
Static Methods to Check

Low-Level Code for a Graph

Reduction Machine

by

Marco Polo Perez Cervantes

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

UNIVERSITY OF YORK

Department of Computer Science

November 2013

University Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Abstract

This thesis is about checking code for a graph-reduction machine computing by

template instantiation. An equation-based static checking method for low-level

code is proposed in this thesis. The checking can be performed without requir-

ing any extra code annotations. Most ill-behaved programs can be rejected and

most well-behaved programs can be accepted. The template code has no explicit

information about data types but the static checker works by inferring low-level

recursive types. We show compatibility between high-level and low-level type sys-

tems. We evaluate empirically the effectiveness of checking to prevent failures. We

investigate the low-level implementation of the static checker and how it can be

made efficient.

Contents

Abstract i

List of Figures vi

List of Tables ix

Acknowledgements xi

Declaration of Authorship xii

1 Introduction 1

1.1 Introduction . 1

1.2 Thesis Statement . 2

1.3 Thesis Rationale . 2

1.4 Contributions . 4

1.5 Roadmap . 4

2 Literature Review 6

2.1 Introduction . 6

2.2 Type Systems . 7

2.2.1 Type-Checking and Type-Inference 8

2.2.2 Polymorphism . 9

2.2.3 An Example of Type Inference 10

2.2.4 Recursive Types and Subtyping 11

2.3 Static Checking of bytecode . 12

2.3.1 A Machine over Types . 13

2.3.2 Subroutines . 16

2.3.3 Lightweight Bytecode Verification 16

2.4 PCC and TAL . 18

2.4.1 Proof Carrying Code . 18

2.4.2 Typed Assembly Language 20

2.4.2.1 An example: The sum of the first n natural numbers. 23

ii

Contents iii

2.4.3 Foundational Proof Carrying Code 24

2.4.4 Subsequent Developments Related to PCC and TAL 26

2.5 Summary . 27

3 A Kit to Evaluate Tools that Check Reduceron Code 29

3.1 Introduction . 29

3.2 Reduceron and Template Code . 30

Case tables. 30

Primitives. 30

Graph expressions and Templates. 31

How Reduceron is Related to our Work? 31

3.3 Template Code Syntax and Definition 31

3.3.1 An Example of Reduceron Template Code 32

3.4 The Reduceron Machine . 34

3.4.1 Transition rules for Reduceron 35

3.4.2 An Example: Minimum of Two Values 38

3.5 RunCheck : The Dynamic Checking Model 40

3.6 Mutating Reduceron Code . 41

Randomly created programs 41

Alteration by hand 41

Mutated programs 43

Mutated programs and Random Selection 43

Our Mutation Testing Approach. 43

Random Testing and Further Discussion 44

3.7 Kinds of Mutations . 44

3.7.1 Introduction . 44

Increment Mutations 45

Deletion of Atoms . 45

Swapping of Atoms 45

3.7.2 Mutation Rules . 46

Increment Mutations 46

Swapping Mutations 47

Delete Mutations . 47

All Mutations . 47

3.8 Classification of Results . 49

3.9 Summary . 50

4 TyreCheck 51

4.1 Introduction . 51

From TAB i to TAB i j k 52

4.2 AtomCheck . 52

4.2.1 Measuring Effectiveness of AtomCheck 54

4.3 PrimCheck . 54

Contents iv

Why not Dependent Types in the Type-checking Sys-
tem? . 55

4.3.1 Divide and Conquer . 56

4.3.2 An Example Application of the PrimCheck Rules 58

4.3.3 Properties of PrimCheck . 63

4.3.4 Measuring the Effectiveness of PrimCheck 63

4.4 TyreCheck . 65

4.4.1 Type-Terms . 65

Extensible Types and Extension Variables 66

4.4.2 Colmerauer’s Method to Solve Recursive Equations 66

4.4.3 Algebraic Data Types . 67

4.4.4 Rules for Solving Algebraic Data Types Equations 68

4.4.5 Collecting Equations for length Function: An Informal Ap-
proach . 70

Type Invariance and Recursion. 73

4.4.6 Rules for Collecting Equations 76

4.4.7 Accumulating Applications 77

4.4.8 Collection of Equations in a Template 77

4.4.9 The Application Rule. 78

4.4.10 Type Equations for Integer Blocks. 79

4.5 Measuring the Effectiveness of TyreCheck 79

4.5.1 Mutations : Delete . 81

4.5.2 Mutations : Increment . 83

4.5.3 Mutations : All . 84

4.5.4 Bad Guys and Good Guys 85

4.5.5 Tangled Functional Types 85

4.6 Summary . 87

5 Type Compatibility 88

5.1 Introduction . 88

5.2 Principles of Compatibility . 88

5.3 High Level Types . 90

5.3.1 Examples of Types and Data Type Definitions 90

5.4 Low-Level Types . 91

5.5 From High-level to Low-level Types 92

5.5.1 The Compilation of Data Type Declarations 93

5.5.2 Compiling Types for Each Function Definition 95

5.6 Examples of Translations. 95

5.6.1 An Example of Translation for Bool Data Type 95

5.6.2 Example of Type Compatibility of map Function 97

5.7 Type Compatibility and Discussion 98

5.8 Results . 100

5.8.1 Type Compatibility Results and Discussion 101

5.9 Summary . 103

Contents v

6 A More Efficient Implementation 104

6.1 Introduction . 104

6.2 Space and Time Costs . 105

6.3 Space and Time of TyreCheckH . 105

6.3.1 Profiling the Haskell Prototype 108

6.4 From TyreCheckH to TyreCheckC model 110

6.4.1 Template Translation Overview 111

6.4.2 Term-Types Translation Overview 114

6.4.3 Remarks on C Data Structures 114

6.5 Correspondence Results . 116

6.5.1 Discussion . 117

6.6 Time and Space Costs of TyreCheckC0 118

6.6.1 Time . 118

6.6.2 Space . 120

6.7 Space and Time of TyreCheckC1 121

6.7.1 Time of TyreCheckC1 . 121

6.7.2 Space of TyreCheckC1 . 124

Differences between TyreCheckC0 and TyreCheckC1. 124

6.8 Comparative Performance . 125

Execution time . 125

Memory allocation 125

A Really Fast Implementation 126

6.9 Summary . 127

7 Conclusions 129

7.1 Summary of Contributions . 129

7.2 Discussion . 130

7.3 Future Work . 131

Bibliography 132

List of Figures

2.1 Example of length function and its inferred type equations. 11

2.2 A small subset of Java bytecode instructions. 13

2.3 Example of abstract interpretation rules in Yellin and Gosling’s
static checker for Java bytecode. 14

2.4 Lightweight bytecode verification diagram. 17

2.5 Proof-carrying code diagram. 19

2.6 TAL transformation diagram. 21

2.7 An example of Popcorn and its TALx86 representation. 22

2.8 Foundational Proof-carrying code framework. 25

3.1 Template code syntax. 32

3.2 Jansen/Scott encoding for append function. 32

3.3 Flite append function translated from Flite to Template code. . . . 33

3.4 Reduceron machine description. 34

3.5 Auxiliary functions used by Reduceron transition rules. 35

3.6 Reduction rules for Reduceron. 37

3.7 Reduction rules for Reduceron(Emit and EmitInt Rules). 38

3.8 An illustrative example of minim program. 39

3.9 An illustrative example of transitions in Reduceron machine. 39

3.10 RunCheck transition function. 40

3.11 Reduction rules for RunCheck. 42

3.12 Template code for length function 46

3.13 Number of mutations for each atom in length function 47

3.14 Rule to mutate atoms by incremental damage. 48

3.15 Mutation classification diagram. 50

4.1 Haskell data type representation of Template code. 52

4.2 AtomCheck conditions of well-formed atom. 54

4.3 Rules to reduce primitives in PrimCheck (I). 59

4.4 Rules to reduce primitives in PrimCheck (II). 60

4.5 Rules to reduce primitives in PrimCheck (III). 60

4.6 Some properties of PrimCheck. 63

4.7 Type-terms definition. 66

4.8 Case example. 68

4.9 Rule to solve equations between two algebraic data types. 71

4.10 Processing the length function’s templates. 72

vi

List of Figures vii

4.11 Skeleton types for the length function’s split templates. 72

4.12 Templates for the two alternatives of the length function, and their
types. 74

4.13 Template coding of the case expression in length. 74

4.14 The final type equations extracted from template code for length. . 76

4.15 Rules to extract equations from Template code. 80

4.16 Rules to extract type-equation systems from Template code, given
type environment Γ. 81

4.17 Well-typed but ill-behaved template code in tautology mutants. . . 86

4.18 Some well-behaved but ill-typed template code in tautology mutants. 86

5.1 Type compatibility diagram. 89

5.2 High-level type language. 90

5.3 Low-level type language. 92

5.4 Translation of data type declarations (I). 94

5.5 Translation of data type declarations (II). 94

5.6 Compilation rules for types. 96

5.7 Example for type compatibility of the map function. 99

5.8 The actual model for type compatibility. 100

5.9 An example of a type compiled from high-level F-lite type and a
type inferred from low-level code, for the append function, along
with a solution showing these two types are compatible. 102

6.1 Reducing space and time: from a Haskell model to a C implemen-
tation (not to scale). 104

6.2 Code measures plotted against space and time costs. 109

6.3 GHC time and allocation report for TyreCheckH for the program
Queens. 110

6.4 GHC time and allocation report for TyreCheckH for the program
Braun. 111

6.5 GHC time and allocation report for TyreCheckH for the program
Sudoku. 111

6.6 Representing atoms in Haskell. 112

6.7 Representing atoms in C. 112

6.8 Atom lists in C. 113

6.9 Memory allocation constructors for atoms. 113

6.10 Haskell template declaration. 114

6.11 Template definition in C. 114

6.12 An illustrative example of type-term in C. 115

6.13 The drawEqnFor function removes in-place any assignment found. . 115

6.14 Interpretation diagram of compatibility results. 116

6.15 Illustrative example to assign functional types based on the arity. . 117

6.16 An small example of TAB constructor and its related alternatives. . 117

6.17 Profile time for the 10 most costly functions when checking Queens

executed 100 times using implementation TyreCheckC0. 119

List of Figures viii

6.18 Profile time for the 10 most costly functions when checking Braun

executed 100 times using implementation TyreCheckC0. 120

6.19 Comparative for space and time of TyreCheckC0 and TyreCheckH. 122

6.20 Profile time for the 10 most costly functions when checking Queens

executed 100 times using implementation TyreCheckC1. 122

6.21 Profile time for the 10 most costly functions when checking Braun

executed 100 times using implementation TyreCheckC1. 123

6.22 Comparative for space and time of TyreCheckC1,TyreCheckC0 and
TyreCheckH. 123

List of Tables

2.1 Main components of TALx86 implementation. 22

3.1 Averages of templates arities, case alternatives arities, and function
arities in the set of benchmark programs. 48

4.1 Mutations (200-All-AtomCheck) . 55

4.2 Mutations (200-All-PrimCheck) . 64

4.3 Mutations (200-Delete-PrimCheck) 82

4.4 Mutations (200-Delete-TyreCheck) 82

4.5 Mutations (200-Increment-PrimCheck) 83

4.6 Mutations (200-Increment-TyreCheck) 83

4.7 Mutations (200-All-PrimCheck) . 84

4.8 Mutations (200-All-TyreCheck) . 84

5.1 Property test over set of programs. 101

5.2 Measures of the type-equation systems obtained for all top-level def-
initions, both by inference from low-level code and by compilation
from high-level types, along with the time needed for the Haskell
model of TyreCheck to verify compatibility. 103

6.1 Number of atoms and templates in programs involved in experi-
ments for time and space cost. 106

6.2 Summary of total allocated memory and time for Haskell prototype. 107

6.3 Percentage of memory for the 10 most expensive functions used
when checking Queens and Braun using TyreCheckC0. 121

6.4 Percentage of memory for the 10 most expensive functions used
when checking Queens and Braun using TyreCheckC1. 124

6.5 Summary of time in seconds for the Haskell model and the C im-
plementations. 126

6.6 Summary of allocated memory in MB for the Haskell model and the
C implementations. 126

ix

For Isel, Iskay and Iyari.

x

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Professor

Colin Runciman for the continuous support of my PhD study and research, for his

patience, motivation, enthusiasm, and immense knowledge. His guidance helped

me in all the time of research and writing of this thesis.

I would like to thank the Plasma group for their insightful comments, and questions

during the group seminars.

I would like to thank my Dad and my Mom, and all the members of my very big

family.

Last but not the least, I would like to express my gratitude to Jenny, Ana, Alfonso,

Luis, Michael and Matthew for their support and friendship during my stay at UK.

xi

Declaration of Authorship

I, Marco Polo Perez Cervantes, declare that this thesis titled, ‘Static Methods to

Check Low-Level Code for a Graph Reduction Machine’ and the work presented

in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

xii

Chapter 1

Introduction

1.1 Introduction

In this thesis we are interested in the application of static checking techniques to

low-level code such as Reduceron template code [1]. The Reduceron is a graph

reduction machine that uses template instantiation model [2, 3], which can run

on reconfigurable hardware called FPGAs to exploit the advantage of parallel

computations.

Our work is not program verification, because we do not try to attest that a

program produces the correct result. In addition, we are not using disassembling

techniques to obtain and check a source-level representation.

The importance of low-level code verification is discussed in Clutterbuck’s [4] work

and also in Proof-Carrying Code [5], and Typed Assembly Language TAL [6].

More recently, and more similar to our approach, are the type-inference systems

described in [7] and [8]. The scope of the techniques presented in this thesis is not

limited to the static checking of template code for Reduceron. Similar methods

might be applied to other forms of byte-code or compiled-code.

During the compilation process, F-lite code is transformed to equivalent template

code (See §2 [1]). A well-established compiler might be trusted to produce safe

code. However, template code could be modified at some stage after compilation

and before execution, or template code might be supplied from some other source.

Faulty code could produce a failure at run-time such as an invalid memory access.

1

Chapter 1. Introduction 2

Our idea to is protect the Reduceron code against such failures by examination of

the low-level code of the Reduceron. Taking the ideas of PCC [5] and TAL [6, 9]

in which mobile code is verified before its execution, we investigate here how to

build a type-checking system to guard against unsafe template code such as code

modified inappropriately by hand, or code intercepted and altered before it reaches

the target machine. Unlike [7] and [8], we do not use any extra annotations but

infer types directly from template code.

1.2 Thesis Statement

Here we present the claims for our thesis.

1. Type-Checking methods can be used as the basis of a static checker for low-

level code such as Reduceron template code. The checking can be performed

without requiring any extra code annotations.

2. In experimental tests using mutated programs most ill-behaved programs

can be rejected and most well-behaved programs can be accepted.

3. The low-level types inferred during static checking of typeless template code

can be shown compatible with translated high-level types in source programs.

4. Checking can be made efficient in the following sense : the time and space

complexity can be reduced by translating the model into an implementation,

giving the first step towards further optimisations.

1.3 Thesis Rationale

• Type-Checking methods can be used as the basis of a static checker for low-

level code such as Reduceron template code. In the high-level source, several

static methods can be used to prove with rigour that source program sat-

isfies some requirements. However, the problem arises when the compiled

code is sent to the code consumer by using an unreliable channel. Who

can tell us that the code will respect the invariants of the high-level speci-

fication? We can choose a complex method to check the template code, for

Chapter 1. Introduction 3

instance requiring a certificate from the code producer guaranteeing that the

code comes from a trusted producer. This approach depends on the code

producer and moreover, it only attests that the program is provided from a

trusted source, but not that the code is well-behaved. By type-checking the

template code we can catch type errors before the template code is executed.

This method provides a feasible way to check if some template code is well-

behaved. However the type inference for low-level code is a challenging task,

at low-level for instance there is much less information for algebraic data

types than its high-level representation. Although we have decided to start

with a type-checker there are other static checking methods based on data

flow analysis [10, 11] which can be combined with type-checking. We refer

the reader to Chapter 2 in [12] for further details in verification techniques

for low-level code.

The checking can be performed without requiring any extra code annotations.

Although no explicit type information is provided in the low-level code, it is

feasible and possible to infer type information. Here, it is important to note

that our work is focused on low-level code without any extra information.

The opposite approach to our work is in [13–16], where the source-level code

is checked or verified by using extra information.

• Most ill-behaved programs can be rejected and most well-behaved programs

can be accepted. Taking as basis the statement of Milner : “Well-typed

programs cannot go wrong“ [17] , we can measure the effectiveness of the type

checking by comparing the static checking and the operational semantics.

Ideally, the well-behaved programs are well-typed and the ill-behaved are ill-

typed. In Chapter 4 we measure the extent to which this ideal is achieved.

• The low-level types inferred during static checking of typeless template code

can be shown compatible with translated high-level types in source programs.

The type compatibility between the high-level and the low-level type systems

is expressed in the properties of the solutions for the system of equations in

both systems.

• Checking can be made efficient in the following sense : the time and space

complexity can be reduced by translating the model into an implementation,

giving the first step towards further optimisations. As a starting point we

Chapter 1. Introduction 4

could take advantage of the single-threaded data structures in the imple-

mentation to have a gain in the efficiency and in the reduction of the costs

of memory.

1.4 Contributions

The main contribution is the use of type-checking methods to check statically low-

level code, and prevent the occurrence of run-time failures. In addition, this static

checking can be efficient, using a minimal amount of resources in the run-time

system. Our contributions are:

• To avoid the need for dependent types, as used in some other static checkers

for low-level code [7, 8], we apply a primitive analysis before the type infer-

ence phase. We call this analysis PrimCheck, and it eliminates the primitive

applications from template code. The details are in Chapter 4 §4.3.

• Our second contribution is the way of viewing the type inference problem

as a problem of solving a system of equations [18]. We can extract the

type information from untyped compiled code such as Reduceron template

code. In §4.4.4 of Chapter 4 we explain this idea. We combine the ideas of

Cardelli’s and Colmerauer’s work in [18, 19].

• We evaluate empirically the effectiveness of checking to prevent failures.

• We show compatibility between high-level and low-level type systems.

• We investigate the low-level implementation of the static checker and how it

can be made efficient.

1.5 Roadmap

In Chapter 2 we give a general background of some of the static checking techniques

for low-level code. We start the discussion with type checking and type inference

approaches [18, 20], we continue with Java byte-code verification [21–25], and we

end with Proof-Carrying Code [5] and related techniques [6, 26–32].

Chapter 1. Introduction 5

In Chapter 3 we give a description of a framework for testing, constructing a tool

set to measure empirically the effectiveness of the static methods proposed in this

thesis. We start with the description of the Reduceron machine, then we follow

with the approach of mutating [33] the programs to be measured. Finally, we

explain how we classify the results of our experiments.

In Chapter 4 we describe a type inference system for Reduceron code. Without

using any extra information, we derive a system of type equations from Reduceron

template code. We call this model Tyre-Check. We split the static checking into

three phases which are described in the following order:

• AtomCheck, is a sanity check for template code.

• PrimCheck, a primitive analysis to eliminate the application of primitives.

• TyreCheck, the actual type inference.

In addition, by using mutated programs we evaluate empirically the effectiveness

of checking to prevent failures.

In Chapter 5 we investigate the type-compatibility between a high-level type sys-

tem for F-lite source program and the low-level type system for Reduceron code.

Here, we describe the main parts of the type system for F-lite, then we explain the

main points of the translation from high-level types to low-level type-terms equa-

tions. Finally, we show empirically that inferred low-level types are compatible

with translated high-level types.

In Chapter 6 we explore issues of efficiency. In particular, we give an implementa-

tion in C language for the Haskell model. We give the description for the Haskell

model –TyreCheckH, then we measure the time and complexity of this model.

Then we explain the main points of the translation from our Haskell model to the

C implementation – TyreCheckC0. We measure the TyreCheckC0 in terms of time

and space to detect the components of the checker requiring the greatest memory

allocation and the most time-consuming functions. Finally, we give an improved

version of our C implementation which we call TyreCheckC1.

In Chapter 7 we state our overall conclusions, and identify the possible lines of

future work.

Chapter 2

Literature Review

The purpose of this Chapter is to give a general idea of the static checking and

verification techniques. As our work is based on static checking and not verification

(eg. program correctness), we explore the related techniques to static checking in

more detail.

In §2.1 we give a brief background of the verification and checking of low-level

code. In §2.2 we explore the literature related to types. In §2.3 the verification

and checking of byte code is explored. In §2.4 we give general descriptions of

Proof-carrying Code, Typed Assembly Language and related techniques. Finally,

in §2.5 we give a summary of the techniques presented in this chapter.

2.1 Introduction

The program verification problem is not a new topic in Computer Science. This

problem has been studied by some well-known computer scientists (Floyd, Hoare et

al) [34–37] in the 60’s and 70’s, giving the foundations for research in this area for

high-level code. Even if those techniques were originally conceived for high-level

code, they could be applied to verify and check low-level code.

Late in the 80s Clutterbuck and Carré pointed out the importance of the verifica-

tion of low-level code [4]. Nowadays, it seems to be important to verify low-level

code due to the ubiquity of software. The massive networks in which code is in

the form of binaries are a jungle where the code can be trapped and modified

maliciously. Another application of the low-level verification is when we need

6

Chapter 2. Literature Review 7

to perform some hand-coded optimisations in installed software: in the scenario

where the raw code does not contain information or a mechanism to prevent the

introduction of erroneous code. We cannot know if the code is safe according to the

high-level specifications. More recently the problem of low-evel code verification

has been studied by Myreen and Gordon [38, 39].

In this review we explore some related techniques for static verification of mobile

code. For our purposes, mobile code is defined as a piece of code produced by a

different computer or compiler (e.g., untrusted code producer) from the computer

where the code is going to be executed (e.g., host machine).

In general, the mobile code is transported as assembly code or bytecode from one

agent to another over an unreliable network. It is executed by the run-time system

in the host computer. Some of the techniques described here, have in common

that the hard part of the verification process is done by the code producer, at

compilation time. Then the code consumer at loading time checks the untrusted

code by using a light-weight verification algorithm. This checking guarantees the

code is well-behaved according to the safety policies of the host run-time system.

The spectrum of low level-code is broad, it can include bytecode, assembly code

or machine code. For our work, we use these three models of low-level code

interchangeably.

2.2 Type Systems

One discipline that addresses program static verification in a formal way is type

systems [18, 20, 40]. Type systems can be used at high-level as well as in low-

level code. This discipline guarantees at compile time that programs will not fail

because of typing conflicts during the execution of the program. Informally, one

view of a type system is a system to prevent the occurrence of execution errors in

a program at run-time [18].

One of the first computer languages that had a type system was FORTRAN [20],

establishing distinctions between floating-point and integer numbers. The study

of type systems has passed from an informal discipline to a formal discipline.

According to Cardelli [18], type systems should be:

Chapter 2. Literature Review 8

• Checkable. By using a decidable algorithm (called type-checking), the pro-

grammer can verify that a given program is well-behaved. If checking fails,

the programmer catches possible errors before they happen.

• Transparent. The type system will report an evident reason for the fault, in

case of a type-check error in the program.

• Enforceable. The type declarations, and the associated programs or func-

tions, should be routinely verified.

2.2.1 Type-Checking and Type-Inference

There are two techniques that implement a type system. Type-checking attests

that the type information explicitly given by the programmer is consistent with

the language definition constraints. On the other hand, type-inference algorithms

calculate the type information without any extra type signatures, they use an

inference system to determine the type compatibility between expressions. We

could have the combination of both algorithms, if we provide some hints to make

the inference or the checking fast. In our work we use the type-inference technique.

The type-checking and type-inference algorithms are core components for the im-

plementation of a type system. One type system can be implemented by several

type-checking or type-inference algorithms. Such algorithms verify or infer that

the operations in functions correspond to their type abstractions. They can check,

for example, that a sum operation is performed only over numeric values; or they

can guarantee that a concatenation of a list and a pair is not performed. Type-

checking is part of the compilation stage, and in its origin, it was conceived to work

with high-level representations of computer languages. Possible errors related to

a mismatch in types can be detected before the program is running. According

to Milner, an important design goal for the systems is that if the program code

respects the typing rules imposed in the type system, then the program “will not

go wrong” [17] during execution time.

If some type information is provided then the type-checker will detect if there are

inconsistencies between the provided signature and the inferred types. We may

view type checkers as theorem provers but offering more information if an error

occurs during the rule derivation.

Chapter 2. Literature Review 9

2.2.2 Polymorphism

The main idea of parametric polymorphism [41] is that we can define generic

functions to avoid the expansion of the size in a given program. For instance,

consider a function to compute the addition of two numbers. We can define several

functions to deal with integers and real numbers. By using polymorphism, we can

write one function with generic parameters that allow the inclusion of integer and

real parameters.

One of the basic principles in type systems with polymorphic types is the idea of

unification. This algorithm decides if a pair of type expressions are compatible.

By unifying pairs of type expressions we can get the most general unifier [42].

More precisely, a finite mapping from type variables to types. The connection

between Robinson’s unification algorithm [42] and polymorphic type systems was

discovered by Milner [17].

The idea behind type-inference is to reconstruct the types of the expressions. It

can be viewed as a two stage process. In the first stage, the primitive types (of the

abstract syntax tree) of an expression are introduced. In this part of the process

the unknown types for the expressions are labelled as new variables. In the second

stage, the types for the unknown types are reconstructed or calculated using type-

inference rules. This last part involves the unification of the equation types in

order to get the most general type. The typing rules are applied recursively to the

abstract syntax tree. At the end of the process (if it terminates), we obtain from

the context the types for every single expression in the program.

Most modern functional languages make extensive use of types [43–45]. By us-

ing strong type systems in functional programming we can generate type-safe

components of software. For example by using type signatures in functions the

programmer can catch type errors at compile time, thus improving the produc-

tivity of the software development process. In addition, type signature provides a

good way of documenting the code [20]. The lack of side-effects in the declarative

style provides a strong mechanism to construct programs and reason about their

properties. Moreover the size of the programs can be drastically reduced by using

higher-order functions and lazy evaluation [46]. Pierce and Cardelli’s work pro-

vides a full and deep coverage of type systems and their relation to programming

languages [18, 20].

Chapter 2. Literature Review 10

2.2.3 An Example of Type Inference

In Figure 2.1 we have the length function defined as two pattern matching defini-

tions in 2.1 and 2.2. In the remaining part of the Figure 2.1 we depict briefly the

type equations to infer the type for length function. Before we proceed with the

type equations explanation, we recall that the type of length is [a] → Int. That is,

a function that takes a polymorphic list of type [a], and returns the length, which

is of type Int.

Now we describe the type equations informally, and how we can discover the type

information. To start, we introduce an equation to denote the type of length in

Equation 2.3. At this moment we only know that a function length is a function

with type a → b, from type a to another type b. In the same way we establish the

type equations in 2.4 and 2.5 for the two pattern matching definitions of length.

From the argument of definition 2.4, we discover that the type variable a0 is a

list of some type a2, we denote this in Equation 2.6. From the right hand side

of 2.4 we can see that the type of b0 is Int, and we denote it on Equation 2.7.

For the second definition 2.5, we extract the type of the argument, we discover

that the type variable a1 is a list of some type a3, we denote this in Equation 2.8.

The most interesting part is in the right hand side of 2.5. There are two function

applications, the first one is the function (+) applied to two arguments of type

Int in Equation 2.9, the first argument is the numeric constant which is of type

Int. The second argument is the application of the function length itself to the

remaining list xs, we introduce a new type variable b2, and we add the constraint

that it must be of type Int in Equation 2.10. Apart from that, the variable b2

must be equal to the application of length to the remaining list denoted in type

[a3], that is denoted in Equation 2.11. In Equation 2.11, notice the type of the

length function which is a copy and not an instance of length type. We need a

copy of the type because the type must be the same when we have a recursive

call. In Equation 2.11 we introduce a new type variable b3, which will be the type

result of that function application. The last equation is 2.13 and that constraint

l0=l1 guarantees that the two definitions are type compatible. Once we solve these

equations we obtain a system of equations, where the type of the length function

is denoted by Equations 2.14, 2.15, 2.16, and 2.17.

Chapter 2. Literature Review 11

Definition of length :

length[] = 0 (2.1)

length(x : xs) = (+) 1 (length xs) (2.2)

Type equations :

l = a→ b (2.3)

l0 = a0 → b0 (2.4)

l1 = a1 → b1 (2.5)

a0 = [a2] (2.6)

b0 = Int (2.7)

a1 = [a3] (2.8)

b1 = Int (2.9)

b2 = Int (2.10)

a→ b = [a3]→ b3 (2.11)

b3 = b2 (2.12)

l0 = l1 (2.13)

Solving type equations:

l = a→ b (2.14)

a = [a3] (2.15)

b = b3 (2.16)

b3 = Int (2.17)

Figure 2.1: Example of length function and its inferred type equations.

2.2.4 Recursive Types and Subtyping

Recursive definitions are present in most programming languages. For example

in functional programming languages such as ML or Haskell data structures like

trees or lists are instances of recursive types. In section 2.2.3 we saw that it is

possible to handle recursive type information by means of equations containing

recursive references in their subterms: we reuse the idea of Abadi’s and Cardelli’s

work stated in the following slogan: “Recursive types can hence be described by

equations, and we shall see that in fact they can be unambiguously defined by

equations.” [47].

Chapter 2. Literature Review 12

The problem of subtyping is a whole area, and it has been studied by Cardelli,

Mitchell et al [47–55].

2.3 Static Checking of bytecode

Much of the work on low-level verification of bytecode has been prompted by the

development of Java bytecode which is executed by the Java Virtual Machine

JVM [56, 57]. Probably this tendency is due to the popularity of Java and the use

of architecture-independent design. The same Java code should run everywhere

without changes. In addition to that, any language could potentially be compiled

to Java bytecode, allowing more flexibility for the programmer.

Java bytecode was designed to be portable and statically checked [58]. The pro-

liferation of many architectures forced the programming language community to

think how to write different code for each specific platform. The price of this

portability is the vulnerability of the host machine, as Java bytecode can be down-

loaded from an untrusted source. Hence the machine needs some mechanisms to

prevent ill-behaved programs. Gosling was inspired by the idea of bytecode from

UCSD Pascal which used a primitive bytecode called p-code and ran in a virtual

machine. “The solution we chose was to compile to a byte coded machine inde-

pendent instruction set that bears a certain resemblance to things like the UCSD

Pascal P-Code” [58].

Java bytecode is a sequence of opcodes. Some opcodes contain implicit type infor-

mation in the instructions. For example, in Figure 2.2 a small subset of instructions

is illustrated and denoted by instr. The opcode iload n is the instruction that

loads an int value n from a local variable, the opcode aload n loads a reference

from a register n onto the stack, the opcode astore n stores a reference into a

register, opcode iadd adds two ints from the top of the stack, the instruction goto

l jumps to another instruction in the set of instructions denoted by l, iconst n

loads the numeric constant n into the stack, and finally, the ifeq l opcode is a

conditional jump, if the local variable is zero then it jumps to the instruction at

label l.

Static analysis techniques for Java bytecode verification [25, 56] are well known

in the bytecode verification community. Model checking, abstract interpretation,

type-checking , or the combination of some of them, are the main methods used

Chapter 2. Literature Review 13

instr :: = iload n

| aload n

| astore n

| goto l

| iadd

| iconst n

| ifeq l

Figure 2.2: A small subset of Java bytecode instructions.

to deal with the problems of security in the JVM at load time. The first approach

to stop ill-typed programs was due to Cohen [23], who proposed dynamic checking

in a so-called defensive Java Virtual Machine (dJVM). Cohen used ACL2 [59] as

a language to specify and validate the model. However, in practice the cost of

checking at run-time was too high.

2.3.1 A Machine over Types

To alleviate the problems of dynamic-checking Java bytecode verification, some

ideas of static checking came in the 90s. The first implementation was an abstract

machine that uses data flow analysis (DFA) combined with type-checking, devel-

oped by Yellin and Gosling at Sun [58]. Basically, this abstract machine checks the

type information of every instruction in the code. It works over types instead of

concrete values. In addition to type-checking it makes pertinent checks to detect

possible underflow or overflow in the stack of type instructions and in the stack of

type registers.

The static checking of Java bytecode includes several stages in the work of Yellin

and Gosling, in this literature review we are only interested in two points: The

code is free of stack overflow and stack underflow, and It is type safe. The Java

bytecode is safe if the following constraints are true:

• The code is free of stack overflow and stack underflow.

• It is type safe.

• The program counter is in the scope of the method.

• The code has a valid register initialisation.

• It has the objects initialised before they are used.

Chapter 2. Literature Review 14

[[iconst n]] < S,R >⇒ < int : S,R >
where
S < MaxStackSize

[[astore n]] < t : S,R >⇒ < S,R[n\t] >
where
0 <= n < MaxRegSize ∧ t <: Obj

[[iadd]] < int : int : S,R >⇒ < int : S,R >

[[iload n]] < S,R >⇒ < int : S,R >
where
0 <= n < MaxRegSize ∧Rn = int ∧ |S| < MaxStackSize

[[istore n]] < int : S,R >⇒ < S,R[n\int] >
where
0 <= n < MaxRegSize

[[aload n]] < S,R >⇒ < Rn : S,R >
where
0 <= n < MaxRegSize ∧Rn <: Obj ∧ |S| < MaxStackSize

Figure 2.3: Example of abstract interpretation rules in Yellin and Gosling’s
static checker for Java bytecode.

The JVM is a stack machine in which the instructions are popped or pushed onto

the stack during execution. One way to verify that the code is safe, is to use a

model to approximate execution on a defensive dJVM. Here is where the abstract

interpretation machine enters into the scene. Instead of working over concrete

values it operates over types. Basically this method is a combination of data flow

analysis DFA and type-checking.

The abstract interpreter checks that every instruction before its execution satisfies

some specified properties in the form of constraints. These constraints can be

related to types or memory bounds. The safety of the byte code can be guaranteed

at linking time or loading time, so checking is done only once. Once the verification

has been performed then the normal JVM can execute the bytecode as many times

as needed.

More formally, the abstract interpreter is a transition relation that operates over

types of instructions and registers [25], and it is denoted in Figure 2.3 as

[[instr]] < S,R >⇒ < S ′, R′ >.

Chapter 2. Literature Review 15

Here instr is the instruction, S is the stack of types for instructions, and R is the

stack of types for each registers. S ′ and R′ are the new stacks, for instruction and

register types. Figure 2.3 illustrates an example rules for common instructions

used by the this transition relation model.

The rule iconst n simply pushes an int type on top of the stack denoted by int:S ;

in addition it checks that the current size of the stack is less than the maximum

stack size MaxStackSize. The second rule, iadd, takes two ints from the top of

the stack and pushes an int type on top of the stack denoted by int:S. When the

instruction iload is evaluated in the abstract machine, it checks that the register

at index n is of type int, also checks the bounds of the register n and the size of

the stack S. If all the checking is correct then it pushes a type int on top of the

stack. The instruction istore stores int type from the top of the stack int:S into

the type register R n. Before this substitution is performed it checks the limit of

n to be consistent to the size of R, n < MaxRegSize. The instructions aload and

astore have similar behaviour, but instead of checking that a type is an int type,

it looks for a more generic type of type Object, in the stack S and in the record

type set R. In all, there are more than 200 instructions for the JVM, here we have

presented the rules only for six of them to illustrate how the abstract machine for

types works.

If there is no transition for some state then the machine is stuck. For instance,

the istore rule assumes that the top of the stack must be an int. If we have

an opcode istore and the top of the stack type is not compatible with int then

there is no meaning for that state. It is important to say that the verification

consists of several steps, the abstract interpreter is applied only after previous

checking for sanity, and method initialisation. Here we only present some rules for

the verification of instructions inside a method; there are transition machines for

methods, and classes. For calculating types of objects it uses a subtyping relation

<:, where classes are subtypes of Object.

This model of verifying Java bytecode by combining DFA and type-checking is the

most common. However, the specification for JVM lacks the required formalism,

and some inconsistencies are found in the specification [22].

In order to provide a specification for JVM as the basis for a static method to

check the bytecode, a new formulation was proposed by Klein, Nipkow, Quian,

Coglio et al [22, 24, 60, 61], based on theorem provers such as HOL and Isabelle.

Chapter 2. Literature Review 16

Moreover, this formalism can be used by others to explore the properties of the

verification techniques or the JVM. The work was proven to be valid for a non-

trivial subset of byte code instructions, with mechanically checked proofs, offering

some guarantee of reliability.

2.3.2 Subroutines

The verification of Java bytecode is a hard task. One of the biggest problems

is verification of subroutines. They are problematic because subroutines share

the same stack frame as the method calling them; because of this sharing, the

addresses when a subroutine is called can have a polymorphic type. The main

reason of having subroutines in Java is to support the isolation of the code. The

classic example is the try − catch − finally block to handle exceptions when a

problem arises during the execution.

The subroutine verification problem for bytecode was first addressed in the work

of Stata and Abadi [21] at the end of the 90s. Klein developed a verified extended

checker for subroutines by using models in HOL/Isabelle in [62]. A complete sec-

tion in Leroy’s survey [25] reviews the history of subroutine verification problems,

and some solutions to handle this problem.

2.3.3 Lightweight Bytecode Verification

Another branch of bytecode verification is Lightweight Bytecode Verification (LBV),

whose main purpose is to verify Java Smart Cards [63]. The proliferation of small

devices which execute untrusted byte code, brings new challenges into the scenario

of bytecode verification.

One of these problems is the small amount of resources available in such devices.

Under these conditions standard bytecode verification algorithms are not feasible,

due to the large amount of computation and memory usage. The first attempt to

verify code in small devices was proposed by Rose et al [64, 65]. The main idea of

LBV is to decouple the problem of the verification in two stages:

• At compilation time a certificate (the output of the data flow analysis (DFA))

is created,

Chapter 2. Literature Review 17

Figure 2.4: Lightweight bytecode verification diagram.

• At loading time the certificate (only the needed information) along with the

code is checked in the small device.

This approach reduces the computation steps required in the smart cards to val-

idate the bytecode. All the hard work has been done off-line, with results in the

form of a certificate.

The diagram in Figure 2.4 describes the overall mechanism of . In the compiler

side we have the DFA which produces a Certificate. This certificate makes use of

the typing rules for Java byte code. The Checker on the smart card side, takes

the certificate and validates it by reconstructing only the information that can

be obtained in one single pass in the bytecode. If the proof is correct then the

bytecode is sent to the JVM to be executed. Notice that the DFA and the Checker

make use of the type information reconstructed and assigned to each instruction

and stack frame by the LBV.

Chapter 2. Literature Review 18

2.4 PCC and TAL

2.4.1 Proof Carrying Code

Proof Carrying Code (PCC) [5] was proposed by Necula and Lee in 1997. The aim

of PCC is to provide a safety proof, along with the binary code, to the host system.

This proof is generated by the compiler or code producer, and attests that the

attached code respects the security policy provided by the code consumer. Formal

logic is used to express this safety policy. The PCC technique is based on the idea

of having almost all the process of verification performed by the producer. All the

code consumer has to do, is to check “off-line” the proof attached to the untrusted

code. Once this checking process is performed, and if the check succeeds, the code

consumer can execute the code without using extra verification tools. So execution

time is not increased.

In the PCC system, everything is centred around the safety policy [5]. The safety

policy (shown in Figure 2.5) is provided by the code consumer. Proof that a

safety policy is respected involves three components : a set of rules(e.g., type-

inference rules), the verification condition generator VCGen (producing Floyd-

Style predicates [34]), and the interface which is basically a set of preconditions

and post conditions describing the invariants before and after the function calls.

VCGen takes as input the safety rules, the assembly code, and the preconditions

and post conditions to compute a set of safety predicates in first-order logic. The

verification of this safety predicate is the proof that the code respects the safety

policy given by the code consumer. The verification is performed by a theorem

prover. The proof is encoded in a subset of Logical Framework (LF) along with

the assembly code, and sent forward to the code consumer. The code consumer

uses a type-checking algorithm for LF representation, to verify that the proof is

safe. If it type-checks, then the code respects the safety rules provided by the

consumer of the untrusted code.

Here we list some of the main advantages of the PCC technique :

• The verification of the proof is faster than its production. A fast type-

checking algorithm is used to prove the correctness of the proof attached to

the binary code.

Chapter 2. Literature Review 19

Source Program

Compilation and
Certification

Binary Code and Safety Proof

Proof Validation Safety Policy

CPU

Figure 2.5: Proof-carrying code diagram.

• PCC is tamper-proof, any alteration in the binary code or in the proof is

trapped by the verification process. As analogy with types, we can see the

safety proof validation as type-checking. If we modify the code the program

then it might be not longer a valid typed program, in the same way, if we

modify the safety proof, then the validation results in an error. In the case

that the safety proof and the code are modified, if the proof respects the

safety policy then the program is safe, even if it is not correct.

• Common techniques can be used across different programming languages.

First-order logic provides a way to prove the correctness of a given program

independently of the language used to construct the program. The experi-

ments in the original PCC were focused on verifying type information and

memory safety.

• PCC verifies the correctness of code. It avoids reliance on trusted producers

(e.g., a certified compiler). It is a general framework that can be used even

if the source of code is untrusted.

Chapter 2. Literature Review 20

• This technique alleviates the problem of the verification on a target machine

with few resources, since the heavy part of verification is performed by the

producer.

The main disadvantages of PCC are:

• The size of the proof can be very big in comparison to the size of code.

• The VCGen is a big piece of code, the verification of such piece code is a

challenging task. A bug in the VCGen could end in a wrong verification

condition predicate.

2.4.2 Typed Assembly Language

A related technique to PCC is Typed Assembly Language (TAL) [6], which was

developed in 1998 by Morrissett et al. The basic idea in TAL system is that the

compiler can insert type information in the form of labels in the assembly code.

The approach of TAL systems is to preserve the typing information in the process

of compilation, from the source code to the assembly language. If the assembly

code type-checks then the code respects the operations or rules previously given

by the code consumer in the form of typing rules. This technique is less robust

than PCC, in the sense that it only tackles the problem of type safety.

Some compilers using this technique were developed, each of which preserves typing

information from source code to intermediate stages, such as closure conversion or

lambda lifting. Figure 2.6 depicts a staged transformation from System F (λF) to

Typed Assembly Code (RISC instructions) as follows:

• The intermediate language λF is transformed to λK which uses Continu-

ation Passing Style. In this part of the transformation, the intermediate

language has continuations, instead of returning values the functions apply

a continuation to them.

• The transformation from λK to λC and λH is in two steps. The first one is a

simplified closure conversion; any variable from the context of the function

must be transformed to additional arguments of the specific function. The

second step is a lambda lifting process, in which all the local definitions of

functions are hoisted by using functions and parameters.

Chapter 2. Literature Review 21

λF

λK

λC

λH

λA

TAL

Continuation Passing Style

Closure Conversion

Hoisting

Allocation

Code Generation

Figure 2.6: TAL transformation diagram.

• The transformation from λC and λH to λA is called allocation and produces

the intermediate language with “lets” as constructors, these let instructions

represent allocations in memory. Initialisation flags are added to every field

of tuples defined in the previous stage.

• The last transformation from λA to TAL generates the TAL code. A simple

type-checker algorithm checks the TAL code off-line.

Another implementation of TALx86 [26], is a realistic typed assembly language,

sufficient to implement a subset of typed C called Popcorn. Many properties can

be checked using typing information, those properties include memory address

allocation, types of the variables, stack-allocation, and basic type constructors

(e.g., arrays and tagged unions).

The TALx86 instructions are a significant set of INTEL IA32 (32-bit 80x86 flat

model) assembly language, to be executed on Intel Pentium processors. Table 2.1

identifies the main components involved in the TALx86 system.

TALx86 uses MASM syntax for data and instructions. The data is extended to

handle the type annotations inserted in the code. The type preconditions in form

of annotations, are used to specify the types of the instructions before the control

of the code is passed from one address to other. These kind of annotations are of

Chapter 2. Literature Review 22

TALx86 tools
talc Type-checker for TALx86 code.
link-verifier Linker for TALx86. Verifies that the linking of TALx86

files is safe.
assembler Assembles a TALx86 code to produce the object file

(COFF or ELF format)
popcorn Subset of C that compiles to TALx86.

Table 2.1: Main components of TALx86 implementation.

-- PopCorn code

int i= n+1;

int s= 0;

while (--i> 0)

s +=i;

-- TALx86 code

mov eax,ecx ; i=n

inc eax ; ++i

mov ebx,0 ; s=0

jmp test

body :{eax:B4, ebx:B4}

add ebx,eax ; s+=i

test :{eax:B4, ebx:B4}

dec eax ; i--

cmp eax,0 ; i>0

jg body

Figure 2.7: An example of Popcorn and its TALx86 representation.

the form : ∀α1 : κ1...αm : κm.r1 : τ1, ..., r :n: τn where α1, ..., αm : are the bound

type variables, and allow registers to have a polymorphic type. The annotation

r1 : τ1, ..., r :n: τn says that every record from r1 through rn has the type τ1 to τn re-

spectively. The κ1 and κm allow the possibility of having different “kinds” of types

in the TALx86 implementation. The type-checker talc verifies that instructions

respect these type annotations for a given piece of assembly code.

Chapter 2. Literature Review 23

2.4.2.1 An example: The sum of the first n natural numbers.

Figure 2.7 shows Popcorn code to compute the sum of the first n numbers. The

fragment of the corresponding assembly code is in the same Figure 2.7. This

assembly code includes annotations for types in the body and test labels. In the

label body, the type annotations eax : B4 and ebx : B4 mean that eax and ebx

have type B4 (abbreviation of Byte 4). A similar situation occurs in the label test

where eax and ebx are required to be of type B4. This simple example shows how

the types are represented in TALx86.

Array-bounds checking is the one of most complicated aspects of TALx86. This is

because the size of the array is unknown until the execution of the code. TALx86

uses two type constructors: the first new type constructor is S(s), which is called

singleton type, where s is an integer expression. The purpose of this new type is

to assign an integer value to the register, for example, if ecx is represented as S(4)

then the value in ecx must be 4.

The second type constructor is array(s, τ) where τ is the type of the array elements

and s is an integer expression representing the size of the array.

One main difference between TAL and PCC is that TAL applies a type-checking

algorithm to the assembly code avoiding the use of proofs in a separate logical

framework (LF). There is no need for a separate theorem prover. In this way, the

size of the binary code is considerably reduced if it is compared against the binary

code produced by PCC systems. Provided that types are preserved along the whole

process of compilation, this technique generates safe assembly code automatically.

The main advantage of this technique is the reduction of the Trusted Code Base.

The verification process on the consumer side, requires only a type-checker for the

typed assembly code.

Advantages of TAL include :

• The size of the binary code is reduced. It is not necessary to have a proof in

a separate logical framework. The typed assembly language serves as source

for type-checking tools.

• A Simple and fast type-checking algorithm is applied to the annotated as-

sembly code. If the code type-checks then it is safe to execute. In practise

Chapter 2. Literature Review 24

the actual code is kept separated from the type information, allowing to

execute the assembly code in the standard way.

• The process to create typed assembly code can be automatic, by the preser-

vation of the types during the compilation process.

The main disadvantages of TAL are :

• Any program that violates a type system’s invariants will not be typeable

under that type system, even if the code is actually safe.

• It is less powerful and general than the PCC technique. PCC is more general

because it can be applied to check other properties not related to the type

system.

2.4.3 Foundational Proof Carrying Code

Foundational Proof Carrying Code (FPCC) was developed around 2001 by Appel

et al [27]. The main idea of FPCC is to reduce the Trusted Code Base (TCB)

proposed originally by Necula in his PCC system. The main motivation of FPCC

is to make the TCB as small as possible, without committing to any specific type

system [28]. In the FPCC system, the VCGen is eliminated in order to reduce the

TCB. Appel argues that the VCGen tool has too many lines of code (˜23,000 lines

of C). Proofs may be wrong due to the presence of a bug in VCGen, resulting in

a flawed verification process. In Figure 2.8, we can see that the only two elements

of the TCB are the Checker and the Axioms and Architecture Specification (the

safety policy). The models for types are independent of the safety policy, making

FPCC a more extensible system than its counterpart PCC.

The main advantages of the FPCC technique are:

• Reduction of the Trusted Code Base. The elimination of VCGen reduces

the size of the TCB, also the possible bugs inside the VCGen are eliminated.

Instead of using first-order predicate logic the FPCC system uses higher-

order logic predicates, which is a more powerful logic.

Chapter 2. Literature Review 25

Source Program

Certifying Compiler

LTAL Program/-
Machinecode

Checker OK!

LTAL Clauses

Proofs of
LTAL clauses

LTAL operators

Type Models

Axioms and Ar-
chitecture Spec

Figure 2.8: Foundational Proof-carrying code framework.

• FPCC uses the idea from TAL systems of producing assembly code with

types in an automatic way, and the approach of the PCC technique of hav-

ing a proof attached to the code that can be rigorously and mathemati-

cally checked. The proofs are generated and represented in Low-level TAL

(LTAL), which is a representation of machine-code.

• The separation of typing rules from safety policy makes the FPCC system

an extensible framework. With this advantage new models of types can be

added without any alteration in the current system.

The main drawback of FPCC is:

• A big amount of the logic is moved from VCGen to safety proofs. Due to

this situation the size of the proofs is greatly increased. The need for very

large proofs is the biggest cost of having a more general PCC system.

Chapter 2. Literature Review 26

2.4.4 Subsequent Developments Related to PCC and TAL

The three techniques we have reviewed were mainly developed in the years 1996-

1999 (PCC), 1997-2001 (TAL), and 2000-2004 (FPCC). Several research lines have

their foundations in those verification techniques. By using one of these techniques

the run-time is not modified. This property makes these methods good candidates

to verify programs in different environments without the need for a compiler or

interpreter on the consumer side. This idea provides a reliable verification frame-

work, even in small devices where the resources of hardware are limited. One of the

biggest challenges is the size of the proofs, the proof must be informative enough

and as small as possible in order to fit into the memory of the small devices where

the low-level code is executed. In addition the trusted computing base must be as

small as possible, due to the lack of power and data storage of the small devices.

Several research topics have been generated from these techniques [66–68]. Some

researchers target the reduction of proof size (see [29]), others the exploration of

new logic, and others the verification of other properties.

One application of PCC and FPCC is the project MOBIUS (Mobility Ubiquity

and Security) [69, 70]. The project involved universities and software companies

from around ten countries in Europe. The main goal of the MOBIUS project was

to generate secure Java byte code for mobile devices in a fully automated way, by

the combination of PCC techniques and JVM.

One particular characteristic of the MOBIUS project is that it uses types for in-

formation flow, so representing resources as well a classic types for code. The type

information is checked by using lightweight algorithms in the consumer side. The

problem of dealing with big certificates and reduction of the TCB are problems

that appeared during this project. In essence MOBIUS makes uses of the two

technologies related to PCC: type systems and program logic. This allows en-

forcement of other security properties such as user private data protection. The

creation of the certificates follows a logical approach.

The claims for the MOBIUS architecture are:

• The digital proofs can be independently checked by users or third parties.

• Static checking of code avoids run-time costs.

Chapter 2. Literature Review 27

• The techniques suit the real-world mix of mobile platforms.

• The solution supports developers who need to construct trusted applications.

2.5 Summary

The techniques for low-level static verification explored in the review of the liter-

ature are related. They verify low-level code and they use static analysis. Some

additional information is attached to the low-level code, guaranteeing the safe

execution of untrusted code without an overhead in execution time. In PCC a

proof of safety is attached along with the code. This proof of safety is produced

at compile time and is based in the safety rules provided by the code consumer.

The code consumer verifies the proof by using a simple theorem prover, and if

it holds then the foreign code is safe to execute. TAL system presents a similar

approach. However, instead of using a separate proof of safety, TAL produces

annotated code. This annotated assembly code is type-checked by a simple and

fast algorithm in the run-time system. TAL can be seen as an instance of PCC in

which only properties related to types are verified. Those techniques use a type-

checking algorithms for a given program in a low-level code. In the case of PCC,

it uses a theorem prover to verify the correctness of logical predicates. This mech-

anism presents a more general framework, because the properties are presented in

first-order logic, allowing with this the use of any tool to attest the correctness of

logical predicates. FPCC is an extension of PCC, the main goal is the reduction

of the Trusted Code Base and the creation of a scalable framework to guarantee

safety for low-level code. Additionally, FPCC introduces the LTAL concept, which

is a low-level code for TAL. FPCC uses LTAL which is a lower representation of

TAL, avoiding the problem of the verification of macro instructions (eg. malloc in

TALx86). We refer the reader to a complete review of TAL related techniques in

[9].

More recent work has focused on the reduction of the proofs or the reduction of the

TCB, for instance the approach of Abstraction Carrying Code [30–32], provides

another attempt to reduce the cost of the verification of the certificates, providing

a framework that is based in logical high-order language. In this work, the authors

propose to create small certificates based on fix point theory, and the checkers able

to check in one single pass. Even though this technique was developed to deal with

Chapter 2. Literature Review 28

high-level code it can be used for low-level code as in [32]. Some of the current work

on verification of low-level code is based on the combination of different techniques,

such as property based testing and type-checking [71]. The verification of Java

bytecode techniques provides an avenue of ideas and problems to be solved when

the bytecode is verified statically. In summary, the static verification techniques

are approximations of the run time behaviours. So static analysis still leaves room

for possible untrapped errors. In general, the gap between the approximations and

run time execution can be reduced by providing information in form of assertions,

type information, or data flow analysis outcomes.

Chapter 3

A Kit to Evaluate Tools that

Check Reduceron Code

3.1 Introduction

In this Chapter we give details of the machinery to perform our experiments check-

ing low-level code. Our experiments are based on Haskell models that abstract

the behaviour of the actual machine for the Reduceron. In §3.2 we give an intro-

duction to the Reduceron and we point out the connection to our work. In §3.3

we give a definition of the template code used by the Reduceron machine. In §3.4

we give a description of the Reduceron and its operational semantics. In §3.5 we

give a definition of our model for execution of Reduceron code and the classifica-

tion of the possible states where the machine fails. Then, in §3.6 we explain an

automated approach to produce mutation variants of template code, and compare

some alternatives to produce code. In addition we expose in a diagram the classifi-

cation of the outputs for our experiments. With this classification we can measure

the effectiveness of our static tools against the operational semantics. In §3.7 we

describe the kind of mutations used in our testing. We give a classification for the

test outcomes in §3.8. Finally in §3.9 we discuss the points of using the empirical

approach to measure the effectiveness of our static checking.

29

Chapter 3. 30

3.2 Reduceron and Template Code

The Reduceron is an efficient graph-reduction machine based on template instan-

tiation. When a functional program is evaluated, construction and deconstruction

of expressions is performed in memory. On conventional computers, the use of

the memory is limited by serial access. An alternative to solve this problem, is

to evaluate functional programs on FPGAs where memory with parallel access

can be configured as needed. Reduceron takes advantage of this technology, and

in one clock-cycle can perform a complete reduction of a template application by

accessing parallel memories for the template, the stack and the heap [72].

The Reduceron machine executes a kind of bytecode known as template code,

which can be compiled from F-lite, a small functional lazy language described in

[72].

Some aspects are particular to Reduceron template code: it uses case tables index-

ing alternative templates to encode case expressions, and it uses a non-standard

applicative structure for primitives. For the purpose of our work the case tables

and the primitives deserve further explanation.

Case tables. Case-expression alternatives in F-lite are compiled to functions

by using the approach of Jansen/Scott encodings described in §2.4 of [72]. The

idea of the case table is to replace many functional arguments by a single tabular

argument to achieve more efficient evaluation.

Each case alternative in the case expression is represented in Reduceron code by a

functional template alti ~xi t ~v = ei where alti is applied to constructor arguments

~x, a case table argument t, and free variables ~v. The case table argument t is

never used in the right hand side expression ei.

Primitives. The Reduceron supports lazy evaluation, but the primitives need

evaluated arguments. The problem is solved by encoding primitive applications in

the form arg1 (arg0 prim). With this arrangement the arguments are evaluated

first. When the primitive is on the top of the stack the arguments are guaranteed

to be evaluated.

Chapter 3. 31

Graph expressions and Templates. Each template can be viewed as a

low-level encoding of a let expression. The let-bindings are encoded as off-spine

applications and the body of the let as the spine-application. Each template

(arity, app, apps) in Reduceron template code is a tuple of arity, spine application

app and off-spine applications apps. Instead of names the results of the off-spine

applications are referred to by position (eg. PTR 0 for the first off-spine applica-

tion).

How Reduceron is Related to our Work? Is it possible to check the

low-level code statically before it is executed in the Reduceron processor?

In our work we will explore how to address the problem of static checking the

untyped template code where the primitives and case tables are particular to this

code. We shall perform the three static analysis in three stages: one for atoms,

another for applications, and finally one for templates and how they are related.

The checking of Reduceron template code is challenging mainly because in the

code there is no explicit type information: there are no declarations corresponding

to high-level recursive data types. In addition, it uses particular encodings of case

expressions and primitives which make it more complex to check than a standard

applicative approach. Constructors are indexed by arity and position, but at low-

level they are indistinguishable.

3.3 Template Code Syntax and Definition

The syntax of template code is defined in Figure 3.1. Template code for Reduceron

can be generated, for example, by compilation of Flite [73] source programs.

The Reduceron code is self described in Figure 3.1, most of the atoms are common,

the only exception is the constructor TAB i which is used to encode case tables,

see §2.4 in [1] for more details. Case tables are a special encoding in Reduceron

template code for case expressions. The case expressions are transformed using

Scott/Jansen encoding [74]. The case table constructor TAB i contains the in-

dex i to the case alternative. The case subject evaluation index and the index i

determine which alternative will be evaluated.

Chapter 3. 32

Program ::=
−−−−−−→
Template

Template ::= Arity × Application ×
−−−−−−−−→
Application

Application ::=
−−−→
Atom

Atom ::= FUN a i Function with arity a and address i
| ARG i Reference to the ith function argument
| PTR i Pointer to the ith application
| CON a i Constructor of arity a and index i
| INT n Integer literal n
| PRI s Primitive function name s
| TAB i Case table

Figure 3.1: Template code syntax.

For instance, in Figure 3.2 the code for append, which uses a case expression with

two alternatives, is transformed to three function definitions, the first is for the

top-level definition append, and the second and the third are the consCase and the

nilCase alternatives. The TAB i atom is used to encode <consCase, nilCase>,

the index i will decide which alternative to choose depending on the evaluation of

the case subject xs.

In the case alternatives the argument t is never used in the right hand side of the

definitions.

--Flite Source

append xs ys = case (xs) of {

Cons x xs -> Cons x (append xs ys);

Nil -> ys;

}

--Scott/Jansen encoding

append xs ys = xs <consCase, nilCase> ys

consCase x xs t ys = Cons x (append xs ys)

nilCase t ys = ys

Figure 3.2: Jansen/Scott encoding for append function.

3.3.1 An Example of Reduceron Template Code

In Figure 3.3 we have the representation of the append source code and its trans-

lation to template code. As a convention, the first index of the templates in a

given program is zero.

Chapter 3. 33

append xs ys = case (xs) of {

Cons x xs -> Cons x (append xs ys);

Nil -> ys; }

main = append Nil Nil;

(0,[FUN 2 1,CON 0 1, PTR 0],[[CON 0 1]])

(2,[ARG 0, TAB 2, ARG 1],[])

(2,[ARG 1],[])

(4,[CON 2 0, ARG 0, PTR 0],[[FUN 2 1, ARG 1, ARG 3]])

Figure 3.3: Flite append function translated from Flite to Template code.

The template number zero (0,[FUN 2 1, CON 0 1, PTR 0],[[CON 0 1]]), is the

main program, of arity zero. The atom FUN 2 1 indicates a function of arity

two and index one, FUN 2 1 is applied to two arguments CON 0 1 which is the

encoding for Nil. The atom PTR 0 is a reference to the off-spine application

number zero, which contains the second argument of the function append.

Now, the template number one is the function append of arity two (2,[ARG 0,

TAB 2, ARG 1],[]). In the spine application ARG 0 is the case subject xs, the

TAB 2 atom is a reference to the case alternatives, for example if the case subject

ARG 0 evaluates to Nil then the second template will be evaluated. Otherwise,

the third template will be evaluated. The atom ARG 1 is the free variable used

in all case alternatives.

The template number three is the recursive case alternative (4,[CON 2 0, ARG

0, PTR 0], [[FUN 2 1, ARG 1, ARG 3]]). The arity of this template is four, the

reason is the special encoding which includes the two arguments ARG 0 and ARG

1 representing x and xs, an argument for case table and one free variable. The

first atom CON 2 0 is a constructor which expects two arguments and the index of

this constructor is zero. The first argument is ARG 0 and the second is a pointer

the application [FUN 2 1, ARG 1, ARG 3]. This application corresponds to the

recursive application at the high-level (append xs ys).

Chapter 3. 34

3.4 The Reduceron Machine

The reduction machine has four memory areas: the program, the heap, the stack

for reductions, and the stack for updates. These memories can be accessed in

parallel, in the same clock-cycle. The execution behaviour of a Reduceron can be

described by a small-step transition function from state S to state S ′, that is S

→ S ′. The state is a tuple (Prog × Stack ×Heap× UStack) described in Figure

3.4, in each step a transition rule is applied to one state S to give a new state

S ′. The computation is stopped if the Stack in the state S ′ is empty. The Heap

is modelled as a list of applications, and can be indexed by a heap-address. The

stack is a list of atoms with the top stack element coming first and the bottom

element coming last.

Heap ::=
−−→
App

HeapAddr ::= Int
StackAddr ::= Int
Update ::= StackAddr ×HeapAddr
UStack ::=

−−−−→
Update

Stack ::=
−−−→
Atom

State ::= Prog Program
× Heap Heap
× Stack Reduction stack
× UStack Update stack

Figure 3.4: Reduceron machine description.

Before we start describing the transition rules, in Figure 3.5 we describe some

auxiliary functions used by the transition rules. The function arity gets the arity

of the atoms that can occur at the top of the stack. The atom arity of INT i

is 1, the atom PRI s expects 2 arguments, the atom FUN n i has arity n, and

finally the atom CON n i has arity n + 1, which is the number of arguments

plus a case table argument. The applyPrim rule applies a given primitive to its 2

arguments, in case of arithmetic primitive it returns an INT i with the result i,

or if the primitive is logic then it gives back a constructor CON 0 0 for false or

CON 0 1 for true value. The rule instApp instantiates the function body, it gives

back the replacement of the formal parameters with arguments from the reduction

stack and the relative pointer addresses are turned into absolute addresses. The

Chapter 3. 35

arity (INT i) = 1
arity (PRI p) = 2
arity (FUN n i) = n
arity (CON n i) = n+ 1

applyPrim “(+)” n m = INT (n+m)
applyPrim “(−)” n m = INT (n−m)
applyPrim “(<=)” n m = bool (n <= m)
applyPrim “(==)” n m = bool (n == m)
applyPrim “(/ =)” n m = bool (n/ = m)

bool False = CON 0 0
bool True = CON 0 1

instApp s h = map (inst s (length h))
where
inst s base (PTR p) = PTR (base+ p)
inst s base (ARG i) = si
inst s base a = a

updateHeap i ap h = take i h ++ [ap] ++ drop (i+ 1)

Figure 3.5: Auxiliary functions used by Reduceron transition rules.

last auxiliary function updateHeap modifies the heap h with the application ap at

heap address i.

3.4.1 Transition rules for Reduceron

The transition rules [1] are defined in Figures 3.6 and 3.7. There is one transition

rule for each Atom in Figure 3.1.

• The transition rule PTR is used when the top of the stack is a pointer x to

an application. The evaluation proceeds by unwinding (The application is

copied from the heap to the stack). A pair is pushed onto the update stack:

the heap address x, and the size of the reduction stack increased by one 1 +

length s.

Chapter 3. 36

• The rule for integer literals INT swaps the top of the stack and the subse-

quent atom. The integer arguments of a primitive application must be fully

evaluated before the application can be reduced. At run time because an in-

teger literal is already reduced, the subsequent atom needs to be reduced by

the rule n e → e n, where n is an integer literal and e is another expression.

• The rule for primitive functions PRI assume that the integer arguments are

fully evaluated before the application is reduced. At compile time the primi-

tive applications are transformed by the rule prim e0 e1 → e1 (e0 prim), by

doing this we can first evaluate its arguments (See sections 2.3 and Section

5 of [1] for further details).

• The rule for constructors CON looks for a corresponding case alternative

function in case table TAB i. There is no information immediately available

about the arity of the case alternative function (look at address i + j). How-

ever, we can use zero as arity FUN 0 (i+ j) : s, because a case alternative

function is never partially applied.

• The transition rule FUN applies a function f of arity n. We need to pop

n + 1 elements from the reduction stack. The spine application of the body

of f is instantiated and pushed onto the reduction stack. Finally, the re-

maining function applications are instantiated and added to the heap h′.

• The transition rule Update checks whether the arity of the atom on top of

the stack is greater than the updated stack address sa subtracted from the

length of the stack plus one. If that condition holds, then the heap h′ is

updated update ha (top : take n s) h in the new state.

To support the printing of the results from the computations, the Reduceron

machine makes use of two primitives: In Flite, both emit and emitInt are applied

to two arguments: the first is what is to be printed and the second is the result of

the emit or emitInt application. The primitive emit is used to print a character

and emitInt for integer numeric values. We have an extra component to our

machine, which is used to store the result of the computation, we call it r. It is

only used when we print or accumulate printings, for example a list of numbers

from 1 to 10 will be accumulated as 12345678910. Similarly for a list of characters.

We make use of two auxiliary functions which are print and printC. The function

print shows the integer value, and printC the character contained in the value n

as an ASCII code.

Chapter 3. 37

PTR rule:

< p, h, PTR x : s, u >
=⇒ < p, h, hx : s, upd : u >

where
upd = (1 + length s,x)

INT rule:

< p, h, INT n : x : s, u >
=⇒ < p, h, x : INT n : s, u >

PRI rule:

< p, h, PRI f : x : y : s, u >
=⇒ < p, h, applyPrim f x y : s, u >

CON rule:

< p, h, CON n j : s, u >
=⇒ < p, h, FUN 0 (i+ j) : s, u >

where
TAB i = sn

FUN rule:

< p, h, FUN n f : s, u >
=⇒ < p, h′, s′, u >

where
(pop, spine, apps) = pf
h′ = h ++ map (instApp s h) apps
s′ = instApp s h spine ++ drop pop s

Update rule:

< p, h, top : s, (sa, ha) : u >
=⇒ state

where
n = 1 + length s − sa
h′ = updateHeap ha (top : take n s) h
state = < p , h′, top : s, u > if arity top > n

Figure 3.6: Reduction rules for Reduceron.

Chapter 3. 38

PRI emitInt rule:
< p, h, PRI ”emitInt” : e : s, u, r >

=⇒ < p, h, e : PRI ”emitInt” : s, u, r >

PRI emit rule:
< p, h, PRI ”emit” : e : s, u, r >

=⇒ < p, h, e : PRI ”emit” : s, u, r >

INT emitInt rule:
< p, h, INT n : PRI ”emitInt” : s, u, r >

=⇒ < p, h, s, u, r ++ print n >

INT emit rule:
< p, h, INT n : PRI ”emit” : s, u, r >

=⇒ < p, h, s, u, r ++ printC n >

Figure 3.7: Reduction rules for Reduceron(Emit and EmitInt Rules).

• The rules PRI emitInt and PRI emit swap the top of the stack and the sub-

sequent atom denoted by e, by doing this, the expression e will be evaluated

first.

• The INT emitInt takes out the top two atoms from the stack, and accu-

mulates n from INT n as a printed result in r.

• The INT emit takes out the top two atoms from the stack, and accumulates

the character value n from INT n as a printed result in r.

3.4.2 An Example: Minimum of Two Values

The state is a tuple (Program×Heap×Stack×UStack). The program minim in

Figure 3.8 is executed by following the transition states in Figure 3.9, it illustrates

how the Reduceron rules are applied. The program minim calculates the minimum

value of two given values. The initial state is (p, [], [FUN 0 0], []), here p is the

program minim. The final state is when the stack is [INT i]. In this example the

last state is (p, [[PRI (<=), INT 10], []], [INT 1], []).

Chapter 3. 39

main = minim 1 10

minim a b = case ((<=) a b) of {

False -> b;

True -> a;

}

The case expressions are translated to case table

main = minim 1 10

minim a b = (b (a (<=))) <minimFalse,minimTrue>

minimFalse a b t = b

minimTrue a b t = a

Translation to the actual template code requires positional reference to templates,
arguments and a single off-spine application. Recall that the first component in
each template is its arity.

(0,[FUN 2 1,INT 1,INT 10],[])

(2,[ARG 1,PTR 0,TAB 2],[[(ARG 0,PRI (<=)]])

(3,[ARG 1],[])

(3,[ARG 0],[])

Figure 3.8: An illustrative example of minim program.

initial state

< p, [], [FUN 0 0], [] >

⇒ (FUN)

< p, [], [FUN 2 1, INT 10, INT 1], [] >

⇒ (FUN)

< p, [[INT 10, PRI(<=)]], [INT 1, PTR 0, TAB 2, INT 1, INT 10], [] >

⇒ (INT)

< p, [[INT 10, PRI(<=)]], [PTR 0, INT 1, TAB 2, INT 1, INT 10], [] >

⇒ (PTR)

< p, [[INT 10, PRI(<=)]], [INT 10, PRI(<=), INT 1, TAB 2, INT 1, INT 10], [(5, 0)] >

⇒ (INT)

< p, [[INT 10, PRI(<=)]], [PRI(<=), INT 10, INT 1, TAB 2, INT 1, INT 10], [(5, 0)] >

⇒ (Update)

< p, [[PRI(<=), INT 10]], [PRI(<=), INT 10, INT 1, TAB 2, INT 1, INT 10], [] >

⇒ (PRI)

< p, [[PRI(<=), INT 10]], [CON 0 0, TAB 2, INT 1, INT 10], [] >

⇒ (CON)

< p, [[PRI(<=), INT 10]], [FUN 0 2, TAB 2, INT 1, INT 10], [] >

⇒ (FUN)

< p, [[PRI(<=), INT 10], []], [INT 1], [] >

Figure 3.9: An illustrative example of transitions in Reduceron machine.

Chapter 3. 40

Description ::= String
Id ::= Int
Failure ::= Id×Description
SF ::= State⊕ Failure

Figure 3.10: RunCheck transition function.

3.5 RunCheck : The Dynamic Checking Model

The model RunCheck is a totalized model of the operational semantics of Reduc-

eron described in §3.4. With this model we intend to detect and classify the errors

arising during the execution.

In Figure 3.10 RunCheck is a transition function from state to a new state or

a trapped error, S → SF . Where the Id is the number of the failure, and the

Description is a string telling a brief information about the failure.

The sum type of the result SF captures the idea of a dual behaviour. When

the machine fails the transition yields a tuple of id and error description Id ×
Description. If the machine can perform the computation from one state to

another, then it returns a valid state.

The totalized transition rules are defined in Figure 3.11. Only the rules for PTR,

PRI, FUN , CON , and Update are changed in this evaluation model. In addition,

we changed the Arity auxiliary function when the element on the top of the stack

is not defined.

• In the transition rule PTR the pointer x must be a reference to a valid

application in the heap. We capture this idea in the constraint 0 <= x <

length h, if this condition fails then we return an invalid heap address error.

• In the rule for primitive functions PRI, we add the condition to check if a

primitive is in the set of valid primitives ps= {(+),(<=),(−),(==),(/ =)}.

• In order to totalize the rule CON, we need to add the condition n < length s

and s ! n = TAB i, which means that the arguments are valid in the scope

of the stack, and that the index of the constructor i points to a TAB i

constructor, otherwise the rule returns a bad stack pattern error.

Chapter 3. 41

• The transition rule FUN applies a function f of arity n. We need to pop

n + 1 elements from the reduction stack. The spine application of the body

of f is instantiated and pushed onto the reduction stack. Finally, the re-

maining function applications are instantiated and added to the heap h’.

• The transition rule Update the condition that must hold, is the arity checking

arity top > n. In the auxiliary rule Arity, we have decided to assign a

negative arity in case that the atom in the top of the stack is not a valid

atom.

3.6 Mutating Reduceron Code

In our experiments to evaluate code-checkers, we need a suitable framework to

emulate the situation when the code is altered or modified, perhaps maliciously

to cause some damage during the evaluation in the target machine. Possible

approaches include : randomly created programs, hand-coded programs, and mu-

tated programs. Each has advantages and drawbacks.

Randomly created programs Let us firstly consider the idea of producing

arbitrary random programs [75–78]. It seems to fit in our framework for testing.

The framework QuickCheck [77] could be used to produce programs randomly.

However the random approach is not a good candidate for our testing purposes

because the programs created are completely arbitrary. For instance, we could

have a empty list [] representing a list of templates. The design for obtaining

programs close to genuine programs or programs that are not too expensive in

terms of computation steps is complex in the random scenario.

Alteration by hand Another possibility is to create programs completely by

hand, or by hand modification. This provides a good technique and close to what

we want: bad code produced by hand or altered by hand. According to some

experiments of hand-writing code we realise that it is easy to make a mistake, for

example confusion in the order of function arguments. The drawback of this tech-

nique is that it takes too much time to produce programs compared to randomly

created programs for example.

Chapter 3. 42

PTR rule

< p, h, PTR x : s, u >
=⇒ state

where
upd = (1 + length s, x)
state = < p, h, hx : s, upd : u > , if 0 <= x < length h
state = (2,’Invalid HEAP address’) , otherwise

PRI rule

< p, h, PRI f : x : y : s, u >
=⇒ state

where
ps= {(+),(<=),(−),(==),(/ =)}
state = < p, h, primApply f x y : s, u> , if f ∈ ps
state = (7,’Invalid primitive’) , otherwise

CON rule

< p, h, CON n j : s, u >
=⇒ state

where
state = < p, h, FUN 0 (i + j) : s, u > , if n < length s ∧ sn = TAB i
state = (5,’Bad STACK pattern’) , otherwise

FUN rule

< p, h, FUN n f : s, u >
=⇒ state

where
(pop, spine, apps) = pf
h′ = h ++ map (instApp s h) apps
s′ = instApp s h spine ++ drop pop s
state = < p, h′, s′, u > , if f < length p
state = (5,’Bad Template address’) , otherwise

Update rule

< p, h, top : s, (sa, ha) : u >
=⇒ state

where
n = 1 + length s − sa
h′ = update ha (top : take n s) h
state = < p, h′, top : s, u > , if arity top > n
state = (5,’Bad STACK pattern’) ,otherwise

Figure 3.11: Reduction rules for RunCheck.

Chapter 3. 43

Mutated programs The mutation technique was proposed by DeMillo [79]

late in the 70’s, and followed by [80–87]. By mutating we intend to emulate the

scenario in which we have code close to genuine code. This mutated code is the

original code slightly modified. The idea of mutation is to start from an original

valid program (that terminates under the operational semantics).

Once we have this genuine program, it is mutated by altering selected atoms, or

changing the position of two contiguous atoms, or deleting an arbitrary atom. By

performing small mutations, we create a mutant based on a genuine program and

not arbitrary programs as in the random approach.

The number of mutations that we can create is in proportion to the number of

atoms in the original program. Mutation takes the best of the other two tech-

niques: realistic programs produced automatically. If the number of atoms in a

given program is too small to produce enough mutations, we can create compound

mutations based on a series of mutations (depth zero,depth 1,...,depth n). In the

literature of mutation testing the mutations of depth one are called FOM (first

order mutations) and the ones of any depth greater than one are called HOM

(higher order mutation) [33].

Mutated programs and Random Selection For the purpose of our exper-

iments, we generate first a list of all the possible mutations, and secondly, from

that list we randomly extract an arbitrary number of mutations.

Our Mutation Testing Approach. For our work we reuse the idea of dam-

aging code from mutation testing. But the use we make of mutant programs is

different. In classic mutation testing, mutations are used to measure the effective-

ness of a test suite in terms of the ability to detect faults [33]. If a test suite can

detect a problem in a mutant, then that mutant is “killed” (a good thing!). A key

step in mutation testing is to compare the output of the original valid program

against the output of each mutant.

In our case we do not compare results computed by each mutation with those

computed by the original program. Instead for each mutant we compare its be-

haviour under the operational semantics, against the outcome of static checking.

Our aim is to measure the effectiveness of the static checker. We do not care about

Chapter 3. 44

the correctness of a mutant; if the machine computes any value, without crashing,

that is fine for our purposes.

The well known problem of equivalent mutants [33] can arise when mutation testing

is used to evaluate test suites. A mutant may happen always to compute the same

result as the original program, so no test suite can kill it. This problem is no

concern here. We only want to know if each mutant is well-behaved or not, and if

it is well-checked or not. The result it computes is ignored.

Random Testing and Further Discussion Another way of constructing

realistic test programs is the use of random generators based on with attribute-

grammars, as in the work of Drienyovszky, Horpasci et al. [88], where QuickCheck

is applied to test refactoring tools for Erlang. The attribute-grammar generator

provides a more expressive mechanism [89] than a context-free-grammar generator.

The code for the generators is more concise and maintainable than one developed

using the standard generator method of QuickCheck.

The idea of using program generators to automate the testing of programming-

language tools can be quite successful. For instance, in the work of Daniel, Dig et

al. [90] they found 45 previously unreported bugs in Eclipse and NetBeans, which

are the most used refactoring tools for Java. Here the idea of the generators is

taken from QuickCheck generators, even if they do not use random testing. This

approach uses Java classes and an imperative and exhaustive way of generating

test programs.

We could have used similar program-generation techniques to test our tools. How-

ever, we decided to use the idea of mutants because it is a simple approach to

implement, and it produces tests that are quite close to a well-behaved program.

3.7 Kinds of Mutations

3.7.1 Introduction

Recall that a template body includes spine-application and off-spine applications.

Every application is a sequence of atoms. The idea of mutation in our framework

is to damage a single atom. Even such minimal damage can be enough to change

Chapter 3. 45

completely the behaviour of a genuine piece of code. The algorithm to mutate the

template traverses the structure of the template, then by applying a simple rule

over atoms we obtain a new program which we call a mutant. We mutate a single

atom and obtain one mutation.

Increment Mutations To explain this idea consider an atom FUN i j which

denotes a function with arity i and index j. The main idea is to attack slightly

the code by atomic mutation. We can alter i or j by incrementing. For instance

if j = 1 we then can increment by one and obtain a mutated atom. For example

the original FUN 1 1 atom will become FUN 1 2, with this slight change we have

obtained a completely new function.

Now suppose that, in another template code, we have a function argument denoted

by ARG 2. If we mutate it to ARG 1 or ARG 3, the meaning of applying one

given function to the mutated argument is completely different. We see, in this

way we can alter every single numeric value inside each constructor, we call this

type of mutation increment mutation.

Deletion of Atoms Another way of mutating the code is the deletion of one

arbitrary atom in the template, for instance in the application [FUN 2 2, ARG

0, ARG 1], we can delete ARG 0 or ARG 1, letting the function application have

only one argument instead of two. Or we can delete the atom FUN 2 2 as a more

radical mutation.

Swapping of Atoms The third type of mutation is to swap two adjacent atoms.

From our example [FUN 2 2,ARG 0,ARG 1] we can get [ARG 0,FUN 2 2,ARG 1]

or [FUN 2 2,ARG 1,ARG 0]. This last small mutation evokes the common error

when a programmer changes the order of the arguments in one function.

Even the single atomic mutations can damage or alter the code significantly. For

the human reader it is almost impossible to distinguish between original valid code

and mutated variants. Imagine pages of template code: such small changes are

imperceptible. The mutated code can be very close to the original but it can

be wrong. The three types of mutations can be combined causing possibly more

damage.

Chapter 3. 46

length= [(0,[FUN 1 1,PTR 0],[[CON 0 1]]),

(1,[ARG 0,TAB 2 2 0],[]),

(3,[FUN 1 1,ARG 1,PTR 0],

[[INT 1,PRI "(+)"]]),

(1,[INT 0],[])]

Figure 3.12: Template code for length function

3.7.2 Mutation Rules

Increment Mutations In general, the number of mutations from a given pro-

gram p is directly proportional to the number of atoms and the number of numer-

ical values in the atomic constructors. For example in Figure 3.12, if we want to

use the increment mutation, the atoms excluding the first template (it is the main

function) are [ARG 0, TAB 2 2 0 , FUN 1 1, ARG 1, PTR 0, INT 1, PRI ”(+)”,

INT 0].

From the rule for mutating atoms in Figure 3.14, we see that the mutations depend

on the rule [mInt] which mutates the numeric values from n+1 to n+3, in Table

3.1 we have evidence of the rounded average in some numeric values. In general

the average of those numeric values is 2. Based on that observation we decided

to mutate from n + 1 to n + 3. Using more than n + 3 will create non-useful

mutations. For instance in the Template Arity column in Table 3.1 we can see

that the possible number of arguments is on average 2. Then mutating the ARG

0 we obtain ARG 1, ARG 2, ARG 3, using the convention n+ 1 to n+ 3.

And the [mPri] rule which selects a different primitive from the five possible

primitives.

If we apply the mA rule to each atom in the length function, we obtain 28 mu-

tations, and they are distributed for each atom in Figure 3.13. Note the rule for

mutate the atom TAB i j k, for our experiments we have mutated only the numeric

value i, which represents the address position of the first case alternative. We leave

the other two constructors unchanged, is because in the operational semantics the

arguments j and k are not considered during the reductions.

For our experiments we generate all the possible mutations, then we select n

mutations randomly. The advantage of this approach is that we can test the

mutations randomly or take all the possible mutations generated. Moreover, we

can mutate mutations, which is useful when we have small programs to test. For

Chapter 3. 47

ARG 0 3 mutations , TAB 2 2 0 3 mutations

FUN 1 1 6 " , ARG 1 3 "

PTR 0 3 " , INT 1 3 "

PRI "(+)" 4 " , INT 0 3 "

Figure 3.13: Number of mutations for each atom in length function

instance, the mutation of function length only produces 28 mutations. So possibly

under this case it is better to mutate the 28 mutations.

Swapping Mutations This rule swaps two contiguous elements in a list, and

creates all swapped lists excluding the original list.

swaps xs= nub([i ++ swap t|(i,t) <- zip (inits xs) (tails xs)])\\[xs]

swap [] = []

swap (y:x:xs) = (x:y:xs)

swap x = x

Delete Mutations This rule deletes one element in a list at a time, and creates

all the deleted lists. It deletes only if there is more than one atom in the list

of atoms denoted by xs to avoid the “obvious” generation of a bad template

(arity,[],[]).

deletesp xs= [delete (xs!!i) xs| i<-[0..length xs-1], length xs > 1]

All Mutations The kind of mutation that combines the previous mutations is

called All, and it is given by Increment + Swapping + Delete.

The mutator could be extended easily to support other types of mutations, for

example swapping or deleting applications.

Chapter 3. 48

mA [[FUN n i]]⇒ {FUN n′ i |n′ ∈ mInt n}
∪ {FUN n i′ | i′ ∈ mInt i}

mA [[ARGm]]⇒ {ARGm′ |m′ ∈ mInt m}

mA [[PTR i]]⇒ {PTR i′ | i′ ∈ mInt i}

mA [[CON nm]]⇒ {FUN n′m |n′ ∈ mInt n}
∪ {CON nm′ |m′ ∈ mInt m}

mA [[INT i]]⇒ {INT i′ | i′ ∈ mInt i}

mA [[PRI s]]⇒ {PRI s′ | s′ ∈ mPri s}

mA [[TAB i j k]]⇒ {TAB i′ j k | i′ ∈ mInt i}

mInt [[n]]⇒ {n+1..n+3}
mPri [[s]]⇒ {+,−,==, <=, / =} − {s}

Figure 3.14: Rule to mutate atoms by incremental damage.

Table 3.1: Averages of templates arities, case alternatives arities, and function
arities in the set of benchmark programs.

Program Template Arity Tab Alts Fun Arity
queens 2 2 2
queens2 2 2 2
ordlist 2 2 2
braun 2 2 2
while 3 2 2
adjoxo 2 2 2
sudoku2 2 2 2
mss 2 2 2
permsort 2 2 2
parts 2 2 2
taut 2 2 2
clausify 2 2 2
cichelli2 2 2 2
mate 3 2 2
knuthbendix 3 2 2

Chapter 3. 49

3.8 Classification of Results

We have created a classification to measure the effectiveness of our static checking

techniques for Reduceron code. The Venn diagram in Figure 3.15 depicts this

classification.

The Mu set represents a list of mutations chosen randomly. Here it is important

to notice that we only use the needed templates to generate mutations. We run

a simple analysis to detect which templates are used during the execution. That

information is passed to the mutator at mutation time. This checking is funda-

mental for our experiments, some of the benchmark programs take too long to

evaluate, and we use the minimal initial configuration to have the most possible

templates executed in the least execution time. Consider the case where we have

200 mutations and each mutation takes one minute to be evaluated, then it will

take more than three hours to compare the run-time outcome against the static

technique.

Also, we eliminate the set of dead code Dc, which is not present in the diagram.

We execute the original program and determine which templates are used. After

this analysis, we only mutate those templates used during the execution.

The set Wf is the set of well-formed mutations. By first applying a simple well-

formedness test to mutants we eliminate the obvious failures, e.g. a pointer out

of the scope or a primitive wrongly called “(++)”. In Chapter 4 we will describe

the well-formed analysis which is called AtomCheck.

The Nt set represents the set of programs with non-termination issues. Even if the

original test program might terminate, mutated variants may not. We make use

of a conservative test, to approximate the conditions under which a program does

not terminate. If the number of steps to execute the mutated program exceeds

double the number of steps needed to execute the original program, the mutant is

assumed to be non-terminating.

The set Ok is the set of programs that are well-behaved in the Reduceron machine.

We assume that they have passed the non-termination test described before.

The set Sc is the set of programs well-checked in some static method. In the

development of this thesis, we have several stages of static checking.

Chapter 3. 50

Figure 3.15: Mutation classification diagram.

The set Gp represents the programs which are ill-checked yet well-behaved: these

programs are rejected by the static checker, but if executed they would not in fact

cause a machine failure by the run-time system.

Finally, the Bp set is the set of programs which are allowed by the static checker

and stopped by the run-time system.

3.9 Summary

The Reduceron uses the template instantiation machine model, but has parallel

circuits to create the instance, update the stack, and reduce the graph in one

single clock cycle. We have “totalized” the operational semantics for Reduceron

to be able to detect and classify possible faults. The tool kit for testing and

experimenting is based on a mutation technique where the mutations are chosen

randomly. In this way we have test programs that are very close to the original and

well-behaved code. Moreover, by repeating mutation if necessary, a large number

of programs to test can be generated automatically.

Using mutated code variants as a test, we can evaluate the static methods against

the operational semantics in order to measure the effectiveness of the static tech-

niques proposed in this work.

Chapter 4

TyreCheck

4.1 Introduction

In this chapter we present an equation-based type-checking system for Reduceron

template code. Even when no extra annotations are added to the template code we

can compute type information from the raw template code. The purpose of this

type-checking system TyreCheck – Type-based Reduceron Code Checker –, is to

guarantee a form of type safety at loading time before executing the template code.

As outlined in Chapter 3 we use mutated programs to measure the effectiveness

of TyreCheck experimentally.

Static checking of the template code is divided into three stages as follows :

• AtomCheck. In §4.2 we describe this stage. This stage checks that each

atom of the template code satisfies requirements for well-formedness.

• PrimCheck. Static analysis that eliminates primitive applications, avoiding

the need for dependent types. This part is described in §4.3.

• TyreCheck. Type reconstruction based on equations instead of the tradi-

tional type inference rules. The details of this static method are described

in §4.4. This is the most complex part of the three.

In §4.5 we present some results from an evaluation of TyreCheck effectiveness.

Finally, in §4.6 we give a brief discussion of our techniques.

51

Chapter 4. 52

type Program = [Template]

type Template = (Arity,App,[App])

type Arity = Int

type App = [Atom]

data Atom = INT Int

| FUN Arity Int

| ARG Int

| PRI String

| CON Arity Int

| PTR Int

| TAB Int Int Int

Figure 4.1: Haskell data type representation of Template code.

From TAB i to TAB i j k During development of an initial static checker a

need became apparent to know how many alternatives belong to each case table,

and also to determine how many variables are in use. As a cheap method to provide

this information we decided to add two parameters to TAB atoms. Atom TAB i

becomes TAB i j k, where j is the number of case alternatives associated with that

TAB, and k is the number of free variables in all the case alternatives. We made

this change at compile time, so no extra time is required during the static analysis.

At compile time we know the information about the number of case alternatives

and the number of free variables. This small change is not comparable to the

change of adding type signatures or logic-based formulae as code annotations.

4.2 AtomCheck

The template code can be represented by a Haskell data type as in Figure 4.1. A

program is a list of templates. Each template represents a function definition con-

sisting of arity, spine application, and off-spine applications. An application is a

list of atoms, which is either a numerical literal represented by INT Int, or a func-

tion with the arity and the index of the function in the list of templates represented

as FUN Arity Int, or a function argument ARG Int, or a numeric or boolean prim-

itive PRI String, or a pointer to an application PTR Int, or a special case table

atom used to encode case expressions and represented as TAB Int Int Int, where

Chapter 4. 53

the first parameter is the index of the first template to be considered as a case

alternative, the second argument is the number of alternatives used by that case

table, and the third argument is the number of free variables in the case table. In

the rest of this Chapter, we will refer to this Haskell data type as the template

code which we are checking.

The first method in the process checks that template code is free of ill-formed

atoms. For example we reject a primitive atom PRI “(++)” which is not part of

the valid primitive set, or a function FUN i j, where j is an index greater than the

number of the actual templates in the code.

In Figure 4.2 we present a model for checking well-formedness at the atomic level.

The rule cProg is applied to each template T in the program P. The rule cTemp

examines every single application inside of a template. For each atom in each

application it applies the cAtom rule.

For each template T ∈ P:

• For each atom FUN n a the address a must be greater than or equal to zero,

and less than or equal to the number of templates in the program.

• For each atom ARG i the index i of the argument must not exceed the size

of the arity of the enclosing template.

• For each atom PTR i the off-spine application index i must be greater than

or equal to zero, and less than the number of off-spine applications in the

enclosing template.

• For each atom CON n i the arity n and the index i must both be greater

than or equal to zero.

• For each atom PRI s, the primitive name s must belong to the set of valid

primitives.

• Finally, for each atom TAB i j k each of the indexes i, j must both be greater

than zero, and k must be non-negative. In addition the sum of i and j, must

be less than or equal to the number of templates in the program.

Chapter 4. 54

cProg [[P]]⇒ ∀T ∈ P : cTemp [[T]]

cTemp [[arity, spineApp, offspineApps]]⇒ ∀ a ∈ spineApp ∪ offspineApps :

cAtom [[a]]

cAtom [[FUN n addr]] ⇒ addr ≥ 0 ∧ addr ≤ lp
cAtom [[ARG m]] ⇒ arity > m
cAtom [[PTR addr]] ⇒ addr ≥ 0 ∧ addr < la
cAtom [[CON n m]] ⇒ n ≥ 0 ∧m ≥ 0
cAtom [[INT i]] ⇒ True
cAtom [[PRI s]] ⇒ s ∈ {(+),(-),(==),(/=),(<=),emit,emitInt}
cAtom [[TAB i j k]] ⇒ i > 0 ∧ j > 0 ∧ k ≥ 0 ∧ i+ j ≤ lp

where
arity = arity of the enclosing template
lp = # of the enclosing program
la = # of enclosing application

Figure 4.2: AtomCheck conditions of well-formed atom.

4.2.1 Measuring Effectiveness of AtomCheck

In Table 4.1 we see the results of evaluating AtomCheck alone against the oper-

ational semantics. The experiments of table are based on 200 mutations chosen

randomly. For example, from the 200 mutations in queens we have 48 well-

behaved programs, 171 accepted by AtomCheck, zero good programs rejected by

AtomCheck, and 111 bad programs accepted by AtomCheck. For the rest of the

programs similar proportions of the results are observed. One notable part of

this table is column GP, which represents the well-behaved programs stopped by

AtomCheck. AtomCheck is not rejecting valid programs.

4.3 PrimCheck

In the next stage we analyse and transform template code to reduce and isolate the

problems derived from uses of primitive operations. The high-level representation

of prim a b, where a primitive function prim is applied to the arguments a and b, is

compiled to template code applications equivalent to b (a prim). This order allows

Chapter 4. 55

Table 4.1: Mutations (200-All-AtomCheck)

Program OK AtomCheck GP BP NT

queens 48 171 0 111 12
permsort 41 164 0 120 3
queens2 51 167 0 113 3
ordlist 55 168 0 110 3
parts 53 170 0 112 5
braun 31 162 0 125 6
mss 26 170 0 135 9
adjoxo 64 175 0 108 3
sudoku 33 167 0 130 4
tautology 45 172 0 118 9
cichelli2 37 173 0 131 5

the argument be reduced to an atom of integer type. The primitive functions must

be fully saturated to satisfy the Reduceron semantics.

We have explored some alternatives, for example representing the types for prim-

itives as dependent types indexed by arity. In addition to the implication of using

dependent types in a full type system, problems arise because of the nature of

partial applications during the type-checking process. Primitive applications must

be fully saturated.

Why not Dependent Types in the Type-checking System? The com-

pilation rule for primitives is prim a b → b(a prim). From the point of view of

types this arrangement where the arguments are applied to the primitives repre-

sents a challenge. In a standard type system, if we have an arithmetic primitive

with two arguments, its type is int→ int→ int. If we are to keep an applicative

view of Reduceron code, what types can be assigned to the primitive arguments

(a and b above) used as functions? One possible solution to address the prob-

lem is to use dependent types: we might introduce type equivalences for integers

int = prim (n+ 1) r → prim n r and int = prim 0 r.

For example, suppose we have the template

(2, [ARG 1,PTR 0], [[ARG 0,PRI(+)]]). In the application [ARG 0,PRI(+)] the

type of ARG 0 is prim 2 r → prim 1 r, a functional type denoting the reduction

in the arity from two to one, but preserving the result type denoted by r. We need

Chapter 4. 56

to distinguish between arithmetic and logic primitives, as r could be either int or

bool. Binary primitives have type prim 2 r, the type of PRI(+) is prim 2 int.

Now for the application of the argument ARG 1 to [ARG 0,PRI (+)] we apply the

same mechanism. The type for the whole template body

[ARG 1,PTR 0],[[ARG 0,PRI(+)]] is prim 0 r. We identify the type prim 0 r with

r.

Trying to encode all these possibilities adds more complexity to a type-checking

system. Because primitives are fully saturated we even need still more testing

conditions. Certainly, we could use this idea of dependent types, but it could be

complicated. We have experimented with this approach but it caused too many

problems. We decided to do the analysis related to primitive application in a

previous stage before type-checking.

By using a primitive reduction analysis before type checking we have two gains:

(1) we can detect when a primitive is not fully saturated and stop bad programs

before the process of type inference, and (2) we eliminate all the primitive appli-

cations working instead with a simple integer type.

4.3.1 Divide and Conquer

Separating primitive analysis from a later stage of type-checking has some other

advantages, besides the division of the work :

• We can stop some bad programs at an early stage without the full cost of

type-checking.

• We avoid the need to use dependent types.

We call this stage of our static analysis PrimCheck for Primitive Checking. The

main idea of PrimCheck is to eliminate once and for all primitive applications

from the code. At the end of PrimCheck analysis, from each template in the code

we have derived a split template, with no occurrences of primitives but with the

possible addition of integer blocks. PrimCheck analysis is applied after the well-

formedness test of AtomCheck. In Figure 4.3 we explain the overall process of

PrimCheck.

Chapter 4. 57

At the implementation level, PrimCheck takes as an argument one template, and

returns a pair containing a template and a list of integer blocks. In the integer

blocks we obtain all the collected arguments or applications that must be integers.

All primitives in Reduceron must be applied to two arguments. The first step is

to change all the occurrences of the atoms PRI s to PRIM 2 t. That is why each

PRI atom can be reduced to a PRIM 2 t atom : the 2 indicates arity and the t

indicates the result type of the primitive. During the process of PrimCheck arities

in PRIM atom are reduced until they reach zero. The PRIM 0 t is reduced to t.

Once the replacement of the primitives is performed, we apply the reduction rule

for primitives. It takes a pair of template and integer blocks and returns a split

template. The PrimApply rule is applied until it reaches a fix point. The rule

works as follows :

• if there are no primitives in the template, then it just finishes returning the

same template.

• if there is a primitive in the head of any application it means that the prim-

itive reduction cannot be completed, and it is a failure.

• otherwise the application in the template is split and inlined.

In order to obtain the new split application we need to check several things. There

are two cases:

• If there are primitive and pointer atoms in the same application ap, and

that pointer makes reference to any other application in the list of all the

applications, and that application contains a primitive, then we return the

pair (ap,[]), the same application and the empty list of integer blocks.

• Otherwise, we proceed to split the application ap by using the rule splitPrimApp.

The heart of the algorithm is the rule splitPrimApp. This rule takes an ap-

plication and returns an application and a list of integer blocks. The objective

is to split the application where we found a primitive. By doing this, we ob-

tain two lists, the first list is pulled out into an integer block. The other

list is evaluated to reduce the primitive arity by one. A similar process is

applied in both spine and off-spine applications.

Chapter 4. 58

Once we have collected all the splittings for the entire template, inlining is applied.

The rule inline checks for every atom in the split template. If a PTR atom

referring to a singleton application contains a singleton containing a PRIM atom,

then, the primitive atom is inlined. Then the rule soloPrims replaces all the

singleton primitive applications in the split template with empty applications.

In this way, PrimCheck preserves the order of the applications in the list of the

off-spine applications.

Apart from the logical and numeric primitives, there are two special primitives to

print the results from the computation in the Reduceron machine. The rules to

deal with atoms PRI emitInt and PRI emit are applied before the rules for the con-

ventional primitives and they are described in rules emitApply and splitEmitApp.

The main difference is in rule splitEmitApp, which splits the application where a

primEmit is found. It checks which are the arguments of emit, and makes those

arguments integer blocks. The application of the emit primitive is reduced to

INT 0.

4.3.2 An Example Application of the PrimCheck Rules

Consider for example the template code tri5.

tri5 = [(0, [FUN 1 1, INT 5], [])

, (1, [INT 1, PTR 0, TAB 2 2 1,ARG 0],

[[ARG 0, PRI "(<=)"]])

, (2, [ARG 1, PTR 0],

[[FUN 1 1,PTR 1,PRI "(+)"],

[INT 1, PTR 2],

[ARG 1, PRI "(-)"]])

, (2, [INT 1], [])]

The first transformation is to replace each PRI s atom for a PRIM n b atom. When

we apply the rule introPrim to each template in the program tri5, we obtain a

list of split templates. Each split template is a pair composed by a new template

with PRIMs and the empty list for integer blocks. It introduces PRIM 2 True for

the logical primitives, and PRIM 2 False for the arithmetic ones, where 2 is the

arity of the primitive application.

Chapter 4. 59

primCheck [[t]]⇒ fix(primReduce(primIntro [[t]]))
where
primReduce st = primApply(emitApply(st))

pri2prim [[a]]⇒
PRIM 2 False , if a ∈ {PRI (+),PRI (-)}
PRIM 2 True , if a ∈ {PRI (<=),PRI (==),PRI (/=)}
a ,otherwise

primIntroApp [[a1, ..., an]]⇒ pri2prim [[a1]], ..., pri2prim [[an]]

primIntro [[(arity, ap, ap1, ..., apn)]]⇒ ((arity, ap′, aps′), [])
where
ap′ = primIntroApp [[ap]]
aps′ = primIntroApp [[ap1]], ..., primIntroApp [[apn]]

primApplyApp aps [[a1, ..., an]] ⇒
(a1, ..., an, []) , if ∃i, j, p, q : isPrim ai ∧ (aj = PTR p) ∧ isPrim apspq
splitPrimApp [[a1, ..., an]] ,otherwise

primApply [[st]]⇒
st , if ∀ i : ¬isPrim ai ∧ ∀ i, j : ¬isPrim apij
Fail , if ∃ i : isPrim api1 ∨ isPrim a1
inline((arity, ap′, ap′1, ..., ap

′
n), ints′) ,otherwise

where
((arity, ap, ap1, ..., apn), ints) = st
(ap′, ints0) = primApplyApp aps [[ap]]
(ap′i, intsi) = primApplyApp aps [[api]], 1 <= i <= n
ints′ = ints0++ints1++...++intsn++ints

splitPrimApp [[a1, ..., an]]⇒
(a1, ..., an, []) , if ∀ i : ¬isPrim ai
((PRIM (m-1) b, ai+1, ..., an), ints) , if (∀j : 1 <= j < i,¬isPrim aj)

∧ ai = PRIM m b
where
ints = [] , if i = 2 ∧ isInt a1
ints = a1, ..., ai−1 ,otherwise

Figure 4.3: Rules to reduce primitives in PrimCheck (I).

Chapter 4. 60

inline [[((arity, ap, aps), ints)]]⇒
nullsoloPrims((arity, ap′, aps′0, ..., aps

′
n), ints)

where
ap′ = inlinePtrApp aps [[ap]]
aps′i = inlinePtrApp aps [[apsi]], 1 <= i <= n

inlinePtrApp aps [[a1, ..., an]]⇒
inlinePtrAtom aps [[a1]], ..., inlinePtrAtom aps [[an]]

inlinePtrAtom aps [[a]] ⇒
apsi , if a = PTR i ∧ soloPrim apsi
a ,otherwise

nullsoloPrims [[((arity, ap, aps1, ...apsn), ints)]] ⇒
((arity, ap, aps′1, ...aps

′
n), ints)

[] , if soloPrim apsi
aps′i ,otherwise

soloPrim [[a1...an]] ⇒ n = 1 ∧ isPrim a1

isPrim [[a]]⇒ a = PRIM n t

Figure 4.4: Rules to reduce primitives in PrimCheck (II).

emitApply [[st]]⇒ ((arity, ap′, ap′1, ..., ap
′
n), ints′)

where
((arity, ap, ap1, ..., apn), ints) = st
(ap′, ints0) = splitEmitApp [[ap]]
(ap′i, intsi) = splitEmitApp [[api]], 1 <= i <= n
ints′ = ints0++ints1++...++intsn++ints

splitEmitApp [[a1, ..., an]]⇒
(a1, ..., an, []) , if ∀ i : ¬isEmit ai
((INT 0, ai+i, ..., an), ints) , if (∀j : 1 <= j <= i,¬isEmit aj)

∧ isEmitai
where
ints = [] , if i = 2 ∧ isInt a1
ints = a1, ..., ai−1 ,otherwise

Figure 4.5: Rules to reduce primitives in PrimCheck (III).

Chapter 4. 61

⇒ by application of introPrim

[((0, [FUN 1 1, INT 5], []) , [])

, ((1, [INT 1, PTR 0, TAB 2 2 1,ARG 0],

[[ARG 0, PRIM 2 True]]) , [])

, ((2, [ARG 1, PTR 0],

[[FUN 1 1,PTR 1,PRIM 2 False],

[INT 1, PTR 2],

[ARG 1, PRIM 2 False]]) , [])

, ((2, [INT 1], [])],[]), , [])

]

The next step is to see where there are primitives PRIM n b in each applica-

tion. Each initial sequence of atoms before a PRIM n b in an application is ex-

tracted to become an integer block. In addition, the PRIM atom itself reduces to

PRIM (n-1) b.

The primApply rule is applied to each split template for tri5. It first checks where

the PRIM n b occurs. Using the splitPrimApp rule : it splits the template,

separating the int block and reduces the arity n by one in the primitive.

⇒ by application of primApply (STAGE I)

[((0, [FUN 1 1, INT 5], []) , [])

, ((1, [INT 1, PTR 0, TAB 2 2 1,ARG 0],

[[PRIM 1 True]]) , [[ARG 0]])

, ((2, [ARG 1, PTR 0],

[[PRIM 1 False],

[INT 1, PTR 2],

[PRIM 1 False]]) , [[FUN 1 1, PTR 1],[ARG 1]])

, ((2, [INT 1], [])],[]), , [])

]

Once the primitives are reduced and splitting is done, we proceed to inline the

pointers to applications of the singleton form [PRIM n b]. The inlined applica-

tions are replaced by empty [] applications, preserving the indices of the off-spine

applications.

⇒ by application of inlining

Chapter 4. 62

[((0, [FUN 1 1, INT 5], []) , [])

, ((1, [INT 1, PRIM 1 True, TAB 2 2 1,ARG 0],

[[]]) , [[ARG 0]])

, ((2, [ARG 1, PRIM 1 False],

[[],

[INT 1,PRIM 1 False],

[]]) , [[FUN 1 1, PTR 1],[ARG 1]])

, ((2, [INT 1], [])],[]), , [])]

Notice that when a candidate int block is a literal INT n, it is not appended to

the integer blocks. The reason for that is that it does not make too much sense to

compute the type of an int if we already know it is an int. The reduction of the

arity of the primitives reaches zero :

⇒ by application of primApply (STAGE II)

[((0, [FUN 1 1, INT 5], []) , [])

, ((1, [PRIM 0 True, TAB 2 2 1,ARG 0],

[[]]) , [[ARG 0]])

, ((2, [PRIM 0 False],

[[],

[PRIM 0 False],

[]]) , [[FUN 1 1, PTR 1],[ARG 1],[ARG 1]])

, ((2, [INT 1], [])],[]) , [])]

When the arity of the primitives reaches zero the primitive atom is changed to

one of two atoms : either a new BOOL atom for logical primitives or INT 0 for

arithmetic primitives.

⇒ by application of primApply (STAGE II)

[((0, [FUN 1 1, INT 5], []) , [])

, ((1, [BOOL, TAB 2 2 1,ARG 0],

[[]]) , [[ARG 0]])

, ((2, [INT 0],

[[],

[INT 0],

[]]) , [FUN 1 1, PTR 1],[ARG 1],[ARG 1]])

, ((2, [INT 1], [])],[]), , [])]

Chapter 4. 63

prop_primFree t => all notPrimi (atoms (PrimCheck t))

where

atoms ((n,ap,aps),ints) = ap ++ concat (aps ++ ints)

notPrimi (PRIM n b) = False

notPrimi _ = True

prop_preserveApps t => length offsApps == length offsApps’

where

offsApps = getApps t

offsApps’ = getApps $ fst (fromJust $ PrimCheck t)

getApps (a,app,apps) = apps

Figure 4.6: Some properties of PrimCheck.

As we can see, we have eliminated all the primitives from the template code and

isolated the integer blocks representing their arguments. The result types of each

primitive application are reflected in the BOOL and INT 0 atoms.

4.3.3 Properties of PrimCheck

Figure 4.6 shows two expected properties when we apply PrimCheck to a given

template. We can test these properties, for example, by mutating the testing

programs.

The first property, prop primFree, is that at the end of the primitive analysis

the split template must be free of any primitive atoms. The main objective of

PrimCheck is to eliminate the primitive applications from the template code, so

this is a natural property to check.

The other property, prop preserveApps, is that the number of off-spine applica-

tions in a template is preserved. There must be the same number in the original

template and the one after PrimCheck transformation. Notice that we only take

into account the number of applications not their contents.

4.3.4 Measuring the Effectiveness of PrimCheck

In order to measure the effectiveness of the primitive analysis, in Table 4.2 we

show some results from the testing of PrimCheck over a set of mutations of the

Chapter 4. 64

Table 4.2: Mutations (200-All-PrimCheck)

Program AtomCheck PrimCheck OK GP BP NT

queens 132 118 35 3 72 14
queens2 107 103 32 1 68 4
ordlist 113 112 34 0 77 1
mss 104 99 8 0 87 4
parts 102 92 21 1 63 9
braun 118 118 13 0 103 2
adjoxo 126 122 40 0 80 2
permsort 130 126 19 2 105 4
sudoku 107 105 7 0 95 3
while 146 144 22 2 117 7
tautology 113 110 15 1 94 2
cichelli2 115 106 11 0 89 6

different benchmark programs. For all of them we would like the column GP to

be close to zero, as we do not want the PrimCheck analysis to stop well-behaved

programs. One advantage of this analysis is that the programs with problems in

the primitives can be stopped without using the type-checking analysis. The size

of the set of BP at this stage is not important. After the PrimCheck is applied

to the template code, the main goal of the type-checking analysis is to reduce the

number of bad programs allowed (BP) ideally without increasing the number of

good programs stopped (GP).

In Table 4.2 we show the results for 200 mutations of type All. The mutation

type All includes Increment + Delete + Swapping type of mutations.

For the program queens, for example, we have 132 well-formed mutations. Only

35 programs evaluate successfully under the operational semantics, and 118 pro-

grams are valid under PrimCheck analysis. Notice that GP is three. In fact there

are only two stopped good programs. Remember that the mutations are cho-

sen randomly; in this case we have taken one mutation twice. GP is not zero,

only because in the operational semantics the special rule for primitives means

we can have the application in two different orders [PRI (+),ARG 0,ARG 1] or

[ARG 0,ARG 1,PRI (+)], and obtain the same result. In the PrimCheck analysis

we have not taken into account this situation. BP is quite big. At this stage of

checking that is no surprise, remember that we are only dealing with problems in

primitives. Finally the number of non-terminating programs in NT is 14.

Chapter 4. 65

4.4 TyreCheck

In brief TyreCheck derives a collection of term-type equations from coded tem-

plates and then tries to solve them. In this section we explain first the type

language and the mechanism to find a solution of a set of equations. Then in

§4.4.4 we explore the rules for solving equations when we have algebraic data

types. Finally, the mechanism to derive the collection of equations from the code

and its formalism is described in §4.4.6.

4.4.1 Type-Terms

Before we discuss how to solve a system of equations, we need to introduce the

terms that may occur as left-hand side or right-hand sides. In Figure 4.7 we have

the type-term definition — we will refer to terms or types interchangeably from

now on. A term may be a function t→ t, or a term variable denoted by v, or an

integer Int.

In Reduceron code the high-level algebraic data types are compiled to constructors

with arity and index. There is no explicit type information about algebraic data

types, and atomically constructors from different types may be indistinguishable.

We introduce in our type language a special type to encode algebraic data types,

represented by alg ics ⊕ ext. The arguments of alg are as follows. In the first

place we a have a sequence ics of pairs (i ,~t) each representing a constructor of

the type. The first component i of the pair is an index and the second is a list of

argument types. The second argument ext represents the possible extension [91]

of this algebraic data type. An extension is a pair (v,~i) where v is the variable

which will contain the extended algebraic data type, and the list ~i contains the

lacks information that represents the indexes of which alternatives are lacking in a

overall algebraic data type. When we have a algebraic data type with an extension

we will call it open.

In the case when we know the exact number of alternatives in an algebraic data

type, we will make use of the type constructor alg
−→
ics. This type cannot be

extended and we will refer it as closed in the future.

Chapter 4. 66

t = v | Int | t → t | alg
−→
ics ⊕ ext

| alg
−→
ics

ics = i × ~t

ext = v × ~i

Figure 4.7: Type-terms definition.

Extensible Types and Extension Variables The idea of extending algebraic

data types is needed because in low-level code for constructor applications we do

not have any type information that allows us to know about other constructors

for the same data type. The full data type will be the sum of a type for this

construction and some extension of this type for other constructions. We know the

index of the constructor being applied and the extension must lack any constructor

with that index.

On the other hand, when we have an application with a case-table argument, we

know how many components the case subject has. Their types can be inferred

from the templates for alternatives.

The role of the extension variable is to provide a way of referring to a possible

extension of a data type. In our algorithm the extension variable is needed. For

instance, to close a data type we add an equation assigning an empty algebraic

data type to the extension variable.

4.4.2 Colmerauer’s Method to Solve Recursive Equations

Our solver is based on the rules for solving recursive equations between simple

applicative terms, given by Colmerauer [19] in his paper titled “Prolog and Infinite

Trees”. That means that we can work with recursive functions or recursive data

types. All we need is to pass that recursive information encoded in the system of

equations to be solved. However, the solver from Colmerauer only presents simple

term constructors. In our case we need a mechanism to extend it to handle alg

terms in our type-term language.

Colmerauer’s method uses five reduction rules as follows:

Chapter 4. 67

• Compaction. Eliminate all the equations containing variable x in the left

hand side and in the right hand side only the variable x is present.

• Variable Elimination. If the variable x and the variable y are distinct vari-

ables, and the equation x=y is in the system, and x has other occurrences

in the system, then replace all these other occurrences of the variable x by

the occurrences of the variable y.

• Variable Anteposition. If there is an equation where its left hand side is a

term which is not a variable and the right hand side is a variable x, then

swap the order of the terms. The left hand side becomes the variable x and

the right hand side the other term.

• Confrontation. If in the system of equations there is x = t1 and x = t2,

where the size of t1 is ≤ the size of t2, then replace the two equations by x

= t1 and t1 = t2.

• Splitting. If the equation is of the form f(t1, ..., tn) = g(r1, ..., rn), then if

f=g replace it by t1 = r1, t2 = r2,..., tn = rn, or if f 6= g fail.

4.4.3 Algebraic Data Types

In Reduceron template code it is possible to use constructors to build low-level rep-

resentations of high-level data structures like lists or trees for instance. The atoms

CON and TAB in particular, encode computation involving algebraic data types.

The work from Colmerauer only deals with function terms and term variables. In

this section we explain how to solve an equation involving possibly recursive data

types. First we give an informal approach; then we shall formalise it as a rule.

From the language of terms in Figure 4.7, we have that an algebraic data type is

represented by the term ics where ics is a sequence of pairs representing indices

and lists of argument types for constructors. In some cases we want to allow some

extensions for the data types, we denote this idea by ⊕ ext. For example the type

for the atom BOOL is an algebraic data type containing two constructors. This

type cannot be extended.

[(0,[]) , (1,[])]

Chapter 4. 68

-----------------> [(0,[]) , (1,[])]

|

case sub of

alt0 -> True ------> [(1,[])] (+) (v1,[1]) --

|

=?

|

alt1 -> False ------> [(0,[])] (+) (v2,[0]) --

Figure 4.8: Case example.

Now suppose we have an alternative in a case expression, the result type of this

alternative should not be restricted. For example the type of a constant False

compiled to an atom CON 0 0, is encoded as:

[(0,[])] ⊕ (ve,[0])

This term represents an algebraic data type which includes at least a 0-arity con-

structor with index 0. The possibility of other constructors is represented by

the variable extension ve. Any algebraic data type assigned to ve must lack any

constructor with index zero.

Let’s outline how this idea works form in Figure 4.8. The case subject sub is

assigned a closed algebraic data type, in this example it includes two constructors

for alternatives alt0 and alt1. However, the types for True and False must be

open allowing the possibility of an extension, so that there can be a solution to

an equation requiring these two types be equal. The solution is to assign the type

of False to the variable extension v1, this is : v1 = [(0, [])] ⊕ (ve, [1, 0]) , a new

variable extension is added denoted by ve. The type can be extended by any type

lacking constructors [1,0]. The solution also assigns the type including True to

the extension variable v2 of False as follows: v2 = [(1, [])] ⊕ (ve, [1, 0]) and the

explanation is similar to the previous one. A minor but important note is that

extension variables ve must be fresh variables and the same variable occurs in the

type for alternative.

4.4.4 Rules for Solving Algebraic Data Types Equations

Now it is time to formalise these previous ideas for solving equations between

algebraic data types. Figure 4.9 gives a reduction rule for equations between

Chapter 4. 69

two algebraic data types. We combine the algebraic type-form with and without

extensions by introducing an empty extension. Here we use the convention icsL

to denote the index-constructor pairs ics in the left data type. Similarly, we use

the same convention for the data type in the right icsR.

The exL and exR are the variable extension-lack information pairs. If we do

not need to “extend” our data type, the extend information is not given. If we

can extend the data type, then the extension information is a pair of a variable

extension and the set of the lack information which contains the indexes of the

constructors. We can extract the lack information using the auxiliary function

getlks to extract the second component of the extension.

We need first, to detect which ics exists in one data type and not in the other. The

set difficsL are the existing ics in icsL and not in icsR. For the set difficsR we

apply the same principle but the other way around.

In general, the rule has two possibilities, one is a failure and the other possibility

is to reduce the original equation to a set of derived equations.

The rule fails under any of the following conditions :

1. The types both have a constructor with the same index i but different arities.

2. There is a non-empty set difficsL (or difficsR), but the right (or left) data

type is closed.

3. There is an index in the iL (or iR) that is already in the lacks set lsR (or

lsL).

4. Both difficsL and difficsR sets are empty, and both types are open but their

lacks sets are not equal.

Otherwise the rule succeeds. Derived equations are obtained as follows:

1. For each ics appearing in the left and also appearing in the right we construct

equations between corresponding argument types.

2. We take into account the remaining constructors not found in that intersec-

tion as follows:

Chapter 4. 70

(a) If difficsL and difficsR are both non-empty we create two equations.

The first assigns to the extension variable exR of the right a data type

derived from the left. The new data type contains only the left con-

structors difficsL . The new extension information has a fresh variable,

and the union of the two lacks sets. The second equation is similarly

obtained, but with left and right exchanged.

(b) If difficsL is not empty but difficsR is empty we extend the data type

of the right by assigning to its extension variable the data type derived

from the left. It is a new data type containing the constructors in

difficsL , with extension information the same as the data type in the

left. This step only creates one equation.

(c) Similarly if difficsL is empty but difficsR is non-empty.

(d) The fourth possibility is when difficsL and difficsR are both empty.

There are four sub-cases based on the extension information:

i. If both types are closed then we do not need to add any extra

equation.

ii. If the type on the left is closed but the one in the right is open,

a new equation assigns to the variable extension on the right an

empty data type, with no constructors and no extension.

iii. Similarly, if the data type on the left is open and the one on the

right is closed.

iv. Finally, if both data types are open, we create an equation between

the extension variable on the left and the extension variable on the

right.

4.4.5 Collecting Equations for length Function: An Infor-

mal Approach

This section uses a small example, a function to calculate the length of a given

list, to explain informally the process of collecting equations for a given template.

In Figure 4.10 we describe several stages of this process applied to the template

code for the length function.

Before we proceed to type-check the template code, the code is checked by Atom-

Check and PrimCheck analysis. The result is a split template, containing the

Chapter 4. 71

Given equation:

alg icsL ⊕ exL = alg icsR ⊕ exR

Fail under the following condition:

if ∃(iL, csL) ∈ icsL, (iR, csR) ∈ icsR : iL = iR ∧ |csL| 6= |csR|
∨
(difficsL 6= ∅ ∧ (null exR ∨ ∃idlackL ∈ lacksL : idlackL ∈ lacksR))
∨
(difficsR 6= ∅ ∧ (null exL ∨ ∃idlackR ∈ lacksR : idlackR ∈ lacksL))
∨
(difficsL = ∅ ∧ difficsR = ∅ ∧ ¬null exL ∧ ¬null exR ∧ lacksL 6= lacksR)

where
difficsL = {(iL, cL) | (iL, cL) ∈ icsL, iL 6∈ icsR}
difficsR = {(iR, cR) | (iR, cR) ∈ icsR, iR 6∈ icsL}
(veL, lacksL) = exL
(veR, lacksR) = exR

Otherwise, succeed replacing the equation by the following new equations:

ssj = tsj ,∀i, j : (i, ss) ∈ icsL, (i, ts) ∈ icsR, 1 ≤ j ≤ |ss|

veR = alg difficsL (v, lacksL ∪ lacksR) , if difficsL 6= ∅ ∧ difficsR 6= ∅
veL = alg difficsR (v, lacksR ∪ lacksL) ,ditto

veR = alg difficsL exL , if difficsL 6= ∅ ∧ difficsR = ∅
veL = alg difficsR exR , if difficsL = ∅ ∧ difficsR 6= ∅

alg [] = veL , if difficsL = ∅ ∧ difficsR = ∅ ∧ ¬null exL ∧ null exR
veR = alg [] , if difficsL = ∅ ∧ difficsR = ∅ ∧ null exL ∧ ¬null exR
veL = veR , if difficsL = ∅ ∧ difficsR = ∅ ∧ ¬null exL ∧ ¬null exR

Figure 4.9: Rule to solve equations between two algebraic data types.

templates and the isolated integer blocks. A dependency analysis is performed to

obtain the connected components in dependency order. Even if this appears to be

a small example, it contains some interesting structures to deal with. For example,

it contains a TAB i j k atom which represents references to other templates. In

addition, we have a recursive call for the function length denoted by FUN 1 1 in

the second template.

The first step is to calculate and give skeleton types to each template, see Figure

4.11. These skeleton types are just chains of term variables based on the arity of

Chapter 4. 72

The length code definition in Flite :

length (Cons x xs) = 1 + length xs

length Nil = 0

The original template for length function :

(1,[ARG 0,TAB 1 2 0],[])

(3,[FUN 1 1,ARG 1,PTR 0],[[INT 1,PRI "(+)"]])

(1,[INT 0],[])

The split template for the length function after PrimCheck :

((1,[ARG 0,TAB 1 2 0],[]),[])

((3,[INT 0],[[]]),[[FUN 1 1,ARG 1]])

((1,[INT 0],[]),[])

The reordered split template after dependency analysis :

((3,[INT 0],[[]]),[[FUN 1 1,ARG 1]])

((1,[INT 0],[]),[])

((1,[ARG 0,TAB 1 2 0],[]),[])

Figure 4.10: Processing the length function’s templates.

((3,[INT 0],[[]]),[[FUN 1 1,ARG 1]])

a → b → c → r1

((1,[INT 0],[]),[])

d → r2

((1,[ARG 0,TAB 1 2 0],[]),[])

e → r3

Figure 4.11: Skeleton types for the length function’s split templates.

Chapter 4. 73

each template.

Once we have the skeleton types, we calculate the equations for the templates rep-

resenting alternatives. In our example the alternatives are the first two templates

(after reordering by dependency) as shown in Figure 4.12.

Recursive Case Template. For the template number one, which is a template

of arity three, we assign the initial skeleton type as follows a → b → c → r1, a

functional type based on the arity. We use the letter “r” subscripted as convention

for the result type.

For the template one (3,[INT 0],[[]]), we only have as result type an Int. However,

the type of the integer blocks denoted by [[FUN 1 1,ARG 1]] is an integer appli-

cation of the function to the argument numbered one. We use the subscript “i”

for type variables inside of integer blocks. In the equation bi = b → di notice the

b, which is the same “b” as in the skeleton type a → b → c → r1.

Note here we have a recursive call for length function in [FUN 1 1,ARG 1], the

type for FUN 1 1 is the same type as the top-level definition of the template

number one e → r3.

Type Invariance and Recursion. We use this invariant in our type- system:

The recursive calls of a given function must have the same type as the type of the

top level function definition of that function.

Base Case Template. The second template ((1,[INT 0],[]),[]) is easy to collect the

equations from. The skeleton type for this template is a function d → r2. The r2

is the result type and it is Int. There are no integer blocks at all, so there are no

further equations from this template.

Main Template. Finally, and the most interesting part, there is the calculation of

the equations for the main template for the length function itself. The skeleton

type function for length is e → f where e is the type of the argument and f is the

result type.

In Figure 4.13 first we detect that this template contains a case table application.

This requires a different treatment from function applications. In the applica-

tion example [ARG 0,TAB 2 2 0] everything before a TAB 2 2 0 atom is the case

subject. In this example it is just a single argument ARG 0. In the TAB i j k

Chapter 4. 74

((3,[INT 0],[[]]),[[FUN 1 1,ARG 1]])

a → b → c → r1
r1 = Int

ai = e→ r3
ai = b→ di

((1,[INT 0],[]),[])

d → r2

r2 = Int

Figure 4.12: Templates for the two alternatives of the length function, and
their types.

case subject part

|

_______|__________

| |

((1, [ARG 0 ,TAB 2 2 0],[]),[])

|____________________________|

|

|

result type

f = e → r3

Figure 4.13: Template coding of the case expression in length.

constructor in this example the j component refers to the number of case alter-

natives, here there are two. The k component is zero, which tells us there are

no auxiliary arguments in alternative templates (these would correspond to free

variables in high-level case alternatives). The overall type is the result type of all

the alternatives.

The type of the top level definition of length is defined by the equation f=e → r3.

Then the equations for f are extracted in the following sequence:

• The type of ARG 0 is the type of e, which is the case subject type.

Chapter 4. 75

• Then, we construct this type as an algebraic data type, which contains two

components (zero and one). The component one is just an empty compo-

nent, from d → r2 we see that d is just a table. In the operational semantics

§3.4 the table arguments are not used when a case alternative is reduced.

The component zero contains the type variables a and b, which are taken

from a → b → c → r1, where c is the table placeholder and r1 is the re-

sult. Notice here the term variables in the components of case subject type

are just instances of the types for the templates one and two as follows

e = [(0,[a , b]),(1,[])]

• Now, for each alternative we extract the result. In our example the result

types are Int and r2. We assign those types to two fresh variables to con-

struct two equations as follows:

g = Int

h = r2

We extract all the type equations in the result type of each alternative.

These equations are previously formed when we extract the types for the

applications, for each application we generate two equations.

r1 = Int

ai = e→ f

ai = b→ di

• Finally, the result types from each alternative must be the same. We con-

struct an equation g = h to make the two result types equal. Additionally,

we need to create an equation to say that the overall result type r3 is equal

to the result type of the alternatives, it is denoted by f = g where g is the

result type of one of the alternatives.

In the Figure 4.14 the final system of equations is given. The type variable t0

represents the type of template zero, which encodes the function length. When

we solve this system of equations in Figure 4.14 we obtain a simplified system as

follows:

t0 = e→ f

e = [(0, [a, e]), (1, [])]

f = Int

Chapter 4. 76

t0 = e→ f
e = [(0, [a, b]), (1, [])]

g = Int
h = r2

r1 = Int

ai = e→ f
ai = b→ di

g = h
f = g

Figure 4.14: The final type equations extracted from template code for length.

Note the recursive structure of a list in the second equation. An algebraic data

type with two constructors indexed by zero and one. The constructor zero has two

arguments, the type variable a can be any type, and the variable e which is the

recursive term at the algebraic data type. The constructor takes no arguments.

The solution assigns to e the type of the length template argument.

We have seen in an informal way how to collect the equations for the length

function,as an example. In addition we have shown the solution for that system

of equations.

4.4.6 Rules for Collecting Equations

Here, we present the formal rules for collecting type equations from template

code. The general outcome of the collection rules in Figures 4.15 and 4.16 is a

pair (T, S), where T is the term-type which is the result type, S is the list of

term-type equations related to T. The system S can be empty. For instance, the

collected type information for an INT atom is : (Int, []), where Int is the result

type, and [] the empty system of equations. The name of the collection rules has

the prefix convention TES meaning type-term equations system.

In order to keep track of the types for the templates, we use an environment Γ,

which is a list of pairs (i, tsys), where i is the index of a template, and tsys an

associated type-term and equation system (T, S).

Chapter 4. 77

The steps to collect the equations are:

• Initialise the environment with a skeleton type for each template.

• For each template derive type-term equations from the integer blocks.

• For each template derive type-term equations from the spine application and

the off-spine applications.

• Accumulate the equations.

We define the rule TESSTemp to collect the type equations for a template, the

rule TESApply to collect equations for applications, TESAtom to collect equa-

tions for each atom. The rule TESApp accumulates the results of the application

rule. The TESCaseSubOrAtom rule checks if the atom examined is a TAB atom.

If it is, then we extract the information before and after the TAB constructor,

otherwise the atom is part of a function application.

4.4.7 Accumulating Applications

The simplest rule is the TESApp which accumulates the results from the ap-

plication rule TESApply, this rule traverses recursively all the structure of the

application, reflecting the left-associative structure of a multi-argument applica-

tion.

4.4.8 Collection of Equations in a Template

The TESSTemp rule receives a term t, system of equations s, and the environ-

ment e. From now on we will use the variable name tes or the decorated version

tes′ to refer to such a triple. Additionally the rule takes the recursive connected

components rgs and a split template.

The output of this rule has two possible alternatives:

1. If the template has only an empty spine application and an empty off-spine

applications, the rule simply yields a fresh type variable, and the empty sys-

tem of equations. This case can occur when there is an undefined template.

Chapter 4. 78

For instance, when the Flite compiler generates code for the head function,

it creates automatically an alternative to handle the case when the list is

empty. From the point of view of type-checking any undefined values must

be compatible with any other type.

2. The second case is when we have a template, with a non-empty spine ap-

plication. Apart from the standard application in template code we have a

special case, when there is a TAB i j k in the list of atoms. If that occurs

then anything before the tab constructor is considered as the case subject.

In TESSTemp the rule TESCaseSubOrAtom is in charge to deal with such

situation. This rule returns a tes′ and the list of atoms in app′. Then it ac-

cumulates the applications in app′ by using TESApp. By using this process,

we eliminate the need to assign a type to a TAB as a first-class citizen atom.

4.4.9 The Application Rule.

The rule for application TESApply introduces two equations v1 = t1 and v1 =

t2 → v2, and the union of the derived system of equations s1 and s2 (See §4.4.6).

The type-term variable v2 contains the result type.

The atomic rules TESAtom are :

• for ARG i extracts the type of i from the environment.

• for FUN n i uses TESFun to extract the type i from the environment. De-

pending on the context the extraction can yield an instance or a copy from

the environment.

• for INT n, assigns as result type the Int type, and an empty set of type

equations.

• for BOOL extracts a closed algebraic data type with two constructors, and

an empty set of type equations.

• for CON j k, uses the rule TESCon to extract a functional type based on

the arity j, whose result type is an open algebraic type pairing k with the

sequence of term variables that occurs in the functional type.

• for PTR i the rule for pointers TESPtr, extracts the type and the system

of equations of the off-spine application at index i.

Chapter 4. 79

The rule for a case subject TESCaseSub contains the construction of the alter-

native types from the values of the case alternative templates. The free-variables

arguments following the TAB atom are equated with free variable types of each

case alternative. The case subject is calculated with the information of the case

alternatives. We equate the case subject calculated in TESCaseSub rule casesub

with the case subject casesub calculated in the rule TESCaseSubOrAtom. The

result type of the case structure must be equal to the result types in the alterna-

tives, in our case we select the first variable result vr0.

4.4.10 Type Equations for Integer Blocks.

The int-block rule evaluates each application in an integer block and assign an Int

type to those singleton applications containing just one argument. In that way,

any integer arguments in int-blocks now have an explicit integer type.

4.5 Measuring the Effectiveness of TyreCheck

In Chapter 3 we described the machinery to measure the effectiveness of our static

checkers. Here we explore the results of comparing TyreCheck against RunCheck.

The overall process of testing is as follows :

• From an original well-behaved program in template code produce n muta-

tions, then extract randomly m mutations.

• Keep only the well-formed mutations that are passed by AtomCheck.

• The filtered well-formed mutations are analysed by PrimCheck.

• If PrimCheck succeeds then the mutation is analysed by TyreCheck, other-

wise the mutation is stopped after PrimCheck analysis.

• If TyreCheck can find a solution for the equations collected for each function

definition, the mutation is classified well-typed, otherwise it is considered

ill-typed.

• Evaluate the well-formed mutations by RunCheck (operational semantics).

See §3.5.

Chapter 4. 80

TESSTemp [[st]]⇒
(v, []) , if ap = [] ∧ aps = []
TESApp tes′ [[app′]] ,otherwise
where
(tes′, app′) = TESCaseSubOrAtom [[st]]
((a, ap, aps), ibs) = st
v is fresh

TESCaseSubOrAtom tes [[((ari, a1 · · · an, apps), ibs)]]
if ∀j : ¬isTab aj ⇒

(TESAtom [[a1]], a2 · · · an)
if ∀m : 1 ≤ m < i,¬isTab am ∧ ai = TAB j k i ⇒

(TESCaseSub [j · · · (j + k − 1)] l (cst, fvts), ai+l+1 · · · an)
where
cst = TESApp ([[TESAtom [[a1]]]]a2 · · · ai−1)
fvts = TESAtom [[ai+1]], · · · ,TESAtom [[ai−l]]

TESCaseSub tid0, · · · , tidn l [[cst, fvts]]⇒ (vr0, eqs)
where
(v0i → ...vni−1i → fv0i → ...fv(l−1)i → vri , si) = Γ tidi

, 0 ≤ i ≤ n

casesub = alg (0, [v00, ..., vn0]) , ..., (k − 1, [v0k−1, ..., vnk−1])

pairsRes = {vri−1
= vri | 1 ≤ i ≤ n}

pairFvs = {fvi(j−1) = fvij | 1 ≤ j ≤ n ∧ 0 ≤ i < l}
pairFvsAltTab = {fvi0 = fvsts0i | 0 ≤ i < l}
(cst′, css) = cst
(fss0...fssn, fvsts0...fvstsn) = fvts
eqs = css ∪ (cst′, casesub) ∪ s0 ∪ · · · ∪ sn ∪ pairRes

∪ pairFvs ∪ pairFvsAltTab ∪ fss0...fssn

Figure 4.15: Rules to extract equations from Template code.

• At the end there are six sets in our testing as described in Chapter 3:

– The set OK is the set of well-behaved programs in RunCheck

– The set SC is the set of well-typed programs satisfying AtomCheck,

PrimCheck and TyreCheck.

– The set BP is the set of bad programs allowed by static analysis but

stopped during the execution by the run-time system.

– The set GP is the set of well-behaved programs but stopped by the static

analysis techniques.

– The set NT is the set of (apparently) non-terminating programs.

Chapter 4. 81

TESApp tes [[a1 · · · an]]⇒
TESApply [[(· · · (TESApply tes [[a1]]) · · ·)]]an

TESApply (t1, s1) [[a]] ⇒ (v2, s3)
where
(t2, s2) = TESAtom [[a]]
s3 = {(v1 = t1), (v1 = t2 → v2)} ∪ s1 ∪ s2
v1, v2 are fresh

TESAtom [[ARG x]] ⇒ Γx
TESAtom [[INT i]] ⇒ (Int,[])
TESAtom [[BOOL]] ⇒ ([(0,[]), (1,[])],[])
TESAtom [[CON i j]] ⇒ TESCon j k
TESAtom [[FUN j k]] ⇒ TESFun j
TESAtom [[PTR x]] ⇒ TESPtr x

TESCon j k ⇒ (v0 → v1 → vj−1 → (alg[(k, v0, ..., vj−1)](vext, k)), [])
where
v0 · · · vj−1, vext are fresh

TESPtr ((ari, app, ap1 · · · apn), ibs) x⇒ TESSTemp [[((ari, apx, ap1 · · · apn), ibs)]]

TESFun id⇒
Γ id , if Γid =⊥
instance id Γ ,otherwise

Figure 4.16: Rules to extract type-equation systems from Template code,
given type environment Γ.

– The set AC is the set of well-formed programs checked by AtomCheck.

4.5.1 Mutations : Delete

In this section we measure how effective PrimCheck and TyreCheck are when we

test them against mutations in which we only delete an arbitrary atom. In Table

4.3 the results for testing PrimCheck are shown. In previous §4.3.4 the set of

good programs GP was close to zero, in this test we preserve that result. For this

experiment the amount of mutations is 200. By deleting atoms we can damage the

code seriously. The number of well-behaved programs (OK) is small in comparison

with the number of well-formed mutations (AtomCheck).

Chapter 4. 82

Table 4.3: Mutations (200-Delete-PrimCheck)

Program AtomCheck PrimCheck OK GP BP NT

permsort 122 121 6 0 115 6
queens 117 105 4 0 101 13
queens2 193 186 18 1 169 7
ordlist 128 128 27 0 101 2
mss 111 105 1 0 104 10
parts 117 96 9 0 87 10
braun 173 171 8 0 163 6
adjoxo 194 182 9 0 173 6
tautology 182 171 3 0 168 18
cichelli2 188 183 10 0 173 12

Table 4.4: Mutations (200-Delete-TyreCheck)

Program AtomCheck PrimCheck TyreCheck OK GP BP NT

permsort 122 121 7 6 3 4 6
queens 117 105 7 4 0 3 13
queens2 193 186 37 18 2 21 7
ordlist 128 128 6 27 23 2 2
mss 111 105 11 1 0 10 10
parts 117 96 23 9 1 15 10
braun 173 171 5 8 5 2 6
adjoxo 194 182 11 9 6 8 6
tautology 182 171 0 3 3 0 18
cichelli2 188 183 7 10 4 1 12

It is convenient to see the behaviour of PrimCheck and TyreCheck together. In

Table 4.4 we show the results from applying first PrimCheck and then TyreCheck

to the same set of mutations used in Table 4.3. The main goal is to reduce the

number of bad programs BP yet preserve as many as possible of the good programs

GP.

In mss there is a reduction in set BP from 104 to 10, in this case the set of

BP is [95,100,75,95,72,72,72,72,100,75]. As we can see there are repeated

mutations, then the actual set is [95,100,75,72]. Even if the numbers in the set

are duplicated in mss, the gain in the BP set when PrimCheck + TyreCheck are

applied together is in factor of 10 times, than applying PrimCheck solely.

Chapter 4. 83

Table 4.5: Mutations (200-Increment-PrimCheck)

Program AtomCheck PrimCheck OK GP BP NT

permsort 137 133 40 0 93 2
queens 158 154 54 0 100 3
queens2 155 155 67 0 88 5
ordlist 149 146 70 2 78 2
mss 149 149 44 0 105 5
parts 131 131 48 0 83 8
braun 139 139 45 0 94 7
adjoxo 164 164 78 0 86 2
tautology 150 149 41 0 108 2
cichelli2 152 148 44 0 104 3

Table 4.6: Mutations (200-Increment-TyreCheck)

Program AtomCheck PrimCheck TyreCheck OK GP BP NT

permsort 137 133 30 40 15 5 2
queens 158 154 51 54 6 3 3
queens2 155 155 73 67 11 17 5
ordlist 149 146 62 70 8 0 2
mss 149 149 51 44 1 8 5
parts 131 131 52 48 5 9 8
braun 139 139 40 45 9 4 7
adjoxo 164 164 64 78 23 9 2
tautology 150 149 41 41 6 6 2
cichelli2 152 148 45 44 5 6 3

4.5.2 Mutations : Increment

Tables 4.5 and 4.6 gives the results when the mutations are increments in the

numeric values of the arguments of the atom constructors. Notice here how the

set OK is bigger than in the mutations where we delete atoms. If we see the average

of BP in 4.6, it is 7 bad programs allowed by PrimCheck + TyreCheck, and the

average of well-typed programs is 51 (in column TyreCheck), that means that the

static checkers are allowing around 1/7 of bad programs from the total of well-

typed programs. And the average of GP stopped is almost 9, which means that we

are stopping less than 1/6 of all the well-typed programs.

Chapter 4. 84

Table 4.7: Mutations (200-All-PrimCheck)

Program AtomCheck PrimCheck OK GP BP NT

permsort 169 164 39 0 125 2
queens 162 148 49 0 99 7
queens2 161 156 44 3 115 6
ordlist 166 163 47 1 117 2
mss 160 156 32 1 125 5
parts 149 144 55 2 91 12
braun 162 160 34 2 128 7
adjoxo 172 166 66 0 100 3
tautology 170 166 40 2 128 5
cichelli2 166 161 45 0 116 7

Table 4.8: Mutations (200-All-TyreCheck)

Program AtomCheck PrimCheck TyreCheck OK GP BP NT

permsort 169 164 32 39 14 7 2
queens 162 148 43 49 8 2 7
queens2 161 156 45 44 10 11 6
ordlist 166 163 36 47 12 1 2
mss 160 156 34 32 5 7 5
parts 149 144 52 55 16 13 12
braun 162 160 31 34 8 5 7
adjoxo 172 166 58 66 19 11 3
tautology 170 166 34 40 9 3 5
cichelli2 166 161 44 45 8 7 7

4.5.3 Mutations : All

The results when we apply our static methods to a set of mutations in which we

combine Deletion, Swapping and Increment All are in Tables 4.7 and 4.8. The

damage produced by this kind of mutations is something in between deletion and

increment. The average of well-typed programs is 41, and the average of BP is 7,

that means that we are allowing 1/6 of bad programs.

Chapter 4. 85

4.5.4 Bad Guys and Good Guys

Here we discuss some examples of BP (Bad Programs) and GP (Good Programs).

First, let us see the reasons for why some ill-behaved programs are allowed by

TyreCheck. Let’s see in detail the problems in the program tautology. Consider

some mutations [242,564,164,350] in Figure 4.17 all of which belong to BP. The

mutations presented here, are of the style ALL, which includes Swap + Delete +

Increment.

For mutation 242, the function FUN 2 40 is the second alternative of a case table.

The arity of the alternative in this example is the same as the arity of the case

table function. Moreover, the result type of that alternative is a type-term variable,

which can unify with any other type.

In the mutation 564, we have a similar problem, the function FUN 1 31 is again

a branch of a case table, and has the same arity as the case table function, repre-

sented by FUN 1 29. And the result type, in this example is compatible with the

result type of the complete case table function.

The mutation 164, is a similar case, except that here the TAB 11 2 2 makes ref-

erence to one branch of the complete case table function.

The mutation 350, is obvious, from the point of view of type-checking the logical

primitives (==) and (/=) have the same type.

In summary the first three mutations in this example, the main problem is when a

function (via TAB or FUN) jumps to a case alternative, and that case alternative

is valid in terms of type-checking.

4.5.5 Tangled Functional Types

There are some term-type-graph tangled “solutions” that are perfectly valid, for

instance t = t → t. However, from the point of view of type-checking those tangled

solutions yield bad programs allowed by the solver. One possible way to stop bad

programs, is to detect when these tangled solutions are present, allowing only

recursion in algebraic data types.

Chapter 4. 86

(3,[FUN 2 38,PTR 0,PTR 1],[..]), original

(3,[FUN 2 40,PTR 0,PTR 1],[..])) mutation 242

((1,[FUN 2 41,PTR 2,PTR 4],[[FUN 1 19,ARG 0], original

[FUN 1 29,PTR 0],

...]),

(1,[FUN 2 41,PTR 2,PTR 4],[[FUN 1 19,ARG 0],

[FUN 1 31,PTR 0], mutation 564

...]))

((4,[FUN 2 7,ARG 3,ARG 0,TAB 8 2 2,ARG 3,ARG 1],[]), original

(4,[FUN 2 7,ARG 3,ARG 0,TAB 11 2 2,ARG 3,ARG 1],[])) mutation 164

((1,[INT 0,PTR 0,TAB 26 2 1,ARG 0],[[ARG 0,PRI "(==)"]]), original

(1,[INT 0,PTR 0,TAB 26 2 1,ARG 0],[[ARG 0,PRI "(/=)"]])) mutation 350

Figure 4.17: Well-typed but ill-behaved template code in tautology mutants.

(0,[CON 2 0,INT 97,PTR 0],[[CON 2 0,INT 98,CON 0 1]]), original

(0,[CON 2 0,INT 97,PTR 0],[[INT 98,CON 2 0,CON 0 1]]) mutation 1160

(0,[CON 2 0,INT 97,PTR 0],[[CON 2 0,INT 98,CON 0 1]]), original

(0,[INT 97,CON 2 0,PTR 0],[[CON 2 0,INT 98,CON 0 1]])) mutation 1140

(3,[CON 2 0,ARG 0,PTR 2],[[FUN 2 28,ARG 0],

[FUN 2 49,PTR 0,ARG 1]...]), original

(3,[CON 2 0,ARG 0,PTR 2],[[FUN 2 28,ARG 0],

[PTR 0,FUN 2 49,ARG 1]...])) mutation 523

((3,[FUN 2 1,ARG 0,ARG 2],[]), original

(3,[ARG 0,FUN 2 1,ARG 2],[])) mutation 224

Figure 4.18: Some well-behaved but ill-typed template code in tautology

mutants.

Chapter 4. 87

4.6 Summary

The main contributions of this Chapter are:

• An equation based type-checker for low-level code capable of dealing with

recursive structures without explicit type information.

• A method to eliminate the need for dependent types called PrimCheck.

We have shown that it is possible to apply static analysis techniques to Reduceron

code. Even in the absence of extra annotations the results of applying PrimCheck

combined with TyreCheck can stop ill-behaved programs.

In addition, we have shown how successful the static techniques are in detecting

ill-behaved programs when we present different kinds of mutation scenarios.

In the subsequent chapters we will see the compatibility between low-level type-

checker and high-level type-checker. In addition, we will see how to make the

static-checker tools faster and less expensive in terms of memory usage.

Chapter 5

Type Compatibility

5.1 Introduction

In this Chapter we explore the compatibility between high-level and low-level

types. The high-level type information is inferred by a type-checker for Flite. The

low-level type information is derived from the type-terms equations produced by

Reduceron TyreCheck.

The road map of this Chapter is as follows: In §5.2 we depict our overall idea for

a principle of compatibility, in §5.3 we give the language for high-level types, then

in §5.4 we describe the language of the low-level types. In §5.5 we give the details

to translate high-level types to low-level types. In §5.6 we give some examples of

how we translate from high-level types to low-level term-types. Finally, in §5.7 we

give a discussion and in §5.8 we present some results from the experiments.

5.2 Principles of Compatibility

In Figure 5.1 the source code is represented by the bullet circle in the upper-left

corner. At program level, we can Compile source Flite code. The transformation

schemas for the compiler from Flite to Reduceron code are explained in §2.7 of

paper [72].

88

Chapter 5. 89

Figure 5.1: Type compatibility diagram.

An Flite type checker infers type information from the context of the function

definitions, and explicitly given data type information. It uses standard type

constructors and it is mostly based on Chapters 8 and 9 of [2], extended to handle

case constructors, and algebraic data types. In the diagram the type-checker for

Flite is denoted by FTc. More details of FTc are given in §5.3.

On the right-hand side of the diagram we have the type inference system for Re-

duceron code RTc. It is a type-term equations based system. The type information

is extracted from Reduceron template code. In the presence of recursive calls in

algebraic data types (ADT), the derived equations between type-terms are also

recursive. More of the details are given in §5.4.

Although the two type representations are different in the high-level and low-level

type systems, we wish to demonstrate a compatibility between them. We therefore

translate the high-level types into a low-level representation. In the diagram we

call the translator a Type Compiler.

In order to test whether high-level and low-level types are compatible we supply

to the TyreCheck solver a combined system of equations including the systems

of equations from the two systems. If this combined system of equations can be

solved, the two systems are compatible. In the diagram we denote this test by the

two ways arrow Compatible?. The results and discussions of the compatibility test

are given in §5.7.

Chapter 5. 90

ht :: = hv | C id ht

hΓ :: =
−−−−−−−−→
id × ht

hdt :: = id × −→n ×
−→
Ct

Ct :: = id ×
−→
ht

hdts :: =
−→
hdt

Figure 5.2: High-level type language.

5.3 High Level Types

In Figure 5.2 the type language for Flite includes three main components : types,

type environment and data type definitions. A high-level type ht is either a type

variable hv, or a type constructor C with name id, and a list of types ht which

may be empty.

A type environment hΓ is a list of pairs, each pair contains the function definition

name denoted by id, and its corresponding type ht.

Finally, we have dts which is a list of data type definitions dt. Each data type dt

definition, is a triple containing a name i, a list of arguments denoted by ~n, and a

list of constructors Ct. Each constructor Ct is a pair of id and a list of types ht.

The ids are sorted alphabetically in each dt to preserve the order of the indexes

of the constructors. This order is used by the compiler from Flite to Reduceron

code, so it is essential for compatibility with the sequence of indexes in low-level

types.

The type inference system for Flite provides a type environment and the list of

data types if the program is well-typed.

5.3.1 Examples of Types and Data Type Definitions

A concrete representation for integers is encoded as C "Int" [], a function type

Int applied to zero arguments. A function type is encoded as C "->" [hv1,hv2].

A function type Int → Int is encoded as C "->" [C "Int" [],C "Int" []].

Chapter 5. 91

The encoding of the data type declarations in source language deserves more ex-

planation. Suppose we have two data type definitions for List and Weights as

follows:

• data List a = Cons a (List a) | Nil.

• data Weights a b = Weights a b.

The encoding for List are :

id = “List”, ~n = [a], Ct0 = (“Cons” [a,List a]) and Ct1 = (“Nil”,[]). The type for

List has the recursion in the second argument of Cons denoted by (List a).

Similarly for Weights we have : id= “Weights”, ~n= [a,b], and Ct0 = (“Weights”,[a,b]).

5.4 Low-Level Types

In Figure 5.3 the low-level type language contains type-terms denoted by lt. The

type-terms are either a type variable lv, or an integer Int, or a function type

lt → lt, or an open algebraic data type denoted by alg
−→
ics ext, or a closed algebraic

data type denoted by alg
−→
ics. The

−→
ics is a list of pairs associating with each

index i of a list of that constructor’s argument types ~lt. Recalling from Chapter 4,

algebraic data types in some cases need to be open to allow any further constructor

components or closed to restrict them. The extension ext in Figure 5.3 is the

information that tells which are the lacks indexes of the alternatives of that data

type. If the data type is closed then no ext information is provided.

Then we define eqn, which contains two terms, the left and the right hand sides

of an equation. The definition sys denotes a list of equations −→eqn. The term-sys

pair is denoted by tsys, it is a convenient way to represent the solutions. Finally

a low-level type environment
−−−−−−→
id× tsys is a list of pairs, and each pair contains a

template index and a term-sys pair tsys, denoting the computed type.

Chapter 5. 92

lt :: = lv | Int | lt → lt | alg
−→
ics ⊕ ext | alg

−→
ics

ics :: = i × ~lt

ext :: = lv × ~i

eqn :: = lt × lt

sys :: = −→eqn
tsys :: = lt × sys

lΓ :: =
−−−−−−−−−→
id × tsys

Figure 5.3: Low-level type language.

5.5 From High-level to Low-level Types

Now that we know the language for the high-level and low-level types, the first

step towards compatibility is to compile Flite types to low-level types for each

function definition involved in the source code.

When we compile the Flite source code to Reduceron template code, we have three

pieces of information:

1. The data type declarations.

2. The inferred types for each function definition (as given by a high-level type-

checker).

3. The actual template code.

Compilation of high-level types to low-level type-terms and equation systems con-

sists of two phases:

• The compilation of the data type declarations.

• The compilation of the inferred types in each function definition.

Chapter 5. 93

5.5.1 The Compilation of Data Type Declarations

In Figure 5.4 the rule CE compiles the high-level environment lΓ into a low-level

environment hΓ. It takes all the data type definitions denoted by hdt0 . . . hdtn

and gives back the low-level environment < id× tsys > ∪CES. Recall that our

low-level environment is a list of pairs where each pair is a function identifier and

a term-sys pair. Each term-sys pair tsys is compiled by using the data type com-

pilation rule DT . The rule CE is applied recursively to each data type definition,

that is denoted in the definition of CES.

The rule DT translates each high-level algebraic data type definition into a low-

level encoding of the type. It takes as auxiliary argument the current environment

env, the list of all data type definitions ds, and the term variable v for the left

hand side of the first equation. Knowing which term variable is assigned to each

algebraic data type helps us when recursive references occur in constructor type
−→
ct .

The TS rule in Figure 5.4 translates the terms found in each constructor inside a

data type declaration. The rule TS applies the translation rule T in Figure 5.5 to

translate each term in the declarations.

Now in Figure 5.5 we have the rule T . If it is applied to a high-level term variable

v or the Int type it simply returns a pair of that type with an empty list of

equations. Now the interesting part is the translation of constructors. In this rule,

we need to take into account that there are recursive calls in the terms inside of

the constructors. For that reason we use two variables v and v′, we use v′ when we

find recursion in the list of terms in each constructor. To keep our rules simple,

we update the low-level environment when we make a translation. That is why

we use the data type transformation rule DT if a given definition is not in the

environment or the auxiliary function fromEnv which takes a copy of the data

type constructor found in the environment.

In the rule T we don’t have functions as types. Flite source does not have the

ability to use function types in the data type declarations.

Chapter 5. 94

CE < hΓ, v > [[hdt0...hdtn]] ⇒ < id , tsys > ∪CES
where
tsys = DT < hΓ, hdt0...hdtn, v > [[hdt0]]
CES = CE < hΓ, v > [[hdt1...hdtn]]

(id, ~n,
−→
ct) =

−−→
hdt0

DT < hΓ, hdts, v > [[(id, ~n,
−→
ct)]] ⇒ < v, (v = alg ics) ∪ sys >

where

(id0,
−→
ht0)...(idn,

−→
htn) =

−→
ct

(t00, sys00)...(t0n, sys0n) = TS < hΓ, hdts, id, v > [[
−→
ht0]]

...

(tm0, sysm0)...(tmn, sysmn) = TS < hΓ, hdts, id, v > [[
−−→
htm]]

sys = sys00...sys0n...sysm0...sysmn

ics = (0, t00...t0n)...(m, tm0...tmn)

TS < hΓ, hdts, id, v > [[
−−−→
t0...tn]] ⇒ tsys0...tsysm

where
tsys0 = T < hΓ, hdts, id, v, v0 > [[t0]]
...
tsysm = T < hΓ, hdts, id, v, vm > [[tm]]

Figure 5.4: Translation of data type declarations (I).

T < hΓ, ds, id, v, v′ > [[v]]⇒ < v, [] >

T < hΓ, ds, id, v, v′ > [[Int]]⇒ < Int, [] >

T hΓ, ds, id, v, v′ [[C id′ ts]]

⇒ < v′, [] > if id = id′

⇒ < v′, s0...sn > if id 6= id′ ∧ id′ ∈ ds ∧ v′ ∈ s0...sn
⇒ < v, s0...sn > if id 6= id′ ∧ id′ ∈ ds ∧ v′ 6∈ s0...sn
⇒ < t0, s ∪ s0...sn > if id 6= id′ ∧ id′ 6∈ ds
where (t, s)

= DT < hΓ, ds, hdts >, ifid′ ∈ hΓ

= fromEnv hΓ id′

(t0...sys0)...(tn...sysn) = TS < hΓ, ds, id, v, v′ >ts

Figure 5.5: Translation of data type declarations (II).

Chapter 5. 95

5.5.2 Compiling Types for Each Function Definition

The type information provided by the Flite type-checker has a list of function top-

level definitions, and their corresponding types. In this section we will see how to

compile such types.

To make use of the C and CS rules in Figure 5.6 for compiling term and a list of

terms, we need first to translate the data type declarations as in §5.5.1 provided

by the Flite type system. By using the low-level environment we can extract

an instance of a given data type when we need it. The general outcome of the

following rules is a tsys tuple formed by a term and a system of term equations.

In Figure 5.6 the rule CS applies the rule C over a list of high-level types. The

rule C, translates a high-level type expression to a pair of term and system of

equations. The first compilation option corresponds to the type variables, when it

occurs then the new term-sys pair is just a new term-type variable, and an empty

system of equations, denoted by < v, [] >, where v is a fresh variable name. The

translation for int is straight forward, it becomes a term-type with an empty set of

equations < int, [] >. When we want to translate a function denoted by t1 → t2,

we compile recursively each type separately and extract two new term-types t1 and

t2. From the compilation of t1 and t2 we extract also two sets of term equations

sys1 and sys2. Finally we build a functional type and the concatenation of the

two sets of term equations as follows < t′1 → t′2, sys1 ∪ sys2 >. The last part of

the compile rule deals with the data type constructors. It assumes that in the

current environment env the constructor denoted by id already exists. From the

environment env the compiler takes an instance for the constructor name id. Then

it computes the list of type expressions that are in the high-level constructors.

5.6 Examples of Translations.

5.6.1 An Example of Translation for Bool Data Type

Assume we a have a data type definition Bool = False | True. Here id=Bool,

~n=[], and Ct0 = (False,[]), Ct1 = (True,[]) we can translate to a low-level alge-

braic data type as:

alg (0,[]) (1,[])

Chapter 5. 96

CS < hΓ, hdts, v > [[
−→
ht]]⇒ tsys0...tsysm

where

t0...tn =
−→
ht

tsys0 = C < hΓ, hdts, v0 > [[t0]]
...

tsysm = C < hΓ, hdts, vm > [[tm]]

C < env, ds, v > [[v]]⇒ < v′, [] >

C < env, ds, v > [[Int]]⇒ < Int, [] >

C < env, ds, v > [[t1→ t2]]⇒ < t1′ → t2′, sys1 ∪ sys2 >

where

< t1′, sys1 >= C < env, ds, v′ > [[t1]]

< t2′, sys2 >= C < env, ds, v′′ > [[t2]]

v′, v′′ are fresh vars

C < env, ds, v > [[C id ~t]]⇒
< t1′, sys1 ∪ (t20 = t20)...(t2n = t2n) ∪ sys20...sys2n >

where

< t1′, sys1 >= instance < id, env >
−−−−−−−−−→
< t2, sys2 > = CS < env, ds, v′′′ > [[~t]]

v′′′ is fresh var

Figure 5.6: Compilation rules for types.

In addition, notice in the definition Bool = False — True there are no arguments

for the type Bool, which indicates that there are no polymorphic variables in this

data type.

Each high-level data type definition has a name id, a list of polymorphic variables

denoted by ~n, and a list of pairs (index,constructors) denoted by ~Ct, each con-

structor can be of any type. In order to translate the high-level type, we also need

a list of data type definitions denoted in ds, and the type environment denoted by

env.

Chapter 5. 97

Notice that in the data type definitions we have a complete list of data type

constructors, so we do not allow any type extension. The list of index constructors

ics is extracted from the compilation of each single index constructor.

The two constructors are compiled to obtain ics [(0,[]),(1,[])], the index zero is

the False constructor, and the one is True constructor. Because there are no

components, the list of components for each constructor is empty.

5.6.2 Example of Type Compatibility of map Function

Our basic method to check if the types are compatible is in three steps:

• Compile high-level types of the map function to low-level term-sys pair.

• From the compiled term-sys (t1, sys1) and inferred term-sys (t2, sys2) equate

t1=t2 and append the two sys parts to the system of equations. We will have

a system of equations as follows: t1 = t2 ∪ sys1 ∪ sys2.

• Solve the system of the equations.

Let us consider the map function in high-level type representation in Figure 5.7, it

is (a → b) → [a] → [b] a function that takes a function from (a → b) as the first

argument, and a list of [a] as its second argument. The result type is [b]. In the

compiled types in Figure 5.7 we have type term and a list of equations. The type

term (a → b) → c → d is the type for (a → b) → [a] → [b]. The types [a] and [b]

are represented by c and d respectively in low-level terms. Now if we look in the

set of equations in the compiled type, we find out that c and d are the left hand

sides of two equations. Those two equations represent the list structures of [a]

and [b]. In this example the high-level type [a] is represented by the low-level type

equation c =(0:[e , c]) + (1:[]). That is a recursive equation where the variable c

is in both sides of the equation. And more precisely this recursion occurs in the

component number zero, in its second term-type variable c. The constructor one

contains no term-types constructors. This is the representation of the nil case.

Finally, because we know which are the constructors allowed in this data type

declaration, the lists cannot be extended. The translation of [b] is similar, here [b]

is translated to the equation d=(0:[f ; d]) + (1:[]).

Chapter 5. 98

We can see the type of map function inferred by TyreCheck. The representation

is quite close to the compiled version, except that we added an extra equation

to represent a1, that is the first equation in the list of the system of equations

d1= e1 → f1 and some other accumulated equations.

Once we have the compiled types for map function and the inferred types from Re-

duceron, we can follow with the second step, which is equating the two type-terms

and appending the two systems of equations. Equate (a → b) → c → d = a1 → b1 → c1

and append the two systems of equations, see in Figure 5.7 the list of equations

to be solved. Notice the first equation (a → b) → c → d = a1 → b1 → c1 which

is the link to the remaining set of equations.

Once we have the system of equations we solve them to obtain a solution.

The solution for the system of equations includes two sets, the first set is for var

terms assigned to any non-var term. The second set is a var term to var term

assignments. Here, we make explicit the non-extension at the end of the data

types. The extension is denoted by a variable and the list of lack indexes as in

v2[1, 0] for instance.

5.7 Type Compatibility and Discussion

The main goal of this Chapter is to explore the compatibility between Flite types

and Reduceron types. The first attempt to express this type compatibility is

when the two combined systems of equations have at least one solution. This is,

by applying the solver described in Chapter 3 we can decide if the systems of

equations of two different universes are compatible. The idea of the compatibility

is expressed in the diagram in Figure 5.8. From Flite source code we compile to

Reduceron code red, we also infer the type information by using the type-checker

for Flite. From the compilation and type-checking at high-level we obtain top-level

function definitions f with the high-level types denoted by hltypes. Then we use

compileTypes to translate the high-level types to low-level as (f,(t,sys)), where f is

the id of the top-level function definition, and (t,sys) is the tsys pair to represent

the type of the function f and all the possible equations related to that type.

TyreCheck computes the type information as (f’,(t’,sys’)). Finally, the solve func-

tion computes a possible solution for the system of equations obtained from the

Chapter 5. 99

High-level type of map function:

(a→ b)→ [a]→ [b]

Compiled types:

((a→ b)→ c→ d, [c = (0 : [e; c]) + (1 : [])

e = g

d = (0 : [f ; d]) + (1 : [])

f = h])

Reduceron types:

(a1 → b1 → c1, [d1 = e1 → f1

b1 = (0 : [e1; b1]) + (1 : [])

g1 = (0 : [f1;h1]) + v2[1, 0]

h1 = (1 : []) + g1[1]

c1 = h1

a1 = d1])

Equations to be solved:

(a→ b)→ c→ d = a1 → b1 → c1

c = (0 : [e; c]) + (1 : [])

e = g

d = (0 : [f ; d]) + (1 : [])

f = h

d1 = e1 → f1

b1 = (0 : [e1; b1]) + (1 : [])

g1 = (0 : [f1;h1]) + v2[1, 0]

h1 = (1 : []) + g1[1])

c1 = h1

a1 = d1

Solution:

d1 = g → f1

g1 = (0 : [f1; d])

c = (0 : [g; c]) + (1 : [])

d = (1 : []) + g1[1])

a = g b = f1 e1 = g b1 = c h = f1

h1 = d c1 = d a1 = d1 e = g f = f1

Figure 5.7: Example for type compatibility of the map function.

Chapter 5. 100

Figure 5.8: The actual model for type compatibility.

compilation of high-level types and the low-level types inferred by TyreCheck. In

the diagram it is denoted by the function solve [(t,t’)]+sys+sys’.

We compare the two sets of equations for each function definition type, and if there

exists a solution for them, then the types are compatible. In this validation, we

do not consider the implicit problem of extending or not the algebraic data types

(eg. Sub-typing). The type compatibility between the low-level and high-level

types is a condition to attest that the low-level types are compatible to the types

in the high-level source language. There are some considerations that we must

deal with, for example in the extension in the algebraic data types we allow the

compatibility between more specific and more general types. In some sense when

we talk about algebraic data types, the result type can be more relaxed and the

argument types less relaxed. For instance, in a case expression we can restrict the

number of case alternatives by assigning to them a closed algebraic data type.

5.8 Results

In Table 5.1 we have the results of testing two main properties when we solve the

systems of equations in compile types and the inferred types from Reduceron. The

Chapter 5. 101

Program Prop1 Prop2

PermSort True True
Queens True True
Queens2 True True
MSS True True
OrdList True True
PermSort True True
Parts True True
Sudoku True True
Taut True True
Cichelli True True
While True True

Table 5.1: Property test over set of programs.

first property tell us if the system has a solution. The second property checks that

once we have a solution, if we apply the substitutions of the solution to the original

systems (the system from the compilation and the system from TyreCheck) we get

the same term and list of term equations, for each top-level function definition.

5.8.1 Type Compatibility Results and Discussion

In Figure 5.9 we have the compiled types and the inferred types for the append

function. We know the type for append is [a] → [a] → [a] at source level. The

types for the low-level encoding are represented by a (t, sys) pair, where t is a

term and sys is a system of equations. Consider the structure of the compiled

data type for the second argument of the append function:

b = (0 : [f ; b])(1 : [])

The data type has two constructors, and the constructor type indexed by zero

contains a recursive term b. For this particular case there is less information in

the inferred type. The type for the second argument of append in the inferred

type, k is (0 : [m;n]) + (o, [0])) and by the context k = n the recursive term.

There is no constructor with index one.

In the solution set the equation o = (1 : [])) tells us the inferred type is compatible

with the compiled one, as it can be extended to include a nullary constructor with

index one.

Chapter 5. 102

The compiled high-level type (t’,s’) is:

(a→ b→ c , { a = (0 : [d; a])(1 : [])
d = e,
b = (0 : [f ; b])(1 : []),
f = g,
c = (0 : [h; c])(1 : []),
h = i})

The inferred low-level type (t,s) is:

(j → k → l , { j = (0 : [m; j])(1 : []),
n = (0 : [m;n]) + (o, [0]),
l = n,
k = n})

The solution demonstrating compatibility is:

{ o = (1 : []), a = (0 : [e; a])(1 : []), b = (0 : [e; b])(1 : [])
g = e, j = a, m = e,
c = b, i = e, n = b,
l = b, k = b, d = e,
f = e, h = e}

Figure 5.9: An example of a type compiled from high-level F-lite type and a
type inferred from low-level code, for the append function, along with a solution

showing these two types are compatible.

Often, as in this example, inferred types are more general than compiled ones.

They specify only some constructions but they are open to extension.

As Figure 5.9 illustrates it is typically apparent that there is a similar structure

in both systems of equations. We have similar data types and a similar number

of equations. We point this out because we could have, in one system, a list

of equations containing complex type terms and, in the other system, equations

containing just distinct variables! Of course we can have a solution in that case.

How can we have some confidence that we do not have this case? We can at

least count the number of variables in both systems, and measure the size of the

systems. In Table 5.2 we have a measure for variables, sizes and time to solve

the systems of equations for all top-level function definitions in the benchmark

programs.

Chapter 5. 103

Table 5.2: Measures of the type-equation systems obtained for all top-level
definitions, both by inference from low-level code and by compilation from high-
level types, along with the time needed for the Haskell model of TyreCheck to

verify compatibility.

Number of vars Total size of type-terms

Program
Inferred Compiled Inferred Compiled

Time(s).

Queens 88 54 223 193 0.69
Queens2 196 143 451 499 2.52
MSS 86 67 219 219 0.96
PermSort 79 69 202 206 1.00
OrdList 73 51 173 151 1.64
While 225 158 712 1103 13.32
Sudoku 504 367 1202 1227 31.38
Parts 94 60 237 211 0.96
Braun 147 105 339 322 5.47
Taut 210 105 494 365 4.92
Cichelli 480 490 1164 1678 32.02

5.9 Summary

In this chapter we have shown the compatibility between high-level type informa-

tion and low-level type information. The high-level types are inferred by the Flite

type-checker. The high-level types were compiled to a low-level type representation

in order to be compared with the inferred types by Reduceron TyreCheck.

We have shown the principle of compatibility between high-level and low-level

types, which is given by finding a solution for the combined sets of a system of

equations. We have established the basis for the relation of the low-level and high-

level types. More properties of this correspondence can be explored and justified

in a future work.

Chapter 6

A More Efficient Implementation

6.1 Introduction

In this Chapter we measure the space and time required to apply TyreCheck to

Reduceron code. The speed of the checking is one of our main concerns. In

§6.2 we discuss how space and time costs are significant to our work. Then, we

explain the time and space costs of the Haskell prototype called TyreCheckH , in

§6.3. In §6.4 we give an overview of how we translate the Haskell model to a C

Figure 6.1: Reducing space and time: from a Haskell model to a C implemen-
tation (not to scale).

104

Chapter 6. 105

implementation, and a description of the main structure of our C implementation

which we call TyreCheckC0 . In §6.6 we measure the efficiency of TyreCheckC0 . In

§6.7 we improve the efficiency of TyreCheckC0 , to obtain TyreCheckC1 . In §6.8

we compare the Haskell model against the two C implementations and discuss

the results. Finally, in §6.9 we present a brief discussion of the benefits of the

implementation.

6.2 Space and Time Costs

As we saw in Chapter 2 one of the main goals of approaches such as proof-checking

code is a minimal trusted computing base [5, 29]. The resources of memory and

time are limited. We aim to provide an efficient way of checking the low-level code

to prevent run-time errors. There are some alternatives to reduce the memory

resources and improve the speed in TyreCheck. We might, for example, follow

the approach of improving the performance in the data structures as in the work

of Okasaki [92], redefining the Haskell data structures in a clever way. Another

possibility is to translate our Haskell prototype to a C implementation. We have

chosen the option of translating to a C version, in part because C provides scope

for further low-level optimisations, and because we can take advantage of other

imperative style properties, for instance, in-place updates of data type structures.

In Figure 6.1 we depict this idea of compressing the time and space of the Haskell

prototype denoted by H. We start by translating to the first version of C implemen-

tation denoted by C0, then we improve the implementation leading to our second

version of the implementation called C1.

6.3 Space and Time of TyreCheckH

Before we commence, we give the size of the programs involved in the experiments

of this Chapter. This will allow us to measure the behaviour of our tools in

different scenarios for scalability testing. Table 6.1 shows the size of each program

in terms of atoms and templates. The programs are in ascending order according

to their number of atoms. In the following sections we will see how the time and

space costs vary according to the number of atoms and the number of templates

in a given program.

Chapter 6. 106

Table 6.1: Number of atoms and templates in programs involved in experi-
ments for time and space cost.

Program Atoms Templates

MSS 144 37
Parts 147 34
Queens 157 30
OrdList 170 33
PermSort 172 36
Queens2 222 48
Braun 229 72
Taut 319 72
While 441 61
Cichelli 698 146
Sudoku 894 143

Table 6.2 gives us a general idea of the amount of memory allocated and time

needed to infer the type information using the Haskell prototype. On average the

allocated memory is 4Gb and the runtime is around 3.5 seconds. If we remove

Sudoku from the experiments the average is considerably reduced to 2 Gb and 1.5

seconds respectively. According to Table 6.1 the number of atoms in Sudoku is

more than four times the average number of atoms in the rest of the programs

(which is 210), and the number of templates is almost four times the average

numbers of templates in the other programs (44). We can ask the question: Is

there any relation between the number of atoms or templates in the code for a

program and the space-time used to compute the type information in the given

set of programs?

In Figure 6.2 we have a graphical representation for the growth of space and

time compared to atoms (a) and (b), templates in (c) and (d), number of atomic

applications in (e) and (f), and the sum of atoms for functions, case tables, and

constructors in (g) and (h).

In (a) and (b), we expected to see a pattern where the space and time increases

when the number of atoms increases. But the variety of kinds of atoms makes this

model too simple. Similarly in (c) and (d), we find that the number of templates

is not a good predictor of space and time costs. One reason is because we can

find empty templates (eg. consider the empty branch of a head function) or single

atom templates.

Chapter 6. 107

Table 6.2: Summary of total allocated memory and time for Haskell prototype.

Program Memory Allocation (Mb) Time (s)

Parts 476.32 0.35
Queens 518.25 0.39
MSS 676.24 0.55
PermSort 761.37 0.58
OrdList 950.80 0.65
Queens2 1848.27 1.93
Braun 2209.6 2.26
Taut 2987.75 2.91
While 8129.82 7.23
Cichelli 15325.84 31.42
Sudoku 19970.88 26.55

Another alternative is to count the number of applications in each program. In (e)

and (f), there is a closer correspondence between the number of applications and

the space and time used. However, there still some inconsistencies. If we observe

the plots (a) to (f) we can discard (c) and (d), the measures for templates. If

the atoms and the applications are the hint, one possibility is only to take into

account the most complex atoms. That is the atoms for functions, case tables and

constructors. In Figure (g) and (h) we can see that the number of atoms of this

kind is quite a good predictor of checking costs. Here we only take into account

FUN, TAB and CON atoms in each program for the following reasons :

• The FUN atoms for functions are most often applied to some arguments,

then, the presence of one atom FUN i j implies that there are possibly i

atoms for arguments. Moreover, every time a function is called TyreCheck

creates an instance or copy of the function type.

• The TAB atoms for case tables are similar, and more expensive in terms

of memory. For instance the atom TAB i j k requires TyreCheck to copy

the types for the templates at index position i to i+j. In addition, it must

deal with any additional atoms after the TAB atom, representing the free

variables denoted by k.

• The atom CON i j is a constructor of arity i and index j. The algebraic data

types are related to this constructor. These atoms are very often applied to

some i arguments.

Chapter 6. 108

The reason that atoms for primitives, pointers, literals and function arguments

(PRI, PTR, INT and ARG) do not influence TyreCheck costs so much is that

many of them are eliminated during PrimCheck analysis, some arguments become

integer blocks, and some pointers are inlined. —See §4.3.

6.3.1 Profiling the Haskell Prototype

We shall now look more closely at time and space costs when we apply TyreCheckH

to Reduceron code. The ghc compiler provides a mechanism to extract informa-

tion about memory and time, and the ghc profiler [93, 94] collects the statistics.

For now we execute the profiler for TyreCheckH applied to Queens, Braun, and

Sudoku programs. From Table 6.1 we see that Queens has 157 atoms and 30 tem-

plates, Braun has 229 atoms and 72 templates, and Sudoku has 894 atoms and

143 templates.

Figure 6.3 shows which TyreCheck functions consume most memory and time

when we check the Queens code. In the Table the column COST CENTRE denotes

the column for the name of the function. There are three functions that consume

more than 83% of the time, and more than 84% of memory, these functions are:

• Function freshvar in module Vars and TermOperations, provide us a fresh

term-type variables during type-checking. For the Haskell model we use

a brute force style to obtain the next fresh variable. We traverse all the

structures from the environment and the systems of equations to obtain

a new fresh variable. In the C implementation we eliminate this memory

consumption by using a global variable which gives us the next fresh variable

without using the brute force solution used in Haskell prototype.

• Function addDeclEnv.unkndefns in module Environment, calculates which

variables are generic in an environment. This operation is costly because it

has to order the list of variables during its computation.

• Function vars in module Terms, collects a list of all the variables in a term-

type expression. The accumulation of the lists is a big issue. These var

lists in some cases must be in some order. With this restriction we compute

expensive data structures over lists.

Chapter 6. 109

Figure 6.2: Code measures plotted against space and time costs.

(a) (b)

200 400 600 800

103

104

Atoms

S
p

ac
e

(M
b

)

200 400 600 800

100

101

Atoms

T
im

e
(s

ec
s.

)

(c) (d)

20 40 60 80 100 120 140

103

104

Templates

S
p

ac
e

(M
b

)

20 40 60 80 100 120 140

100

101

Templates

T
im

e
(s

ec
s.

)

(e) (f)

100 200 300 400 500 600

103

104

Applications

S
p

ac
e

(M
b

)

50 100 150 200 250 300 350

100

101

Applications

T
im

e
(s

ec
s.

)

(g) (h)

50 100 150 200 250 300 350

103

104

Tabs+Cons+Funcs

S
p

ac
e

(M
b

)

50 100 150 200 250 300 350

100

101

Tabs+Cons+Funcs

T
im

e
(s

ec
s.

)

Chapter 6. 110

COST CENTRE MODULE %time %alloc

freshvar Vars 28.1 52.9

addDeclEnv.unkndefns Environment 20.6 1.2

vars Terms 14.6 15.7

freshvar TermOperations 7.4 7.1

freshvar Vars 6.8 0.0

freshvar Vars 6.5 5.8

unknownsScheme Environment 3.2 7.3

vars.\ Terms 2.1 2.1

unknownsScheme.varsin Environment 1.4 0.6

val Environment 1.3 0.1

check Main 1.1 0.4

vars Terms 0.9 1.7

readPrec Syntax 0.8 1.3

Figure 6.3: GHC time and allocation report for TyreCheckH for the program
Queens.

What happens when we profile bigger programs like Braun and Sudoku? In Figures

6.4 and 6.5 the results are similar to the ones we obtained for Queens. The main

functions taking almost all time and space are the same as in previous example.

Additionally from the information in tables, we see that time used in computing

the type information for Braun is 9 times the time used to compute the type

information of Queens. And Sudoku takes more than 9 times the time of Braun.

The most expensive functions remain the same here when we compute the type

information for Sudoku. Notice the freshvar function in the three tables, it

consumes more than 50% of memory in all the cases. The second most expensive

function in terms of memory is the function vars. It collects the variable set for a

term-type. In some cases, the name of the functions in column COST CENTRE are

duplicated. For instance, the cost center vars belongs to a top level function, and

vars.\ belongs to a where clause in a function definition.

6.4 From TyreCheckH to TyreCheckC model

As a general rule, there is one module in the C implementation for each module in

Haskell, one top level C function definition corresponds to a Haskell definition when

possible, and there is a correspondence one-to-one for each data type structure.

Chapter 6. 111

COST CENTRE MODULE %time %alloc

addDeclEnv.unkndefns Environment 36.6 1.3

freshvar Vars 23.1 52.4

vars Terms 10.1 15.3

freshvar TermOperations 6.3 7.2

freshvar Vars 5.2 5.7

unknownsScheme Environment 4.3 9.9

freshvar Vars 4.1 0.0

val Environment 2.3 0.1

vars.\ Terms 1.7 1.8

unknownsScheme.varsin Environment 1.6 0.7

vars Terms 0.8 1.8

vars Terms 0.5 1.0

Figure 6.4: GHC time and allocation report for TyreCheckH for the program
Braun.

COST CENTRE MODULE %time %alloc

addDeclEnv.unkndefns Environment 40.7 0.7

freshvar Vars 22.1 56.4

vars Terms 9.9 16.4

freshvar TermOperations 6.3 7.9

freshvar Vars 5.6 6.3

freshvar Vars 4.8 0.0

unknownsScheme Environment 2.3 5.9

vars.\ Terms 2.3 3.0

val Environment 2.3 0.0

vars Terms 0.5 1.1

Figure 6.5: GHC time and allocation report for TyreCheckH for the program
Sudoku.

The different stages of checking Reduceron code are, AtomCheck, PrimCheck, and

then TyreCheck. To explain the initial translation from Haskell to C, we give first,

the translation approach for template code. Then we give a brief explanation of

the other data structures used in the C implementation of TyreCheck.

6.4.1 Template Translation Overview

The structures in template code include, the structure of the atoms, applications

and templates. For PrimCheck we also need split templates. We follow the

Chapter 6. 112

data Atom = ARG Int | PTR Int | INT Int | PRI String

| FUN Int Int | CON Int Int | TAB Int Int Int

| BOOL | PRIM Int BOOL

Figure 6.6: Representing atoms in Haskell.

same pattern as in the Haskell prototype to represent the data structures in the C

language implementation. For example, in Figure 6.7 we give the C translation of

the Haskell declaration of the Atom data type in Figure 6.6. In general, we encode

algebraic data types in Haskell as tagged unions in struct data type definitions.

We can find an explanation how data types in Haskell can be translated to an

imperative style in Appendix A of [95].

struct atom{

enum {isArg, isPtr, isInt, isPri, isFun, isCon, isTab, isBool, isPrim} tag;

union {

int arg;

int ptr;

int num;

PName pri;

struct {int arity; int index;} fun;

struct {int arity; int index;} con;

struct {int index; int alts; int fvs;} tab;

int bool;

struct {int arity;int isBoolRes;} prim;

};

};

typedef struct priname *PName;

struct priname{

enum {Add, Sub, Leq, Equ, Dif, Emit, EmitInt} name;

};

Figure 6.7: Representing atoms in C.

Now that we have the definition for atom translation, to represent applications in

C we need to encode Haskell lists. At first we use a translation really close to our

Haskell prototype, defining a head : tail structure by using linked lists in our

C implementation. Figure 6.8 give us the definition for a linked list representing

a list of atoms. This is, a struct called atomCons, which has two components, the

head of the list denoted headAtom, which is a pointer to a struct atom previously

defined in Figure 6.7. The second component of the structure struct atomCons

Chapter 6. 113

typedef struct atom *Atom;

typedef struct atomCons *AtomList;

struct atomCons {

Atom headAtom;

AtomList tailAtoms;

};

Figure 6.8: Atom lists in C.

Atom mkARG(int v){

Atom a = (Atom) malloc(sizeof(struct atom));

a->tag = isArg;

a->arg = v;

return a;

}

AtomList mkAtomCons(Atom a, AtomList as){

AtomList al = (AtomList) malloc(sizeof(struct atomCons));

al->headAtom = a;

al->tailAtoms = as;

return al;

}

Figure 6.9: Memory allocation constructors for atoms.

is the tail of the atom list, a recursive call to the linked list, this is encoded as

AtomList tailAtoms. The empty list is represented by a NULL pointer.

To create an atom or a list of atoms, we have definitions such as those in Figure

6.9.

Finally, recall that the template code is represented in Haskell as in Figure 6.10.

A program is a list of templates, and each template is a triple composed of arity,

a list of atoms, and a list of list of atoms. The C translation is given in Figure

6.11.

The definitions given here are only illustrative examples of how we make the

translation.

In Haskell the functionality for parsing and printing data structures is free. This

is not the case in C but the techniques for parsing and pretty printing are straight-

forward and will not be discussed here.

Chapter 6. 114

type Arity = Int

type Template = (Arity,[Atom],[[Atom]])

type Prog = [Template]

Figure 6.10: Haskell template declaration.

typedef struct tplate *Template;

typedef struct templateCons *TemplateList;

typedef struct appCons *AppList;

struct appCons{

AtomList headApp;

AppList tailApps;

};

struct tplate{

int arity;

AtomList spineapp;

AppList offspineapps;

};

struct templateCons{

Template headTemplate;

TemplateList tailTemplates;

};

Figure 6.11: Template definition in C.

6.4.2 Term-Types Translation Overview

Figure 6.12 follows the same approach of translating type-terms as we did in

translating templates. The struct term gives us the support to work with type-

term functions, type term variables, algebraic data types and numeric literals.

6.4.3 Remarks on C Data Structures

Beyond the representation of the terms, it is important to explain some consid-

erations. Sometimes we can take advantage of in-place updates in imperative

structures or loops instead of recursion. The data structures in Haskell are persis-

tent, but in many cases their use is single threaded, in a C implementation we can

Chapter 6. 115

typedef struct term *Term;

typedef struct termCons *TermList;

typedef struct ics *Ics;

typedef struct icsCons *IcsList;

typedef struct ext *Ext;

typedef int Id;

typedef struct idCons *IdList;

struct term {

enum {isFunT, isVar , isAlg, isNum} tag;

union {

struct {Term arg; Term res;} fun;

int var;

struct {IcsList ics; Ext xt;} alg;

int num;

};

};

Figure 6.12: An illustrative example of type-term in C.

Eqn drawEqnFor(int v, Sys s)

{

EqnList *esref = &(s->eqnList);

while (*esref) {

Eqn e = (*esref)->headEqn;

if (isVar(e->lhs) && e->lhs->var == v) {

*esref = (*esref)->tailEqns;

return e;

}

esref = &((*esref)->tailEqns);

}

return NULL;

}

Figure 6.13: The drawEqnFor function removes in-place any assignment
found.

update in place. The system of equations used in the solver is a good example.

The C version of the function drawEqnFor in Figure 6.13, destructively removes

one equation from a system of equations stored in a linked list.

Chapter 6. 116

Figure 6.14: Interpretation diagram of compatibility results.

6.5 Correspondence Results

In this section we discuss the way to check the correspondence between the Pro-

totype Checker implemented in Haskell and the checker implemented in C. Our

empirical method is to mutate the programs of our benchmark, then we apply

TyreCheckH and TyreCheckC to a large number of randomly generated mutants.

If the results are the same for each mutant, then we have strong evidence of cor-

respondence between the Haskell prototype and the C implementation.

From the set of programs presented in Table 6.1 in §6.3, we have executed the

Haskell prototype and the C implementation against a set of mutations. The

results are that in 99% of cases results are the same.

Some improvements in code produced the effect depicted In Figure 6.14. The ideal

results are denoted by circle called Ideal; that means that all the OK programs are

the same in the prototype and in the implementation, and all well-typed programs

are the same in the implementation and in the prototype.

In the Actual circle we see the behaviour and that means that sometimes the

programs stopped by the C implementation are not stopped by the Haskell proto-

type, or vice-versa. The C implementation is denoted by the dotted lines and the

Chapter 6. 117

template alternative of arity n : (n,[...],[...])
functional type in general : a0 → ... → an
functional type for template alternative of arity 2 : a0 → a1 → a2
functional type in detail : a0 → ... an → t → fv0 → ... → fvn → r

Figure 6.15: Illustrative example to assign functional types based on the arity.

of Template

1 (_,[... TAB 2 2 3,ARG 0],[...])

2 (2,[...],[..])

3 (2,[...],[..])

Figure 6.16: An small example of TAB constructor and its related alternatives.

Haskell prototype with the continuous line.

6.5.1 Discussion

During the translation from the model to the implementation, we found some

problems in the prototype that were detected by the actual implementation.

As an illustrative example of such problems, let us consider the problem when we

want to extract an element of a given list by using the standard Haskell functions

drop and take. The analysis of the TAB i j k constructor is the one that deserves

more care. This constructor has the following information: i is the index of the

first alternative, j is the number of alternatives to be considered, and k is the

number of free variables.

The functional type-term of an alternative is based in the arity of the template.

In Figure 6.15, the template has arity n, and the functional type for this template

is denoted as a0 →...→ an, where a0 is the first argument type and an is the type

result. For instance, if we have a template of arity two the functional type-term is

a0 → a1 → a2. But, if this functional type represents a case alternative, we need

to distinguish the term-variables that are before the untouchable table argument,

and the variables after this table argument.

In Figure 6.16, we have that in template number one, the TAB constructor refers to

the second template as the first alternative, and the last alternative is the template

number three. The number of free variables for this table is one, as encoded in

the TAB atom.

Chapter 6. 118

For example let us suppose we have in the second template vars = [a,b,c]. The

formula to know how many variables we want to take from the alternative is :

arity - number of free vars - 1. In this example this is 2-3-1=-2. If we want to

take a negative number of elements from a list, we obtain a valid result. Here,

the application take -2 [a,b,c] is equals to an empty list []. This error was

trapped during the translation to C, and was undetected in the Haskell prototype

due to the nature of the definition of take function in Haskell. A similar problem

occurs when we try to drop elements of a given list, and the number of elements

is negative.

The discussion presented in this section points out the benefit of this approach to

build programs. We were able to make several small improvements to the Haskell

prototype based on comparative testing against our C implementation.

6.6 Time and Space Costs of TyreCheckC0

6.6.1 Time

One of our main objectives is to reduce the amount of resources used by the

checking tools. We would like checking techniques to be applicable even in small

devices and without delaying execution unduly. The machinery to check if the code

is well-behaved must be faster and less complex than the machinery to produce

the code, eg. a compiler.

We apply the profiling tools to our first C implementation to examine runtime

costs. In Tables 6.17 and 6.18 we present the main time measurements for Queens

and Braun programs. We executed TyreCheckC0 100 times to emulate a sufficient

number of profiling sample points to give a good estimate of which functions are

the expensive ones. The 10 most costly functions consume more than 90% of time.

The meanings of the columns are as follows :

• time The percentage of the total execution time spent in this function.

• cumulative seconds The cumulative total number of seconds the computer

spent executing this functions, plus the time spent in all the functions above

this one in this table.

Chapter 6. 119

% cumulative self

time seconds seconds calls name

36.53 4.84 4.84 7180700 findId

30.19 8.84 4.00 8798700 concatVars

13.51 10.63 1.79 9860700 appendVars

10.23 11.99 1.36 25618700 findEqnFor

1.66 12.21 0.22 25054300 substInTerm

1.13 12.36 0.15 6113800 vars

0.72 12.45 0.10 187300 drawEqnFor

0.60 12.53 0.08 9860700 mkIds

0.49 12.60 0.07 19360770 emalloc

0.45 12.66 0.06 125600 varsEqs

Figure 6.17: Profile time for the 10 most costly functions when checking
Queens executed 100 times using implementation TyreCheckC0.

• self seconds The number of seconds accounted for by this function alone.

• calls The total number of times the function was called.

• name This is the name of the function.

In Table 6.17 we can see that function findId, concatVars, and appendVars are

the three most expensive functions. In the Haskell prototype we can observe a

similar behaviour in Figure 6.3 in §6.3. The first function lookup for an element in

a given list of ints. The functions concatVars and appendVars collect variables

in a list of terms, they preserve the order of the elements in the list. The function

findId is used to find ids, for example in the solver when it computes lacks

information. The functions to concatenate and append variables, are expensive

because they traverses all the list, in order to attach in the tail the next list or

element. Sometimes the big list is the one which is traversed. The order of the

elements in a list sometimes is useful during type-checking. For instance consider

when we need to determine which variables are free variables, which are the ones

for the table argument and which the result type and the arguments in a case

alternative.

The fourth most expensive function is findEqnFor which is only used by the solver.

In Table 6.18 we can see that the first ten functions are the almost the first ten

functions in Table 6.17. Notice that the five most costly functions consumes more

than 90% in of the execution time.

Chapter 6. 120

% cumulative self

time seconds seconds calls name

47.74 18.55 18.55 22640600 findId

22.52 27.30 8.75 27602500 concatVars

13.31 32.48 5.17 29195800 appendVars

5.62 34.66 2.19 76105400 findEqnFor

2.47 35.62 0.96 74330600 substInTerm

1.03 36.02 0.40 17582000 vars

0.98 36.40 0.38 4534800 idElem

0.71 36.68 0.28 36596500 substInEqn

0.68 36.94 0.27 275800 drawEqnFor

0.62 37.18 0.24 316100 substInSys

Figure 6.18: Profile time for the 10 most costly functions when checking Braun

executed 100 times using implementation TyreCheckC0.

In Tables 6.17 and 6.18 have detected which functions consumes the most time,

and how they are called.

6.6.2 Space

In previous section we explored the time costs of TyreCheckC0, here now we discuss

the memory usage when we apply TyreCheckC0 to Queens and Braun programs.

By instrumenting every point the code where we allocate memory, we can extract

which functions are using the most memory, and the total amount of memory

allocated.

In Table 6.3 we present the 10 most expensive functions and the total amount

of memory used when we compute the type information for Queens and Braun

programs respectively. In both programs the functions presented in Table 6.3 use

more than 94% of the overall memory used in each program. Here again, the

functions related to ids are involved. For instance, the function mkId is used to

build lists with ordered elements. The function mkVar is used to create vars in

functions related to lists of vars, like appendVars or concatVars.

Recall in the previous §6.3 where we investigated the memory usage for TyreCheckH

. In Table 6.3 we can see that the amount of allocated memory used by Queens

is 518.25 Mb. Compared to the amount of memory for TyreCheckC0 applied to

Queens (in Table 6.6) that amount is 2.58 Mb. The amount of allocated memory

Chapter 6. 121

Table 6.3: Percentage of memory for the 10 most expensive functions used
when checking Queens and Braun using TyreCheckC0.

% of memory Function % of memory Function

Queens Braun

45.09 mkIds 56.52 mkIds
26.98 mkVar 19.68 mkVar
8.25 mkEqnCons 5.04 mkEqnCons
6.83 mkEqn 4.19 mkEqn
3.06 mkFun 3.83 mkFun
0.96 mkAlg 1.84 mkEnv
0.90 mkTermCons 0.92 mkTermSys
0.77 mkEnv 0.88 mkScheme
0.77 mkIcsCons 0.86 mkAlg
0.75 mkIcs 0.85 mkIdCons

94.36% of the total memory used(2.58 Mb) in Queens.
94.60% of the total memory used(6.99 Mb) in Braun.

in Haskell prototype is 265 times bigger than the memory used in C implementa-

tion for Queens. Similarly, for the experiments when we apply TyreCheckH and

TyreCheckC0 to Braun, the amount of memory in Haskell prototype is 307 times

the amount used in C implementation. Figure 6.19 shows the gain in space and

time when we translate the Haskell prototype to a C implementation.

6.7 Space and Time of TyreCheckC1

6.7.1 Time of TyreCheckC1

From the observation in the data in preliminary sections Haskell prototype and

the C implementation, we can conclude that functions involving lists of variables

or a list of ids are the most used. Some of them are part of the solver based on the

work of Colmerauer [19]. We can tackle the problem by using an efficient approach

to solve infinite trees as in [96, 97], in which the searching of an equation during

the substitution is performed in constant time.

In our first implementation in C, we emulate the list approach in Haskell, by using

linked list in C. One advantage of this approach is that we follow the Haskell

Chapter 6. 122

Figure 6.19: Comparative for space and time of TyreCheckC0 and
TyreCheckH.

% cumulative self

time seconds seconds calls name

54.70 2.39 2.39 7180700 findId

20.25 3.28 0.89 25618700 findEqnFor

6.18 3.55 0.27 555300 appendVars

5.26 3.78 0.23 25054300 substInTerm

1.60 3.85 0.07 6109000 vars

1.37 3.91 0.06 81000 nubIdList

0.92 3.95 0.04 949200 idElem

0.80 3.98 0.04 19382270 emalloc

0.80 4.02 0.04 8127400 fromVar

0.69 4.05 0.03 7753500 mkIds

Figure 6.20: Profile time for the 10 most costly functions when checking
Queens executed 100 times using implementation TyreCheckC1.

prototype. The drawback of the linked-lists approach is that the operation of

searching and updating in a lists is expensive. One possible way to reduce the

time in searching to a constant time, is by using arrays.

Chapter 6. 123

% cumulative self

time seconds seconds calls name

60.38 10.19 10.19 22640600 findId

13.95 12.55 2.36 76105400 findEqnFor

5.04 13.40 0.85 74330600 substInTerm

3.79 14.04 0.64 1248300 appendVars

1.78 14.34 0.30 4534800 idElem

1.72 14.63 0.29 17569600 vars

1.24 14.84 0.21 936000 appendEnv

1.07 15.02 0.18 316100 substInSys

1.07 15.20 0.18 439200 nubIdList

1.04 15.37 0.18 275800 drawEqnFor

Figure 6.21: Profile time for the 10 most costly functions when checking Braun

executed 100 times using implementation TyreCheckC1.

Figure 6.22: Comparative for space and time of TyreCheckC1,TyreCheckC0

and TyreCheckH.

Chapter 6. 124

Table 6.4: Percentage of memory for the 10 most expensive functions used
when checking Queens and Braun using TyreCheckC1.

% of memory Function % of memory Function

Queens Braun

35.42 mkIds 44.19 mkIds
26.95 mkVar 19.65 mkVar
10.33 mkIdCons 13.13 mkIdCons
8.24 mkEqnCons 5.04 mkEqnCons
6.83 mkEqn 4.19 mkEqn
3.06 mkFun 3.82 mkFun
0.96 mkAlg 1.84 mkEnv
0.90 mkTermCons 0.92 mkTermSys
0.77 mkEnv 0.88 mkScheme
0.77 mkIcsCons 0.86 mkAlg

94.21% of the total memory used (2.57 Mb) in Queens.
94.51% of the total memory used (6.98 Mb) in Braun.

6.7.2 Space of TyreCheckC1

Even if we have sped up the time, we still have the same memory usage. In

Table 6.4 we have the functions consuming more than 94% of the total amount

of used memory. In Figure 6.22 we can notice the reduction in time. The second

C implementation is about 2× times faster than the first C implementation in

the big programs. The memory used still almost the same, we can see it in the

graphical representation of Figure 6.22.

Differences between TyreCheckC0 and TyreCheckC1. The implementa-

tion TyreCheckC1 differs from TyreCheckC0 in the following:

TyreCheckC1 uses a clever way when concatenate or append lists of term variables.

Instead of traversing the bigger list and adding it at the end the small list. We

solve this problem by the use of continuation lists to avoid append applications.

This operations on lists are performed when the elements of the accumulated list

do not need to be in specific order.

Chapter 6. 125

6.8 Comparative Performance

Execution time We first present and discuss a comparison of execution times

between the two C implementations and the Haskell model. The testing was

performed using the -O2 optimisation flag in ghc and gcc compilers.

In Table 6.5 we see the reduction in execution time from the model TyreCheckH

to the implementation TyreCheckC0. This gain is about 10×, except for the

programs While and Sudoku, in which we only have a reduction in speed of about

3× to 4×. The reduction in execution time from TyreCheckH to TyreCheckC0 is in

part because in the C implementation we use a counter to generate fresh variables.

In Haskell version we use a brute force method to determine a fresh variable.

The programs Sudoku and While demand more work in functions to extract term

variables from the environment. Every time we have a new solution for a connected

group, in the Haskell version we store only the needed variables and then we store

them into the environment. In TyreCheckC0 we decided to omit this step of

filtering needed variables, so the number of equations stored in the environment

for each top-level function definition is bigger in the C implementation. The added

cost becomes significant in programs where more complex structures are stored in

the environment as for Sudoku and While.

When we use the TyreCheckC1 implementation, we see that for all but the smallest

programs it is about 2×–3× faster than the TyreCheckC0 implementation. The

time needed to compute the type information in bigger programs is less than a

second in the case of While (441 atoms, 61 templates) and Cichelli (698 atoms,

146 templates), and less than three seconds for Sudoku (894 atoms, 143 templates).

Memory allocation In Table 6.6 we have a comparison of memory allocation

for the two C implementations and the Haskell model. The memory allocation is

reduced by a factor of 200× to 350× when we use TyreCheckC0 instead of the

model TyreCheckH. This saving is mainly due to the use of in-place update of the

major single threaded data structures in the C implementation.

For TyreCheckC1 there is no further reduction in allocated memory in comparison

with TyreCheckC0. The use of continuation lists in append applications avoids

the cost of traversing the first append argument, but as append in TyreCheckC0

Chapter 6. 126

Table 6.5: Summary of time in seconds for the Haskell model and the C
implementations.

Program TyreCheckH TyreCheckC0 TyreCheckC1

Parts 0.35 0.03 0.02
Queens 0.39 0.03 0.03
MSS 0.55 0.04 0.04
PermSort 0.58 0.03 0.02
OrdList 0.65 0.08 0.04
Queens2 1.93 0.26 0.11
Braun 2.26 0.12 0.08
Taut 2.91 0.26 0.11
While 7.23 2.94 0.99
Sudoku 26.55 6.05 2.74
Cichelli 31.42 2.23 0.87

Table 6.6: Summary of allocated memory in MB for the Haskell model and
the C implementations.

Program TyreCheckH TyreCheckC0 TyreCheckC1

Parts 476.32 2.66 2.66
Queens 518.25 2.58 2.57
MSS 676.24 2.88 2.87
PermSort 761.37 3.07 3.06
OrdList 950.80 3.65 3.64
Queens2 1848.27 7.44 7.44
Braun 2209.60 6.99 6.98
Taut 2987.75 10.14 10.13
While 8129.82 25.53 25.52
Cichelli 15325.84 38.94 38.92
Sudoku 19970.88 59.07 59.05

already uses destructive update no further reduction in allocated memory is pos-

sible.

A Really Fast Implementation From the experiments reported in this sec-

tion, we can see that the execution time needed to check bigger programs using

TyreCheckC1 is still 1-3 secs. To have a really fast implementation we would need

to change the representation of some heavily used data structures. For instance,

at some points the solver needs to look for an equation with a specific variable on

Chapter 6. 127

the left. The access to any such equation could be achieved in constant time if

we used an array structure with variables as indices. In order to know how much

memory we need to allocate such arrays, we can simply count the number of type

variables.

In our experiments in this thesis, the representation for the Reduceron code uses

linked date structures. However, the actual machine executes Reduceron template

code represented as a blocks of bytes. So this represents another opportunity for

optimisation, the template code could also be represented with indexed addressing

to have the benefits of constant time access.

6.9 Summary

In this Chapter we have shown how to reduce the space and time costs of TyreCheck.

The main benefit of having a small and fast checker is to provide an efficient way

of checking Reduceron code without relying too much on the computational power

of the target machine where our static methods are applied.

We started with a Haskell prototype, which served as a basis for implementations

in C. Then in the first stage We build TyreCheckC0 implementation and mea-

sure it. We extracted information about where the time is going and how much

memory is used in each program allocation point. In TyreCheckC1, the second C

implementation we have a good gain in the performance. We have reduced the

memory from TyreCheckH to TyreCheckC0 300× in average for test programs. In

the second version, for TyreCheckC0 to TyreCheckC1 we have a gain in speed is

about 2×.

Further optimisations might lead to better results than the ones presented here.

A further analysis of the data structures used in the implementation is a good

start. For instance, to reduce the amount of memory and increase the speed we

can calculate the maximum number of allocated variables in all the programs.

Once we have that information, we can change the data structure representation

to arrays. With that number of the possible allocated variables, we can allocate

memory for the entire array of variables. By using arrays we can access the type-

term variables in constant time, those variables are references to other type of

term-types structures like functions or algebraic data types. Another benefit of

Chapter 6. 128

having arrays, is that we can manipulate the memory possibly in blocks of memory

or blocks of related variables.

Chapter 7

Conclusions

7.1 Summary of Contributions

This thesis has explored and discussed type-checking methods applied to low-level

code. In Chapter 4 we developed type-checking methods to check statically low-

level code. In Chapter 5 types derived from low-level code were shown compatible

with types inferred from the high-level source program. Chapter 6 showed the first

steps towards efficient static checkers.

In Chapter 2 we presented a literature review of some related work, noting con-

nections between what we explore in this thesis and what has been reported in

the literature. The whole area of static checking is big, we haven’t discussed all

the techniques in our work. In our work we have focussed more on lightweight

static checking techniques, particularly those related to type-checking and type-

inference.

The main contribution of Chapter 3 is the machinery to test our prototypes and

implementations. The main idea is based on mutations. The mutation of programs

gives us a convenient way to create programs very close to a compiled and well-

behaved program. We combine mutation with the random selection of the mutated

candidate.

In Chapter 4 we proposed a method based on type equations to infer type infor-

mation from low-level code. In addition, we have evaluated the effectiveness of

the static checking techniques by empirical work – see §4.5. We have used the

mutation technique to generate mutants based on a well-behaved program.

129

Chapter 7. 130

Also in Chapter 4 we proposed a method to eliminate the primitive applications in

a preliminary checking stage called PrimCheck , see §4.3. Instead of dealing with

dependent types, we reduce and isolate the problem. We measure the effectiveness

of the primitive checking alone by using mutations. The advantage of PrimCheck

is that we can stop bad programs before type-checking them with fewer resources

in terms of computation steps and memory usage.

In Chapter 5 we provided evidence of compatibility between the type inference

system for a high-level and the one used by the checkers working on low-level

code. We showed how to translate high-level types to low-level type-terms, then

we can compare or solve the two systems of equations. The initial idea is if we can

find a joint solution then there is a compatibility between the two type systems.

We also check some other properties relating solutions of the two systems.

The final part of this thesis is about the time and space costs of our static checker.

In Chapter 6, we created a C version of the Haskell prototype to make more ef-

ficient static checker, in terms of memory consumption and execution time. The

first part is concerned about the correspondence between the Haskell prototype

and the C implementation. Some updates over the structures are performed in

place rather than producing a new structure as it is in functional programming

languages. The second part is more related to the efficiency of the C implemen-

tation. We have measured and detected the most costly parts of the code. A

systematic transformation eliminates some of the most costly list processing, and

this transformation alone yields a 3× speed up.

7.2 Discussion

The importance of the checking low-level code is essential in a connected world.

The compiled code may be sent over an unreliable channel, and could be altered

to produce an unexpected behaviour in the host machine. The need to patch

compiled code in a running system is part of the reality in the software industry.

We have experimented with the combination of functional languages and type-

checking techniques to create a prototype, and then implemented a checker in C

language to check Reduceron code statically.

The advantage of the static checking techniques presented in our work is significant,

because we do not need complex machinery such as theorem provers. No extra

Chapter 7. 131

load is placed on the programmer or on the compiler. The programmer does not

need to learn how to use a theorem prover or install new features into the compiler.

The compiler does not need to be adapted to a theorem prover. We have provided

a mechanism to check statically low-level untyped code.

7.3 Future Work

The work could be developed further in several directions. Possible lines of future

work include :

• By adding a small amount of code annotation the effectiveness of the static

checking might be improved. Even if most ill-behaved programs can be

trapped by the static analysis, and most well-behaved programs accepted,

by adding some extra information the effectiveness might be improved. This

extra information is not just type information, some other properties can

be useful to help in the stopping of ill-behaved programs and allowing more

well-behaved programs. Some related work on annotating programs is found

in [13–15]. A combination of type-checking and property checking by adding

annotations as in [16], could provide a more powerful mechanism to stop

ill-behaved programs.

• In the case of adding a new component, checking would ideally be applied

only to the specific component, avoiding the extra cost and complexity of

whole-program checking.

This static checking mechanism could be applied to a part of whole program.

In the same spirit of functional programming with a strong type system,

we could use the type information to check if the new component is type

compatible with the existing type information in the context.

• We have not investigated the properties of the mutation test, this is a whole

area and we have taken only the basic principles for our experimental work.

We think this model of testing is general enough to be used in other experi-

ments.

Bibliography

[1] Matthew Naylor and Colin Runciman. The Reduceron Reconfigured. In Proc.

15th ACM SIGPLAN International Conference on Functional Programming

(ICFP ’10), pages 75–86, 2010.

[2] Simon L. Peyton Jones. The Implementation of Functional Programming

Languages. Prentice-Hall, 1987. ISBN 013453333X.

[3] Simon L. Peyton Jones and David R. Lester. Implementing Functional Lan-

guages. Prentice-Hall, Inc., 1992. ISBN 0-13-721952-0.

[4] D. L. Clutterbuck and B. A. Carré. The Verification of Low-level Code. Softw.

Eng. J., 3(3):97–111, 1988. ISSN 0268-6961.

[5] George C. Necula. Proof-Carrying Code. In Proc. 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’97),

pages 106–119, 1997.

[6] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System

F to Typed Assembly Language. ACM Trans. Program. Lang. Syst., 21(3):

527–568, 1999.

[7] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and

George C. Necula. Dependent Types for Low-level Programming. In

Proc. 16th European Conference on Programming (ESOP’07), pages 520–535,

Berlin, Heidelberg, 2007. Springer-Verlag.

[8] Simon Winwood and Manuel Chakravarty. Singleton: A General-Purpose

Dependently-Typed Assembly Language. In Proc. 7th ACM SIGPLAN Work-

shop on Types in Language Design and Implementation (TLDI ’11), pages

3–14, 2011.

132

Bibliography 133

[9] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi,

Gang Tan, and Daniel C. Wang. Semantic Foundations for Typed Assembly

Languages. ACM Trans. Program. Lang. Syst., 32:7:1–7:67, 2010.

[10] David Evans. Static Detection of Dynamic Memory Errors. In Proc. of

the ACM SIGPLAN 1996 conference on Programming Language Design and

Implementation, PLDI ’96, pages 44–53, New York, NY, USA, 1996. ACM.

ISBN 0-89791-795-2.

[11] Elvira Albert, Miguel Gómez-Zamalloa, Laurent Hubert, and Germán Puebla.

Verification of Java Bytecode Using Analysis and Transformation of Logic

Programs. In Proceedings of the 9th international conference on Practical As-

pects of Declarative Languages, PADL’07, pages 124–139, Berlin, Heidelberg,

2007. Springer-Verlag. ISBN 3-540-69608-3, 978-3-540-69608-7.

[12] Philip W. L. Fong. Proof Linking: A Modular Verification Architecture for

Mobile Code Systems. PhD thesis, Simon Fraser University, Burnaby, BC,

Canada, Canada, 2004.

[13] Yann Régis-Gianas and François Pottier. A Hoare Logic for Call-by-Value

Functional Programs. In Proc. of the International Conference on Mathemat-

ics of Program Construction, MPC ’08, pages 305–335, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 978-3-540-70593-2.

[14] Bernhard Möller. Applicative Assertions. In Proc. of the International Con-

ference on Mathematics of Program Construction, pages 348–362, London,

UK, 1989. Springer-Verlag. ISBN 3-540-51305-1.

[15] Tom Schrijvers, Louis-Julien Guillemette, and Stefan Monnier. Type Invari-

ants for Haskell. In Proc. of the 3rd Workshop on Programming Languages

Meets Program Verification, PLPV ’09, pages 39–48, New York, NY, USA,

2008. ACM. ISBN 978-1-60558-330-3.

[16] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer. Uni-

fying Type Checking and Property Checking for Low-Level Code. SIGPLAN

Not., 44(1):302–314, January 2009. ISSN 0362-1340.

[17] Robin Milner. A Theory of Type Polymorphism in Programming. Journal of

Computer and System Sciences, 17:348–375, 1978.

Bibliography 134

[18] Luca Cardelli. The Computer Science and Engineering Handbook, chapter

103, Type Systems, pages 2208–2236. CRC Press, 1997. ISBN 0-8493-2909-4.

[19] A. Colmerauer. Prolog and Infinite Trees. Logic Programming, pages 231–252.

Academic Press, 1982.

[20] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

ISBN 0-262-16209-1.

[21] Raymie Stata and Martn Abadi. A Type System for Java Bytecode Subrou-

tines. In In Proceedings of the 25th ACM POPL, pages 149–160, 1998.

[22] C. Pusch. Formalizing the Java Virtual Machine in Isabelle-HOL.

Inst. für Informatik, 1998. URL http://books.google.co.uk/books?id=

hw26GwAACAAJ.

[23] R. Cohen. The Defensive Java Virtual Machine Specification. Technical

report, Computational Logic inc., 1997.

[24] Gerwin Klein and Tobias Nipkow. Verified Bytecode Verifiers. TCS, 298:

583–626, 2003.

[25] Xavier Leroy, Inria Rocquencourt, and Trusted Logic S. A. Java bytecode

verification: Algorithms and formalizations. Journal of Automated Reasoning,

30:2003, 2003.

[26] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels,

Frederick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic.

Talx86: A realistic typed assembly language. In In Second Workshop on

Compiler Support for System Software, pages 25–35, 1999.

[27] Andrew W. Appel. Foundational Proof-Carrying Code. In LICS ’01: Pro-

ceedings of the 16th Annual IEEE Symposium on Logic in Computer Science,

page 247. IEEE Computer Society, 2001.

[28] Juan Chen, Dinghao Wu, Andrew W. Appel, and Hai Fang. A Provably

Sound TAL for Back-end Optimization. In PLDI ’03: Proceedings of the

ACM SIGPLAN 2003 Conference on Programming Language Design and Im-

plementation, pages 208–219, 2003. ISBN 1-58113-662-5.

[29] Dinghao Wu, Andrew W. Appel, and Aaron Stump. Foundational Proof

Checkers with Small Witnesses. In PPDP ’03: Proceedings of the 5th ACM

http://books.google.co.uk/books?id=hw26GwAACAAJ
http://books.google.co.uk/books?id=hw26GwAACAAJ

Bibliography 135

SIGPLAN International Conference on Principles and Practice of Declarative

Programming, pages 264–274, 2003.

[30] Elvira Albert, Germán Puebla, and Manuel V. Hermenegildo. An Abstract

Interpretation-based Approach to Mobile Code Safety. Electr. Notes Theor.

Comput. Sci., 132(1):113–129, 2005.

[31] Elvira Albert, Puri Arenas, Germán Puebla, and Manuel V. Hermenegildo.

Certificate Size Reduction in Abstraction-Carrying Code. TPLP, 12(3):283–

318, 2012.

[32] Elvira Albert, Germán Puebla, and Manuel V. Hermenegildo. Abstraction-

Carrying Code: a Model for Mobile Code Safety. New Generation Comput.,

26(2):171–204, 2008.

[33] Y Jia and M Harman. An Analysis and Survey of the Development of Mu-

tation Testing. Software Engineering, IEEE Transactions on, 37(5):649–678,

2011.

[34] R. W. Floyd. Assigning Meanings to Programs. In J. T. Schwartz, edi-

tor, Mathematical Aspects of Computer Science, Proceedings of Symposia in

Applied Mathematics 19, pages 19–32, Providence, 1967. American Mathe-

matical Society.

[35] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Comm.

ACM, 12(10):576–580, 1969.

[36] Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal

Derivation of Programs. Commun. ACM, 18(8):453–457, August 1975.

[37] Sidney L. Hantler and James C. King. An Introduction to Proving the Cor-

rectness of Programs. ACM Comput. Surv., 8(3):331–353, September 1976.

ISSN 0360-0300.

[38] Magnus O. Myreen and Michael J. C. Gordon. Hoare Logic for Realistically

Modelled Machine Code. In In Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 2007), LNCS, pages 568–582, 2007.

[39] Magnus O. Myreen. Formal verification of machine-code programs. Tech-

nical Report UCAM-CL-TR-765, University of Cambridge, Computer Lab-

oratory, December 2009. URL http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-765.pdf.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-765.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-765.pdf

Bibliography 136

[40] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction,

and Polymorphism. ACM Comput. Surv., 17(4):471–523, December 1985.

ISSN 0360-0300.

[41] Christopher Strachey. Fundamental Concepts in Programming Languages.

Higher Order Symbol. Comput., 13(1-2):11–49, April 2000. ISSN 1388-3690.

[42] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.

J. ACM, 12(1):23–41, 1965.

[43] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard

ML. MIT Press, Cambridge, MA, USA, 1997. ISBN 0262631814.

[44] Simon Peyton-Jones. Haskell 98 Language and Libraries : The Revised Re-

port. Cambridge University Press, 2003. ISBN 9780521826143.

[45] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A History

of Haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN

conference on History of programming languages, HOPL III, pages 12–1–12–

55. ACM, 2007. ISBN 978-1-59593-766-7.

[46] John Hughes. Why Functional Programming Matters. The Computer Jour-

nal, 32:98–107, 1984.

[47] Roberto Amadio and Luca Cardelli. Subtyping Recursive Types. ACM

TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS,

15(4):575–631, 1993.

[48] R. Stansifer. Type Inference with Subtypes. In Proceedings of the 15th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’88, pages 88–97. ACM, 1988.

[49] John C. Mitchell. Type Inference With Simple Subtypes. Journal of Func-

tional Programming, 1(3):245–285, 1991.

[50] Stefan Kaes. Type Inference in the Presence of Overloading, Subtyping and

Recursive Types. In LISP and Functional Programming, pages 193–204, 1992.

[51] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient Recur-

sive Subtyping. In Proceedings of the 20th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL ’93, pages 419–428.

ACM, 1993.

Bibliography 137

[52] Vladimir Gapeyev, Michael Levin, and Benjamin Pierce. Recursive Subtyping

Revealed. In Journal of Functional Programming, page 2003, 2000.

[53] Jens Palsberg and Tian Zhao. Type Inference for Record Concatenation and

Subtyping. In Proceedings of the Seventeenth Annual IEEE Symposium on

Logic in Computer Science (LICS 2002), pages 125–136. IEEE Computer

Society Press, 2002.

[54] Joseph C. Vanderwaart, Derek Dreyer, Leaf Petersen, Karl Crary, Robert

Harper, and Perry Cheng. Typed Compilation of Recursive Datatypes. In In

ACM SIGPLAN Workshop on Types in Language Design and Implementation

(TLDI, pages 98–108, 2003.

[55] Dario Colazzo and Giorgio Ghelli. Subtyping, Recursion and Parametric

Polymorphism in Kernel Fun. Inf. Comput., 198(2):71–147, May 2005.

[56] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edi-

tion, 1999. ISBN 0201432943.

[57] Zhenyu Qian. A Formal Specification of Java Virtual Machine Instructions.

In Formal Syntax and Semantics of Java TM . Springer Verlag LNCS, pages

271–311. Springer-Verlag, 1997.

[58] James Gosling. Java Intermediate Bytecodes: ACM SIGPLAN Workshop

on Intermediate Representations (ir’95). In Papers from the 1995 ACM

SIGPLAN workshop on Intermediate representations, IR ’95, pages 111–118.

ACM, 1995.

[59] M. Kaufmann and J S. Moore. The ACL2 Home Page. In http: // www. cs.

utexas. edu/ users/ moore/ acl2/ . Dept. of Computer Sciences, University

of Texas at Austin, 2004.

[60] Gerwin Klein and Martin Strecker. Verified Bytecode Verification and Type-

certifying Compilation. Journal of Logic and Algebraic Programming, 58(1–2):

27–60, 2004.

[61] Gerwin Klein. Verified Java Bytecode Verification. PhD thesis, Institut für

Informatik, Technische Universität München, 2003. URL http://www4.in.

tum.de/~kleing/diss/.

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/
http://www4.in.tum.de/~kleing/diss/
http://www4.in.tum.de/~kleing/diss/

Bibliography 138

[62] G. Klein and M. Wildmoser. Verified Bytecode Subroutines. J. Autom. Rea-

soning, 30:363–398, 2003.

[63] Xavier Leroy. Bytecode Verification on Java Smart Cards. Software Practice

and Experience, 32:2002, 2002.

[64] Eva Rose. Lightweight Bytecode Verification. J. Autom. Reasoning, 31(3-4):

303–334, 2003.

[65] Karsten Klohs and Uwe Kastens. Memory Requirements of Java Bytecode

Verification on Limited Devices. Electron. Notes Theor. Comput. Sci., 132

(1):95–111, May 2005.

[66] Sonia Fagorzi and Elena Zucca. A Framework for Type Safe Exchange of Mo-

bile Code. In in: TGC 2006 - 2nd International Symposium on Trustworthy

Global Computing 2006, LNCS, 2007.

[67] Heidar Pirzadeh. Encoding the Program Correctness Proofs as Programs in

pcc Technology. In PST ’08: Sixth Annual Conference on Privacy, Security

and Trust, 2008.

[68] William Enck, Machigar Ongtang, and Patrick Mcdaniel. On Lightweight

Mobile Phone Application Certification. In ACM Conference on Computer

and Communications Security, pages 235–245. ACM, 2009.

[69] Gilles Barthe, Pierre Crégut, Benjamin Grégoire, Thomas Jensen, and David

Pichardie. The MOBIUS Proof Carrying Code Infrastructure. In Lecture

Notes in Computer Science, volume 5382, pages 1–24. Springer-Verlag, 2008.

[70] Gilles Barthe, Lennart Beringer, Pierre Crgut, Benjamin Grgoire, Martin

Hofmann, Peter Mller, Erik Poll, Germn Puebla, Ian Stark, and Eric Vtil-

lard. Mobius: Mobility, Ubiquity, Security: Objectives and Progress Report.

In Proceedings of the 2nd International Conference on Trustworthy Global

Computing, pages 10–29. Springer-Verlag, 2007.

[71] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, and Shaz Qadeer. Uni-

fying Type Checking and Property Checking for Low-level Code, 2009.

[72] Matthew Naylor and Colin Runciman. The Reduceron Reconfigured and Re-

evaluated. J. Funct. Program., 22(4-5):574–613, 2012.

Bibliography 139

[73] F-lite: a core subset of Haskell. www.cs.york.ac.uk/fp/reduceron/memos/

Memo9.txt, 2008.

[74] Jan Martin Jansen, Pieter Koopman, and Rinus Plasmeijer. Efficient In-

terpretation by Transforming Data Types and Patterns to Functions. In In

Trends in Functional Programming, volume 7. Intellect, pages 157–172, 2007.

[75] Richard Hamlet. Random Testing. In Encyclopedia of Software Engineering,

pages 970–978. Wiley, 1994.

[76] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.

Feedback-directed Random Test Generation. In In ICSE. IEEE Computer

Society, 2007.

[77] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random

testing of Haskell programs. In Proceedings of the fifth ACM SIGPLAN Inter-

national Conference on Functional Programming, ICFP ’00, pages 268–279.

ACM, 2000.

[78] Koen Claessen and John Hughes. Testing Monadic Code with Quickcheck.

In IN PROC. ACM SIGPLAN WORKSHOP ON HASKELL, pages 65–77,

2002.

[79] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on Test Data Selection:

Help for the Practicing Programmer. Computer, 11(4):34–41, April 1978.

[80] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.

Mutation Analysis. Technical Report GIT-ICS-79/08, Georgia Institute of

Technology, Atlanta, GA, September 1979.

[81] James M. Bieman, Daniel Dreilinger, and Lijun Lin. Using Fault Injection to

Increase Software Test Coverage. In IN PROC. 7TH INT. SYMP. ON SOFT-

WARE RELIABILITY ENGINEERING (ISSRE’96, pages 166–174, 1996.

[82] A. Jefferson Offutt and Stephen D. Lee. An Empirical Evaluation of Weak

Mutation. IEEE Transactions on Software Engineering, 20:337–344, 1994.

[83] A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and

Christian Zapf. An Experimental Determination of Sufficient Mutant Oper-

ators. ACM Transactions on Software Engineering, pages 5–99, 1996.

www.cs.york.ac.uk/fp/reduceron/memos/Memo9.txt
www.cs.york.ac.uk/fp/reduceron/memos/Memo9.txt

Bibliography 140

[84] J. H. Andrews, L. C. Briand, and Y. Labiche. Is Mutation an Appropriate

Tool for Testing Experiments? In Proceedings of the 27th international con-

ference on Software engineering, ICSE ’05, pages 402–411, New York, NY,

USA, 2005. ACM. ISBN 1-58113-963-2.

[85] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experi-

ments of the Effectiveness of Dataflow- and Controlflow-based Test Adequacy

Criteria. In Proceedings of the 16th International Conference on Software

Engineering, ICSE ’94, pages 191–200, Los Alamitos, CA, USA, 1994. IEEE

Computer Society Press. ISBN 0-8186-5855-X.

[86] A. Jefferson Offutt. Investigations of the Software Testing Coupling Effect.

ACM Trans. Softw. Eng. Methodol., 1(1):5–20, January 1992. ISSN 1049-

331X.

[87] Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch. Sufficient

Mutation Operators for Measuring Test Effectiveness. In IN PROC. ICSE,

pages 351–360, 2008.

[88] Dániel Drienyovszky, Dániel Horpácsi, and Simon Thompson. Quickchecking

Refactoring Tools. In Proceedings of the 9th ACM SIGPLAN Workshop on

Erlang, Erlang ’10, pages 75–80, 2010.

[89] Jukka Paakki. Attribute Grammar Paradigms — A High-Level Methodology

in Language Implementation. ACM Computing Surveys, 27(2):196–255, June

1995.

[90] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated Test-

ing of Refactoring Engines. In Proceedings of the 6th Joint Meeting of the Eu-

ropean Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, ESEC-FSE ’07, pages 185–194,

2007. ISBN 978-1-59593-811-4.

[91] Mark P. Jones and Simon Peyton Jones. Lightweight Extensible Records for

Haskell, 1999.

[92] Chris Okasaki. Purely Functional Data Structures. Cambridge University

Press, New York, NY, USA, 1998. ISBN 0-521-63124-6.

[93] Ghc profiling. http://www.haskell.org/ghc/docs/7.2.1/html/users_

guide/profiling.html. Accessed: 2013-09-13.

http://www.haskell.org/ghc/docs/7.2.1/html/users_guide/profiling.html
http://www.haskell.org/ghc/docs/7.2.1/html/users_guide/profiling.html

Bibliography 141

[94] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell.

O’Reilly Media, Inc., 1st edition, 2008. ISBN 0596514980, 9780596514983.

[95] Simon Thompson. The Haskell: The Craft of Functional Programming.

Addison-Wesley Longman Publishing Co., Inc., 2nd edition, 1999. ISBN

0201342758.

[96] Joxan Jaffar. Efficient unification over infinite terms. New Generation Com-

puting, 2(3):207–219, 1984. ISSN 0288-3635.

[97] Kuniaki Mukai. A unification algorithm for infinite trees. In Proceedings of

the Eighth international joint conference on Artificial intelligence - Volume 1,

IJCAI’83, pages 547–549, San Francisco, CA, USA, 1983. Morgan Kaufmann

Publishers Inc.

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Declaration of Authorship
	1 Introduction
	1.1 Introduction
	1.2 Thesis Statement
	1.3 Thesis Rationale
	1.4 Contributions
	1.5 Roadmap

	2 Literature Review
	2.1 Introduction
	2.2 Type Systems
	2.2.1 Type-Checking and Type-Inference
	2.2.2 Polymorphism
	2.2.3 An Example of Type Inference
	2.2.4 Recursive Types and Subtyping

	2.3 Static Checking of bytecode
	2.3.1 A Machine over Types
	2.3.2 Subroutines
	2.3.3 Lightweight Bytecode Verification

	2.4 PCC and TAL
	2.4.1 Proof Carrying Code
	2.4.2 Typed Assembly Language
	2.4.2.1 An example: The sum of the first n natural numbers.

	2.4.3 Foundational Proof Carrying Code
	2.4.4 Subsequent Developments Related to PCC and TAL

	2.5 Summary

	3 A Kit to Evaluate Tools that Check Reduceron Code
	3.1 Introduction
	3.2 Reduceron and Template Code
	Case tables.
	Primitives.
	Graph expressions and Templates.
	How Reduceron is Related to our Work?

	3.3 Template Code Syntax and Definition
	3.3.1 An Example of Reduceron Template Code

	3.4 The Reduceron Machine
	3.4.1 Transition rules for Reduceron
	3.4.2 An Example: Minimum of Two Values

	3.5 RunCheck : The Dynamic Checking Model
	3.6 Mutating Reduceron Code
	Randomly created programs
	Alteration by hand
	Mutated programs
	Mutated programs and Random Selection
	Our Mutation Testing Approach.
	Random Testing and Further Discussion

	3.7 Kinds of Mutations
	3.7.1 Introduction
	Increment Mutations
	Deletion of Atoms
	Swapping of Atoms

	3.7.2 Mutation Rules
	Increment Mutations
	Swapping Mutations
	Delete Mutations
	All Mutations

	3.8 Classification of Results
	3.9 Summary

	4 TyreCheck
	4.1 Introduction
	From TAB i to TAB i j k

	4.2 AtomCheck
	4.2.1 Measuring Effectiveness of AtomCheck

	4.3 PrimCheck
	Why not Dependent Types in the Type-checking System?
	4.3.1 Divide and Conquer
	4.3.2 An Example Application of the PrimCheck Rules
	4.3.3 Properties of PrimCheck
	4.3.4 Measuring the Effectiveness of PrimCheck

	4.4 TyreCheck
	4.4.1 Type-Terms
	Extensible Types and Extension Variables

	4.4.2 Colmerauer's Method to Solve Recursive Equations
	4.4.3 Algebraic Data Types
	4.4.4 Rules for Solving Algebraic Data Types Equations
	4.4.5 Collecting Equations for length Function: An Informal Approach
	Type Invariance and Recursion.

	4.4.6 Rules for Collecting Equations
	4.4.7 Accumulating Applications
	4.4.8 Collection of Equations in a Template
	4.4.9 The Application Rule.
	4.4.10 Type Equations for Integer Blocks.

	4.5 Measuring the Effectiveness of TyreCheck
	4.5.1 Mutations : Delete
	4.5.2 Mutations : Increment
	4.5.3 Mutations : All
	4.5.4 Bad Guys and Good Guys
	4.5.5 Tangled Functional Types

	4.6 Summary

	5 Type Compatibility
	5.1 Introduction
	5.2 Principles of Compatibility
	5.3 High Level Types
	5.3.1 Examples of Types and Data Type Definitions

	5.4 Low-Level Types
	5.5 From High-level to Low-level Types
	5.5.1 The Compilation of Data Type Declarations
	5.5.2 Compiling Types for Each Function Definition

	5.6 Examples of Translations.
	5.6.1 An Example of Translation for Bool Data Type
	5.6.2 Example of Type Compatibility of map Function

	5.7 Type Compatibility and Discussion
	5.8 Results
	5.8.1 Type Compatibility Results and Discussion

	5.9 Summary

	6 A More Efficient Implementation
	6.1 Introduction
	6.2 Space and Time Costs
	6.3 Space and Time of TyreCheckH
	6.3.1 Profiling the Haskell Prototype

	6.4 From TyreCheckH to TyreCheckC model
	6.4.1 Template Translation Overview
	6.4.2 Term-Types Translation Overview
	6.4.3 Remarks on C Data Structures

	6.5 Correspondence Results
	6.5.1 Discussion

	6.6 Time and Space Costs of TyreCheckC0
	6.6.1 Time
	6.6.2 Space

	6.7 Space and Time of TyreCheckC1
	6.7.1 Time of TyreCheckC1
	6.7.2 Space of TyreCheckC1
	Differences between TyreCheckC0 and TyreCheckC1.

	6.8 Comparative Performance
	Execution time
	Memory allocation
	A Really Fast Implementation

	6.9 Summary

	7 Conclusions
	7.1 Summary of Contributions
	7.2 Discussion
	7.3 Future Work

	Bibliography

