition. 

Only one nonzero output after competition 

bij 

xi X2 0aa00000000&00 
40 

XN 

Figure 4-2 Basic architecture of ARTNET 

4.3.2 Similarity measure in ARTNET 

Modify 
exemplar 

Top 
layer 

Input 
layer 

Input 
vector 

During unsupervised learning, it is necessary to consider how much alike any two 

different feature vectors are. These are sometimes called dissimilarity measures because a 

greater distance means greater dissimilarity. Any measure of the degree of likeness is 

called a similarity measure. The function giving the distance between two vectors is the 

most useful and is used in ARTNET as a similarity measure. There are several ways to 

measure the distance between the pairs of observations, such as Hamming or Euclidean 

distances. For continuous data, the Euclidean distance is the most commonly used to 

cl CI) 

000 ob 0 000 000 0* CK 
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measure similarity (Looney 1997). Formally, the Euclidean distance between two vectors 

x and y is defined as the root sum-squared error 

N /V2 IIX 
- Y112 

I (Xn 
n 

)2 (4- 1) 
n=l 

I 

Each class may be represented by one or more exemplars, or prototypical, vectors 

forming idealisations of vectors in that class. Given any input feature vector x to 

ARTNET, the ko minimised norm IIX-z (ý, " 11,, overall K class exemplars Iz ýk)1, for the 

various classes, also minimises the distance by assigninpc to class ko when 

11 
X_ Z(ko) 

112 

- min 
ý11 

x-z ýk) 112 ý 
(4- 2) 

The sum-squared error within a cluster with centre Z 
(k) is the sum of the distances 

squared between the member points in the cluster and z('), which is 

2X '7 (k) )2 

(T (xECIustcr(k)) 

(11 

11 

112 
(4- 

Based on this distance measure, the cluster size in ARTNET depends on a pre-set 

distance threshold, p. When the distance is less than p, the input will belong to the kth 

exiting class, and the elements in the class zi"' will be modified as follows: 

(k) 
- 

(k) 
+I -vibij zi ZI, NP 

(4- 4) 

where NP is the number of patterns m the class. If the distance is greater than p for all 

existing classes, a new class IS created which provides adaptivity and so avoids 

extrapolation. 

4.3.3 Information processing and a computational algorithm 

The architecture shown in FIgure 4-2 js sýnflar to that employed by many self-organising 

systems. Two layers of units or nodes are assumed with the lower layer accepting input 

from the environment on the basis of one input unit for each pattern feature. Each unit in 

the top layer corresponds to a pattern prototype defining a map cluster. The details of 
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the connections between the input and output units define the ARTNET model, which is 
dependent on the information processing procedure in ARTNET. 

Information processing by the ARTNET network can be broadly summarised as follows. 

When an input pattern is presented to the network, it is compared to each of the existing 

prototypes in the top layer. The winner in the top layer is the prototype that is most 

similar to the input. If the similarity between the winner and input is less than a 

predetermined value, the distance threshold p, ARTNET learning is enabled and the 

winner is modified slightly to more closely reflect the input. If the similarity between the 

winner and input exceeds that required by the distance threshold, the current winner is 

disabled and the search process is repeated. If none of the successive winners exhibit 

adequate similarity, a new unit is generated in the top layer and learning is enabled to 

form a prototype similar to the input or takes the value of the input vector as a new 

exemplar. 

The clusters formed by ARTNET are defined by the prototypes in the top layer and the 

distance threshold p. All clusters formed by an ARTNET model are of uniform size and 

provide closed classification boundaries. 

In ARTNET, the first pattern of a new node in the top layer is set to the exemplar i. e. 

zi 7-- xi, which implies that the bottom-up weights are a unit vector. This further 

simplifies the computation. The ARTNET computational programming algorithm is as 

follow: 

1. Set initial parameters: distance thresholdp 

2. Read input patterns 
3. Set initial bottom-up weights equal to the first pattern if there is no 

existing weight: 

xil, K=1, NP'= I 

4. Find the next exemplar. 
For q=2toN.. (number of input patterns) 
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For i=I to Nzj, Oiumber ()f attributes in a input vector) 
Calculate the Euclidcaii distance 

n.. 
F-" =k- 

112 

End 

End 

5. IF the distance is greater than the threshold, THEN 

-P- furm a new cluster 
ELSE 

update bottom-up weights by 

(K) 

NP 

Update all indices and count 

NP=NP+I, K=K+l 

where NP is the number of pattern comained in the class 

6. End 

4.3.4 Distance threshold determination 

In ARTNET, the distance threshold is a tuning parameter that can be any value greater 

than zero. The distance threshold is obtained by using a set of known input-output 

patterns. This procedure is a supervised iterative process ensuring that an appropriate 

distance threshold is used. 

The following example is used to illustrate the procedure for determining the distance 

threshold. The data sets are taken from the work of Wang and Chen (1998), where 

ART2 is used to classify lubricating base oils in terms of their infrared spectra. Fifty-nine 

data patterns are included which were collected from 12 refineries representing eight 

different crude oils. 

In general, ARTNET groups more patterns into a class as the distance threshold 

increases, i. e. the number of classes is reduced when the distance threshold is increased. 

Table 4-1 shows how the clusterirtg relates to the distance threshold selection in 
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ARTNET. According to prior knowledge, the distance threshold can be any value 
between 0.97 to 1.2. This groups the data pattern into 7 classes. 

Table 4-1 Lubricating base oils clustered for different 
distance thresholds by ARTNET 

_Distance 
threshold p Number of patterns identified 

0.7 
. 

16 

0.75 14 

0.8 11 

0.9 9 

0.95 8 

0.97 7 

1.2 6 

1.38 5 

1.4 4 

The relationship between the number of classes and the distance threshold value is a 

monotone function. Therefore, the distance threshold can be determined by a searching 

algorithm. The searching algorithm used here is as follows. 

1. Given the expected class number, Nc, which predicts the largest value of 

the distance threshold then let p=p.,,. 

2. Use p as a distance threshold for clustering in order to get a number of the 

class NA 

IF N,,,, is less than Nc, THEN 

and go to step 

4. IF N,, dgreater than Nc, THEN 
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P=p+p gotostep3 2 

IF N, w equals Nc, stop searching 

4.4 Comparison with ART2 

It is useful to compare ARTNET with ART2 in order to illustrate the benefit of the 

above modifications. This is conveniently done by applying it to a process engineering 

case study. The comparison used here relates to threshold determination, computation 

time, and sensitivity to noise. 

The data patterns used for comparison are a set of faults and operational disturbances 

occurring in a refinery fluid catalytic cracking (FCC) process. Fault and disturbance data 

sets are from a simulator so the original data patterns are noise free. Details of the FCC 

process simulator are described in Chapter 6. Table 4-2 gives the fault and disturbance 

data sets used, which are organised into fault types and labelled with a data set number. 

For example, data set number I to 9 are grouped as fault type I and refer to fresh feed 

increasing by 10% to 90%. 

The data sets consist of twelve faults or disturbances, as shown in Table 4-2. Eight 

operational variables are measured to characterising the faults or disturbances, namely, 

reaction temperature, regenerator temperature, reactor pressure, regenerator pressure, 

volumetric percentage of carbon dioxide in flue gas, volumetric percentage of oxygen in 

flue gas, catalyst recycle rate and catalyst hold-up in the reactor. 

4.4.1 Threshold selection 

The selection of the distance threshold in ARTNET and vigilance in ART2 are very 

important and are compared using the original simulation data. The distance threshold is 

the only tuning parameter in ARTNET, while vigilance is one of the adjustable 

parameters in ART2, with the same function as the distance threshold used in ARTNET. 

The clustering results for different thresholds for ARTNET and vigilance for ART2 are 

listed in Table 4-3 and 4-4 respectively. 
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Table 4-2 Description of data sets used to compare ARTNET and ART2 

Data set Type Time t<0 operation is at steady state, I 

at t=0 make the following step change 

1-9 1 fresh feed increased by 10 20 30 40 50 60 70 80 90% 

10-18 2 fresh feed decreased by 10 20 30 40 50 60 70 80 90% 

19 ~ 24 

25-26 

27-28 

29-32 

33-37 

38 

39-43 

44 ~ 49 

50 

51-57 

3 preheat Temperature T of mixed feed 
increased by 5 10 15 20 2C 
and preheat Temperature T of mixed feed 

decreased by 15 10 2C 
4 recycle slurry Flow rate F increased by 70 90% 

5 recycle slurry Flow rate F decreased by 70 90% 

6 opening ratio of hand-valve V20 

increased by 5 10 15 24% 

7 opening ratio of hand-valve V20 

decreased by 10 15 25 35 55% 

8 cooling water pump P-02 failure 

9 air flow rate increased by 6.5 11.5 15 31.5 40.5% 

10 air flow rate decreased by 3.5 8.5 28.5 38.5 48.5 53.5% 

compressor failure 

12 valve 401-ST opening from 100% decreased by 10 20 40 

45608090% 
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Table 4-3 Clustering for different distance thresholds by ARTNET 
based on the data sets listed in Table 4-2 

Distance 

threshold 

P 

Number 

of classes 

identified 

Grouping of data sets 

0.8 57 

1.0 56 [56 571 

2.0 53 1-5 7] [25 26] [27 28] [56 571 

3.0 50 [5 71 [19 20 23 24] [25 261 [27 28] [56 571 

4.0 48 [5 67 81 [19 20 2123 24] [25 261 [27 281 [56 
571 

4.5 42 [3 45678 91 [19 20 2122 23 24] [25 261 [27 

28] 

[35 361 [56 571 

5.0 41 [3 45678 91 [19 20 2122 23 24 291 

[25 261 [27 28] [35 361 [56 57] 

6.0 40 [3 45678 91 [19 20 2122 23 24 29 52] 

[25 261 [27 281 [35 361 [56 57] 

12.0 12 [1 23456789 10 11 12 13 14 15 19 20 2122 

23 24 25 26 27 28 29 30 3132 33 34 35 36 37 39 

40 4142 43 44 45 46 511 

[17 18 19] [50 52 531 

Note: [56 57] meam that data sets 56 57 are clustered in one class 



Chapter 4 Measurement Interpretation Using Unsupervised Leaming 82 

Table 4-4 Clustering for different vigilance by ART2 
based on the data sets listed in Table 4-2 

Vigilance 

Number 

of classes 

identified 

Grouping of data sets 

0.9998 57 

0.9996 56 [56 57] 

0.9992 53 [5 7] [25 26] [27 28] [56 57] 

0.9990 50 [5 71 [19 20 23 24] [25 26] [27 28] [56 57] 

0.9987 48 [5 67 8] [19 20 2123 24] [25 26] [27 281 [56 
57] 

0.9985 42 [3 45678 9] [19 20 2122 23 24] [25 26] [27 
281 

[35 36] [56 571 

0.9982 41 [3 45678 9] [19 20 2122 23 24 29] 

[25 26] [27 281 [35 36] [56 57] 

0.9978 40 [3 45678 9] [19 20 2122 23 24 29 52] 

[25 26] [27 28] [35 36] [56 57] 

0.9965 12 [1 23456789 10 11 12 13 14 15 19 20 2122 

23 24 25 26 27 28 29 30 3132 33 34 35 36 37 39 

40 4142 43 44 45 46 52] 

[ 16 17 18] [50 5153] [56 57] 

Note: [56 57] means that data sets 56 57 are clustered in one class 
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Table 4-5 Pairing of identified classes by ATRNET and the data sets 
numbered in Table 4-2 when the distance threshold p is 0.5 

Identified 

class 

Corresponding 

data set 

l&ntified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

1 1 16 29 31 45 

2 2 17 30 32 46 

3 3456789 18 31 33 47 

4 10 19 32 34 48 

5 11 20 33 35 49 

6 12 21 34 36 50 

7 13 22 3536 37 51 

8 14 23 37 38 52 

9 15 24 38 39 53 

10 16 25 39 40 54 

11 17 26 40 41 55 

12 18 27 41 42 5657 

13 1920212223 
24 

28 42 

14 2526 29 43 

15 27 28 30 44 



84 

Table 4-6 Pairing of identified classes by ART2 and the data sets 
numbered in Table 4-2 when the vigilance is 0.9985 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

1 1 16 29 31 45 

2 2 17 30 32 46 

3 3456789 18 31 33 47 

4 10 19 32 34 48 

5 11 20 33 35 49 

6 12 21 34 36 50 

7 13 22 3536 37 51 

8 14 23 37 38 52 

9 15 24 38 39 53 

10 16 25 39 40 54 

11 17 26 40 41 55 

12 18 27 41 42 5657 

13 19202122 
2324 

28 42 

14 2526 29 4 3 

15 2728 30 
_ 

44 



. 
Chapter4 Measurement Interpretation Using Unsypervised Leaminc7 85 

Using ARTNET, the number of classes is reduced from 57 to 12, when they are grouped 

according to the faults and disturbances, as the distance threshold increases from 0.8 to 

12.0. On the other hand, the vigilance in ART2 decreases from 0.9998 down to 0.9965 

for the same results. It is clear that the distance threshold in ARTNET varies over a 

wider range than the vigilance fii ART2 for the same degree of clustering. This implies 

that the distance threshold in ARTNET is less sensitive than the vigilance in ART2. 

On carefully checking of the results in Table 4-3 and 4-4, it is found that, in fact, 

clustering the data sets into 12 classes leads to undesirable pattern groupings. Some data 

sets which have significantly different fault roots are clustered into one class. For 

example, data sets I- 15,19 - 37,39 - 46, and 5 1, belonging to four types of fault 

roots are clustered into one class. It is obviously important to select a proper distance 

threshold when carrying out pattern clustering In ARTNET, as well as vigilance In 

ART2. 

For ARTNET, all data in the example have been identified as individual classes with a 

distance threshold p=0.8. As the threshold value increases, some data sets are assigned 

to few groups. When the threshold value is 4.5, the clustering result is [3,4,5,6,7,8,9], 

[19 20 2122 23 24], [25 261, [27,281, [35,36] and [56 57]. ART2 gives the same result 

with vigilance 0.9985. The detail ofthe clustering results are illustrated in Table 4-5 and 

4-6. This is the best clustering result. A further change in clustering is distance threshold 

p=5.0 in ARTNET, correspondmg to a vigilance of 0.9982 in ART2. The span of the 

distance threshold is 0.5, but that of the vigilance is only 0.003. Thus a very small change 

of vigilance results in a change of' clustering in ART2. On the other hand, the same 

change for ARTNET can be a much wider distance threshold selection. 

Two observations can be made: 

1. ARTNET is less sensitive for the distance threshold selection than vigilance in ART2 

2. ARTNET has the same clustering and stability- plasticity abilities as ART2 based on 

noise-free simulated data sets. 
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4.4.2 Computation speed 
Nowadays, computational speed is less of a crucial issue because of ever-increasing 

computer power. However, it IS iicvertheless useful to see whether the modifications of 
ART2 have increased the computational cost. 

The computation time represented here is based on MATLAB programs on a Pentium 

MX4X 166 for clustering 57 data patterns into 42 classes, as discussed in section 4.4.1. 

The computation speed of ARTNET and ART2 is compared in the three cases, shown in 

Table 4-7. 

Table 4-7 Computation time for ARTNET and ART2 in different cases 

ARTNET ART2 

case one simulation data for both Im 20s 10m 17s 

case two feature by wavelet approach for both 28s 3m 12s 

case three feature by wavelet approach for 

ARTNET, simulation data for ART2 

4m 15s 10m 17s 

In case one, simulated data sets have been used directly. Eight operational variables are 

used to define the states, and each variable has one 64 data point sample. Thus the 

dimension of input to ART2 or ARTNET is 512. ART2 takes 10m 17s to achieve the 

clustering, while it is only Im 20s for ARTNET. 

In case two, the wavelet based approach developed in Chapter 3 is used to extract 

features of the trend so as to reduce the dimensionality. Feature extraction results are 

used as input to both ART2 and ARTNET. The dimension of each variable now 

corresponds to 8 features after extraction, so the input of ART2 and ARTNET is 64 

rather than 512. The clustering th-ne is therefore significantly decreased for ARTNET, 

and it is still faster than ART2. 

In case three, the wavelet feature extraction approach is used for the pre-processing part 

of ARTNET. Consequently the simulation data is firstly pre-processed using wavelet 
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feature extraction and is then uscd in ARTNET for clustering. The simulation data is 

directly used by ART2. Thus the wavelet feature extraction approach in ARTNET acts 

as the internal representation iind suppresses the noise scheme in ART2. Obviously. 

ARTNET is faster than ART2 in all the above three cases. 

4.4.3 Influence of noise 
The modifications of ART2 to form ARTNET include removing the noise filtering 

procedure from ART2 because this has been performed by the wavelet-base feature 

extraction approach. Here the example is used to demonstrate the effectiveness of the 

wavelet approach and the noise suppressing scheme in ART2 to eliminate the influence 

of noise. 

The simulation data sets are noise free. In order to generate signal noise with different 

signal-to-noise ratios, the noise gcnerator randn (from MATLAB) and a constant Cnoise 

are used here. The noise magnitudc is: 

randn(f (t)) 
noise 

(4- 5) 

Thus randn(f(t)) creates normally distributed random numbers with entries chosen from a 

normal distribution with zero meaii and variance 1.0 and numbers having the same size as 

f(t). The constant C,,,, i,, controls dic noise intensity so as to change the signal to noise 

ratio in the data sets. The data sets for pattern clustering used here are the simulation 

data setf(t) plus X.. ic,, with zero nicaii having been carefully checked. 

The relationship of signal to noise i-atio (SNR) and the constant C,,,, i., are listed in Table 

4-8, where SNR = 
signal energy_ (Candy 1988) 
noise variance 

Table 4-8 The changes of SNR with different C.. i. 

Cnoise 0.01 10 100 

SNR 0.0026 0.2475 35.2623 2124.3 274330 
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Table 4-9 Pairing of identified classes by ATRNET when C.. ir,, =0.001 - 100 

threshold =4.5 using data in Table 4-2 

Identified 

class 

Correspondin g 

data set 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

1 1 16 29 31 45 

2 2 17 30 32 46 

3 3456789 18 31 33 47 

4 to 19 32 34 48 

5 11 20 33 35 49 

6 12 21 34 36 50 

7 13 22 3536 37 51 

8 14 23 37 38 52 

9 15 24 38 39 53 

10 16 25 39 40 54 

11 17 26 40 41 55 

12 18 27 41 42 5657 

13 1920212223 

24 

28 42 

14 2526 29 43 

15 2728 30 44 
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Table 4- 10 Pairing of identified sets by ART2 when C.,, j, =100 and 

vigilance is 0.9985 using data in Table 4-2 

Identified 

class 

Corresponding 

data set 

Identified 

Class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

1 1 16 29 31 45 

2 2 17 30 32 46 

3 3456789 18 31 33 47 

4 10 19 32 34 48 

5 11 20 33 35 49 

6 12 21 34 36 50 

7 13 22 3536 37 51 

8 14 23 37 38 52 

9 15 24 38 39 53 

10 16 25 39 40 54 

11 17 26 40 41 55 

12 18 27 41 42 5657 

13 192021 2223 

24 

28 42 

14 2526 29 43 

15 2728 30 44 
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Table 4- 11 Pairing of identified classes by ART2 when C,,,, i,, =10 and 

vigilance = (). 9985 using data in Table 4-2 

ý)( I 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

1 1 16 2728 31 44 

2 1) 17 29 32 45 

3 34567 18 30 33 46 

4 89 19 31 34 47 

5 10 20 32 35 48 

6 11 21 33 36 49 

7 12 22 34 37 50 

8 13 23 3536 38 51 

9 14 24 37 39 52 

10 15 25 38 40 53 

11 16 26 39 41 54 

12 17 27 40 42 55 

13 18 28 41 43 5657 

14 192021 2223 

24 

29 42 

15 25 26 30 43 



ChaDter4 Measurement Interpretation Using Unsupervised Leaming 91 

Table 4- 12 Pairing of identified classes by ART2 when C.. i,, =1.0 and 

vigilance = 0.9985 using data in Table 4-2 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

1 1 16 27 31 44 

2 2 17 28 32 45 

3 34567 18 30 33 46 

4 89 19 31 34 47 

5 1 () 20 3" 35 48 

6 11 21 33 36 49 

7 12 22 34 37 50 

8 13 23 3536 38 29 51 

9 14 24 37 07 52 

10 15 25 39 40 53 

11 16 26 39 41 54 

12 17 27 40 42 55 

13 18 28 41 43 5657 

14 19 212223 
24 

29 20 42 

15 2526 30 43 
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Table 4- 13 Pairing of identified classes by ART2 when C.,, i,, =1.0 and 

vigilance =0.9991 using data in Table 4-2 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

1 1 17 24 33 42 

2 18 2526 34 43 

3 34567 19 27 35 44 

4 89 20 28 36 45 

5 10 21 29 37 46 

6 11 22 30 38 47 

7 1 23 31 39 48 

8 13 24 32 40 49 

9 14 25 33 41 50 

10 15 26 34 42 51 

11 16 27 3536 43 52 

12 17 28 37 44 53 

13 18 29 38 45 54 

14 19 2223 30 39 46 55 

15 20 31 40 
- 

47 56 

16 21 32 41 48 57 
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Table 4- 14 Pairing of identified classes by ART2 when C,,,, i,, =0.1 and 

vigilance =0.9991 using data in Table 4-2 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

1 1 18 21 35 41 

2 2 19 23 36 42 25 

3 34 20 24 37 43 

4 6 21 26 38 44 

5 8 22 27 39 45 

6 9 23 28 40 46 

7 1 () 24 29 41 47 

8 11 5 25 30 7 42 48 

9 12 26 31 43 49 

10 13 27 32 44 50 

11 14 28 33 45 51 

12 15 29 34 46 52 

13 16 30 36 47 53 

14 17 31 37 48 54 

15 18 32 38 49 55 

16 19 33 39 50 56 

17 20 35 34 40 22 51 57 
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Table 4- 15 Pairing of identified classes by ART2 when C,,,, i,,, =0.1 and 

vigilance =(). 9999 using data in Table 4-2 

Identified 

class 

Corresponding 

data set 

Identified 

Class 

Corresponding 

data set 

Identified 

class 

Corresponding 

data set 

1 1 20 -) 1 39 40 

2 2 21 22 40 41 

3 34 22 213 41 42 

4 5 23 24 42 43 

5 6 24 25 43 44 

6 7 25 26 44 45 

7 8 26 27 45 46 

8 9 27 28 46 47 

9 1 28 -)q 47 48 

10 1 29 30 48 49 

11 12 30 31 49 50 

12 13 31 32 50 51 

13 14 32 33 51 52 

14 15 33 34 52 53 

15 16 34 35 53 54 

16 17 35 36 54 55 

17 18 36 37 55 56 

18 C 19 37 38 56 57 

19 20 38 39 
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Using wavelet multi-resolution analysis pre-processing to remove the noise components 
in the data patterns, the clusteriný, results from ARTNET remain the same with C.. i,,, I 
=0.01 ~ 100, as shown III Table 4-9. On the other hand, the clustering by ART2 is 

seriously influenced by noise, especially when the signal to noise ratio of the data pattern 
is low, as illustrated in Tables 4- 10 to 4-15. 

Noise suppression in ART2 works well when the data patterns have high SNR such as 

Q, jý, = 100, as can be seen in Table 4-10. However. the clustering results change as the 

SNR decreases. As C,,,,,,, increascs to 10, group 3 in Table 4-10 is split into two groups 

[3 456 7] [8 9], which means that ART2 has to create a new class to meet the vigilance 

criterion. The problem becomes more serious for further increases in SNR. When C". i, = 

1.0, data patterns 20 and 29 are grouped with 42 and 51 respectively, although they are 

quite different. The vigilance has to be increased to separate them. As a result, other 

classes are split because of the increase in vigilance. Table 4-13 shows the result forCnoise 

=1.0 and vigilance =0.9991, when number of classes increases to 48 because data sets 

20,21 24, and 28 are separated as vigilance increases. When SNR is lower than 1, the 

clustering results of ART2 are sfi-nply disordered if the vigilance is still 0.9991, the same 

as it is forCnoise =1.0. The vigilance has to increase to 0.9999 to separate all the data 

sets. 

Thus, the wavelet noise removal approach enables ARTNET to use a low SNR signal 

and retain the same clustering properties, while ART2 has to change the vigilance or/and 

increase the number of classes to deal with noise, especially for lower SNR. This means 

that ART2 may report a fault that occurred before and is archived to be a new fault 

because of the influence of noise. This is not harmful but is not helpful in process fault 

diagnosis because it makes solving the problem more difficult. 

4.5 Concluding Remarks 

An integrated framework ARTNET for operational state identification has been 

developed in this Chapter which combines wavelet feature extraction with an 

unsupervised neural network ARTNET. This has been applied to a case study of a 
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refinery fluid catalytic cracking process and 1'()und to be able to reasonably cluster the 

data. Compared with ART2, ARTNET is able to simultaneously reduce the 

dimensionality of dynamic transient signals and remove noise components through 

feature extraction. ARTNET ha,,, also proved to be superior to ART2 in avoiding the 

adverse influence of nolse, selection of threshold values and in computation time. 



Chapter 5 

KNOWLEDGE GENERATION 

AND REPRESENTATION 

USING FUZZY NEURAL NETWORKS 

5.1 Introduction 

In previous Chapters, approaches to translating process trends into pattern classes by 

wavelet-based feature extraction and ARTNET unsupervised clustering have been 

developed. However, further interpretation is necessary to map the process trends to 

operational conditions. Because process measurements are numerical data rather than 

qualitative descriptions such as high temperature, it is necessary to convert the 

information on numerical data into qualitative form. In this Chapter, a fuzzy feed- 

forward neural network (fuzzy-FFNN) technique is introduced to do this, which extracts 

fuzzy rules automatically from numerical data. In this technique, process measurements 

are grouped in fuzzy regions and expressed in qualitative forms. This approach also takes 

account of uncertainty in process measurements and minimises loss of information 

because filtering of rules is not necessary. The disadvantage of using FFNN for rule 

generation is that it has to be retrained to reflect new knowledge. As data accumulates, I 
such retraining becomes computationallY demanding. This implies that such a system is 

difficult to maintain and support. Furthermore, the conflict issue is still present when the 

rules are aenerated individually, especially when they are obtained from different sorts of Z__ 
data. 
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Learning based on a FFNN involves a procedure for converting information from 

training data sets into the weights of a particular network architecture. Therefore the 
weights and architecture about the trained FFNN represent information of training data Cý 
sets. A group of trained fuzzy-FFNNs is used here to provide a knowledge base which 
solves problems of maintenance and updating as well as resolving conflicts. I= 

In the following, relevant fuzzy concepts are first introduced. The fuzzy-FFNN approach 
is then described and the problem solving ability of fuzzy-FFNN, especially in dealing 

with noise and conflicts in data, are illustrated using an example. A group of neural 

networks used to construct and represent a knowledge base is also discussed. 

5.2 Fuzzy Set Theory 

Some definitions relevant to fuzzy concepts and the basic operations between such sets 

are introduced here as they apply to the fuzzy-FFNN approach (Pao 1989, Cox 1994). 

Definition 5.1 If X is a coUection of objects x, then a fuzzy set A in X is a set of 

ordered pairs: 

UX9 
JUA 

(X»IX ý:: X1 (5- 1) 

The entity PA W is called the membership function, the value of which is the grade of 

membership of x in A. It is also the degree to which the deterministic measurement x is 

compatible with the value concept of A- 

Definition 5.2 The membership function PA: X 
---> [0, I] expresses the degree to which 

membership of a fuzzy set or region acts as a function 

PA T(x) (5- 2) 

for each unique value selected from the domain. The function returns a unique degree of 

membership in the fuzzy region. 

There are three main operators between fuzzy sets. Their definitions are based on the 

membership function of fuzzy sets. 
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Definition 5.3 The membership functiong,,, of the union A ufi is 

max(, u, (x),, u, (x)), xEX (5- 3) 

Definition 5.4 The membership function PAnB of the intersection Anb is 

, u�, (x) = min(JUA (X) 
9 JUB 

(X» 
eXeX (5- 4) 

Derinition 5.5 The membership function of the complement of a fuzzy setA is 

PA ýý 1- PA WýX 1ý 

Dermition 5.6 For a fuzzy set, a weak (x-cut is defined as 

L2 E:: (ýJUA (X) > al :: 
[oel) 

the strong (x-cut is: 

Aii = (xlu, (x) ýý al a c= (0,11 

(5- 5) 

(5- 6) 

(5-7) 

Definition 5.7 The support of a fuzzy set A, S(A) is the crisp set of A xE: - X such 

that PA (X) > () 
* 

Definition 5.8 The algebraic product of two fuzzy sets A *, fi is 

jUÄ. fi 
(X) ::::: 1 (X 

9 jUA 
(X) '0 

jUB 
(X» 1X ýI: X1 

According to these definitions, a proposition P may have a fuzzy truth f= IPI, 

0:! ý P: 5 I and IPI denotes the fuzzy truth value of P. The membership function and 

linguistic variables are used to ascertain the fuzzy truth of a proposition. A given 

bounded interval on a real axis, which represents a dimension such as temperature T, may 

be assigned linguistic variables such as LOW, MEDIUM, and HIGH. They are relative, 

but for a given situation, each of the linguistic variables has a degree of truth for any 

input e. g. a temperature value such as T= 100'C. The linguistic variables have no ha-rd 

delimiters between them. Thus consider MEDIUM and HIGH, then T= 100'C is true to 

some extent for MEDIUM and HIGH. Such a description in terms of linguistic vaniables 

such as medium and high permits use of propositions such as 

P =" (T = TO) is MEDIUM, It Q =-" (T = TO) is HIGH" 
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For example, if I PI = 0-5 and JQJ 
= 0.82, this suggests that -(T = T, ý) Ls HIGH- Ls truer 

than "(T = To) is MEDIUM. " Thus, a process measurement can be represented by a 
fuzzy region and membership function JQJ 

= 0.82 can be interpreted as T= To belongs to 

the HIGH region with membership degree 0.82. 

5.3 A Fuzzy-FFNN Approach for Rule Extraction 
Mathematically, fuzziness implies multi-valued variables or multi-valence. Multi-valued 

fuzziness corresponds to a degree of indeterminacy or ambiguity, partial occurrence of 

events or relations. Consequently, fuzziness can deal naturally with uncertainty. This 

means that process measurements expressed in fuzzy form become qualitative 

uncertainty in the value covered. 

A FFNN consists of numerous neurons that provide a basis for computation. It can be 

trained to estimate sampled functions when the form of the function is not known. Here, 

it is applied to the generation of rules using non-incremental learning, which does not 

require rule filtering and consequently minimises the loss of information. 

The discussion starts with the introduction of fuzzy rule generation using fuzzy 

operations based on the approximation signal by multi-resolution wavelet decomposition. 

A model is then constructed based on fuzzy concepts and the FFNN. A method of 
I 

measuring the reliability of rules generated by the fuzzy-FFNN is then developed. 

5.3.1 Fuzzy rule generation by fuzzy operation 

Using the approximate signals for the trend created by wavelet multi-resolution analysis 

in section 3.3, the rule generation procedure based on fuzzy operation developed by 

Wang and Mendle (1992) is considered. The limitations of this method are discussed 

later. 

Figure 5-1 shows the 4th scale approximate signal of the wavelet multi- reso lutio n analysis 

in Figure 3-6, which is the trend in a reactor temperature Tre for a 1517c decrease in feed 

stock flow rate Ff, Some of the extrema and points of inflexion are indicated. Other 
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relative trends in the operational variables are ignored for simplicity. The set of input- 

output data pairs can be expressed as (T,,,. .., Ff, ). 

0 - EI 

Figure 5-I Approximation signal of Wavelet 
multi-resolution analysis 

Fuzzy rule generation using fuzzy operation is based on interpreting the input-output 

pairs as follows: 

Step I Divide the input and output variables into fuzzy regions. Assume that the 

domain intervals for T, ... ; Ff, are [ 7ý , T,, ], [ Fj, , Ff, ], respectively. 

A domain interval implies that the variable can probably change in this 

interval, for example the set point of the reaction temperature of a FCC 

reactor may change by ± 5'C. Each domain interval is divided into 2K+I 

regions,, for example denoted by L(Low), ML(Medium Low), 

Nor(Normal), MH(Medium High), and H(High) as illustrated in Figure 5-2, 

and each region is assigned a fuzzy membership function. 

Step 2 Process the input data using the fuzzy concept. If the first maximum point 
E2 in Figure 5-1 is selected for fuzzification, the value of E2 is about 2.9, 

which lies in MH, i. e. medium High region with degree 0.84, or High with 

degree 0.16, as shown in Figure 5-3(a). 
t-n 

Step 3 Process the output data using the fuzzy concept. The results of Ff, for 

medium Low with degree 0.75, or Normal with degree 0.25 are shown in Z: 

Figure 5-3(b). 

Step 4 Assign the pair to the region having the highest values for the degree of I 
membership. 
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A rule from above pair would be: 

IF (reaction temperature is medium high with degree 0.84, 

other operation conditions ) 

THEN (feed flow rate is medium low with degree 0.75) 

Rule generation from numerical data by fuzzy operation is a straightforward one-pass 

procedure. As an incremental learning, a data pair will correspond to one rule. In order 

to obtain a compact knowledge base, a rule pruning procedure is necessary, and loss of 

information is unavoidable. This limitation can be overcome by combining fuzzy logic 

and a neural network algorithm i. e. fuzzy-FFNN. 

M(Xl) 

1.0 

0.0 

M(Y) 
T1 XT- 

1.0 

0.0 

xi 

y 

Figure 5-2 Divide variables in five fuzzy regions 

xi- 

y 
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1.0 

0.0 

-5.0 -2.5 0 2.5 5.0 

(a) 

1.0 

0.0 

-40% -20% 0 20% 40% 

(b) 

Figure 5-3 FuzzifY input data (a) and output data (b) 

re 

fs 

M(Tre) 
ir A XT X T- It ArT 7 ir ir 

m(Ff, ) 
NAT Mnr M14 14 
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5.3.2 Architecture and learning of a fuzzy-FFNN 

Generally, a FFNN has crisp input-output values and real weight values as well. There 

are three possible fuzzy-FFNNs: fuzzy input-output values and crisp weights: crisp input- 

output values and fuzzy weights; and fuzzy input-output values and fuzzy weights. Using 

fuzzy weights in a fuzzy-FFNN will significantly increase the difficulty in convergence at 

the learning stage and it is of no benefit in rule generation to use fuzzy weights. Fuzzy 

input-output and a crisp weights fuzzy-FFNN structure is applied here to deal with 

uncertainty and convert numerical data into a qualitative representation. The training 

input-output data sets are fuzzified for fuzzy-FFNN learning. 

AiAl 
MH, x 

--b- N, x, 
II 

xi 

ML, x 

L, x, (ýD II # 

MKX 

--III- I (ED I Nx, 

xc 

Figure 5-4A fuzzy-FFNN architecture with five fuzzy regions 

A fuzzy-FFNN with five fuzzy regions is iRustrated in Figure 5-4. In this fuzzy-FFNN 

architecture, the sigmoid function 

A(x) = 
(5- 9) 

1+ exp(-, Ox) 

is used as the activating function, and the error is measured by 
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c j: (f 
-T 2k=l k (5- 10) 

where f is the calculated value of fuzzy-FFNN, and T is the target value. A fuzzy delta 

rule (fuzzy error back propagation) is developed for the fuzzy-FFNN training, which L's 
illustrated below. 

Given a learning ratell, the weights are adjusted using 

wji (1 + 1) = wji (1) + rjAwji (5- 11) 

Awji can be obtained from the derivatives ofE 

dE K 

-': I (f (5- 12) k- 
Tk)(I 

- 
fk)fk 

'ýki 
t-Avji k=l 

where Yk is calculated by 

N 
Yk 

= A(Y, wjioj) (5- 13) 
j=i 

The hidden layer output oj is 

c 
0i =A(I Wij 

jý 
ki (5- 14) 

i=l 

The criterion for stopping training depends on the overa error in Equation 5-10 being 

less than the current level. The following stop criterion based on fuzzy concept is 

applicable as well: 

Suppose the support of 
Tk is in the interval Itk1 

I 
tk21 i. e. non-zero value of Tk is only 

located in the interval, L! ý k :! ý K, where K is the number of fuzzification intervals. Then 

if Yk 
= 

Tk for all k, the support of E is in the interval [--t, -z ] where 

iK 
Z' =-1 (tk2 

- tkl ) 

k=l 

(5- 15) 

Let 6>0 then the rule for stopping updating of the weights is when E is inside the 0 

set, where 0= [-z - c, z+ El x [0,11 - 

The approach of rule generation by fuzzy-FFNN also involves the following steps: Cý 
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I. Divide the input-output data into fuzzy regions according to the 

characteristics of the process variables; 
2. Define a membership function, and fuzzify a. H input and output data using 

the membership function; 

3. Construct a fuzzy neural network appropriate to the problem requirement-, 

4. Use a fuzzy error back propagation algorithm to train the fuzzy-FFNN. 

Step I and 2 are similar to the step 1,2, and 3 in 5.3.1. 

This approach is non-incremental learning and takes all available data into account and 

generates rules immediately. Similar cases for training data sets are grouped and generate 

a unique rule. No redundant rule is generated if the training set is selected properly. 

5.3.3 Reliability of rules 

Although the above fuzzy-FFNN approach is non-incremental learning for rule 

generation, it is still necessary to measure the reliability of the resulting rules because th, ý 

given training data set cannot be a uniform density distribution, i. e. some training regions 

are relatively sparse in data. 

1.0 

0.0 

1.0 
04 

1'-- 
0.0 

C. ) 

1.0 

z 0.0 

1.0 

0.0 

Normalized values of process variables 

(a) 

(b) 

(c) 

(d) 

Figure 5-5 Typical membership functions 
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The fuzzy-FFNN approach can generate either of two types of rules depending on the 

membership functions used. The first type has the f6flowing form when the membersfiip 
function is similar to (a) and (c) in Figure 5-5: 

IF x, is High ANDX2 is Low 

THEN y is medium high (5- 16) 

In this case, the value of a variable belonging to a fuzzy concept is unambicTuous so the Z-- 
membership value is always one. 

Another type of rule is generated when there is a membership degree, such as the 

functions shown in Figure 5-5 (b) and (d), for each fuzzy variable. The rules obtained in 

such a case are associated with a degree of membership of the following form. 

IF x, is High (, uH,,,, ) AND x-, is Low ( PL, 
x2 

) 

THEN y is medium high (umll, 
y) 

(5- 17) 

The maximum number of rules is fixed by the fuzzy-FFNN structure. If there are NI 

input variables and each variable divides into NF fuzzy regions, then the maximum 

number of rules will be 

Number of Rules = Nff (5- 18) 

For example, the maximum number of rules will be 52 =25 for a fuzzy-FFNN structure 

with two input variables where each variable takes five fuzzy values. This is a maximum 

number of rules, but the number of rules generated may be less, depending on the range 

of data used to derive them. 

Rules generated by the fuzzy-FFNN have different reliabilities. It is necessary to discard 

the rules that are less reliable. As is known, the behaviour of the FFNN 'is strongly 

dependent on the distribution of the training data set. It would be expected that the 

prediction of the fuzzy-FFNN will also be influenced by the distribution of the training 

data set since the kernel is based on the FFNN. Therefore, the reliability of rules 

crenerated by the fuzzy-FFNN relies on the distribution of the training data set as wel. l. 
t-- 
The rules from a dense training data set space are more reliable than those from a sparse 
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space. This transfers to the prediction errors of the fuzzy-FFNN according to the nature 

of the FFNN characteristics. 

On the other hand, the degree of the membership is a measure of the extent to which 

variables belong to the fuzzy region. The membership can be used to measure the 

reliability of the rule as well. The oc-cut concept defined in subsection 5.2 can be applied 

for this purpose. 

Adopting these ideas, the reliability of a rule can be measured by using the relative error 

of the prediction ER and its membership degree. Define a confidence factor. CF. to 

represent the reliability of a rule by: 

Confidence factor, CF =/ ER (5- 19) 

where Aj (i =1,2, .... n) are fuzzy sets corresponding to variables in the rule, and the 

membership degree is calculated by Definition 5.8. An (x-cut value IS defmed 

of a rule is smaller as the threshold for the rules worthy of being kept. If the PA,., 3 

than the (x-cut value then the rule is discarded. The criterion for rule pruning can also be 

based on the confidence factor CF. Corresponding to the (x-cut definition, a X, -cut is 

defined for pruning rules based on the CF value. 

5.4 Case Study 

The fuzzy-FFNN approach to extract fuzzy rules from numerical data has been described 

in section 5.3, where the algorithm and a method of measuring the reliability of a 

generated rule are derived. Here, operation of a heat exchanger is used as a case study to 

illustrate the method. It Ulustrates the power of the method in extracting fuzzy rules from 

large amounts of numerical data and also shows that it has the ability to prune weak or 

unreliable rules, as well as dealing with conflicting rules caused by noisy data. 
zn 
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Stream Cold -1 
Tcl--.: 100 OC 
Fcl::::: 20000 Kg/s 

Stream Hot A 
TH1=400 IC - 
FH1=20000 Kg/s 

Stream Hot - 11 
TH11=300 OC 

Stream cold - 11 
,r-, )nn Or- (a) 

(b) 

Figure 5-6 The shell-and-tube heat exchanger (a) 
and its cause-effect diagram (b) 

YRTC1 

TC, CC, 

x (9,1 

(Do- . 4- 

cl 

----------- 

Figure 5-7 Fuzzy-FFNN structure with three fuzzy regions 
for the heat exchanger 
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Table 5-I The ranges of low, normal and high for TH11, Fc, and Tc, 

L (Low) N (Normal) H(High) 
TH11 Oc 

< 285 [285,320] >320 
Fc, Kg/sec <0.627*Fcl, 

steady 

[<0.627*Fcl, steady ý 1.42* Fci, 
steady] 

>1.42* Fcj, 
steady 

Tc, Oc <0.55*Tcl, steady [0.55*Tcl, steady ý 1.6* Tcl, steady] >1.6* Tcl, 
steady 

Table 5-2 12 groups of data patterns are designed 
by changing Fc, and/or Tc, 

Group Data points Fc, = Fci*C I Tc, = Tc, *C2 

1 (1)-(5) 1.0,1.1,1.2,1.3,1.4 1.0 

2 (6)-(9) 1.45,1.50,1.60,1.65 1.0 

3 (10)-(13) 0.9,0.8,0.7,0.65 1.0 

4 (14)-(16) 0.6,0.5,0.45 1.0 

5 (17)-(20) 1.0 1.2,1.3,1.4,1.5 

6 (2l)-(24) 1.0 1.65,1.7,1.8,1.9 

7 (25)-(27) 1.0 0.8,0.7,0.6 

8 (28)-(31) 1.0 0.5,0.4,0.35,0.3 

9 (32)-(47) 1.45,1.5,1.6,1.65 1.65,1.7,1.8,1.9 

10 (48)-(59) 0.6,0.5,0.45 1.65,1.7,1.8,1.9 

11 (60)-(75) 1.45,1.5,1.6,1.65 0.5,0.4,0.35,0.3 

12 (76) ~ (87) 0.6,0.5,0.45 0.5,0.4,0.357 0.3 
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Table 5-3 Simulation data by changing Fc, and/or Tc, 
as shown in Table 5-2 

No. cl C2 Fc, T-1 THII 

1 1.0 1.0 20000 100 300.077 
2 1.1 1.0 22000 100 295.955 

6 1.45 1.0 29000 100 284.157 
7 1.5 1.0 30000 100 282.735 

10 0.9 1.0 18000 100 304.638 
11 0.8 1.0 16000 100 309.720 

14 0.6 1.0 12000 100 321.896 

17 1.0 1.2 20000 120 306.739 
18 1.0 1.3 20000 130 310.069 

21 1.0 1.65 20000 165 321.727 
22 1.0 1.7 20000 170 323.392 

25 1.0 0.8 20000 80 293.416 

28 1.0 0.5 20000 50 283.423 
29 1.0 0.4 20000 40 280.092 

32 1.45 1.65 29000 165 309.256 
33 1,45 1.7 29000 170 311.187 

41 1.6 1.7 32000 170 308.039 
42 1.6 1.8 32000 180 312.037 

48 0.6 1.65 12000 165 338.819 
49 0.6 1.7 12000 170 340.120 
50 0.6 1.8 12000 180 342.724 

57 0.45 1.7 9000 170 348.987 
58 0.45 1.8 9000 180 351.205 
59 0.45 1.9 9000 190 353.423 
60 1.45 0.5 29000 50 264.849 
61 1.45 0.4 29000 40 260.988 
62 1.45 0.35 29000 35 259.057 

71 1.6 0.3 32000 30 252.062 
72 1.65 0.5 33000 50 258.578 

76 0.6 0.5 12000 50 308.879 

77 0.6 0.4 12000 40 306.275 

-- - - 87_ 0.45 T03-7 1 6 0 - 79: 0 LO ý 30 1 317.936 



Chapter 5 Knowledge Generation and Representation by Fuzzy FFNN 112 

Table 5-4 Fuzzification results of simulation data using 
the membership function of Figure 5-5 (c) 

Fc, Tcl TH11 

No L N H L N H L N H 
1 0 1 0 0 1 0 0 1 0 
2 0 1 0 0 1 0 0 1 0 

6 0 0 1 0 1 0 1 0 0 
7 0 0 1 0 1 0 1 0 0 

10 0 1 0 0 1 0 0 1 0 
11 0 1 0 1 0 0 1 0 

14 1 0 0 0 1 0 0 0 1 

17 0 1 0 0 1 0 0 1 0 
18 0 1 0 0 1 0 0 11 0 

21 0 1 0 0 0 1 0 0 
22 0 1 0 0 0 1 0 0 

25 0 1 0 0 1 0 0 1 0 

28 0 1 0 1 0 0 0 0 
29 10 1 0 1 0 0 0 0 

32 0 0 1 0 0 1 0 1 0 
33 0 0 1 0 0 1 0 1 0 

41 0 0 1 0 0 1 0 1 0 
42 0 0 1 0 0 1 0 1 0 

48 1 0 0 0 0 1 0 0 1 
49 1 0 0 0 0 1 0 0 1 
50 1 0 0 0 0 1 0 0 1 

57 1 0 0 0 0 1 0 0 1 
58 1 0 0 0 0 1 0 0 1 
59 1 0 0 0 0 1 0 0 1 
60 0 0 1 1 0 0 1 0 0 
61 0 0 1 1 0 0 1 0 0 
62 0 0 1 1 0 0 1 0 0 

71- 0 0 1 1 0 0 1 0 0 
72 0 0 1 1 0 1 0 0 

76 1 0 0 1 0 0 , 1 0 
77 1 0 0 1 0 0 0 1 0 

87 1 0 0 1 o 0 0 0 

Note: L- Low, N- Normal, and R -- High 
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A shell-and-tube heat exchanger is shown in Figure 5-6(a). The cause-effect diagram of 

variables is illustrated in Figure 5-6(b), where no leak is assumed so as to avoid 
complicating the discussion. Each input variable can take three possible fuzzy values, i. e. 
Low, Normal, and High, and Fc, and Tc, data sets are generated by fixing TH, and FH1. 
The fuzzy-FFNN architecture of this case is shown in Figure 5-7. 

Firstly, fuzzy rules are generated from the simulation data using the fuzzy membership 
function of Figure 5-5(c). Then the fuzzy membership function wi ioure ith the form of F'.: 

- 
5-5(d) is used to generate rules with membership degree. Using the reliability index for 

rules giVen by Equation 5-19, it is possible to prune out weak or low reliability rules. 
Noisy data are added to the training data set to examine how the approach deals with 

corifficting information. 

5.4.1 Rules generated from numerical data 

First, the regions covering low, normal and high are selected as indicated in Table 5- 1. A 

simulation based on changes in Fc, and/or Tc, generates 12 groups of data patterns, as 

shown in Table 5-2. Simulation results for the 87 data patterns are listed in Table 5-3. 

Only part of the results is shown in order to illustrate the approach. Following the fuzzy 

rule extraction procedures described in section 5.3, the input and output variables are 

firstly divided into fuzzy regions based on the membership function shown in Figure 5- 

5(c), then all input and output variables are expressed in fuzzy terms using the selected 

membership functions. The data sets in Table 5-3 are converted into fuzzy form as listed 

in Table 5-4. Each pattern in this table is actually a different form of rule. For example, 

data pattern I represents the following rule: 

EF Fc, is Normal and Tc, is Normal 

THEN THII is Normal 

and data pattern 57 represents the rule of 

IF Fc, is Low and Ta is High 

THEN TH1, is High. 
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Patterns can be grouped when they represent the same rules, for example, data patterns I 

to 5 give the same rule so can be merged. A heat exchanger is one of the simplest 

operational units in chemical processes and the case has been simplified with the 

assumption of no leak, so the data listed in Table 5-4 are limited and it is not difficult to 

find rules manually by examining the table. However, this IS not the case for industrial 

scale problem where up to millions of data sets containing noise need to be inspected. 

The fuzzy-FFNN rules extraction approach is valuable in such cases. 

5.4.2 Simultaneous generation of rules and degree of membership 

If the fuzzy membership function takes the form of Figure 5-5(b) or (d), then rules with 

the form of expression 5-16 are obtained. If all the data are expressed in this form and 

take into account the fuzzy-FFNN rule extraction approach, the number of rules obtained 

will be the same as the number of data patterns. This is unexpected. Using the degree of 

membership and FFNN training, the number of rules can be reduced. 

The membership function used here has the following fon-n: 

e-lx" 20) 

where x is in the range [-2,2] and I changes from 0.51 to 5.0, and I=1.0 is used. The 

boundary values for Low, Normal and High for the three variables (Fci, Tc, and THII) 

are listed in Table 5-5. 

Table 5-5 The ranges of low, normal and 
high for TH11, Fc, and Tc, 

L N H 

THI 1 <280 [280,3201 >320 

FC 1 12000 [12000,280001 >28000 

Týýý ý<ý, 140 [40,1601 > 160 



Chapter 5 Knowledge Generation and Representation by Fuzzy FFNN 115 

Simulation results of the heat exchanger in Table 5-3 are converted to fuzzy patterns 

using the fuzzy membership function in Equation 5-20 and listed in Table 5-6. A-gain. 

each data pattem in Table 5-6 can be translated into a fuzzy rule. For example, data 

pattem 2 represents the rule: IF Fc, is Normal (0.61) and Tc, is Normal (1.0) THEN 

TH11 is Normal (0.67). 

The above procedure only converts numerical data into corresponding rules. i. e. 87 data 

patterns become 87 rules. Data sets could be thousands when historic records are used. 

The above approaches are clearly difficult to use for process analysis and confuse 

operators. If all the rules generated from numerical data by the approach are stored, the 

knowledge base will become very large, which will affect reasoning speed and accuracy 

because of redundancy and conflicting. To overcome this, the confidence factor in 

Equation 5-19 is composed with a ý, -cut value to filter out some less reliable rules. 

For the 87 data patterns having membership functions defMed by Equation 5-20, the 

confidence factor, CF, defined as Equation 5-19 for each pattern is obtained and shown 

in Table 5-7. The larger the value of CF, the more reliable the rule is. The k-cut value 

described in section 5.3.2 is used to select the desired number of rules based on CF. By 

changing the /X-cut values, a different number of rules are obtained as shown in Table 5- 

8. Thus, when the X-cut values 20,32 rules are retained, while for 60, it is 17 as can be 

seen in Table 5-9. After discarding weak rules, the number is significantly reduced and a 

much more compact knowledge base is obtained. If there is no conflicting rule, then 

Table 5-9 can be considered to be the final result. 
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Table 5-6 Fuzzification results of simulation data using 
the memberShiD function of Figure S-5 (d) 

Fc, Tc, TH11 

No L N H L N H L N H 
1 0 1 0 0 1 0 0 0.99 0 
2 0 0.61 0 0 1 0 0 ý0.67 0 

6 0 0 0.2 0 1 0 0 0.21 0 
7 0 0 0.3 0 1 0 0 0.18 0 

10 0 0.61 0 0 1 0 0 0.63 0 
11 0 0.37 0 0 1 0 0 0.38 0 

14 0 0.14 0 0 1 0 0 0 0.15 

17 0 1 0 0 0.51 0 0 0.51 0 
18 0 1 0 0 0.37 0 0 0.37 0 

21 0 1 0 0 0 CA 9 0 0 0.15 
22 0 1 0 0 0 0.26 0 0 0.17 

25 0 1 0 0 0.51 0 0 0.52 0 

28 0 1 0 0 0.19 0 0 0.19 0 
29 0 1 0 0 0.14 0 0 0.14 0 

32 0 0 0.2 0 0 0.19 0 OA 0 
33 0 0 0.2 0 0 0.26 0 0.33 0 

41 0 0 0.67 0 0 0.26 0 0.45 0 
42 0 0 0.67 0 0 0.51 0 0.3 0 

48 0 0.14 0 0 0 0.19 0 0 0.45 
49 0 0.14 0 0 0 0.26 0 0 0.49 
50 0 0.14 0 0 0 0.51 0 0 0.58 

57 1 0 0 0 0 0.26 0 0 0.87 
58 1 0 0 0 0 0.51 0 0 1 
59 1 0 0 0 0 1 0 0 0.87 
60 0 0 0.2 0 0.19 0 0.38 0 0 
61 0 0 0.2 0 0.14 0 0.49 0 0 
62 0 0 0.2 0.37 0 0 

_0.56 
0 0 

71 0 0 0.67 1 0 0 
- 

0.9 0 0 
72 0 0 0 019 0 0.58 0 0 

76 0 0.14 0 0 0.19 0 0 0.41 0 
77 0 0.14 0 0 0.14 0 0 0.53 0 

87 1 1 0- 0 1 0 
- -0 

0.17 0 
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Table 5-7 Confidence factor of rules 
Data points 1 1) 3 4 

Confidence 

Factor x 10 

24.0147 32.2316 3.0717 
. 
8864 

. 
4130 

... 

48 49 50 51 52 53 54 

0.2075 0.3547 0.7933 3.2835 0.5948 1.5431 7.9850 

55 56 57 58 59 
... 

9.8246 
. 
3414 4.1989 

Table 5-8 Relationship between rules number 
and confidence factor 

k-Cut value x 10 1.0 1-. 5 2.0- [3-0 5.0 6.0 8.0 9.0 10.0 
Number of rules 48 42 32 1 25 21 17 -11- 8 6 

Table 5-9 Fuzzy rules generated when X-cut value is 6.0 

I Data vattems IF Fc, and Tc, THEN THII I 

(1) 
(2)(10) 
(17)(25) 
(18)(26) 
(40) 
(47) 
(54) 
(55) 
(57) 
(70) 
(71) 
(74) 
(75) 
(83) 

(Normal, 1.00) 
(Normal, 0.6 1) 
(Normal, 1.00) 
(Normal, 1.00) 
(High, 0.67) 
(High, 1.00) 
(Low, 0.51) 
(Low, 0.51) 

(Low, 1.00) 
(High, 0.67) 
(High, 0.67) 
(High, 1.00) 
(High, 1.00) 
(Low, 0.51) 

(Normal, 1.00) 
(Normal, 1.00) 
(Normal, 0.5 1) 
(Norma l, 0.37) 
(High, 0.19) 
(High, 1.00) 
(High, 0.51) 
(High, 1.00) 
(High, 0.26) 
(Low, 0.37) 
(Low, 1.00) 
(Low, 0.37) 
(Low, 1.00) 
(Low. 1.00) 

(Normal, 0.99) 
(Normal, 0.67) 
(Normal, 0.5 1) 
(Normal, 0.37) 
(Normal, 0.55) 
(Normal, 0.22) 
(High, 0.82) 
(High, 0.96) 
(High, 0.87) 
(Low, 0.79) 
(Low, 0.90) 
(Low, 0.87) 
(Low, 1.00) 

, Normal, 0.28) 
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Table 5- 10 Noise data are added to simulation results 
Fc, Tcl TH11 

No N H L N H L N H 
2 0 1 0 o« 1 0 -0 1 0 
3 0 0 0 0 0 1 0 
3* 0 0 0 0 1 0 0 
4 0 0 0 0 0 1 0 
5 0 0 0 0 0 1 0 
6 0 0 1 0 0 1 0 0 
7 0 0 1 0 1 0 1 0 0 
7* 0 0 0 1 0 0 1 0 
8 0 0 0 1 0 1 0 0 
9 0 0 0 1 0 1 0 0 
10 0 1 0 0 1 0 0 1 0 
11 0 1 0 0 1 0 0 1 0 
ll* 0 1 0 0 1 0 0 0 1 
12 0 1 0 0 1 0 0 1 0 

17 0 1 0 0 1 0 0 1 0 
18 0 1 0 0 1 0 0 1 0 
18* 0 1 0 0 1 0 1 0 0 
19 0 1 0 0 1 0 0 1 0 

21 0 1 0 0 0 1 0 0 1 
22 0 1 0 0 0 1 0 0 1 
22* 0 1 0 0 0 1 1 0 0 
23 0 1 0 0 0 1 0 0 1 

28 0 1 0 1 0 0 1 0 0 
29 0 1 0 1 0 0 1 0 0 
29* 0 1 0 1 0 0 0 0 1 
30 0 1 0 1 0 0 1 0 0 

39 0 0 1 0 0 1 0 1 0 
40 0 0 1 0 0 1 0 1 0 
40* 0 0 1 0 0 1 1 0 0 
41 0 0 1 0 0 1 0 1 0 

49 1 0 0 0 0 1 0 0 1 
50 1 0 0 0 0 1 0 0 1 
5o* 1 0 0 0 0 1 1 0 0 
51 1 0 0 0 0 1 0 0- 1 

69 0 0 1 1 0 0 1 0 0 
70 0 0 1 1 0 0 1 0 0 
70* 0 0 1 1 0 0 0 1 0 
71 0 0 1 1 0 0 1 0 0 

79 1 0 0 1 0 0 0 1 0 
80 1 0 0 1 0 0 0 1 0 
80 1 0 0 1 0 0 0 0 1 
81 1 0 0 1 0 0 0 1 0 
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Table 5- 11 Prediction of the fuzzy-FFNN when noise 
data are including in training set 

No_ L(Targ et, Predict) N(Tarq et, Predict) H(Tar get, Predict) 
2 0 0.1 1 0.85 0 0.06 
3 0 0.1 1 0.86 0 0.06 
3* 1 0.1 0 0.85 0 0.06 
4 0 0.1 1 0.84 0 0.06 

6 1 0.81 0 0.2 0 0.01 
7 1 0.82 0 0.19 0 Mi 
7* 0 0.82 1 0.19 0 0.01 
8 1 0.8 0 0.21 0 0.01 
9 1 0.81 0 0.2 0 0.01 
10 0 0.1 1 0.85 0 0.06 
11 0 0.1 1 0.85 0 0.06 
ll* 0 0.1 0 0.85 1 0.06 
12 0 0.1 1 0.84 0 0.06 

17 0 0.1 1 0.84 0 0.06 
18 0 0.1 1 0.85 0 0.06 
18* 1 0.1 0 0.85 0 0.06 
19 0 0.1 1 0.84 0 0.06 
20 0 0.1 1 0.84 0 0.06 

21 0 0.2 0 0.02 1 0.81 
22 0 0.2 0 0.02 1 0.81 
22* 1 0.2 0 0.02 0 0.81 
23 0 0.2 0 0.02 0.8 

_ 
28 1 0.8 0 0.03 0 0.06 

- 29 1 0.8 0 0.03 0 0.06 
- 29* 0 0.81 0 0.03 1 0.06 

30 1 0.79 0 0.03 0 0.06 

39 0 0.06 1 0.95 0 0.03 
- 

40 0 0.06 1 0.95 0 0.03 
40* 1 0.06 0 0.95 0 0.03 
41 0 0.06 1 0.94 0 0.03 

49 0 0.07 0 0.01 1 0.94 
- 

50 0 0.07 0 0.01 1 0.94 
- 

50* 1 0.07 0 0.01 0 0.94 
- 

51 0 0.07 0 0.01 1 0.94 

69 1 0.94 0 0.05 0 0.01 

70 1 0.94 0 0.05 0 0.01 

70* 0 0ý94 1 0.05 0 0.01 

71 1 0.94 0 0.05 0 0.01 

79 0 0.01 1 0.77 0 0.24 

80 0 0.01 1 0.78 0 0.24 

80* 0 0.01 0 0.78 1 0.24 

81 0 0.01 1 0.77 j0 0.24 
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5.4.3 Dealing with conflicting data 

Conflict is not taken into account in the above procedures for rule extraction whatever 

type of membership function is used. There are also no conflict rules generated because 

the data patterns used in rule generation are created by mathematical models. However. 

more often than not, data collected from processes contain noise. Therefore, conflicts, 
i. e. rules having the same IF part but different THEN part are likely to anse when the 

rules are extracted directly from a process database. 

In order to examine the ability of the fuzzy-FFNN approach to deal with such conflicts 

arising from noisy data, some irregular patterns are deliberately introduced into the 

simulation data. Ten noise data patterns are introduced into the data sets in Tah1c 5-4. 

The total number of cases in Table 5-4 increases from 87 to 97 and the result is 

summarised in Table 5-10 where noise data patterns are marked by "*". Thus, 7 and 7* 

have the same IF part but a different THEN, and 7* is known as a noisy data pattern. 

The features associated with conflicting rules are illustrated by using the data patterns 

from Table 5-10 as the training set and checking the predictions of the noisy data 

patterns against the trained fuzzy-FFNN. 

Table 5-11 gives the targets and predictions of THII for the fuzzy-FFNN for all 97 cases 

in Table 5-10. In the case of 1, for example, the results listed in Table 5-10 are 

interpreted as, the target values for THII are L=0, N=I and H=0 and the predictions 

for THII are L=0.1, N=0.85 and H=0.06. 

It has been found that for all the 87 simulated data patterns, very good predictions are 

obtained, while in the case of all the 10 noisy data patterns the errors are large. Rules 

derived from such patterns need to be checked against errors based on target values and 

predictions. Using the X-cut method, the number of rules can be reduced. 

This means that the rules embedded in the fuzzy-FFNN do not conflict. For example. -')* 
has the rule obtained from Table 5- 10 given by 
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EF Fc, is Normal and Tc, is Normal 
THEN TH11 is Low 

Although the prediction error has increased, the rule represented by the fuzzy-FTNN is 

still essentially correct: 

EF Fc, is Normal and Tc, is Normal 

THEN THII is Nonnal 

A trained fuzzy-FFNN correctly generates rules based on either the simulation data or 
data with noise as shown in Table 5-12. The characteristics can be retained for a 

membership function of the form shown in Figure 5-5 (d). 

Table 5- 12 Rules generated by the Fuzzy-FFNN 
based on the simulation data or noise data 

IEF FC 1 and TC I THEN THII 

Normal Normal Normal 

High Normal Low 

Low Normal High 

Normal High High 

Normal Low Low 

High High Normal 

Low High High 

High Low Low 

Low Low Normal 

5.5 Knowledge Representation and Organisation 

in order to ensure that the knowledge base is in compact form, the k-cut is used to 

discard weak rules and thus reduce the number of rules generated from the numerical 

data. Although the k-cut can effectively select the desired number of rules, the pruning 

procedure does not retain all the information in the original data. Information is lost as 

some rules are discarded. Nor does the procedure guarantee that the knowledge base is 
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the most compact form, i. e. the minimum number of rules from the numerical data 

pattems. 

If aR the rules in the knowledge base are generated by a fuzzy-FFNN, no conflict rulcs 

can be guaranteed in the knowledge base as shown in section 5.4.3. However, fuzzý,, '- 
FFNN training becomes computationally expensive when the volume of training data 

increases because the number of cases increases, since the architecture of the fuzzy- 

FFNN becomes very large in order to map the training data sets. In such circumstances, 

the fuzzy-FFNN is difficult to retrain as new cases need to be included in the knowledge 

base. It is difficult to maintain and update it when rules in the knowledge base are 

created by a unique fuzzy-FFNN. An alternative method of dealing with this issue *is to 

divide the whole problem into several smaller items and use several fuzzy-FFNNs to map 

the cases. However, no-conflict rules cannot be retained if the rules in the knowledge 

base are from the fuzzy-FFNNs. 

Rule extraction using the fuzzy-FFNN represents a fuzzy function mapping Training a t-1), 
fuzzy-FFNN having a particular architecture calls for a procedure to find weights that 

minimise the error f shown in Equation 5-10 so that it represents all the information in 

the training set with least mean square error. 

The above issues can be resolved when using a group of trained fuzzy-FFNNs, rather 

than being based on the extracted rules used to construct the knowledge base. Thus, the 

domain problem is split into groups and a different architecture of fuzzy-FFNN is trained 

to map each group. There are several advantages of using this method: 

1. A better architecture of fuzzy-FFNN can be constructed more easily 

although it is stiR a rule of thumb. 

2. Using a group of smaller trained fuzzy-FFNNs to form a knowledge base 
4: ý 

makes it easier to maintain. 

3. The reasoning speed can be improved. 

4. Training a smaller fuzzy-FFNN is faster than a big one. 
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Since knowledge is represented by a group of trained fuzzy-FFNNs, the knowledge 

base can be organised in the form shown in Figure 5-8. ARTNET clustering is a 

recursive algorithm so it can be used on-line. In Figure 5-8, on-line trends or the 
features extracted by wavelet multi-scale analysis are used as input to ARTNET. It 

then derives a clustering result depending on the input. If the case is archived, the 

fuzzy-FFNN in the knowledge base can be found to match the reported class. If it 
is a new case, one of the fuzzy-FFNNs in the knowledge base can be selected to be 

retrained or a fuzzy-FFNN with a new architecture can be trained to accept the 

new information. Thus ARTNET works as a pointer in selecting a corresponding 

fuzzy-FFNN to map recent process trends. Only one of the fuzzy-FFNNs in the 

knowledge base is used to interpret the current process trend and operational 

conditions, therefore it is possible to guarantee that there will be no conflict 

because the rules are generated by a unique fuzzy-FFNN. 

ARTNET 
Unsupervised 

clustering 
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Figure 5-8 Knowledge base organisation 
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The advantages of organising a knowledge base using fuzzy-FFNNs are: 
I The knowledge base directly represented by the trained fuzzy-FFNNs 

ensures that it is the most compact and there are no redundant rules because 

there is no overlap in the fuzzy-FFNNs when the architecture is correct. 
2 There is no need to consider conflict because only the corresponding fuzzy- 

FFNN is used for the current case when the rules are generated by an 

individual fuzzy-FFNN. 

3 Organising the knowledge base by means of fuzzy-FFNNs to implement 

ARTNET clustering, the knowledge base is easy to maintain. 

4 The knowledge base is easy to extend by simply adding a new trained fuzzy- 

FFNN which contains new information in addition to the existing knowledge 

base, or by retraining an existing fuzzy-FFNN which includes the new 

information. 

5.6 Concluding Remarks 

In this Chapter, a fuzzy-FFNN approach to automatically generating heuristic rules from 

numerical data has been developed. To keep the problem manageable, for noisy data 

collected over a long time, it is important for any process analysis system to be able to 

deal with such data effectively and efficiently. The case studies have shown that the 

fuzzy-FFNN is able to handle this. 

By changing the fuzzy membership function, different rules can be generated including 

those without or with fuzzy membership values. When rules have fuzzy membership 

values, the k-cut approach enables users to select the number of rules. It provides a 

systematic approach to generating a knowledge base from operational data of process 

plants. 

More importantly, trained fuzzy-FFNNs are directly used to construct a knowledge base. 

so that it is organiSed by a group of fuzzy-FFNNs implemented through ARTNET 

clustering. The representation and organisation creates a knowledge base with the 

following properties: 
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1. compact and not redundant 
2. no conflicting rules inside 

3. faster reasoning 
4. easy to maintain 

5. easy to update 

The approach has a number of novel features compared with existing methods. First of 

all, it uses fuzzy concepts to bridge the gap between numerical values and qualitative 

knowledge. Secondly, it takes advantage of back-propagation neural networks so as to 

make use of the large amount of data effectively. Thirdly, the feature extraction approach 

can be incorporated into this method. 



Chapter 6 

SYSTEM SYNTHESIS AND 

APPLICATION TO FCC 

6.1 Introduction 

The elements for process operation analysis have been developed and illustrated 

individually by simple examples in previous Chapters. Here, the operational support 

system is synthesised and applied to the fluid catalytic cracking (FCC) process to: (1) 

demonstrate the ability to interpret dynamic transients into patterns and report the 
location of faults in terms of rules reliably; (2) show the capability of identifying state 
boundaries correctly with respect to plant safety; (3) provide a well-founded 

representation of the intrinsic structure of the problem so as to create a knowledge base 

facilitating reasoning which is easy to maintain and update continuously. 

In order to have a complete picture of the operational responses of the FCC process, a 

dynamic simulator used for training operators has been employed to generate plant data 

for a range of situations. The measurement values are used to synthesise the operational 

support system. From these individual rests, a knowledge base is completed and setting 

the threshold parameter in ARTNET is discussed. For new conditions, test are made to 

ascertain whether the fault is new or has been previously archived. The goal is to 

demonstrate how the system extracts features from noisy signals so that the 

dimensionality of the response curves can be reduced. This approach enables multiple 

variable inputs to be considered and avoids extrapolating the model and reasoning the 



. 
Chapter 6 Lystem Synthesis and Application to FCC 127 

attendant uncertainty. It provides rehable operational support for processes having 

complicated interactions between operational variables. 

6.2 The FCC Process and Associated Simulator 
The fluid catalytic cracking (FCC) process shown in Figure 6-1 ILS a refmery process 
which converts heavy bottoms from the crude and vacuum distillation columns into more 

valuable gasoline and lighter products. It uses a preheated feed which is mixed with a 
high temperature slurry recycle, which comes from the bottom of the main fractionator 

and is injected into the riser reactor, where it is mixed with high temperature regenerated 

catalyst and totally vaporised. The high temperature of the regenerated catalyst provides 

all the sensible heat needed for vaporisation and reaction which is needed to support the 

endothermic cracking reactions which take place in a matter of few seconds on the 

catalyst. The resulting cracking reactions result in a carbonaceous coke deposit on the 

surface of the catalyst which deactivates it and must be burned off before the catalyst can 
be used again. 

After the reaction has been completed, separation of catalyst and gas takes place in the 

disengaging zone of the reactor and any entrained catalyst is removed in the cyclones. 

The catalyst is returned to the stripping section of the reactor where steam is injected to 

remove entrained hydrocarbons. Reactor product gas is proceeded to the main 

fractionator for heat recovery and separation into various product streams. Wet gas from 

the overheads of the main fractionator (C6 and lighter) is compressed for further 

separation in downstream fractionators. 

Deactivated catalyst is transported from the reactor to the regenerator through the spent 

catalyst pipe. Air is injected into the bottom of the regenerator lift pipe to assLst the 

circulation of catalyst. Catalyst in the regenerator is fluidised with air which iS provided 

by the lift and combustion air blowers. Carbon and hydrogen on the catalyst react with 

oxygen to produce carbon monoxide, carbon dioxide and water. While most of the 

reactions occur in the fluidised bed, some reaction does occur in the disengaging section 

above the bed, where some catalyst is still present. Gas discharges from the regenerator 

into the cyclones where entrained catalyst is removed and returned to the bed. 
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The regenerator is run at a high temperature and an excess of oxygen is used to ensure 
that virtually all the carbon monoxide is converted to carbon dioxide before entering the Cý 
cyclones. Because this is a residual FCC for a heavy feed, the amount of heat generated 
through burning coke in the regenerator is more than that required by the endothermic 
cracking reactions. Therefore it has internal and external heat exchangers to remove the 

excess heat. 

Regenerated catalyst flows over a weir into the regenerator standpipe. The head 

produced by catalyst in the standpipe provides the driving force for catalyst through the 

regenerated catalyst pipe to the riser reactor. 

The major control loops of the process are summarised in Table 6- 1. they includc 

reaction temperature, pressures of the two reactor vessels as well as flowrates ol feed. 

air and steam and catalyst hold-up. A very important feature of the process is the very 

complicated dynamic interactions arising from the heat, mass and pressure transfer 

processes occurring in the two reactor vessels which are strongly inflluenced by 

fluidisation conditions. The control loops are safe-guarded by special routines to prevent 

disastrous situations arising. There are four such systems which are listed in Table 6- 1. 

They all need the authorisation of operators, obtained by pressing one or two buttons, 

and are designed to prevent excessive reaction. When the safe-guard system is activated, 

fourteen valves have to be set closed, opened or maintained in a position which is set 

according to pre-defined logic. 

The dynamic simulator was developed in 1992 to train process operators for 

commissioning the plant and has been extensively tested and shown to be very accurate, 

reliable and robust. It has a number of distinctive features. First, it is able to describe 

continuously and smoothly start-up and shutdown procedures as well as normal 

operation. It has a very wide range of validated operability, including conditions 

associated with abnormal states. Apart from faults that can be initiated randomly. twenty 

faults that are common to FCC processes can be reliably reproduced with high fidelity. It 

has been rigorously tested as part of a program of operator training over several years 
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and has been progressively improved. it can reproduce all operational characteristics that 
are commonly met. 

In this study, 67 data sets generated from the simulator are used and are summarised in 
Table 6-2. Discussion is limited to these 67 data patterns in order to make the discussion 

manageable and so as not to overwhelm the user with data. The data sets include faults 

and disturbances arising when: 

the fresh flow rate is increased or decreased 

the preheat temperature of the mixed feed is increased or decreased 

the recycle slurry flow rate is increased or decreased 

the opening rate of hand valve V20 is increased or decreased 

the air flow rate is increased or decreased 

" valve 401-ST opens from 100% decreased 

" there is a cooling water pump failure 

" there is a compressor failure 

" there are dual faults 

The data sets contain random noise. Checks have been made to ensure that the resulting 

noise signal has zero mean. 

Flue gas 

Water 
Steam 

combustion 
oil 

Figure 6-1 Schematic flow sheet of the FCC process 
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Table 6-1 The main control loops and safe-guard of the FCC process 

Name of control loop or Note in 

safe-guard Figure 6-2 Details 

Reaction temperature TC302 Temperature control at the exit of the riser 

control loop tube reactor. Set point, 513'C. Manipulated 
variable is regenerated catalyst flow to the 
riser tube reactor 

Regenerator pressure PC301 Pressure control of the regenerator at 1.6 

control loop kg/cm 2. Mam' ulated variable is the flue cyas p 
flowrate 

Inlet pressure of the PC551 Pressure control. This is to maintain a 

compressor control loop pressure difference of > 0.3 kg/cm" between 
the regenerator and the reactor. The 
manipulated variable is normally the 
compressor speed, but can also be switched 
to value on top of the fractionator. especially 
during start-up 

Other controllers Feed flowrates FC309 and FC305, Steam 
flowrate F302, water level LC302, catalyst 
hold-up controllerLC301 

Low feed flowrate (Safe- At low feed flowrate, reactions will 
deteriorate with increased reaction depth 

guard) and secondary reactions. 
Low flow of main air supply Low flow of main air supply causes 

(Safe-guard) 
increase in regenerator temperature, poor 
fluidisation and even causes reverse flow of 
catalyst or catalyst flowing to the air 
compressor 

Low pressure difference M2 A pressure difference of 0.3 kg/c between 
the regenerator and the reactor is normally (Safe-guard) 
required to prevent gas oil flowing into the 
regenerator because this may cause very 
high temperature in the regenerator and 
damage the regenerator. This safe-guard will 
activate the low feed safe cTuard L_ 

External heat exchanging When the low main air supply safe guard is 
activated the external heat exchanging 

system (Safe-guard) 
system also needs to be cut off 
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Table 6-2 Summery of the 67 fault data sets produced 

on the dynamic simulator 
Data sample No. Type Time t<0 operation is at steady state, at t=0 make the following step chan 1: 1 e I 

1 -9 1 fresh feed increased by 10 20 30 40 50 60 70 80 90% 

10-18 2 fresh feed decreased by 10 20 30 40 50 60 70 80 90% 

19-22 3 preheat Temperature of mixed feed increased by 5 10 15 20 2C 

23-24 4 preheat Temperature of mixed feed decreased by 15 10 5-1 C 

25-26 5 recycle slurry Flow rate increased by 70 90% 

27-28 6 recycle slurry Flow rate decreased by 70 90% 

29-32 7 opening ratio of hand-valve V20 increased by 5 10 15 24% 

33 -37 8 opening ratio of hand-valve V20 decreased by 10 15 25 35 55% 

38 9 cooling water pump P-02 failure 

39-43 10 air flow rate increased by 6.5 11.5 15 31.5 40.5% 

44-49 11 air flow rate decreased by 3.5 8.5 2 8.5 3 8.5 48.5 5 3.5 % 

50 12 compressor failure 

51 -57 13 valve 401-ST opening from 100% decreased by 10 20 40 45 60 80 90% 

58 14 (1 & 8) fresh feed increased 65% and V20 opening rate decreased 55% 

59 15 (1 & 9) fresh feed flow rate increased 70% and pump p-02 failure 

60 16 (2 & 9) fresh feed decreased 65% and preheat of mixed feed increased 52C 

61 17 (10 &, 12) air flow rate increased 9.5% and compressor failure 

62 18 (10 & 13) air flow rate decreased 9.5% and valve 401-ST opening decreased 35% 

63 19 (9 & 12) pump P-02 failure and compressor failure 

64 20 (2 & 13) fresh feed decreased 75% and valve 401-ST opening decreased 20% 

65* 21 (2 & 13) fresh feed decreased 65% and cooling water pump p-02 failure 

66* 1 fresh feed increased by 65% 

67* 2 preheat temperature of mixed feed increased by 52C 

Note: * used for system evahation 



-Chapter 
6 System Synthesis and ADDlication to FCC 

6.3 System Synthesis 

Sets I to 64, are used for training to establish the basic capability of the operational 
support system. Fuzzy-FFNNs are used to represent knowledge of the data sets. This i's 

then used by ARTNET to organise the knowledge base and fuzzy-FFNINs- The 

advantage of the approach is illustrated by comparing it with a single fuzzy-FFNN 

method model the 64 data sets. To make it possible for the system to avoid 
extrapolation, it is important to use the correct distance threshold. This matter 'is 

considered in some detail. 

6.3.1 System description 

The schematic diagram of the operational support system is shown in Figure 6-22. Z__ 
Essentially it comprises three parts: wavelet base pre-processing which extracts features 

and generates approximations of the process measurements; ARTNET pattern clustering 

based on the features extracted from the signals-, the knowledge base represented by 

trained fuzzy-FFNNs using the approximations of the process measurements. The 

interface provides a basis for system management and displays the results of reasoning C* 

Process 
measurements 

Graphic User 
Interface and system 
manawment 

............ eý . ........................ Train fuzzy-FFNN 
for new cases Wavelet base pre-processing 

I 
Wavelet 
Multi-resolution 
analysis 

ARTNET 
pattern Details Approximations, 
clustering 

Knowledge 
Feature base by 
extraction fuzzy-FFNNS 

.................................... ............................ ....... 

Figure 6-2 Schematic diagram of the system 
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The process measurements are input to a wavelet base signal pre-processLing element in 
order to decompose the measurements into detailed and approximate representations. 
The extrema of the detail signal components correspond to irregularities and singularities 
in the source signal where a special wavelet basis function or filter bank is used. After 

removing the noise components, the remaining output of the extrema are regarded as 
distinctive features of the measurement. The advantage of wavelet based feature 

extraction is that it reduces the dimensionality of the data and removes noisy components 

at the same time. Thus, the signal pre-processing element simultaneously generates 
features and provides an approximation of the measurement based on a small finite set of 

components. 

The features obtained by wavelet analysis are then used as inputs to ARTNET for 

pattern clustering. In order to take account of the interaction variables of the process, as 

well as enhancing the ability to discriminate between faults, multiple operating variable 

inputs are used. ARTNET indicates the type of class which has been archived or reports 

a new pattern when the input data sets are different, in some sense, from those already 

on file. The new pattern is then used to alert operators that the process is moving in a 

new direction. This ensures that plant safety is not compromised, even if the reported 

pattern does not ultimately result in a fault. 

The knowledge base is represented by a group of trained fuzzy feed-forward neural 

networks (fuzzy-FFNNs). These are used to generate rules from recorded numerical 

values and the knowledge embedded in the structure and weights of the network. 

Depending on the class finally reported by ARTNET, the knowledge base is able to 

provide an associated cause-effect relationship. For a new pattern, it will be either 

included in an existing group by retraining the corresponding fuzzy-FFNN if the new 

data pattern is similar to the group, or it will create a new group using a new fuzzy- 

FFNN if it is different from existing cases. 

A knowledge hierarchy in respect of process operation is then constructed by ARTNET 

and the fuzzy-FFNN. ARTNET provides a pointer with respect to usage, depending on 
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the current state of the process. It clusters cases based on the features derived from 

wavelet based signal pre-processing. 

6.3.2 Knowledge base representation and organisation 
Expert systems make use of a knowledge base made up of rules. Here, the knowledge 

base is created and organised by fuzzy-FFNNs which are able to generate rules from 

numerical data. Conflict is the vital issue from which rule-based expert systems suffer. 
This issue is avoided using the novel technique proposed in this study which generate Zý 
and organise the knowledge using ARTNET and fuzzy-FFNNs. This particular case 

study clearly illustrates the advantages of this approach 

Knowledge about these system can be organised by dividing the 64 data sets into six 

groups, where each group has similar characteristics. Table 6-3 reports the result of such 

a grouping where, for example, data sets No 29 to 37 are in one group because they are 

similar fault types related to changes of the hand valve V20 opening ratio. All equipment 

failure and dual fault types are also grouped because they are different from the rest. Six 
Z: ) 

fuzzy-FFNNs, denoted by fuzzy-FFNN I to 6, have been trained using these data groups 

individually. For example, fuzzy-FFNN I is trained using data sets in group I which 

contains data Nos I to 18, as shown in Table 6-3. The knowledge is represented by the 

six trained fuzzy-FFNNs and has been organised as a hierarchy using ARTNET and 

fuzzy-FFNNs, as 
Ishown 

in Figure 6-3. 

Table 6-3 Grouped 64 data sets for fuzzy-FFNN training 

Fault types Data sets No. 

group 1 1,2 1- 18 

group 2 3,4,5,6 19-28 

group 3 7,8 29-37 

group 4 10,11 39-49 

group 5 13 51 -57 

group 6 9,12,14,15,16, 
17,18,19,20,21 

38,50,58 - 64 
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Figure 6-3 Knowledge base organised by ARTNET and fuzzy-FFNNs 
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Figure 6-5 The fuzzy-FFNN architecture for group I of Table 6-4 

Table 6-4 Divide output variables of different groups into fuzzy regions 

Fuzzy regions of output variable 

ro I fresh feed (very low, low, medium low, normal, medium g up 
high, high, very high) 

group 2 preheat T (low, medium low, normal, medium high, high) 

slurry F (low, medium low, normal, medium high, high) 

group 3 V20 open rate (low, medium low, normal, medium high, high) 

group 4 air F(low, medium low, normal, medium high, high) 

group 5 401-ST open rate (low, medium low, normal, medium high, 
high) 

group 6 (P-20 failure, compressor failure, fault type 14.15,16,17,18, 
19,20,21) 
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Figure 6-4 shows the fuzzy membership function used for input variable fuzzification. 
Each variable is split into five fuzzy regions, low, medium low. normal. medium high. 

and high. Input variables are represented by a vector having five elements. Each variable 
has only one non-zero element in the vector. For example, the reactor temperature 
498'C has membership degree 0.9 in normal, 0.01 in medium high, and zero in all other L-1 

regions. The variable for the region having a maximum is used to define the fuzzy vector 
[0 0 0.9 0 0]. Other input variables are fuzzified in the same way. Consequently. there 

are 40 input nodes for the fuzzy-FFNNs, because eight variables are involved for each 
fault and each variable is a vector having five elements. 

Unlike the fuzzification used for input variables, output variables cannot be fuzzified in 

the same way because the assignment is problem dep, ýmdent. For example, the output ot' 
fuzzy-FFNN 6 needs 10 nodes to include pump P-20 failure, compressor failure and so 

on, while the output node numbers of fuzzy-FFNN 3 is five because the output variable 
in group 3 is divided into five fuzzy regions, as can be seen by reference to Table 6-4. 

Based on the input and output variables fuzzification, a fuzzy-FFNN for each data group 

can be constructed. Figure 6-5 shows the fuzzy-FFNN architecture for group one but the L- 

others are similar. The activation functions for the neurons in both the hidden and output 

layers are sigmoids. The 64 data sets can then be represented by six trained fuzzy- 

FFNNs. 

It is possible to map the 64 data sets and fault types using a single fuzzy-FFNN. 

However, this gives rise to difficulties especially if there is a long training time, poor 

mapping and inconvenient updating. This can be seen by comparing the six fuzzy-FFNNs 

representation with a single fuzzy-FFNN. In the following explanation, single network 

refers to mapping the 64 data sets using a single fuzzy-FFNN, while fuzzy-FFNNs I to 6 

are the networks for data groups I to 6. Table 6-5 gives the architecture of the networks 

and the corresponding training time. Using a single network, the architecture in terms of 

nodes in the hidden layer has to be larger because it is used to map more information. In 

this case study, the hidden layer consists of 60 nodes. The output has 65 nodes because 

there are 13 types of faults and each fault variable has five fuzzy regions. The tirne for 

training such a network on a Sun Ultral was 68 minutes for 10000 learning c-ý, rlcles ývith 
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0.2 learning rate. On the other hand, training time is significantly reduced when using six 
fuzzy-FFNNs as shown in the Table 6-5. 

Table 6-5 Training time of using single network to map 64 data sets and 
that of using fuzzy-FFNN groups 

Network 
structure 

Number of 
training data 

Training time 
(minutes) 

Single network 40-60-65 64 68 

Fuzzy-FFNN 1 40-10-7 18 3 

Fuzzy-FFNN 2 40-10-10 10 5 

Fuzzy-FFNN 3 40-5-5 10 2 

Fuzzy-FFNN 4 40-5-5 11 2 

Fuzzy-FFNN 5 40-5-5 7 2 

Fuzzy-FFNN 6 40-10-10 8 6 

Training: 10000 cYcles with 0.2 learning rate 

Table 6-6 Mapping of networks in Table 6-5 after training 

Convergence 
error 

Fault incorrectly 
identified 

Single network 0.02 24,38 

Fuzzy-FFNN 1 0.0022 None 

Fuzzy-FFNN 2 0.0018 None 

Fuzzy-FFNN 3 0.0017 None 

Fuzzy-FFNN 4 0.0015 None 

Fuzzy-FFNN 5 0.0011 None 

Fuzzy-FFNN 6 0.0020 None 
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Table 6-6 shows the convergence error as well as the incorrect identification of faults in 
thetraining sets for each of the networks. Using a single network to map all 64 data sets 
not only takes a long time to train but also results in poor results since two faults (No 24 

and 38) are incorrectly identified. The training time is much less and no wrong 
identification of faults occurs when the six fuzzy-FFNNs are used to represent the 64 

data sets separately. It is clear that splitting the problem into groups and mapping them 

using fuzzy-FFNNs A rather than a single network makes the representat on more fleXible 

and reliable. 

Using fuzzy-FFNNs to represent the problem domain also benefits system maintenance 

and updating. If a new data set related to one of the groups and changes it has to be 

included in the knowledge base, only fuzzy-FFNN 4 needs to be retrained when using six 
fuzzy-FFNNs to represent the problem. If the case is different from the eXiSting set, then 

a new fuzzy-FFNN may be used. For single network representation, it takes mor. -- than 

an hour to retrain because all data sets including archived and new data sets have to be 

used in retraining. This becomes worse as the number of cases increases. 

As it has been shown in section 5.4.3, fuzzy-FFNNs can embed knowledge in the 

structure and weights and so generate no-conflict rules. However, this IS only true when 

rules are generated by a fuzzy-FFNN. Consequently, the fuzzy-FFNNs cannot guarantee 

to generate no-conflict rules if they are used to represent the knowledge. The drawback 

can be overcome by combining ARTNET and fuzzy-FFNNs to represent and organise 

the knowledge base. Here, ARTNET clusters an input pattern into a class which 

corresponds to an trained fuzzy-FFNN, which provides rules about the input pattern. For 

each input of the system, only one fuzzy-FFNN is used to generate rules, therefore no- 

conflict rules are obtained. 

6.3.3 Distance threshold setting in ARTNET 

The distance threshold is a tuning parameter in ARTNET which is a sensitive factor in 

determining the effectiveness of the clustering. It is therefore important to find the 

appropnate distance threshold to achieve optimal performance of the system. 
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Ac 
As discussed in section 4.3.4, ARTNET groups fewer patterns into a class i. c. there are 
more classes for the same number of patterns when the distance threshold *is small. In this 

situations, ARTNET clusters a pattern into a new class and reduces the risk of 

overlapping states when classifying at operational state boundaries. Howcvcr. it is 

necessary for ARTNET to store more exemplars to represent the archived classes. Suice 

ARTNET is concerned with competitive learning, it clusters an input by comparing all 

the archived classes, so increasing the number of archived classes will slow down the 

classification of ARTNET. 

Generafly, a FFNN creates a non-linear mapping which has pattern identification abilities 

(Turner et al 1996) however it cannot handle extrapolation. ARTNET avoids 

extrapolations but is not able to deal with non-linear mapping. Clearly, the threshold 

value in ARTNET should be (1) small enough to form a suitable clustering boundary to 

avoid overlapping operational states and so avoid extrapolation based on system 

reasoning; (2) as large as possible to reduce the number of archived classes in ARTNET 

so it can share the identification tasks with fuzzy-FFNNs because knowledge 'is 

represented and organised by both ARTNET and fuzzy-FFNNs 

These two considerations have been used to select a value of the threshold based on the 

search algorithm described in section 4.3.4. Alternatively it can be done by trial and 

error. For p=0.8, A 64 data sets are identified as individual patterns and this is clearly 

the largest value which separates all data sets into individual classes. As the threshold 

value increases, some samples merge into a class. The results of increasing the threshold 

are shown in Table 6-7. As can be seen in Table 6-2, data sets 56 and 57 representing 

valve 401-ST going from 100% opening to 80% and 90% are in a single class when p= 

1.0. Data sets No. 5 and 7 refer to fresh feed increasing by 50% and 70%, No. 25 and 26 

to recycle oil flow rate increasing by 70% and 90%. and samples No. 27 and 28 to 

recycle oil flow rate decreasing by 70% and 90%. These are clustered into three classes, 

which is reasonable. 
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Table 6-7 The 64 training data sets clustered by ARTNET 
in different distance threshold 

Distance 
threshold 

P 

Number 
of patterns 
identified 

Grouping of data sets 

0.8 64 

1.0 63 [56 571 

2.0 60 [5 7] [25 261 [27 281 [56 57] 

3.0 57 [5 7] [19 20 23 24] [25 261 [27 28] [56 571 

4.0 55 [5 67 81 [19 20 2123 24] [25 261 [27 281 [56 
571 

4.5 49 [3 45678 91 [19 20 21 22 23 24] [25 261 [27 
28] 

[35 361 [56 57] 

5.0 48 [3 45678 91 [19 20 2122 23 24 29] 

[25 261 [27 28] [35 361 [56 57] 

6.0 47 [3 45678 9] [19 20 2122 23 24 29 52] 

[25 261 [27 28] [35 361 [56 57] 

12.0 19 [12 3456789 10 11 12 13 14 15 19 20 2122 
23 24 25 26 27 28 29 30 3132 33 34 35 36 37 39 
40 4142 43 44 45 46 52] 

[16 17 18] [50 5153] [56 57] 
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Table 6-8 The report of the ARTNET when 
the distance threshold is 4.5 

Class Corresponding 

data set 

Class Corresponding 

data set 

Class Corresponding 

data set 

1 1 18 31 35 49 

2 2 19 32 36 50 

3 3456789 20 33 37 51 

4 10 21 34 38 5-1 

5 11 22 3536 39 53 

6 12 23 37 40 54 

7 13 24 38 41 55 

8 14 25 39 42 5657 

9 15 26 40 43 58 

10 16 27 41 44 59 

11 17 28 42 45 60 

12 18 29 43 46 61 

13 1920212223 
24 

30 44 47 62 

14 2526 31 45 48 63 

15 2728 32 46 49 64 

16 29 33 47 

17 30 34 48 
Note: Class stands for clustering pattern class, No. for data set number 
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Figure 6-6 Dynamic trends of data set No. 5 shows an abnormal operation occurs 
when fresh feed is increased 50% 
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Figure 6-7 Dynamic trend of catalyst recycle rate for the opening ratio of hand 
valve V20 is decreased by 25 % and 35 % 

When the threshold value is 4.5, the groups are [3,4,5,6,7,8,9], [19 20 21 22 23 24], [25 

26], [27,281, [35,36] and [56 57]. The pairing of identified classes and number of data 

sets for the threshold value are shown in Table 6-8. The clustering can be justified by 

inspecting the results in detail. Figure 6-6 shows the trends of three measurements taken 

from data set No 5. It is clear that regenerator temperature and concentration of oxygen 

in the regenerator flue gas fall sharply, while the catalyst hold-up in the reactor increases 

dramatically. This suggests an abnormal operation .A similar scenario is found for cases 

3,4,6,7,8, and 9, so the result of regarding them as a single pattern is acceptable. 
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It is reasonable to conclude that data sets No 35 and 36 should be clustered as a single 
class. As can be seen in Figure 6-7, in both cases the dynarruc responses of the 
regeneration temperature lead to a steady state and the process is still under control. 

Any further increase in the threshold value is not appropriate because this would group 

significantly different types of behaviour into one class. For instance, data set No 29 

(increasing opening of hand-valve V20 by 24%) would be grouped with the recycle 

slurry increase and decrease group when the threshold value is greater than 5, which is Cý 
not what would be expected. Thus, a distance threshold of 4.5 is used to make the 

system evaluation in the next section. 

6.4 System Evaluation 

Three data sets represented by No 65 to 67 in Table 6-2, have been reserved for 

evaluation. Of these, the cases of No 66 and 67 are covered by the data sets used 'in 

system synthesis, i. e. within the boundary of the archived knowledge base, while No 65 

is not. Data set No 66 refers to the fresh feed flow being increased by 65%, it results in a 

process fault. On the other hand, data set No 67 is a disturbance and relates to the 

preheat temperature of mixed feed being increased by 5'C. They are used to evaluate the 

behaviour of the process analysis system in different situations including interpreting 

signals and then report the location of the fault in terms of rules correctly. while avoiding 

extrapolation and, consequently errors of interpretation. 

6.4.1 Interpretation of dyna"c responses 

To interpret a transient input into a pattern correctly needs a well organised and 

constructed system which can distinguish process trends from noisy signals while 

capturing the most important features of the trend, recognising patterns in trends and 

reasoning based on a well founded knowledge base. It is the first of these points which is 

concentrated on here. 

Figure 6-8 (a) is a reaction temperature transient based on 100 sample points of data set 

No 65. The signal to noise ration (SNR = 
signal energy 

, Candy 1988) of the signal I-s 
noise variance 
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35.3. The residual generated by filtering out the steady process trajectory is shown in 
Figure 6-8 (b). This residual is then decomposed over four scales by the octaý-e FIR 

non-subsampled. filter bank shown in Figure 6-9. 

(a) 

-l 

-1' 

-t 

-1 

-1 

I- 

0 20 40 60 du 

(b) 

100 

Figure 6-8 Reaction temperature transient (a) when feed flow 

rate is increased by 65 %. The residual is shown in (b) 

0 20 40 60 80 100 
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Figure 6-9 The octave band non-subsampled filter bank 
to decompose signal in four scales 

In order to determine the noise components with respect to the scale, the wavelet 

function requires more moments to vanish. Unfortunately, using a wavelet function 

having more vanishing moment gives rise to more components in the feature, which in 

turn affects the compression ratio. Consequently, it is important to select a wavelet 

having an appropriate number of vanishing moments. In this case, the least asymmetric 

Daubechies's wavelets with eight coefficients has been selected as the basis functions for 

decomposing the residual into detailed and approximate parts. 

The detail of a four scale multi-resolution analysis of the residual is shown in Figure 6- 

10(a) together with the corrýesponding extrema in Figure 6-10(b) denoted as extrema 4: ) 
analysis. Following the derivation in section 3.4.3, the extrema influenced by the noLse 

y 

detail signals of input f(t) on the ith scale 
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fluctuations satisfy the following criteria (1) the amplitude of the extrema decrease on 

average as the scale of decomposition increases-, (2) they do not propagate to the large 

scale. Extrema satisfying either of these criteria are regarded as noise components and so 

are filtered out. 

When an infimite signal is truncated to a finite range in order to evaluate the discrete 

Fourier transform, spurious end effects are introduced. In practice, such a truncation is 

necessary, especially for on-line applications. The discrete wavelet transform of part of a 

signal also introduces the same end effect (Joshi et al 1995), as can be seen in Figure 6- 

10. The last extremurn on scale 4 of Figure 6-10 is caused by an end effect rather than by 

any irregularity or singularity in the dynamic transient because there IS no such 

irregularity or singularity in the process measurement signal or residual in Figure 6-8. 

The end effect extremurn is automatically identified as a noisy component and removed 

from the representation because extrema end effects do not propagate along the scale 

and so satisfy the second criterion for noise removal. This demonstrates how feature 

extraction is achieved by generating the extrema of the trends and filtering out noise 

components, while also removing end effects. This can be seen by comparing Figures 6- 

10 and 6-11 

Most of the elements in the detail are caused by noise and are removed after filtering the 

components. This is especially true for measurements in large continuous processes 

where the process trends often change infrequently (Dong and McAvoy 1996). This 

means that the extrema representation is a very sparse vector after removing the noisy 

components, so compression is easily achieved using piece-wise methods. 
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Figure 6- 11 Extrema after removing noisy components (a) and extrema 
representation after compressing (b) based on the results of Figure 6-10 
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Figure 6- 12 Comparison of extrema of noise free reaction temperature signal (a) 

and extrema of that based on noise filtering (b) 
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Figure 6- 13 (1) Trends in operational variables when feed flow rate is increased 

by 65% and the features extracted by wavelet approach 
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Figure 6- 13 (2) Trends of operational variables when feed flow rate is increased 

by 65% and the features extracted by wavelet approach 
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Figure 6- 14 Approximation of Figure 6-3 generated by wavelet decomposition 

In order to retain the time component, compression is based on a fixed length of the 

piece-wise sub-region. Here, the length of the sub-region is 4 i. e. the element with the 

biggest absolute value is picked to define the region and the others are discarded. If there 

is no non-zero item in a region, the value is zero. For example, a vector (0 0030200 

000 0) is reduced to (3 2 0) using the above compression technique. So the data 

compression ratio is 4: 1. Since there are only three non-zero values in the extrema 

representation, a higher compression ratio is possible by extending the length of the 

piece-wise region. However, non-zero components may be overlapped, i. e. non-zero 

components are in the same sub-region and only one is used in the representation. This 

results in loss of information. 

The advantage of using the simulator is that it is possible to know whether noise 

components are filtered and the important features of a transient are captured using the 

proposed approach. Figure 6-12 compares the result of using the noise removal 

technique with that of the basic signal. The extrema representations for these are the 

same. The extrema in Figure 6-12(b) correspond to the irregularities of the trend in 

Figure 6-8. So the wavelet-based approach has proved to be an effective technique for 
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extracting features and carrying out filtering of noise while achieving data compression 

of the process signals. 

The scale 4 extrema are used as input to ARTNET for pattern clustering because it has 

the largest values compared with other scales. There are eight variables which can be 

related to the 65% increase in feed flow rate, and Figure 6-13 (1) and (2) shows these 

measurements and features. The approach also generates an approXimation of the 

measurements, as shown in Figure 6-14 for the same reaction temperature. 

These result demonstrate that wavelet based pre-processing provides a powerful tool for 

feature extraction, noise filtering and data compression for use in pattern clustering. This 

is essential in fault diagnosis because it ensures that the system is not affected by signal 

noise. In a single step, it generates features which can be used in ARTNET pattern 

classification and approximation and so is fundamental in providing information for 

knowledge representation. 

Based on the features extracted by wavelet based signal pre-processing, the system 

identifies data set No. 66 as pattern No 3. Using the approximations of the pre- 

processing approach, it identifies the fault as "Fresh Flow rate very High with degree 

1.0. " based on the effects of 

Reaction temperature is low with degree 0.83 

Regenerator temperature is medium low with degree 0.53 

Reactor pressure is normal with degree 0.98 

Regenerator pressure is normal with degree 0.88 

Carbon dioxide concentration is low with degree 1.0 

Carbon monoxide is normal with degree 1.0 

Catalyst recycle is medium high with degree 0.94 

Catalyst hold-up is high with degree 0.55 

The reported pattern number is the clustering result using ARTNET. Since the data set 

No. 66 is for the fresh feed flow increasing by 65%, it is reasonable that it is clustered 
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into class 3 which consists of data sets No. 3 to 9 corresponding to fresh feed increased 
by 30% to 90%, as listed in Table 6-2 and 6-8. 

When data set No 67 is used for testing, the system identifies it as pattern No. 13 and 

reports the fault as "Preheat Temperature of Mix feed medium High with degree 0.5 F 

and the effects 

Reaction temperature is normal with degree 0.74 

Regenerator temperature is medium low with degree 0.55 

Reactor pressure is normal with degree 0.51 

Regenerator pressure is normal with degree 0.69 

Carbon dioxide concentration is medium high with degree 0.77 

Carbon monoxide is medium low with degree 0.74 

Catalyst recycle is normal with degree 0.54 

Catalyst hold-up is normal degree 0.51 

This is also correct because data set No. 67 is a disturbance in the preheat temperature of 

the mixed feed and class No. 13 groups increase in the preheat temperature of the mixed 

feed. 

Clearly, when the current fault or disturbance is within the boundary of the archived 

knowledge base,, the system interprets the pattern correctly based on the dynamic 

transients of operational variables. The system also provides explicit and transparent 

cause-effect results in rule form to the process operator, as well as reporting the fault 

location. 

6.4.2 Avoiding extrapolation of reasoning 

The results identified by the operational support system reported here may also be 

obtained using other techniques, for example, a back-propagation feedforward neural 

network (FFNN). The critical issue is the behaviour of such a system when it is used to 

identify an operational state which is different from the archived knowledge base. As 

discussed in section 2.3, an operational support system in a rule-based expert system 

(RBES) or FFNN shell cannot work properly and report poor results which may lead to 
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incorrect diagnosis because it requires reasoning outside the knowledge base, also 
known as extrapolation. Even worse, neither the RBES nor FFNN can flag difficulties 
automatically when extrapolation is used. This issue is difficult to discuss in the case of 
RBES because the knowledge base is difficult to define. The behaviour of a FFNN is 
illustrated below. 

It ILO Ac listed in Table 6-2, the data sets used here are surnmarised as 13 types of faults or 
disturbances, which are described by eight operational variables. To construct an FFNN 

to map the problem, it requires eight input nodes and 13 output nodes for the FFNN. 
Using the same 64 data set for system synthesis as for training the FFNN. it identifies 
data set No 65 as normal operation, as be seen in Table 6-9. The actual pattern is derived 

by fault types 2 and 9 i. e. 65% decrease in fresh feed and a failure in cooling water pump 

p-02. The diagnostic result from the FFNN is dangerous to use in process diagnosLs. 

since an abnormal is indicated as normal. Because of this, and since the extrapolation 

cannot be flagged, the reliability of the reasoning process is not guaranteed for Z-- 
operational support systems in either RBES or FFNN which clearly undermines 

confidence in these methods. 

Table 6-9 The prediction by FFNN and the actual target for data set No 65 refers 
to 65% decrease fresh feed and a failure in cooling water pump p-02. 

Target 0 0.65 0 0 0 0 0 0 0.99 0 0 0 0 

Predict 0 0 0 0 0 0 0 0 0 0 0 0 0 

Extrapolation can be avoided in the present case. Based on transients in the operational 

variables, data set No 65 is detected as a new pattern by the system when it is used as the 

system input. It is, in fact, a combination of two faults, decrease in fresh feed and 

increase in the preheat temperature of mix feed. The responses of a combination of these 

two faults are different from either faults, thus it can be regarded as a new operational 

state. As discussed in section 4.2, being able to report a non archived operational state as 
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a new or unknown is important. It alerts process operators that conditions may give rise 

to a new state and they should pay attention. 

Clearly, extrapolation is a critical issue in operational support system based on RBES 

and FFNN, but such issues may be successfully avoided by the operational support 

system developed here. Thus, the support system proposed here can provide reliable 

outcomes to reasoning which are able to assist process operators in process diagnosis. 

6.5 Concluding Remarks 

Based on this case study, it can be concluded that the system developed here has the 

following: 

1. The system can capture the most important information about dynamic systems and 

remove the effects due to noise. This ensures that the system JLs able to interpret 

transients patterns correctly. 

2. The system provides explicit, transparent, and no-conflict cause-effect rules to 

operators. It also reports fault locations and related process trends which assist 

operators in fault diagnosis. 

3. The system avoids extrapolation of reasoning and so improves the system reliability. 

4. The system is easy to maintain and update based on the new technique of knowledge 

base organisation. 



Chavter 7 

CONCLUSIONS AND 

SUGGESTIONS FOR FUTURE WORK 

7.1 Conclusions 

The work reported in this thesis is concerned with developing effective methodologies 

and systems for process monitoring and diagnosis. An integrated framework is developed 

which consists of several components including feature extraction from on-line signals 
for dimension reduction and noise removal, unsupervised and recursive machine learning 

for operational state identification as well as automatic generation of knowledge rules 
from process operation data. The methods and a prototype system have been evaluated 

using data collected from a dynamic simulator of an industrial refinery fluid catalytic 

cracking process. 

'C- 
For monitoring and diagnosis of process operational data, dynamic transient signals are 

probably more important than instant values of measurements for the purpose of 
identifying operational states and to anticipate evolving behaviour patterns. The transient 

signals are characterised by the following features: 

1. large size of data -a meaningful segment of a transient may consists of several tens 

of sampling points and a process may have several hundred dynamic trends to be 

monitored simultaneously; 

2. noise and uncertainty - at large noise to signal ratio, the real trend of the signal may 

not be identified; 

3. dynamics such as those due to time delays; 
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4. correlation between variables. 

Wavelet multi-resolution analysis has been investigated for feature extraction from 

dynamic transients. Features are defined as irregularities and si gularities of a si nal n ZI 
which are identified as the extrema of wavelet multiresolution analysis. The method 
developed by Cvetkovic and Vetterli (1995) and Mallat and Huang (1992) have been 

adapted for this purpose. A method is developed which is able to achieve identification 

of extrema of a transient signal, noise component removal as wen as dimension reduction 
in a single step. Comparison of the approach with others has also been made, including 

episode-based qualitative interpretation as well as using window Fourier transfornis. 

It is important for any process operational state identification method to be based on an 

unsupervised clustering mechanism because supervised methods require training data and 

this is difficult to get. It is also important for a method to be recursive so that its 

performance can be continuously improved through on-line learning. Adaptive resonance 

theory (ART2) provides the basis for such an approach. While the method has generally 

been regarded as having a sophisticated component for effectively dealing with noise in 

data, this study shows that it is still too sensitive to noise contained in process transient 

signals. A new framework, ARTNET, has been developed which is essentially a modified 

version of ART2 for process operational identification and uses wavelet feature 

extraction as a substitute for the data pre-processing component of ART2. Apart from 

being able to extract features for pattern identification purpose, ARTNET is superior to 

ART2 in avoiding the adverse influence of noise, in the selection of threshold values and 

in computational speed, while retaining unsupervised and recursive learning capabilities. 

Most methods studied in the literature, both supervised and unsupervised, use similarity 

or distance measures to discriminate and cluster operational states. As in the case of 

computer simulation, this results in a specific numerical solution but there is no 

qualitative explanation. Obviously, it is desirable that operators should be provided with 

knowledge rules. For this purpose, automatic knowledge generation methods have been 

examined and the fuzzy neural network approach proposed for automatically generating 

fuzzy production rules. The approach has a number of important features when assessed 
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against existing methods. First of afl, it uses fuzzy concepts to bridge the gap between Z-1 
quantitative data and qualitative knowledge. Secondly, it uses the advantage of back- 

propagation neural networks for being able to use a large amount of data effectively and 
robustly. Thirdly, the feature extraction approach can be incorporated into this method. 

Methodologies for integrating the several components and making use of them 
concurrently to compensate for the inadequacies of each are also exploited. The 
knowledge hierarchy constructed by ARTNET and fuzzy-FFNNs to represent and 
organise the knowledge base makes the method able to extrapolate beyond the rule base 

and solve conflicts effectively. 

The framework developed here has been tested using data collected from a dynamic 

simulator of a refinery fluid catalytic cracking process (FCC). This is a complicated 

process featuring highly non-linear dynamics a-rising from the strong interactions between 

the riser tube reactor and fluidised bed regenerator through coupling of the heat, mass 

and momentum balances. The simulator has been used in industry for several years and 

shown to have high fidelity and allows the introduction of small and large disturbances 

and faults. From the prior knowledge about the data generated, methods developed in 

this study can be tested. Encouraging results have been obtained showing the great 

potential of the methods developed in this work. 

7.2 Suggestions For Future Work 

Many more challenges than addressed in this study need to be considered in order to 

develop an effective and practical on-line decision support system. For example, the 

validation and confidence bound of backpropagation neural networks (Shao, et al., 1997, 

Zhang et al, 1997, Chen and Wang, 1998,1999). Below is a summary of additional work 

which needs to be carried out: 

1. On-line data collection techniques. In this work, on-line signals are assumed to 

be windowed and available. In practical use, a proper on-line data windowing 

technique is needed to extend the system to on-line applications. 
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2. An approach for generating proper residuals of dynamic transients. Although 
there is a residual generation procedure in this work, a more effective and 
precise approach is required for residual generation to solve problems such as 
whether the residual is a true process transient or model error. Otherwise, the 

result of reasoning provided by the operational decision support system IS 
wrong because of the incorrect residual. 

3. Wavelet transformation is an effective tool for feature extraction. However, the 

algorithm is afflicted by the so-called 'end effect' as discussed in Chapter 3. 

Further development of the transform is necessary for dealing with process 

signals that are not zero-mean based. 

4. The distance threshold in the ARTNET algorithm is still a tuning parameter. 

Finding an algorithm to determine the parameter adaptively so it can be used 

on-line is important: note, however, there is a distance threshold search 

algorithm in this work. 

5. This study has only been tested on continuous processes, though the approach 

is not necessarily restricted to these. It is expected that batch processes will 

provide more challenges because of the distinctive nature of batch operation. 

Batch operations do not have steady state operations. So it is expected that the 

approaches used in this study, especially feature extraction using wavelets and 

knowledge discovery techniques, will have a role to play in processing data. 

With the shift of focus from large-scale commodity production to smaller scale 

fine chemical, pharmaceutical and food production, there is a clear need for 

research on this topic. 

6. This study has focused on on-line decision support for operators. In process plant 

operation, there is a higher level of control: namely supervision and management of 

long term performance. For this purpose the data collected and averaged over days 

and weeks are useful. This area has not been widely studied, though there have been 

a number of publications using multivariate data analysis, inductive learning as weH 
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as data mining and knowledge discovery technologies (e. g., Zhang et al., 1997. 

Clarke-Pringle and MacGregor, 1998, Saraiva and Stephanopolous, 1996, Wang and 

McGreavy, 1998, Chen and Wang, 1999). 
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Appendix A 

Extrema Of Wavelet Transform And 

Singularities Of Signal 

In mathematics, the local singularity of a function is often measured with Lipschitz 

exponents. In practice, the relationship between the Lipschitz exponent and a singularity 

does not provide simple and direct strategies for detecting and characterising the 

singularities of a signal. The wavelet transform extrema representation is an efficient 

approach for studying singular structures in signals. In the following, the relationship 

between wavelet transform extrema and singularities of a signal are described based on 

the work of Mallat and Hwang (1992) and Mallat and Zhang (1992). 

Notation: 

1. Compact support: a function flt) is compact supported, such that f (t) =0 
if t< ti or t<t2, where -oo<tl <t 2< 00 

LP (R) denote the Hilbert space of measurable, functions such that 

f If (t)l P dt < 4-oo 

the norm of fE L2(R) is given by 

Ilf (t)112 
f If (t)12 dt 

3. Lipschitz space: for 0 <c( <1, Lipschitz space is the set of all fE L' (R) 

such that 

SUPIf (t + h) -f (t)j:! ý (Ihl 
xER 

where c(is called the Lipschitz exponent. 

4. The Phrnoment of a wavelet is defined as: 
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f t'T(t)dt 

And, a wavelet is said to have M vanishing moments if 

f t'T(t)dt =0 

For 1 =0,1,..., M. Equation (4-21) is equivalent to 

d 'Tý (co) 
= d o)' 0)=o 

/=O, 1. M. 

Definitions: 

1. A function f (t) is said to be Lipschitz cx, for 0: 5 a ! ý, 1, at a point to , if and 

only if there exists a constant A such that for aH points t in the 

neighbourhood of to 

f (to)j:! ý Alt - tol'7 (A- 2) 

2. Let n be a positive integer. A function f(t) is said to be Lipschitz c(, for 

n<a:! ý n+1, at a point to, if and only if there exists a constant A and a 

polynomial P,, (t) Of Order n such that for all points t in a neighbourhood of 

to 

If (t) -P 
la 

,, 
(t)j:! ý Alt - to (A - 3) 

3. Let f(t) be a tempered distribution of finite order on an interval (ti, t2). The 

distribution f(t) is said to be uniformly Lipschitz a on (ti, t2) if and only if 

its primitive is uniformly Lipschitz o(+l on (ti, t2)- It is necessary to defme 

properly the notion of negative Lipschitz exponents for tempered 

distributions because they are encountered in numerical computations. 

A classical tool for measuring the Lipschitz regularity of a function f(t) is to look at the 

asymptotic decay of its Fourier transform f (w). It can be proved that if a bounded 

functionf(t) is unifonnly Lipschitz a over R then it satisfies: 
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f If (0))l (1 + 10 c)do) < +co (A - 4) 

Wavelet transform has similar properties as Fourier transform, so the Lipschitz regularity 

of a function can be related to its wavelet transform. If the wavelet has a compact 

support, the value of WTýs, to) depends upon the values of f(t) in the neighbourhood of 

to of size proportional to the scale s, where 
JWT, (s, t)l is the wavelet transform over 

scale and time. 

At fine scales, it provides localised information on f(t). The following theorems give the 

relations between the asymptotic decay of the wavelet transform at small scales and the 

local Lipschitz regularity of the function. The wavelet W(t) is supposed continuously 

differentiable and that it has a compact support although this last condition is not strictly 

necessary. 

Theorem 1 

Let f (x) E Lý (R). The function f(t) is uniformly Lipschitz c( over intervals 

(tl + 'El t2 -, E) for any e>0, if and only if for any F, > 0, there exists a constant A, such 

that for anyX 'ýý (tI + '6 9 
t2 

- E) and any scale s, 

JWT, (s, t)j: ý A, Sa (A- 5) 

Theorem 2 

Let wavelet W(t) have n vanishing moments in n times continuously differentiable and 

have a compact support, and f (t) E Lý (R) . If 
flt) is Lipschitz c( at to, 0 :! ý a :: -ý n, then 

there exists a constant A such that for all point t in the neighbourhood of tD and any scale 

S 

JWTf (s, t)l: ýg A (s` + lt - to 1a) (A - 6) 

Conversely, flt) is Lipschitz o( at to, 0<a:! ý n, if the two following conditions holds. 

(1) There exists 6>0 and a constant A such that for all points t in the neighbourhood of 

to and any scale s 
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JWTf (s, 01! ý As' (A- 7) 

(2) There exists a constant B such that for A points t in the neighbourhood. of to and any 

scale s 

JWT, (s, t)l < A(s a+ 

it 
- to al 

g1t - t, 311) 
(A - 8) 

IoLylt 
r 

Theorem 1 and 2 prove that the wavelet transform is particularly well suited to estimate 
the local regularity of functions. However, a direct application of theorems I and 2 is 

quite ineffective to detect singularities and to characterise their Lipschitz exponents. 

These theorems measure the decay of 
IWTf (s, t)l in the two-dimensional neighbourhood L_ 

of to in scale-space (s, t), which requires a lot of computations. In fact, the detection of 

singularity points is naturally related to the behaviour of the wavelet transform local 

maxima. 

Theorem 3 

Let Nf(t) be a wavelet with compact support and n vanishing moments in n times 

continuously differentiable. Let f (t) (=- LI (Itl ý 
t2 1) 

*If there exists a scale so> 0 such that 

- (tl 
11 

t2 JWT, (s, t)l has no modulus maxima, then for any F- > for all scales s< so and t E= 

O, flt) is uniformly Lipschitz n on (a-r,, b+e). 

Local extrema of the wavelet transform offlt) is: any point (so, to) such that 

oWTf (so, to) 

ot 

And the modulus maxima of the wavelet transform of f(t) was at any point (so, to) such 

that when t belongs to either the right or the left neighbourhood of to, 

IWTf (so, t)l < 
IWTf (so, to)l and when t belongs to the other side of the neighbourhood of 

to, IWTf (so, t+! ý IWTf (so , to)l .A maxima line is any connected curve in the scale space 

along which all points are modulus maxima of the wavelet transform. 
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Based on theorem 3 and the definition of local extrema and modulus maxima, a coroHarý' 
can be made: the closure of the set of points where f(t) is not Lipschitz n is included in 
the closure of the wavelet transform maxima of f(t). The corollary proves that all the 
singularities of f(t) can be located by following the maxima lines when the scale goes to 

zero. Theorem 4 will characterises a particular class of isolated singularities from the 
behaviour of the wavelet modulus maxima. 

Theorem 4 

Let f(t) be a tempered distribution whose wavelet transform is defined over (ti, t-, ) - and 
let tO E (tl 

I 
t2 ). There exists a scale so >0 and a constant C such that for t. c- (tj, t, ) and 

s< so, all the maxima of WTf(s, t) belong to a cone defined by 

It 
- tj:! ý cs (A- 9) 

Then, at all points, tOl E (t1 
I 
t2 ) 

Ito, #to, f(t) is uniformly Lipschitz n in the 

neighbourhood of to,. The function f(t) is Lipschitz o( at to, for a :! ý n, if and only if there 

exists a constant A such that along each maxima line in the cone defined by Equation (A- 

9), 

JWT, (s, t)j:! ý As' 10) 

Equation (A- 10) is equivalent to 

loglWTf (s, t)l !! ý log(A) +a log(s) (A - 11) 

By Equation (A- 11), the Lipschitz regularity at to is the maximum slope of maxima line 

of wavelet transform that remains above logjWTf (s, t)l on a logarithmic scale. Therefore, 

the singularities and irregularity of a function can be detected from the wavelet transform 

modulus maxima. Therefore, a signal can be represented by its local extrema of wavelet 

transfonn. 
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Avvendix B 

The Adaptive Resonance Theory 

And Its Algorithm 

The basic ART architecture as shown in Figure B- I consists of three groups of neurones 
in two subsystems - attentional and orienting subsystems: an input pre-processinctr field 

Ft layer, the cluster units F2 layer, and a reset mechanism to control the degree of 

similarity of patterns placed on the same cluster. Procedures of bottom-up and top-down 

between FI and F2 carry out adaptive filtering and short term memory, modulation 

mapping and encoding. The orienting subsystem generates a reset wave to F2 when 

mismatches between bottom-up and top-down patterns occur at Fl. This reset wave 

selectively and enduringly inhibits active F2 cells when the input is shut off. Each time a 

pattern is presented, an appropriate cluster unit is chosen and that cluster's weights are 

adjusted to let the cluster unit learn the pattern. 

Gain 
Control 

+ 

+ 

Gain 
Control 

ATTENTIONAL ORIENTING 
SUBSYSTEM SUBSYSTEM 

Dipole Field 
STM -- F2 

+ STM 

LL 

+ LTM Res: 
et 

Wave 

TM ++ 

STM --F1 

+1 + 

input 

Figure B-1 The ART network architecture 

There are several architectures which can be used to implement ART2. The typical 

architecture of the ART2 network is illustrated in Figure B-2. The F1 layer is compound 

for six types of units, W, X, U, V, P, and Q. There are n units of each of these types, 
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Nomenclatures 

Nomenclature 

constant 

a- wavelet dilation parameter 
A(*) - activation function in the FFNN 

ao, bo -- discrete wavelet transform parameters 
b- wavelet translation parameter 
C- class vector 
Ckv - defined as Equation 3-6 

CF - confidence factor 

ci - random uncorrelated coefficient defined as Equation 3-13 

Cnoise - constant to adjust signal to noise ratio 
dk(X) 

- discriminant function of piece-wise 

ds - density of local extrema of wavelet transforin 

k- over all error in the fuzz-FFNN 

E[o] - expected value 

Eu - Euclidean distance 

F(co) f (co) -- Fourier transform 

G- wavelet synthesis filter 

g(k) - kth wavelet synthesis filter 

g(t) - window function of transform 

H- wavelet analysis filter 

h(k) - kth wavelet analysis filter 

m,, n- discrete wavelet transform parameters 

n(t) - white noise 

N,, tt, - number of attributes in an input vector of clustering 

NF - number of fuzzy regions 

NI - input variables of fuzzy-FFNN 

Nin - number of input patterns in clustering 

NP - number of patterns in a class 

17 3_ 



Nomenclatures 

oj - output of the j th neuron in the fuzzy -FFNN 
p- pattern matrix 

QS(x, t) - qualitative state 

s- scale 

T -- target value in fuzzy-FFNN training 

time 

wij - weights in the fuzzy-FFNN 

Wn(t) - wavelet transform of white noise 

WTýs, t) - wavelet transform of a function 

X- feature vector 

Jýxýj, -- p order norm 

x- input of fuzzy-FFNN 

Y- output of fuzzy-FFNN 

Z- integrates 

zi - exemplar vector in clustering 

Greek Symbols 

a -- Liptchitz exponent 

il learning rate in the FFNN 

[t fuzzy membership function 

p distance threshold of clustering 

a variance 

y -- wavelet function 

ý(t) -- wavelet scale function or orthogonal function 

o) -- frequency (domain) 
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