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Abstract

Fine particle magnetism is employed in a wide range of applications rang-

ing from magnetic data recording to cancer therapies. Characterisation

of nanoparticles is important for improving their applicability. This is a

complex task, especially if magnetostatic interactions are to be considered.

Here we have developed a methodology to investigate the inverse problem,

which consists of extracting the magnetic properties such as anisotropy,

size or saturation magnetisation from experimental magnetisation curves.

For each set of magnetic properties a magnetisation curve can always be

obtained, but from a magnetisation curve the parameters cannot always

be uniquely determined. If interactions are significant theissue becomes

complicated and the question of whether the parameters can be uniquely

identified arises. To study this we simulated the magnetic behaviour of

interacting nanoparticles with Monte-Carlo techniques and applied two

different methods for studying the inverse problem. This allows to show

that a unique extraction of model parameters is indeed possible only in

a certain range of magnetic nanoparticle concentrations and temperatures.

Using simulations we investigated the inverse problem for two parameters,

anisotropy and saturation magnetisation, at different temperatures. At low

temperature both parameters can be well determined, but theerrors and

the parameters correlation is dependent on the strength of the magneto-

static interaction. In the high temperature case, due to superparamagnetic

behaviour, only the saturation magnetisation can obtain using the inverse

problem approach. The methodology was also tested for a set of experi-

mental measurements done on magnetite nanoparticles.
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1

Introduction

Magnetic nanoparticles (NPs) are used in a broad spectrum ofnanotechnologies. One

of the most prominent examples is the magnetic information storage based on hard

disk drives where NPs serve as basic memory blocks for storing the bits of infor-

mation. In biology and chemistry functionalized magnetic NPs are widely used for

detection of chemical species in solutions, inside cells, and biological fluids, where the

noise patterns in their magnetisation response can be distinguished to serve similarly as

colouring agents in the fluorescent detection. A very important use of NPs in medicine

is as contrast agents in magnetic resonance imaging, which is a technique that allows

monitoring diseases and organ functionality [1]. Magnetic NPs are also very promising

for developing methodologies for cancer treatment where heat generated internally by

NPs, when subject to high frequency external magnetic field sources, lead to a rapid

destruction of a tumour [2][3]. Targeted drug delivery approaches where magnetic

NPs act as carriers of drugs remotely navigated by external field gradients (magnetic

forces) is another example of their application in biomedicine [1][2][3]. This list of

applications is by no means exhaustive, which demonstratesimportance of magnetic

NPs in science and technology.

The above list of applications shares a range of challenges,which are crucial for

their design and optimisation, and which will be in part addressed in this thesis. It is

not trivial to manufacture magnetic nanoparticles of uniform shape, size, and identical

physical parameters and so quantifying the properties of magnetic NP assemblies in-

evitably requires statistical description in term of probability distributions. Secondly,

often magnetic NPs in applications are rather densely packed which leads to non-

1



negligible interparticle interactions. In the applications outlined above the interactions

are mostly of magnetostatic or dipole-dipole character, asa result of their finite sepa-

ration. Such interactions bring into play geometrical aspects when the arrangement of

magnetic NPs considerably modifies the collective magneticbehaviour. Another com-

plication is the temperature effect, which results in temperature dependence of physical

parameters and in thermally activated dynamics. Superparamagnetic or hysteretic be-

haviour of the same system can be observed depending on the frequency of applied

external magnetic fields. The main task in experiments is to try to predict based on a

simple set of magnetization measurements the various distributions of properties, in-

teractions, NP arrangement - such as clustering or packing fraction, and the intensity

of thermal fluctuations.

To accomplish this task, magnetic characterisation of magnetic nanoparticle sys-

tems have been carried out by various means: FORC [4][5], ∆H(M,∆M)-methods

[6][7], fitting Langevin function to superparamagnetic curves[8]. The FORC method

allows to calculate the interaction field and coercivity field distribution. The∆H(M,∆M)-

methods are generally used to study the switching field distribution for perpendicular

recording materials (the easy axis is aligned with the applied field direction). Roy

Chantrell used the Langevin function to obtain the size and distribution of particles for

superparamagnetic behaviour[8]. These approaches are based on a number of simpli-

fications which limits their applicability. These techniques do not allow quantifying

individual magnetic properties such as anisotropy, size and their distributions, in a

general system (for example a system of random anisotropy vector distributions at any

temperature).

In this thesis, we develop a general framework which allows interpreting mag-

netization measurements in terms of parameters of a realistic Monte-Carlo model of

interacting system of magnetic NPs [9]. In the model, individual particles are de-

scribed by the Stoner-Wohlfarth theory, which allows including distributions of particle

volumes and random distributions of uniaxial anisotropy vectors common to realistic

systems. Inter-particle interaction are modelled as dipole-dipole interactions, and the

model allows incorporating various spatial arrangements of NPs. Thermal activation is

included as well and the model allows capturing both superparamagnetic and hysteretic

regimes. The model with its complexity is then combined withthe least squares fitting

tool based on the standard Levenberg-Marquard algorithm [10] into a unifying com-
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putational tool, which allows a real time adjustment of parameters of the Monte-Carlo

model to accurately describe (fit) input measurement data. The resulting output is a set

of optimum model parameters which supposedly correspond torealistic properties of

the experimentally investigated magnetic NP system.

In this way, the approach solves the inverse problem of identifying the model pa-

rameters from the measurement of magnetisation characteristics of NP systems. In-

verse problems are generally difficult to deal with. Complete solution of an inverse

problem requires in addition to obtain accurate description of input measurement data

also answering the following questions:

1. Check the uniqueness of the solution. Is there just one setof values that describe

the given data?

2. What are the errors in determining the solution?

If the uniqueness of the solution for the inverse problem is respected and the errors

are small, then the method can be successfully applied to determine information such

as saturation magnetization, anisotropy, particles size (mean value and distribution) or

other parameters of interest.

For many applications, properties such as anisotropy (K) and saturation magneti-

zation (Ms) are very important. For these reason the study done in this thesis is focused

on these two parameters. The investigation is done for magnetite (Fe3O4) nanoparti-

cles systems. K andMs are strongly dependent on the size of particles and the method

of preparation and coating[11]. For example, for magnetite nanoparticlesMs is de-

creasing with the size of the particle but also the coating affects the behaviour. For

bulk magnetite material the saturation magnetization is 92emu/g and the bulk value of

uniaxial anisotropy of magnetite at 4K is 2.1·105 erg/cm3 [12]. For magnetite nanopar-

ticles the values are smaller, varying from 50 emu/g up to 90 emu/g. Coprecipitation

preparation method give smaller values forMs, whereas using thermal decomposition

the values are closer to the bulk [13] [14][15][16]. Atomistic simulation confirms

the finite size effect, but the values are larger than the experimental values [16]. The

anisotropy of magnetite nanoparticles also vary in a large interval but different authors

use different assumption in determining the value of anisotropy. Most of the values are

determined from magnetization measurements using the coercivity field or the area of

the hysteresis curve, or the blocking temperature. Other effect such as shape anisotropy

3



or dipole interaction can influence this type of calculation. In these case using simu-

lation to solve the inverse problem is a good option to obtainquantitative information

about K andMs.

The thesis is structured as follows. In chapter 2 we briefly describe the main cat-

egories of magnetic materials. We focus on ferromagnetic materials and we describe

the main contribution to the energy of a system of magnetic nanoparticles.

Chapter 3 contains the general theory of the Monte-Carlo model. We start with the

Stoner-Wohlfarth model and we present the analytical description of it. Then the ther-

mal effects are introduced and finally the Metropolis Monte-Carlo and kinetic Monte-

Carlo algorithms are presented.

In Chapter 4 the numerical implementation of the algorithmsare described. The

implementation for simulating the magnetic behaviour of aninteracting 3D system of

spherical nanoparticles is presented in the first part of thechapter. The system con-

tains particles with log-normal distribution of diametersand log-normal distribution

of anisotropy values. Uni-axial anisotropy with random spherical distribution of easy

axis is considered. The methodology for solving the inverseproblem is presented in

the second part of the chapter.

The validation of the algorithms is discussed in chapter 5. To test the Monte-

Carlo model, results from simulations are compared with analytical calculations. Three

different tests are made: reobtaining the Stoner-Wohlfarth model for low temperature

limit, investigating coercivity as function of sweep rate and validating the combined

kinetic Monte-Carlo and Metropolis Monte-Carlo algorithms in the superparamagnetic

limit. At the end of the chapter the Levenberg-Marquardt andGrid Search methods

presented in previous chapter are also tested.

Chapter 6 discusses, based on simulations, the uniqueness of the inverse problem

for anisotropy and saturation magnetization. Then the methodology is applied for a set

of experimental magnetization curves measured at different temperature.
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2

Magnetic material. General overview

Magnetic properties of materials have as main sources the interaction between elec-

trons with unpaired spins and the orbital motion of electronaround the nucleus. The

latter has a smaller contribution and in many cases is ignored [17]. There are three

Figure 2.1: Types of magnetic materials. (a) paramagnetic:the unpaired spins of
electrons are randomly oriented; (b) antiferromagnetic: the unpaired spins of electrons
are anti-parallel oriented; (c) ferromagnetic: the unpaired spins of electrons are parallel
oriented; (d) ferrimagnetic: the unpaired spins of electrons are anti-parallel oriented,
but one orientation predominates.

5
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Chapter 2

main categories of magnetic behaviour (fig.2.1):

1. paramagnetic: the unpaired spins of electrons are weaklycoupled with each

other and the spins are randomly oriented.

2. ferromagnetic: the unpaired spins of electrons stronglyinteract with each other

and the spins are oriented parallel with each other.

3. antiferromagnetic: the unpaired spins of electrons strongly interacts with each

other and the spins are oriented anti-parallel with each other.

There are also ferrimagnetic materials in which the the spins are anti-parallel coupled,

but the number of spins pointing in one direction is larger than the spin pointing in the

opposite direction. From a macroscopic point of view the behaviour is similar with fer-

romagnetic materials. Magnetite, which is investigated inthis thesis, is a ferrimagnetic

material.

To describe a magnetic material two main parameters are used: magnetization (M)

and susceptibility. Magnetization is defined as the densityof magnetic dipole moment

per unit of volume. Susceptibility describes the variationof magnetisation with respect

to an external magnetic field.

2.1 Ferromagnetism

The most common materials that exhibit ferromagnetic behaviour are iron, nickel and

cobalt (Fe, Ni, Co). This types of materials have long range ordering. At the atomic

level, unpaired spins align parallel with each other in a region called a domain. The

magnetic field produced by one domain is large, but for a macroscopic sample the

field is lower because the sample contains domains that are not necessary aligned.

By decreasing the sample size there is a transition from multi-domain structure to a

mono-domain structure. Brown investigated this transition and concluded that domain

structures are formed to lower the total energy of the systemand at certain size a mono-

domain has lower energy than the multi-domain state.

In zero field and high temperature the total magnetic moment is zero due to the

misalignment of domains. This behaviour is similar with paramagnetic materials and

6



Chapter 2

is called superparamagnetism. In large fields the domains are aligned in the field direc-

tion. A maximum net magnetization is obtained. This value iscalled saturation mag-

netisation (Ms). A limitation of ferromagnets is represented by the Curie temperature.

The saturation magnetisation of a material decreases with increasing temperature. At

the Curie temperature there is a transition into a paramagnetic state, and the magnetic

order disappears.

-1

-0.5

 0

 0.5

 1

-6000 -3000  0  3000  6000

M
/M

s

H( Oe)

FMC
MHL

MinorHL

Figure 2.2: Types of magnetization curves. First Magnetization curve (FMC) is ob-
tained by starting from a state with zero net magnetisation and increasing the applied
field. Starting from a intermediary point on FMC and first decrease the field the Mi-
nor Hysteresis Loop (MinorHL) is obtained. The Major Hysteresis Loop (MHL) is
obtained by starting from a relative large value of the net magnetisation.

Another aspect of ferromagnetic materials is the response to a magnetic field. A

paramagnetic or a superparamagnetic material has zero magnetization if no external

magnetic field is applied. If a large magnetic field is appliedthe magnetic moments

align to the field direction and the material has a total magnetization, but if the field is

removed the total magnetization is again zero. In the case offerromagnetic materials,

if a large magnetic field is applied and then reduced to zero, the total magnetization has

a non zero value called remanence magnetisation (Mr ). To decrease the magnetization

to zero, a negative field (a field in the opposite direction) needs to be applied. If

7
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the field is increased in the opposite direction even more, the magnetic moments will

align to the field direction. If the field is decreased to zero and then increased in

the opposite direction, the magnetization follows a similar behaviour. This variation

of magnetization with respect to the applied field is called hysteresis. The current

orientation of magnetic moment depends on the previous history. This is known as

”memory effect” and it is an important aspect for many applications such as magnetic

recording. There are numerous types of magnetization curves as shown in figure2.2:

First Magnetization curve (FMC), Major Hysteresis Loop (MHL), Minor Hysteresis

Loop (MinorHL), etc. In figure2.3 a typical major hysteresis loop, usually referred

as hysteresis loop or hysteresis curve, is illustrated. A hysteresis curve presents some

characteristic elements:

1. Saturation magnetization (Ms), which is the magnetization value when all the

moments are aligned with the field.

2. Remanence or remanence magnetization (Mr ) is the magnetization value when

a large external magnetic field is applied and then removed.

3. Coercivity field (Hc) is the magnetic field that needs to be applied so that the

magnetization decreases from remanence value to zero.

For investigating magnetic properties of materials different techniques were devel-

oped covering different space and time scales such as first-principles calculation and

atomistic models, micromagnetics based on LLG (Landau-Lifshitz-Gilbert) and LLB

(Landau-Lifshitz-Bloch) equations and Monte-Carlo techniques. In these approaches

the energy of the investigated system is studied. The main contributions to a sys-

tem energy are determined by internal factors such as anisotropy energy, inter-particle

interaction or external factors such as an external magnetic field. The inter-particle

interaction can emerge from quantum effect (exchange interaction, Kondo interaction,

Dzyaloshinskii-Moriya interaction) or can be magnetostatic in origin. The first type of

interaction is short range and this thesis is focused on nanoparticle system where this

interaction can be neglected. It is assumed that the nanoparticles are separated by a

surfactant. This removes the possibility of exchange coupling, leaving magnetostatic

effect as the dominant interaction. Next, the main contribution to the investigated sys-
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-1

-0.5

 0

 0.5
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M
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MHL

Figure 2.3: Major hysteresis loop. If a large magnetic field is applied and then reduced
to zero, the total magnetization has a non zero value called remanence magnetisation
(Mr ). To decrease the magnetization to zero, a negative field (a field in the opposite
direction) needs to be applied (Hc).

tem energy are described: Zeeman energy, magnetostatic energy and different type of

anisotropy energies.

2.2 Zeeman energy

For the investigation of hysteresis curves the contribution of external field to the system

energy must be included. The energy of a particle in an external magnetic field is called

Zeeman energy and is defined by the following relation:

EZ =−µ0MsV ~eM · ~Hap (2.1)

whereµ0 is the permeability of free space. In cgs (centimetre–gram–second system)µ0

is 1 and in SI (International System of Units)µ0 is equal to 4π10−7 H/m. V is particle

volume andHap is the applied field.~eM is the versor of the magnetisation vector.

9
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2.3 Magnetostatic energy

In system of closed packed particles dipole-dipole interaction plays an important role

in the system behaviour. If the system is very diluted the dipole interaction is small

and can be neglected, but if the particles are arrange closerto each other the dipole

field contribution to the total energy increases and becomesimportant. For a sample

of magnetic particles the standard way to compute the dipolefield created by all the

particles acting on a particlei is given by following equation[18]:

~Hi = ∑
j

j 6=i

MsV

4πµ0r3
i j

[

3

r2
i j

( ~eM j · ~r i j )~r i j − ~eM j

]

(2.2)

The corresponding energy term can be written exactly the same as the Zeeman energy

with the interaction fieldHi instead of the applied fieldHap.

2.4 Anisotropy energy

Magnetic properties of different materials are in general dependent on the direction

of the measurement. In the absence of a external magnetic field the magnetic mo-

ment will orient itself on one or more preferential directions. These directions are

called easy axes. To include this effect, the total energy contains one term that de-

pends on the direction of magnetic moments. This term is known as anisotropy en-

ergy. The anisotropy energy density takes values in a large domain from approximately

0.005 MJ/m3 (5 ·104 erg/cm3) up to 10 MJ/m3 (1 ·108 erg/cm3) [19]. There are dif-

ferent sources of anisotropy: magnetocrystalline anisotropy, shape anisotropy, stress

anisotropy, exchange anisotropy. For an isotropic material the energy distribution is a

sphere. Depending of the anisotropy complexity the symmetry of energy distribution

is reduced, as it can be seen in figure2.4 for uniaxial anisotropy and in figure2.5 for

cubic anisotropy.

10
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Figure 2.4: Energy distribution for uniaxial anisotropy:K1 > 0 andK2 = 0.

2.4.1 Magnetocrystalline anisotropy

The main source of magnetocrystalline anisotropy is the indirect interaction of the

spin with the crystallographic lattice mediated by spin-orbit coupling and orbit-lattice

coupling. The magnetostatic energy is described mathematically based on phenomeno-

logical approaches as a series expansion depending on the crystal structure symmetry

[19]. In general two types of magnetocrystalline anisotropy are considered uniax-

ial anisotropy and cubic anisotropy. If a magnetic materialwith uniaxial anisotropy

is considered, having the crystallographic axis (a, b, c), then the magnetocrystalline

anisotropy depends just on one parameter,θ, the angle between the c-axis and the di-

rection of magnetic moment. The energy is symmetric with respect to the ab plane of

the crystal and therefore in the power series just the even power ofsin(θ) are taken into

account:

Euni

V
=K0+K1sin2(θ)+K2sin4(θ)+K3sin6(θ)+ ..... (2.3)

11
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WhereK1, K2, K3 are second, fourth and sixth order anisotropy constant. In many

calculations equation2.3 is written as a function ofcos(θ):

Euni

V
=−K

′
0−K

′
1cos2(θ)−K

′
2cos4(θ)+K

′
3cos6(θ)+ ..... (2.4)

Using the trigonometric relation sin2(θ) = 1−cos2(θ) the new coefficient (K
′
0, K

′
1, K

′
2,

K
′
3) can be obtained. Equation2.4 generates a complicated energy landscape, but in

general the numeric values of the anisotropy constant are decreasing with increasing

of the order and in many applications just the second order term is considered relevant.

TheK0 or K
′
0 does not have a relevant physical meaning because it simply represents a

translation of the reference level.

For cubic anisotropy the expression is more complicated:

Ecub

V
=Kc0

(

c2
x+c2

y +c2
z

)

+Kc1
(

c2
x ·c2

y+c2
y ·c2

z+c2
z ·c2

x

)

+Kc2
(

c2
x ·c2

y ·c2
z

)

(2.5)

Wherecx, cy, cz are the direction cosines of the the magnetic moment vector.Depend-

ing on the values ofKc1 andKc2 there are different easy axes. In figures2.5 and2.4

Figure 2.5: Energy distribution for cubic anisotropy:Kc1 > 0 andKc2 = 0.

the energy density is illustrated for the simplest case of uniaxial and cubic anisotropy.
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2.4.2 Shape anisotropy

The orientation of a magnetic moment of a ferromagnetic particle can have preferential

orientations due to its shape. Because of the shape, the magnetic moment is under

the influence of a field called the demagnetization field. Thisfield generates one or

more preferential orientation and can be associated with shape anisotropy. This can

simply be explained if we compare the magnetic particle witha magnetic bar. The

magnetic bar is symbolically treated like a north and south pole. The magnetic moment

is orientated form south pole to the north pole and the magnetic field lines generated by

the bar are from the north to south pole. From figure2.6 it can be seen that inside the

bar the magnetic field lines are in opposite direction to the magnetic moment and tries

to demagnetize the sample. This field is called demagnetization field and it is present

in all the magnetic materials. Using the analogy with the electric polarization, this

Figure 2.6: Magnetic field line for a magnetic bar and a magnetic particle. The mag-
netic moment is orientated form south pole to the north pole and the magnetic field
lines generated by the bar are from the north to south pole.

field can be interpreted as the field created by the uncompensated “magnetic charges”

on the surface. In the direction in which the fictional charges are further away, the

demagnetization field is smaller in comparison with the direction in which the charges

are closer. As a consequence the sample will magnetize easier on those direction for

which the demagnetization field is smaller.

For a general shape the demagnetization field is hard to calculate analytically and

it is not constant inside the sample. For an ellipsoid of revolution the demagnetization

13
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a

c
a

M

θ

Figure 2.7: A magnetic sample with an ellipsoidal shape, having two semi-axis equal
to a and the third semi-axis with c. The demagnetisation fieldcan be calculated for
such a sample.

field is uniform inside the sample and Osborn [20] derived the analytical equations.

Considering an ellipsoid of revolution with two semi-axis equal to a and the third

semi-axis with c (as in figure2.7), the demagnetization field can be written as:

Hd = NdMs (2.6)

WhereNd is the demagnetization factor for x, y and z direction.Nx andNy are equal

and satisfy (for cgs units) the following equation:

Nx+Ny+Nz= 4π (2.7)

If k0 is equal toc
a and the Z direction coincide with semi-axis c, thenNz can be calcu-

lated from equation2.8-2.10. The other two demagnetisation factor can be calculated

from equation2.7using the fact thatNx = Ny.

14
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Nz=
4π

1−k2
0



1− k0
√

1−k2
0

arccos(k0)



 for k0 < 1 (2.8)

Nz=
4π
3

= Nx = Ny for k0 = 1 (2.9)

Nz=
4π

k2
0−1





k0
√

k2
0−1

arcosh(k0)−1



 for k0 > 1 (2.10)

Base on all the elements presented in this chapter, the energy of a ferromagnetic

system can be evaluated. Then the magnetic behavior of the system can be study. In the

next chapter, theoretical models for investigating magnetic behaviour are presented.
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Theoretical Models

3.1 Stoner-Wohlfarth model

The Stoner-Wohlfarth (SW) model describes the magnetisation process of a macro-

scopic ferromagnetic particle at 0K assuming that all the magnetic moments inside

the particle are rotating coherently. This means that all the atomic moment within the

particle are parallel with each-other at all time. Therefore the model can be used for

mono-domain particles; the change in magnetisation is doneby simultaneous rotation

of all moments inside the particle. In the study done by Stoner and Wohlfarth [21],

they investigate an isotropic ellipsoidal particle, whichhas a preferred direction due to

its shape (shape anisotropy). This is mathematically equivalent to study spherical par-

ticles with uniaxial anisotropy as used in this thesis. The equilibrium state is defined

by an energy minimum. The SW theory consist in investigatingthe energy landscape

and in determining the energy minima. Considering a spherical particle in an external

field, Hap, we can write the energy as sum of magneto-crystalline energy (EK) and the

Zeeman energy (EH ):

Etot = EK +EH (3.1)

EK = −K
′
1V cos2(θ) (3.2)

EH = −MsV ~eM · ~Hap (3.3)

Where~eM is the versor of the magnetisation vector.

16
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Figure 3.1: 3D representation of the applied field, magnetization vector and easy axis
direction. The particle is in the center of the coordinate system and easy axis is on Z
direction.

For clarity and simplification of the calculations, it can bedemonstrated that this

3D problem can be reduced to 2D without loosing any information, by showing that

the easy axis, magnetization vector and applied field direction are in the same plane

[22]. For the analytical calculation we will use Cartesian and spherical coordinate

systems, considering the easy axis on the OZ direction with the particle in the centre

of the coordinate system (as in figure3.1). The applied field (Hap) and the magne-

tization vector have the spherical coordinates (Hap, θ0, ϕ0) and (Ms, θ, ϕ). For the

magneto-crystalline energy we will use just the first term incos from equation2.4and

we will replace the notation ofK
′
1 with K. Taking into account that the particle size

does not change, instead of energy we can use the energy density (W = E
V ). Under this

consideration the previous equations becomes:

WK =−K cos2θ (3.4)

WH =−Ms~eM · ~Hap (3.5)

W =WK +WH =−K cos2 θ−Ms~eM · ~Hap (3.6)

For a given applied field with fixed direction, the energy density depends on magnetic

moment orientation with respect to applied field and to the easy axis. For the equi-

librium state, the energy must have a minimum value. Mathematically a necessary
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condition for a function to be minimal for a certain point is that the first order deriva-

tive with respect to each variable is zero for that point. To prove that the 3 vectors (easy

axis, magnetization vector and applied field) are in the sameplane, the mentioned con-

dition for variableϕ is used. For this we need to rewrite the equation4.1 as function

of anglesθ andϕ, afterwards forming the derivative with respect toϕ.

W =−K cos2 θ (3.7)

−MsHap

[

sinθ0sinθcosϕ0cosϕ+sinθ0sinθsinϕ0sinϕ+cosθ0cosθ
]

(3.8)

∂W
∂ϕ

=−MsHap

[

sinθ0sinθcosϕ0(−sinϕ)+sinθ0sinθsinϕ0cosϕ
]

=−MsHapsinθ0sinθ
[

sinϕ0cosϕ−cosϕ0sinϕ
]

=−MsHapsinθ0sinθsin(ϕ0−ϕ) (3.9)

The condition∂W
∂ϕ = 0 and the above relation impose that sin(ϕ0−ϕ) = 0, therefore

at energy minimum the easy axis, magnetization vector and applied field must be in

the same plane. Taking into account this result, we can considerϕ0 = ϕ = 0, reducing

Figure 3.2: 2D representation of the applied field, magnetization vector and easy axis
direction. The particle is in the center of the coordinate system and easy axis is on Z
direction.

the problem to XOZ plane (the new geometry is represented in fig.3.2). By keepingϕ
fixed, for describing the entire planeθ will vary from 0 to 2π. The variation of angle
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θ in the range[π,2π] corresponds in reality to a variation of angleθ in the range[0,π]
(as it should be),but forϕ = ϕ0+π. For this case the equation is reduced to:

W =−K cos2 θ−MsHapcos(θ0−θ) (3.10)

By rearranging the terms, the equation becomes:

W =−Ms

2

[

HK cos2 θ+2Hapcos(θ0−θ)
]

(3.11)

whereHK = 2K
Ms

is the anisotropy field.

From analysing the energy dependence of angleθ for different field, it can be ob-

served that there are one or two equilibrium states. Assuming that at first the particle

is in a high external magnetic field (H >> Hk), the magnetic moment has just one pos-

sible state corresponding to the field direction. Decreasing the field, at a specific value

a second equilibrium state appears corresponding to a different energy minimum. The

magnetic moment deviates from field direction in correspondence to the change in the

location of first energy minima. When the field goes to zero thetwo minima have the

same values and the particle moment is blocked in the first state because of the energy

maximum between the two states. The difference between the energy maximum and

energy minimum is called energy barrier and it is an important property of magnetic

materials. Starting to apply a negative field by changing thedirection of the field, the

energy barrier for the initial state starts to decrease until it disappears and the particle

switch to the second state. This corresponds to a significantchange in moment orien-

tation. The field when this happens is called critical field (Hcr). From a mathematical

point of view the point when the switching happens corresponds to an inflexion point,

this means that the first and second derivatives are equal to zero. At this field the mag-

netisation reverses. Up to this point all magnetisation changes have been reversible,

but the switching atH = Hcr is an irreversible change.

To find the energy minima and the critical field we need to calculate the first order

derivatives with respect to the angleθ (∂W
∂θ = 0) and set to zero. This will give the

extreme points of the energy function (minima and maxima). To check if the values for

θ corresponds to equilibrium states the second order derivative needs to be compared

with zero. If it is bigger than 0, the state is in equilibrium.If it is smaller than zero, the
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state corresponds to a maximum and if it is equal to zero, the applied field is equal to

critical field.

∂W
∂θ

=
Ms

2

[

HK2cosθsinθ−2Hapsin(θ0−θ)
]

=
Ms

2

[

HK sin2θ−2Hapsin(θ0−θ)
]

(3.12)

∂2W
∂θ2 ≥ Ms

2

[

HK2cos2θ+2Hapcos(θ0−θ)
]

(3.13)

To determine the critical field both derivatives need to be equal to zero. This leads to:

HK sin2θ =2Hapsin(θ0−θ) (3.14)

HK cos2θ =Hapcos(θ0−θ) (3.15)

By dividing the two equation3.14and3.15, tan(2θ) = 2tan(θ0− θ) is obtained and

from this equation the projection of magnetic moment on fielddirection when the

switching happens can be calculated. Using equation3.14and3.15, the critical field

has the following expression:

Hcr =
HK

g(θ0)
(3.16)

g(θ0) =
[

sin2/3(θ0)+cos2/3(θ0)
]3/2

(3.17)

There is no analytical equation that describes the projection of magnetization on

the field direction, but instead the inverse function has an analytical form. To calculate

it the substitutionm= cos(θ0−θ) is used, which is the projection of magnetic moment

on the field direction normalised to it maximum value. In equation 3.14sin(2θ) must
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be written as a function of m:

sin(2θ) =sin[−2(θ0−θ)+2θ0]

=sin(2θ0)cos[2(θ0−θ)]+cos(2θ0)sin[2(θ0−θ)]

=(2m2−1)sin(2θ0)−2m(1−m2)1/2cos(2θ0) (3.18)

Using the above relation in3.14the two branches of hysteresis curve are:

H+ =
(

−mcos(2θ0)−
2m2−1

2
√

1−m2
sin(2θ0)

)

HK (3.19)

H− =
(

−mcos(2θ0)+
2m2−1

2
√

1−m2
sin(2θ0)

)

HK (3.20)

Based on these two equations, coercivity and remanence can be calculated. For values

of angleθ smaller thanπ
4 the switching occurs beforem reaches zero. In this case the

coercivity field and the critical field coincide. For angles bigger thanπ
4, the coercivity

is calculated from equation3.19or 3.20.

Hc(θ) =















Hk
g(θ) if θ ∈ [0, π

4]

Hksin(2θ)
2 if θ ∈ (π

4,
π
2]

(3.21)

From equation3.20takingH− = 0 remanence can be calculated.

Mr(θ) =



























√

1+ 1√
1+tg(2θ)2

2 if θ ∈ [0, π
4]

√

1− 1√
1+tg(2θ)2

2 if θ ∈ (π
4,

π
2]

(3.22)
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3.1.1 System of particle with spherical random orientationof easy

axis

For a system of identical particles with all the easy axes having the same direction all

the above calculations from SW model applies, but in a real system, particles have a

size distribution, the easy axes are not aligned and also there is a anisotropy constant

distribution. At very low temperature (0K as in SW model), distributions of size and

anisotropy are not very important. The magnetic propertiesdepend on the mean values.

Instead the orientation of easy axis is important. The magnetic behaviour is strongly

dependent on the angle of the applied field with respect to easy axis.

In the case of a spherical random orientation of easy axes some properties such

as coercivity and remanence can be analytically calculated. For this let us consider a

system of identical mono-domain particles with a sphericaldistribution of easy axes.

The probability of having a particle with easy axes in the range [(θ,ϕ),(θ+dθ,ϕ+dϕ)]

is given by:

P= sin(θ)dθdϕ for θ ∈ [0,π] andϕ ∈ [0,2π] (3.23)

Whereθ is the angle between the easy axis and the applied field. In this case the

remanence of the whole system (M̄r ) is the mean value:

M̄r =

π∫
0

2π∫
0

Mr sin(θ)dθdϕ

π∫
0

2π∫
0

sin(θ)dθdϕ
(3.24)

From the SW model the remanence for one particle is given in equation3.22. Mr is

not dependent on angleϕ, thereforeM̄r can be written as:

M̄r =

π∫
0

Mr sin(θ)dθ
2π∫
0

dϕ

π∫
0

sin(θ)dθ
2π∫
0

dϕ
(3.25)

(3.26)

Doing the simplification and using the fact thatMr and sin(θ) have the same behaviour
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in the interval [0,π/2] and [π/2, π] The integral becomes:

M̄r =

π
2∫

0

Mr sin(θ)dθ (3.27)

ReplacingMr from equation3.22we obtain:

M̄r =

π
4∫

0

√

√

√

√

1+ 1√
1+tg(2θ)2

2
sin(θ)dθ + (3.28)

=

π
2∫

π
4

√

√

√

√

1− 1√
1+tg(2θ)2

2
sin(θ)dθ (3.29)

M̄r =0.5 (3.30)

The coercivity is calculated in the same way resulting in:H̄c = 0.479Hk. All these

results from Stoner-Wohlfarth model are used as tests for algorithms developed in this

thesis.

3.1.2 Energy barrier

A very important factor in the model is the fact that there are2 stable states separated

by an energy barrier. This aspect leads to more complicated models which have a more

realistic description of a real system (as for example including the effect of tempera-

ture). A general analytical expression of the energy barrier does not exist, and one

needs either to determine it numerically or to use approximations [23]:

∆E1(H,θ0) = KV

[

1− Hap

Hcr(θ0)

]0.86+1.14g(θ0)

(3.31)

∆E2(H,θ0) = KV

[

1+
Hap

Hcr(θ0)

]0.86+1.14g(θ0)

(3.32)

WhereHcr andg(θ0) are given in equations3.16and3.17. Numerical implementa-

tions used in this thesis are based on the Stoner-Wohlfarth theory and on the above
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mentioned equations for energy barriers.

3.2 Temperature effect

Magnetic properties of materials are influenced by temperature. Besides the tem-

perature dependence of some intrinsic parameters like saturation magnetization or

anisotropy constant, there are important differences between SW model and exper-

imental measurements. As an example, for a SW particle with anisotropyK = 5 ·
105erg/cm3 and a saturation magnetization of 450 emu/cm3 (typical values for mag-

netite) the coercivity field is approximately 1100 Oe, whereas in experiments coerciv-

ity is temperature and field sweep rate dependent. If the sameexperiment is repeated

at the same temperature but for different field variation rates the hysteresis curves are

different. This difference can be explained by the fact thatthe SW model does not

contain temperature effects. In the SW model the magnetic state is well defined by en-

ergy minima and the magnetic moment cannot switch to the second minimum until the

field is equal to the critical field, however in a real system a particle can receive from

the thermal bath enough extra energy to overcome the barrierand switch at a lower

field. If the field variation is very slow, then the experimental time is very large and the

probability of a particle receiving the extra energy to switch increases and this leads to

a decrease of magnetization with time. The dependence of magnetic behaviour with

respect to time scale has a large interest in the recording media industry where the time

range is very large: from 10−12 s, 10−8 s (the characteristic time scale for writing on an

hard drive) to years (the time scale for storage the written information). For hard disks

the time in which the information is stored without being damaged is 10 years [24]

[25]. The experimental limitation to time range of seconds or hundreds of seconds,

leads to a theoretical and computation investigation. The most used approximation for

relaxation time is given by an Arhenius type law:

τ = τ0e
∆E
kBT (3.33)

where∆E is the energy barrier between the two possible states,kB is the Boltzmann

constant,f0= 1
τ0

is the attempt frequency, having values between 10−9Hzand 10−12Hz.

The equation was developed by Arhenius for chemical reactions. Neel [26]and Brown
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[27] have developed similar theory for explaining the thermal relaxation or thermal

activation. Based on equation3.33, energy barrier can be evaluated so that at a certain

temperature and for a certain time the particle will remain blocked in the initial state.

For a particle to remain blocked tens of years it is necessarythat ∆E
KBT ≫ ln( tm

τ0
). This

corresponds to energy barriers 40 times larger than the thermal energy. For hundreds

of seconds the energy barrier needs to be at least 20 times bigger than the thermal

energy. In general, it can be stated that if the measurement time (tm) is smaller than

the relaxation time, the particle remains blocked and the magnetization curve has a

hysteresis type behaviour, but if the measurement time is larger than the relaxation

time, the barrier in not sufficient to keep the particle blocked and the particle has a

paramagnetic behaviour. In the first case the particle is called ferromagnetic and in

the second case is called superparamagnetic. At the limit when (tm = τ0) for a given

time and volume the blocking temperature can be calculated.Blocking temperature is

the temperature at which the transition between ferromagnetic and superparamagnetic

behaviour happens.

tm = τ0e
∆E

KBT (3.34)

Taking logarithms of both sides and rearranging the terms, the blocking temperature

becomes:

TB = ln

(

τ0

tm

)

∆E
KB

(3.35)

Thermal effects introduce random fluctuation and to extractinformation we need

to do averaging over a sample containing a large enough number of particles to have

a good statistical results. In a real sample the particles are not identical, each particle

having different sizes. If the size distribution is known, then the fraction of superpara-

magnetic and ferromagnetic particles can be calculated. For zero external magnetic

field the energy barrier has the valueKV and the critical volume which separated the

two types of behaviour is:

Vcr = ln

(

tm
τ0

)

KBT
K

(3.36)
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Thermal effects complicates the study of magnetic behaviour and probabilistic ap-

proaches such as Monte-Carlo method need to be used. This methods are described in

the next section.

3.3 Monte-Carlo methods

There are many methods that use probabilistic means to find exact, non-probabilistic

results. In statistics the most used methods are Monte-Carlo (MC) type. The methods

are based on generating N random numbers. The function of interest is evaluated for

this N points and then the statistic properties of the function are calculated. The accu-

racy of the method depends on the number of points (N). There are functions which

have significant values in a small interval and insignificantvalues in the rest of param-

eter space. For example a particle, with the energy landscape illustrated in figure3.3,

will have a higher probability to be in a state near the minima. In the standard Monte-

Carlo algorithms the N sample points are selected with the same probability in all the

parameter regions. This leads to long time calculations which requires large amount of

resources. To improve the algorithm, techniques were developed based on importance

sampling, meaning that the sampling of points is not done with uniform probability

but according to weighting of the states determined by the probability function. In

this case, for the above example there will be more points sampling around the two

minima, therefore the numerical calculation will convergefaster. Metropolis [28] de-

veloped this type of algorithm based on Markov chain. A Markov chain is a transition

process between a finite number of possible states. The next state depends just on the

current state and not on the previous ones. In this type of process any final state can be

achieved from any initial state without having cyclical states. For each scientific field

there are a multitude of Monte-Carlo algorithms. In magnetism the most common

methods are Metropolis Monte-Carlo and Kinetic Monte-Carlo [29][30][31].

3.3.1 Metropolis approach

If a Stoner-Wohlfarth particle is considered, for a given magnetic field, because of

the thermal agitation, the magnetic moment can have any value with a Boltzmann
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probability:

P(Etot) =
e−Etot/kBT

Z
(3.37)

whereEtot is the total energy of the particle and Z is the partition function and it is

calculated from equation3.38:

Z =
∫

e−Etot/kBTdE (3.38)

The integral is calculated on the whole range of energy values. For a physical system

containing a large number of particles, the average value ofa macroscopic parameter

M (let M be the projection of the magnetisation vector on the field direction) is given

by statistical physics as:

〈M(Etot)〉=
∫

M
e−Etot/kBT

Z
dE (3.39)

This can be calculated if Z is known, but Z is not always known.The algorithm de-
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Figure 3.3: Energy as function ofθ. The particle magnetic moment can change orien-
tation from state 1 to state 2 with a probability depending onthe energy difference of
the two states (∆E).

veloped by Metropolis [28] has the advantage that it gives the average values using a

function proportional to the probability, therefore the value of Z is not important. An-

other advantage is the importance sampling, described in the Metropolis article [28] as
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follows: instead of sampling with uniform probability and then weighting the samples

with the Boltzmann factor, the sampling can be done with Boltzmann probability and

then weighted evenly.

Analysing figure3.3, representing the energy of a particle for different anglesbe-

tween magnetic moment and the easy axis direction calculated from SW model, the

Metropolis algorithm will sample the energy landscape by going from one state to an-

other with a Boltzmann probability characteristic for the energy difference of the two

states. If the new state has lower energy than the current one, then the transition always

happens. One iteration of the method is summarised as:

1. A particle is selected

2. A new state is generated

3. The difference in energy between the new and current stateis calculated

4. The transition probability is calculated based on the equation:

P= min
(

1,e−∆E/kBT
)

Where ∆E = Enew–Ecurrent (3.40)

5. A random number generated between 0 and 1 is compared with the probability

P

6. If P is larger, then the particle goes into the new state else the current state is

maintained

7. Steps 2-6 are repeated several times for statistic convergence

8. Going back to step 1 until all the particles are evaluated

9. System average magnetization is equal to the arithmetic average over all the

particles
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3.3.2 Kinetic Monte-Carlo

The Metropolis MC is used to study equilibrium magnetic properties of a system in

contact with a thermal bath. The method does not describe thedynamics of magnetic

moment. It assumes that in a long time scale the moment converges towards the equi-

librium state. This represents a limitation of the algorithm to the time intervals where

dynamics of magnetic moment are not important. Another limitation consists in the

fact that there are no real time steps. In this method, time ismeasured in MC steps

(a MC step is described in previous paragraph). Nowak has proposed an updated al-

gorithm called Time Quantificatied Metropolis Monte-Carlo(TQMC) [32] [33] [34],

which deals with associating the MC step with a real time. Themain equation of the

model is:

∆tMC =
(1+α2)MsV

20kBTαγ
R2 (3.41)

Where∆tMC represents the time equivalent with a Monte-Carlo step and Ris the radius

of a cone around the magnetic moment. The new orientation is selected inside this cone

and because of this a real time step can be derived. The methodwas validated by other

groups [35]. The cone radius is constrained in between 0 and 1, this leads to the long

time scale limit of the model (around milliseconds). The short time domain is limited

by the importance of dynamic (around 10−8−10−9 s).

For a larger time scale, a different MC method can be used. This algorithm is

called Kinetic Monte-Carlo (KMC) and can be applied up to years. In comparison

with Metropolis MC, KMC method has real time steps, but can beapplied just in cases

where the energy barrier is much larger than the thermal energy. The algorithm is

based on the assumption that magnetic moment can be just in the states corresponding

to minimal energy. If the energy barrier is much larger than the thermal energy, then

the particle under the effect of thermal agitation will remain confined in to one of the

energy minimum, but if the two energies are close, particle can be with reasonable

probability in any state. In the latter case the 2-state approximation is no longer justi-

fied and conventional MC must be applied. From a computational point of view this

method is more complex because it needs to find the magnetisation states correspond-

ing to the energy minimum and also to calculate the energy barrier that separates these
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states.

The basic steps of the algorithm for a given field are:

1. A time step is selected

2. A particle is selected

3. The orientations of magnetic moment corresponding to energy minima is calcu-

lated

4. The energy barrier for each state is calculated

5. The transition probability is calculated based on equation1:

P2 = (1−e−
t
τ )(1+e−

∆E
kBT )−1 (3.42)

6. A random number generated between 0 and 1 is compared with probabilityP2; if

the number is smaller thanP2, the new magnetic moment orientation corresponds

to minimum 2, else it corresponds to minimum 1.

7. Steps 2-5 are repeated until all particle are evaluated

8. System average magnetization is equal to the arithmetic average over all the

particles

The transition probability between the states is given by a set of equation called

Master equation. Next, a basic description of Master equations is presented and the

probability for a 2 state system is calculated. Master equations are a set of differenti-

ation equations, in which the variation rate of number of particles (or probability) per

unit of time from one state to another is equal to the difference between the number

of particles arriving in that state and the ones leaving thatstate. The general Master

equations for n possible states have the following form:

dPi

dt
= ∑

i
[−WikPi +WkiPk] (3.43)

1the equation and the meaning of each parameter are detailed in the next paragraph
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Figure 3.4: Energy as function of angleθ. The particle magnetic moment can have a
orientation corresponding just to the two states 1 and 2.∆E is the energy difference
between the states.∆E1 and∆E2 are the energy barriers corresponding to state 1 and
2.

WherePi is the probability that the particle is in state ’i’ andWik is the transition rate

from state ’i’ to state ’k’. One of the conditions that the system must satisfy is that in

the long time limit the equilibrium state must be obtained (equation3.44).

Wki(t → ∞)

Wik(t → ∞)
=

P0i

P0k
= e

Ek−Ei
kBT (3.44)

The system of equations3.43is hard to resolve for a general case (n possible states).

KMC is using the simplest possible case whenn = 2. For the following calculations

(based on reference [36]) a mono-domain Stoner-Wohlfarth particle with uni-axial

anisotropy will be considered. For this simple case the Master equations are:

dP1

dt
=−W12P1+W21P2 (3.45)

dP2

dt
=−W21P2+W12P1 (3.46)
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WhereW12 andW21 are described by the Arhenius Law.:

W12 = f0e
−∆E1
kBT (3.47)

W21 = f0e
−∆E2
kBT (3.48)

∆E1 is the energy barrier between states 1 and 2. Taking into account thatP1 andP2

are probabilities andP1+P2 = 1, it is sufficient to solve the equation for one probably

(P1) and the second one will beP2 = 1−P1. Equation3.45can be rewritten to contain

justP1 by replacingP2 with 1−P1.

dP1

dt
=−P1

τ
+W21 where τ =

1
W12+W21

(3.49)

For a constant external field,W21 andτ are also constant. In this case equation3.49is

a simple ordinary differential equation with the solution:

P1 =W21τ
(

1−e−
t
τ

)

+P1(t = 0)e−
t
τ (3.50)

Assuming that initiallyP1(t = 0) is 1, we can write forP2:

P2 = 1−P1 = (1−W21τ)
(

1−e−
t
τ

)

(3.51)

Rearranging the terms, the solution can be written as following:

P2 =
(

1−e−
t
τ

)(

1+e−
∆E
kBT

)−1
(3.52)

where

∆E = ∆E1−∆E2 = E2−E1 (3.53)
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τ =
1

f0

(

e
−∆E1
kBT +e−

∆E2
kBT

)

= f0
−1e

∆E2
kBT

(

1

1+e−
∆E
kBT

)

(3.54)

and

1−W21τ = 1− e−
∆E2
kBT

e−
∆E1
kBT +e−

∆E2
kBT

=
(

1+e−
∆E
kBT

)−1
(3.55)

We can observe that for the long time limit, the solution corresponds to a Boltzmann

solution for 2 possible states:

P2 =
e−

E2
kBT

e−
E2

kBT +e−
E1

kBT

=
(

1+e−
∆E
kBT

)−1
(3.56)

In this chapter we presented the theory of magnetic behaviour. We started with

a 0K model, the Stoner-Wohlfarth theory for a mono-domain particle. Then we dis-

cussed the role of the anisotropy vectors distribution, thermal effects and the role of

size distribution. At the end of the chapter, Monte-Carlo techniques are introduced. In

the following chapter we will use all this information to construct a numerical model

that can realistic describe a sample of interacting nanoparticles.
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Numerical implementation

In this chapter we describe the numerical implementation ofour Monte-Carlo model

and the algorithms used to solve the inverse problem. The latter one is described in the

second part of the chapter. The first part of this chapter describes the model used for

simulating magnetic behaviour of interacting magnetic mono-domain particles with

uniaxial anisotropy.

4.1 Magnetic simulation

A 3D system with periodic boundary condition containing N particles is considered.

The particle positions are randomly generated for different packing fraction. To mimic

a real system log-normal distribution of size and anisotropy values are considered and

also the easy-axes are random oriented. The algorithm basedon Stoner-Wohlfarth

(SW) model, consists of using the Metropolis and Kinetic Monte-Carlo methods. The

energy of one particle,i, from the system has a SW like expression (equation3.1):

Ei,tot =−KiVi cos2θi −MsVi ~eM · ~Hi,e f f (4.1)

Where theHi,e f f is the effective field acting on particlei. The effective field consists

of the external field and the magnetostatic interaction field.
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4.1.1 Particle position generation

To obtain a system of random particles position having a certain packing fraction we

start with a perfect simple cubic lattice with a large lattice spacing so that there no

overlapping. Then the particles are randomly moved inside asphere of radiusDmax

with a Monte-Carlo approach. This is done calculating for each particleEold andEnew

based on equation:

Enew,old = ∑
j

1000· ( d
rnew,old

)4 (4.2)

Where the sum is done over all the neighbour particles. d is the particle diameter and

rnew and rold are the interparticle distances after and before the randommove. The

terms in the sum are dimensionless energies of a repulsive potential. This repulsive

potential forces the particles to move apart. Normal Monte-Carlo approach is used:

if the new energy is small than the old one, then the move is accepted, else the move

is accepted with a probabilityP = e(−∆E). This step is repeated 50 times and then

the system size and the particle distance are reduced with anamount so that there are

no touching particles. The procedure is repeated until the desired packing fraction is

obtained. Afterwards 500 more random moves are done for eachparticle.

4.1.2 Interaction field

To include magnetostatic interaction, the shape of the sample, packing density and

particle arrangement inside the sample must be taken into account [31][37][38]. The

interactions are included through the effective field whichcontains the dipole field

generated by all the particles:

~Hi = ∑
j

j 6=i

MsV

4πµ0r3
i j

[

3

r2
i j

( ~eM j · ~r i j )~r i j − ~eM j

]

(4.3)

Direct summation approach is impracticable because of the time resources needed to

compute the interaction for all the particles in real system. The method scales with

N2. A general used approach consists of calculating the dipolefield in a small region
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around the particle and replacing the rest of the field with a mean field equivalent to

the demagnetization field described in section2.4.2[39]. For this, around a particle a

sphere of radiusRc is considered. The sphere must be much smaller than the sample

size and larger than the average interparticle spacing. Theinteraction field can be

expressed as the sum of the dipole interaction field of all theparticles inside the sphere,

the demagnetisation field and the Lorentz cavity field (as illustrated in figure4.1). The

latter one handles the double counting of interaction inside the sphere. The effective

Figure 4.1: The effective field acting on the blue particle.Σ1 is the surface for which
the demagnetization field (Hdemag) is calculated,Σ2 is the Lorentz cavity surface for
evaluating the Lorentz field (HL) and with red are represented the particle inside the
cavity that determine the dipole field acting on the blue particle. M is the average
magnetic orientation of the entire sample andHap is the applied field.

field can be written as:

~Hi,e f f = ~Hap+ ~Hdem+ ~HL + ~Hdip (4.4)

where:

Hi,e f f is the total field acting on particlei

Hap is the external field

Hdem is the demagnetization field

HL and the Lorentz field

Hdip is the dipole field generated by the particles inside the cavity and it can be

calculated using equation4.3
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For the simulations presented in this thesisRc is chosen to be sufficiently large,

so that it does not affect the results. Magnetization curvesare generated for different

values ofRc, thenRc is chosen to be the smallest value for which there is no significant

change in the results.

4.1.3 Periodic boundary condition

To simulate real samples the system is considered at the centre of the sample and

periodic boundary conditions (PBC) must taken into accountto exclude the small size

edge effect. With PBC we create a extended system by translating replicas of the

computational cell in 3D. For 3D system this consist of 26 copies. In figure4.2 the

idea is represented for simplicity in a 2D system but the consideration are the same as

in 3D. The initial system is placed in the middle and the rest of them, labelled from 1

Figure 4.2: Periodic boundary condition for a 2D system. Allthe calculation are done
just for the central system; the replicas, labeled from 1 to 8, are used just for calculating
the dipole field to exclude the edge effects.

to 8, are copies of the initial systems and translated in all directions. All the calculation

are done just for the central system; the replicas are used just for calculating the dipole

field. Rc must be smaller than half of the system so that no particle should be taken

into account twice.
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4.1.4 Numeric implementation of the model

The aim of this thesis is to investigate the influence of dipole interaction on the mag-

netic behaviour of nanoparticle systems and also to directly link the simulation with

experimental results allowing extra information about thesystem to be obtained. The

time interval that corresponds to the general used experimental devices (such as VSM-

Vibrating Sample Magnetometer and SQUID-SuperconductingQUantum Interface De-

vice) implies that KMC method should be used. This method hasa good description of

real behaviour if the energy barrier is much larger than the thermal energy, so that the

states corresponding to energy minima are taken into account. In a real system particle

sizes are not uniform, they follow a distribution like log-normal distribution. If a sys-

tem containing spherical particles with mean diameter (dm)of 6.6 nm and anisotropy

constant equal to 5·105erg/cm3, then for a measurement done at 20K with measure-

ment time of 1 minute the critical volume (as described in section 3.2by equation3.36)

is 1.37·10−19cm3. This corresponds to a particle diameter of 6.4 nm. All the parti-

cles with diameter smaller than 6.4nmwill have superparamagnetic behaviour. While
KV
kbT is relatively large the KMC approach is necessary, since theuse of the normal

Metropolis MC fails to achieve quasi equilibrium in a reasonable CPU time. However,

as KV
kbT decreases the 2-state approximation inherent in the KMC method breaks down

and the standard MC method becomes necessary. We take a cut-off value of KV
kbT = 3

to define the boundary between the use of the MC and KMC methods. In the model

implemented by me both type of behaviour, ferromagnetism and superparamagnetism

are included by using KMC and MC methods as implemented by Chantrell in 2000 [9].

If the energy barrier of a particle in zero field,KV, is larger than 3 time the thermal

energy,kBT, then the KMC is used, else the Metropolis MC is used. When KMCis

used, a few Metropolis MC step are also considered. This is done to have a better ther-

mal equilibration inside the minima. Even if the energy barrier is large in comparison

with the thermal energy, states very close to the minima are possible with a reasonable

probability. Metropolis MC steps will include this aspect into the simulation.

To generate the magnetization curves a linear time dependence of external mag-

netic field is considered. The sweeping rate of the field will be:

R=
∆H
∆t

(4.5)
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A continuous time variation of field increases the difficultyof solving the Master equa-

tions. The magnetic behaviour in a field variation can be describe by solving the Master

equations iteratively. For small time intervals (∆t), the field can be approximated to a

constant value and the solution from Master equations presented in chapter3 can be

used. At the next time step the field is updated to the new valueand Master equations

are used again. In chapter3 the two algorithms are defined formally. Next the main

steps of the practical implementation are presented.

1. All the parameters values are initialised

2. Particle position is generated

3. The time step is selected and the corresponding applied field is considered

4. A particle is selected and the effective field acting on that particle is calculated

using equation4.4

5. The ratioKV
kBT is calculated

6. If KV
kBT bigger than 3, The Kinetic MC is used:

(a) The magnetic moment orientation corresponding to the two minima is cal-

culated

(b) The energy barrier is calculated using Pfeiffer approximation1

(c) The probability is calculated based on following relation 2:

P2 = (1−e−
t
τ )(1+e−

∆E
kBT )−1 (4.6)

(d) A random number generated between 0 and 1 is compared withprobability

P2; if the number is smaller thanP2, the new magnetic moment orientation

corresponds to minimum 2, else it corresponds to minimum 1.

7. If KV
kBT is less than 3, the Metropolis MC is used:

1The equation is presented in chapter3
2All the parameters from this equation are define in chapter3
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(a) A new state is randomly generated

(b) The difference in energy between the new and current state is calculated

(c) The transition probability is calculated based on the equation:

P= min
(

1,e−∆E/kBT
)

Where ∆E = Enew–Ecurrent (4.7)

(d) A random number generated between 0 and 1 is compared withthe proba-

bility P

(e) If P is larger, then particle goes into the new state else the current state is

maintained

8. If KMC was used, a few Metropolis MC steps are also used

9. The steps 4-8 are repeated until all the particles are considered

10. The average magnetization is calculated

11. The steps 3-10 are repeated until all the field values are considered

We can use the Monte-Carlo model to observe the system behaviour for different

parameters; this is called forward problem and is generallyapplied in the magnetism

community. In this thesis we are focusing on the inverse problem which consist of

obtaining the system’s parameters from the known results.

4.2 Inverse problem

In this section we present a methodology by which the microscopic parameters de-

scribing magnetic nano-particle system can be accurately determined by solving the

inverse problem for experimental data using simulated magnetization curves. Simu-

lated curves are obtained using the approach presented in previous section.

The inverse problem is solved by using 2 different methods. Both methods can be

used to obtain information about the magnetic properties ofa system from experimen-

tal magnetisation loops. The methods have the same general mathematical background
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and this is curve fitting. The idea of curve fitting is to have a specific fitting func-

tion or a mathematical model and to find the specific coefficients (parameters) which

make that function match data as closely as possible. First method called Grid Search

Method (GSM) involves setting up a grid in fitting parametersspace and evaluating

the ”goodness of the fit” at each grid point. This method scales with the numbers of

grid points and number of fitting parameters and also makes the general interpretation,

beside finding the best fit, less accessible for a parameter space greater than 2. Second

method involves an adapted Levenberg–Marquardt algorithm(LM) used by most of

the fitting software [40]. For using this method we need a function that describe how

close are the data we simulate with the data we are investigating. This function is the

sum of squared errors (χ2). A short description of fitting is presented in appendix A on

page84. All the fitting algorithms are not trivial for non-linear models and the Monte-

Carlo model we used for simulating the magnetic behaviour isclearly non-linear. The

problem that arises in this situation is the interpretationof the results:

1. Is the solution unique?

2. How accurate is the solution?

3. What are the errors of the solution?

The first problem involves the way of finding the best fit. The function that de-

scribes the goodness of the fit isχ2 and depends on the parameters we are interested in

finding; the method consists in finding the minimum of this function. For our model

as in the non-linear models there may be the possibility ofχ2 having more than one

minimum. The solution may be describing, instead of a globalminimum, a local min-

imum and then the results are not the desired ones. The secondproblem refers to a

qualitative way of evaluating the goodness of a fit. Because the date are subjective to

errors, there is a chance that a good fit may result because of the errors and not of ac-

tual agreement between the model and the data. The third problem consists in the fact

that errors will depend on theχ2 landscape near the global minimum. If there is a large

almost flat region around the minimum, then the errors are toolarge for the results to

be meaningful. Also in our case the situation is even more complicated. Besides the

errors from experimental data, our Monte-Carlo method alsocontains statistical errors

because of the thermal effects included.
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The first issue will be our subject of investigation in the next chapters, whereas

for the other two we can use mathematical conditions forχ2. Because of the thermal

fluctuation there is a probabilityQ that the data may fit the model due to chance. For

a given confidence level (1−Q) there is a upper limit value forχ2 (χ2
lim) for which

the agreement between the data and the model are acceptable with 1−Q confidence.

A confidence level of 1.0 corresponds to perfect agreement between the data and the

model, and a value of 0.0 corresponds to a complete disagreement between those two.

In general values about 0.5 are considered relevant. For determining the errors there

are similar considerations. The errors are related to the variation of χ2 around the best

fit value, therefore∆χ2, the difference betweenχ2 for a given set of parameters and the

χ2 of the best fit, is used. Bothχ2 and∆χ2 depends on the degrees of freedom, which

for χ2 is equal to the difference between the number of data points and the number of

fit parameters and for∆χ2 is equal to the number of fit parameters. All of the above

are discussed in more details in the appendix A on page84.

The results will be presented for simplicity withχ2 and ∆χ2 normalised to the

limit value, χ2
lim and∆χ2

lim respectively. For the normalisedχ2
norm (χ2

norm=
χ2

norm
χ2

lim
) the

condition will beχ2
norm < 1. In the next chapters we will refer toχ2

norm and∆χ2
norm

without using the subscript ”norm”. In tables4.1and4.2are given some values for the

two function for different degrees of freedom and for different confidence level. The

results will be presented with 50% confidence level forχ2 and 99% confidence level

for ∆χ2. Next the two methods used in this thesis are presented.

confidence level degrees of freedom
1 2 3 4

50% 0.45 1.39 2.37 3.36
90% 2.71 4.61 6.25 7.78
95% 3.84 5.99 7.81 9.49
99% 6.63 9.21 11.34 13.28

Table 4.1: The value for∆χ2
lim for different confidence level and degrees of freedom.
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confidence level degrees of freedom
79 99 159 199

50% 78.33 98.33 158.33 198.33
90% 95.48 117.41 182.24 224.96
95% 100.76 123.22 189.42 232.91
99% 111.14 134.64 234.01 281.87

Table 4.2: The value forχ2
lim for different confidence level and degrees of freedom. The

value degrees of freedom corresponds to 2 fit parameters and some typical number of
data points we used.

4.2.1 Levenberg–Marquardt method

The first method uses the least square fitting approach to find the optimal parameters,p,

from a set of data. Levenberg-Marquardt (LM) is a standard way to handle nonlinear

least square fitting (e.g. used by Origin, Matlab). The process of finding the best

possible values of parameters that describe a set of data is iterative. This is done by

finding the minimum ofχ2 with a combination of two methods: Gradient descent

method and Gauss-Newton method. Gradient descent works very well if the χ2 is far

from minimum and uses the gradient to find the direction in which χ2 has the largest

decrease. The second method is for the case when the parameters p are very close to

the minimum and assumes a quadratic form ofχ2 as function of the fitting parameters.

Both methods require the derivative of the model output withrespect to the fitting

parameters.λ controls the iteration process. Ifλ is small LM is more similar with grid

search method and the new value forp is a large step in the direction of the steepest

decreaseχ2. If λ is large, then Gauss-Newton method dominates and the new value of

p correspond to the minimum of the quadratic approximation ofχ2.

For the description of the LM algorithm, f(x) is used to mathematically describe

the model. We can writeχ2 as:

χ2 =
N

∑
i=1

[mi(H i
ap)− f (H i

ap,p)

σi

]2
(4.8)

Wherep represents the fitting parameters,mi(H i
ap) is the value of the normalized mag-

netisation (mi = Mi/Ms) to be fitted atH i
ap and f (H i

ap,p) is the value of function at
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Figure 4.3: Schematic representation of the LM fitting algorithm.

H i
ap for a given value of parameters.σi is the standard deviation of errors formi . The

result of fitting are the values of fitting parameters (p) that describe the data best. The

basic idea about how this method works can be observed from figure (4.3). At the be-

ginning you need to specify the initial value of fitting parameters, the fitting function

and its derivative with respect to the fitting parameters. Then theχ2 is calculated and

based on the internal parameter,λ, a combination of two methods for finding a better

estimation of parameters is used. A new set of fitting parameters are generated and the

χ2 is calculated again; if the new value ofχ2 is smaller than the old one,λ decreases,

elseλ increases. To achieve the best fit is necessary an iteration of this steps, with the

mention that whenλ decreases the new values of parameters replace the previousone.

To illustrate how the entire methodology (LM + Monte-Carlo simulation) works,

we will present next a practical example. For this example and for the test and valida-

tion of the methodology, instead of experimental data, reference data from simulation

are used. In this way all the parameters are well controlled and we know what results

the method should output. We consider a system of log-normaldistributed spherical

particles with a mean diameter (dm) of 6.7 nm and a standard deviation of 15%. The

easy axes are spherically random orientated with anisotropy value of 3·105 erg/cm3

and standard deviation of 10%. The saturation magnetization is 400 emu/cm3. The ex-
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ternal field is applied up to 5000 Oe with a field sweep rate of 1.0 Oe/s and a field step

of 100 Oe. For this example the hysteresis loop was simulatedfor a non-interacting

system at 10K. The reference loop was obtain from averaging over 100 independent

simulations and the loops used in the LM fit are averaged over 5simulations.

To calculate the standard deviation of errors,σi , needed forχ2 we used the follow-

ing relation:

σi =

√

√

√

√

1
N−1

N

∑
j=1

(mi
j −mi

j)
2 (4.9)

Index i corresponds to the points on the loop for each field andindex j corresponds to

each loop from the N (N=100) loops generated. The reference loop is the average over

the 100 loops and it corresponds tomi
j (mi

j = M
i
j/Ms). For this example we consider

that σi has a constant value of 0.01. Latter we will show what are the effects of this

simplification on the results and on the interpretation of the fit. We will consider that

anisotropy and saturation magnetization are the unknown magnetic parameters and the

described LM algorithm is used to obtain these values (p = (K,Ms)). In figure 4.4

is presented the magnetization curves for the initial values of parameters used in the

fitting, for the real parameters and the magnetisation curves for the best fit parameters.

First we need to give some starting values for K (1· 105 erg/cm3) and Ms (100

emu/cm3) as input to the LM algorithm. With this values a hysteresis loop is generated

and the a initial value ofχ2 is computed. The magnetization loop for this parameters

is represented in figure4.4with blue points. For calculating the new estimated values

for the fit parameters, the derivatives of the magnetisationcurves as a function of these

parameters are needed. In contrast to fitting to an analytical function where the value

of the function and its derivative have well defined values, our numerical model is

susceptible to errors. The derivatives need to be calculated numerically and they will

also be subject to errors. These errors will contribute to the errors of the fit. For

calculating the derivatives we used the three point method (equation4.10). In the next

chapter we will investigate if using a more refined method forcalculating the derivative
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Figure 4.4: Hysteresis curves for the reference loop, the starting loop and the best
fit loop. All the loop are for non interactive system with dm=6.7nm, σdm = 15%,
σK = 10% at 10K. The reference loop has K= 3·105erg/cm3 andMs = 400emu/cm3,
the starting loop has K= 5·105erg/cm3 andMs= 300emu/cm3 and the fit loop has K=
3 ·105erg/cm3 andMs= 400emu/cm3.

is more appropriate.

d f(H i
ap, p j)

dpj
=

f (H i
ap, p j +∆p j)− f (H i

ap, p j −∆p j)

2∆p j
+Err(H i

ap,∆p j) (4.10)

Wherep j is the parameter for which the derivative is calculated and∆p j is the step

chosen for calculating the derivative. For this, magnetization curves are simulated with

values of K andMs around the current estimation values and equation4.10is used.∆p j

is chosen to be 10% of the current values of each of the fit parameters. After this is

computed, new values for K andMs is obtained. Then a new value forχ2 is calculated

and compared with the previous one. If theχ2 is lower, meaning that the loop are more

similar, the two parameters are updated to the new values andλ is decreased. Else

the old values are maintained butλ is increased. Derivatives give the direction for the

largest decrease inχ2 andλ controls the step in that direction. A smallλ correspond

to a large difference between the old and the new estimation of the parameters and

favours the gradient descent method. On the other hand a large λ favours the second
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method. The entire algorithm is repeated until a small enough χ2 is obtained or the

change in parameters produces an insignificantly differentvalue forχ2. In table4.3

the iterative values for K andMs are given as well asχ2 corresponding to that value

and if the movement is accepted or not. The final results consists in the values for the

number of K Ms χ2 χ2
norm λ accepted

iteration (105 ·erg/cm3) (emu/cm3) rejected
1 5.000 400.0 121795.52 614.10 10.0 -
2 4.826 313.3 97118.55 489.68 1.0 accepted
3 4.131 363.3 30516.83 153.86 0.01 accepted
4 3.200 388.6 1129.22 5.69 0.001 accepted
5 2.999 397.8 3.56 0.018 0.0001 accepted
6 3.012 402.4 1.69 0.008 0.00001 accepted
7 3.016 399.2 2.74 0.014 0.0001 rejected
15 2.997 399.7 0.87 0.004 0.1 accepted

Table 4.3: The iteration process of fitting the reference loop with LM. The normali-
sation factor corresponds to 50% confidence level for 201 points on the magnetisation
curve and 2 fitting parameters.

best fit parameters and also the errors for determine them. For this examples K is 2.997

·105 erg
cm3 with an error of 0.061·105 erg

cm3 andMs is 399.7emu
cm3 with an error of 13.4emu

cm3 . K

andMs are obtain with a confidence level of 50% and the error are calculated for 99%

confidence level. The only element that remains to be determined is the uniqueness

of the solution. If there is more than one minimum value forχ2 the uniqueness is not

satisfy and LM algorithm is strongly dependent of the initial parameters. To investigate

this last issue we use Grid search method, which will be presented next.

4.2.2 Grid Search method

For the Grid Search approach we use the MC model of the nanoparticle arrays to

generate a large set of hysteresis loops for different K andMs values (not restricted

to these however, the method can be used for other quantities) in a broad interval

around the expected values. Then the experimental hysteresis curve is compared with

every such hysteresis loop available in the look-up table and the sum of squares of

errorsχ2(K, Ms) is calculated in every case. Thus, the result is a table ofχ2(K, Ms)
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values. The minimumχ2
m = min(χ2(K,Ms)) from all K andMs is the best-agreement

computational loop, which corresponds to the values of K andMs from the look-up

table describing the data best. We also calculate error-bars for the best K andMs based

on the 99% confidence interval statistics, i.e. by selectingall (K, Ms) pairs for which

the value of 0< ∆χ2
norm < 1.0. For 2 parameters a 2D map can be generated for a

graphic visualisation of the solution. This method cannot be applied for the entire

parameter space. A interval of interest needs to be considered and the calculations

are done for a finite discretization in that interval. The optimal values and the error

are determined with a certain precision depending on the level of discretization. This

method is equivalent to the LM+MC method from the previous section for sufficiently

refined divisions of values of K andMs used for generating the look-up table. Its

advantage is that it provides more insight into the physics as it allows to visualise

the uniqueness of the solution and the K-Ms parameter correlation. A quantitative

investigation of parameter correlation is not presented inthis thesis as it is not the

subject of our investigation, but a qualitative description of the correlation is offered

by the Grid search method. If similar variation of the parameters is observed in the

∆χ2 plot, then the two parameters are positively correlated. Ifopposite variation is

observed, then the parameters are negatively correlated and if one parameter does not

effect the other, then there are no correlations.

Next we will present a practical example for the grid search method. The same sys-

tem and the same reference loop is used as in the LM example from previous section. K

andMs will be also in this case the parameters we want to obtain. To apply this second

method a large set of hysteresis loops for different K andMs values in broad intervals

around the expected value needs to be generated. The interval for K andMs is given by

physical properties of the system investigated. In this case we are interested in mag-

netite nanoparticles. The interval of interest for K is between 0.2 and 5·105erg/cm3

and forMs is between 80 emu/cm3 and 560 emu/cm3. The grid is generated with a step

in K of 2·104erg/cm3 and a step inMs of 20 emu/cm3. The experimental loop (in this

example the reference loop illustrated in figure4.4) is compared with all the loops gen-

erated andχ2 is calculated for each loop. The results are for constantσi equal to 0.01

as in LM example. For the above example a 2D map ofχ2(K,Ms) and∆χ2(K,Ms) is

illustrated in figure4.5. In figure4.5a the map for the normalised value ofχ2(K,Ms)is

represented with respect to the value corresponding to 50% confidence interval. This
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Figure 4.5: χ2 and ∆χ2 grid for finding the reference loop. a)χ2(K,Ms) for 50%
confidence interval. b)∆χ2(K,Ms) for 99% confidence interval. The optimum value
for K is 5 ·105erg/cm3 and forMs is 300 emu/cm3. K andMs are positive correlated.
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contains information about the uniqueness of the solution and goodness of the fit. The

colours red and yellow are forχ2
norm smaller than 1.χ2

norm can vary in a large range as

it can be seen in table4.3. For clarity all the values above 2 are illustrated with blue

with the mention that in that region there is no local minimum. From the same figure it

can be seen that K andMs are positively correlated. Figure4.5b illustrates the map for

∆χ2 normalised to the 99% confidence interval value. This contains information about

the optimal parameters, the errors of the optimal parameters and about the correlations

between parameters. The values of∆χ2
norm smaller than 1 contains the value of the fit

parameters for which the model describes the reference loopwith 99% confidence. It

can be seen from figure4.5b that the errors for K andMs are large. K can be between

2.5·105erg/cm3 and 3.7·105erg/cm3. The interval forMs is between 300emu/cm3 and

550emu/cm3. All the results are presented for normalized value ofχ2 and∆χ2 and for

simplicity of the notation we will discarded the subscript ”norm”.

In this chapter we presented the numerical algorithm used for generating the mag-

netisation curves and the two methods used for solving the inverse problem. For the

Monte-Carlo algorithm, to simulate an interacting system we need to take into account

the sample shape, the geometry of particle arrangement and the particle size and dis-

tribution. The grid search method and the Levenberg–Marquardt were presented as

used in this thesis. For calculatingχ2 a constant value ofσi equal to 0.01 is considered

and for Levenberg–Marquardt the numerical derivatives arecalculated with 3 point

method. In the next chapter we will investigate the implication of this two considera-

tion. This is done in the second part of the chapter. The first part consist in testing the

Monte-Carlo algorithm.
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Validation of the algorithms

The implementation of the magnetic behaviour (the Monte-Carlo code) and the in-

verse problem algorithms (the Levenberg–Marquardt and Grid Search methods) are

developed in the Fortran programming language. The calculations were carried out on

Wohlfarth, one of the Computational Magnetism Group clusters available at the Uni-

versity of York. The cluster contains 24 Compute Nodes with various CPUs (AMD

Phenom II X4 945/925, Intel Core i5, AMD Athlon II X4) with various RAM sizes.

We will outline that the programs are not very demanding fromthe point of view of

hardware resources and could be run on a personal computers.

Due to the nature of the Monte-Carlo algorithm, any further improvement to the

performance of the Monte-Carlo code (for example using parallel computing or GPUs)

was not possible. Therefore, to speed up the calculation of the entire methodology we

study the efficiency of the inverse problem algorithms. Thisis briefly discussed in

section5.2.

5.1 Validation of the Monte-Carlo algorithm

Before using the algorithm to investigate the effect of interactions and to compare the

simulations with experiments, a set of tests to validate thenumerical methods must

be considered. For the Monte-Carlo algorithm simulating the magnetic behaviour, the

results from numerical calculation are compared with analytical expressions. Because

the effect of interactions are very hard to study analytically, the tests will be done for
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a non-interacting system. The interaction fields were calculated for different configu-

rations and compared with other calculations to confirm thatinteractions are properly

determined in the simulations.

5.1.1 Comparing with Stoner-Wohlfarth model

One standard test is to compare the result with the Stoner-Wohlfarth model (SW) in

very low temperature limit (T << 1K). For this test a non-interacting system of spheri-

cal particles with 6.7 nmdiameter, anisotropy constant of 5·105erg/cm3 and saturation

magnetisationMs = 456 emu/cm3 was used. If we consider identical particles with

all the easy axes having the same direction, then for small temperatures, the SW be-

haviour for one particle with the same parameters values should be obtained. In figure

5.1 is illustrated the simulated hysteresis curves at 0.01K fordifferent values of angle

θ, which is the angle between the easy axis and the applied field. The curves reproduce

very well the hysteresis loops from SW model.
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Figure 5.1: Hysteresis curves for identical particles withdm=6.7 nm diameter,
K= 5 ·105 erg/cm3, Ms= 456 emu/cm3 at 0.01 K for different angles between the easy
axis and the applied field. The loops are in agreement with SW theory.

In the SW model the coercivity field and remanence was calculated as function of

the angleθ. If we compare the coercivity obtained from simulations with the analytical
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expression3.21, we can see from figure5.2 that the values are in good agreement.

The same comparison can be made for remanence (figure5.3), for which the angle
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H
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k

θ0

Hc = f(θ0)
Hc SW / Hk 

Figure 5.2: Coercivity field as function of angleθ at T = 0.01K. The blue points are
the values from simulations and they are in good agreement with the analytical result
(dash blue line). Error bars are smaller than the dots and cannot be seen.

dependence is given by equation3.22.

The last comparison that we can make with the SW model is in case of random

orientation of easy axes. In figure5.4 is illustrated the simulated hysteresis curve for

this case using the same values of parameters: K = 5·105erg/cm3, Ms= 456 emu/cm3.

The coercivity field is 1068Oeapproximately the same value as from the SW model,

1050Oe. Also the remanence magnetisation 0.504Ms is in good agreement with the

theoretical model 0.5Ms.
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Figure 5.3: The remanence magnetisation as function of angle θ at T = 0.01K. The
blue points are the values from simulations and they are in good agreement with the
analytical result (dash blue line). Error bars are smaller than the dots and cannot be
seen.

5.1.2 Coercivity field as function of sweep rate

To include the thermal effect a different validation needs to be used. One of the tests is

comparing the simulation results with an equation that describes the behaviour of the

coercivity field as function of the sweep rate of the applied field. This was first found

empirically by Sharrock [41] in 1987 and one year latter the equation was derived

theoretically by Chantrell [42]. This relation was used for studying magnetic recoding

media [43]. The equation has the following form:

HC = HK(1−
√

ln(t fo)
β

) (5.1)

where

t =R−1HK

2β
(1− HC

HK
)−1

(5.2)
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Figure 5.4: Hysteresis curve for a system of identical particles with random orientation
of easy axes for K = 5·105erg/cm3, Ms= 456 emu/cm3 andT = 0.01K. The coercivity
field from simulation (blue dot) is 1068 Oe approximately thesame value as from the
SW model, 1050 Oe. The remanence magnetisation from simulation (green dot) is
0.504Ms and it is in good agreement with the theoretical model 0.5Ms.

and

β =
KV
KBT

Equation5.1 is transcendental and it is easier to write the logarithm of sweep rate as

function of coercivity.

ln(R) =
ln( f0HK)

2β
− ln(1− HC

HK
)−β(1− HC

HK
)2 (5.3)

In the theoretical paper [42] a very important assumption was used. The assumption

is that the transition from a positive magnetisation to a negative one is very sharp. For

this reason the simulations were done for easy axes aligned with the field direction. In

figure 5.5 the theoretical curves and the calculations from simulations are illustrated

for 1 and 10K. The data from simulations is in good agreement with the analytical

result.
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Figure 5.5:log(R) = f (Hc) for a system of identical particles with random orientation
of easy axes for K = 5· 105erg/cm3, Ms = 456 emu/cm3 andθ = 0. The simulation
results (black dots for 10K and blue squares for 1K) are in agreement with analytical
calculations (dash green line for 10K and red line for 1K).

5.1.3 Validating the combined KMC and MC method

To test the combined KMC and MC method in the superparamagnetic limit we can

compare the simulation with numerical integration of the equilibrium state.

M̄ =

π∫
0

2π∫
0

cos(α)sin(α)e
−E
kbT dαdβ

π∫
0

2π∫
0

sin(α)e
−E
kbT dαdβ

(5.4)

Whereα andβ are the spherical coordinate of the moment direction, with the field

on the Z direction.E is the energy of the particle and it is given by equation3.1. To

include any type of distribution like size distribution, anisotropy distribution or easy

axis distribution will make the integral5.4more complicated to solve. For this reason

we will test the model for a system of non-interacting identical particles, with dm = 6.7

nm, K = 3 ·105erg/cm3, Ms = 400 emu/cm3. The applied field rate is 1 Oe/s with field
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Figure 5.6: Magnetisation curves for identical particles with dm=6.7 nm, K =
3 ·105erg/cm3, Ms = 400 emu/cm3, R=1 Oe/s,∆H = 10 Oe at 25K. The results from
the numerical integration of equation5.4 (red line) are described accurately by the
the combine method KMC+MC (blue dots) and also by the KMC method (black dia-
monds).

step of 10 Oe. We did the calculation for different angles between easy axis and the

applied field, varying between 0 andπ/2. We will present just the result for angle equal

to zero, but the conclusions are similar for the rest of the angles. We will compare the

combined KMC and MC algorithm used in this thesis with the KMCalgorithm and the

numerical integral of equation5.4(referred to as ”theory” in the following).

As mention in section4.1.4the limit where the algorithm switches from KMC to

MC is KV
kbT = 3. For values larger than 3, KMC is applied but a few MC steps are

also used for a better equilibration. To validate the methodwe will chose different

temperatures so that theKV
kbT ratio will vary from a relative large value to values smaller

than 3. For this example we vary the temperature from 25K to 125K in steps of 25K.

For large ratio ofKV
kbT all three methods are in good agreement as it can be seen for T

= 25K, KV
kbT = 13.69, in figure5.6. But as the ratio decrease the difference are more
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Figure 5.7: Magnetisation curves for identical particles with dm=6.7 nm, K =
3 · 105erg/cm3, Ms = 400 emu/cm3, R=1 Oe/s,∆H = 10 Oe at 100K. The easy axis
is parallel with the field direction. The results from the numerical integration of equa-
tion 5.4(red line) are described accurately by the the combine method KMC+MC (blue
dots), whereas using just the KMC method the results (black diamonds) diverge.

significant. For 100K and 125K which is just above and under the limit value of 3

( KV
kbT = 3.42 and 2.74) the result are illustrated in figure5.7and figure5.8. Using just

the KMC method the results do not describe the real behaviour. To properly describe

the superparamagentic limit the combined KMC and MC method need to be used.

In conclusion we tested our model in the low temperature limit by comparing with

the Stoner-Wohlfarth theory. Then we tested the KMC method using the Chantrell

equation for coercivity as function of field rate. Finally wevalidated the combined

KMC and MC method to have a better description of the superparamagnetic behaviour.
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Figure 5.8: Magnetisation curves for identical particles with dm=6.7 nm, K =
3 · 105erg/cm3, Ms = 400 emu/cm3, R=1 Oe/s,∆H = 10 Oe at 125K. The easy axis
is parallel with the field direction. The results from the numerical integration of equa-
tion 5.4(red line) are described accurately by the the combine method KMC+MC (blue
dots), whereas using just the KMC method the results (black diamonds) diverge.
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5.2 Validation of the inverse problem algorithms

In the previous chapter we presented the Grid search method (GSM) and the Leven-

berg–Marquardt (LM) algorithm using two approximations. First approximation is

that we consider a constant value forσi when we calculatedχ2 for both methods. For

LM we calculated numerically the derivative of the magnetisation curve with respect

to the parameters of interest using the three point method. The reason for choosing this

approximations is that we wanted to construct the simplest approach that is still very

powerful. Before using this approximations we need to test them.

First we will focus on the effect of constantσi . If we analyse figure5.9 where

σi is calculated for the reference loop using equation4.9, we can observe that 0.01

is an overestimation. The calculations are redone taking properly into account the

 0
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Figure 5.9:σi for each point on the loop for the reference loop for K=3·105 erg/cm3

Ms = 400 emu/cm3. The value 0.01 is a overestimation of theσi (red dots).

errors and the result from the grid search method is illustrated in figure5.10. The

optimal values for K andMs remain the same, but the error of the two parameters are

smaller than in the previous case. NowMs is between 350 and 450 emu/cm3 and K is

between 2.7 and 3.3·105erg/cm3. Also the correlation between parameters remains the

same as in the case with constantσ = 0.01. The reason for this is that in general the
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Figure 5.10:∆χ2(K,Ms) for 99% confidence interval and withσi calculated from equa-
tion 4.9. The optimum value for K is 5·105erg/cm3 and forMs is 300 emu/cm3. The
errors are smaller as using a constant value of 0.01 forσi .

landscape forχ2 remains the same and the minimum corresponds to the same value

of K and Ms. The only difference consists in the actual value ofχ2 and the exact

determination of the goodness of the fit. We did this comparison for different sets

of reference loop generated. Calculatingσi from equation4.9 and using the constant

value of 0.01 provides good results.

After applying the Grid search method and confirming the uniqueness of the solu-

tion we can validate the LM and discuss the importance of using a constant value forσi

and the efficiency of calculating the derivative with the 3 (equation4.10) or 5 (equation

5.5) point method. For the above reference loop we used the LM method with:

1. constantσi and using the 3 point method for computing the derivatives

2. constantσi and using the 5 point method for computing the derivatives

3. σi calculated for each point on the loop using equation4.9and using the 3 point

method for computing the derivatives

4. σi calculated for each point on the loop using equation4.9and using the 5 point
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method for computing the derivatives

d f(pi)

dpi
=

− f (pi +2∆pi)+8 f (pi +∆pi)−8 f (pi −∆pi)+ f (pi −2∆pi)

12∆pi
+Err(∆pi)

(5.5)

For the initial values of the fit parameters (K andMs) we used 3 values for K (105erg/cm3,

2.5 ·105erg/cm3 and 5·105erg/cm3) and 3 values forMs (100 emu/cm3, 300 emu/cm3

and 600 emu/cm3) to cover the parameter space in the region of interest. In total there

are 9 different loops as the starting point for the fit and 4 LM approaches. In all the

cases the best fit values are within 1% of the actual values. The errors from LM are

less than 20 emu/cm3 for saturation magnetization and less than 1· 104erg/cm3 (for

non-interacting system, with interaction the errors are larger), but there is a difference

between the errors from using constantσi data and includingσi correctly. If we use

equation4.9the error of the parameters of interest are smaller than if weuse a constant

σi equal to 0.01. Usingσi = 0.01 we overestimated the errors of the reference data as

it can be seen in figure5.9and therefore a overestimation of the errors in obtaining the

two parameters is expected. For this particular reference loop the errors in determining

K andMs are 0.061·105erg/cm3 and 13.4emu/cm3 using constantσi , where using with

the proper value ofσi at each data point the errors are smaller: 0.026·105erg/cm3 for

K and 3.7emu/cm3 for Ms. The actual value ofσi depends on magnetisation (figure

5.9). However, using a constantσi that overestimates the actual value gives reasonable

results.

For calculating the derivative with respect to the fit parameters the 5 point method is

more accurate than the 3 point method, but a higher accuracy does not mean necessarily

that the solution converges faster. Both methods output, inthe error limit, the same

optimal value for the fit parameters. We investigated the number of loops needed to be

generated for the result to converge for different reference loops and different starting

loops using the two methods for calculating the derivative.In both cases the number

of iterations is similar, but the first method needs 4·M f + 1 loops per iteration and

the second one needs 2·M f + 1 loops per iteration, whereM f is the number of fit

parameters. ForM f =2 (as the example above) using the 5 point method, 9 loops must

be generated and for the 3 point method just 5 loops. On average using both method of
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calculating the derivatives requires 20 iteration, that means using the 3 point method

requires 80 fewer loops to be simulated. IfM f is larger, then the difference between

the two methods increases. For the LM method the first approach with constantσi and

using the 3 point method for computing the derivatives is thebest option, because it is

faster and requires less information about the data.

We did this investigation systematically for different values of K andMs at different

temperature and including also interaction. The results are similar with the above

example. In conclusion, using constantσi provides good results. For all the results

presented in this thesis the minimal value ofχ2 is at least 2 order of magnitude smaller

than the limit value for 50% confidence (as it can be seen in table 4.3). For this reason

all the result have at least a 50% confidence for the goodness of the fit, although a

graphic visualisation or a different method can be used (forexample theR2 test). For

all the cases studied, the errors are larger for both K and Ms if a constant value of 0.01

is used forσi . For a constantσi smaller than 0.01 the previous statement is not true.

For this reason we chose to useσi equal to 0.01.
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Results

In this chapter we apply the methods developed so far to studydata obtained from

experiments, in particular to analyse experimental magnetization curves measured at

different temperatures. This is a typical example of the identification problem, where

given a particular measurement type we want to go ‘backwards’ from the measured

data and learn about the physical properties of a system, i.e. solve the inverse prob-

lem. There are two main questions that need to be addressed when applying similar

approaches for the inverse problem. The first question relates to the uniqueness of the

inverse problem. In other words, when the model is fitted to the magnetization curve

data, are the model parameters uniquely identified from the fitting procedure? In many

cases, it turns out that the inverse problems are ill-posed and there exists an wide range

of model parameters describing the same experimental data.In this case, the solution

set is incomplete and full identification of the parameters cannot be achieved. The

second question relates to the applicability of a model in describing experimental sam-

ples. If the model is insufficient to describe the measurement data, then the fits are of

low quality. That leads to a large value of the sum of squared errors (χ2). However,

it is possible that even if smallχ2 values are found, the identified model parameters

may show systematic deviations from the expected values. Such cases are usually hard

to deal with, and can only be understood by performing robuststatistical analysis of

a broader set of experimental data of a different nature. Forexample, in addition to

magnetization curves, the magnetization versus temperature measurements, or magne-

tization versus time relaxation decay experiments, may also be required.
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6.1 Description of experimental data used for identifi-

cation

We first describe the properties of measurement data sets, which will be quantified

below in terms of the developed identification procedure. The samples were prepared

and magnetization curves were measured by the group led by Prof. Sara Majetich at

the Physics Department, Carnegie Mellon University in Pittsburgh, USA. The sam-

ple contains spherical magnetite nanoparticles with a non-magnetic surfactant shell

organised in a distorted hexagonal closed packed structure. The transmission electron

microscopy (TEM) imaging gave the mean diameter (dm) of the spheres as 6.7 nm

with a standard deviation of 15% and a packing fraction of approximately 0.33. We

note that the magnetic core may be smaller than the spheres asseen from TEM. The

magnetisation versus field curves were measured by the superconducting quantum in-

terference device (SQUID) in the geometry shown in figure6.1, for a set of 8 different

temperatures: 10K, 35K, 60K, 85K, 110K, 135K, 160K and 185K.During the mea-

surement, the external magnetic field was oriented perpendicular to the sample holder

shown in figure6.1. The maximum external field value was 10000 Oe and the field

sweep rate was 0.8 Oe/s.

6.2 Basic setup of the Monte-Carlo model for identify-

ing the properties of experimental data

We now use the experimental information given in previous section to reduce the num-

ber of fit parameters necessary for the optimisation procedure. The identification of

the model parameters will be based on the magnetisation versus field data sets (mag-

netization curves). In the real sample magnetostatic interactions are present. For the

model to be realistic, geometric aspects of the sample needsto be included:

1. The shape of the sample

2. The packing fraction of the system

3. Position of the particles
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Figure 6.1: Sample geometry. The sample contains sphericalmagnetite nanoparticles
with mean diameter of 6.7 nm and a a standard deviation of 15%.The packing fraction
is 0.33 and the particles are covered in a non-magnetic surfactant shell.

The shape of the sample gives rise to a demagnetising field as described in section

2.4.2, which is an important contribution to the effective field acting on particles in

the sample. Similarly, the packing fraction and the particle positions contribute to the

local variation of the effective field, thus influencing the magnetic behaviour of a sam-

ple. To include the shape of the experimental sample in the model we approximate the

overall geometry by an ellipsoid of revolution with principal axesa = b 6= c. In this

case the demagnetising field is defined simply by a ratio c/a, following chapter2.4.2,

and adds a mean-field contribution to the effective field, which is uniform through out

the sample. Due to the simple form of the demagnetising field expression (equation

2.6 and2.8-2.10 in section2.4.2), the ratio c/a can be interpreted as a fit parameter,

in the sense that its optimal value can be found during the fitting routine. Including

the particle sizes and positions into the optimisation routine is far less simple due to

the presence of inter-particle interactions. For a non-interacting system the particle

position is irrelevant and the particle size can be includedinto the fitting in a straight-

forward way. However, if interactions are present, accurate positions of particles need

to be included if dipole interactions are to be described realistically. The magnetic

behaviour of a particle is sensitive to the local magnetostatic field acting on it. This
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field can lead to a ferromagnetic or antiferomagnetic behaviour depending on neigh-

bour particles position [44] [45]. This is nontrivial for randomised samples, such as

with disordered positions of particles or clustered samples, where changing the parti-

cle size directly affects the local variation of the packingfraction and thus the local

variation of the dipole interaction fields contributing to the overall magnetisation be-

haviour. Generating randomised particle distributions requires dedicated algorithms,

such as described in section4.1.1, which would need to be sequentially executed dur-

ing the optimisation procedure if the particle size (or position) was included as a fit

parameter, thus making the approach computationally very demanding. Due to these

complications, the particle size has not been chosen as a direct fit parameter. Instead,

for developing our analysis, a preference was given to pre-generating realistic parti-

cle size and position distributions. We wanted to encompassthe expected values for

the experimental samples described above. For this we generated systems for several

different packing fractions, such that in all cases the meanparticle diameter was 6.7

nm and the standard deviation of the particle size distribution varied from 0 to 25%.

Furthermore, the complicated geometry of the sample as shown in figure6.1could not

be fully specified and for this reason to quantify the demagnetising fields we chose

two different approximate limits: the case with c/a = 1 (spherical geometry) and c/a =

0 (thin film geometry), roughly consistent with the experimental data described above.

Another requirement is the need to calibrate the computational model. In experi-

ments, magnetization curves are typically measured in terms of the absolute magnetic

moment, whereas our Monte-Carlo code computes magnetization curves in terms of

the magnetisation M(H) normalised by the saturation magnetisationMs, as is stan-

dard in computational physics. To calibrate the computational data, we first obtain

normalisation factors by fitting to the experimental data the well-known ‘approach to

saturation law’ of the form [46, 47, 48]:

m(t) = M(H)Vt = MsVt

[

1− A
H

− B
H2 −

C
H3

]

+DH +E
√

H (6.1)

whereVt is the magnetic volume of all the particles in the sample. As the name sug-

gested, ‘approach to saturation law’ describes the behaviour of magnetic moment in

high field regime which corresponds to the approach to saturation value of the mag-

netic moment. Equation6.1and the coefficient A, B, C, D and E result from an under-

67



6. Chapter 6

lying theory and include the effects of stress, anisotropy,interaction, inhomogeneities

and other factors. Not all of these coefficients may be relevant - depending on the type

of a sample under study. In the present case of the experimental data introduced in

section6.1the above equation reduces to a simpler form:

m(H) = MsVt

[

1− F
HG

]

(6.2)

which then allows the value ofMsVt to be extracted for the calibration between the ex-

perimental and computed data. In figure6.2the normalise experimental magnetization
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Figure 6.2: Normalised experimental magnetization curvesfor sample A at 4 temper-
atures (10K, 85K, 135K, 185K). The points represent the normalize experimental data
and the lines are for guidance. The normalisation factorMsVt for each temperature is
shown in the inset.

curves as function of field for the sample are illustrated for4 different temperatures:

10K, 85K, 135K and 185K.
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6.3 Identification problem: An example of the study of

uniqueness properties of a model

In the previous section we set up the Monte-Carlo model aidedby available informa-

tion about the experimental samples. The physical variables which were not measured

directly were the mean anisotropy constant and the saturation magnetisation, which

will be used as fitting parameters. While experimental techniques to measureK and

Ms are available, it is generally desirable to be able to identify K andMs directly from

measured magnetization curves. The standard deviation of anisotropy constant,σK, is

also an unknown variable. We consider a log-normal distribution of anisotropy. This

is the standard technique in describing a system of nanoparticles. We tested different

values ofσK in the interval[0,30%] and these values do not change the result for these

experimental data. A value of 10% is chosen forσK.

We want to find K andMs for the experimental samples from the measurement

data described in section6.1. The Monte-Carlo model presented in section4.1.4 is

used as the reference model. But first we will consider the question of uniqueness.

This question relates to studying the inverse solutions of the model, i.e. whether every

computed magnetization curve corresponds to a unique set ofvalues ofK andMs. To

do this, we will apply the grid search method which, following the discussion in section

4.2.2, will now be based on generating a large number of ‘reference’ magnetization

curves for a dense set of different, systematically varying, values ofK andMs and

comparing individually each of such magnetization curves with the full set of generated

curves. If uniqueness holds, then every magnetization curve will match ideally only

itself, if not, there will be a set of different values for theparameters that will match

one magnetization curves. In practice each loop contains errors due to the thermal

noise. These errors propagate into the output of the inverseproblem. Because of this,

instead of having a unique match between a set of data and the ‘reference’ table, there

is a range of parameters that describe well the magnetisation curve. In this case the

uniqueness is define asχ2 having just one minimal value. If there are more minimum

values ofχ2, then the the uniqueness is not satisfied.

We computed magnetization curves for particle distributions with packing fractions

0.1, 0.2, 0.3, 0.4, and for the non-interacting case (packing fraction 0.0). The overall
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shape of the sample was taken to be a sphere, i.e.c/a= 1, and the temperature range

chosen from 10K to 185K consistently with experiments. We generated a grid withK

between 2·104 erg/cm3 and 5·105 erg/cm3 in steps of 2·104erg/cm3 andMs between

80 emu/cm3 and 560 emu/cm3 in in steps of 20 emu/cm3.
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Figure 6.3:∆χ2
norm map for 99% confidence interval for finding K=1.0 · 105erg/cm3

and Ms = 400emu/cm3 at 20K and different packing fractions. For all the packing
fractions (from 0.0 to 0.4) the optimum parameters are K = 1.0 ·105erg/cm3 andMs=
400 emu/cm3. The parameter correlations changes from a positive correlation, for
packing fraction 0.0, to an uncorrelated case for packing fraction of 0.4.

Figure6.3shows the resulting∆χ2
norm maps obtained by comparing the input mag-

netization curve data set forK = 1 ·105erg/cm3, Ms = 400 emu/cm3, T = 10K to the

reference function tables for different particle packing fractions. In all the cases there

exist an optimum solution within the chosenMs andK range and the chosen 50% sta-

tistical confidence level. The size and shape of the contour depends on the packing

fraction, which represents the developingMs−K parameter correlation. In the non-

interacting case (0 packing fraction), the correlation is linear. This means that, with

the 99% statistical confidence, the reference functions with a specific ratio ofK and

Ms match the input function. In other words, if this ratio is preserved the magnetiza-

tion curves in that parameter range are indistinguishable.For larger packing fractions
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Figure 6.4:∆χ2
norm map for 99% confidence interval for finding K=3.0 · 105erg/cm3

and Ms = 400emu/cm3 at 20K and different packing fractions. For all the packing
fractions (from 0.0 to 0.4) the optimum parameters are obtained correctly. The param-
eters are positive correlated, for all the packing fraction, but the errors of the optimum
parameters are decreasing with increasing packing fraction.

the inter-particle interactions become stronger and the ‘good match’ elliptical contour

rotates towards the horizontal orientation. Also the contour shrinks towards the circu-

lar shape suggesting a convergence of the errors towards a unique value ofMs andK.

This effect of interactions depends on the balance between thermal energy, interaction

energy and anisotropy energy. If we consider a large anisotropy (figure6.4) the effect

of interactions onMs−K parameter correlation is reduced. If we compare figure6.4

and6.3we can see that for small packing fraction, meaning weak interaction, there is

no difference between solving the inverse problem for K = 1·105 erg/cm3 and for K

= 3·105 erg/cm3. For larger interaction there is an evident difference. Forlarge K the

errors decrease as for low K, but have different values. Alsofor large K, the ellipsoidal

contour of the∆χ2 does not change the orientation as in low K case. With increasing

temperature the interactions become less important and correlations are less visible.

We can see from figure6.5 the 2D map for∆χ2
norm at 160K. The main aspect of the

graph is that K is not well defined. The contour plot of the errors covers the entire range
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of anisotropy values. This can be explain by the fact that with higher temperature the

superparamagnetic behaviour is dominant and this does not depend on anisotropy.
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Figure 6.5:∆χ2
norm map for 99% confidence interval for finding K=1.0 · 105erg/cm3

andMs = 400emu/cm3 at 160K and different packing fractions. For all the packing
fractions (from 0.0 to 0.4) the optimum parameters are obtained correctly, but the errors
for K are too large for the result to be meaningful.

For all temperatures and all packing fractions the above system has just one solu-

tion for K andMs and it corresponds to the right solution. Next we focus on theerror

in determining the solution. As disused in section4.2, the errors of the obtained pa-

rameters are important. If we analyse figure6.5, it can be argued that the uniqueness of

the solution is not satisfied. The magnetization curve for K=1 ·105 erg/cm3, Ms = 400

emu/cm3 at 160K is described by any value of anisotropy in the range weinvestigated.

There is just one minimal value ofχ2. The uniqueness is satisfied but the errors for

K are very large. For this reason the results are not meaningful or not well defined.

As suggested in section4.2the uniqueness of the inverse problem must be justified by

relative small errors of the results. How small the errors need to be for the result to be

meaningful depends on the aim of the investigation. We want to identify the value of

parameters (in this case K andMs) as good as possible. For this reason we investigate

a broad range of temperatures.Ms is well defined for all temperature and interaction
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strengths but forK the error-bars at higher temperature are too large for the result to

be meaningful. In conclusion for low temperature we can use the inverse problem to

obtain K andMs, but for high temperature justMs can be calculated.

To illustrate how relevant the shape of the sample is, we present a situation in

which the effect is very strong: a thin film system with the same properties as the

system presented before, except for the shape of the sample.For strong interactions we

consider the field perpendicular to the thin film plane. Figure6.6illustrates the∆χ2
norm

2D map at 10K for c/a=0.0 and the rest of parameters are as in the previous example.

It can be seen that the correlation between K andMs is more strongly dependent on

interactions. This also influence the errors. Thus, the interactions play a very important

role in finding the right solution. If the interactions in themodel are not consistent

with the sample we want to investigate, then it is unlikely wewill be successful in

identifying the parameters correctly.
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Figure 6.6:∆χ2
norm map for 99% confidence interval for finding K=1.0 · 105erg/cm3

andMs = 400emu/cm3 at 10K and different packing fractions. c/a=0.0 and the fieldis
applied out of the plane of the sample. The parameter correlations are strongly affected
by the packing fractions. For the non-interacting system (packing fraction equal to
0.0) the parameter correlation is positive, at packing fraction 0.1 the parameters are
uncorrelated and for larger packing fraction the parameters are negative correlated.
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6.4 Identification of the properties of experimental sam-

ples

In this section we apply the methodologies developed above to study the experimental

data presented in section6.1. In this case, the applicability of our approaches depends

on how accurately the Monte-Carlo model can be used as a reference to capture the

relevant physics. If the model is realistic, then the identified model parameters will

be accurate and the overall identification supported by highquality fits. On the other

hand, if the model fails to be realistic, then systematic deviations from the expected

(actual) physical parameters emerge, even though the fits can still be of high quality.

Such behaviour has not been found in the previous section because both the input and

reference functions were based on the same model.

Following the discussion in the previous section we begin byconsidering the iden-

tification of Ms andK from the experimental data. It is expected, thatK will be quan-

tifiable accurately only at low temperatures. To apply the grid search method, we

consider samples of various geometries, and take log-normal particle size distribution

with mean diameter equal todm= 6.7 nm and standard deviationσdm =15% as TEM

measurements suggest. We generate our system with a packingfraction of 0.33 con-

sistent with the experiment. Then we compute reference magnetization curves for a

dense mesh ofK andMs values as specified in the previous section.

First we investigate a second sample with the same properties as the sample de-

scribed in section6.1. The only exception consist in the demagnetisation factor c/a,

which we estimated to be 0.16. The grid search method for thiscase yieldedK in

a rather broad range 4· 104− 5 · 105 erg/cm3, which is to be expected based on the

uniqueness study given in the previous section. The identified values ofMs have been

found increasing with temperature from about 200 emu/cm3 to 400 emu/cm3 as shown

in Figure6.7. The fit results show that there is a temperature region around 100K-150K

where a rather sharp transition inMs occurs. This transition behaviour is unexpected,

and it is not clear at the moment whether this is physical or anartefact in the modelling.

The most straightforward test is to check the effect of demagnetising field factor by

changing thec/a. We can do this by analysing the sample shown in figure6.1 in sec-

tion 6.1, for which we simply setc/a= 1. The final results are qualitatively similar -
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although the identified magnetisation saturation limits now extend from 200 emu/cm3

to 500 emu/cm3, the transition behaviour is again observed in the similar temperature

range. We have also confirmed the transition by applying the Levenberg-Marquardt

algorithm wherec/a has been included as a fit parameters, which gavec/a ≈ 1 and

the values ofMs in the range from 200 emu/cm3 to 500 emu/cm3 where the upper limit

is now close to the expected value for Fe3O4 (magnetite, 450 emu/cm3). This thus

demonstrates that although changing the demagnetising field contribution by tuning

the c/a ratio results in quantitative adjustments in the observed trends, qualitatively

the transition behaviour seems to be present in all cases.
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Figure 6.7: Ms values obtain solving the inverse problem for different temperature.
The results are presented for a second sample with the same properties as the sample
described in section6.1, but with c/a equal to 0.16. The saturation magnetisation
increases with temperature from 210 emu/cm3 at 10K to 370 emu/cm3 at 200K.

The above results indicate that interactions are too strongand just changing the

demagnetizing field is not sufficient. The fact that the interactions are strong becomes

apparent at lower temperatures where the model does not compensate well for the

observed behaviour which results in the suppressedMs from the inverse problem in-

vestigation. The packing fraction has been chosen consistently with the experimen-

tal observations and therefore we want to keep it. An alternative way to control the

packing fraction and thus the interaction strength is by tuning the magnetic volume of

particles. Although the TEM analysis suggests that the particle size is on average 6.7

nm the actual magnetic volume might be smaller. In the following we will focus only

on the first sample shown in figure6.1, where we have more temperature points and
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thus more robust data. To model this we consider that the particles have a core-shell

structure in which the magnetic core represents a part of thetotal size of particle as

viewed from the TEM image. For this we generate a system of particles with a mean

diameter of 6.7 nm and standard deviation of 15%, with packing fraction of 0.33. Then

we allow the particles’ magnetic core to vary but maintaining the total size as initially

generated. The magnetic core will have the same distribution of size. The shape of

the real sample is not well defined and so thec/a ratio will be also a fit parameter

to optimise the effect of the sample’s shape. In a first approximation we consider a

fixed value ofMs equal to 450 emu/cm3, a value close to the bulk one. The unknown

parameters, K, dm and c/a are the ones needed to be obtained from solving the inverse

problem. For calculatingχ2 we consider constantσ as discussed in section5.2, and

consider 50% confidence for determining the goodness of the fit and 99% confidence

interval for estimating the errors.
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Figure 6.8: Grid search method results for dm and c/a for experimental data with
Ms = 450emu/cm3 andσdm= 15% at 185K. The optimum particle size is 6.5 nm and
the ratio c/a is in the interval [0.95, 1.45].
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To apply the grid search method for just two parameters we used the fact that

at high temperature the anisotropy does not play an important role (as discussed in

previous section and shown in figure6.5). We first use the grid search method at

the high temperature to obtain the optimal values of dm and c/a and then used the

obtained values for c/a to find at low temperature K and dm. In figure6.8 the results

are presented for 185K. At 185K we investigated dm and c/a. The best value for c/a

is 1.1 and 6.5 nm for the average size of the particle. Taking into account the errors

at 99% confidence level the interval for c/a is [0.95, 1.45] and for dm the interval is

[6.3 nm, 6.7 nm]. The investigation at lower temperature were done using c/a=1.0. In
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Figure 6.9: Grid search method results for dm and K for experimental data withMs =
450emu/cm3 andσdm = 15% at 10K and 135K. The optimum size is 5.3 nm at 10K,
whereas at 135K it is between 6.35 nm and 6.75 nm.

figure6.9 the results for 10K and 110K can be seen. All the results are summarise in

table6.1. The optimal value of anisotropy is decreasing with increasing temperature,

but the errors at high temperature are too large to have a clear trend. For the size of the

magnetic core there is an increase from 5.3 nm at 10K to 6.5 nm at 185K with relatively

large error bars at intermediary values of temperature. Thedifference between the size

of particles obtained at low and high temperature is unexpected. To investigate this

behaviour we analysed the approximation we used:
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1. Ms equal to 450 emu/cm3

2. σdm equal to 15%

3. The effect of the shape of the sample is approximated with the demagnetization

factor from an ellipsoid of revolution

T Dmbest fit Dmmax Dmmin Kbest fit Kmax Kmin

(K) (nm) (nm) (nm) (105 ·emu/cm3) (105 ·emu/cm3) (105 ·emu/cm3)
10 5.3 5.45 5.15 3.6 3.9 3.5
35 5.6 5.75 5.45 3.2 3.5 3.1
60 6.2 6.35 5.75 3.0 3.3 2.7
85 6.2 6.65 6.05 2.2 3.3 1.9
110 6.5 6.75 6.35 2.6 3.5 2.1
135 6.5 6.75 6.35 2.0 4.1 0.9

Table 6.1: Results from the grid search method containing the best value for dm and
K. For 99% confidence level the range of the two parameters areincluded

The last consideration cannot be improved in the model because the shape of the exper-

imental sample is not well defined, but the first two approximations can be addressed.

We consider 5 discreet values ofMs between 380 and 460 emu/cm3. For values under

380 emu/cm3 there are no good solutions at high temperature for confidence levels

as low as 50% and values bigger than 460 emu/cm3 are not expected for magnetite.

Considering multiple values forσdm increases the difficulty of obtaining the fit. If we

change the value ofσdm in an existing system, then it is possible that two neighbour

particle to overlap. To avoid this, for each differentσdm, a new system must be gener-

ated. This means that the LM method cannot be applied for finding the optimalσdm.

The values used forσdm are 5%,10%,15%,20% and 25%. The best results are ob-

tained forσdm equal with 5% andMs equal to 450 emu/cm3. The results for K and dm

for the two values forσdm are illustrated in figure6.10. The K values are similar in the

error limit for both results. For dm there is not a significantimprovement if we look at

the optimal value except for the 10K case where the new value is 5.6 nm in comparison

with the previous one 5.3 nm, but if we consider also the errorbars, there is a important

difference. Forσdm = 15% the difference in size between all the temperature is in the
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Figure 6.10: Grid search method results for K and dm withσdm = 15% (green dots)
and 5% (red squares).
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interval [0.8 nm, 1.6 nm] where as in the latter case, forσdm= 5% all the values of dm

vary in the range [0.3 nm, 1.3 nm]. Overall a value of 6.1 nm± 0.65 nm describes the

experimental data for all temperatures.

We were expecting to obtain a unique value of dm for all temperature. The fact that

the particle size at 10K and 185K do not overlap in the error limit raises the following

questions: why this disagreement appears and is this real orjust an artefact of the

model. We saw in section6.3, when we investigated the uniqueness of the inverse

problem for our model, that the inverse problem has a unique solution. Therefore the

two methods used for solving the inverse problem (Grid search method and Levenberg-

Marquardt) are not the issue.

A possible reason may be due to a discrepancy between our Monte-Carlo model

of the system and the actual real system. It could be that our model is not complex

enough and a more detailed model is needed, but there is no clear evidence for this.

A more plausible explanation is that the interaction from the model are not in good

agreement with the experimental case. We saw in section6.4 that changing the in-

teraction strength by changing the packing fraction has a important influence on the

parameter correlation and implicitly on errors. By trying to model experimental data

with with a stronger interacting system, it may be thatMs or dm will be smaller at

low temperature to compensate. At high temperature, because interaction are less im-

portant due to the large thermal noise, the disagreement between the model and real

system is not reflected in the output of the inverse problem. In this case the result from

high temperature probably describes the experimental datamost accurately, and the

low temperature results are an artefact.

Another possible explanation for the temperature dependence of the mean particle

size with temperature can be due to a canted state, which has been seen in magnetic

nanoparticles [49, 50]. The canted state decreases with temperature, that means that the

effective magnetic core increases. In this case the variation of dm with temperature can

occur to take this effect into account. A difference of maximum 1.3 nm between the

values ofMs at 10K and at 185K corresponds to approximately 4 atomic layers. One

to four atomic layers for the canting state is plausible but to validate this assumption

more experimental measurement are required.
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7

Conclusions and future work

In this thesis we studied the inverse problem of identifyingproperties of magnetic

nanoparticle systems from magnetisation versus field curves. For this we developed

a realistic Monte-Carlo model of 3D particle systems containing spherical nanopar-

ticles with uniaxial anisotropy (section4.1.4). Log-normal distribution of size and

anisotropy values were considered with spherical distribution of easy axis. Magneto-

static interaction and thermal effects were taken into account. This allowed to calculate

magnetisation curves at different temperatures, which were then validated against the

known analytical results in section5.1. Sections4.2and5.2where dedicated to study-

ing the inverse problem.

For the inverse problem we concentrated on two different approaches: Levenberg-

Marquardt algorithm and Grid search method. The grid searchmethod has advantage

in that it offers information about the uniqueness of the solution and the model param-

eters correlation, but it becomes inefficient for evaluating more than 2 model param-

eters. The Levenberg-Marquardt approach is an optimal algorithm for obtaining the

solutions from fitting to many parameters but when implemented on its own it does

not provide detailed information about the uniqueness of solutions beyond the errorbar

calculation.

The methodologies presented in the thesis are of broad applicability and can be

implemented to include any physical parameter relevant to nanoparticle system. In

this thesis we focus on studying the inverse problem for identifying anisotropy (K)

and saturation magnetisation (Ms). As discussed in chapter6, both parameters can be

accurately obtained at low temperature, but at large temperature justMs can be calcu-
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lated with this approach. In the high temperature region, superparamagnetic behavior

dominates and the exact value of anisotropy is less important. In the last chapter we

applied the developed methods to investigate a set of experimental measurements, ob-

tained for systems of spherical magnetite nanoparticles atdifferent temperatures from

10K to 185K.

The methodologies developed in this thesis provides a good insight into the prop-

erties of the experimental samples and suggests a possible sound interpretation of the

measurement results. Moreover, the value of this study consists also in that it demon-

strates the difficulties in the interpretation of experimental results obtained from com-

plex nanoparticle systems. Addressing the questions of uniqueness is essential to avoid

drawing erroneous conclusions about the nature of the experimental samples.

7.1 Future outlook

The straightforward continuation of the present work is to extend the present analysis

to understand the question of uniqueness with respect to additional parameters, such as

different choices of particle anisotropy or volume distributions, different types of parti-

cle arrangements ranging from random spatial distributions to highly uniform lattices.

A question of fundamental nature is to understand the reasons for the observed non-

uniqueness of inverse problems on microscopic basis. This involves linking the macro-

scopic observation of parameters correlation with microscopy investigation of domain

formation and particle correlation. The method can be also used to study the inverse

problem for other parameters such as particle size and its distribution, anisotropy and

its distributions.

Another research direction anticipated in the future is to improve the methodolo-

gies developed in this thesis by incorporating different solutions types for addressing

the inverse problem. The present study was based on identification using magnetisation

curves and we found that identification of the anisotropy parameter K was non-unique

in the high temperature range. Better results might have been obtained by including

also minor hysteresis in the analysis or by concentrating ondata of a different nature

such as the temperature dependent magnetization data, or the magnetization relaxation

data. It is also possible that combination of several different solutions might be nec-
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essary to achieve fully unique identification of model parameters. These questions are

highly nontrivial and give prospects for long-term future work.
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Appendix A: Least squares fitting. General

notions

When analysing a real phenomenon there is a necessity to havea theoretical model of

that phenomenon and experimental evidence of the model so that it can be rigorously

investigated and used to make prediction. In general an experiment consists in investi-

gation of a system response to variation of different parameters. From the theoretical

point of view this is described by a set of equations or in general by a mathematical

model that explains the physical phenomenon involved.

A large group of experiments consist in investigation of theresponse of the system

to the variation of different parameters. This results are summarised numerically in two

groups: independent variables (those variables that are controlled by experimentalist)

and dependent variables (values that characterise the response of the system to the

independent variable). In general x is used to describe the independent variable and

y for the dependent variable and for each x corresponds a value y. In the case of

magnetization curves the magnetic response of the system ismeasured as a function of

the applied field.

To gain a better understanding of the investigated phenomenon a model is used.

A model consists of a set of mathematical equations that describe the main feature of

the behaviour of the system as function of the independent variables. A way to obtain

more information from experimental data is to fit those data to a function, f(x), that

describe the phenomenon. Function f(x) has also a set of coefficients. The reason to

fit the function to the data is to find all or a part of the coefficients. They are called

fitting parameters or parameters of interest (p) and their values need to be obtained

84



whereas the rest of the coefficients are known (from the modelor from other experi-

ment). Overall our function depends on the independent variable x and fit-parameters

(p):

y= f (x,p) (1)

The large use of this methodology has made the fitting algorithms an important subject

in mathematics and in physics. Although they have been studied for a long time a

general rigorous method does not exist. The fitting results will describe the system

with a certain probability. Based on that probability and onthe approach used, the idea

of a good or bad fit is defined. All the methods have a set of elements that needs to be

included:

1. First a meaningful model that describes the data is chosen. Choosing an appro-

priate model is very important. For example you can fit almostany set of data

with a high-order polynomial function but the result is not meaningful because

it does not describe the physics of the investigated phenomenon.

2. Then a function called figure-of-merit function that calculate the agreement be-

tween data and the model is selected [40]. This function differs from algorithm

to algorithm.

3. The extreme point (in general the minimum) of the above function with respect

to the parameters (p) corresponds to the best-fit values of the parameters (p f it ).

This transforms the algorithm into a minimisation problem.

4. The values for best-fit parameters are determined.

5. The errors of the obtained parameters are evaluated. The experimental data are

not perfect, they will contain errors. For this reason therewill not be just a

simple set of parameters that will describe the data. Repeating the experiment

several times will give slightly different points that willhave different best-fit

parameters. Depending on the model and on the errors in the experiment, the

best-fit parameters could have the errors too large to be useful.
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6. The goodness-of-the-fit is evaluated. This is also very important because even if

we obtain the fit parameters with acceptable errors the results may not describe

the data well enough. This can happen for different reasons:

(a) The model is not good or incomplete;

(b) The errors are too big;

(c) There is one or more extra parameters that are needed to betaken into

account;

(d) The function has more than one minimum. This makes the minimisation

problem difficult;

The first element is not relevant for a general description ofthe fitting algorithm. For

this section we can assume a good model with general form like:

y= f (x,p) (2)

There are a large number of methods for fitting and also different ways to test if the fit is

meaningful or not. The most used methods are based on minimisation of squared errors

between the experimental data and prediction values from mathematical models. This

methods are called least squares and the main element of these methods, that are used

in this thesis are presented in the next paragraphs [40]. Assuming that the measurement

errors are independent and randomly distributed around the’true’ value as a Gaussian

distribution, then the probability that a point is around the mean or expected value (the

’true’ value) has the following form:

Pi =Ce
− 1

2

(

yi−yi
σi

)2

∆y (3)

whereyi is the experimental data corresponding to the independent valuexi , yi is the

mean value for the samexi , σi is the standard deviation ofyi and C is a constant. This

assumption is valid for the magnetization measurement, because the dominating source

of noise are the thermal fluctuations which give a Gaussian distribution of errors. We

want to find parameters for the functionf (x,p) that describeyi . Replacingyi with the
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function f (xi ,p), the probability will be big if f (x,p) andyi are very close and will

decrease if they are further away.

Pi =Ce
− 1

2

(

yi− f (xi ,p)
σi

)2

∆y (4)

For all the points the total probability will be the product of each of the above proba-

bilities:

Pi =CN
N

∏
i=1

e
− 1

2

(

yi− f (xi ,p)
σi

)2

∆y (5)

=CNe
− 1

2 ∑N
i=1

(

yi− f (xi ,p)
σi

)2

∆y (6)

The best set of parameters will correspond to the highest probability P. Maximising P

is equivalent to minimising the sum from exponent, called chi-square:

χ2 =
N

∑
i=1

(

yi − f (xi ,p)
σi

)2

(7)

Now we have a figure-of-merit function,χ2(p) and we need to find the minimum

of the function relative to parametersp. Depending on the method, this step can be

simple or complex. For the grid search method this is done very fast, just calculating

χ2(p) for each simulated loop andp f it corresponds to the smallestχ2(p). The second

method (Levenberg-Marquardt method) is more complex because from a set of ”guess”

parameters, the algorithm automatically in a optimal way searches through parameter

space for the smallestχ2(p) corresponding to the best-fit parameter. If the data that

are fitted are perfect (not affected by noise) or the model is perfect (there is just one

possible output form the model), then the best fit will correspond toχ2(p) = 0.0 and

parameters,p, will be exactly calculated. This is the ideal case, but the magnetization

measurements are affected by different errors and also the theoretical model takes into

account thermal fluctuation. In this case the errors will propagate toχ2(p) and there-

foreχ2(p)min> 0.0 andp f it will be determined with an error. First of all we need a way

to evaluate how smallχ2(p)min should be to find out if the fit is meaningful or not. If
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the experiment is repeated the new set of data will be slightly different and alsoχ2(p)

will be different. Under the assumption of Gaussian errors the obtainedχ2(p) value has

a probability of having any value. Becauseχ2 is a sum of Gaussian distributed terms,

χ2(p)min follows a chi-square distribution withNp-M f degrees of freedom, whereNp

is the number of data points andM f is the number of fitted parameters:

Q(χ2,v) =
1

2v/2Γ(v/2)
χv/2−1e−x/2 where v=Nd-M f (8)

There is a certain probability(Qχ2>χ2
lim
) that the obtainedχ2(p)min is smaller thatχ2

lim

due to chance:

Qχ2>χ2
lim

=
∫ ∞

χ2
lim

Q(χ2,v)dx (9)

Once the goodness of the fit is analysed, we can proceed to evaluate the errors in

estimating the fitting parameters. The errors are determined by investigating how fast

χ2 is changing from the minimum values with the change in parameters from the best

fit values. For this the difference between the chi-square ofa set of parameters and the

minimum chi-square is calculated. The difference of the twohas the notation∆χ2 and

is following a chi-square distribution with M degrees of freedom. To evaluate the errors

with a given confidence (1-Q),∆χ2 has a limit value which corresponds to a contour

region in parameters space. This contour region corresponds to the errors of the fit-

parameters. The probability Q and∆χ2
lim have the same definition as for determining

the goodness of the fit. Althoughχ2 and∆χ2 have the same definition, they are two

different element:

1. Value ofχ2 at minimum: a measure of goodness of fit. The degrees of freedom

are equal to the difference between the number of data to be fitted and the number

of parameters to be fitted.

2. How quicklyχ2 changes as a function of the parameter (∆χ2): a measure of the

uncertainty on the parameter. The degrees of freedom are equal to the number

of fitted parameters.
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