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Abstract

Fine particle magnetism is employed in a wide range of appbas rang-
ing from magnetic data recording to cancer therapies. Cheniaation
of nanoparticles is important for improving their appliddyp. This is a
complex task, especially if magnetostatic interactioegaibe considered.
Here we have developed a methodology to investigate theseyzoblem,
which consists of extracting the magnetic properties sischrasotropy,
size or saturation magnetisation from experimental maggi@in curves.
For each set of magnetic properties a magnetisation curvaleays be
obtained, but from a magnetisation curve the parametensotaiways
be uniquely determined. If interactions are significantifseie becomes
complicated and the question of whether the parameterseamiguely
identified arises. To study this we simulated the magneti@abieur of
interacting nanoparticles with Monte-Carlo techniqued applied two
different methods for studying the inverse problem. Thisves to show
that a unique extraction of model parameters is indeed Iplessnly in
a certain range of magnetic nanoparticle concentratiodseanperatures.
Using simulations we investigated the inverse problemviarparameters,
anisotropy and saturation magnetisation, at differenptratures. At low
temperature both parameters can be well determined, budrtbes and
the parameters correlation is dependent on the strengtheafnagneto-
static interaction. In the high temperature case, due terpapamagnetic
behaviour, only the saturation magnetisation can obtamgu$e inverse
problem approach. The methodology was also tested for & sederi-
mental measurements done on magnetite nanoparticles.
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1

Introduction

Magnetic nanoparticles (NPs) are used in a broad spectruraraftechnologies. One
of the most prominent examples is the magnetic informatiorage based on hard
disk drives where NPs serve as basic memory blocks for gtdha bits of infor-
mation. In biology and chemistry functionalized magnetiésNare widely used for
detection of chemical species in solutions, inside cefid,l@ological fluids, where the
noise patterns in their magnetisation response can bagilisshed to serve similarly as
colouring agents in the fluorescent detection. A very imgoartise of NPs in medicine
IS as contrast agents in magnetic resonance imaging, whhdchnique that allows
monitoring diseases and organ functionality Magnetic NPs are also very promising
for developing methodologies for cancer treatment wheat generated internally by
NPs, when subject to high frequency external magnetic fieldces, lead to a rapid
destruction of a tumour2][3]. Targeted drug delivery approaches where magnetic
NPs act as carriers of drugs remotely navigated by exterildl iradients (magnetic
forces) is another example of their application in biomewid1][2][3]. This list of
applications is by no means exhaustive, which demonstrnajgsrtance of magnetic
NPs in science and technology.

The above list of applications shares a range of challengleish are crucial for
their design and optimisation, and which will be in part added in this thesis. It is
not trivial to manufacture magnetic nanoparticles of umfshape, size, and identical
physical parameters and so quantifying the properties gnmtac NP assemblies in-
evitably requires statistical description in term of prbitisy distributions. Secondly,
often magnetic NPs in applications are rather densely phekdch leads to non-



negligible interparticle interactions. In the applicaisooutlined above the interactions
are mostly of magnetostatic or dipole-dipole characteg eessult of their finite sepa-
ration. Such interactions bring into play geometrical aspehen the arrangement of
magnetic NPs considerably modifies the collective magmhetiaviour. Another com-
plication is the temperature effect, which results in terapee dependence of physical
parameters and in thermally activated dynamics. Supearggaetic or hysteretic be-
haviour of the same system can be observed depending oretipgeficy of applied
external magnetic fields. The main task in experiments isyttotpredict based on a
simple set of magnetization measurements the varioustdisons of properties, in-
teractions, NP arrangement - such as clustering or packangidn, and the intensity
of thermal fluctuations.

To accomplish this task, magnetic characterisation of reagmanoparticle sys-
tems have been carried out by various means: FOR[G][ AH(M,AM)-methods
[6][ 7], fitting Langevin function to superparamagnetic cur@gsffhe FORC method
allows to calculate the interaction field and coercivitydidistribution. TheAH (M, AM)-
methods are generally used to study the switching fieldidigton for perpendicular
recording materials (the easy axis is aligned with the appfield direction). Roy
Chantrell used the Langevin function to obtain the size aswlidution of particles for
superparamagnetic behavidjt[ These approaches are based on a number of simpli-
fications which limits their applicability. These technégudo not allow quantifying
individual magnetic properties such as anisotropy, sizk their distributions, in a
general system (for example a system of random anisotrogipieistributions at any
temperature).

In this thesis, we develop a general framework which allomisrpreting mag-
netization measurements in terms of parameters of a liediisinte-Carlo model of
interacting system of magnetic NP8].[ In the model, individual particles are de-
scribed by the Stoner-Wohlfarth theory, which allows imthg distributions of particle
volumes and random distributions of uniaxial anisotropgtees common to realistic
systems. Inter-particle interaction are modelled as éialgbole interactions, and the
model allows incorporating various spatial arrangemehidRs. Thermal activation is
included as well and the model allows capturing both suparpagnetic and hysteretic
regimes. The model with its complexity is then combined itk least squares fitting
tool based on the standard Levenberg-Marquard algoriftOhifito a unifying com-



putational tool, which allows a real time adjustment of paggers of the Monte-Carlo
model to accurately describe (fit) input measurement ddta.résulting output is a set
of optimum model parameters which supposedly corresponelatitstic properties of

the experimentally investigated magnetic NP system.

In this way, the approach solves the inverse problem of ify@mg the model pa-
rameters from the measurement of magnetisation charstatsrof NP systems. In-
verse problems are generally difficult to deal with. Complesdlution of an inverse
problem requires in addition to obtain accurate descmipdbinput measurement data
also answering the following questions:

1. Check the uniqueness of the solution. Is there just onef setues that describe
the given data?

2. What are the errors in determining the solution?

If the uniqueness of the solution for the inverse problenegpected and the errors
are small, then the method can be successfully applied &srdete information such
as saturation magnetization, anisotropy, particles sieaf value and distribution) or
other parameters of interest.

For many applications, properties such as anisotropy ()saturation magneti-
zation (Ms) are very important. For these reason the study done inltegg is focused
on these two parameters. The investigation is done for niagr{Ee;O4) nanoparti-
cles systems. K anhbllg are strongly dependent on the size of particles and the metho
of preparation and coating]]. For example, for magnetite nanopartichdg is de-
creasing with the size of the particle but also the coatirigcéd the behaviour. For
bulk magnetite material the saturation magnetization isrf@2/g and the bulk value of
uniaxial anisotropy of magnetite at 4K is1210° erg/cn¥ [12]. For magnetite nanopar-
ticles the values are smaller, varying from 50 emu/g up toriQ/g. Coprecipitation
preparation method give smaller values kg, whereas using thermal decomposition
the values are closer to the bulk3 [14][15][16]. Atomistic simulation confirms
the finite size effect, but the values are larger than theraxeatal values16]. The
anisotropy of magnetite nanoparticles also vary in a lan¢grval but different authors
use different assumption in determining the value of aniggt Most of the values are
determined from magnetization measurements using theietgiffield or the area of
the hysteresis curve, or the blocking temperature. Otliectefuch as shape anisotropy



or dipole interaction can influence this type of calculatibmthese case using simu-
lation to solve the inverse problem is a good option to obt@iantitative information
about K andVs.

The thesis is structured as follows. In chapter 2 we brieflscdbe the main cat-
egories of magnetic materials. We focus on ferromagnetienads and we describe
the main contribution to the energy of a system of magnetioparticles.

Chapter 3 contains the general theory of the Monte-Carloahdatle start with the
Stoner-Wohlfarth model and we present the analytical gasan of it. Then the ther-
mal effects are introduced and finally the Metropolis Mo@ta4o and kinetic Monte-
Carlo algorithms are presented.

In Chapter 4 the numerical implementation of the algorittares described. The
implementation for simulating the magnetic behaviour ofraaracting 3D system of
spherical nanopatrticles is presented in the first part octiapter. The system con-
tains particles with log-normal distribution of diametersd log-normal distribution
of anisotropy values. Uni-axial anisotropy with randomespteal distribution of easy
axis is considered. The methodology for solving the invgrebdlem is presented in
the second part of the chapter.

The validation of the algorithms is discussed in chapter 5. tekt the Monte-
Carlo model, results from simulations are compared wittydical calculations. Three
different tests are made: reobtaining the Stoner-Wokifarbdel for low temperature
limit, investigating coercivity as function of sweep ratedavalidating the combined
kinetic Monte-Carlo and Metropolis Monte-Carlo algoriteim the superparamagnetic
limit. At the end of the chapter the Levenberg-Marquardt @il Search methods
presented in previous chapter are also tested.

Chapter 6 discusses, based on simulations, the uniquehtesiaverse problem
for anisotropy and saturation magnetization. Then the attlogy is applied for a set
of experimental magnetization curves measured at diffeéesnperature.



2

Magnetic material. General overview

Magnetic properties of materials have as main sources teeattion between elec-
trons with unpaired spins and the orbital motion of elecmoound the nucleus. The
latter has a smaller contribution and in many cases is ighfd. There are three

AN

[

Figure 2.1: Types of magnetic materials. (a) paramagnékie: unpaired spins of
electrons are randomly oriented; (b) antiferromagnetie:unpaired spins of electrons
are anti-parallel oriented; (c) ferromagnetic: the ungaspins of electrons are parallel
oriented; (d) ferrimagnetic: the unpaired spins of eletirare anti-parallel oriented,
but one orientation predominates.
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main categories of magnetic behaviour (f31):

1. paramagnetic: the unpaired spins of electrons are weakipled with each
other and the spins are randomly oriented.

2. ferromagnetic: the unpaired spins of electrons stromdsract with each other
and the spins are oriented parallel with each other.

3. antiferromagnetic: the unpaired spins of electronsngisointeracts with each
other and the spins are oriented anti-parallel with eachroth

There are also ferrimagnetic materials in which the thessare anti-parallel coupled,
but the number of spins pointing in one direction is largantthe spin pointing in the
opposite direction. From a macroscopic point of view thedv&bur is similar with fer-
romagnetic materials. Magnetite, which is investigatetthia thesis, is a ferrimagnetic
material.

To describe a magnetic material two main parameters are ossghetization (M)
and susceptibility. Magnetization is defined as the demditpagnetic dipole moment
per unit of volume. Susceptibility describes the variabbmagnetisation with respect
to an external magnetic field.

2.1 Ferromagnetism

The most common materials that exhibit ferromagnetic bielaare iron, nickel and
cobalt (Fe, Ni, Co). This types of materials have long rangkeing. At the atomic
level, unpaired spins align parallel with each other in aacegalled a domain. The
magnetic field produced by one domain is large, but for a ns@oic sample the
field is lower because the sample contains domains that dreeoessary aligned.
By decreasing the sample size there is a transition fromi+dathain structure to a
mono-domain structure. Brown investigated this transitiod concluded that domain
structures are formed to lower the total energy of the systearat certain size a mono-
domain has lower energy than the multi-domain state.

In zero field and high temperature the total magnetic moneereio due to the
misalignment of domains. This behaviour is similar withgraagnetic materials and
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is called superparamagnetism. In large fields the doma@algmned in the field direc-
tion. A maximum net magnetization is obtained. This valuealted saturation mag-
netisation s). A limitation of ferromagnets is represented by the Cueimperature.
The saturation magnetisation of a material decreases mgteasing temperature. At
the Curie temperature there is a transition into a parantagstate, and the magnetic
order disappears.

-1 | MinorHL —— -
-6000 -3000 0 3000 6000
H( Oe)

Figure 2.2: Types of magnetization curves. First Magngbnacurve (FMC) is ob-
tained by starting from a state with zero net magnetisatimhiacreasing the applied
field. Starting from a intermediary point on FMC and first aege the field the Mi-
nor Hysteresis Loop (MinorHL) is obtained. The Major Hystss Loop (MHL) is
obtained by starting from a relative large value of the negmedisation.

Another aspect of ferromagnetic materials is the respamsenmagnetic field. A
paramagnetic or a superparamagnetic material has zeroetieggion if no external
magnetic field is applied. If a large magnetic field is applieel magnetic moments
align to the field direction and the material has a total mégaton, but if the field is
removed the total magnetization is again zero. In the cager@magnetic materials,
if a large magnetic field is applied and then reduced to zasotdtal magnetization has
a non zero value called remanence magnetisalibi (To decrease the magnetization
to zero, a negative field (a field in the opposite directiongdseto be applied. If
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the field is increased in the opposite direction even moeepthgnetic moments will
align to the field direction. If the field is decreased to zenal ¢hen increased in
the opposite direction, the magnetization follows a simil@haviour. This variation
of magnetization with respect to the applied field is callgdtéresis. The current
orientation of magnetic moment depends on the previoustyistThis is known as
"memory effect” and it is an important aspect for many aptiiens such as magnetic
recording. There are numerous types of magnetization swaseshown in figur@.2
First Magnetization curve (FMC), Major Hysteresis Loop (MHMinor Hysteresis
Loop (MinorHL), etc. In figure2.3 a typical major hysteresis loop, usually referred
as hysteresis loop or hysteresis curve, is illustrated. $tdrgsis curve presents some
characteristic elements:

1. Saturation magnetizatiomg), which is the magnetization value when all the
moments are aligned with the field.

2. Remanence or remanence magnetizatidy) (s the magnetization value when
a large external magnetic field is applied and then removed.

3. Coercivity field Hc) is the magnetic field that needs to be applied so that the
magnetization decreases from remanence value to zero.

For investigating magnetic properties of materials défdértechniques were devel-
oped covering different space and time scales such as firatqpes calculation and
atomistic models, micromagnetics based on LLG (LandasgHitiz-Gilbert) and LLB
(Landau-Lifshitz-Bloch) equations and Monte-Carlo tdgles. In these approaches
the energy of the investigated system is studied. The maitribations to a sys-
tem energy are determined by internal factors such as aojpsoenergy, inter-particle
interaction or external factors such as an external magfietd. The inter-particle
interaction can emerge from quantum effect (exchangeaaotien, Kondo interaction,
Dzyaloshinskii-Moriya interaction) or can be magnetastat origin. The first type of
interaction is short range and this thesis is focused onpeatiole system where this
interaction can be neglected. It is assumed that the natdparare separated by a
surfactant. This removes the possibility of exchange dagpleaving magnetostatic
effect as the dominant interaction. Next, the main contidiouto the investigated sys-
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M/M

| . MHL =—— 1
-6000 -3000 0 3000 6000
H( Oe)

Figure 2.3: Major hysteresis loop. If a large magnetic fisldpplied and then reduced
to zero, the total magnetization has a non zero value catledmnence magnetisation
(M;). To decrease the magnetization to zero, a negative fiel@lhifi the opposite
direction) needs to be applieH).

tem energy are described: Zeeman energy, magnetostatgyearel different type of
anisotropy energies.

2.2 Zeeman energy

For the investigation of hysteresis curves the contrilbubioexternal field to the system
energy must be included. The energy of a particle in an eatemagnetic field is called
Zeeman energy and is defined by the following relation:

Ez = — oMV el - Hap (2.1)

wherely is the permeability of free space. In cgs (centimetre—gsmoend systemly
is 1 and in Sl (International System of Uniig) is equal to 410~/ H/m. V is particle
volume andHap is the applied fieldey, is the versor of the magnetisation vector.
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2.3 Magnetostatic energy

In system of closed packed particles dipole-dipole int&aglays an important role
in the system behaviour. If the system is very diluted theldipnteraction is small
and can be neglected, but if the particles are arrange dossach other the dipole
field contribution to the total energy increases and becampsrtant. For a sample
of magnetic particles the standard way to compute the difielie created by all the
particles acting on a particlas given by following equatiori{8]:

r—z(eﬁlj 7)1 —e,o.,-] (2.2)

The corresponding energy term can be written exactly theesesthe Zeeman energy
with the interaction fielH; instead of the applied fieldp.

2.4 Anisotropy energy

Magnetic properties of different materials are in genesgahdent on the direction
of the measurement. In the absence of a external magnetictfielmagnetic mo-
ment will orient itself on one or more preferential directso These directions are
called easy axes. To include this effect, the total energyains one term that de-
pends on the direction of magnetic moments. This term is knasvanisotropy en-
ergy. The anisotropy energy density takes values in a lavgeath from approximately
0.005 MJ/n¥ (5-10* erg/cn¥) up to 10 MJ/ni (1- 108 erg/cn?) [19). There are dif-
ferent sources of anisotropy: magnetocrystalline aroggtrshape anisotropy, stress
anisotropy, exchange anisotropy. For an isotropic mdtémeaenergy distribution is a
sphere. Depending of the anisotropy complexity the symyradtenergy distribution
is reduced, as it can be seen in fig@rd for uniaxial anisotropy and in figur.5 for
cubic anisotropy.

10
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Figure 2.4: Energy distribution for uniaxial anisotrog{s: > 0 andK, = 0.

2.4.1 Magnetocrystalline anisotropy

The main source of magnetocrystalline anisotropy is thérectl interaction of the
spin with the crystallographic lattice mediated by spibfocoupling and orbit-lattice
coupling. The magnetostatic energy is described matheatigtbased on phenomeno-
logical approaches as a series expansion depending onytal@tructure symmetry
[19]. In general two types of magnetocrystalline anisotropy eonsidered uniax-
ial anisotropy and cubic anisotropy. If a magnetic matesigth uniaxial anisotropy
is considered, having the crystallographic axis (a, b, l@ntthe magnetocrystalline
anisotropy depends just on one paramdigethe angle between the c-axis and the di-
rection of magnetic moment. The energy is symmetric witipeesto the ab plane of
the crystal and therefore in the power series just the everepofsin() are taken into
account:

% =Ko+ KiSir? () +Kasin(8) + Kasin(8) + ... (2:3)

11
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WhereK;, Ky, K3 are second, fourth and sixth order anisotropy constant. dnym
calculations equatioB.3is written as a function ofog6):

% = — Ky — K; co(8) — Ko cos(8) + K3co$(0) + ... (2.4)
Using the trigonometric relation sit) = 1 — co(8) the new coefficienti(y, K;, K5,
Ké) can be obtained. Equatidh4 generates a complicated energy landscape, but in
general the numeric values of the anisotropy constant aneedsing with increasing
of the order and in many applications just the second order iconsidered relevant.
TheKg or Ké, does not have a relevant physical meaning because it simpigsents a
translation of the reference level.

For cubic anisotropy the expression is more complicated:

Ecub

W (4G4 ) K (GG G B+ E) +Ke (G ) (25)

Wherec,, ¢y, c; are the direction cosines of the the magnetic moment veldtpend-
ing on the values oK. andK¢, there are different easy axes. In figu&§and2.4

Figure 2.5: Energy distribution for cubic anisotro{g > 0 andKg = 0.

the energy density is illustrated for the simplest case abual and cubic anisotropy.

12
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2.4.2 Shape anisotropy

The orientation of a magnetic moment of a ferromagnetidg@artan have preferential
orientations due to its shape. Because of the shape, theetagmoment is under
the influence of a field called the demagnetization field. Tieisl generates one or
more preferential orientation and can be associated walpeslanisotropy. This can
simply be explained if we compare the magnetic particle waititnagnetic bar. The
magnetic bar is symbolically treated like a north and sootk.pThe magnetic moment
is orientated form south pole to the north pole and the magheld lines generated by
the bar are from the north to south pole. From fig2ui@it can be seen that inside the
bar the magnetic field lines are in opposite direction to tlagmnetic moment and tries
to demagnetize the sample. This field is called demagnetizéield and it is present
in all the magnetic materials. Using the analogy with thectele polarization, this

|

|

Figure 2.6: Magnetic field line for a magnetic bar and a magmetrticle. The mag-
netic moment is orientated form south pole to the north palk the magnetic field
lines generated by the bar are from the north to south pole.

field can be interpreted as the field created by the uncomfeh§aagnetic charges”
on the surface. In the direction in which the fictional chargee further away, the
demagnetization field is smaller in comparison with theatiom in which the charges
are closer. As a consequence the sample will magnetizer esstbose direction for
which the demagnetization field is smaller.

For a general shape the demagnetization field is hard tolatdcanalytically and
it is not constant inside the sample. For an ellipsoid of k&von the demagnetization

13
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Figure 2.7: A magnetic sample with an ellipsoidal shapejrigatwo semi-axis equal
to a and the third semi-axis with c. The demagnetisation ftald be calculated for
such a sample.

field is uniform inside the sample and Osbo2)] derived the analytical equations.
Considering an ellipsoid of revolution with two semi-axigual to a and the third
semi-axis with c (as in figur2.7), the demagnetization field can be written as:

Hq = NgMg (2.6)

WhereNy is the demagnetization factor for x, y and z directid.andNy are equal
and satisfy (for cgs units) the following equation:

If ko is equal tog1 and the Z direction coincide with semi-axis c, théncan be calcu-
lated from equatio2.8-2.10 The other two demagnetisation factor can be calculated
from equatior2.7 using the fact thaltl, = Ny.

14
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4T ko
N, = 1- arccogko forkg <1 (2.8)
ko [ Ve )]
NZ:%”:NX:Ny forko=1 (2.9)

_ 4 Ko
-1 /-1

Base on all the elements presented in this chapter, theyeonémferromagnetic
system can be evaluated. Then the magnetic behavior of stemnsyan be study. In the
next chapter, theoretical models for investigating maigriethaviour are presented.

Nz

arcoshkp) — 1 forkg > 1 (2.10)
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3

Theoretical Models

3.1 Stoner-Wohlfarth model

The Stoner-Wohlfarth (SW) model describes the magnetisgirocess of a macro-
scopic ferromagnetic particle at OK assuming that all thgmedic moments inside
the particle are rotating coherently. This means that allatomic moment within the
particle are parallel with each-other at all time. Thereftire model can be used for
mono-domain particles; the change in magnetisation is dgremultaneous rotation
of all moments inside the particle. In the study done by Stamel Wohlfarth 21],
they investigate an isotropic ellipsoidal particle, whiws a preferred direction due to
its shape (shape anisotropy). This is mathematically edgmt to study spherical par-
ticles with uniaxial anisotropy as used in this thesis. Theildrium state is defined
by an energy minimum. The SW theory consist in investigatitegenergy landscape
and in determining the energy minima. Considering a spakparticle in an external
field, Hap, we can write the energy as sum of magneto-crystalline gr(&ig) and the
Zeeman energyHEy):

Eiot = Ex + Enx (3.1)
Ex = —K;Vcod(8) (3.2)
En= —MyVeu Hap (3.3)

Wheregy is the versor of the magnetisation vector.

16



3. Chapter 3

\I_fap<H 80,@0)

ap?

Figure 3.1: 3D representation of the applied field, maga&bn vector and easy axis
direction. The particle is in the center of the coordinatsteyn and easy axis is on Z
direction.

For clarity and simplification of the calculations, it can demonstrated that this
3D problem can be reduced to 2D without loosing any inforomgtby showing that
the easy axis, magnetization vector and applied field dmecre in the same plane
[22). For the analytical calculation we will use Cartesian aptiesical coordinate
systems, considering the easy axis on the OZ direction \Wwétparticle in the centre
of the coordinate system (as in figu8el). The applied field Klap) and the magne-
tization vector have the spherical coordinatelgy 8o, ¢o) and Ms, 6, ¢). For the
magneto-crystalline energy we will use just the first terrnos from equatio2.4and
we will replace the notation df(/l with K. Taking into account that the particle size
does not change, instead of energy we can use the energyyd§vist 5). Under this
consideration the previous equations becomes:

Wk =—Kcos8 (3.4)
W = — Ms& - Hap (3.5)
W =Wk +Wy = —K co$0 — Ms&1 - Hap (3.6)

For a given applied field with fixed direction, the energy digndepends on magnetic
moment orientation with respect to applied field and to theyexis. For the equi-
librium state, the energy must have a minimum value. Matheally a necessary

17


Chapter3/Chapter3Figs/SW3D.eps

3. Chapter 3

condition for a function to be minimal for a certain point &t the first order deriva-
tive with respect to each variable is zero for that point. fiave that the 3 vectors (easy
axis, magnetization vector and applied field) are in the salaree, the mentioned con-
dition for variable¢ is used. For this we need to rewrite the equatlahas function
of anglesd and¢, afterwards forming the derivative with respectpto

W =—Kcos8 (3.7)

— MSHap[sineosinecoquo cosd + sinBpsinB sindgg sing + cosby cose} (3.8)

w _
0

= — MgHapsinBgsinG [sinq)o cosh — cosdo sind)}

—MsHap [sineosinecosqno(— sing) + sinBpsinBsindo cosqn]

= — MsHapsinBgsin@sin(¢o — ¢) (3.9)

The condition% = 0 and the above relation impose that@ip— ¢) = 0, therefore
at energy minimum the easy axis, magnetization vector apteapfield must be in
the same plane. Taking into account this result, we can dengy = ¢ = 0, reducing

Figure 3.2: 2D representation of the applied field, maga&bn vector and easy axis
direction. The particle is in the center of the coordinatsteyn and easy axis is on Z
direction.

the problem to XOZ plane (the new geometry is represented B.3). By keepingd
fixed, for describing the entire plaewill vary from 0 to 2t The variation of angle

18
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6 in the rangdrt, 211 corresponds in reality to a variation of an@lén the rangg0, 1]
(as it should be),but fap = ¢+ 1t For this case the equation is reduced to:

W = —K cog 8 — MsHapcos(6p — 6) (3.10)
By rearranging the terms, the equation becomes:

W = —%[HKcoszejLZHapcos(eo—e) (3.11)
whereHk = ‘EA—KS is the anisotropy field.

From analysing the energy dependence of afdte different field, it can be ob-
served that there are one or two equilibrium states. Assyithiat at first the particle
is in a high external magnetic fielt(>> Hy), the magnetic moment has just one pos-
sible state corresponding to the field direction. Decrepsie field, at a specific value
a second equilibrium state appears corresponding to aalitfenergy minimum. The
magnetic moment deviates from field direction in corresgoree to the change in the
location of first energy minima. When the field goes to zerottteminima have the
same values and the particle moment is blocked in the first because of the energy
maximum between the two states. The difference betweennisgye maximum and
energy minimum is called energy barrier and it is an impdrpaxoperty of magnetic
materials. Starting to apply a negative field by changingdiihection of the field, the
energy barrier for the initial state starts to decreasd itrtisappears and the particle
switch to the second state. This corresponds to a signifatarige in moment orien-
tation. The field when this happens is called critical figtd,J. From a mathematical
point of view the point when the switching happens corregigdn an inflexion point,
this means that the first and second derivatives are equat®o At this field the mag-
netisation reverses. Up to this point all magnetisatiomglea have been reversible,
but the switching aH = Hc, is an irreversible change.

To find the energy minima and the critical field we need to dateuthe first order
derivatives with respect to the angﬁe(% = 0) and set to zero. This will give the
extreme points of the energy function (minima and maxima)chieck if the values for
0 corresponds to equilibrium states the second order deévaeeds to be compared
with zero. If itis bigger than 0, the state is in equilibriuthit is smaller than zero, the
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state corresponds to a maximum and if it is equal to zero, ppéea field is equal to
critical field.

%—Vev :%’ [HKZCOSBSine— 2Hapsin(6p — e)}
:%S[HKsinze—zHapsin(eo—e)] (3.12)
0°W _ Mg
— > - :
302 = 5 [HKZCOSB—i—ZHapcos(GO e)} (3.13)

To determine the critical field both derivatives need to bea¢tp zero. This leads to:

Hk sin28 =2H4psin(6p — 0) (3.14)

Hk cos B =Hapcos(6p — 6) (3.15)

By dividing the two equatior8.14and3.15 tan(20) = 2tan6p — 6) is obtained and
from this equation the projection of magnetic moment on fidiliction when the
switching happens can be calculated. Using equai@dand3.15 the critical field
has the following expression:

(3.16)

9(80) =|sir?/3(8p) 4 cos’3(8p) i (3.17)

There is no analytical equation that describes the praeati magnetization on
the field direction, but instead the inverse function hasreatydical form. To calculate
it the substitutioom= cog68p — 0) is used, which is the projection of magnetic moment
on the field direction normalised to it maximum value. In @gra3.14sin(20) must
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be written as a function of m:

sin(28) =sin[—2(8g — 8) + 26|
=5sin(28p) cog2(8g — B8)] + cog260) sin[2(6p — 0)]
—(2m? — 1) sin(260) — 2m(1 — m?)*2 cog26)) (3.18)

Using the above relation iB.14the two branches of hysteresis curve are:

H, = (—mcos{Zeo) — 22\/% sin(290)> Hk (3.19)

2n? —1
21— P

Based on these two equations, coercivity and remanenceeceadulated. For values
of angle® smaller thanj the switching occurs befoma reaches zero. In this case the
coercivity field and the critical field coincide. For anglegder thany, the coercivity

is calculated from equatioB.190r 3.20

H. = (—mcos(zeo) + sin(260)> Hk (3.20)

% if 8 [0,7]
Hc(8) = (3.21)

Hi.sin(26 .
R i g e (I,

From equatior8.20takingH_ = 0 remanence can be calculated.

e —
(202 .
VAT g e (0,1
M (8) = (3.22)
1— 1
(202 .
|V ifee (LY
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3.1.1 System of particle with spherical random orientatiorof easy
axis

For a system of identical particles with all the easy axesrupthe same direction all
the above calculations from SW model applies, but in a restiesy, particles have a
size distribution, the easy axes are not aligned and alse the anisotropy constant
distribution. At very low temperature (OK as in SW model)stdbutions of size and
anisotropy are not very important. The magnetic propediggend on the mean values.
Instead the orientation of easy axis is important. The miégbehaviour is strongly
dependent on the angle of the applied field with respect tp @ss.

In the case of a spherical random orientation of easy axe® gwoperties such
as coercivity and remanence can be analytically calculdted this let us consider a
system of identical mono-domain particles with a sphewfistribution of easy axes.
The probability of having a particle with easy axes in thegaf{0, ¢),(6+d6, $ +dd)]
is given by:

P=sin(0)dod¢ for 6 € [0,1] and¢ < [0, 21 (3.23)

Where0 is the angle between the easy axis and the applied field. $nctse the
remanence of the whole systeM,{ is the mean value:

21

[ [ M, sin(8)dedd
r 00
Mr -

(3.24)

T 21T

[ [ sin()dedd
00

From the SW model the remanence for one particle is given uaton3.22 My is
not dependent on angle thereforeM, can be written as:

}[Mr sin(0)de andqn
My =2 -~ (3.25)
[sin(8)de [ do
0 0

(3.26)

Doing the simplification and using the fact tiat and sir{0) have the same behaviour
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in the interval [0,11/2] and frt/2, 1§ The integral becomes:

M; = [ M, sin(6)de (3.27)

O\M:.

ReplacingM, from equatior3.22we obtain:

i 141
M, = / = 92 Sine)de + (3.28)
0
H 1
_ / __ VItg@? vl2*‘9(29)25in(e)o|9 (3.29)
n
M; =0.5 (3.30)

The coercivity is calculated in the same way resulting = 0.47H,. All these
results from Stoner-Wohlfarth model are used as tests flmréhms developed in this
thesis.

3.1.2 Energy barrier

A very important factor in the model is the fact that there 2s#able states separated
by an energy barrier. This aspect leads to more complicatetea which have a more
realistic description of a real system (as for example idicig the effect of tempera-
ture). A general analytical expression of the energy badaes not exist, and one
needs either to determine it numerically or to use approtiona [23]:

- 0.86+1.14g(6p)

i Hap
AE1(H,80) =KV [1— ——— 3.31
1( 0> L Hcr(eo) ( )

- Hap 1 0.86+1.14g9(6p)
AE>(H,8p) =KV |1+
( ) L Hcr(eo)_

WhereH¢, andg(6p) are given in equation8.16and3.17. Numerical implementa-
tions used in this thesis are based on the Stoner-Wohlfaetbry and on the above

(3.32)
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mentioned equations for energy barriers.

3.2 Temperature effect

Magnetic properties of materials are influenced by tempesat Besides the tem-
perature dependence of some intrinsic parameters likeas@in magnetization or
anisotropy constant, there are important differences &mSW model and exper-
imental measurements. As an example, for a SW patrticle witboropyK = 5-
10Perg/cnt and a saturation magnetization of 450 emufdtypical values for mag-
netite) the coercivity field is approximately 1100 Oe, whasen experiments coerciv-
ity is temperature and field sweep rate dependent. If the sxperiment is repeated
at the same temperature but for different field variatioesdhe hysteresis curves are
different. This difference can be explained by the fact that SW model does not
contain temperature effects. In the SW model the magnetie & well defined by en-
ergy minima and the magnetic moment cannot switch to thesbconimum until the
field is equal to the critical field, however in a real systenagtiple can receive from
the thermal bath enough extra energy to overcome the bamikiswitch at a lower
field. If the field variation is very slow, then the experimarime is very large and the
probability of a particle receiving the extra energy to swiincreases and this leads to
a decrease of magnetization with time. The dependence of@tadbehaviour with
respect to time scale has a large interest in the recordinganedustry where the time
range is very large: from 162 s, 108 s (the characteristic time scale for writing on an
hard drive) to years (the time scale for storage the writtdéormation). For hard disks
the time in which the information is stored without being deyad is 10 years2{]
[25]. The experimental limitation to time range of seconds andreds of seconds,
leads to a theoretical and computation investigation. Thstmsed approximation for
relaxation time is given by an Arhenius type law:

AE
T = TpefeT (3.33)

whereAE is the energy barrier between the two possible stétess the Boltzmann
constantfo = % is the attempt frequency, having values betweerPHx and 10 1°Hz.
The equation was developed by Arhenius for chemical reastiNeel p6land Brown
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[27] have developed similar theory for explaining the thernedéxation or thermal
activation. Based on equati®@33 energy barrier can be evaluated so that at a certain
temperature and for a certain time the particle will remdotked in the initial state.
For a particle to remain blocked tens of years it is necest:l;!ih‘tyKAB—ET > In(tr—'g). This
corresponds to energy barriers 40 times larger than thentlleanergy. For hundreds
of seconds the energy barrier needs to be at least 20 timgsrhilgan the thermal
energy. In general, it can be stated that if the measurenmat(t,) is smaller than
the relaxation time, the particle remains blocked and thgmatization curve has a
hysteresis type behaviour, but if the measurement timergetahan the relaxation
time, the barrier in not sufficient to keep the particle bledland the particle has a
paramagnetic behaviour. In the first case the particle ieddérromagnetic and in
the second case is called superparamagnetic. At the limehvil = 1o) for a given
time and volume the blocking temperature can be calcul&bxtking temperature is
the temperature at which the transition between ferromagaed superparamagnetic
behaviour happens.

AE

Taking logarithms of both sides and rearranging the terhwes ptocking temperature
becomes:

0\ AE
Tg=In({—|— 3.35
o= (1) 40 (3.35)

Thermal effects introduce random fluctuation and to extirgormation we need
to do averaging over a sample containing a large enough nuohlparticles to have
a good statistical results. In a real sample the particlesiat identical, each patrticle
having different sizes. If the size distribution is knowmen the fraction of superpara-
magnetic and ferromagnetic particles can be calculated.z&wm external magnetic
field the energy barrier has the vali® and the critical volume which separated the
two types of behaviour is:

tm KaT
Ver = In <—m) —B (3.36)
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Thermal effects complicates the study of magnetic behawdod probabilistic ap-
proaches such as Monte-Carlo method need to be used. THisdsedre described in
the next section.

3.3 Monte-Carlo methods

There are many methods that use probabilistic means to fiact,exon-probabilistic
results. In statistics the most used methods are Montea@sliC) type. The methods
are based on generating N random numbers. The functioneresttis evaluated for
this N points and then the statistic properties of the fuorcére calculated. The accu-
racy of the method depends on the number of points (N). Theréuactions which
have significant values in a small interval and insignificaaities in the rest of param-
eter space. For example a particle, with the energy landsdaptrated in figure3.3,
will have a higher probability to be in a state near the miniinahe standard Monte-
Carlo algorithms the N sample points are selected with theegarobability in all the
parameter regions. This leads to long time calculationslwiequires large amount of
resources. To improve the algorithm, techniques were dpeel based on importance
sampling, meaning that the sampling of points is not doné witiform probability
but according to weighting of the states determined by tludaility function. In
this case, for the above example there will be more pointgpBagaround the two
minima, therefore the numerical calculation will convefgster. Metropolis28] de-
veloped this type of algorithm based on Markov chain. A Mar&bain is a transition
process between a finite number of possible states. The ta¢etdepends just on the
current state and not on the previous ones. In this type algsany final state can be
achieved from any initial state without having cyclicalteg For each scientific field
there are a multitude of Monte-Carlo algorithms. In magretihe most common
methods are Metropolis Monte-Carlo and Kinetic Monte-G§219][ 30][ 31].

3.3.1 Metropolis approach

If a Stoner-Wohlfarth particle is considered, for a givengmetic field, because of
the thermal agitation, the magnetic moment can have anyewalth a Boltzmann
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probability:

(3.37)

whereE;q is the total energy of the particle and Z is the partition timt and it is
calculated from equatiod.38

7= / e Eo/ksT(E (3.38)

The integral is calculated on the whole range of energy wl&er a physical system
containing a large number of particles, the average valweroacroscopic parameter
M (let M be the projection of the magnetisation vector on tle&fdirection) is given
by statistical physics as:

g Etot/ksT

(M(Etot)) :/MTdE (3.39)

This can be calculated if Z is known, but Z is not always knovhe algorithm de-
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Figure 3.3: Energy as function 6f The particle magnetic moment can change orien-
tation from state 1 to state 2 with a probability dependindht@nenergy difference of
the two statesAE).

veloped by MetropolisZ8] has the advantage that it gives the average values using a
function proportional to the probability, therefore théueof Z is not important. An-
other advantage is the importance sampling, describeceiM#tropolis article28] as
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follows: instead of sampling with uniform probability artteih weighting the samples

with

the Boltzmann factor, the sampling can be done with Bodnn probability and

then weighted evenly.

Analysing figure3.3, representing the energy of a particle for different anbkes
tween magnetic moment and the easy axis direction calcufeden SW model, the
Metropolis algorithm will sample the energy landscape byngdrom one state to an-
other with a Boltzmann probability characteristic for thmerggy difference of the two

states. If the new state has lower energy than the currentlogrethe transition always

happens. One iteration of the method is summarised as:

1

. A particle is selected
. A new state is generated
. The difference in energy between the new and currentistatdculated

. The transition probability is calculated based on theaéqu:

P — min (1, e OE/ kBT> Where AE = EnewEcurrent  (3.40)

. A random number generated between 0 and 1 is comparedheifbrobability
P

If P is larger, then the particle goes into the new state #le current state is
maintained

. Steps 2-6 are repeated several times for statistic cpenee

Going back to step 1 until all the particles are evaluated

System average magnetization is equal to the arithmeéage over all the
particles
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3.3.2 Kinetic Monte-Carlo

The Metropolis MC is used to study equilibrium magnetic mies of a system in
contact with a thermal bath. The method does not describdythemics of magnetic
moment. It assumes that in a long time scale the moment cpeséowards the equi-
librium state. This represents a limitation of the algaritto the time intervals where
dynamics of magnetic moment are not important. Anothertétion consists in the
fact that there are no real time steps. In this method, timmeaasured in MC steps
(a MC step is described in previous paragraph). Nowak hgsoged an updated al-
gorithm called Time Quantificatied Metropolis Monte-CaflctQMC) [32] [33] [34],
which deals with associating the MC step with a real time. iftaén equation of the
model is:

(1+0a2)MV

Atyic =
MC 20kgTay

(3.412)
WhereAtyc represents the time equivalent with a Monte-Carlo step aisdt radius
of a cone around the magnetic moment. The new orientati@igsted inside this cone
and because of this a real time step can be derived. The metsdalidated by other
groups B5]. The cone radius is constrained in between 0 and 1, thiseathe long
time scale limit of the model (around milliseconds). Therstimme domain is limited
by the importance of dynamic (around£0- 109 s).

For a larger time scale, a different MC method can be useds algiorithm is
called Kinetic Monte-Carlo (KMC) and can be applied up torgealn comparison
with Metropolis MC, KMC method has real time steps, but caajpelied just in cases
where the energy barrier is much larger than the thermalggnefhe algorithm is
based on the assumption that magnetic moment can be just stetes corresponding
to minimal energy. If the energy barrier is much larger thaa thermal energy, then
the particle under the effect of thermal agitation will remeonfined in to one of the
energy minimum, but if the two energies are close, partiele loe with reasonable
probability in any state. In the latter case the 2-state@ppration is no longer justi-
fied and conventional MC must be applied. From a computdtipmat of view this
method is more complex because it needs to find the magnetisiates correspond-
ing to the energy minimum and also to calculate the energydrdhat separates these
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states.
The basic steps of the algorithm for a given field are:

1. Atime step is selected
2. A particle is selected

3. The orientations of magnetic moment corresponding toggnainima is calcu-
lated

4. The energy barrier for each state is calculated

5. The transition probability is calculated based on equiti

t —AE - 4
P=(1—-€e1)(1+e k)" (3.42)

6. Arandom number generated between 0 and 1 is comparednohalgility P; if
the number is smaller tha®, the new magnetic moment orientation corresponds
to minimum 2, else it corresponds to minimum 1.

7. Steps 2-5 are repeated until all particle are evaluated

8. System average magnetization is equal to the arithmeécage over all the
particles

The transition probability between the states is given bgtao§ equation called
Master equation. Next, a basic description of Master eqoatis presented and the
probability for a 2 state system is calculated. Master eqnatare a set of differenti-
ation equations, in which the variation rate of number otipkas (or probability) per
unit of time from one state to another is equal to the diffeeshetween the number
of particles arriving in that state and the ones leaving sihaite. The general Master
equations for n possible states have the following form:

dR

a0 Z[_vvlkpl +Wii ] (3.43)

lthe equation and the meaning of each parameter are detailleel hext paragraph
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Figure 3.4: Energy as function of andle The particle magnetic moment can have a
orientation corresponding just to the two states 1 andR.is the energy difference
between the statedE; andAE;, are the energy barriers corresponding to state 1 and
2.

WhereR is the probability that the particle is in staieand W is the transition rate
from state i’ to state k. One of the conditions that the system must satisfy is that i
the long time limit the equilibrium state must be obtainegu@ion3.44).

Wt > ) _ P _ o5 (3.44)
Wik(t — ) Pk
The system of equatior8s43is hard to resolve for a general case (n possible states).
KMC is using the simplest possible case whea 2. For the following calculations
(based on reference3f]) a mono-domain Stoner-Wohlfarth particle with uni-axial
anisotropy will be considered. For this simple case the Btasfuations are:

dP

—dtl = —WioPy +WorPs (3.45)
d

_d'? = —Wo1Po +WioP; (3.46)
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WhereW;,; andW,4 are described by the Arhenius Law.:

—AE

Wiy = foeteT (3.47)
—AEp
Wo1 = foe T (3.48)

AE; is the energy barrier between states 1 and 2. Taking intouatt¢batP; and P,
are probabilities an& + P, = 1, it is sufficient to solve the equation for one probably
(P1) and the second one will #& = 1 — P;. Equation3.45can be rewritten to contain
just Py by replacingP, with 1 — P;.

dP, P 1
— =——+4+Wo; where T1=——
T . Wiz +Wo1

dt
For a constant external field,1 andt are also constant. In this case equaBo9is
a simple ordinary differential equation with the solution:

(3.49)

_t _t
PL = Wrt (1—e ) L P(t=0)e" (3.50)
Assuming that initiallyPy (t = 0) is 1, we can write foP,:
P =1—Py = (1—WayT) (1—e*%) (3.51)
Rearranging the terms, the solution can be written as faligw
t =N
P, — (1—e—f) (1+e @) (3.52)
where

AE = AE; — AE, = Ep — g (3.53)
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1

- —AFy _AEp
fo ekBT +e kgT

AE
_ f,lefef <71 ) (3.54)

_ AE
1_|_e kT

and

e kT

I-Wort=1-——%

e kT +e kT
_ e 1
- (1+e kBT) (3.55)
We can observe that for the long time limit, the solution esponds to a Boltzmann

solution for 2 possible states:

Ex

e ksT a1
P = (1+e @) (3.56)
e kT 4 e kT

In this chapter we presented the theory of magnetic behavide started with
a OK model, the Stoner-Wohlfarth theory for a mono-domairtigle. Then we dis-
cussed the role of the anisotropy vectors distribution;nia effects and the role of
size distribution. At the end of the chapter, Monte-Carlthteques are introduced. In
the following chapter we will use all this information to iruct a numerical model
that can realistic describe a sample of interacting narnicjes.
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Numerical implementation

In this chapter we describe the numerical implementatioounfMonte-Carlo model
and the algorithms used to solve the inverse problem. Ttex lae is described in the
second part of the chapter. The first part of this chapterrie=scthe model used for
simulating magnetic behaviour of interacting magnetic oddomain particles with
uniaxial anisotropy.

4.1 Magnetic simulation

A 3D system with periodic boundary condition containing Ntydes is considered.
The particle positions are randomly generated for diffepaicking fraction. To mimic
a real system log-normal distribution of size and anisotnegdues are considered and
also the easy-axes are random oriented. The algorithm kas&toner-Wohlfarth
(SW) model, consists of using the Metropolis and Kinetic Ms@arlo methods. The
energy of one patrticla, from the system has a SW like expression (equadidn

Eitot = —KiVi cOS 0 — MaViei - Hi ef ¢ (4.1)

Where theH; ¢ 1 is the effective field acting on particle The effective field consists
of the external field and the magnetostatic interaction field
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4.1.1 Particle position generation

To obtain a system of random particles position having agegacking fraction we
start with a perfect simple cubic lattice with a large lagtgpacing so that there no
overlapping. Then the particles are randomly moved insidpreere of radiu®max
with a Monte-Carlo approach. This is done calculating fahgaarticleEqyq andEnew
based on equation:

d

)¢ (4.2)
Mewold

Enewold - Z 1000 (
J

Where the sum is done over all the neighbour particles. deipérticle diameter and
rmew andrgg are the interparticle distances after and before the rantove. The
terms in the sum are dimensionless energies of a repulstemfia. This repulsive
potential forces the particles to move apart. Normal Mddéelo approach is used:
if the new energy is small than the old one, then the move is@ed, else the move
is accepted with a probabilitp = e(=2E). This step is repeated 50 times and then
the system size and the particle distance are reduced weimanint so that there are
no touching particles. The procedure is repeated until #sred packing fraction is
obtained. Afterwards 500 more random moves are done forgaticle.

4.1.2 Interaction field

To include magnetostatic interaction, the shape of the gnpacking density and
particle arrangement inside the sample must be taken ictmuat 31][37][38]. The
interactions are included through the effective field whodmtains the dipole field
generated by all the particles:

Z 4T[[Jor|3;

3
r2 eI\/I] rlj)rlj el\/l]] (4.3)

Direct summation approach is impracticable because ofithe tesources needed to
compute the interaction for all the particles in real systéfhe method scales with
N2. A general used approach consists of calculating the diiikkin a small region
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around the particle and replacing the rest of the field withemmfield equivalent to
the demagnetization field described in secoh.2[39]. For this, around a particle a
sphere of radiug; is considered. The sphere must be much smaller than the sampl
size and larger than the average interparticle spacing. ifteeaction field can be
expressed as the sum of the dipole interaction field of ajptirécles inside the sphere,
the demagnetisation field and the Lorentz cavity field (asithted in figurd.1). The
latter one handles the double counting of interaction msiee sphere. The effective

H

a

N

Figure 4.1: The effective field acting on the blue partide.is the surface for which
the demagnetization fieldHgemaq is calculated; is the Lorentz cavity surface for
evaluating the Lorentz fieldH ) and with red are represented the particle inside the
cavity that determine the dipole field acting on the blueiplet M is the average
magnetic orientation of the entire sample g is the applied field.

field can be written as:
Hieft = Hap+ Hdem+ HL + Haip (4.4)

where:

Hi et is the total field acting on particie

Hap is the external field

Hgemis the demagnetization field

H_ and the Lorentz field

Haip is the dipole field generated by the particles inside thetgand it can be
calculated using equatich3
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For the simulations presented in this theRisis chosen to be sufficiently large,
so that it does not affect the results. Magnetization cuaresgenerated for different
values ofR;, thenR; is chosen to be the smallest value for which there is no sagmifi
change in the results.

4.1.3 Periodic boundary condition

To simulate real samples the system is considered at theecehthe sample and
periodic boundary conditions (PBC) must taken into acconieixclude the small size
edge effect. With PBC we create a extended system by trangslegplicas of the
computational cell in 3D. For 3D system this consist of 26iesp In figure4.2 the
idea is represented for simplicity in a 2D system but the ictamation are the same as
in 3D. The initial system is placed in the middle and the réshem, labelled from 1

Figure 4.2: Periodic boundary condition for a 2D system.tiAdl calculation are done
just for the central system; the replicas, labeled from 1, sv&used just for calculating
the dipole field to exclude the edge effects.

to 8, are copies of the initial systems and translated inigdttions. All the calculation
are done just for the central system; the replicas are uséébjucalculating the dipole
field. R must be smaller than half of the system so that no particleldhme taken

into account twice.
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4.1.4 Numeric implementation of the model

The aim of this thesis is to investigate the influence of dépoteraction on the mag-
netic behaviour of nanoparticle systems and also to dyrdictk the simulation with
experimental results allowing extra information aboutgkistem to be obtained. The
time interval that corresponds to the general used expatahdevices (such as VSM-
Vibrating Sample Magnetometer and SQUID-Supercondu®idgntum Interface De-
vice) implies that KMC method should be used. This methodarg®od description of
real behaviour if the energy barrier is much larger than leerhal energy, so that the
states corresponding to energy minima are taken into atcbrua real system particle
sizes are not uniform, they follow a distribution like logrmal distribution. If a sys-
tem containing spherical particles with mean diameter (dih66 nm and anisotropy
constant equal to SL0Perg/cn?, then for a measurement done at 20K with measure-
ment time of 1 minute the critical volume (as described iniea@.2by equatior8.36
is 1.37-10 %P, This corresponds to a particle diameter of 6.4 nm. All theipa
cles with diameter smaller thanddmwill have superparamagnetic behaviour. While
% is relatively large the KMC approach is necessary, sinceuge of the normal
Metropolis MC fails to achieve quasi equilibrium in a reasble CPU time. However,
as% decreases the 2-state approximation inherent in the KM@aadbreaks down
and the standard MC method becomes necessary. We take # calue of % =3
to define the boundary between the use of the MC and KMC metHadse model
implemented by me both type of behaviour, ferromagnetisthsaperparamagnetism
are included by using KMC and MC methods as implemented byélhin 2000 P].
If the energy barrier of a particle in zero fieldV, is larger than 3 time the thermal
energy,kgT, then the KMC is used, else the Metropolis MC is used. When K§IC
used, a few Metropolis MC step are also considered. Thisne tlmhave a better ther-
mal equilibration inside the minima. Even if the energy ks large in comparison
with the thermal energy, states very close to the minima assiple with a reasonable
probability. Metropolis MC steps will include this aspeta the simulation.

To generate the magnetization curves a linear time depeerdanexternal mag-
netic field is considered. The sweeping rate of the field vall b

_AOH

R——
At

(4.5)
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A continuous time variation of field increases the difficudfysolving the Master equa-
tions. The magnetic behaviour in a field variation can bemesty solving the Master
equations iteratively. For small time intervalst), the field can be approximated to a
constant value and the solution from Master equations ptedan chapteB can be
used. At the next time step the field is updated to the new \aatdeMaster equations
are used again. In chapt8rthe two algorithms are defined formally. Next the main
steps of the practical implementation are presented.

1.

2.

7.

All the parameters values are initialised

Particle position is generated

. The time step is selected and the corresponding applieddieonsidered

. A particle is selected and the effective field acting on paaticle is calculated

using equatiod.4

. The ratio% is calculated

If I% bigger than 3, The Kinetic MC is used:

(&) The magnetic moment orientation corresponding to tleentinima is cal-
culated

(b) The energy barrier is calculated using Pfeiffer appration?!
(c) The probability is calculated based on following redatf:

AE

pzz(l_e*%)(1+e_ks_T)*l (4.6)

(d) Arandom number generated between 0 and 1 is comparegritiability
P,; if the number is smaller thal®, the new magnetic moment orientation
corresponds to minimum 2, else it corresponds to minimum 1.

If I% is less than 3, the Metropolis MC is used:

1The equation is presented in cha@er
2All the parameters from this equation are define in chapter
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(a) A new state is randomly generated
(b) The difference in energy between the new and currerdg satalculated

(c) The transition probability is calculated based on theag¢ign:

P=min <1, efAE/kBT) Where AE = Epew—Ecurrent (4.7)

(d) Arandom number generated between 0 and 1 is comparedheitbroba-
bility P

(e) If P is larger, then particle goes into the new state disectirrent state is
maintained

8. If KMC was used, a few Metropolis MC steps are also used
9. The steps 4-8 are repeated until all the particles aredenes!
10. The average magnetization is calculated

11. The steps 3-10 are repeated until all the field valuesarsidered

We can use the Monte-Carlo model to observe the system lmehdor different
parameters; this is called forward problem and is geneegijglied in the magnetism
community. In this thesis we are focusing on the inverse lprabwhich consist of
obtaining the system’s parameters from the known results.

4.2 Inverse problem

In this section we present a methodology by which the mi@pgcparameters de-
scribing magnetic nano-particle system can be accuratirishined by solving the
inverse problem for experimental data using simulated ragzgtion curves. Simu-
lated curves are obtained using the approach presenteeviops section.

The inverse problem is solved by using 2 different methodghBnethods can be
used to obtain information about the magnetic propertiessyistem from experimen-
tal magnetisation loops. The methods have the same genattaématical background
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and this is curve fitting. The idea of curve fitting is to havepadfic fitting func-
tion or a mathematical model and to find the specific coeffisi¢parameters) which
make that function match data as closely as possible. Fettod called Grid Search
Method (GSM) involves setting up a grid in fitting parametspsce and evaluating
the "goodness of the fit” at each grid point. This method scalgh the numbers of
grid points and number of fitting parameters and also malegeheral interpretation,
beside finding the best fit, less accessible for a parameseegpeater than 2. Second
method involves an adapted Levenberg—Marquardt algor{ttvt) used by most of
the fitting software 40]. For using this method we need a function that describe how
close are the data we simulate with the data we are inveistigathis function is the
sum of squared errorg?). A short description of fitting is presented in appendix A on
page84. All the fitting algorithms are not trivial for non-linear rdels and the Monte-
Carlo model we used for simulating the magnetic behavioalearly non-linear. The
problem that arises in this situation is the interpretatibthe results:

1. Is the solution unique?
2. How accurate is the solution?
3. What are the errors of the solution?

The first problem involves the way of finding the best fit. Thadtion that de-
scribes the goodness of the fiti$and depends on the parameters we are interested in
finding; the method consists in finding the minimum of thisdtion. For our model
as in the non-linear models there may be the possibility’dfiaving more than one
minimum. The solution may be describing, instead of a glomaimum, a local min-
imum and then the results are not the desired ones. The s@coblkm refers to a
qualitative way of evaluating the goodness of a fit. Becahsealate are subjective to
errors, there is a chance that a good fit may result because eftors and not of ac-
tual agreement between the model and the data. The thirdepnatonsists in the fact
that errors will depend on the? landscape near the global minimum. If there is a large
almost flat region around the minimum, then the errors ardaiye for the results to
be meaningful. Also in our case the situation is even morepticated. Besides the
errors from experimental data, our Monte-Carlo method edstains statistical errors
because of the thermal effects included.
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The first issue will be our subject of investigation in the helxapters, whereas
for the other two we can use mathematical conditionsiforBecause of the thermal
fluctuation there is a probabilit® that the data may fit the model due to chance. For
a given confidence level (& Q) there is a upper limit value fox? (xﬁm) for which
the agreement between the data and the model are accepitible-wQ confidence.

A confidence level of 1.0 corresponds to perfect agreementdas the data and the
model, and a value of 0.0 corresponds to a complete disagradratween those two.
In general values about 0.5 are considered relevant. Ferrdeting the errors there
are similar considerations. The errors are related to thatien of x2 around the best
fit value, therefordy?, the difference betweexf for a given set of parameters and the
x2 of the best fit, is used. Botk? andAx? depends on the degrees of freedom, which
for x? is equal to the difference between the number of data poirtglee number of

fit parameters and fahy? is equal to the number of fit parameters. All of the above
are discussed in more details in the appendix A on [@ge

The results will be presented for simplicity wist? and Ax? normalised to the
limit value, x2  andAx?Z . respectively. For the normalise@om (X3orm = Xflzf”m) the
condition will be x2,,m < 1. In the next chapters we will refer ¢,;m andlgxﬁorm
without using the subscript "norm”. In tabldsl and4.2are given some values for the

two function for different degrees of freedom and for difiet confidence level. The
results will be presented with 50% confidence level{érand 99% confidence level
for Ax2. Next the two methods used in this thesis are presented.

confidence leve degrees of freedom
1 2 3 4
50% 0.45]1.39| 2.37 | 3.36
90% 2.71|461| 6.25 | 7.78
95% 3.84|5.99| 7.81 | 9.49
99% 6.63| 9.21| 11.34| 13.28

Table 4.1: The value fahy? . for different confidence level and degrees of freedom.
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confidence leve degrees of freedom
79 99 159 199
50% 78.33 | 98.33 | 158.33| 198.33
90% 95.48 | 117.41| 182.24| 224.96
95% 100.76| 123.22| 189.42| 232.91
99% 111.14| 134.64| 234.01| 281.87

Table 4.2: The value fog? . for different confidence level and degrees of freedom. The
value degrees of freedom corresponds to 2 fit parametersoanel typical number of
data points we used.

4.2.1 Levenberg—Marquardt method

The first method uses the least square fitting approach tafenodtimal parameterp,
from a set of data. Levenberg-Marquardt (LM) is a standard twahandle nonlinear
least square fitting (e.g. used by Origin, Matlab). The psecef finding the best
possible values of parameters that describe a set of datrasive. This is done by
finding the minimum ofx? with a combination of two methods: Gradient descent
method and Gauss-Newton method. Gradient descent worksveskif the x2 is far
from minimum and uses the gradient to find the direction inolulx? has the largest
decrease. The second method is for the case when the parsmate very close to
the minimum and assumes a quadratic fornyo#s function of the fitting parameters.
Both methods require the derivative of the model output wépect to the fitting
parametersA controls the iteration process.Afis small LM is more similar with grid
search method and the new value jois a large step in the direction of the steepest
decreasg?. If A is large, then Gauss-Newton method dominates and the new vél
p correspond to the minimum of the quadratic approximatiox?of

For the description of the LM algorithm, f(x) is used to mattatically describe
the model. We can writg? as:

mi(Hap) — f(Hap P)q2

X2 = i[ (4.8)
L o

Wherep represents the fitting parametem;(H;p) is the value of the normalized mag-
netisation @y = M;/Ms) to be fitted atH}, and f (Hj,p) is the value of function at
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-initial values for parameters
-function with which to fit the data
-derivatives of the function

Calculate chi-squared
Internal parameter(A)

| Gradient Descent Method | | Gauss-Newton Method |

‘ New set of parameters ‘

Calculate chi-squared
And compares with previous

Update parameters ‘ ‘ Update A

Obtained parameters from fitting

Figure 4.3: Schematic representation of the LM fitting alldpon.

H;p for a given value of parameters; is the standard deviation of errors for. The
result of fitting are the values of fitting parametegp} that describe the data best. The
basic idea about how this method works can be observed framefig.3). At the be-
ginning you need to specify the initial value of fitting pareters, the fitting function
and its derivative with respect to the fitting parameterserTthex? is calculated and
based on the internal parametera combination of two methods for finding a better
estimation of parameters is used. A new set of fitting pararaeire generated and the
X2 is calculated again; if the new value gf is smaller than the old ona,decreases,
elseA increases. To achieve the best fit is necessary an iterdtibissteps, with the
mention that whe decreases the new values of parameters replace the previeus
To illustrate how the entire methodology (LM + Monte-Carlmaslation) works,
we will present next a practical example. For this examptefanthe test and valida-
tion of the methodology, instead of experimental data rezfee data from simulation
are used. In this way all the parameters are well controltetivee know what results
the method should output. We consider a system of log-nodiséibuted spherical
particles with a mean diameter (dm) af7féhm and a standard deviation of 15%. The
easy axes are spherically random orientated with anisptvajue of 3- 10° erg/cn?
and standard deviation of 10%. The saturation magnetiz&ié00 emu/crh The ex-

44


Chapter4/Chapter4Figs/SchemaLM.eps

4. Chapter 4

ternal field is applied up to 5000 Oe with a field sweep rate. @iCe/s and a field step
of 100 Oe. For this example the hysteresis loop was simufated non-interacting
system at 10K. The reference loop was obtain from averagieg D00 independent
simulations and the loops used in the LM fit are averaged ogé@nglations.

To calculate the standard deviation of errars,needed fox? we used the follow-
ing relation:

1 N .
=

Index i corresponds to the points on the loop for each fieldiadex j corresponds to
each loop from the N (N=100) loops generated. The refereomeik the average over
the 100 loops and it correspondstb (M, = Mij/Ms). For this example we consider
thato; has a constant value of 0.01. Latter we will show what are ffeets of this
simplification on the results and on the interpretation effih We will consider that
anisotropy and saturation magnetization are the unknovwgneta parameters and the
described LM algorithm is used to obtain these valyes-((K,Ms)). In figure 4.4
is presented the magnetization curves for the initial v&lofeparameters used in the
fitting, for the real parameters and the magnetisation auUiamethe best fit parameters.
First we need to give some starting values for k {0° erg/cn?) and Ms (100
emu/cnt) as input to the LM algorithm. With this values a hysteresisdis generated
and the a initial value of? is computed. The magnetization loop for this parameters
is represented in figuré.4 with blue points. For calculating the new estimated values
for the fit parameters, the derivatives of the magnetisatiowes as a function of these
parameters are needed. In contrast to fitting to an andlytination where the value
of the function and its derivative have well defined valuas; wumerical model is
susceptible to errors. The derivatives need to be calculatenerically and they will
also be subject to errors. These errors will contribute ®ehrors of the fit. For
calculating the derivatives we used the three point metaqddtior4.10. In the next
chapter we will investigate if using a more refined methodt&dculating the derivative
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Figure 4.4: Hysteresis curves for the reference loop, thgist loop and the best
fit loop. All the loop are for non interactive system with dm#@ém, ogm = 15%,
ok = 10% at 10K. The reference loop has K=1%Perg/cn? andMs = 400emu/cr,
the starting loop has K=8.0Perg/cn? andMs = 300emu/cr and the fit loop has K=
3. 10Perg/cnt andMs = 400emu/cr,

is more appropriate.

df(Hippj)  f(Hhp pj+4p)) — f(Hhp, pj — Ap)) i
dp; = 21p; +Err(Hap, APj) (4.10)

Where p; is the parameter for which the derivative is calculated Apglis the step
chosen for calculating the derivative. For this, magnétrnecurves are simulated with
values of K andMs around the current estimation values and equati®fis used Ap;

is chosen to be 10% of the current values of each of the fit peters1 After this is
computed, new values for K alMs is obtained. Then a new value fgf is calculated
and compared with the previous one. If ftfeis lower, meaning that the loop are more
similar, the two parameters are updated to the new values\ asdlecreased. Else
the old values are maintained buts increased. Derivatives give the direction for the
largest decrease ixf and controls the step in that direction. A smalicorrespond
to a large difference between the old and the new estimafidgheoparameters and
favours the gradient descent method. On the other hand eAdayours the second
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method. The entire algorithm is repeated until a small ehogifgis obtained or the
change in parameters produces an insignificantly diffevahte forx?. In table4.3

the iterative values for K anMls are given as well ag? corresponding to that value
and if the movement is accepted or not. The final results stsi the values for the

number of K Ms X° Xaorm A accepted

iteration | (10°-erg/cm?®) | (emu/cnt) rejected
1 5.000 400.0 121795.52 614.10| 10.0 -
2 4.826 313.3 97118.55| 489.68| 1.0 accepted
3 4.131 363.3 30516.83| 153.86| 0.01 accepted
4 3.200 388.6 1129.22) 5.69| 0.001 accepted
5 2.999 397.8 3.56| 0.018| 0.0001 | accepted
6 3.012 402.4 1.69| 0.008| 0.00001| accepted
7 3.016 399.2 2.74| 0.014| 0.0001 | rejected
15 2.997 399.7 0.87| 0.004| 0.1 accepted

Table 4.3: The iteration process of fitting the referencepladth LM. The normali-
sation factor corresponds to 50% confidence level for 20ttp@n the magnetisation
curve and 2 fitting parameters.

best fit parameters and also the errors for determine thenthisexamples K is 2.997
:10° =8 with an error of 0.06110° =3 andMsis 39975 with an error of 13.4M. K

o] C C C
andMs are obtain with a confidence level of 50% and the error arautatked for 99%
confidence level. The only element that remains to be deteunis the uniqueness
of the solution. If there is more than one minimum value)éthe uniqueness is not
satisfy and LM algorithm is strongly dependent of the inp@arameters. To investigate
this last issue we use Grid search method, which will be prtesenext.

4.2.2 Grid Search method

For the Grid Search approach we use the MC model of the natidpaarrays to
generate a large set of hysteresis loops for different KMgdalues (not restricted
to these however, the method can be used for other quajiitiess broad interval
around the expected values. Then the experimental hystergse is compared with
every such hysteresis loop available in the look-up tabtkthe sum of squares of
errorsx?(K, M) is calculated in every case. Thus, the result is a tabl?@€, Ms)
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values. The minimuny?, = min(x?(K,Ms)) from all K andMs is the best-agreement
computational loop, which corresponds to the values of K lsigdrom the look-up
table describing the data best. We also calculate err@rfbathe best K ants based
on the 99% confidence interval statistics, i.e. by seledih@, Ms) pairs for which
the value of 0< A2, < 1.0. For 2 parameters a 2D map can be generated for a
graphic visualisation of the solution. This method canmetapplied for the entire
parameter space. A interval of interest needs to be comsldand the calculations
are done for a finite discretization in that interval. Theimatl values and the error
are determined with a certain precision depending on thed Ewdiscretization. This
method is equivalent to the LM+MC method from the previougise for sufficiently
refined divisions of values of K anMls used for generating the look-up table. Its
advantage is that it provides more insight into the physg# allows to visualise
the uniqueness of the solution and theMg-parameter correlation. A quantitative
investigation of parameter correlation is not presentethis thesis as it is not the
subject of our investigation, but a qualitative descriptad the correlation is offered
by the Grid search method. If similar variation of the partareis observed in the
AX? plot, then the two parameters are positively correlatedopifosite variation is
observed, then the parameters are negatively correlated ane parameter does not
effect the other, then there are no correlations.

Next we will present a practical example for the grid searethod. The same sys-
tem and the same reference loop is used as in the LM exampigoirevious section. K
andMs will be also in this case the parameters we want to obtainppdyahis second
method a large set of hysteresis loops for different K Bldvalues in broad intervals
around the expected value needs to be generated. The irftarikeand Mg is given by
physical properties of the system investigated. In thig eas are interested in mag-
netite nanoparticles. The interval of interest for K is beéw 02 and 5 10Perg/cn?
and forMs is between 80 emu/chand 560 emu/cfh The grid is generated with a step
in K of 2-10%erg/cn? and a step itMs of 20 emu/cm. The experimental loop (in this
example the reference loop illustrated in figdrd) is compared with all the loops gen-
erated ancg? is calculated for each loop. The results are for constaegjual to 0.01
as in LM example. For the above example a 2D mag®K,Ms) andAx?(K,Ms) is
illustrated in figure4.5. In figure4.5athe map for the normalised value (K, Ms)is
represented with respect to the value corresponding to Gfitfidence interval. This
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Figure 4.5:x? and Ax? grid for finding the reference loop. (K, Ms) for 50%
confidence interval. #Wy?(K,Ms) for 99% confidence interval. The optimum value
for K is 5- 10Perg/cn? and forMs is 300 emu/crt K andMs are positive correlated.
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contains information about the uniqueness of the solutimhgioodness of the fit. The
colours red and yellow are fo2,,., Smaller than 1x3,,, can vary in a large range as
it can be seen in tabk.3. For clarity all the values above 2 are illustrated with blue
with the mention that in that region there is no local minimd#rom the same figure it
can be seen that K arM;s are positively correlated. FigueSb illustrates the map for
Ax? normalised to the 99% confidence interval value. This costiiformation about
the optimal parameters, the errors of the optimal parametadt about the correlations
between parameters. The values\gf,,,, sSmaller than 1 contains the value of the fit
parameters for which the model describes the referenceviatbP9% confidence. It
can be seen from figure 5o that the errors for K ant¥ls are large. K can be between
2.5-10Perg/cnt and 37- 1CPerg/cn?. The interval foiMs is between 300emu/chand
550emu/cr. All the results are presented for normalized valugofindAx? and for
simplicity of the notation we will discarded the subscripbfm”.

In this chapter we presented the numerical algorithm usededoerating the mag-
netisation curves and the two methods used for solving terse problem. For the
Monte-Carlo algorithm, to simulate an interacting systeem&ed to take into account
the sample shape, the geometry of particle arrangementanghtticle size and dis-
tribution. The grid search method and the Levenberg—Madjuwaere presented as
used in this thesis. For calculatigg a constant value af; equal to 0.01 is considered
and for Levenberg—Marquardt the numerical derivativescateulated with 3 point
method. In the next chapter we will investigate the implmabf this two considera-
tion. This is done in the second part of the chapter. The fagtqonsist in testing the
Monte-Carlo algorithm.
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Validation of the algorithms

The implementation of the magnetic behaviour (the MontdeCeode) and the in-
verse problem algorithms (the Levenberg—Marquardt and Search methods) are
developed in the Fortran programming language. The calonkwere carried out on
Wohlfarth, one of the Computational Magnetism Group clissévailable at the Uni-
versity of York. The cluster contains 24 Compute Nodes wahous CPUs (AMD
Phenom Il X4 945/925, Intel Core i5, AMD Athlon Il X4) with vimus RAM sizes.
We will outline that the programs are not very demanding fittv point of view of
hardware resources and could be run on a personal computers.

Due to the nature of the Monte-Carlo algorithm, any furtiepiovement to the
performance of the Monte-Carlo code (for example usingljgi@mputing or GPUS)
was not possible. Therefore, to speed up the calculatiomeoémtire methodology we
study the efficiency of the inverse problem algorithms. Tikibriefly discussed in
section5.2

5.1 \Validation of the Monte-Carlo algorithm

Before using the algorithm to investigate the effect ofriatéions and to compare the
simulations with experiments, a set of tests to validateninemerical methods must
be considered. For the Monte-Carlo algorithm simulatiregrttagnetic behaviour, the
results from numerical calculation are compared with ar@dyexpressions. Because
the effect of interactions are very hard to study analytycéhe tests will be done for
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a non-interacting system. The interaction fields were ¢aled for different configu-
rations and compared with other calculations to confirm ititaractions are properly
determined in the simulations.

5.1.1 Comparing with Stoner-Wohlfarth model

One standard test is to compare the result with the Stondifgvich model (SW) in
very low temperature limit{ << 1K). For this test a non-interacting system of spheri-
cal particles with 67 nmdiameter, anisotropy constant of BPerg/cnt and saturation
magnetisatiorMs = 456 emu/cm was used. If we consider identical particles with
all the easy axes having the same direction, then for snralpéeatures, the SW be-
haviour for one particle with the same parameters valuesldho® obtained. In figure
5.1is illustrated the simulated hysteresis curves at 0.01Klfiberent values of angle
8, which is the angle between the easy axis and the applied Tibklcurves reproduce
very well the hysteresis loops from SW model.

1 ‘ P —
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= f 9=90 —
! 0=75 -
05 6=60 - -
/ 0=45
0=30
1 ” : ‘ ‘ 6=0 ‘
-3000 -2000 -1000 0 1000 2000 3000

H,(Oe)

Figure 5.1: Hysteresis curves for identical particles wiith=67 nm diameter,
K=5-10° erg/cn?, Ms= 456 emu/cri at 0.01 K for different angles between the easy
axis and the applied field. The loops are in agreement with [s'ry.

In the SW model the coercivity field and remanence was cakedlas function of
the anglé. If we compare the coercivity obtained from simulationdwitie analytical
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expressiorB.21, we can see from figurb.2 that the values are in good agreement.
The same comparison can be made for remanence (ftg@yefor which the angle

1 @ T T T T
He=f6) o
0.8+ '.,"" HC SW/ Hk .............. 1
"0,,'1
f 0.6+ .I"",,'
- ‘“.'".lll'lll'llll.'“'
&) e,
I 04t “®,
l",,,
,,."
0.2+ ‘e,
‘a

oL
0O 10 20 30 40 50 60 70 80 90
SN

Figure 5.2: Coercivity field as function of angbeat T = 0.01K. The blue points are
the values from simulations and they are in good agreemehtthe analytical result
(dash blue line). Error bars are smaller than the dots anadotdre seen.

dependence is given by equatid22

The last comparison that we can make with the SW model is ia ochsandom
orientation of easy axes. In figuBe4is illustrated the simulated hysteresis curve for
this case using the same values of parameters: Kl8%rg/cn?, Ms = 456 emu/cm.
The coercivity field is 1068e approximately the same value as from the SW model,
105@e Also the remanence magnetisatiod@MV is in good agreement with the
theoretical model BMs.
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Figure 5.3: The remanence magnetisation as function ofedhgt T = 0.01K. The
blue points are the values from simulations and they are ad@greement with the
analytical result (dash blue line). Error bars are smahlantthe dots and cannot be

seen.

5.1.2 Coercivity field as function of sweep rate

To include the thermal effect a different validation neexlbé used. One of the tests is
comparing the simulation results with an equation that idess the behaviour of the
coercivity field as function of the sweep rate of the appliettifi This was first found
empirically by Sharrock41] in 1987 and one year latter the equation was derived
theoretically by Chantrel42]. This relation was used for studying magnetic recoding
media @3]. The equation has the following form:

where

t=R1-(1-—=)1

23
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Figure 5.4: Hysteresis curve for a system of identical pksiwith random orientation
of easy axes for K = 5L0Perg/cn?, Ms = 456 emu/cr andT = 0.01K. The coercivity
field from simulation (blue dot) is 1068 Oe approximately sane value as from the
SW model, 1050 Oe. The remanence magnetisation from sionléireen dot) is
0.504Ms and it is in good agreement with the theoretical modsM.

and

KV

P ket

Equation5.1is transcendental and it is easier to write the logarithmaadep rate as
function of coercivity.
|n(foHK) HC 2
InNR)=———-In(1—-—=)-B(1-——= 5.3
(R)= =55 —In(1—15) —B(1- ) (53)
In the theoretical papedp] a very important assumption was used. The assumption
is that the transition from a positive magnetisation to aatigg one is very sharp. For
this reason the simulations were done for easy axes aligitbdtve field direction. In
figure 5.5 the theoretical curves and the calculations from simutetiare illustrated
for 1 and 10K. The data from simulations is in good agreematit the analytical
result.
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Figure 5.5:log(R) = f(H.) for a system of identical particles with random orientation
of easy axes for K = 51CPerg/cn?, Ms = 456 emu/cm and® = 0. The simulation
results (black dots for 10K and blue squares for 1K) are iragent with analytical
calculations (dash green line for 10K and red line for 1K).

5.1.3 Validating the combined KMC and MC method

To test the combined KMC and MC method in the superparamegleit we can
compare the simulation with numerical integration of thaiklorium state.

T 21T

[ J coqa) sin(cx)e@I$ dadp
0

M =2 (5.4)

21

ffsin(a)ekﬁdadﬁ
00

Wherea and 3 are the spherical coordinate of the moment direction, withfteld
on the Z direction.E is the energy of the particle and it is given by equatoh To
include any type of distribution like size distribution,isotropy distribution or easy
axis distribution will make the integr&l.4 more complicated to solve. For this reason
we will test the model for a system of non-interacting idealtparticles, with dm = 6.7
nm, K = 3-10°erg/cn?, Mg = 400 emu/cri. The applied field rate is 1 Oe/s with field
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Figure 5.6: Magnetisation curves for identical particlekhwdm=6.7 nm, K =
3. 10Perg/cnt, Mg = 400 emu/cr, R=1 Oe/sAH = 10 Oe at 25K. The results from
the numerical integration of equatidn4 (red line) are described accurately by the
the combine method KMC+MC (blue dots) and also by the KMC moéttblack dia-
monds).

step of 10 Oe. We did the calculation for different anglesMeein easy axis and the
applied field, varying between 0 amgd2. We will present just the result for angle equal
to zero, but the conclusions are similar for the rest of thgdes We will compare the
combined KMC and MC algorithm used in this thesis with the KilGorithm and the
numerical integral of equatioh4 (referred to as "theory” in the following).

As mention in sectiod.1.4the limit where the algorithm switches from KMC to
MC is % = 3. For values larger than 3, KMC is applied but a few MC steps ar
also used for a better equilibration. To validate the metiwedwill chose different
temperatures so that tl% ratio will vary from a relative large value to values smaller
than 3. For this example we vary the temperature from 25K &K12 steps of 25K.
For large ratio of% all three methods are in good agreement as it can be seen for T

= 25K, % = 1369, in figure5.6. But as the ratio decrease the difference are more

57


Chapter5/Chapter5Figs/beta13_69.eps

5. Chapter 5

1000 2000

H (Oe)

| ® ["KMC+MC"] o ["KMC"]—Theory|

Figure 5.7: Magnetisation curves for identical particleekhwdm=6.7 nm, K =
3. 1CPerg/cn?, Ms = 400 emu/cr, R=1 Oe/sAH = 10 Oe at 100K. The easy axis
is parallel with the field direction. The results from the rermal integration of equa-
tion5.4(red line) are described accurately by the the combine ndeKC+MC (blue
dots), whereas using just the KMC method the results (blzgkdnds) diverge.

significant. For 100K and 125K which is just above and underlitmit value of 3
(% = 3.42 and 2.74) the result are illustrated in figbré and figure5.8. Using just
the KMC method the results do not describe the real behavi@properly describe
the superparamagentic limit the combined KMC and MC metrestirio be used.

In conclusion we tested our model in the low temperaturet loyjicomparing with
the Stoner-Wohlfarth theory. Then we tested the KMC methsidguithe Chantrell
equation for coercivity as function of field rate. Finally walidated the combined
KMC and MC method to have a better description of the supamagnetic behaviour.
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Figure 5.8: Magnetisation curves for identical particlekhwdm=6.7 nm, K =
3. 1CPerg/cn?, Ms = 400 emu/cr, R=1 Oe/sAH = 10 Oe at 125K. The easy axis
is parallel with the field direction. The results from the rernal integration of equa-
tion5.4(red line) are described accurately by the the combine ndkidC+MC (blue
dots), whereas using just the KMC method the results (blzkdnds) diverge.
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5.2 Validation of the inverse problem algorithms

In the previous chapter we presented the Grid search me@®8M) and the Leven-
berg—Marquardt (LM) algorithm using two approximationsirsEapproximation is
that we consider a constant value t@rwhen we calculategwl2 for both methods. For
LM we calculated numerically the derivative of the magredimn curve with respect
to the parameters of interest using the three point methlod rdason for choosing this
approximations is that we wanted to construct the simplgstaach that is still very
powerful. Before using this approximations we need to tesirt.
First we will focus on the effect of constaat. If we analyse figurés.9 where

o; is calculated for the reference loop using equadid® we can observe that 0.01
is an overestimation. The calculations are redone takiogeity into account the

o=f(MIMg)

0.012 " 0.0l
0.01
0.008
0.004
0.002 f' R O

0

1 05 0 0.5 1

M/Ms

Figure 5.9:0; for each point on the loop for the reference loop for K28° erg/cn?
Ms = 400 emu/cr. The value 0.01 is a overestimation of ie(red dots).

errors and the result from the grid search method is illtestian figure5.10 The
optimal values for K andls remain the same, but the error of the two parameters are
smaller than in the previous case. Nd is between 350 and 450 emu/and K is
between 2.7 and 3:30Perg/cnt. Also the correlation between parameters remains the
same as in the case with constant 0.01. The reason for this is that in general the

60


Chapter5/Chapter5Figs/Average_all_page6.ps

5. Chapter 5

550
&~ 500
£ 450 4'.
O 400

S 350
E 300
9 250
on 200

= 150
100

% te <9 Jo %o T
K (erg/cm?)

Figure 5.10Ax?(K, Ms) for 99% confidence interval and with calculated from equa-
tion 4.9. The optimum value for K is 510°erg/cn? and forMs is 300 emu/cr The
errors are smaller as using a constant value of 0.0dy;for

landscape fox? remains the same and the minimum corresponds to the sane valu
of K and Ms. The only difference consists in the actual valuexéfand the exact
determination of the goodness of the fit. We did this compari®r different sets
of reference loop generated. Calculatmgrom equatiord.9 and using the constant
value of 0.01 provides good results.

After applying the Grid search method and confirming the ueitgss of the solu-
tion we can validate the LM and discuss the importance ofgugiconstant value fa;
and the efficiency of calculating the derivative with the §uation4.10 or 5 (equation
5.5) point method. For the above reference loop we used the LNhodewith:

1. constant; and using the 3 point method for computing the derivatives
2. constant; and using the 5 point method for computing the derivatives

3. g; calculated for each point on the loop using equatidhand using the 3 point
method for computing the derivatives

4. oj calculated for each point on the loop using equatidhand using the 5 point
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method for computing the derivatives

df(p)  —f(pi+2Ap)+8f(pi+Api) —8f(pi —Api)+ f(pi —24p) _
T 128D +Err(Ap;)

(5.5)

For the initial values of the fit parameters (K avig) we used 3 values for K (P@rg/cn,
2.5- 10°erg/cnt and 5 10Perg/cnt) and 3 values foMs (100 emu/cr, 300 emu/cr

and 600 emu/cn) to cover the parameter space in the region of interest.té tioere

are 9 different loops as the starting point for the fit and 4 Lppr@aches. In all the
cases the best fit values are within 1% of the actual values. efitors from LM are
less than 20 emu/chor saturation magnetization and less tharl@*erg/cn? (for
non-interacting system, with interaction the errors argdg, but there is a difference
between the errors from using constantdata and including; correctly. If we use
equationd.9the error of the parameters of interest are smaller than iiseea constant

o; equal to 0.01. Using; = 0.01 we overestimated the errors of the reference data as
it can be seen in figurg.9and therefore a overestimation of the errors in obtainieg th
two parameters is expected. For this particular referevme the errors in determining

K andMs are 0061- 10Perg/cnt and 134emu/cni using constand;, where using with

the proper value of; at each data point the errors are smalle@26- 10Perg/cnt for

K and 37emu/cnd for Ms. The actual value of; depends on magnetisation (figure
5.9). However, using a constaat that overestimates the actual value gives reasonable
results.

For calculating the derivative with respect to the fit partarethe 5 point method is
more accurate than the 3 point method, but a higher accussy/ribt mean necessarily
that the solution converges faster. Both methods outputererror limit, the same
optimal value for the fit parameters. We investigated thelemof loops needed to be
generated for the result to converge for different refeednops and different starting
loops using the two methods for calculating the derivativeboth cases the number
of iterations is similar, but the first method needsVk + 1 loops per iteration and
the second one needs ®; + 1 loops per iteration, wher®ls is the number of fit
parameters. Favl;=2 (as the example above) using the 5 point method, 9 loops mus
be generated and for the 3 point method just 5 loops. On agersigg both method of
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calculating the derivatives requires 20 iteration, thaangeusing the 3 point method
requires 80 fewer loops to be simulated Mt is larger, then the difference between
the two methods increases. For the LM method the first appre@b constant; and
using the 3 point method for computing the derivatives ida@st option, because it is
faster and requires less information about the data.

We did this investigation systematically for differentwes of K andVis at different
temperature and including also interaction. The resukssamilar with the above
example. In conclusion, using constamtprovides good results. For all the results
presented in this thesis the minimal valuediis at least 2 order of magnitude smaller
than the limit value for 50% confidence (as it can be seen ile #&aB). For this reason
all the result have at least a 50% confidence for the goodrfebe dit, although a
graphic visualisation or a different method can be usedgfample the=? test). For
all the cases studied, the errors are larger for both K and Elsanstant value of 0.01
is used forg;. For a constant; smaller than 0.01 the previous statement is not true.
For this reason we chose to useequal to 0.01.
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Results

In this chapter we apply the methods developed so far to stiatly obtained from
experiments, in particular to analyse experimental magggdn curves measured at
different temperatures. This is a typical example of thaidieation problem, where
given a particular measurement type we want to go ‘backwdroi the measured
data and learn about the physical properties of a systemsalee the inverse prob-
lem. There are two main questions that need to be addressenl agplying similar
approaches for the inverse problem. The first questione®latthe uniqueness of the
inverse problem. In other words, when the model is fitted &rttagnetization curve
data, are the model parameters uniquely identified from tinegiprocedure? In many
cases, it turns out that the inverse problems are ill-posddteere exists an wide range
of model parameters describing the same experimental bhathis case, the solution
set is incomplete and full identification of the parameteasnot be achieved. The
second question relates to the applicability of a model stdbing experimental sam-
ples. If the model is insufficient to describe the measurdrdata, then the fits are of
low quality. That leads to a large value of the sum of squareat® (x%). However,

it is possible that even if sma}? values are found, the identified model parameters
may show systematic deviations from the expected valuesh &ses are usually hard
to deal with, and can only be understood by performing robtatistical analysis of
a broader set of experimental data of a different nature.ekample, in addition to
magnetization curves, the magnetization versus temperateasurements, or magne-
tization versus time relaxation decay experiments, may ladsrequired.
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6.1 Description of experimental data used for identifi-
cation

We first describe the properties of measurement data setshwihil be quantified
below in terms of the developed identification proceduree $amples were prepared
and magnetization curves were measured by the group leddfy Sara Majetich at
the Physics Department, Carnegie Mellon University insBittgh, USA. The sam-
ple contains spherical magnetite nanoparticles with amagnetic surfactant shell
organised in a distorted hexagonal closed packed structimetransmission electron
microscopy (TEM) imaging gave the mean diameter (dm) of fhfeeses as 6.7 nm
with a standard deviation of 15% and a packing fraction ofrappnately 0.33. We
note that the magnetic core may be smaller than the spheseseadrom TEM. The
magnetisation versus field curves were measured by thecanmkrcting quantum in-
terference device (SQUID) in the geometry shown in fighife for a set of 8 different
temperatures: 10K, 35K, 60K, 85K, 110K, 135K, 160K and 18BkKiring the mea-
surement, the external magnetic field was oriented perpeladito the sample holder
shown in figure6.1. The maximum external field value was 10000 Oe and the field
sweep rate was 0.8 Oe/s.

6.2 Basic setup of the Monte-Carlo model for identify-
ing the properties of experimental data

We now use the experimental information given in previousisa to reduce the num-
ber of fit parameters necessary for the optimisation prasediihe identification of
the model parameters will be based on the magnetisationyvéedd data sets (mag-
netization curves). In the real sample magnetostaticastems are present. For the
model to be realistic, geometric aspects of the sample rtedutsincluded:

1. The shape of the sample
2. The packing fraction of the system

3. Position of the particles
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Figure 6.1: Sample geometry. The sample contains sphenaghetite nanoparticles
with mean diameter of 6.7 nm and a a standard deviation of I%#& packing fraction
is 0.33 and the particles are covered in a non-magneticctarfashell.

The shape of the sample gives rise to a demagnetising fiel@ssided in section
2.4.2 which is an important contribution to the effective fieldiag on particles in
the sample. Similarly, the packing fraction and the pagtmbsitions contribute to the
local variation of the effective field, thus influencing thagmetic behaviour of a sam-
ple. To include the shape of the experimental sample in thaeinee approximate the
overall geometry by an ellipsoid of revolution with prinaipaxesa = b # c. In this
case the demagnetising field is defined simply by a ratio ollmwing chapter2.4.2
and adds a mean-field contribution to the effective field,clvié uniform through out
the sample. Due to the simple form of the demagnetising figtession (equation
2.6and2.8-2.10in section2.4.2), the ratio c/a can be interpreted as a fit parameter,
in the sense that its optimal value can be found during thadittoutine. Including
the particle sizes and positions into the optimisationirauis far less simple due to
the presence of inter-particle interactions. For a noeratting system the particle
position is irrelevant and the particle size can be includéalthe fitting in a straight-
forward way. However, if interactions are present, aceupasitions of particles need
to be included if dipole interactions are to be describedistzally. The magnetic
behaviour of a particle is sensitive to the local magnetmsteld acting on it. This
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field can lead to a ferromagnetic or antiferomagnetic behaviepending on neigh-
bour particles positiondd] [45. This is nontrivial for randomised samples, such as
with disordered positions of particles or clustered sasypMhere changing the parti-
cle size directly affects the local variation of the packfraction and thus the local
variation of the dipole interaction fields contributing teetoverall magnetisation be-
haviour. Generating randomised patrticle distributiortginees dedicated algorithms,
such as described in sectidril.], which would need to be sequentially executed dur-
ing the optimisation procedure if the particle size (or pos) was included as a fit
parameter, thus making the approach computationally venyashding. Due to these
complications, the particle size has not been chosen a®et diirparameter. Instead,
for developing our analysis, a preference was given to preegating realistic parti-
cle size and position distributions. We wanted to encomgiasexpected values for
the experimental samples described above. For this we @tenesystems for several
different packing fractions, such that in all cases the nyaticle diameter was 6.7
nm and the standard deviation of the particle size distiobwaried from 0 to 25%.
Furthermore, the complicated geometry of the sample asrshofigure6.1 could not
be fully specified and for this reason to quantify the dem#gimg fields we chose
two different approximate limits: the case with c/a = 1 (qjte geometry) and c/a =
0 (thin film geometry), roughly consistent with the expennteg data described above.

Another requirement is the need to calibrate the computaktimodel. In experi-
ments, magnetization curves are typically measured ingd@fithe absolute magnetic
moment, whereas our Monte-Carlo code computes magnetizetirves in terms of
the magnetisation M(H) normalised by the saturation magagbn Mg, as is stan-
dard in computational physics. To calibrate the computatialata, we first obtain
normalisation factors by fitting to the experimental da&well-known ‘approach to
saturation law’ of the form46, 47, 48]:

A B C
mt) =M(H)M =MM |1- 5 — 5 - —5| +DH+EVH (6.1)

whereV, is the magnetic volume of all the particles in the sample. lesriame sug-
gested, ‘approach to saturation law’ describes the bebawbmagnetic moment in
high field regime which corresponds to the approach to sabarsalue of the mag-
netic moment. Equatiof.1and the coefficient A, B, C, D and E result from an under-

67



6. Chapter 6

lying theory and include the effects of stress, anisotropggraction, inhomogeneities
and other factors. Not all of these coefficients may be relevdepending on the type
of a sample under study. In the present case of the expemggiia introduced in
section6.1the above equation reduces to a simpler form:

m(H) = MgV [1— %} (6.2)

which then allows the value ®flsV; to be extracted for the calibration between the ex-
perimental and computed data. In fig@ér@the normalise experimental magnetization
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Figure 6.2: Normalised experimental magnetization cufgesample A at 4 temper-
atures (10K, 85K, 135K, 185K). The points represent the atima experimental data
and the lines are for guidance. The normalisation fabte\; for each temperature is
shown in the inset.

curves as function of field for the sample are illustrated4fatifferent temperatures:
10K, 85K, 135K and 185K.
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6.3 ldentification problem: An example of the study of
unigueness properties of a model

In the previous section we set up the Monte-Carlo model diyeavailable informa-
tion about the experimental samples. The physical vargsalléch were not measured
directly were the mean anisotropy constant and the sabaratiagnetisation, which
will be used as fitting parameters. While experimental teqpes to measur and

Ms are available, it is generally desirable to be able to idemtiandMs directly from
measured magnetization curves. The standard deviatiom&dteopy constang, is

also an unknown variable. We consider a log-normal distioiouof anisotropy. This

is the standard technique in describing a system of nanolestt We tested different
values ofok in the intervall0, 309 and these values do not change the result for these
experimental data. A value of 10% is chosendaqr.

We want to find K andVis for the experimental samples from the measurement
data described in sectighl The Monte-Carlo model presented in secttbt.4is
used as the reference model. But first we will consider thestipre of uniqueness.
This question relates to studying the inverse solutione®htodel, i.e. whether every
computed magnetization curve corresponds to a unique seluégs ofK andMs. To
do this, we will apply the grid search method which, follogyihe discussion in section
4.2.2 will now be based on generating a large number of ‘referemagnetization
curves for a dense set of different, systematically varywajues ofK and Mg and
comparing individually each of such magnetization curvih e full set of generated
curves. If uniqueness holds, then every magnetizationecwilt match ideally only
itself, if not, there will be a set of different values for tharameters that will match
one magnetization curves. In practice each loop contamssedue to the thermal
noise. These errors propagate into the output of the inygaem. Because of this,
instead of having a unique match between a set of data andefieeence’ table, there
Is a range of parameters that describe well the magnetisatitve. In this case the
uniqueness is define &8 having just one minimal value. If there are more minimum
values ofx?, then the the uniqueness is not satisfied.

We computed magnetization curves for particle distrimgiwith packing fractions
0.1, 0.2, 0.3, 0.4, and for the non-interacting case (packaction 0.0). The overall
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shape of the sample was taken to be a sphere;jfae= 1, and the temperature range
chosen from 10K to 185K consistently with experiments. Weegated a grid withK
between 210* erg/cn? and 5 10° erg/cn? in steps of 2 10%erg/cn? andMs between
80 emu/crm and 560 emu/crhin in steps of 20 emu/cfn
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Figure 6.3: Ax2,m Map for 99% confidence interval for finding KL 10Perg/cn?
and Ms = 400emu/cr at 20K and different packing fractions. For all the packing
fractions (from 0.0 to 0.4) the optimum parameters are KG 10°erg/cn? andMs=
400 emu/crd. The parameter correlations changes from a positive @tioel, for
packing fraction 0.0, to an uncorrelated case for packiagtion of 0.4.

Figure6.3shows the resultingx2,,m maps obtained by comparing the input mag-
netization curve data set fét = 1- 10Perg/cnt, Ms = 400 emu/cr, T = 10K to the
reference function tables for different particle packiractions. In all the cases there
exist an optimum solution within the chosbh andK range and the chosen 50% sta-
tistical confidence level. The size and shape of the contependds on the packing
fraction, which represents the developikig — K parameter correlation. In the non-
interacting case (0 packing fraction), the correlationingadr. This means that, with
the 99% statistical confidence, the reference functionk wispecific ratio oK and
Ms match the input function. In other words, if this ratio is geeved the magnetiza-
tion curves in that parameter range are indistinguishadhie larger packing fractions
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Figure 6.4: Ax2,m Map for 99% confidence interval for finding K£B 10Perg/cnt
and Ms = 400emu/cr at 20K and different packing fractions. For all the packing
fractions (from 0.0 to 0.4) the optimum parameters are abthcorrectly. The param-
eters are positive correlated, for all the packing fragthrt the errors of the optimum
parameters are decreasing with increasing packing fractio

the inter-particle interactions become stronger and tbedgmatch’ elliptical contour
rotates towards the horizontal orientation. Also the conghrinks towards the circu-
lar shape suggesting a convergence of the errors towards|aewalue ofMs andK.
This effect of interactions depends on the balance betwesmtl energy, interaction
energy and anisotropy energy. If we consider a large awnigpfffigure6.4) the effect
of interactions orMs— K parameter correlation is reduced. If we compare figude
and6.3we can see that for small packing fraction, meaning weakanot®n, there is
no difference between solving the inverse problem for K-4® erg/cn?® and for K

= 3.10° erg/cn?. For larger interaction there is an evident difference. |Raye K the
errors decrease as for low K, but have different values. fdstarge K, the ellipsoidal
contour of theAx? does not change the orientation as in low K case. With inatgas
temperature the interactions become less important andlabons are less visible.
We can see from figuré.5the 2D map forAx2,,m at 160K. The main aspect of the
graphisthat K is not well defined. The contour plot of the exievers the entire range
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of anisotropy values. This can be explain by the fact that Wigher temperature the
superparamagnetic behaviour is dominant and this doesepeind on anisotropy.
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Figure 6.5: A2, map for 99% confidence interval for finding KL 10°erg/cn?
andMs = 400emu/cm at 160K and different packing fractions. For all the packing
fractions (from 0.0 to 0.4) the optimum parameters are abthcorrectly, but the errors
for K are too large for the result to be meaningful.

For all temperatures and all packing fractions the aboveesy$as just one solu-
tion for K andMs and it corresponds to the right solution. Next we focus oretiner
in determining the solution. As disused in sect@, the errors of the obtained pa-
rameters are important. If we analyse figarg, it can be argued that the uniqueness of
the solution is not satisfied. The magnetization curve fot KE&® erg/cn¥, Mg = 400
emu/cnt at 160K is described by any value of anisotropy in the rangewestigated.
There is just one minimal value qf. The uniqueness is satisfied but the errors for
K are very large. For this reason the results are not meanlingfnot well defined.
As suggested in sectigh2the uniqueness of the inverse problem must be justified by
relative small errors of the results. How small the erromsdi® be for the result to be
meaningful depends on the aim of the investigation. We wardentify the value of
parameters (in this case K aM}) as good as possible. For this reason we investigate
a broad range of temperaturdds is well defined for all temperature and interaction
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strengths but foK the error-bars at higher temperature are too large for thatreo
be meaningful. In conclusion for low temperature we can hsdrnverse problem to
obtain K andMs, but for high temperature jusds can be calculated.

To illustrate how relevant the shape of the sample is, weepitea situation in
which the effect is very strong: a thin film system with the sapmoperties as the
system presented before, except for the shape of the saRgplstrong interactions we
consider the field perpendicular to the thin film plane. FiguiBillustrates thedx2,,m
2D map at 10K for c/a=0.0 and the rest of parameters are ag iprévious example.
It can be seen that the correlation between K Bhds more strongly dependent on
interactions. This also influence the errors. Thus, theactens play a very important
role in finding the right solution. If the interactions in theodel are not consistent
with the sample we want to investigate, then it is unlikely wi#d be successful in
identifying the parameters correctly.
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Figure 6.6: Ax2,m Map for 99% confidence interval for finding K4 1CPerg/cn?
andMs = 400emu/cr at 10K and different packing fractions. c/a=0.0 and the field
applied out of the plane of the sample. The parameter ctioetaare strongly affected
by the packing fractions. For the non-interacting systeactkpg fraction equal to
0.0) the parameter correlation is positive, at packingtioac0.1 the parameters are
uncorrelated and for larger packing fraction the paramseiez negative correlated.
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6.4 ldentification of the properties of experimental sam-
ples

In this section we apply the methodologies developed abmsaidy the experimental
data presented in secti@nl In this case, the applicability of our approaches depends
on how accurately the Monte-Carlo model can be used as a@&referto capture the
relevant physics. If the model is realistic, then the idedi model parameters will
be accurate and the overall identification supported by bigdlity fits. On the other
hand, if the model fails to be realistic, then systematicatesns from the expected
(actual) physical parameters emerge, even though the fitstdhbe of high quality.
Such behaviour has not been found in the previous secticaugedoth the input and
reference functions were based on the same model.

Following the discussion in the previous section we begiodysidering the iden-
tification of Mg andK from the experimental data. It is expected, tawill be quan-
tifiable accurately only at low temperatures. To apply thiel gearch method, we
consider samples of various geometries, and take log-rigranticle size distribution
with mean diameter equal ttm= 6.7 nm and standard deviatiary, =15% as TEM
measurements suggest. We generate our system with a pdcaetign of 0.33 con-
sistent with the experiment. Then we compute reference stamgtion curves for a
dense mesh & andM;s values as specified in the previous section.

First we investigate a second sample with the same propatighe sample de-
scribed in sectio.1. The only exception consist in the demagnetisation fadtr c
which we estimated to be 0.16. The grid search method forctge yieldeK in
a rather broad range-40* — 5- 10° erg/cn¥, which is to be expected based on the
uniqueness study given in the previous section. The idedtifalues oMs have been
found increasing with temperature from about 200 emd/w00 emu/crias shown
in Figure6.7. The fit results show that there is a temperature region ar®06K-150K
where a rather sharp transitionhy occurs. This transition behaviour is unexpected,
and itis not clear at the moment whether this is physical @rtafact in the modelling.
The most straightforward test is to check the effect of dam#ging field factor by
changing the/a. We can do this by analysing the sample shown in figuien sec-
tion 6.1, for which we simply set/a = 1. The final results are qualitatively similar -
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although the identified magnetisation saturation limite/mxtend from 200 emu/ctn

to 500 emu/crd, the transition behaviour is again observed in the simédargerature
range. We have also confirmed the transition by applying #neehberg-Marquardt
algorithm wherec/a has been included as a fit parameters, which gdae~ 1 and

the values oMs in the range from 200 emu/chio 500 emu/criwhere the upper limit
is now close to the expected value forsBa (magnetite, 450 emu/cth This thus

demonstrates that although changing the demagnetisimdagitribution by tuning
the c/a ratio results in quantitative adjustments in the observedds, qualitatively
the transition behaviour seems to be present in all cases.
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Figure 6.7: Mg values obtain solving the inverse problem for different penature.
The results are presented for a second sample with the saperpes as the sample

described in sectiol.1, but with c/a equal to 0.16. The saturation magnetisation
increases with temperature from 210 emui@n10K to 370 emu/crhat 200K.

The above results indicate that interactions are too stesmpjust changing the
demagnetizing field is not sufficient. The fact that the iat&ions are strong becomes
apparent at lower temperatures where the model does notermate well for the
observed behaviour which results in the suppreddetrom the inverse problem in-
vestigation. The packing fraction has been chosen consligtith the experimen-
tal observations and therefore we want to keep it. An altermavay to control the
packing fraction and thus the interaction strength is byngithe magnetic volume of
particles. Although the TEM analysis suggests that thagharsize is on average 6.7
nm the actual magnetic volume might be smaller. In the falhgwve will focus only
on the first sample shown in figul, where we have more temperature points and
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thus more robust data. To model this we consider that thécfgerthave a core-shell
structure in which the magnetic core represents a part ofotiaé size of particle as
viewed from the TEM image. For this we generate a system digies with a mean
diameter of 6.7 nm and standard deviation of 15%, with pagkiaction of 0.33. Then
we allow the particles’ magnetic core to vary but maintagniine total size as initially
generated. The magnetic core will have the same distributicsize. The shape of
the real sample is not well defined and so tfia ratio will be also a fit parameter
to optimise the effect of the sample’s shape. In a first apgpration we consider a
fixed value ofMs equal to 450 emu/cfpa value close to the bulk one. The unknown
parameters, K, dm and c/a are the ones needed to be obtaneddiving the inverse
problem. For calculating? we consider constamt as discussed in sectidn2, and
consider 50% confidence for determining the goodness oftthedi 99% confidence
interval for estimating the errors.

5
0405060708091.01.11.21.31.41.5
c/a

Figure 6.8: Grid search method results for dm and c/a for mx@atal data with
Ms = 450emu/cm andogm = 15% at 185K. The optimum patrticle size is 6.5 nm and
the ratio c/ais in the interval [0.95, 1.45].
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To apply the grid search method for just two parameters we tise fact that
at high temperature the anisotropy does not play an importda (as discussed in
previous section and shown in figuée5). We first use the grid search method at
the high temperature to obtain the optimal values of dm aadaod then used the
obtained values for c/a to find at low temperature K and dm.guar&6.8 the results
are presented for 185K. At 185K we investigated dm and c/a [dst value for c/a
is 1.1 and 6.5 nm for the average size of the particle. Takabg account the errors
at 99% confidence level the interval for c/a is [0.95, 1.45] &r dm the interval is
[6.3 nm, 6.7 nm]. The investigation at lower temperatureendne using c/a=1.0. In

B ™

4 08 1.2 16 20 24 2.8 3.2 3.6 4.0
K (10° erg/cm?)

Figure 6.9: Grid search method results for dm and K for expenital data wittMs =
450emu/cm andogm = 15% at 10K and 135K. The optimum size is 5.3 nm at 10K,
whereas at 135K it is between 6.35 nm and 6.75 nm.

figure 6.9the results for 10K and 110K can be seen. All the results arergrise in
table6.1 The optimal value of anisotropy is decreasing with incirggagemperature,
but the errors at high temperature are too large to have atotgal. For the size of the
magnetic core there is an increase from 5.3 nm at 10K to 6.5A85K with relatively
large error bars at intermediary values of temperature.difference between the size
of particles obtained at low and high temperature is unebggecTo investigate this
behaviour we analysed the approximation we used:
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1. Mg equal to 450 emu/cfn
2. ogmequal to 15%

3. The effect of the shape of the sample is approximated wéldemagnetization
factor from an ellipsoid of revolution

T | DMbest it | DMmax | DMpin Kbest fit Kmax Kmin
(K) | (nm) | (nm) | (nm) | (10°-emu/cn?) | (10°-emu/cnd) | (10°-emu/cnd)
10 53 545 5.15 3.6 3.9 35
35 5.6 5.75 5.45 3.2 3.5 3.1
60 6.2 6.35 5.75 3.0 3.3 2.7
85 6.2 6.65 6.05 2.2 3.3 1.9
110 6.5 6.75 6.35 2.6 3.5 2.1
135 6.5 6.75 6.35 2.0 4.1 0.9

Table 6.1: Results from the grid search method containiego#st value for dm and
K. For 99% confidence level the range of the two parametermaheded

The last consideration cannot be improved in the model Is=cthe shape of the exper-
imental sample is not well defined, but the first two approxiores can be addressed.
We consider 5 discreet values M, between 380 and 460 emu/énfor values under
380 emu/cr there are no good solutions at high temperature for confeléamels
as low as 50% and values bigger than 460 emd/are not expected for magnetite.
Considering multiple values fargn, increases the difficulty of obtaining the fit. If we
change the value aym, in an existing system, then it is possible that two neighbour
particle to overlap. To avoid this, for each different,, a new system must be gener-
ated. This means that the LM method cannot be applied fomignthie optimalogm.
The values used favgm, are 5%10% 15% 20% and 25%. The best results are ob-
tained forogm equal with 5% andvis equal to 450 emu/cin The results for K and dm
for the two values fooym are illustrated in figur®.10 The K values are similar in the
error limit for both results. For dm there is not a significemprovement if we look at
the optimal value except for the 10K case where the new val&ginm in comparison
with the previous one 5.3 nm, but if we consider also the dyaos, there is a important
difference. Foiogm = 15% the difference in size between all the temperature isen t
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Figure 6.10: Grid search method results for K and dm wiih = 15% (green dots)
and 5% (red squares).
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interval [0.8 nm, 1.6 nm] where as in the latter casepfgy = 5% all the values of dm
vary in the range [0.3 nm, 1.3 nm]. Overall a value of 6.14#r.65 nm describes the
experimental data for all temperatures.

We were expecting to obtain a unique value of dm for all terappge. The fact that
the particle size at 10K and 185K do not overlap in the erraitlraises the following
questions: why this disagreement appears and is this rgakban artefact of the
model. We saw in sectiofi.3, when we investigated the uniqueness of the inverse
problem for our model, that the inverse problem has a uniqugien. Therefore the
two methods used for solving the inverse problem (Grid $earethod and Levenberg-
Marquardt) are not the issue.

A possible reason may be due to a discrepancy between oureMzarto model
of the system and the actual real system. It could be that @deiris not complex
enough and a more detailed model is needed, but there is aoaslelence for this.
A more plausible explanation is that the interaction frora thodel are not in good
agreement with the experimental case. We saw in seéiéthat changing the in-
teraction strength by changing the packing fraction has@ontant influence on the
parameter correlation and implicitly on errors. By tryimgrhodel experimental data
with with a stronger interacting system, it may be thator dm will be smaller at
low temperature to compensate. At high temperature, bedateraction are less im-
portant due to the large thermal noise, the disagreemewebatthe model and real
system is not reflected in the output of the inverse problernthik case the result from
high temperature probably describes the experimental datt accurately, and the
low temperature results are an artefact.

Another possible explanation for the temperature deperelenthe mean particle
size with temperature can be due to a canted state, whichdsasd®een in magnetic
nanoparticles49, 50]. The canted state decreases with temperature, that ntesrtise
effective magnetic core increases. In this case the vaniatidm with temperature can
occur to take this effect into account. A difference of maxim1.3 nm between the
values ofMg at 10K and at 185K corresponds to approximately 4 atomiatay@ne
to four atomic layers for the canting state is plausible butalidate this assumption
more experimental measurement are required.
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Conclusions and future work

In this thesis we studied the inverse problem of identifyprgperties of magnetic
nanoparticle systems from magnetisation versus field sur#er this we developed
a realistic Monte-Carlo model of 3D particle systems camitay spherical nanopar-
ticles with uniaxial anisotropy (sectiof.1.4. Log-normal distribution of size and
anisotropy values were considered with spherical distioblof easy axis. Magneto-
static interaction and thermal effects were taken into actor his allowed to calculate
magnetisation curves at different temperatures, whiclewlezn validated against the
known analytical results in sectidhl Sectiongt.2and5.2where dedicated to study-
ing the inverse problem.

For the inverse problem we concentrated on two different@aghes: Levenberg-
Marquardt algorithm and Grid search method. The grid searetinod has advantage
in that it offers information about the uniqueness of theisoh and the model param-
eters correlation, but it becomes inefficient for evaluatimore than 2 model param-
eters. The Levenberg-Marquardt approach is an optimarighgo for obtaining the
solutions from fitting to many parameters but when implereérdn its own it does
not provide detailed information about the uniqueness hitems beyond the errorbar
calculation.

The methodologies presented in the thesis are of broadcapglty and can be
implemented to include any physical parameter relevantatwparticle system. In
this thesis we focus on studying the inverse problem fortifieng anisotropy (K)
and saturation magnetisatiokld). As discussed in chaptér both parameters can be
accurately obtained at low temperature, but at large teatpex justMs can be calcu-
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lated with this approach. In the high temperature regiopeguaramagnetic behavior
dominates and the exact value of anisotropy is less importarthe last chapter we
applied the developed methods to investigate a set of @rpatal measurements, ob-
tained for systems of spherical magnetite nanoparticldgfatent temperatures from
10K to 185K.

The methodologies developed in this thesis provides a gasidlit into the prop-
erties of the experimental samples and suggests a possiioid mterpretation of the
measurement results. Moreover, the value of this studyistsredso in that it demon-
strates the difficulties in the interpretation of experitanesults obtained from com-
plex nanoparticle systems. Addressing the questions gixgmess is essential to avoid
drawing erroneous conclusions about the nature of the empetal samples.

7.1 Future outlook

The straightforward continuation of the present work isxterd the present analysis
to understand the question of uniqueness with respect tb@ul parameters, such as
different choices of particle anisotropy or volume digitibns, different types of parti-
cle arrangements ranging from random spatial distribsttorhighly uniform lattices.
A question of fundamental nature is to understand the reafwrthe observed non-
unigueness of inverse problems on microscopic basis. midves linking the macro-
scopic observation of parameters correlation with miaspganvestigation of domain
formation and particle correlation. The method can be assmluo study the inverse
problem for other parameters such as particle size andstshdition, anisotropy and
its distributions.

Another research direction anticipated in the future isriprove the methodolo-
gies developed in this thesis by incorporating differemtisons types for addressing
the inverse problem. The present study was based on idatibfiausing magnetisation
curves and we found that identification of the anisotropypeater K was non-unique
in the high temperature range. Better results might have be&ined by including
also minor hysteresis in the analysis or by concentratindaia of a different nature
such as the temperature dependent magnetization date, mitnetization relaxation
data. It is also possible that combination of several dffiéisolutions might be nec-
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essary to achieve fully unique identification of model pagtars. These questions are
highly nontrivial and give prospects for long-term futurenk.
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Appendix A: Least squares fitting. General

notions

When analysing a real phenomenon there is a necessity tcahtie®retical model of
that phenomenon and experimental evidence of the modebsdt tan be rigorously
investigated and used to make prediction. In general anriempst consists in investi-
gation of a system response to variation of different pataree From the theoretical
point of view this is described by a set of equations or in gaingy a mathematical
model that explains the physical phenomenon involved.

A large group of experiments consist in investigation ofrésponse of the system
to the variation of different parameters. This results amarmarised numerically in two
groups: independent variables (those variables that areatied by experimentalist)
and dependent variables (values that characterise thenssmwf the system to the
independent variable). In general x is used to describenttiependent variable and
y for the dependent variable and for each x corresponds & waluin the case of
magnetization curves the magnetic response of the syster@asured as a function of
the applied field.

To gain a better understanding of the investigated phenomammodel is used.
A model consists of a set of mathematical equations thatibesthe main feature of
the behaviour of the system as function of the independerghlas. A way to obtain
more information from experimental data is to fit those data function, f(x), that
describe the phenomenon. Function f(x) has also a set ofideafs. The reason to
fit the function to the data is to find all or a part of the coeffids. They are called
fitting parameters or parameters of intergot dnd their values need to be obtained
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whereas the rest of the coefficients are known (from the modbm other experi-
ment). Overall our function depends on the independenabbrix and fit-parameters

(p):

y=f(x,p) (1)

The large use of this methodology has made the fitting algostan important subject
in mathematics and in physics. Although they have been edtiufiir a long time a
general rigorous method does not exist. The fitting resuiisdescribe the system
with a certain probability. Based on that probability andlo@mapproach used, the idea
of a good or bad fit is defined. All the methods have a set of aisrtbat needs to be
included:

1. First a meaningful model that describes the data is chdSkoosing an appro-
priate model is very important. For example you can fit alnaost set of data
with a high-order polynomial function but the result is noéaningful because
it does not describe the physics of the investigated phenome

2. Then a function called figure-of-merit function that caéte the agreement be-
tween data and the model is selectéd][ This function differs from algorithm
to algorithm.

3. The extreme point (in general the minimum) of the abovetion with respect
to the parameterpjf corresponds to the best-fit values of the parametstg.(
This transforms the algorithm into a minimisation problem.

4. The values for best-fit parameters are determined.

5. The errors of the obtained parameters are evaluated. Xffegimental data are
not perfect, they will contain errors. For this reason theik not be just a
simple set of parameters that will describe the data. Repptte experiment
several times will give slightly different points that whiave different best-fit
parameters. Depending on the model and on the errors in fheriment, the
best-fit parameters could have the errors too large to belusef
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6. The goodness-of-the-fit is evaluated. This is also vepoirtant because even if
we obtain the fit parameters with acceptable errors thetseeswdy not describe
the data well enough. This can happen for different reasons:

(&) The model is not good or incomplete;
(b) The errors are too big;

(c) There is one or more extra parameters that are needed tiakée into
account;

(d) The function has more than one minimum. This makes themisation
problem difficult;

The first element is not relevant for a general descriptiotneffitting algorithm. For
this section we can assume a good model with general form like

y=f(x,p) 2)

There are a large number of methods for fitting and also @iffeways to test if the fit is
meaningful or not. The most used methods are based on mationof squared errors
between the experimental data and prediction values frothenaatical models. This
methods are called least squares and the main element efrtiethods, that are used
in this thesis are presented in the next paragrags Assuming that the measurement
errors are independent and randomly distributed arountirtieg value as a Gaussian
distribution, then the probability that a point is around thean or expected value (the
'true’ value) has the following form:

;(yry_i

2
p—ce (") ay @)

wherey; is the experimental data corresponding to the independduéx, Y; is the
mean value for the same o; is the standard deviation gf and C is a constant. This
assumption is valid for the magnetization measuremengusecthe dominating source
of noise are the thermal fluctuations which give a Gaussistniblition of errors. We
want to find parameters for the functidiix, p) that describg;. Replacingy; with the
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function f(x;,p), the probability will be big iff (x,p) andy; are very close and will
decrease if they are further away.

1(yi-104p) )2
p—ce t(5 ) ay (4)

For all the points the total probability will be the produdteach of the above proba-
bilities:

N e
" 'ﬂe%<w> Ay (5)
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ot () ©)

The best set of parameters will correspond to the highesigibty P. Maximising P
is equivalent to minimising the sum from exponent, calledstjuare:

¥2 = % (W)Z @)

i1 Oi

Now we have a figure-of-merit functiog?(p) and we need to find the minimum
of the function relative to parameteps Depending on the method, this step can be
simple or complex. For the grid search method this is dong feest, just calculating
x?(p) for each simulated loop aruk; corresponds to the smallggt(p). The second
method (Levenberg-Marquardt method) is more complex kmchom a set of "guess”
parameters, the algorithm automatically in a optimal wagrcees through parameter
space for the smallegf(p) corresponding to the best-fit parameter. If the data that
are fitted are perfect (not affected by noise) or the modekréept (there is just one
possible output form the model), then the best fit will copasd tox?(p) = 0.0 and
parametersp, will be exactly calculated. This is the ideal case, but tlegnetization
measurements are affected by different errors and alsbéoedtical model takes into
account thermal fluctuation. In this case the errors wilpagate tox?(p) and there-
fOI’eXZ(p)min > 0.0 andpi+j; will be determined with an error. First of all we need a way
to evaluate how smaj{z(p)min should be to find out if the fit is meaningful or not. If
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the experiment is repeated the new set of data will be sligtitlerent and als?(p)
will be different. Under the assumption of Gaussian erroesibtainegt®(p) value has

a probability of having any value. Becauggis a sum of Gaussian distributed terms,
X?(P)min follows a chi-square distribution WitN,-M¢ degrees of freedom, whehg,

is the number of data points ai is the number of fitted parameters:

Q(X2,V) X/2-1e/2 \where vaNg-M+ (8)

T 22 (v/2)

There is a certain probabilityQ,.. > ) that the obtaineg?(p)min is smaller thay?

due to chance:

2
>Xiim

QX2>Xﬁm = /X:o Q(XZ,V)dX (9)

lim

Once the goodness of the fit is analysed, we can proceed toa¢wdhe errors in
estimating the fitting parameters. The errors are deteriganvestigating how fast
x? is changing from the minimum values with the change in pataradrom the best
fit values. For this the difference between the chi-squasesdt of parameters and the
minimum chi-square is calculated. The difference of the has the notationx? and
is following a chi-square distribution with M degrees ofdd®m. To evaluate the errors
with a given confidence (1-Q\x? has a limit value which corresponds to a contour
region in parameters space. This contour region corresptnthe errors of the fit-
parameters. The probability Q amxﬁm have the same definition as for determining
the goodness of the fit. Althougt? andAx? have the same definition, they are two
different element:

1. Value ofx? at minimum: a measure of goodness of fit. The degrees of freedo
are equal to the difference between the number of data taée &ihd the number
of parameters to be fitted.

2. How quicklyx? changes as a function of the paramefg%): a measure of the
uncertainty on the parameter. The degrees of freedom ai gxjthe number
of fitted parameters.
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