
Im 



THE TIME DEPENDENT BEHAVIOUR 

OF SOME EVAPORITE ROCKS 

tl ý4 
a .. 

ý `t 

by 

Mohammed Ayoub Sabry Elizzi 
(B. Sc., M. Sc. ) 

May 1976 

A thesis submitted to the University 
of Sheffield for the Degree of 

Doctor of Philosophy 



To 

Ali, Maysa and Omar 



Acknowledgements 

The author wishes to express his sincere gratitude to 

his supervisor, Dr. F. T. Williams, senior lecturer, for his 

guidance, assistance, useful discussion and for the loan of 

reference materials. 

He also wishes to thank the Government of Iraq and 

Calouste Gulbenkian Foundation for their financial support. 

Professor H. T. Hanna, the head of the Department of Civil 

and Structural Engineering is also to be thanked for his assist- 

ance in many ways. 

Thanks are also extended to the following people: 

Mr. Hufdhi Bahia for his valuable friendship and useful 

discussion. 

All the staff of the Department of Civil and Structural 

Engineering workshop, in particular, Mrs. D. Hutson, Mr. E. R. 

Barwell and Mr. J. W. Strafford, for their continuous help. 

Mrs. A. Firth for her accurate typing. 

Finally, the author wishes to express his deep thanks and 

appreciation to his wife Raja'a for her continuous encouragement 

and support. 

-i- 



Note 

Extracts from this thesis were published or accepted for 

publication under the following headings: 

1. "Bending creep tests in gypsum", Journal of the Iraq 

Engineers Soc., 1975, accepted for publication. 

2. "The determination of time dependent behaviour of rock 

under triaxial loading",. Dept. of Civil and Structural 

Eng., Univ. of Sheffield, Research report No. 66, 

July, 1975. 

3. "An apparatus for the determination of time dependent 

behaviour of rock under triaxial loading", Int. Jour. 

Rock Mech. Min. Sci. and Geomech. Abstr., accepted 

for publication. 

4. "A study of the creep properties of gypsum rock under 

triaxial loading" Dept. of Civil and Structural Eng., 

Univ. of Sheffield, Research report No. 72, Jan. 1976. 

0 

- ii - 



SUMMARY 

In practical circumstances the bulk of the rock material 

beneath a foundation, in the surrounding regions of an excava- 

tion, or inside mine pillars is in fact triaxially loaded over 

long time periods. It was felt that studying the creep pheno- 

mena of some evaporite rocks under a triaxial system of loading 

could add valuable information to the limited knowledge avail- 

able on rock behaviour in such conditions. Gypsum and anhydrite 

were initially chosen as suitable evaporite rocks for carrying 

out this work. 

An apparatus has been designed and constructed to enable 

experiments to be carried out on the chosen rocks. The axial 

strain of the deformed rock specimen was measured on the rock 

specimen inside the pressure cell. Triaxial compression creep 

tests were carried out at 10,20 and '30 N/mm2 confining pressure. 

Bending and uniaxial compression creep tests were also performe-: 1 

on the chosen rocks. Instantaneous strengths of gypsum and an- 

hydrite under the given systems of loading were found and various 

percentages of the instantaneous strengths were applied in the 

creep tests. All short term and creep tests were carried out 

at room temperature. 

It was found that the creep behaviour of the tested rocks 

obeyed the following equations: 

Z=A+B logt and/or 

E= ctn 

, The effect of varying axial stress, confining pressure 

and differential stress on the creep behaviour of the tested 

rocks was observed and studied. A method for determining the 
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safe creep stress, at any confining pressure, was suggested 

depending on the creep data available. 
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Chapter 1 

INTRODUCTION 

1-1 General Introduction: 

In rock mechanics problems in the fields of mining and 

civil engineering, the design process is generally concerned 

with the failure of rock material. The influence of high tem- 

perature, presence of solutions, confining pressure, etc. have 

well known effects on the failure properties of rock. Only some 

of these factors will be effectively applicable to any given 

rock structure situation, but such structures can hardly be un- 

affected by the influence of time. The consideration of time- 

dependent behaviour of rocks indicates that rock failure may 

occur in a mine or under a foundation even when the rocks are 

subjected to loads well below their normally short term rated 

strengths. 

Schwartz(77) studied the movements of the roof and floor 

rocks in road ways in French Coal mines and has demonstrated 

that the convergence of the roof and floor depends on time. 

Hofer (36) in Germany reported that the expansion of pillars in 

potash mines due to the mass of the overlying beds also depends 

on time. Denkhaus(18) studied the problem of rock bursts in 

South Africa and reported that rock bursts following after blast- 

ing due to'time effects. Reynolds and Gloyna(7 1) have made creep 

measurements in salt mines in the U. S. A. They reported that 

creep rate decreases as the age of a tunnel increases. Potts (66) 

carried out creep tests in the laboratory and at the Meadow bank 

Rock Salt Mine, Cheshire. He reported that the existing old 

pillars are creeping at nearly constant rate-(His work will be 

dealt with later in this thesis). 
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Hence, from the foregoing investigations and other field 

observations it is evident that crushing of pillars in room 

and pillar workings, closure of salt workings if left undist- 

urbed for a long time, convergence of roof and floor in coal 

mine gate roads, widening of junctions on road ways, sagging 

and settling of the strata behind a long wall faces in coal 

mines, settlement of foundations, delay of rock bursts after 

blasting, etc. suggest that they are time-dependent or " creep" 

processes. 

Thus, time-dependent phenomena or "creep" in rocks is clear- 

ly important to civil and mining engineers. It is not only im- 

portant for the question of the time factor, it is also important 

for questions of stress, for differences of stress distribution 

must occur if we compare slow or fast advance rates in tunnels 

and workings. A knowledge of creep properties offers important 

information to clarify the effects of the time factor in the be- 

haviour of the excavations, it also gives a fair picture of the 

movements of the rock masses surrounding an excavation prior to 

fracture. Particularly in rock subject to large creep strains 

a knowledge of its creep properties is essential in determining 

the time during which a temporary excavation may be safely used. 

Creep studies provide information about fracture possibilities 

well in advance of that event, even at stress levels well below 

the normally regarded instantaneous strength of the rock, the 

only condition being that the second stage of creep has been 

reached and the load is to act for sufficiently long time. 

Obviously, then, an understanding of creep behaviour of rocks 

would be used in mine design,. i. e. mine layout, sizes of galler- 

ies and supporting pillars and in an estimation of'the useful 
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life of mine structures. It also would be of help in the 

development, of strata support and control temperatures. 

Creep of metals is a familiar property to engineers; in 

steels it normally occurs at high temperatures. It has also 

been observed in polymers, glass, ceramics, concrete, mineral 

crystals and rocks., Most of the research work on creep has 

been carried out on metals. The research of creep in rocks is 

still in its earlier stages. However, all investigators in 

this field have found that the creep of rock is affected by num- 

ber of factors, such as the: - 

1. Applied stress: value and method of application. 

2. Temperature of specimen. 

3. Structure of rock specimen: mineral orientation, 

porosity and permeability, composition, etc. 

4. Confining pressure. 

5. Presence of solutions. 

In the research work described here, the effect of applied 

stress and confining pressure on the creep characteristics of 

some evaporite rocks namely, gypsum and anhydrite at room tem- 

perature was studied, and a new apparatus was designed for use 

in this investigation. 

In ciTapter 2a brief discussion about the principles of 

creep in general is given. The general structure and physical 

properties of rocks are mentioned in chapter 3, while the evap- 

orite rocks and especially gypsum and anhydrite are studied in 

more details in chapter 4. A brief review of previous published 

work on creep in general and on rocks in particular are dealt 

with in chapter 5. The experimental work, including short term 

and creep tests in bending, uniaxial and triaxial compression, 
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the results obtained and their discussion are given in the re- 

maining chapters of the thesis. Full details of the new appara- 

tus for experimental study of deformation and creep of rocks 

subjected to triaxial compression stresses, including the de- 

sign, materials used and calibration are given in chapter 8. 

1-2 Stress Conditions and Design Requirements: 

Stresses applied to the rock in the earth crust or in any 

rock structure may have a wide-variety of forces, and in many 

cases it is extremely difficult to assess at the design stage 

the exact nature of a stress field in a rock structure, espec- 

ially when the rock mass is in a fractured state. However, it 

is possible to recognise that in a large number of rock struc- 

ture problems the following states of loading are of. importance: 

1. Bending (tension). 

2. Uniaxial compression. 

3. Triaxial compression. 

It was therefore decided to study the creep properties of 

the chosen rock materials under the influence of various per- 

centages of their instantaneous strengths in the above systems 

of loading. 

The major requirements of any testing machine used for 

creep investigations are the following: 

1. The known required stresses applied to the specimen 

must be kept constant for the whole period of the test without 

affects arising from outside mechanical or electrical disturbances. 

2. The measuring devices, both the stress and the deforma- 

tion, must be accurate, sensitive and capable to measure very 

small variations. 
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3. The deformation measuring devices must be stable, free 

from drift and be unaffected by environmental changes or by 

immersion in hydraulic oil; even at high pressures (in the case 

of triaxial test), for the whole period of the creep test. 

1-3 The Aim of This Research 

The aim of this work is of two parts. Firstly, to design 

and construct a complete apparatus for studying the deformation 

and creep of rock under triaxial compression. Secondly, to 

carry out triaxial creep tests using the mentioned apparatus on 

some evaporite rocks namely, gypsum and anhydrite. Bending and 

uniaxial compression creep tests also were carried out on'the 

same rocks in order to provide supporting evidence of the pro- 

perties*of the materials and in the case of the uniaxial com- 

pression, as a basis of comparison with the triaxial results. 

1-4 Practical Significance of the Work: 

It is. hoped that the information obtained on the creep 

behaviour of the rocks tested may be of use in mines in which 

these materials form the strata of the workings. 

Knowledge of creep of materials under confinement is limited. 

The results obtained are thus an addition to knowledge in this 

field of study. 

Movements of evaporite rocks in the earth's crust and the 

geological structures so produced may perhaps be better, understood 

with additional knowledge of the creep properties of these mater- 

ials. In this respect the extension of the work to oil reservoir 

cap rocks should result in information of use in petroleum engine- 

ering. 

The experimental work has provided a practical base for 
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future work on rock testing and for the design of more power- 

ful test equipment in which higher confining pressures can be 

used. 

1-5 Summary of the Research Programme: 

Short term loading tests were carried out on both'the 

chosen rocks. to find their instantaneous strengths in bending, 

uniaxial and triaxial compression. 

In the triaxial compression tests, three levels of confin- 

ing pressure were used namely, 10,20 and 30 N/mm2. 

The creep tests were then carried out at various percent- 

ages of the instantaneous strength of each rock obtained, using 

the same system of loading as that used in the corresponding short 

term tests. An exception was that the creep triaxial tests of 

anhydrite were carried out at 10 N/mm2 confining pressure only 

due to the limitations in the time available. 

All compressive tests were carried out on rock specimens 

cut from rock mass so that the major stress was applied perpend- 

icular to the rock bedding. Fig. (6-3) gives illustrations of 

specimens with respect to rock bedding. 

All the short term and creep tests were carried out at 

room temperature. 
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Chapter 2 

THE PRINCIPLES OF CREEP 

2-1 Definition of Creep: 

Creep may be defined as the continuous increase in deforma- 

tion of material under constant or decreasing differential 

stress. It may be exhibited in the elastic range, where the 

creep strain may be completely, or very nearly, recovered on 

removal of stress, or in the plastic range, where the creep 

deformation is permanent. In the plastic range an elastic com- 

ponent also exists but in a small amount by comparison. 

2-2 The Typical Creep Curve: 

It was found that the time-dependent strain, or creep, 

curves of materials, including rocks, under stress are generally 

similar. These curves can be represented by what may be refered 

to as the typical creep curve. This comprises, Fig. (2-1), of 

the following four parts: 

1. Instantaneous elastic deformation. 

2. Primary creep (delayed elastic flow). 

3. Secondary creep (steady-state flow). 

4. Tertiary creep (rupture flow). 

2-2.1 Instantaneous Elastic Deformation: 

This deformation is not due to any time effect, it is the 

deformation of the specimen which occurs during the loading 

operation and its magnitude varies with the applied stress. It 

is represented by the part (OA) of the creep curve. In this 

stage the body follows Hooke's Law of deformation i. e. the. 

deformation is elastic and recoverable if the applied stress is 

removed. 
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2-2.2 Primary Creep: 

This stage of creep is represented by the part (AB) of the 

typical curve. It is also known by other terms such as transient 

creep, delayed elastic flow, elastic creep etc. The rate of 

deformation in this stage decreases with time, see part (ab) of 

the curve shown in Fig. (2-2). The deformation at this stage is 

mostly recoverable if the applied stress is removed, i. e. at any 

time (Te) in the period AB, of the typical curve, if the specimen 

is unloaded there is first an instantaneous elastic recovery (EF) 

followed by time-elastic recovery, represented by the curve (FG) 

at a rate which is generally less than the creep rate of (AB). 

The reduction of creep rate at the primary stage is thought to 

result from the gradual closure of any pore spaces or small dis- 

continuities in the material. 

The primary stage of creep is important from the point of 

view of engineering design. Estimation of permissible stresses 

with reference to allowable dimensional tolerance in service can 

be made from the deformation - time curve and preference may well 

be given to designs involving values of stress which will not 

cause creep beyond the primary stage during the expected life of 

the structure. 

2-2.3 Secondary Cree : 

If the decreasing creep rate in the primary stage does not 

vanish, then a stage of secondary creep starts. This is some- 

times called steady-state creep, pseudoviscous flow, minimum 

creep, plastic flow, etc. This stage is represented by the part 

(BC) of the typical curve. The rate of creep in this phase is 

constant and determined by the slope So st of the creep curve 

in, the secondary period, see part (bc) of the curve in Fig. (2-2) . 
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In the secondary stage of creep in crystalline materials the 

movement of the crystals on either side of the slip planes is 

relatively organized and the crystals with preferred orientation 

generally align themselves in the direction of the plane of 

movements after the grain edges have been rounded off(94). The 

creep strain in this stage is irrecoverable, i. e. if the specimen 

at point (H) of the typical curve in the period of secondary 

creep is unloaded the strain curve will follow the path (HIJ) 

with a permanent deformation. The secondary creep stage repre- 

sents from the engineer's point of view, a period in the creep 

history of a material when its ultimate failure may become rela- 

tively imminent. 

2-2.4 Tertiary Cree : 

This stage of creep is represented by the last part of the 

typical creep curve (CD). The rate of strain increases in this 

stage leading to rupture of the specimen, see part (cd) of Fig. 

(2-2). This stage is also known as plastic flow, accelerating 

creep, rupture creep, elastic fatigue, stress corrosion, etc. 

In this stage of creep the strain rate accelerates with time be- 

cause of the formation of line cracks, eventually lowering the 

load carrying area of the specimen(63). Another explanation sug- 

gested for the rupture is that the grain boundaries gradually 

break up because of excessive heating under continuous strain- 

ing(lO). 

An understanding of deformation and fracture of rocks in 

the tertiary creep phase possibly help in understanding the rock 

behaviour and fracture immediately prior to earthquakes and in 

mine rock bursts. 
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2-3 Rheological Behaviour of Rocks: 

The time-dependent behaviour of different materials may 

be classified on the basis of observed reactions in the form 

of a series of rheological models. Such an approach may be 

justified by comparing the actual time dependent properties of 

the real material with an idealized rheological element. The 

models consist of one or combination of more of the simple ele- 

ments: spring (elastic element), dash pot (viscous element) and 

frictional contact (plastic element). A number of these models 

will be described in the following sections. 

2-3.1 Elastic Deformation: 

Any material that behaves in perfectly elastic manner is 

called a Hookean substance. The relation between its uniaxial 

stress (a) and strain (E) follows the equation. 
Q (2-1) 
e 

where E is the modulus of elasticity (Young's modulus) which is 

a constant of the material. The spring is a mechanical model for 

such material. Fig. (2-3) shows the model (spring) and the graph- 

ical representation of stress-strain relationship which is a 

straight line passing through the origin with a slope equal to 

(E). 

2-3.2 Viscous Deformation: 

The model of this behaviour is a dash-pot, see Fig. (4-2) . 

Any material exhibiting purely viscous properties is known as 

Newtonian substance. The relation between the stress (a) and 

the strain rate (E') with respect to the time follows the equa- 

Lion: 

Q' il E (2-2) 

where n is a constant of the material known as its viscosity. 
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If the stress applied (a) kept constant at (ao) then Eq. 
v 

(2-2) will be ! Lc- n and by integration 

a0t 

n 
(2-3) 

It can be seen from Eq. (2-3) that the strain increases 

linearly with time, see Fig. (2-4b). 

2-3.3 Plastic Deformation: 

This may be represented by friction contact, Fig. (2-5). 

The material will not deform if the applied stress (a) is less 

than (ao) and will deform permanently if a= ao. Also, the 

material in this case will not support a stress greater than (a0). 

The stress-strain relationship, shown in Fig. (2-5b) must, there- 

fore, be, a straight line parallel to the strain axis at stress 

equals to (ao). This value is called the yield stress. 

2-3.4 Viscoelastic Deformation - Maxwell Unit: 

A simple combination of elements which shows viscoelastic 

behaviour can be represented by the Maxwell unit. This unit is 

composed of a dash-pot (viscous element) in series with a spring 

(elastic element) as shown in Fig. (2-6) . Assume, (en, an) and 

(eE, aE) are the strain and the stress in the dash-pot and the 

spring respectively, then from Fig. (2-6) 

a= arl = aE (2-4) 

E= En + EE 
(2-5) 

Differentiating Eq. (2-5) with respect to time gives 

e' = sn + EE (2-6) 

Substituting Eqs. (2-1) and (2-2) in Eq. (2-6) gives the 

following stress-strain relationship 

Q+Q. 
£nE (2-7) 

Assume a constant stress (ao) is applied at time equal to 
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zero. As the stress is constant therefore a' = 0. From equa- 

tion (2-7) where a, * =0 and a= co then ° 

By integration of the above equation 

c_ "ot +K (2-8) n 

Where K is the constant of integration and equal to the 

elastic strain co E) that occurs when the stress is applied 

at t=0. Equation (2-8) can be rewritten in the form: 

clot a 
e=+0 (2-9) 

n 
aot ao 

when e= 0 then =- nE 

or t=-E -11 = constant 

Thus different values of Go will give different straight 

lines on the strain-time plane, all of which emanate from a sin- 

gle point (A) on the time axis given by t=-E as illustrated 

in Fig. (2-6b) . 

Equation (2-9) represents steady state creep (secondary 

stage) but does not include transient creep (primary stage). 

If the strain is kept constant at a value equal to (co) 

then e'= 0. Eq. (2-7) will be °-ý _-E Qn 
which on integration gives: 

Q= vo t exp (- nt) I (2-10) 

where (Qo) is the stress at t=0 necessary to produce the 

strain (e o) . Eq. (2-10) represents stress relaxation from its 

initial value under conditions of zero creep rate. 

2-3.5 Firmo-Viscous Deformation - Kelvin Unit: 

This behaviour can be represented by a spring and a dash-pot 

in parallel which is called Kelvin or Voigt unit, as illustrated 

2-7 



in Fig. (2-7). For this unit the following conditions will 

apply - 

Q=v+ QE (2-11) 
n, 

C= Cn = CE (2-12) 

Substituting Eqs. (2-1) and (2-2) in eq. (2-11) 

a= Ec + nc (2-13) 

Assume that a constant stress ao is applied to the unit at 

t=0, when c=0. Then integration of Eq. (2-13) leads to 

E_°1- exp (- Wit) (2-14) 

Equation (2-14) shows that the strain c=0 when the time t=0 

and equal to E after an infinite time. 

This behaviour represents primary creep but does not in- 

clude secondary creep stage. 

If the unit is deformed to some value of strain co and then 

the stress is removed. Eq. (2-13) becomes 

Ec = -nc' or 

E' E 
Cn 

which on integration gives 

e=eo (exp (- Ett) (2-15) 

Thus the strain relaxes under zero stress, but will take 

infinite time before the strain completely vanishes. 

2-3.6 Elastoplastic Deformation - St. Venant Unit: 

The material which shows an elastoplastic property is known 

as St. Venant substance whose behaviour can be represented by a 

spring in series with a friction contact as shown in Fig. (2-8). 

This material is perfrectly elastic for stress less than ao 

(yield stress),, i. e. it follows Eq. (2-1) and is perfectly 
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plastic at stress equal to ao,. see section (2-3.3). 

2-3.7 Bingham Unit: 

The St. Venant Unit (section (2-3.6) has no restriction on 

its deformation once the yield stress is exceeded. Bingham re- 

movedthis disadvantage in his unit, Fig. (2-10), which consists 

of a dash-pot, a frictional weight and a spring in a series. 

This unit gives a'reasonable representation of the deformation 

of a material having a yield point. When the applied stress is 

less than a certain value ao(yield stress) the body deforms 

elastically, i. e. follows Eq. (2-1), and for greater stress de- 

forms with steadily increasing strain. 

If a constant stress a is applied at t=0 then 

(a) For a< Qo 

e=E (2-16) 

(b) For a ao 

(Q -Q )t °+E (2-17) 
n 

2-3.8 Burger's Model: 

Behaviour of real materials is more complex than to be 

represented by one of the previously described units. Many in- 

vestigators have suggested how different models may be built up 

from combinations of the above units. 

One of the more useful complex models is the M. V or Burger's 

model which consists of Maxwell unit in series with Kelvin-Voigt 

unit as shown in Fig. (2-9a). This model may, nearly, represent 

the creep phenomenon, i. e. the spring, E1 in Maxwell unit re- 

presents the instantaneous elastic deformation, the Kelvin-Voigt 

unit represents the primary creep stage or the delayed elastic 

deformation. The component of secondary creep, or psuedo-viscous 
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deformation, is contributed by the dash-pot nl of the Maxwell 

unit. 

If a constant stress ao is applied to the model at t= Or 

the total strain in the model will be 

e= CK + cm (2-18) 

where eK = deformation of Kelvin unit as given by Eq. (2-14) 

and eM = deformation of Maxwell unit as given by Eq. (2-9) sub- 

stituting the values of eK and eM in Eq. (2-18) gives 

a" EtQtc 
e=°1- exp -2+°+° (2-19) E2 n2 nl E1 

If Eq. (2-19) represents the creep behaviour of some rock 

under constant stress ao, then the term Ei represents the in- 
a 

stantaneous deformation while the exponential term 

Et 

EE2 1- exp (- 
n2 

2) 
represents the recoverable primary creep. 

2 

The steady-state deformation which is irrecoverable is represented 

by the term 
vot 

Fig. (2-9b) shows the strain-time relationship 

in Burger's model. 

Obert and Duvall (56) 
mentioned that Burger's model may 

closely represent the creep properties in some rocks when sub- 

jected to sudden constant uniaxial or triaxial loading. This 

representation requires suitable choice of the four constants, 

E1, E2, rnl and n2. 

In time-dependent studies, many investigators such as Hardy 
(31) 

on rocks, Afrouz and Harvey(2) on rocks within the soft to medium 

strength range, Lee and Markwick (see Reiner (70)) 
on bituminous 

road materials and others have indicated that the creep behaviour 

of the material follows,. or nearly follows, the behaviour of 

Burger's model. 
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2-3.9 B-V Model: 

., In applying Burger's model to the creep behaviour there is 

one important defect which is when a constant stress is applied 

to the model and after the delayed elastic deformation due to 

Kelvin unit (E2,112) Fig. (2-9) is. complete, the model would con- 

tinue. to deform at a uniform rate indefinitely due to the Maxwell 

dash-pot (nl), even if the applied load is extremely small. A 

modified model which consists of a Voigt unit in series with 

Bingham unit as shown in Fig. (2-11) has been suggested. This 

is known as B-V model. In this model the spring E1 represents 

the instantaneous deformation, while the Voigt-Kelvin (n2, E2) 

represents the delayed elastic deformation. 

Before the pseudo-viscous deformation by the dash-pot (nl) 

takes place the frictional resistance of the weight (W) must be 

overcome. The stress necessary to overcome the frictional re- 

sistance, as in Bingham unit, represents the yield strength of 

the material. This resistance, in B-V model, represents the 

long term strength of the solid. In a series of creep experi- 

ments on beams of Pennant and Wolstanton Sandstones in simple 

bending, Price(69)indicated that the data obtained followed the 

behaviour of B-V model reasonably well. 

In order to decide which, if either, models, Burger's or 

B-V, will represent the creep behaviour of a certain rock, it 

is necessary to obtain creep data of that rock at different 

stress levels. From the data a curve of. rate of secondary creep 

versus stress is plotted, this curve then must be compared with 

a similar relationship of the two models as shown in Figs. (2-9c) 

and (2-lib) for Burger's and B-V models respectively. 
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2-4 Practical Use of Rheological Models 

The practical purpose of rheological models lies in the 

field of long term prediction of material behaviour. Frequently, 

the long term deformation at low stress levels are required when 

the time available for testing may be two or more orders of 

magnitude less. 

In these circumstances "accelerated tests" involving higher 

stresses than design values can be fitted to a model which - 

when a good fit is possible - may then be used to predict the 

required long term behaviour. For this purpose some investigators, 

see Attewell 6), have assembled models far more complex than the 

Burger's or B-V'models, There is little purpose in describing 

these in detail as they generally refer to particular material 

under investigation. 
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Chapter 3 

SOME PHYSICAL STRUCTURE AND MECHANICAL PROPERTIES 
OF ROCKS. 

r 
3-1 Porosity 

Among the important properties of rocks is their porosity, 

which may be defined as the ratio, usually expressed as a per- 

centage, of the volume of the pore space to the total volume 

of the rock: 

I 
VV 

x 100 = 1+e e x 100 
VS+Vv 

where: 

n: porosity, percent 

Vv : Volume of pore space or Voids volume 

VS Volume of solid rock. 
Vv 

e void ratio = Vs 

(3-1) 

Porosity in rocks varies from as much as 30% in the case 

of sandstones and limestones to less than 0.5% in some igneous 

and metamorphic rocks. The difference in the magnitude of the 

porosities of various rocks arises from the difference in their 

mode of formation and their physical structure. 

In the case of igneous rocks a slowly cooling magma will 

render a relatively non-porous rock, whereas a rapidly cooling 

lava particularly associated with escaping gases will yield a 

porous rock. Metamorphic rocks have been formed by recrystallisa- 

tion due to heat and pressure, and possibly by the invasion of 

hot magmatic solutions (as has been suggested, for example, in 

the case of granites). In general, however, the small degree of 

porosity in igneous and metamorphic rocks is probably due to 

misfit between the mineral crystals composing the rocks arising 

from differences in thermal, elastic and plastic properties 
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between different minerals or between different directions in a 

given mineral crystal. Such misfits may result in inter- or 

intracrystalline cracks because of the'inherent brittleness of 

most mineral crystals, and these cracks may very well be the 

main source of porosity in these rocks. Sandstones and limestones 

have been formed by the cementing together of roughly equiaxial 

particles (sand grains and fossil organisms respectively) after 

the sedimentation process, so their porosity will depend largely 

on the amount of cementing materials present and the size and 

packing of the granular constituents. Therefore, it is not dif- 

ficult to see that such rocks could have a high degree of poros- 

ity. Shales, which in general have a relatively low porosity, 

have been formed by the coagulation of sub-microscopic colloidal 

clay particles, and depend for their cohesion on the surface 

forces between the clay particles. During the process of con- 

solidation of the shale, water is squeezed out from between the 

clay particles, and the particles, which are plate-like in shape, 

tend to become aligned with their planes roughly parallel, giving 

rise to the familiar shaley parting. This also means, however, 

that the porosity of consolidated shales will be relatively low 

as compared with bodies formed from particles which are more 

nearly isometric. 

Evaporites, (such as gypsum and anhydrite) have been formed 

by deposition from solution, during the evaporation of shallow 

seas. They may have some degree of intercrystalline porosity 

because of the solvent water, but since the crystals concerned 

deform plastically at fairly low stresses, much of this porosity 

can be eliminated by consolidation. Jones(42)found that the 

average porosity of Sherburn gypsum (used in the experimental 

3-3 



work) is 0.88%. It'should be noted that a porous material is, 

not' necessarily permeable, e. g. sandstones and gravels. are com- 

monly both porous and permeable, since they allow water to pass 

through, but clay is porous but impermeable, since it will not 

allow water to pass through. Many investigators such as Price, 

1960.; Kowalski, 1966; and Smorodinov et all 1970, see 

Vutukuri(84), indicated that compressive strength of rocks 

decreases with increase in porosity. Ryshkewitch (76) 
and 

Duckworth (20) 
suggested the following relationship between 

strength of ceramic and its porosity 

Cy = vo exp(-CP) (3-2) 

where: Q= strength of porous body; ao = strength of non-porous 

body, of the same material; P= frictional porosity; and C'con- 

stant. One of the reasons for decreasing strength with increasing 

porosity is that if a rock has internal space its cohesion, mole- 

cular or mechanical, will obviously be affected by the amount of 

remaining internal contact between its constituent fractions. 

This will be less in the case of a highly porous rock and this 

will be reflected in the strength of the rock. 

3-2 Anisotropy 

A body is said to be anisotropic if its physical properties 

are unequal when measured in different directions. The extent 

to which a rock is anisotropic is a function of its type and 

mode of formation. Generally speaking, since many rocks have a 

preferred particle and crystal orientation, they are anisotropic 

and would be expected to react differently to forces in different 

directions. Most igneous rocks have a dense, interlocking fabric 

with only slight directional differences in physical properties 

(almost isotropic), with the exception of many surface flow rocks 
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and near surface intrusives and of some deep-seated intrusives, 

such as gneissic granites, which show flow structure at the 

periphery of the intrusion. Metamorphic rocks are the most 

striking with respect to anisotropy due to the alignment of the 

mineral crystals during the formation process as the result of 

recrystallization under stress. Some sedimentary rocks such as 

shale, sandstone and some limestones are laminated and therefore 

show considerable anisotropy. Other sedimentary and evaporite 

rocks such as rocksalt, gypsum, anhydrite and many limestones 

show only slight anisotropy. Anisotropy is difficult to study 

particularly as regards it effect on fracture and plastic deform- 

ation. 

Donath(19) carried out experimental triaxial compressive 

tests on group of Martinsburg slate specimens prepared so that 

the-cleavage plane varied in 15 degree increments from 0 to 

90 degrees, from the direction of the major applied compressive 

stress. He found that the maximum shear strength was 9400 psi 

while the minimum was 600 psi. Other investigators found that 

in some sedimentary and foliated rocks, the tensile and flexural 

strengths are generally lower in the direction perpendicular to 

the bedding or foliation than in directions parallel to this. 

3-3 Homogeneity 

A rock is considered as homogeneous if the size and shape of 

grains or crystals are evenly distributed through the rock mass. 

From this definition it should be noted that depending on the 

grain or crystal size, homogeneity must be defined-with reference 

to the volume of the-body considered. A rock which may be 

fairly homogeneous in mass may be completely heterogeneous when 

a'hand sample is considered. It is essential to distinguish 
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between the isotropy and homogeneity. Isotropy, as defined 

previously, is a"property regarding the stress-strain and strength 

behaviour at a given point. Whereas a homogeneous body has 

stress-strain properties whatever they may be are the same at 

all points. As mentioned above, homogeneity is largely depend- 

ent upon scale and it would be possible to describe a finely 

grained massive rock as homogeneous, whereas a piece of large- 

grained rock with limited dimensions must be considered hetero- 

geneous. 

3-4 Stress: 

Stress or intensity of loading is the total force trans- 

mitted per unit of area. It is usually estimated by the follow- 

ing general equation: 

P 

where: 

a: The stress, force per unit area. 
P: Total load in units of force 
A: The area of the body normal to the direction of 

the applied load (P) and over which load is dis- 
tributed, in area units. 

There are two main types of stresses: 
(a) Direct or normal stress: 

1. tensile stress. 

2. compressive stress. 

(3-4) 

(b) Shear stress which exists between two parts of a body 

in contact, when the two parts exert equal and opposite forces 

on each other laterally in the direction of a tangent to their 

surface of contact. 

the axial In uniaxial loading (compression or tension), 

stress is calculated by 

P (3-5) 
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Whereas in triaxial loading, the normal stress and the shear 

stress on the plane of failure are calculated by: 

v1+Q3 vl-Q3 
Qn =-2-+2 cos 2e 

TS 
°12x3 

sin 2e 

where: 

on : the normal stress on the plane of fracture 

Ts : the shear stress on the plane of fracture 

Q1 : the major axial stress 

Q3 : the minor horizontal (confining) stress 

E) : the angle between the plane of fracture and the 

minor stress. 

3-5 Strain: 

When external forces are applied to a body there is a 

(3-6) 

(3-7) 

change of shape, and normally volume, and the body is said to 

be strained. The main types of strain are: 

(a) Longitudinal strain, c, sometimes is called axial 

strain (tensile or compressive) 

elongation or contraction 
original length 

-, (b) Shear strain, y, which is defined as the angular change 

in a right angle 

Y 
deflection in direction of shear force 
distance between shear forces. 

(c) Volumetric strain = change of volume 
original volume 

Strain is a dimensionless ratio, sometimes is given as a 

percentage of the original dimension, i. e. strain x 102. In 

this research the author deals with the longitudinal strain 

only which is measured in microstrain, strain x 106 or percentage. 
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3-6 Modulus of Elasticity: 

It is also known as Young's Modulus which is the ratio of 

the stress in a body to the resulting strain produced in the 

stress direction. Young's modulus is constant for every material 

within its elastic range, i. e., where Hooke's Law is obeyed. 

Rocks in general are not homogeneous, anisotropic materials 

and the stress-strain curves are not linear. Thus, the modulus 

of elasticity of rock material is not constant. through the whole 

range of the stress-strain. Therefore, various moduli of elast- 

icity may be given for each rock depending upon the value of 

stress applied and whether the stress is increasing or decreasing. 

There are four methods of measuring modulus of elasticity which 

are useful for comparative purposes, see Fig. (3-1). 

3-6.1 Initial Tangent Modulus, Ei: 

It is the slope of the tangent to the stress-strain curve 

at the origin. Ei = tan el. 

3-6.2 Secant Modulus, ES: 

This is the slope of the straight line joining the origin 

and any chosen point (D) on the stress-strain curve, usually 

quoted at stress equals 50% of the compressive strength of the 

rock. E. = tan A2. 

3-6.3 Tangent Modulus, Et: 

It is the slope of the stress-strain curve at specified 

stress (ac) . Et = tan 63. 

3-6.4 Chord Modulus, Ec: 

This is the slope of the straight line joining any. two 

chosen points on the stress-strain curve. For example, the two 

points A and B in Fig. (3-1) . 
Ec = tan 64. 

I 
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In this research the moduli of elasticity of the tested 

rocks are evaluated by making use of the instantaneous strains 

and their corresponding stresses, at various confining pressures, 

applied during the creep tests. 
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FIG. 3-1 STRESS-STRAIN CURVE OF ROCK. 
VARIOUS MODULI OF ELASTICITY 

Tan 61 = Initial tangent modulus, Ei 
Tane2= Secant modulus, E5, at point 'D 

Tan03= Tangent modulus, Et, at point C 
Tan 6L= Chord modulus, Ec, between points A and B 
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Chapter 4 

THE EVAPORITE ROCKS 

4-1 General: 

The evaporite rocks are non-clastic sedimentary rocks re- 

suiting from the evaporation of saline water. Most evaporites 

are derived from bodies of sea water. There are two views as 

to-the origin of thick beds of evaporites: 

(a) The first suggests formation in a sabkha environment. 

Sabkha is an Arabic term which refers to the broad, salt-crusted, 

supra-tidal surfaces or coastal flats bordering lagoonal or 

inner oceanic shelf regions. An essential feature of the sabkha 

is that it is only flooded occasionally. Coastal sabkha consists 

of carbonate sediments. Salt water is drawn into the pores of 

the sediment and evaporation from the sabkha surface causes concen- 

tration of the seawater solution. Seawater also sinks into the 

sediments during the infrequent flooding of the area. Gypsum is 

extensively depositied together with some primary anhydrite. 

Rock salt forms as a superficial crust, most of which is removed 

by the periodical flooding. However, some is carried down into 

the sabkha sediments and may ultimately crystallise there. 

(b) The second suggests formation by evaporation of isolated 

seawater. The Dead Sea in Jordan is a well-known example. 

Evaporites begin to form when seawater, is concentrated to about 

50%, or slightly less, of its original volume. 

The deposits are formed in the reverse order of their solu- 

bilities, i. e. the least soluble at the base while the most sol- 

uble at the top. A typical evaporite sequence from the top'to 

the bottom is as follows: 
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(a) Potash and magnesium salts, -(sylvite, KC1; carnallite, 

KC1. MgC12.. 6H20; Kieserite, MgSO4. H20; etc). 

(b) Rock salt layer. 

(c) Gypsum or anhydrite layer. 

(d) Dolomitic limestone layer. 

Because of the high solubility of layers (a) and (b), it 

commonly happens that these layers are re-dissolved during the 

next invasion by the sea. If, however, a layer of impervious 

sediment is deposited above the evaporite sequence, the highly 

soluble layers may be preserved. In this way several sequences 

may be deposited in a rhythmic fashion. Major evaporite fields 

of considerable economic importance occur at Dead Sea, Jordan; 

Trucial Coast'of Arabia, Abu-Dhabi; Stassfurt, Germany; Cheshire, 

North Yorkshire and South Durham, U. K.; Arizona, New Mexico-and 

California, U. S. A.; Salzburg, Austria; Chile and elsewhere. 

Gypsum and anhydrite were chosen for use in this research. 

Brief details will be given about each of these in the following 

sections. 

4-2 gypsum 

Gypsum is a chemical compound of 46.5% S03,32.6% CaO, and 

20.9% H20. 

It is known as Hydrous Calcium Sulphate and represented by 

the chemical formula CaSO4.2H20. Gypsum is the most common natural 

sulphate It"occurs in several forms, each characterized by its 

own. textural identity. The massive, fine-grained, translucent 

vpLriety is called alabaster; fibrous, silky varieties, often 

occurring as veins, are known as satin spar; well-formed, crystal- 

line, clear varieties are named sclenite; white, earthy opaque, 

more massive types are called gypsum rocks. Gypsum is formed by 
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the evaporation of-seawater in shallow inland seas at tempera- 

ture conditions below 25° C; above this temperature the anhydrous 

form, anhydrite, is deposited. It is also formed by the decom- 

position of pyrite (FeS2) in the presence of calcium carbonate. 

Gypsum is frequently formed by the hydration of anhydrite in the 

presence of water under low external pressure (at the maximum 

average depth of 100 to 150 m). In this alternation of anhydrite 

to gypsum there is a volume increase of about 30% which involves 

numerous and complex local disturbances in the mode of occurrence 

of the gypsiferous strata. The majority of huge gypsum deposits 

in the world have been formed in this way. 

Gypsum has considerable variation in colour, but pinks, 

reds, yellows and whites are most common. The tints and colours 

sometimes found in gypsum are due to the presence of iron. 

Presence of organic matter or disseminated clay gives rise to a 

pale grey colour. 

Gypsum is a soft rock of Mohs hardness equal to 1.5 to 2 

(can be'scratched by the finger nail) and specific gravity of 

2.32. It, has a monoclinic crystal system. 

Sedimentary gypsum deposits are found all over the world 

in strata of different geological ages. In commercial deposits, 

for example, it is found in west and north of Iraq; Yorkshire, 

Netherfield, etc. in Britain; New York, Arizona, etc. in U. S. A.; 

Western Urals, Bashkiria, etc. in U. S. S. R.; Germany; Rumania; 

etc. 

Gypsum is used for the production of plaster of Paris, 

uncalcined -(natural) gypsum is used as a retarder in Portland 

cement. It is, sometimes, used instead of bricks, in the con- 

struction of walls and partions in the building industry. 
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The gypsum which was used in this research is from the 

British Gypsum Co. mine at Sherburn in Elmet, North Yorkshire, 

U. K. Its average composition was (91.5%) gypsum, (5.5%) anhy- 

drite, (2.7%) Carbonate and (0.3%) clay. The workings of the 

mine lie at a depth of about (50) meters below ground surface. 

4=3 Anhydrite 

Anhydrite is anhydrous calcium sulphate and represented by 

the chemical symbol CaSO4. Its chemical composition is 41.2% 

CaO and 58.8% 503. Anhydrite occurs in much the same manner as 

gypsum and is often associated with it but is not nearly so com- 

mon. It occurs in huge masses in thick sedimentary strata. The 

hydration of anhydrite is common in nature and reacts according 

to the following equation: 

CaSO4 + 2H20 CaS04.2H2O 

Anhydrite Water Gypsum 

This type of reaction results in a change of volume about 30%. 

It can be seen that great forces of disruption will consequently 

be involved in this reaction. It is quite probable that the 

thick anhydrite strate in gypsiferous regions have derived from 

the dehydration of original gypsum strata caused by the pressure 

of the overlying rocks. 

Anhydrite is harder and heavier than gypsum, its Mohs hard- 

ness (3) to (3.5) and specific gravity (2.8) to (2.9). It is 

white when pure, often found blue, grey, sometimes tinged red in 

colour. Anhydrite crystallizes as tabular orthorhombic crystals, 

which break up into rectangular fragments, owing to the presence 

of three perfect cleavages. 

Anhydrite is used chiefly in the production of binding 

materials (cements). Dense cryptocrystalline varieties are also 
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used for ornamental purposes. It is also used as a source of 

sulphur in manufacture of sulphuric acid. 

Anhydrite is found in many areas, such as, West and West 

North regions of Iraq; Wieliczka in Poland; Billingham in U. K.; 

Stassfurt, Prussia; Texas, New Mexico in U. S. A.; Gorky regions, 

Urals in U. S. S. R. and elsewhere. 

The anhydrite which was used in this research was from the 

ICI mine at Billingham, U. K. The average analysis of the rock 

was (90%)' calcium sulphate; (5%) limestone and dolmite; (3%) 

silica; and (2%) of alumina, ferric oxide and traces of potash 

and soda. The workings of the anhydrite mine lie at depths vary- 

ing from 130 meters to 280 meters below OD. 
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Chapter 5 

BRIEF REVIEW OF PREVIOUS WORK ON CREEP 

5-1 Creep of Metals: 

It is the field of metals where research on the. creep 

phenomenon has made the most significant progress. For somewhat 

over 140 years it has been known that metals exhibit creep de- 

formation under load. From the beginning of the 20th century 

the subject of creep in metals has assumed ever increasing 

importance due to the enormous industrial progress of man and 

the consequent vast use of metal. During recent years there has 

been 'a rapid rise in the working temperatures of steam boilers, 

in high speed aircraft, missiles, rockets, nuclear reactors and 

in other directions where'high temperatures are expected. The low 

(freezing) temperature effect on creep is equally important from 

the point of view of design of refrigeration equipment and to 

prove the working-ability of materials in Arctic Regions. The 

present advances of space exploration and interplanetary travel 

has'necessitated the development of very high speed rockets. 

The abnormally high temperature produced due to frictional resist- 

ances in the atmosphere and within the engines render these 

vehicles' susceptible''to high rates of metal flow and possible 

f ai lure. 

Hundreds of papers have been published on various aspects 

of creep in this field. Only some of the investigators work will 

be summarized here. 

Phillips (62) (1905) carried out tensile creep tests on copper, 

platinum, silver, gold, iron and steel wires. He indicated that 

the creep follows the logarithm law of the form: 
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x_a+b log t (5-1) 

where x is the stretch; t is the time; a and b are constants 
(3) for a particular pull. Andrade (1914) carried out tensile 

creep tests on several metal wires, 'such as lead, tin, iron, 

copper, etc. at various temperatures. -He, reported that the 

creep characteristic of all the single metals he studied at a 

constant temperature follows the equation: 

L= Lo (1 + ßt1/) exp. kt (5-2) 

where L is the length of the wire at time t; Lo represents the 

immediate length on loading; t is the time after loading; o and 

k are constants. On various steel bars Dickenson 
(17) (1922) 

carried out two series of tensile creep tests: 

(a) Specimens being subjected to constant load and constant 

temperature. 

(b) Specimens being subjected to constant load and uniformly 

rising temperature. 

He plotted'several curves of temperature of specimen versus 

time-required to produce a certain extension or rupture. He did 

not introduce any equation but he reported that up to temperature 

4000C all the steel, he tested, extended alike. He also indi- 

cated that as the temperature increases the time required for a 

specimen to extend to a certain value under a constant load de- 

creases. Weaver (S8)(1937) 
carried out creep tests on steel at 

constant stress and temperature. His long-time creep tests ex- 

tended over various periods of time from 1000 hr to 5 years. 

He reported that the creep rate for steels at constant stress and 

elevated temperature at any time equals to the sum of (a) the 

strain hardening (plastic action) rate which varies inversely 

5-3 



with time and (b) an asymptotic constant creep rate (viscous - 

flow rate). 

The fact that any equation designed to fit a creep curve 

cannot apply over the whole experimental range is illustrated by 

the behaviour of many metals at low temperature. Wyatt(95)(1953) 

tested polycrystalline copper over the range 77-443°K and found 

that at the lower temperatures a logarithmic relationship held, 

but at higher temperature the strain is greater at a given time 

than predicted by the logarithmic equation. He proposed the 

following equation: 

c=A log t+ Btn + Ct (5-3) 

where e is the creep strain; t is the time; A, B and C are con- 

stants and n 
3. 

Further information and details of creep in metals is con- 

tained in work and papers by, Kennedy (44) 
, Honeycombe 

(38) 
, Nadia (53) 

Penny and Marriott (60) 
, Conway 

(13) 
and others. 

5-2 Creep of Non-Metallic Brittle Solids. 

5-2.1 Creep of Mineral Materials: 

Creep of mineral materials has been dealt with in detail 

.A brief account of some of the import- by Murrell and Misra51ý 

andt observations of creep in various artificial mineral materials 

namely concrete and cement mortar, ceramics and glass will-now 

be outlined. 

5-2.1.1 Creep of Concrete and Cement Mortar: 

Since the time when concrete has been used in structural 

members, the significance of the creep properties of plain, rein- 

forced and prestressed concrete members has been investigated. 

In 1934 Davis(16) and others were among the first who carried 
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out creep tests' on plain concrete cylinders. Ross (74) (1937) 

suggested the following equation should be'used for creep in 

concrete: 

C= A+Bt 
(5-4) 

where C is the creep strain in deflection; t is the time after 

loading; A'and B are constants. Equation (5-4) may be expressed 

in-the form t=A+ Bt which represents a straight line equation 
C 

of- versus t, which, if plotted, has a slope-of B and an inter- 

cept on the I 
axis of A. He indicated that several factors 

affect the creep in concrete. among which are: stress, water-cement 

ratio, humidity, age of concrete at time of loading, size of 

specimen, class of cement, mineral character of the aggregate, 

aggregate-cement ratio,, ' temperature,, etc. Washa (85) (1947) carried 

out creep tests on reinforced concrete thin slabs which were sub- 

jected to sustained loads for 5 years. He indicated that the 

importance of the'plastic flow problem in thin reinforced con- 

crete slabs"is forcibly emphasized by large increase in deflections 

and strains-that were obtained over a-5 year period. He observed 

that the plastic deformation increased rapidly as the ratio of 

span length to depth of slab (L/D) increased, so he suggested 

thdt design specifications should provide proper restrictions 

regarding the maximum value of this ratio. Later on Washa and 

F1ück(86'$7)(1952-1956) investigated the effect of compression 

reinforcement on: the plastic flow of both simple and continuous 

ordinary concrete beams. They found that such reinforcement had 

a significant effect on the creep deflection and compressive 

strain of the beams. It was also shown that the creep deflection 

at 2.5 years in test beams of span/depth ratio (L/D) of 70 was 

4 to 6-times that of beams with L/D ratio of 20. Ross 
(75) (1958) 
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made observations on'elasticity, creep and shrinkage of concrete. 

He indicated that two equations can be used to represent the 

creep in concrete, the first is the Kelvin-Voigt equation (see 

equation 2-14 of section 2-3.5), the second is the following 

£ý'Ec+a ABt t 
(5-5) 

where A and B are constants. He indicated that creep strain 

due to a constant sustained stress on concrete at diminishing 

rate for several years may amount to several times the initial 

elestic strain. He said that it is the loss of interstitial 

water by evaporation which causes shrinkage and movement of inter- 

stitial water under stress causes at least some of the creep. 

'Neville (54) (1959) has shown that creep in concrete is not asso- 

ciated'with any loss of water from mortar but is probably related 

to its internal movement. He speculates that it might be voids 

in'the cement paste which are responsible both for its strength 

and high creep. Ibrahim(40) in (1972) fitted creep data obtained 

from , his experiments on early strength light-weight aggregate 

(sollte) concrete in the equation (5-4) which was suggested by 

Ross. Ibrahim carried out bending creep tests on concrete beams 

subjected to four-point dead load for various periods of time up 

to 
, 
400 days. 

Williams (89) (1973) carried out uniaxial creep tests on cyl- 

indrical concrete specimens 300 mm long by 150 mm diameter of. 

two different mixes. The specimens were loaded uniaxially by 

means of compressed gas/hydraulic creep rigs designed and con- 

structed 'at Sheffield University. The longitudinal deformation 

of the specimens was measured by four Demec gauges of 20 mm 

nominal length. He indicated that the data obtained fitted the 
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following equation which was suggested by Jones (U. S. Bureau 

of Reclamation, Engineering Monograph No. 29,1961). 

EE+ f(K)loge (t+l) 

where 

1= 
Unit strain of concrete per unit stress. Ec 

1= Instantaneous unit strain'per unit stress. 

K= Age of concrete at the time of application of load, 

day. 

t= Loading duration, day. 

(5-6) 

All the experiments were carried out at room temperature. 

Glucklich and Amar (29) (1972) carried out creep experiments 

on mortar specimens. They studied the volumetric creep of speci- 

mens subjected to triaxial compression. Three types of aggreage 

were used. Each. specimen was 150 mm high by 75 mm diameter and 

contained a specially designed dilatometer that was embedded 

during casting. This was used as an internal volume change meas- 

uring device. The displacement of pressurized liquid within 

which the specimen was to be immersed indicated the external vol- 

ume change. They indicated that, from the data obtained, the 

dilatometer measurements are fairly useless. They reported that 

the instantaneous bulk modulus was found to be independent of 

the load. They also indicated that all instantaneous strains 

were recoverable, whereas the time-strain was almost entirely 

" non-recoverable. 

5-2.1.2, Creep of Ceramics and Refractories: 

In ceramic and refractories appreciable creep occurs only 

at elevated temperatures, 'in general it does not seem to occur 
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at temperatures-below about 10000 C. 

Stravrolakis and Norton (80) (1950) carried out torsion creep 

tests on alumina and zirconia at temperatures up to 15000 C. 

They indicated that alumina can be safely used above 15000 C 

with no fear of complete slumping and consequent loss of shape; 

however, creep will take place at 13000 C and above. ' Zirconia 

must be used with caution, however, above 12000 C for, although 

it does not fail readily, it deforms easily under conditions of 

load. The twist strain was measured by. spherical sapphire mir- 

rors cemented to the specimen at the ends of the gauge length 

in order to focus the light from lamps on a special calibrated 

screen. The difference in level of the images produced is pro- 

portional to the twist. Wygant (96) (1951) observed transient 

(primary) creep of dense pure magnesia at temperatures less than 

1100° C above of which steady- state (secondary) creep was ob- 

served. At 13000 C and 2400 psi, a tertiary or accelerating 

creep leading to fracture occurred'in cast magnesia. Two equa- 

tions for creep rate were derived which are: 

(a) For cast magnesia: 

log y' = 2.5 log Tmax - 
23380 

- 3.16 

(b) For hydrostatically pressed magnesia: 

log. y' = 3.5 log TAX _ 
23200 

_ 0.80 T 

where y' = strain rate 

zmax = shear stress at the surface of the specimen 

in torsion 

T= temperature 

Torsion creep tests were carried out on all specimens and 

(5-7) 

(5-8) 

the concave sapphire mirrors technique was used in measuring the 

twist. Folweirler(24)(1961) carried out bending creep tests on 
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0.1 x 0.15 x2 inches of pore-free polycrystalline aluminium 

oxide beams using the three-point loading system at temperatures 

between 14000 C and 18000 C. He indicated that the creep rate 

follows the following equation: 
10QDSio 

KTR 

where e' is the strain rate; q, stress; D, diffusion coefficient; 

no, atomic volume of oxygen; K, Boltzmans constant; T, absolute 
( temperature; and R, grain radius. Passmore and others 
58)(1966) 

investigated the creep properties of dense polycrystalline 

Magnesium oxide (MgO) in bending using four-point dead load 

system at temperatures between 13800 and 18000 K. The deflection 

of the beam specimen was measured by LVDT. Stresses of 1000 to 

5000 psi were used in this investigation. The effect of tempera- 

ture, stress and grain size on the creep rate was studied and 

they introduced an"equation similar to Eq. (5-9) with replacement 

of the number 10 before QDS2o by 20. 

Terwilliger and others(81)(1970) carried out bending creep 

tests on Polycrystalline MgO and MgO-Fe203. The specimens were 

tested in four-point dead-load experiments which were conducted 

at temperatures between 10000 and 14000 C and at stresses between 

50 and 550 Kg/cm2. Each specimen had a rectangular cross-section 

of 3.80 mm long by 1.90 mm wide. Steady-state (secondary) creep 

was never achieved in this investigation. The authors indicated 

that the creep rate decreased continuously with time as described 

by 

Eý 
Cl 

(t+C2) 
(5-10) 

where Cl, C2 and P, although they can be calculated empirically, 
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have a physical basis in a theory which is based on viscous 

creep and simultaneous grain growth. 

5-2.1.3 Creep of Glass: 

Glass behaves as an elastic solid or as viscous material 

according to the temperature. and time scale of observations. 

Transient creep is observed in glasses at room temperature. 

(62) Phillips (1905) carried out tensile creep tests on glass 

fibres. He. -reported that the creep stretch can be represented 

by the equation: 

x=a+b logt (5-11) 

where x is the stretch; t is the time; a and b are constants. 

Griggs (2 7) (1939) observed creep in glass specimens subjected 

to uniaxial compression at temperatures from 1600 to 260°C. He 

reported that the deformation of the glass followed the logar- 

ithm equation of the form: 

S= A-+ B logt + Ct (5-12) 

where S is the deformation; t is the time and A, B, and C are 

constants. 

From the above equation it can be seen that Griggs observed 

both the primary and the secondary stages of creep. 

Murgatroyd and Sykes (52) (1947) studied extensively the 

delayed elastic effect in three silicate glasses, namely, vitrous 

silica, sheet glass and Wembley (X-8) glass which are widely 

different in their chemical composition. They carried out tor- 

sion tests on glass rods at room temperature. They came to a 

conclusion that the strain-time relationship at room temperature 

in these glasses shows that they consist of an elastic framework 

containing inclusions of materials having a wide range of vis- 

cosities. They insisted that the continuous framework is demanded 
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by the experimental results because the glasses continually 

return to'the original shape after deflection without the 

assistance of external forces. In bending creep tests on the 

same materials they-reported that the delayed strain had a 

considerable effect on the breaking strength of each of the 

glasses tested. 

5-2.2 Creep of Rocks: 

Although there is a general lack of data on the creep of 

rocks, it is not the aim of this thesis to give full details of 

all the published works on this subject. In the following pages 

a brief review of some of the investigations in this field, 

particularly on creep of rocks under triaxial compression, will 

be given. 

Michelson (48) (1917-1920) carried out torsion creep tests 

on many materials including limestone, marble, calcite etc. He 

suggested an empirical formula for the torsional strain at room 

temperature of the form: 

S=A+B (1- exp (-at/)) + Ctn (5-13) 

where S= twist strain; A, B, a, C and n are arbitrary constants, 

and t= time in minutes. It was found that the average value of 

n for fifteen substances to be 0.35. The term A in equation 

(5-13) being the elastic deformation is recoverable. 

The term "B(1- exp(-at/))" has been called "elastic-viscous 

displacement" by Michelson which he found to be recoverable with 

time. He called the term , Ctn" the "viscous displacement". This 

is not recoverable. 

Phillips (61) (1932-1948) carried out bending creep tests on 

shale and uniaxial compression creep tests on siltstone. He ob- 

served the longitudinal and lateral creep strain in the 
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compression tests.. He indicated that the lateral creep strain 

is greater than the longitudinal, and also he mentioned that 

wet specimens under identical conditions exhibit more creep 

than dry rock specimens. He, however, did not make a detailed 

study of the. creep behaviour of rocks and did not attempt to 

derive a creep equation. 

Griggs (26'27'28)(1936,1939,1940) 
conducted, for the first 

time, a systematic study of time-dependent deformation in 

geologic materials. He made a detailed study of the effects of 

various parameters on the creep of rocks, namely effect of 

stress, temperature, confining pressure, structure of the mater- 

ial and presence of various solutions. He used Solenhofen lime- 

stone, shale, talc, glass, alabaster and single crystals of cal- 

cite and halite in his compression loaded creep tests. His work 

has, in fact, laid, the foundation of the ideas of the creep 

behaviour of rocks. He found that the creep of rocks is affected 

by the parameters mentioned previously. He suggested the follow- 

ing equations to represent his results.: 

(a) For creep under load: 

S=A+B logt + Ct (5-14) 

(b) For recovery on unloading: 

S= A' +B logt (5-15) 

where S is the total deformation; t is the time; A, A', B and C 

are constants, depending on the test conditions and material 

under investigation. Griggs called the term "B logt" in Eq. (5-14) 

the "elastic flow". It represents the primary creep, see section 

(2-2.2), and is recoverable with time. The strain represented by 

the term "Ct" was called by Griggs the "pseudo-viscous flow" 

which is not recoverable, and-represents the secondary stage of 
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creep, see section (2-2.3). He mentioned that the foregoing 

equations do not describe the relation adequately for short- 

time intervals, since the logarithmic term approaches minus in- 

finity as the 'time approaches' zero. Similarly, the logarithmic 

term approaches infinity as time approaches infinity. He used 

Jeffreys(41) method in calculating the equivalent viscosity of 

solids for the pseudo-viscous flow and suggested the following 

equation: 
P 

3S' 

where n is the equivalent viscosity; P the compressive stress 

(5-16) 

and S' is the constant rate of strain with respect to time. 

Griggs (27j, 28) 
observed secondary creep in boric anhydrite 

glass at 2430 C and found that the creep curve follows equation 

(5-14). He also carried out uniaxial creep tests on dry ala- 

baster specimens for 6 days after which they were surrounded 

by distilled water, while the load was maintained constant. 

Griggs reported that the creep rate immediately increases very 

greatly. He also observed secondary creep in Solenhofen lime- 

stone subjected to 10,000 atmospheres confining pressure and 

found a level of differential stress at which steady-state creep 

occurred. 

It can be seen from Griggs experiments that secondary creep 

only took place when he heated the material (boric anhydrite 

glass), , surrounded the specimen with water (alabaster), or sub- 

jected the samples to high confining pressure as in the case of 

Solenhofen limestone. It seems to suggest that rocks in brittle 

condition, i. e. at room temperature and atmospheric pressure, 

will generally fracture before creep has proceeded far. The 
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confining. pressure raises the differential stress at which fail- 

ure occurs, in other words the, ability to deform permanently 

before failure increases with increasing confining pressure. 
(3O) 

This is supported by the results of Handin and Hager and 

others who studied the effect of confining pressure on strength 

and ductility of sedimentary rocks, and is also confirmed by the 

triaxial. test results of this research, see chapters (6) and (9). 

Evans and Wood 
(22) (1937) carried out compression creep 

tests on granite, marble and slate. They observed both longi- 

tudinal and transverse creep. They reported that the creep rate 

in both directions depends upon stress. They also indicated that 

the transverse creep rate increased more rapidly with stress than 

the axial. creep rate, particularly in the case of laminated rocks 

stressed parallel to the planes of lamination. They also ob- 

served creep in sandstone and concrete subjected to torsion. 

Lomnitz(46) (1956) conducted torsion creep and recovery 

tests on granodiorite and gabbro specimens at room temperature 

and atmospheric pressure. He suggested an empirical equation to 

fit his results: 

E=ü[1+q In (l+at)] (5-17) 

where c is the total shear strain in radians; a is the constant 

shear stress; u is the rigidity modulus; t is the time in seconds 

and q and a are constants. Lomnitz observed transient creep and 

recovery in all the experiments except in one case of creep of 

granodiorite where he observed secondary and tertiary creep 

leading'to fracture along helical surfaces characteristic of 

fracture of brittle materials in torsion. He mentioned that his 

equation is valid for only small constant torque not greater than 

(0.05% µ) . 
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Denkhas(18)(1958) investigating the problems of rock 

bursts in deep mining in the Witwatersrand Goldfields in South 

Africa reported that'the loads thrown on to abutments. result 

In elastic and/or plastic deformation of the rock with time. 

Rock bursts, whether they are extradosal or intradosal (in 

fracture zone), are influenced'by creep and elastic after effects 

of the rock. "He thinks that elastic creep deformation is more 

responsible for rock bursts than plastic creep deformation, be- 

cause the latter deformation may cause gradual release of abut- 

ment stress concentrations and hence diminish the danger of rock 

bursts. The, mines of Central Witwatersrand where the majority 

of severe rock bursts occur are in hard brittle quartizite. 

Rock-bursts are, however, almost unknown on the far East Rand 

where the'foot-wall of the reef consists of plastic deformable 

shale. The favourable influence of the plastic deformability on 

the "susceptibility to rock bursts he thinks, is due to dissipa- 

tion of'part of the elastic strain energy stored by means of 

local internal flow. 

Kendall 
(43) (1958) studied the creep behaviour of Solenhofen 

limestone, rock-salt and cement mortar under. uniaxial and tri- 

axial compression. The maximum confining pressures that Kendall 

used were: 15000 psi for Solenhofen limestone, 1000 psi for 

cement mortar and 2000 psi for rock-salt. 

logarithmic creep equation of the form: 

e=A+B logt +Ctn (5-18) 

fitted his data closely. He also indicated that the modulus of 

elasticity for the limestone and cement remains essentially 

constant and independent of both the confining pressure and the 

He reported that the 
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history of the stress-strain application, where the rate of 

loading was held constant. He observed only transient creep 

in the specimens when they were loaded below their fundamental 

strength, whereas for specimens loaded at stresses greater than 

that, the transient creep again was observed, followed by rapidly 

increasing deformation until complete failure occurred. 

Robertson(72)(1960) carried out triaxial creep tests on 

Solenhofen limestone, Danby marble, Rutland White marble and 

calcite. The cylindrical specimens were jacketed with rubber 

tubing and surrounded by kerosene. The axial load was increased 

by increments during the creep tests. After an increase of 

loading, which takes about 10 seconds, a creep test of 1000 to 

10000 seconds duration was performed; at the end of the creep 

test, kerosene was bled off to maintain a nearly constant con- 

fining pressure. All tests were made at room temperature. The 

confining pressures were from 290 to 4150 bars under differential 

stresses of 1400 to 8400 bars. Robertson observed only transient 

creep-and suggested the following two equations to fit his data. 

E'- = Kt1 

t El K1QD K2 

(5-19) 

1 (5-20) 

where c' is the creep rate; t is the time in seconds; cD is the 

differential stress in bars and K, K1 and K2 are constants. He 

indicated that an increase of confining pressure from 1000 to 

2000 bars causes a 100-fold decrease in transient creep rate per 

unit stress difference in Solenhofen limestone. 

Misra (49) (1962) studied the creep property in various rocks 

under uniaxial compression, torsion and simple bending modes of 

loading. He studied the effect of stress, temperature and solu- 

tions on the creep behaviour of rocks. He reported that the 
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creep strain increases as the temperature or/and the stress 

increases., He tried to fit his results in both logarithmic 

and power equations of creep of the forms: ' 

c= A'+ logt + Ct (5-21) 

E= A+Btn (5-22) 

The temperature range he was confined to was 3000-7000 C 

which was far below the melting points of the rocks. He reported 

that the presence of solutions increases the creep rate in bend- 

ing tests and also lowers the strength of the rocks. He proposed 

the following relationship between creep rate and the applied 

stress: 

s' = BQn (5-23) 

where c' is the creep rate, ais the applied stress and B and n 

are constants. 
(33) Heard (1963) studied the effect of temperature, stress, 

confining pressure and the orientation of specimens with respect 

to foliation on the creep behaviour of Yule marble subjected to 

triaxial extension. He used 0.35 inch diameter by 0.70 inch high 

specimens jacketed by copper tubes. He developed a creep appara- 

tus for constant strain-rate tests up to 5 kb confining pressure 

and 500°C at strain rates from 0.4 to 3x 10 8 per second. He 

reported that most of the Yule marble specimens (oriented paral- 

lel, at 450 and normal to the foliation) were extended 10 percent 

at temperatures from 250 to 5000 C, at 5kb confining pressure. 

He mentioned that at 25° C only a slight decrease in strength 

occurred with decreasing strain rate, whereas at 500° C strengths 

at 10 percent strain were decreased 80 percent from the fastest 

(0.25 second duration) to the slowest (35 days) tests. He also 

observed that strong strain hardening, characteristic in tests 
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at the lower temperatures and higher strain rates, changes 

gradually to steady state flow as strain rates are decreased 

or temperatures increased. He tried to fit his results into an 

equation proposed by Eyring for steady state flow based on a dif- 

fusion mechanism to explain creep behaviour in metals at high 

temperatures. In this the activation energies for creep are 

equal to those for self-diffusion, which produces a relationship 

of the form: 

e' =A exp (- RT) 
x sinh (B) (5-24) 

where e' is the strain rate, a is the differential stress applied 

to the specimen, E is the empirically measured activation energy 

for self diffusion, R is the gas constant, T is the absolute 

temperature and A and B are constants. Heard found different 

values for A, E and B for different orientations to foliation, 

namely normal, parallel and at 45°. Heard indicated that extra- 

polation on the basis of the above equation and his results can 

be performed to determine the strength of the Yule marble sub- 

jected to a geologic strain rate of 3x 10-14 per second. 

Potts (66) (1964) carried out an intensive investigation on the 

rock salt of Meadowbank Mine at Winsford, Cheshire, U. K. both in 

the laboratory and underground in the mine itself. His under- 

ground investigation and the laboratory study of the physical 

properties of the rock salt was an attempt to predict the rock 

behaviour in the mine pillars and workings for a long time after 

their initial formation and as a guide for mine design not only 

for rock salt mines but for other materials. In the laboratory 

he studied the effect of specimen size, width/height (W/D) ratio 

and the shape of the specimen on the uniaxial compressive strength 
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of the rock salt. He also studied the creep behaviour of the 

material for short and long laboratory periods under uniaxial 

and simple bending modes of loading. 'He reported that as W/D 

ratio increases the compressive strength of rock salt increases 

rapidly, and for a given cross-sectional area as the parameter/ 

area ratio increases the strength decreases. He also observed 

the bending creep rate increased rapidly as the humidity increased. 

In his underground investigation he extensively used the bore- 

hole extensometers and hydraulic stressmeters. Detailed inform- 

ation of the extensometer, hydraulic stressmeter, hydraulic 

modulus meter, bolt load cell, etc. for underground measurements 

and techniques is given by Potts(64,65a, 65b, 67). He measured 

the stress and both the lateral and vertical strain in some 

pillars during and after their formation. In consideration of both 

the laboratory and underground measurements he presented two 

0 

methods for use in mine design. The first is the time-safe 

strength concept which indicates that a given pillar will support 

a given load indefinitely. He gave a graphical method to deter- 

mine the time-safe strength. The second concept is the time- 

safe strain method which suggests that a pillar will support a 

given load for a defined period of time. In both suggested methods 

the laboratory creep results of rock salt specimens were used as 

essential parameters. 

Price(69)(1964) carried out bending creep tests on beams of 

Pennant and Wolstanton sandstones in a simple apparatus. He 

reported that there was a linear relationship between the rate 

of creep strain in the secondary stage of creep and the applied 

stress. He plotted this linear relationship for each type of 
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the rock tested and determined graphically their long term, 

strengths, these being defined as the value of stress at which 

the secondary creep rate is zero, i. e. when the straight line 

of the stress versus the secondary creep rate intersects the 

stress axis. He also reported that the creep behaviour in bend- 

ing of the mentioned sandstones in a good agreement with the 

behaviour of the B-V rheological model, see section (2-3.9). 

He found that the long term strengths of Pennant sandstone and 

Wolstanton sandstone were 20 and 60 per cent of their instantane- 

out strengths, respectively. 

Comte 
(11) (1965) carried out triaxial creep tests on arti- 

ficial rock salt specimens of 1.25 inch long by 0.5 in diameter. 

He studied the effect of temperature (from room temperature up 

to 3000C), confining pressure up to 1000 bar and the grain size 

in the range 0.10 to 0.15 mm for all specimens (except for two 

specimens where the sizes were 0.55 and 0.63 mm) on the creep 

behaviour of the rock salt. He reported that the creep law 

which best fitted his data was a power equation of the form: 

c.. =A+ Btn (5-25) 

where e is the deformation, t is the time in minutes and At B 

and n are constant with na positive number less than one. He 

indicated that an increase in temperature and/or increase in dif- 

ferential stress increases the creep rate, whereas on the other 

hand an increase in grain size or increase in. confining pressure 

particularly at elevated temperature decreases the creep rate 

somewhat. He determined the activation energy for creep in rock 

salt at atmospheric pressure and at temperatures ranging from 290 

to 3000 C. He found that this increases with temperature from 
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12500 cal/mol at 290 C to 30000 cal/mol at 300° C. 

Hedley 
(34) (1965) studied the deformation and failure pro- 

perties of rock salt and potash. He carried out short term and 

creep tests under uniaxial compression of-both rocks. Triaxial 

creep tests were carried out on potash only. He used various 

width/height ratios in the experiments. He presented the results 
(66) in the form of time-safe stress and time-safe strain, see Potts 

He reported that the creep rate of rock salt and potash did not 

decrease to zero even in a long term creep test. For this reason 

he stated that the time-safe stress concept is not applicable in 

this case and suggested the time-safe strain method be used in 

mines-extracting potaph. He indicated that a power equation of 

the form: 

E1 = A, to (5-26) 

gave-the best agreement with his results for the primary creep 

stage, whereas the secondary creep curve followed the equation: 

C2 = Ct +B (5-27) 

where el and e2 are the creep strain in the primary and second- 

ary stages, respectively, A and n are constants, c is the constant 

strain rate, B is the intercept on creep strain axis and t is the 

time. He indicated that the constant creep rate C can be found 

by using the following power equation: 

C= avß (5-28) 

where a is the applied stress, and a and ß are constants. 

Buzdar(lo)(1968) studied the creep phenomenon in some sedi- 

mentary rocks with special reference to potash. Most of his 

work in the field of creep was on uniaxial compression, only one 

potash specimen was tested, for creep study, under 4500 psi con- 

fining pressure and a differential stresses of 4200 to 6300 psi. 
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He used various height/width ratios. He reported that an increase 

in confining pressure decreases the creep rate whereas an increase 

in height/width ratio increases the creep rate. He has not tried 

to fit his data in any creep equation or suggested any function. 

He was mainly concerned with the qualitative analysis of creep 

behaviour. of laboratory specimens obtained from potash borehole 

cores. He tried to explore the possibility of using the labora- 

tory creep study of evaporite specimens as an equivalent material 

in laboratory investigations, before any mine development was 

started. All the short term and creep experiments were carried 

out at a constant temperature of 92°F with a relative humidity 

of 50-52%. 

Patchet 
(59) (1970) conducted several short term and creep 

tests both in laboratory and in situ on evaporite rocks under 

uniaxial and triaxial compression modes of loading. For the uni- 

, 
axial creep tests he used a hydraulic rig and several spring 

rigs, described by Hedley'34), whereas for triaxial creep tests 

he, used a triaxial cell designed by Buzdar(l0); some of his con- 

clusions on the creep behaviour of rocks tested are summarized 

here: 

1. For each diameter/height ratio there is a critical 

stress above which the rock creeps vary rapidly to 

failure and below which the rock creeps much more 

slowly and no failure is expected whatever the period 

of loading. 

2. The, creep rate of a specimen is dependent on the 

differential stress applied to the specimen and is 

independent of the magnitude of either the axial or 

lateral stresses. 

I' 
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3. The secondary creep rate of small specimens is 

highly influenced by changes in humidity. 

4. Laboratory and 'in situ' creep behaviour of 

Cheshire rock salt can be correlated, provided 

that the triaxial creep behaviour of the material 

is taken into account. 

S. The stress on a pillar cannot exceed a critical 

value for the material which is dependent on the 

triaxial creep behaviour of the material. 

6. The triaxial behaviour of the rock material is the 

most important factor in determining the behaviour 

of pillars both in compression and in time. 

Hofer and Knoll (37) (1971) studied the creep behaviour of 

carnallite subjected to uniaxial compression and tried to extra- 

polate their results and conclusions to practical application in 

mines. They also tried to derive the creep equations from the 

latest findings of solid-state physics on deformation behaviour 

of. polycrystalline materials. They said that treatment of creep 

deformation in this way is more useful and is an improvement on 

the use of rheological models. From the large number of specimens 

tested they came to the following conclusions: 

(a) For low stress and temperature, the creep data 

follows the logarithmic law. 

(b) For higher stress and temperature, the creep 

processes take place according to a power law. 

(c) For very high stress, which approaches the ulti- 

mate stress of the material, the creep deformation 

according to the power law quickly increases. 
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They carried out several creep tests on various ratios of speci- 

men height to specimen diameter under different stress levels. 

They determined the stresses at which the transition from the 

logarithmic creep equation to the power function has taken place. 

They plotted a curve for the above stresses versus the slender- 

ness ratio (height/diameter) which represents a boundary curve 

below which only logarithmic creep without fracture and above 

which creep according to power law with creep fracture takes 

place after a more or less longer period of time. They consid- 

ered this curve as a true boundary curve of the limiting creep 

stress. 

King (45) (1973) carried out creep experiments in model pil- 

lars of Saskatchewan potash in an attempt to predict the creep 

behaviour of the pillars in the mine. He used two different 

diameter to height ratios of pillar model specimens namely 4 and 

8. He used a nitrogen/hydraulic pressure system to apply the 

uniaxial load to the specimens in a controlled temperature cham- 

ber which maintained a constant temperature in the range 800 to 

1400F. He mentioned that the creep strain followed the simple 

power law of the form: 

c= Atn (5-29) 

where e is the vertical strain, t is the time in hours and A and 

n are constants with 0<n<1. He compared his results with data 

obtained by another investigator working on a creep of pillars 

in the same mine and reported that the creep tests on model pil- 

lars can yield information of practical application to the design 

of pillars underground. In particular, the influence on creep 

behaviour of the increase in temperature associated with mining 

at greater depths can be studied by this means with some confid- 

ence. 
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Afrouz and Harvey (2) (1974). carried out creep tests on 

various rocks both in the Laboratory and in-situ. The Laboratory 

tests were conducted at room-temperature and atmospheric pres- 

sure, on dry and saturated rocks exhibiting uniaxial compressive 

strengths within the soft to medium strength range, whereas the 

in-situ measurements of creep deformation were carried out on 

the underclay along the floor of a mine roadway (Britannia 

Colliery, S. Wales). They chose several empirical creep equations 

and analysed them on the light of their laboratory data by using 

a computer program. They reported that close similarity was 

achieved between laboratory and in-situ time-dependent behaviour, 

enhancing the possibility of predicting, within reason, the 

in-situ creep of the rocks used. They also indicated that the 

air-dried soft to medium strength rocks behave in an elasto- 

plastic manner, i. e. very close to the Burger's Model, see sec- 

tion (2-3.8) equation (2-17),, whereas the saturated soft rocks 

generally followed the equation:. 

c=A+ Btc + Dte (5-30) 

They found that introduction of water to air-dried coal 

and underclay increases their overall creep rates three and eight- 

fold, respectively. On the other hand, the presence of clay 

bands in the saturated underclay further increased the creep 

five fold. 

In a paper published in (1975) Singh 
(79) 

mentioned that in 

his creep work on Sicilian marble specimens subjected to uniaxial 

compression, both the axial and the lateral creep curves exhibi- 

ted the three stages of the general creep curve. He carried out 

the creep tests by using a gas/hydraulic system and a loading 

frame *at 76°F room temperature. He reported that the steady 

5-25 



state creep rate increased with the increase of stress. He 

also mentioned that the creep rate in the lateral direction 

was found far greater than in the axial direction. He fitted 

his data in a power law of creep of the form: 

E=a tb (5-31) 

where c is the strain, t is the time in minutes and a and b 

are constants. He indicated that the mode of fracture of most 

specimens in the creep rig was similar to the mode observed 

during the uniaxial short term compression tests. 

Williams and Elizzi(91'92)(1975-1976) published reports 

on creep of gypsum under triaxial compression loading. They 

used the same apparatus described in this thesis, chapter 8, 

and indicated that the creep behaviour of gypsum under triaxial 

compression in most cases followed the power law mentioned in 

equation (5-31). 
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Chapter 6 

BENDING, UNIAXIAL AND TRIAXIAL COMPRESSION TESTS 

In order to provide a base from which to decide the load- 

ing stresses to be used in the creep tests it was necessary to 

determine the strength of the materials to be studied under con- 

ditions of short term loading, refered to as instantaneous 

strengths. It was also necessary to perform these tests in a 

manner such that the stresses applied were in all ways similar 

to the stress application used in the creep tests. Short term 

tests in bending, uniaxial and triaxial compressive modes were 

therefore performed. 

In this chapter a brief discussion of each test will be 

given including apparatus, size and preparation of specimen, test 

procedure and measurements of stresses and strains. 

6-1 Bending Test 

6-1.1 Introduction 

For mining and civil engineers, the tensile strength of rock 

is one of its most fundamental properties. Most of the difficul- 

ties of uniaxial tension test in rock materials are in the pre- 

paration of specimens, in gripping them and in preventing 

eccentricity in loading. The bending test is one of the indirect 

tests which have been used in finding the tensile strength of 

the rock. The main advantages of the bending test are that the 

test itself is very simple compared to other indirect tests, and 

in the four point loading of a beam a state of pure tension is 

set up in the material in the zone where failure takes place. 

Moreover, knowledge of the behaviour of rock in bending is 

of considerable practical importance, because the failure of 
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strata in mines and excavations often takes place under condi- 

tions of bending. 

6-1.2 Apparatus: 

In order to achieve pure bending moments in the specimen 

tested, the apparatus Fig. (6-1). was designed to apply four- 

point loading. The specimen beam is supported at two bottom 

knife-edges (K3), and (K4) 200 mm apart and loaded at two top 

knife-edges (K1) and (K2) 100 mm apart. The top and bottom knife 

edges are symmetrically interposed about the centre of the beam. 

The load was applied through a steel ball (c) placed in a hemi- 

spherical recess at the centre of component (E) whose underside 

knife edge (K5) lies exactly at the centre of the upper steel 

bar (A). 

A 0.002 mm dial gauge (D) was clamped to the lower steel 

bar (B) to measure the deflection at the centre of the specimen. 

A 10 ton Clockhouse Loading Machine was used for applying 

the load. The machine is motor operated gear-driven and has two 

ranges of-1000 lbs and 20000 lbs. The rate of loading can be 

varied by choice of the-gears. 

Load applied (for the range of 1000 lb) was measured by a 

proving ring which has 0.002 mm dial gauge, the sensitivity of 

which is 2.882 N (0.648 lb) per division. The four-point loading 

system used has the following important advantages: 

1. This type of loading creates a zone of zero shearing 

forces between the loading points, K1 and K21 which gives maxi- 

mum pure uniform bending moment in the zone, see Fig. (6-2). 

2. The positioning of the knife-edges gives complete stab- 

ility within the apparatus during testing. 
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3. A bending arm of 100 mm between the two points of load- 

ing, Kl and K21 is provided to measure the deflection at its 

centre, and the locality of fracture is likely to be situated 

away from the points of application of load. 

6-1.3 Specimen Size and Preparation: 

Rectangular 140 mm long by 40 mm wide by 6 mm thick beams 

of gypsum supported on knife edges 100 mm apart were first tried. 

It was found that this thickness was not suitable because there 

were crystals in the gypsum whose diameters were larger than the 

thickness of the beam, therefore some of these crystals extended 

from top to bottom of the specimen, so producing a weak section 

across the beam at which failure occurred below the normal 

strength of the material. On the other hand, during the prepara- 

tion-of the specimen, namely cutting and grinding, it was found 

that surface hardening occurred at the faces of the specimen, see 

Datta(15), therefore, the thinner the beam the greater the effect 

of-this phenomenon on indicated strength. 

Other sizes namely 240 mm by 40 mm by 12 mm and 240 mm by 

40 mm by 20 mm were found more suitable for the test. Most of 

the experiments in this research were carried out on 240 mm by 

40 mm by 20 mm, nominal size, specimens for both gypsum and 

anhydrite. 

The beams were cut from blocks of rock by diamond cutting 

equipment to the nominal size approximately, the faces of the 

beam were treated by grinding machines to bring them true (up to 

0.01 mm difference in width and thickness along the beam), then 

the-actual dimensions were measured by micrometer to the nearest 

0.01 mm. Cutting and grinding the beams involve wetting of the 

rock with water. The beams were then left for 15 days to be air 
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dried, oven drying not being recommended in the case of gypsum 

due to the possibility that some of the material may be changed 

into anhydrite due to the loss of water of hydration. 

Most of the beams were cut parallel to the bedding, i. e. 

the line of applying the load during the test is perpendicular 

to the bedding [type (1) figure (6-3)]. A few beams of types 

(2) and (3) were tested for comparison. Williams and Elizzi 
(90) 

used gypsum type (2) in their creep investigation. 

6-1.4 Test Procedure: 

In order to determine the instantaneous strength of the rock 

in bending-it was necessary to find the strains at the lower and 

the upper surfaces of the beam besides the deflection and the 

applied bending moment, the reason for this will be discussed later. 

Two electrical resistance strain gauges were bonded at the centre 

of each the upper and the lower surfaces of the beam (using the 

same procedure as will be described in section 7-2.1.2 later) to 

measure the strains at°the centre of the outer fibres of the beam. 

Then the beam was placed in the test apparatus and the load was 

applied gradually from the Clockhouse loading machine up to fail- 

ure of the specimen. The ultimate load and the strain at the 

lower and the upper surfaces of the beam were recorded. 

6-1.5 Stress Measurement: 

Using the four-point system of loading in the bending test 

produces a complex concentration of stress near the knife edges. 

Fortunately, such stress concentrations remain limited to a dist- 

ance, from the inside knife edges (K1) and (K2) toward the cen- 

tre of the beam, of less than one-half the thickness of the 

(2l) 
beam. Therefore, a length of about 80 mm between the inside 

knife edges is available for strain measurements. 
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The general equation for finding the maximum tensile stress 

from bending test, which is 

at z 

depends upon the applicability of the following assumptions: 

1. Plane sections of the beam before bending will 

remain plane after bending. 

2. The stress distribution is linear across the bent 

beam and directly proportional to the distance from 

the neutral axis. 

3. Strain varies linearly with stress up to failure. 

4. The stress-strain relationship is the same both in 

tension and compression and the neutral axis is 

located at the middle of the beam. 

(6-1) 

For rocks the stress-strain behaviour is not the same in 

tension and compression and the neutral axis of the beam is thus 

not located at the middle of it. Therefore, assumption number 4 

is not applicable and hence using equation (6-1) gives incorrect 

results. The author used the modified equation suggested by 

Duckworth (see Vutukuri (84) ) in finding the stresses in bending 

which is: 

3M(et + ec 
(6-2) ýt 2 bd et 

where* at : tensile strength at the lower surface of the 

beam, N/mm2 

M: applied bending moment, N-mm 

Et : tensile bending strain of the outer lower fibre 

cc : compressive bending strain of the outer upper fibre 

b: width of the beam, mm 

d: height of the beam, mm. 
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Several specimens of gypsum and anhydrite were tested, 

the mean value of bending stresses of each rock were calculated. 

Tables (6-1) and (6-2) give the ultimate bending stresses, mean 

values, and standard deviations for gypsum and anhydrite, 

respectively. 

Table (6-1) 

Bending tests on gypsum beams, 

L=2 40 mm, b= 40 mm, d= 20 mm. 

Specimen 
No. 

Tensile stress 
at bottom surface 

N/mm2 

Mean tress 
N/mm 

Standard 
deviation 

20G 23 15.41 

20G 3 15.84 

20G 7 13.96 

20G 8 14.37 15.07 1.020 

20G 9 16'040 

20G 11 15.18 

20G 15 15.89 

20G 16 13.52 

6-7 



Table (6-2). 

Bending tests-on anhydrite beams, 

L= 240 mm, b= 40 mm, d= 20 mm. . 

Specimen 
No. 

Tensile stress 
at bottom surface 

N/mm2 

Mean stress 
N/mm2 

Standard 
deviation 

20A 3 20.46 

20A 4 16.80 

20A 9 15.94 

20A 11 17.64 17.73 1.693 

20A 12 16.80 

20A 17 18.42 

20A 20 16.42 

20A 21.. 19.97 

6-2 Uniaxial Compression Test "A 

6-2.1 Introduction sP 

The optimum design of rock structures or excavations in 

rock requires knowledge of the strength and deformation character- 

istics of the rock. Many investigators have studied the effect 

of various factors such as stress, confining pressure, tempera- 

ture, time, rate of loading, size and shape of specimen, the 

structure of the rock material and etc. on the strength and de- 

formation properties of rock. In the following pages brief 

discussion and results will be given on gypsum and anhydrite 

specimens subjected to uniaxial compression and loaded up to 

failure, taking into consideration the factors mentioned above. 

These results will be used in this work as a basis for the study 

of the creep characteristics of the rocks under uniaxial compres-' 

sional load. Because of the structure of the rock material, 
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i. e. the type of grains or fundamental units, cementing mater- 

ial, hemogeneity, etc. two specimens of the same material, and 

same dimensions, tested. under the same conditions may have dif- 

ferent compressive strengths. For this reason several specimens 

were tested and the mean value of strength was found. 

6-2.2 Specimen size and preparation 

In an A. S. T. M. publication, Newman and Lachance ý55ý 
reached 

the firm conclusion that the length to the diameter ratio of 

rock core should be 2.5, while Hawkes and Mellor(32) mentioned 

that practical experience shows that values up to L/D =4 are 

safe. It was decided in this research to use 75 mm long by 25 mm 

diameter cores which give L/D = 3. Strain was measured within 

the middle third of the specimen where a near uniform strain and 

stress distribution are expected. 

The specimens were prepared as follows: 

A block of rock was fixed to the bench of a drilling machine 

in a direction so that drilling the cores was perpendicular to 

the bedding of rock, see Fig. (6-4) and type (1) of Fig. (6-3) . 

Several 25 mm diameter cores were then obtained by using thin- 

walled water-flushed-diamond coring drills. To get theýapprox- 

imate core length required (75 mm) and flat parallel end faces 

at right angles to the core axis, which is essential for uniform 

end contact in loading, the faces were initially trimmed by a 

Cut-rock machine using a diamond saw. Finally, the two ends of 

the specimen were finished on a grinding and lapping machine, 

see Fig. (6-5). Two grades of carborundum (400 and 800 mesh) were 

used on the lapping wheel as abrasive. In this operation the 

specimen was placed in a close fitting steel tube with flat 

flange to produce smooth parallel end faces which are at right 
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angles to the longitudinal specimen axis. Failing to get square 

, smooth end faces will lead to minute differences in height be- 

tween the sides of the specimen as it stands between the platens 

of the testing machine, which gives non-uniform loading on the 

specimen, and consequently stress concentrations which cause the 

specimen to fail at a compressive stress below its true ultimate 

compressive strength. Finally, the specimens were washed and 

left to be air dried at room temperature for 20 days. The actual 

dimensions of each specimen were measured by micrometer to the 

nearest 0.01 mm. 

6-2.3'Apparatus and Test Procedure: 

The specimens were tested by means of a hydraulically driven 

Avery 100 ton Universal Testing Machine capable of applying loads 

on five different ranges, namely, 50,100,200,500 and 1000 KN 

at any selected constant rate. The rate of loading used in the 

tests was 25 N/mm 2/min (v 60 psi/sec., . This rate of loading 

was selected depending on the following recommendations: 

In the U. S: Bur. of Mines publication, Obert and others(57) 

recommended that the rate of loading should not exceed 100 psi/sec. 

A. S. T. M. C 170-50 (Reapproved 1970)(4 recommended the same limit. 

In A. S. T. M. publication E 111-61 (Reapproved 1972) (5) it was 

stated: "The speed of testing shall be low enough to make negli- 

gible the thermal effects of adiabatic expansion or contraction, 

and high enough to make creep negligible. " 

The specimens, which were prepared as described in section 

(6-2.2), were tested in the compression machine using a spherical 

seating underneath the specimen to ensure that full contact be- 

tween the sample ends and the smooth steel plates above and be- 

neath the specimen. 
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6-2.4 Stress Measurement: 

The load applied to the specimen by the Avery Compression 

Machine can be read directly from an indicator rotating on a 

calibrated chart. The stress was found by using the general 

equation: 0 

P 
Cy C As (6-3) 

where 

a: uniaxial compressive stress, N/mm2 

P: Applied load, N. 

As.: Cross-sectional area of the specimen, mm2. 

Several specimens were tested; the mean values of the ulti- 

mate stresses are given in tables (6-3) and (6-4) for gypsum and 

anhydrite., respectively. Full data of the results are given in 

tables (A6-1), (A6-2) and (A6-3) in Appendix (A) at the end of 

this thesis. Then the fractured specimens were photographed as 

shown in, figures (6-6) and (6-7) . 
6-3 Triaxial Compression Test 

6-3.1 Introduction 

In civil and mining engineering design of rock structures, 

it is important to know the conditions under which fracture or 

flow occurs in rocks. Knowledge of the strength and deformation 

characteristics of the material aid in the design of more econo- 

mical and safer structures. Adams and Nicholson(') were the 

first who attempted'to determine the strength of rock under 

natural conditions. They used a steel jacket to apply the con- 

fining pressure to the rock cylinder specimens in a triaxial 

compression test. The defects in this method will be considered 

later in chapter (8) . 
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Von Karman (83) in (1911) was the first who used a liquid 

to transmit the confining pressure to a jacketed cylindrical 

rock specimen. Since that time numerous investigators have 

worked in the field of triaxial testing. Most of the workers on 

triaxial testing have used impermeable membrances as jackets for 

their rock specimens to prevent them from direct contact with 

the surrounding oil. Most investigators have represented their 

data by means of Mohr's stress circles and rupture envelop. Also 

most of them agree that the strength of rock increases with the 

increase of confining pressure. 

6-3.2 Apparatus: 

The triaxial apparatus and techniques for making these tests have 

been fully described by Murrell(50) and are briefly reviewed in 

the following pages for the convenience of the reader. 

The design is based on the Von Karman (83) (1911) principle, 

i. e. the confining pressure was transmitted to the rock cylinder 

specimens through a surrounding fluid. Thus, the relationship 

between two of the principle stresses will be a2 = a3 = confining 

pressure,. the. third one, all being variable. The apparatus con- 

sists of two parts, Fig. (6-8). The first part is a triaxial 

cell, Fig. (6-9) , which can be used up to 400 N/mm2 (60000 psi) 

confining pressure. 

The upper anvil, through which the axial load is applied 

to the rock specimen, has a spherical seating to ensure that the 

platens are in full contact with the ends of the specimen. The 

second part is the hydraulic power pack to provide the required 

confining pressure at constant value. An electrically driven 

pump was used to maintain a constant confining pressure that was 

controlled by means of a needle and relief valves to a maximum 
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of 9000 psi (=60 N/mm2). Fig. (6-10) shows the hydraulic cir- 

cuit for the whole apparatus. The maximum confining pressure 

required for this research was 35 N/mm2, therefore, there was 

no need to use the pressure intensifier which was designed to 

increase the confining pressure beyond the pump capacity. 

6=3.2.1 Calibration of the Apparatus: 

New o-rings were used as an oil seal between the ram and 

the cell, so it was necessary to re-calibrate the apparatus to 

find the friction force between the ram and the oil seal; the 

following test was carried out. The cell was filled in oil and 

placed'in the testing machine; the confining pressure was raised 

to a pre-determined value and kept constant. The load required 

to push'the ram into the pressure'cell against this confining 

pressure is equal to the upward force acting on the ram due to 

the known confining pressure plus the friction force. Knowing 

both the force pushing the ram into the pressure cell and the 

force due to the, -confining pressure, the friction force was cal- 

culated at that level of confining pressure. This test was re- 

peated with various confining pressures. Fig. (6-11) shows the 

relation between the friction force and confining pressure. 

6-3.3 Specimen Size and Preparation: 

The rock specimens were prepared using the same procedure 

described in section (6-2.2) and the same sizes were used (75 mm 

long by 25 mm dia. ). To prevent direct contact between the speci- 

men and the oil in the cell P. V. C. jackets 0.9 mm thick were 

used. Powdered talc was used as a lubricant inserting each 

specimen into the jacket. The jacket extended beyond the speci- 

Wien ends of the anvils to provide the necessary oil seal. 
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6-3.4 Test Procedure: 

The jacketed specimen was placed in the pressure cell. 

The cell then was filled with oil making sure that all air was 

displaced. The confining pressure was then raised to the re- 

quired value and the force on the ram from the testing machine 

was raised at a constant rate of loading equals to 25 N/mm2/min 

until fracture occurred or plastic deformation has taken place. 

Then the axial load was reduced to zero followed by the confining 

pressure. The cell air vent was then opened and the oil pumped 

out of the cell. Finally, the cell was opened to remove the 

specimen, the P. V. C. jacket was taken off and the specimens were 

photographed showing the fracture and/or plastic flow, see fig- 

ures (6-12) and (6-13). Several tests were carried out at each 

level of confining pressure. The axial load at fracture or plas- 

tic flow and the load immediately after failure were recorded 

for each specimen. The angle of fracture was also measured. 

6-3.5 Stress Measurement: 

The two minor stresses (a2 and a3) are equal to the con- 

fining pressure in the cell which can be read on the pressure 

gauge connected thereto. 

The axial load can be calculated using the following equation: 

P= Fm - (Fd + Ff) (6-4) 

where: 

P: the actual axial load applied on the specimen, N 

Fm.: the axial load applied on the ram of the cell which 

can be read directly on the testing machine dial, N. 

rd : upward force due to the effect of the confining pres- 

sure acting on the difference between the cross- 

sectional areas of the ram and the specimen, N. 
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Ff : the friction force between the ram and the oil 

seal at that value of confining pressure which 

6 can be determined from Fig. (6-11) , N. 

The normal and shear stresses immediately after fracture 

in all tests were calculated by Mohr's equations 

Z+ a3 Z- v3 
cn =2+2 cos 26 (6-5) 

ZQ 
Ts =23 sin 29 (6-6) 

where: 

an : Normal stress on fracture surface immediately 

after fracture, N/mm2. 

is : Shear stress on fracture surface immediately 

after fracture, N/mm? 

Z Axial stress immediately after fracture, N/mm2. 

cri : Confining pressure, N/mm2. 

e: Measured angle of fracture which is the angle 

between the plane of failure and the minor princ- 

iple stress. 

The values of Ts and an are plotted on Mohr's envelope 

graphs, figures (6-14) and (6-15) for both gypsum and anhydrite 

respectively, and they are shown as dotted straight lines. 

The maximum shear, Tm = 
12 3, 

the mean pressure 
arl+a2+cr3 

Pm =3, and the maximum axial strain were also calculated 

for each rock. Tables (6-3) and (6-4) give summary data of the 

triaxial tests, while full data is given in tables (A6-4) and 

(A6-5) , Appendix A. 
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The angle 6M in the previous tables are determined by 

Mor's theory for each rock, while 9G is the angle of fracture 

calculated by Griffith equation, 

cos 29 
.= .- Q1 

,3. (6-7) 
1 Q3 

The strength pressure curves, of maximum shear (Tm) versus 

the mean pressure (Pm) were plotted in Fig. (6-16) , while curves 

of maximum strain as. a function of mean pressure were also con- 

structed in Fig. (6-17) . 

It was found that the ultimate strength and the maximum strain 

of each rock increase with increasing the confining pressure, see 

figures (6-18), (6-19) and (6-20). Finally, the relation between 

the maximum normal stress, am 
+a3 12 

, and the maximum shear 
al 

stress, T. =2 for each rock is plotted in Fig. (6-21). All Z 
the mentioned results, tables and graphs will be discussed later 

in chapter (9). 
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L= 200 mm 

50mm 100mm 50mm 

KEPI 
P1 

K2 

K3 II IKE 

PýIP 

(a) Load Diagram 

Zero shear zone 

PI IP 

(b) Shear Diagram 

Uniform Max. 
" B. M. zone I 

PL 
4 

(c) Bending Moment Diagram 

FIG. 6-2 BENDING MOMENT AND SHEAR DIAGRAMS FOR. 
FOUR- POINT LOADING SYSTEM 
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FIG. 6-3 SCHEMATIC DIAGRAM OF ROCK BEDDING 



FIG. 6-4 BLOCK OF GYPSUM ON THE DRILLING 
MACHINE BENCH 

i 

FIG. 6-5 TREATMENT OF SPECIMEN ON THE 
LAPPING MACHINE 6-22 



FIG. 6-6 GYPSUM SPECIMENS FRACTURED AT UNIAXIAL 
COMPRESSION TESTS 

ills", 

FIG. 6-7 ANHYDRITE SPECIMENS FRACTURED AT 
UNIAXIAL COMPRESSION TESTS 

rý 



FIG. 6-8 TRIAXIAL TESTING APPARATUS 

FIG. 6-9 TRIAXIAL TESTING CELL 
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FIG. 6-12 GYPSUM SPECIMENS FRACTURED AND DEFORMED 
PLASTICALLY AT VARIOUS CONFINING PRESSURES 
IN N/mm2 

The number above each specimen represents the 

confining pressure in N/m m2 

05 10 15 20 25 30 35 

FIG. 6-13 ANHYDRITE SPECIMENS FRACTURED AT VAR! u'. J') 
CONFINING PRESSURES IN N/mm2 
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Chapter 7 

CREEP UNDER UNIAXIAL AND BENDING 
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Chapter 7 

CREEP UNDER UNIAXIAL AND BENDING SYSTEMS OF LOADING 

In the design of any machine for creep tests, several 

points must be considered, the most important of which are: 

(a) The known applied stress to the specimen must be kept 

constant over the whole period of the test. 

(b) The deformation measuring devices must be stable and 

unaffected by the surrounding environment changes of humidity 

and temperature. 

In the research work described here, the first point was 

achieved by using dead-weight loading system in both uniaxial 

and bending creep machines. The second point was achieved by 

using suitable methods of compensation and measuring devices of 

proven stability which will be described later. 

7-1 Uniaxial Compression Test 

7-1.1 Compression Apparatus 

The machine used was similar to the one used by Misra(49) 

in (1962). It consists, figures (7-1) and (7-2) of : 

(a) Dead Weight and Lever Unit: 

This unit consists of two levers, lever No. 1 (h) fulcrums 

at the knife edge"K3 and lever No. 2, (b) fulcrums at the knife 

edge K5. The knife edges K2 on lever No. 1 and K4 on lever No. 2 

are connected together by means of two tie rods and a turn 

buckle (d). By means of the turn buckle the distance between 

the two knife edges K2 and K4 can be adjusted according to the 

load required. ' The lever system by reversing direction twice 

enjoys'the advantage of Obtaining a large ratio (mechanical 

advantage 1: 120) in relatively small space. Using knife edges 
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minimises friction losses at all places where force direction 

is changed, also gives free movement of- the machine elements at 

all necessary. joints. Lever No. 1 carried weight pan (R) at the 

knife edge K1. By loading the weight pan by means of dead weights 

a tensile pull is created at the vertical axis of knife edge K6. 

This tensile pull is converted into compressive load by means of 

a load reversing jig (e) attached to the knife edge K6. The 

bottom end of the reversing jig is connected to a spring (i) under- 

neath the platform of the angle-iron framework (n). Fig. (7-3) 

shows the reverse jig with a specimen in position. A tensile 

pull applied at the-ends of the jig is converted into a compres- 

sion load at the axis of the rock specimen. The purpose of the 

spring and the hydraulic jack (j) assembly incorporated beneath 

the framework platform is to take up the elastic stretch of the 

framework and other tension members and also to initially apply 

the load smoothly and gradually at any required rate to the test 

specimen. Sponge seatings underneath the entire framework absorb 

any shocks-in the floor due to external mechanical disturbances. 

A thrust ball bearing and clamping nut is provided on the connect- 

ing rod of hydraulic jack underneath the platform as means of 

taking up the distortion of framework. A spirit level (g) on 

lever No. 1 indicates, when the bubble at the centre, that the 

applied load and the weight on the pan are balanced. A dead 

weight (a) at the end of lever No. 2 and projected arm of lever 

No. l*act as balancing weights. The loading platens in the re- 

versing jig were designed to carry a spherical seating for main- 

taining an uniaxial load on the specimen during the period of 

the test. 
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(b) Strain Measuring Devices: 

Misra used Marten's Optical Extensometer and Linear Vari- 

able Differential Transformers-in measuring the deformation in 

rock specimen. He actually measured the shortening in distance 

between. the two platens above and below the specimen, assuming 

that no creep in the platens themselves, they were made of 

Jessop's H. 16, creep resistant alloy steel. In this research 

the author used three axial electrical resistance foil strain 

gauges (Tinsley Telcon Ltd. -London) bonded in the central zone 

of the specimen spaced 1200 apart, Hawkes and Mellor(32) 

Each gauge is 13 mm long, 120 ohm ± 0.1 resistance and a gauge 

factor of 2.15. Dummy strain gauges of the same type bonded on 

a similar piece of rock of the specimen were used with the active 

gauges to give temperature compensation. A Peekel strain gauge 

indicator type T-200 (Automation - Peekel N. V., Rotterdam, 

Holland) was used to measure the variations in strain for the 

whole period of the creep test. This indicator has excellent 

long term stability which satisfies the second point of require- 

ments mentioned. at the beginning of this chapter. Fig. (7-4) 

shows the method of connecting the strain gauges between them- 

selves and to the Peekel strain indicator. 

7-1.2 Specimen Size and Preparation: 

Specimens were prepared as described in section (6-2.2). 

The middle third of the specimen was manually ground by rubbing 

it with fine emery cloth, the actual dimensions then measured 

by micrometer. Then the central zone was cleaned by acetone to 

make sure that this zone is free from any grease. Three axial 

electrical resistance strain gauges were bonded on this area 

spaced '- 1200 apart by using (P2) adhesive following the 
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manufacturer's instructions in this step. Finally, leads were 

soldered to the gauges and connected to the strain gauges bridge 

for strain measuring during the test. 

7-1.3 Test Procedure: 

7-1.3.1 Calibration of Compression Machine: 

The lever system machine described before gives a theoretical 

mechanical advantage of 1: 120 i. e. one kilogram on the weight pan 

should give 120 kg on specimen. But because of friction losses 

in the knife edge joints where direction is changed, therefore, * 

it was necessary to calibrate the machine to find the actual ratio 

between the weights on the pan and the load applied on the speci- 

men. A 75 mm high by 25 mm diameter duralumin specimen with 

strain gauges attached to it was first tested in a Clockhouse 

compression machine and a 'curve was plotted of load applied to 

specimen v/s its deformation (strain), Fig. (7-5a). Afterwards 

the duralumin specimen was placed in the creep machine and another 

curve was plated of load on the weight-pan v/s specimen strains 

Fig. (7-5b). These two curves give separate linear relationships 

on the graph. As in the two graphs the deformation of the speci- 

men is common, ' this forms a basis for comparison of the load on 

the, pan (kg) v/s compressive load applied to the specimen (KN). 

A third curve was plotted to show this linear relationship, Fig. 

(7-5c), which is the machine calibration curve. It was found 

from the calibration curve that 1 kilogram on the weigh-pan gives 

1.135 KN on specimen i. e. the mechanical'advantage of the lever 

system is equal to 115.73 times approximately. 

7-1.3.2 Short Term Test: 

The short term uniaxial test of gypsum and anhydrite to find 

their instantaneous strengths was mentioned in section (6-2). 
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7-1.3.3 Creep Test: 

To give a required stress to a specimen, a corresponding 

weight on the pan of the creep machine is calculated from the 

calibration curve and placed on the pan. Then the specimen is 

placed--in its exact central position between the platens of the 

machine. With a zero load on the specimen a reading from the 

T-200 indicator is recorded. Then the load is carefully 

applied to the specimen by operating the hydraulic jack until 

. 
full load is carried by bringing lever No. 1 to the horizontal 

position, this is observed by the spirit level on the lever. 

Then the clamping nut provided underneath the platform is turned 

until it becomes firmly seated against the framework platform. 

At this moment another reading of the T-200 indicator is recor- 

ded. The difference between the two readings gives the "instan- 

taneous" strain in the specimen. After that, many readings were 

recorded at known intervals of time which reveal the creep 

phenomenon of the rock specimen under uniaxial compression. All 

the T-200 indicator readings were adjusted according to the num- 

ber of strain gauges used and to the gauge factor of the gauges 

following the T-200 indicator manufacturer's instructions. 

7-2 Bending Creep Test: 

7-2.1 Apparatus 

To achieve pure bending moments in the specimens tested, 

the four-point loading apparatus described in section (6-1.2) 

was used. In order to make sure that constant stress can be 

maintained during the whole period of the creep test dead weight 

loading was used. 

7-2.1.1 Loading Devices 

When the corresponding load to give a certain stress 
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is only 
,a 

few kilograms, the weight was placed directly on 

the platform (a) as shown in Fig. (7-6). In cases when heavy 

weights were needed to give the required stress, a lever system 

was designed to give a mechanical advantage of 1: 10, i. e. one 

kilogram on the weight pan gives 10 kilograms on the specimen, 

Figs. (7-7) and (7-8). Using the lever system of loading has 

three main advantages; it reduces the total required weights 

on pan by 10 times, enables the load to be applied without 

shocks, and reduces the loading time. At the end of the lever 

(b) remote from the pan (a) a weight (e) was used to balance 

the weight of the lever itself, the weight of the adjustable 

vertical bar (c) and the weight of the pan. The friction effect 

of the hinge of the lever was measured and was found to be too 

small to consider. 

7-2.1.2 Strain Measurements 

Two methods were used in measuring the strain at the lower 

outer surface of the specimen beams. 

First, a 0.002 mm dial gauge was clamped to the lower steel 

bar of the apparatus to measure the deflection at the centre of 

the specimen beam, from which the strain can be calculated by 

making certain assumptions. 

Second, by using electrical resistance strain gauges. Two 

gauges are attached to the centre of the lower surface of the 

beam and connected with two dummy gauges of the same type mounted 

on an unloaded piece of similar rock to form a full bridge as 

illustrated in Fig. (7-4a). A Peekel strain gauge indicator 

type T-200 was used to measure the strain for the whole period 

of the test. 

7-7 



7-2.2 Size and Preparation of Specimens: 

The beams were cut, ground and dried as described in 

x 

section (6-1.3). The centre zone of the lower surface of the 

beam then manually ground by rubbing it with fine emery cloth, 

the actual dimensions then measured by micrometer to the near- 

est 0.01 mm. The central zone was cleaned by acetone to make 

sure that it is free of any grease. Two electrical resistance, 

foil type, strain gauges were bonded to this zone 20 mm apart 

by using (P2) adhesive. Finally, leads were soldered to active 

and dummy gauges and connected to the strain gauge indicator as 

described in section (7-1.1.6) to measure the strains. 

7-2.3 Test Procedure: 

7-2.3.1 Short Term Test: 

The instantaneous strengths of gypsum and anhydrite in 

bending were found as described before in chapter (6). 

7-2.3.2 Creep Test: 

The beam was placed on the two supports K3 and K4, the 

leads of the strain gauges connected with the dummy gauges leads 

to the strain gauge indicator. The initial dial gauge and 

strain gauge readings were recorded. Then the upper steel bar 

and the platform (in case of low loading) were placed on the 

beam. Weights were placed on the platform or on the weight pan 

until the desired load was reached. A stop watch was then 

started, and the dial gauge and strain gauge readings were re- 

corded. The difference between the initial and the loaded read- 

ings was considered as "instantaneous" strain. The subsequent 

strains produced were recorded at necessary intervals of time 

during the whole period of test. 
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FIG. 7-1 UNIAXIAL CREEP TEST IN PROGRESS 

a) Balance Weight 
b) Lever No. 2 
c) Thermometer 
d) Turn Buckle 
e) Load Reversal Jig and Specimen 
f) Peekel Strain Gauges Indicator 
g) Spirit Level 
h) Lever No. 1 
i) Spring 
j) Hydraulic Jack 
k 1), k 2), k 3), k4), k5), k 6) Knife Edges 
l) Weight Pan and Weights 
m) Pump 
n) Angle Iron Frame and Sponge Seatings 
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FIG. 7-3 LOAD REVERSAL JIG WITH GYPSUM 
SPECIMEN IN POSITION 

a) Steel Rod to Knife Edge No. 6 
b) Load Reversal Jig 
c) Gypsum Specimen with Strain Gauges 
d) Spherical Seat 
e) Steel Rod to the Spring and Hydraulic Jack 
f) Dummy Strain Gauges on a Piece of Gypsum 
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Indicator Terminals 

(a) Full Bridge Circuit 

D 
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F 

. _. _ L0 

Indicator Terminals 

(b) Half Bridge Circuit 

Strain Gauges 

A 

D 

Strain Gauges 

FIG. 7.4 CONNECTION OF STRAIN GAUGES 

A. ACTIVE GAUGE 
D. DUMMY GAUGE 
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FIG, 7-6 BENDING CREEP APPARATUS WITHOUT LEVER 

a) Weights and Platform 
b) Wooden Box 
c) Upper Steel Bar with Spherical Seat 
d) Rock Specimen 
e) Lower Steel Bar 
f) 0.002 mm Dial Gauge 
g) Peekel Strain Gauges Indicator 
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FIG. 7-7 BENDING CREEP TEST IN PROGRESS WITH LEVER 
SYSTEM OF LOADING 

a) Weights and Weight Pan 
b) Lever 
c) Adjustable Rod 
d) Steel Frame Fixed to the Wall 
e) Balance Weights 



E 
E 

s 

x O 
u) 

d 

0 
z 
O 

LL. 
O 

m 
W 
F- 
N 
>- 
U') 

W 

W 
J 

D 
LL 

cr. 
0) 
a) 

0Q_ V) 
CL w 

(O E 
Z >. 
O V) 
Z L- 
m 
L 
0 

Z 
O 

co 

C7 
lL 

7-16 



Chapter. 8 

A. NEW APPARATUS FOR EXPERIMENTAL STUDY 

OF'CREEP IN ROCKS SUBJECTED TO TRIAXIAL 

STRESSES 

1 

ýý 

8-1 



Chapter 8 

A NEW APPARATUS FOR EXPERIMENTAL STUDY OF CREEP 

IN ROCKS SUBJECTED TO TRIAXIAL STRESSES 

8-1 Introduction: 

8-1.1 General: 

Much rock testing work has been carried out on a short term 

basis such as uniaxial, triaxial, bending, etc., whereas long 

term tests investigating time dependent or "creep" behaviour in 

rocks has been limited to simple stress systems, e. g. bending and 

uniaxial compression. The reason for that, maybe, the difficul- 

ties and problems associated with any long term test, and-the 

un-availability of a suitable apparatus for carrying out the 

required long term combined stresses tests. One of the aims of 

this research was to build a new apparatus for the study of the 

creep properties in the more readily deformed rocks under tri- 

axial loading. Most investigators of triaxial properties have 

measured the axial deformation of rock specimens by measuring 

externally the movement of the platens above and below the 

specimen, whereas in the new apparatus the axial strain of the 

specimen was measured within the pressure cell itself. The gen- 

eral layout of the apparatus is shown in the photograph, Fig. 

(8-1) and in the schematic diagram, rig. (8-2). 

8-1.2 Design Requirements: 

Because of the nature of time dependent tests, several fact- 

ors must be considered in the design of any creep apparatus. 

The following are the most important to be considered: 

(1) Stability: The-deformation measuring devices should 

have a high degree of stability and the applied stresses should 

have a negligible fluctuation, i. e. the stresses must be maintained 
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constant over the whole-period of the'test. 

(2) Sensitivity: The measuring devices, within the appara- 

tus, should be able to record any small deformation in the speci- 

men and must also have the necessary freedom from zero drift. 

(3) Independence: The apparatus must be free from diffi- 

culties due to switching off in electrical systems, power cuts, 

any mechanical maintenance effects, etc. It is also necessary 

that the apparatus would mostly operate without any attention, 

possibly for periods of days over weekends, holidays, etc. 

when safety requirements dictate that electrical motors and simi- 

lar mechanical equipment cannot be left running. 

The above three factors have been considered in the design 

of the apparatus and will be discussed later. 

8-1.3 Some of The Previous Published Work Concerning Triaxial 
Test Methods: 

Adams and Nicholson(') in (1901) were the first who carried 

out triaxial tests on rocks. They found that rocks change their 

properties when a confining pressure is applied, so that they 

are no longer brittle, but behave plastically. The confining 

pressure was applied by placing the rock specimens in a tightly 

fitting steel jacket. Fig. (8-3) shows a schematic diagram of 

Adam's triaxial cell. The defects of using a solid confining 

medium, as used above, were summarized by Griggs 
(26) 

which are: 

(a) It is nearly impossible to measure exactly the confining 

pressure; (b) The confining pressure is not constant, depending 

on the deformation of the specimen, i. e. as the deformation in- 

creases the confining pressure increases as well; (c) The speci- 

men is not free to fracture by shear, since a fracture would 

have to tear through the walls of the steel jacket. To overcome 

the above defects'fluid was used to transmit the confining pres- 

sure to the specimen. Considere(12) in (1903) and (1906) 
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carried-out triaxial tests on cement mortar specimen cylinders 

790 mm long by 295 mm in. diameter. The confining pressures on 

in the mortar specimens were applied by water. Von Karman83ý 

(1911) was the first who used fluid (glycerine) to transmit 

lateral pressure to rock specimens in triaxial compression tests. 

He used a red sandstone and Carrara marble cylindrical specimens 

of 40 mm diameter by 100-110 mm length within 0.1 mm thick brass 

jackets to prevent direct contact between confining fluid and 

the specimens. The axial deformation of the rock specimen, was 

determined by measuring the displacement of the ram into the 

pressure cell using a dial gauge. it was Ros and Eichinger(73) 

in (1928) who suggested the use of rubber instead of metal jackets 

for'the rock specimens. They used a Von Karman apparatus in 

carrying out triaxial'tests on Carrara marble. Griggs 
(26) in 

(1936) built a triaxial apparatus, see Fig. (8-4), similar to 

Von Karman's but operating at confining pressures up to 13000 

atmospheres. The confining pressure was measured by the change 

in resistance of coil of manganin wire in a special gauge within 

the cell. This technique was suggested by Bridgman(9). Griggs 

studied-the deformation properties of marble and solenhofen 

limestone under high confining pressures at room temperature. 

The deformation of the specimen was determined by measuring the 

movement of the upper. piston in the cell by a micrometer dial 

gauge. He used unjacketed specimens for all tests except for 

two experiments where he used a drawn copper tube of 0.01 inch 

in wall thickness as a specimen jacket. Serdengecti and 

Boozer 
(78) 

in (1961) described an apparatus in which the axial 

load and the axial deformation were measured inside-the pressure 
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cell and pore pressure could be applied. Heating devices were 

developed with the apparatus up to 3000 C. They also developed 

a 'method of deforming the specimen at various strain rates in 

to 10 percent per second. This was'done by the range 10-3 2 

applying the' axial load hydraulically with a, large hydraulic 

accumulator to keep the ram moving steadily forward and releas- 

ing an equalising pressure by means of a'calibrated needle 

valve. Murrell 
(50) in (1962) developed a triaxial apparatus to 

carry out experiments on rocks. Confined compression, tension 

and extension tests have been carried out by him on siliceous 

sandstone. Both the longitudinal and the diametral strains were 

measured inside the pressure chamber by means of extensometers. 

The cell was designed to sustain a confining-pressure up to 

400 N/rmn2. This apparatus was used in the present research in 

carrying out short term triaxial tests on gypsum and anhydrite 

as described in Chapter (6). In 1965, Comte(11) used a triaxial 

apparatus similar to the one used by Griggs with the addition 

of heating devices. He studied the effects of temperature to 

3000 C, confining pressures to 1000 bars, differential stresses 

up to'138 bars and the-effect of grain size on the creep behaviour 

of artificial rock-salt specimens. Hoek and Franklin 
(35) in (1968) 

developed a triaxial cell for rock testing which is capable of 

confining pressures up to'70 N/mm2. The cell can be used for 

short term and'creep triaxiäl tests. The axial and the diamet- 

ral strains can be measured by strain gauges mounted on the 

specimen. ` Figures (8-5) and (8-6) show different parts of the 

cell. Full details of the design and description of the perform- 

ance of the cell'are'given by Hoek and Franklin 
(35). In this 

research Hoek's cell has been used in carrying out some of the 
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triaxial creep tests on gypsum and anhydrite. The cell was 

placed in the load reverser jig of. the lever operated uniaxial 

creep machine, see Fig. (8. -7). The axial load was-applied in 

similar method to that described in section (7-1.3.3) for the 

uniaxial creep tests. The confining pressure was applied and 

controlled by a similar method to that used in the new apparatus 

which will be described later in this chapter. Boy(8), in (1972) 

developed, a triaxial cell to study the strength and behaviour 

of concrete under triaxial stresses. The cell can accommodate 

a concrete specimen of 375 mm long by 150 mm diameter. He meas- 

ured the longitudinal and lateral strain by LVDTs inside the 

pressure cell., The cell was used up to 84 N/mm2 confining pres- 

sure. 

Many other investigators have used different triaxial cells 

for short and. long term tests all of which have used methods of 

operation which were common in principle to those described 

above. 

8-1.4 General Specification: 

The apparatus was designed and constructed to fulfil the 

following, -requirements: - 

(1) To accommodate rock specimens 75 mm long and 25 mm 

diameter,.. nominal size. 

(2), To accommodate confining pressures up to 50 N/mm2. 

(3) To provide axial stresses in the rock specimens up to 

135 N/mm2 which can be increased to 400 N/mm2 by adding an extra 

axial. intensifier. 

(4) To maintain constant loads with the minimum of manual 

adjustment for the whole duration of the test. 
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(5) To measure the axial strain over the middle third of 

the specimen inside the pressure chamber. 

(6) To measure the axial stress of the specimen by using 

a load cell inside the pressure chamber in addition to an ex- 

ternal pressure gauge. 

(7) To be able to change the axial and confining stresses 

separately, quickly and easily if it is required according to 

the nature of the test. 

(8) To be as compact as possible and can be easily and 

safely operated by one person. 

8-2 Triaxial cell: 

As previously mentioned in section (8-1.4), it was decided 

to design a cell to accommodate rock specimens of 75 mm long by 

25 mm diameter and to sustain maximum confining pressure up to 

50 N/mm 2. The triaxial cell which is shown in Figures (8-1), 

(8-8), (8-9) and (8-10) has overall dimensions of 341 mm height 

by 100 mm diameter and is made from rust resisting steel No. EN. 57 

(British standard 970: 1955). Details of the composition and 

mechanical properties of this steel are given in table (8-1). 

The cell mainly. consists of: 

8-2.1 Cell Body: 

Figures (8-8) , (8-9), (8-10c) and (8-l1h) give full details 

of the cell'body which is a hollow steel cylinder"of internal 

diameter 64 mm to give enough clearance for the strain measure- 

ment instrumentation clamped on a 25 mm diameter rock specimen. 

The length of the cylinder is 228 mm to accommodate the 75 mm 

high rock specimen, specimen seat (load cell) and the spherical 

seating. The thickness of the walls was calculated according to 

Love (47) 
analysis of the stress in a hollow cylinder subjected 
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Table (8-1) 

Details of the steel EI1,, 57 used in the construction of the 

creep triaxial cell (see British . Standard 970: 1955) 

(a) Chemical composition, The steel shall contain: 

Per cent 
Element 

min max. 

Carbon - 0.25 

Silicon 0.10 1.00 

Manganese - 1.00 

Nickel 1.00 3.00 

Chromium 15.50 20.00 

Sulphur - 0.045 

Phosphorus - 0.045 

(b) Mechanical properties: 

Limiting ruling section, in. 6 2.50 

Tensile strength tons/sq. in., min. 55 55 

Yield stress tons/sq. in., min. 44 44 

'"Elongation, percent, min. 15 15 

Izod impact value ft. lb., min. 15 25 

Brinell hardness number, min. 248 248 

to internal or external pressure. There is a factor of 3 between 

the yield stress of the steel and the design working stress. 

This factor is adequate and safe particularly as the apparatus 

will be used at maximum confining pressure for only few of the 

tests. An oil inlet which is shown in Fig. (8-11g) was fitted 

near the bottom of the cylinder. At the top and bottom ends 
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o-rings were fitted. as oil seals in special turned grooves. The 

cylinder was internally ground and lapped to give a good finish. 

8-2.2 Cell Head: 

As shown in Figures (8-8), (8-9) and (8-lob) the head con- 

sists ofa piston of 63.4 mm in diameter and an anvil of 31.7 mm 

in'diameter which give a ratio of area of 4 to 1 so that the 

stress applied at the end of the anvil near the specimen is 4 times 

the oil pressure applied to the piston, i. e. the head itself acts 

as an axial intensifier. In each of the two pistons a set of two 

o-rings was used as an oil seal. In order to prevent any extru- 

sion of theo-ring between the piston and its cylinder due to oil 

pressure a nylon backing ring was placed behind each o-ring. 

Similar arrangements were used in all intensifiers. 
, 

8-2.3 Cell Base: 

The base as shown in Figures (8-8), (8-9), (8-10d), (8-11b) 

and (8-12a) is also made from rust resisting steel No. EN-57. It 

is fitted with twenty three insulated sockets and leads which are 

carried through the base via an epoxy resin sealed hole enabling 

external connections to be made to the strain gauges mounted on 

the load cell and the LVDTs around the specimen inside the pres- 

sure cell. The number of sockets fitted to the base is more than 

were required for the purpose of this work, so more parameters 

may be measured in the future tests, e. g. the lateral strain in 

the specimen: ' 

8-2.4 Specimen Seat (load cell) : 

The specimen seat which is shown in figures (8- 8) , (8-9)p 

(8-11c) and (8-12b) is made from tempered creep resisting steel 

No. EN 26 (British Standard 970: 1955). Details of the composition 

and mechanical properties of this material are given in table (8-2). 
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The seat is of top-hat shape upon which the rock specimen stands. 

It was designed to be used as"'an axial stress measuring device. 

Although the load on the specimen is readily obtained from the 

measured gas pressure (as will be discussed later) and the known 

magnifying ratio through the axial intensifiers some frictional 

losses are expected in both the operation of the intensifier 

Table (8-2) 

Details of the steel EN. 26 used in the construction of the speci- 

men seat (load cell) of the creep apparatus. (see British Standard 

970: 1955) . 
(a) Chemical composition, the steel shall contain: 

El 
Per cent 

ement 
min max. 

Carbon 0.36 0.44 

Silicon 0.10 0.35 

Manganese 0.50 0.70 

Nickel 2.30 2.80 

Chromium 0.50 0.80 

Molybdenum 0.40 0.70 

Sulphur - 0.050 

Phosphorus - 0.050 

(b) Mechanical properties: 

Limiting ruling sec., in 1.4 

Tensile strength, tons per sq. in., min. 80 

Yield stress, tons/sq. in., min. 68 

Elongation, per cent, min. 1 14 

Izod impact value, ft. lb., min. 1 25 

Brinell hardness number 1 415 
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pistons and at the oil seal at the point of entry of the loading 

ram into the pressure cell. These losses can be readily measured 

by a suitable calibration method, (will be'described later) but 

it was felt that over long periods under pressure, changes in 

such effects due to "welding" of the oil seals to the steel sur- 

faces or possible an improved lubrication due to oil penetration 

were possible. This uncertainty is overcome by designing the 

specimen seat to be used as an internal load cell. The measuring 

zone of the seat being tubular, is fitted with 8 foil strain 

gauges,. see Fig. (8-12b), four of which are vertical and four hori- 

zontal. They are, connected in series pairs to form a full bridge 

circuit giving-temperature compensation. The load cell was cali- 

brated before use, and loaded over long time periods to check for 

any drift. The method and the curves of calibration will be 

given later in this chapter. 

8-3 Pressure Control System, Fig. (8-13) : 

8-3.1 Pressure Source and Gas Lines: 

Commercially available cylinders of compressed nitrogen were 

used-as a suitable power source, the cylinders being connected 

to the gas pipes via a high pressure hose, Fig. (8-13a). High pres- 

sure 0.5 inch outside diameter steel pipes were used in the system, 

all the joints and connections were of the nut and olive fittings 

types. 

The nominal pressure of the nitrogen in a full bottle is 

2000 psi, the existing pressure can be checked at any time by the 

pressure gauge (c). Several shut-off and blow-off valves (b) are 

provided for the relief of excess pressure when required. 

The compressed nitrogen passes through a filter (d) (I. V. 

Pressure Controllers, Ltd., Feltham, Middlesex) of maximum capa- 

city 40 N/mm2 (6000 psi) to ensure that scale and other foreign 
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matter does not affect the operation of the system. 

8-3.2 Pressure Control and Relief Valves: * 

The filtered nitrogen then passes through one of two auto-. 

matic control valves (I. V. Pressure Controllers, Ltd. ), valve 

(f) for the axial pressure and (e) for the confining pressure. 

Each valve is an automatic device which maintains gas pressure 

constant on, the output side provided that the input pressure is 

in excess of the required output. The valves are spring loaded 

devices the output pressure being controlled by screwing or un- 

screwing the end dome. Any excess pressure can be relieved via 

one of the blow-off valves (b). In the confining pressure sub- 

system it was found necessary to add an automatic blow-off valve, 

(relief valve), (g) which is a variable pressure setting device 

(I. V. Pressure Controller Ltd. ) adjusted to operate at a pressure 

slightly above the required gas pressure. This becomes necessary 

when possible rapid deformation of the rock specimen, under high 

axial, stress, results in the steel axial ram entering the pressure 

cell so displacing the confining pressure oil and generating pres- 

sures in excess of that required in the control system. The 

range of this valve is 2 to 7 N/mm2. 

8-3.3 Pressure Gauges: 

Several pressure gauges (Budenberg Gauge Co. Ltd., Broadheath, 

Manchester) were used in the system where necessary: 

1. Nitrogen bottle gauge, Fig. (8-13c). 

2. Axial gas pressure gauge (h) which can be used to 

determine the axial stress on the rock'specimen by 

considering the known dimensions of the axial inten- 

sifiers and some frictional losses in the oil seals. 

3. Confining gas pressure gauge (i) which is used in 
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a similar way to gauge (h) on the confining pres- 

sure sub-system side. 

4. Confining oil pressure gauge, Fig. (8-1j), which 

gives directly the confining pressure in the pres- 

sure cell"and'can be used as a check on the behaviour 

, of-the confining pressure intensifier, Fig. (8-1k). 

8-4 Measuring Systems: 

8-4.1 Stresses: 

As it mentioned previously, in any creep test all the 

stresses must be kept constant in magnitude and direction during 

the. whole-period of the test. In this research two stresses 

were. dealt with, the axial stress and the lateral (confining) 

stress. v 

8-4.1.1 Axial stress: 

The maximum pressure which can be used from the nitrogen 

bottle is about 10 N/mm2, and in order to produce higher pressures, 

intensifiers have to be used. These simply consist of a pair of 

high pressure cylinders with a double-ended piston, by means of 

which a. low pressure is multiplied by the ratio of the piston 

areas. Two intensifiers were used, the first, figures (8-1m), 

(8-2m),, (8-8) and (8=10a) gives a magnification ratio of 2.25 to 

1,, while the second which is within the cell head, see section 

(8-2.2), gives a ratio 4 to 1, so the two intensifiers give a 

9: 1 pressure increase from gas pressure to the end of the steel 

anvil near the specimen in the pressure cell. Due to the differ- 

ence in areas between the steel anvil (31 mm diam. ) and the rock 

specimen ( 25 mm diam. ) the stress in the specimen was increased 

by about 1.5 times., The accurate total magnification factor was 

found by calibration the apparatus which will be described later 

in this chapter. 
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8-4.1.2 Lateral Stresses: 

The two minor principal stresses (Q2 and a3) in all the 

experiments were equal to the confining pressure, this being 

measured'directly by means of the pressure gauge (j) in figures 

(8-1) and (8-2) . 
In order to obtain the required confining pressure, (up to 

30 N/mm2) in the pressure cell from the maximum available pres- 

sure in the nitrogen bottle another intensifier was used, see 

figures (8-1k), (8-2k) and (8-8) which gives an increase of 

4.7: 1 in the pressure from the gas side to the oil in the pres- 

sure cell. Another pressure gauge (i),, Fig. (8-13)o was used 

on the gas side of the confining pressure sub-system as a check 

gauge on the behaviour of this intensifier (k). The confining 

pressure was kept constant by means of the automatic control 

valve (e) and the automatic relief valve (g), Fig. (8-13) , as al- 

ready described in section (8-3.2). 

8-4.2 Longitudinal Strain: 

In order that the effects of frictional contact between the 

steel platens and the rock specimen are eliminated from the 

strain results, it is necessary to confine measurement to portions 

of specimen remote from the sample ends. In this research meas- 

urement was restricted to the middle third of the specimen. For 

this reason the axial strain measuring devices were installed on 

the sample inside the pressure cell. Three Linear Variable Dif- 

ferential Transformers (LVDT's) manufactured by Sangamo Weston 

Control Ltd. of North Bersted, Sussex, U. K. mounted on the speci- 

men were used to measure the longitudinal strain. 

The transducers employed were of the type classed as linear 

variable differential transformers. Each consists of two parts, 
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a cylindrical tube containing two sets of windings, a primary 

and-a secondary and a core which is in the form of a thin brass 

tube containing a short-length of sintered dust-iron core at one 

end, this being inserted into the windings section. The second- 

ary winding is split into two halves one each side of the prim- 

ary and these are differentially wound. When the core is 

centrally situated in the windings and the primary is fed with 

alternating current (5 KHz) from an oscillator the secondary 

produces no signal. Movement of the core changes the electro- 

magnetic interaction between the primary and each half of the 

secondary in such a manner that a secondary output is produced 

which is linearly related to the core displacement. Essentially, 

therefore, the LVDT is a displacement transducer which is suit- 

able as a strain measuring device when installed over a known 

gauge length. 

The technique of using these transducers satisfies the fol- 

lowing conditions: 

1. The ability to measure very small deformation down 

to 2 microstrain, which is necessary in creep tests. 

2. Stability over long periods of time which is neces- 

sary in creep tests as was mentioned previously in 
. 

the design requirements, sect. (8-1.2). 

3. Insensitivity to environmental changes of tempera- 

ture and confining pressure. 

4. 'Easy mounting of the transducer on the specimen 

due to its separate armature assembly. 

5. Small overall size, especially important in tri- 

axial cells. 

The three LVDT's were-spaced at 1200 intervals around an 

" annular steel ring, Fig. (8-14c), which is clamped by three steel 
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pointed grub screws to the specimen, figures (8-15) and (8-16). 

The LVDT cores are attached to spherical mountings on a similar 

steel ring, figures (8-14b) and (8-16), similarly clamped to the 

specimen at a gauge length of (25) mm, figures (8-15) and (8-16). 

A special set of . jigs was designed and constructed, Fig. 

(8-14a) in order to initially mount the transducers correctly 

on the specimen, figures (8-15) and (8-16). The LVDT's were con- 

nected together via a balancing circuit, Fig. (8-15b) mounted 

within the'pressure cell. Fig. (8-17) shows the connection cir- 

cuit of the transducers between themselves and to the transducer 

multimeter (C52/5). Table (8-3) gives information about all re- 

sistances connected to each transducer (TDR). The combined out- 

put of the transducers being obtained by leads, Fig. (8-15g), to 

the sockets in the cell base. The displacement readings are then 

obtained by the use of a Sangamo Weston C52/5 transducer multi- 

meter which is a combined 5 KHz oscillator and output meter con- 

taining further balancing, amplification and attenuation circuits, 

Fig. 
. 

(8-ir) 

Table (8-3). 

Resistances connected to transducers. 

Transducer R2 R3 R4 R5 
Serial No. 0.1% 2% 2% 2% 

TDR 1 5.0 kn 68ki2 120kf 330 kn 
+1.0 kn 

TDR 2 5.0 kit 27 kn 47 kn 560 kn 

TDR 3 5.0 kit 33 k( 330 ko 
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In the case of a few experiments when high axial stress 

was applied and failure was expected at any time, a pen recorder 

manufactured by Record Electrical Co. Ltd., of Altringham, 

Cheshire, U. K. was connected to the transducer multimeter, ' Fig. 

(8-1s) to record the time and the displacement on a special 

graphic chart. Calibration of the transducers was performed as 

described in Sect. (8-5.3), before any test was carried out. 

8-5. Calibration of the Apparatus: 

Before any creep experiments were carried out the load cell 

and the transducers were calibrated and the friction forces be- 

tween the moving parts at the oil seals were determined. 

8-5.1 Calibration of the Load Cell: 

The load cell (specimen seat) was loaded. by the Avery 

Testing machine up to 100 KN. by increments of 10 KN., the output 

of the strain gauge bridge was read on a strain gauge indicator. 

The cell was further tested under confining pressures to check 

the effect of the confinement on the strain gauges. Fig. (8-18) 

shows the calibration of the load cell. Loads were also applied 

to the cell for periods up to two weeks to check drift in the 

gauge outputs and/or creep in the cell material. The results 

obtained indicated that the behaviour of the'cell was extremely 

stable. 

8-5.2 Calibration of Intensifiers for Friction Effects: 

The two axial intensifiers give a theoretical increase in 

pressure of 9: 1 between the end of the anvil near the specimen 

and the gas pressure. Because of friction losses in the oil 

seals of the intensifiers and the anvil entering the pressure 

chamber, and the difference between the ram and the rock specimen 

cross-sectional areas, it was necessary to calibrate the apparatus 
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to find the actual ratio between the axial load gauge gas pres- 

sure reading. (bar) and the applied load on the specimen (KN). 

A 75 mm high by 25 mm diameter duralumin specimen was placed 

on the load cell (specimen seat) of the creep apparatus and 

tested in an Avery Testing Machine, a curve was plotted of load 

applied to the specimen versus the output of the strain gauges 

set on the load cell as shown in Fig. '(8-19 a), this curve is 

similar to the curve of Fig. (8-18). Afterwards the duralumin 

and the load cell were placed in the creep apparatus and another 

curve was plotted of the axial gas pressure gauge (Fig. 8-lh) 

versus the output of the strain gauges on the load cell, Fig. 

(8-19b). These two curves give separate linear relationships 

on the graph. As in the two graphs the output of the strain 

gauges set of the load cell is common, this forms a basis of 

comparison between the axial load applied to the specimen in 

KN's and the axial gas pressure gauge'reading in bars. A third 

line, Fig. (8-19c), was plotted to show this linear relationship 

which is the-apparatus calibration curve. It was found from this 

that to apply one KN on the specimen the reading on the axial 

pressure gauge should be 1.448 bar. A relationship between the 

required axial stress in the rock specimen, the confining pres- 

sure and the upper (axial) gas pressure gauge reading was found 

as follows: 

Let: 

'As': Specimen cross-sectional area, mm2 

Q: Required axial stress in the specimen N/mm2 

P: Confining oil pressure, N/mm2 

R Axial gas pressure gauge reading, bar (gauge 

(h) in Fig. (8-1)). 
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Ar : Ram cross-sectional area, mm2 (which enters 

the pressure cell) . 

1. The load on specimen = (As) (a) , N. 

2. Upward force due to the effect of confining pressure 

on the difference between the ram and specimen areas will equal 

to (Ar' - AS) (P) , N. 

3. Total applied load must be = As. q+ (Ar - As). P. 

4. From the calibration curve 

R= (1.448) (Applied load in KN) 

.'R! (1.448) { A. a+ (Ar - AS) . P} x 10- 

R (AS. a+ ArP - ASP) (1.448) (10)-3 

R ='{ AS (a-P) + Ar . P} (1.448) (10)- 3 (8-1) 

As the diameter of the ram equals 31.7 mm therefore, Ar = 789.24 

mm2. Substituting this value of Ar in equation (8-1) and sim- 

plifying the new equation we get 

R = [1.448 AS. (a-P) + 1142.82 P] x 10-3 (8-2) 

In applying any required axial stress to a rock specimen 

under confining pressure either of the two methods described 

in sections (8-5.1) and (8-5.2) can be used. In the first method, 

the axial pressure control valve is operated to apply the load 

to the specimen until the corresponding strain gauge output of 

the load cell, which is pre-determined from the curves of Fig. 

(8-18), to the required axial stress is read on the external 

strain gauge indicator, Fig. (8-lql. In the second method, the 

equation (8-2) is used to determine the pressure reading (R) 

which gives the required axial stress (a) under the confining 

pressure (P). The axial control valve is then adjusted until 

the required axial gas pressure gauge reading (R) is reached. 

In practice the second method was used to give the first 
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adjustment and the load cell was used to provide the final 

check. During the progress of a test both the axial gauge 

and the load cell output were monitored to ensure correct 

functioning of the apparatus. 

8-5.3 Calibration of the Strain Measurement Transducers: 

On receipt, each transducer had been inspected and cali- 

brated by the manufacturer (Sangamo Weston Controls Ltd. ). 

Table (8-4) gives the inspection certificate and the calibration 

details provided. After the three transducers were connected 

via balancing circuit as mentioned previously in section (8-4.2), 

it was found necessary to calibrate the new combination. 

The three transducers and their corresponding cores were 

assembled on the annular rings at a gauge length of 1 inch. 

The assembly was placed between the Clock house machine platens 

with a 0.001 inch dial gauge fixed between them to measure the 

displacement. The balancing circuit of the transducers was con- 

nected to the (C52) transducer multimeter and a graph was plotted 

of the reading of the (C52) multimeter versus the movement of 

the platens recorded by the dial gauge. The total movement was 

(0.1) inch which gave full scale on the multimeter scale. Fig. - 

(8-20) shows the linear relationship between the displacement 

of the annular rings and the output of the transducer multimeter. 

8-6 Preparation of Rock Specimens: 

The rock specimens were prepared in a similar manner to that 

described in section (6-2.2). The specimens were jacketed in a 

P. V. C. tube, the ende of which extended over two steel platens 

where o-rings are used, see figures (8-12) and (8-15d), to prev- 

ent the access of the hydraulic oil to the specimen. Since the 

screws of the two annular rings are required to penetrate the 
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Table (8-4) 

Inspection certificates of the transducers. 

Transducer type: A1/0.1" MOD 

Calibrated range ± 0.100" 

Excitation :5 volts. AC @5 KHz 

Calibration load: As supplied, ohms 

Sensitivity: 1.6 my/v/0.001" 

Calibration details 

Trans- Armature in (from zero) Armature out (from zero)' 
N d ucer o. 

Displacement Output Displacement Output 
in in 

0.100 9990 0.100 10000 

0.075 7501 0.075 7511 
TDR1 

0.050 5000 0.050 5003 

0.025 2496 0.025 2496 

0.100 10020 0.100 9990 

0.075 7515 0.075 7505 
TDR2 

0.050 5005 0.050 5000 

0.025 2500 0.025 2500 

0.100 10015 0.100 10005 

0.075 7515 0.075 7515 
" TDR3 

0.050 5008 0.050 5005 

0.025 2504 0.025 2500 

0 
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PVC jacket on the rock specimen, oil may possibly penetrate 

at these points. This difficutly has been overcome by sliding 

0.05 mm thick feeler strip between the jacket and the specimen. 

The feeler strip is strong enough and ductile that the screws 

do not penetrate it, and at'the same time the PVC jacket makes 

a good seal against the polished strip. * Finally, the strain 

measurement assembly was clamped to the specimen, as described 

previously in section (8-4.2), before insertion into the cell. 

8-7 Test Procedure: 

8-7.1 Short Term Test: 

Triaxial compression short term tests were carried out on 

gypsum and anhydrite specimens to find their instantaneous tri- 

axial compressive strengths. These were described in Chapter 

6. Different percentages of these strengths were then used in 

several series of triaxial compression creep tests. 

8-7.2 Creep Test: 

Following the preparation of rock specimen, section (8-6), 

the leads from the transducers are plugged into the base sockets 

and the sample is located on its seat (load cell). The appara- 

tus is then filled with hydraulic oil, suitable bleed plugs, 

figures (8-8) and (8-9), being provided to ensure no air locks 

exist in the pressure cell. The transducer meter is then 

switched on to be warmed for ten minutes in order to ensure 

stable operation. The multimeter is connected to the pen recor- 

der when necessary. 

To apply the desired load to the specimen under a given 

confining pressure, the reading on the axial pressure gauge 

corresponding to the load required was calculated by equation 

(8-2). Also the corresponding output of the strain gauges on 
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the load cell was found from the calibration curve, Fig. (8-18). 

Initial (zero) readings are taken from the instruments 

indicating load and displacement and by operation of the gas 

pressure control valves, the confining pressure and the axial 

load are in turn increased to the required values. A check 

is made of reasonable correspondence between the axial load 

calculated from the gas pressure and the load indicated by the 

internal load cell and between the gas pressure and direct oil 

pressure in the confining pressure sub-system. The amount of 

deformation recorded during the time of loading gives the in- 

stantaneous deformation (strain). Further strain readings are 

then obtained according to a pre-arranged timetable to obtain 

time dependent or "creep" behaviour of the rock specimen. 
I 

Checks are made from time to time on the behaviour of the con- 

fining pressure and axial load systems. Apart from some small 

initial fluctuations probably due to temperature changes result- 

ing from sudden large gas pressure changes, the pressure control 

systems were found to be reliable in maintaining loading condi- 

tions. 
I 

4 
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FIG. 8-12 CELL BASE, LOAD CELL, AND JACKETED 
ROCK SPECIMEN 

a) Cell Base with Electrical Sockets 
b) Load Cell (Specimen Seat) with Strain Gouges 

c) Spherical Seating 
d) Jacketed Rock Specimen 
e) Hot-Shape Top Steel Platen 
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Chapter 9 

RESULTS AND DISCUSSION 

Although. the aim of this work is to study the creep behavi- 

our of the previously mentioned evaporite rocks, namely, gypsum 

and anhydrite, and to develop a suitable apparatus to extend 

this investigation into the triaxial field, in this chapter, it 

is useful to commence with a brief discussion of the rocks' short 

term test results to make clear the relation between the creep 

behaviour of these materials and their short term property. The 

short term and creep results will first be discussed and compared 

with other investigators' results, where necessary and possible, 

in both bending and comrpession tests. 

9-1 Bending: 

Most of the tests were carried out on air dried rock beams 

240 mm long by 40 mm wide and 20 mm thick subjected to simple 

bending in a four-point loading apparatus for both short term 

and creep tests at room temperature. 

9-1.1 Short Term Tests: 

Several gypsum and anhydrite beams, type 1, were tested to 

determine their instantaneous strengths. Table (6-1) and (6-2) 

give full data, the mean, values'and the standard deviation of 

the strength of each rock... The tensile and compressive strains 

were measured at the lower and upper surfaces of each beam re- 

spectively. It was found that, at most of the stress levels 

employed, the compressive strain measured is greater than the 

tensile. Fig. (9-1) shows the stress-strain relationship in a 

single gypsum beam subjected to bending stress. Fig. (9-2) 

shows stress-strain data of five gypsum beams in bending. it can 
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be seen that even for the beams of the same dimensions, (20 Gll, 

20 G23) and (12 G1,12 G4,12 G23) there are noticeable differences 

in their stress-strain behaviours. This due, probably, to the 

petrological differences in these beams, i. e. size of grains, 

cementing material, inhomogeneity, etc. and/or due to possible 

humidity and temperature differences. 

" The position of the neutral axis or zero strain was deter- 

mined for two gypsum rock beams as follows: At various stress 

levels both the tensile and compressive strains were measured 

at the bottom and top surfaces of the beam. In Fig. (9-3) the 

position of the neutral axis at any stress level is shown by the 

dotted line defined by drawing a horizontal line through the 

intersection point of the line joining any values of tensile and 

compressive strains corresponding to a certain stress level and 

the vertical axis of zero strain. 

It was found that for both rocks the neutral axis moves up 

from the tension side towards the compression side as the stress 

increases. It was also found that in most of the beams tested 

the neutral axis is below the centre of the beam (plane of sym- 

metry) even at failure stress which is in agreement with 

Forster's(25) results on rock salt beams, whereas Datta(15) re- 

ported that, in his work on sandstone, granite and marble beams, 

the neutral axis moves up and passes the centre of the beam when 

the stress increases to near fracture. ' Fig. (9-1) shows the dif- 

ferences- in values of the compressive and tensile strains, and 

Fig. (9-3) shows that the neutral axis of the rock beam is not 

at its centre. Both figures show an agreement with the assump- 

tion made previously in section (6-1.5) which states that for 

most rocks the stress-strain behaviour is not the same in tension 
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and compression and the neutral axis of the beam thus cannot 

be assumed to be located at the middle of the section. 

9-1.2 Creep Tests: 

All bending creep tests were carried out on gypsum and an- 

hydrite air dried specimen beams at room temperature. The stress 

applied was determined. as a percentage of each rock instantaneous 

strength (au). The percentages used were 30,40,60 and 80%. 

As it was mentioned previously the creep strain at the centre 

of the bottom face of each rock beam was determined by both 

measuring the strain using strain gauges and measuring the deflec- 

tion by a dial gauge. Fig. 
. 
(9-4) shows an example of the creep 

strain determined by the above two methods. The average strain 

was used in drawing most of these conclusions in this investiga- 

tion. 

Two or three beams were tested at each stress level, the 

average of the results of these beams was plotted. as creep strain 

(in microstrain) versus time in hours. Figures (9-5) and (9-6) 

show the effect of stress on the bending creep of gypsum and 

anhydrite respectively. Tables (9-1) and (9-2) give full data of 

creep strains for both rocks. It can be seen from the figures 

and the tables that as the stress increases, both the creep strain 

and the instantaneous strain increase. It was found that the 

bending creep in gypsum follows one of the following equations 

according to the magnitude of the applied stress: 

(1) At low stress level, 30%au, it follows the logarithmic 

law, cA+B logt, where c is the creep strain, t is the time 

after loading in hours and A and B are constants depend on the tested 

material at the stress conditions. This behaviour indicates that 

the crrep diminishes asymptotically with time. The creep strain 
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Table (9-1) 

Bending creep strain in Gypsum 

Applied stress -N mm2 
30% au 40% au 60% au 80% au 

Time 4.5 6.0 9.0 12.1 

hours ` Instantaneous strain - microstrain 

118.2 142.5 231.9 295.9 

Creep strain - microstrain 

0.1, (6 min. ) 0.8 4.3 5.1 8.0 

0.33, (20 min. ), 2.5 4.8 8.2 11.5 

0.5, (30 min. ) 3.6 5.7 9.7 14.7 

1 3.9 6.7 12.5 17.8 

-2 3.9 9.5 15.5 22.3 

6 4.4 13.3 20.4 29.5 

12 5.0 15.2 25.0 36.4 

24 5.0 19.0 28.6 45.1 
48 5.5 23.8 35.5 55.8 

72 6.2 27.6 36.2 58.0 

96 6.6 29.5 44.6 62.5 

120 6.9 30.4 47.6 67.0 

144 7.2 34.2 50.8 67.4 

168 7.4 36.1 56.6 71.9 

192 7.7 40.3 57.8 83.1 

216 7.7 41.7 59.8 83.5 
240 7.7 42.8 63.7 88.3 

264 - 43.1 64.1 93.8 

288 - 43.1 65.2 94.2 

312 - 44.5 66.8 96.2 

336 - 45.0 67.7 98.2 
360 - 44.8 - 100.3 

384 - - - 119.1 
Failure 
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Table (9-2) 

Bending creep strain in Anhydrite 

Applied stress -N mm2 
40% au 60% au 80% au 
=7.1 =10.6 =14.2 

i T me 
hours Instantaneous strain - 

microstrain 

99.8 153.7 184.2 

Creep strain - microstrain 

0.1, (6 min. ) 2.0 5.8 6.6 

0.33, (20 min. ) 3.2 8.0 10.7 

0.5, (30 min. ) 2.9 10.0 11.4 

1 4.5 10.5 13.3 

2 4.0 12.1 15.3 

.3 
4.2 12.4 16.0 

4 4.5 13.0 17.5 

5 4.4 14.3 19.2 

6 . 4.5 14.8 18.5 

12 5.5 17.8 21.5 

24 6.3 19.7 23.3 

48 6.6 20.6 26.4 

72 6.7 21.0 28.9 

96 7.4 20.8 29.5 

120 6.6 21.1 30.8 

144 7.3 22.0 31.0 

168 - 22.2 30.4 

192 - - 30.5 

216 - - 31.5 

240 - - 31.5 
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was plotted versus the time on a semi-log paper, a straight 

line was obtained, Fig. (9-7d). The constant A in the above 

relationship is the creep strain at t-1 hour, whereas B is 

the slope of the straight line on the semi-log graph. 

The following equation was found for the creep of gypsum 

in bending under stress of 30% au (4.5 N/mm2): 

E=3.53 + 1.45 log t 

(2) At medium stress levels, namely 40% and 60% of the 

(9-1) 

ultimate instantaneous stress it was found that the creep curve 

followed a power relationship throughout the tests of the form 

e= Ctn. When the results were plotted on log-log paper, 

Fig. (9-8), straight lines were obtained where C is the creep 

strain at t=1 hour and n is the slope of the straight line. 

It was also found that n2 1/3 
. 

The following equations were obtained 

(a) At a= 40% au = 6.0 N/mm2 

7.22 t0.31 

(b) At a= 60% au = 9.0 N/mm2 

c= 11.83 t0.30 

(3) At the higher stress level, a = 80% au, it was found 

that the creep strain followed the power law, mentioned pre- 

(9-2) 

(9-3) 

viously, at the beginning of the test, see Fig. 9-8a, followed 

by a steady state creep of the form c= Dt which led finally to 

fracture. 

The following equations were obtained: 

c= 16.70 to. 32,0 <t< 288 hr 

e= 94.2 + 0.09 t, 288 <t< 360 hr 

c= f(t), 360 <t 

(9-4) 

(9-5) 

(9-6) 

The constant 94.2 in equation (9-5) represents the creep 
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strain at the beginning of the steady-state creep stage at 

t 288 hrs. 

For anhydrite the creep behaviour followed the logarithmic 

relationship for all the stress levels, Fig. (9-9). The following 

equations were obtained: 

(a) At a= 40% au = 7.1 N/mm2 

c=3.83 + 1.55 log t (9-7) 

(b) At a= 60% au = 10.6 N/mm2 

e= 11.19 + 5.20 log t (9-8) 

(c) At a= 80% ou = 14.2 N/mm 2 

c= 13.31 + 7.55 log t (9-9) 

Tables (9-3) and (9-4) give summary of the constants C and 

n for gypsum and A and B for anhydrite, respectively. 

Table (9-3) 

Constants of the power equation of the bending creep 
in gypsum. 

C =Ctn 

ax 100 Equation C n 

percent. No. 

40 9-2 7.22 0.31 

60 9-3 11.83 0.30 

80 9-4 16.70 0.32 
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Table (9-4) 

Constants of the logarithmic equation of the bending 
creep in anhydrite 

=A+B log t 

Qa x 100 Equation A B 
" 

percent. No. 

40 9-7 3.83 1.55 

60 9-8 11.19 5.20 

80 9-9 13.31 7.55 

From the data of table (9-3) for gypsum and the corres- 

ponding equations it can be seen that as the stress increases 

the constant C increases whereas n remains nearly constant. 

Misra(49) reported that both constants, C and n, increase as 

the stress increases for the rocks. 

On the other hand, the constants A and B, given in table 

(9-4) for anhydrite, increase as the stress increases. Misra(49), 

Griggs (28) 
and others observed the same behaviour in other dif- 

ferent rocks. 

In a bending creep test on a gypsum beam the stress was 

increased by steps at various periods of time. Fig. (9-10) 

shows the total strain versus time, i. e. the instantaneous 

strains are also shown on the graph. It can be seen that at 

any time the load was increased there was an instantaneous strain 

followed by a creep strain. This means that further elastic 

strain was produced by stress increase even after high creep 

strain had occurred in the beam. 

Fig-(9-11) shows the instantaneous strains of gypsum and 

anhydrite versus the applied stress as a percentage of cu. 
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From these curves the modulus of elasticity was calculated 

for each rock as follows: 

(a) For gypsum: 

E_ 100 
x 

15.07 
x 106 = 3.95 x 104 N/mm2 

q 100 381.4 

(b) For anhydrite: 

100 17.73 Ea 100 X 245.8 X 

The above tensile 

the compressive Young's 

sion tests results will 

9-2 Compression: 

All the tests were 

106 = 7.21 x 104 N/mm 2 

Young's moduli will be compared with 

moduli for each rock when the compres- 

be discussed later in section (9-2.1). 

carried out on air dried type 1 rock 

specimens, (The axial load was applied perpendicular to rock 

bedding) 75 mm long by 25 mm diameter (nominal size) at room 

temperature. 

9-2.1 Short-Term Tests: 

Uniaxial and triaxial compression tests were carried out 

on gypsum and anhydrite specimens. 

Uniaxial tests were performed on eight specimens of each 

rock whereas triaxial tests were performed on varying numbers 

of specimens of each rock at every chosen pressure level. 

The confining pressure levels were 5,10,15,20,25,30 

and 35 N/mm2. 

The determined strengths of gypsum and anhydrite at vari- 

ous confining pressures are given in tables (6-3) and (6-4) 

and shown in figures (6-18) and (6-19). The curves show a 

non-linear increase in rock strength as the confining pressure 

increases. 

Mohr's circles for gypsum and anhydrite are shown in 
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p 

figures (6-14) and (6-15) respectively and an envelope was 

fitted to the stress circles for each rock. It can be observed 

that some of the stress circles do not touch the envelope, indi- 

cating lower strength values than those predicted from the Mohr 

envelope drawn. These small differences can be attributed to 

possible errors arising from random variations in the initial 

condition of the rock specimens and/or to the anisotropy of 

the'material tested. Mohr envelopes for both gypsum and anhy- 

drite are approximately parabolic in shape and similar to the 

shape of the envelopes of rocks obtained by previous investigat- 

ors;, Murrell P5O) 
, Franklin (23) 

, Handin and Hager (30) 
and others. 

The values of the axial stress immediately after fracture 

(z) at various confining pressures are given in table (6-3) 

and (6-4). From these values and the measured angles of frac- 

ture, the values of the normal stress an and shear stress T5 

have been calculated using equations (6-5) and (6-6). These 

values are given in tables 4(6-3) and (6-4) and are plotted in 

figures (6-14) and': (6-15) ," where they are shown by. dotted I, I: 'w 

straight lines for gypsum and anhydrite, respectively. The 

slope of the mentioned line gives the coefficient of friction 

within the fractured specimen of the rock. it is clear then 

that if the above straight line meets the Mohr envelope, there 

will be stresses at which no reduction of load will occur after 

fracture since the applied shear stress on the fracture surface 

does not exceed the frictional force on the surface. 

It can be seen from tables (6-3) and (6-4) that there is a 

marked difference between the measured angles of fracture (e) and 

those calculated from Griffith's, (6G) , equation (6-7). This can 

be attributed to the fact that the Griffith theory predicts only 
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the orientation of the dangerous crack which propagates and 

initiates fracture, Murrell 50ý. There is also the possibility 
t 

that the Griffith crack under shear may not propagate in the 

direction of its major axis and that the observed fracture sur- 

face develops by the linking up of a number of propagating 

cracks. 

On the other hand, the measured fracture 
. angles (6) agree 

reasonably well with those predicted from Mohr envelopes (AM) . 

The small differences between them are possibly due to aniso- 

tropy or incipient fracture planes in the rock. In anisotropic 

._, _. , -material, . 
fracture 

. will not necessarily take place along the 

maximum shear stress plane, since the material may be stronger 

in this direction than in another along which the shear stress 

is lower but sufficient to cause fracture. 

The stress-strain curves of gypsum and anhydrite at various 

confining pressures are shown in Figs. (9-12) and (9-13) re- 

spectively. Each curve represents the average values obtained 

.... from several _. specimens... tested. at. the mentioned confining pres- _ .. - - 

sure. In order to get an idea of the reliability of the results, 

two sets of stress-strain curves for gypsum specimens, tested at 

uniaxial and 30 N/mm2 confining pressure, are given in Figs. (9-14) 

and (9-15), respectively. The average curve of each set is also 

shown as a dotted line. It can be seen that there is a clear 

scatter in the results of different specimens deformed under 

similar conditions. Among the possible causes of these differ- 

ences are (a) effect of anisotropy, (b) slight variations of 

temperature from 
. 
test to test, (c) small differences in mechani- 

cal properties of specimens, etc. 

The load/displacement of gypsum at various confining pressures 

9-12 



is shown in Fig. (9-16). 

It can be noticed from the stress-strain curves and the 

load-displacement of gypsum mentioned previously that there is 

a linear section in each curve during the early stages of the 

deformation. This section of the curve is frequently assumed 

to be the elastic zone. It can be also seen that at a constant 

axial stress, see Figs. (9-12) and (9-13), as the confining 

pressure increases the strain, deformation, decreases. At high 

both confining and axial stress, Fig. (9-12), the stress-strain 

curve tends to become parallel to the strain-axis, indicating 

-plastic-behaviour of rock rmaterials under high* confining pres- 

sure. It can be noticed that the slope of each stress-strain 

curve increases with confining pressure. 

The total strain before fracture (maximum strain) versus 

both the mean pressure Pm, that is, one-third of the sum of the 

three principal stresses (al, a2 and a3) and the confining pres- 

sure is plotted in Figs. (6-17) and (6-20),, respectively for 

both gypsum-and 'anhydrite: ' These - curves ' are -sometimes known 

as ductility curves. It can be seen that at any mean pressure 

or confining pressure the maximum strain (ductility) of gypsum 

is higher than that of the anhydrite indicating that, under tri- 

axial loading, the gypsum starts to deform plastically at a 

lower stress than the anhydrite. The relationship between the 

mean pressure, Pm, and. the maximum shear stress, Tm, is shown 

in Fig. (6-16) for both gypsum and anhydrite. This curve is 

I 

sometimes called the strength pressure curve, (Handin and Hage 
ý30)0) 

The curves for both rocks are slightly. concave downward but 

nearly linear. The slope of each curve decreases with increasing 

the mean pressure. It is clear that this slope can never exceed 
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1.5 which is the slope of the curve at uniaxial compression. 

Handin and Hager(30) reported that the strength curves they 

obtained for anhydrite and dolomite are nearly straight lines. 

Their anhydrite curve was constructed depending on results from 

one specimen only. It can be seen from Fig. (6-16) that the 

anhydrite curve lies above that of gypsum and its slope at any 

value of mean pressure is more than that of the gypsum which is 

to be expected because the anhydrite is stronger than the gypsum. 
a1 

The relationship between the maximum shear stress, TM= 2c3 
1+Q 

and the maximum normal stress, am= 23 is shown in Fig. (6-21) 

for both tested rocks. The gradient of both curves decreases 

with increasing the normal stress. It is expected that these 

curves tend to merge into straight lines parallel to am axis as 

would be expected in a material deforming plastically. 

The modulus of elasticity of each rock at various confining 

pressures was determined by making use of the instantaneous 

strains and their corresponding stresses applied during the 

creep tests. The instantaneous strain versus the axial stress 

(as a percentage of the ultimate strength) at various confining 

pressures are plotted in Figs (9-17) and (9-18) for gypsum and 

anhydrite respectively. From these curves the moduli of elast- 

icity of each rock were determined at every confining pressure 

employed. They are given in table (9-5) together with the moduli 

of elasticity from bending creep tests, see section (9-1.2). 
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Table (9-5) 

Moduli of Elasticity of Gypsum and Anhydrite 

at Various modes of loading, N/mm2. 

Mode of stress Gypsum Anhydrite 

Bending (Tension) 3.95x104 7.21x104 

Uniaxial (Comp. ) 3.17x104 7.05x104 

Triaxial (Comp. ) 

Confining pressure 
N/mm2 

Gypsum Anhydrite 

' 10 3.19x104 8.27x104 

20 3.26x104 - 

30 3.32x104 - 

The moduli of elasticity in compression tests are plotted 

versus the confining pressure as shown in Fig. (9-19). It can 

be seen that the modulus of elasticity of each rock increases 

linearly with confining-pressure. Murrell (50) 
reported the 

i .:. isameý behaviour ýforý.: Darl. ey. tDale sandstone under., triaxial. compres- ::.., - 

sion. From table (9-5) it is clear that the modulus of elast- 

icity in uniaxial compression of each rock is less than the 

corresponding modulus of elasticity in tension from bending 

tests. This confirms the behaviour of the rock in bending tests 

where the stress-strain curve in compression lies below the 

curve in tension, see Fig-(9-1), and the neutral axis being 

nearer the tension face of the beam than the compression. 

9-2.2 Creep Tests: 

One aim of this research was to develop an apparatus for 

triaxial creep experiments, and to study the triaxial creep 

behaviour ofwsome evaporite rocks, using the above mentioned 
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apparatus. Gypsum and anhydrite were chosen initially to be 

tested. A full description and details concerning the develop- 

ment of the apparatus have been given in Chapter 8 of this 

thesis. A brief description of the tested rocks mineralogical 

and chemical composition is given in Chapter 4. All the tests 

were carried out on air dried 75 mm long by 25 mm rock core 

samples (the exact dimensions of each specimen were measured 

individually) at room temperature, (the temperature was 68°F ±2 

and the humidity was 51% ± 1.5). 

From the results published by previous investigators in 

the field of creep in rocks and confirmed in this work it is 

established that the applied stress has a great effect on the 

creep behaviour of any rock. The value of the applied stress 

necessary to cause an appreciable amount of creep to occur in 

a reasonable time from an experimental viewpoint, apart from 

other factors, depends on the ultimate strength of the tested 

rock under the loading conditions of the'experiment. It was 

therefore decided to apply different axial stresses as a per- 

centage of the ultimate strength, at every confining pressure, 

namely 30%, 50%, 65% and 80% of the ultimate strength au. Various 

confining pressure levels were chosen for this study. They are: 

0 (uniaxial), 10,20 and 30 N/mm 2. 

The results of the creep tests are, in the form of tables 

and figures., given in tables from (9-6) to (9-11) and figures 

from Fig. (9-20) to (9-34). In each table the axial stress is 

given as a percentage of the ultimate strength of the rock (au) 

at the given confining pressure and in N/mm. The instantaneous 2 

strain in each case is also given. The data given for each 

stress level and the corresponding graph is the average value 
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obtained from two or three rock specimens tested at similar 

applied stresses, axial and confining , and at similar environ- 

mental conditions. In order to give an idea of the reliability 

of the resuLts, one set of creep results of three gypsum speci- 

mens tested under 68.2 N/mm2 (=50%au) axial stress at 30 N/mm2 

confining pressure is given in table (9-12)and plotted in Fig. 

(9-35). The average is also shown in both the table and the 

figure. It can be seen from the above example that there are 

clear differences in the results of different specimens deformed 

under similar stress conditions. These differences were, poss- 

ibly, the result of the effect of anisotropy in the specimens, 

small differences in the chemical composition between the 

specimens, slight variations of temperature and humidity from 

test to test, small differences in mechanical properties of 

specimens etc. 
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Table (9-6) 

Uniaxial creep strain in Anhydrite 

Axial stress -% au, N mm2 
30% au 40% au 60% au 80% au 

Time 30.4 40.5 60.8 81.0 

hours Instantaneous strain - microstrain 

430.6--l 655.8 918.6 
[ 

997.5 
__ 

Creep strain - microstrain 

0.1, (6 min. ) 3.2 6.0 4.2 8.8 

0.33, (20 min. ) 4.1 9.7 13.3 16.6 

0.5, (30 min. ) 5.5 11.6 16.1 18.5 
1 7.4 14.4 21.5 26.4 

2 10.2 18.5 27.0 33.3 

3 - 24.0 - 37.9 

4 12.5 25.5 33.9 40.7 

5 13.9 27.8 34.7 44.4 

6 14.8 29.6 39.3 47.2 

12 17.1 31.0 44.0 56.0 

24 18.5 35.7 46.8 61.1 

48 24.1 41.7 54.8 68.0 

72 24.1 46.3 56.1 75.9 

96" 26.2 48.9 60.0 80.5 

120 27.1 48.2 61.8 81.5 

144 26.4 48.2 63.2 82.5 
168 30.5 49.1 64.5. 84.6 

. 
192 30.5 53.3 68.5 85.9 

216 30.8 53.8 69.0 86.3 

240 30.4 54.6 68.2 88.9 
264 31.3 53.6 70.1 88.9 

288 - 54.8 71.8 91.0 

312 - 55.9 70.8 90.2 

336 56.4 70.3 89.9 

360 - - 72.1 92.3 
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Table (9-7) 

Triaxial creep, strain in Anhydrite at 10 N/mm 2 

confining pressure 

Axial stress -% au N mm2 
40% uu 60% au 80% au 
=65.8 

( 
=98.8 =131.7 

Ti me 
Instantaneous strain - microstrain 

hours 
756.1 1236.2 1601.8 

Creep strain - microstrain 

0.1, (6 min. ) 4.6 2.8 8.3 

0.33, (20min. ) 8.3 11.5 14.1 
0.5, (30 min. ) 11.6 15.6 16.2 

1 13.9 22.3 23.0 
2 20.8 27.8 28.4 

3 22.2 32.0 34.1 

6 27.9 39.5 44.2 

12 32.4 42.4 47.0 

24 35.4 48.1 56.2 

48 39.8 58.7 62.9 

72 44.5 62.5 72.5 

96 45.7 63.8 79.3 

120 47.0 65.7 87.8 

144 46.1 65.9 90.8 

168 48.5 67.0 91.3 
192 52.0 67.7 93.2 
216 51.6 68.3 99.0 

240 52.5 71.3 104.6 
264 52.3 - 105.3 
288 52.2 72.8 106.4 
312 - - 107.7 
336 54.8 73.0 110.3 

360 54.3 74.5 114.1 

384 - - - 
408 - 74.6 118.0 

432 - 75.7 - 
456 - 75,4 119.1 

480 - 75.4 119.0 
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Table (9-7) 

contd. 

Triaxial creep strain in Anhydrite at 10 N/mm2 

confining pressure 

Axial stress -% au, N mm2 
40% Qu 60% au 80% au 

Time =65.8 =98.8 =131.7 

hours Instantaneous strain - microstrai 

756.1 1236.2 1601.8 

Creep strain - microstrain 

504 - - - 
528 - - 120.5 

552 - - - 
576 - - 121.3 

600 - - 123.6 

624 - - 123.8 
648 - - 123.8 

672 - - 124.0 

692 - - 124.4 
720 - - 124.2 
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Table (9-8) 

Uniaxial creep strain in Gypsum 

Axial stress -% au, N mm 2 

30% au 40% au 50% au 65% au 80% au 
=17.2 =23.0 =28.7 . =37.3 =46.0 

Time 
Instantaneous strain - microstrain Yours 

520.3 648.7 937.4'1 1207.0 1411.5 

Creep strain - microstrain 

0.1, (6 min. ) 12.2 14.3 30.5 33.9 51.7 

0.33, (20 min. ) 18.3 24.3 - 45.7 74.6 

O. 5 . "(30 min. ) 23.1 27.4 47.3 55.3 . 78.5 

1 27.0 43.1 . 53.5 60.5 95.5 

2 33.7 50.0 61.0 71.4 118.4 

3 44.2 60.3 68.1 78.0 135.1 

4 48.6 64.9 70.3 82.5 150.3 

6, 50.1 70.2 74.9 95.3 161.7 

12 53.2 77.6 86.1 115.6 191.0 

24 64.3 94.6 110.4. 139.7 225.2 

48 72.5 - 128.4 167.7 269.2 

72 82.5 103.1 131.7' 184.8 309.3 

96 88.6 115.0 140.5 195.1 331.5 

'120 95'. 3 117. *5 145.0 203.9' 340.4 

. 144 99.7 118.3 150.5 209.4 359.1 

168 102.9 117.8 158.8 220.5 376.9 

192 106.1 120.2 168.4 224.7 389.8 

216 107.0 124.9 173.2 229.1 410.7 

240 110.4 125.7 181.3 235.3 425.0 

264 110.4 127.3 184.7 241.0 432.1 

288 110.5 127.7 186.8 252.0 441.8 

312 -" 128.3 189.3 255.3 450.3 

336 - 129.4 - 270.1 459.4 

360 - 130.3 - 266.8 465.2 

384 - - - 362.6 474.5 

408 _ - - 368.5 483.3 

432 - ` - 494.0 

- - - 494.3 456 - 
- - - 495.8 

480 - 
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Table (9-9) 

Triaxial creep strain in Gypsum at 10 N/mm2 confining pressure 

". J . 

Axial stress -% au, N mm2 
30% au 40% Qu 50% au 65% ou 80% au 
=27.6 =36.8 =46.0 =59.8 =73.7 

Time 
Instantaneous strain - microstrain hours 

726.9 1109.3 1470.5 2002.3 2220.1 

Creep strain - microstrain 

0.1, (6 min. ) 21.3 35.1 42.5 55.9 69.5 

0.33, (20min. ) 28.1 47.2 56.3 79.1 100.7 

0.5, (30 min. ) 32.5 . 
51.9 62.4 '90.3 115.3 

1 38.9 62.0 75.1 106.7 140.3 

2 46.2 71.8 89.2 130.2 175*. 5 

3 50.3 78.3 98.3 145.4 196.2 

4 54.4 85.5 105.0 160.7 215.1 

5 56.2 90.0 113.7 171.8 230.7 

6 58.6 94.3 120.0 181.3 241.9 

12 64.8 111.5 142.5 215.0 301.3 

18 70.1 125.0 157.8 235.2 338.1 

24 78.3 131.3 173.1" 265.4 371.1 

48 90.1 155.0 200.3 320.1 462.2 

72... " . lr.. 101.9 171.3-. " 226.4 359.4 512.4 

96 105.7 185.3 245.2 39.1.3 560.4 

120 111.8 197.4 256.4 410.7 601.7 

144 117.5 205.1 271.1 438.1 639.1 
168 120.1 208.7 281.7 460.5 668.7 

192 122.4 212.5 289.8 475.0 688.8 

216 124.8 218.6 300.1 490.3 715.0 

240 126.3 222.6 310.1 505.3 750.1 

264 - 228.1 316.3 516.1 770.3 

288 - 233.4 322.8 528.2 789.2 

312 - 238.2 328.1' 540.4 805.0 

336 - 241.9 334.3 551.5 821.1 

360 - 245.1 341.8 559.1 836.6 

384 - - 347.1 570.2 854.5 

408 - - 351.2 579.3 874.4 
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Table (9-9) 

contd. 

Triaxial creep strain in Gypsum at 10 N/mm2 confining pressure 

Axial stress -% au, Nfmm 2 

30% au 40% au 50% au 65% au 80% au 

Time =27.6 =36.8 =46.0 =59.8 =73.7 

hours Instantaneous strain - microstrain 

726.9 1 1109.3 1470.5 2002.3 I ý 2220.1 

Creep strain - microstrain 

432 355.7 " , 
588.4 892.1 

456 - - 360.2 600.7 903.3 

-480 - - 365.7 610.0 913.2 

504 - - - 619.7 924.8 

528 - - - 628.1 937.7 

552 - - - 638.8 948.3 

576 - - - 644.7 962.1 

600 - - - 650.1 971.3 

624 - - - - 982.7 

648 - - - - 990.3 
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Table (9-10) 

Triaxial creep strain in Gypsum at 20 N/mm2 

confining pressure 

,ý., 

0 

2 
Axial stress % out N mm 

30% ou 50% au 80% au 65% au 
i =34.4 =57.3 

1 l 
=74.5 =91.7 T me 

hours Instantaneous strain - microstrain 

1069.3 1 1710.3 2284.1 2815.7 

Creep strain - microstrain 

0.1, (6 min. ) 39.0 45'. 2 59.7 71.4 

0.331(20 min. ) 50.1 62.5 70.1. 107.0 

0.5, (30 min. ) 55.7 70.8 98.3 122.1 
1 61.13 82.1 119.0 145.2 

2 71.1 98.3 140.3 182.7 

3 76.5 112.5 165.0 215.2 

4 82.1 120.5 180.1 235.3 

5 86.4 129.5 191.4 256.1 

6 89.3 140.1 200.7 263.3 

12 102.6 165.3 235.7 330.3 

18 107.1 180.5 
, 

269.1 379.7 

24 116.9 191.7 290.8 411.7 

48 130.3 240.1 370.2 540.1 

72 144.8 261.3 419.3 619.8 

96 155.1 280.8 440.1 6,65.4 

120 161.7 300.2 469.7 710.4 
144 165.2 312.1 501.8 761.5 

168 171.3 322.5 520.9 798.8 

192 175.1 341.7 550.1 830.1 

216 177.3 350.3 570.8 861.7 

240 178.4 360.4 591.3 888.1 

264 179.1 371.3 608.5 911.8 

288 - 379.1 630.1 950.3 

312 - 380.5 640.3 980.5 

336 - 386.3 648.1 991.4 

360 - 390.1 665.3 1019.7 

9-24 



Table (9-10) 

contd. 
Triaxial creep strain in Gypsum at 20 N/mm2 

confining pressure 

l: -. 

. Axial stress u. N mm2 
30% au 50% au 65% au 80% au 
=34.4 =57.3 =74.5 =91.7 Time 

hours ' Instantaneous strain - microstrain 

1069.3 1710.3 1 2815.7 2284. 1 

_ _ Creep strain - microstrain 

384! - - 690.1 1048.8 
408 - - 695.7 1073.1 

432'' - - 704.1 1100.7 

456 - - 710.3 1120.8 

480 - - 712.1 1137.2 

504 - - 715.3 1149.2 

528 - - 718.1 1161.1 

552 - - - 1172.3 

576 - - - 1179.1 

600 - - "- 1192.4 

624 - - - 1199.5 

648 - ,; - - 1202.7 

672 - - - 1207.2 

696 - - - 1208.1 

720 - - - 1210.9 
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Table (9-11) 
Triaxial creep strain in Gypsum at 30 N/mm2 

confining pressure 

Axial stress u, N mm2 I 
30% au 50% au 65% au 80% au 

Time =40.9 =68.2 =88.7 =109.2 

hours Instantaneous strain - microstrain 

1249.7 1828.. 7 1 2788.9 3355.0 

Creep strain - microstrain 

0.1, (6 min. ) 44.5 49.3 58.1 83.4 
0.33, (20 min. ) 56.3 71.5 81.5 110.3 
0.5, (30 min. ) 60.1 79.7 104.0 127.7 

1-.. 71.3. 94.1 140. L. 162.0 
2 79.2 118.8 164.7 231.8 
3 90.3 132.1 187.0 245.5 

4 93.7 136.8 195.7 261.1 

5 96.8 145.1 210.3 288.7 

6 102.1 166.2 215.1 307.8 

12 115.5 201.5 --275.2 380.4 

18 131.5 212.0 322.3 439.0 

24 140.7 235.5 340.7 481.2 
48 153.0 270_5 421.1 635.1 

72- 172.7 312.1 483.1 735.3 

96 185.3 360.9 585.2 790.7 
120 191.8 380.2 585.9 855.5 
144 195.4 369.1 602.1 936.6 
168 205.3 370.7 635.7 970.1 
192 209.5 405.6 671.8 1015.3 
216 208.5 419.1 635.0 1095.2 
240 215.6 420.1 740.4 1150.5 
264 - 448.8 737.1 1147.7 
288 - . 460.2 760.1 1180.8 
312 - 463.7 779.8 1217.1 

336 - 487.1 800.5 1241.0 

360 - 483.3 823.4 1261.2 

384 - 487.7 838.2 1285.3 

408 - 489.1 850.4 1315.1 
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Table (9-11) 

contd. 

1J L 

Triaxial creep strain in Gypsum at 30 N/mm2 

confining pressure 

Axial stress %au, N/mm2 
30% au ý 50% au 65% au 80% Qu f 
=40.9 =68.2 =88.7 =109.2 

Ti me 

hours Instantaneous strain - microstrain 

1249.7 1828.7 T 2788.9 3355.0 

Creep strain --microstrain 
} 

432 - - 862.1 1342.5 

456 873.3-1 - 1361.2 
480 - 4- 881.0 1390.7 

504 - - 888.3 1412.8 

528 - 890.7 1441.3 

552 - - 897.2 1473.4 

576 - - 901.1 1493.2 

600 - - 907.3 1508.1 

624 - - - 1527.0 

648 - - - 1539.2 

672 -� - - 1550.8 

696 - - - 1561.1 

720 - - - 1571.7 
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Table (9-12) 

Creep strain in three Gypsum specimens deformed under 68.2 N/mm2 
(50% au), axial stress at 30 N/mm2 confining pressure - microstrai] 

Time 
hr. 

Specimen 
No. 93 G 

Specimen 
No. 94 G 

Specimen 
No. 97 G 

Average 

0, (Inst. ) 1890.3 1877.1 1718.6 1828.7 

0.1, (6 min. ) 51.2 55.1 41.5 49.3 

0.33, (20 min. ) 74.5 72.7 67.2 71.5 
0.5, (30min) 79.3 76.4 83.3 79.7 

1 88.3 102.7 91.2 94.1 
2 110.2 126.1 120.0 118.8 

3 120.3 139.2 136.8 132.1 

4 127.1 '145.9 137.4 136.8 
5 138.3 153.7 143.2 145.1 
6 170.3' 178.1 150.3 166.2 

12 217.5 211.7 175.2 201.5 

18 235.1 - 188.9 212.0 
24 270.1 225.3 211.2 235.5 
48 304.9 260.5 246.2 270.5 

72 325.4 335.2 275.8 312.1 

96 351.7 405.8 325.2 360.9 
120 355.3 455.1 330.3 380.2 

144 360.8 394.8 351.7 369.1 

168 363.5""- ' -408.3 340.2 370.7 

192 400.4 430.7 385.8 405.6 

216 405.8 430.7 420.7 419.1 

240 410.5 429.3 420.6 420.1 
264 425.5 475.8 445.2 448.8 

288. 430.4 471.8 478.4 460.2 

312 438.4 470.2 482.4 463.7 
336 462.0 484.1 515.3 487.1 

360 453.5 478.2 518.1 483.3 
384 467.8 468.8 526.5 487.7 

408 471.3 470.3 525.8 489.1 
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The creep curves obtained for the two chosen rocks under 

different axial and confining stresses obey reasonably well 

the following laws: 

Logarithmic law, c=A+B log t 

or/and Power law, c= Ctn 

(9-10) 

(9-11) 

where, e is the creep strain at any time in microstrain, t is 

the time after loading in hours and A, B, C and n are constants 

which depend on the material and the test conditions. For 

anhydrite and gypsum creep behaviour, under uniaxial and tri- 

axial compression, the following equations were found: 

(a) For Anhydrite: "v, 1,, 

Uniaxial compression and triaxial compression at 10 N/mm2 

confining pressure creep tests were carried out on anhydrite 

specimens at room temperature. The triaxial creep tests were 

confined to 10 N/mm2 due to limitations of available time. 

In all cases, except that at high stress of the triaxial 

tests, the creep curves followed the logarithmic law, Eq. (9-10), 

--., =. indicating that.. the,. creep diminishes asymptotically . with time.. 

1). For uniaxial compression the following relationships 

were obtained, see table (9-6) and Figs. (9-20) and (9-21) : 

at a1 = 30% au = 30.4 N/mm2: 

c= 8.62 + 8.29 log t- (9-13) 

at a1 = 40% au = 40.5 N/mm 2: 

c= 17.11 + 15.15 log t (9-14) 

at a1 = 60% au = 60.7 N/mm2: 

c= 22.42 + 18.70 log t (9-15) 

at of = 80% au = 81.0 N/mm2: 

c= 26.81 + 26.10 log t (9-16) 

The values of the creep strain given in table (9-6) were 
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plotted versus time on semi-log graph as shown in Fig. (9-21). 

The relationships so obtained were straight lines, indicating 

that the logarithmic law well fits the given data. In the 

equations (9-13) to (9-16) the first term, A in equation (9-10), 

represents the amount of creep strain after one hour and the 

number proceeding log t, B in equation (9-10), represents the 

slope of the straight line drawn of the creep strain versus time 

on semi-log graph, see Fig. (9-21), which can be calculated by 

B- 
E2 -E1 

. Another method in calculating A and B were 
logt - logtl 

used""whic1i is called the least square method, which will be de- ' ,, 

,.. scribed when the gypsum results are discussed later in. this 

chapter. 

2). For triaxial compression at 10 N/mm2 confining pressure 

the following relationships were obtained, see table (9-7) and 

Figs. (9-22) 1 (9-23) and (9-24) : 

at cr1 = 40% au = 65.8 N/mm2: 

c = 16.31 + 14.38 log t (9-17) 

at a1 = 60% au = 98.8 N/mm2= 

e= 21.50 + 20.16 log t (9-18) 

at 1= 80% au = 131.7 N/mm 2 

E, = 28.21 + 15.05 log t (9-19) 

for O<t<2 hrs. 

and c= 25.54tO. 245 (9-20) 

for t>2 hrs. 

It can be seen from the above equations that the creep 

in anhydrite at 10 N/mm2 confining pressure followed the log- 

arithmic law, Eq. (9-10), for the whole periods of all the tests 

except under high axial stress, 80% au, where a departure from 

the logarithmic relationship was obtained after 2 hours loading. 
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In the initial stage, 0<t<2 hrs, the creep curve followed 

the logarithmic law, Eq. (9-10), which later on changed into 

the power law, Eq. (9-11) , (e = Ctn). The value of the exponent 

"n" being only fractionally greater than zero. Fig. (9-24) shows 

the creep strain plotted versus time on a log-log graph which 

gives a straight line curve after t=2 hrs. indicating that the 

power law, Eq. (9-11) , well fits the creep behaviour of anhydrite 

at 10 N/mm 2 
confining pressure under high axial stress, 80%au. 

The value of "n" is the slope of the straight line on the log- 
109E2-logcl 

log graph, calculated by n logt2-logtl' The, value of "C" is 

the creep strain at t=1 hour. Equation (9-11) can be rewritten 

in the form: 

loge = log C+n log t (9-21) 

which is an equation of a straight line of a slope equal to "n" 

and an intercept on the logt axis equal to logC. Therefore, the 

least square method mentioned previously can be used in calculat- 

ing "n" and "C". An example of using this method will be given 

later in this chapter. 

(b) For Gypsum: 

Uniaxial compression and triaxial compression at 10,20, 

30 N/mm2 confining pressure creep tests were carried out on air 

dried gypsum specimens at room temperature. It was found that 

the creep behaviour of gypsum followed the logarithmic law, 

Eq. (9-10)t and/or the power law, Eq. (9-11) ", according to the 

magnitude of the applied axial stress and the confining pressure. 

From the creep results obtained the following relationships were 

found: 

1). For uniaxial compression, see table (9-8) and Figs. 

(9-25)j, (9-26) and (9-27),, the creep behaviour followed either 
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the logarithmic law, Eq. (9-10). or the power law, Eq. (9-11), 

according to the applied stress as given below: 

at al = 30% au = 17.3 N/mm2: 

C= 32.51 + 26.92 log t (9-22) 

at al = 40% au = 23.0 N/mm 2 

C= 45.19 + 31.60 log t (9-23) 

at al = 50% Qu = 28.7 N/mm2: 

E= 53.49 t0.215 (9-24) 

at a1 = 65% au = 37.6 N/mm2: 

C= 62.10 t0.245 (9-25) 

°'at 'al = 80% au = 46.0 N/mm2: 

e= 90.21 t0.284 (9-26) 

It is clear from the above equations that at low axial 

stress, namely 30% au and 40'% au, the creep of gypsum followed 

the logarithmic law, Eqs. (9-22) and (9-23). Whereas under 

medium and high axial stress (50% au, 65% au and 80% au) the 

creep-time relationship followed the power law: Egs. (9-24), 

(9-25) and (9-26).. 

The uniaxial creep data were plotted on semi-log graph, 

Fig. (9-26) , and on log-log graph, Fig. (9-27) . It can be seen 

from-the above two figures that the creep of gypsum under 30% au 

and 40% au give straight line relationship between the creep 

strain and the time on the semi-log graph (lines d and e in Fig. 

(9-26)), indicating that the logarithmic law (e =A+B log t) 

well fits the results obtained. The constants "A" and "B" were 

calculated in similar method described in the previous section 

of anhydrite. On the other hand, when the stress was increased 

to 50% au, 65% au and 80% au the creep data gave a straight line 

relationship of creep strain versus time on log-log graph; lines 
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a, b and c in Fig. (9-27), indicating that the power law 

(c = Ctn) well fits the creep results under the above mentioned 

stress levels. The constants "C" and "n" were calculated by 

the least square method, mentioned previously, and equation 

(9-21). 

2). For triaxial compression at various confining pres- 

sures the following relationships were obtained: 

a- At 10 N/mrt2 confining pressure, table (9-9) and Figs. 

ý- ̀  (9-28) ý, (9-29) and (9-30) . The creep behaviour of gypsum at this 

-° level of-confining pressure followed the power , law', Eq. (9-11), 

---., -, -for-all axial stress -levels except-under low axial,. stress, .. 30% ,. au . 
where it followed the logarithmic relationship, Eq. (9-10), at 

the beginning of the test then a departure from this law to 

the power law was obtained. The relationships obtained were: 

at o1= 30% ou = 27.6 N/mm2 : 

E= 38.22 + 22.70 log t 

for 0<t4 24 hours 

and c= 43.91 tß" 189 

for t> 24 hours 

at a1 = 40% vu = 36.8 N/mm2: 

c =60.95 to. 238 

at Q1 .= 
50% vu = 46.0 N/mm2 : 

e= 74.21 t0.250 

at a1 = 65% Qu = 59.8 N/mm2: 

e= 107.24 to. 285 

at a, = 80% au = 73.7 N/mm2 : 

e= 140.10 t0.307 

(9-27) 

(9-28) 

(9-29) 

(9-30) 

(9-31) 

(9-32) 

b- At 20 N/mm2 confining pressure, table (9-10) and Figs. 

(9-31) and (9-32). The creep curves of gypsum under all axial 
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stress levels followed the power law, Eq. (9-11), throughout 

the tests. The following-relationship were obtained: 

at Q1 = 30% ou = 34.4 N/mm2: 

c = 62.11 t0.199 

at of = 50% au = 57.3 N/mm2: 

e = 83.30 t0.267 

at al = 65% au = 74.5 N/mm2 

c = 118.44 t0.2ß8 

at 01 = 80% Qu = 91.7 N/mm 2: 

"w1ý e = 148.28 t0.313 

(9-33) 

(9-34) 

(9-35) 

(9=36) 

.., ýý,... ý .. _ .a _c--,: At 30 N/mm?.. confining pressure, table, (9-Il) ., and 4 

Figs. (9-33) and * (9-34) . The creep curves at this level of 

confining pressure and under all the applied axial stresses 

followed the power equation, Eq. (9-11), from the beginning of 

each test. The creep equations were as follows: 

at vl = 30% au = 40.9 N/mm2: 

e= 69.38 t0.214 

._, -. .). at vl = 50% vu = 68.2 N/mm2 : 

c= 97.74 t0.271 

at a1 = 65% au = 88.7 N/mm2: 

c= 131.74 tO. 307 

(9-37) 

(9-38) 

(9-39) 

at a1 = 80% au = 109.2 N/mm 2: 

164.18 t0.344 (9-40) 

In the previous equations from (9-22) to (9-40) all the 

constants were found by using the least square method and checked 

with the values obtained from the semi-log and log-log graphs. 

All the results were in agreement. An example is given in 

Appendix B to illustrate the use of the least square method. 
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The degree of correctness is also shown in the same example 

by calculating the correlation coefficient (R). Analysis of 

the creep results and their discussions is made under the fol- 

lowing major headings : 

1). Effect of axial stress. 

2). Effect of confining pressure. 

9-2.2.1 Effect of Varying Axial Stress 

Effect of varying axial stress on creep was studied under 

i. '. uniaxial and. triaxial compression on gypsum and. anhydrite. ' It 

can be -seen 'from tables-(9-6) to (9-11) that creep' strain occurred 

uýý. ... at. _everyý.. axial. stress. �... It., is also.. clear from. the. tabove mentioned-.... 

tables that the instantaneous strain increased with the applied 

axial stress. These deformations are not completely elastic in 

nature but consist of reversible and some irreversible deforma- 

tions, specially at high axial stress. These irreversibly 

deformations, compared to the elastic deformations, are very 

small. The instantaneous deformations (strains) versus the 

_ corresponding_axialýstresses_are.. plotted in Figs_.... (9-L7): and 

(9-18) for gypsum and anhydrite respectively. The moduli of 

elasticity were also found by making use of these instantaneous 

strain-stress graphs, see section (9-2.1). 

For anhydrite at uniaxial compression and triaxial at 10 

J... 
.. 

N/mm2 it was found that the creep curves. followed the logarithmic 

relationships, see equations (9-13) to (9-19) except at triaxial 

compression under 80% au, see equation (9-20). * Misra(49) reported 

the same behaviour of most of the-rocks tested under uniaxial 

compression. Griggs (28) indicated that creep in Solenhofen 

limestone, halite single crystals, shale and other rocks followed 

the logarithmic law under uniaxial compression. Phillips (62) 

9-35 



found the same behaviour in different metal wires subjected to 

uniaxial tension, see Eq. (5-1). The constants A and B of the 

logarithmic equation for anhydrite creep in both uniaxial and 

triaxial compression are given in table (9-13). It can be seen 

from this table that as the axial stress increases the values of 

both constants increase. In other words, the effect of increase 

the axial stress is to increase the creep rate, as well as the 

instantaneous strain. 

Table ' (9-13) . 
The constants A-andB of the logarithmic equation 
(e. = A+B log t) for anhydrite. 

A 

Confining 
pressure 

Axial 
stress 
% vu 

Equation 
No. A B 

30% 9-13 8.62 8.29 

40% 9-14 17.11 15.15 
Uniaxial 

60% 9-15 22.42 18.70 

80% 9-16 26.81 26.10 

`40% 9-17 16.31 14.38 
10 

2 N/mm 
60% 9-18 21.50 20.16 

80%* 9-19 28.21 15.05 

* The creep curve changed to the power law 

(E = Ctn) after 2 hours of creep. 

For gypsum at uniaxial compression; Figs. (9-25), (9-26) 

i 

and (9-27); the creep curves followed the logarithmic law, Eqs. 

(9-22) and (9-23), under low axial stress, namely 30% Qu and 

40%-au. Whereas under medium and high stress; 50%. ou, 65% au 

and 80% au; they followed the power law; see Eqs. (9-24), (9-25) 

and (9-26). It can be seen from equations (9-22) and (9-23) that 
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the constants A and B of the logarithmic law increase with the 

stress. This behaviour was reported by many other investigators, 

Misra(49 , Griggs (28) 
and others. Comparing the anhydrite uni- 

axial creep equations with those of the gypsum it can be seen 

that the creep curves of gypsum changed from logarithmic law 

to power equation at lower stress level (given as % au), than 

that of the anhydrite. It seems likely that the weaker the rock 

the lower the stress level at which the creep law changes to a 

" power law. Hedley(34) and Comte(l1) in their uniaxial creep, 

"-ý"--Oc'-'tests- on, rock salt-reported that-the creep curves followed the, - 

-power law from the very beginning of the test. Their work con-_ 

forms the above conclusion because, generally, rock salt is 

weaker than' gypsum. The power equations (9-24), (9-25) and 

(9-26) and their constants C and n will be discussed later with 

triaxial creep results. For triaxial compression at 10,20 and 

30 N/mm2 confining pressure the creep curves followed the power 

law, equation (9-11), for all the cases, 'see equations (9-28) 

to (9-40)-, except for the first 24. hours of the creep test at 

10 N/mm2 confining pressure under 30% au axial stress where it 

followed the logarithmic law, equation (9-27). This behaviour 

of gypsum is in agreement with many investigators work on vari- 

ous rocks. Kendall (43) 
on rock salt and Solenhofen limestone, 

Comte (11) 
on artificial rock salt, Hedley(34) on potash, and, 

others reported that the creep of rocks tested under triaxial 

compression followed the power law, Eq. (9-11). The power "n" 

was found to be 0<n<1. Table (9-14) gives the creep equa- 

tions, the constants C and n of the power equation (e = Ctn) and 

the-creep rate at various times after loading for gypsum deformed 

under uniaxial and triaxial compression. 
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From table (9-14) and the corresponding equations it is 

clear that the constants "C" and "n" increase with the axial 

stress at any particular confining pressure. The values of C 

and n are plotted against the axial stress in Figs. (9-36) and 

(9-37) respectively. Hedley (34) 
reported similar behaviour in 

rock salt and potash. The creep rate increases with the axial 

stress as shown in table (9-14) and Figs. (9-38) and (9-39) and 

therefore shorten the time to fracture. The values of creep 

I' rate given in-table (9-14) were plotted against the axial stress 

on log-log graph. Straight lines were obtained indicating 'that 

"S the relationship between-the: creep: rate "c " and the axial' stress 

vl follows a power equation of the form e'= kalg, see equation 

(9-11), where k is a constant equal to the creep rate c at 

a1 =1 N/mm2 and g is another constant equal to the slope of the 

straight line of e versus Ql on a log-log graph. Fig. (9-40) 

gives two sets of straight lines for creep rate versus al on log- 

log graph at 20 and 30 N/mm2 confining pressure at various values 

` of-t. It can be-seen from Fig. (9-40) that at each level-of a3 

the set of relationships consists of several straight lines paral- 

lel or nearly parallel to each other, in other words, they have 

one slope. The equations for these sets of straight lines are: 

at a3 = 20 N/mm2 

c=k a11.857 (9-41) 

at a3= 30 N/mm2 

c=k all. 
801 (9-42) 

Misra(49) and Hedley(34) reported the same relationships 

between the creep rate and the stress in their uniaxial creep 

tests on different rocks. 
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The safe axial creep stress applied to a gypsum specimen 

for an assumed service life can be determined from the creep 

data available as follows: 

Experimental data of creep in gypsum under triaxial compres- 

sion at 10 N/mm2 confining pressure have been chosen to be used 

in determining the working stress (ciw) under the given conditions. 

Q 
aW =f (9-43) 

where a is the working stress, ac is the stress that would 

just cause failure by excessive creep in the given expected life 

and f is a safety factor that suitably covers uncertainties of 

material variability and operating conditions. At room tempera- 

tune and at the given confining pressure the creep strength ac 

is determined from the series of the creep strain-time curves of 

Fig. (9-28) as follows: 

Assume that the expected life is 1,000,000 hours and the 

critical strain is 3000 microstrain, for the determination of the 

critical strain see Potts (66) 
and Hedley (34). The creep curves 

of Fig. (9-28) are plotted on log-log graph and the critical strain 

is drawn as shown in Fig. (9-41). The creep relationships, 

straight lines, are extrapolated to intersect the horizontal line 

of the critical strain. The time at each point of intersection 

represents the time required for that specimen to reach the criti- 

cal strain at the given stresses. In Fig. (9-42) the time to 

reach the critical creep strain, determined from Fig. (9-41), is 

plotted against the axial stress on a log-log graph. A straight 

line is obtained from which the creep stress which causes the 

critical creep strain for the assumed expected life can be deter- 

mined by means of the projection on the stress axis from the 
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point of intersection of the straight line and t=1,000,000 

hours. 

Using a similar procedure any creep strength and any assumed 

life can be accommodated. Knowing the creep strength ac and factor 

of safety f, the safe working stress aw for the service life can 

be calculated by Eq. (9-43). From Fig. (9-42) it is clear that 

the service life of the specimen increases as the creep strength 

decreases for a certain critical strain. The above mentioned 

. ,,.. t method can be used for. any engineering rock structure providing .... . 

u: -, creep _. data of.. the.. rock, concerned is .,, available, ----and it _is clear. -: - ... ". " 

that, triaxial results greatly.. increase the field of application 

of the procedure in rock engineering problems. 

At constant differential stress (al-03) it was found that 

the creep rate increases with the axial stress. Fig. (9-43) 

shows the relationship between the creep rate and ßl at constant 

(01-a3) at various times. It can be observed that all the rela- 

tionships are straight lines emanating from one point on al-axis 

.. _. _. ýý (negative -value) .. _ . Therefore, . for any 'constant differential stress, . .. 

there will be a set of eý vs a1 straight-lines emanate from one 

point on the al-axis so that a general equation can be'written 

for this relationship in the form: 

e= (K + ß1)R (9-44) 

where is the creep rate, K is the absolute value of of at 

e. 
0 =0 and R is the slope of the straight line. From Fig. (9-43) 

the following general equation was found: 

Eý _ (7.5 + a1) xR 

For different values of t, the values of R are given in table 

(9-15) . 
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Table (9-15) 

Values of R for various values of t 

at (v -a 3= 40 N/mm2 

Time 
hours Rx 10-3 

24 35.5 
120 11.1 

240 6.7 
600 3.3 

9-2.2; 2: --Effect of Confining Pressure 

At a cönstant--, axial stress -a rapid, decrease--i-n- -the'creep "ý" 'ý' 

ý"" "-ý. urate_&-. was-observed-as.. -the.. confining pressure -increased.. Fig. ý. , 

(9-44) shows the relationship between the creep rate of gypsum 

and the confining pressure-at-constant axial stress (v1=73.3 N/mm2) . 

The figure shows a set of curves at various times. The curves 

are concave upward and nearly parallel to each other. An ex- 

planation for this behaviour is that the confining pressure may 

decrease the size, number and propagation of fractures during 

ý. r rý vcreep. t4, LComte l1', Hedley 1, Robertson 
(72) 

and . others reported 

the. same behaviour in different rocks subjected to triaxial creep. 

At a constant axial stress it can be also seen from table (9-14) 

that both constants C and n of the power equation, Eq. (9-11), 

decrease as the confining pressure increases, Fig. (9-45). Both .. 

curves are not linear and concave upwards. 

From table (9-14) at an axial stress corresponding to a con- 

stant percentage of the short term strength (%au) such as 50% au 

or 65% au, it can be seen that the creep rate at any time, C and 

n increase as the confining pressure increases. Creep of anhydrite 

in uniaxial compression followed the logarithmic law, Eq. (9-10), 
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for all axial stress levels, whereas at 10 N/mm2 confining pres- 

sure the creep curves changed to the power law, Eq. (9-11), at 

80% au. The same behaviour can be observed in gypsum subject 

to creep under uniaxial and triaxial compression. Therefore, it 

can be stated that varying the confining pressure affects the 

creep behaviour of these rocks by controlling the form of the 

creep strain versus time law at a certain percentage of their 

short term strengths. 

"" "# -V I'nereasing the ý, confining , pressure on any rock changes some 

-"of -its"mechanicallprapert'ies;, it, makes -that rock more ductile- 

---x .. -than;. its.. nature at atmospheric pressure*,,, it, makes.. the . rock.... deform 
..,., ,., 

under suitable axial load, plastically rather than in a brittle 

manner, Murrel1(50 . The creep property is one of the rock's 

mechanical characteristics that is also affected by the change 

of the confining pressure even under constant differential stress. 

Patchet(59) reported that the creep rate of a specimen is depend- 

ent on the differential stress applied and is independent of the 

, _' - -magnitude. of either, -the. axial or -lateral stresses,. . *, 
In this .. re-...., a , .. 

search it was found that varying the confining pressure has an 

effect on the creep behaviour of gypsum at constant differential 

stress. Williams and Elizzi(92) confirmed the effect of varying 

the confining pressure on the creep phenomenon at constant dif- 

ferential stress. Figs. (9-46) and (9-47) show that at constant 

differential stress as the confining pressure increases the creep 

strain and the creep rate increase slightly. The constants "C" 

and "n" of the creep power equation, Eq. (9-11) , were also affected 

by varying the confining pressure at constant differential stress. 

Fig. (9-48) shows that both "C" and "n" increase with confining 

pressure. It was also found that at a constant differential 
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stress up to al- a3 = 42.5 N/mm2, the creep rate increases 

linearly with confining pressure whereas above a1-a3 = 42.5 N/mm 2 

the curve starts to take a parabolic shape concave upwards as 

shown in Fig. (9-49). At any differential stress below the 

limit (42.5 N/mm2) there is a set of straight lines of creep 

rate versus confining pressure at different times. These straight 

lines emanate from one point on the a3-axis as shown in Fig. (9-50). 

This behaviour is similar to that given in Fig. (9-43). 
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04 Load 

(a) At 5 N/mm2 Confining Pressure 

(b) At 10 N/mm2 Confining Pressure 

C 

N 

0 
(c) At 20N/mm2 Confining Pressure 

(d) At 30 N mm2 Confining Pressure 

FIG 9- 16 LOAD - DISPLACEMENT CURVES OF 

GYPSUM AT VARIOUS CONFINING 

PRESSURES 
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Chapter 10 

CONCLUSIONS AND FUTURE DEVELOPMENTS 

The aim of this work was in two parts: 

(a) To design and build an apparatus to carry out triaxial 

compression creep tests on some evaporite rocks. 

(b) To investigate the creep behaviour of some evaporite 

rocks, namely gypsum and anhydrite under triaxial and uniaxial 

compression and bending modes of loading. 

The results of this investigation could be briefly summarised 

as follows: 

(1) In short term tests it was found that the strength of 

rock increases with the confining pressure in non-linear rela- 

tionship. 

(2) Creep in the rocks tested takes place at all stress 

levels and is affected by confining pressure. 

(3) At room temperature the creep of gypsum and anhydrite 

follows the logarithmic law (E =A+B logt) at low stresses 

and low confining pressure, whereas it changes to a power equation 

(e = Ctrl) at higher stress or confining pressure, where 0<n<1. 

(4) The instantaneous strain increased with increasing stress. 

The moduli of elasticity were evaluated making use of the instant- 

aneous strains. 

(5) The constants A and B of the-logarithmic equation increase 

with the axial stress. 

(6) The constants C and n of the power equation increase 

with the axial stress at constant confining pressure. On the 

contrary they decrease as the confining pressure increases at 

I0-2 
0 



constant axial stress. 

(7) The axial stress has a great effect on the creep rate 

(c). It was found, for both the rocks tested, that the creep 

rate increased with the axial stress at constant confining 

pressure. 

(8) The increase in confining pressure reduces the creep 

rate at constant axial stress. 

(9) At constant differential stress the creep rate increases 

with the axial stress and the confining pressure. 

(10) Both constants C and n of the creep power law increase 

linearly with the confining pressure at constant differential 

stress. 

(11) The relationship between the creep rate and the axial 

stress for gypsum was found to follow the power equation. 

ýý = kQlg where g>1. 

k and g are constants which depend on the material and the 

test conditions. "g" was found to be constant at any time in 

the creep period at a given confining pressure. 

(12) A method suggested to determine the working creep 

stress aW from the creep data available at any assumed service 

life, becomes of wider application as a result of the more com- 

plete knowledge of creep behaviour made possible in triaxial 

tests. 

(13) At axial stresses corresponding to constant percentages 

of the short term strength, the constants C and n of the creep 

power law and the creep rate, at any time, increase as the con- 

fining pressure increases. This explains the rapid change in 

the creep curve from the logarithmic law to the power equation 

as the confining pressure increases. 
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The author suggests that it would be of interest to carry 

on similar creep tests on other evaporite rocks such as rock 

salt, potash, etc., to obtain a wider knowledge of the behaviour 

of evaporite rocks before making any generalization. Triaxial 

creep tests on gypsum and anhydrite at higher confining pres- 

sure may also throw more light on their behaviour under these 

conditions. 

With reference to the triaxial creep apparatus, the author 

suggests the following. points for future work: 

(1) The construction of more powerful apparatus both in 

confining and axial stress. This will enable the extension of 

triaxial creep study of the tested rocks at higher stresses or 

into harder rock materials outside the evaporite range. 

(2) Design and use of a lateral strain measuring device 

to measure the diameteral creep strain in the pressure cell it- 

self. 

(3) Means of controlling the pore pressure in the specimen 

under stress and the possible use of pore fluids consisting of 

various solutions to study the effect of both the presence of 

solutions and pore pressure on the creep behaviour of different 

rock materials. 

(4) Finally, the possibility of investigating the creep 

property of rock materials in triaxial compression at various 

temperatures. 

10-4 
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Table (A6-1) 

Uniaxi, al compression tests on gypsum*. 

Specimen 
No. 

Cross- 
sectional 
ar5a 
mm 

Load at 
fracture 

KN 

Stress 
2 N/mm 

Mean 
Stress 
N/mm2 

Standard 
deviation 

8G 482.27 27.75 57.54 

12G 488.13 28.37 58.13 

14G 488.91 27.36 55.96 

22G 488.91 30.35 62.08 57.46 2.776 

27G 491.66 29.56 60.12 

48G 501.54 27.15 54.13 

63G 497.97 28.55 57.68 

65G 487.74 

- 

26.36 LI 54'. 04 I 

*The procedure of calculating the mean stress and the 

standard deviation is given in table (A6-3). 
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Table (A6-2) 

Uniaxial compression tests on anhydrite* 

Specimen 
No. 

Cross- 
sectional 
area 
mm2 

Load at 
fracture 

KN 

Stress 
2 N/mm 

Mean 
Stress 
N/mm2 

Standard 
deviation 

2A 488.13 51.28 105.05 

3A, 490.87 47.52 96.81 

11A 485.0 44.85 92.47 

12A 488.91 52.91 108.22 101.25 8.491 

13A 488.91 47.35 96.85 

14A 486'. 21 55.27 113.68 

15A 487.74 43.72 89.64 

22A 488.13 52.36 107.27 

*The procedure of calculating the mean stress and the 

standard deviation is given in table (A6-3). 
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Table (A6-3) 

An example of calculating the mean stress and the standard 

deviation of gypsum at uniaxial compression* 

No. of 
specimens 
tested 

N 

Stress Mean 
stress 
a= 
Ea 

N 

_Q (Cl _-2 
2 

N-1 

Standard 
deviation 
S 

2 

N_1 

57.54 0.07 0.0049 

58.13 0.67 0.4489 

55.96 -L50 2.2500 

8 62.08 4.62 2L3444 

60.12 57.46 2.66 7.0756 7.7082 2.776 

54.13 -3.33 11.0889 

57.68 0.22 0.0484 

54.04 -3.42 1L6964 

53.9575 

* The same procedure was used in calculating all the means and. 

standard deviations-of the values given in the other tables. 
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Table (A6-4) 

Experimental data and mean values of triaxial compression tests 

of gypsum"'. 

a Specimen Test results Mean values 3 
N/mm2 No. 01 

N/mm2 . 

z 
N/mm 2 

e 01 
deg. N/mm 2 

Z 
N/mm2 

0 
deg. 

0 see table (A6-1) 57.46 0 72 

54G 73.10 43.21 63 

5 55G 69.42 38.68 61 73.97 42.20 60 

120G 79.39 44.71 56 

66G 79.16 77.31 60 
46G 87.60 71.78 61 

10 128G 96.80 61.10 55 92.07 58.79 58 

121G 98.51 27.28 64 

83G 98.30 56.48 50 

8OG 116.92 78.42 55.5 

15 56G 86.46 78.63 60 102.51 79.03 55.7 

122G 104.15 80.04 51.5' 

47G 108.09 107.28 56 
65G 108.81 94.75 59 

20 89G 118.40 - 56 114.58 102.57 57.5 

123G 117.19 '105.68 57.5 
129G 120.40 - 59 

- 99G 128.72 113.12 52 
F25 

60G 121.38 113.81 50.5 128.37 113.31 53.5 

124G 135.01 113.00 58 

57G 133.37 132.15 50 

61G 131.24 120.63 50.5 

127G 142.80 - 57.5 
30 64G 132.92 127.10 50 136.44 129.20 53 

130G 134.60 - 54 
125G 143.68 136.91 56 

67G 143.02 141.00 - 
35 126G 145.82 144.91 58.5 147.80 146.26 - 

36G 154.55 152.88 - 
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Table (A6-4) cont. 

Notations 

0l = Axial stress at fracture or yield 

03 = Confining pressure 

Z= Axial stress immediately after fracture 

e= Measured angle of fracture which is the 

angle between the plane of failure and 

the minor principle stress (03) . 
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Table (A6-5) 

Experimental data and mean values of triaxial tests of 

anhydrite* 

i Test results Mean values 
'5 men Spec 

N/mm32 No. 01 
N 2 

Z 
N 2 

e 
d 

Q1 
N/mm2 

Z 
N/mm2 

A 
de /mm /mm eg. g. 

0 see table (A6-2) 101.25 0 75 

lA 125.30 26.14 62.5 

5 4A 137.70 31.56 69.5 131.50 28.85 66 

16A 164.50 67.29 63.5 

10 17A 173.20 69.47 62.5 164.50 65.87 65.5 

25A 156.10 60.85 70.5 

5A 181.14 98.18 65 

15 6A. 191.90 106.04 61 186.52 102.11 63 

18A 213.88 121.61 55.5 

20 19A 202.14 75.78 60.0 "200.51 125.10 63 

26A 185.51 177.91 73.5 

7A 220.32 168.20 60 

25 8A 228.30 160.46 60 224.31 164.33 62.5 

20A 233.59 125.07 53 

30 2]A 241.50 235.59 62 236.63 198.16 60 

27A 234.80 233.81 65 

9A 248.12 222.10 63 
35 251.11 218.32 60 

10A 254.10 214.54 57 

* For notations see table (A6-4). 
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The creep curves of gypsum in triaxial compression 

followed, in most of the cases, the power law in the*form: 

c Ctn (B9-1) 

In order to be sure that the creep data will fit the 

above equation well, the data of creep strain against time 

were plotted on a log-log graph, when a straight line was ob- 

tained. The slope of this straight line is n, and C is the 

creep strain at t=1 hour. To find n and C the following least 

square method was applied: 

Equation (B9-1) can be written in the form 

log e= log C+n logt 

let y= log c 

x= log t 

and k= log C' 

Equation (B9-2) can be rewritten in the form: 

' nx' 

(B9-2) 

(B9-3) 

which is an equation of a straight line of slope n and inter- 

cept k on the y-axis. The following equations were used in 

calculating n and k: 

Exy - 
(Ex) (EV) 

N 
n= 

Ex2 - 
(Ex) 2 

N 

(B9-4) 

k=y- nx (B9-5) 

where N is the number of readings, y is the mean of y-values 

and x is the mean of x-values. 

x, y, Exy, Ex, Ey and Ex2 are given in table (B9-1). The 

values of the creep strain c and the corresponding times are 

taken from table (9-11) of Chapter 9. 

B-2 



I 

Solving for n and k using the data given in table (B9-1) 

107.641 - 
41.471 x 66.921 

28 
n= 

92.759 - 
(41.47 1)2 

28 

. '. n=0.271 

k= nx 

k=2.390 - 0.271 x 1.481 

. '. k=1.990 

Substitute the value of k in k= log C to find C= 97.74 

microstrain. 

Substitute the values of n and C in equation (B9-l), the 

following power equation of the creep of gypsum under 50% ou 

axial stress and at 30 N/mm2 confining pressure was obtained 

e= 97.74 tO. 271 (B9-6) 
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In order to find the degree of correctness of the assump- 

tion that the plotted data on the log-log graph represents a 

straight line, the correlation coefficient (R) was found for 

each case. The results obtained were extremely satisfactory. 

In the following pages an example of such calculations is given 

on a triaxial creep data of gypsum at 30 N/mm2 confining pres- 

sure, subjected to an axial stress of 57.3 N/mm2 (=50% au). 

R=E 
(X-x) (Y-Y) 
(N-1) (Dx. Dy) (B9-7) 

where R is the correlation factor; x, x, y, y and N as given in 

table (B9-1) and equation (B9-4) ; Dx and Dy are the standard 

deviations of x and y values respectively, where: 

2 

Dx =E 
(x -x) (B9-8) 

Dy =jE 
(y yý (B9-9) 

N-1 

substitute the values of x, x, N, y and y in the above equations: 

Dx = 1: 080 1 

Dy = 0.300 

R= -E(x-X) 
(Y-Y) 

(N-1) (DX. D7-) 

_ 
8.663 

27 x 1.080 x 0.300 

. '. R=0.9902 which gives a , good degree of correctness. 
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